
0

: ... - :..
• ' .

--CPU OPERATION

PolyMorphic
Syste111s

460 Ward Crive Santa Barbara California 93111 (805) 967-2351

This manual is PolyMorphic Systems part number 810112

Copyright 1977, Interactive Products Corporatio1, .

0

0

0

Central Processor Unit Theory of Operation

. TABLE OF CONTENTS
PAGE

L INTRODUCTION 1

2. OPERATIONAL THEORY 2
2.1 CPU 2

2. 1. l Interrupt Sequences 7
2. 1.2 Halt Sequences 9
2.1. 3 Start-Up Sequence 9
2. 1.4 Central Processor Unit Architecture 9
2. 1. 5 8080 Instruction Set 10

2.2 USART OPTION 22
2.2.l Co11111unications Fonnat 23
2.2.2 Receiver 26
2.2.3 Transmitter 27

· 2.2.4 Modem Control 28
2.2.5 I/0 Control 28
2.2.6 Mode Selection 29
2.2.7 USART Programming Hints 31
2.2.8. USART Addressing 32

2.3 BAUD RATE GENERATOR OPERATION 33
2.3.l Baud Rate 33
2. 3.2 USART Interrupts 35
2.3.3 Device Number 35

2.4 REAL-TIME CLOCK 36

2.5 SINGLE-STEP LOGIC 36

2.6 VECTORED INTERRUPTS 36

3. CUSTOMER INSTALLED OPTIONS 38 ..
3. 1 SINTA 38
3.2 PINT 38
3.3 PHANTOM MEMORY 38
3. 4 RELOCATION OF CPU ONBOARD MEMORY 40
3.5 REAL-TIME CLOCK JUMPER 41

4. POLYMORPHIC SYSTEMS 8080 CPU CARD BUS 41

FUNCTIONAL LISTING, 8080 INSTRUCTION SET 46

NUMERICAL LISTING, 8080 INSTRUCTION SET 49.

HEX - ASCII TABLE 51

Page 1 Central Processor Unit Theory of Operation PolyMorphic Systems

1. INTRODUCTION

The 8080 CPU card is a member of PolyMorphic Systems' complete 0
line of microcomputer system components. The CPU card is com-
patible with the industry standard S- 100 bus. In addition to the
8080 CPU cqip, the card also contains 512 bytes of read-write
memory, sockets for 3072 byt es of read- only memory, an optional
serial I/O port, a real-time clock interrupt, an instruction
single-step interrupt, and a priority encoder for the 8-level
priority interrupt system.

The 8080 CPU contains six 8- bit general purpose registers and an
accumulator. The six general purpose registers may be addressed
individually or in pairs, providing both single and double pre­
cision operators. The 8080 has a 16- bit program_ counter, allowing
direct addressing .of up to 64K bytes of memory. A 16-bit stack
pointer addresses an external last in/first out stack which may
be located in any part of memory. The program counter, flags,
accumulator, or general purpose registers may be stored and re­
treived from this stack. The 8080 instruction set includes arith­
metic and logical operations between the accumulator and general­
purpose registers, immediate data, or memory. Data may be moved
between the accumulator, general purpose registers, and memory in
8 or 16-bit words. Double precis i on arithmet ic and stack manip­
ulation operators extend the capability of the 8080 . Conditional
and unconditional jump and call instructions are provided, as are
computed jumps. Instructions are variable length and execute in
2-18 micro8econds.

The CPU card provides 512 bytes ·of 450 ns RAM and sockets for
three 2308 ROMs or 2708 EPROMs. The ROM sockets normally hold
the resident portion of the operating system on the POLY 88 and
System 88 microcomputer systems. They may be used for the user's
own software in custom applications.

A programmable serial communications interface using an 8251
USART is included on the card (optional when CPU card is purchased
separately as a kit). The mode of operation (synchronous or
asynchronous}, data format, control character format, parit; ,
and transmission rate are all under program control. Two sock­
ets on the CPU card allow the connection of minicards providing
RS-232 or current loop, and Byte or Polyphase cassette inter­
faces.

A SO or 60 Hertz real time clock interrupt is provided on the
card along with a single step interrupt. The single step inter­
rupt allows single insruction execution, for debugging purposes,
under software control. Eight vectored interrupts are provided
on the card for use with these or external interrupts.

0

·--~age 2 Central Processor Unit ·Theory of Operation PolyMorphic Systems

2. OPERATIONAL THEORY •

2.1 CPU

The 8080 CPU, 8224 clock generator, and 74LS174 status latch per­
form all system processing operations and provide a timing refer­
ence for all other circuitry on the card and the S-100 bus. The
CPU generates all of the address and control signals necessary to
access memory and I/O ports both on the CPU card and the S-100
bus. The CPU responds to interrupts originating from devices on
the bus or the CPU card. The priority encoder forms RST {restart}
instructions vectoring the CPU to a different location in response
to each interrupt.

The activities of the CPU set are cyclical. The CPU fetches an
instruction, performs the operations required, fetches the next
instruction, and so on. This orderly sequence of events requires
precise timing. The 8224 clock generator provides the primary
timing reference for the system. The 8224 produces the two-phase
timing inputs (01 and 02) for the 8080. The 01 and 02 signals
.define a cycle of approximately 540ns duration. All processing
activities of the CPU set are referred to the period of 01 and 02
clock signals.

Within the 8080 CPU set, an instruction cycle is defined as the
time required to fetch and execute an instruction. During the
fetch, a selected instruction (one, two, or three bytes) is ex­
tracted from memory and deposited in the CPU's operating regist­
ers. During . the execution part, the instruction is decoded and
translated into specific processing activities.

Every instruction cycle consists of one, two, three, four, or
five machine cycles. A machine cycle is required each time the
CPU accesses memory or an I/O port. The fetch portion of an in­
struction cycle requires one machine cycle for each byte to be
fetched.· The duration of the execution portion of the instruc­
tion cycle depends on the kind of instruction that has been
fetched. Some instructions do not require any machine cycles
other than those necessary to fetch the instruction; other in­
structions, however, require additional machine cycles to write
or read data to or from memory or I/O devices.

Each machine cycle consists of three, four, or five states. A
state is'the smallest unit of processing activity and is defined
as the interval between two successive positive-going transitions
of the 01 clock pulse.

There are three exceptions to the defined duration of a state.
They are the WAIT state, the hold(HLDA) state and the halt(HLTA)
state. Because WAIT, HLDA, and HLTA states depend upon external
events, they are by their nature of indeterminate length. Even
these exceptional states, however, must be synchronized with
the pulses of the driving clock. Thus the duration of all
states, including these, are integral multiples of the clock
pulse.

To summarize, then, each clock period marks a state; three to

Page· 3 Central Processo·r trnit-'-Theory of Operation ~polyMorphic Systems

·· five states-comprise a machine-cycle; and one to five machine
cycles comprise .. an instruction cycle. A full instruction cycle Q requires anywhere from four to seventeen states for its comple-
tion, depending on the kind of instruction involved.

There is just one consideration that determines how many machine
cycles are required in any given instruction cycle: the number
of times that the processor must reference a memory address or
an I/0 address, in order to fetch and execute the instruction.
Like many processors, the 8080 is so constructed that it trans­
mits one address per machine cycle. Thus, if the fetching and
execution of an instruction requires two memory references, then
the instruction cycle associated with that instruction consists
of two machine cycles. If five such references are called for,
then the insruction cycle contains five machine cycles.

Every instruction cycle has at least one reference to memory,
during which-the instruction is fetched. An instruction cycle
must always have a fetch, even if the execution of instruction
requires no further references to memory. The first machine cycle
in every instruction cycle is therefore a FETCH. Beyond that,
there are no fast rules. It depends on the kind of instruction.
The input (INP) and the output (OUT) instructions each require
three machine cycles: a FETCH, to obtain the instruction; a MEM­
ORY READ, to obtain the address of the object peripheral; and an
INPUT or an OUTPUT machine cycle, to complete the transfer.

Every machine cycle within an instruction cycle consists of three
to .. f iv-e active states (referred to as Tl, T2, T3, T4, and TS) .
The actual number of states depends upon the instruction being
executed, and on the particular machine cycle within the greater
instruction cycle. Figure 2 shows the timing relationships in
a typical FETCH machine cycle. Events that occur in each state
are referred to transitions of the 01 and 02 clock pulses.

At the beginning of each machine cycle (in state Tl), the 8080
activates its SYNC output and issues status information onto the
status bus just after the rising edge of 01 of state T2. The
status information is also available on the data bus during Tl.

BUS
DRIVERS

8800
BUS CPU

PRIORITY ENCODER

ADDRESS BUS

ROM RAM

DATA BUS

Figure 1.

0

T
l

T
2

'TW
*

01

02
_

_
_

 _,
DATA OUT
BUS

PSYNC+

__ x
STATUS

)<
: _

_
 _

T
l

T4

-
-

-
-
-

~YSTEH ADnRESS
B

U
S

=-~
 ~
 ~
 _x

-
M

E
M

O
R

Y

A
D

D
R

E
S

S

O
F

IN
S

T
R

U
C

1'10N

B
Y

T
E

><=_ _

_
_

_
_

_
 =

 _
SMEMR+

PDBIN+

D
A

TA
 IN BUS

-
-
-
-

-
-
-

-
-

-
-
-
-
-
~

-
-

-
-

--
-
-
-

-
-

(IN
S

T
R

U
C

T
IO

N

B
Y

T
E

)

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

PR
O

V+
_

_
_

_
_

_
_

 ----4
.0

,

i
:'·

Low
 on PROV

h
e
re

req

u
ires W

AIT sta
te

 (TW
)

FIG
U

R
E

2
.

TY
PIC

A
L

FETC
H

 M
A

CH
IN

E
CY

CLE

; I
- Page-5 Central Processor Unit Theory of Operation PolyMorphic Systems

The . status info.r.mati-on -indicates the type of machine cycle in pro-
gress. · SINTA goes high dur i.ng an interrupt acknowledgement Q
cycle; SMEMR, when high, signals a memory read cycle; SINP and
SOUT, respectively, indicate input and output data transfers.
SWO goes low during output or. memory write cycles, and HLTA is
active (high) only when the CPU is halted. Note that there is
not a separate status· line for a memory write cycle. This may be
generated by the logic SWO -SOUT. After PSYNC returns low, PDBIN
goes high, indicating the CPU is expecting data on the Data In Bus .

The rising edge of 02 during Tl loads the address lines A0-AlS.
These lines become stable within a brief delay of the 02 clocking
pulse, and they remain stable until the first 02 pulse after state
T3. This gives the processor ample time to read the data returned
from memory.

Once the processor has sent an address to memory, there is an op­
portunity for the memory to request a WAIT. This it does by pul­
ling the PRDY+ line low. As long as the PRDY line remains low,
the CPU Set will idle, giviing the memory time to respond to the
addressed data request. The processor responds to a wait request
by entering an alternative state (TW) at the end of T2, rather
than proceeding directly to - the T3 state. A wait period may be
of indefinite durat ion . The 8080 remains in the waiting condi­
tion until its READY line again goes high. The cycle may then
proceed, beginning with the rising edge of the next 01 clock. A
WAIT interval will therefore consist of an integral number of TW Q
states and will always be a multiple of the clock period.

The events that take place during the T3 state are determined by
the kind of machine cycle in progress. In a FETCH machine cycle,
the CPU interprets the data on the Data In Bus as an instruction.
During a MEMORY READ, signals on the same bus are interpreted as
a data word. The CPU itself outputs data on this bus during a
MEMORY WRITE machine cycle: And during I/O operations, the CPU
may either transmit or receive data, depending on whether an IN­
PUT or an OUTPUT operation is involved. Consider the following
two examples.

Figure 3 illustrates the timing that is characteristic of an
input instruction cycle. During the first machine cycle Ml),
the first byte of the two-byte IN instruction is fetched from
memory. Th~ 8080 places the 16-bit memory address on the address
bus near the end of state Tl. The memory read status signal
(SMEMR) during state T2. During the next machine cycle (M2}, the
second byte of instruction is fetched. During the third machine
cycle (M3), the IN instruction is executed. The 8080 duplicates
the 8-bit I/O address on address lines A0-7 and AS-15. The 8080
activates the I/O read status signal (SINP) during states T2 of
this cycle.

a-

01

02

ADDRESS
BU

S

f7
T

l
H

l
(L

,··:{)

,•
M

2
(FETC

H

2ND BYTE) •I•
T

2
I

T
l

I
T4

T
l

I
T

2
I

T
3

T
l

M
J (IN

PU
T)
~

I
T

2
I

T
3

I

_
n _ ___,,n_____,n.______.n _

_
 n _ ___.n _

_
 n ___ n __

M
EM

ORY A
nnRESS

----x
--

-
-
-
-

x= =
 ~ =

 ~)(_
M

EM
O

RY
AD

D
R

ESS
xx

1
/0

 PO
R

T
AD

D
R

ESS x~ =

PDBIN+ _
_

_
_

_
 __,

SMEMR+

SINP+ _
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

 _

D
A

TA

BU
S

-
-
-
-
-
-
-
-

l~
t b

y
te

o
f IN

in
stru

c
tio

n

2nd b
y

te
o

f IN
in

stru
c
tio

n

FIG
U

R
E

3.

INPUT
IN

STRU
CTIO

N
 CYCLE

-
-
-
-
-

-

D
ata

from

1
/0

 P
o

rt

•·/

Page 7 .. centra.L Processo°J"; Unit Theory of .. Oper_at-ion PolyMorphic ·systems-

Figure 4 illustrates an instruction cycle during which the
CPU outpu_ts data. · During the first two machine cycles (Ml and O
M2), the CPU fetches the two-byte OUT instruction. During the
third machine cycle (M3), the OUT instruction is executed. The
8080 duplicates the 8-bit I/0 address on 1 ines A0-7 and AS-15·.
The 8080 activates the I/0 address on status signal (SOOT) at the
beginning of state T2 of this cycle. The 8080 outputs the data
onto the Data Out Bus at the end of state T2. Data on the bus
remains stable throughout the remainder of the machine cycle.

Observe that a PRDY signal is necessary for completion of an
output ma~hine cycle. Unless such an indication is present, the
processor enters the TW state, following the -T2 state. Data on
the output ·lines remains stable in the interim, and the processing
cycle will not proceed until the PRDY line again goes high.

The negative-going leading edge of WR is referred to the rising
edge of the fir~t 01 clock pulse following T2. Thus, WR coincides
with the appearance of stable data on the system bus. WR_remains
low until re-triggered by the leading edge of 02, during the state
following T3. Note that any TW states intervening between T2 -and
T3 of the output machine cycle will necessarily extend WR/.

All processor machine cycles consist of at least three states :
Tl, T2, and T3, as just described. If the CPU has to wait for a
PRDY response, then the machine cycle may also contain one or
mor~ TW ferred to or from the CPU.

After the T3 state, however, it becomes difficult to generalize.
T4 and TS states are available, if the execution of a particular
instruction requires them. But not all machine cycles make use
of these states. It depends upon the kind of instruction being
executed, and on the particular machine cycle within the instruc­
tion cycle. The processor will terminate any machine cycle as
soon as its processing activities are completed, rather than
proceeding through the T4 and TS states every time. Thus the 8080
may exit a machine cycle following the T3, the T4, or the TS state
and proceed directly to the Tl state of the next machine cycle.

2. 1. 1 INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external interrupt
requests . Peripheral logic can initiate an interrut simply by
driving any vectored interrupt line low. The interrupt input is
asynchronous, and a request may therefore originate at any time
during any instruction cycle. An interrupt request acts in coin­
cidence with the 02 clock to set the internal interrupt latch.
This event takes place during the last state of the instruction
cycle in which the request occurs, thus ensuring that any instruc­
tion in progress is completed before the interrupt can be proc­
essed.

0

The INTA (Interrupt Acknowledge} machine cycle which follows the Q
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The contents of the pro-
gram counter are latched onto the address lines during Tl, but
the counter itself is not incremented during the INTA machine

01

M
l

l-
1

-
(F

E
T

C
H

)

I
T

l
I

T
2

I
T

3

"
2

_
JL

_
_

_
j

M2

T
4

,
•

T
l

T
2

~

•
T

l

M
3

(O
U

TPU
T)

l
T

2

I

0

~

A
D

~
~

S
S

 ~-== =-x
M

EM
O

R
Y

A
D

D
R

E
S

S

x= =
 = =x

M
EM

O
R

Y A
D

D
R

E
S

S

x=x
I/0

 fO
R

T

A
D

D
R

E
S

S

x=
PDBIN+ -

-
-
-
-
-
-
-
-

SMEMR+ -
-
-
-
~

PW

R-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
,

sour+

D
A

TA

..... -
-

-
-

-
-

IN
 BU

S
-

-
-

-
-

-
-

-

..,_
 __

-
-

-
-
-
-
-

DATA OUT BUS
_

_
_

-
-

"--
-

~
 -

-
-

-

-
-
-
-

'-----n
--

(-
1

st b
y

te

2nd b
y

te

D
ata outout to

o

f OUT
in

stru
c
tio

n

o
f OUT

in
stru

c
tio

n

1
/0

 P
o

rt

FIG
U

R
E 4

.
O

UTPUT IN
STRU

CTIO
N

 CYCLE

' ...

-. · ·page :g Central Processo·r un,it Theory of Operation PolyMorphi.c .s~stems

cycle,· as it otherwise would be. In this way, the pre-interrupt
status of the program co·unte.r is preserved, so that data in the Q
counter may be saved in the stack. This in turn permits an or-
derly return to the interrupted program after the interrupt re-
quest has been processed.

The INTA output is used to gate an "interrupt instruction"· onto
the system data bus during state T3. The interrupt instruction
is a one-byte RST which causes program control to branch to an

-- interrupt routine. The RST interrupt instruction is supplied by
the priority encoder.

2.1.2 HALT SEQUENCES

When a halt instruction (BLT) is executed, the 8080 enters the
halt state after state T2 of the next machine cycle. There are
only three ways in which the 8080 can exit the halt state:

2.1.3

-A low on the reset input (PRESET) will always reset the
8080 to state Tl; reset also clears the program counter.

-An interrupt will cause the 8080 to exit the halt state
and enter state Tl on the rising edge of the next 01
clock pulse.

Note: The interrupt enable (INTE) flag must be set when
the halt state is entered; otherwise, the 8080
will only be able to exit via a reset signal.

START-UP SEQUENCE

When power is applied initially to the 8080, the processor begins
operating immediately. The slow transition of the power supply
rise is se·nsed by an internal Schmitt Trigger which produces a
synchronized RESET signal which restores the processor's internal
program counter to zero. Program execution thus begins with mem­
ory location zero.

2.1.4 8080 CENTRAL PROCESSOR ARCHITECTURE

The next few paragr.aphs discuss the functional structure of the
8080 Central Processor Unit. Throughout this discussion we have
assumed that you have had some experience with assembly language
programming; the purpose of Section 2.1.4 is merely to familiar­
ize you with the particular structure of the 8080.

The 8080 CPU contains six general purpose registers which can
either be used as single registers (containing 8 bits of data)
or. as register pairs (containing 16 bits of data). These regist­
ers are: B, C, D, E, H, and L. (The register pairs are BC, DE,
and HL). Single bytes of data (8-bits) can be transferred be­
tween these registers, and betwe·en these registers and memory .
In addition, one data byte can be moved from these registers into
a special register called the accumulator, and from the accumu­
lator into any register. These general purpose registers are
used to store data and memory addresses. When used as pairs,
the B, D, and H registers contain the most significant byte of
the 16-bit contents of the register pair, and the C, E, and L
registers contain the least significant byte.

0

0

Page· 10 Central• Processor. Unit Theory of Operation PolyMorphic Systems

The accumulator (register A) is a. special register used by the
arithmetic and logical unit of the computer. Whenever an arith­
metic operation is performed on data, the data to be operated
upon is usually placed in the accumulator, the operation perform­
ed, and the result of the operation then left in the accumulator.

EXAMPLE:
SUB B

The above instruction tells the machine to subtract the contents
of the B register from the contents of the accumulator, and leave
the results in the accumulator. Besides the contents of other
registers, you may move the contents of a memory location into
the accumulator. (For more information on the 8080 instruction
set, see Section 2.1.s, 8080 INSTRUCTION SET.)

Special.one-bit registers are called "flags," which signal cer­
tain conditions which may arise as a result of arithmetic oper­
ations. The contents of these five flags and the contents of the
accumulator are contained within a special register called the
PSW (Prog_ram Status Word) .

EXAMPLE:
PUSH PSW

The above instruction tells the machine to put (or "push") the
contents of the flags and the contents of the accumulator onto
the- "stack."

Another special register is the PC register (Program Counter).
This register contains the address of the next program instruc­
tion to be executed. Another register, the SP (Stack Pointer)
register, contains the address of the most recent stack entry.

You can also use the general purpose register pairs as addressing
registers; that is, to point to the memory location whose contents
you want to move into a register. For example, the contents of
the HL register pair are always used as the address of the memory
byte to be accessed when the symbol M appears in an instruction.

EXAMPLE:

MOV B,M

The above instruction says: move the contents of the memory byte
whose address is in the HL register pair into the B register .

Other instructions use the Band D register pairs to address mem­
ory bytes whose contents are to be moved into the acc umulator.
(Note: these kinds of instructions always move one byte only.)

0 2.1 . 5 8080 INSTRUCTION SET

In the 8080 CPU there are five flags .

· Page 11 Central _ Prcocessor Unit Theory- .of Operation PolyMorphic systems

CARRY FLAG

When a number is added to the valu~ in the accumulator, the result
may include a carry out of the left-hand bi t , the bit of highest
significance. This carry "sets" the carry flag to 1.

•--.. -__l__,J_l _ _
accumulator

When an addition does not result in a carry out of the most sig­
nificant accumulator bit, the carry flag is O.

The carry flag can be set to O or l by other operations. For in­
stance, the instructions RAR (rotate accumulator right) and RAL

. (rotate accumulator left) affect the carry flag. In RAR, the
least significant bit in the accumulator moves into carry, the
bit that was in carry goes into the most significant place in the
accumulator, and all other accumulator ·bi ts move one pl ace to the
right.

RAR

RAL is the opposite of RAR. ,

The carry flag can be affected by logical operations as well as
addition, subtraction, and rotation.

AUXILIARY CARRY FLAG

A carry out of the "third bit" (fourth place -- 2·3) sets the aux­
iliary carry flag:

I I accumulator

The auxilary carry flag cannot be tested directly, and exists only
to enable the DAA instruction for decimal conversion.

SIGN FLAG

The sign flag is set by certain instructions to duplicate the
significant bit in a register. The most significant bit in a
register can be interpreted as the sign of the data quantity
when the quantity is considered to be two's complement.

most

0

Page 12'' Central· ·Pt"'o,cess.o·r. un.it The·ory of .Operation PolyMorphic Syste~

I I I I I I I sign • I J
flag T ____ I

register

ZERO FLAG

The zero flag is set to 1 at the end of certain operations if the
byte resulting from the operations is all zeroes; the zero bit is
reset to O if the result is not zero.

A result that consists of eight zeroes plus a carry out of the
seventh bit sets the zero flag to 1, and also sets the carry flag
to 1.

PARITY FLAG

"Parity" refers to whether the number of l's in a byte is even or
odd. Byte parity is checked after certain operations. If the num­
ber is even, parity is "even" and the pari t y flag is set to 1: if
there is an odd number of l's, parity is "odd" and the parity flag
is reset to O.

INSTRUCTIONS

Following is a complete list with discussion of all the operations
built into the Poly central processor. The discussion div ides the
operations into groups of related instructions. Each operation
is identified by a "mnemonic" which corresponds to an instruction
in machine language ("opcode"). For a chart showing all assembly
mnemonics and the associated opcodes, see appendix .

.
CARRY FLAG INSTRUCTIONS . Two instructions affect the carry flag
alone:

CMC (complement carry). Complement the carry flag -­
Set it to O if it is 1 or to l if it is 0.

STC (set carry). Set the carry bit to 1.

SINGLE REGISTER INSTRUCTIONS. These instructions affect the con­
tents of one memory address or any one of the CPU registers -­
one byte. If memory, the instruction affects the byte addressed
by pair H.

INR (increment register or memory). Increment the affected reg­
ister_ or memory byte by 1 -- add 1 to it.

OCR (decrement register or memory). Decrement register or memo­
ry byte by 1. This instruction is th opposite of INR -- it is
identical to it except that it reduces the affected byte by 1.
All flags may be affected.

CMA (complement accumulator). Complement the byte in the accum­
ulator -- change every 1 to 0 and Oto 1. No flags are affected.

Page 13 Central Processor -Un-it -Theory of Operation PolyMorphic Systems

DAA (decimal adjust accumulator). Adjust the byte in the accum- O
ulator to form two groups of four bits, each representing one
decimal digit. This instruction is rather complicated, treating
as it does the awkard relationship between binary and decimal.
It is used -- infrequently -- when a decimal output is desired.
DAA adjusts the first four bits and second four bits of the ac­
cumulator byte separately. First, the less significant four bits
of the accumulator byte are compared to 1001 to see if they are
greater than nine. If they are (or if the auxiliary carry flag
is set to 1), then the accumulator is incremented by six -- which
reduces the value of the four bits to nine or less. Next, if the
four more significant bits of the accumulator byte represent a
number greater than nine (or if the carry flag is set to 1), then
these four bits are incremented by six, so that they will repre-
sent a value of nine or less. Note that either of these two ad­
justments may have produced a carry. A carry out of the four less
significant bits sets the auxiliary carry flag to l; otherwise, it
is reset. A carry out of the accumulator byte sets the carry flag
to l; otherwise, it retains its previous value. All other flags
may be affected.

NO-OPERATION. INSTRUCTION:

One instruction results in no operation.

NOP (no operation). Move on to the next instruction in sequence.
No flags are affected.

DATA TRANSFER INSTRUCTIONS:

These instructions transfer data between registers or between
memory and registers .

MOV (move). Move one byte of data from an indicated register or
memory to another individual register or memory. The data also
r.emains in its original location.

Format example: MOV B,A. "Move the byte in A {accumulator) into
register B," Note that the format states the affected register
first. Data cannot be moved from one memory address to another
in a single operation. Data moved out of memory is always taken
from the location addressed by H & L. No flags are affected.

STAX (store accumulator). Store the contents of the accumulator
into the memory location addressed by register pair B or pair _D.
No flags are affected.

LDAX {load accumulator). Store the contents of the memory loca­
tion addressed by the indicated register pair (pair B or pair D)
into the accumulator. No flags are affected.

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS.

These instructions operate on the accumulator using a byte taken
from a register or from memory. Memory is taken from the memory
location addressed by the data pointer (H & L). Results are left

0

0

0

' Page· l4 . Cantra~~0 Pr..oce~sor~7 .. Unif T!1·eory of Operation · Poly.Morphic Systems

in the accumulator.

ADO (add register or memory to accumulator). Add the byte in one
register or in memory to the value in the accumulator. ADD A
doubles the accumulator. All flags may be affected.

ADC (add register or memory and carry flag bit to accumulator).
Add the byte from a specified location, plus the value of the
carry flag, to the value in the accumulator. All flags may be
affected.

SUB (subtract register or memory from accumulator). Subtract the
byte in a specified register or memory location from the value in
the accumulator. SUB A subtracts the accumulator from itself,
leaving it (and the carry flag) at zero. All flags may be affect­
ed.

SBB (subtract register or memory and carry flag bit -- "borrow"
-- from accumulator). Subtract the byte taken from a specified
location, plus the value of the carry flag, from the accumulator.
All flags may be affected.

ANA (AND register or memory with accumulator). AND the specified
byte with the accumulator. ANA is often used to zero part of the
accumulator. Carry, zero, sign, and parity flag.s may be affected.

XRA (XOR register or memory with accumulator). XOR the specified
byte with the value in the accumulator. XRA A zeroes the accum­
ulator. Then a MOV from A to ·a register zeroes that register.
All flags may be affected.

ORA (OR register or memory with accumulator). OR the specified
byte with the value in the accumulator. This instruction is often
used to set part of the accumulator to l's. Flags affected:
carry flag is zeroed; zero, sign, and parity flags may be affect­
ed.

CMP (compare register or memory with accumulator). Compare the
specified byte to the contents of the accumulator. In effect,
this determines if the specified byte is smaller than, equal to,
or larger than the accumulator byte. Flags: the zero flag is 1
if the quantities are equal, and O if they are unequal. The carry
flag is 1 if the register or memory byte is larger than the accum­
ulator byte, and O otherwise (but when the two compared values
differ in sign, the sense of the carry flag is reversed). All
other flags may also be affected.

ROTATE ACCUMULATOR INSTRUCTIONS.

These instructions rotate the contents of the accumulator -- move
a bit from one end, and shift the other bits one place. Rotation
can be to the left or to the right, and involves the carry flag
bit (but no other).

RLC (rotate accumulator left and into carry). Move the most sig­
nificant bit in the accumulator (left-hand bit) into the carry
flag and into the least significant place in the accumulator.

Page 1~ Central :Processof Unit Theory of _Operation PolyMorphic Systems

All other bits shift one place to the left.

START

ROTATE [r-y,~ ' 111 I 0!0 I 110 i 1t:J
END [] 1

1 r1 101911 1 1~1 1 10I

RRC (rotate accumulator right and into carry). Move the least
signficant bit from the accumulator into carry and into the most
significant place; the opposite of the instruction above.

RAL (rotate accumulator left, through carry). Move the most sig­
nificant accumulator bit into carry, and the .carry flag bit into
the least significant place; shift all other ·accumulator bits left.

START I 0 I 1 I 1 1- 0 I 0 I 1 I 01 1 I

ROTATE {J 111100 11 i 0r1,

END· 11 I 110 Ioli lol 1ix
RAR (rotate accumulator right, through carry). Move the least
significant bit to carry, and move carry into the most signif­
icant place; the opposite of the instruction above.

REGISTER PAIR INSTRUCTIONS.

These instructions operate on the register pairs.

PUSH (push data onto stack). Store the value in the specified
register pair into the two bytes of memory addressed by the stack
pointer. Such data is said to be "pushed" onto "the stack." The
more significant byte goes into address SP-1, the less significant
into address SP-2. Indicating PSW (processor status word) stores
the current accumulator. value at SP-1 and a byte incorporating
all the flags in SP-2: .

always 0-..........._ always ~ r-a lways 1
~ \ T

sign----11•-'I I j I / I --1------carry

zero flag_____..,... ~ Zparity
aux. carry

The stack pointer is left pointing to the address where the sec­
ond byte has been stored. Flags are not affected.

0

0

0

0

0

Page .16 Central... Processor-:Un it- Theory of Operat.ion P.olyMor.ph.ic Systems

POP (pop data off stack). Store data from the stack into the in­
dicated register pair. The byte of data at SP is stored into the
less significant register; the byte at SP+l goes into the more
significant register. If register pair PSW is indicated, the
byte at SP provides the bits of the flags, and the byte at SP+l
goes into the accumulator. This instruction is the opposite of
the one above.

DAD (double add). Add the two-byte value in the indicated register
pair (B, D, or H) to the two-byte value in pair H, and leave the
result in pair H. Flag affected: carry.

INX (increment extended register · pair). Increment the value in a
register pair by 1 -- add 1 to it. No flags are affected.

DCX (decrement extended register pair).
ister pair. The opposite of the above.

Subtract 1 from a reg­
No flags are affected.

XCHG (exchange registers). Move the value in pair H to pair D
and vice versa. No flags are affected.

XTHL (exchange H & L with stack). Exchange the value in L with
the value in the memory location addressed by the stack pointer
and exchange the value in H with the value in that memory address
plus one (SP plus 1). No flags are affected.

SPHL (load SP from H & L). Load the value in register pair H
into the stack pointer register. That value is now the stack ad­
dress pointed to by the stack pointer. No flags are affected.

IMMEDIATE INSTRUCTIONS.

These instructions operate on one or two bytes of data, included
in the instruction itself. The data immediately follows the op­
code (hence "immediate").

LXI (load extended immediate) . Load the indicated register pair
with the two bytes immediat ely fo l lowing. The first byte goes
into the lower-order register, the second into the higher-order
register. No flags are affected.

MVI (move immediate). Move the following byte into the specified
register or into the memory location addressed by the data point­
er. This instruction resembles LXI except that it enters only one
byte of data (and therefore can be used to load a memory loca­
tion. No flags are affected.

ADI (add immediate to accumulat or). Add the following byte to the
value in the accumulator, and leave the result in the accumulat­
or. All flags may be affected.

ACI (add immediate, plus the carry bit, to accumulator) . Add the
following byte, plus the value of the carry flag bit, to the value
in the accumulator, and leave the result in the accumulator. All
flags may be affected.

.. . ~Page 17. Central Processor Unit· Theory of Operation PolyMorphic Systems

SOI (subtract immediate from accumulator}. Subtract the follow­
ing byte from the value in the accumulator, and leave the result
in the accumulator. All flags may be affected. This instruction
is the subtraction equivalent of ADI above.

SBI (subtr~ct immediate, and "borrow," from accumulator). Sub­
tract the byte immediately following, and the value of the carry
flag bit, from the value in the accumulator, and leave the result
in the accumulator. This is the subtraction equivalent of ACI
above. All flags may be affected.

ANI (AND immediate with accumulator}. AND the byte immediately
following with the value in the accumulator., and leave the result
in the accumulator. Carry, zero, sign, and parity flags may be
affected.

XRI (XOR immediate with accumulator). XOR the byte immediately
following with the value in the accumulator, and leave the result
in the accumulator. The carry flag is set to O. Zero, sign, and
parity flags may also b_e affected.

ORI (OR immediate with accumulator). OR the byte .immediately fol­
lowing with the value in the accumulator, and leave the result in
t he accum.ulator. The carry flag is set to O. Zero, sign, and
parity flags may also be affected.

CPI (compare immediate data with accumulators). Compare the fol- Q
lowing byte to the value in the accumulator. The zero flag is
set to 1 if the two values are equal and O if they are unequal.
The carry flag is set to l if the immediate data value is larger
than the accumulator value, and set to O otherwise. (But if
the two values differ in sign, the sen·se of the carry flag is
reversed.) All other flags may be affected.

DIRECT ADDRESSING INSTRUCTrON.

These instructions involve the contents of memory addresses; the
addresses are included as part of the instruction. The instruc­
tion states the address "backwards" -- first the less significant
address byte, then the more significant. These instructions do
not affect flags.

STA (store accumulator ·direct). Store the value in the accumu­
lator into the memory location addressed in the instruction.

LOA (load accumulator direct). Load the contents of the memory
location addressed in the instruction into the accumulator. No
flags are affected. This instruction is the opposite of STA
above .

SHLD (store Hand L direct). Store the contents of register pair
H into the memory location addressed in the instruction. No flags Q
are affected.

LHLD (load accumulator direct}. Load the contents of the memory
location addressed by the instruction into the L register, and
the contents of the next higher address into the H register. This

0

Page"":.18 Central. Pr.6£ess.o,r Un.it·· Tl:i~ory of Operation- P.olyMorphic Systems

is the opposite of SHLD above.

JUMP INSTRUCTIONS

These instructions cause the computer to "jump" to another part
of a program rather than continue to perform instructions in se­
quence. None of these instructions affects flags.

PCHL (load program counter with H & L). Load the contents of reg­
ister H into the more significant byte of te program counter, and
the contents of register L into the less significant byte. The
next instruction executed will be the one now addressed by the
program counte~. Note that this instruction does not itself con­
tain an address. All other jump instructions do.

JMP (jump). Execute the instruction located at the address given
in the instruction·, and continue sequentially. Th is is called an
"unconditional jump." All the following jump instructions are
"conditional . "

JC (jump if carry). Jump to the instruction addressed by this in­
struction· if the carry flag is set to 1. If the carry flag is O,
move on to the next instruction in sequence.

JNC (jump if no carry). Jump to the instruction addressed by this •
instruction if the carry flag is set to O. If the carry flag is
1, move on to the next instruction in sequence. This instruction
is the opposite of the above.

JZ (jump if zero). Jump to the instruction addressed by this in­
struction if the zero flag is set to l. If the zero flag is set
to O, move on to the next instruction in sequence. Compare to JC.
(Note that the "if zero" condition is met if the register in
question is all zeroes, so that the zero flag is set to 1.)

JNZ (jump if not zero). Jump to the instruction addressed by this
instruction if the zero flag is set to O. If the zero flag is
set to 1, move on to the next instruction in sequence. This in­
struction is the opposite of JZ above. Compare to JNC.

JM {jump if minus). Jump to the instruction addressed by this in­
struction if the sign flag is set to l ("minus") ·. If the sign
flag is set to O, move on to the next instruction in sequence.
Compare to JC and JZ above.

JP (jump .if plus). Jump to the instruction addressed by this ih­
struction if the sign flag is set to O ("plus"). If the sign flag
is set to 1, move on to the next instruction in sequence. This
instruction is the opposite of JM above. Compare to JNC and JNZ.

JPE (jump if parity even). Jump to the instruction addressed by
this instruction if the parity flag is set to 1 ("even parity").
If it is set to O, move on to the next instruction in sequence.
Compare to JC, JZ, and JM above.

JPO (jump if parity odd). Jump to the instruction addressed by
this instruction if the parity flag is set to O ("parity odd").

Page 19-Central Processor Unit Theory of Operation PolyMorphic Systems

If th.e·-parity flag is 1, move on to the next instruction in se­
quence. This instruction is the opposite of JPE above. Compare O
to JNC, JNZ, and JP above.

CALL SUBROUTINE INSTRUCTIONS

Like jump instructions, call instructions cause the computer to
depart from sequential execution of instructions. Also like jump
instructions, most are "conditional" -- most operate only if
some condition is met. And as with jump instructions, execu- .
tion of instructions continues in sequence starting with the
instruction at the address called (stated in the call instruc­
tion). The two types of instructions also resemble one another
in that the address included is stated "backwards" -- first the
less significant address byte, then the more significant. Also,
these instructions do not affect flags.

The two kinds of instructions differ in that a call instruction
"pushes" an address onto "the stack" -- namely, the address of
the instruction to which the computer will "return" when it has
finished the subroutine.

CALL. Go to the subroutine addressed by this instruction, and
begin sequential execution there. This is an "unconditional call,"
and corresponds to an unconditional jump. All other call instruc­
tions are conditional, and correspond to the conditional jump in­
structons, each triggered by the state of one of the flags.

CC · (call if carry) . Go to the subroutine addressed by th is in­
struct ion if the carry flag is set to 1. If the carry flag is
O, move on to the next instruction in sequence.

CNC (call if no carry). Go to the subroutine addressed in this
instruction if the carry flag is set to O. If the carry flag is
1, move on to the next instruction in sequence. This instruction
is the opposite of CC above.

CZ (call if zero). Go to the subroutine addressed by this in­
strucion of the zero flag is set to 1. If the zero flag is O,
move on to the next instruction in sequence. Compare to CC.

CNZ (call if not zero). Go to the subroutine addressed by this
instruction if the zero flag is set too. If the zero flag is 1,
move on to the next instruction in sequence. This instruction is
the opposite of CZ above. Compare to CNC.

CM (call if minus). Go to the subroutine addressed by this in­
struction if the sign flag is set to l ("minus"). If the sign
flag is O, move on to the next instruction in sequence. Compare
to CC and CZ above.

0

CP (call if plus) . Go to the subroutine addressed by this instruc- Q
tion if the sign flag is set to O ("plus"). If the sign flag is
1, move on to the next instruction. T~is instruction is the op­
posite of CM above. Compare to CNC and CNZ above.

CPE (call if parity even). Go to the subroutine addr-essed by this

0

Page 20 C~ntral Processor Un it ·.The·o·ry o·f Op~ration -- PolyMorphic Systems

instruction if the parity flag is set to 1 ("even parity"). If
the parity flag is O, move on to the next instruction in sequence.
Compare to CC, cz, and CM above.

CPO (call if parity odd). Go to the subroutine addressed in this
instructio~ if the parity flag is set too. If the parity flag
is 1, move on to the next instruction. This instruction is the
reverse of CPE above. Compare to CNC, CNZ, and CP above.

RETURN FROM SUBROUTINE INSTRUCTIONS.

These instructions get the computer back from subroutines to the
instruction following the call instruction that caused it to de­
part. Specifically, they "pop" an address previously "pushed"
onto "the stack" off of the stack and into the program counter,
causing the computer to next execute the instruction located at
-that address. Execution 'then continues sequentially from there.
Each return instruction is associated with a previous call in­
sruction, i.e. the program counter always returns· eventually to
the point in a program that it previously departed from (to an ·
instruction following a call instruction). Therefore the number
of returns executed is always equal to the number of calls exe­
cuted is always equal to the number of calls executed (unless the
machine halts) .

Since these instructions always 11 pop11 addresses in the order op­
posite that in which they were "pushed," they can be said always
to operate on the "next available address" in the stack, so that
the address need not be stated in the instruction.

Like 11 jump11 and call instructions, all but one of the return in­
struct ions are conditional upon the state o_f one of the flags.
Flags are not affected by return instructions.

RET (return). Return to the most recently pushed address. This
is an "unconditional return."

RC (return if carry). Return to the nex t address on the stack if
the carry flag is 1. If the carry flag is O, move on to the next
instruction in sequence.

RNC (return if no carry). Return to the next address on the stack
if the carry flag is O. If the carry flag is 1, move on to the
next instruction in sequence. This instruction is the opposite
of RC above.

RZ (return if zero). Return to the next address on the stack if
the zero flag is L If the zero flag is O, move on to the next
instruction in sequence. Compare to RC above.

RNZ (return if not zero). Return to the next address on the stack
if the zero flag is O. If the zero flag is 1, move on to the next
instruction in sequence. This instruction is the opposite of RZ
above. Compare to RNC above .

RM (return if minus). Return to the next address on the stack if
the sign flag is 1 ("minus"). If the sign flag is O·, move on to

Page 21 Central Pr.ocessor· Unit Theory of Operation PolyMorphic systems

the - next instruction in sequence. · Compare to RC, RZ above.

RP (return if plus). Return to the next address on the stack if 0
the sign flag is O ("plus") . If the sign flag is O, move on to
the next instruction in sequence. This instruction is the oppo-
site of the instruction above. Compare to RNC, RNZ above.

RPE (return if parity even). Return to the next address on the
stack if the parity flag is 1 ("even parity"). If the parity
flag is O, move on to the next instruction in sequence. Compare
to RC, RZ, RM above.

RPO (return if parity odd). Return to the next address on the
stack if the parity flag is O ("odd parity"). If the parity flag
is 1, move on to the next instruction in sequence. This instruc­
tion is the opposite of RPE above. Compare to RNC, RNZ, RP above.

RESTART INSTRUCTION.

One special instruction, RST, resembles th~ call instructions in
that it pushes a return address onto the stack and sends the com­
puter off to another location. The address of the instruction
following the RST instruction sequentially is pushed onto the
s t a ck, so that the computer will eventually return to its point
of departure. Note that the RST instruction pushes the address
of the instruction following RST -- otherwise the computer would
return to the RST instruction itself and be trapped in an endless Q
loop.

RST sends .the computer (i.e. the program counter) off to one of
eight pre-determined memory locations, each the first of a se­
quence of eight bytes, making up the first sixty-four bytes of
memory.

MEMORY
BYTE I I I I I I I 111 11 I I I I I I I

! ~ \ I \
RST RST RST
~ 1 2

(.MEM ·(MEM (MEM
~0H) ~SH) l~H)

etc. through RST 7,
at memory address
38H.

Actually, the eight bytes associated with each RST can be reached
by means of other kinds of instructions -- jump and call instruc­
tions -- and need not comprise individual routines. In the POLY
88, all sixty-four of these bytes are used in the monitor (dis- r.
cussed later) . V

The CPU executes an RST at one of two times. An RST instruction
may be written into a program, in which case the instruction is
in effect a "call" instruction in shorter form -- one byte instead

·=Page:.;--22- Ce-n.tral .Processor •Unit-· Theory of Operation PolyMorphic Systems

of three. More u-sual·ly, the CPU executes an RST when the running
of a program is interrupted "from the outside". For instance,
saving onto tape is a very slow process for the POLY 88, which
can output data much faster than the tape recorder can properly
record it. so ~he comput er outputs data to the tape on an inter­
rupt basis -- it occupies itself with other tasks until the out­
put port electronics indicate that it is time to output another
data item to the tape. This forces a restart, which puts a book
marker into the program so the computer will be able to get back
to its point of departure, and sends the program counter off to
a pre-determined location to begin execution of a brief routine
that causes the computer to output a data item to the tape.

INTERRUPT FLIP-FLOP INSTRUCTIONS.

Sometimes it is important not to permit interruptions of a pro­
gram. For that reason, interrupts can be disabled--input or. out­
put electronics can be prevented from forcing a restart. Whether
or not interrupts are disabled depends upon the state of a single
flip-flop, called the interrupt flip-flop is reset too, from
which time interrupts are disabled till the flip-flop is once
again set to 1. No flags are affected.

EI (enable interrupt). Set the interrupt flip-flop to 1 .

DI {disable interrupt). Reset the interrupt flip-flop to O.

C INPUT/OUTPUT INSTRUCTIONS.

C

These instructions cause the computer to input data from or out­
put data to a device external to the computer -- like a keyboard •

.
To be precise, the instruction causes the CPU to open an input or
output port, which is assumed to provide a connection with some
device. No flags are affected.

IN (input). Load one byte from the designated input port into
the accumulator.

OUT (output). Send the byte in the accumulator out to the desig­
nated output port_.

HALT INSTRUCTION.

This instruction brings computer operations to a stop. It first
increments the program counter -- adds 1 to it -- so that the
computer will resume with the next instruction. No flags are af­
fected.

HLT (halt) . Increment the program counter, then stop.

2. 2 CPU USART OPTION

The USART is included on every assembled CPU card. It is an op­
tion which may be ordered separately for use with CPU card bits.

The USART option for the 8080 CPU card provides a very flexible

Page 23 Central Processor Unit Theory of Operation PolyMorphic Sys~ems

serial communications interface for the POLY 88 and system 88.
The USART option and a software controllable baud rate generator. O
The USART may interface to two serial I/O devices. The device
and its baud rate may be changed under the control of one output
port. These interface through two "minicards" which mount to the
rear of the POLY 88 or system 88 chassis. Interface cards are
available for RS-232-C, current loop, Kansas City (Byte) Standard
audio cassette, and the 2400 baud Polyphase cassette.

This note- describes the USART option from a functional standpoint
and then describes the various operating modes of the USART and
how the USART may be programmed.

COMMUNICATIONS FORMATS

Serial communications, either on a data link or with a local peri­
pheral, occurs in one of two basic formats: asynchronous or syn­
chronous. These formats are similar in that they both require
framing information to be added to the data to enable proper de­
tection of the character at the receiving end. The major differ­
ence between the two formats is that the asynchronous format re­
quires framing information to be added to each character, while
the synchronous format adds framing information to blocks of data,
or messages. Since the synchronous format is more efficient than
the asynchronous format but requires more complex decoding it is
typically found on high-speed data links, while the asynchronous
format is used on lower-speed lines.

The -asynchronous format starts with the basic data bits to be
transmitted and adds a "START" bit to the front of them and one
or more "STOP" bits behind them as they are transmitted. The
START bit is a logical zero, or SPACE, and is defined as the posi­
tive voltage level by RS-232-C. The STOP bit is a logical one,
or MARK, and is defined as the negative voltage level by RS-232-C.

In current loop applications, current flow normally indicates a
MARK and lack of current a SPACE. The START bit tells the re­
ceiver to start assembling a character and allows the receiver
to synchronize itself with the transmitter. Since this synchron­
ization only has to last for the duration of the character (the
next character will contain a new START bit), this method works
quite well assuming a properly designed receiver. One or more
STOP bits are added to the end of the character to ensure that
the START bit of the next character will cause a transition on the
communication line and to give the receiver time to "catch up"
with the transmitter if its basic clock happens to be running
slightly slower than the transmitter clock. If, on the other
hand, the receiver clock happens to be running slightly faster
than the transmitter clock, the receiver wil perceive gaps be­
tween characters but will still correctly decode the data. Be­
cause of this tolerance to minor frequency deviations, it is not
necessary that the transmitter and receiver clocks be locked to
the identical frequency for successful asynchronous communication.

The synchronous format, instead of adding bits to each character,
groups characters into records and adds framing characters to the
record. The framing characters are generally known as SYN charac-

0

0

(

Pag-e 24 Cent.ral -Proc·essor·:unit Theory ·of Operation PolyMorphic Sys-terns

ters and are used by the receiver· to determine where the charac­
ter-. boundaries are in a string of bits. Since synchronization
must be held over a fairly long stream of data, bit synchroniza­
tion is normally either extracted from the communication channel
by the modem or supplied from an external source.

An example of the synchronous and asynchronous formats is shown
in Figure 5. The synchronous format shown is fairly typical in
that it requires two SYN characters at the start of the message.

___ J, I I I 1 1 U::11.J7TillTTIJ (
,_ ... ----, \---- IU.111 ttf oa11. oat•

- AMTM ITOP•lf

.,_, __ ,.
I 11II11 I II I I I I I I 1~

""''"
Figure 5 •

. The asynchronous format, also typical, requires a START bit pre­
ceding each character and a single STOP bit following it . In
both cases, two 8-bit characters are to be transmitted. In the
asynchronous mode, 10 x n bits are used to transmit n characters,
and in the synchronous mode, Sn+ 16 bits are used. For the ex­
ample shown, the asynchronous mode is actually more efficient,
using 20 bits versus 32. Transmitting a thousand characters in
the asynchronous mode, however, takes 10,000 bits, versus 8,016
for the synchronous mode. For long messages, the synchronous
format becomes much more efficient than the asynchronous format;
the crossover point for the examples shown in Figure 5 is eight
chara~ters, for which both formats require 80 bits.

In addition to the differences in format between synchronous and
asynchronous communication, there are differences with regards
to the type of modems that can be used. Asynchronous modems
typically employ Frequency Shift Keying (FSK) techniques which
simply generate one audio tone for a MARK and another for a
SPACE. The receiving modem detects these tones on the telephone
line, converts them to logic signals, and presents them to the
receiving terminal. Since the modem itself is not concerned
with the transmission speed, it can handle baud rates from zero
to its maximum speed. Synchronous modems, in contrast to asyn­
chronous modems, supply timing information to the terminal and
require data to be presented to them synchronized with this tim­
ing information. Synchronous modems, because of this extra clock­
ing, are only capable of operating at certain preset baud rates.
The receiving mode, which has an oscillator running at the same
frequency as the transmitting modem, phase-locks its clock to
that of the transmitter and interprets changes of phase as data.
The PolyMorphic PolyPhase cassette interface operates in a syn­
chronous mode.

In some cases it is desirable to operate in a hybrid mode which
involves transmitting data with the asynchronous format using
a synchronous modem. This occurs when an increase in operating
speed is required without a change in the basic protocal of the

Page 25 Centr-al Processor Un i.t . Theory of Operation PolyMor.phic · Sys.terns

system. This hybrid technique is known as isosynchronous and·
involves the generation of the start and stop bits associated with Q
the synchronous format, while still using the modem clock for
bit synchronization. The Byte standard cassette interface oper-
ates in an isosynchronous mode.

The 8251 USART (Universal Synchronous/Asynchronous Receiver­
Transmitter) has been designed to meet a broad spectrum of re­
quirements in the synchronous, asynchronous, and isosynchronous
modes. In the synchronous modes it operates with 5, 6, 7, or 8-
bit characters. Even or. odd parity can be optionally appended
and checked. Synchronization can be achieved internally via SYN
character detection. SYN detection can be based on one or two
characters which may or may not be the same. The single or double
SYN characters are inserted into the data stream automatically
if the software fails to supply data in time. The automatic gen­
eration of SYN characters is required to prevent the loss of syn­
chronization. In the asynchronous mode the USART operates with
the same data and parity structures as it does in the synchronous
mode. In addition to appending a START bit to this data, it ap­
prends 1, 1 1/2, or 2 STOP bits . Proper framing is checked by the
receiver and a status flag set if an error occurs. In the asyn­
chronous mode the USART can be programmed to accept clock rates
of 1, 16, or 64 times the required baud rate. Note that Xl oper­
ation is only valid if the clocks of the receiver and transmitter
are synchronized.

Th~ USART can transmit the three formats in half or full duplex
mode and is double-buffered internally (i.e., the software has
a complete character time to respond to a service request) ·.
Although the USART supports basic data set control signals (DTR,
RST, etc.), it does not fully support the signaling described
in EIA RS-232-C. Examples of unsupported signals are Ring Indi­
cator (CE), and the second channel signals. The serial option
does not interface to the voltage levels required by EIA RS-232-C;
this function is provided by the Printer Interface Card. (This
card also provides an optically isolated current loop interface.)

A block diagram of the USART is shown in Figure 6. As can be
seen in the figure, the USART consists of five major sections
which communicate with each other on an internal data bus.
The five sections are the receiver, transmitter, modem control,
read/write control, and I/0 buffer. In order· to facilitate dis­
cussion, the I/0 buffer has been shown broken down into its three
major. subsections: the status buffer, the transmit data/command
buffer, and the receive data buffer.

0

i>age lb ~entral Processor Unit Theory of Operation PQlyMorphi.c Syster

EXTll:ANAI. OATA eus

110 BUFFI R

z
= :JJ TAANSMlnER z T•O > 11'-SI ,.
!

AISlT "'
CI.K T, ROY

CID R(AOIWRITI! TRANSMIT T•i

iio CONTROi. ICONTAOI.I ~ LOGIC
wil

A•ROY
RECIIVEA SVNOET

iffii
(CONTROi.i

iGc
iiSR "IOOEM
rn CONTROL

cii ---RECEIVER A•O (S-1'1

RECEIVER

The receiver accepts serial data on the RxD pin and converts it
to parallel data according to the appropriate format. When the

Page . 2 7- Central Processor ·Unit- Theory of Operation PolyMorphic Systems

USART is in the asynchronous mode, and it is ready to accept a
character (i.e., it is not in the process of receiving a charac­
ter), it looks for a low level on the RxD line. When it sees the
low level, it assumes. that it is a START bit and enables an in­
ternal counter. At a count equivalent to one-half of a bit
time, the RxD line is sampled again. If the line is still low,
a valid START bit has probably been received and the USART pro­
ceeds to assemble the character. If the RxD line is high when
it is sampled, then either a noise pulse has occurred on the
line or the receiver has become enabled in the middle of the
transmission of a characcter. In either case, the receiver aborts
its operation and prepares itself to accept a new character.

After the successful reception of a · START bit, the USART clocks
in the data, parity, and STOP bits, and then transfers the data
on the internal data bus to the receive data register. When
operating with less than 8 bits, the characters are right-just­
ified. The RxRDY signal is asserted to indicate that a character
is available.

In the synchronous mode, the receiver simply clock·s in the speci­
fied number of data bi ts and transfers them to· the receiver buf­
fer register, setting RxROY . Since the receiver blindly groups
data bits into characters, there must be a means of synchronizing
the receiver to the transmitter so that the proper character
boundaries are maintained in the serial data stream. This syn- O
chronization is achieved in the HUNT mode.

In the HUNT mode the USART shifts in data on the RxD line one bit.
at a time. After each bit is received, the receiver register is
compared to a register holding the SYN character (program loaded}.
If the two registers are not equal, the USART shifts in another
bit and repeats the comparison. When the registers compare as
equal, the USART ends the HUNT mode and raises the SYNDET line
to indicate that it has achieved synchronization . If the USART
has been programmed to operate with two SYN characters, the pro­
cess is as described above, except that two contiguous characters
from the line must compare to the two stored SYN characters be­
fore synchronization is declared. Parity is not checked. The
USART enters the HUNT mode when it is initialized into the syn­
chronous mode or when it is commanded to do so by the command
instruction. Before the receiver is operated, it must be enabled
by the RxE bit (D2) of the command instructions. If this bit is
not set, the receiver will not assert the RxRDY bit.

TRANSMITTER

The transmitter accepts parallel data from the processor, adds
the appropriate framing information, serializes it, and transmits
it on the Txo pin. In the asynchronous mode the transmitter al-
ways adds a START bit; depending on how the unit is programmed, Q
it also adds an optional even or odd parity bit, and either 1,
1 1/2, or 2 STOP bits. In the asynchronous mode no extra bits
(other than parity, if enabled) are generated by the transmitter
unless the computer fails to send a character to the USART. If
the USART is ready to transmit a character and a new character
has not been supplied by the computer, the USART will transmit a

C

Page 28 Central -Processor · unit- Theory of Operation PolyMorphic Systems

SYN character. This is necessary since synchronous communica­
tions, unlike asynchronous communications, does not allow gaps
between characters. If the USART is operating in the dual SYN
mode, both SYN characters will be transmitted before the message
can 'be resumed. The USART will not generate SYN characters until
the software has supplied at least one character; i.e., the USART
will "fill holes" in the transmission but will not initiate trans­
mission itself. The SYN characters which are to be transmitted
by the USART are specified by the software during the initial­
ization procedure. In either the synchronous or asynchronous
modes, transmission is inhibited until TxEnable and the -CTS
input are asserted . .

An additional feature of the transmitter is the ability to
transmit a BREAK. A BREAK is a period of continuous SPACE
on the communication line and is used in full duplex communica­
tion to interrupt the transmitting terminal. The USART will
transmit a BREAK condition as long as .bit 3 (SBRK) of the com­
mand register is set.

MODEM CONTROL

The modem co_ntrol section provides for the generation of -RTS
and the reception of -CTS. In addition, a general-purpose out­
put and a general-purpose input are provided. The output is
labeled -DTR and the input is labeled -OSR. -DTR can be
asserted by setting bit 2 of the command instruction; -DSR can
be .sensed as bit 7 of the status register. Although the US.ART
itself attaches no special significance to these signals, -DTR
(Data Terminal Ready) is normally assigned to the modem, indicat­
ing that the terminal is ready to communicate and -DSR (Data
Set Ready) is a signal from the modem indicating that it is ready
for communications.

I/0 CONTROL

The Read/Write Control Logic decodes control signals on the
8080 control bus into signals which gate data on and off the
USART 1 s internal bus and controls the external I/O bus (DB0
DB7). The receiver and transmitter buffers are located at port
i0, while the status and command buffers are port #1. The I/O
buffer contains the STATUS buffer, the RECEIVE DATA buffer, and
the TRANSMIT DATA/COMMAND buffer, as shown in Figure 7. Note
that although there are two registers which store data for trans­
fer to the CPU (STATUS and RECEIVE DATA), dnly one register
stores data being transferred to the USART. The sharing 'of the
input register for both transmit data and command makes it
important to ensure that the USART does not have data stored in
this register before sending a command to the device. The
TxRDY signal can be monitored to accomplish this. Neither data
nor commands should be transferred to the USART if TxRDY is low.
Failure to perform this check can result in erroneous data being
transmitted.

Page 29 -G:entr-al --Processor Unit Theory of Operation PolyMorphic ·systems

CE CID READ WRITE Function

0 0 0 1 CPU Reads Data from
USART

0 1 0 1 CPU Reads Status from
USART

0 0 1 0 CPU Writes Data to
USART

0 1 1 0 CPU Writes Command to
USART

1 X X X USART Bus Floating
(NO-OP)

Figure 7. ·

MODE SELECTION

The USART is capable of operating in a number of modes (e.g.,
synchronous or asynchronous). In order to keep the hardware as
flexible. as possible (both at the chip and end product levels),

0

these operating modes are selected via a series of control out- O
puts to the USART. These mode control outputs must occur be-
tween the time the USART needs this information to structure
its internal logic it is essential to complete the initializa-
tion before any attempts are made at data transfer (including
reading status).

A flowchart of the initialization process appears in Figure 8.
hflll••Ctu

8
-----1
§]

I

Page 30 Central Processor Unit Theory of Operation PolyMorph-ic Systems

The first operation which must occur following a reset is the
loading of the mode control register. The mode control register
is loaded by the first control output following a reset . The
format of the mode control instruction is shown in Figure 9.

YES

BAUD RATE FACTOR

0 0 - $TN MODE
'-----t 0 1 • ASTN XI

10 •ASYNXII
1,1 •ASYNX ..

CHAIIACTE.A LENGTH

oo-11a1Ts
'-------t O 1 •I BITS

10•781TS
I 1 •IBITS

PARITY CONTROL

XO - NO PAIIITY .__ ________ I O 1 •000 rAIIIJY

1 1 • EVEN PARITY

FR-ING CONTROL

0 0 • NOT VALID
">---------1 0 I • 1 STOI' BIT

NO-ASYNID1Do"OOI

1 O • 11' STOI' 81TS
I 1 •1STDPBITS

101 Oo•OI SYN CONTROL

XO INTERNAL SY., '-------------1 X 1 tXTERNAL SYN
0 X DOUBLE SYN CHAR
I X SINGLE SYN CHAR

The instruction can be considered as four 2-bit fields . The
first 2-bit field (Dl DO) determines whether the USART is to
operate in the synchronous (00) or asynchronous mode. In the
asynchonous mode this field also controls the clock scaling
factor. As an example, if Dl and DO are both ones, the -RxC and
-TxC will be divided by 64 to establish the baud rate . The
second field, D3 D2, determines the number of data bits in the
character, and the third, OS D4, controls parity generation.
Note that the parity bit (if enabled) is added to the data bits
and is not considered as part of them when setting up the char­
acter length. As an example, standard ASCII transmission, which
is seven bits plus even parity, would be specified as:

Page 31 Central Processor- ·Unit·- ~heo·ry of Operation PolyMorphic Systems

X X 1 1 1 0 X X 0
The last field, D7 D6, . has two meanings, depending on whether
operation is to be in the synchronous or asynchronous mode. For
the asynchronous mode (i.e., 01 DO= 00), it controls the num-
ber of STOP bits to be transmitted with the character. Since
the receiver will always operate with only one STOP bit, D7 and
06 only control the transmitter. In the synchronous mode (Dl
DO= 00), this field controls the synchronization process.
Note that the choice of single or double SYN characters is
independent of the choice of internal or external synchroniza-
tion. This ·is because even though the receiver may operate
with external synchronization logic, the transmitter must still
know whether to send one or two SYN characters should the CPU
fail to supply a character in time.

Following the loading of the mode instruction, the appropriate
SYN character (or characters) must be loaded if synchronous mode
has been specified. The SYN character{s) are loaded by the
same control output instruction used to load the mode instruc­
tion. The USART determines from the mode instruction whether
no, one, or two SYN characters are required and uses the con­
trol output to load SYN characters until the required number
are loaded.

USART
PROGRAMMING HINTS

1. Output of a command to the USART can destroy the integrity
of a transmission in progress if timed incorrectly.

Sending .a command into the USART will overwrite any charac­
ter which is stored in the buffer waiting for transfer to
the parallel-to-serial converter in the device. This can
be avoided by not sending a command if transmission is
taking place. Due to the internal structure of the USART,
it is also possible to disturb the transmission if a com­
mand is sent while SYN character is being generated by the
device. (The USART generates a SYN if the software fails
to respond to TxRDY.) If this occurence is possible in a
system, commands should be transferred only when a positive­
going edge is detected on the TxRDY line.

2. RxE only acts as a mask to RxRDY: it is possible for the
USART internal data buffers to already contain one or two
characters. These characters should be read and discarded
when the RxE bit is first set. Because of these extraneous
characters, the proper sequence for gaining synchronization r.
is as follows: \J

1. Disable interrupts .

2. Issue a command to enter hunt mode, clear errors, and
enable the receiver (EH,ER,RxE=l).

C

Page 32 Central- Proces-sor Un it· Theory of. Operation PolyMorph ic Systems

3. Read USART data port twice(it is not necessary to check
status) .

4. Enable interrupts.

The first RxRDY that occurs after the above sequence will
indicate that the SYN character or characters have been
detected and the next character has been assembled and is
ready to be read.

3. Loss of CTS or dropping TxEnable will immediately clamp
the serial output line.

TxEnable and RTS should remain asserted until the
transmission is complete. Note that this implies that
not only has the USART completed the transfer of all bits
of the last character, but also that they have cleared the
modem. A delay of l msec following a proper occurence of
TxEmpty is usually sufficient (see Item 4). An additional
problem can occur in the synchronous mode because the
loss of TxEnable clamps the data in at a SPACE instead
of the normal MARK. This problem, which does not occur
in the asynchronous mode, can be corrected by an external
gate combining RTS and the serial output data.

4. Extraneous transitions can occur on TxEmpty while data
_ · (including USART generated SYNs) is transferred to the

parallel-to-serial converter.

This situation can be avoided by ensuring that TxEmpty
occurs during several consecutive status reads before
assuming that the transmitter is truly in the empty state.

5. A BREAK (i.e., long space) detected by the receiver results
in a string of characters which have framing errors.

If reception is to be continued after a BREAK, care must
be taken to ensure that valid data is being received;
special care must be taken with the last character
perceived during a BREAK, since its value, including
any framing error associated with it, is indeterminate.

USART ADDRESSING

The transmit and receive buffers are addressed as port O
on the CPU card if it is set up for operation at O. The
command and status buffers are located at port 1. If your
CPU card is not set up for operation at o, consult the follow­
ing table. (See Section 3. 5 for addressing option description.)

USART OPTION ADDRESSING

Address
Jumper

ROM begins
at

J (factory set) 0000

Data
port

0

Command
& Status
Port

1

Baud Rate
Generator
Latch

4

Page 33 C-entr·al ·P-rocesso-r - Un it Theory of Operation Po-lyMorphic Systems

T
s

8000
E000

80
E0

2.~3-13AUD RATE GEN:SRA'COR. 02S&IT10M

81
El

84
E4

The baud rate generator may be accessed through port #4. The
byte output to this port will be latched into the baud rate
latch and determines the baud rate, device number, and on-card
memory disable or enable. When power is applied to the CPU card
or the front panel reset button is pushed, this latch is set too.
The command format is as follows:

D7, 06
Unused

05
ROM
disable

D4·
Device

i

03, 02, 01, DO
Baud Rate

See Section 3.4, Phantom Memory, for a discussion of on-card
memory disable.

BAUD RATE

The baud rate field may assume any value O through F (hex). Fif­
teen of these are valid baud rates; 0 disabl es clock generation.
Note that the actual baud rate is determined by the USART mode
(xl, xl6, x64 clock). See Figure 12 for the availa51e baud
rates. Note the synchronous mode always uses an xl clock.

At completion of the load of SYN characters (or after the mode
instruction in the asynchonous mode), a command character is
issued to the USART. The command instruction controls the
operation of the USART within the basic framework established
by the·mode instruction. The format of the command instruction
is shown in Figure 10. Note that if, as an example, the USART is
waiting for a SYN character load and instead is issued an i nternal
reset command, it will accept the command as an SYN character
instead of resetting. This situation, which should only occur
if two independent programs control the USART, can be avoided
by outputting three all zero characters as commands before
issuing the internal reset command. The USART indicated its
state in a status register which can be read under pr ogram
control. The format of the status register read is shown in
Figure 11.

0

(;

C

Pag-e 34··. Central--Proce·sso·r-<1Jnit Theory of Operation PolyMorphic Systems

I EH I Ill
IATSI

0SA SYNOET

I I

ER I $8AK I R• E I OTR I TaEN

L TRANSMlf EN•BLE
1 • EN•ILE
0•O1.....a.E

o•T• TERMI-L
RE•OY

""HIGH" WILL FOIICt:
OTA OUTPUT TO ZERO

RECE IYE lN•IU
1 • El'l•au R• ROY
0 • OIUIILE A• IIOY

SEN08fllU.K
CH•A"'CTEII

1 • FORCHT• O"l.OW"'
O• NOIUU.I. ~EM1'1ON

UIIIOIIIIESIT
I • RESET AI.L £RADA

f~4Pt!.OE.FU

REQUEST TO SEND
:Jilllll" WILL FORCE
RTS OUTPUT TO ZERO

INTER-I. RESET
"HIGH" RETURNS ffl1
TO MOOE INS1'11UCTION
FORM•T

ENTER HUNT MDCII
I • EN .. LE SEAIICH FOIi

SYN CNAAACTEfll

Figure 10.

FE OE Pl T•I RaflOY T• AOY

I I I I

l
PARl1'Y ERROR

THE PE FUT IS SET WHEN
A P•RrTV ERROR 1S DE-
ncTEO. IT rs IIESET BY
THE ER StT OF THE toM-·
MANO INSTIIUCTION .. PE
ODIS NOT INHl81T OPEii•
ATION o, THE 12$1,

OVERIIUN EIIAOA
THE OE FLAG 11 stTWHEN
THI CPU OOH NOT RE...0 A
CH ... ~TER BEFORE THE
NEXT ONE 8ECOMES .t.VAII.• - ABl.f. IT IS RESET av THE
ER BIT OF THE COMMAND
INSTRUCTION. 0£ 00£$
NOT INHIBIT OPERATION OF
THE 1211, HOWEVER, THE
PREVIOUSLY OVERRUN
CHAIIACTEA IS LOST"

FAAMING EAROR (ASYNC
Olli.YI

THE Ff FLAG IS SET WHEN
A VAUO STOP BIT IS NOT
DHECTED AT THE END OF
EVERY CHAIIACTER. IT 1$
RESET av THE EA 81T OF
THE COMMAND INSTIIUC
TION, FE DOU NOT INHll)IT
THE OPERATION Of TH£ 1251.

Figure 11.

SAME D!FINITIONI
AS 110 PIN$ EXCE"
THATT• AOV ISNOT
CONDITIONED BY
T• EN OR CTI'.

Pa<;ie· 35 Central Processor Un-it- -Theory of Operation PolyMorph.ic Systems

When operating the receiver, it is important to realize that Q
RxE (bit 2 of the command instruction) only inhibits the asser-
tion of RxRDY; it does no t inhibit the actual reception of char­
acters. Because the receiver is constantly running, it is pos-
sible for it to contain extraneous data when it is enabled. To
avoid problems, this data should be read from the USART and dis­
carded. The read should be done immediately following the set-
ting of Receive Enable in the asynchronous mode,and following
the setting of Enter Hunt in the synchronous mode. It is not
necessary to wait· for RxRDY before executing the dummy read.

USART INTERRUPTS

The SYNDET, TxRDY, and RxRDY flags will cause an interrupt if
they are set. These three flags are ORed together and applied
to interrupt 3. ·This connection may be made, if this interrupt
is required, by installing a jumper "K" on the CPU card. Two
adjacent pads are provided to reconnect the interrupt later, if
desired.

When using the Po-lyMo rphic Systems Monitor ROM, the K jumper
s hould be connected.

SER/8 Baud Rates

USART mode xl xl6 x64
Baud Rate Field
Binary He~
0001 1 800 50 12,5
0010 2 1200 75 ,18.75
0011 3 1760 110 ...27. 5
0100 4 2152 134 . 5 33.62
0101 5 2400 150 37.5
0110 6 4800 300 75
0111 7 9600 600 150
1000 8 14400 900 225
1001 9 19200 1200 300
1010 A 28800 1800 450
1011 B 38400 2400 600
1100 C 57600 3600 900
1101 D ----- 4800 1200
1110 E ----- 7200 1800
1111 F ----- 9600 2400

Figure 12.

DEVICE NUMBER

This bit selects the device to be connected to the USART. Two

0

devices (0 and 1) may share the USART on the CPU board. When a Q
device is enabled, it sends data, receive clock, CTS, and DSR
to the USART through a tri-state buffer. Transmit data, clock,
RTS and DTR are ANDed with the device select signal at the
device. Device O is normally a cassette interface mini-card
and device 1 is normally an RS-232/ current loop mini-card .

-
Page 36. Cent·ra-1 Proce-s·sur.····un·it ·Theory of Operation PolyMorphic Systems

(Note that the 2 DIP sockets on the CPU do not determine the
device number.)

2.4 REAL-TIME CLOCK

The real-time ·clock (RTC) circuit generates an interrupt for
every positive-going edge of the 50 or 60 Hz line frequency.
This interrupt is latched and remains on until it is reset by an
output command to the real-time clock port. When the programmer
services the clock, it is his responsibility to reset the ~TC
before re-enabling interrupts. This is done by executing an OUT
8, OUT 88H, or OUT OESH instruction, depending upon the location
of the onboard ports.

Vectored interrupt 1 (trap address 30H) is genrally used for the
real-time clock interrupt service routine. The real-time clock
is physically connected on the CPU cardby a jumper from the RTC
pad in the upper left hand side of the board to VTl in the inter­
rupt jumper area.

2.5 SINGLE~STEP LOGIC

The single-step logic hardware uses vectored interrupt O for the
.purpose of executing a single instruction of a program being
tested and returning to a fixed location (38H) in RAM. Issuing
an output instruction to the single-step port enables the single
step logic. This also disables (masks) all other interrupts.
The logic will count out two instruction cycles and then gener­
ate an interrupt which · is vectored to location 38H. The single­
step lo~ic is immediately reset and its interrupts that were
masked are un-masked. Note that it is still not possible to be
interrupted until an enable interrupt (EI) instruction is
executed.

The two instructions normally executed after the output instruc­
tion are a return (to the program being single-stepped) and one
instruction out of the program being single-stepped.

2.6 VECTORED INTERRUPTS

The eight vectored interrupts traps in the 8080A chip are located
- ev-ery eight bytes in the first 64 bytes of memory (see Figure 13).

Interrupt Number

0
1
2
3
4
5
6
7

Address (Hex)

3 8*
30
28
20
18
10

8
0 **

*
*Th~s location. is also usedffortthe sinQle-step ~rap . *This location 1 s a I so usea or 11e power""-on reset

Figure 13.

Page 37 - Central Processor Unit Theory of Operation PolyMorphic Systemf

The first trap is also used by the reset function on the CPU, so
it is generally not available for use as an interrupt. The last
trap (38H) is used by the single-step logic on the CPU card, so
it is also not available if the single-step function is to be
used. Consequently, only six (or seven) vectored interrupts are
generally available. The eight bytes at each trap location are
usually not enough for the interrupt service routine, but are
enough to save the state of the CPU and jump to the actual rou­
tine. The interrupt request lines are labeled VI0 through VI7 on
the S-100 bus. To initiate an interrupt, the appropriate line
must be brought low and held low until the requesting device has
been serviced. The CPU reads the interrupt priority during the
interrupt acknowledge cycle (INTA) and jumps to the memory loca­
tion of the highest priority interrupt trap that is active at

. that time. VI7 is the highest priority interrupt and VI0 the
lowest. If VIl, VI3, and VI6 are all active (low) during INTA,

_the CPU will jump to location 8. All interrupts are disabled by
the CPU after the INTA cycle.

Nested interrupts are riot provided, as the interrupt lines are
not individually maskable. All interrupts may be enabled or dis­
abled by using the Enable Interrupt (EI) and Disable Interrupt
(DI) instructions. The interrupt service routine (ISR) is entered
with interrupts disabled, they may be reenabled only after the
ISR has been completed and the interrupt request has been reset
The manner of reseting the interrupt is depe,ndent upon the part­
icular I/O controller being service but is usually done by
issuing an input or output instruction to one of the ports on the
controller.

.
The EI instruction must not be executed until after the interrupt
has been reset.

The following program is a sample ISR for the real time clock:

ORG 30H ;RTC TRAP
PUSH PSW ;SAVE REGISTERS
PUSH H ;USED IN ISR
JMP RTCISR ;JOMP AROUND NEXT

;TRAP LOCATION
ORG HIMEM ;WHERE HIMEM IS AN ADDRESS

;HIGHER IN MEMORY
RTCISR: OUT 8 ;RESET RTC

;INTERRUPT
LHLD CTR ;INCREMENT
INX H ;RTC COUNTER
SHLD CTR ;IN RAM
POP H ;RESTORE REGISTERS
POP PSW
EI ;RE-ENABLE INTERRUPTS
RET ;RETURN TO MAIN

;PROGRAM

0

0

(

0

. ~

· page 38 Central -Processo~ ··unit ~Theory of Opera·tion PolyMo·rphic Systems

Note that it is up to the programmer to save and restore the
CPU registers used in the ISR.

When using the CPU card with the POLY 88 monitor ROM installed,
the interrupt service routines are handled by · a table in CPU
RAM; see the monitor ROM manual for details.

3. Customer Installed Options

Thesa options are used when particular cards require these sig­
nals. They need not be installed to use the CPU card in a POLY
88 or System 88.

3.1 SINTA

SINTA may be generated by reconfiguring jumpers on the CPU card.
Remove the jumper from pad W near IC14 to pad w near IC17.
Jumper Wand the adjacent pad.

Remove the trace from pad Z near PI-27 to pad Z near PI-48.
Jumper the two pads near PI-48 located on either side of the z.
This modification removes the WAIT signal from the S-100 bus.

3.2 PINT

PINT may be enabled by cutting trace Ron the back of the CPU
card (located near IC20). After cutting this trace jumper the
middle and right pads in area Ron the top of the card,- as shown
below:

~ ~ II ~t o 1111111

CUT

Note that if PINT is installed, the vectored interrupt facility
is disabled and PolyMorphic Systems software will not operate.

3. 3 PHANTOM MEMORY

Memory external to the CPU card is normally quite simple to use.
Memory cards simply plug into the S-100 bus after you have selec­
ted an appropriate starting address. One exception is the block
of memory between addresses 00-00 hex and OFFF hex; the CPU dis­
regards any external memory at this address unless you have made
the appropriate modification. The CPU hardware modifications
necessary for use of a second block of memory at lower addresses
is fairly simple, as it was considered when the card was designed .
Some memory cards have "phantom" capabilit i es on bus pin 67.
These offer an advantage when making this modification but are
not necessary in many cases. The POLY monitor ROM (if you have

Page 39 Central Processor '· Un it ·Theory of Operation PolyMorphic Systemf

it) will be disabled so some software additions will be necessary.
The software additions can be lengthy or short depending on your
particular application.

As a general rule, make sure the normal functions of the system
are operational before attempting any special alterations. Cut
the short trace "HH" and remove a small section. This trace is
near the upper left corner of the CPU card when viewing the

0

bottom (non-component side). Install a jumper (on the non-component
side of the board) between the pad at the right end of the trace
"HH" (ungrounded pad) and pad "H" directly above capacitor C9
(left end of card when viewed from top). Pad "H" is labeled only
on the component side. Two pads are provided so you can use
a jumper to replace trace "HH11 if it becol\\es necessary.

If the memory card you will use as a second block of lower
memory has a "phantom" facility at bus pin 67, connect a jumper
between bus pin 67 and pin 6 of IC 12, on the non-component side
of the CPU board. Bus pin 67 has a jumper pad attached: pin 6
of IC 12 does not have a jumper pad.

Be sure to double check the connections you make before applying
power: misplaced jumpers are a common source of serious damage
to integrated circuits.

IC 30 is used as a latch to store baud rate, serial device
select, and onboard disable status, it will be referred to by the
na~e BRG (baud rate generator latch) for ease of discussion. The
BRG output pins continually display the aforementioned status
acccording to Figure 14.

To disable the onboard memory, set bit 5 (of bits 0 through 7) HI
in the accumulator and output -to port 4 (BRG).

Example: MVI A,20H; SET BIT 5 HI
OUT 4 ; LATCH NEW STATUS IN BRG

To re-enable the onboard memory set bit 5 of port 4 LO or press
the front panel reset button. The latter resets the BRG and
executes the monitor which places a given status in the BRG.

The other hardware change suggested for memory cards having a
"phantom" facility enables the memory card when pin 7 of baud
rate generator (BRG) is HI (onboard memory disable) and disables
the memory card when pin 7 is LO (assuming bus pin 67 disables
the memory card when HI). ~he "phantom" facility is not abso­
lutely necessary, but without it, writing into on-board memory
(including stack ops performed by the monitor) also writes into
the corresponding off-board memory location.

Remember, when the onboard memory is disabled, the POLY monitor
ROM is disabled. Thus, you must have any necessary control soft- Q
ware (such as keyboard input, video display, and cassette tape
reader routines) located in memory external to the CPU board.

0

Page· -40 - C-entr:·al. Processor Unit Theory of Operation -:··po·lyMorphic Systemf

3.4 Relocation of CPU Onboard Memory
The onboard memory adddress can be shifted up if you do not wish
to use the POLY monitor ROM. It is important to remember the
POLY monitor will work only if its starting address is 0000.

There are three possible starting addresses that are easily
implemented on the POLY CPU: 0000 (which is preselected on the
card), 8000 hex (32K), and E0.00 hex (56K). If you wish to select
a starting location other than O 000, cut tr ace "J II and remove a
small section. Trace "J" is between two closely spaced pads on
the non-component side, immediately to the right of IC 3 5. In­
stall a jumper with sleeving between pad "J" (the one nearest the
regulators) and pad 11 R11 for a starting location of 8000 hex;
install a jumper between pad 11 J" (nearest the regulators) and
pad 11 S" for a starting location of EOOO hex.

·-· Page -~41 Centra:l Processor Unit Theory of Operation PolyMorphic Systemf

J
0-3FF
400-7FF
800-BFF
COO-OFF
EOO-FFF

CPU MEMORY ADDRESSING

Address*

s
8000-83FF
8400-87FF
8800-SBFF
8C00-8DFF
8E00-8FFF

R
EO 00-E3FF
E400-E7FF
E800-EBFF
ECOO-EDFF
EEOO-EFFF

Function

ROM #1
ROM #2
ROM #3
Onboard RAM
Onboard RAM **

**Note that the CPU/8 Memory Addressing chart above is the same
RAM as the 512 bytes beneath it. (Bit 9 of the address is not
decoded.) ·

CPU I/0 ADDRESSING
Address (Hex)* R/W Function

J s R
0,2 80,82 E0,02 R USART status byte
0,2 80,82 EO,E2 w USART command/mode
1,3 81,83 El,E3 R USART received data
1,3 81,83 El,E3 w USART transmit data
4-7 84-87 E4-E7 R Unused
4-7 84-87 E4-E7 w Baud Rate Latch
8-B 88-8B ES-EB R Unused
8-B 88-8B ES-EB w Reset real-time clock
c-~ 8C-8F EC-EF R Unused
C-F 8C-8F EC-EF w Start single step

* Note that jumpers J, Sand R determine the base address of the
CPU memory and I/0 address space.

FIGURE 14: TABLE OF CPU ADDRESSES

3. 5 REAL-TIME CLOCK JUMPER

The RTC jumper is installed on the back of the CPU card between
pad VTl (adjacent and connected to the bottom leg of RS near IC2)
and pad A near IC20. This jumper is installed at the factory on
factory-assembled cards and must be present if you are to use
PolyMorphic Systems software . If the real-time clock is not to
be used, the jumper may be removed.

4. PolyMorphic Systems 8080 CPU Card Bus

Front-Panel Control Signals

A number of signals generated or used by the Altair2/ IMSAI front
panels are not used by the POLY system. These include 2l(UNPROT),
22(SS), 53(SSWI-), 54(EXTCLR), 56(DTDTB), 57(FRDY), 69 (PS-), 70

0

0

(PROT), and 71 (RUN) . 0
Status Signals

Two status signals defined in the Altair/IMSAI bus are not pres­
ent in the POLY . The SSTACK (98) signal is not generated and the

0

Page 4·z· Central Processor -·Un·it·-T-heory of Operation PolyMor.phic Systems

PINTE (pin 28) signal is not brought out to the bus but is avail­
able as a test point on the CPU card. Other status lines are
optional (see Customer Installed Options).

Pin
Number Label

1
2
3
4
5
6
7
8
9
10
11

.. 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47
48

+av
+16V
XRDY+
VI0-
VIl­
VI2-
VI3-
VI4-
VIS­
VI6-
VI7-

02+
01+

WAIT+

AS+
A4+
A3+
AlS+
Al2+
A9+
DO1+
DO0+
AlO+
DO4+
DO5+
DO6+
D12+
013+
D17+
SMl+
SOUT+

SINP+

SMEMR+
SHLTA+

Description

Unregulated voltage, regulated to +SV on card
Unregulated voltage, regulated to +12V on card
External ready--ready input to CPU
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Vectored interrupt line
Unused
Reserved for bus control
Reserved for bus control
Reserved for bus . control
Reserved for bus control
Reserved for bus control
Reserved for bus control
Reserved for bus control
Unused
Unused
Reserved for bus control
Reserved for bus control
Phase 2 clock from CPU
Phase 1 clock from CPU
Reserved for bus control
CPU in wait cycle
Unused
Address line
Address line
Address line
Address line
Address line
Address line
Data out line
Data out line
Address line
Data out line
Data out line
Data out line
Data in line
Data in line
Data in line
Instruction fetch cycle
Output -- during this machine cycle data is
transferred from the CPU to an output port.
Input -- during this machine cycle data is
transferred from an input port to CPU.
Memory read cycle
Halt -- CPU has entered a halt state

Page 43 Central Pr.ocesso-r----Un-it Th'eory of Opera.tion PolyMorphic Systems

49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

CLOCK­
GND
+av
-16V

RTC+

PHANTOM­
MWRITE+

PRDY+
PINT-

PRESET­
PSYNC+

PWR-
PDBIN+

AO+
Al+
A2+
A6+

" A7+
A8+
Al3+
Al4+
All+
D02+
DO3+
DO7+
DI4+
DIS+
DI6+
Dil+
DI0+

SINTA+

POC­

GND

Phase 2 clock
System ground
Unregulated voltage, regulated on card to +SV
Unregulated voltage, regulated on card ~o -12V
Unused
Unused
Real-time clock--TTL 50/60Hz clock or half wave
rectified 50/60 Hz signal
Unused
Unused
Unused
Reserved
Reserved
Reserved
Reserved
Reserved for MP/DMA controller
Reser·ved for · MP/DMA controller
Reserved for MP/DMA controller
used to disable RAM addressing*
Memory--write strobe for memory cycle
Unused
Unused
Unused
Processor ready--ready input to CPU
Processor Interrupt--used only with externa~
interrupt controller
Reserved for bus control
Reset--from front panel pushbutton--sets PC to 0
Sync--identifies beginning of machine cycle
Write--CPU write strobe
Data in--CPU read strobe
Address line
Address line
Address line
Address line
Address line
Address line
Address line
Address line
Address line
oa ta out 1 ine
Data out line
Data out line
Data in line
Data in line
Data in 1 ine
Data in line
Data in line
Interrupt acknowledge cycle*
Unused
Unused
Power on clear--generated by PRESET+ or power
turn on used to reset CPU and I/O· devices
System ground

* jumper option

0

0

. Page 44 , :.. Cen-tral P-i:ocessor- Unit Theory of. .Operation PolyMorphic Systemf

BUS DC SPECIFICATIONS

All outputs (except HLTA, POC):

Logic
Logic

BLTA, POC:

Logic
Logic

0:
1:

0:
1:

0.SV max. at 48mA
2.4V min. at -5.2mA

0.45V max. at 40mA
1000 ohms pullup to +SV

All inputs (except VI0-7, XRDY; PROY, PRESET):

Logic 0:
Logic 1:

VI0-7:

Logic O:
Logic l:

o too.av, 400 A max.
2,0 to 4.75V, 20 A max.

o to a.av, 1.6mA max.
2.0 to 4.75V, 400 A max.

XROY, PRDY, PRESET:

Logic 0:
Logic 1:

o to o • av,. 2. s mA
1.9 to 4.75 (open circuit, 2200 ohms
pullup to +SV)

SERIAL I/O PORT CONNECTORS

Pin

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Name

TXD
RXD
RTS
CTS
DTR
DSR
TXC
RXC
PS
GND
-sv
-12V
+12V
+sv

Function

Transmitter Data (Output)
Receiver Data (Input)
Request To Send (Output)
Clear To Send (Input)
Data Terminal Ready (Output)
Data Set Ready (Input) *
Transmitter Clock (Output)
Receiver Clock: (Input)
Port Select (O or 1) (Output)
Ground (Output)
Power Supply (Output)
Power Supply (Output)
Power Supply (Output)
Power Supply (Output)

*Used for speed select output (0=Byte, l=PolyPhase) on cassette
port (# 2) .

Each connector is a standard 14-pin DIP socket.

Q Output Drive:

Source:
Sink:

Logic 1 :

400 A at +2.4V
SmA at +o . sv
+2 to +4.lSV

Page 45 Central Processor Unit Theory of. O.peration PolyMorphic systems

Logic 0: 0 to a.av

Input Loading:

Source: < + or -100 A
Sink: < + or -100 A

Logic 0: -o.s to a.av
Logic 1: +2. 0 to 4.75V

Clock Frequency (RXC, TXC): 0 to 56,000 Hz (at 50% duty cycle)

NRZ Data Rate (TXD, RXD): 0 to 56,000 baud

Clock Phasing {Synchronous): Positive clock transition is middle
of bit cell

Power Supplies:

+sv + or -5% at l00mA
+12V + or -5% at SOmA
-12V + or -5% at 25mA
-sv + or -5% at S0mA

0

.Q

Page 46 Central Processor Unit Theory of Operation ·, PolyMorphic Systems
~,

REFERENCE LIST: FUNCTIONAL LISTING OF THE 8080
INSTRUCTION SET ..

* -
MOVE ACCUMULATOR

40 MOV B,B 60 MOV H,B 80 ADD 8 A0 ANA B
41 MOV B,C 61 MOV H,C 81 ADO C Al ANA C
42 MOV B,O 62 MOV B,D 82 ADD D A2 ANA D
43 MOV B,E 63 MOV H, E 83 ADD E A3 ANA E
44 MOV 8,H 64 MOV H ,H 84 ADD H A4 ANA H
45 MOV B,L 65 MOV H ,L 85 ADD L AS ANA L
46 MOV B,M 66 MOV H,M 86 ADO M A6 ANA M
47 MOV B,A 67 MOV H,A 87 ADO A A7 ANA A

48 MOV C,B 68 MOV L,B 88 ADC B A8 XRA B
49 MOV c,c 69 MOV L,C 89 ADC C A9 XRA C
4A MOV c,o 6A MOV L,O 8A ADC D AA XRA D
4B MOV C,E 68 MOV L,E 8B ADC E AB XRA E
4C MCV c,a 6C MOV L,H ac ADC B AC XRA a
4D MCV C,L 6D MOV L,L 80 ADC L AD XRA L
4E MCV C,M 6E MCV L,M SE AOC M AE XRA M
4F MOV C,A . 6F MOV L,A SF ADC A AF XRA A

50 MOV O,B 70 MCV M,B 90 SUB B 80 ORAB
51 MCV D,C 71 MOV M,C 91 SOB C Bl ORA C
52 MCV D,D 72 MOV M,D 92 SUB D B2 ORA 0
53 MOV D,E 73 MCV M,E 93 SUB E 83 ORA E
54 MOV D,H 74 MOV M,H 94 SUB B B4 ORA H
55 MOV O,L 75 MOV M,L 95 SUB L BS ORAL
56 MOV D ,M ------- 96 SUB M B6 ORAM
57 MOV D,A 77 MCV M,A 97 SUB A 87 ORA A

58 MCV E,B 78 MOV A,B 98 SBB B B8 CMP B
59 MOV E,C 79 MOV A,C 99 SBB C 89 CMP C
SA MOV E,O 7A MCV A,D 9A S'BB D BA CMP D
Se. ~OV ... C"

C, , - 7'9 ~ov A, E: 9S SEE ... 32- c~~: -
SC MOV E,H 7C MOV A,H 9C SBS Ii BC CMP E
SD MOV E,L 7D MOV A,L 90 SBB L BO CMP L
SE MOV E,M 7E MOV A,M 9E SBB M BE CMP M
SF MOV E,A 7F MOV A,A 9F SBB A BF CMP A

*=All flags (C,Z,S,P,AC) affected.

0

-"'" Page 4·7 Central Processor Unit T-heory of Operation . PolyMorphic Systems

RETURN LOAD/STORE RESTART

C9 RET 0A LDAX 8 C7 RST 0
C0 RNZ lA LDAX D CF RST l
CB RZ 2A LHLD Adr D7 RST 2
00 RNC 3A LDA Adr OF RST 3
08 RC E7 RST 4
E0 RPO 02 STAX B EF RST 5
EB RPE 12 STAX D F7 RST 6
F0 RP 22 SHLD Adr FF RST 7
F8 RM 32 STA Adr

*
ACC IMMEDIATE LOAD IMMEDIATE SPECIALS

CG ADI d8 01 LXI B,dl6 EB XCHG
CE ACI as 11 LXI D,dl6 27 DAA *
D6 SUI as 21 LXI B,dl6 2F CMA
DE SBI dB 31 LXI SP,dl6 37 STC ** E6 ANI dB 3F CMC ** EE XRI d8 INPUT/OUTPUT
F6 ORI d8

D3 OUT d8
OB IN d8

a a
INCREMENT STACK OPS DECREMENT 0

04 "INR B cs PUSH B 05 OCR B
0C INR C 05 POSH D 00 OCR C
14 INR 0 ES PUSH a 15 OCR D
lC INR E FS PUSH PSW 10 OCR E
24 INR H 25 OCR H
2C INR L Cl POP B 20 DCR L
34 INR M 01 POP D 35 OCR M
3C INR A El POP H 30 OCR A

Fl POP PSW *
('! 3 INX - CE DCX -
13 INX D E3 XTHL lB DCX D
23 INX P. F9 SPHL 28 DCX H
33 INX SP 3B DCX SP

Adr = 16 bit address

* = All flags (C,Z,S,P,AC) affected.

** = Only CARRY flag affected.

a = All flags except CARRY affected (except.!.on: INX & DCX
affect no flags) .

dB = Constant, or logical/arithmetic exoression that eval'J- 0 ates to an 3-bi.t data quantity.

dl6 = Cons cant, or log i cal/arithmetic expression that evalu-
ates to a 16-bit data quantity.

.,

Page 48 Central Processor Unit· Theory of Operation PolyMorphic Systems
.;.;- '"

JUMP MOVE IMMEDIATE CALL

C3 JMP Adr 06 MVI B,d8 CD CALL Adr
C2 JNZ Adr 0E MVI C,d8 C4 CNZ Adr
CA JZ Adr 16 MVI D,d8 cc CZ Adr
02 JNC Adr lE MVI E,d8 D4 CNC Adr
DA JC Adr 26 MVI H,d8 DC cc Adr
E2 JPO Adr 2E MVI L,d8 E4 CPO Adr
EA JPE Adr 36 MVI M,d8 EC CPE Adr
F2 JP Adr 3E MVI A,d8 F4 CP Adr
FA JM Adr FC CM Adr
E9 PCBL

** **
DOUBLE ADO CONTROL ROTATE

09 DAD B 00 NOP 07 RLC
19 DAD D 76 BLT 0F RRC
29 DAD H F3 DI 17 RAL
39 DAD SP FB EI lF RAR

FLAG BYTE STACK FORMAT

7 6 5 4 3 2 1 0

s z 0 A 0 p 1 C
C

Adr = 16 bit address

d8 = Constant, or logical/arithmetic ex~ression that evalu­
ates to an 8-bit data quantity.

** = Only CARRY flag affected.

Page 49 Central Processor Unit Theory of Operation PolyMorphic Systems

REFERENCE· LIST: NUMERICAL LISTING OF THE 8080 INSTRUCTION
SET 0

00 NOP 20 · 40 MOV B,B 60 MOV H,B
01 · LXI B,dl6 21 LXI H,dl6 41 MOV 8,C 61 MOV H,C
02 STAX B 22 SHLD Adr 42 MOV B,D 62 MOV H,O
03 INX B 23 INX H 43 MOV B,E 63 MOV H,E
04 INR B 24 INR H 44 MOV B,H 64 MCV H,H
05 OCR B 25 OCR H 45 MOV B,L 65 MCV H,L
06 MVI B,d8 26 MVI H,dS 46 MOV B,M 66 MOV H,M
07 RLC 27 DAA 47 MOV B,A 67 MOV H, A
08 28 48 MOV C,B 68 MOV L,B
09 DAD B 29 DAD H 49 MOV c,c 69 MOV L,C
0A LOAX B 2A LHLD Adr 4A MOV c,o 6A MCV L,D
0B DCX B 2B DCX H 4B MOV C,E 68 MCV L,E
0C INR C 2C INR L 4C MOV C,H 6C MOV L,H
0D OCR C 20 OCR L 40 MOV C,L 60 MOV L,L
0E MVI C,d8 2E MVI L,.d8 4E MOV C,M 6E MCV L,M
0F RRC 2F CMA 4F MOV C,A 6F MOV L,A
10 30 50 MOV 0,B 70 MOV M,B
11 LXI D,dl6 31 LXI SP,dl6 51 MOV o,c 71 MOV M,C
12 STAX D 32 STA Adr 52 MOV D,D 72 MOV M,D
13 INX D 33 INX SP 53 MOV. D,E 73 MOV M,E
14 INR 0 34 INR M 54 MOV D ,H 74 MOV M,H
15 OCR D 35 OCR M 55 MOV D ,L 75 M-OV M,L
16 MVI O,d8 36 MVI M,d8 56 MOV O,M 76 HLT
17 RAL 37 STC 57 MOV D,A 77 MOV ·M,A
18 --- 38 58 MOV E,B 78 MOV A,B
19 DADD 39 DAD SP 59 MOV E,C 79 MOV A,C
lA LDAX D 3A LOA Adr SA MOV E,D 7A MOV A,D
lB DCX 0 38 DCX SP SB MOV E,E 7B MOV A, E
lC INR E 3C INR A SC MOV E,H 7C MOV A,H
lD OCR E 3D OCR A so MOV E, L 7D MCV A,L
lE MVI E,d8 3E MVI A,d8 SE MOV. E,M 7E MOV A,M
lF RAR 3F CMC SF MOV E,A 7F MOV A,A

dl6 = Constant, or logical/arithmetic expression that evalu-
ates to a 16-bit d-ata quantity.

dB = Constant, or logical/arithmetic expression that evalu-
ates to an 8-bit data quantity.

Adr = 16 bit address

0

