
Z80 MICROCOMPUTER DEVICES

Technical Manual

MI(3880
CENTRAL

PROCESSING
UNIT





Chapter

TABLE OF CONTENTS

Page

1.0 Introduction 5

2.0 Z80-CPU Architecture 7

3.0 Z80-CPU Pin Description 11

4.0 CPU Timing 15

5.0 Z8o-CPU Instruction Set 23

6.0 Flags 43

7.0 Summary of OP Codes and Execution Times 47

8.0 Interrupt Response 59

9.0 Hardware Implementation Examples 65

10.0 Software Implementation Examples 71

11.0 Electrical Specifications 77

12.0 Z80 Instruction Breakdown by Machine Cycle 83

13.0 Package Description and Ordering Information 90

3



4



1.0 INTRODUCTION

The term "microcomputer" has been used to describe virtually every type of small
computing device designed within the last few years. This term has been applied to
everything from simple "microprogrammed" controllers constructed out of TTL MSI up
to low end minicomputers with a portion of the CPU constructed out of TTL LSI "bit
slices." However, the major impact of the LSI technology within the last few years has been
with MOS LSI. With this technology, it is possible to fabricate complete and very powerful
computer systems with only a few MOS LSI components.

The Mostek zao family of components is a significant advancement in the state-of-art of
microcomputers. These components can be configured with any type of standard semi­
conductor memory to generate computer systems with an extremely wide range of
capabilities. For example, as few as two LSI circuits and three standard TTL MSI packages
can be combined to form a simple controller. With additional memory and I/O devices a
computer can be constructed with capabilities that only a minicomputer could previously
deliver. This wide range of computational power allows standard modules to be constructed
by a user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of
these few LSI components. For example, MOS LSI microcomputers have already replaced
TT L logic in such applications as terminal controllers, peripheral device controllers, traffic
signal controllers, point of sale terminals, intelligent terminals and test systems. In fact the
MOS LSI microcomputer is finding its way into almost every product that now uses
electronics and it is even replacing many mechanical systems such as weight scales and
automobile controls.

The MOS LSI microcomputer market is already well established and new products using
them are being developed at an extraordinary rate. The Mostek zao component set has been
designed to fit into this market through the following factors:

1. The zao is fully software compatible with the popular aOaOA CPU offered from
several sources. Existing designs can be easily converted to include the zao as a
superior alternative.

2. The zao component set is superior in both software and hardware capabilities to
any other a-bit microcomputer system on the market. These capabilities provide the
user with significantly lower hardware and software development costs while also
allowing him to offer additional features in his system.

3. A complete development and OEM system product line including full software
support is available to enable the user to easily develop new products.

Microcomputer systems are extremely simple to construct using zao components. Any such
system consists of three parts:

1. CPU (Central Processing Unit)

2. Memory

3. Interface circuits to peripheral devices

5



6

The CPU is the heart of the system. Its function is to obtain instructions from the memory
and perform the desired operations. The memory is used to contain instructions and in most
cases data that is to be processed. For example, a typical instruction sequence may be to
read data from a specific peripheral device, store it in a location in memory, check the
parity and write it out to another peripheral device. Note that the Mostek component set
includes the CPU and various general purpose I/O device controllers, as well as a wide range
of memory devices. Thus, all required components can be connected together in a very
simple manner with virtually no other external logic. The user's effort then becomes
primarily one of software development. That is, the user can concentrate on describing his
problem and translating it into a series of instructions that can be loaded into the micro­
computer memory. Mostek is dedicated to making this step of software generation as simple
as possible. A good example of this is our assembly language in which a simple mnemonic
is used to represent every instruction that the CPU can perform. This language is self rlocu­
rnenting in such a way that from the mnemonic the user can understand exactly what the
instruction is doing without constantly checking back to a complex cross listing.



2.0 zao-cpu ARCHITECHURE

A block diagram of the internal architecture of the Z80-CPU is shown in Figure 2.0-1
The diagram shows all of the major elements in the CPU and it should be referred to
throughout the following description.

zao-cpu BLOCK DIAGRAM

13
CPU AND
SYSTEM
CONTROL
SIGNALS

FIGURE 2.0-1

2.1 CPU REGISTERS

INSTRUCTION
DECODE
&
CPU
CONTROL

CPU
CONTROL

rrr
~VGND'I'

AlU

The Z8D-CPU contains 20a bits of R/W memory that are accessible to the programmer.
Figure 2.0-2 illustrates how this memory is configured into eighteen 8-bit registers and
four 16-bit registers. All Z80 registers are implemented using static RAM. The registers
include two sets of six general purpose registers that may be used individually as 8-bit
registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag
registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current
instruction being fetched from memory. The PC is automatically incremented after
its contents have been transferred to the address lines. When a program jump occurs
the new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of
a stack located anywhere in external system RAM memory. The external stack
memory is organized as a last-in first-out (L1 Fa) file. Data can be pushed onto the
stack from specific CPU registers or popped off of the stack into specific CPU regis­
ters through the execution of PUSH and POP instructions. The data popped from the
stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many
types of data manipulation.

7



l80-CPU REGISTER CONFIGURATION

)

GENERAL
PURPOSE
REGISTERS

AL TERNATE REG SET
A

/
A ,/ ,

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A' F'

B C B' C'

D E D' E'

H L H' L'

MAIN REG SET

INTERRUPT I MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGISTER IY
)

STACK POINTER SP

PROGRAM COUNTER PC

SPECIAL
PURPOSE
REGISTERS

FIGURE 2.0-2

3. Two Index Registers (IX & IV). The two independent index registers hold a 16-bit
base address that is used in indexed addressing modes. In this mode, an index register
is used as a base to point to a region in memory from which data is to be stored or
retrieved. An additional byte is included in indexed instructions to specify a dis­
placement from this base. This displacement is specified as a two's complement
signed integer. This mode of addressing greatly simplifies many types of programs,
especially where tables of data are used.

4. Interrupt Page Address Register (I). The l8D-CPU can be operated in a mode where
an indirect call to any memory location can be achieved in response to an interrupt.
The I Register is used for this purpose to store the high order 8-bits of the indirect
address while the interrupting device provides the lower 8-bits of the address. This
feature allows interrupt routines to be dynamically located anywhere in memory with
absolute minimal access time to the routine.

5. Memory Refresh Register (R). The l8D-CPU contains a memory refresh counter to
enable dynamic memories to be used with the same ease as static memories. This 7-bit
register is automatically incremented after each instruction fetch. The data in the
refresh counter is sent out on the lower portion of the address bus along with a
refresh control signal while the CPU is decoding and executing the fetched instruc­
tion. This mode of refresh is totally transparent to the programmer and does not
slow down the CPU operation. The programmer can load the R register for testing
purposes, but this register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers.
The accumulator holds the results of 8-bit arithmetic or logical operations while the flag
register indicates specific conditions for 8 or 16-bit operations, such as indicating whether
or not the result of an operation is equal to zero. The programmer selects the accumulator
and flag pair that he wishes to work with with a single exchange instruction so that he may
easily work with either pair.

8



General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit regis­
ters that may be used individually as 8-bit registers or as 16-bit register pairs by the prog­
rammer. One set is called BC, DE, and HL while the complementary set is called BD', DE'
and HL'. At anyone time the programmer can select either set of registers to work with
through a single exchange command for the entire set. In systems where fast interrupt
response is required, one set of general purpose registers and an accumulator/flag register
may be reserved for handling this very fast routine. Only a simple exchange command need
be executed to go between the routines. This greatly reduces interrupt service time by
eliminating the requirement for saving and retrieving register contents in the external
stack during interrupt or subroutine processing. These general purpose registers are used for
a wide range of applications by the programmer. They also simplify programming, especially
in ROM based systems where little external read/write memory is available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally
the ALU communicates with the registers and the external data bus on the internal data bus.
The type of functions performed by the ALU include:

Add

Subtract

Logical AND

Logical OR

Logical Exclusive 0 R

Compare

Left or right sh ifts or rotates (arithmetic and logical)

Increment

Decrement

Set bit

Reset bit

Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and
decoded. The control section performs this function and then generates and suppl ies all of
the control signals necessary to read or write data from or to the registers, controls the
ALU and provides all required external control signals.

9



10



3.0 zao-cpu PIN DESCRIPTION

The ZaD-CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O
pins are shown 'in Figure 3.0-1 and the function of each is described below.

zao PIN CONFIGURATION

'I'

+5V

GND

RESET

CPU {BUSRO
BUS
CONTROL BUSAK

DATA
BUS

ADDRESS
BUS

27 30

31

19 32

20 33

21 34 -
22 35

36

28 37

38

18 39

40

24 1

2

16
Z80 CPU

3

17
MK 3880 4
MK 3880-4

5

26

25

23

14

15

6 12

11 8

29 7

9

10

13

HALT

INT

NMI

M,

MREO

IORO

RD

WR

CPU
CONTROL

SYSTEM
CONTROL

FIGU RE 3.0-1

AO-A15
(Address Bus)

Tri-state output, active high. AO-A15 constitute a 16-bit address
bus. The address bus provides the address for memory (up to 64K
bytes) data exchanges and for I/O device data exchanges. I/O
addressing uses the 8 lower address bits to allow the user to
directly select up to 256 input or 256 output ports. AO is the
least significant address bit. During refresh time, the lower 7 bits
contain a valid refresh address.

DO-D7
(Data Bus)

Tri-state input/output, active high. Do-D7 constitute an 8-bit
bidirectional data bus. The data bus is used for data exchanges
with memory and I/O devices.

M1
(Machine Cycle one)

Output, active low. M1 indicates that the current machine cycle
is the OP code fetch cycle of an instruction execution. Note that
during execution of 2-byte op-codes, M1 is generated as each op
code byte is fetched. These two byte op-codes always begin with
CBH, DDH, EDH, or FDH. M1 also occurs with 10RO to indicate
an interrupt acknowledge cycle.

MREO
(Memory Request)

Tri-state output, active low. The memory request signal indicates
that the address bus holds a valid address for a memory read or
memory write operation.

11



12

10RO
(I nput/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT*
(Wait)

INT
(I nterrupt Request)

Tri-state output, active low. The 10RO signal indicates that the
lower half of the address bus holds a valid I/O address for a I/O
read or write operation. An 10RO signal is also generated with
an M1 signal when an interrupt is being acknowledged to indicate
that an interrupt response vector can be placed on the data bus.
Interrupt Acknowledge operations occur during Ml time while
I/O operations never occur during M1 time.

Tri-state output, active low. RD indicates that the CPU wants to
read data from memory or an I/O device. The addressed I/O device
or memory should use this signal to gate data onto the CPU data
bus.

Tri-state output, active low. WR indicates that the CPU data bus
holds valid data to be stored in the addressed memory or I/O
device.

Output, active low. RFSH indicates that the lower 7 bits of the
address bus contain a refresh address for dynamic memories and
current MREO signal should be used to do a refresh read to all
dynamic memories. A7 is a logic zero and the upper 8 bits of the
Address Bus contains the I Register.

Output, active low. HALT indicates that the CPU has executed a
HALT software instruction and is awaiting either a non maskable
or a maskable interrupt (with the mask enabled) before operation
can resume. While halted, the CPU executes NOP's to maintain
memory refresh activity.

Input, active low. WAIT indicates to the Z80-CPU that the add­
ressed memory or I/O devices are not ready for a data transfer.
The CPU continues to enter wait states for as long as this signal is
active. This signal allows memory or I/O devices of any speed to
be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by
I/O devices. A request will be honored at the end of the current
instruction if the internal software controlled interrupt enable
flip-flop (IFF) is enabled and if the BUSRO signal is not active.
When the CPU accepts the interrupt, an acknowledge signal
(IORO during Ml time) is sent out at the beginning of the next
instruction cycle. The CPU can respond to an interrupt in three
different modes that are described in detail in section 8.

Input, negative edge triggered. The non maskable interrupt request
line has a higher priority than INT and is always recognized at the
end of the current instruction, independent of the status of the
interrupt enable flip-flop. NMI automatically forces the Z80-CPU
to restart to location 0066H. The program counter is automati­
cally saved in the external stack so that the user can return to the
program that was interrupted. Note that continuous WAIT cycles
can prevent the current instruction from ending, and that a
BUSRO will override a NMI.



RESET

BUSRQ
(Bus Request)

BUSAK*
(Bus Acknowledge)

Input, active low. RESET forces the program counter to zero and
initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = OOH
3) Set Register R = OOH
4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the inactive
state. No refresh occurs.

Input, active low. The bus request signal is used to request the
CPU address bus, data bus and tri-state output control signals to
go to a high impedance state so that other devices can control
these buses. When BUSRQ is activated, the CPU will set these
buses to a high impedance state as soon as the current CPU
machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the
requesting device that the CPU address bus, data bus and tri­
state control bus signals have been set to their high impedance
state and the external device can now control these signals.

Single phase system clock.

*While the zao-cpu is in either a WAIT state or a Bus Acknowledge condition, Dynamic Memory Refresh
will not occur.

13



14



4.0 CPU TIMING

The ZaD-CPU executes instructions by stepping through a very precise set of a few basic
operations. These include:

Memory read or write

I/O device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations
can take from three to six clock periods to complete or they can be lengthened to syn­
chronize the CPU to the speed of external devices. The basic clock periods are referred to as
T states and the basic operations are referred to as M (for machine) cycles. Figure 4.0-0
illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice
that this instruction consists of three machine cycles (M1, M2 and M3). The first machine
cycle of any instruction is a fetch cycle which is four, five or six T states long (unless
lengthened by the wait signal which will be fully described in the next section). The fetch
cycle (M 1) is used to fetch the OP code of the next instruction to be executed. Subsequent
machine cycles move data between the CPU and memory or I/O devices and they may have
anywhere from three to five T cycles (again they may be lengthened by wait states to
synchronize the external, devices to the CPU). The following paragraphs describe the timing
which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

BASIC CPU TIMING EXAMPLE

T State

Machme Cyde

FIGURE 4.0-0

Ml
(OP Code Fetchl

M2
(Memory Read)

Instruction Cycle

M3
(Memory Write)

All CPU timing can be broken down into a few very simple timing diagrams as shown in
Figure 4.0-1 through 4.0-7. These diagrams show the following basic operations with and
without wait states (wait states are added to synchronize the CPU to slow memory or
I/O devices).

4.D-1. Instruction OP code fetch (M 1 cycle)

4.0-2. Memory data read or write cycles

4.0-3. I/O read or write cycles

4.0-4. Bus Request/Acknowledge Cycle

4.0-5. Interrupt Request/Acknowledge Cycle

4.D-6. Non maskable Interrupt Request/Acknowledge Cycle

4.0-7. Exit from a HALT instruction

15



INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is
placed on the address bus at the beginning of the M1 cycle. One half clock time later the
MREQ signal goes active. At this time the address to the memory has had time to stabilize
so that the falli~ edge of MREQ can be used directly as a chip enable clock to dynamic
memories. The RD line also goes active to indicate that the memory read data should be
enabled onto the CPU data bus. The CPU samples the data from the memory on the data
bus with the rising edge of the clock of state T3 and this same edge is used by the CPU
to turn off the RD and MREQ signals. Thus the data has already been sampled by the CPU
before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to
refresh dynamic memories. (The CPU uses this time to decode and execute the fetched
instruction so that no other operation could be performed at this time). During T3 and T4
the lower 7 bits of the address bus contain a memory refresh address and the RFSH signal
becomes active to indicate that a refresh read of all dynamic memories should be accom­
plished. Notice that a RD signal is not generated during refresh time to prevent data from
different memory segments from being gated onto the data bus. The MREQ signal during
refresh time should be used to perform a refresh read of all memory elements. The refresh
signal can not be used by itself since the refresh address is only guaranteed to be stable
during MREQ time.

INSTRUCTION OP CODE FETCH

AD ~ A 15

FlD

WAIT

MI

00 - 07

RFSH

M1 Cvcle

T1 T2 T3 T4 T1

.....r--L-~r--L-r--t-~
I Pc... I REFRESH ADDR I

\ r
"'

\ 1
I- +------ ----- ----- -------r-'L_ -

- +------ ----- ------ ------ '--
-h 1 1. ______ -

r---h.
~IJ

\ 11

FIGURE 4.0-1

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates the WAIT
line. During T2 and every subsequent Tw, the CPU samples the WAIT line with the falling
edge of <P. If the WAIT line is active at this time, another wait state will be entered during
the following cycle. Using this technique the read cycle can be lengthened to match the
access time of any type of memory device.

16



INSTRUCTION OP CODE FETCH WITH WAIT STATES

14-------------MIcvcle-----------....I
T1 T2 Tw Tw T3 T4 I

I

I I! !

-f------i-, r--+-, r-t--r--;"-.J..-- ---+-------:r----t-L-...J--i--L-...J _-+. _J L --!. ~.. .....'._
I I I I !

I I
I )\ ; I r
I ' ' II I

WAIT

AFSH

MI

DO - D7 -+----~---+_---_r__----{

AD

MREO

AD - A1S

FIGURE 4.0-1A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code
fetch (M 1 cycle). These cycles are generally three clock periods long unless wait states are
requested by the memory via the WAIT signal. The MREQ signal and the RD signal are used
the same as in the fetch cycle. In the case of a memory write cycle, the MREQ also becomes
active when the address bus is stable so that it can be used directly as a chip enable for
dynamic memories. The WR line is active when data on the data bus is stable so that it can
be used directly as a R/W pulse to virtually any type of semiconductor memory. Further­
more the WR signal goes inactive one half T state before the address and data bus contents
are changed so that the overlap requirements for virtually any type of semiconductor
memory type will be met.

MEMORY READ OR WRITE CYCLES

- _0 Memory Write Cyel!' ------~,
I
I

14------ Mt'lllory Rl.',id eyelt, ------" -+-
I

AD A 1S -=lJ--+--;L M....;:~...:...M...:...OA...:...y...:....>.~D...:::D...:...R-I-----.A..---M-~-M~O,:R-y-A-DD...:...H_-; +'

AD

WR

WAIT

MR~O \ I--C I I

I I I . \\---t-,---'

DA T A BUS t' i I 8 ! (! DA T A OUT I }-
(DO - D 7) , I, ,

=t=--=--=---+~JL-_±-~--+ -=------1-.-TL__ ---==--=--: --=
I i! \ I i
; 1 I ' I I

FIGURE 4.0-2

17



Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or
write operation. This operation is identical to that previously described for a fetch cycle.
Notice in this figure that a separate read and a separate write cycle are shown in the same
figure although read and write cycles can never occur simultaneously.

MEMORY READ OR WRITE CYCLES WITH WAIT STATES

MREQ

DATA BUS
(00-07)

WR

DATA BUS
(00-07)

WAIT

FIGURE 4.0-2A

T,
I

T2 Tw Tw T,T3

r--L-~rL-....~r--L-IL-r---
I MEMORY ADDR. I

\ I

\ I

IN

I

\ I

DATA OUT

- f-----~l-[--lE--Jl.------- ---- --
--~---- --- r- -------f-----

}
READ
CYCLE

}
WRITE
CYCLE

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an I/O read or I/O write operation. Notice that during I/O operations
a single wait state is automatically inserted. The reason for this is that during I/O operations,
the time from when the 10RQ signal goes active until the CPU must sample the WAIT line
is very short and without this extra state sufficient time does not exist for an I/O port to
decode its address and activate the WAIT line if a wait is required. Also, without this wait
state it is difficult to design MOS I/O devices that can operate at full CPU speed. During
this wait state time the WAIT request signal is sampled. During a read I/O operation, the
RD line is used to enable the addressed port onto the data bus just as in the case of a
memory read. For I/O write operations, the WR line is used as a clock to the I/O port, again
with sufficient overlap timing automatically provided so that the rising edge may be used as
a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line.
The operation is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ
signal is sampled by the CPU with the rising edge of the last clock period of any machine
cycle. If the BUSRQ signal is active, the CPU will set its address, data and tri-state control
signals to the high impedance state with the rising edge of the next clock pulse. At that
time any external device can control the buses to transfer data between memory and I/O
devices. (This is generally known as Direct Memory Access [DMA] using cycle stealing).
The maximum time for the CPU to respond to a bus request is the length of a machine
cycle and the external controller can maintain control of the bus for as many clock cycles
as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories
are being used, the external controller must also perform the refresh function. This situation
only occurs if very large blocks of data are transferred under DMA control. Also note that
during a bus request cycle, the CPU cannot be interrupted by either a NMI or an INT signal.

18



INPUT OR OUTPUT CYCLES

RD

WAIT

IORO

* Inserted by ZaG CPU

AD ' A7

~i iii 'L +- +-_.--Jr--r---l \ ROdd

I I' J Cycle
DATABUS I i 01--.....---,

i i ! ! !

- -+- - - -- -r - - - 4. -,---.c- -;- - - - - - --I ; ;-r----t---l- -----1---
WR I h I ,..--1>---- 'I

I I: i '( ~~ ~t::
DATA BUS 1 : : OUT II)

FIGURE 4.0-3

INPUT OR OUTPUT CYCLES WITH WAIT STATES

r--+----1 ~~~~E
- fi - - - _L'-----_-+--~,-r_--l-_~-,....,..-_--+--fl----J_ - /- ----f--- _L-L_-rJ L_! ---T---

RD

IORO

WAIT

AD - A7

DATA BUS --+------f------+-----+------+~

*Inserted by zaG CPU

WR

DATA BUS --+--C=t====~==~~====t===~)---~ WRITE
CYCLE

)

FIGURE 4.0-3A

19



BUS REQUEST/ACKNOWLEDGE CYCLE

'I'

BUSRQ

BUSAK

AO-A15

00-07

MREQ. RO,
WR, lORa,
RFSH

Any M Cycle Bus Available States

Last T State Tx Tx Tx T1

- IL-IL-IL-IL-~IL-r--L
\ '/Sample _ Sample

\ I

--- ~---- ---- -1

--- r..----- ---- -{

--- r..----- ---- -(
Floating

FIGURE 4.0-4

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal
(TNi) is sampled by the CPU with the rising edge of the last clock at the end of any in­
struction. The signal will not be accepted if the internal CPU software controlled interrupt
enable flip-flop is not set or if the BUSRQ signal is active. When the signal is accepted a
special M1 cycle is generated. During this special M1 cycle the 10RQ signal becomes active
(instead of the normal MREQ) to indicate that the interrupting device can place an 8-bit
vector on the data bus. Notice that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt scheme can be easily implemented.
The two wait states allow sufficient time for the ripple signals to stablilize and identify
which I/O device must insert the response vector. Refer to section 8.0 for details on how the
interrupt response vector is util ized by the CPU.

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

tNT

AO - A15

MI

MREQ

lORa

DATA BUS

WAIT

RO

FIGURE 4.0-5

20

--- last M Cycle MI
of Instruction

last T State T l T2 T • T • T3w w

.......IL-IL-IL-~IL-IL-~
--~--~L..1----,.....------------- 1----- -----

--- ---- ---- ...---- ,..---- ~---------
I PC I REFRESH

\ I

\ I

~"'L-:..:.~

-- ---- ----------1------1------ -"Tl::-1------
-- ----- ----- -----~----~----- - '-----

, ,

Mode 0 shown



Figure 4.0-5A illustrates how additional wait states can be added to the interrupt response
cycle. Again the operation is identical to that previously described.

INTERRUPT REQUEST/ACKNOWLEDGE WITH WAIT STATES

~--- MI---- !
"I

T •
w

T •
wT 1

i' ~ i;- -----I----~-----~... -, r-~-"--------------... -- ----l----i--,----L.....J- ... -I L._.- -----+--

!. I
iORO

WAIT

AO - A 15

MREO

AD

i IN.

i \ I :

I ! iI

Mode 0 shown

FIGURE 4.0-5A

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non-maskable interrupt.
A pulse on the NMI input sets an internal NMI latch which is tested by the CPU at the
end of every instruction. This NM I latch is sampled at the same time as the interrupt line,
but th is Iine has priority over the normal interrupt and it can not be disabled under soft­
ware control. Its usual function is to provide immediate response to important signals
such as an impending power failure. The CPU response to a non maskable interrupt is
similar to a normal memory read operation. The only difference being that the content
of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066H. The service routine for the non maskable interrupt
must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP's until an
interrupt is received (either a non-maskable or a maskable interrupt while the interrupt
flip flop is enabled). The two interrupt lines are sampled with the rising clock edge during
each T4 state as shown in Figu re 4.0-7. If a non-maskable interrupt has been received or a
maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt
state will be exited on the next rising clock edge. The following cycle will then be an inter­
rupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non maskable one will be acknowledged since it was highest
priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch) cycle
except that the data received from the memory is ignored and a NOP instruction is forced
internally to the CPU. The halt acknowledge signal is active during this time to indicate
that the processor is in the halt state.

21



NON MASKABLE INTERRUPT REQUEST OPERATION

I-----r----- ....------..------+-

Last T Time

I
---Last M Cycle--~"'-----------MI------------t-M2, M3'

TS I

<I>

AO - A15 _+- +- ~~---__+-PC----+..A---____l-R-E-F-R-E-SH-~----+--

NMI

MREQ

MI

*M2 and M3 are stack write operations

FIGURE 4.0-6

HALT EXIT

--M:-4--+----T-,-----T-2-Ml--T-3----TM'

'1'

HALT

INT or

NMI

HALT INSTRUCTION
IS RECEIVED
DURING THIS
MEMORY CYCLE

FIGURE 4.0-7

22



5.0 zao-cpu INSTRUCTION SET

The ZaD-CPU can execute 158 different instruction types including all 78 of the 8080A
CPU. The instructions can be broken down into the following major groups:

o Load and Exchange
Block Transfer and Search
Arithmetic and Logical

• Rotate and Sh ift
Bit Manipulation (set, reset, test)
Jump, Call and Return

• rnputlOutput
o Basic CPU Control

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers
and external memory. All of these instructions must specify a source location from which
the data is to be moved and a destination location. The source location is not altered by
a load instruction. Examples of load group instructions include moves between any of the
general pu rpose registers such as move the data to Register B from Register C. Th is group
also includes load immediate to any CPU register or to any external memory location.
Other types of load instructions allow transfer between CPU registers and memory locations.
The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z80. With a single instruction a
block of memory of any size can be moved to any other location in memory. This set of
block moves is extremely valuable when large strings of data must be processed. The Z80
block search instructions are also valuable for this type of processing. With a single
instruction, a block of external memory of any desired length can be searched for any 8-bit
character. Once the character is found the instruction automatically terminates. Both the
block transfer and the block search instructions can be interrupted during their execution so
as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other
general purpose CPU registers or external memory locations. The results of the operations
are placed in the accumulator and the appropriate flags are set according to the result of
the operation. An example of an arithmetic operation is adding the accumulator to the con­
tents of an external memory location. The results of the addition are placed in the
accumulator. This group also includes 16-bit addition and subtraction between 16-bit CPU
registers.

The bit manipulation instructions allow any bit in the accumulator, any general purpose
register or any external memory location to be set, reset or tested with a single instruction.
For example, the most significant bit of register H can be reset. Th is group is especially
useful in control applications and for controlling software flags in general purpose prog­
ramming.

The jump, call and return instructions are used to transfer between various locations in the
user's program. This group uses several different techniques for obtaining the new program
counter address from specific external memory locations. A unique type of jump is the
restart instruction. This instruction actually contains the new address as a part of the 8-bit
OP code. This is possible since only 8 separate addresses located in page zero of the external
memory may be specified. Program jumps may also be achieved by loading register HL, IX
or IY directly into the PC, thus allowing the jump address to be a complex function of the
routine being executed.

23



The input/output group of instructions in the Z80 allow for a wide range of transfers
between external memory locations or the general purpose CPU registers, and the external
I/O devices. In each case, the port number is provided on the lower 8 bits of the address
bus during any I/O transaction. One instruction allows this port number to be specified by
the second byte of the instruction while other Z80 instructions allow it to be specified
as the content of the C register. One major advantage of using the C register as a pointer to
the I/O device is that it allows different I/O ports to share common software driver routines.
This is not possible when the address is part of the OP code if the routines are stored in
ROM. Another feature of these input instructions is that they set the flag register automati­
cally so that additional operations are not required to determine the state of the input data
(for example its parity). The Z80-CPU includes single instructions that can move blocks or
data (up to 256 bytes) automatically to or from any I/O port directly to any memory
location. In conjunction with the dual set of general purpose registers, these instructions
provide for fast I/O block transfer rates. The value of this I/O instruction set is demon­
strated by the fact that the Z80-CPU can provide all required floppy disk formatting (Le.,
the CPU provides the preamble, address, data and enables the CRC codes) on double density
floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group
includes instructions such as setting or resetting the interrupt enable flip flop or setting
the mode of interrupt response.

5.2 ADDRESSING MODES

Most of the Z80 instructions operate on data stored in internal CPU registers, external
memory or in the I/O ports. Addressing refers to how the address of this data is generated
in each instruction. This section gives a brief summary of the types of addressing used
in the Z80 while subsequent sections detail the type of addressing available for each in­
struction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains
the actual operand.

OP Code }one or 2 bytes

Operand
d7 dO

Examples of this type of instruction would be to load the accumulator with a constant,
where the constant is the byte immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the
two bytes following the op codes are the operand.

OP Code

Operand

Operand

one or 2 bytes

low order

high order

24

Examples of this type of instruction would be to load the HL register pair (16-bit register)
with 16 bits (2 bytes) of data.



Modified Page Zero Addressing. The Z80 has a special single byte call instruction to any of
8 locations in page zero of memory. This instruction (which is referred to as a restart) sets
the PC to an effective address in page zero. The value of this instruction is that it allows a
single byte to specify a complete 16-bit address where commonly called subroutines are
located, thus saving memory space.

lOp Code I one byte

OP Code

bO Effective address is (00bSb4b3000)

Relative Addressing. Relative addressing uses one byte of data following the OP code to
specify a displacement from the existing program to which a program jump can Qccur.
This displacement is a signed two's complement number that is added to the address of the
OP code of the following instruction.

OP Code } Jump relative (one byte OP code)

Operand 8-bit two's complement displacement added to
Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only
requiring two bytes of memory space. For most programs, relative jumps are by far the
most prevalent type of jump due to the proximity of related program segments. Thus,
these instructions can significantly reduce memory space requirements. The signed dis­
placement can range between +127 and -128 from A + 2. This allows for a total displace­
ment of +129 to -126 from the jump relative OP code address. Another major advantage
is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to
be included in the instruction. This data can be an address to which a program can jump or
it can be an address where an operand is located.

} one or two bytes
I----------------------l

Low Order Address or Low order operand

High Order Address or High order operand

Extended addressing is required for a program to jump from any location in memory to any
other location, or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand,
the notation (nn) will be used to indicate the content of memory at nn, where nn is the
16-bit address specified in the instruction. This means that the two bytes of address nn are
used as a pointer to a memory location. The use of the parentheses always means that the
value enclosed within them is used as a pointer to a memory location. For example, (1200)
refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code
contains a displacement which is added to one of the two index registers (the OP code
specifies which index register is used) to form a pointer to memory. The contents of the
index register are not altered by this operation.

OP Code }
1-------1 two byte OP code
OP Code

Displacement Operand added to index register to form a pointer
to memory.

25



26

An example of an indexed instruction would be to load the contents of the memory loca­
tion (Index Register + Displacement; into the accumulator. The displacement is a signed
two's complement number. Indexed addressing greatly simplifies programs using tables of
data since the index register can point to the start of any table. Two index registers are
provided since very often operations require two or more tables. Indexed addressing also
allows for relocatable code.

The two index registers in the zao are referred to as IX and IY. To indicate indexed add­
ressing the notation:

(IX+d) or (IY+d)

is used. here d is the displacement specified after the OP code. The parentheses indicate that
this value is used as a pointer to external memory.

Register Addressing. Many of the zao OP codes contain bits of information that specify
which CPU register is to be used for an operation. An example of register addressing would
be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automati­
cally implies one or more CPU registers as containing the operands. An example is the set of
arithmetic operations where the accumulator is always implied to be the destination of the
results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair
(such as HL) to be used as a pointer to any location in memory. This type of instruction is
very powerful and it is used in a wide range of applications.

I OP Code I} one or two bytes

An example of this type of instruction would be to load the accumulator with the data in
the memory location pointed to by the HL register contents. Indexed addressing is actually
a form of register indirect addressing except that a displacement is added with indexed
addressing. Register indirect addressing allows for very powerful but simple to implement
memory accesses. The block move and search commands in the zao are extensions of this
type of addressing where automatic register incrementing, decrementing and comparing
has been added. The notation for indicating register indirect addressing is to put paren­
theses around the name of the register that is to be used as the pointer. For example, the
symbol

(HU

specifies that the contents of the HL register are to be used as a pointer to a memory
location. Often register indirect addressing is used to specify 16-bit operands. In this case,
the register contents point to the lower order portion of the operand while the register
contents are automatically incremented to obtain the upper portion of the operand.

Bit Addressing. The zao contains a large number of bit set, reset and test instructions.
These instructions allow any memory location or CPU register to be specified for a bit
operation through one of three previous addressing modes (register, register indirect and
indexed) while three bits in the OP code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads).
In these cases, two types of addressing may be employed. For example, load can use im­
mediate addressing to specify the source and register indirect or indexed addressing to
specify the source and register indirect or indexed addressing to specify the destination.



5.3 INSTRUCTION OP CODES

This section describes each of the Z80 instructions and provides tables listing the OP codes
for every instruction. In each of these tables the shaded OP codes are identical to those
offered in the 8080A CPU. Also shown is the assembly language mnemonic that is used for
each instruction. All instruction OP codes are listed in hexadecimal notation. Single byte
OP codes require two hex characters while double byte OP codes require four hex characters.
The conversion from hex to binary is repeated here for convenience.

Hex Binary Decimal Hex Binary Decimal

0 = 0000 = 0 8 = 1000 8

1 = 0001 = 1 9 = 1001 = 9

2 = 0010 = 2 A = 1010 = 10

3 0011 = 3 B = 1011 11

4 = 0100 4 C = 1100 12

5 = 0101 = 5 0 = 1101 = 13

6 = 0110 6 E = 1110 = 14

7 = 0111 = 7 F = 1111 = 15

Z80 instruction mnemonics consist of an OP code and zero, one or two operands.
Instructions in which the operand is implied have no operand. Instructions which have
only one logical operand or those in which one operand is invariant (such as the Logical OR
instruction) are represented by a one operand mnemonic. Instructions which may have
two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the
Z8D-CPU. Also shown in this table is the type of addressing used for each instruction. The
source of the data is found on the top horizontal row while the destination is specified by
the left hand column. For example, load register C from register B uses the OP code 48H.
In all of the tables the OP code is specified in hexadecimal notation and the 48H (=0100
1000 binary) code is fetched by the CPU from the external memory during M1 time,
decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination
followed by the source (LD DEST., SOURCE). Note that several combinations of addressing
modes are possible. For example, the source may use register addressing and the destination
may be register indirect, such as load the memory location pointed to by register HL with
the contents of register D. The OP code for this operation would be 72. The mnemonic for
this load instruction would be as follows: LD (HU, D

The parentheses around the HL means that the contents of HL are used as a pointer to a
memory location. In all Z80 load instruction mnemonics the destination is always listed
first, with the source following. The Z80 assembly language has been defined for ease of
programming. Every instruction is self documenting and programs written in Z80 language
are easy to maintain.

Note in Table 5.3-1 that some load OP codes that are available in the Z80 use two bytes.
This is an efficient method of memory utilization since 8, 16, 24 or 32 bit instructions
are implemented in the Z80. Thus often utilized instructions such as arithmetic or logical
operations are only 8-bits which results in better memory utilization than is achieved with
fixed instruction sizes such as 16-bits.

All load instructions using indexed addressing for either the source or destination location
actually use three bytes of memory with the third byte being the displacement d. For
example a load register E with the operand pointed to by IX with an offset of +8 would be
written: LD E, (IX + 8)

27



The instruction sequence for this in memory would be:

Address A

A+1

A+2

DO lOp Code
5F

08 Displacement operand

The two extended addressing instructions are also three byte instructions. For example
the instruction to load the accumulator with the operand in memory location 6F32H would
be written:

LD A, (6F 32H)

and its instruction sequence would be:

Address A 3A OP Code

A+1 32 low order address

A+2 6F high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instruc­
tions. The instruction load register H with the value 36H would be written:

LD H, 36H

and its sequence would be:

Address A

A+1

~ OPCode

~ Operand

28

Loading a memory location using indexed addressing for the destination and immediate
addressing for the source requires four bytes. For example:

LD (IX - 15), 21H

would appear as:

Address A DO
OP Code

A+1 36

A+2 F1 displacement (-15 in
signed two's complement)

A+3 21 operand to load

Notice that with any indexed addressing the displacement always follows directly after the
OP code.

Table 5.3-2 specifies the 16-bit load operations. This table is very similar to the previous one.
Notice that the extended addressing capability covers all register pairs. Also notice that
register indirect operations specifying the stack pointer are the PUSH and POP instructions.
The mnemonic for these instructions is "PUSH" and "POP". These differ from other 16-bit
loads in that the stack pointer is automatically decremented and incremented as each byte
is pushed onto or popped from the stack respectively. For example the instruction:



PUSH AF

is a single byte instruction with the OP code of F5H. When this instruction is executed the
following sequence is generated:

Decrement SP

LD (SP), A

Decrement SP

LD (SP), F

Thus the external stack now appears as follows:

(SP) F Top of stack

(SP+1) A

8 BIT LOAD GROUP

SOURCE

IMPLIED

I R

A ED ED
57 5F

B

C

REGISTER 0

H

L

DESTINATION (HLI

REG
IBCIINDIRECT

IDEI

DO DO DO DD DD
IIX+d1 71 72 73 74 75

d d d d d
INDEXED

FD FD FD FD FD
IIY+d) 71 72 73 74 75

d d d d d

EXT.ADDR (nnl

ED
47

IMPLIED

R ED
4F

TABLE 5.3-1

DD FD
4E 4E
d d

DD FD
56 56
d d

DD FD
5E 5E
d d

DO FD
66 66
d d

DD FD
6E 6E
d d

29



The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instruc­
tions utilize a 16-bit operand and the high order byte is alway!> pushed first and popped last.
That is a:

PUSH BC is PUSH B then C

PUSH DE is PUSH D then E

PUSH HL is PUSH H then L

POP HL is POP L then H

The instruction using extended immediate addressing for the source obviously requires
2 bytes of data following the OP code. For example:

LD DE, 0659H

will be:

Address A ~1
A+1. 59

A+2 06

OP Code

Low order operand to register E

High order operand to register D

'30

In all extended immediate or extended addressing modes, the low order byte always appears
first after the OP code.

Table 5.3-3 lists the 16-bit exchange instructions implemented in the Z80. OP code 08H
allows the programmer to switch between the two pairs of accumulator flag registers while
D9H allows the programmer to switch between the duplicate set of six general purpose
registers. These OP codes are only one byte in length to absolutely minimize the time
necessary to perform the exchange so that the duplicate banks can be used to effect very
fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions
operate with three registers.

HL points to the source location.

DE points to the destination location.

BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may
be used. The LD I (Load and Increment) instruction moves one byte from the location
pointed to by HL to the location pointed to by DE. Register pairs HL and DE are then
automatically incremented and are ready to point to the following locations. The byte
counter (register pair BC) is also decremented at this time. This instruction is valuable when
blocks of data must be moved but other types of processing are required between each
move. The LD IR (Load, increment and repeat) instruction is an extension of the LD I
instruction. The same load and increment operation is repeated until the byte counter
reaches the count of zero. Thus, this single instruction can move any block of data from one
location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes
(1 K = 1024) long and it can be moved from any location in memory to any other location.
Furthermore the blocks can be overlapping since there are absolutely no constraints on the
data that is used in the three register pair.

The LDD and LDDR instructions are very similar to the LDI and LDIA. The only difference
is that register pairs HL and DE are decremented after every move so that a block transfer
starts from the highest address of the designated block rather than the lowest.



16 BIT LOAD GROUP 'LD' 'PUSH' AND 'POP'

SOURCE

IMM. EXT. REG.
REGISTER EXT. ADDR. INDIR.

AF BC DE HL SP IX IV nn (nn) (SP)

AF

BC

R DE
E
G
I HL
S

DESTINATION T
E
R SP DD FD

F9 F9

DD DD
IX 21 2A DD

n n E1
n n
FD FD

IV 21 2A FO
n n E1
n n

ED DO FD
EXT. (nn) 73 22 22
ADDR. n n n

n n n

PUSH REG. (SP) DD FD
INSTRUCTlONS~ IND. E5 E5

+
NOTE: The Push & Pop Instructions adjust POP

the SP after every execution INSTRUCTIONS

TABLE 5.3-2

EXCHANGES 'EX' AND 'EXX'

IMPLIED ADDRESSING

AF SC. DE & HL HL IX IV

AF 08

BC.
DE

D9
IMPLIE &

HL

DE

REG. (SP) DD FO
INDIR. E3 E3

TABLE 5.3-3

31



BLOCK TRANSFER GROUP

SOURCE

Table 5.3-4

DESTINATION

~

REG.
INDIR.
~

(Hll

ED 'lOr - load IDEI-IHll
AO Inc Hl & DE, Dec BC

ED 'lDIR: - load (DEI-(HL)
BO Inc Hl & DE, Dec BC, Repeat until BC = 0

REG. (DE)INDIR.
ED 'lDD' - load IDEI-IHl)
A8 Dec Hl & DE, Dec BC

ED 'LDDR' - load IDEI-(Hll
B8 Dec Hl & DE, Dec BC, Repeat until BC = 0

Reg Hl pOints to source
Reg DE points to destination
Reg BC is byte counter

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI
(compare and increment) compares the data in the accumulator, with the contents of the
memory location pointed to by register HL. The result of the compare is stored in one of
the flag bits (see section 6.0 for a detailed explanation of the flag operations) and the HL
register pair is then incremented and the byte counter (register pair BC) is decremented.

The instruction CPI R is merely an extension of the cpr instruction in which the compare
is repeated until either a match is found or the byte counter (register pair BC) becomes
zero. Thus, this single instruction can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are
similar instructions, their only difference being that they decrement HL after every compare
so that they search the memory in the opposite direction. (The search is started at the
highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are
extremely powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the
accumulator, also listed are the increment (INC) and decrement (DEC) instructions.
In all of these instructions, except INC and DEC, the specified 8-bit operation is performed
between the data in the accumulator and the source data specified in the table. The result
of the operation is placed in the accumulator with the exception of compare (CP) that
leaves the accumulator unaffected. All of these operations affect the flag register as a result
of the specified operation. (Section 6.0 provides all of the details on how the flags are
affected by any instruction type). INC and DEC instructions specify a register or a memory
location as both source and destination of the result. When the source operand is addressed
using the index registers the displacement must follow directly. With immediate addressing
the actual operand will follow directly. for example the instruction:

AND 07H

would appear as:

Address A ~ OP Code

A+l~ Operand

32



BLOCK SEARCH GROUP
SEARCH
LOCATION
,...--

REG.
INOIR.

~

(HL)

ED 'cpr
Al Inc HL, Dec BC

ED 'CPIR', Inc HL, Dec BC
Bl repeat until BC =0 or find match

ED 'CPO' Dec HL & BC
A9

ED 'CPOR' Dec Hl. & BC
B9 Repeat until BC =0 or find match

TABLE 5.3-5

HL points to location in memory
to be compared with accumulator
contents

BC is byte counter

Assuming that the accumulator contained the value F3H the result of 03H would be placed
in the accumulator:

Acc before operation
Operand
Result to Acc

1111 0011 = F3H
0000 0111 = 07 H
0000 0011 = 03H

The Add instruction (ADD) performs a binary add between the data in the source location
and the data in the accumulator. The subtract (SUB) does a binary subtraction. When the
add with carry is specified (ADC) or the subtract with carry (SBC), then the carry flag is also
added or subtracted respectively. The flags and decimal adjust instruction (DAA) in the
Z80 (fully described in section 6.0) allow arithmetic operations for:

multiprecision packed BCD numbers

multiprecision signed or unsigned binary numbers

multfprecision two's complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XOR)
and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or
carry flag. These five are listed in Table 5.3-7. The decimal adjust instruction can adjust for
subtraction as well as addition, thus making BCD arithmetic operations simple. Note that to
allow for this operation the flag N is used. This flag is set if the last arithmetic operation was
a subtract. The negate accumulator (NEG) instruction forms the two's complement of the
number in the accumulator. Finally notice that a reset carry instruction is not included in
the Z80 since this operation can be easily achieved through other instructions such as a
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five
groups of instructions including add with carry and subtract with carry. ADC and SBC affect
all of the flags. These two groups simplify address calculation operations or other 16-bit
arithmetic operations.

33



8 BIT ARITHMETIC AND LOGIC

SOURCE

REGISTER ADDRESSING
REG.

INDIR. INDEXED IMMED.

'ADD'

ADDwCARRY
'ADC'

SUBTRACT
'SUB'

SUHwCARRY
'SBC'

'ANO'

'XOR'

'OR'

COMPARE
'CP'

INCREMENT
'INC'

DECREMENT
'DEC'

TABLE 5.3-6

GENERAL PURPOSE AF OPERATIONS

Decimal Adjust Ace, 'DAA'

Complement Ace, 'CPL'

Negate Ace, 'NEG'
(2's complement)

Complement Carry Flag, 'CCF'

Set Carry Flag, 'SCF'

TABLE 5.3-7

34



16 BIT ARITHMETIC SOURCE

IX IV

INCREMENT 'INC.

DECREMENT 'DEC'

SUB WITH CARRV AND HL
SET FLAGS 'SBC'

FD
2B

FD
23

DO DO DO DO
09 19 39 29

FD FD FD
09 19 39

ED ED ED ED
4A 5A 6A 7A

ED ED ED ED
42 52 62 72

DO
23

DO
2B

IV

IX'ADD'

ADD WITH CARRV AND HL
SET FLAGS 'ADC'

TABLE 5.3-8

ROTATE AND SHIFT

A major capability of the Z80 is its ability to rotate or shift data in the accumulator, any
general purpose register, or any memory location. All of the rotate and shift OP codes are
shown in Table 5.3-9. Also included in the Z80 are arithmetic and logical shift operations,
These operations are useful in an extremely wide range of applications including integer
multiplication and division. Two BCD digit rotate instructions (RRD and RLD) allow a digit
in the accumulator to be rotated with the two digits in a memory location pointed to by
register pair HL. (See Figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed
in almost every program. These bits may be flags in a general purpose software routine,
indications of external control conditions or data packed into memory locations to make
memory utilization more efficient.

The Z80 has the ability to set, reset or test any bit in the accumulator, any general purpose
register or any memory location with a single instruction. Table 5.3-10 Iists the 240 instruc­
tions that are available for this purpose. Register addressing can specify the accumulator or
any general purpose register on which the operation is to be performed. Register indirect and
indexed addressing are available to operate on external memory locations. Bit test operations
set the zero flag (Z) if the tested bit is a zero. (Refer to section 6.0 for further explanation
of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z80
CPU. A jump is a branch in a program where the program counter is loaded with the 16-bit
value as specified by one of the three available addressing modes (Immediate Extended,
Relative or Register Indirect). Notice that the jump group has several different conditions
that can be specified to be met before the jump will be made. If these conditions are not met,
the program merely continues with the next sequential instruction. The conditions are all
dependent on the data in the flag register. (Refer to section 6.0 for details on the flag
register). The immediate extended addressing is used to jump to any location in the memory.
This instruction requires three bytes (two to specify the 16-bit address) with the low order
address byte first followed by the high order address byte.

35



ROTATES AND SHIFTS

~ ~ Rotll"
Right Cucular

~ ~ Rotate
uh

~ ~ Rout.
RII"t

EI-1 f-o Shih
l.ft.rithm.lic

Ratite
Left Cuelilar

ShIft
Ai,hl lOl'cal

Shift
RIght Arithmetic

&y., -- .O~

L§J dJ- ~

L8r-~
o I"S':--r;;b-,_-••••-I••--'33-~.01IHLI ~:,~"'O,.,

ACC~c=J

t H? I'HLI ~~:.O,.,
ACC .<- =S_-'

A C C 0 E H L (HLJ lIX • dl (IV t dl

CB CB CB CB CB CB CB CB
DO FD

'AlC' CB CB
0' 00 01 02 03 04 05 06 d d

06 06

CB CB CB
DO FD

'ARC' CB CB CB CB CB CB CB
0' OB 09 OA OB DC 00 OE d d

OE OE

DO FD
'Al' CB CB CB CB CB CB CB CB CB CB

17 10 11 " 13 14 15 16 d d
16 16

'RA' CB CB CB CB CB CB CB CB
DO FO
CB CB

IF 1B I. lA lB lC 10 1E d d
1E 1E

'SLA' CB CB CB CB CB CB CB CB
DO FO
CB CS

n 70 21 72 73 2' 25 26 d d
26 26

CB CB CB CB CB
DO FD

'SRA' CB CB CB CB CB
2F 28 2. 2A 2B 2C 70 2E d d

2E 2E

'SAL' CB CB CB CB CB CS CB CB
DO FD
CB CB

3F 3B 3B 3A 3B 3C 3D JE d d
JE JE

'ALD' ED

6'

'RRD' ED
6'

TYPE

0'
ROTATE
OR
SHIFT

TABLE 5.3-9

For example an unconditional Jump to memory location 3E32H would be:

Address A ~3 OP Code

A+ 1 32 Low order address

A+2 3E High order address

The relative jump instruction uses only two bytes, the second byte is a signed two's com­
plement displacement from the existing PC. This displacement can be in the range of +129
to -126 and is measured from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented
by loading the register pair HL or one of the index registers IX or IY directly into the PC.
This capability allows for program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction
is pushed onto the stack before the jump is made. A return instruction is the reverse of a call
because the data on the top of the stack is popped directly into the PC to form a jump
address. The call and return instructions allow for simple subroutine and interrupt handling.
Two special return instructions have been included in the zao family of components. The
return from interrupt instruction (RETI) and the return from non-maskable interrupt
(RETN) are treated in the CPU as an unconditional return identical to the OP code C9H.
The difference is that (R ETI) can be used at the end of an interrupt routine and all zao peri­
pheral chips will recognize the execution of this instruction for proper control of nested
priority interrupt handling. This instruction coupled with the zao peripheral devices imple­
mentation simplifies the normal return from nested interrupt. Without this feature the
following software sequence would be necessary to inform the interrupting device that the
interrupt routine is completed:

36



BIT MANIPULATION GROUP

REG.
REGISTER ADDRESSING INDIR. INDEXED

A B C D E H L IHLI IIX+d} IIY+dl
BIT

DD FD
0 CB CB CB CB CB CB CB CB CB CB

47 40 41 42 43 44 45 46 d d
46 46

DD FD
1 CB CB CB CB CB CB CB CB CB CB

4F 48 49 4A 4B 4C 4D 4E d d
4E 4E

DD FD
2 CB CB CB CB CB CB CB CB CB CB

57 50 51 52 53 54 55 56 d d
56 56

CB CB CB CB
DD FD

3 CB CB CB CB CB CB

TEST
5F 58 59 5A 5B 5C 5D 5E d d

5E 5E
'BIT' DD FD

4 CB CB CB CB CB CB CB CB CB CB
67 60 61 62 6J 64 65 66 d d

66 66
DD FD

5 CB CB CB CB CB CB CB CB CB CB
6F 56 69 6A 6B 6C 6D 6E d d

6E 6E
DD FD

6 CB CB CB CB CB CB 6B CB CB CB
77 70 71 72 73 74 75 76 d d

/6 76

DD FD
7 CB CB CB CB CB CB CB CB CB CB

7F 78 79 7A 7B 7C 7D 7E d d
7E 7E

DD FD
0 CB CB CB CB CB CB CB CB CB CB

87 SO Bl 82 83 84 85 86 d d
86 86

CB
DD FD

1 CB CB CB CB CB CB C8 CB CB
8F B8 89 8A 8B BC 8D 8E d d

8E BE

DD FD
2 CB CB CB CB CB CB CB CB CB CB

97 90 91 92 93 94 95 96 d d
96 96

CB CB CB
DD FD

3 CB CB CB CB CB CB CB
RESET 9F 9B 99 9A 9B 9C 9D 9E d d
BIT 9E 9E

'RES'
CB

DD FD
4 CB CB CB CB CB CB CB CB CB

A7 AO A1 A2 A3 A4 A5 A6 d d
A6 A6

CB CB CB CB CB CB CB
DD FD

5 CB CB CB
AF A8 A9 AA AB AC AD AE d d

AE AE

DD FD
6 CB CB CB CB CB CB CB CB CB CB

B7 BO B1 B2 B3 B4 B5 B6 d d
B6 B6

CB
DD FD

7 CB CB CB CB CB CB CB CB CB
BF B8 B9 BA BB BC BD BE d d

BE BE

DD FD
0 CB CB CB CB CB CB CB CB CB CB

C7 CO Cl C2 CJ C4 C5 C6 d d
C6 C6

DD FD
1 CB CB CB CB CB CB CB CB CB CB

CF CB C9 CA CB CC CD CE d d
CE CE

DD FD
2 CB CB CB CB CB CB CB CB CB CB

D7 DO D1 D2 D3 D4 D5 D6 d d
D6 D6

DD FD
3 CB CB CB CB CB CB CB CB CB CB

SET DF DB D9 DA DB DC DD DE d d

BIT
DE DE

'SET' gg FD
4 CB CB CB CB CB CB CB CB CB

E7 EO El E2 E3 E4 E5 E6 d d
E6 E6

DD FD
5 CB CB CB CB CB CB CB CB CB CB

EF E8 E9 EA EB EC ED EE d d
EE EE

DD FD
6 CB CB CB CB CB CB CB CB CB CB

F7 FO Fl F2 F3 F4 F5 F6 d d
F6 F6

DD FD
7 CB CB CB CB CB CB CB CB CB CB

FF FB F9 FA FB FC FD FE d d
FE FE

TABLE 5.3-10

37



Disable Interrupt

LD A, n
OUT n, A

Enable Interrupt

Return

- prevent interrupt before
routine is exited.

- notify peripheral that service
routine is complete

This seven byte sequence can be replaced with the three byte EI RETI instruction sequence
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNZ e can be used advantageously.
This two byte, relative jump instruction decrements the B register and the jump occurs if
the B register has not been decremented to zero. The relative displacement is expressed
as a signed two's complement number. A simple example of its use might be:

Address

N, N+1

N + 2 to N + 9

N + 10, N + 11

N + 12

Instruction

LD B, 7

(Perform a sequence
of instructions)

DJNZ -10

(Next Instruction)

Comments

; set B register to count of 7

; loop to be performed 7 times

; to jump from N + 12 to N + 2

JUMP, CALL AND RETURN GROUP

JUMP 'JP' IMMED.
EXT.

JUMP 'JR' RELATIVE

JUMP 'JP'

JUMP 'JP' REG.
INDIR.

JUMP 'JP'

'CALL' IMMED.
EXT.

DECREMENT B,
JUMP IF NON RELATIVE
ZERO 'DJNZ'

RETURN REGISTER
'RET' INDIR.

RETURN FROM REG. (SP) ED
INT'RET!' INDIR. (SP+1) 40

RETURN FROM
(SP)NON MASKABLE REG. ED

INT'RETN' INDIR. (SP+1) 45

TAB LE 5.3-11

38

CONDITION

NOTE-CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE.
REFER TO SECTION
6.0 FOR DETAILS



Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single
byte call to any of the eight addresses listed. The simple mnemonic for these eight calls is
also shown. The value of this instruction is that frequently used routines can be called with
this instruction to minimize memory usage.

RESTART GROUP

'RSTO'

'RST 8'

C 'RST 16'
A
L
L

A
'RST 24'

0
0
R 'RST 32'E
S
S

'RST 40'

'RST 48'

'RST 56'

TABLE 5.3-12

INPUT/OUTPUT

The Z80 has an extensive set of Input and Output instructions as shown in table 5.3-13 and
table 5.3-14. The addressing of the input or output device can be either absolute or register
indirect, using the C register. Notice that in the register indirect addressing mode data can be
transferred between the I/O devices and any of the internal registers. In addition eight block
transfer instructions have been implemented. These instructions are similar to the memory
block transfers except that they use register pair HL for a pointer to the memory source
(output commands) or destination (input commands) while register B is used as a byte
counter. Register C holds the address of the port for which the input or output command
is desired. Since register B is eight bits in length, the I/O block transfer command handles up
to 256 bytes.

In the instructions IN A, n and OUT n, A an I/O device address n appears in the lower half
of the address bus (AO-A7) while the accumulator content is transferred in the upper half
of the address bus. In all register indirect input output instructions, including block I/O
transfers the content of register C is transferred to the lower half of the address bus (device
address) while the content of register B is transferred to the upper half of the address bus.

39



INPUT GROUP

INPUT
DESTINATION

TABLE 5.3-13

PORT ADDRESS

IMMED. REG.
INDIR.

n (CI

~78

B ED
40

R
E

C EDG
48

INPUT'IN' A
0
0 0 ED
R 50
E
S
S E ED
I 58
N
G

H ED
60

L ED
68

,
'IN!' - INPUT 81 ED
Inc HL, Dec B A2

'INIR'-INP, Inc HL, ED
Dec B, REPEAT IF B#'O

REG,
B2

(HL) )INDIR
'IND'-INPUT 81 ED
Dec HL, Dec B AA

'INDR'-INPUT, Dec HL, ED
Dec B, REPEAT IF B#'O BA

BLOCK INPUT
COMMANDS

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The
NOP is a do-nothing instruction. The HALT instruction suspends CPU operation until a
subsequent interrupt is received, while the DI and EI are used to lock out and enable inter­
rupts. The three interrupt mode commands set the CPU into any of the three available
interrupt response modes as follows. If mode zero is set the interrupting device can insert
any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified
mode where the CPU automatically executes a restart (RST) to location 0038H so that no
external hardware is required. (The old PC content is pushed onto the stack). Mode 2 is the
most powerful in that it allows for an indirect call to any location in memory. With this
mode the CPU forms a 16-bit memory address where the upper 8-bits are the content of
register I and the lower 8-bits are supplied by the interrupting device. This address points
to the first of two sequential bytes in a table where the address of the service routine is
located. The CPU automatically obtains the starting address and performs a CALL to this
address.

40

Address of interrupt {.-----l
service routine

Pointer to Interrupt table. Reg.
I is upper address,
Peripheral supplies lower address



OUTPUT GROUP

SOURCE

REG.
REGISTER IND.

•
B C 0 E H L (HL)

IMMED. n

'OUT'

REG. (C) ED ED ED ED ED ED ED
IND. 79 41 49 51 59 61 69

'OUTI' - OUTPUT REG. (C) ED
Inc HL, Dec b IND. A3

'OTIR' - OUTPUT, Inc HL, REG. (C) ED
Dec B, REPEAT IF B#O IND. B3

'OUTD' - OUTPUT REG. (C) ED
Dec HL& B IND. AB

'OTDR' - OUTPUT, Dec HL REG. (C) ED
& B, REPEAT IF B*O IND. BB

~
PORT
DESTINATION
ADDRi:SS

TABLE 5.3-14

MISCELLANEOUS CPU CONTROL

BLOCK
OUTPUT
COMMANDS

TABLE 5.3-15

'NOP'

'HALT'

DISABLE INT '(01)'

ENABLE INT '(EI)'

SET INT MODE 0
'1Ma'

SET INT MODE 1
'IM1'

SET INT MODE 2
'IM2'

ED
46

ED
56

ED
5E

8080A MODE

CALL TO LOCATION 0038H

INDIRECT CALL USING REGISTER
I AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

41



42



6.0 FLAGS

Each of the two Z80-CPU Flag registers contains six bits of information which are set or
reset by various CPU operations. Four of these bits are testable; that is, they are used as
conditions for jump, call or return instructions. For example a jump may be desired only if
a specific bit in the flag register is set. The four testable flag bits are:

1) Carry Flag (C) - This flag is the carry from the highest order bit of the accumulator.
For example, the carry flag will be set during an add instruction where a carry from
the highest bit of the accumulator is generated. This flag is also set if a borrow is
generated during a subtraction instruction. The shift and rotate instructions also
affect this bit.

2) Zero Flag (Z) - This flag is set if the result of the operation loaded a zero into the
accumulator. Otherwise it is reset.

3) Sign Flag(S) - This flag is intended to be used with signed numbers and it is set if
the result of the operation was negative. Since bit 7 (MSB) represents the sign of the
number (A negative number has a 1 in bit 7), this flag stores the state of tit 7 in the
accumulator.

4) Parity/Overflow Flag(P/V) - This dual purpose flag indicates the parity of the result
in the accumulator when logical operations are performed (such as AND A, B) and it
represents overflow when signed two's complement arithmetic operations are per­
formed. The Z80 overflow flag indicates that the two's complement number in the
accumulator is in error since it has exceeded the maximum possible (+127) or is
less than the minimum possible (-128) number that can be represented two's
complement notation. For example consider adding:

+120 =
+105 =

C=O

0111 1000
01101001

11100001 = -95 (wrong) Overflow has occurred;

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an
error. For this case the overflow flag would be set. Also consider the addition of two
negative numbers:

-5 =
-16 =

C=1

11111011
1111 0000

11101011 =-21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an
overflow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and
it is reset if it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD
arithmetic. They are:

1) Half carry(H) - This is the BCD carry or borrow result from the least significant
four bits of operation. When using the DAA (Decimal Adjust Instruction) this
flag is used to correct the result of a previous packed decimal add or subtract.

2) Add/Subtract Flag (N) - Since the agorithim for correcting BCD operations is
different for addition or subtraction, this flag is used to specify what type of in­
struction was executed last so that the DAA operation will be correct for either
addition or subtraction.

43



44

The Flag register can be accessed by the programmer and its format is as follows:

X means flag is indeterminate.

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table
a '. "indicates that the instruction does not change the flag, an 'X' means that the flag goes
to an indeterminate state, an '0' means that it is reset, a '1' means that it is set and the
symbol t indicates that it is set or reset according to the previous discussion. Note that
any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the
block search instruction sets the Z flag if the last compare operation indicated a match
between the source and the accumulator data. Also, the parity flag is set if the byte counter
(register pair 8C) is not equal to zero. This same use of the parity flag is made with the
block move instructions. Another special case is during block input or output instructions,
here the Z flag is used to indicate the state of register 8 which is used as a byte counter.
Notice that when the I/O block transfer is complete, the zero flag will be reset to a zero
(i.e. 8=0) while in the case of a block move command the parity flag is reset when the
operation is complete. A final case is when the refresh or I register is loaded into the
accumulator, the interrupt enable flip flop is loaded into the parity flag so that the complete
state of the CPU can be saved at any time.



SUMMARY OF FLAG OPERATION

07 DO
PI

Instruction S Z H V N C Comments
ADD A,s; ADC A,s I I X I X V 0 I B-bit add or add with carry
SUB,s; SBCA,s; CP,s; NEG I I X I X V 1 I B-bit subtract, subtract with carry, compare and negate accumulator
ANOs I I X 1 X P 0 0

} Logical operationsOR s; XOR s I I X 0 X P 0 0
INC s I I X I X V 0 • B-bit increment
OECs I I X I X V 1 • B-bit decrement
ADD DO, SS • • X X X • 0 I 16-bit add
AOC HL, SS I I X X X V 0 I 16-bit add with carry
SBC HL, SS I I X X X V 1 I 16-bit subtract with carry
RLA;RLCA;RRA;RRCA • • X 0 X • 0 I Rotate accu mulator
RLs;RLCs;RRs; RRCs; I I X 0 X P 0 I Rotate and shift locations

SLA s; SRA s; SR Ls
RLO;RRO I I X 0 X P 0 • Rotate digit left and right
OAA I I X I X P • I Decimal adjust accumulator
CPL • • X 1 X • 1 • Complement accumulator
SCF • • X 0 X • 0 1 Set carry
CCF • • X X X • 0 I Complement carry
IN r, (Cl I I X 0 X P 0 • Input register indirect
INI; INO; OUT!; OUTO X I X X X X 1 • }Block input and output
INIR; INOR; OTIR; OTOR X 1 X X X X 1 • Z = 0 if B '* 0 otherwise Z = 1
LOI; LOO X X X 0 X I 0 • }Block transfer instructions
LOI R; LOO R X X X 0 X 0 0 • P/V = 1 if BC '* 0, otherwise P/V = 0
CPI; CPIR; CPO; CPOR X I X X X I 1 • Block search instructions

Z = 1 if A = (HLl, otherwise Z = 0
P/V = 1 if BC '* 0, otherwise P/V = 0

LO A, I; LO A, R I I X 0 X IFF 0 • The content of the interrupt enable flip-flop (I FF) is copied into
the P/V flag

BIT b, s X I X 1 X X 0 • The state of bit b of location s is copied into the Z flag

The following notation is used in this table:

SVMBOL

C
Z

S

P/V

H

N

•
o
1

X

V

P

s
ss
ii

R

n

nn

TABLE 6.0-1

OPERATION

Carryllink flag. C=l if the operation produced a carry from the MSB of the operand or result.
Zero flag. Z=l if the result of the operation is zero.

Sign flag. S=l if the MSB of the result is one.
Parity or overflow flag. Parity (PI and overflow (Vl share the same flag. Logical operations affect this flag

with the parity of the result while arithmetic operations affect this flag with the overflow of the result.

If P/V holds parity, P/V=l if the result of the operation is even, PN=O if result is odd. If P/V holds over­

flow, P/V=l if the result of the operation produced an overflow.
Half-earry flag. H=l if the add or subtract operation produced a carry into or borrow from bit 4 of the

accumulator.
Add/Subtract flag. N=l if the previous operation was a subtract.
Hand N flags are used in conjunction with the decimal adjust instruction (DAAI to properly correct the

result into packed BCD format following addition or subtraction using operands with packed BCD format.

The flag is affected according to the result of the operation.

The flag is unchanged by the operation.

The flag is reset by the operation.

The flag is set by the operation.

The flag is a "don't care".
P/V flag affected according to the overflow result of the operation.

PN flag affected according to the parity result of the operation.

Anyone of the CPU registers A, B, C, D, E, H, L.

Any 8-bit location for all the addressing modes allowed for the particular instruction.

Any 16-bit location for all the addressing modes allowed for that instruction.

Anyone of the two index registers IX or IV.

Refresh counter.

8·bit value in range <0, 255>
16·bit value in range <0, 65535>

45



46



7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the zao instruction set. The instructions are
logically arra:1ged into groups as shown on Tables 7.0-1 through 7.0-11. Each table shows
the assembly language mnemonic OP code, the actual OP code, the symbolic operation,
the content of the flag register following the execution of each instruction, the number
of bytes required for each instruction as well as the number of memory cycles and the
total number of T states (external clock periods) required for the fetching and execution
of each instruction. Care has been taken to make each table self-explanatory without
requiring any cross reference with the text or other tables.

47



8-BIT LOAD GROUP

Symbolic Flags Op-Code No. of No. of M No. of T

Mnemonic Operation S Z H p!V N C 76 543 210 Hex Bytes Cycles States Comments
LD r, s r - s • • X • X • • • 01 r 1 1 4 r, s Reg.

LD r, n r-n • • X • X • • • 00 r 110 2 2 7 000 B

- n 001 C
LD r, (HU r-(HU • • X • X • • • 01 r 110 1 2 7 010 0
LD r, (IX+d) r - (lX+d) I· • X • X • • • 11 011 101 DO 3 5 19 011 E

I
01 110 100 Hr

d 101 L
LD r, (lY+d) i r -(lY+d) • • X • X • • • 11 111 101 FD 3 5 19 111 A

01 r 110
d

LD (HU, r (HU-r '. • X • X • • • '01 110 r 1 2 7
LD (IX+d), r (lX+d)-r • • X • X • • • '11 011 101 DO 3 5 19

01 110 r
d

LD (lY+d), r (IY+d)-r • • X • X , . • • 11 111101 FD 3 5 19

!01 110 r

: - d -
LD (HU, n (HU-n • • X • X • • • ! 00 110 110 36 2 3 10

i- n -
LD(lX+d),n (lX+d)-n I. • X : . ! X • • • ! 11 011101 DO 4 5 19

! 00 110110 36

- d
, - n

LD (IY+d), n (IY+d)-n • • X • X • • • 11 111 101 FD 4 5 19
00 11 0 110 36

- d
- n

LD A, (BC) A-(BC) • • X • X • • • 00 001 010 OA 1 2 7
LD A, (DE) A-(DE) • • X • X • • • 00 011010 lA 1 2 7
LD A, (nn) A -(nn) • • 'X • X • • • 00111 010 3A 3 4 13

- n

- n
LD (BC), A (BC)-A • • X • X • • • 00 000010 02 1 2 7
LD (DE), A (DE)-A • • X • X • • • 00 010010 12 1 2 7
LD (nn), A (nn)-A • • X • X • • • 00110010 32 3 4 13

- n

- n
LD A, I A-I X 0 X IFF 0 • 11 101101 ED 2 2 9

01 010111 57
LD A, R A-R X 0 X IFF 0 • 11 101 101 ED 2 2 9

01 011 111 5F
LD I, A I-A • • X • X • • • 11 101 101 ED 2 2 9

01000111 47
LD R, A R-A • • X II X • • • 11 101 101 ED 2 2 9

01 001111 4F

Notes: r, s means any of the registers A, B, C, 0, E, H, L
IFF the CORtent of the interrupt enable flip-flop (I FF) is copied into the P/V flag

Flag Notation: .= flag not affected, 0 =flag reset, 1=flag set, X =flag is unknown,
t= flag is affected according to the result of the operation.

Table 7.0-1

48



16-BIT LOAD GROUP

:
'1 SymbolicMne_,!!~lnic Operation

LD dd, nn dd - nn

LD IX, nn I IX - nn

S

•

•

z
•

•

X

X

FI qs
H P!V N

• X • •

• X • •

C

•
- n
- n

• 11 011 101
00 100 001

Hex

DO
21

No. of
Bytes

3

4

No. of M INo. of T
Cycles States

3 10

4 14

Comments
dd Pair
00 BC
01 DE
10 HL
11 SP

LD IV, nn IV - nn

- n
- n

• • X • X • • • 11 111 101 FD
00 100 001 21

4 4 14

LD(nnl.HL (nn+l)-H •• X • X ••
(nn) - L

LD (nnl. dd (nn+l) - ddH • • X • X,. •
(nn)-ddL

IVH-(nn+l) • • X • X • i.

IVL -Inn)

Pair
BC
DE
HL
AF

qq
00
01
10
11

20

20

20

16

20

20

20

11

14

14

10

15

10

16

,15
I

i
I
I
6

! 10

5

6

6

6

5

6

6

4

1
2

2

3

6

3

4

4

4

2

3

4

1
2

2

3

4

4

2

4

2

4

! 4

i
I 2
I

- n -- I

- n
• 00 101 010 2A

n

- n
• 11 101 101 ED

01 ddl 011
_ n

- n
• 11 011 101, DO

00 101 010 2A
n
n

• 11 111 101 FD
00 101 010 2A
- n
- n

• 00 100 010 22_ n

- n
• 11 101 101 ED

01 ddO 011
_ n

- n
• 11 011 101 DO

00 100 010 22
- n
- n

• 11 111 101 FD
00 100 010 22
- n
- n

• 11 111 001 F9
• 11 011 101 DO

11 111 001, F9
• 11 111 101' FD

11 111 001, F9
• 11 qqO 101

• 11 011 101 i DO
11 100 101 E5

• 11 111 101 FD
11 100 101 E5

• 11 qqO 001

• 11 011 101 DO
11 100 001 El

• 11 111 101 FD
11 100 001 El

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

X

X

X

•

• X •

•

• X •
• X •

•

• 'X

• X •

• X •

• i X •

• X:·

• ,X

• I X
i

X

X

X
X

X

X

X

X

X

X

• X

• X

•

•

•

• •

• •
i. •

(nn+1) - IXH i. • X • X··
(nn)-IXL

(SP-2) - qqL I • ' •

(SP-l) - qqH ;
(SP-2) - IXL • •
(SP-1) - IXH
(SP-2) - IVL ! • : •

(SP-l) -IVH '
qqH-(SP+1) .'.
qqL -(SP)
IXH -(SP+1) • •
IXL -(SP)
IVH -(SP+1) • •
IVL -(SP)

IXH- (nn+1)
IXL -(nn)

, SP - HL
I SP - IX

SP - IV

i H - (nn+l)
I L - (nn)
I

I
ddH -(nn+1)
ddL -(nn)

, (nn+1) - IVH • i •

: (nn)-IVL

LD HL, (nn)

LD IX, (nn)

LD IV, (nn)

LD dd, (nn)

LD (nnl. IX

LD SP, HL
LD SP, IX

LD SP, IV

LD (nn), IV

POP IV

PUSH IV

PDP qq

PUSH qq

PUSH IX

POP IX

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAl R)H, (PAl R) L refer to high order and low order eight bits of the register pair respectively.

e.g. BCL = C, AFH = A

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X =flag is unknown,
I flag is affected according to the result of the operation.

Table 7.0-2

49



EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

ic Fligs Op-Code No. of No.ofM No.ofT
on S Z H P/V N C 76 543 210 Hex Bytes Cycles States Comments

• • X • X • • • 11 101 011 EB 1 1 4

• • X • X • • • 00 001 000 08 1 1 4

) • • X • X • • • 11 011 001 09 1 1 4 Register bank and
I auxiliary register
bank exchange

1) • • X • X • • • 11 100 011 E3 1 5 19

+1) • • X • X • • • 11 011 101 DO 2 6 23
) 11 100 011 E3
+1) • • X • X • • • 11 111 101 FD 2 6 23
) 11 100 011 E3

CD
U • • X 0 X I 0 • 11 101 101 ED 2 4 16 Load (H U into
+1 10 100 000 AD (D El. increment the
+1 pointers and
-1 decrement the byte

counter (BC)

U >. • X 0 X 0 0 • 111 101 101 ED 2 5 21 If BC '* 0
+1 110 110 000 BO 2 4 16 If BC = 0
+1 '
-1 Itil

I

~

CD
U • • X 0 X t 0 • [11 101 101 ED 2 4 16
-1 10 101 000 A8
-1 : I-1

I I
U • • X 0 X 0 0 • 111 101 101 ED 2 5 21 If BC '* 0
-1 I 10 111 000 B8 2 4 16 If BC = 0,
-1
-1
til I

CV CD
I I X I X I 1 • (1 101 101 ED 2 4 16

+1 10 100 001 Al
-1

(1) CD
I I X I X I 1 • 11 101 101 ED 2 5 21 IfBC,*OandA'*(HU

+1 10 110 001 Bl 2 4 16 IfBC=OorA=(HU
1

I
til
r

CV (1)
I I X I X I 1 • 11 101 101 ED 2 4 16

-1 10 101 001 A9
1

(2) CD
I I X I X I 1 • 11 101 101 ED 2 5 21 If BC+0 and A +(H U

-1 10 111 001 B9 2 14 16 IfBC=OorA=(HU
1
til
r

CPO A - (HU
HL - HL
BC - BC-

LDDR (DEHH
DE - DE
HL - HL
BC -BC
Repe2t un
BC = 0

LDIR (DEHH
DE - DE
HL - HL
BC - BC
Repeat un
BC = 0

LDD (DEHH
DE - DE
HL - HL
BC - BC

Symbol
Mnemonic Operati

EX DE, HL DE-HL
EX AF, AF' AF-AF'

EXX (BC-BC'
DE-DE'

. HL-HL'
EX (SP), HLI H -(SI'+

I
L -(SP)

EX (SP), IX IXH-{SP
IXL -{SP

EX ($P), IY IIYw-{sP

I
IYL -{Sf'

LDI (DEHH
DE - DE
HL - HL
BC - BC

CPIR A - (HU
HL - HL
BC - BC­
Repeat un
A=(HUo
BC =0

CPDR A- (HU
HL - HL
BC - BC­
Repeat un
A = (H U 0

BC = 0

CPI A-(HU

I
HL - HL
BC - BC

Notes: CD P/V flag is 0 if the result of BC-l = 0, otherwise PIV = 1
CV Z flag is 1 if A = (H U, otherwise Z = O.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
I = flag is affected according to the result of the operation.

Table 7.0-3

50



8-BIT ARITHMETIC AND LOGICAL GROUP

Symbolic Fla s Op·Code No.of No.ofM No.ofT
Mnemonic Operation S Z H p!V N C 76 543 210 Hex Bytes Cycles States Comments

ADD A, r A - A+r I I X I X V 0 I 10 1000 I r 1 1 1+ r Reg.
ADD A, n A - A+n I I X I X V 0 I 11 10001110 2 2 7 000 B

- n - 001 C
010 0

ADD A, (HL) A ... A+(HL) I I X I X V 0 I 10 10001110 1 2 7 011 E
ADD A, (lX+d) A-A+(lX+d) I I X I X V 0 I 11 011 101 I DO 3 5 19 100 H

10 10001110 101 L

I - d - 111 A
ADD A, (lY+d) A-A+(lY+d) I I X I X V 0 I 11 111 101 FD 3 5 19

10 10001110

- d -
ADC A, s A-A+s+CY I I X t X V 0 I lQiIT] s is any of r, n,
SUB s A-A· s I I X . X V 1 I jOIQ] (HL), (lX+dl,I

SBC A, s A-A·s· CY I I X I X V 1 I [[ill (lY+d) as shown for
ANDs A-A A ~ I I X 1 X P 0 0 1100 I AD 0 instruction.
DRs A-A v s I I X 0 X P 0 0 [D]J The indicated bits
XOR s A-A (j) s I I X 0 X P 0 0 ITIDJ IrePlace the [Q@] in
CP s A< I I X I X V 1 I [ill] Ithe AD 0 set above.,
INC r r·· r + 1 I I X I X V 0 • 100 r []]Q] 1 1 4
INC (HL) (HL)-(HL)+l I I X I X V 0 • .100 110110011 1 3 11

I
INC (IX+d) (lX+d) - I I X I X V 0 • ill 011 1011 DO 3 6 23

(lX+d)+l :00 11011001

I,; ,:, 1~'.
I
I

INC (lY+d) (lY+d) - I I X V 0 FD 3 16 23
I

X I •
!(lY+d)+l iOO 110[]]Q]

i - d -
,

i
DECs s - s· 1 I I X I X V 1 • i ITQTI[ is is any of r, (HL),

I
I i (I X+dl, (I Y+d) as
i i

Ishown for INC.I

I
iDEC same format
I

I

rnd states as INC.
Replace ITQ[] with
[Q]in OP Code.

Notes: The Vsymbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation. Similarly the P symbol indicates parity. V =1 means overflow, V=0 means not overflow, P =1
means parity of the result is even, P=0 means parity of the result is odd.

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X=flag is unknown.
I =flag is affected according to the result of the operation.

Table 7.0-4

51



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

carry

ement)
wo's

st

Symbolic FI gs Op-Code No. of No.ofM No.of T
Mnemonic Operation S Z H p!V N C 76 543 210 Hex Bytes Cycles States Comments

OAA Converts ace, I I X I X P • I 00 100 111 27 1 1 4 Decimal adju
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands

CPL A - A • • X 1 X • 1 • 00 101 111 2F 1 1 4 Complement
accumulator
(Dne's compl

NEG A - A+l I I X I X V 1 I 11 101 101 ED 2 2 8 Negate ace, (t
01 000 100 44 complement)

CCF CY-CY • • X X X • 0 I 00 111 111 3F 1 1 4 Complement
flag

SCF CY-l • • X 0 X • 0 1 00 110 111 37 1 1 4 Set carry flag
NOP No operation • • X • X • • • 00 000 000 00 1 1 4
HALT CPU halted • • X • X • • • 01 110 110 76 1 1 4
01' IFF - 0 • • X • X • • • 11 110 011 F3 1 1 4
EI' IFF - 1 • • X • X • • • 11 111 011 FB 1 1 4
1M 0 Set interrupt • • X • X • • • 11 101 101 ED 2 2 8

mode 0 01 000 110 46
1M 1 Set interrupt • • X • X • • • 11 101 101 ED 2 2 8

mode 1

xl
01 010 110 56

1M 2 Set interrupt I • • X • • • • 11 101 101 ED 2 2 8
mode 2 I 01 011 110 5E

Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

Flag Notation: .: flag not affected, 0 : flag reset, 1 : flag set, X: flag is unknown,
I : flag is affected according to the result of the operation.

*Interrupts are not sampled at the end of EI or DI

Table 7.0-5

52



16-BIT ARITHMETIC GROUP

Symbolic FI gs Op-Code No.of No.ofM No.ofT
Mnemonic Operation S Z H P/V N C 76 543 210 Hex Bytes Cycles States Comments

ADDHL,ss HL-HL+ss • • X X X • 0 I 00 ssl 001 1 3 11 ss Reg.
00 BC

ADC HL, ss HL - HL+ss+CV I I X X X V 0 I 11 101 101 ED 2 4 15 01 DE
01 ssl 010 10 HL

11 SP
SBC HL, ss HL - HL-ss·CV I I X X X V 1 I 11 101 101 ED 2 4 15

01 ssO 010
ADD IX, pp IX-IX+pp • • X X X • 0 I 11 011 101 DD 2 4 15 pp Reg.

00 ppl 001 00 BC
01 DE
10 IX
11 SP

ADD IV, rr IV-IV+rr • • X X X • 0 I 11 111 101 FD 2 4 15 rr Reg.
00 rrl 001 00 BC

01 DE
10 IV
11 SP

INC ss ss-ss+1 • • X • X • • • 00 ssO 011 1 1 6
INC IX IX - IX+l • • X • X • • • 11 011 101 DO 2 2 10

00 100 011 23
INC IV IV - IV+ 1 • • X • X • • • 11 111 101 FD 2 2 10

00 100 011 23
DEC ss ss_ss-l • • X • X • • • 00 ssl 011 1 1 6
DECIX IX - IX-l • • X • X • • • 11 011 101 DD 2 2 10

00 101 011 2B
DECIV IV -IV-I • • X • X • • • 11 111 101 FD 2 2 10

00 101 011 2B

Notes: ss is any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE. IX, SP
rr is any of the register pairs BC, DE, IV, SP.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown.
I =flag is affected according to the result of the operation.

Table 7.0-6

53



ROTATE AND SHIFT GROUP

Mnemonic

Symbolic

Operation S Z

FI gs Op-Code INo.of No.of No.of
PI ! M T

H V N C 76 543 210 Hex I Bytes Cycles States Comments

RLCA • • X 0 X • 0 I 00 000 111 07 1 4 Rotate left circular
accumulator

RLA • • X 0 X • 0 I 00 010 111 17 1 4 Rotate left
accumulator

RRCA ~
A

• • X 0 X • 0 I 00 001 111 OF 1 4 : Rotate right circular
Iaccumulator

RRA • • X 0 X • 0 I 00 011 111 1F 1 4 Rotate right
accumulator

I I X

ll7 -ol-fuJ I I X
s = r,(H Ll,(IX+dl.(IY+d)

l[3J..rm I I X
s =r,(HLl,(IX+d).{IY+d)

LriJ~ 1 I X
s =r,(H Ll,(1 X+dl.(1 Y+d)

Rotate left circular
register r
r Reg.
000 B
001 C
010 D
011 E
100 H
101 L
111 A

Instruction format and
states are as shown for
RLC's. To form new
op- Code replace lQQlli
of RLC's with shown
code

23

23

8

15

2

6

4

6

CB2

CB 2

OD 4
CB

o I 11 011 101
11 001 011

1- d ­
00 [Q]Q] 11 0

o I 11 001 011

00 IQQQl r
o I 11 001 011

00 IQQQ] 11 0

o I 11 111 101 FD4
11 001 011 I CB

- d -
00 IQQQ] 11 0

lID]]

o I lQ.QI]

o

p

p

po X

o X

OX PO IIIQITJ
I

o X P

o X p

o X P

o XI X

I X

I X

~
r,(H Ll,(IX+d),(IY+d)

RLC r

RLC (IY+d)

RLs

RLC (IX+d)

RRCs

RLC (HLl

RRs

I I X

I 1 X

I I X

Rotate digit left and
right between the
accumulator
and location (H Ll.
The content of the
upper half of the

I
accumulator is
unaffected

18

18

5

5

ED 12
6F I

ED 12
67

• 11 101 101

01 100 111

.[11 101 101
01 101 111
I

o I

o I

o X P

o X P

o X P 0

o X p

I X

I X

A P-413iO I 1}-ffiOHH LI I

1fYJ-17-0 1-0
I s =r,(HLl,(IX+d),(IY+d)

, dI - 0 I----{IT]
I s =r,(HL).{IX+d),(IY+d)

0-17-01-lm
s =r,(H L).{I X+d),(IY+d)

A 17-413~01 t~-illiOt(HL I

I

RLD

RRD

SLA s

SRA s

SR Ls

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X=flag is unknown,
I = flag is affected according to the result of the operation.

Table 7.0-7

54



BIT SET, RESET AND TEST GROUP

I Symbolic Flags Op-Code No. of No.ofM No.ofT

Mnemonic Operation S Z H p!V N C 76 543 210 Hex Bytes Cycles States Comments

BIT b, r Z - rb X I X 1 X X 0 • 11 001 011 CB 2 2 8 r Reg.
01 b r 000 B

BITb, (HU Z - (HUb X I X 1 X X 0 • 111 001 011 CB 2 3 12 001 C
01 b 110 010 D

BIT b, (IX+d)b Z - (IX+d)b X I X 1 X X 0 • 11 011 101 DD 4 5 20 011 E
,11 001 011 CB 100 H

- c1 - 101 L
01 b 110 111 A

b Bit Tested

BIT b, (IY+d)b Z - (IY+d)b X I X 1 X X 0 • 11 111 101 FD 4 5 20 000 0

11~
001 011 CB 001 1
d - 010 2

01 b 110 011 3
100 4
101 5
110 6
111 7

SET b, r rb - 1 • • X • X • • • 11 001 011 CB 2 2 8

lIIlb r

1

4SET b, (HU (HUb - 1 • • X • X • • • 11 001 011 CB 2 15

lIIlb 110
SET b, (IX+d) (IX+d)b - 1 • • X • X • • • 11 011 101 DD 4 6 23

11 001 011 CB
- d -

[jJb 110
SET b, (IY+d) (IY+d)b - 1 • • X • X • • • 11 111 101 FD 4 6 23

11 001 011 CB

- d -
lIIl b 110

RES b, s iSb - 0 • • X • X • • • IIID To form new Opo
is=r, (HU, Code replace [TI]

(IX+dl. olSET b, s with
(IY+d) [Q] Flags and time

states for SET
instruction

Notes: The notation sb indicates bit b (Q to 7) or location s.

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X=flag is unknown,
I =flag is affected according to the result of the operation.

Table 7.0-8

55



JUMP GROUP

Symbolic Flags Op-Code No.of No.ofM No.ofT
Mnemonic Operation S Z H p!V N C 76 543 210 Hex Bytes Cycles States Comments

JP nn PC - nn • • X • X • • • 11 000 011 C3 3 3 10

- n -- n - cc Condition
JP cc, nn If condition cc • • X • X • • • 11 cc 010 3 3 10 000 NZ non zero

is true PC - nn, - n - 001 Z zero
otherwise - n - 010 NC non carry
continue 011 C carry

100 PO parity odd
101 PE parity even
110 P sign positive

JR e PC - PC + e • • X • X • • • 00 011 000 18 2 3 12 111 M sign negative
- e·2 -

JR C, e If C= 0, • • X • X • • • 00 111 000 38 2 2 7 If condition not met
continue - e·2 -
If C= I, 2 3 12 If condition is met
PC - PC+e

JR NC, e If C= I, • • X • X • • • 00 110 000 30 2 2 7 If condition not met
continue - e-2 -
If C= 0, 2 3 12 If condition is met
PC - PC+e

JR Z, e If Z = 0 • • X • X • • • 00 101 000 28 2 2 7 If condition not met
continue - e-2 -
If Z = I, 2 3 12 If condition is met
PC - PC+e

J R NZ, e If Z = I, • • X • X • • • 00 100 000 20 2 2 7 If condition not met
continue - e·2 -
If Z = 0, 2 3 12 If condition is met
PC - PC+e

JP (HL) PC - Hl • • X • X • • • 11 101 001 E9 1 1 4

JP (IX) PC -IX • • X • X • • • 11 011 101 00 2 2 8
11 101 001 E9

JP (lY) PC - IY • • X • X • • • 11 111 101 FD 2 2 8
11 101 001 E9

DJNZ, e B - B·l • • X • X • • • 00 010 000 10 2 2 8 IfB=O
If B= 0, - e-2 -
continue

If BiD, 2 3 13 If BiD
PC - PC+e

Notes: e represents the extension in the relative addressing mode.

e is a signed two's complement number in the range <126, 129>

e·2 in the op-code provides an effective address of pc+e as PC is
incremented by 2 prior to the addition of e.

Flag Notation: • = flag not affected, 0 = flag reset, 1 =flag set, X=flag is unknown,
I = flag is affected according to the result of the operation. -

Table 7.0-9

56



CALL AND RETURN GROUP

Symbolic Flags Op·Code No. of No.ofM No.of T
Mnemonic Operation S Z H PtV N C 76 543 210 Hex Bytes Cycles States Comments

CAll nn (SP·1) - PCH • • X • X • • • 11 001 1011 CO 3 5 17
(SP·2) - PCl - n -I
PC - nn - n -!

I

i
CAll cc, nn If condition • • X • X • • • 11 cc 100

1
3 3 10 If cc is false

cc is false - n -,
continue, - n ·1 3 5 17 If cc is true
otherwise I

same as I

CAll nn !

RET PCl - (SP) • • X • X • • • .11 001 001 C9 1 ! 3 10
PC H- (SP+ll

I
I

i ,
I

I

RET cc If condition • • X • X • • • ill cc 000 1 1 5 If cc is false
cc is false !

I
I

continue, 1 I 3 11 If cc is trueI ,
otherwise I i cc Condition

i
,

same as 000 NZ non zero
RET I :

I 001 Z

I
I zero

010 NC non carry
RETI Return from • • X • X • • • 111 101 101 ED 2 4 14 011 C carry

interrupt 101 001 101 40 I 100 PO parity odd
RETN1 Return from • • X • X • • .111 101 101 ED 2 4 ! 14 101 PE parity even

non maskable 01 000 101 45 ' 110 P sign positive
interrupt

I
111 M sign negative

111

,

RST p (Sp·ll - PCH • • X • X • • • t 111 1 3 ill:
(SP·2) - PCl

IPCH - 0
PCl - P

t P
000 DOH
001 08H
010 10H
011 18H
100 20H
101 28H

I
110 30H

I 111 38H

1 RETN loads IFF2 - IFF1

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown,
I =flag is affected according to the result of the operation.

Table 7.0-10

57



INPUT AND OUTPUT GROUP

Notes: CD If the result of B-1 is zero the Z flag is set, otherwise it is reset.

Flag Notation: • =flag not affected, 0 =flag reset, 1 =flag set, X=flag is unknown,
I = flag is affected according to the result of the operation.

Table 7.0-"

58



8.0 INTERRUPT RESPONSE

The prupose of an interrupt is to allow peripheral devices to suspend CPU operation in an
orderly manner and force the CPU to start a peripheral service routine. Usually this service
routine is involved with the exchange of data, or status and control information, between
the CPU and the peripheral. Once the service routine is completed, the CPU returns to the
operation from which it was interrupted.

INTERRUPT ENABLE - DISABLE

The zao-cpu has two interrupt inputs, a software maskable interrupt and a non-maskable
interrupt. The non-maskable interrupt (1'JfiM) can not be disabled by the programmer and
it will be accepted whenever a peripheral device requests it. This interrupt is generally
reserved for very important functions that must be serviced whenever they occur, such as
an impending power failure. The maskable interrupt (I NT) can be selectively enabled or
disabled by the programmer. This allows the programmer to disable the interrupt during
periods where his program has timing constraints that do not allow it to be interrupted.
In the zao-cpu there is an enable flip flop (called IFF) that is set or reset by the prog­
rammer using the Enable Interrupt (EI) and Disable Interrupt (01) instructions. When the
IFF is reset, an interrupt can not be accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops,
called IFF1 and IFF2.

B
Actually disables interrupts

from being accepted.

IIFF 21

Temporary storage location
for IFF 1.

The state of IFF1 is used to actually inhibit interrupts while IFF2 is used as a temporary
storage location for IFF1' The purpose of storing the IFF1 will be subsequently explained.

A reset to the CPU will force both IFF1 and IFF2 to the reset state so that interrupts are
disabled. They can then be enabled by an EI instruction at any time by the programmer.
When an EI instruction is executed, any pending interrupt request will not be accepted until
after the instruction following EI has been executed. This single instruction delay is neces­
sary for cases when the following instruction is a return instruction and interrupts must not
be allowed until the return has been completed. The EI instructions sets both IFF 1 and
IFF2 to the enable state. When an interrupt is accepted by the CPU, both IFF1 and IFF2
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a
new EI instruction. Note that for all of the previous cases, IFF 1 and IFF 2 are always equal.

The purpose of IFF2 is to save the status of IFF1 when a non-maskable interrupt occurs.
When a non-maskable interrupt is accepted, IFF 1 is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-maskable interrupt has been accepted
maskable interrupts are disabled but the previous state of IFF 1 has been saved so that the
complete state of the CPU just prior to the non-maskable interrupt can be restored at any
time. When a Load Register A with Register I (LD A, I) instruction or a Load Register A
with Register R (LD A, R) instruction is executed, the state of IFF2 is copied into the
parity flag where it can be tested or stored.

A second method of restoring the status of IFF 1 is thru the execution of a Return From
Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non
maskable interrupt service routine is complete, the contents of IFF 2 are now copied back
into IFF 1, so that the status of IFF 1 just prior to the acceptance of the non-maskable
interrupt will be restored automatically.

69



Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.

INTERRUPT ENABLE/DISABLE FLIP FLOPS

IFF I IFF2

0 0

0 0

I

• •
• •
0 •

1FF2 •
0 0

Action

CPU Reset

DI

EI

LDA,I

LDA,R

Accept NMI

RETN

Accept INT

RET! • •

IFF2 ~ Parity flag

1FF2 ~Parity flag

IFF2~IFFI

FIGURE 8.0-1

CPU RESPONSE

Non-Maskable

"." indicates no change

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the
CPU ignores the next instruction that it fetches and instead does a restart to location
0066H. Thus, it behaves exactly as if it had received a restart instruction but, it is to a
location that is not one of the 8 software restart locations. A restart is merely a call to a
specific address in page 0 memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in anyone of three
possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupt­
ing device can place any instruction on the data bus and the CPU will execute it. Thus, the
interrupting device provides the next instruction to be executed instead of the memory.
Often this will be a restart instruction since the interrupting device only need supply a
single byte instruction. Alternatively, any other instruction such as a 3 byte call to any lo­
cation in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal
number for the instruction. This occurs since the CPU automatically adds 2 wait states to an
interrupt response cycle to allow sufficient time to implement an external daisy chain for
priority control. Section 4.0 illustrates the detailed timing for an interrupt response. After
the application of RESET the CPU will automatically enter interrupt Mode O.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt
by executing a restart to location 0038H. Thus the response is identical to that for a non
maskable interrupt except that the call location is 0038H instead of 0066H. Another
difference is that the number of cycles required to complete the restart instruction is 2
more than normal due to the two added wait states.

60



Mode 2

This mode is the most powerful interrupt response mode. With a single a-bit byte from the
user an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every in­
terrupt service routine. This table may be located anywhere in memory. When an interrupt
is accepted, a 16 bit pointer must be formed to obtain the desired interrupt service routine
starting address from the table. The upper a bits of this pointer is formed from the contents
of the I register. The I register must have been previously loaded with the desired value by
the programmer, i.e. LD I, A. Note that a CPU reset clears the I register so that it is ini­
tialized to zero. The lower eight bits of the pointer must be supplied by the interrupting
device. Actually, only 7 bits are required from the interrupting device as the least
bit must be a zero. This is required since the pointer is used to get two adjacent bytes to
from a complete 16 bit service routine starting address and the addresses must always start
in even locations.

desired start ing address
pointed to by:Interrupt

Service
Routine
Starting
Address
Table

<
low order
high order } I REG

CONTENTS
7 BITS FROM
PERIPHERAL 0

The first byte in the table is the least significant (low order) portion of the address. The
programmer must obviously fill this table in with the desired addresses before any interrupts
are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/
Write Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting device supplies the lower portion of the pointer, the CPU automat­
cally pushes the program counter onto the stack, obtains the starting address from the table
and does a jump to this address. This mode of response requires 19 clock periods to com­
plete (7 to fetch the lower a bits from the interrupting device, 6 to save the program
counter, and 6 to obtain the jump address.)

Note that the laO peripheral devices all include a daisy chain priority interrupt structure
that automatically supplies the programmed vector to the CPU during interrupt acknow­
ledge. Refer to the lao-PIO, laO-SIO and lao-CTC manuals for details.

61



INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

<I>
INT

AO-A15

MI

MREO

IORO

DATA BUS

WAIT

RD

Last M Cycle MI

of Instruction

Last T State T1 T2 T * T * T3w w

---In n n n n n rL
-- ---~Lll------ --------------t------- ------- ------

1------ ------- -------~------ ------- ------- ------

IX PC )(REFRESH

I
I I

I
I
I
I \ /I II
I I I"""'j'N "'\

I
,- ~~.J ______ I._- ...------ ------- 1------- ----j--7\.--- ------I--- ------- ...------ .,..------ -------1-----1-- ------

I I
I I
I Daisey Chain ~ Vector Placed

I Priority Frozen I onto Data Bus

I I

zao INTERRUPT ACKNOWLEDGE SUMMARY

1) PERIPHERAL DEVICE REOUESTS INTERRUPT. Any device requesting and interrupt
can pull the wired-or line INT low.

2) CPU ACKNOWLEDGES INTERRUPT. Priority status is frozen when M1 goes low
during the Interrupt Acknowledge sequence. Propagation delays down the lEI/I EO
daisy chain must be settled out when !ORO goes low. If lEI is HIGH, an active Peri­
pheral Device will place its Interrupt Vector on the Data Bus when IORO goes low.
That Peripheral then releases its hold on INT allowing interrupts from a higher
priority device. Lower priority devices are inhibited from placing their Vector on
the Data Bus or Interrupting because IEO is low on the active device.

3) INTE RRUPT IS CLEARED. An active Peripheral device (IEI=1, IEO=O) monitors
OP Code fetches for an RETI (ED 40) instruction which tells the peripheral that its
Interrupt Service Routine is over. The peripheral device then re-activates its internal
Interrupt structure as well as raising its IEO line to enable lower priority devices.

62



INTERRELATIONSHIP OF INT, NMI, AND BUSRQ
The following flow chart details the relationship of three control inputs to the Z80-CPU. Note
the following from the flow chart.
1. Ti\JT and NMI are always acted on at the end of an instruction.
2. BUSRQ is acted on at the end of a machine cycle.
3. While the CPU is in the DMA MODE, it will not respond to active inputs on ii'JT or NMI.
4. These three inputs are acted on in the following order of priority: a)BUSRQ b)NMI c)INT

ZBO-CPU INTERRUPT SEQUENCE

NO

YES

YES

NO
SET NMI F/F

SET INT. F/F

RESET
BUSRQ F/F

NO

YES

YES

NON JMASKABLE
INTERRUPT

MASKABLEJ
INTERRUPT
MODE

63



64



9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the
zao-cpu.

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple zao system. Any zao system must include the
following five elements:

1) Five volt power supply
2) Oscillator
3) Memory devices
4) I/O circuits
5) CPU

MINIMUM Z80 COMPUTER SYSTEM

Ml

+5V

RESET

AO-AlO +5V GND

ADDRESS
IN

MREO CE l MK 34000
RD

CE 2
16K BIT ROM

MK 3880 DATA

zao DATA BUS OUT

CPU

IORO

OUTPUT INPUT
DATA DATA

FIGURE 9.0-1

Since the zao-cpu only requires a single 5 volt supply, most small systems can be imple­
mented using only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square
wave. For systems not running at full speed, a simple RC oscillator can be used. When the
CPU is operated near the highest possible frequency, a crystal oscillator is generally required
because the system timing will not tolerate the drift or jitter that an RC network will
generate. A crystal oscillator can be made from inverters and a few discrete components
or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple
example we have shown a single 16K bit ROM (2K bytes) being utilized as the entire memory
system. For this example we have assumed that the zao internal register configuration
contains sufficient Read/Write storage so that external RAM memory is not required.

65



Every computer system requires I/O circuits to allow it to interface to the "real world."
In this simple example it is assumed that the output is an a bit control vector and the input
is an a bit status word. The input data could be gated onto the data bus using any standard
tri-state driver while the output data could be latched with any type of standard TTL latch.
For this example we have used a zao-Plo for the I/O circuit. This single circuit attaches to
the data bus as shown and provides the required 16 bits of TTL compatible I/O. (Refer to
the zao-Plo manual for details on the operation of this circuit.) Notice in this example that
with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a powerful
computer has been implemented.

ADDING RAM

Most computer systems require some amount of external ReadlWrite memory for data
storage and to implement a "stack". Figure 9.0-2 illustrates how 256 bytes of static memory
can be added to the previow, example. In this example the memory space is assumed to be
organized as follows:

ROM & RAM IMPLEMENTATION EXAMPLE

....---__---., ADDREss
OOOOH

2 K bytes

I--_R_O_M
_-1 0 7FF H

256 bytes 0800H

RAM 08FFH

(ADDRESS BUS

l
~~

I

~J-
RD

CE I
RDloo

A II =---0
MK 34000 256 x 8 CEI

MREQ
2Kx8 -

~2 WR R/W All
MREQ ROM RAM CEz ----'--

CE 3 I

"" ;>0.

00- 07 Do -07

"" ;:. "" ;:.

~ DATA BUS (

FIGURE 9.0-2

In this diagram the address space is described in hexidecimal notation. For this example,
address bit A 11 separates the ROM space from the RAM space so that it can be used for the
chip select function. For larger amounts of external ROM or RAM, a simple TTL decoder
will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The
WAIT line on the CPU allows the zao to operate with any speed memory. By referring
back to section 4 you will notice that the memory access time requirements are most
severe during the M1 cycle instruction fetch. All other memory accesses have an additional
one half of a clock cycle to be completed. For this reason it may be desirable in some
applications to add one wait state to the M1 cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can
be changed to add a single wait state to any memory access as shown in F,gure 9.0-4.

66



ADDING ONE WAIT STATE TO AN Ml CYCLE

+5V

1
M1

S S
-0 Q 0 Q-

7474 7474
<1>,

Q Qc -c
R R

r r
+5V +5V

I- M1 ~I
I T, I T2 I Tw I T3 T4 I

<I>

Ml
, I

WAIT ~

FIGURE 9.0-3

ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

+5V

J-1-RR-hMREQ S <I>
0 Q 0

7474 7474 MREQ~«>
c Q c Q

R R
WAIT LJ

+5V +5V

FIGURE 9.0-4

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic
memories. Each individual dynamic RAM has varying specifications that will require minor
modifications to the description given here and no attempt will be made in this document
to give details for any particular RAM.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using
16-pin 4K dynamic memories. This Figure assumes that the RAM's are the only memory in
the system so that A12 is used to select between the two pages of memory. During refresh
time, all memories in the system must be read. The CPU provides the proper refresh address
on lines AO through A6. To add additional memory to the system it is necessary to only
replace the two gates that operate on A12 with a decoder that operates on all required
address bits. For larger systems, buffering for the address and data bus is also generally
required.

An application note entitled "Z80 Interfacing Techniques for Dynamic RAM" is avail­
able from your MOSTE K representative which describes dynamic RAM design techniques.

67



INTERFACING DYNAMIC RAMS

DATA
BUS

I
o IFFF)

UIRED

o
1o OFFF)

DELAY f---<~ DELAY
CAS

4Kx8 DYNAMIC PAGE
R/W RAM MEMORY

ARRAY
(10001

i
RAS

n-\.~

I~ I
,--<

AO-A 5 00-07 )

~ l 1
v

~ I-
MUX CAS

CONTROL 4Kx8 DYNAMIC PAGE

L
R/W RAM MEMORY (0000

RAS
ARRAY

ADDRESS t----
Ao-AII

MULTIPLEXER

• NO REFRESH ADDRESS MULTIPLEXER REQ
• MREQ INITIATES MEMORY CYCLE
• ~ SELECTS REFRESH CYCLE

ADDRESS
BUS

FIGURE 9.0-5

Z80-CPU DESIGN CONSIDERATIONS: CLOCK CIRCUITRY

When using the Z80·CPU at less than its rated speed, the Clock Input (eI» can be driven by a
7400 TTL gate with a resistor pull up (typically 330 ohms) to +5 Volts. Because of dynamic
currents flowing into the Clock Input Pin, the rise time of the Clock Input waveform will
be typically 60-80 nanoseconds. The resistor will eventually pull the clock input up to Vcc
but with a slow rise time which will limit the maximum frequency of operation. Figure
9.0-6 shows a Clock Input driver which has an active pull-up and which will allow maximum
frequency operation. The circuit is recommended for all but the most cost sensitive Z80
appl ications.

Z80 CPU CLOCK BUFFER CIRCUITRY

33pf
220 22

,----1 "--"'-J,V'tA~-..-~,.,...--o+5V

74S04

2N3906 or Equivalent
1.2K

FROM
OSCILLATOR ~----...----~<P

CLOCK
INPUT

FIGURE 9.0-6

68



RESET CIRCUITRY

The zao-,cpu has the characteristic that if the RESET input goes low during T3 of an MT
cycle that the MREQ signal will go to an indeterminate state for one T-State approximately
10 T-States later. If there are dynamic memories in the system this action could cause an
aborted or short access of the dynamic RAM which could cause destruction of data within
the RAM. If the contents of RAM are of no concern after RESET, then this characteristic
is no problem as the CPU always resets properly. If RAM contents must be preserved,
then the fall ing edge of the RESET input must be synchronized by the fall ing edge of I\if'i.

The circuitry of Figure 9.0-7 does this synchronization as well as providing a one-shot
to limit the duration of the CPU RESET pulse. The CPU RESET signal must be a pulse
even though the EXTERNAL RESET button is held closed to avoid suspending the CPU
refresh of dynamic RAM for a time long enough to destroy data in the RAM.

MANUAL AND POWER-ON RESET CIRCUIT

+5

10K

+5

+5 10K

S
DQ~----1B

1000pF

G81lI

740474132
A 0: t-------{"J--:::;..

CK

EXTERNAL
RESET

FIGURE 9.0-7

ADDRESS LATCHING

In order to guarantee proper operation of the zao-cpu with dynamic RAMs the upper
4 bits of the address should be latched as shown in Figure 9.D-a. This action is required
because the ZaD-CPU does not guarantee that the Address Bus will hold valid past the
rising edge of MREQ on an OP Code Fetch.

This action does not directly affect dynamic memories because they latch addresses in­
ternally. The problem comes from the address decoder which generates RAS. If the address
lines which drive the decoder are allowed to change while MREQ is low, then a "glitch"
can occur on the RAS line or lines, which may have the effect of destroying one row of
data within the dynamic RAM.

69



ADDRESS LATCH

7475

Z80-CPU

MREO

A12 10 10

A13 20 20

A14 3D 30

A15 40 40

G G

LJ

A12

A13

A14

A15

DYNAMIC
RAM
DECODING
CIRCUITRY

FIGURE 9.0-8

RAS TIMING WITH AND WITHOUT ADDRESS LATCH

\'- O_P_C_O_D_E_F_E_T_C_H ---.j/ \ REFRESH ADDRESS /

VALID MEMORY ADDRESS VALID REFRESH ADDRESS

\ WITHOUT ADDRESS LATC~ A..J

\,-__W_I_T_H_A_D_D_R_E_SS_LA_T_C_H ..J/

FIGURE 9.0-9

70

\----~/

\----~/



10.0 SOFTWARE IMPLEMENTATION EXAMPLES

10.1 Methods of Software Implementation

Severa! different approaches are possible in developing software for the zao (Figure 10.1)
First of all, Assembly Language or a high level language may be used as the source language.
These languages may then be translated into machine language on a commercial time sharing
facility using a cross-assembler or cross-compiler or, in the case of assembly language, the
translation can be accomplished on a zao Development System using a resident assembler.
Finally, the resulting machine code can be debugged either on a time-sharing facil ity using
a zao simulator or on a zao Development System which uses a zao-cpu directly.

SOFTWARE GENERATION TECHNIQUES

SOURCE
LANGUAGE TRANSLATION DEBUGGING

RESIDENT ASSEMBLER
ASSEMBLY DEVELOPMENT
LANGUAGE SYSTEM

CROSS ASSEMBLER

PLIZ OR OTHER
HIGH LEVEL SIMULATOR
LANGUAGE CROSS COMPILER

FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of
programming vs. code efficiency. A high level language with its machine independent con­
straints is typically better for formulating and maintaining algorithms, but the resulting
machine code is usually somewhat less efficient than what can be written directly in assem­
bly language. These tradeoffs can often be balanced by combining high level language and
assembly language routines, identifying those portions of a task which must be optimized
and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short­
term vs. long-term expense. While the initial expenditure for a development system is higher
than that for a time-sharing terminal, the cost of an individual assembly using a resident
assembler is negligible while the same operation on a time-sharing system is relatively
expensive and in a short time this cost can equal the total cost of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and ex­
pense combined with operational fidelity and flexibility. As with the assembly process,
debugging is less expensive on a development system than on a simulator available through
time-sharing. In addition, the fidelity of the operating environment is preserved through
real-time execution on a zac-cpu and by connecting the I/O and memory components
which will actually be used in the production system. The only advantage to the use of a
simulator is the range of criteria which may be selected for such debugging procedures
as tracing and setting breakpoints. This flexibility exists because a software simulation can
achieve any degree of complexity in its interpretation of machine instructions while deve­
lopment system procedures have hardware limitations such as the capacity of the real-time
storage module, the number of breakpoint registers and the pin configuration of the CPU.
Despite such hardware limitations, debugging on a development system is typically more
productive than on a simulator because of the direct interaction that is possible between
the programmer and the authentic execution of his program.

71



10.2 Software Features Offered by the zao-cpu

The zao instruction set provides the user with a large and flexible repetoire of operations
with which to formulate control of the zao-cpu.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic
and logical operations, or to form memory addresses, or as fast-access storage for frequently
used data.

Information can be moved directly from register to register; from memory to memory;
from memory to registers; or from registers to memory. In addition, register contents and
register/memory contents can be exchanged without using temporary storage. In particular,
the contents of primary and auxiliary registers can be completely exchanged by executing
only two instructions. EX and EXX. This register exchange procedure can be used to
separate the set of working registers between different logical procedures or to expand the
set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on
a last-in first-out basis through PUSH and POP instructions which utilize a special stack
pointer register, SP. This stack register is available both to manipulate data and to auto­
matically store and retrieve addresses for subroutine linkage. When a subroutine is called,
for example, the address following the CALL instruction is placed on the top of the push­
down stack pointed to by SP. When a subroutine returns to the calling routine, the address
on the top of the stack is used to set the program counter for the address of the next
instruction. The stack pointer is adjusted automatically to reflect the current "top" stack
position during PUSH, POP, CALL and RET instructions. This stack mechanism allows
pushdown data stacks and subroutine calls to be nested to any practical depth because the
stack area can potentially be as large as memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero,
sign, parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical,
shift and compare instructions. After the execution of an instruction which sets a flag,
that flag can be used to control a conditional jump or return instruction. These instructions
provide logical control following the manipulation of single bit, eight-bit byte (or) sixteen­
bit data quantities.

A full set of logical operations, including AND, OR, XOR (exclusive -OR), CPL (NOR) and
NEG (two's complement) are available for Boolean operations between the accumulator and
1) all other eight-bit registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which
operate on the contents of all eight-bit primary registers or directly on any memory location.
The carry flag can be included or simply set by these shift instructions to provide both the
testing of shift results and to link register/register or register/memory shift operations.

10.3 Examples of Use of Special zao Instructions

A. Let us assume that a string of data in memory starting at location "DATA" is to be
moved into another area of memory starting at location "BUFFER" and that the
string length is 737 bytes. This operation can be accomplished as follows:

LD
LD
LD
LDIR

HL,DATA
DE, BUFFER
BC,737

;START ADDRESS OF DATA STRING
;START ADDRESS OF TARGET BUFFER
;LENGTH OF DATA STRING
;MOVE STRING TRANSFER MEMORY
;POINTED TO BY HL INTO MEMORY
;LOCATION POINTED TO BY DE INCREMENT
;HL AND DE, DECREMENT BC PROCESS
;UNTI L BC=O.

72
11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.



B. Let's assume that a string in memory starting at location "DATA" is to be moved
into another area of memory starting at location "BUFFER" until an ASCII $ char­
acter (used as string delimiter) is found. Let's also assume that the maximum string
length is 132 characters. The operation can be performed as follows:

LD
LD
LD
LD

LOOP: CP

JR
LDI

JP
END:

HL,DATA
DE, BUFFER
BC, 132
A,'$'
(HL)

Z, END-$

PE,LOOP

;STARTING ADDRESS OF DATA STRING
;STARTING ADDRESS OF TARGET BUFFER
;MAXIMUM STRING LENGTH
;STRING DELIMITER CODE
;COMPARE MEMORY CONTENTS WITH DE­
;L1MITER
;GO TO END IF CHARACTERS EQUAL
;MOVE CHARACTER (HL) TO (DE)
;INCREMENT HL AND DE, DECREMENT BC
;GO TO "LOOP" IF MORE CHARACTERS
;OTHERWISE, FALL THROUGH
;NOTE: P/V FLAG IS USED
;TO INDICATE THAT REGISTER BC WAS
;DECREMENTED TO ZERO.

19 bytes are requ ired for th is operation.

C. Let us assume that a 16-digit decimal number represented in packed BCD format (two
BCD digits/byte) has to be shifted as shown in the Figure 10.2 in order to mechanize
BCD multiplication or division. The operation can be accomplished as follows:

LD
LD
XOR

ROTAT:RLD

INC
DJNZ

HL,DATA
B, COUNT
A

HL
ROTAT-$

;ADDRESS OF FI RST BYTE
;SHIFT COUNT
;CLEAR ACCUMULATOR
;ROTATE LEFT LOW ORDER DIGIT IN ACC
;WITH DIGITS IN (HL)
;ADVANCE MEMORY POINTER
;DECREMENT B AND GO TO ROTAT IF
;B IS NOT ZERO, OTHERWISE FALL THROUGH

BCD DATA SHIFTING
11 bytes are required for this operation.

FIGURE 10.2

4-"':"-- ...1--- 0

73



11 bytes are required for this operation.

D. Let us assume that one number is to be subtracted from another and a) that they are
both in packed BCD format, b) that they are of equal but varying length, and c) that
the result is to be stored in the location of the minuend. The operation can be accomp­
lished as follows:

LD
LD
LD
AND

SUBDEC:LD
SBC
DAA
LD
INC
INC
DJNZ

HL, ARG1
DE, ARG2
B,LENGTH
A
A, (DE)
A, (HL)

(H L), A
HL
DE
SUBDEC-$

;ADDRESS OF MINUEND
;ADDRESS OF SUBTRAHEND
;LENGTH OF TWO ARGUMENTS
;CLEAR CARRY FLAG
;SUBTRAHEND TO ACC
;SUBTRACT (HL) FROM ACC
;ADJUST RESULTTO DECIMAL CODED VALUE
;STORE RESULT
;ADVANCE MEMORY POINTERS

;DECREMENT B AND GO TO "SUBDEC" IF B
;NOT ZERO, OTHERWISE FALL THROUGH

74

17 bytes are required for this operation.

10.4 Examples of Programming Tasks

A. The following program sorts an array of numbers each in the range <0,255> into
ascending order using a standard exchange sorting algorithm.

01/22/76 11:14:37 BUBBLE LISTING
LOC OBJ CODE STMT SOURCE STATEMENT

1 *** STANDARD EXCHANGE (BUBBLE) SORT ROUTlNE***
2
3 AT ENTRY: HL CONTAINS ADDRESS OF DATA
4 C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
5 (1<C<256)
6
7 AT EXIT: DATA SORTED IN ASCENDING ORDER
8
9 USE OF REGISTERS
10
11 REGISTER CONTENTS
12

13 A TEMPORARY STORAGE FOR CALCULATIONS
14 B COUNTER FOR DATA ARRAY
15 C LENGTH OF DATA ARRAY
16 D FIRST ELEMENT IN COMPARISON
17 E SECOND ELEMENT IN COMPARISON
18 H FLAG TO INDICATE EXCHANGE
19 L UNUSED
20 IX POINTER INTO DATA ARRAY
21 IY UNUSED
22



01/22/76 11 :14:37 BUBBLE LISTING (Cont'd.)

LOC OBJ CODE STMT SOURCE STATMENT

0000 222600 23 SORT: LD (DATA). HL ;SAVE DATA ADDRESS
0003 CB84 24 LOOP: RES FLAG,H ;INITIALIZE EXCHANGE FLAG
0005 41 25 LD B,C ;INITIALIZE LENGTH COUNTER
0006 05 26 DEC B ;ADJUST FOR TESTING
0007 DD2A2600 27 LD IX, (DATA) ;INITIALIZE ARRAY POINTER
ooOB DD7EOO 28 NEXT: LD A,(IX+O) ;FIRST ELEMENT IN COMPARISON
OOOE 57 29 LD D,A ;TEMPORARY STORAGE FOR ELEMENT
OOOF DD5EOl 30 LD E, (IX+l) ;SECOND ELEMENT IN COMPARISON
0012 93 31 SUB E ;COMPARISON FIRSTTO SECOND
0013 3008 32 JR NC, NOEX-$ ;IF FIRST> SECOND, NO JUMP
0015 007300 33 LD (IX). E ;EXCHANGE ARRAY ELEMENTS
0018 007201 34 LD (lX+l),D
001B CBC4 35 SET FLAG H ;RECORD EXCHANGE OCCURRED
0010 0023 36 NOEX: INC IX ;POINT TO NEXT DATA ELEMENT
001F 10EA 37 DJNZ NEXT-$ ;COUNT NUMBER OF COMPARISONS

;REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG,H ;DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ, LOOP-$ ;CONTINUE IF DATA UNSORTED
0025 C9 41 RET ;OTHERWISE, EXIT

42
0026 43 FLAG: EQU 0 ;DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 ;STORAGE FOR DATA ADDRESS

45 END

B. The following program multiplies two unsigned 16-bit integers and leaves the result
in the HL register pair.

01/22/76 11 :32:36 MULTIPLY LISTING
LOC OBJ CODE STMT SOURCE STATEMENT

0000

0000 0610
0002 4A
0003 7B
0004 EB
0005 210000
0008 CB39
OOOA lF

OOOB 3001

1 MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
2 ON ENTRANCE: MULTIPLIER IN HL.
3 MULTIPLICAND IN DE.
4
5 ON EXIT: RESULT IN HL.
6
7 REGISTERS USES:
8
9

10 H HIGH ORDER PARTIAL RESULT
11 L LOW ORDER PARTIAL RESULT
12 0 HIGH ORDER MULTIPLICAND
13 E LOW ORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
15 C HIGH ORDER BITS OF MULTIPLIER
16 A LOW ORDER BITS OF MULTIPLIER
17
18 LD B, 16; NUMBER OF BITS-INITIALIZE
19 LD C,D; MOVE MULTIPLIER
20 LD A,E;
21 EX DE,HL; MOVE MULTIPLICAND
22 LD HL,O; CLEAR PARTIAL RESULT
23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
24 RR A; LEAST SIGNIFICANT BIT IS

IN CARRY.
26 JR NC, NOADD-$ IF NO CARRY' SKIP THE ADD.

75



01/22176 11:32:36 MULTIPLY LISTING (Cant'd.)

76

LOC OBJ CODE STMT SOURCE STATMENT

0000 19 27 ADD HL, DE; ELSE ADD MULTIPLICAND TO
PARTIAL RESULT.

OOOE EB 29 NOADD: EX DE,HL; SHIFT MULTIPLICANT LEFT
OOOF 29 30 ADD HL,HL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE,HL;
0011 10F5 32 DJNZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 C9 33 RET;

34 END;



11.0 ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias Specified Operating Range

Storage Temperature -65°C to +150°C

Voltage on Any Pin with Respect to Ground -0.3V to +7V

Power Dissipation 1.5W

D.C. CHARACTERISTICS
TA =O°C to 70°C, VCC = 5V ± 5% unless otherwise specified

SYMBOL PARAMETER MIN. TYP. MAX. UNIT TEST CONDITION

VILC Clock Input Low Voltage -0.3 0.8 V

VIHC Clock Input High Voltage Vcc-.6 Vcc+.3 V

VIL Input Low Voltage -0.3 0.8 V

VIH Input High Voltage 2.0 VCC V

VOL Output Low Voltage 0.4 V IOL = 1.8mA

VOH Output High Voltage 2.4 V IOH = -250 IlA

ICC Power Supply Current 150* mA

III Input Leakage Current 10 IlA VIN =0 to VCC

ILOH Tri-State Output Leakage Current in Float 10 IlA VOUT =2.4 to Vce

ILOL Tri-State Output Leakage Current in Float -10 IlA VOUT =O.4V

ILD Data Bus Leakage Current in Input Mode ±10 IlA O~VIN~VCC

*200mA for -4, -10 or -20 devices

CAPACITANCE
TA = 250 C, f = 1MHz unmeasured pins returned to ground

SYMBOL PARAMETER MAX. UNIT

C<I> Clock Capacitance 35 pF

CIN Input Capacitance 5 pF

COUT Output Capacitance 10 pF

·Comment

Stresses above those listed under "Absolute Maximum Ratings" may
cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other condition
above those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.

77



MK 3880, MK 3880·10, MK 3880-20 Z80-CPU

A C CHARACTERISTICS

TA = aoc to 7au e, Vec =+5V ± 5%, Unless Otherwise Noted

SIGNAL SYMBOL PARAMETER MIN. MAX. UNIT TEST CONDITION

t c Clock Period .4 [12] psec
tw(<PH) Clock Pulse Width, Clock High 180 (D) nsec

<P tw(<PU Clock Pulse Width, Clock Low 180 2000 nsec

t r,f Clock Rise and Fall Time 30 nsec

--_.
tD(AD) Address Output Delay 145 nsec

tF(AD) Delay to Float 110 nsec
tacm Address Stable Prior to MREO [ 1] nsec CL = 50pF

(Memory Cycle)

AO·15 taci Address Stable Prior to 10RO, RD [2] nsec
or iNA (I/O Cycle) __

tca Address Stable From BQ, WfL!ORO or MREO [3] nsec Except T3-Ml
tcaf Address Stable From RD or WR [4] nsec

During Float

tD(D) Data Output Delay 230 nsec

tF(D) Delay to Float During Write Cycle 90 nsec

tS<P(D) Data Setup Time to Rising Edge of 50 nsec
Clock During M1 Cycle

DO-7 tS(j)(D) Data Setup Time to Falling Edge at 60 nsec CL = 50pF
Clock During M2 .!2..M5

tdcm Data Stable Prior to WR (Memory [5] nsec
Cycle)

tdci Data Stable Prior to WR (I/O Cycle) [6] nsec
tcdf Data Stable From WR [7] nsec
tH Input Hold Time 0 nsec

tDL(j)(MR) MREO De~om Falling Edge of 100 nsec
Clock, MREO Low

tDH<P(MR) MREO De~om Rising Edge of 100 nsec
Clock, MREO High

MREO tDH~(MR) MREO De~om Falling Edge of 100 nsec CL = 50 pF
Clock, MREQ...!:!jgh

[8]tw(MRL) Pulse Width, MREO Low nsec
tw(MRH) Pulse Width, MREO High [9] nsec

tDL<f>(lR) 10RO Delay From Rising Edge of 90 nsec
-.9..ock, 10RO Low

tDL4>(lR) 10RO Delay From Falling Edge of 110 nsec CL = 50 pF
10RO -.9..ock, 10RO Low

tDH<P(lR) 10RO Delay From Rising Edge of 100 nsec
-.9Eck, 10RO High

tDH4>(IR) 10RO Delay From Falling Edge of 110 nsec
Clock, 10RO High

tDL<P(RD)

I
RD....Q.elay From Rising Edge of Clock, 100 nsec

RD Low

ItDL<P(RD) RD...Q.elay From Falling Edge of Clock, 130 nsec CL = 50pF
RD RD Low

tDH<f>(RD) RD...Q.elay From Rising Edge of Clock, 100 nsec

tDH;j;(BD)
_RD High
RD...Q.elay From Falling Edge of Clock, 110 nsec

RD High

tDL<f>(WR) WR Delay From Rising Edge of Clock, 80 nsec

- WR Low

tDL<f>(WR) WR...Q.elay From Falling Edge of Clock 90 nsec CL = 50pF
WR WR Low

tDH<P(WR) WR..Qelay From Falling Edge of Clock, 100 nsec
WR High_

tw(WRL) Pulse Width, WR Low [10] nsec

NOTES:

A Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data should be enabled when M1
and 10RO are both active.

B The REID signal must be active for a minimum of 3 clock cycles.
cont'd on page 79
78



MK 3880, MK 3880-10, MK 3880-20 Z80-CPU

SIGNAL SYMBOL PARAMETER MIN. MAX. UNIT TEST CONDITIONS

tDL(M1) Mi-.Q..elay From Rising Edge of Clock 130 nsec
M1 Low CL = 50pF

M1 tDH(M1 ) M1J2.elay From Rising Edge of Clock 130 nsec ;
M1 High !

RFSH tDL(RF) RFSH Delay From Rising Edge of Clock, 180 nsec
RFSH Low CL = 30pF

tDH(RF) RFSH Delay From Rising Edge of Clock, 150 nsec
RFSH High

WAIT tS(WT) WAI7 Setup Time to Falling Edge of 70 nsec
Clock

HALT tD(HT) HALT Delay Time From Falling Edge 300 nsec CL = 50pF
of Clock

INT ts(IT) Ti\iT Setup Time to Rising Edge of Clock 80 nsec

NMI tw(NML) Pulse Width, NMI Low 80 nsec

BUSRO ts(BO) BUSRO Setup Time to Rising Edge of 80 nsec
Clock

BUSAK tDL(BA) BUSAK Delay From Rising Edge of 120 nsec
Clock, BUSAK Low CL = 50 pF

tDH(BA) BUSAK Delay From Falling Edge of 110 nsec
Clock, BUSAK High

RESET ts(RS) RESET Setup Time to Rising Edge of 90 nsec
Clock

tF(C) De@.y to/fr2!!l.Float (MREO, IORO, 100 nsec
RD and WR)

tmr m Stable Prior to IORO (Interrupt Ack.) [ 11] nsec

LOAD CIRCUIT FOR OUTPUT

[1] tacm = tw (<I> H) + tf - 75

TEST POINT R,-2.'Kn

NOTES (Cont'd.l
C. Output ~elay vs. Load Capacitance

TA; 70C VCC; SV±S%
Add 10 nsec delay for each SOpF increase in load up
to a maximum of 200pF for the data bus and 100pF for
address and control lines.

D. Although static by design, testing guarantees tw (<I> H) of
200 IJ sec maximum.

250pA

FROM OUTPUT_~~__4 -1C:
UNDER TEST[2] taci = tc - 80

[3] tca = tw (<I>L) + tf -40

[4] tcaf = tw (<I>L) + tf - 60

[5] tdcm = t c - 210

[6] tdci = tw (<I>L) + t r - 210

[7] tcdf-= tw (<I>L) + t r - 80

[8] tw (MRL) = tc -40

[9] tw (MRH) = tw (<I>H) 7 tf - 30

[10] tw (WR) = t c -40

[ 11] tmr = 2 tc + tw (<I>H) + tf - 80

79



MK 3880-4 Z80A-CPU

A. C. CHARACTER ISTICS TA = DOC to 7DoC, Vee =+5V ±5%, Unless Otherwise Noted

SIGNAL SYMBOL PARAMETER MIN. MAX. UNIT TEST CONDITIONS

tc Clock Period .25 [ 12) J1Sec
tw(<I>H) Clock Pulse Width, Clock High 110 (D) nsec

<I> tw(<I>L) Clock Pulse Width, Clock Low 110 2000 nsec
t r, f Clock Rise and Fall Time 30 nsec

tD(AD) Address Output Delay 110 nsec
tF(AD) Delay to Float nsec
t acm Address Stable Prior to Iiim'rn [ 1) 90 nsec CL =50pF

(Memory Cycle)

Ao-15 taci Address Stable Prior to IORO, RD [2) nsec
or WR (I/O Cycle) ____

tca Address Stable From RD, WR, 10RO or MREO [3) nsec Except T3.M 1

tcaf Address Stable From RD or WR [4) nsec
During Float

tD(D) Data Output Delay 150 nsec
tFID) Delay to Float During Write Cycle 90 nsec
tS<I>( D) Data Setup Time to Rising Edge of 50 nsec

- Clock During M 1 Cycle

DO-7 tS<I>(D) Data Setup Time to Falling Edge at 60 nsec CL =50pF
Clock During M2 to M5

tdcm Data Stable Prior to WR (Memory [5) nsec
Cycle)

tdci Data Stable Prior to WR (I/O Cycle) [6) nsec
tcdf Data Stable From WR [7) nsec
tH Input Hold Time 0 nsec

tDL<I>(MR) I'i7I'R"ElI Delay From Falling Edge of 20 85 nsec
Clock, MREO Low

tDH<I>(MR) MREO Delay From Rising Edge of 85 nsec
fiiI'Rrn Clock, MREO High

tDH<I>(MR) MREO Delay From Falling Edge of 85 nsec CL =50pF
Clock, MREO High

tw(MRL) Pulse Width, MREO Low [8) nsec
tw(MRH) Pulse Width, MREO High [9] nsec

tDL<I>(IR) 10RO Del~om Rising Edge of 75 nsec

- Clock, 10RO Low
tDL<I>(1 R) 10RO Delay From Falling Edge of 85 nsec CL =50pF

10RO Clock, 10RO Low
tDH<I>(1 R) J"OR'Q Delay From Rising Edge of 85 nsec

- Clock, 10RO High
tDH<I>(1 R) 10RO Delay From Falling Edge of 85 nsec

Clock, 10RO High

tDL<I>(RD) RD Delay From Rising Edge of Clock, 85 nsec
RD Low- RD Delay From Falling Edge of Clock, 95 CL = 50pFtDL<I>(RD) nsec

RD RD Low
tDH<I>(RD) RD..Q..elay From Rising Edge of Clock, 85 nsec

- _RD High
tDH<I>(RD) RD Delay From Falling Edge of Clock, 85 nsec

RD High

tDL<I>(WR) WR Delay From Rising Edge of Clock, 65 nsec
WR Low

WR tDL~(WR) WR Delay From Falling Edge of Clock, 80 nsec CL =50pF
WR Low

tDH<I>(WR) WR Delay From Falling Edge of Clock, 80 nsec
WR High _

tw(WRL) Pulse Width, WR Low [10) nsec

NOTES:
A Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data should be enabled when M1

and IORO are both active.
B The RESET signal must be active for a minimum of 3 clock cycles.

(Cont'd. on page 81)

80



MK 3880-4 Z80A-CPU

SIGNAL SYMBOL PARAMETER MIN. MAX. UNIT TEST CONDITION

tDL(M1) M1 Delay From Rising Edge of Clock 100 nsec
M1 M1 Low CL = 50pF

tDH(M1) tfi Delay From Rising Edge of Clock, 100 nsec
rin1 High

RFSH tDL(RF) RFSH Delay From Rising Edge of Clock, 130 nsec
RFSH Low CL =50pF

tDH(RF) RFSH Delay From Rising Edge of Clock 120 nsec
RFSH High

WAIT tS(WT) WAIT Setup Time to Falling Edge of 70 nsec
Clock

HALT tD(HT) HALT Delay Time From Falling Edge 300 nsec CL =50pF
of Clock

INT ts(lT) INT Setup Time to Rising Edge of Clock 80 nsec

NMI tw(NML) Pulse Width, NMI Low 80 nsec

BUSRO ts(BO) BUSRO Setup Time to Rising Edge of 50 nsec
Clock

BUSAK tDL(BA) BUSAK Delay From Rising Edge of 100 nsec
Clock, BUSAK Low CL =50pF

tDH(BA) BUSAK Delay From Falling Edge of 100 nsec
Clock, BUSAK High

RESET !sIRS) RESET Setup Time to Rising Edge of 60 nsec
Clock

tF(C) De!!y'to/Fr:2!!1 Float (MREO, IORO, 80 nsec
RD and WR)

t mr liifi Stable Prior to IORO (Interrupt ,A~k.) [11) nsec

-----

LOAD CIRCUIT FOR OUTPUT

TEST POINT

NOTES (Cont'dol
C. Output ';?elay vs. Load Capacitance

TA = 70 C VCC = 5V±5%
Add 10 nsec delay for each 50pF increase in load up
to a maximum of 200pF for the data bus and 100pF for
address and control lines

D. Although static by design, testing guarantees tw (<P H) of
200 J..lsec maximum.

250"A

FROM OUTPUT__---.......----Ic::'
UNDER TEST

[ 1) tacm = tw (<P H) + tf - 65

[2) taci = tc -70

[3) tea = tw (<PL) + t r -50

[4) tcaf = tw (<PL) + t r -45

[5) tdcm =.te -170

[6) tdci = tw (<PL) + t r - 170

[7) tOOf = tw (<PL) + t r -70

[8) tw (MRL) = tc -30

[9] tw (MRH) = tw (<PH) + tf - 20

[10] tw (WR) = t c - 30

[ 11) t mr =2tc + tw (<PH) + tf- 65

[12) tc = tw (<PH) + tw(<PL) + t r + tf

81



A.C. TIMING DIAGRAM
Timing measurements are made at the following voltages, unless otherwise specified:

,'-.+_/
I

"1 " 1'0"
CLOCK Vcc-·6 .8V
OUTPUT 2.0V .8V
INPUT 2.0V .8'/
FLOAT IN ±O.5 V

I IS IWTI ! ~ 'H

r--II--l
;¥------~r--_________X X, _

<I>

J IOl~(IH!

------l-I---........:~ 'OH</>ilRi~i

Ltmr~'l,
I ,'~

;-l---t 'Ol4> !AO:

-----:~ I I'i
I .1

I'--+-------+J

Idem

I

,'0 'HI' I,D 'HI'

--------------.+---1-1 ~I
ISIITi'~ ~~
E'~--~..r-X i! ~', _

----, I! ,---- . I
Ii i I

~
'I- pSIBO'::,Hi '

_ ____________'_Wl~,:,·. ..... ,-----, :

imSRQ -":' ~-----i..:,. 'I'

: I nnX .r>__ i---I~

::::: ----------------_-_-_-__& m__ "co." "L/

82

• I



12.0 Z80 INSTRUCTION BREAKDOWN BY MACHINE CYCLE

This section tabulates each zao instruction type and breaks each instruction down into its
machine cycles and corresponding T States. The different standard machine cycles (OP
Code Fetch, Memory Read, Port Read, etc.) are described in Section 4.0 of this manual.
This chart will allow the system designer to predict what the zao will do on each clock
cycle during the execution of a given instruction. The instruction types are listed together
by functions and in the same order as the Tables in Section 7.

The best way to learn how to use these tables is to look at a few examples. The first
example is to register exchange instructions (LD r, s) where r,s can be any of the following
CPU Registers: B,C,D,E,H,L, or A. The instruction breakdown table shows this instruction
to have one machine cycle (M 1) four T-States long (number in parenthesis) which is an OP
Code Fetch. Referring to Figure 4.0-1 one sees the standard form for an OP Code Fetch and
the state of the CPU bus during these four T-States. Taking the next instruction shown
(LD r, n) which loads one of the previous registers with data or immediate value "n" one
finds the breakdown to be a four T-State OP Code Fetch followed by a three T-State Ope­
rand Data Read. An Operand Data Read takes the form of the Standard Memory Read
shown in Figure 4.0-2.

After these two simple examples, a more complex one is in order. The LD r, (IX+d) is the
first double byte OP Code shown and executes as follows: First there are two M1 cycles
(and related memory refreshes) followed by an Operand Data Read of the displacement
"d". Next M3 consists of a five T-State Internal Operation which is the calculation of the
Indexed address (IX+d). The last machine cycle (M4) consists of a Memory Read of the
data continued in address IX+d and the loading of register "r" with that data.

The LD dd, (nn) instruction loads an internal 16-bit register pair with the contents of the
memory location specified in the Operand Bytes of the instruction. This instruction is four
bytes long (two bytes of OP Code + two bytes of Operand Address). As shown, there are
two M1 cycles to fetch the OP Code and then two Machine Cycles to read the Operand
Addresses, low order byte first. Machine cycle 4 is a read of memory to obtain the data for
the low order register (e.g., C of BC, E of DE and L of HL) followed by a read of the data
for the high order register.

The first instruction to use the Stack Register is the PUSH qq instruction which executes
as follows: Machine cycle 1 is extended by one cycle and the Stack Pointer is decremented
in the extra T-State to point to an empty location on the Stack. Machine cycle 2 is a write
of the high byte of the referenced register to the address contained in the Stack Pointer.
The Stack Pointer is again decremented and a write of the low byte of the referenced regis­
ter is made to the Stack in Machine Cycle 3. Note that the Stack Pointer is left pointing to
the last data referenced on the Stack. The block transfer instructions such as LDI and LDI R
are very similar. LDI is16 T-States long and is composed of a double byte OP Code Fetch
(two memory refreshes) followed by a memory read and a memory write. The memory
write is 5 T-States long to allow updating of the block length counter -BC. The repetitive
form of this instruction (LDI R) has an additional Machine Cycle (M4) of 5 T-States to
allow decrementing of the Program Counter by two (PC-2) which results in refetching of
the OP Code (LDI R). Each movement of data by this instruction is 21 T-States long (except
the last) and the refetching of the OP Codes results in memory refresh occurring as well as
the sampling of interrupts and BUSRQ.

The NMI Interrupt sequence is 11 T-States long with the first M1 being a dummy OP
Code Fetch of 5 T-States long. The Program Counter is not advanced, the OP Code on the
data bus is ignored and an internal Restart is done to address 66H. The following two
Machine Cycles are a write of the Program Counter to the Stack.

The INT Mode 0 is the aOaOA mode and requires the user to place an instruction on the
data bus for the CPU to execute. If a RST instruction is used, the CPU stacks the Program
Counter and begins execution at the Restart Address. If a CALL instruction is used, the
CALL Op Code is placed on the data bus during the INTA cycle (M1). M2 and M3 are

83



84

normal Memory Read cycles ~not INTA cycles) of the CALL addresses (low byte first).
Program Counter is stacked in M4 and M5.

Mode 2 is used by the zao System Peripherals and operates as follows: During the INTA
cycle (M 1) a Vector is sent in from the highest priority interrupting device. M2 and M3
are used to Stack the Program Counter. The Vector (low byte) and an internal Interrupt
Register (I) from a pointer to a table containing the addresses of Interrupt Service Routines.
During M4 and M5 the Service Routines address is read from this table into the CPU.
The next M1 cycle will fetch an OP Code from the address received is M4 and M5.



LEGEND
10 - Internal CPU Operation
MR - Memory Read
MRH - Memory Read of High Byte
M RL - Memory Read of Low Byte
MW - Memory Write
MWH - Memory IJ'Jrite of High Byte
MWL - Memory Write of Low Byte
OCF - Op Code Fetch
ODH - Operand Data Read of High Byte

ODL
PR
PW
SRH
SRL
SWH
SWL
( )

Operand Data Read of Low Byte
Port Read
Port Write
Stack Read of High Byte
Stack Read of Low Byte
Stack Write of High Byte
Stack Write of Low Byte
Number of T-States in that Machine Cycle

Z80 INSTRUCTION BREAKDOWN BY MACHINE CODE
MACHINE CYCLE

INSTRUCTION
TYPE BYTES M1 M2 M3 M4 M5

LD r, S 1 OCF (4)

LD r, n 2 OCF (4) OD (3)

LD r, (HL) 1 OCF (4) MR (3)
LD (HL). r OCF (4) MW(3)

LD r, (IX+d) 3 OCF (4)/OCF (4) OD (3) 10 (5) MR (3)
LD (IX+d). r OCF (4)/OCF (4) OD (3) 10 (5) MW(3)

LD (HL), n 2 OCF (4) OD (3) MW(3)

BC
LD A, (DE) 1 OCF (4) MR (3)

LD (BC) A OCF (4) MW (3)
DE '

LD A, (nn) 3 OCF (4) ODL (3) ODH (3) MR (3)
LD (nn), A OCF (4) ODL (3) ODH (3) MW(3)

LD A,~ 2 OCF (4)/OCF(5)

I
LDR' A

LD dd, nn 3 OCF (4) ODL (3) ODH (3)

LD IX, nn 4 OCF (4)/OCF (4) ODL (3) ODH (3)

LD HL, (nn) 3 OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn). HL OCF (4) ODL(3) ODH (3) MWL (3) MWH (3)

LD dd, (nn) 4 OCF (4)/OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn). dd OCF (4)/OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)
LD IX, (nn) OCF (4)/OCF (4) ODL (3) ODH (3) MRL (3) MRH (3)
LD (nn). IX OCF (4)/OCF (4) ODL (3) ODH (3) MWL (3) MWH (3)

LD SP, HL 1 OCF (6)

LD SP, IX 2 OCF (6)/OCF (4)

PUSH qq 1 OCF (5) SWH (3) SWL (3)
SP-1 SP-1

PUSH IX 2 OCF (4)/OCF (5) SWH (3) SWL (3)
SP-1 SP-1

POP qq 1 OCF (4) SRH (3) SRL (3)
SP+1 SP+1

--
POP IX 2 OCF (4)/OCF (4) SRH (3) SRL (3)

SP+1 SP+1

EX DE, HL 1 OCF (4)

EX AF, AF' 1 OCF (4)

85



MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5
TYPE

EXX 1 OCF (4)

EX (SP), H L 1 OCF (4) SRL (3) SRH (4) SWH (3) SWL (5)
SP+1 SP-1

EX (SP), IX 2 OCF (4)/OCF (4) SRL (3) SRH (3) SWH (3) SWL (5)
SP+1 SP-1-

LDI 2 OCF (4)/OCF (4) MR (3) MW (5)
LDD
CPI
CPD

LDIR 2 OCF (4)/OCF (4) MR (3) MW(5) 10 (5)*

LDDR
CPIR *only if BC F 0
CPDR

ALU A, r 1 OCF (4)
ADD ADC
SUB SBC
AND OR
XOR CP

ALU A, n 2 OCF (4) OD (3)

ALU A, (HL) 1 OCF (4) MR (3)

ALU A, (IX+d) 3 OCF (4)/OCF (4) OD (3) 10 (5) MR (3)

DEC
INC r 1 OCF (4)

DEC
INC (HL) 1 OCF (4) MR (4) MW(3)

DEC
INC (IX+D) 2 OCF (4)/OCF (4) OD (3) 10 (5) MR (4) MW(3)

DAA 1 OCF (4)
CPL
CCF
SCF
NOP
HALT
DI
EI

NEG 2 OCF (4)/OCF (4)
IMO
IM1
1M2

86



MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5

TYPE

ADD HL, 55 1 OCF (4) 10 (4) 10 (3)

ADC HL, 55 2 OCF (4)/OCF (4) 10 (4) 10 (3)

SBC HL, 55

ADD IX, PP

INC 55 1 OCF (6)

DEC 55

DECIX 2 OCF (4)/OCF (6)

INC IX

RLCA 1 OCF (4)

RLA
RRCA
RRA

RLC r 2 OCF (4)/OCF (4)

RL
RRC
RR
SLA
SRA
SRL

RLC (HL) 2 OCF (4)/OCF (4) MR (4) MW(3)

RL
RRC
RR
SLA
SRA
SRL

RLC (IX+d) 4 OCF (4)/OCF (4) OD (3) 10 (5) MR (4) MW(3)

RL
RRC
RR
SLA
SRA
SRL

RLD 2 OCF (4)/OCF (4) MR (3) 10 (4) MW(3)

RRD

BIT b, r 2 OCF (4)/OCF (4)
SET
RES

87



MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5

TYPE

BIT b, (HL) 2 OCF (4)/OCF (4) MR (4)

SET b, (HL) 2 OCF (4)/OCF (4) MR (4) MW(3)

RES

BIT b, (IX+d) 4 OCF (4)/OCF (4) 00 (3) 10 (5) MR (4)

SET b, (IX+d) 4 OCF (4)/OCF (4) 00 (3) 10 (5) MR (4) MW(3)

RES

JP nn 3 OCF (4) OOL (3) OOH (3)

JP cc, nn

JR e 2 OCF (4) 00 (3) 10 (5)

JR C, e 2 OCF (4) 00 (3) 10 (5)*

JR NC, e * If condition is met

JR Z. e
JR NZ, e

JP (HL) 1 OCF (4)

JP (IX) 2 OCF (4)/OCF (4)

OJNZ. e 2 OCF (5) 00 (3) 10 (5)*

* If sf 0

CALL nn 3 OCF (4) OOL (3) OOH (4) SWH (3) SWL (3)

CALL CC. nn SP-l SP-l
cc true

CALL cc. nn 3 OCF (4) OOL (3) OOH (3)
cc false

RET 1 OCF (4) SRL (3) SRH (3)
SP+l

RETcc 1 OCF (5) SRL (3)* SRH (3)*
* If cc is true

SP+l ..
RETI 2 OCF (4)/OCF (4) SRL (3) SRH (3)
RETN SP+l

RST p 1 OCF (5) SWH (3) SWL (3)
SP-l SP-l

88



MACHINE CYCLE

INSTRUCTION BYTES M1 M2 M3 M4 M5

TYPE

IN A, (n) 2 OCF (4) 00 (3) PR (4)

IN r, (e) 2 OCF (4)/OCF (4) PR (4)

INI 2 OCF (4)/OCF (5) PR (4) MW(3)

IND

INIR 2 OCF (4)/OCF (5) PR (4) MW(3) 10 (5)

INDR

OUT (n). A 2 OCF (4) 00 (3) PW (4)

OUT (C), r 2 OCF (4)/OCF (4) PW (4)

OUTI 2 OCF (4)/OCF (5) MR (3) PW (4)

OUTD

OTIR 2 OCF (4)/OCF (5) MR (3) PW (4) 10 (5)

OTDR

INTERRUPTS

NMI - OCF (5) * SWH (3) SWL (3) *Op Code Ignored

SP-l SP-l

INT

MODE 0 - INTA (6) ODL (3) ODH (4) SWH (3) SWL (3)

(CALL INSERTED) SP-l SP-l

- INTA (6) SWH (3) SWL (3)
(RST INSERTED)

SP-l SP-l

MODEl INTA (7) SWH (3) SWL (3)
(RST 38H
INTERNAU

SP-l SP-l

MODE2 - INTA (7) SWH (3) SWL (3) MRL (3) MRH (3)

(VECTOR
SUPPLIED)

SP-l SP-l

89



13.0 PACKAGE DESCRIPTION AND ORDERING INFORMATION

PACKAGE DESCRIPTION - 40 Pin Dual-In-Line Ceramic Package

025TYP
~_ ~ ~010

---.- ~ .080 I~ 1-
I .025' t .25

_I__f__'..L..~2_L

I~. --l_r-_
o

:: ::~ALT::ACES 100: 1.900---------.jol.]

1+----------- 2000 REF. -------------.

PACKAGE DESCRIPTION - 40-Pin Dual-In-Line Plastic Package

1

..·--------2.050+:,;;g,;,llg;-.--------..1

j-I--I-l--U--J-20~~-.L
O

.090-1-'
-.L

.180.:!:005

T

21 40

.075 REF + -t 540 NOMU·005
l--.-..L . Il. 5°TYP f - -l f.-~~

,,:r~l '-7---~---J

1-l1-0IS±.OO2 ~ ~.055±.007 ---t25!.005 1..--.625±= .025~1 +-t r-.100±.010 I ~010_.OO2

ORDERING INFORMATION -
PART NO. PACKAGE TYPE MAX CLOCK FREQUENCY TEMPERATURE RANGE

MK3880N l80-CPU Plastic 2.5 MHz

MK3880P l8D-CPU Ceramic 2.5 MHz 0° to + 70° C

MK3880N-4 l80-CPU Plastic 4.0 MHz

MK3880P-4 l80A-CPU Ceramic 4.0 MHz

MK3880P-10 l80-CPU Ceramic 2.5 MHz _40°C to +85°C

MK3880P-20 l80-CPU Ceramic 2.5 MHz -55" C to +125° C

90



CROMEMCO PART NO.
023-0045

MOSTEK@
zoo.F8C""'*s the full

. spectruma

3870 ~"'"'1"Jle'
C1Ij"'t.... lCi\tlOf'\S.

1215 W Crosby Ad • Carrollton. Texas 75006· 214/242-Q444
In Europe. contact MOSTEK GmbH. TalSlrasse 172

07024 Fddersladt·' W Germany. Tele (0711) 7Ql(S6

""*'*..-...... nght 10m-.~ II'Ill)llClIuoo.. • any lime rod WIIhwt natIlle The~ Il..ornoIhltd by ....In" pubkaIJon ..~ lObe kCUIII.-..d
,.... Howe¥.-.no~ ..~ by' tor ItS ...: nor lor ""."'*iQlii'.'lSof~ Of ~toghIsallfWdparllM r-*'gfJom'" lIM No "*-.
gr..-.:! .....ow ."" ~lIntI Of ..... nghlI 01 ......

Published b'l' Mostek. Inc. WIth the penni.ion of Z,log.lnc:.
PRINTED IN USA December 1977 Copyrogtlt 1971 b'( Mouek Corpor."on
P....bllCatlon No. MK 78505 All righlS rl!tl!rved


