2048 WORD x 8 BIT EPROM

N CHANNEL SILICON STACKED GATE MOS.

TMM323DI TMM323DI-1

DESCRIPTION

The TMM323DI is a 2048 word x 8 bit ultraviolet erasable and electrically programmable read only memory For read operation it requires a single 5-volt power supply only The maximum active power dissipation is 525mW while the maximum standby power dissipation is only 158mW, a 70% savings. Programming can be executed by applying 25-volt and 5-volt at the Vpp and Vcc terminals respectively, and applying a TTL level signal at the other input terminals Programming the one bit location requires

FEATURES

- Wide operating temperature range Ta = -40 ~ 85°C
- Single 5-volt power supply
- Access time TMM323DI , 450ns (MAX.) TMM323DI-1 , 350ns (MAX.) Current 100mA (active) , TMM323DI 120mA (active) ; TMM323DI-1 30mA (standby)

PIN CONNECTION

PIN NAMES

	A0 - A10	Addresses		
A6 2 23 A8 Ac 3 22 A0	00-07	Outputs		
A4 0 4 210 Vpp	ĈŜ	Chip Select		
A3 0 6 199 A10 A1 0 7 189 PD/PGM A0 9 8 177 07	PD/PGM	Power down/ Program		
00 9 16 06 01 10 15 06	Vcc, Vpp	Power Supply		
02 11 14 04 3ND 12 13 03	GND	Ground		
	Marganet and a second s	and a second state of the		

MODE SELECTION

PINS	PD/PGM (18)	CS (20)	Vpp (21)	Vcc (24)	Outputs (9-11, 13-17)
Read	VIL	VIL	5V	5V	D out
Deselect	*	Viн	5V	5V	High-Z
Power Down	Viн	*	5V	5V	High-Z
Program	лг ^{∨ін}	∨ін	25V	5V	Dın
Program Verify	VIL	VIL	25V	5V	Dout
Program Inhibit	VIL	∨ін	25V	5V	Hıgh-Z

VIL or VIH

only a single pulse, and it is possible to program sequentially, individually or at random. Under the condition Vpp = 25V, read operation is permitted in the program verify mode, and also programming is inhibitted by selecting the program inhibit mode.

The TMM323DI is fabricated with the N-channel silicon double layer gate MOS technology and is packaged in a standard 24-pin dual-in-line cerdip package

Three state output

TOSHIBA MOS MEMORY PRODUCTS

- · Particular bit location programming
- Programs with one 50ms pulse
- Total programming time 100 second
- Inputs and outputs TTL compatible during read and program
- Pin to pin compatible to 2716 type EPROM

BLOCK DIAGRAM

MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNIT
Vcc Supply Voltage with respect to Ground	Vcc	-0.3 ~ + 7	V
VPP Supply Voltage with respect to Ground	Vpp	-0.3 ~ + 26.5	V
All Input Voltages with respect to Ground	VIN	-0.3 ~ + 7	V
All Output Voltages with respect to Ground	Vout	-03~+7	V
Power Dissipation	PD	1.5	W
Soldering Temperature Times	TSOLDER	260.10	°C · sec
Storage Temperature	TSTG	-65 ~ + 125	°C
Operating Temperature	TOPR	-40 ~ 85	°C

READ OPERATION

D.C. and A.C. OPERATING CONDITIONS

PARAMETER	SYMBOL		MIN.	TYP	MAX	UNIT
Power supply	V (1 2)	TMM323DI	4.75	5	5 25	V
	VCC (1, 2)	TMM323DI-1	45	5	55	V
Power supply	V _{PP} (2)		V _{CC} -06	5	V _{CC} + 0 6	v

D.C. and OPERATING CHARACTERISTICS

Ta = −40 ~ 85°C

PARAMETER		SYMBOL	MIN.	TYP.(3)	MAX.	UNIT	CONDITIONS
Input Load Current		lu l			±10	μA	V _{IN} = 5 25∨
Output Leakage Current		ILO			±10	μA	V _{OUT} = 5 25V/0 45V
Vpp Current (Read)		IPP1			5	mA	V _{PP} = 5 85V
V _{CC} Current (Standby)		lcc1		10	30	mA	$PD/PGM = V_{H}, \overline{CS} = V_{IL}$
Mar Current (Antiun)	TMM323DI	lcc2		57	100		
VCC Current (Active)	TMM323DI-1			57	120	mA	$PD/PGM = CS = V_{IL}$
Input Low Voltage		VIL	-0.1		08	V	
Input High Voltage		Viн	2.2		V _{CC} + 1	V	
Output Low Voltage		VOL			0 45	V	I _{OL} = 2 1mA
Output High Voltage		V _{OH}	24			V	i _{OH} = -400μA

A.C. CHARACTERISTICS

 $Ta = -40 \sim 85^{\circ}C$, $V_{PP} = V_{CC} \pm 0.6V$

PARAMETER	SYMPOL	TMM323DI		TMM323DI-1		LINUT	CONDITIONS
	STWBOL	MIN	MAX	MIN.	MAX	UNTI	CONDITIONS
Address to Output Delay	tACC1		450		350	ns	$PD/PGM = \overline{CS} = V_{IL}$
PD/PGM to Output Delay	tACC2		450		350	ns	$\overline{CS} = V_{IL}$
Chip Select to Output Delay	tco		120		120	ns	PD/PGM = VIL
PD/PGM to Output Float	tpF	0	100	0	100	ns	$\overline{CS} = V_{IL}$
Chip Deselect to Output Float	tDF	0	100	0	100	ns	PD/PGM = VIL
Address to Output Hold	tон	0		0		ns	$PD/PGM = \overline{CS} = V_{IL}$

• A.C. Test Conditions

· Output Load ITTL + 100pF

Input Rise and Fall Times (10% ~ 90%) ≦ 20ns

Input Pulse Levels VIL = 08V, VIH = 22V

Timing Measurement Reference Level Inputs 1V & 2V, Outputs 0 8V & 2V

Note 4)

Га = 25°С, f = 1МНz

PARAMETER	CV/MDO1		LIMITS		LINUT	CONDITIONS	
	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS	
Input Capacitance	Cin		4	6	pF	VIN = 0V	
Output Capacitance	Соит		8	12	pF	Vout=0V	

TIMING WAVEFORMS (READ)

5. The tACC2 is a output data delay time (i.e. access time) from address or PD/PGM whichever changes late.

PROGRAM OPERATION

 $Ta = 25^{\circ}C \pm 5^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{PP} = 25V \pm 1V$ (Note 1, 2, 3)

D.C. PROGRAMMING CHARACTERISTICS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Input Current	ILI			.±10	μA	VIN = 5.25V/0.45V
VPP Supply Current	IPP1			5	mA	PD/PGM = VIL
VPP Supply Current During Programming Pulse	IPP2			30	mA	PD/PGM = VIH
Vcc Supply Current	lcc			100	mA	IOUT = 0 mA
Input Low Level	VIL	-0 1		08	V	
Input High Level	Viн	20		Vcc + 1	V	

A.C. PROGRAMMING CHARACTERISTICS

PARAMETER	SYMBOL	MIN.	TYP.	мах	UNIT	CONDITIONS
Address Setup Time	tas	2			μs	
CS Setup Time	tcss	2			μs	
Data Setup Time	tDS	2			μs	
Address Hold Time	tah	2			μs	
CS Hold Time	tCSH	2			μs	
Data Hold Time	tDH	2			μs	
Chip Deselect to Output Float Delay	t D F	0		120	ns	PD/PGM = VIL
Chip Select to Output Delay	tco			120	ns	PD/PGM = VIL
Program Pulse Width	tPW	45	50	55	ms	
Program Pulse Rise Time	t PRT	5			ns	
Program Pulse Fall Time	t PFT	5			ns	

• A.C. Test Conditions

Input Rise and Fall Times (10% ~ 90%) . \leq 20ns

· Input Pulse Levels VIL = 08V, VIH = 22V

Timing Measurement Reference Level Input 1V & 2V, Output 0.8V & 2V

TIMING WAVEFORMS (PROGRAM)

- Sometimes removing the device from socket and setting the device in socket under the condition Vpp = 25V±1V may destroy its device, so it should be noted during programming.
- Vpp supply voltage is permitted up to 26V programming, so the voltage over 26V should not be applied to Vpp. Particularly when switching pulse voltage is applied to Vpp, also the over-shoot voltage of its pulse should not be exceeded 26-volt.

ERASURE CHARACTERISTICS

The TMM323DI's memory cell data can be erased by applying light with wavelengths shorter than 4000 the device is exposed at a distance of 1-cm from the Å $(1Å = 10^{-8} \text{ cm})$

Sunlight and the fluorescent lamps may include 60 minutes 3000 ~ 4000 Å wavelength components

extended periods of time, an opaque seal (Toshiba to about 20 minutes. EPROM Protecting Seal AC 901 etc.) will be required (In this case the integrated dose should be 12000 to protect the TMM323DI. Generally, ultraviolet light $[\mu w/cm^2] \times (20 \times 60)$ [sec] ≈ 15 [w sec/cm²].) with a wavelength of 2537 Å is recommended for TMM323DI-erasing, and in this case the integrated dose (ultraviolet light intensity [w/cm²] x time [sec]) should be over 15 [w sec/cm²]

OPERATING INFORMATION

TMM323DI-operation-modes are classified into six types, as shown in the following table Each mode can be selected by TTL level signals only The VCC and VPP power supplies required are only 5-volt for read operation, and the VPP power supply required is 25-volt during program operation only.

When Toshiba sterilizing lamp GL-15 is used and lamp surface, erasure should be completed in about

And using a lamp whose ultraviolet light intensity Therefore when used under such lighting for is a 12000 $[\mu w/cm^2]$ will reduce the exposure time

	PINS	PD/PGM	CS	VPP	Vcc	Outputs
MODE		(18)	(20)	(21)	(24)	(9-11, 13-17)
	Read	VIL	VIL	5V	5V	D out
Read Operation	Deselect	*	Vін	5V	5V	High-Z
(Ta = -40 ~ 85°C)	Power Down	Vih	*	5V	5V	High-Z
Program Operation (Ta = 25±5°C)	Program	ᇄᇨᄿᄖ	∨ін	25V	5V	Din
	Program Verify	VIL	VIL	25V	5V	Dout
	Program Inhibit	VIL	Viн	25V	5V	High - Z

* VII or VIH

Read Mode

Assuming that PD/PGM = V_{II} and \overline{CS} = V_{II}, the output data is available within tACC1 (MAX.) after stabilizing of the address.

And assuming that PD/PGM = VIH or \overline{CS} = VIH, the outputs will become high impedance in state

When all addresses are in the fixed state and \overline{CS} = VIL, the output data is available within tACC2 (MAX.) after the PD/PGM input is changes to Vii from the VIH level. (Outputs change to data available state from a high impedance state.)

When all addresses are in the fixed state and PD/ PGM = V_{1L} , the output data is available within t_{CO} (MAX) after the \overline{CS} input is changed to VII from the VIH level (Outputs change to data available state from a high impedance state.)

Deselect Mode

Assuming that $\overline{CS} = V_{1H}$ the outputs will be in a high impedance state So two or more TMM323DIs may be tied together on the same data bus. And the CS input of the selected chip must be at the VII level, and that of the other chip must be at the VIH level.

'Oshiba

Power Down Mode

Assuming that $PD/PGM = V_{1H}$, the power dissipation will be reduced to one-fourth of normal active nower

Then all outputs will become high impedance in state independent of the CS input level.

Program Mode

Initially when received by customers all bits of the TMM323DI are in the "1" state which is the erased state.

Therefore programming is carried out by electrically writing in the "0" state at the desired bit locations.

Programming can be completed by applying the TTL level pulse signal with a pulse width of from 45 to 55 ms to PD/PGM input under the condition where $V_{PP} = 25V$ and $\overline{CS} = V_{1H}$

Programming the TMM323D1 is permitted in any sequence and also at any particular bit location

But the PD/PGM pulse width applied at one bit location should be over 45ms up to 55ms, and rewriting into the written location is not permitted

When programming is carried out by applying a DC voltage (VIH level) instead of a pulse to the PD/ PGM input, erroneous writing may occur sometimes,

OUTLINE DRAWINGS

so a pulse whose recommended width is 50ms should be used in programming.

Programming the same data to two or more TM 323DIs simultaneously can be accomplished by co necting the respective pins together

Program Verify Mode

In this mode the VPP power supply is 25V

But assuming that PD/PGM = VII and \overline{CS} = VII it can be possible to read written data

For normal read operation, the VPP power suppl voltage required is 5V.

Program Inhibit Mode

Assuming that PD/PGM = VII and \overline{CS} = VIH under VPP = 25V, it is able to inhibit the programming.

According to the above, programming into two c more TMM323DIs mounted on a board will be po: sible

Programming into a desired chip tied on a commo bus line independently is possible by connecting a respective inputs except PD/PGM together and apply ing a pulse to the PD/PGM input of a desired chip and applying DC voltage at the VII level to the PD/PGN inputs of the other chip.

Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba results the right, at any time without notice, to change said circuitry

©Nov , 1981 Toshiba Corporation