OPERATIONS MANUAL
FOR
DDT-80 VERSION 1.3 OPERATING SYSTEM (MK78118)
AND
ASMB-80 VERSION 1.0

TEXT EDITOR, ASSEMBLER, LINKING LOADER (MK78119)

Mostek reserves the right to make changes to this publication at
any time and without notice. The information furnished by Mostek
in this publication is believed to be accurate and reliable.
However, no responsibility is assumed by Mostek for its use; nor
for any infringements of patents or other right of third parties
resulting from its use. No license is granted under patents or
patent rights of Mostek.

Copyright 1979 by Mostek Corporation
A1l rights reserved

SECTION
NUMBER

PARAGRAPH

PAGE

NUMBER TITLE NUMBER

DDT-80 OPERATING SYSTEM

1-1 INTRODUCTION

1-3 OVERVIEW

1-6 MEMORY AND PORT ALLOCATION

1-8 MEMORY MAP

1-10 SCRATCHPAD RAM

1-15 PORT MAP

1-17 COMMAND FORMATS

1-20 COMMAND IDENTIFIERS

1-22 COMMAND OPERANDS

1-29 COMMAND TERMINATORS

1-31 DETAILED COMMAND DESCRIPTIONS

1-33 M COMMAND, DISPLAY AND
UPDATA MEMORY

1-34 Format

1-35 Description

1-38 Examples

1-39 Accessing Memory

Locations

1-40 Examining User's
Registers

1-41 Computing Relative Jumps

1-42 Examining Channel
Assignments

1-43 Adding Mnemonics

1-45 M COMMAND, TABULATE MEMORY

1-46 Format

1-47 Description

1-48 Example

1-49 P COMMAND, DISPLAY AND/OR

MODIFY PORT

1-17
1-17
1-18

1-18
1-18
1-20
1-20

1-21
1-22

1-23
1-24
1-24
1-25
1-25
1-25

ii

SECTION PARAGRAPH
NUMBER NUMBER

1 cont. 1-50
1-51
1-52
1-53
1-54
1-55
1-56
1-57
1-58
1-59
1-61
1-62

1-63
1-64
1-65
1-66

1-67
1-68
1-69
1-70

1-71
1-72
1-73
1-74

1-75
1-76
1-80

Format
Description
Example
D COMMAND, DUMP MEMORY
Format
Description
Example
L COMMAND, LOAD MEMORY
Format
Description
Checksum Field
E COMMAND, EXECUTE A
USERS PROGRAM
Format
Description
Example
H COMMAND, HEXADECIMAL
ARITHEMETIC
Format
Description
Example
C COMMAND, COPY MEMORY
BLOCK
Format
Description
Example
B COMMAND, BREAKPOINT
COMMAND
Format
Description
R COMMAND, DISPLAY CPU
REGISTERS

PAGE
NUMBER

1-25
1-25
1-26
1-27
1-27
1-27
1-27
1-28
1-28
1-28
1-29
1-29

1-30
1-30
1-30
1-31

1-31
1-31
1-31
1-32

1-32
1-32
1-32
1-33

1-33
1-33
1-36

i1

SECTION PARAGRAPH PAGE

NUMBER NUMBER TITLE NUMBER

1 cont. 1-81 Formats 1-36
1-82 Description 1-36
1-83 Examples 1-36
1-84 INPUT/OUTPUT 1-37
1-89 ADDING NEW I/0 DRIVERS 1-38
1-91 SUBROUTINES CALLABLE IN DDT-80 1-40
1-93 RDCHR 1-40
1-98 WRCHR 1-41
1-103 PACC 1-42
1-108 PRVAL 1-43
1-112 ECHO 1-43
1-117 CRLF 1-44
1-122 SPACE 1-44
1-127 PTXT 1-45
1-132 ASBIN 1-46
1-135 RENTRY 1-46
1-137 CALLABLE I/0 DRIVERS 1-46
1-145 PROGRAMMING NOTES 1-50

2 ASMB-TEXT EDITOR
2-1 INTRODUCTION 2-1
2-3 TERMINOLOGY 2-2
2-5 TEXT EDITOR COMMANDS 2-2
2-6 USING THE EDITOR 2-4
2-10 REENTERING THE EDITOR 2-8
2-12 NOTES 2-9
2-13 Concerning Line Numbers 2-9
2-14 Concerning Buffer Full 2-9

Conditions
2-15 Start of Text (STX) and
End Text (ETX) Characters

™~
t
O

iv

SECTION
NUMBER

PARAGRAPH

NUMBER TITLE

2-16 Concerning Rubout and

Backspace Character

ASMB-ASSEMBLER

3-1 INTRODUCTION

3-2 MOSTEK ASMB-80 Z80 ASSEMBLER

3-3 CAPABILITIES

3-5 HARDWARE CONFIGURATION

3-7 SOFTWARE CONFIGURATION

3-9 DEFINITIONS

3-10 ASSEMBLY LANGUAGE SYNTAX

3-12 DELIMITERS

3-14 LABELS

3-16 OPCODES

3-18 PSEUDO-0PS

3-19 ASSEMBLER DIRECTIVES

3-21 OPERANDS

3-27 ASMB-80 EXPRESSIONS

3-35 COMMENTS

3-37 OBJECT OUTPUT

3-39 ASSEMBLY LISTING OQUTPUT

3-41 ABSOLUTE MODULE RULES

3-44 RELOCATABLE MODULE RULES

3-49 GLOBAL SYMBOL HANDLING

3-56 GLOBAL SYMBOL BASIC RULES

3-57 GLOBAL SYMBOL ADVANCED RULES

3-58 USE OF THE 'NAME' PSEUDO-OP

3-60 USING THE ASSEMBLER

3-63 OPTIONS

3-65 ERROR MESSAGES

PAGE
NUMBER

2-10

W W W W W W W wWw wWw wWw W w w
1
W WO ~N O P BD NN N e =

w W
1)

— =
[OX TN ¥V

3-16
3-17
3-17
3-18
3-19
3-21
3-23
3-24
3-24
3-26
3-27

SECTION
NUMBER

PARAGRAPH

NUMBER TITLE

3-67 ABORT ERRORS

3-69 ADVANCED OPERATIONS

3-70 CHANGING THE SYMBOL TABLE
SIZE

3-72 USING ONE I/0 DEVICE WITH
THE ASSEMBLER

3-74 PASS 2 ONLY OPERATION
(SINGLE PASS OPERATION)

3-77 USING THE ASSEMBLER AS A
LEARNING TOOL

3-81 ASSEMBLING SEVERAL SOURCE
MODULES TOGETHER

3-84 MACRO OPTION

ASMB-80 RELOCATING LINKING LOADER

4-1 INTRODUCTION

4-7 COMMANDS FOR RELOCATING
LINKING LOADER

4-8 LOADER ENTRY

4-9 LOADER COMMANDS

4-10 LOADER SYMBOL TABLE

4-15 REENTERING THE LOADER TO
PRESERVE THE SYMBOL TABLE

4-17 LOADER ERROR MESSAGES

4-22 LOAD SEQUENCE EXAMPLE

4-24 EXAMPLE 1

4-25 EXAMPLE 2

4-26 EXAMPLE 3

PAGE
NUMBER

3-30

3-30

3-30

3-30

3-31

3-32

3-34

3-35

Vi

SECTION
NUMBER

APPENDIX A

APPENDIX B

PARAGRAPH
NUMBER

5-11
5-13

5-14

5-15
5-16

6-10

TITLE

ASMB-80 RAM-BASED OPERATION

INTRODUCTION

CONCEPTS

AUTO MAPPING MODE

EXIT FROM AUTO MAPPING MODE

SDB-80 RAM DRIVERS
EXAMPLES OF RAM BASED
OPERATION

EXAMPLE 1
EXAMPLE 2
MEMTOP

ASMB-80 SILENT 700 I/0 DRIVERS

INTRODUCTION
USING THE INTERFACE
INITIALIZATION OF SILENT
700 DRIVERS
DESCRIPTION OF SILENT
700 DRIVERS
SILENT 700, 1200 BAUD
OPTION

280 OPCODE LISTING

MOSTEK OBJECT OUTPUT DEFINITION

PAGE
NUMBER

(2] ($2] (&2] ($2]
'
N =

3 O O
t
N =

vii

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.
1-1 ASMB-80/DDT-80 MEMORY MAP 1-3
1-2 SCRATCH PAD MEMORY MAP 1-5
1-3 USER REGISTER MAP 1-6
1-4 DATA PATHS TO AND FROM THE USER 1-7
REGISTER MAP

1-5 I/0 CHANNEL FIXED LOCATIONS 1-9
1-6 PORT ALLOCATION DDT-80 1-11
3-1 ECHO DRIVER 3-34
5-1 AUTO MAPPING OPTION 5-4

viii

LIST OF TABLES

TABLE NO. TITLE PAGE NO.
1-1 MNEMONICS RECOGNIZED BY DDT-80 1-16
3-1 ASCII CHARACTER SET 3-6
3-2 GENERIC OPERANDS 3-11
3-3 ALLOWED OPERATORS IN ASMB-80 ASSEMBLER 3-14
3-4 CHANNEL ASSIGNMENTS FOR THE ASSEMBLER 3-25
3-5 ASMB-80 ASSEMBLER ABBREVIATIONS 3-28,

3-29

1-1

SECTION 1

DDT-80 OPERATING SYSTEM

1-1. INTRODUCTION

1-2. This section describes the functions and operation of
DDT-80 (Designer's Development Tool 80). The DDT-80 software is
an integral part of the SDB-80 or MDX system and a knowledge of
its operation is essential in order to use the system
effectively.

1-3. OVERVIEW

1-4, The 'personality' of a microcomputer development system is
in many ways determined by the software that communicates with
the user. This software is generally known as the Operating
System. It provides the necessary tools and techniques to
operate the sytem, i.e., to efficiently and conveniently perform
the tasks necessary to develop microcomputer software. The
DDT-80 Operating System described here is designed to support the
user from initial design through production testing. DDT-80 is a
resident operating system that allows the user to display and
update memory, registers, and ports, load and dump paper tape,
set breakpoints, and execute programs.

1-5. The following paragraphs describe the functions and opera-
tion of DDT-80 as it applies to the SDB-80 and MDX microcomputer

systems.

1-6. MEMORY AND PORT ALLOCATION

1-2

1-7. DDT-80 is a 2K byte program that resides at locations EQOOH
- E7FFH in the memory map. In addition to the 2K of ROM, DDT-80
uses 256x8 of RAM for scratch RAM and temporary storage. This
RAM resides at locations FFOOH -FFFFH and 1is discussed in
paragraph 1-10.

1-8. MEMORY MAP

1-9. Figure 1-1 depicts the memory address space for the
ASMB-80/DDT-80 (development system configuration) showing the
division between system and user memory. With the partitioning
shown, it 1is intended that the user's program will generally
reside at the low end of the memory map, with system software
residing at the high end.

1-10. SCRATCHPAD RAM

1-11. The 256x8 Scratchpad RAM is wused by the DDT-80 for
temporary storage and a push down stack (for return address,
etc.). This RAM also holds an image (or map) of all the user's
internal CPU registers, a wuser's push down stack (separate from
the DDT-80 stack), and space for user defined mnemonics (discus-
sed in paragraph 1-43). Figure 1-2 is a detailed memory map of
the 256x8 Scratchpad RAM. Note that the area between the user's
mnemonics and the user's stack (the SP 1is initialized during

Figure 1-1

ASMB 80/DDT 80 MEMORY MAP

MAPPED FOR DEVELOPMENT SYSTEM CONFIGURATION

— FFFF
FFO0 — 256x8 0.5. SCRATCH RAM
RESERVED FOR FUTURE EXPANSION
FOO0O — EFFF
RESERVED FOR FUTURE EXPANSION
2K ROM OPERATING SYSTEM
E000 — — DFFF
RESIDENT ASSEMBLER
D000 — — CFFF
TEXT EDITOR
c000 —} — BFFF
RESERVED *
BOOO — FOR |— AFFF
FUTURE EXPANSION
A00O — — 9FFF
9000 — — 8FFF
8000 — — TFFF
7000 — — 6FFF
6000 — — SFFF
USER
RAM,ROM,PROM
5000 — — 4FFF
4000 — — 3FFF
3000 — — 2FFF
2000 — — IFFF
1000 — — OFFF
0000 —

STARTING ADD. LOCATION

GENERALIZE MEMORY MAP

IN HEX FOR A GIVEN 4K

ENDING ADD. LOCATION IN

¥ DOES NOT APPLY TO THE MDX SYSTEM

1-3

1-4

power-up or reset) has no defined boundary. Thus the user must
define this boundary with a tradeoff between stack size and the
number of mnemonics defined.

1-12. An important concept in DDT-80 1is preservation of the
user's internal CPU registers. The state of the CPU is described
by the contents of the registers. To preserve the state of the
CPU for a user's program while debugging, DDT-80 keeps an image
or map of all the wuser's registers. This 1image or map is
referred to as the User Register Map throughout this documenta-
tion. DDT-80 installs or makes the CPU registers equal to the
user register map when control is transferred from DDT-80 to a
user program (as in the E command discussed in paragraph 1-62).
DDT-80 saves the user register map when DDT-80 is commanded
(breakpoint command discussed in paragraph 1-74) to interrupt a
user program. DDT-80 allows modification to this register map
with the display and/or wupdate memory command (M command,
discussed in paragraph 1-33). The user register map resides in
the 256x8 Scratchpad location FFE6H thru FFFFH, as shown 1in
Figure 1-3. Figure 1-4 shows the data paths between the user
register map and the CPU registers. Also shown dis the
modification path between DDT-80 and the User Register Map.

Fiqure 1-2. SCRATCH PAD MEMORY MAP

FFFF

FFE6

FF90

FF33

FF27

FFOO

USER REGISTER MAP

DDT-80
STACK

USER'S STACK

USER DEFINED

BOUNDARY

USER MNEMONIC TABLES

CHANNEL 170

DDT -80 VARIABLES

FFES

FF80

FF32

FF26

Figure 1-3

MEMORY
LOCATION

FFFF
FFFE
FFFD
FFFC
FFFB
FFFA
FFF9
FFF8
FFF7
FFF6
FFFS
FFF4
FFF3
FFF2
FFFI
FFFO
FFEF
FFEE
FFED
FFEC
FFEB
FFEA
FFE9
FFE8
FFE7
FFE6

USER REGISTER MAP

USER
REGISTER

PC

PROGRAM

COUNTER

MSB

LSB

A

T

rifximjololwm|m]»|rjr|mMojo|x

x

MSB

LSB

MSB

LSB

SP

STACK
POINTER

mMSsB

LSB

Figure 1-4

CPU REGISTERS

PC
A

SP

RESTORE REGISTERS,
TRANSFER CONTROL
TO USER'S PROGRAM

USER REGISTER MAP

(E COMMAND)

SAVE REGISTERS,
INTERCEPT THE
USER'S PROGRAM

(B COMMAND)

PC
A

SP

DISPLAY AND/
OR UPDATE
(M COMMAND)

DDT-80

DATA PATHS TO AND FROM THE USER REGISTER MAP

FFFF

FFF6

1-8

1-13. Another important concept in DDT-80 1is channeled 1/0.
This concept gives the user the ability to select device drivers
(software) to perform I/0 to and from a peripheral through a
channel, A channel 1is actually a fixed memory location where
the address of that channel's selected 1/0 device drdiver is
stored. When doing I/0 through a specific channel, DDT-80
fetches the device driver address from the channel's fixed
memory location. The address just fetched is then used to
transfer control to the device driver for completion of the 1/0
function. A device driver is selected for a particular channel
by storing the address of that driver in the channel's fixed
location. These fixed 1locations vreside in the 256x8 of
Scratchpad RAM as shown in figure 1-5. This means the wuser
selects the I/0 driver for a peripheral merely by changing the
contents of the fixed Tocation for the channel through which the
I/0 is to be done (DDT-80 makes this easy, see paragraph 1-42).

1-14. Even more important, the user may write his own I/0 driver
for a particular 1/0 device he owns. The user then loads this
I/0 driver (software) into RAM and configures the device into his
system by changing the contents of the 1/0 <channel's fixed
Tocation. DDT-80 has 6 1/0 channels:

Console Input
Console Output
Object Input
Object Output
Source Input
Source Output

Figure 1-5 1I/0 CHANNEL FIXED LOCATIONS

FF32 I souRCE ouT MSB
FF3I DRIVER LSB
FF30 SOURCE IN MSB
FF2F DRIVER LSB
FF2E OBJECT OUT MSB
FF2D DRIVER LSB
FF2C OBJECT IN MSB
FF2B DRIVER LsSB
FF2A | coNsOLE ouT MSB
FF29 DRIVER LSB
FF28 CONSOLE IN MSB
FF27 DRIVER LSB

MSB-MOST SIGNIFICANT BYTE OF 1/0 DRIVER ADDRESS
LSB-LEAST SIGNIFICANT BYTE OF 1/0 DRIVER ADDRESS

1-10

1-15. PORT MAP

1-16. Figure 1-16 defines the port allocation on the SDB-80,
and the MDX microcomputer system. Port DE is wused for
controlling data set ready (DSR), clear to send (CTS), and
reader step (RS). Also, Port DE is used for sensing the state of
data terminal ready (DTR), request to send (RTS), and serial bit
string for measuring baud rate (used by the operating system).
Ports DC and DD are the UART ports. MOSTEK is reserving ports
EOH thru FFH for future expansion of its development system. It
is recommended that the wuser Tlimit his development system
application to OOH thru CFH. 0f course for an OEM application
all 256 ports are available to the user. In the event any
development system add on peripheral would exceed the assigned
number of ports, we would start with CFH and work down.

1-11

Figure 1-6 PORT ALLOCATION

FF
L FUuTure spB-so L
T EXPANSION T
EO
DF DEBUG CONTROL
DE SYSTEM CONTROL
DD UART CONTROL
DC UART DATA
DB CTC CHANNEL 3
DA CTC CHANNEL 2
D9 CTC CHANNEL |
D8 CTC CHANNEL O
DT P10-D6 CONTROL
D6 PIO-D6 DATA
D5 PIO-D4 CONTROL
D4 PI0O-D4 DATA
D3 P10-D2 CONTROL
D2 PIO-D2 DATA
DI PIO-DO CONTROL
DO PIO-DO DATA
CF
USER
~ DEFINED -
PORTS
00

% THE CTC 1/0 PORTS FOR THE MDX-CPUI CARD ARE
7C,7D,7E AND 7F THE MDX-SYSTEM DOES NOT USE
CTC CHANNEL @ FOR AN AUTO BAUD RATE GENERATOR

1-17. COMMAND FORMATS

1-18. DDT-80 recognizes commands which consist of three parts:
1. A single letter identifier.
2. An operand, or operands separated by commas or blanks.
3. A terminator to either abort the command or cause it
to be executed.

1-19. Depressing the reset button for the SDB-80 causes DDT-80
to wait for the user to type in the character "S" or carriage
return. This automatically sets the correct Baud rate. DDT-80
then types a carriage return, line feed, and a period "“." to
indicate that it is ready to receive a command. DDT-80 echos the
command letter, prints a space, and then waits for the user to
key-in the appropriate operand (s) in the format described below.
A command is not executed until terminated by a carriage return
(or one of the special terminators described below for display
and update commands) and may be aborted at any time by a period.
DDT-80 automatically supplies a 1line feed for the carriage
return.

NOTE: The MDX-DEBUG card does not use the auto baud rate feature
in DDT-80. To start DDT-80 executing from a reset, it is still
necessary to type a character from the console terminal. See the
MDX-DEBUG Operations Manual for selecting the baud rate.

1-20. COMMAND IDENTIFIERS

1-21. The following summarizes the 9 different single letter
identifiers recognized as command identifiers.
1. M - Display, update, or tabulate the contents of
memory.
2. P - Display and/or update the contents of an 1/0
port.
3. D - Dump the contents of memory in a format suitable
to be read by the L command.

4. L - Load, into memory, data which is in the ap-
propriate format.
5. E - Transfer control from DDT-80 to a user's program.

6. H - Perform 16 bit hexadecimal addition and/or sub-
traction.

/7. C - Copy the contents of a block of memory to another
location in memory.

8. B - Insert a breakpoint in the user's program (must
be in RAM) which transfers control back to
DDT-80. This allows the user to intercept his
program at a specific point and examine memory
and CPU register to determine if his program is
working correctly.

9. R Display the contents of the user registers.

1-22. COMMAND OPERANDS

1-23. A command operand represents 4 hexadecimal digits. The
general definition of a command operand is as follows:

aaaa:=*bbbb+cccct....+zz22

1-24, DDT-80 allows arithmetic expressions (addition and/or sub-
traction), therefore the 4 hexadecimal digits, aaaa, can be
calculated with a string of additions and/or subtractions. The
sign of bbbb is assumed + if omitted. The values bbbb,....
and zzzz may be entered in one of the following forms:

s

1. 0-9,A-F hexadecimal digits (leading zeros need not
be entered). If more than 4 digits are en-
tered, then only the last 4 entered have
meaning

1-14

2. :MN The mnemonic MN s equivalent to 4 hex
digits (see below for descripiton).

3. ¢ Represent current address +1. This is valid
for the M command and is used to calculate
relative jump displacements.

1-25. An equal sign '=' may be entered at any time within the
string to display the operand value so far as 4 hexadecimal
digits.

1-26. Examples of typical operands are:
1. A4F7F The operand value is equal to 4F7FH
2. :PC The mnemonic PC s equivalent to address
FFFEH and the operand value 1is equal to
FFFEH.

3. 5038-5000 The operand value will be 38H.

4, 5038-5000=0038 The same as e) except '=' was entered
to display the operand value.

5. 5038-% If current address = 5000H, then
$=5001H and the operand value equals
37H.

6. 5038-$=0037 The same as 5) except the equal sign

was entered.

7. 305038 More than 4 digits entered, therefore
the last 4 have meaning . Operand
value = 5038H.

8. 305038=5038 The same as 7) except the equal sign
was entered.

1-27. Mnemonics are composed of 1 or 2 characters following a

colon and represent a 4 hex digit address. Table 1-1 1lists
the mnemonics recognized by DDT-80. Others may be added by the

user as described by an example in paragraph 1-43.

1-28. Mnemonics are equivalent to a 4 hex digit address and the
data at that address may represent either a single or double
byte value (marked by * in the table). A single byte mnemonic
causes the display of 2 hexadecimal digits to represent an 8-bit
value. A double byte mnemonic causes the display of 4 hexadeci-
mal digits (see examples in paragraph 1-33). If a command
requires more than one operand, those operands have to be
separated by either a blank or a comma.

Table 1-1.

MNEMONICS RECOGNIZED BY DDT-80

Unrecognized mnemonics are resolved with a value of zero.

MNEMONIC

:PC*
tA
:F

-n

MI>»Ir I MO W

:B'

:Sp*
:CI*
:CO*
:01*
:00*
:SI*
:S0*
:TK*
:TT
:ST
|ITR
:PR
:PP
:AS
:ED
:LP
:ER
:T1
:TO

ADDRESS REPRESENTED
BY THE MNEMONIC

FFFE
FFFD
FFFC
FFFB
FFFA
FFF9
FFF8
FFF7
FFF6
FFF5
FFF4
FFF3
FFF2
FFF1
FFFO
FFER
FFEE
FFED
FFEC
FFEA
FFES
FFEG6
FF27
FF29
FF28
FF2D
FF2F
FF31
E6B3
E680
E67E
E6A5
E6C6
E6FA
€000
D48B
E6FO
D4D9
DF9B
DF2F

* = 2 byte mnemonics

DATA SAVED AT
THAT ADDRESS

User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User
User

s PC Register
s A Register
s F Register
s 1 Register
s IFF Register
s B Register
s C Register
s D Register
s E Register
s H Register
s L Register
s A' Register
s F' Register
s B' Register
s C' Register
s D' Register
s E' Register
s H' Register
User's L' Register
User's IX Register
User's IY Register
User's SP Register
Address of the Console Input I1/0 Drive
Address of the Console Output I/0 Drive
Address of the Object Input I1/0 Drive
Address of the Object OQutput I/0 Drive
Address of the Source Input I/0 Drive
Address of the Source Output I/0 Drive
(Terminal Keyboard Driver Address)
(Terminal Typehead Driver Address)
(Silent 700 Printer Driver Address)
(Teletype Reader Drive Address)
(Highspeed Papertape Reader Drive Address)
(Highspeed papertape Punch Driver Address)
§Ca11ing Address for Assembler)
(
(
(
(

]
]
1
'
]
1
'
1
'
J
1
)
1
1
1
'
!
)
1
1
]

Calling Address for the Editor)

Line Printer Driver)

Editor Reentry Address)

Silent 700 Tape Input Driver Address with ADC Option)
Silent 700 Tape Output Driver Address with ADC Option)

1-29. COMMAND TERMINATORS

1-30. The command terminator immediately follows the operand(s)
and signals DDT-80 that the command has been entered. Depending

on the terminator, DDT-80 will do one of the following:

Terminator

.I.

(CR)

Action

Carriage return. DDT-80 will perform the
command entered.

Carat or up arrow. This terminator is
valid only for the M and P commands. When
updating a memory location (M) or a port
(P), it signals DDT-80 to display the con-
tents of the Tlocation or port just up-
dated.

Period. DDT-80 aborts the command, enter
the command mode and be ready to accept

another command.

1-31. DETAILED COMMAND DESCRIPTIONS

1-32. This section describes each DDT-80 command in detail. The

command format is shown, followed by a description and examples.

For the purposes of this section, the conventions used are:

1.

3dAd,e0004,2222 denote 4 hexadecimal digit operand

value as described in paragraph
1-24.

denotes the command terminator;
carriage return, carat, or period.

1-18

3. - underline denotes the portion of
the command entered by the user.

1-33. M COMMAND, DISPLAY AND UPDATE MEMORY. This command allows
display and/or modification of specified memory locations or the
CPU registers.

1-34. Format.
.M aaaat

1-35. Description. The user enters the command identifier M.
DDT-80 collects the command and prints a space. The user then
enters the operand aaaa followed by a terminator. DDT-80
responds by printing the memory address on the next line. This
is followed by the contents of that particular address in
hexadecimal. If the content is to be changed, the new value is
entered. The new value entered is an operand as described in
paragraph 1-22 except that the appropriate number of hexadecimal
digits (2 or 4) is selected. For example, if the memory location
5001H was to be changed to FF:

.M 5001 (CR)

5001 A3 FF(CR) one memory location was changed
5002 A4 . therefore the least significant 2 hex
. digits are used as the operand.

or if the PC register is to be changed to 7F50H:

.M :PC The PC register is a 4 hex

:PC 433F 7F50(CR) digit (16 bit) register, therefore

0000 20 . the least significant 4 hex digits

. are used as the operand.

1-36. When the user is examining and/or modifying a register or
memory location, the accompanying terminator signals the action
DDT-80 is to take. The possible operand (new value entered) and
terminator combinations are:

Terminator Meaning

1. (CR) No operand entered, display next ad-
dress

2. N No operand entered, display previous
address

3. aa Operand aa entered but "." aborts com-

mand with no change to value at ad-

dress.

4., aa(CR) Operand aa entered, change value at
address to aa and step to next address.

5. aa N Operand aa entered, change value at
address to aa and display same address
with the new value aa displayed.

1-37. A special feature of DDT-80 allows the user to con-
veniently compute relative addresses used in jump instructions.
The value of the symbol "$§" is defined as the value of the cur-
rent location +1 and only has meaning during display and update

commands. An example is given in paragraph 1-41.

1-20

1-38. Examples.

1-39. Accessing Memory Locations.

.M 16A(CR) examine location 016AH
016A 3F(CR) it contains 3FH, do not change, step to

next location

016B 92N\ next Tlocation contains 92H, do not
change, go back to previous location.

016A 3F 34FFA change contents of O016AH to FFH and
display same location. Note that only
the last 2 digits typed are stored in
016AH (the entry 34 was in error).

016A FF(CR) new contents displayed step to next.
016B 92 . abort
. DDT-80 waiting for next command.
1-40. Examining User's Registers. The user may examine and

change (if desired) his internal 780 registers. They may be
initialized, for example, prior to program execution, or after a
breakpoint has been encountered in the program to be debugged.
The contents of the user's registers may be accessed through the
use of the mnemonics discussed in paragraph 1-28.

.M :A(CR) Examine user's accumulator
:A 18 25(CR) Change register A to 25H, examine

next location

1-21

:PC 0400. User's PC register, return to command
mode

.M :PC(CR) Examine user's PC register

:PC 5005 5000 /\ Change PC to 5000H, ' ' causes same
address to be displayed with new con-
tents

:PC 5000 . Return to command mode

. DDT-80 waiting for next command

When returning to execute the user's program, the new values will
be inserted into the user's 780 internal registers.

1-41. Computing Relative Jumps. This example shows the entering
of a relative jump instruction at Tlocation 5000H to branch to
location 5038H.

.M 4000+1000(CR) Examine location 5000H (shows operand
addition)

5000 20 18(CR) Insert first byte of Jump (JR 5038-%)
instruction

5001 F8 5038- $=0036/\ Compute and display relative dis-
placement for branch from 5001H to
5038H.

5001 36 . Jump displacement of 36y shown

. DDT-80 waiting for command

It shoud be noted that the maximum legal displacement value for

forward branches is 7FH and for backward branches

is 80H. Hence

the computed value XH for a branch should adhere to the following

Forward: 0000<X>007F

Backward: FFSOKX>FFFE

For example,

5101 00 5000-$=FEFE

indicates that one cannot do the relative jump
5101H to 5000H since FEFEH is less than FF80H.

1-42, Examing Channel Assignments.

from location

M :CI(CR) Examine console input

:CI :TK(CR) Console input = terminal input

:CO :TT(CR) Console output = terminal output
(printer)

:01 6363 :PR(CR) Set object input to high speed paper

tape reader

:00 0063(CR) Object output not set to a device
driver

:SI 6363 (CR) Source input not set to a device driver

:S0 6300(CR) Source output not set to a device
driver

FF33 80 . End of mnemonic table, 80H terminates
table.

. DDT-80 waiting for next command

See paragraph 1-84 for a discussion of the I/0 channels.

1-43. Adding Mnemonics. Add single byte mnemonic ":MN" to point
to the first address of the DDT-80 register map.

.M FF33 (CR) Examine user's mnemonic table
FF33 80 4D(CR) Put "M" into table, 4DH=ASCII M
FF34 FF 4E(CR) Put "N" into table, 4EH=ASCII N

FF35 FF E6(CR) Lower address of mnemonic

FF36 FF FF(CR) Upper address of mnemonic

FF37 FF 80(CR) Close mnemonic table

FF38 FF . Return to command mode

.M :MN(CR) Now use new mnemonic to examine memory
.M FFE6(CR) Mnemonic is equivalent to this

tMN 00 .

. DDT-80 waiting for command

In this example location FF33 did contain the 80H terminator, but
it was written with a new mnemonic to extend the table. Hence,
the 80H terminator had to be moved to the end, location FF37H in
this case.

Caution: When adding mnemonics do not use a mnemonic unless the
mnemonic table is correcly closed with an 80H terminator. Other-

wise DDT-80 will not be able to locate the end of the table.

1-44, The next example shows the addition of a double-byte

1-24

mnemonic :HL to examine the user's HL register as a 16-bit
value.

.M FF33(CR) Examine mnemonic table

FF33 80 48(CR) Insert ASCII H

FF34 FF 4C+80(CR) Insert ASCII L+ 80H to make mnemonic

double byte

FF35 FF F6(CR) Lower byte of address

FF36 FF FF(CR) Upper byte of address

FF37 FF 80(CR) Close table with terminator

FF38 FF . Return to command mode

.M :HL(CR) Now use new mnemonic

:HL 500E . New mnemonic examines HL register

. DDT-80 waiting for next command

NOTE: User define mnemonics have precedence over system

mnemonics (the user mnemonic table is searched first).
So in the example above, :MN had precedence over :SP
defining the same address.

1-45, M COMMAND, TABULATE MEMORY. This command allows the user

to display,

but not change, a block of memory. Up to 16 values

are printed per line.

1-46. Format.

.M aaaa,bbbbt tabulate memory locations aaaa through

bbbb

1-25

1-47. Description. The user enters the command identifier M
followed by the starting (aaaa) and ending (bbbb) addresses of
the memory block separated by a comma or a blank. Upon ter-
minating with a carriage return DDT-80 prints a line feed, and
then prints the contents of aaaaH to bbbbH inclusive with up to
16 values per 1line. DDT-80 then returns to the command mode.
The tabulation may be stopped at any time by pressing the RESET
button.

1-48, Example.
.M 4100,4127(CR) display memory locations 4100H through
4127H inclusive

4100 1B 80 12 10 00 B7 A5 21 10 94 04 20 CA B7 44 18
4110 81 11 23 21 07 94 17 45 12 55 A5 18 21 80 C5 55
4120 90 0C A5 81 09 21 40 22
DDT-80 waiting for next command

1-49. P COMMAND, DISPLAY AND/OR MODIFY PORTS. This command al-
lows the user to display and/or modify any of the possible 256
1/0 ports. The reader should note that some ports are output
only and cannot be read.

1-50. Format.
.P aat(CR) Display port aa

1-51. Description. The user enters the command identifier P
followed by the port address aa and a terminator. DDT-80 re-
sponds by printing the port address and the value at that port.
If the value at that port is to be changed, the user enters the
new value. The new value entered is a 2 hexadecimal digit oper-
and. When the user is examining and/or modifying a port, the
terminator signals the action DDT-80 is to take. The possible

operand (new value entered) and terminator combinations are:

Terminator

1. (CR)

2. N

4, aa(CR)

Example.
.P D1(CR)

D1 FF CFEN

D1 FF 0N

D1 FF A\
DO 00 AA

DO AA

Meaning

No operand entered, display next
port

No operand entered, display previous
port

Operand aa entered, but '.' aborts
command with no change to the port.

Operand aa entered, change the port
value to aa and step to display the
value at the next port.

Operand aa entered, change the port

value to aa and display the same
port with new value aa.

Program PIO Port 1A (DOH) for BIT
MODE

CFH sets 1A Control (D1IH) to BIT
MODE. Port D1 is putput only.

Program all bits of Port DOH as out-
put bits.

Backup to DOH

OQutput value AAH to Port DO

DDT-80 waiting for a command

1-27

The above 1is also an example of
programming a PIO port.

1-53. D COMMAND, DUMP MEMORY. The dump command dumps the
specified block of memory to the object output channel in an
absolute format compatible with the object output produced by the
Assembler. If the memory is dumped onto paper tape, it may later
be read back into memory using the load command discussed in the
next section.

1-54., Format.

.D aaaa,bbbt(CR) Dump memory from address aaaa, to ad-

dress bbbb inclusive.

1-55, Description. The user enters the identifier D then the
starting aaaa and ending addresses bbbb inclusively separated by
a comma or a blank. Immediately after terminating (a period
aborts the command) with a carriage return, the paper-tape punch
should be turned on by the user. DDT-80 responds by outputting 8
inches of Tleader (blank tape), followed by the designated memory
block in Z80 absolute hex loader compatible for not (discussed in
paragraph 1-60), fcllowed by 8 inches of trailer (blank tape).
DDT-80 then returns to the command mode. The user may then turn
off the tape punch. The dump process may be terminated at any
time by pressing the RESET button.

1-56. Example.

.D 200,220(CR) Dump locations 200H through 220H

1-28

1-57. L COMMAND, LOAD MEMORY. The 1load command provides the
capability to Tod an absolute program and/or data into memory via
the object 1input channel. The format of the data must be com-
patible with that produced as object output by the Assembler for
non-relocatable, non-linkable assemblies. The L command will
load tapes dumped by the D command described in the previous sec-

tion.

1-58. Format.
.L t(CR) Load tape into memory

1-59. Description. The user inserts the tape into the reader
positioned such that the leader is over the read mechanism. The
user then enters the command letter "L" followed by a carriage
return and places the tape reader switch to START. DDT-80 will
then load data from the tape into RAM starting at the load ad-
dress specified in each record on the Tload tape. Teletypes
equipped with the reader step option should stop at the end of
the 1load. DDT-80 then returns to the command mode. Those
teletypes not so equipped will continue to read tape data as com-
mands. If a checksum error is encountered, the start address of
the line following the suspect line 1is printed on the console
output channel.

1-29

1-60. The format for absolute hex load tapes is as follows:

Record Mark
Record Length
Starting Load Address
Record Type
_Data (16 Bytes)
Checksum

:'T%boodb67A2F57732F5F132100003E11E519021282
1000100000E3E1F579174F7827477D176F7C176775
0D002000F13DC20C00B77C1F577D1F5FCI96A
0000000LFF

"

Checksum

Because Record Length = 0 and Record Type = 01,
this record specifies End-of-File.

1-61. CHECKSUM FIELD: Frames 9+2* (record length) to
9 + 2* (record length) +1

The checksum field contains the ASCI! hexadecimal representation
of the twos complement of the 8-bit sum of the 8-bit bytes that
result from converting each pair of ASCII hexadecimal digits to
one byte of binary, from the record length field to and including
the last byte of the data field. Therefore, the sum of all the
ASCII pairs in a record after converting to binary, from the re-
cord length field to and including the checksum field, is zero.

1-62. E COMMAND, EXECUTE A USER'S PROGRAM. The execute command
is used to execute all programs including design aid programs

1-30

such as the Assembler and Text Editor.
1-63. Format.

.E aaaat (CR Transfer control to the program start-
ing at address aaaa.

.E t(CR Transfer control to the address
specified by PC in the register map.

1-64. Description. To cause execution of a program the user
types the identifer E followed by the desired entry address of
his program. Upon typing carriage return DDT-80 will load the
user's internal registers from the save register map then trans-
fer control to the program entry point. (It is therefore pos-
sible to enter a program with preset values in the registers if
desired.) Since the register map is used for saving internal re-
gisters when a breakpoint (see paragraph 1-74) 1is encountered,
the contents of the register map reflect the effect of the last
instruction before the breakpoint was encountered. If no entry
address is specified after the E command, DDT-80 will transfer
control to the address specified by PC in the user's register
map.

1-65. Example.

.E 1200(CR) Execute the program starting at loca-
tion 1200H.

To return control to DDT-80, the user's program must either en-
counter a breakpoint (see next section), or the RESET button
should be pressed.

. (User pressed RESET, back to DDT-80
command mode)

1-31

.M :PC(CR) Examine user's program counter (PC)

:PC 62FF(CR) Set user's PC to 1200H

:E(CR) Execute program starting at location
120H

The execute command may also be used together with the breakpoint
command to execute portions of programs while debugging.

1-66. H COMMAND, HEXADECIMAL ARTHMETIC. The arithmetic capabil-
ity of DDT-80 allows hexadecimal addition and subtraction.

1-67. Format.

.H aaaa+bbbb+...+yyyy=zzzzt (CR)

1-68. Description. The user enters the command identifier and
then enters the arithmetic expression. Only + and - are legal
operations. If the sign of the first operand is omitted, it is
assumed +. The equal sign causes the 4 digit (least significant
4 digits) result to be displayed. When the terminator is entered
DDT-80 returns to accept another command.

1-69. Examples.
.H 5000-4FFF=0001(CR) Subtract 4FFFH to 5000H

.H 5000+4FFF=9FFF (CR) Add 4FFFH to 5000H

DDT-80 waiting for a command

. The equal sign caused the 4 digit
result to be printed.

1-32

1-70. C COMMAND, COPY MEMORY BLOCKS. The copy command permits
any block of memory to be moved to any area of memory. The move
may be forward or backward and the new block may or may not over-
lap with theoriginal memory block.

1-71. Format.

.C aaaa,bbbb,cccct(CR) Copy memory locations aaaa through

bbbb inclusive to the memory block
starting at address cccc.

1-72. Description. The user enters the command identifier C
followed by the starting aaaa and ending address bbbb of the
block to be moved, followed by the starting address cccc of the
block receiving the data. The operands are separated by commas
or blanks. Upon terminating with a carriage return, DDT-80
prints a line feed, performs the requested copy operation, and
then prints a period "." to indicate that it is ready to accept
another command. The text copied is not displayed.

1-73. Example.
.C 100,200,1200(CR) Copy memory locations 100H through

200H inclusive to locations 1200H
through 1300H

.C 100,0200,150(CR) Copy memory lTocations, 100H
through 200H inclusive to
locations 150H through 250H.
(overlapping copy)

. DDT-80 waiting for command

Entire programs or subroutines may be moved aroung in this way

1-33

and still execute properly in their new Tocations. Care should
be taken to copy complete instructions on both ends of the block
when copying programs, and any relative branch instruction con-
tained with a block to be moved should not branch outside the
block.

1-74, B COMMAND, BREAKPOINT COMMAND. The breakpoint command
causes the setting of a "trap" or breakpoint within the user's
program. Upon encountering the breakpoint, the user's program
will transfer control back to DDT-80 where the register, I/0
ports, and memory contents may be inspected. Breakpoints may be
set only in RAM, not ROM.

1-75. Formats.

.B aaaa,b(CR) Set breakpoint at address aaaa.
Where b indicates short (b=0) or
lTong (b +0) format for printing re-
gisters. Short implies print only the
PC, A, and F. Long implies print all
internal register. (see R command for
the order the registers are output).

.B aaaa(CR) Set breakpoint at address aaaa. b was
omitted therefore use the short format
for printing the registers.

.B (CR) Clear any previous breakpoint.

1-76. Description. The user types the command identifier B fol-
lowed by the address where it is desired to place a break point.
Upon entering a carriage return DDT-80 proceeds to:

1. Remove any pre-existing breakpoint by restoring user's
code.

1-34

2. Extract and save 3 bytes of the user's code starting
at the breakpoint address.

3. Insert a 3 byte sequence into the user's program at
the breakpoint address. (This sequence consists of a
3 byte JP instruction to return to the breakpoint en-
try of DDT-80.)

4. If b=0 a flag is set to indicate long format (print
all internal CPU registers.)

1-77. DDT-80 then types a line feed and a period "." to return
to the command mode. The user may now initiate execution of his
program by usiny the execute command. When the address specified
by the breakpoint command is encountered, control is transferred
to DDT-80 where the following action are taken.

1. The three bytes of user code replaced by the trap
instruction are restored.

2. A1l vregisters are recorded in RAM storage within
DDT-80.

3. DDT-80 types: The breakpoint address (Program Coun-
ter), and value of the A and F registers for sort
format output or all internal CPU registers for long
format output.

4. DDT-80 prints a line feed and period and return to the
command mode

1-78. A breakpoint can be cleared by executing its address or
entering the command B(CR). [f the user "misses" a breakpoint
while executing, the 3 bytes of breakpoint code must replaced
manually with the correct user's code after RESET. The set
breakpoint command and execute command are closely related and
are normally used together during the debug process for executing
sections of a program and then evaluating the registers for cor-
rect data.

1-35

1-79. There are certain characteristics of the DDT-80 breakpoint
facility which user should be aware of during debugging:

1. The trap sequence used by DDT-80 is as follows:
JP DDT-80 Jump to DDT-80 Breakpoint Processor

2. Since DDT-80 replaces three bytes of the user program,
a breakpoint should be set such that when the user
program is executed, control can only be transferred
to the first byte of the trap sequence. In addition,
the breakpoint address must reference the first byte
of an instruction. For example in the following sequ-

ence:

L1 JR NZ, L3-%
L2 LD A,O
L3 LD B, OFH

A breakpoint should not be set at L2 because if the branch con-
dition at L1 1is met control would be transferred to the third
byte of the trap sequence.

3. No error indication is given if one attempts to set a
breakpoint in ROM.

4, After a breakpoint has been set, it can be changed
simply by entering a new breakpoint. The act of en-
tering a new breakpoint automatically clears the prev-
ious breakpoint.

5. When a breakpoint is encountered in a user program,
DDT-80 saves the state of interrupts (through IFF) in
the :IF register. The state of interrupts is restored
or set according to the content of :IIF when control

1-36

is transferred to a user program.

1-80. R COMMAND, DISPLAY CPU REGISTERS

The display CPU registers command allows the user to dump the
contents of all user registers to the console.

1-81. Formats.

.R t(CR) Print the contents of the CPU registers
R 1t(CR) Print a heading to label the CPU registers

on one line, on the next line prints the
contents of the CPU registers.

1-82. Description. The user enters the command identifier R.
If the user wants a heading to be printed that labels the re-
gister contents, the operand of 1 needs to be entered. If no
heading is desired, then no operand is entered.

1-83. Examples.

.R (CR)

A0OOO 0100 0104 CFB3 CO9A FFEE EDF6 9C3E C3DC FE9B D6ED F1BE FFB4

.R1(CR)
PC AF IIF BC DE H A'F' B'C' D'E' H'L' IX IY SP
AOQO 0100 0104 CFB3 CO9A FFEE EDF6 9C3E C3DC FE9B D6EC F1BE FFB4

PC contains AOOOH bit

A contains O1H 7 0
F contains 81H F=[t]ofJoflo]o]Jo]o]1]
I contains O1H S 2 X H XP/N N C

IF contains 04 (Bit 3 =1 implies IFF = 1)

. S = sign flag

1-37

= zero flag

1Y contains F1BEH
I contains F1H

indeterminate flag

half carry (for BCD operations)
R contains BEH /V = parity or overflow flag
BCD add/subtract flag

carry flag

O 2 T I X N
i

SP contains FFB4H

i

Register IF represents the interrupt flip-flop maintained by the
Z-80. If I1F=0, then interrupts were disabled when DDT-80
received control (encountered a breakpoint). If IF=4, then
interrupts were enabled. Upon blank line reset IF dis set to

Zero.

1-84, INPUT/OUTPUT

1-85. The SDB-80 has 3 I/0 channels to which devices may be
assigned. The console channel is used to receive and respond to
commands and generally handle all editing, controlling, and
monitoring information. The object channel is used by the Load
(L) and Dump (D) commands to read and write machine-oriented data
such as object tapes. The source channel is not used by DDT-80,
but is used by The Resident Assembler and Text Editor to read and
write user-oriented data such as source programs. The channel
assignment for these devices is stored in the DDT-80 RAM area
(see paragraph 1-13) and may therefore be updated using the M
command with mnemonics.

1-86. DDT-80 contains a collection of I/0 drivers which are used
by programs internal to DDT-80 and may also be called from user
programs using the procedures described below. The available
drivers and corresponding mnemonics for their start addresses
are:

:TK terminal keyboard (uses UART)

1-38

: TR teletype reader (uses UART: same as TK ex-
cept a reader step pulse is sent first)

:TT terminal typehead, or printer (uses UART:
also operates teletype punch when switched
on)

:PR paper tape reader (uses PIOQ)

:PP paper tape punch (uses PIO)

:LP line printer (uses PIO)

1-87. Upon power-up or momentarily depressing RESET, DDT-80

initializes the logical/physical channel assignments as follows:

:CI :TK - Console input = terminal keyboard
:CO :TT - Console output = terminal typehead
DDT-80 waiting for command

1-88. Note that if the user changes the console channel as-
signments, then hits RESET, DDT-80 will change the assignments
back to the above configuration. Also it is necessary for the
user to initialize the object and source channels to the ap-
propriate drivers at Tleast once after power up. Since DDT-80
does not intialize the object and source channels upon reset,

there is no need to reconfigure the object and source channel.

1-89. ADDING NEW I/O0 DRIVERS

1-90. The user may write 1/0 drivers (and define mnemonics for
them) for additional devices and maintain compatibility with

1-39

DDT-80 drivers by observing the following:

1. Register E is the control register. Register D is the
data register.

MSB LSB
2. Register E - control register l7|6]5]4[3|2]1|0]
Bit 7 = 1 implies 'immediate return' 1/0 mode. Im-

mediate return means; if data or device is ready, per-
form the I/0 WHCN the function is done and data col-
lTected, clear bit 7. Otherwise leave bit 7 set.

Bit 7 = 0 implies 'wait until done'. If bit 7 = 0,
wait until the I/0 function is complete before re-
turning from the I/0 drivers.

Bit 3 = 1 implies initialize the device (usually this
is done first and only once). Bit 3 is cleared upon

exit from the drivers.

3. Register D contains data for outputting. Registers D
and A contain input data.

4. The A register is destroyed on output

5. I/0 drivers supplied:

:TK - Terminal keyboard (uses the UART). Immediate
return is done if flagged in register E.

:TT - Terminal type head (uses the UART). Immediate
return is done if flagged in register E.

1-40

:ST - Silent 700 printer (uses the UART). Immediate
return is done if flagged in register E.

:TR - Tape Reader (uses the UART). Outputs the reader
step signal. Immediate return is done if flagged
in register E.

:PR - High Speed Paper Tape Reader (Uses PIO, Ports DO
- data, D1 - control). Immediate return is done
if flagged in register E.

:PP - High Speed Paper Tape Punch (uses PIO, ports D2
- data, D3 - control). Immediate return is done
if flagged in register E.

:LP - Line Printer (uses PIO. Ports D6 - data, D7 -
control). Immediate return is done if flagged
in register E.

1-91. SUBROUTINES CALLABLE IN DDT-80

1-92. The following is a list of callable subroutines in DDT-80.
It should be noted that some of these routines could impact a
user program in ways not discussed below. Studying the 1listing
of DDT-80 would be appropriate for complete understanding of the-
se subroutines.

1-93,. 'RDCHRg— READ AN ASCII CHARACTER
1-94, Calling Address. Eb522H

1-95. Parameters Upon Entry. The entry parameters are that the
E register designates I1/0 channel as follows:

E=20,1 Console channel

1-41

E = 2,3 Object channel
E = 4,5 Source Channel

If bit 7 (most significant bit) is set, then immediate return is
requested if data is not ready. Some (but not all) I/0 device
drivers in DDT-80 allow immediate return.

1-96. Parameters Upon Exit. The exit parameters are as follows:
1. E register 1is unchanged except for the immediate re-
turn bit (bit 7) which will be cleared if data has

been read.

2. Registers D and A contain the ASCII character. The
parity bit (bit 7) is masked off.

1-97. Routines Called I/0 Driver tied to the channel specified

in register E.
1-98. _WRCHR - WRITE AN ASCII CHARACTER
1-99. Calling Address. EB527H

1-100. Parameters upon entry. The entry parameters are as fol-

Tows:

1. E register designates 1/0 channel.

E = 0,1 Console Channel
E = 2,3 Object Channel
E = 4,5 Source Channel

If bit 7 (most significant bit) is set, then immdiate re-

1-42

1-101.
lows:

1-102.

turn is requested if the I/0 device is not ready for data.
Some (but not all) I/0 drivers in DDT-80 allow immediate
return.

2. D register must contain the data to be written.

Parameters upon Exit. The next parameters are as fol-
1. E register is unchanged except for the immediate
return bit (bit 7). It will be cleared if data has
been output.
2. D register contains the data output.

3. A register is destroyed.

Routines Called. I/0 driver tied to the I/0 channel

specified in register E.

1-103.

1-104.

1-105.
Tows:

1-106.

ACC - PRINT THE CONTENTS OF THE A REGISTER

P

Calling Address. E58BH

Parameters Upon Entry. The entry parameters are as fol-

1. E register designates I/0 channel as for WRCHR.
Immediate return is not valid when calling PACC.

2. A register contains the binary equivalent of the 2
hex digits to be printed in ASCII.

Parameters Upon Exit. The exit parameters are that A re-

gister contents are destroyed.

1-43

1-107. Routines Called. Routines called are as follows:

1. PRVAL
2. WRCHR
1-108. PRVAL - CONVERT THE LEAST SIGNIFICANT 4 BITS (1 hex

digit) A REGISTER TO ASCII.

1-109. Calling Address. ES5AFH

1-110. Parameters upon Entry. The entry parameters are that the
A register least significant 4 bits must be equal to the hex
digit being converted to its ASCII representation.

1-111. Parameters Upon Exit. The exit parameters are that the D
and A register contain the ASCII representation for the hex digit

converted.

1-112. ECHO- READ AND WRITE A CHARACTER THROUGH THE SAME 1/0
CHANNEL

1-113. Calling Address. E597H
1-114. Parameters Upon Entry. The entry parameters are that the
E register designates the I/0 channel as for RDCHR and WRCHR.

Immediate return is not valid when calliing ECHO.

1-115. Parameters Upon Exit. The exit parameters are as fol-
lTows:

1. D vregister contains the character read and printed

2. A register is destroyed

1-44

1-116. Routines Call. Routines called are as follows:
1. RDCHR
2. WRCHR
1-117. ‘QBLFW: OQUTPUT A CARRIAGE RETURN AND LINE FEED
1-118. Calling Address. ES59CH
1-119. Parameters Upon Entry. The entry parameters are that the
E register designates the I/0 channel as for WRCHR. Immediate

return is not valid when calling CRLF.

1-120. Parameters Upon Exit. The exit parameters are as fol-
lows:

1. D register contains the ASCII representation for a
lTine feed (0AH)

2. A register is destroyed
1-121. Routines Called. The routine called is WRCHR.
1-122. SPACE - OUTPUT A BLANK
1-123. Calling Address. ES5A5H

1-124. Parameters Upon Entry. The entry parameters are that the
E register designates the I/0 channel as for WRCHR.

1-125. Parameters Upon Exit. The exit parameters are as fol-

Tows:

1-126.

1-127.

1-128.

1-129.
lows:

1-130.
Tows:

1-131.

1-45

1. D register contains an ASCII blank (20H).

2. A register is destroyed

Routines called. The routine called is WRCHR.

PTXT - PRINT A TEXT STRING

Calling Address. E3C7H

Parameters Upon Entry. The entry parameters are as fol-

1. E register designates the I/0 channel as for WRCHR.
Immediate return is not valid when calling PTXT.

2. HL register contains the beginning address where the
text string is stored in memory.

3. The text string must terminate with an ASCII ETX

character (03H). The ETX is not output.

Parameters Upon Exit. The exit parameters are as fol-

1. D register contains 03H (ETX character).

2. HL register contains the address where the ETX is
stored in memory.

3. A register is destroyed.

Routines Called. The routine called is WRCHR.

1-46

1-132.

1-133.

1-134.
lows:

1-135.

1-136.

ASBIN - CONVERT ASCII REPRESENTATION OF HEX DIGIT TO BIN-

ARY

Calling address. E583H.

Parameters Upon Exit. The exit parameters are as fol-

1.

2.

A register contains the corresponding binary value of
the hex digit.

No error check takes place.

RENTRY_- ENTRY ADDRESS TO DDT-80

Jump address. The jump address is E11DH. This address

should be jumped to and not called. DDT-80 will print a carriage

return

and line feed and then a period. The user register map is

not saved when jumping to RENTRY. DDT-80 is then ready to accept

another command.

1-137.

1-138.
UART).

CALLABLE I/0 DRIVERS

TK

read a character from terminal key board. (Uses the
Calling address = E6B3H
Parameters upon entry:
Bit 7 of register E is the immediate return bit. Bit

7 = 1 implies immediate return if character not re-
ady.

3.

1-47

Parameters Upon Exit:

Bit 7 of register E is cleared if a character fis
read.

Registers D and A contain the ASCII character.
The parity bit is masked off.

1-139. TT - type a character to the terminal typehead or printer

(uses the UART).

1.

2'

Calling Address = E680H

Parameters upon entry:

Bit 7 of register E is the immediate return bit.
Bit 7=1 implies immediate return if device is not

ready for the character.

Register D contains the ASCII character to out-
put.

Parameters upon exit:

d.

Bit 7 of register E is cieared if data was out-
put.

Bit 4 of register E is used internally and is
always cleared upon exit.

Register D contains the character output.

Register A is destroyed.

1-48

1-140, ST - the same at TT except a delay is inserted when a
carriage return, line feed is output (uses the UART).
Calling address = E67EH
1-141. TR - the same as TK except that the reader step signal is
output to get the next character on tape (uses the UART).
Calling address = E6ASH
1-142. PR - read a character from a high speed paper tape re-
ader device (uses PIO. Ports DO-data, Dl-control). Interrupts
must be in mode 2 (IM=2).
1. Calling address = E6C6H
2. Parameters upon entry
a. Bit 3 of register E indicates if the device is to
be initialized.

If bit 3=1 then initialize the device.

b. Immediate return is done if flagged by bit 6 of
register E.

3. Parameters upon exit:

a. Bit 3 of register E is set to O.

b. Register D and A contains the ASCII data read.

c. The parity bit is masked off.

d. Interrupts are used and enabled upon exit.

1-49

1-143. PP- output a character to a high speed paper tape punch
device (uses PIO, ports D2-data, D3-control). Interrupts must be
in mode 2 (IM=2).
1. Calling address = E6FAH
2. Parameters upon entry:
a. Bit 3 of register E indicates if the device is to
be initialized. If bit 3=1 then initialize the

device.

b. Register D contains the ASCII character to out-
put.

c. Immediate return is done if flagged by bit 7 of
register E.

3. Parameters upon exit:
a. Bit 3 of register E is cleared.
b. Register D contains the data output.
c. Interrupts are used and enabled upon exit.

1-144. LP - output a character to a line printer (uses PIO,
ports D6-data, D7-control). Interrupts must be in mode 2 (IM=2).

1. Calling address = E6FOH

Parameters upon entry:

a. Bit 3 of register E indicates if the device is to
be initialized. If bit 3=1 then initialize the
device.

b. Register D contains th ASCII character to output.

c. Immediate return is done if flagged by bit 7 of
register E.

Parameters upon exit:
a. Bit 3 of register E is cleared.
b. Register D contains the data output.

c. Interrupts are used and enabled upon exit.

1-145. PROGRAMMING NOTES

1-146. The following is a list of items in DDT-80 that could af-
fect a program the user is writing and debugging.

1.

The user stack pointer is set by DDT-80 on power-up
and reset (SP=FF90H).

DDT-80 uses 6 1locations on the user stack for tem-
porary storage when transferring control to a user
program (E command). The user's stack is left unaf-
fected and the stack pointer points to the correct
value. The user needs to be aware that 6 locations
past the stack pointer are used.

3. If the user writes a program that calls the 1I/0
drivers PR, PP and LP, then the interrupt mode has to
be equal to 2 (IM=2).

4, When a breakpoint (B command) has been entered and not
encountered while running the program, the user must
press reset to regain control. The breakpoint must be
cleared manually by inserting the correct code for the
3 byte jump to DDT-80, or by setting location FFOCy
to 1 and doing a B(CR) to clear breakpoints. A

5. The user may write an extension to the operating sys-
tem (DDT-80) if wanted. After a command and operands
have been scanned and saved, DDT-80 does a jump to the
executive routine through the address contained 1in
locations FF1lFy and FF20y. The command Tletter is
saved in location FF1Cy. The operands are saved in
locations FFl4y - FF15 (OPR1), FFléy -FF17 (0PR2),
and FF18y - FF19y (OPR3). The extension must de-
termine if the command is to be handled by the ex-
tension. If the command is to be handled by the ex-
tension, then the extension must take the appropriate
action. When finished the extension must transfer
control back to DDT-80 by a Jjump to location E127y.
If the extension does not handle the command, then the
extension must transfer control back to DDT-80 by a
jump to E147y.

To install an extension the user must load into RAM the extension
object code (L command). Then modify the contents of memory
locations (M command) FF1Fy (LSB) and FF20y (MSB) to the be-
ginning address of the extension. If reset is ever pressed, then
locations FFl1Fy - FF20y will be reset to jump to DDT-80 in-
stead of the extension.

~o
1
—

SECTION 2

ASMB-80 TEXT EDITOR

2-1. INTRODUCTION

2-2. The ASMB-80 Text Editor is a design aid written to assist
the user in origination and modification of assembly Tlanguage
source programs. The Editor resides in ROM and permits random
access editing on ASCII character strings which are typically
read into memory from digital cassette or paper tape. The Editor
allows line or character editing with the following set of edit

commands:
An --- Advance record pointer n records.
2. Bn --- Backup record pointer n records.
€ndsS1dS2d - change string S1 to string S2 for n oc-
currences.
4., Dn --- delete next n records.
5. E --- exchange current record with records to be
inserted.
6. I =--- insert records.
7. Ln --- Go to line number n.
8. Mn --- Enter commands into one of two alternate com-
mand buffers (pseudo-macro).
9, N =--- Print top, bottom, and current line number.
10. Pn --- Punch n records from buffer.
11. R =--- Read source records into buffer.
12. Sn dS1ld - Search for nth occurrence of string Sl.
13. T =--- Insert records at the top of the buffer.
14. Vn --- Output n records to console output channel.
15. Wn --- Qutput n records to source output channel.

16. Xn --- Execute alternate command buffer n. { Pocugle Hlope

2-3. TERMINOLOGY

2-4, The user should understand some of the following terms so
the editor can be used properly.

1. Source - ASCII characters comprising the Z80 program
instruction statements.

2. Record - a single source statement with carriage re-
turn as delimiter.

3. Buffer - computer memory area used to store the

source.

4. Pointer - the position in the buffer (always the be-
ginning of a record) where the next action
of the editor will be initiated.

5. Current statement or record - the source statement in

the buffer pointed to by the pointer.

6. Insert - installation of a record into the buffer im-
mediately following the record pointed to by
the pointer.

7. Delete - removal of the record pointed to by the
pointer from the buffer.

2-5. TEXT EDITOR COMMANDS

In the following Text Editor command descriptions, the first
alphabetic character designates the command, the n represents a
decimal value from 0 to 9999. If n is omitted, it is assumed to
be zero. The editor prints a greater than sign (>) when ready to
accept a command string. When entering data from the console

2-3

channel (Key board wusually), the wuser may delete previous
characters by typing BS (backspace) or RUBOUT (DEL on some
keyboards). When using RUBOUT, a backslash () will printed for
each character deleted. The user may also delete an entire line
being entered by typing control-U. A CR/LF will be echoed. A
control-shift-K (ESC) will return the user to DDT-80.

1. R - READ source statement records from the source
channel. The read continues until the buffer is full,
the end of the tape is read and time out occurs, or an
ETX ASCII charaacter 1is encountered. The EXT s
preserved in the buffer. Each initiation of the R
command stores the new source records after source re-
cords already in the buffer. The R command leaves 83
or less bytes for editing if the buffer is filled by

reading.
2. Bn - BACKUP the record pointer n number of records
from the current statement. When n 1is zero, the

pointer 1is positioned at the beginning of the first
record in the buffer.

3. An - ADVANCE the record pointer n number of records
from the current statement. When n 1is zero, the
pointer is positioned at the beginning of the record
in the buffer.

4. Pn - PUNCH n number of source records starting with
the current statement or record. When n is zero the
editor will punch the buffer from the current record
to the end of the buffer. The user activates the
punch by turning on the object output device (if
needed) and typing ~control e. (ASCII null.

2-4

This is equivalent to control-shift-P on some ter-
minals). At the end of the punch sequence, the user
must turn off the object output device (if needed) and
type control-@ (ASCII null). The editor will not
initiate any other action unil this is done.

Sn -'SOURCE IMAGE CHARACTERS' (delimiter=') SEARCH
buffer memory, starting at the current record, until
the nth occurrence of the source image characters sup-
plied between the delimiters is found. The n position

the pointer at the beginning of this record. Any
character that does not exist in the source image may
be used as the delimiter. Both starting and ter-
minating delimiters must be identical. A blank or

comma must separate the command Sn and the first de-
Timiter. When n is zero the first occurrence of the
source image is sought. If the nth occurrence of the
source 1image is not found by the end of the buffer,
the pointer is positioned at the last record of the
source and the editor awaits another command.

Cn -'STRING1'STRING2' (delimiter=') CHANGE the next n
occurrences of STRINGI to STRINGZ2 starting with the
current record. STRING1 does not have to be in the
current record. The Editor will search for STRINGI1
and start counting from there. The pointer will be
positioned at the record where STRINGl occurred Tlast.
Any character not in STRINGI or STRING2 may be the de-
limiter and must be equal for all three delimiters. A
blank or comma must separate Cn and the first de-
lTimiter. When n is zero the first occurrence of
STRING1 1is changed. If the nth occurrence of STRINGI

CAUTION:

10.

is not found, the pointer is positioned at
the last record of the source.

I - INSERT records after the current record. A car-
riage return (line feeds are supplied by the editor)
must terminate each record to be inserted. A null
lTine (no characters) must terminate an entire set of
insertions, The prompt character '<' indicates the
Editor is ready for a line to insert. The pointer 1is
positioned at the record immediately following the set
of inserted records. A warning message is printed if
the buffer 1is full and the 1last record could be
truncated. Also some of the Editor's work area could
be corrupted if the buffer is overrun. Care should be
taken when the 'BUFFER FULL' message is printed. The
control-U character causes a null line to be returned
to the I command and insertion is then terminated.

T - Insert records at the top of the buffer. Records
are inserted before the first record in the buffer.
Note the conditions under the I command for proper
operation.

Dn - DELETE n number of records beginning with the
current source statement. When n is zero, one record
is deleted.

Do not perform a delete past the end of the Editor buf-
fer because certain Editor variables could be altered
incorrectly.

Wn - or Vn - Print n records starting with the current
record. The pointer is unaffected. When n is zero,
one record is printed. The W command directs output

to the source 1/0 channel. The V command directs out-

11.

12.

13.

14.

put to the console I/0 channel.

Ln - Position the pointer at the beginning of the
source statement with line number n. N equal zero is
not a valid line number. This command always advances
in the source to find a requested line number. Thus,
if the current record is beyond the requested record,
use the backup (B) command before the L command.

N - The N command outputs to the console the Tine
number of the first record in the buffer, the line
number of the last record read by the R command, and
the line number of the current record.

Mn - The M command tells the Editor to accept a com-
mand string and store that string in alternate command
buffer 1 or 2 depending on the value of n (1 or 2).
The alternate command buffers will accept character
strings of 40 characters or less. No error is given
if more than 40 characters are input and Editor
variables could be corrupted if overrun occurs. The M
command is the only way to enter commands into the
alternate command buffers. If n equal zero, alternate
command buffer 1 is selected.

Xn - The X command tells the editor to execute alter-
nate command buffer 1 or 2 depending on the value of n
(1 or 2). The alternate command buffers are executed
as if included in the main command buffer. Once an
alternate buffer has been executed, control s
tranferred back to the main command buffer and it is
completed. If n equal zero, alternate command buffer
1 is selected.

NOTE:

2-6.

2-17.

2-7

The pseudo-macro command capability is implemented by the
above 2 commands. The user puts his macro command string
in alternate buffer 1 or 2 and then executes that macro
string by the X command.

USING THE EDITOR

The user should first assign the channels for use with the

Text Editor. The Editor uses the following channels:

1. :CI --- console input. A1l commands and data input
via the 'I' and 'T' commands are accepted by
the :CI channel.

2. :C0 --- Console output. A1l interactive response to
the user and output from the 'V' command is
via the console output channel.

3. :01 --- Object input ...not used.

4, :00 --- Object output. Qutput of an edited module
is on the object output channel via the 'P'
command of the Editor.

5. :S1I --- source input. A module to be edited must
first be read into the Editor buffer via the
'R' command from the source input channel.

6. :50 --- source output. The contents of the Editor
buffer with line numbers can be sent to the

source output channel via the 'W' command.

The Text Editor may be entered by using the following

DDT-80 command:
.E :ED(CR)

2-9. The editor will then print a pointer (>) prompt. Any of
the Editor commands may then be entered. Note that several com-
mands may be entered on one line if they are separated by blanks.
Each 1line of input is terminated by a carriage return.
Example:
. M :00(CR)
:00 aaaa :PP(CR)

-assign edited output to the paper tape punch device
driver.

:S1 aaaa :PR(CR)

-read source to be edited from paper tape reader device
driver.

: S0 aaaa :LPQCR}

-assign output with line numbers to line printer driver.

aaaa .
. E :ED(CR)

-user executes the Editor
>

.Editor commands
2-10. REENTERING THE EDITOR

2-11. In some some instances (e.g., RAM-based operation, see
Section 5), the user will want to reenter the Editor to edit an
existing source buffer. The normal procedure described above

initializes the Editor's pointers so that the buffer appears to

be empty. To reenter the Editor without reinifia]izing the
pointers, use the command:

:E :ER(CR)

. -user executes Editor Reentry address.

>

2-12. NOTES

2-13. Concerning Line Numbers . Lines (separated by carriage
returns) are counted as they are read in. Line numbers reside in
memory with their respective lines and correspond to line numbers
assigned by the ASMB-80 Assembler. These numbers are fixed for
data read and cannot be altered. When an insertion is done, each
inserted line receives the same line number (0000). When a line
is deleted, its corresponding line number is also deleted.

2-14, Concerning Buffer Full Conditions. The Editor reads or
insert until the buffer is filled with 83 or less characters of
the buffer end before the 'BUFFER FULL' message is printed . The
83 character padding helps preserve the last record 1in its
entirety. The crucial point occurs when the user ignores the
'BUFFER FULL' message and continues reading or inserting . The
buffer data will overrun into Editor Work space and variables,
thus corrupting the buffer data (no EOB) as well as Editor
variables. The edit session could then be a total loss. When
the buffer is full, the user should remove as many of the records
at the beginning of the buffer as possible. This is accomplished
by punching and then deleting those records. An exchange or
change could be executed if some editing is necessary.

2-15. Start of Text (STX) and End of Text (ETX) Characters. The
STX and ETX characters are used by the ASMB-80 Assembler to
connect a source module that had to be broken into pieces for
efficient handling. The Editor views the STX character as if it

2-10

were a character in the first source statement of the module. It
is unprintable but will be included in the buffer. It is recom-
meded that STX immediately precede a comment statement or the
first statement in all but the first module in a multiple module
set. (See Section 3-81). The reason for not having an STX
followed by a carriage return at the beginning of the module is
the Assembler will assemble a blank line and the line numbers
might become confusing. The ETX character will cause the Editor
to stop reading. It also will be included in the source buffer
with a carriage return immediately following it. It is also
unprintable and should not be on a line by itself. Therefore, it
should be the last character of the last source statement in the
module. Note: (CNTL - B = STX, CNTL - C = ETX)

2-16. Concerning Rubout and Backspace Characters. The Editor
does not protect the user from backing up past the beginning of
the command or insert buffers. If too many rubouts or backspaces
are entered while keying in data, the results are unpredictable.
I[f the possibility exists of having to go back to the beginning
of the 1line with a 1large number of rubouts, the Control-U
character is best to use.

SECTION 3

ASMB-80 ASSEMBLER

3-1. INTRODUCTION

3-2. MOSTEK ASMB-80 Z80 ASSEMBLER

This section describes the function and operation of the MOSTEK
ASMB-80 780 Assembler. The ASMB-80 Assembler is provided in ROM.
In conjunction with the resident Text Editor and the Relocating
Linking Loader it provides the means for editing, assembling, and
loading Z80 programs. The Assembler reads Z80 source mnemonics
and pseudo-ops and outputs an assembly listing and object code.
The object code is 1in industry standard hexadecimal format

modified for relocatable, linkable assemblies.

3-3. CAPABILITIES

3-4, The ASMB-80 Assembler recognizes all standard Z80 source
mnemonics. It supports global symbols, relocatable programs, and
a printed symbol table. In conjunction with the MOSTEK Text
Editor and Relocating Linking Loader, the user has state-of-
the-art software for building, assembling and loading programs.
The Assembler can assemble any length program, limited only by a
symbol table size which is user selectable.

3-5. HARDWARE CONFIGURATION

3-6. The Assembler will work on a system with the following
configuration:

1. Console I/0.

2. 4K RAM, minimum.

3. Resident DDT-80 Operating System.

3-2

3-7. SOFTWARE CONFIGURATION

3-8. The Assembler uses subroutines which are in the resident
DDT-80, Text Editor, and Relocating Linking Loader. The As-
sembler is resident in ROM starting at location OCOOOH.

3-9. DEFINITIONS

1. SOURCE MODULE - the wuser's source program. Each
source module is assembled into one object module by
the Assembler. The end of a source module is defined
by an 'END' pseudo-op or an EOT CHARACTER (04H) on
input. The source module is read on channel :SI.

2. OBJECT MODULE - the object output of the Assembler for
one source module. The object module contains linking
information, address and relocating information,
machine code, and checksum information for use by the
MOSTEK Relocating Linking Loader. The object module
is in ASCII. A complete definition of the MOSTEK ob-
Ject format is in Appendix B. The object module is
output on SDB-80 channel :00,.

3. LOAD MODULE - the binary machine code of one complete
program. The load module generally is defined in RAM.
It is created by the MOSTEK Relocating Linking Loader
from one or more object modules.

4. LOCAL SYMBOL - a symbol in a source module which ap-
pears in the label field of a source statement.

5. INTERNAL SYMBOL - a symbol in a source (and object)
module which is to be made known to all other modules
which are Tloaded with it by the Relocating Linking
Loader. An internal symbol is also called global, de-

fined, public, or common. Internal symbols are de-

10.

11.

fined by the GLOBAL pseudo-op. An internal symbol
must appear in the label field of the same source mod-
ule. Internal symbols are assumed to be addresses,
not constants, and they will be relocated when loaded
by the Loader,.

EXTERNAL SYMBOL - a symbol which is used in a source
(and object) module but which is not a local symbol
(does not appear in the label field of a statement).
External symbols are defined by the GLOBAL pseudo-op.
External symbols may not appear in a expression which
uses operators. An external symbol is a reference to
a symbol that exists and is defined as internal in an-
other program module.

GLOBAL DEFINITION - both internal and external symbols
are defined as "GLOBAL" in a source module. The As-
sembler determines which are internal and which are
external.

POSITION INDEPENDENT - a program which can be placed
anywhere 1in memory. It does not require relocating
information in the object module.

ABSOLUTE - a program which has no relocation informa-
tion in the object module. An absolute program which
is not position independent can be loaded only in one
place in memory in order to work properly.

RELOCATABLE - a program which has extra information in
the object module which allows the Relocating Linking
Loader to place the program anywhere in memory.
LINKABLE - a program which has extra information in
the object module which defines internal and external
symbols. The Relocating Linking Loader wuses the
information to connect, resolve or link, external re-
ferences to internal symbols.

3-10. ASSEMBLY LANGUAGE SYNTAX

3-11. An assembly Tanguage program (source module) consists of
labels, opcodes, pseudo-ops, operands, and comments in a sequence
which defines the wuser's program. The assembly language
conventions are described below.

3-12. DELIMITERS

3-13. Labels, opcodes, operands, and pseudo-ops must be
separated from each other by one or more commas, spaces, or tab
characters (ASCII O09H). The Tlabel may be separated from the
opcode by a colon, only, if desired.

3-14. LABELS

3-15. A label is composed of one or more characters. If more
than 6 characters are used for the label, only the first 7 are
recognized by the Assembler. The characters in the label cannot
include ' () * + - <> =,/

3

3 Or space, In addition, the
first character cannot be a number (0-9). Table 3-1 summarizes
the allowed characters in a label or symbol. A Tlabel can start
in any column if immediately followed by a colon (:). It does
not require a colon if started in column one. For example:

allowed

9LAB ' :STARTS WITH A NUMBER

L)AB ; ILLEGAL CHARACTER IN LABEL
L:ABC ;s ILLEGAL CHARACTER IN LABEL

3-16. OPCODES

3-17. There are 74 generic opcodes (such as 'LD'), 25 operand
key words (such as 'S'), and 693 legitimate combinations of
opcodes and operands in the Z80 instruction set. The full set of
these opcodes is documented in the "Z80 CPU TECHNICAL MANUAL" and
listed in Appendix A of this manual. The ASMB-80 Assembler
allows one other opcode which is not explicitly shown in the Z80
CPU Technical Manual:

IN F,(C) ;SET THE CONDITION BITS ACCORDING

;TO THE CONTENTS OF THE PORT DEFINED BY THE C-
REGISTER

Table 3-1. ASCII CHARACTER SET (7-BIT CODE)
MSD 0 1 2 3 4 5 6 7
LSD 000 001 011 100 101 110 111
0 0000 ® p 5
1 0001 A Q a a
2 0010 B R b r
3 0011 c S c s
4 0100 D T d t
7
5 0101 5 E u e u
SS f
6 0110 67 F v v
L
7 0111 7177 G W g W
77
/% ,/,’L//é;/ﬁv
8 1000 087 H X h X
// /7//// /;'
ik
I Y .
9 1001 7//9 o I Y [y
A 1010 J z z
B 1011 K (K
C 1100 L \ i |
D 1101 M) m
E 1110 N A n)
Fooo1111 0 o

NOT ALLOWED

ADDITIONAL CHARACTERS NOT ALLOWED AS
FIRST CHARACTER

3-18. PSEUDO-OPS

The following pseudo-ops are

1. ORG nn -

2. Tlabel EQU nn -

3. label DEFL nn -

4. DEFM 'aa' -

5. DEFB n -

6. DEFW nn -

7. DEFS nn -

recognized by the Assembler:

origin- sets the program counter to
the value nn.

equate- sets the value of a label to
nn in the program; can occur only
once for any label.

define Tlabel- sets the value of a
Tabel to nn in the program; may be
repeated 1in the program with dif-
ferent values for the same label.
define message- defines the contents
of successive bytes of memory to be
the ASCII equivalent code of
characters within quotes. Maximum
Tength of the message is 63
characters. Only the first 4 bytes
of the object code are shown on the
asssembly listing.

define byte- defines the contents of
a byte 1located the current program
counter address to be n.

define word-defines the contents of
a two-byte word to be nn. The least
significant byte 1is located at the
program counter address, while the
most significant byte is located at
the program counter address plus
one.

define storage- reserves nn bytes of
memory starting at the current

9.

10.

END nn

GLOBAL symbol

NAME symbol

program counter. This cannot be used
to reserve storage at the start on
end of a module.

end statement- defines the last line
of the program. The 'END' statement
is required. nn is optional and re-
presents the transfer address
(starting execution address) of the
program. The transfer address can
be used with the Relocating Linking
Loader to automatically start ex-
ecution of a loaded program. The
transfer address defaults to the
first address of the program.

define global symbol- any symbol
which is to be made known among
several separately assembled modules
must appear in this type of state-
ment. The assembler determines if
the symbol is internal (defined as a
label in the program), or external
(used in the program but not defined
as a label).

module name- This pseudo-op defines
the name of the program (source and
object). The name is placed in the
heading of the assembly Tlisting and
is placed in the first record of
the object module to identify it.
This pseudo-op is designed primarily
to facilitate future compiler de-
sign. The name of a module defaults
to 6 blanks.

3-9

11. PSECT op - program section- This pseudo-op
may appear only once in a
source module. It defines the
program module attributes for
the following operands:

REL - relocatable program (de-

fault).
ARS - absolute program. No re-
locating information is

generated in the object
module by the Assembler.
The module will be Tloaded

where it is origined.
3-19. ASSEMBLER DIRECTIVES
3-20. Assembler Directives are pseudo-ops which modify the as-

sembly listing format. They are not listed in the assembly list-
ing, but they are assigned statement numbers.

1. EJECT - eject, ejects a page of the
listing.
2. TITLE s - title, ejects a page and prints

the string S at the top of

each page as a user heading.

's' can be up to 32 characters
long.

3. LIST - listing on, turns the assembly
listing on.

4, NLIST A - listing off, turns the assembly
listing off.

3-21. OPERANDS

3-10

3-22. There may be zero, one, or two operands present in a
statement depending upon the opcode used. An operand which ap-
pears in a statement may take one of the following forms.

3-23. A generic operand, such as the Tletter 'A', which stands
for the accumulator. Table 3-2 summarizes these operands and

their meanings.

3-11

Table 3-2 GENERIC OPERANDS
A ---- A register (accumulator)
B ---- B register

C ---- C register

D ---- D register

E ---- E register

F =---- F register (flags)

H ---- H register

L ---- L register

AF ---- AF register pair

AF' --- AF' register pair

BC ---- BC register pair

DE --~~ DE register pair

HL ---- HL register pair

SP ---- Stack Pointer register
$ ---- Program Counter

[---- I register (interrupt vector MS byte)
R ---- Refresh register

IX ---- IX index register

IY -~=- 1Y index register

NZ ---- Not zero

Z ---- Zero

NC ---- Not carry

C =---- Carry

PO ---- Parity odd/not overflow
PE ---- Parity even/overflow

P ---- Sign positive

M ---- Sign negative

3-24. A constant. The constant must be in the range 0 through

OFFFFH.

1.

It can be in the following forms:

Decimal - this is the default mode of the Assembler.
Any number may be denoted as decimal by fol-
lowing it with the letter 'D'.
E.qg., 35,249D.

Hexadecimal - must begin with a number (0-9) and end
with letter 'H'.
E.q., OAF1H.

Octal - must end with the letter 'Q' or '0O'. " E.g.,
377Q, 2770

Binary - must end with the letter 'B'. E.g., 0110111B

ASCII - letters enclosed in quote marks will be con-

verted to their ASCI! equivalent value. E.g.,
'A' = 41H

3-25. A Tabel which appears elsewhere in the program. Note that

labels cannot be defined by labels which have not yet appeared in

the user program (this is an inherent limitation of a two pass as-

sembler).

-~ o= = = T

EQU
EQU
EQU
EQU
EQU
EQU

H

I

7 IS NOT ALLOWED.
7

I

H IS ALLOWED.

3-13

3-26. The symbol '$' is used to represent the value of the
program counter of the current instruction.

3-27. ASMB-80 EXPRESSIONS

3-28. The MOSTEK ASMB-80 Assembler accepts a limited set of ex-
pression types in the operand field of a statement. All expres-
sions are evaluated from left to right. Table 3-3 shows the al-
lowed operators. Parentheses may be used to ensure correct ex-
pression evaluation.

3-14

Table 3-3 ALLOWED OPERATORS IN ASMB-80 ASSEMBLER
Unary plus (+)
Unary minus (-)
Addition (+)
Subtraction (=)
Shift right 8 (.)

The dot operator (.) may be placed at the end of an
expression. Its affect is to shift a 16-bit value
right by 8 bits so the most significant byte can be
accessed. Zeros are shifted into the higher order

bits.
Examples:
-5 = OFFFBH
+5 = 0005H
-5-(4+41) = OFFF6H
OAABBH = OAABBH

OAABBH. 00AAH

3-15

3-29. Note that enclosing expression wholly in parenthese
indicates a memory address. The contents of the memory address
equivalent to the expression value will be used as the operand
value. Integer two's complement arithmetic is used throughout.

3-30. The negative (2's complement) of an expression or quantity
may be formed by preceding it with a minus sign.

3-31. In doing relative addressing, the current value of the
program counter must be subtracted from the label if a branch is
to be made to that label address. E.g.:

JR NC,LOOP-$

«..will jump relative to 'LOOP'

3-32. The allowed range of an expression depends on the context
of its use.

3-33. An error message will be generated if this range is
exceeded during its evaluation. In general, the limits on the
range of relative jump ('JR') are -126 bytes and +129 bytes. Up
to 20 total operators, constants, plus labels may appear in one

expression.

3-34. For relocatable programs, the Assembler will output
relocation information in the object module for those addresses
which are to be relocated by the Tloader. Expressions are
determined to be relocatable addresses or non-relocatable
constants according to the following rules:

<constant> <operation> <constant>=<constant>
<constant> <operation <relocatable>=<relocatable>
<relocatable> <operation> <constant>=<relocatable>

3-16

<relocatable> <operation> <relocatable>=<constant>

Example:
I EQU 1 ;CONSTANT DEFINITION
DEFW I ;CONSTANT WHICH WILL NOT BE RELOCATED
LAB EQU $ sRELOCATABLE DEFINITION
JP LAB ;RELOCATABLE OPERAND
JR LAB-$;CONSTANT OPERAND
JR 45+ (1) ;CONSTANT OPERAND

External symbols are not allowed in expressions. For relocatable
programs, external symbols are always considered to be reloca-
table address constants.

3-35. COMMENTS

3-36. A comment is defined as any characters following a
semicolon in a line. A semicolon which appears in quotes in an
operand is treated as an expression . rather than a comment
starter, Comments are ignored by the assembler, but they are
printed in the assembly Tisting. Comments can begin 1in any
column. Note also that the ASMB-80 Assembler ignores any
statements which have an asterisk (*) in column one.

3-37. OBJECT OUTPUT

3-38. The object output from the Assembler is output to channel
:00. The object output of the Assembler can be loaded by an

3-17

Intel hexadecimal loader for nontinkable, nonrelocatable
programs. Extra information is inserted into the object output
for linkable and relocatable programs for wusing the MOSTEK
Relocating Linking Loader. For a complete discussion of the
object format, see Appendix B.

3-39. ASSEMBLY LISTING OUTPUT

3-40. The assembly 1listing is output to channel :5S0. The user
must insert tabs in the source to obtain columns in the assembly
listing. The value of each equated symbol will be printed with a
pointer (>) next to it. Any address which is relocatable will be
jdentified with a quote (') character. Macro expansions (macro
option only) will be printed with a plus (+) character next to
the statement number. The statement number and page number are
printed 1in decimal. If the 1listing option is not selected,
errors will be output on the console channel (:C0).

3-41. ABSOLUTE MODULE RULES

3-42. The pseudo-op 'PSECT ABS' defines a module to be absolute.
The program will be loaded in the exact addresses at which it is
assembled. This is useful for constants, or a common block of
global symbols, or a software driver whose position must always
be known.

3-43. This method can also be used to define a list global con-
stants.
For example:

PSECT ABS sABSOLUTE ASSEMBLY
GLOBAL AA
AA EQU 0

GLOBAL AB

3-18

AB EQU OE3H
GLOBAL AC

AC EQU 25H
GLOBAL AD

AD EQU OAF3H
END

ATl symbols in the above module will assume constant values which

may be used by any other module.

3-44.

3-45,

RELOCATABLE MODULE RULES

The following rules apply to relocatable programs.

1.

Programs default to relocatable if the 'PSECT ABS'
psuedo-op is not used or if 'PSECT REL' is specified.

Only those values which are 16-bit address values will
be relocated. 16-bit constants will not be relocated
(internal symbols are exceptions).

For example:

AA EQU 0A13H ;ABSOLUTE VALUE
LD A, (AA) ;AA NOT RELOCATED

AR EQU $;RELOCATED VALUE
LD A, (AR) ;AR WILL BE RELOCATED
END

Any 8-bit quantity, whether derived from a 16-bit address value

or not,

will NOT be relocated. For example:

B8 EQU 20H ;ABSOLUTE VALUE
LD A,B8 ;88 NOT RELOCATED

3-19

AR EQU $;RELOCATABLE VALUE

LD A,AR ;AR NOT RELOCATED

DEFB AR ;AR NOT RELOCATED

LD A, (IX+AR) ;AR NOT RELOCATED

END
3-46. Labels equated to 1labels which are constants will be
treated as constants. Labels equated to labels which are
relocatable values will be relocated. Internal symbols are

exceptions. For example:

B8 EQU 20H ;ABSOLUTE VALUE
c8 EQU B8 ;ABSOLUTE VALUE
LD A,(C8) ;C8 WILL NOT BE RELOCATED
AR EQU $;RELOCATABLE VALUE
BR EQU AR ;RELOCATABLE VALUE
LD A, (BR) ;BR WILL BE RELOCATED

3-47. Internal symbols will always be marked relocatable. This
point is important because an internal symbol will be relocated
even though it Tlooks 1like a constant. This point is discussed
further, below.

3-48. External symbols will always be marked relocatable.

3-49. GLOBAL SYMBOL HANDLING

3-50. A global symbol is a symbol which is known by more than
one program. A global symbol has its value defined in one
program. It can be used by that program any other program. A
global symbol is defined as such by the GLOBAL Pseudo-op. For
example:
GLOBAL SYM1
;'SYM1' is a symbol which is defined as "global".

3-20

3-51. An internl symbol is one which is defined as global and
also appears in the 1label field of a statement 1in the same
program. The symbol value is thus defined for all programs which
use that symbol.

3-52. An external symbol is one which is defined as global but
does NOT appear in the label field of a statement in the same
program. For example:

GLOBAL SYM1

CALL SYM1

END
-'SYM1' is an external symbol
GLOBAL SYM1
SYM1 EQU
LD A,(SYM1)

END

-'SYM1' is an idinternal symbol. Its value is the ad-
dress of the LD instruction.

3-53. If these two programs were loaded by the MOSTEK Relocating
Linking Loader, all global symbol references would be "resolved".
This means that each address in which an external symbol was used
would be modified to the value of the corresponding internal sym-
bol. The loaded programs whould be equivalent (using one ex-
ample) to one program written as follows.

3-21

CALL SYM1

SYM1 EQU
LD A,(SYM1)

END

3-54, Global symbols are used to allow large programs to be
broken up into smaller modules. The smaller modules are used to
ease programming, facilitate changes or allow programming by dif-

ferent members of the same team.

3-55. The ASMB-80 Assembler has several rules which apply to
global symbols. The examples in the following paragraphs should
be studied carefully.

3-56. GLOBAL SYMBOL BASIC RULES

Both passes of the Assembler must be done if global symbols are
used. This restriction exists because symbols are defined as
global during pass 1, and an external reference link list is
built up during pass 1.

1. Global symbols follow the same syntax rules as Tlabels.
They may not start with a number(0-9) or a restricted
character, They may not contain restricted. For ex-

ample:
allowed

GLOBAL SYMI1

GLOBAL A&&

GLOBAL B

3-22

not allowed

GLOBAL 1AB ;STARTS WITH A NUMBER
GLOBAL A=B ;CONTAINS A RESTRICTED CHARACTER

An external symbol may not appear in an expression.

For example:

GLOBAL SYMI1 ; EXTERNAL SYMBOL
CALL SYM1 ; 0K

LD HL, (SYM1) ; OK

LD HL,SYM1+25H ;NOT ALLOWED

JP SYM1+2 ; NOT ALLOWED

An external symbol is always considered to be a 16-bit
address; therefore, an external symbol may not appear
in an instruction requiring an 8-bit operand. It may
not be used for a displacement or an 8-bit constant.
For example:

GLOBAL SYM1 . EXTERNAL SYMBOL
CALL SYM1 ; 0K

LD A,(SYM1) ; 0K

LD A,SYM1 sNOT ALLOWED

LD (IX+SYM1),A sNOT ALLOWED

BIT SYML,A sNOT ALLOWED

In relocatable assembly, a global symbol 1is always
considered to be a relocatable 16-bit address. This
applies to both internal and external symbols. It
does not apply to absolute assemblies (PSECT ABS).

By definition an external symbol cannot also be an
internal symbol.

For a set of modules to be loaded, no duplication of
internal symbol names is allowed. That is, an inter-
nal symbol can be defined only once in a set of mod-
ules to be loaded together.

3-57. GLOBAL SYMBOL ADVANCED RULES

1.

An external symbol cannot appear in the operand field
of a 'EQU' or 'DEFL' pseudo-op. Thus, an external
symbol must be explicitly defined as global. For ex-

ample:

GLOBAL SYM1 ; EXTERNAL SYMBOL
SYMZ2 EQU SYM1 ;NOT ALLOWED
SYM3 DEFL SYM1 ; NOT ALLOWED

A1l references to an external symbol are marked re-
locatable, except the first reference in a program.
The object code for these references is actually a
backward 1ink 1list, terminating 1in the <constant
OFFFFH. (See definition of object format in
Appendix-B). This rule does not apply to absolute as-
semblies.

An internal symbol is always marked relocatable, ex-
cept for absolute assemblies. This point is import-
ant, because an internal symbol will be relocated even
though it looks like a constant. For example:

PSECT REL ;RELOCATABLE MODULE

GLOBAL YY ;s INTERNAL SYMBOL

YY EQU OAF3H ;YY WILL ALWAYS BE MARKED RE-
LOCATABLE.

LD A,(YY) ;YY WILL BE RELOCATED WHEN
LOADED.

;THE ABOVE INSTRUCTION LOADS THE CONTENTS OF THE AD-
DRESS YY,

;RELOCATED, INTO THE A-REGISTER.

OR

PSECT ABS ;ABSOLUTE ASSEMBLY

GLOBAL YY s INTERNAL SYMBOL

YY EQU OAF 3H ;YY IS AN ABSOLUTE VALUE

LD A, (YY) ;THIS LOADS THE CONTENTS OF AD-
DRESS
;O0AF3H INTO THE A-REGISTER

END

4. A11 other rules that apply to local symbols also apply
to internal symbols.

3-58. USE OF THE 'NAME' PSEUDO-0P

3-59, The NAME pseudo-op can be used to identify both a source
module and an object module. The name of the module being as-
sembled can be assigned by the NAME pseudo-op. The name s
placed in the heading of the assembler listing. The name is also
placed in the first record of the object output. The first
record is the module definition record (record type 05), and it
is described in Appendix B.

3-60. USING THE ASSEMBLER

3-61. The ASMB-80 Assembler is resident in ROM starting at
location COOOH. The user first prepares his source module using
the Editor on paper tape or magnetic tape. To use the Assembler,
the user must first assure that the channels are properly
assigned. Table 3-4 summarizes how the channels are used by the
Assembler. The typical system uses a paper tape reader for
source input, a paper tape punch for object output, and a Tine
printer for source output (the assembly 1listing). The following

DDT-80 command sequence assigns the corresponding device drivers
to the channels.

.M :00(CR)
:00 aaaa :PP(CR)
-assign paper tape punch driver to object output chan-
nel.
:SI aaaa :PR(CR)
-assign paper tape reader driver to source input chan-
nel.

:S0 aaaa :LP(CR)

-assign line printer driver to source output channel.

Table 3-4 CHANNEL ASSIGNMENTS FOR THE ASSEMBLER

:CI --- console input

:C0 --- console output

:0I --- not used

:00 --- object module output
:SI --- source module input

:S0 --- assembly listing output

The user then enters the following command from the DDT-80
Operating system:
.E :AS(CR)
where E is the DDT-80 command for execute, and AS is the mnemonic
which stands for the Assembler starting address. The Assembler
then outputs the following message to the console output device:
OPTIONS?
Options are described in paragraph 3-63. If no options are to be

entered, the user enters "carriage return”.

3-62. If memory mapping has not been selected (see Section 5 of

3-26

this manual), then the Assembler outputs the following message:

SYMBOL TABLE LIMITS?
If the default symbol table Timits are to be used, the user
enters "carriage return". The default symbol table Tlimits are
300H and OEOOH, allowing 312 symbols 1in one program. The
Assembler then reads the source module for pass 1. During pass
1, the symbol table and external references are defined.
The name of the module is defined, and the external symbol 1ink
list is built. At the end of reading, the following message is
output to the console output device:

READY PASS2?
The user then reloads the source module for pass 2 of the As-
sembler. This may involve reloading paper tape into a paper tape
reader or rewinding a magnetic tape. Then the user depresses any
key on the console to start pass 2. During pass 2, the assembly
listing and object output are output. At the end of pass 2, the
following message is output on the console output device:

ERRORS = nn

where nn is the total number of errors (in decimal) which

were found by the Assembler.

Control is then returned to the DDT-80 monitor.

3-63. OPTIONS

3-64. The Assembler allows the user to select the following op-

tions from the console. When the Assembler outputs the message:
OPTIONS?

the user may enter any of the following codes. Each Tletter en-

tered will be automatically separated by a blank. A carriage re-

turn terminates the options.

K -- No 1listing. This suppresses the assembly 1listing
output.
L -- Listing (default). The assembly listing is output to

the source output channel (:S0).

3-27

N -- No object output. This suppresses object from the
Assembler.

0 -- Object output (default). The object output is sent
to the object output channal (:00).

P -- Pass 2 only. This selects and runs only pass 2 of the

Assembler. The symbol table is left intact from a
previous run of pass 1 of the Assembler.

Q -- Quit. This returns control to the DDT-80 Operating
System.

R -- Reset the symbol table. This option clears the sym-
bol table of all previous symbol references. This
operation is automatically done for pass 1. It s
used primarily for single pass operations (described
in paragraph 3-74).

S -- Symbol table. The symbol table is normally not out-
put by the Assembler. This option prints a symbol
table at the end of the assembly listing.

. -- Abort the command, default the options, and allow the
user to try again.

For example:
OPTIONS? P N S(CR)
- the user has selected pass 2 only, no object out-
put, and a symbol table.

3-65. ERROR MESSAGES

3-66. Any error which is found denotes the assembly listing. A
single letter abbreviation is printed in the left margin next to
the statement which is in error. Table 3-5 defines the Assembler
error abbreviations.
For example:
0 H2: LC A,B
-designates an opcode error.

N

Table 3-5. ASMB-80 ERROR ASSEMBLER ABBREVIATIONS

invalid operator error. Anoperator exists in an ex-
pression which is not allowed by the Assembler.

invalid digit error. A" number exists in an operand
which has a digit or character in it which is not al-
lowed.

external symbol usage error. An external symbol s
being used in an expression or as the operand of an EQU
or DEFL pseudo-op. This is not allowed.

Symbol table full. The symbol table is full as the re-
sult of too many symbols being defined. Note that the
symbol table limits are as follows:

default: 312 symbols.

auto memory mapping, 4K system: 28 symbols

auto memory mapping, 16K system: 369 symbols
Each symbol uses 9 bytes of memory . All unique symbol
names used in expressions, defined as Tlabels, and de-
fined by the GLOBAL pseudo-op are stored in the symbol
table. This is an 'abort' error.

invalid operand error. An invalid operand or com-
bination of operands exists for the given opcode.

label error. An invalid character exists in a Tlabel or
symbol. Table 3-1 shows which characters are allowed in
a symbol. This error can also occur for certain expres-
sions when the Assembler scans for a symbol.

Multiple definition error. A symbol was defined in the
label field of the source program more than once. This
error can be circumvented by using the 'DEFL' pseudo-op.

label required error. An EQU or DEFL pseudo-op is being
used without a label in the statement.

opcode error. An invalid opcode exists in the opcode
field of the source statement.

PSECT error. The PSECT pseudo-op exists more than once
in the same program. This is not allowed.

unbalanced quote error. An expression has wunbalanced
quotes in it.

range error. An operand exists which 1is out of the
range allowed for the given opcode. Example: the range
of a jump relative (JR) opcode is -126 through +129.

S --

This

3-29

syntax error. An error in an expression exists.
This error usually refers to unbalanced parentheses
or extra characters in the expression.

truncation of input error. The input statement ex-
ceeded 127 characters in length which is the maximum
allowed by the Assembler.

undefined symbol error. A symbol used in an expres-
sion is undefined. Note that a symbol cannot be de-
fined in terms of a symbol which has not yet appeared
in the program. Example:

I EQU H

H EQU J

J EQU 7 ...IS NOT ALLOWED
I EQU 7

H EQU I

J EQU H «e. ALLOWED

is an inherent limitation of a two-pass assembler.

External symbols must be defined by the GLOBAL pseudo-op.
In single pass operation, forward references and global
symbols will be flagged with this error.

vV --

overflow error. An expression caused an overflow
error in the Z80 CPU when it was evaluated. This can
occur for any expression involving arithmetic oper-
ators.

memory mapping error. The Symbol Table l1imits must
be defined as:

300HS Tower Timit,

lower lTimit<upper limit.

These errors are 'abort' errors. They will abort the
assembly process and print the message on the console
device,

3-30

3-67. ABORT ERRORS

3-68. Several errors abort the Assembler when they are
encountered. These are noted in Table 3-5. Abort error messages
are outut to the console output device. Control is immediately
returned to the DDT-80 Operating System. Abort errors may occur
during pass 1 or pass 2. For example:

ABORT ERROR = F
- means the symbol table is full. The user must modify

“

the size of the symbol table and retry the assembly.
3-69. ADVANCED OPERATIONS
3-70., CHANGING THE SYMBOL TABLE SIZE

3-71. The symbol table of the Assembler may be placed anywhere
in the RAM by the wuser. The symbol table defaults to the
following RAM locations 0300H through OEOQOOH. These range allows
312 symbols to be defined in one program. The user may enter up
to two operands to change the size of the symbol table when the
Assembler asks for the symbol table Timits:

SYMBOL TABLE LIMITS? opl, op2. opl is the address (hexa-
decimal) which defines the start of the symbol table. It must be
greater than or equal to 300H. op2 defines the end of the symbol
table. It must be greater than opl. ©Each symbol uses 9 bytes of
RAM. The length defined by (op2-opl) does not have to be evenly
divisible by 9. For example: if the user enters: SYMBOL TABLE
LIMITS? 500,700, then the symbol table will use ram locations
500H through 700H, and up to (700H-500H) /9 = 56 symbols may be

defined in a source module to be assembled.

3-72. USING ONE I/0 DEVICE WITH THE ASSEMBLER

3-73. The ASMB-80 Assembler may be used with only one 1/0
device, such as a teletype. The source input channel is assigned
to the teletype tape reader driver (reader step control s
required). The object output channel is assigned to the teletype
printer as follows:

teletype
.M :00(CR)
:00 aaaa :TT(CR
. -assign object output to teletype.
:SI aaaa :TR(CR)
-assign source input to teletype reader.
:S0 aaaa :TT(CR
-assign source output (listing) to teletype.
aaaa aaaa .

Then the Assembler 1is executed with the option 'K' for no

listing:
.E :AS(CR)
OPTIONS?

Pass 1 and pass 2 are done. The object output will be output on
the teletype during pass 2. The Assembler is then executed one
more time with option 'N' for no object and 'P' for pass 2 only:
.E :AS(CR)
OPTIONS? PN(CR)
The source paper tape is read once more during this pass, then
the Tisting is printed on the teletype.

3-74. PASS 2 ONLY OPERATION (SINGLE PASS OPERATION)

3-75. The ASMB-80 Assembler can be wused as a single pass

3-32

assembler under the following restrictions:

1. No GLOBAL symbols are defined.
2. No forward symbol references occur.
3. The NAME pseudo-op is not in the source.

3-76. The Assembler will correctly assemble 7Z80 programs under
the above restrictions during pass 2. This is useful for as-
sembling data tables and certain types of programs. The As-
sembler symbol table should be initiatlized to assure proper
operation in this mode. This may be done by using the 'R' option
to reset the symbol table prior to assembling using pass 2 only
as follows:
.M :00(CR)
:00 aaaa :PP(CR)
-user assigns object output to paper tape punch
:S1 aaaa :PR(CR)
-user assigns source input to paper tape reader
:S0 aaaa :LP(CR
-user assigns source output to line printer
aaaa aaaa
.E :AS(CR)
OPTIONS? P R(CR)
-user selects pass 2 only operation and resets the
symbol table prior to assembly.

The symbol table initialization described above only has to be
done after power up and after symbols are left in the table from
a previously assembly.

3-77. USING THE ASSEMBLER AS A LEARNING TOOL

3-33

3-78. The ASMB-80 can be used as a 280 learning tool. Z80 op-
codes and operands can be assembled from the console device to
help the novice become acquainted with the instruction set. In
this mode, pass 2 alone is run with all I/0 directed to the con-
sole device. The user can enter source statements from the con-
sole keyboard. The assembled listing is directed back to the
console output device, so the results of assembling each state-
ment can be seen.

3-79. To perform this operation, a special driver must be as-
signed to the console input channetl. The driver 1is shown 1in
Figure 3-1. The user assigns the channel as follows:

.M :00(CR)
:00 aaaa :TT(CR)
- assign object output to console output device (e.g.,
teletype)
:ST aaaa (ECHO)(CR)
- assign source input channel to address of special
driver (Figure 3-1)
:S0 aaaa :IT
- assign source output to console output device (e.g.,
teletype).

adaaa dadade.

The assembler is executed with option 'P' (pass 2 only). [If you
do not wish to see the object output use option ‘N' (no object
output). The symbol table should be reset using the 'R' option
as follows:

.E :AS(CR)

OPTIONS? N P R(CR)

3-80. Note that the same restrictions apply to this mode of

3-34

operation as to pass 2 only operation:

1. No GLOBAL symbols.

2. No forward symbol

3. No NAME pseudo-op.

Figure 3-1

FLGURE Z-1 ECMO LR IVER
LR OEIECT ST SnIRCE

A 1 T TN] e S

TR CDPEES

= LR R G TR T

U I
e

o
By
by
ol
B

references.

STHTEMENT BETRSE

{ZHAREH

¥

ECHO DRIVER

MOz TerR F

GHTHER THE CHARERCTER
AL .
EATHD THE

It SEEYBEORRD THNFUT DEIVER

5T FERIMTER OUTEUY
FOFOR ST BEOVE [F TELETYFE IS

Prizremls OF S TLENT 23a

PERVE CHAREARCTER
SUHARERCTER THTO A-REG
JLUARREIAGE RETURMNT

SEm DUITRUT CRORMD LF
PEESTORE CHARACTER

FEETURNM TO CALLER

W O S

3-81. ASSEMBLING SEVERAL SOURCE MODULES TOGETHER

3-82. Several source modules
"END’
last module. Each source tape

one object module. The

start with a comment record

in

may be assembled together to form
pseudo-op must appear only in the
to be read except the first should
which the first characer is an STX

BY

b »

3-35

control character (02H), (e.g. <STX> ;comment). Each module ex-
cept the Tlast one should end with an ETX control character
(03H)in a comment e.g., (e.g. ;<ETX>). When the Assembler reads
the ETX character, it will continue reading the tape until it
runs out of the reader. However, all information except an STX
character will be ignored. The next source tape in sequence may
be loaded. The Assembler will continue reading but ignoring
characters until an STX character is encountered. After STX or
'"END' pseudo-op. (AN EOT character, 04H, can be used in place
of the "END' pseudo-op to terminate the last source module).

3-80. Note that, for normal operation, all source tapes must be
read in sequence for both passes of the assembler.

3-81. MACRO OPTION

3-82. The ASMB-80 Assembler can be expanded to handle macros.
The option 'M' activiates 4 1linkages to a RAM-loadable macro
handler program. The macro handler program must first be loaded
into RAM before the Assembler 1is executed. The macro option can
be used only with 16K or more of RAM.

3-83. Complete documentation on linking a macro handler to the
Assembler 1is included in the ASMB-80 Source Listing, MOSTEK Part
Number 78536. MOSTEK does not supply a macro handler package for
this version of the ASMB-80 Assembler.

ERRATA

1. The displacement in indexed addressing ((IX+D), (IX-d),
(IY+d), (IY-d))is not checked by the Assembler for valid
range for the following instructions: RLC, RL, RRC, RR,
SLA, SRA, SRL.

3-36

2. The Assembler will not properly assemble a series of
'DEFM' pseudo-ops if the No object ('N') option is
selected. The result is that control of the system is

lost and 'reset' must be performed.

SECTION 4

ASMB-80 RELOCATING LINKING LOADER

4-1. INTRODUCTION

4-2., This section describes the operation of the ASMB Relocating
Linking Loader. This Loader will load and 1ink both relocatable
and non-relocatable programs produced by the ASMB-80 assembler.
Non-Tinkable and non-relocatable programs can also be loaded by
the Relocating Linking Loader or by the absolute loader in DDT-80
(See Para. 1-57).

4-3, The Relocating Linking Loader enables separately assembled
object modules to be 1inked together and to be relocated to any
place in user's RAM memory. This enables the program designer to
utilize a modular approach in software development. A Tlarge
program, for example, can be created as a collection of relative
short individual modules. These modules <can be separately
assembled, debugged, and then combined into a complete program
when loaded. In many cases this approach can significantly
reduce the amount of assembly and debug time required during
program development.

4-4, The Relocating Linking Loader automatically 1links global
symbols which provide communication or linkage between program
modules. A global symbol is a symbol which is defined within a
program module but can also be referenced by other program
modules. As object programs are Tloaded, a table containing
global symbol references and definitions is built up. At the end
of each module, the Loader resolves all references to global
symbols that have been referenced. The symbol table can be
printed to list all global symbols and their load addresses. The
number of object modules which can be loaded by the loader is
limited only by the amount of RAM available for the modules and

the symbol table.

4-5, The beginning and ending addresses of each program module
are printed on the console device as it is loaded. The transfer
or execute address as defined by the Assembler "END" pseudo-op is
also printed for the first module loaded. The Loader execute
command(E) can be used to automatically start execution at the
transfer address.

4-6. The Relocating Linking Loader allows loading of both re-
lTocatable and non relocatable modules. Non-relocatable modules
will never be relocated and are always loaded at therir starting
address (ssss) as defined by the ORG pseudo-op during assembly.
Relocatable modules are located start at an offset address plus
module starting address (ssss). The offset address is specified
as an operand for the load command and if not specified defaults
to the end of the previously loaded module. The PSECT pseudo-op
of the Assembler can be wused to define a module as either
relocatable or absolute (non-relocatable).

4-7. COMMANDS FOR RELOCATING LINKING LOADER

4-8., LOADER ENTRY. To enter the Relocating Linking Loader from
DDT-80 the wuser types the 1load command L and one or more
operands. If no operands are specified, the absolute loader in
the operating system is executed to load a program not requiring
relocation or 1linkage to other modules (see Para. 1-57). The
operand addresses (aaaa and bbbb) are in hexadecimal and can be
up to 4 digits in length (see Para. 1-22. for syntax).

.L aaaa bbbb(CR) aaaa
bbbb

I}

Offset Address
Origin of global symbol table.

If this address is not specified

it defaults to an address

specified by the Loader (see
" Para. 4-12).

NOTES

4-9.

BEGINNING ADDRESS for an Absolute Module = ssss
BEGINNING ADDRESS for a Relocatable Module = aaaa+ssss
ssss = Module starting address as defined by ORG
pseudo-op.

Space for the global symbol table 1is allocated down-
ward in memory from the table orgin (see Para. 4-11).
The table is initialized after execution of the L com-
mand from DDT-80.

LOADER COMMANDS. The loader commands are as follows:

]-.

*L aaaa(CR) Load Next Program Module
BEGINNING ADDRESS for an
Absolute Module = ssss.
BEGINNING ADDRESS for a
Relocatable Module =
aaaatssss. If aaaa is not
specified, it defaults to
the end of the last module

loaded.

*T(CR) Print Global Symbol Table
(see Para.4-13).

*E(CR) Start execution at the EX-

ECUTE or transfer address
defined by the END pseudo-
op of the first module

loaded.

*, Return to DDT-80 Operating
System.

*Any other Returns Toader prompting

Command character(*).

4-4

NOTES:
1. Loader prompting character

1]
*

2. DDT-80 prompting character .
4-10. LOADER SYMBOL TABLE

4-11. In the linking process the Relocating Linking Loader
builds a symbol table of global references between program mod-
ules and resolves these references as each individual module 1is
loaded. The number of modules that can be loaded by the Loader
is limited only when the size of all the linked modules combined
plus the global symbol table exceeds th user's RAM memory space.
Space for this table is allocated dynamically downward in memory
from its origin.

Table Length = (N+1)X11 N=Number of unique global symbols

4-12. The symbol table origin is specified by either the user as
the second operand of the load command or by the Loader if the
second operand is not entered. When the Loader specifies the
origin it first determines if the system is in the auto-mapping
mode (see Para. 5-7). If the system is in the auto-mapping mode,
the table origin is placed at location ENDC. ENDC is a location
in memory which is a distance D up from the bottom of memory. D
is equal to 25% of the total RAM memory length (E.G., ENDC=O0OFFFH
for a 16K system). If the system is not in the auto-mapping
mode, the table origin is then placed at the top of RAM memory
minus 512 bytes. The space of 512 bytes is reserved for user I1/0
drivers.

4-13. At any time during a load sequence the user can Tist the
global symbol table with the T command printing each symbol and
its address on the console device. Global symbol addresses which
are unknown are marked undefined (UNDEF=**%%), A global symbol

is defined when a module is loaded which contains the symbol in
the label field and also a reference of the symbol by the GLOBAL
pseudo-op.

4-14. The end address of the global symbol table varies dynamic-
ally depending upon the total number of global symbols defined
during the 1load process. If during a load sequence, the user
wishes to know the position or Tlength of the symbol table in
memory, he <can vreturn to the DDT-80 operating system and
interrogate (M command) four locations in scratchpad RAM.
Locations FFO4H and FFO5H contain the symbol table beginning or
origin address and locations FFOAH and FFOBH contain the symbol
table address. Since space for the table is allocated downward
in memory, the beginning address will always be greater than the
ending address.

4-15. REENTERING THE LOADER TO PRESERVE THE SYMBOL TABLE

4-16. To reenter the Relocating Linking Loader without modifying
the existing symbol table the user can execute address DBFBH us-
ing the E command. It should be noted that when the Loader is
entered initially from the operating system using the L command
the table end address 1is reset to indicate zero symbol entries.
This ~causes any table from a previous 1load sequence to be
overwritten. The reentry point which does not alter the existing
symbol table can often be useful. After executing a program, for
example, the user may wish to print out the existing global
symbol table or load a program module which was accidently omit-
ted. It should be noted that the execute or transfer address of
the first module loaded is not saved upon exit from the loader.
On reentry this causes the loader (E) command to be ignored.

4-17. LOADER ERROR MESSAGES. The loader error messages are de-

fined as follows:

Number Comment Return To
1 Checksum Loader
2 Double definition of a Loader

g1pba1 symbol

3 Kftempt to overwrite load Operating System
er symbol table

4 Attempt to load outside Operating System
of available memory

5 Symbol table full. This Operating System
is caused by the end of
the symbol table reaching
the bottom of RAM memory
(0000H).

4-18. Errors which return to the loader are classified as non-
fatal with the 1loader symbol table remaining intact allowing
continuation of the load sequence. However, errors which return
to the operating system are fatal and the loading process must be
restarted from the beginning with the first module.

4-19. As modules are read global symbol definitions and re-
ferences are placed in the symbol table. A global symbol 1is
defined by a module if it occurs 1in the Tlabel field of the
module. A global symbol is referenced by a module if it occurs
in the operand field. A global symbol followed by an ERROR 2
message is printed by the Loader if during the process of loading
a module, a global symbol definition is encountered, which
already existed in the table from a previously loaded module,
(see Example 3 Para 4-26). In this case the second definition of
the symbol is ignored because the previous definition could have
been used to resolve global references from other modules. ERROR
2 can also occur. When a program is accidently loaded twice.

4-20 1If a checksum error (ERROR 1) occurs in a data record, the
address of the next location above where the last byte of the
record was stored is printed on the console device. This gives
the wuser the capability to correct the data in memory wusing
DDT-80 if he does not wish to reload the module. If a user
decides to reload a program after a checksum error in a data
record he should always reload the module at the same offset that
was used by the initial load. This is required when the module
contains global symbol definitions because the second definition
of the global symbols will be idignored during the reload (see
Para. 4-19). In this <case ERROR 2 messages for double
definition of global symbols should be ignored.

4-21. If no addresses are printed out and a checksum error
occurs, then the error was detected in a non-data type record
(External, Internal, relocating, EOF of Mod Def). In this
situation in some cases the module can be reloaded at the same
offset address and the proper linkage will be obtained. However,
if the checksum error was caused by error in global symbol
definition (Internal Record) reloading would not generate the
proper linkage. To safeguard against this case it is recommended
that if a checksum error occurs that 1is not in a data record,
then the load sequence should be started over at the beginning
from DDT-80 (see Para. 4-8) initializing the global symbol table.

4-22. LOAD SEQUENCE EXAMPLE

4-23. Commands entered by the operator are followed by a
terminator indicating a carriage return.

4-24, EXAMPLE 1 Three relocatable modules each having an
origin of O0000H are loaded and 1linked together starting at the
load address 0100H.

.L 0100(CR)

SYM

BEG ADDR 0100
EXECUTE 0140
END ADDR O3FF
UNDEF SYM 04

BINDEC
ECHO
WRCHR

*T(CR)

BOL TABLE (UNDER=****)
ASBIN *kkx
ENTRY 0140
SQRT 02A6
*L (CR)

BEG ADDR 0400
END ADDR 059F
UNDEF SYM 01
*L (CR

BEG ADDR 05A0
END ADDR 0800
UNDEF SYM 00
*T(CR)

SYMBOL TABLE

ASBIN
ENTRY
SQRT

*I

(UNDER=****)

01A0

* %k k%

0180

CRLF
PTXT

024C

*k k%

DIV
RDCHR

0430 BINDEC O1A0 CRLF 024C DIV

0140
02A6

ECHO

WRCHR

0400

0180

PTXT

04B0

RDCHR

**kk %k

0123

05A0
0123

EXAMPLE 2

A non-relocatable module (ORG=0500H) is loaded
followed by a relocatable module (ORG = 0100H).

.L 0(CR)

BEG ADDR 0500
EXECUTE 0500
END ADDR 063E
UNDEF SYM 02
*| (CR)

BEG ADDR 073F
EXECUTE 073F
END ADDR 0810

*E (CR)

4-26.

.L 0600(CR)
BEG ADDR 0600

EXECUTE 0600
END ADDR 072F
UNDER SYM 02

*L (CR)

0750 **** FRROR 1

BEG ADDR 0730
EXECUTE 0730
END ADDR 07AO0

Example 3

Two relocatable modules (ORG=0000H) are loaded
but a checksum error (ERROR 1) is encountered
in a data record while reading the second mod-
ule. After correcting a problem with the tape
reader the second module 1is reloaded at the
same Offset Address. During the reload of mod-
ule 2 ERROR 2 (Double Definition of a global
symbol) should be ignored.

4-10

UNDEF SYM 00

*L 0730(CR)

SUB1 **** ERROR 2

ASBIN ****ERRQOR 2

BEG ADDR 0730

EXECUTE 0730

END ADDR 07AO

UNDEF SYM (0 ,

*E (CR) Start Execution of Loaded programs at EXECUTE
Address 0600H.

5-1

SECTION 5

ASMB-80 RAM-BASED OPERATION

5-1. INTRODUCTION

5-2. The ASMB-80 Editor, Assembler and Loader may operate
directly on data stored in RAM. This type of operation
eliminates the more time consuming intermediate steps of
inputting and ouputting data from an external media (e.g., paper
or cassette tape). The key to RAM-based operation is to keep
program modules relatively small so both the source and object
modules can be kept in RAM at the same time (see figure 5-1).
During RAM based operation it 1is also recommended that the
porgram source be backed up on an external media after major
editing changes. This will prevent loss of the source in case of
accidental over-writing during execution of the program load

module.
5-3. CONCEPTS

5-4, The Editor works on a source buffer in RAM. This buffer is
updated as editing progresses. At the end of an editing session
it is usually dumped to an external media. The Assembler then
reads the external media (e.g. paper tape) twice and generates an
object module. If RAM based operation is desired, the Assembler
can also read the source buffer directly. This is accomplished
by entering the Auto Mapping Mode (see Para. 5-6) prior to
creating the source buffer and by assigning a RAM driver (INA) to
the source input channel (see Example 1 Para. 5-14).

5-5. The ASMB-80 Assembler outputs a source listing using the

source output channel (:S0) and an object a module using the
object output channel (:00). Typically the object output s

5-2

directed to an external media. If RAM based operation is used,
however, the object output can be directed to a buffer in RAM by
assigning a RAM driver (OUTB) to the channel (:00). The 1loader
can then read the object module directly from RAM by assigning a
RAM driver (INB) to the object input channel (:0I). Even though
the loader can place the load module any place in RAM it is re-
commended that it be positioned to avoid overwriting the source
or object modules. This allows the user the flexibility during
debug to go back and reload the object module or Edit and As-
semble the source without reloading.

5-6. AUTO MAPPING MODE

5-7. The RAM based operation contains resident in firmware a
memory mapping or allocation program. This program,

called MEMMAP automatically partitions memory into 3 functional
sections based on the amount of RAM available (e.g., 4k or 16K).

AUTO MAPPING MEMORY PARTITIONS
Area A - Reserved for Source Buffer in Auto Mapping Mode

Area B - Reserved for Object Buffer

Area C - Reserved for Assembler scratchpad and symbol
table and also used by loader symbol table and
program Tload module. The first section de-
signated Area A (see figure 5-1) is used as the
source buffer for the Editor and Assembler. With
a 16K RAM system its length would be 9.5K bytes
of characters. The second section, Area B 1is
used to store the object module output of the
Assembler. Area C is utilized by the Assembler
with locations 0 to 300H acting as a scratchpad
area. The assembler symbol table occupies the
space between 300H and the top of Area C. With a
16K system a maximum of 369 symbols would be al-

5-3

lowed during assembly and 28 symbols (9 by-
tes/symbol) with a 4K system. Area C is also
available for loading executable program modules
without destroying either the source on the ob-
ject modules. However the top portion of Area C
is used by the global symbol table of the Re-
locating Linking Loader. This table is a push
down stack whose size depends on the number of
global symbols wused in the program (11 by-
tes/global symbol). The top 512 bytes of RAM are

reserved for user I/0 drivers. Execution of
MEMMAP which resides at location DE79H causes the
following:

MEMMAP partitions memory by assigning values to the
pointers ENDA, ENDB and ENDC depending on the size of
the wuser's RAM space. These pointers define the
boundaries between memory sections (see figure 5-1).

ENDA = Top of RAM - 512 bytes
ENDB = 37.5% point in RAM
ENDC = 25% point in RAM

MEMMAP sets a two byte flag in scratch pad RAM (FFO6H
and FFO7H) indicating that the system 1is in the Auto
Mapping Mode. This flag is used by the Relocatable
Linking Loader to position its symbol table (see Para.
4-12) and also by the Editor to position the source
buffer in RAM. In the auto mapping mode the Editor
builds the source starting at the bottom of Area A.
If the system 1is not in the auto mapping mode, the
buffer starts at location 0.

5-4

16K
ENDA 155K

ENDB 6K

ENDC 4K

NOTES:

gg‘

Figure 5-1. AUTO MAPPING OPTION
(PUNCH)
OBJECT SOURCE
OUTPUT OUTPUT(LISTING)
SOURCE SOURCE
ﬁ INPUT OUTPUT(LISTING)
e fi
{} ASSEMBLER [)~ [LOADER
o kE
4K o 2
USER 1/0 DRIVERS] 35K NN\ N\ \ NN\ N\ 5 S N \\\\\
) 2 Z
— \\
(&) [®]
w w
8 -2
AREA SOURCE SOURCE s 3
A MODULE MODULE \
— s I.5K 6K \\‘l.sK 6K TNITs] e
MODULE MODULE
IK 4K 1K 4K
369 ASSEMBLER | 28 Y LOADER ¥
AREA SYMBOLS [SYMBOL TABLE| SYMBOLS SYMBOL TABLE
¢ \ - LOAD MODULE
0 o N o o LSCRATCHPAD J o 0
EDIT ASSEMBLER LOAD
ENVIRONMENT ENVIRONMENT ENVIRONMENT
NOTES: 1) ENDA = TOP OF RAM-512 BYTES
ENDB = 37.5 % POINT IN RAM
ENDC = 25% POINT IN RAM
2) EXECUTION OF MEMMAP PARTIONS RAM ACCORDING
TO THE FUNCTIONS ENDA,ENDB AND ENDC REGARDLESS
OF THE SIZE OF RAM (4K,I6K,24K AND ETC.)
1) ENDA = Top of RAM -512
ENDB = 37.5% point in RAM
ENDC = 25% point in RAM
2) Execution of MEMMAP partitions RAM according to the
functions ENDS, ENDB and ENDC regardless of the

size of RAM (4K, 16K, 24K and etc.).

3. MEMAP echos the message 'AUTO MAPPING MODE' to verify
the system is in that mode.

5-8. If desired the user can modify the RAM memory allocations
for the individual functional areas (A,B, and C). This is done
by modifying the values of ENDA, ENDB and ENDC with the DDT-80 M
command after executing MEMAP.

POINTER ADDRESS OF 2 BYTES POINTER
ENDA FFOOH
ENDB FFOZ2H
ENDC FFO4H

5-9. EXIT FROM AUTO MAPPING MODE

5-10. To exit Auto Mapping Mode and return to the normal oper-
ational mode the user should reset the auto mapping flag. This
is done by setting locations FFO6H and FFO/H to zero.

5-11. RAM DRIVERS

5-12. The RAM drivers (INA, INB and OUTB) can be assigned to
1/0 channels during RAM based operations. Pointers used by these
drivers and MEMMAP reside in the DDT-80 256x8 scratch pad RAM.
This RAM resides at locations FFOOH to FFFFH and should not be
utilized as a program load area by the user.

NAME ADDRESS DESCRIPTION

INA ---- DEELH --- Input driver from memory Area A.
INA read a character from RAM
area A and increments a pointer
to the next 1location from which
to read data. Source records in

INB

ouTB

DFO5H

DF1AH

area A contain line numbers de-
limited by a carriage return.
INA automatically increments its
pointer 3 times after reading a
carriage return 1in order idignore
line numbers when reading program
data. If the initialize bit (bit
3) is set in the E register, INA
will read the third location from
the bottom of Area A ignoring the
first line number. Data read by
INA is returned 1in registers D
and A.

Input driver from memory Area B.
INB reads a character from RAM
Area B and increments a pointer
to the next location from which
to read data. If the initialize
bit (bit 3) is set in the E re-
gister, then INB will read the
first or bottom location in Area
B. The data read is returned in
registers D and A.

Qutput driver to memory Area B.
OUTB outputs the character in the
D register to memory Area B. A
pointer is incremented to point
to the next location for output-
ting data. If the initialize bit
(bit 3) is set in the E register,
then the first character is out-
putted to the first or bottom

5-7

location in Area B.
5-13. EXAMPLES OF RAM BASED OPERATIONS

5-14. EXAMPLE 1. The operator wusing the Auto-Mapping Mode
edits, assembles and loads a program from RAM. The address aaaa
represents any random address previously assigned to the 1I/0
channels.

Step 1. Enter Auto-Mapping Mode by executing MEMMAP.

.E DE79(CR)
AUTO MAPPING MODE

Step 2. Editor I/0 Setup

.M :00(CR) Assign I/0 channels as follows:

:00 aaaa :PP(CR) paper tape punch to object out-
put

:S1 aaaa :PR(CR) paper tape reader to source
input.

:S0 aaaa :TT(CR) teletype typehead to source
output.

Step 3. Edit the Source Module

.E :ED(CR) Enter editor program.

>R(CR) Read the source module from
paper tape into the source
buffer.

Other Editor The user edits the source mod-

Command ule.

>P (CR) After the editing session is

complete the user saves the up-
dated source on paper tape.

At this point the source buffer exists in RAM starting at
Tocation 0600H for a 4K system or 1800H for a 16K system
(see figure 5-1).

Step 4.

Step 5.

Step 6.

Step 7.

Assembler I/0 Setup

.M :00(CR)

:00 :PP DF1A(CR) Assign the RAM output driver
QUTB which has an address of
DF1IA (see Para. 5-10) to the
object output channel.

:SI :PR DEEL1(CR) Assign the RAM input driver INA
which has an address of DEE1
(see Para. 5-10) to the source
input channel.

Assemble Source Module

.E :AS(CR) User executes the assembler.
After the assembler completes execution, the
source buffer remains intact in memory Area A and
the object is stored in Area B. It should be
noted that memory Area C is overwritten by the
assembler symbol table and scratchpad (locations
0-300H).

Loader I/0 Setup

.M :0I(CR)

.01 aaaa DFO5(CR) Assign the RAM input driver INB
which has an address of DFO05
(see para. 5-12.) to the object
input channel.

Load Object Module

.L 0100(CR) The object module is read from
memory Area B and the data is
loaded 1in Area C to prevent

5-9

overwriting of the source or
object modules.

Step 8. Execute Program

If errors occur during program execution, the
program can be edited and reassembled from the
RAM source buffer by simply returning to Step 2.
This however assumes that program execution does
not modify the source buffer in Area A.

5-15. Example 2. The user increases the source buffer length to
accommodate a source module that 1is greater than memory Area A
(see memory map figure 5-1). This is accomplished by outputting
the object module on paper tape and extending the source buffer
to the bottom of Area B which is normally reserved for the ob-
ject module during RAM based operation. In a 16K system the
source buffer would be extended by 2K bytes.

Step 1. Enter Auto-Mapping Mode by executing MEMMAP.

.E DE79(CR)
AUTO MAPPING MODE

Step 2. Expand Source buffer in Area A (see figure 5-1)
by modifying the location of ENDB to equal ENDC.

.M FF02(CR) Change ENDB Tlocation from

FF02 FF FF(CR) 17FFH to OFFFH. This

FF03 17 OF(CR) example assumes 16K of user
RAM.

Step 3. Edit the Source Module

.E :ED(CR) Enter SDB-80 editor program
>R(CR) Read the source module from an

external media.

Other Editor The user edits the source
Commands module
>PO(CR) Save updated source on paper
tape
Step 4. Assembler 1/0 Setup
.M :00(CR)

.00 aaaa :PP(CR) Assign the paper tape punch to
the object output channel.

.SI :PR DEEI(CR) Assign the RAM input driver INA
which has an address of DEE1
(see Para. 5-12) to the source
input channel.

Step 5. Assemble Source Module
.E :AS(CR) User executes assembler.
The assembler reads the expanded source buffer
and outputs the object module on paper tape.

It should be noted that the source buffer could be expanded even
further by reducing the size of memory Area C. This in turn,
however, would reduce the number of symbols allowed in the As-

sembler symbol table (9 bytes/symbol).
5-16 MEMTOP

The subroutine MEMTOP (DEBBH) which 1is called by MEMMAP is a
useful system routine that 1is available to the wuser. MEMTOP
starts at location 0O and determines the top of contiguous RAM by
writing and reading a test pattern from each location. After
each memory location 1is tested it is restored so RAM 1is not
modified on return from MEMTOP.

On Exit: ENDMEM(FF24H)=Top of RAM

HL=Top of RAM - 512
Registers Modified: A,B,DE,HL

SECTION 6
ASMB-80 SILENT 700 I/0 DRIVERS
6-1. INTRODUCTION

6-2. The I/0 interface discussed in this section allows the user
to connect the Texas Instruments Silent 700 Model 733 ASR to the
system as a terminal. The Silent 700 must be equipped with the
Automatic Device Control (ADC) option. The interface is a pure
software interface (except for the plug into the serial 1/0
socket) with routines which drive the devices on the terminal.
These device drivers enhance the use of digital cassettes and
protect the user from data 1loss. Only 300 baud operation is
supported. The following drivers are resident in ASMB-80
firmware.

1. :TK - Silent 700 keyboard driver

2. :ST - Silent 700 printer driver

3. :TI - Silent 700 playback cassette driver (tape input)

4. :T0 - Silent 700 record cassette driver (tape output)

5. ZSK - Silent 700 keyboard driver. Same as :TK except
that record and playback units are controlled.

6. ZSP - Silent 700 printer driver. Same as :ST except
that record and playback units are controlled.

6-3. USING THE INTERFACE

6-4. On power-up or reset the console in and console out chan-
nels are configured for operation with a Silent 700 as a ter-
minal. The drivers :TK and :ST are automatically assigned for Si-
lent 700 keyboard input and terminal printing. In addition the
drivers :TI and :T70 can be used for cassette tape input and out-
put operations.

6-5. The following sequence illustrates I/0 channel assignments
used when performing Silent 700 cassette tape operations. In
this configuration both the source and the object channels can
communicate with the tape units.

.M :CI(CR)

:CI :TK(CR) Address of keyboard input driver
:C0 :ST(CR) Address of printer driver

:01 aaaa :TI(CR) Address of tape input driver

:00 aaaa :TO(CR) Address of tape output driver
:SI aaaa :TI(CR) Address of tape input driver

:S0 aaaa :ST(CR) Address of printer driver

6-6. The drivers ZSK and ZSP perform the same function as :TK
and :ST except that they turn off the playback and record units
before execution. Since :TI and :T0 turn the record and playback
units off at the end of logical record, the drivers :TK and :ST
are recommended for use with the ASMB-80 Assembler, Editor and
Loader programs.

However, in an application program ZSK and ZSP should be used if
there could be a keyboard input or printer request while the tape
unit was still running in the middle of a record.

6-7. INITIALIZATION OF SILENT 700 DRIVERS

6-8. The Silent 700 drivers (:TI, :TO0, ZSK and ZSP) use a flag
byte in scratchpad RAM (location OFF26H) to determine the status
(on/off) of the playback and record units. When a S700 driver is
called with initialize bit set (bit 3 of the E register) both the
playback and record units will be turned off and the flag byte
will be reset. After the call the initialize bit is also reset
and the normal driver function is performed (see para. 6-9). If
a user wishes to write an application program utilizing the S700
drivers, it is recommended that the initialize bit be set for the

first I1/0 call

minal.

(e.g. RDCHR or WRCHR). This will guarantee that
the flag byte accurately reflects the current status of the ter-

6-9. DESCRIPTION OF SILENT 700 DRIVERS

For each driver the E register must contain the channel number.

NAME

: TK S

:ST S

:TI ——--

ADDRESS

E6B3

E67E

DF9B

DESCRIPTION

Silent 700 Keyboard Driver.

:TK reads a character from the
keyboard device and returns the
data in the D and A registers.

Silent 700 Printer.

:ST outputs a character to the
S700 printer. The D register
contains the ASCII character to
be printed. :ST also delays
200 msec after outputting a
carriage return.

Silent 700 play back (Tape
Input). FEach time :TI is cal-
led it checks the status (on-
/off) of the Playback Unit and
turns it on if necessary. It
then reads a character from
tape and returns with it in the
D and A register. If bit 7
(most significant bit) of the E

register 1is set, an immediate

6-4

:TO

ZSK

DF2F

DFCD

return will be -executed if
data is not ready (see Para.
1-93).

Silent 700 Reccrd Tape Output.
Each time :T0 dis called it
checks the status (on/off) of
the Record Unit and turns it
on if necessary. :TO then
outputs the ASCII character in
the D register. The character
is recorded on the tape and
also echoed on the printer
since the devices are in para-
1Tel. If the character out-
putted was a carriage return,
:TO delays 200 msec. If the
character was a LF indicating
the end of a Record the Record
Unit 1is automatically turned
off.

Silent 700 Keyboard Driver.
ZSK reads a character from the
keyboard device and returns
the data in the D and A re-
gisters. If either the play-
back or record units are on,
they are turned off by ZSK be-
fore reading a character. ZSK
does not have an assigned
mnemonic requiring the driver
address to be assigned to a
channel.

NAME ADDRESS DESCRIPTION

LSP DF89 Silent 700 Printer.

ISP outputs a character to the
S700 printer. The D register
contains the ASCII character
to be printed. ISP also de-
lays 200 msec after output-~
ting a carriage return,
If either the playback or re-
cord units are on, they are
turned off by ZSP before out-
putting a character. ZSP does
not have an assigned mnemonic
requiring the driver address
to be assigned to a channel.

6-10. SILENT 700, 1200 BAUD OPTION

The Silent 700 drivers are not specified to work at 1200 baud.
Only the ST: and TI: drivers need modification. The following
drivers can be used for 1200 baud operation. Note that when
assembling from cassette, the source module must be terminated
with two END statements. After pass 1 1is done, the Assembler
will automatically go into pass 2, read the END statements, and
finish. The the cassette must be rewound and the Assembler

executed again with the "pass 2 only" (P) option.

APPENDIX A

Z80 OPCODE LISTING

APPENDIX B

MOSTEK OBJECT OUTPUT DEFINITION

B-1. Fach record of an object module begins with a delimiter
(colon or dollar sign) and ends with carriage return and line
feed. A colon (:) is used for data records and end of file re-
cord. A dollar sign ($) is used for records containing re-
location information and linking information. An Intel Tloader
will ignore such information and allow loading of non-
relocatable, non-linkable programs. ATl information is in ASCII.

B-2. FEach record is identified by a "type". The type appears in
the 8th and 9th bytes of the record and can take the following
values:

00 - data record

01 - end-of-file

02 - internal symbol

03 - external symbol

04 - relocation information

05 - module definition

B-3. DATA RECORD FORMAT (TYPE 00)

Byte 1 Colon (:) delimiter.

2-3 Number of binary bytes of data in this record.
The maximum is 32 binary bytes (64 ASCII bytes).

4-5 Most significant byte of the start address of
data.

6-7 Least significant byte of start address of data.

8-9 ASCII zeros. This is the "record type" for data.

10- Data bytes.

Last two bytes - Checksum of all bytes except the de-

CRLF

limiter, carriage return, and Tline feed. The
checksum is the negative of the binary sum of all
bytes in the record.

Carriage return - line feed

B-4. END-OF-FILE (TYPE 01)

Byte 1
2-3
4-5

6-7
8-9
10-11
CRLF

Colon (:) delimiter.

ASCII zeros.

Most significant byte of the transfer address of
the program. This transfer address appears as an
argument in the 'END' pseudo-op of a program. It
represents the starting execution address of the
program.

Least significant byte of the transfer address.
Record type 01.

Checksum.

Carriage return line feed

B-5. INTERNAL SYMBOL RECORD (TYPE 02)

Byte 1
2-7

8-9
10-13

14-15

CRLF

Dollar sign ($) delimiter.

Up to 6 ASCII character of the internal symbol
name., The name is left justified, blank filled.
Record type 02

Address of the internal symbol, most significant
byte first.

Binary checksum. Note that the ASCII letters of
the symbol are converrted to binary before the
checksum is calculated. Binary conversion s
done without regard to errors.

Carriage return, line feed.

B-3

B-6. EXTERNAL SYMBOL RECORD (TYPE 03)

Byte 1 Dollar Sign ($) Delimiter.

2-7 Up to 6 ASCII characters of the external symbol
name. The name is left justified, blank filled.

8-9 Record type 03.

10-13 Last address which wuses the external symbol.

This 1is the start of a link list in the object
data records which is described below. The most
significant byte is first.

14-15 Binary checksum.

CRLF Carriage return, Tine feed.

The ASMB-80 Assembler outputs the external symbol name and the
last address in the program where the symbol is used. The data
records which follow contain a link 1list pointing to all oc-
currences of that symbol in the object code. This is illustrated
in Figure B-1.

1. The external symbol record shows the symbol ('LAB')
and the last location in the program which uses the
symbol (212AH).

2. The object code at 212AH has a pointer which shows
where the previous reference to the external symbol
occurred (200FH).

3. This backward reference 1list continues until a ter-
minator ends the list. This terminator is OFFFFH.

B-7. RELOCATING INFORMATION RECORD (TYPE 04). The addresses in
the program which must be relocated are explicitly defined in
these records. Up to 16 addresses (64 ASCII characters) may be
defined in each record.

Byte 1 Dollar sign ($) delimiter.
2-3 Number of sets of 2 ASCII characters,

B-4

4-7
8-9
10-

Last two bytes-
CRLF

where 2 sets define an address.

ASCII zeros.

Record type 04.

Addresses which must be relocated, most
significant byte first.

Binary checksum.

Carriage return, line feed.

B-8. MODULE DEFINITION RECORD (TYPE 05). This record has the
name of the module (defined by the 'NAME' pseudo-op) and a load-

ing information flag byte. The flag byte is determined by the

'"PSECT' pseudo-op.

Byte 2
2-17

8-9
10-11

12-13
CRLF

Dollar sign ($) delimiter.
Name of the module, left justified, blank
filled.
Record type 05.
Flag byte When converted to binary, the
flag byte is defined as follows:

BITO -0 for absolute assemblies

1 for relocatable assemblies
BIT1 - 0 for Z80 assemblies

Binary checksum,
Carriage return, line feed.

Figure B-1. External Symbol Link List

$ LABbbb03212A defines last reference to
external symbol 'LAB'

00
00 1.
00
00 2.;
00 200F =
N J
s

Object Data

Z80 OPCODE LISTING

ADDR

'0000

'>0001
>55AA

0001

‘0007
>AARE
>CC05
>0020
>0030

'000A

'000C
'000D
'0010
'0013
‘0014
'0015
'0016
‘0017
'0018
‘0013
'001A
'001¢C
'C01E
'0020
'0022

'0024
'0025
'0028
'002B
'002C
002D
'002E
'002F
'0030
‘0031

OBJECT

AR

41424344

3BAA

78

8E
DDBEDS
FD8EDS
8F

88

89

8A

8B

8C

8D
CE20
D44
EDSA
ED6A
ED7A

86
DDB86KO5
FD8505
87
80
81
82
83
84
85

ST #

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
c013
0014
0015
0016
0017
co18
£019
0020
0021
0022
0023
C024
3025
0026
0027
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
oouz
o043
oouy
0045
oou6
0047
oous
0049
0050
0051
0052
0053
0054
0055
0056
00357
0058
0059
0060
0061
0052
0063

; PSEUDO OPS

NAME OPCODES

ORG O

PSECT REL

DEFB OAAH
L2 DEFL s
L2 DEFL 55AAH

DEFM 'ABCD'
NN DEFS 2

DEFW OAABBH
L1 EQJU OAABBH

IND EQU 5

N EQU 20K

DIS EQU 30H

GLCBAL NN

IF O

; SHOULD NOT RBRE ASSEMBLED
LD 4,5

ENDIF

IF 1

; SHOULD BE ASSEMBLED
LD A,B
ENDIF

TURN LISTING OFF
LISTING SHOULD BE ON

280 OPCODES

NP Me Ne Ne Ne we N

ADC A, (HL)

ADC A,(IX+IND)
ADC A, (IY+1IND)
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP

oo lie — e i B

N N %Y N N N SN

ADD A, (HL)

ADD A, (IX+IND)
ADD A,(IY+IND)
ADD
ADD
ADD
ADD
ADD
ADD
ADD

e e — e
-

. N W N NN

[gl i <5 W BN @ Il v o Je g

A-2

OPCODE 280 0OPCODE LISTIKNG

ADDR

'0032
‘0034
‘0035
'0036
'0037
'0038
'003A
'003C
'003E
'0040
'oou2
‘o044
‘0046

'00u8
‘o049
'004cC
'O04LF
'0050
'0051
'0052
'0053
‘0054
'0055
'0056

'0058
'005A
'005E
'0062
'0064
‘0066
'0068
'006A
‘0057
'006E

G070
'0072
'0076
'007A
'007C
'0072
'0080
0082
'C084
'0086

'0088
'008A
'008E
'00392
0094
'0096
'0098
'009A
'009C
‘009K

OBJECT

C623
09
19
29
39
DDO09
DD19
DD23
DD33
FDO3
FD13
FD29
FD39

A6
DDAS505
FDA505
A7

AC

A1

A2

A3

Ay

A5
E620

CBU5
DDCBJ546
FDCBO546
cB47
CBu4D
CB41
CB42
CBu3
CB4d
CB45

CEb4z
DDCB30O5UE
FDC3054E
CB4F
CBus
c34u3
CBu4A
CBuB
CruC
CB4D

C355
bbCB3556
FDC30556
CB57
CB590
CB51
CB52
CB53
CB54
CB55

ST #

0064
0065
0066
0067
0068
0069
0070
2071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084y
0085
0086
0087
ooss
0089
00990
0091
0092
0093
0094
3095
0096
0097
0098
0039
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
€116
0117
0118
0119
0120
0121

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

ADD

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

AND

BIT
RIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT

BIT
31T
BIT
BIT
BRIT
BIT
BIT
BIT
BIT

BIT

BIT
B8IT
BIT
RIT
B1T
BIT
BIT
RIT
BIT
BIT

AN

HL,BC
HL,DE
HL,HL
HL,SP
IX,BC
I1X,DE
IX,IX
1X,SP
IY,BC
IY,DE
IY,IY
IY,SP

(HL)
(IX+IND)
(IY+IND)

Z oo 0w

OO oo COO
NW N NN NN N YN

Lo 0w e~~~

1, (HL)

1, (IX+IND)
1, (IY+IND)
1,8

PN T G
N SN NS N NN
IO Yy o

HL)
IX+IND)
IY+IND)

NDODONRODNNNONNDD
MY 0~~~

NN N N N N N N NN

[suite Sl x> B w}

OPCODE 280 0OPCZODE

ACDR

'O0A0
'O00A2
'00Ab
*O0AA
*00AC
'O0AE
‘0020
'0082
'00B4
'00B6

*00E8
‘0034
'003E
'00C2
'00C4
'00Ch
*00C8
'COCA
'00CC
'00CE

*0C0DO0
‘0002
'00D6
'O0DA
'00DC
'00DE
'00EO
'00E2
'*COoEL
'00LES5

'00%=8
'O00=A
'00:E
'00F2
'0CKY4
'00F5
'00F8
'OCFA
'00FC
'COFE

'0100
'0102
'0106
'CU10A
'010C
'010F
G110
‘0112
‘0114
'0116

0118
'0113

OBJECT

CB85=z
DDC3OJ55E
FDC3055E
CBb5F
CB58
CB53
CBS5A
CB53
cBs<
CB5D

CB65
DDC32566
FDCBJ566
CB67
CB60
Ck61
CB62
CB63
CB6u
CB65

CB6E
DDCBIO56EL
FDC3J56k
CE6Z
CBo68
cB63
CB6A
CB53
CB6C

C86D

CR75
DDC30576
£DCBI576
cB77
€372
CET1
Ch72
C373
CE74
CB75

CB72
DDCRIO57E
FDC3057E
CR7r
CB73
CR73
CB7A
CR73
Cr7:z
C37C

DCO0530"
FC0500"

LISTING
ST #

0122
0123
0124
0125
0126
0127
0128
0123
0130
0131
0132
133
01234
0135
0136
0137
0138
0139
140
0141
0142
0143
o144
c145
01456
0147
0148
0148
0150
0151
0152
C153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
D166
0167
0163
0169
0170
0171
0172
0173
0174
0175
0176
C177 ;
0178
0173

BIT 3, (HL)

RIT 3,(IX+IND)
BIT 3,(IY+IND)
3IT 3,A

FZmoaw

NN N N NN

o]

[

3
wwwuw ww

RIT 4, (HL)
3IT 4,(IX+IND)
RIT 4,(IY+IND)

[o B o

S N N N NN

oW

b b

b=
GEOEGEGES NG NG NN

N N NN

H NIy OWw NS

o o o
[el o I |
R e N

(ZL1)
(IX+IND)
(IY+IND)

s]

—

—3
O OO Oy Oy
NN N Y NN N N NS
HT o O W

A4

OFCODE
ADDR

'011E
‘0121
'0124
0127
0124
‘012D
‘0130

‘0133

*0134
'0135
‘0138
‘0138
'013C
013D
'013E
'013F
'0140
‘0141
‘0142

‘0144
‘0146
*0148
'O14A

'014C

014D

‘0142
‘O14F
‘0152
'0155
'0156
'0137
'0158
'0159
*015A
‘0158
'015C
‘015D
'C15%
0160
'0162
‘0163

‘0164
‘0165
‘0167
‘0168
'0169

‘01568
‘016D

38

0 DE
J

0
T

[s
[N @}

0

0B
D405900"
CD0520"
Cu0500"
F40500"
EC0500"
E40500"
CC0500"

3F

3E
DDBEQOS
FDBZJ53
BF

38

BS

BA

BB

EC

3D
FE20

ZDA3
EDRY
EDA1
EDB1

2F
27

35
DD3505
FD3505
3D

05

0B

0D

15

1B

1D

25

2B
DD23
FD23
2D

3B

F3

1025

E3
DDE3
FDE3
08

=

0 H

F*

3 Ut

0180
0181
0182
0133
0184
0185
0186
0187
0188
0183
0190
01391
0192
2193
C194
0185
0196
0197
0198
0199
0200
0201
2202
0203
0204
0205
0206
0207
0208
0206
0210
0211
0z12
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237

(9]

CALL NC,NN
CALL NN

CALL NZ,NN
CALL P,AN
CALL Pz, NN
CALL PO,NN
CARLL Z,NN

Ck (HL)
CP (IX+IND)
CP (LIY+IND)

(@}
ro
0w

(@]
av]
=“A s liie SEN 1

(HL)
(IX+IND)
(IY+IND)
A

B

3C

slviAVEUECRRwRw,
Sl el e I3 B ol I o)
aOOOO0O0O000nN

(w
)
@]
e ol LSl R i O
(g}

DI

DJIJNZ DIS
EI

EX (5P),HL
EX (sSP),IX

EX (SP),IY
EX AF,AF'

orC

> O

DE
AUDR

'015E
'C161

‘G170

‘0171
‘0173
‘0175

‘0177
'0179
‘01738
‘017D
'017F
‘0181
'0183
0185
‘0187

‘01889
'018A
'G18D
'0190
‘0191
‘0192
‘01383
‘0194
'0185
‘01356
'0197
'0198
‘0198
'01858
'01SD
'01%:%

'019F
'01R1
'01A3
'01A5

‘0177
'0O1A8
'0O1AA
'01AC
'O1AY
'01B2
'01B5
'J31B8
'0128
'C13E
'01C1
'01Cu

'01C7
'01CS
'01CB
'01CD

[a]
X

Lt g
[N ®!

O o

(¢ 9]

o O

+3 O
©

[iRES]

76

ED4S
=55
nD5E

D73
DB2)
=Dhud
EDL3
EDS?D
EDS3
£D72
ED6D
ED6BR

34
FD34905
DD3425
3C

04

03

cC

14

13

1C

24

23
DD23
FD23
2C

33

EDAA
£D313
EDAZ
D32

E9

pDEJ
FDE?
DAOS30"
FAC500"
D205900"
Cc30300"
C20530"
F20500"
EAQ0500"
E20500"
CAO500"

3825
182%
302E
202k

v LISTING
ST 4
0236 =X
0233 EXX
240
0241 HAL
o242
0z43 M
o244 IN
0245 Ik
o246
0247 IN
oz2u8 IN
o248 IN
0250 IN
0251 1IN
0252 IN
0253 IN
0254 IN
0255 IN
0z55
0257 INC
0gz58 INC
0259 INC
0260 INC
0z€1 INC
0262 INC
0263 INC
0264 INC
0265 INC
2266 INC
0267 INC
0268 INC
02€$ INC
2270 IANC
0271 INC
027z INC
0273
0274 IND
0275 IND
0276 INI
20277 INI
0278
0z79 JP
0280 JP
0281 JP
282 JP
0283 JP
ozsy JP
0285 JP
028¢ Jp
0287 J?
0zgg JP
0289 JP
02390 JP
0291
0282 JR
0293 JR
0294 JR
€295 JR

DT, HL

m

- O

N

B, (2)
A, (H)
3,(C)
2, (C)
D,(C)
E,(C)
F,(C
H, (C)
L,(2)

(HL)
(IY+IND)
(IX+IND)

(@]

o O Wt o
&3]

& Sipa o3l £

R

o]
I

(HL)
(1X)
(IY)
C,NN
H/NN
NC,nN
NN
NZ,NN
P,NN
PE,NN
PO,NN

Z[XVN

C,DIS
DIS
NC,DIS
NZ,DIS

OPCODE Z80 02C0Dz2 LISTING

ADDR
'01CF

*01D01
'01D2
'01D3
01Dy
'01D5
'01D6
'01D7
'01D8
0109
'01DA

'01DC
'01DF
'0152
'01ES
'01E8
'G1L3
"O1EE
'01F 1

‘015
'01F8
'01F2
'01F &
0201
0204
'0207
'0204

'020E
'0211
'0215
'02189
'021C
‘0220
‘0224

'0228
'0228
‘0224
‘0228
'022E
'0231
‘0234
'0235
'0236
'0237
'0238
‘0239
'023A
'023C
'023D
'023F

0241
0242

OBJ=CT

282

&}

75
3623

DD7705
DD7235
DD7105
DD7205
DD7305
DD7405
DD7505
DD360520

FD7735
FD7005
FD7105
FD7205
FD7335
FD7405
FD7505
FD360520

320500

ebu3vs500"
EDS530500"
220530"

DD222500"
FD220500"°
ED730500"

OA

1A

TE
DD7EJ5
FD7EQS
340500
7F

78

79

7R

78

7C
EDS57
7D
3E20
EDS5F

46
DD4s505

ST #

0296
02397
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
033C
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
03245
0346
0347
o3L8
0349
0350
0351
0352
0353

JR

LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
1D
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD

LD

LD
LD
LD
LD

T
L

LD
1D

1D

T
L

Lb
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD

Zz,DIs

(BC),A
(DE) ,A
(nl),A
(HL),B
(HL),C
(HL),D
(HL) ,E
(HL) ,H
(KLY ,L
(EL) N

(IX+IND),A
(IX+IND),B
(LX+IND),C
(IX+IND),D
(1X+IND),E
(LX+IXD),E
(IX+IND),L
(IX+IND),N

(IY+IND),A
(IY+IXND),B
(IY+IND).,C
(IY+IND),D
(IY+IND) ,E
(IY+IND),E
(IY+IND),L
(IY+IND),N

(NN),A

(¥N),BC
(NN),DE
(NN) ,HL
(NN), IX
(NN), IY
(NN),SP

A, (BC)
A,(DE)
A, (HL)
A,(IX+IND)
A,(IY+IKD)
A, (NN)

~

o e =i = e A i e o

NN N N N N N SN

2o B ol e I ol o I wo B @ B0 e e

ety

R, (HL)
B,(IX+IND)

OPCODE
ADDR

'*0245
‘0248
'0249
'024A
‘0248
'o24¢C
‘024D
‘024K
'024F

‘0251
'0255

‘0258
'0259
'025C
'025F
'0260
'0261
'0262
'0263
‘0264
'0265
'0266

‘0268
'0269
'026C
'026F
'0270
'0271
‘0272
‘0273
*0274
'0275
'0276

‘0278
'027C

'027F
'0280
'0283
'0285
'0287
'0288
'0289
'028A
‘0288
'0287C
‘026D

'028F
'0290
'0293
'0236
'0297
‘0298

Z80 CPCODE LISTING

CBJECT

FDus905
47

40

41

42

43

Ly

45
0620

ED430500"
010530"

4E
DDUEDS
FDUEDS
LF

48

49

4A

4B

uc

LD
0E22

56
DD5595
FD5505
57

50

51

52

53

54

55
1620

EDS530500"
1105020

S5E
DD5£25
FD5E05
5F

58

59

5A

58

5C

5D
1220

66
DD65)5
FD6625
67
60
€1

ST #

0354
0355
3356
0357
0358
0259
03690
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
C374
c375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0385
0387
0368
0383
0330
0331
0392
0393
0394
0395
0396
0397
0398
0389
0409
cuon
o402
0403
0404
o405
0405
ouc?7
0408
0409
0410
o411

LD
LD

™
v

LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD

T

A

IRy
jo4

LD

1D

T
4

LD
LD

T
¥

LD

T
P

LD

n
v

LD

LD
Lp

1b
LD
LD
LD
LD
LD
LD
Lo
LD

LD

LD
Lo
LD
LD
LD
LD

£,(IY+IND)
B,A
B,B
s,C
5,D
5,k
3, H
2,L

E’N

3C, (NN)
RC, 3N

C,(EL)
C,(IX+IND)
C,(IY+IND)
C,A

C,B

c,C

C,D

~
C,E

c,H
C,L
CsN

<o
N’

(+IND)
+IND)

[e
<

clvEvhvEvEvEeRwRwEwN)
ZHIMHDODOD>X» "™

NN N N N N N Y N NS

(HL)
(IX+IND)
I{+IND)

“a

S N N N N N N SN N NN
Z LU Owme

[lci el cplCIE e I TN S BN C SN 0 BN €3 |

H,(HL)

H, (IX+IND)
B, (ZY+IND)
H,A
H,B
H,C

A8

OPCODE
ADDR

'0299
02392
‘0298
*0298C
'023D

'029F
'02A2

'0245

'02A7
'02A3

'02AF
‘0283

'0237
‘0258
'02EB
'02BLE
'0ZRF
'02C0
'02C1
'02C2
'02C3
'02CH
'02C5

*22C7

'02C3
'02CD
'02C%
'02D0
'02b2

'02D05
'*02D7
'02D3
'02D3

'02DD

'020r

'02EQ
'02E1
‘02E0
'02ZE7
'02%8
'‘0ze3
'02EA
'02EB
'02EC
'02ED
‘025K

280 OPCODE LIST

OBJECT

€2
63
64
65
26290

2A0500"
210500"

D47

DD2A0500"
DD210500"

FD2A)J503"
FD210500"

6E
DD6E05
FDAZI5
6F

68

69

6A

58

6C

6D
2E20

EDUF

ED73035C0"°
F9

DDF3

FDF3
310500

EDAS
=DB3
£DA)
EDBD

bug

teJ

00

36
DDB5J5
FDB525
37

BO

31

32

53

By

35
Fe2?d

I
ST #

o412
o413
ou14
0415
ou16
26417
ou18
0413
C420
0421
0422
0423
Ouz2y4
ouzs
0426
0427
ou28
0u4z9
0430
0u31
0432
0433
Cu434
C435
Qu36
0437
0438
0439
QU490
QL4
Quu2
o443
o4uuy
Caus
Q446
0447
Quus
0449
0450
0451
0452
0453
U5y
QU55
o455
o457
o458
0453
0460
0461
Qu62
oue3
oubUu
0uB5
0u66
0467
0468
ou69

NG

LD
LD
LD
LD
Lb

5,0
H,E
H,H
H/L
H,N

LD HL, (NN)
LD HL,NN
Lb I,A

LD
LD

IX,(NN)
IX,KN

LD
LD

IY,(NN)
IY,NN

o L, (HL)
LD L, (IX+IND)
LD L,(IY+IND)
LD
LD
LD
LD
LD
LD
LD
LD

ol onll ol ol ol aall sl o
S N N N N N NN
2N oW

B,A

LD
LD
LD
LD
LD

SP,(NN)
SP,HL
SP,IX
sk, 1Y
SP,NN
LDD

LDDR

LDI

LDIK

NEG
NOP
(HL)

(IX+IND)
(IY+IND)

Ok
OR
OR
OR
OR
OR
OR
OR
OK
OR

OR

Z o a, Oy o

OPCODE 7280 OPCODE

ADDR

'02F0
'02r2

‘02F4
'02F6
'02F8
'02FA
'02rC
'02FE
'0300
'0302

'0304
'0306

'0308
‘0309
'030A
'0308
'030C
'030E
'0310
‘0311
‘0312
'0313
'0314
'0316

'0318
'031A
'031E
‘0322
‘0324
'0326
'0328
'‘C32A
'032C
'032E

'03390
'0332
'0336
'033A
'033C
'*033E
'0340
‘0342
‘0344
'0346

0348
'O34A
'O034E
'0352
'0354
‘0356
'0358
‘0354

OBJelT

EDBB
EDB3

ED73
ED41
ED43
ED51
ED53
ED&1
EDS3
D329

EDAR
EDA3

F1
C1
D1
E1
DDE1
FDE1
F5
C5
D5
ES
DDES
FDES

CB85
DDC305856
FDCB0586
CB87
CE8)D
CB&1
CB82
CB83
CB84
CB85

C38«E
DDCB258E
FDCBO58%
CB8F
CB83
CB83
CB8aA
CB8s
cB8C
CR8D

CB96
DDCBO596
FDC30596
CB37
CB9d
CB91
CB92
CB93

LISTING

ST #

0470
0471
o472
o473
o474
0475
0u76
o477
o478
04783
ouso
0481
o482
o483
o484y
ouss
ougs
0487
oug8s
0489
0490
c4391
04392
0493
ou9u
0495
0496
0497
0498
0493
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527

.
’

.
4

OTDR
OTIR

ouT
OUT
OUT
ouT
OUT
ouT
OUT
ouT

OUTD
OuUTI

pPOP
POP
POP
POP
POP
POP
PUSH
pUSH
PUSH
PUSH
PUSH
pUSH

zaii=c JN5 e lio s BL” B s o io UlEe o BE = VRS v)
(23 B CNN CI eSS M e sl c SN e I e I ks |
nnnuvinunnuvtnninnun

~

2%
3
93]

nununuyrnuvr 1n v

(SR Tl C I C B E R e e FRN RS

2 olis elile s Jio U RS SRS vils o BRD Y]

(C),A
(C),B
(C),C
(C),D
(C),E
(C),H
(C),L
(N),A

AF
3C
DE
HL
IX
IY
AF
BC
DE
HL
IX
IY
0, (HL)
0,(IX+IND)
, (IY+IND)
0,?
0,
Yy
0,
0,

(@)
3

]

Mmoo O w

1, (HL)
1, (IX+IND)
1, (IY+IND)

2,(4L)
2,(IX+IND)
2,(IY+IND)

ks

’
4
14
’

R RN
1O G w o

A-10
CPCODE 280 OPCODE LISTING

ADDR OBJECT ST #
'035C CBS4 0528 RES 2,4
‘0352 CB95 0529y RES 2,L
0530 ;
'0360 CBSE 0531 RS 3,(dL)
'0362 DDCBO39E 0532 KES 3,(IX+IND)
'0366 FDC3059E 0533 KES 3,(IY+IND)
'036A CB9F 0534 RES 3,A
'*036C CB98 0535 RES 3,B
'036E CB9S 6536 EKES 3,C
'0370 CBSA 0537 RES 3,0
‘0372 CB93 0538 RES 3,E
‘0374 CBSC 0539 RES 3,H
'0376 CBSD 0540 RES 3,L
0541
'0378 CBAS 0542 RES 4, (HL)
*037A DDCRBOSA6 0543 RES 4, (IX+IND)
'*037E FDCBO3A6 0544 RES 4,(IY+IND)
'0382 CBA7 0545 RES 4,A
'0384 CBAD 0546 RES 4,3
'0386 CBA1 0547 RES 4,C
‘0388 CBAZ2 0548 RES 4,D
'038A CBA3 0549 RES 4,E
'038C CBAU 0550 RES 4,H
'038E CBAS 0551 RES 4,L
0552
'0390 CBAE 0553 RES 5, (HL)
'0392 DDCBOSAE 0554 RES 5,(IX+IND)
'0396 FDCRJ5AE 0555 RES 5,(IY+IND)
‘0394 CBAF 0556 RES 5,A
'039C CBAS 0557 RES 5,B
'039E CBA?3 0558 RS 5,C
'03A0 CBAA 0559 RES 5,D
'03A2 CBASB 2550 RES 5,E
'O03A4 CBAC 0561 RES 5,H
'03A6 CBAD 0562 RES 5,L
0563
'03A8 CBBb 0564 RES 6, (HL)

'03AA DDC305B6 0565 RES 6,(IX+IND)
'O3AE FDC305B6 0566 RES 6,(IY+IND)

'‘03B2 CRB7 0567 RES 6,4

'03B4 CBBD 0568 RES 6,8

‘03B6 CBB1 0563 RES 6,C

'03B8 CBB2 057C RES 6,D

'0O3BA CBB3 0571 RES 6,E

‘03BC CBBH4 0572 RES 6,H

'03BE CBBS 0573 RES £,L

0574

'03C0 CBRE 0575 RES 7,(HL)
*03C2 DDCBOSBE 0576 RES 7,(IX+IND)
*03C6 FDCBO5BE 0577 REZS 7,(IY+IND)
*03CA CBEF 0578 PRES 7,A

'03CC CBBS 0579 RES 7,B

'03CE CBB3 0580 RES 7,C

'03D0 CBBA 0581 RES 7,D

'03D2 CBB3 0582 RES 7,E

'03D4 CBBZ 0583 RES 7,H

'03D6 CBBD 0584 RES 7,L

0585 ;

OFCODE Z80 OPCODE

ADDR

'03D8
'03D9
'0ZDA
'03D8B
'G3DC
‘030D
'03DE
'03DF
'03E0

'03E1
'03E3

'03E5
'03E7
'C3E3
'O3LF
'03F1
'O3F3
'C3F5
'03EK7
'03FS
'03F3

'03FD

'O3FE
‘0400
'OuOL
'0u08
'O40R
'ou0C
'OLOE
'Ou10
'O412
'04 14

‘0416
‘0417

‘0419
‘0418
'O41F
‘0423
'Cu25
*0427
'0429
'0428B
‘Qu2D
'0u42F

'0431

'0u32
‘0434
‘0438
'043C

OBJECT

C3
D8
e
DO
Co
¥O
E8
EQ
c8

=pubd
ED45

CB1%
DDC39516
FDC30516
cB17
CB1)
CB11
CB12
C313
C314
CB15

17

CBOS
DDC3050¢
FDC3050¢
CBO7
CBROD
CBO1
CBO2
CBO3
CBOY4
CBOS

07

ED6

)

CB1E
DDC3051E
FDCBI51L
CB1F
CB18
CB13
CB14A
CB18
CB1C
CB1D

1F

CBOZ=
DDC3050E
FDCBOSO0E
CBOF

J2oRNo SN SRR~ o B> S 5)

el el e B 5 Il o T e SRR N SR &

g & 'O
N e R I R A

oo lo ¥}
jtr
L=

oo o
[onl o

S elils o]
=

RL
RL
RL
RL
RL

RLA

RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC
RLC

RLC

RLD

RR
RR
RR
RR
RR
RER
RR
RR
RR
KR

RRA

RRC
RRC
RRC
RRC

I R

-

(
(
(
A

o 0w

— oo

A

(
(
(

Fm oy >

=20y

=
N0

t3 o g
O m

HL)
IX+IKND)
IY+IND)

(HL)
(IX+IND)
(IY+IND)

[anlie Sl oS MR e B @ Biv w e o]

HL)
IX+IND)
IY+IND)

(HL)
(IX+IND)
(IY+IND)
A

A-11

A-12

OPCODE
ADDR

'Ou3E
'OLL4O
'OLY2
'ouuy
'0u4u6
'OuyB

'O4 LA

'O4LB

'‘ouuD
'O4uE
'o4urF
'0u450
'0451
'Qus52
‘0453
‘0454

0455
'0u56
‘ous59
'o45C
‘045D
*0U45E
'0u45F
‘0460
'ou61
'0u462
‘0463

'Qu65
‘0467
‘0469
‘0468

'046D

‘0463
'ou70
‘0474
'0u78
‘O47A
*ou7C
'‘04T7E
'0L80
‘0482
'‘Ccu8y

'ou86
'0us8s
'o48C
'0490
'0u92
‘o494
‘0496
‘0498

280 02CODE LISTING

OBJEC

CBO3
CBO3
C30A4A
CEO3
cBoOC
CBOD

OF
ED67

7
CF
D7
DF
E7
=F
F7
FF

9E
DD9z05
FDOEDJS
9F

98

99

9A

9B

9C

9D
DE2D

EDu42
ED52
ED62
ED72

37

CBC5
DDC305Cs
FDCBO5CS6
CBC7
CBCO
CBC1
CBC?2
CBC3
CBCY4
CBC>

CBCE
DDCBO5CE
FDCBOS5CE
CBCF
CBC3
CBC?3
CBCA
CBCB

ST #

064y
J64u5
06ub
0647
0548
064y
0650
0651
0652
0653
0654
0655
0655
0657
0658
03853
0660
0661
0662
0663
o664
0665
0666
0667
0668
0669
0670
0671
0€e72
0673
0674
0675
0676
0677
0678
0673
0680
0681
G682
0€es83
0684
0685
0686
0687
0688
0689
06990
0691
0592
0693
0694
0695
0696
0697
0698
0693
0700
0701

RRC
RRC
RRC
RRC
RRC

RRC
RKCA

RRD

RST
kST
RST
RST
RST
RST
2ST

RST

SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SRC

SBC

SBC
SBC
SBC

SBC

SCF

SET
SET
SET
SET
SET
SET
SET
SET
SET

SET

SET
SET
SET
SET
SET
SET
SET
SET

o QW

0

O8H
10H
18H
204
25H
304
38H

A, (HL)
A,(IX+IND)
A,(IY+IND)

-~
X

o= e - e Qe e Sl o
N N N S S NN

ZHrmImo Ow

HL,BC
HL,DE
HL,HL

L,SP

0,(dL)
0, (IX+IXND)
0,(IY+IND)

[cNeoNoNoNeoNaNe
N %Y %W N N NN
PO 0o

1, (HL)

1, (IX+IND)
1,(IY+IND)
1,2

1,8

oo
O]

’
’
’

————

OPCODE Z80 OPCODZ

ADDR

'OU9A
'ouscC

‘049K
'O4AQ
'CU4Ay
'OUAS
'O4AA
'O4AC
'O4AE
‘0480
'04z2
‘0434

'0uB6
'04BS8
'04RrC
'*04CO
'04C2
'04CH
'04Ch6
'o4ucs
'0uCA
'04CC

'04CE
'ou4d0
‘oudy
'04D8
*Ou4DA
'o4DC
'04DE
'O04EQD
'CUE2
'‘O4EY

'O4ES6
'CUES
'O4EC
'04F0
'*O4F2
'O4FY
'O4F6
'O4F8
'OU4FA
'O4FC

'04FE
'0500
‘0504
'0508
'050A
'050C
'050E
‘0510
'0512
0514

0BJEC

CBCT

CBCD

C3D5
DDC305D6
FDCBJ5D6
CBD7
CBD)
CBD1
CBD?2
CBD3
CBD4
CBD5

CBD=
DDC305DE
FDCB305DE
CBDF
CBD3
C3D3
CBDA
CBDS
CBDC
CBDD

CBES
DDCBO5E®S
FDC305E6
CBE7
CBEO
CBE1
CBE?2
CBE3
CBE4
CBES

CBEE
DDCBO5EE
FDCBOSEE
CBEF
CBES
CBE3
CBEA
CBEB
CBEC
CBED

CBFS
DDCBOS5F6
FDC305F6
CBE7
CBFD
CBFE1
CBF2
CBF3
CBF4
CBFS

vrn
t3 (11
- 3

=y 3 3ty

[S 308 e BN 3 i o 5

Lulnmul vl vy UL V1 n

[e 33 €

P P33 33 3 o r3 3

tr: 2
-3

nunulviinwvmmn nnn wn

IS I N o I CI I s B o) I O

H3 -3 e3 F33

wn
o>
3

N S
[l

HL)
IX+IND)
IY+IND)

NN NNNNDNONDDNODN
SN N N N N N N N N N
[quilie BN o> Tl ww NG B o o Mo~ He N WPaN

3,(61)
3,(IX+IND)
3,(IY+IND)

wwww
S N N N N NN
o 0w

w w w

4, (HL)
4, (IX+IND)
4,(IY+IND)

~
o

EEEEEFE
D T
HTmmo 0w

Py

o

S o
A

X+IND)
+IND)

b

v %Y N N N Y N N NS
Mmoo O NN

[OANC2 NG NG G O G A) V)]

6, (HL)
6, (IX+IND)
6,(IT+IND)

~

A OOYCL OV Oy
S N N N N N
[andiie Ol o IR w BN @D I ¢ o Jke]

A-13

A-14

JPCODE
ADDR

'0516
‘0518
'051C
'0520
'Q0522
‘0524
‘0520
'0528
'052A
'052C

'052E
*0530
'0534
‘0538
*053A
'053C
'053E
'0540
‘0542
‘0544

‘0546
'0548
'054C
'0550
'0552
*0554
'0556
‘0558
'055A
'055C

'055E
*0560
‘0564
'05638
‘0564
*056C
*056E
‘0570
'0572
0574

'C576
'0577
'057A
'057D
'C57=
'057F
'0580
'0581
‘0582
‘0583
‘0584

'0586
'0587

280 OPCCDE
OBJECT

CBFE
DDCBOSFE
FDC305FE
CBFF
CBF3
CBF?
CBFA

CBF3
CRFZ

2L

CBFD

CB25
DDCBO526
FDC30526
CR27
CB29
CB21
CB22
CB23
CB2u
CB25

CB2t
DDC3J52E
FDCBOS52E
CB2F
cB23
CB23
CB2A
CB23
cB2C
CB2D

CB3c
DDCBIJ53E
FDCBI53E
CB3F
CB38
CB39
CB3A
CB33
CB3C
CB3D

96
pb9605
FD95305
97

90

91

92

93

g9y

95
D623

AE
DDAZO5

=

~e

SET
SET
SET

~ =

tr3 73 tx

e R B e I]

nnunnunniulnt nu

3t 1 7

T

SLA
SLA
SLA
SLA
SLA
SLA
SLA
La
SL
SLA

SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA
SRA

SRL
SRL
SRL
SRL
SKL
SRL
S3L
SEL
SRL
SRL

SUR
SURB
SUB
SUB
SUR
SUB
SUB
SUB
SUB
SUB
SUB

XOR
XOR

Lttt o) w o

(HL)
(IX+IND)
(IY+IND)

Homrto 0w >

(HL)
(IX+IND)
(IY+IXND)

[l ol e T @ A @ Rlo sl)

(HL)
(IX+IND)
(IY+IND)

o 0w

(HL)
(IX+IND)
(IY+IND)

ZHmmg O w

(HL)
(IX+IND)

OFCODE
ADDR

‘0584
'058D
'058E
'058F
'0590
0591
'0592
'0593
‘0594

ERRORS=

280 OPCODE LISTING

OBJECT

FDAZJ5
AF

A8

AS

AA

AB

AC

AD
EE2D

0000

ST #

0818
0819
J820
0821
0822
0823
d824
0825
0826
0827
2228

.
’

XOR
XOR
X0k
XOR
XOR
XOR
XCR
XOR
LCR

END

(IY+IND)

M0 w3

i aulie ¥

A-15

—
., i
— ¥
i
|
4
|
:‘\
p |
= t
280 F8Covenng the full
spectrum of
3870 mvcrocomputer
applications.
1215 W. Croshy Rd. * Carrollton, Texas 75006 * 214/242-0444
In Europe, Contact: MOSTEK Brussels
150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: (32) 02/660-2568/4713
—

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate and =,
reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No Incense is
granted under any patents or patent rights of Mostek.

PRINTED IN USA April 1970 Copyright 1979 by Mostek Corporation
Publication No. MK78522 All rights reserved

5

