SIGNETICS
81300

PROGRAMMING
MANUAL

SIGNETICS
8#300
PROGRAMMING
MANUAL

Material used in this document was prepared
by A.H.J. Schatorjé of N.V. Philips, Eindhoven,
The Netherlands.

SIGNETICS reserves the right to make changes in the products contained in this book in order to
improve design or performance and to supply the best possible products. Signetics also agsumes
ne responsibility for the use of any circuits described herein, conveys no license under any patent
or other right, and makes no representations that the circuits are free from patent infringement.
Applications for any integrated circuits contained in this publication are for illustration purposes
only and Signetics makes no representation or warranty that such applications will be suitable for
the use specified without turther testing or modification. Reproduction of any portian hereof withaut
the prior written consent of Signetics is prohibited.

®Copyrighted by Signetics Corparation May 1978.

SiljAntiES

PREFACE

Signetics 8X300 Programming Manual is designed to provide all
the information necessary to prepare code tor the 8X300 Micro-
controller. Details for every variation within each class of in-
struction are shown diagrammatically, in binary and in assembly
language. Sample programs and a description of the Microcon-
troller Cross Assembly Program {(MCCAP) are included.

Additional information relevant to the application of the 8X300
can be found in the following documents:

8X300 Programming Course

8X300 Reference Manual

Signetics Microcontroller Cross Assembly Program
These and other Signetics product documents are available
through the offices listed in the back of this manual.

Sinotics

TABLE Of CONTENTS

The 8X300 System 6
The 8X300 Instruction Set 14
MCCAP Microcomputer Cross Assembler Programo .. 15
MOVE Instructions 16
ADD Instructions 28
AND Instructions 40
XOR (eXclusive OR) Instructions 52
XEC (eXECute} Instructionso 67
NZT (Non Zero Test) Instructions 0. . . 68
XMIT (transMITY Instructions oo 72
IMP (JuMP) Instructions e 78
Microcontroller Cross Assembly Program (MCCAP) 80
Programming Examples 89
Balesofflces 96

Sifnetics

THE 8X300 SYSTEM

Sintics

8X300 Programming Manual

THE 8X300 SYSTEM

The independent instruction and data input/output (1/0)
system of the BX300 is shown in Fig. 1. The 13-bit address
bus, capable of addressing 8192 instructions, and the 18-
bit instruction bus allow the 8X300 to access the next in-
struction while simultaneously performing data !/ O with the
Interface Vector (IV) bus. As can be seen from the diagram,
all data to or from external devices or registers passes via
the |V bus.

Figure 2 shows the functional diagram of the 8X300, with
the data paths between the elements of the microproces-
sor and the connections to the address, instruction and IV
busses. Although the program instruction addressing is es-
sentially independent of the data flow, links exists to allow
address modification or the transmission of data from the
program to an output device.

Interface Vector Bus

Al data input to or cutput from the BX300 goes via the IV
bus. This IV bus serves both as an address and data bus
and is accompanied by control signals to determine its
function. Being an 8-bit bus, it has the capability to address
up to 256 170 registers (IV bytes). The input/output tacilj-
ties are further expanded by selection of Left Bank (LB) or
Right Bank (RB) address, giving a total of 512 addressable
IV bytes.

When the 8X300 is required to accept data from or send
data to a particular IV byte, it must first enable the V byte.
An |V byte is enabled when its address is presented on the
iV bus and the bus cantrol signals indicate that the data is
an address on the required bank. The IV byte will remain
enabled until another IV byte on the same bank is enabled,
at which time it becomes disabled.

Because the Left and Right Banks are independent, one IV
byte on each Bank can be active (enabled) simuitanacusly.
Data input from, or output to the IV bus implied data 170 to
the active byte on the Bank specified by the Instruction
causing the 1/Q action.

The most significant bit of all data is bit 0,

Internal Data Registers

The 8X300 contains an auxiliary (AUX) register and seven
wark registers to facilitate data manipulation. A separate
overflow register is used to provide overflow indication
after an ADD instruction. Figure 2 shows these in the sche-
matic diagram of the 8X300.

The AUX register is used as the implied operand in ADD,
AND and XOR instructions: howeverit can also be used as a
normal work register for other instructions.

DATA FLOW IN AN 8X300 SYSTEM

ADDRESS
PROGRAM ﬁ AD-A12
STORAGE |0-115
INSTRUCTION
DATA STORAGE
{RAM}
8xX300
IV BUS o
IVO-1v7
LB,sC
RB,WC
1 5
/O REGISTER MCLK
aTr3z
Q []
-
-
5
o of 2 e
[< < - 173}
=zl = £ | 9
ol < <« | Y
ol o 2
¥

PFERIPHERAL DEWICES

Figure 1

SiRtiEs | 7

8X300 Programming Manual

The overflow register can only be used as a source of data.
lts seven most significant bits are always zero, while a one
in the least significant bit position indicates that overflow
occurred during the last ADD instruction. The overflow reg-
ister contents can only be changed by the result of an ADD
instruction.

Table 1 gives details of the data registers of the 8X300 and
the corresponding instruction operand valuas.

Internal Program Registers

There are three registers concerned with instruction execu-
tion in the 8X300:

Address Register {AR) — output register holding the ad-
dress of the current ingtruction for the program memary;

Program Counter (PC) — holding the address of the cur-
rent or next instruction to allow maodification by the control
circuity;

Instruction Register (IR) — Holding the 16-bit instruction
word currently being executed.

These registers cannot be addressed as the operand of an
instruction although the content of the program counter and
address register can be changed as the result of special
instructions. The program counter and address register are
incremented by one during each instruction cycle to provide
the address of the next instruction to be executed. Howev-
er, a jump instruction can cause this action to be overruled
and a new address substituted.

FUNCTIONAL DIAGRAM OF THE 8X300.

> SHIFT :‘l> MERGE |—

0 l?
OvF
R1
R2
R3

> R4

RS
RG
R11

// Q: AUX

i
RIGHT
K\ MASK K== oo it

\} L 4 VEO-TVB7

:l‘ II: IV BUS

<

v LATCHES

INTERNAL CONTROL

ﬁ LSB

12
ARt
“ SR
AD-ATZ
INSTRUCT!ON ADDRESS

10-11%

L
S_UT SIGNALS
| jlk
ARG-AR12 | IR8 IR15
:
| ARO-AR4/IR3-IR7 IRO-IR1G . o[B8
| ARO-AR12 1 o WC
| DECODE © 5C
AND
. CONTHOL CONTROL O MCLK
Yy LOGIC - O HALT
Y 0 2 0 * Q RESET
PC IR - o X,
o

INSTRUCTION DATA

Figure 2

E

8 SiljInLES

8X300 Programming Manual

Table 1. INTERNAL DATA REGISTERS OF THE 8X300.

NAME OCTAL ADDRESS DESCRIPTION

AUX Q0 Work register, containing the implied operand for ADD, AND and XOR instructions.

R1 01)

R2 02

R3 03

R4 04 r General purpose registers.

R& 05

R6 06

R11 11

OVF 10 Read-only register whose least significant bit indicates overflow status of the last
ADD instruction: LSB = 1, overflow occurred. The remaining seven bits are always
ZEro.

The Address Bus

The 8X300 has a separate 13-bit instruction address bus
with the capability to address up to 8192 program words.

The Instruction Bus

This is a 16-bit bus which delivers the contents of the se-
tected instruction memory address to the instruction regis-
ter of the 8X300.

Instruction Formats and Operand Fields

An 8X300 instruction consists of a three bit operation code
(OP) fellowed by a thirteen bit operand field. The operation
code determines the class of the instruction to be per-
formed, while the operand field provides details of the data
to be processed. Figure 3 shows the general instruction for-
mat for the 8X300.

Table 2 shows the various instruction formats and the
instructions that use those.

Table 2 INSTRUCTION FORMATS.

Format Instructions
012345678910 (111213 1415
OP 5 R D MOVE registar to register
ADD
AND register to IV bus address
XOR
oP 3 L D MOVE register to |V bus
ADD IV bus to register
AND IV bus to IV bus
XOR IV bus to iV bus address
OP S I XEC register
NZT register
QP S L | XEC IV bus
NZT IV bus
oP D | XMIT register
IV bus address
OP D L | XMIT IV bus
OF A JMP

Sifjnetics

8X300 Programming Manual

GENERAL INSTRUCTION FORMAT.

o 1 2 3 A 5 6 7 £ 9 10 11 12 13 14 15

Qe

CODE OPERAND FIELDS 113 hish

L 1 L 1 L L L L L

Figure 3

S — Source

This field defines the location of the data byte to be pro-
cessed. 1t is a 5-bit field divided into two sub-fields: Sg (3
bits) and S1 {2 bits). This allows the address of the source
data byte to be specified as two octal digits {maximum is
37). The source can be either a register, in which case both
sub-fields are used for the address (see Table 1), or the IV
bus. When the source is the IV bus, Sy specifies the bank (2
= Left bank, 3 = right bank) and Sg specifies the LSB of the
data to be processed: Sp = n means that the source data
byte will be right rotated until bit n is the least significant bit.
Thus Sp = 7 requires no right rotation.

D — Destination

This 5-bit field specifies the destination of the processed
data: it can be a register, the IV bus or an IV bus address.
Sub-fields Dp and D1 aliow the destination te be addressed
as two octal digits in the same manner as the source field.

When the destination is a register, both sub-fields are used
for the address (see Table 1).

When the data is to be used as an IV bus address, the octal
values 07 {left bank address) or 17 {right bank address)
must be programmed.

When the destination is the IV bus (to the currently enabled
IV byte), Dy specifies the bank (2 = left bank, 3 = right
bank) and Dg specifies the pasition in the IV byte with which
the least significant bit of the processed data field should
be aligned.

L — Length

This 3-bit field defines the number of bits in the source
and/or destination field.

When the destination is the IV bus, the L field specifies the
length of the destination field whose least significant bit is
specified by Dq.

When the source is the IV bus, the L field specifies the
length of the source field whose least significant bit is
specified by Sg. If the destination is also the IV bus then the
L field applies to both source and destination.

Nate: a value of L = O specifies an 8-bit data field.

R — Rotate

For instructions where the source is a register and the des-
tination is either a register or an IV bus address, the 3-bit
rotate field is used in place of the length field. A value n
means that the source data field is right rotated n-places
hefore being processed.

| — Integer

The integer field is either 5 bits or 8 bits long, depending on
the instruction. It is used to provide a constant in the range
0 to 375 (5 bits) or 0 to 377g (B bits).

A — Address

The 13-bit address field is used with the jump instruction to
define the absolute address to be set into the address reg-
ister and program counter, i.e. the addraess of the next in-
struction to be executed.

10 SinetiEs

X300 Programming_ Manuail

Right Rotate and Mask Functions

The combination of right rotate and mask functions allows
selection of one or more bits from a source data field. For
instructions where both the source and destination are reg-
isters, only the rotate function is available, the data being a
fixed length of 8 bits,

The right rotate function provides an end-around-shift of
cneg to seven places of the 8-bit source field, see Fig. 4. In
this manner, the least significant it of the bit string re-
quired can be pesitioned in the least significant position of
the data byta, ready for further processing, see Fig. 5.

The number of places that the data is to be rotated is speci-
fied by the R field, when present, and by the Sg field when
the source is the IV bus,

The R field specifies the number of places the data is to be
rotated; the Sg field specifies the bit of the source data
field which will be rotated to bit position seven before
masking.

The mask function allows selection of the least significant L
bits of the rotated IV bus source data for subsequent pro-
cessing. The value L is specified by the L-field of the in-
struction. After masking, the L least significant bits are
output to the Arithmetic and Logic Unit {ALU), with the re-
maining bits of the byte set to zero.

RIGHT ROTATE.

D

Figure 4

Arithmetic and Logic Unit (ALU)

As its name implies, the ALU performs all the arithmetic and
logic tunctions. For this purpose it has a direct input from
the AUX register for the implied operand in ADD, AND and
XOR instructions. The autput of the ALU may go directly to
the address or data registers, or, via the shift and merge
circuits, to the IV bus.

MASKING

rotate 2 places

_—

{Sp=5o0r R=2)
Y mask L bits
mask field
{L =4 here)
.
o 1 2 3 4 5 5] 7

ololo|lo]|lz213]a

resulting input field to ALU,
5 bits 4—7 contain the data ot

Figure 5

its 2 -5 of the original fieid

SilNDLES 1

8X300 Programming Manual

Shift and Merge Functions

The shift and merge functions allow alteration of the state of
a bit siring within the IV bus data byte. The action of the
rotate and mask functions ensures that the required pro-
cessed data is in the Jeast significant bits of the ALU out-
put; the left shift function then aligns the data in the required
bit positions prior to merging, see Fig. 6.

Because the process is not an end-around-shift, data shift-
ed from position 0, the MSB, is lost. The number of positions
to be shifted is determined by the value Dg: the data is left
shifted untii the LSB has reached the bit position specified
by Dg.

The merge function allows the user to update part of the
existing IV bus data without affecting the remaining paris of
the data byte. The length of the bit string to be merged with
the existing data is specified by the L-field, the LSB of the
bit string being specified by Dg (after shifting).

SHIFT AND MERGE.

Ve

output of ALL

shift lett until hit 7

In position DO
0 {Dg= 5 here}
— —v—__/
- L—bits
murge fiekd
———— L —
T o,

original 1V bus data

Timing and Instruction Cycle

Each processor operation is executed in one instruction cy-
cle which is internally divided into quarter cycles. During the
first quarter cycle the instruction word is accepted by the
instruction register and the data input latches are enabled
to accept the data on the IV bus. As processing takes place
during the second and third quarter cycles, the input data
must be stable by the end of the first quarter cycle. The
address for the next instruction becomes available during
the third quarter cycle enabling access of the program
memory during the third and fourth quarter cycles for the
ensuing instruction. If data is to be cutput to the IV bus, out-
put drivers are activiated during the third quarter cycle to
present stable output data during the fourth data cycle.
Thus, the |V bus works in the input mode during the first two
quarter cycles and in the output mode during the last two
quarter cycles. Figure 7 shows the breakdown of the in-
struction cycle time.

During the instruction cycle, the control and decoding logic
of the BX300 selects and activates the required timing and
bus control signals in order to execute the current instruc-
tion. These signals are shown in Table 3. Figure 8 shows
the timing of the contral signals during a sequence of three
instructions to add the data from an |/ O device on the left
bank to a running total in storage in a register at the right
bank.

Figure 6
TIMING CYCLE OF THE 8X300
1 instruction cycle time
P P -
| MCLK = LOW = MCLK = HIGH =
I . |
— T T T 1
| INST & 1V BUS | DATA AR I A)
| S ; |
| DATAINPUT | PROCESSING | cpanGing | VALID !
|
|

|
le— % CYCLE -wl=— % CYCLE —w=l=— % CYCLE —=|=— % CYCLE —+

Flgure 7

12

Sif|netics

8X300 Programming Manual

Table 3.

1/Q TIMING AND CONTROL SIGNALS

SIGNAL

FUNCTION

MCLK

wWC

SC

Master clock: used to clock 1/0 devices or
provide synchronization for external logic.

Write Command: HIGH when data is being
output to the IV bus,

Select Command: HIGH level indicates that
the data output on the IV bus is an address.
Left Bank: LOW level enables |/ 0O registers
on the left bank.

Right 8ank: LOW level enables 1/Q regis-
ters on the right bank.

WC

sC

1V BUS

TIMING OF THE CONTROL SIGNALS DURING A TYPICAL THREE-INSTRUCTION SEQUENCE

- — XMIT .- — MOVE e . ADD -
]/__\ /f—\\ I /,_ﬁ;
TN\ / \ /T
i, \ | / |
T
i 1
XMIT 5,IVL SELECT INPUT DEVICE
750 ns MOVE R3,IVR ADDRESS DATA STORAGE REGISTER

ADD

Flgure 8

LB,RB READ INPUT DATA, ADD TO TOTAL AND STORE

WC

sC

IV BUS

SijnDtics

13

THE 8X300
INSTRUCTION SET

SilnDtics

8X300 Programming Manual

THE 8X300 INSTRUCTION SET

The 8X300 instruction set is comprised of eight classes of
instruction, each identified by a ditferent OP code value.
Variations in the operand specification provide a subset of
instructions within the instruction ¢lass to give a total of
thirty-two instructions. The eight classes of instruction are:

MOVE: 0 Data from the source register or IV bus is moved
to the destination register or IV bus. The data
may be rotated any number of places and/or
masked to any length during the MOVE oper-
ation. The source data field remains unchanged
after the operation.

ADD: 1 Data from the source register or IV bus is added
to the contents of the AUX register in ALU and
the result is placed in the destination register or
IV bus. The data may be rotated and/or masked
during the operation. The source data field and
the ALIX register remain unchanged unless one

is also the destination.

AND: 2 Data from the source register or IV bus is AND-
ed with the contents of the AUX register and the
result is placed in the destination register or IV
bus. The data may be rotated and/or masked
during the operation. The source data field and
AUX register remain unchanged unless one of

those is also the destination.

XOR: 3 Data from the source register or IV bus under-
goes an EXCLUSIVE CR comparison with the
contents of the AUX register. The result is
placed in the destination register or IV bus. Data
may be retated and/or masked during the oper-
ation. The source data field and AUX register
remain unchanged uniess one of those is also

the destination.

XEC: 4 Causes execution of the instruction at the ad-
dress tormed by replacing the least significant
bits of the last address with the sum of the MHield
and the data in the source register or IV byte.
After execution of the instruction at the speci-
fied address, instruction execution continues at
the address following the XEC instruction, un-

less the executed instruction caused a jump.

NZT: 5 The least significant bits of the instruction ad-
dress are replaced by the | field data it the reg-
ister or IV bus specified by the source field has
non-zero contents. The tested data field re-

mains unchanged.

XMIT: 6 The data in the | field is placed in the register or

IV bus specified as the destination.

JMP: 7 The address of the next instruction to be ex-
acuted is changed to that specified by the 13-

bit A field of the instruction.

MCCAP — MicroComputer Cross Assembier
Program for the 8X300

A cross assembler program is available to translate pro-
grams written in mnemonic source code. This is far more
convanient and includes the advantages of explanatory text
within the source program and error detection during the
assembly process. The relevant assembler statement is
shown in each example of the 8X300 instructions to provide
correlation between the cross assembler statements and
the 8X300 instruction code. A complete description of
MCCAP and listings of typical programs are given at the
end of this manual.

The cross assembler is written in FORTRAN and can be
used on most computer systems capable of accepting this
source language.

SiNOLCS 15

8X300 Programming Manual

MOVE Instructions — Op Code 0

MOVE, Register, Register

Format
o 1 2 3 4 & 6 7 8 9 10 11 12 i3 14 156
S)
OP=0 R]
] 1 SI‘| 50 1 Dl lDDI
Description

The contents of the register specified by S are right rotated as specified by R and
placed in the destination register specified by D. The contents of the scurce register
remain unchanged. The original contents of the destination register are lost.

S specifies the source register.
R specifies the number of places that the source data is te be rotated.
D specifies the destination register.

The order of operation is:
copy the contents of the source register;
right rotate the copied data R places;

move the rotated data to the destination register.

Permitted operand values

S:00/01/02/03/04/06/06/10/11
R: 0/1/2/3/4/5/6/7
D: 00/01/02/03/04/05/06/ 11

16 siljnekies

QOperation

(3) —D

BX300 Programming Manus!

MOVE Instructions — Op Code 0

Example MOVE, Register, Register

Move the contents of R1, right rotated 2 places, to the AUX register.

Instruction word Assemblar notation

MOVE R1 (2}, AUX

1 T
octal | 0] l o 1 ’ 2 I o 0 I
il 1
T T
binary | 0 0 0 ‘0 arao 0 1 10 1 0| 0O 00 0O 0
1 L
- i - I\—.v L v "
CP s R L

instruction operation

KO 10110 Copy source register R1 (S = 01)

10100101 Rotate 2 places (R = 2)

10100101 Move result into AUX (D = 00)

Result

The original contents of the AUX register are replaced by the rotated data of Ry. The
contents of R¢ are not changed.

Data flow

> SHIFT # MERGE F—

F—_———————— - OWF
[A1
[R2
[R3
R4
| R&
[RB
| RT1

C: AUX

ALU

RIGHT
ROTATE

Q—V> VBO-1VB7
v BUS

1V LATCHES

Silnetics 17

8X300 Pro_»grammlng Manual

MOVE Instructions — Op Code 0
MOVE, Register, IV bus address

Format ' Operation

0'1|2 3,4,5,6‘? Slglm ”|12,13.M,15 Enable |V byte with address (S)

Description

Enable the IV byte, at the bank spsecified by D, whose address is given by the right
rotated contents of the register specified by S.

S specities the source register.
R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies the left bank;
D = 17 specifies the right bank,

The order of operation is:
rotate the copied contents of register S by R places;
output the result to the IV bus as an address.

The contants of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/06/06/10/11
R:0/1/2/3/4/6/8/7
D: 07/17

18 siljnotics

8X300 Programming Manual

MOVE instructions — Op Code 0

Example

Select the working storage register at the right bank whose address is diven by the
contents of R3.

Instruction word

1 T
octal] 0 ! o 3 I 0 I 1 I 7 |
1 L
T 1
binary |000|0 a0 1|000l01|1 1 1[
i 1
\._v_ _J%_W—__/__V I N v "
o] 5 R b

Instruction operation
00000100 copy source register R3 {S = 03)
00000100 rotate O places

00000100 output to IV bus as address on the right bank {D = 17)

Resuit

The previously enabled IV byte on the right bank is disabted and the byte with address
004 on the right bank is enabled.

Data Flow

RIGHT

MOVE, Register, |V bus address

Assembler notation

MOVE R3 (0), IVR

ROTATE

sifnotics

m IVBO-1VE7
IV BUS

IV LATCHES

19

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, Register, IV bus

Format Operation
6 1 2 3 4 5 6 7 8 2 10 11 12 13 14 15 (S) =D
5 D
or=0 | . L :
——
Description
Mave the least significant L bits of the register spacified by S to the variable length
field of the IV bus.
S specifies the source register,
L specifies the length (number of bits) of the masked data tield that is to be merged
with the existing IV byte data. (L = 0 selects an 8-bit field.}
D specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D4 = 3 selects the right bank.
Dg specifies the bit pasition in the IV byte with which the least significant bit of
the processed data field should be aligned. This means that the processed data
tield is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.
-— L .
The order of operation is:
MSBO123456?\LSB
read the contents of the selected IV byte into the IV latches; .
| X X X X 1 | source register
copy the contents of the source register;
shift the copied data field as specified by Dg; / /
merge the least significant L bits with the data in the IV latches; rx l I X X xj 1V bus

output the modified data field to the IV byte.

T

Note that the original data in the IV byte outside the merged L-bit field remains
unattered. The contents of the source register remain unchanged.

Operand values

S: 00/01/02/03/04/056/06/10/11
L 1/2/3/4/5/6/710

Do: 0/1/2/3/4/5/6/7

Dy 2/3

Mote that L = C selects an 8-bit field.

20 Gifjnetics

8X300 Programming Manuat

MOVE Instructions — Op Code 0

Example MOVE, Register, IV bus

Move the contents of the least significant 3 bits of register 11 to the selected IV byte
at the left bank, with bit 5 as the least significant position of the IV byte.

Instruction word Assembler notation

MOVE R11, 3, LIVS

T T
octal | 4] | 1 | i I 3 I Z ! 5 I
1 1
T T
lsinary | 0o o o | 0 10 0o 1 l a 1 1 ’ 1T 201 a 1 y
¢ I
- - - e —
ae S L o

Instruction operation
11101111 original IV byte data to input latches
11011000 copy contents of R11 (S = 11}
011000 shift ALU output {Dg = 5)

11100011 merge the 3-bit field with existing IV data (L = 3)
e —— —
previous values of IV
bue preserved in new

IV data

Result

Content of bits 5, 8 and 7 of R11 inserted in bits 3, 4 and & of the IV byte. Bits 0, 1, 2,

€ and 7 of the IV byte unchanged.
SHIFT H MERGE

Data flow

VBO-IVB7
M Iv BUS

IV LATCHES

L __1

SiljnnLics 21

8X300 Programming Manual

MOVE Instructions — Op Code O

MOVE, 'V bus, Register

Format
o 1 2 3 4-5 6 7 & g 10 11 12 13 14 15
s 3]
OP=0 L)
54 Sg D4 Dg
Description

Move the L-bit field of the IV bus data to the least significant L bits of the register
specified by D.

$1 specifies the bank of the IV bus which is the data scurce.
S1 = 2 selects the left bank;
84 = 3 selects the right bank.

8g specifies the bit which will be the least significant bit of the input data field after
rotation.

L specifies the length {(number of bits) of the masked field.
Note that L = 0 selects an 8-bit field. MSB 0 1

QOperation

{IV byte) —D

- L —=

D specifies the address of the destination register.

The order of operation is:

i 2 3 4|5 & 7 LSB
[X X lX X Xl IV bus
0o 0 0| register

read data on IV bus specified by Sq to input latches; [o 0

right rotate the input data field as given by Sp;
mask off the laast significant L bits of the rotated field;

move the masked field to the least significant L bits of the destination register,
with zeros in the unmasked positions.

Operand values

Sp: 0/1/2/3/4/5/6/7

5q: 2/3

L: 1/2/3/4/5/6/7/0Q

D: 00/01/02/03/04/05/08/11

22 Sinptics

8X300 Programming Manual

Example

Mave bits 1, 2 and 3 of the enabled IV byte at the right bank to register 6.

Instruction word

T
octal | 0 | 3 l 3 | 0 : 6 |
L
T T
binary | a 0 0 | T 114 1 1 | a 1 1 l ¢ 011 1 0 I
1 1
" v v Sy g
oP S L o

Instruction operation

0CcCO0O0CO0O1T 11 mask 3 bits (L = 3)

et e,
00000111 result to R6 (D = 086)

Result

o101 IV bus input

1111 right rotate 4 places (Sg = 3)

o ——

MOVE Instructions — Op Code 0

MOVE, IV bus, Register

Assembler notation

MOVE RIV3, 3, R6

Bits 1, 2 and 3 of the IV byte at the right bank are inserted into the least significant 3 bits
of R6. The other bits of R6 are set to zero. The source IV byte is not altered.

Data flow

ALU

OvF

R1

R2

R3

R4

R5

RG

R11

AUX

MASK

RIGHT _
ROTATE

sifnotics

SHIFT

#} MERGE |—

tvb IVBO- VA7
vV BUS

IV LATCHES

23

8X300 Programming Manual

MOVE Instructions — Op Code 0
MOVE, |V bus, IV bus

Format

o 1 2 3 4 &5 6 7 8 89 10 11 12 13 14 1%

T T T T T T T T T

Description

Move the variable length field, specified by Sg and L, from the bank specified by S
to the field and bank specified by D.

$4 specifies the bank of the IV bus which is the data source:
S = 2 selects the left bank;
5S¢ = 3 selects the right bank,

Sg specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length {number of bits) of the masked field that is to be processed and
merged with the existing IV bus data.
Note that L = 0 selects an B-bit field.

D1 specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
041 = 3 selects the right bank.

Do specifies the bit position in the data from the input latches with which the least
significant bit of the processed data field should be aligned. This means that
the processed data field is left-shifted so that bit 7 is aligned with hit Dg
of the input latches.

The order of operation is: MSB 01

read the data from the source IV byte into the input latches;

=

copy the input data and right rotate as specified by Sg;

mask off the least significant L bits;

™
| —
X |4—| %

shift left as specified by Dq;

merge the L-bit field with the data from the input latches;
output 8 bits of data to IV bus,

Note that during the merge phase, the original values of the source field bits outside the
masked field are preserved.

Operand values

So: 0/1/2/3/4/5/8/7
Sy 2/3
L: 1/2/3/4/5/6/7/0
Dg: 0/1/2/3/4/5/6/7
Dy: 2/3

24 Silnetics

QOpaeration

{8) —~D

1Y bus input

1Y bus cutput

8X300 Programming Manuai

MOVE Instructions — Op Code 0

Example

Move bits 0, 1 and 2 of the IV byte at the Left Bank to bits 3, 4 and 5 of the same IV byte.

Instruction word

1 T
oclal l a IQI 2 | 3 j?l 5]
]]
T T
binary |000|TD'010[01 1'10|101|
1
\—.Y - _._/\.__V_/ —_—
oP 5 L o]

Instruction operation

)
m 1011 initial contents of IV byte to input latches

01011101 right rotate 5 places (Sg = 2)

0000010 mask 3 bits (L = 3)

0O00 101 shitt leit 2 places (Dg = 5)

| p—
10110+t 11 merge with contents of input latches and output to IV bus
. " e it

original values

Result

Bits 3, 4 and & contain the same values as bits 0, 1 and 2. All other bits unchanged.

E

Data flow

MOVE, IV bus, IV bus

Assembler notation

MOVE LIVZ, 3, LIVS

MERGE
W
[F)
@I P
RIGHT A 3] VBO-ivB7
MASK 5 |[(—
ROTATE < IV BUS
-

S{notics

25

8X300 Programming Manual

MOVE Instructions — Op Code 0

MOVE, |V bus, IV bus address

Format Operation
0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 1% Enable the IV byte at the bank specified by D, whose
T T . o C b o T address is given by the bus data specified by S.
OP =D L
5 Sg Dy Dg
Description

Copy the data from the IV bus as specified by §1, right rotate the data field until bit
Sg is in the least significant position, mask the least significant L bits and output the
result to the bank of the IV bus specitied by D, as an IV byte address. Bits of the
output field outside the mask are set to zero.

S1 specifies the bank of the IV bus which is the data source:
S = 2 selects the left bank;
S§1 = 3 selects the right bank,

Sg specifies the bit which will be the least significant bit of the rotated input data field.
L specifies the length {number of bits) of the masked field.

D specifies the destination bank of the |V bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:

MSB o 1 2] 3 4 5|8 7 LSB
copy the input data on the IV bus; | X X X l | < X I IV bus
right rotate the input data as given by Sg;
mask the least significant L bits; \\
output result with zeros in positions outside mask.] 0O ¢ 0 0 0 1 J IV bus address

Operand values

Bp: 0/1/2/3/4/5/6/7

S1: 2/3
L: 1/2/3/4/5/8/7/0
D: 07/17.

Note that L = 0 specifies 8-bit field.

26 Siljnetics

8X300 Programming Manual

MOVE Instructions — Op Code ¢
Example MOVE, IV bus, IV bus address

Enable the IV byte at the left bank whose address is the value of bits 2, 3 and 4 of the
presently enabled IV byte at the left bank.

Instruction word Assembler notation

MOVE LIV4, 3, IVL

T T
octal l 8] | 2 t 4 | 3]] | 7 —‘
! L
] T T
binary | a o 0 | 1T 011 @ 0 I S| 1 I a 911 1 I—I
L 1
~ e e e ¥ ~
P 5 L o

Instruction operation

|
11101101 IV bus input
10111101 right rotate 3 places
e
90000101 mask 3 bits (L = 3)
00000101 address data to IV bus
Result

The IV byte, at the address given by bits 2, 3 and 4 of the previously enabled byte, is
enabled. As both bytes are on the same bank, the source byte is disabled when the
new address is output on the bus.

Data flow

===

MASK gl vﬁ) | 'C 0 VO
ROTATE IV BUS

IV LATCHES

Sijnetics 27

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, Register, Register
Format

o 1 2 3 4 s & 7 8 9 10 11 12 13 14 15

T T T T T T T T T T T

S D

£ g Dy Dg

1 L l i L L L L L L

Description

Add the right rotated contents of register S to the contents of the AUX register and
place the result in register D. If overflow occurs during the addition, bit 7 of the GVF

register is set to t, otherwise it is set to O.

$ specifies the source register.

R specifies the number of places that the source data is to be rotated.

D specifies the destination register.

The order of operation is:
copy the contents of the source register;

right rotate the copied data;

add the right rotated data to the contents of the AUX register;

move the result to the destination register,;

set the overflow indication as appropriate.

The contents of the source and AUX registers remain unchanged after the instruction

unless one of these is also specified as the destination.

Operand values

S: 00/01/02/03/04/05/06/10/11
R: 0/1/2/3/4/5/8/7
D: 0G/01/02/03/C4/06/06/11

28 Sil|notics

Operation

(S) plus (AUX) =D

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, Register, Register

Add the contents of R1, right rotated 4 places, to the contents of the AUX register and
store the result in B3,

Instruction word Assembler notation
| T T ADD R1 (4), R3
octal 1 [0 : 1 I 4 | 0 [3 I
T T
Binary ,UO T]O 00 0 1’1 OO’D 00 1 1|
1 L
,..._._‘Y - b - L v
op s R D

Instruction operation
01110001 copy source register
O>>1 rotate 4 places
11101001 contents of AUX
0000D00O0O0 sum
Q0o0cO00O0QO0 1 averflow indication in OVF register

Q0000 CQGQOO result in Ra

Data flow

:} SHIFT :{) MERGE |—

- OVF
R
R2
R3
R4
/5
RE&
R11

L1 \ ALY

RIGHT
ROTATE

C—v> iVBO-1VB?
IV BUS

IV LATCHES

Siotics 29

8X300 Programmiing Manual

ADD Instructions — Op Code 1

ADD, Register, IV bus address Operation
Format Enable the IV byte with address (8) plus (AUX).
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 D
oP=1 . R
1 Sg D4 Dy
Description

Enable the IV byte whose address is given by the sum of the right rotated contents of
the source register and the contents of the AUX register at the bank specified by D.

S specifies the source register.
R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
rotate the copied contents of register (S} by R places;
add the rotated data field to the contents of AUX;
set the overflow indication as appropriate;
output the sum to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

5:00/01/02/03/04/05/08/10/11
R:0/1/2/3/4:5/8/7
D: 07/17

30 SHjnetics

8X300 Programming Manual

ADD Instructions — Op Code 1

Example ADD, Register, IV bus address
Enable the IV byte at the right bank whose address is the aum of the contents of R3 and
AUX.
Instruction word Assembler notation
st | 1 [o 1 3 o T 07 | ADD R3 (0), IVR
T T -

binary 100 Il'O grao 1 1|000|01:1 1 1,

\—‘Y A e PR o " — y

oP s R D

Instruction operation

00010110 copy source data

000101110 no rotation {R = Q)

OC0O0Q0O0OCGC1O0O1 contents of AUX

00011011 sum

00DO00OO0OCO0OO0OO OVF register after addition

0001 1to 11 result to IV bus as an address at the right bank (D = 17)

Result

The IV byte on the right bank, whose address is the sum of the contents of R3 and the
AUX register, is enabled.

Data flow

| ===

RIGHT
ROTATE

<'F:ﬁ \VBO-ive7
WV BUS

IV LATCHES

Sinntics 31

BX300 Programming Manual

ADD Instructions — Op Code 1

ADD, Register, |V bus Operation
Format {S) plus (AUX) =D
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
5 D
OP=1 L .
i S] L 1 SO L L D1 lDD L
Description

Add the centents of the source register to the contents of the AUX register and move
the least significant L bits of the result to the IV bus as given by D.

S specifies the source register,

L specifies the Jength (number of bits) of the masked field that is to be merged with
the existing 1V byte data. Note that L = O selects an B-bit field.

D4
specifies the bank of the 1V bus which is the destination:
D4 = 2 selects the left bank;
D{ = 3 selects the right bank.

Do
specifies the bit position in the |V byte with which the least significant bit of the
processed data field should be aligned. This means that the processed data field
is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
the contents of the destination IV byte are read into the input latches;

the contents of the source register are copied and added to the contents of the
AUX register;

the result is left shifted as specified by D;
the overflow indication is set as appropriate;

the shifted data field is merged with the original contents of the IV byte
and output to the IV bus.

Note that the bits of the output data field outside the L-bit masked field retain their
original values. The contents of the source register remain unchanged after the
instruction.

Operand value

S 00/01/02/03/04/05/08/10/11 mMse o0 1 2 2|a 5 & 7| uss
L: 1/2/3/4/5/6/710 [x x x x| | resun
Do: 0/1/2/3/4/5/6/7 //.//
Dq: 2/3
: 1 X X | 1 X XA| I bus output

- L —=

32 SinRticS

X300 Programming Manual

ADD Instructions — QOp Code 1

Example ADD, IV bus, Register

Add the contents of R11 to the contents of the AUX register and output the least
significant 4 bits of the sum to bits 0, 1, 2 and 3 of the IV byte at the Left Bank.

Instruction word Assembler notation

T
octal | 1 | 1o 1 I 4] 2 3 —I ADDR11, 4, LIV3
i T
hinary | 0o o 1 | g 10 0 1 I 1T 0 0] 1T 010 1 1 |
1 L
e v T L —
QP S L a]

Instruction operation
00100011 copy source data
11010111 contents of AUX
111110110 sum
1010 shift left 4 ptaces (Dg = 3)

10101101 merge with original IV bus data and output to IV bus left
T/ bank (D = 2)

ariginal
content
preserved

Result

Bits 0, 1, 2 and 3 of the IV byte at the left bank are set to the values of the least
significamt 4 bits of the sum of (R11) and (AUX). The overflow indicator is set to zero.

Data flow

SHIFT MERGE

M IVB0-ivB7
IV 8US

IV LATCHES

I |

Sifnetics 33

8X300 Programming Manual

ADD Instructions — Op Code 1
ADD, IV bus, IV bus

Format

o 1 2 3 4 5 8 7 8 & 1¢ 11 12 13 14 15

3 T T T T T T T

0P =1 _ L

Description

Add the L-bit field of the IV bus source data to the contents of the AUX register and
move the least significant L bits of the result to the IV bus field specified by Dg.

$4 specifies the bank of the 1V bus which is the data source:
S¢ = 2 selects the left bank;
84 = 3 selects the right bank.

So specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field that is to be processed and
merged with the existing IV bus data.
Note that L = 0 selects an 8-bit field.

Dy specifies the bank of the IV bus which is the destination:
D{ = 2 selects the left bank;
D4 = 3 selects the right bank.

Dg specifies the bit position in the IV byte with which the least significant bit of the
processed data field should be aligned. This means that the processed data field
is left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

Operation

(S) plus (AUX) —D

The order of operatian is: MSE 0o 1 2 ‘ 3 " a4 l & & 7 LSB
read the data from the IV bus into the input latches; I X X X 1 I X X X l IV bus input
right rotate the copied input data as given by Sg: l l i l ‘ l
mask off L bits; A
add the L-bit field to the contents of the AUX register; | X X X x LI IV bus outpul

left-shirt the sum as given by Dp;

merge the least significant L bits of the shifted field with the contents of the input
latches;

output the merged 8-bit field to the bank of the IV bus given by D1.

Note that during the merge phase, the original values of the source field outside the
masked field are preserved. The original contents of the destinction field are lost.

Operand values

Sp: 0/1/2/3/4/6/6/7
Sq: 2/3
L: 1/2/3/4/6/86/7/0
Dg: 0/1/2/3/4/576/7
D1 2/3

34 SMNOLES

L]
- L _,| TZIGEAD

* processed data

8X300 Programmlng Manual

ADD Instructions — Op Code 1
Example ADD, IV bus, Register

Add bits 0, 1, 2 and 3 of the IV byte at the right bank to the contents of the AUX
register and store the result in the AUX register.

Instruction word Assembler notation
ADD RIV3, 4, AUX
octal I 1 I 3 |: 3] 4 | 0 E 0 |
binary [00 N 1[1 oo[o oiooo]
— — s g iy .
oP S L D

Instruction operation

-
ROQJ source IV data

11010110 rotate 4 places (Sg = 3)

00000110 mask 4 bits (L = 4)
10011011 contents of AUX
10100001 sum

O00CDOO0DO0O OVF register after addition
10100001 new contents of AUX register

Result

The 4 most significant bits of the IV byte are added to the AUX register contents. The
overflow indicator is set to zero.

Data flow

> SHIFT :D MERGE |—

> OvF
R1
R2
R3
R4
R&
RE
R11

\ AUX
MASK RIGHT %
ROTATE

SHjnaties 35

ALU

A4 IVBO-1VB7
t; IV BUS

IV LATCHES

8X300 Programming Manual

ADD Instructions — Op Code 1
ADD, Register, IV bus

Format

o 1 2 3 4 &8 6 7 & 9 10 1t 12 13 14 15

T T T T T T T T T T T

S o

3 S0 By Bp

1 L L Il 1 i L 1 L 1

Description

Operation

(5) plus (AUX) —D

Add the L-bit field of the IV bus scurce data to the contents of the AUX register and
place the result in the destination register. Set the overflow indicator as appropriate.

$1 specifies the bank of the IV bus which is the data source:

54 = 2 selects the left bank;
S{ = 38 selects the right bank,

So specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length {number of bits) of the masked field.
Mote that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of operation is:
read the source IV byte data into the input latches;
right rotate the input data as given by Sg;
mask the rotated data field as specified by L;
add the masked data to the contents of the AUX register;
set the overflow indicator as appropriate;

move the result of the addition to the destination register.

Operand values

Sg: 2/3

Sq:0/1/2/3/4/6/6/7

L: 1/2/3/4/5/86/7/0

D: 00/01/02/03/04/05/06/ 11
Note that L = 0 selects an 8-bit field.

36 sifnetics

o 1|2 3|4 5 6 7 LSB

X xl X X X x| 1V bus {source)

H"""\--\.
e
""H_\‘H""‘H.__H
ro 0 0 0 0 O \ | ALU input

8X300 Programming Manual

ADD Instructions — Op Code 1

ADD, IV bus, IV bus
Example

Add the contents of bits 4 to 7 of the IV byte at the left bank to the comtents of the AUX
register and move the least significant 4 bits of the sum to the most significant 4 bits
of the IV byte at the left bank,

Instruction word Assembler notation
1 1
octal | 1 I 2 : 7 I 4 l 2 ! 3 I ADD LIV7, 4, LIV3
T T
binary E01|10|111]|Du|10:011|
e a — d ¥
op S L D

Instruction waord
011001140 IV bus data to input latches
011001110 no right rotate (Sp = 7)
000001t 10 maskd4bits (L = 4)
00110010 contents of AUX

00111000 sum

o

1°0 0 0 shift left 4 places (Dg = 3)

—_—
10000110 merge with input data and output ta IV bus

—_—

original
values
Resuit

The 4 most significant bits of the IV byte are changed to the values given by the sum of
the 4 least significant bits and the contents of the AUX register. The overflow

indicator is set fo 0.
SHIFT H MERGE

Data flow

RIGHT

MASK ROTATE

' ' IVBO-{VB7?
v BUS

iV LATCHES

Siljnotics a7

8X300 Programming Manuai

ADD Instructions — Op Code 1

ADD, IV bus, IV bus address

Format

1 2 3 4 5 6 7 8 9 10 11 12 33 14 15

T T T T T T T T T

$ D

S4 Sg 04 Dg

L L L L L L 1 L i]

Description

Qperation

{S) plus (AUX)—D

Enable the 1V byte, at the bank specified by Dy, whose address is given by the sum of
the L-bit field of the source data and the contents of the AUX register,

S

So

specifies the bank of the IV bus which is the data source:
S1 = 2 selects the left bank;
S1 = 3 selects the right bank.

specifies the bit which will be the least significant bit of the rotated
input data field.

specifies the length {number of bits) of the masked field
Note that L = O selects an 8-bit field. .

specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:

read the data from the current IV byte into the input latches;
right rotate the copied input data as given by Sg;

mask off the least significant L bits;

add tha masked field to the contents of the AUX register;
set the overflow indicator as appropriate;

output the data as in IV bus address at the bank specified by D.

Operand values

So
51
L:
D:

38

MSB
1 Q/1/2/314/6/6/7

1 2/3
1/2/3/4/5/6/7/0
07/17

sinotics

-— L -

2 3 4 5|6 7 LSB

I)()(

l X X ‘ 1V bus {sourcel

(v o

\l.\

ALU input

‘--—- L - —

8X300 ngrammlng Manual

ADD Instructions — Op Code 1

Example ADD, IV bus, IV bus address

Enable the |V byte at the left bank whose address is the sum of the contents of the AUX
register and bits 5, 6 and 7 of the presently enabled IV byte at the left bank.

Instruction word Assembler notation
sotal | 1 l 5 i_ . l " | o E ; I ADD LIVY, 3, IVL
binary Ioo 1|l Gi! 1 1|0] 1|0 OT:1 1 1}

R

Instruction operation

11011101 IV bus input
11011101 no right rotate (Sg = 7}
C 0000101 mask 3 bits (L = 3)
C0001 101 contents of AUX
0OCO01CO0O1C sum
0O0C0CDOOOODC OVF register

000 T1TOO0OT1TO new |V bus address, left bank.
Result
QOriginal address at left bank disabled and new address, given by sum above, enabled.

Data flow

r—™—" —r— ="

| | | |

» OvF
R
R2
R3
> R4
Rb
R6
RN

ALY

MASK RIGHT — M 'VBO-IVBY
ROTATE IV BUS

IV LATCHES

silnotics 39

8X300 Programmin g Manual

AND Instructions — Op Code 2
AND, Register, Register
Farmat

6 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

T T T T T T T T T T T

Description

ADD the right rotated contents of register S with the contants of the AUX register and

place the result in register D.

S specifies the source register.

R specifies the number of places that the source data is to be rotated.

D specifies the destination register,

The order of operation is:
copy the contents of the source register;

right rotate the copied data;

AND the right rotated data with the contents of the AUX register;

move the result to the destination register.

The contents of the source and AUX registers remains unchanged after the
instruction unless one of these is also the destination register.

Operand values

S: 00/01/02/03/04/05/06/10/ 11
R: 0/1/2/3/4/6/86/7
D: 00/01/02/03/04/05/06/ 11

40 Sinnetics

Operation

(S) A(AUX) —D

8X30C Programumning Manual

AND Instructions — Op Code 2

Example AND, Register, Register
AND the contents of R3 to the contents of the AUX register and store the result in R3.

Instruction word Assembler notation

AND R3 (0), R3

[N 8 EAN PN 7
Ll

Instruction operation

00001111 initial contents of R3 (no rotation, R = 0)
0O000O0OCOCT1 1 contents of AUX

o00cCOoCO0O011 result of AND function

00000011 new contents of B3

Result

R3 new contains the result of ANDing its original contents with those of the AUX
register.

Data flow

N sHiFT :D MERGE |—

r—————— —» OvVF
I R1
[R2
| R3
R4
I RS
| R6
l R11

‘_r_'IL

ALU

C_\/._> (VBO-1V87
WV BUS

RIGHT k_ —]
ROTATE

IV LATCHES

Sifnetics 41

8X300 Programming Manual

AND Instructions — Op Code 2

AND, Register, IV bus address
Format

o 1 2 3 4 & 6 7 8 9 10 11 12 13 14 15

S o

Description

Enable tha IV byte, at the bank specified by D, whose address is given by the AND
operation on the right rotated contents of the source register and the contents of the
AUX register.

S specifies the source ragister.
R specifies the number of places that the source data is to be rotated.

D specified the destination bank of the IV bus for the addraess data:
D = 07 specifies the left bank;
D = 17 specifies the right bank.

The order of operation is:
rotate the copied contents of register S by R places;
AND the rotated data field with the contents of AUX;
output the result to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/056/06/10/11
R:0/1/2/3/4/5/6/7
D: 67/17

42 Sinotics

Operation

Enable IV byte with address (S) A (AUX).

8X300 Programming Manual

AND Instructions — Op Code 2
Example AND, Register, IV bus address

Select the IV byte at the left bank, whose address is contained in bits 4, 5 and 6 of
register R3. It is assumed that the AUX register already containg the required mask,

Instruction word Assembler notation
wo [7 T 7 [7 o] meRe. i
bicary |0 1 040 010 1 1]o o 1o oi1 1 ']

[

Instruction operation

11011101 copy source register
11101711140 rotate 1 place (R = 1}
00000111 contents of AUX
00000110 result of AND comparison

oo0oo0o00110 new left bank address (D = 07}

Result
The IV byte on the left bank with address 0086 is enabled.

Data flow

r— =" |

<_~ IVBO-tVB7
IV BUS

IV LATCHES

Sinnetics 43

8X300 Programming Manuaf

AND Instruction — Op Code 2

AND, Register, IV bus

Format

g 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15

Description

Pertorm an AND operation on the source register contents and those of the AUX
register and move the least significant L bits of the result to the destination field of
the IV bus.

S specifies the source register.

L specifies the length {number of bits) of the masked field that is to be merged
with the existing IV byte data.
Note that L = 0 selects an 8-bit field.

D1 specifies the bank of the IV bus which is the destination:
Dy = 2 selects the left bank;
D = 3 selects the right bank.

Dg specifies the bit position in the IV byte with which the least significant bit
of the processed data field should be aligned. This means that the processed data
field is left-shifted so that bit 7 is aligned with bit D of the IV bus.

The arder of operation is:
the contents of the destination IV byte are read into the input latches;

the contents of the source register are copied and ANDed with the contents of the
AUX register.

the result is left-shifted as specified by D:

the shifted data field is merged with the ariginal contents of the IV byte and output to
the IV byte.

Note that the bits of the output data field cutside the L-bit processed field retain their
original values. The contents of the source register remain unchanged after the
instruction.

Operand values

MSBe a 1 2 3 ‘

-

4

g

L —=

6 7

S: 00/01/02/03/04/05/08/10/11

|)(XXX|

L: 1/2/3/4/5/6/7/0
Dg: 0/1/2/3/4/5/6/7 ././-/./

Dy: 2/3 [x x

X)(l

44 Sinptics

Operation

(S) A (AUX)—D

LSB
ALU output

IV bus cutput

8X300 Programming Manual

AND Instructions — Op Code 2

Example AND, Ragister, |V bus

Perform an AND operation on the contents of R6 and the AUX ragister and move the
least significant 3 bits of the result to bits 1, 2 and 3 of the IV byte at the left bank.

Instruction word Assembler notation

AND R&, 3, LIV3

T T

actat | 2 [0 1 6] 3 I 2 3 |
1 1
T T

binary ro 1 0 [(] o111 0 LU 1 1 l 1 ¢10 1 |
. A 1

kS - M - £ " RN " A

OF 5 L D

Instruction operation
10110101 copy source register
11011110 contents of AUX
10010100 result of AND comparison
100 shift left 4 places (Dg = 3)
11001010 merge with original IV bus contents (L = 3)
L oo

ariginal

values

Result

The 3-bit resuli of the AND operation is moved to bits 1, 2 and 3 of the |V byte at the left

bank.
SHIET h MERGE

Data fiow

M VBO-1vE7
IV BUS

L—-—d

IV LATCHES

SiljnDLCS 45

8X300 Programming Manual

AND Instructions — Op Code 2

AND, IV bus, Repister

Format Operation
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 (S) A (A)—D
S D
OP=2 L
§1 3g Dy Og
Description

Perform an AND aperation on tha |-bit field of the IV bus source data and the
contents of the AUX register.

54 specificies the bank of the IV bus which is the data source;
31 = 2 selects the left hank;
S1 = 3 selects the right bank,

Sgp specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length {(number of bits) ot the masked field.
Note that L = 0 selects an B-bit field.

D specifies the address of the destination register.

The order of aperation is:
read the contents of the |V byte into the input latiches;
right rotate the input data as given by Sq;
mask the rotated data field as specified by L;
AND the masked data to the contents of the AUX register;

move the result to the destination register.

Operand values - L ""
WMSB 0 1 2 3|4 & 6 7 LSB
Sg 2/3 -|x X |x X X x| IV bus |source)
Sq 0/1/2/8/4/5/6/7 \
L: 1/2/3/4/5/6/7/0
D: 00/01/02/03/04/05/06/11. EEEREE ALU input

Note that L = O selects an 8-bit field.

46 Sifnotics

8X300 Programming Manual

AND instructions — Op Code 2

Example AND, IV bus, Register

Perform an AND operation on the contents of the IV byte at the left bank and the
contents of the AUX register and store the result in R4.

Instruction word Assembler notation

T T AND LIVY, 8, R4
octal I 2 | 2 7 | D l oo 4 I
L I
. T T
binary IO 1 D—[l [4 3N 1 1|0 OOIG o1 1 0 OI
I 1
\—_._.---—v-..—/ \—‘_-_n_a-v-—v—u\-.v_n.-\-‘ S " AN v o
ar S L o

Instruction operation
01011011 IV bus input
010311011 no rotation (Sg = 7)
01011011 no mask (L = 8 bits)
11000111 contents of AUX
01000011 result of AND

01000011 new contents of R4

Result

R4 contains the result of the AND operation on the contents of the left bank of the IV bus
and the AUX register.

Data flow

‘> SHIET :D MERGE |—

OVF
R1
R2
R3
R4
R&
RE
R11
] AUX

L4

ALU

_V:[> VBo-ive7
IV BUS

RIGHT ‘ 7
MASK ROTATE

IV LATCHES

Sifjnoties 47

8X300 Programming Manual

AND Instructions — Op Code 2

AND, IV bus, IV bus

Format

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Description

Perfarm an AND operation on the L-bit field of the |V bus source data and the
contents of the AUX register, and move the least significant L bits of the result to the
destination field of the IV bus.

S specifies the bank of the IV bus which is the data source:
81 = 2 selects the left bank;
S1 = 3 selects the right bank.

Sp specifies the bit which will be the least significant bit of the
rotated input data field.

L specities the length {number of bits} of the masked field that is
to be processed and merged with the existing IV bus source data.
MNote that L = 0 selects an 8-bit fieid.

D1 specifies the bank of the IV bus which is the destination:
D1 = 2 selects the left bank;
D1 = 3 selects the right bank.

Dg specifies the bit position in the data from the input latches with which the
least significant bit of the processed data field should be aligned. This means that
the processed data field is left-shifted so that bit 7 is aligned with bit Dg
of the input latches.

The order of aperation is:
read the data from the IV bus into the input latches;
right rotate the copied input data as given by Sp;
mask off the |least significant L bits;
perform the AND operation on the contents of the AUX register;
left-shift the result as given by Dp;

metge the least significant L bits of the shifted field with the contents of the input
latches;

output the merged 8-bit field to the bank of the IV bus given by D 4.
Note that during the merge phase the original values of the bits cutside the masked
field are preserved. The original data in the destination IV byte is lost.

Operand values MSB 1

Operation

(S8) A (AUX) —D

Sp: 0/1/2/3/4/5/6/7

L: 1/2/3/4/5/86/7/0

X
Sy 2/3 l l
x

L~
2 | 5 6 7 LSB
X X X X l 1V bus input
x X XJ 1Y bus cutput

Do: 0/1/2/3/4/5/6/7
Dy: 2/3.

48 SilAntics

*
processed data

8X300 Programming Manual

Example

AND instructions — Op Code 2

Mask the most significant 4 bits of the IV bus data at the left bank and move the result to
the IV byte at the right bank. (It is assumed that the AUX register has already been
loaded with the required contents for this.}

Instruction word

Instruction operation

1

0

0

Result

T T
2 [21 7 [o [7]
L L
T 1
!D‘lOl'IOII 1 1'00 | B 1 'IJ
1 L
kS v e s " AN - s
oep S L D

101

101

1

0

IV bus data to input latches

no rotate or mask (Sp =7,L = 0)

contents of AUX
result of AND
no shift (Dp = 7)

new IV bus data

The most significant 4 bits of the input data are moved to the IV byte at the right bank.

Data ftow

AND, WV bus, IV bus

Assembler notation

AND LIV7, O, RIVT

SHIFT H

MERGE

Sinntics

M {VBO-1vB7
IV BUS

IV LATCHES

49

8X300 Programming Manual

AND Instructions — Op Code 2

AND, |V bus, IV bus address

Format

o 1 2 3 4 5 6 7 8B 9 10 11 12 12 14 15

Deascription

Enable the IV byte at the bank specified by D, whose address is the result of the AND
operation on the L-bit field of the IV bus and the contents of the AUX register.

31 specifies the bank of the IV bus which is the data source:
§1 = 2 selects the left bank;
84 = 3 selects the right bank.

Sg

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit fiaeld.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address {IVL);
D = 17 specifies tight bank address (IVR).

The order of operation is:
read the data from the current |V byte into the input latches;
right rotate the copied input data as given by Sp;
mask off the least significant L bits;
perform the AND operation on the contents of the AND reqgisters;

output the data as an addrass at the bank specified by D.

Operand values
MSB 0o 1|2

specifies the bit which will be the least significant bit of the rotated input data field.

-+ L — -

4 5|6 7

So: 0/1/2/3/4/5/8/7 I X X

[x x]

Sq:2/3
Ly 1/2+3/4/5/6/710

D: 07/17 | °

\l\

50 Sinetics

‘-‘-—"—-L—-

Oparation

{S) A (AUX) —D

LS8

1V bus [sourcel

ALU input

X300 Progfammlng Manuaf

AND Instructions — Op Code 2

Example AND, IV bus, IV bus address

Enable the IV byte at the left bank whose address is the result of the AND operation on
the contants of the AUX register and bits 0 to 3 of the currently enabled IV byte at the
left bank.

Assembler notation
Instruction word

AND LIV3, 4, IVL

T T
actal L 2 |2| a I q IOI 7 |
1 L
T 1
binary]0 1 o|1 010 1[1 ¥ ulo 0}} 1 1]
;—V L .)\—(AN " e
opP s L D

Instruction operation

1
R1 Q‘O IV bus input

101701 1 1% rotate 4 places {Sg = 3)

r———,
0001111 mask 4 bits {L = 4)
00001001 contents of AUX
00001001 result of AND

DO0OO0OO0tTtOO 1 new address at left bank

Result

The praviously enabled byte at the left bank is disabied and the byte at address 11
{octal) is enabled,

Data flow
r——7 rr——"

MASK RIGHT % M IVBO-IVE7
ROTATE WV 8US

IV LATCHES

sijAtics 51

8X300 Programming Manual

XOR Instructions — Op Code 3
XOR, Register, Register

Format

o 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15

5 8]

Deascription

Perform an exclusive OR operation on the right rotated contents of the source
register and the contents of the AUX register.

S specifies the source register
R specities the number of places that the source data is to be rotated.
D specifies the destination register.

The order of operation is:
copy the contents of the source register;
right rotate the copied data;
XOR the right rotated data with the contents of the AUX register;
move the result to the destination register.

The contents of the source and AUX registers remains unchanged after the instruction
unless one of these is also specified as the destination register.

Operand valuas

5:00/01/02/03/04/05/06/10/11
R:0/1/2/3/4/5/8/7
D: 00/01/02/03/04/05/06/11

52 Sinotics

Operation

(s} & (AUX) —D

8X300 Programming Manual

XOR Instructions — Op Code 3
Example XOR, Register, Register

Perform an exclusive OR operation on the contents of R1, rotated 3 places, and the
contents of the AUX register. Store the result in R4.

. Assembler notation
Instruction word

XOR R1(3), R4

T 1
octal | 3 I 0 | 1 |] I [V a l
i 1
1 T
binary |o 1 1[0 010 0 1[0 1 1[0 0t o OJ
\-.._..—.—_Y v AN v o - P
op 5 R 0

Instruction operation
1.0 10010 copy source register R1 (S = Q1)
1010010 rotate 3 places (R = 3)
1111 3% 111 contents of AUX
10101101 result of XOR

1101101 new contents of R4

Result

Register R4 holds the result of the XOR operation on the rotated contents of R1 and the
contents of AUX.

Data flow

Jl> SHIET > MERGE [E—

-—————— . OvF
| R
i R2
I R3
R4
| R&
| RE
J R11

ALU

RIGHT
ROTATE

<_V_> IVBO-1VB7?
IV BUS

IV LATCHES

Siljnotics 53

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, Register, IV bus address Opaeration

Format Enable the IV byte with address (S) & (AUX).

0 1 2 3 4 5 & 7 B8 9 10 1 12 13 14 15

Description

Enable the |V byte, at the bank spacified by D, whose address is the result of the
XOR operation on the right rotated contents of the source register and the contents of
the AUX register.

S specifies the source register.
R specifies the number of places that the source data is to be rotated.

D specifies the destination bank of the [V bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address {IVR).

The order of operation is:
rotate the copied contants of register S by R places;
XOR the rotated data field to the contents of AUX;
output the result to the IV bus as an address.

The contents of the source register remain unchanged after the instruction.

Operand values

S: 00/01/02/03/04/05/06/10/11
R:0/1/2/3/4/5/6/7
D: 07717

54 Ginotics

X300 Programming Manual

XOR Instructions — Op Code 3

Example XOR, Register, |V bus address

Enable the IV byte at the right bank whose address is the result of the XOR operation on
the contents of R3 and the AUX register.

Instruction word Assembler notation
octal l 3] 0o 1 3 | 0] T [XOR R3 (0), IVR
binary Lo ! IIO 010 1 1’000[0 R 1]
1 |
\—_v _-Y N —— A
op s R D

10110111 COpY s0urce register
10110111 no rotate (R = 0)
1101101 contents of AUX
1011010 result of XOR

11011010 new right bank address

Result

The previously enabled IV byte at the right bank is disabled and the IV byte at address
332 (octal) is enabled. The source and AUX registers remain unchanged.

Data flow

r—=" | |

H IVBO-IVB7
IV BUS

ROTATE

IV LATCHES

SiqneLics 55

8X300 Programming Manual

XOR Instructions -—— Qp Code 3

XOR, Register, IV bus Operation
Format (3) & (AUX) =D
9 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
S D
oP=3 ‘ L
& Sp Dy Dy

Description

Parform an exclusive OR operation on the contents of the source register and the
contents of the AUX register. Move the least significant L bits of the result to the L-bit
field of the IV bus,

8§ specifies the source register.

L specifies the length (number of bits) of the masked field that is to be merged with
the existing IV byte data.
Note that L = 0 selacts an 8-bit field.

D specifies the bank of the IV bus which is the destination:
D4 = 2 selects the lett bank;
Dy = 3 selects the right bank.

Dg specifies the bit position in the IV byte with which the least significant bit of
the processed data field should be aligned. This means that the processed
data field is left-shifted so that bit 7 is aligned with bit Dg of the |V bus.

The order of operation is:
read the data of the destination 1V hyte into the input latches;

copy the contents of the source register and perfarm an XOR cperation on the
contents of the AUX register;

left-shift the result as specified by Dg;

merge the least significant L-bits of the shifted field with the data in the input
latches;

output the merged data to the IV bus.

Note that the bits of the output data field outside the L-bit masked field retain their
original values. The contents of the source register remain unchanged after the
instruction.

Operand values

L
MSB 0123‘455? LSB

S: 00/01/02/03/04/06/06/10/11 !" X X xl | ALU output

L: 1/2/3/4/5/6/7/0 ././-/-/

Do: 0/1/2/3/4/6/6/7

rx X X X| IV bus output
Dqy: 2/3

Naote: L = O selects an B-bit field.

-~ L —=l

56 Sinotics

8X300 Programming Manual

XOR Instructions — Op Code 3

Example

Store the one's complement of the contents of RS in the IV byte at the right bank. (It is
assumed that the AUX register already contains all ones.)

Instruction word

T T
octal [3 I a | 5 | a] 3 | 7 |
L !
T T
trinary I\CI 1 1 l g 01 o 1 ! o 0o 0 1 111 1 1 J
L L
o e PR ——— —_ A e
ap 5 L)

Instruction operation

ct100111 Copy source register
11111111 contents of AUX
10C11000 result of XOR
100110600 no shift {Dg = 7)

10011000 data to |V bus

Result

The one’s complement of the source register is ouiput ta the right bank of the IV bus.

SHIFT

Data flow

XOR, Register, |V bus

Assembler notation

XOR R5, 0, RIV7

MERGE

‘ ' IVBO-IVB7?
IV BUS

iV LATCHES

StiES

57

8X300 Programming Manual

XOR Instructions — QOp Code 3

XOR, IV bus, Register

Format Operation

¢ t 2 3 4 5 6 7 B 4% 10 1112 13 14 195 (S) ® (AUX) —+D

S D

5 So Dy Ba

Description

Perform an exclusive OR operation on the L-bit field of the IV bus source data and the
contents of the AUX register. Move the 8-bit result to the register specified by D.

S specifies the bank of the IV bus which is the data source:
51 = 2 selects the left bank;
S41 = 3 selects the right bank.

S specifies the bit which will be the least significant bit of the rotated input data field.

L specifies the length (number of bits) of the masked field.
Note that L = O selects an 8-bit field.

D specifies the address of the destination register.

The order of gperation is:
read the IV bus data into the input latches;
right rotate the input field as specified by Sg;
mask the rotated data field as specified by L;
XOR the masked data with the contents of the AUX register;

move the 8-bit result to the destination register.

Operand values

-— L —

So: 2/3 MSB 0 1|2 3 4 5|6 7 LSB
$1:0/1/2/3/4/5/6/7 ’ X X X X I 1V bus (seurcel
L: 1/2/3/4/5/8/710 \ \

D: 00/01/02/03/04/05/06/11 Mo o o a] | AL

Note that L = G selects an 8-bit field.

58 Sifjnotics

8X300 Programming Manual

XOR Instructions — Op Code 3

Example XOR, IV bus, Register

Perform an exclusive OR operation on the contents of bits 2, 3 and 4 of the |V byte at
the left bank and the contents of the AUX register. Store the result in the AUX register.

nstruction word Assembler notation

XOR LIv4, 3, AUX

T T

octal I 3 | 2 | 4] 3 [8] | 0 I
I L
T T

binary 170 1 1|1 011 00|0 1 1|0 OIODGI
L L

\._..._._Y___..,../\- - __Y — e ———

OF 5 L D

Instruction operation

10111011 IV bus input
01110111 rotate 3 places (Sg = 4)
0CO000 111 mask 3 bits {L = 3)
000001 114 contents of AUX
0000O0DO0O0CD resul of XOR

0000CO0OO0O0O0 new contents of AUX

Result

The contents of the AUX register are changed to the result of the XOR operation. The
source IV byte remains unchanged.

Data flow

SHIFT =D MmERGE |—

e — — —+ OVF
| R1
f R2
| R2
R4
| RS
[RE
| R11

‘_‘QT AUX

MASK RSHT | (e ——
ROTATE

ALU

—VZD IVEO-1VB7
v BUS

i¥ LATCHES

sijnotics 59

X300 Programming Manual

XOR Instructions — Op Code 3

XOR, IV bus, IV bus

Format

9 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15

Description

Pertorm an exclusive OR operation on the L-bit field of the IV bus source data and
the 8-bit contents of the AUX register and move the least significant L bits of the result

to the destinaticn field of the 1V bus, given by D.

S 1 specifies the bank of the IV bus which is the data source:

S0

Lo

S1 = 2 specifies the laft bank;
$1 = 3 specifies the right bank.

specifies the bit which will be the least significant bit of the input data field after
rotation.

specifies the length (number of bits) of the masked field that is to be processed and
merged with the existing IV bus source data.
Note that L = O selects an 8-bit field.

specifies the bank of the IV bus which is the destination:
D¢ = 2 specifies the left bank;
Ly = 3 specifies the right bank.

specifies the bit position in the data from the input latches with which the

least significant bit of the processed data field should be aligned. This means
that the processed data field is left-shifted so that bit 7 is aligned with bit Do of
the input latches.

The order of aperation is;

No

read the IV bus data into the input latches,

right rotate the input data field until bit Sg becomes the LSB;

mask the least significant L bits;

XOR the masked field with the contents of the AUX register;

left-shift the result until bit 7 is aligned with bit Dg;

merge the least L bits with the original IV bus data from the input latches;
output the merged 8-bit field to the 1V bus.

te that during the merge phase, the original values of the bits outside the masked

field are preserved. The original data in the destination IV byte is lost.

Permitted operand values - -

MSE 0 1 2 ‘ 3 4 ‘ 5 6 7
So: 0/1/2/3/4/5/6/7 | < l | l

X X X X X

S$1:2/3 .
L: 1/2/3/4/5/6/7/0 l v i l l
Dp: 0/1/2/3/4/5/6/7 | » o \ " |
Dy: 2/3 i

Note that L = O selects an 8-bit field.

60

SiNeHcs

QOperation

(8) ® (AUX) =D

LSB

I bus input

1V bus outpue

'processed data

8X300 Programmfng Manual

XOR Instruction — Op Code 3
Example XOR, IV bus, IV bus

Perform exclusive OR operation on the contents of the AUX register and the
contents of the |V byte at the left bank and output the result to the IV byte at the right

bank.
Ingtruction word Assembler notation
| : XOR, LIV?7, 0, RIVY
octal | 3 I 2 ; 7 ‘ 1] ’ 3 : 7 —I
binary [o 1 111 0:1 1 1]000'1 11 1|
. — A, - N kS - A
ap g L D

Instruction operation
10111011 IV bus input
12111011 no rotate (Sg = 7)
10111011 no mask (L = Q)
00100101 contents of AUX
10011110 result of XOR
10011110 no shift (Dg = 7}

10011110 new IV bus data
Result

The IV byte at the right bank contains the results of the exclusive OR operation on the
contents of the AUX register and the IV byte at the left bank,
SHIFT H MERGE

Data flow

RIGHT
ROTATE

M V8O- TvB7
IV BUS

MASK

WV LATCHES

Sifjnptics 61

8X300 Programming Manual

XOR Instructions — Op Code 3

XOR, IV bus, IV bus address

Format Operation

[V 2 3 4 5 6 7 8 9 1M 11 12 13 14 15 .I (S} @& (AUX) —D

op=3 _ L

Description

Enable the IV byte, at the bank specified by D, whose address is the result of the
XOR operation on the L-bit field of the IV bus and the contents of the AUX register.

S$1 specifies the bank of the IV bus which is the data source:
S§4 = 2 specifies the left bank;
S1 = 3 specifies the right bank.

Sq specifies the bit which will be the least
significant bit of the input data field after rotation.

L specifies the length (number of bits) of the mask field.
Note that L = 0 selects an 8-bit field.

D specifies the destination bank of the IV bus for the address data:
D = 07 specifies left bank address (IVL);
D = 17 specifies right bank address (IVR).

The order of operation is:
read the IV bus data into the input latches;
right rotate the input data field until bit Sg becomes the LSB;
mask the least significant L bits;
XOR the masked field with the contents of the AUX register;

move the resulting 8-bit field to the IV bus as an address at the bank specified by D.

Permitted operand values

- — L - e
S0: 0/1/2/3/4/5/6/7 Mse 0 112 3 4 5 6 7 L8
0- [X X I X xJ IV bus {source)
8q:2/3
L: 1/2/3/4/5/6/7/0 \ \
D: 07417 | 0 o 0 0 { l ALU input

Note that L = O selects an 8-bit field. |

-—_ L —md

62 Sinotics

8X300 Programmlng Manugi

Example

XOR Instructions — Op Code 3
XOR, IV bus, |V bus address

Enable the IV byte at the right bank whose address is the rasult of the XOR operation
on the contents of the AUX register and the least significant 4 bits of the |V byte at the

left bank.

Instruction word

Assembler notation

octal ’ 3 i 2

XOR LIV7, 4, WR

binary |D 1 1[! o1 1 1|100I01|1 t 1,
1
\—‘\r . —y— L —— —_— "l
oP 5]
Instruction operation
101101190 IV bus input

10110110

f S ——

—" i,
o000 110
00001110
00001000
0Oo0oo0C10O00D

Result

no rotate {Sg = 7)
mask 4 bits (L. = 4)
contents of AUX

result of XOR

new |V bus right bank address

The previously enabled byte at the right bank is disabled and the byte at address 10
{octal) at the right bank is enabled.

Data flow

r—™" r— ="

MASK

RIGHT
ROTATE

ﬁ M IVBO- Va7
IV BUS

W LATCHES

Sifjnetics 63

8X300 Programming Manuail

XEC Instructions — Op Code 4
XEC, Register

Format Operation
O 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
T T T T T T Execute the instruction at the current page address offset
op - 4 $ 1 by | + {S). Return to the instruction following the XEC
5, So instruction unless an unconditional jump or a satisfied
- . v S T conditional jump is encountered.

Description

Execute the instruction at the address formed by replacing the 8 least significant
bits of the contents of the address register with the 8-bit sum of | and the contents of
the register specified by S.

S specifies the source register.

| is the 8-hit integer value for address modification.

The order of operation is:
copy the data from the source register;
form the 8-bit sum of the 1 field value and the source register contents;
modify the address register with the 8-bit sum.

Only the least significant 8-bits of the address register can be changed by this
instruction, so that a range of 266 addresses is available. This range of 256
addresses is termed the address page, determined by the five most significant bits of
the address register. When the sum of (8) + | is greater than 2556 {377 octal) only the
least significant 8 bits are used; the overflow register is not changed.

The program counter is not altered by the XEC instruction, so that the original
address within the page is retained. During the instruction to be executed, the program
counter is incremented by one in the normal way to point to the instruction foliowing
the XEC instruction. However, if the executed instruction is a JMP or NZT, the program
counter can be changed to the jump address and instruction execution does not
return to the address following the XEC instruction.

Permitted operand values

5 00/01/02/03/04/05/06/10/ 11
I} 0 == 377g

Example

Execute the instruction whose address is given by replacing the ieast significant 8 bits
of the contents of R3 and the octal integer 315.

Instruction word Instruction operation
: : : Initial value of address register: 710g (00001 11001000)
actal [4 l o 0 I i v vk | Initial value of program counter: 7 10g
Binary |100|U 05011|1 1300‘|‘U'J I-field 11001101
oP s ! copy contents of R3 10000010
8-bit sum of R3 and | 0oi0oo0o1111
becomes 8 LSBs of B e e——
ol address register 1 1 7
Assembler notation .
New value of address register: 517g (00001 01001111}
XEC 315 (R3) The program counter and R3 are unchanged.

64 SiNDHES

8X300 Programmlng Manual

Result

XEC Instruction — Op Code 4

The value in the address register is changed to 517g, so that the next instruction to be

axecuted is the one at address 517.

The sequenca of instructions executed depends upon the presence of a JMP ar NZT

instruction:

(a) with jump

{b) without jump

MERGE

IV LATCHES

Address Address
710 XEC instruction 710 XEC instruction
517 Instruction to be executed 517 instruction to be executed
(jump to address 355) 711 next instruction
355 next instruction
Data flow
> SHIFT
0 7
_————— — — OVF
!
L_ INTERNAL CONTROL
5= 7[SIGNALS
AREB-AR12 | IR8-1R15 ﬁ
|
|
ARO-AR4/IR3-IR7 IRD-1R15
e "L __________ +* *
I | arO-AR12
I S Bt
| DECODE
|1 L _ AND
‘e —+| CONTROL CONTROL
ry LOGIC
0 12 0 1 12 0 15
AR PC IR
LB ﬁ? LSB LSB
AD-A12 10-115

INSTRUCTION ADDRESS

INSTRUCTION DATA

SifjnRLiCs

LS

Iy

4

o0 0 ¢ 0 o O 0 0

XEC, Register

Q:v> IVBO-IVE7
IV BUS

MCLK
HALT
RESET
Xy

65

8X300 Programming Manual -

XEC Instructions — Op Code 4

XEC, IV bus
Format QOperation
0 1 2 3 4 85 B 7 8 9 10 11 12 13 14 15
" '] i T T T T Execute the instruction at the current page address offset
_ s by | + (S). Return to the instruction following the XEC
OP =4 L ! instruction unless an unconditional jump or a satisfied
51 Sp . X
. . ! L L L . . conditional is encountered.
Deascription

Execute the instruction at the address formed by replacing the 5 least significant
bits of the contents of the address register with the 5-bit sum of | and the contents of
the IV bus field specified by S.

S41 specifies the bank of the IV bus which is the data source:
51 = 2 specifies the left bank;
81 = 3 specifies the right bank.

Sp specifies the bit which will be the least significant bit of the input data field after
rotatian.

| is the 5-bit integer value for address modification.

L specifies the length {(number of bits) of the masked field. The maximurn value of L
that may be specifiedisL = 5,

The order of operation is:

read the IV bus data into the input latches;

rotate the input data field as given by Sp;

mask off the least significant L bits;

add the masked field to 5-bit integer;

replace the least significant 5-bits of the contents of the address register with the 5-

bit result of the add operation.
Only the least significant & bits of the address register can be changed by this
ingtruction, so that a range of 32 addresses is available, This range of 32 addresses
is termed the address page, determined by the eight most significant bits of the
address register. When the sum {S) + | is greater than 31 (37 octal) only the least
significant 5 bits are used,; the overflow register is not changed.

The program counter is not altered by the XEC instruction, so that the original
address within the page is retained. During the instruction to be executed, the program
counter is incremented by one in the normal way to point to the instruction following
the XEC instruction. However, if the executed instructicn is a JMP or NZT, the program
counter can be changed to the jump address and instruction execution does not

return to the address following the XEC instruction. '-—— L —-—-‘
Permitted operand values msg 0 112 3 4 5|6 7 LsB
So: 0/1/2/3/4/5/617 _ | x x| [x x| v bus tource)
Sq:2/3
L. 1/2/3/4/5 _ \
I 0<I<a7g
l o 0 0 0 | ALL input

Example

Execute the instruction whose address is given by replacing the least significant 5 bits [.._ L .___.._‘
of the contents of the address register with the sum of the octal integer 26 and the
contents of bits 2,3 and 4 of the IV byte at the left bank.

Instruction word

iR
binary [1 0 o l - , 1 o0 o | 0 1 1 i r 01 10 | Assembler notation
R - N D A — XEC 26H (LIV4,3)
op 3 L |

66 Sifnetics

8X300 Programming Manual

Instruction operation XEC Instructions — Op Code 4

Initial vatue of address register: 555 (00000001 01101) XEC, IV bus

IV bus input 1101 +101 (a) with jump
\ Address
1 . .
rotate 3 places 10 110 171 55 XEC instruction
) A 71 instruction to be executed
mask 3 bits (L = 3} 00000011 (jump to address 150)
+ 150 next instruction
value of I-field 0O00aG10110 {b) without jump
. Address
S-dt:jlt sum to ‘51LSBs of 11001 55 XEC instruction
address register 71 instruction to be executed
New value of address register: 71g (00000001 11001) 56 next instruction

Result

The value in the address raegister is changed to 71g so that the next instruction to be
executed is at address 71. The sequence of instructions executed depends upon the
presence of a JMP or NZT instruction:

Data flow
Dl SHIET ==y mERGE [—
o 7
r— - = - OVF
| R1
| "2
| R3
> R4
| RS
| RA
| R11
——— AUX
—
ALl w)
[7F)
I -
MASK RIGHT 7 O AV IVBD-1VB7
g ROTATE * & —;’> N Bas
| - >
|
L INTERNAL CONTROL
. ety SIGNALS
' T
ARS5-AR1Z | IR8-1R15
: O RB
r____LAEO;AH_:HEB_—IEr'ﬁ___ IRO-IR15 o B
| | ARO-ART2 1 -0 WEC
- - I_ - T
111 L] DECODE 0 5C
AND
_ Vi +| conTrOL CONTROL O MCLK
+ LOGIC + O HALT
0 | 12 0 | 12 0 15) .
- © RESET
‘AR PC IR . o %,
LSB {? LSB LS8 . o X,
AD-AT2 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA
Ei_l]lll!til:ﬁ 67

8X300 Programming Manual

NZT Instructions — Op Code 5

NZT, Register
Format

0 1 2 3 4 &% 6 7 8 9 W0 11 2 13 14 15

Description

If (S} # ©, jump to the address formed by replacing the 8 least significant bits of the
contents of the address register and program counter with the value in the | field.

If {8) = O, increment the program counter by one.

S specities the register which is the subject of the test.
| is the 8-bit integer for address modification,

The order of operation is:
copy the contents of the source register;
test the register contents for all zeros;

if the contents are not zeros, replace the least significant 8 bits of the contents of
the address register and program counter with the value of the I-field;

if the contents are zeros, increment the program counter by one,

Permitted operand values
S 00/01/02/03/04/06/06/10/11
I: 0 == 3773

68 SHNOLiCS

Operation

Jump if (S} # O

8X300 Programming Manual

Example

Jump to address 5300g if the content of R6 is not zero,

instruction word

NZT Instructions — Op Code 5
NZT, Register

Assembler notation

NZT R6, 300H

T T
octal | 5 J 0 | 6 | 3 | 0 | i} |
1 1 |
; T] T
binary L1 0 1|0 011 1 o|1 110 0 010 0 ¢
1 A 1
\—‘\f S - LS _Y__ ”
op S I

Instruction operation
Initial contents of address register and program counter

contents of |-field

new contents of address register and program counter if

(R6) # O

new contents of address counter and program register if

{R6) =0
Result

01010 11000011 (5303g)

11000000 (300g)

01010 11000000 (5300g)

01010 11000100 {5304g}

If the contents of R6 are non-zero, the program branches to address 5300, otherwise it

continues at addres
Data flow

8 5304.

- = SHIFT MERGE [—
0 7
———— — — OVF
| R1
| R2
l R3
: ST .
[RS
| RE
| R11
}(: AUX
4
T - .
e Q:—\}> IVBO-IVE7
3 IV BUS
=
INTERNAL CONTROL
=0 SIGNALS
ARG-AR12 IRB-1R1% H
O RB
ARO-AR4/IR3-IR7 IRO-IR15 —o718
r-r—-—+ ——"————-— = — — —
| ARCG-AR12 0 WC(C
| DECGDE -0 5C
AND
Ll | conTROL CONTROL T O MeLK
1 ry LOGIC +-— O HALT
0 12 0 12 0 1 o
> — —O RESET
AR PC IR - o x,
LSE LSB Ls8 — —0 Xy
AD-A12 13-11%
INSTRUCTION ADDRESS INSTRUCTION DATA
Sinotics 60

BX300 Programming Manuai

NZT Instructions — Op Code 5

NZT, IV bus
Format QOpaearation
o 1 2 3 4 5 & 7 8 9 1w 11 12 12 14 15 _
b T v ot 1 (S) # O, jump to the address formed by replacing the 5
§ least significant bits of the contents of the address register
QP =5 _ L 1 . . .
3 5o and program counter with the value in the I-field.

Description

if the contents of the L-bit field of the IV bus source data is non-zere, insert the value of
the 5-bit I-field into the 5 least significant bits of the address register and program
counter. If the contents are all zeros, the program counter is incremented by one.

S1 specifies the bank of the IV bus which is the data source:
S = 2 specifies the left bank;
51 = 3 specifies the right bank.

S specifies the bit which will be the least significant bit of the input data field after
rotation.

1 is the 5-bit integer value for address modification.

L specifios the length (number of bits) of the masked field.
Note that L = O specifies an 8-bit field.

The order of operation is:
read the IV bus data into the input latches;
rotate the copied input data until bit Sp becomes the LSB;
mask off the least significant L bits;
test the contents of the masked field;

if the contents of the masked field are non-zero, replace the 5 least significant bits of
the program counter and address register with the value of the I-field;

if the contents of the masked field are zero, increment the program counter by one.

Parmitted operand values

Sp: 0/1/2/3/4/5/6/7
Sy 243

L: 1/2/3/4/5/86/7/0
I 0=<I|=37g

EXAMPLE -

Jump to address 115g if the content of bit 5 of the IV byte at the left bank is not zero.

Instruction word _ Assembler notation
octal | s | 2 1: 5 I 1 [1 i 5 J - NZT LIVSE, 1, 151
binary !10 1|| n:li U 1!00 1!0 1310 1]

70 Sifnetics

8X300 Pragramming Manual

NZT Instructions — Op Code 5

NZT, IV bus
Instruction operation

Initial value of address register
and program counter:
137g (DOO00010 11111)

IV bus input 10110 1*0
rotate 2 places 1}1 o1 101
mask 1 bit (L = 1) 00000O0O0 1

Mask field + 0 so (1)

moved to AR and PC.

contents of | 0+110 1
New value of address register

and program counter: 115g (00000010 01101)

New value of address register and program

counter if contents of IV byte = O :140g (CO0000 1100000)
Data flow
> SHIFT :> MERGE F—
0 7
r—————— — OVF
| R1
| =
| R3
. > Ra
| R5
i R&
i RT1
AUX
AL v .
: L
MASK RIGHT V_ g _{7:? IVBO-1VBT
- ROTATE < IV BUS
2
INTERNAL CONTROL
ARG5-AR12 IR8 IR15
O RB
ARUD-AR4/IR3-IR7 IRO-IR1S —o B
r—-——7T———=—-——————- y .
| ARO-AR12Z [o WC
|] DECODE 0 sC
AND .
l | conTROL CONTROL O'MCLK
y LOGIC - O HALT
0 | 12 o 12 0 15 « o'rEE
AR PC IR - 0 X,
LSH Ls8 LSB * -0 X,
AD-A12Z 10115
INSTRUCTION ADDRESS INSTRUCTION DATA

Sinnekics 71

8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, Register

Format
g 1 2 2 4 5 6 7 8 9 10 11 12 13 14 15
T T 1 T T T Ll T T T L} T T
D
OF =6 i
D-|_ DO
Description

Store the value of the 8-bit integer in the register specified by D.
D specifies the register to be loaded.

| is the 8-bit field containing the value to be loaded into the register.

Permitted operand values

D: 00/01/02/03/04/05/06/11
l 0=<)=<377g

72 SiotiEs

Operation

f——D

8X300 Programming Manual

EXAMPLE XMIT INSTRUCTIONS — OP CODE 6
Set the value 3775 in the AUX register. XMIT, Register
Instruction word Assembler notation
T L} T
octal [6 ‘ 6 [¢ [S S I XMIT, 377H, AUX
T T 1
binary [1 1 0[0 0|000]1 (AT IR T BRI 1’
I i 1
\"_“\f o k. v i
OF D '
Instruction operation Result
initial contents The value of the | field is set in the destination register.
of AUX 1100101
| field 11111111
new contents of AUX 11111111
Data flow
™ sHiET MERGE F—
0 7
r————— - — OVF
| R1
! R2
| R3
R4
i RS
| R&
| R11
AUX
AL -
I
RIGHT <:_ ~ L | © AV IVBO-1VE?
| ROTATE T C J1> IV BUS
| | >
f Il_ INTERNAL CONTROL
| soo | SIGNALS
| | T
|ARB-AR12 |
| l o RB
| | ARO-AR4/IR3-IR7 IRO-IR15 X —C (8
|L A P aRO-ART2 Q WC
-: : [DECODE 0 3C
AND
Y LOGIC + -0 HALT
0 4 12 0 12 0 15 . o RESET
AR PC IR . o X5
L5B LSB LS8 * G Xy
AD-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA

siljnatics 73

8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, IV bus address

Format
0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
T T T T T T T L T T T 1 L}
)
oP-6 | 1
0, Dg
Description

Enable the IV byte, at the bank specified by D, whose address is the 8-bit integer |,

D specifies the destination bank of the IV bus for the address data:

D = 07 specifies the left bank address:
D = 17 specifies right bank address.

I is the 8-bit field specifying the address of the byte to be enabled.

The order of operation is:

copy the 8 least significant bits of the instruction word;

output the 8-bit field to the IV bus as an address on the bank specified by D.

Permitted operand values

D: 07/17
. 0<1=<377g

74

SijANtiCS

Operation

|——D

8X300 Pjggrammlng Manual

EXAMPLE XMIT Instructions — Op Code 6
Enable the IV byte at the left bank whose address is 53g. XMIT, IV bus address
Instruction word
octal | 6 1 o 1 7 | 0 5 i 3 I Assembler notation
L Il L
binary L1 1 olo o111 1|0 0tr1 6 110 1 1] XMIT 027H, IVL.
L H 1
oe D [

Instruction operation

value of | field (63g) 00101011
new |/ O address at

left bank 001071011
Result

The previously enabled IV byte at the left bank is disabled and the byte at address 27g
at the left bank is anabled. The right bank is not affected.

Data flow _ _
r——= r A

RIGHT < N
ROTATE

IVBD-IVB?
GZ# v BUS

IV LATCHES

INTERNAL CONTROL

P SIGNALS
ARS-AR1Z
| ‘9] R_B
[IRD-1R15 O B
[Fr———t——— — —— = — — —
L i | aAR0-AR12 O WC
1| : lL l DECODE G 5C
AND
v+ J, -+| CONTROL CONTROL © MCLK
4 LOGIC * O HALT
0 . 12 0 12 0 15 i RESET
AR PC IR “ o XZ
LSB LSB LS8 - 0 X,
A0-A12 10-115
INSTRUCTION ADDRESS INSTRUCTION DATA

Sifjnntics 75

a8X300 Programming Manual

XMIT Instructions — Op Code 6

XMIT, IV bus
Format Operation
0O 1 2 3 4.5 8 7 8 9 10 1 12 13 14 1B
T T T T T T T T T T T T I D
D
op=6 - : Assembler notation
Ly Do

XMIT 03, LIVS, 3
Description

Transmit the least significant L bits of the | field to the L-bit field of the IV bus
specified by D,)f L is greater than 5 bits, the most significant bits of the destination field
are filled with zeros.

D specifies the bank of the IV bus which is the destination:
DB = 2 selects the left bank;
D4 = 3 selects the right bank.

L specifies the length of the destination field (number of bits).
Note that L = O selects an 8-bit field.

Dp specities the bit position in the IV bus with which the least significant bit
of the | field data should be aligned. This means that the | field data is
left-shifted so that bit 7 is aligned with bit Dg of the IV bus.

The order of operation is:
read the contents of the destination IV byte into the input latches;
copy the least significant 5 bits of the instruction word;
left shift the copied 5-bit field as specified by Dg;

merge the shifted field, as specified by L, with the contants of the IV latches and
output the result to the IV bus.

Note that the data in the IV latches outside the field specified by Dg and L is not
altared,

Parmitted operand values l ‘

Do: 0/1/2/3/4/5/6/7 l 0o o \ i ALU output

D{:2/3 / /
1 v

L: 1/2:/3/4/5/6/7/0 L
\ XX | X X] 1% bus {destination]
I 0=1=<37g

EXAMPLE
Transmit the value 3 to bits 3, 4 and 5 of the IV byte at the left bank.

Instruction word

T T T
octal I L] I 2 1] | 3 1 0 : 3 J
. 1 .
T T
binary l 1 1 0 l 1 oot 0 1 l ul 1 1 1 g 1| v} 1 1]
—— g — e —_—— e e ———
ol o L !

76 Sifnotics

X300 Programming Manual

Instruction operation

initial contents of |V byte
value of | field
output of ALU
shift 2 places

merge L bits and output
to IV bus to IV byte

Resuit

01000100

000D 11

0000004 1

orginal data of IV
byte

XMIT Instructions — Op Code 6

The three least significant bits of the | field are transmitted to bits 3, 4 and 5 of the IV

byte at the left bank.

XMIT, IV bus

Data flow
Sler—H MERGE
w
T
RIGHT <_ \/ E IVBO-IVB7
| ROTATE 3 _ # IV BUS
| I >
|
I L INTERNAL CONTROL
| s SIGNALS
|
|ARS-AR12 H
[——0 RB
| | ARQ-AR4/IR3-IRT IRO-1R15 o1&
| - —
L | | ARO-ARTZ o wWe
1]
N L] DECODE < sC
AND
* 4, + - CONTROL CONTROL O MCLK
- LOGIC . © RALT
0 1 12 12 0 15
+ —O RESET
AR PC IR
—— O >(2
L56 LSB LSB * —0 X4
AD-AT2 t0-1s
INSTRUCTION ADDRESS INSTRUCTION DATA
Ei_'!llll!ﬂllﬁ 77

X300 Prog_ramming Manual

JMP Instruction — Op Code 7
JMP, address

Format

o 1 2?2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dascription

Qperation

Set the value in the A field into the program counter and
address register.

Jump to the instruction address specified by the A field, and continue normal
program execution from that address. The contents of the 13-bit A field are loaded into
the program counter and address register. The next instruction to be executed is

then the instruction at the new address.

A is the 13-bit field specifying the address to which the jump is made.

The arder of operation is:

load the address register and program counter with the contents of the A field;

new address value is used for next instruction.

Permitted operand values

A0 =< A=< 17777g(819110)

78 SiljARLES

8X300 Programming Manuai

Example

Jump to address §12g.

Instruction word

octal ‘ 7 |0: 0 J| 5 ! 1 | 2
1 1
I T T I
binary |111|01000|101.oo1|o1
1 L L 1
T T
op A

Instruction operation
current address (of JMP

JMP Instruction — Op Code 7

=N

MERGE

=

JMP, address

Assembler notation

JMP 512H

IVBO-IVB7

IV LATCHES

1Y BUS

RB

I

wC
SC

MCLK

HALT

RESET

OOOUJJOOOA)

X3

instr.) Value of PC and AR 0 000 000 111 010 728
new address (contents of
A field) new value of PC
and AR. 0000 101 001 010 512g
Result
The next instruction to be executed will be that at the address specified by the A field
(512g).
Data flow
> SHIFT
0 7
-—_————— - {OVF
| R
| A2
| R3
. > R4
| RS
[RG
| R11
<: AUX
Afp—
ALU
: L RIGHT A4
< MASK Q: ROTATE <
|
ll_ INTERNAL CONTROL
c-p | SIGNALS
| T
ARG-AR1Z | IRB-1R15
[
I ARO-AR4/IRI-IRT IRO-IR15 R
' ARO-AR12
- Ty T 1
| f J DECODE
L AND
! ‘ - CONTROL CONTROL
4 LOGIC
0 12 0 12 0 15
AR PC IR
Ls@ L5B Lse
AD-A12 10-115

INSTRUCTION ADDRESS

INSTRUCTION DATA

Sifnatics

79

MICROCONTROWER
CROSS ASSEMBLY
PROGRAM

X300 Programming Manual

The BX300 Cross Assembly Program, MCCAP, providas a
programming language which allows the user to write pro-
grams for the 8X300 in symbalic terms. MCCAP translates
the user’s symbaolic instructions into machine-oriented bina-
ry instruction. For example, the jump instruction, JMP, tc a
user defined position, say ALPHA, in program storage is
coded as:

JMP ALPHA

and is translated by MCCAP into the following 16-bit word
{see Figure 1).

JMP ALPHA

b (FXAMPLE LOCATION
GF BLPHA

;> OREQDL E DR IMP

Figure 1

MCCAP allocates the 8X300 program-storage and assigns
Interface Vector and Working Storage address to symbols
as declared in the user’s program.

The ability to define data of the interface Vector as symbol-
ic variables is a powerfu) feature of MCCAP. interface Vec-
tor variables may be operated on directly using the same
instructions as those for variables in Working Storage and
for the waorking registers.

The Assembler Declaration statements of MCCAP allow the
programmer to define symbolic variable names for data ele-
ments tailored to his application. Individual bits and se-
quences of bits in Working Storage and on the Interface
Vector may be named and operated upon directly by 8X300
instructions.

In addition to simplifying the language and bookkeeping of
the program, MGCAP provides program segmentation and
communication between segments; i.e., the main program
and any subprograms. If a sequence of code appears more
than once in a program, it can be written as a separate pro-
gram segment, a subprogram, and called into execution
whenever that subprogram’s function is required. Program
segmentation also permits the construction of a program in
logicaily discrete units. These segments need not be writ-
ten sequentially or even by the same person. The various
program segments provide a function description, or block

diagram, of the application. Communication between seg- -

ments means that control and data can be transferred in
both directions. MCCAP automatically generates the code
tor subprogram entry and exit mechanisms when the appro-
priate CALL and RTN statements are invoked.

MCCAP OUTPUT

The output from a MCCAP compilation includes an assem-
bler listing and an object module. During pass two of the
assembly process, a program listing is praduced. The list-
ing dispiays all information pertaining to the assembled pro-
gram. This includes the assembled octal instructions, the
user's original source code and error messages. The listing
may be used as a documentation tool through the inclusion

of comments and remarks which describe the function of a
particular program segment. The main purpose of the list-
ing, however, is to convey all pertinent information about
the assembled program, i.e., the memory addrasses and
their contents.

The object module is also produced during pass two. This is
8 machine-readable computer output produced on paper
tape. The output moduie contains the specifications neces-
sary for loading the memory of the Microcontroller Simula-
tor (MCSIM), for loading the memory of the SMS ROM
Simulator, or for producing ROMs or PROMs. The ohject
module can be produced in MCSIM, ROM Simutator or BNPF
format.

An example of a MCCAP source program is shown in
Figure 2.

PROGRAM STRUCTURE

Program Segments

A MCCAP program consists of one or more program seg-
ments. Program segments are the logically discrete units,
such as the main program and subprograms, which com-
prise a user's complete program, Program segmenis con-
sist of sequences of program statements. The first program
segment must be the main program. The main program
names the overall program and is where execution begins.
All other segments are subprograms; each subprogram
must be named. Control and data can be passed in both
directions between segments. No segment may call itself,
or one of its callers, or the main pregram. Program seg-
ments take the form as shown in Figure 3.

The Assembler Declaration statements define variables
and constants. They must precede the use of the declared
variables and constants in the Executable Statements in a
program. The Executable Statements are those which re-
sult in the generation of one or more executable machine
instructions.

Subprograms

Subprograms are program segments which perform a spe-
cific function. A major reason for using subprograms is that
they reduce programming and debugging labor when a spe-
cific function is required to he executed at more than one
point in a program. By creating the required function as a
subprogram, the statements assaciated with that function
may be coded once and executed at many different points
in a program. Figure 3 illustrates an example.

The program structure in Figure 3 causes the code associ-
ated with PROC WAIT to be executed three times within
PROG MANYWAIT. This is accomplished even though the
statements associated with PROC WAIT are coded only
once, rather than three times.

Subprogram Calls and Returns

For user-provided procedures, a jump to the associated
procedure and a return link are created for each procedure
reference. The instructions to accomplish this result in sub-
program entry ime. The instructions to accomplish subpro-

Siljnotics 81

8X300 Programming Manual

PROGRAM STATEMENT

SUBPROGRAMS

END STATEMENT

a. Main Frogram Form

EXECUTABLE STATEMENT(S)

PRCCEDURE STATEMENT

END STATEMENT

b. Subprogram Form

Figure 3

DEGCLARATION STATEMENT{S) DECLARATION STATEMENT(S)

EXECUTABLE STATEMENT(S}

82

MCCAP SOURCE PROGRAM
MICROCONTROLLER SYMBOLIC ASSEMBLER VER 1.0
1880 *
1681 *
1682 01544 FROC RDCMMD
1683 *
1684 01544 6 07003 SEL IVRESP FDC RESPONSE BYTE
1685 01545 6 20101 XMIT UR, BCTRL ESTABLISH USER READ ONLY
1686 01546 6 07002 SEL IVDATA HOLDS COMMAND BYTE
1687 £1547 © 27305 MOVE FUNC, R5 FUNCTION CODE
1688 01550 0O 24308 MOVE DADDR, R6 HSK ADDRESS
1689 Qi551 Q 21202 MOVE BUFF, R2 BUFFER FUNCTICON CCDE
18690 g1552 6 07003 SEL IVRESP
1691 01563 6 25100 XMIT 0, DOME SHOW COMMAND IN PROGRESS
1692 D1564 & 20100 XMIT uw, BCTRL RESTORE USER WRITE
1693 01865 6 27101 XMIT 1. XFR SIGNAL USER FDC ACCEPTED BYTE
i694 Qt558 6 07003 SEL IWVCTRL USER CONTROL BYTE
1695 01857 5 28117 NZT CMMD, * WAIT FOR CMMD TO GG LOW
1696 01560 6 07003 SEL WRESP FDC RESPOMSE BYTE
1697 01561 & 27100 XMIT 0, XFR LOWER XFR SIGMAL
1698 01562 6 Q7001 SEL IVCTRL USER CTRL BYTE
1699 01563 4 26123 XEC *{CMMD), 2 WAIT FOR NEXT COMMAND SIGNAL
1700 01564 6 07003 SEL IVRESP SECOND COMMAND BYTE AVAILABLE
1701 015656 & 20101 XMIT UR, BCTRL SET IWDATA TO USER READ ONLY
1702 Q1566 6 07002 SEL IVDATA 2ND COMMAND BYTE
1703 01567 QO 27704 MOVE TRACK, R4 TRACK ADDRESS
1704 01570 0 27503 MOVE SECT, R3 SECTOR ADDRESS
1705 D1871 6 07003 SEL IVRESP FDC RESPONSE BYTE
1706 01572 © 27101 XMIT 1, XFR SIGNAL USER
1707 015873 6 20100 XMIT uw, BCTRL RESTORE USER WRITE
1708 01574 6 Q7001 SEL IVCTRL N
1709 01578 5 26135 NZT CMMD, * WAIT FOR CMMD TO GO LOW
1710 01676 6 07003 SEL IVRESP FDC RESPONSE BYTE
1711 01877 6 27100 XMIT Q, XFR LOWER XFR SIGNAL
1712 .
1713 01600 7 01652 RTN RETURN
1714 END RDCMMD
1715
Figura 2
gram exit result in exit time. The user may utilize the
’7 PROGRAM SEGMENTS MCCAP procedure mechanism for linking calling programs

with called programs or ha may create his own instructions
to do s0. The following describes the linkage mechanism
and timing for MCCAP user procedures.

Linkage between called and calling programs is achieved
through the generation of an indexed “return jump” table,
the length of which corresponds to the number of different
times in the program that the subprograms are called. This
table is genarated automatically by MCCAP when proce-
dure CALL and RTN statements are invoked. For each pro-
cedure reference, MCCAP creates two statements in the
calling pregram. Thus, the time required for the subprogram
entry is 0.6 microseconds. The subprogram return mecha-
nism requires the execution of two instructions or 0.5 micro-
seconds. These times do not include saving and restoring
of the working registers. The total time to save all working
registers is 3.5 microseconds, the same time to restore all

Sil[ADTES

8X300 Programming Manual

registers. Saving of all warking registers is normally not
necessary, but worst case calculations for entry and exit
time below do include this time. Thus, subprogram exit and
entry times are:

0.5us = Entry Time = 4.0us

0.5us = Exit Time = 4 .Qus
Details of the code required for procedure CALL and RTN
are provided in the Programming Examples section. See
Figures 21 and 22.

Macros

A macro is a sequence of instructions that can be inserted
in the assembly source text by encoding a single instruc-
tion. The macro is defined only once and may then be in-
voked any number of times in the program. This facility
simplifies the coding of programs, reduces the chance of
errors, and makes programs easier to change.

A macro definition consists of a heading, a body and a
terminator. This definition must precede any call on the ma-
cro. In MCCAP, the heading consists of the MACRO state-
ment which marks the beginning of the macro and names it.
The body of the macro is made up of those MCCAP state-
ments which will be inserted into the source code in place
of the macro call. The terminator consists of an ENDM
statement which marks the physical end of the macre defi-
nition.

MCCAP Statements
The MCCAP language consists of thirty statements catego-
rized as follows:

Agssmbler Directiva Stalements

Assembler Declaration Statements

Communication Statements

Macro Statements
Machine Statements

The following lists the statements in each category, de-
scribes their use, and provides examples. Detailed use of
the instructions including rules of syntax and parameter re-
strictions are described in the MCCAP Reference Manual.

Assembiler Directive Statements
Assembler Directive statements define program structure
and control the assembler outputs. They do not result in the
generation of 8X300 executable code. There are twelve As-
sembler Directive statements:

PROG Statement

PROC Statement

ENTRY Statement

END Statemeant

ORG Statement

OBJ Statement

IF Statement

ENDIF Statemem

LIST Statament

MNLIST Statement

EJCT Statement

SPAC Statement

PROG Statement
Use
Defines the names and marks the beginning of a main pro-

gram.
Example: PROG PROCESS

PROC Statement

Use

Defines the names and marks the beginning of a subpro-
gram.

Exampie: PROC WAIT

ENTRY Statement

Use
Defines the name and marks the location of a secondary
entry point to a subprogram.

Exampie: ENTRY POINT 2

END Statement
ise
Terminates a program segment or a complete program.

Examples: END SUEB 1
END MAIN

ORG Statement

Use

Sets the program counter to the value specified in the oper-
and fietd.

Example: ORG 200

OBJ Statement
Use
To specify the format of the object module.

Examples: OBJ R

OBJM
OBJN

NOTE

“R" indicates the ROM Simulator format. “M” indicates tha Microcontroller
Simulator format. “N” indicates BMPF formal.

IF Statement

Use

Te mark the beginning of a sequence of cade, which may or
may not be assembled depending on the value of an expres-
sion,

Examples: IF VAL
FX+Y

MOVE Statement

Use

To copy the contents of a specified register, WS variable or
IV variable into a specified register, WS ar IV, Defined in
Instruction Descriptions.

Examples: MOVE R1(6);R6
MOVE XY

NOTE

The first exampls illustrates a six place right rotata of R 1's data before it is
moved to RE. The contents of R1 are not affected. The second axample may
be a Working Slorage or Interface Vector variable move, depanding on the
way X and Y are defined in Daclaralion Statements.

Silnotics 83

8X300 Programming Manuai

ADD Statement

Use

To add the contents of a specified register, WS variable, or
IV variable to the contents of the AUX register and place
the resu't in a spacified register, WS variable or IV variable.

Exampies: ADD R1(3),R2

ADD DATA,OUTPUT
NOTE

The tirst example ilustrates a three place right rotate of R1's data before the
addifion is carried out. Under certain conditions a rotate may be used to multi-
ply ihe specified operand by a power of 2 before the addition is dona, The
contents of R1 are not affected. The second example suggests that the con-
tents of WS variable have been added to the contents of the AUX register and
the result placed in an IV variable, making the result immadiately available to
the user's system.

AND Statement

Use

To compute the lagical AND of the contents of a specified
register, WS variable or IV variable and the contents of the
AUX register. The lagical result is placed ina specified reg-
ister, WS variable or IV variable. In actual practice, the AND
statement is often used to mask out undesired bits of a reg-
ister.

Examples: AND R2,R2
AND R3(1}.R5

AND XY
NOTE

The first example illustrales the use of an AND statement in what might be a
masking operatian, If the AUX register contains 00001111 then this statement
sets the 4 high order bits of R2 to O no matter what they were originally. The 4
low order bits of R2 would be unaffected.

The second example illustrates a one place rotate to the right of R3's data
before the AND is carried out. The contents of R3 are nat aftesied. In the third
example, X and Y may be parts of the same WS or IV byte, or one may be a
W5 byte and the othar an IV byle.

XOR Statement

Use

To compute the logical exclusive OR of the contents of a
specified register, WS variable or IV variable and the con-
tents of the AUX register, and place the result in a specified
register, WS variable or |V variable. In practice, the XOR
statement is often used to complement a value and to per-
form comparisions.

Examples: XOR RB,R11
XOR R1{7),R4

XOR XY
NOTE

The first example illustrates the use of an XOR statement in what might be a
camplementing operation. If the AUX register contains all 1's then the execu-
tion of this statement results in the complement of the contents of RE replac-
ing the contents of R11. The second and third éxamples are of the same form
as the second and ihird examples of the AND statement.

XMIT Statement

Use

To transmit or load literal values into registers, WS varia-
bles or |V variables.

Exampfles: XMIT DATA IVR
XMIT OUTPUT,IVL
XMIT —11,AUX
XMIT —00001011B,AUX
XMIT —13H,AUX

NOTE

The tirst example selects a previously declared WS variable by transmitting
its address to the W8 ragister. The second example selects a previously de-
clared IV variable by {ransmitting its address to the IVL register. The last
threa examples all resuit in the generation of the same machine code. They all
|oad the AUX register with —11,,. In the first case, the programmer has written
the number in base 10. in the second case, the programmer has written the
number in binary and has indicaled this by placing a B after the number, In the
third case, the number has been writtan in octal as indicated by an H after the
number.

XEC Statement

Use

To select and execute one instruction out of a list of instruc-
tions in program memory as determined by the value of a
data variable, and then continue the sequential execution of
the program beginning with the statement immediately tol-
lowing the XEC unless the selected instruction is a JMP or
NZT statement.

Examples:

XEC JTABLE{R1),3

GRSERTHAN

JMP LESSTHAN

JMP EQUALTO

XEC SEND (INPUT),4
“NEXT INSTRUCTION”
“NEXT INSTRUCTION"

XMIT 11011011B,AUX
XMIT 111111118,AUX
XMIT 10101010B,AUX
XMIT 000000008, AUX

JTABLE JMP

SEND

NOTE

in 1he first example, the execution of the program will be transferrad to one ol
three labeled instructions on ihe basis of whather register R1 contains 0, 1 or
2.In the second example, the XEC statement causes the exaculion of a state-
ment which transmils a special bit pattern to the AUX regisfer in response to
an inpul signal which i sither 0, 1, 2 or 3. After the pattern is tranzmitted, the
execution of the program continugs with the next instruction after the XEC.

NZT Statement

lise

To carry out a conditional branch on the basis of whether or
not a register, WS variable, or IV variable is zero or non-
Zero,

Examples: NZT R1,"+2

NZT SIGN,NEG
MOTE
In the first example, if the contents of R1 &are non-zero, 1hen program xecy-
tion will cantinue with the instruclion, whose address is the sum of the ad-
dress of the NZT statement and 2. 1f the contents of R1 are O, the program
execution continues with the next instruction after the NZT statement. In the
second example, if the contents of a WS or IV variable called SIGN is
non-zero, than program exsecution will continue beginning with the instruction
whose address 18 NEG. Olherwise execution coniinues with the next instruc-
tign atter the NZT statement.

JMP Statement

Use

To transfer execution of the program toc the statement
whose address is the operand of the JMP statement.

Examples: JMP START

JMP * =2
NOTE

In the first example, exscution of the program continues seguentially begin-
ning with the insiruction labeled START. In the second example, program ax-

84 sinetics

8X300 Programming Manual

ecution continues beginning with the instruction whose addrass is the JMP in-
struction's address minus 2.

SEL Statement

Use

Select a variable in Working Storage or on the interface
Vector, so that subsequent machine instructions may refer-
ence that variable.

Examples: SEL DATA
SEL OUTPUT
NOTE

It is the programmer’s responsibility to assure ihat the proper page has been
addressad before calling the SEL statement if the variabie may be in Werking
Storage. The SEL statement causes a single instruction, XMIT, o be assem-
blad into the user program. The operand of the XMIT instrucion is the byte
address of the named variable (argument ot the reference) as it has been
aliocated in Working Storage or an the Interface Vector.

PROGRAMMING EXAMPLES

This section contains programming examples which demon-
strate how the 8X300's instructions can he assembled to
perfarm some simple, commonly required functions. These
examples are written as program fragments. They are not
complete programs as the Data Declaration and Directive
statements have been omitted. Otherwise, they follow stan-
dard MCCAP conventions.

Looping

Looping is terminated by incrementing a countar and testing
for zero. Register R1 is used as counter register and is
loaded with a negative number so that the program counts
up to zero. Figure 4 illustrates the process.

LOOPING

XM NEG.R1
Load negative loop count.
ALPHA

Loop start.

XMIT 1 AUX
Store increment value in AUX register
which is an implicit operand of ADD in-
struction.

ADD Rt A1
Increment counter register. Add con-
tenis of AUX to contents of Ri anc
store the sum in R1,

NZT R1,ALPHA
Test contents of R1 for zero. If zero, ex-
ecute next sequential instruction, oth-
erwise, jump to ALPHA and continue
execution from there.

TIME: 750 nancseconds

Figure 4

Inclusive=0OR (8 Bits)

Generate inclusive-OR of the contents of R1 and R2. Store
the logical result in R3. Although the 8X300 does not have
an OR instruction, it can be quickly implemented by making
use of the fact that (A + B) + (AB) is logically equivalent to
A&®B.

INCLUSIVE-OR

MOVE R2.AUX Load one of the operands into AUX reg-
ister so that it can be used as the im-
plicit operand of XOR and AND
instructions,

Take exclusive OR of AUX and R1.
Store result in R3.

Take AND of AUX and R1. FPlace results
in ALIX,

Take exclusive OR of AUX (A + B) and
R3 {A + B). Store result in R3. R3 now

contains inclusive OR of R1 and R2,

XOR R1.R3
AND R1,AUX

XOR H3.R3

TIME: 1.0 microseconds

Figure 5

Two’s Complement (8-Bits)

Generate the two’s complement of the contents of R2.
Store the result in R3. Assume that R2 does not contain
200,

TWO'S COMPLEMENT

XMIT —1,AUX Load AUX in preparation for XOR.
XOR R2,R3 1's complement of R2 is now in R3.
KMIT 1,AUX Load AUX in preparation for ADD.
ADD R3,R3 2's complement of R2 is now in R3.

TIME: 1.0 microseconds

Figure 6

8-Bit Subtract
Subtract the contents of R2 from the contents of R1 by tak-
ing the two's complement of R2 and adding R1. Store the
difference in R3.

8-BIT SUBTRACT

XMIT —1,AUX Parform 2's complement, R2.

XOR R2,R3

XMIT 1,ALUX

ADD R3,AUX 2's complement of R2 is now in AUX.
ADD R1,R3 R1-R2 is now in R3.

TIME: 1.25 microseconds

Figure 7

16-Bit ADD, Register to Register
Add a 16-bit value stored in R1 and R2 to a 186-bit value in
R3 and R4. Store the result in R1 and R2.

Sifnekics 85

8X300 Programming Manual

16-BIT ADD, REGISTER TO REGISTER

MOVE R2AUX Move low arder byte of first operand to
AUX in preparation for ADD.

Add the low order bytes of the two
operands and stora the result in R2. R2
containsg the low order byte of the ra-
sult,

Mova high order byte of first aperand to
AUX.

Add in possible carry from addition of
tow order bytes.

Add the high order bytes plus carry and
place result in R1. R1 contains the high
order byte of the result.

ADD R4,R2

MOVE R1,AUX
ADD OVF AUX

ADD R3,R1

TIME: 1.25 microseconds

BYTE ASSEMBLY

10 XX XX X1

STROBE
=

INPBIT
% PBI

SIGNALS FROM
USER SYSTEM

¥ BYTE ADDRESS ' INPADR
Figure 10

Figura 8

16-Bit ADD, Memory to Memory

Add a 16-bit value in Working Storage, OPERAND1, to a 16-
kit value in Working Storage, OPERAND2, and store result
in Working Storage QPERAND1. H1 and L1 represent the
high and Yow order of bytes OPERAND1. H2 and L2 repre-
sent the high and low order bytes of OPERAND2.

16-BIT ADD, MEMORY TQO MEMORY

XMIT L2,IVR Transmit address of low order byte of
second oparand to IVR.

Move low order byte to AUX,

Transmit address of low order byte of

first opevand to IVR.

MOVE L2, AUX
XMIT L1.IVR

ADD L1,L1 Add low order bytes and store result in
L1.
MOVE OVF AUX Move possible carry from additon of

law arder bytes to AUX register.
Add high arder byte of second operand
to possible carry. Store result in AUX.

XMIT H2IWWR

ADD H2,AUX
XMIT H1,IVR
ADD H1.H1 High order byte of sumis in H1. Low or-

der byte of sum is in L1.

TIME: 2.25 microseconds

Figure 9

Byte Assembly From Bit

Serial Input

This is typical of problems assecciated with interfacing to
serial communications lines. An 8-bit byte is assembled
from bit inputs that arrive sequentially at the Interface Vec-
tor. A single bit on the Interface Vector named STROBE is
used to define bit timing, and a second bit, named INPBIT, is
used as the bit data interface. Figure 10 illustrates the byte
assembly.

Rotate Left

The 8X300 has no instructions which explicitly rotate data
to the left. Such an instruction would be redundant because
of the circular nature of the rotate operation. For example, a

BYTE ASSEMBLY PROGRAM

XMIT 0,R1 R1 will be used as a character buffer. It
has been claared.
XMIT 8 R2 R2 will be used as a hit counter.

XMIT INPADR,IVL Select IV Byte that contains INPBIT and
STROBE.
NEXT

BIT NZT STROBE,"+2 Test STROBE for data ready. The
MOVE instruction is executed only
when STROBE = 1.
JMP =1 Loop until STROBE = 1.
MOVE INPBIT,AUX
XOR R1{1),R1 Rotate R1 one place right. This puts a
zero in the least significant bit position.
Then take the axclusive OR of this ro-
tated version of R1 and of AUX. Place
the result in R1. The least signilicant bit

of R1 will now equal the latest value of

INPBIT.

XMIT —},AUX

ADD R2,R2 Decrement R2.
IF R2 is not yet zero, then more bits
must be collacted to complete the byte
being assembled.

MOVE RI1{1),R} This instruction will only be executed

whan 8 bits have been collected. After
this is done it is still necessary to ro-
tate one more time to get the last INP-
BIT into the high arder bit position of
R1.

TIME; 1.8 microseconds par bit {(minimum)

Figure 11

rotate of two places to the left is identical to a rotate of six
places to the right. The rotate n places to the left in an 8-bit
register, rotate 8-n places to the right. This example illus-
trates a rotate of the cantents of R4 three places to the left.

MOVE Ra(5), R4
TIME: 250 nanoseconds

Three Way Compare

The contents of Rl are compared to the cantents of R2. A
branch is taken to one of three points in the program de-
pending upen whether R1 = R2, R1 < R2, or R1 > R2.

86 SiNBLES

X300 Programming Manual

THREE WAY COMPARE

RESLLT
AN

SIGN 3

HEE

WORKING STORAGE BYTE

Figure 12

Bit Pattern Detection In An 1/0 Field

Test input field called Input for specific bit pattern, for ex-
ample: 10 1 1. If pattern is not found, branch to NFOUND,
otherwise continue sequential execution. Figures 16 and 17
illustrate the procedure.

THREE WAY COMPARE PROGRAM

xhaT FESULT.IVA Chodse a working Storage byle by tranamittieg its ad-
drése b VA registar.
HMIT —1, AL Load ALK with all 175, i preparation lor complementing
contones of A2,
XCR R2 RESULT Stove complement of A2 o RESLULT.
EMIT 1.4U%
ADD RESLALT, ALY AUX now containg 3's complament of B2,
ADD A1 RESULY RESLLT now conlans R1-A2.
N2Y RESULT NECUAL HAESULT £ D, then R1 = R,
JMP EQUaL
HECUAL NZT SIGMLESS Sagn Bl — 1 onty when 1 <= R2.
GREATER Canlinua
L]
L]
L]
E{HlaL Cantinue
-
L
L]
LESS Continug
THE 2 0 microsacands
Figure 13

BIT PATTERN DETECTION

f

DATA FROM

ey
.
INPU —g— | USER SYSTEM
e

v BYTE

Figure 16

Interrupt Polling

Three external interrupt signals are connected to three IV
bits. The three bits are scanned by the program to deter-
mine the presence of an interrupt request, A branch is taken
to one of eight program tocations depending upon whether
any or all of the interrupt request signals are present. The IV
bits associated with the interrupt requests are wired to the
low order three bits of the |V byte named Control. Figures
14 and 15 illustrate the interrupt polling.

BIT PATTERN DETECTION PROGRAM

EMITL INFUT IvL LChaoose proper IV Byte by tansmitting £5 acdress o
VL register.

*MIT 10118,AUx Store desired bit pAHEN 0 BUX feg star far use as
wmphint ppesatd af X nsirction.

=0R INFUT. &0 “ake axcluzive OF of the coatenls of INPUT ane ALY
Store the regu Lin AUY Mow the contem1s of ALY wall e
zeca f Ihe conlents o MRUT are 1011

NPT AlL¥ NFOUND Test AN for zero Branch to MFOURE o 10n zers

L]

L A

- .

NF UMD Conhinge
TIME % 3 ~iroseconds

Figure 17

INTERRUPT FOLLING
i
INTERAUPT SIGNALS
CONTROL ~4— (EROM USER SYSTEM

¥ BYTE

Figure 14

Control Sequence #1
Set an output bit when an input bit goes high (is set) (see
Figure 18).

INTERRUPT POLLING PROGRAM

EMIT CONTROL WL Choose proper I Byle by transmudting s address 1o
VL reqigter.
¥EG JTABLE (CONTROLYG Execule the one instruction whose addregs i the sum
ol JTABLE and the contanis ol CONTACL. The B indi-
Lates e kength of thae table.
L]
L]
»
JTABLE JMP AEPHAT Tabde of 8 instructians, ane of whech is gascuted as
resyll of the XEC mslruchun abuve.
JWP ALPHAZ
»
*
-»
WP AL PHAB

TIME: T50 nanazeconds

Figure 15

CONTROL SEGUENCE # 1

S5TATUS
[l FRCM USER SYSTFM

ALAAM
P——d= TO USER SYSTEM

Iv BYTES

Figure 18

CONTROL SEQUENCE # 1 PROGRAM

ARET STATUE, VL Choose ;mput IV byte by reansrmling s adoress t2 1YL,

MET STATUS 42 Tesd inpur B [0 deteerming whalher it 15 shil 7era SKip
fexd insteuction i ¢ s not z2ero

JMP =1 JUMD AT eI & NSk uc o

ZMIT ALARM VL Chaose output IV byte

HMIT 1. ALARM Sel Sulput b by Faading ALAPM witk 1,

TIME 1 1) minrnaeronds (rinirmom)

Figura 19

SiljnnLEs 87

8X300 Programining Manual

Control Sequence #2
Output a specific 5-bit pattern in response to a specified 3-
bit input field,

Subprogram Calls and

Returns

The mechanism for managing subprogram calls and returns
is based on assigning a return link value to each
subprogram caller; this return link value is then used, on exit
from the subprogram, to index into the return jump table
which returns control to the callers of the subprogram. Fig-
ure 21 is an example of a subprogram called from four
different locations in the main program.

As seen from Figure 21, each subprogram {or procedure}
caller is assigned a “tag” or index values ranging from 0 to
3, or a total of four index values for the four callers. Before
jumping to the subprogram, the index value is placed in a
previously agreed upon location, register R11 in this case.
Upon exit from the subroutine, the index value storedin R11
is used as an offset to the Program Counter in order to
axecute the proper JMP instruction. The key to returning to
the proper caller is the index jump table, Figure 22 gives a
detailed description of the return operation.

RETURN OPERATION

CONTROL SEQUENCE #2 PROGRAM

XMIT - STATUS W Chaose the IV bByte which receives the 5-Bil inpui from
weRr'R AyRtem.

Kove ire 3 hits of imerest fram the IV byl fo registes B 1
Tha 3 bits ara autormalically nght yusihed

Chioose the |V byte through wheeh fhe respanse 18 sent tor
tha umed 'S syslem.

Selecl specific pattern from PATTERN table.

MOWE STATUSR1
WA ALARMIVL

XEC PATTERMR1)8
U RS]
FATTERN EMIT A &L ARNM

XMIT B.ALARM

KMIT CALARM

- * Trangml propes patern 1o outpat v byte subfield by execut-
L4 hd i@ just ona of thase esght instruchans A through H repee-
- - sgnt the Named agaciated with eight dileren contral bi
XMIT M ALARM J—
] .
L] L]
* -
TIME: 1 75 microaeceats,
Figure 20

Aduress n XES - Thug ingtruciean res s e eseculon of the nsi-uchion
located ab she current valug oF the Progiam caunler p
Fluz 1 pus the coments o BT wihchs the caller nges
wihad
Addresa n+ 1 JMF 2
Atkdruss n+ 2 MP R Mg JMF =2le fvlaws N cansecutive Frogram Stoeagr
localins follewing SLG
Add-ess n+ 3 JMFE
Adidress n+4a JMF O
Figure 21
SUBPROGRAM CALL
Frogram
Sraraga
Addrans Inatruction
oDo13T, XMIT O, R11 Logd ALY with O Calber 3 1
000144, JMP SUBH Jump 1o stan of subprogram
000141, Hex instrection
»
.
L]
-
001433, AMIT 1, R11 Load ALX with 1 Caller # 2
001134, JMP SUEH Jup o starl of sumprogram
CHI1135, Mt hsircton .
L
* &
-
003260, HMIT 2, R11 Load ALY with 2 Calle # 3
[DGEE61, JMF SUBR Jumig b start of subprogrem
0o32EL, Mexl natiucton
L]
*
-
-»
OG54, XMET 3, A1 Load MY wilh 3 Caller #4
00365, JMP BUER Jump te otart of subprogram
[sleR0 8 Neutt insiructson
-
L]
L]
[]
a. Mam Program
SUeR Magching instrections
JMP TABL
-
»
»
L]
Subroutira
Betwn
Code
TABL XEC “1IAR1N) Exacuts JMF located at
current PG+ 1+ (R11).
NP ato1a4, Raturn 0 Caller #1
AP 01135, Retyrr t& Calar 2
JMP 2E2, Frelurn to Caller #3
JMP D03856, Relurn 1o Caller #4
b. Subrouting
Figure 22

88 EinOEs

sifn

PROGRAMMING
EXAMPLES

X300 Programming Manual

PROCEDURE NAME: TAD 16

General Description

TAD16 is a double precision (18-bit) 2's complement addi-
tion program which checks for arithmetic overflow by com-
paring the signs of the operands and the result. Overflow
has occurred when and only when the operands have like
signs and the result has the opposite sign. When overflow
occurs the program returns the value 100000 base 8. This
is the largest negative 16-bit 2's complement number.
TAD 16 requires that its two double precision operands al-
ways be found in the same four memory locations. These
four locations can be anywhere on page O of working stor-
age and do not have to be contiguous. All results are stored
in the two working storage locations which originally held
the second operand. See Figure 23 for the tlow chart and
Figure 24 for the program listing.

Memory Requirements:
Program Memory: 24 words
Working Storage: 4 bytes

Registers Used and Their Logical Function:

Rt This register is used to hold information on the signs
of the operands. R1 contains O if both operands are
positive, 2 if both operands are negative, or, 1 if the
operands have opposite signs.

Symbols:

AL Low order byte of A

AH High order byte of A

A1 High order (sign) bit of A

BL Low order byte of B

BH High order hyte of B

B1 High order {sign) bit of B

Timing

Worst Case: 5.25 microseconds when averfiow occurs
Best Case: 3.75 microsaconds when operands have op-
posite signs

Calls On Other Library Procedures: None

TAD16 FLOW CHART

ALU

COUBLE PHECISION

!

ARE

L

ARE
NO

15
THE
ANSWER

THE SIGNS
OF A AND B
DIFFEAENT

A AND S
BOTH POSITIVE
7

YES

----I OONE I

15
THE
AMSWER

POSITIVE
?

GVEAFLOW

POSITIVE

E)

Figure 23

90

sioties

8X300 Programming Manual

PROGRAM SAMPLE
ERMS ZAMPLE +SH200 AZZEMELER VER 1.0 FHEE 1
1 FROS ZAMFLE
2 nagnn FROC TADLS
=i *
4 - MCUIE FROCEDURE TO DD TWO 18 EIT MUMEERE
T » IN 2% COMPLEMENT HOTATION AHD CHECK
5 » FOF ARITHMETIC OYERFLOW.
7 .
3 .
3 -+ DATH DECLARATIONS.
1a C3 RG] A ORI Z00:TaZ
11 31 70 AH RIV Z01.Ta3
1z 1 oL AL BRIV 201041
12 12 7 EL EIW 20ZsTaR
14 12T o0 EH FI%w 20 2
1% 313 01 El FIW 20Z«d01
1& -
17 noaon & 17311 TRD FEL St
12 00gat oo 20100 MOVE SRR I
13 nonoz 5 173213 FEL k1l
S0 oannnz 1 20lol , ADD EL«R1
21 - sE1=0 IF BEOTH=U.
2z +* #51=2 IF BOTH=1.
=3 * +F1=1 IF EOTH DIFF.
24 D0nog & LFELN ZEL AL
29 Fanas 0 537006 MOVE L AL
26 Uoane £ 17318 ZEL EL
27 00g0rF 1 370EF ALD BL+EL «FL+EL MOW IM EL.
2 00010 0 10aon HMavE QVF ALK
29 o0a01i 4 17311 ZEL AH
30 Q0012 1 37000 ann A ALY
1 o00012 & 17213 ZEL EH
32 0onl4 1 RF0ET ADL EHrx EH #HMZNMER IM BH..EL
33 AR 42 255
24 ANG15 4 Gi1d1s HEC w1 B
25 ndale ¥ Oo0anz2i gl FEROE
34 D0O01¥Y Y OOGCZD e IMEROUMELE
IT o002 Y OA002F AME OME=
i ORG 4232
33 0AN21L 5 IN134 FEROS MZT El:OYERFLOW
40 0022 7 O00aEn mE IHEOUHDE
41 oRG S 32
42 4002 5 0130 AMES NZT Els INBOUHDE
43 40024 & Anzan OYERFLOW HMIT ZO0H AL
334 BOO2S 0 Onn3? MOVE A%+ EH
35 000E6 5 1V3RIE SEL EL
48 JODEF & ZFFE00m WLT 0+ EL
37 GaNz0 7 a003) INBOUMDE RTH
33 EMD TRD1E
43 EMD ZAMFPLE
+«TOTAL ASIEMBLY ERRORE = f
Figure 24

SilNOtics

a1

8X300 Programming Manual

PROCEDURE NAME: wmuL8x8 Registers Used And Their Logical Function:
General Description: R1 Initially contains the multiplier. Eventually contains
MUL8XS is a procedure which multiplies two 8-bit 2’s com- the low order byte of the product.

plement numbers. For reasons of speed, negative numbers R2 Initially contains the multiplicand.

are convertad to positive numbers before the multiplication R3 Contains the high order byte of the result.

takes place. Afterward, the product is given the proper R4 Bit counter. _ _

sign. The algarithm is a straight forward add and shift rou- R5 Contains information on the sign of the result. RS = 0
tine. The operands are taken from R1 and R2. The low order if the result is negative or RS = 1 it the result is posi-
byte of the sixteen bit result is stored in R1. The high order tive.

byte is stored in R3. See Figure 25 for the flow chart and
Figure 26 for the program listing. Timing:
Memory Requirements: Worst Case: 35.75 microseconds
Program Storage: 47 words

Working Storage: None Calls On Other Library Procedures: None

MU BX8 FLOW CHART
[wnmauze s |
COUNT

Y

DETERMINE OPERAND
SIGNS

i

TAKE THE 2’5 COMPLEMENT
OF ANY NEGATIVE OPERANDS

|

13
LOW
NO ORDIER BIT OF -
MULTI PLIER -
=1

YES

ADD MULTIPLICAND TO
HIGH QRDER BYTE

f

4b-[SHIFT RIGHT I

¢

SHIFTED
EIGHT
TIMES

T

NG

MEGATIVE
RESULT

YES TAKE 7S COMPLEMENT
OF RESULT

- "‘ DONE '

Figura 25

92 Sinetics

8X300 Programming Manual

oazz
rpnzz

aopz4

PROS TAMPLE
1
2 Rennn
b
=1
=
2
I oN0o0n S
10 a0ang S
11 aoanz &
& opopaz =
13
14 00004 4
12 0a0ns <
15 g0pos 7
17 000nGy &
12 annoia £
12 001l &
DALz 3
anors &
wnnts
anns =
wonts 2
0017 =
OO0 S
oGz °
1

L ep b G0t ol 10 G g S T fu B Ty o g Ta Fur To
LI N I PR 2T VI v W I) I N T TR SR

nagas

5
0
=1 1
e [
40 2
41 =3
42 04037 2
43 o0nan =
LT TIVES B
45 g =2
45 UaDdz 5
47 (0044 1
43 00045 S
33
S0O0004E 5
o1l 00047 £
D2 RG0S0 2
53 a00s1 3
T4 NOaosE =
REO5 TAMPLE
SSO000s: 1
SE 00054 0
S7OA0aSs
53 AONSE T
53
4
+TOTAL AZZEMELY

nzono
04370
aanal
n1vyoda

HooaT
annti
anals
oS0l
ASGn
anzvy
aront
[LRVRRELR]
niony
non
n=7an
o0s00s
ooz
annzs
QnzyT
naanz
agoet

azn0z

noan
nionn

[T Lh
n1rio1
ugzan
[E1L00
BB
naivy
D20
(AT
eIt
IE LT

] VT
O0z77
a10ni
A0z
noong

o100y
JRIT]
pI00z
raasy

ERRORT

LR R B 2 N

THE

COMPt

o

comMe2

LaaF

EHIFT

EMDI

PROGRAM LISTING

*3H300 AZZEMELER

FRO5

YER t. 0

FAMPLE

FROC MULERS

MCLIE FROCEDLRE TO MULTIPLY TWO

COMFLEMEMT

HUMEERT TO GEMERATE A

1e~BIT RESHLT.

HMIT Y]
A*MIT —ZeFd

AMIT TrALl ACCEZZ-TEST OFERAMDIL
arn 81070 s AL

aorG 5255

HED TAE <AL=
HNZT AL COMe g

Ame gr2

AMIT FOZITI

HMIT 0s HEGATIVE.

SMIT 2YTHL ALY LOMP OPERAMNDL .,
mie BRIkl

mMIT JEREINN

ALL E1aR1]

HMIT RECEZESTEZT OPERRA
ST 3oy R
=0e :
HZT AU DO

e LOarF

HMIT STTH B COmMe OFERANDZ.
208 RasRZ
aMIT 1AL
SID Rz
0&G = 205

HMIT 1Al Lan BROES EIT 17
A0 R AT S HI S
HNZT AN, w2

AM= HIFT
MOWE B2 AL YEDL QDD MULT
ALI : e

HMIT LV THx AL THIFT FARTIAL.
Rl =5 IS5 FEODLICT RIGHT.
=MIT SO0H B
AN sl PR 1N Y5
HOR 21.F1
HMIT 1774 ALy

=1E11! = Y o]
AMIT 1AL

A00 Ed4sR4
HET 4,1 00P DOHE Y
uisiEs Fe Z5E

MZT RS EMIT

SHMIT ITTH AL NO.2 7T COME
A0 ®1sF1
HOR PIaRE
HMIT HERS IRk

L= A ZEMEBLER YER 1.0

[ATD E1aR1
MOWE TE L Al
800 RIZ.R2

ETH
EMI
ENMD

x}

Figure 26

SRGE 1

= BIT 27X

SIS,

M LIGNM.

IFLICHND,

Sinties

93

8X300 Programming Manual

PROCEDURE NAME:

General Description:

SORT is a procedure which soris the contents of a block of
Warking Storage locations into descending order. That is,
the data is sorted so that as the Working Storage address-
es increase, the value of the contents decrease. The
boundaries of the block are set by the main program. The
lower address boundary must be placed in R1. The high ad-
dress boundary must be placed in R2. The high address
boundary must be placed in R2. The block must be ¢on-
tained within a single memory page and that page must be
selected by the main program. The contents of the block
are treated as 2's complement numbers. See Figure 27 for
the Hlow chart and Figure 28 for the program listing.

SORT

Memory Requirements:
Program Storage: 47 words
Working Storage: None

Registers And Their Logical Function:

R1 This register is used to pass the lower boundary ad-
dress to the procedure. In the course of execution,
this value is changed to its 2's complement.

R2 This register is used to pass the upper boundary ad-
dress to the procedure. In the course of execution,
this value is changed to its 2's complement.

R3 This register is used to hold the current address, N.

R4 This register is used to hold the current contents of N
which is denoted as (N}.

R6 This register is used as a scratchpad to hold a variety
of temporary results.

Timing:

It is difficult to compute the exact timing for this procedure.
Six microseconds per byte sorted is a realistic average
time.

Calls On Other Library Procedures:

None

|

SORT FLOW CHART

[SETN = THE

LOWER LimIT |

¥

LOWER LIMITS

| NEGATE THE UPPER AND

Y

Do
N

END (MY 1) bl @
HAVE SAME
sIGN
Coove) Ma
&
NO YES NO SWAP THE CONTENTS DECREMENT
OFNAND N+ 1 N
l 'y
T : YES
Q) o] werEmENT | YES
N -
HO
Figure 27

94

Silnotics

8X300 Programming Manual

-
[=TRY I Ty RN [T IS - T T

[e e N e
=l U0) T A g G e

fular
L 1y e

e B L 03 00 Qo e G L G DY D Ty g o P T fu Fo
L= T BN e PR [R T T P Yy TV R OOl |

4z

n
3o

o LhoCh
L0y I

PRO5 ZAMPLE

annnn

E3 R

30 01
oaonn o arons
ANGRl & 00377
oagoz 1 Gzooz
OO0z 3 D00
oonongd 1 fpioog
gonns @ oorang
oHoons o 0EnLT
LGRonoy o 3F0n4
aco1n S5 anont
AEG1I1 1 N207
gan12 2 N47as
OOG13 O z01400
GOOtg 2 0S0G5
GRoLs 5 gsize
a0ote & Q03FF
0ooL? 1 27005
aogzo =z aso0n
ooo21 1 04005
OOG2T & 00aG1
onNnzs 2 0EF0s
o224 S 08040
Q0G=5 | Q2003
a0nze 0 03017
D0027 0 37A03
GARE0 0 JZ000
onnzt t fzons
Qo032 & 00001
NOUE2 = AsT06
U624 5 NEGLQ
oO0ZS 7 OA00Ss
oONEs S DooEs
Oy 7 00040
Ganga N FFa0s
aondy i 04037
o042 0 O30LET
o004 01 0E027
oood4 0 aLann
aoo4s 1 93005

FROG SAMPLE

0004s S 05051
ApQad™ & ooaft
ORNS0 7 nnazs
pOOSL & DO3EFT
o00s2 1 0zZ003
G0oSZ 0 D30ty
0S4 0 37004
AONSS 7 aaoLo
OO0ZE 7 0ONas?

h sy i s R 0GR Chon
N G fu e D a0 holn

«TOTHL

RSZEMELY ERRORT

LR R 3K 3E IR BN BN 3

PROGRAM LISTING

+3x300 AZIEMELER WER 1.0 FPR5E 1

#RO5 TAMPLE
PROC SORT

MILIE PROCEDURE TO ZORT THE
COMTENMTE OF A BLOCK OF WORKIMNG
=TORAGE LOCATIONS IHTO DESCENDING

ORDER,
[Y 200 7a2
RIW 206 Del
MOWE RI1.FE3 R3I=N.
SMIT —1sAt HEGRTE F2.

ADD B2y R2
HOR Raek2
ADD 21.R1 HEGRTE R1.
=R Ri«F1
MOVE RIIVE EHMAELE N.
MAYE DMy R4 REad=cMo .,
Ors 21,2588
AMIT 1e8LS
0D BRI IVE SEMSELE M+1.
AMD BTy PE RE=TISM GF iMi .,
MOVWE DImMeRLE AUXN=SI6H OF N+12.
“aR HEaRE Fe=1 IF DIFF.
ORE 13« 255
HMET RSy CHECE
AMIT —1s &0
SOn oMY ke
=“Or Ba s Bl =M1y MOW IM AUE,.

ADD R4rRA CHY— N+ NMOW IN R&.
=HMIT | T 1

AXD G T e EE RE=0y IF fMy=0M+1h.
%6 172 252

NET 25y ZWAF

Owe 10254

AL BasR3 ITHCREMENT H.

MOVE R IME
MOWE LMY aRd4

MOYE R2, Al HL=—UPFER LIMIT.

ADD B3RS RE=N-RE.

AMIT s AU

HMD RECTYRE M~RZ MUZT BE < = 0.
MZT RE:TEST RE=D IF M=RE.

P nOME
MZT ALy HEXTH AUR=ZIGH OF N+,
JHE ZMAP

MOYE DM RS Re=iM+1r.
MOYE Rds DMy
MOVE R3IIVE EMAELE M.

MOYE RFeDIMY
MOWE El.AUx
SO0 Mo

#=EE200 [/TE

[(¥]

EMELER VER 1.0 FRiE

MET g DECH
ARIT 1sRUAH
JHE MERXTH
BAMIT ~1.AL
HIm BZ«F2
MOME RE.IVE
MOWE DMYsF4
AR TEZT
ETH

EHL =0RT

EMD ZAMPLE

Figure 28

sifnotics 95

SIGMETICS
HEADQUARTERS

811 East Arques Avenue
Sunnyvale, California 94086
Phone: (408) 739-7700

ALABAMA
Huntsvitle

Phone: (205) 533-5300
ARFZONA

Phoenix
Phone: (602} 265-2444
CII.IFIII!NM

I

nihme (213 670-1161
Fhr.rne (?NJ £33-8380
1])

$an Die
Pholle: (714) 5600242

Sunmyvale

Fhone: {408} 736-7565
Woodland Hills

Fhane: (713) 340-1431
LOLDRADO

Aurora
Pliona: (303) 751-5011
FLORIDA
Fompano Heach
Fhone: {305} 782-8225
ILLINDLS
Ralligg Meifaws
Phone: (312) 259-830Q
HEAS

Wichits
Phong: (3163 683-5352
!ﬁ“ﬂ&fﬁll}ll USETTS

edfard
Phune: (617) 275-B900
MARYLAND
Columbia

Phone: (301] 720-8100
MJNNES

Fhong; {EIZ.’I BI5-7455
HEW JERS
Chersy HlII

Phone: (609) B65-507E
Pistataway

Phone: t!lJl) 9810123
NEW YORK
Wappingers Faliz

Phaone: {914} 2974574
Wenthury

Pruna [516}3&49:00
OHID
Worthington

Phane: {614) 888-7143
TEXAS

Dallas
Fhones [214) 661-1286
LTAH

Gentarville
Phone: (801} 2901252

REPRESENTATIVES

ALABAMA
Hunisvllie
Alpha Marketing
Phone: (205} 533-0765
CALIFORNIA
San Dingo
Mesa ;meenng
Fhona: {718) 2788021
Shernan Gaks
Aslralenics
Fhone: (212 990-5003
CANADA
Mantreal, Quebe;
Philips Elegtzonics
Industries Ltd.
Phone: (315) 329160
Ot1z2wa, Ontaria
Philips Electronics
Industiles Lid.
Phone: (613} 237-3131
Scarforqugh, Ontariy
Fhilips Electranics
Industries Ltd.
Phone: (416) 292-5161
Vancwuysr, B.G.
Philigs Electronics
Industries Ltd.
Phone: (60¢) 435-4411
‘Winnipeg, Manitoha
Phil-ps Eleciranics
indostrias, Lid.
Firone: (2043 774-1931
CORNECTICUT
Danbury
Kanan Associates
Fhone: (203) 143-181%
FLORIDA
hitamonie Springs
Semirenic Associzies
Phene: (305) 831-8233
Clearwater
Semtronic Assnciates
Phone: (B13) 461-4675

96

GEGREIA
lanta

Atlan')

Alpha Marketing

Phone: {464) 2310534
ILLIROIS
Chicago

L-Tec, tng.

Phone: {312} 286-1500
INDIANA
Fort Wagne

Insul-Reps, fnc

Phane: (219 482 1596
Indianzpoliz

Ingul-Reps, [n¢

Phaone: [31?}2594!32
KANSAS

Overland Park
Advanced Technical Sales
Phonia: (913} 4924332
MARYLAND
Baltimure
Micro-Camp, Inc.
Fhone: .30]%124? G400
MASSAL
Reading
Kanan Associates
Phone: (617) 244-8484
|CHIGAN
Bluomfield HH|s
Enco Markoling
Phene: (313 642-0207
MINNESOTA
Edina
Me| Faster Tachnical Bates
Phone; (612 315-2252
HMISSOURI

5t Lenis
Advaneed Technical Szles
Phane: (314) 5676272
HEW JERSEY
Haddwnfield
Thamas Assoc,, rnn
Phone: (09 85430
HEW MEXILG
Albuguergue
The Staley Company, Int.
Phpne: (305} 292-0060
HEW YORK

Iihaca
Eob Dean, Inc.
Phone: m?] 2?2 2187
NOATH CARGLI

Cary
Montgomery Markeling
Fhone: {819) 467-631%
harlotte

Montgemery Marketing
Phone: (F4) 535-2400
OHID

Lentervilla
Horm Case A¢sociates
Phona: (513) 433-0966
Aocky River
Morm Cage Assoclates
Phena- {216 3334120
GOREGON

Partiand
Westarn Technical Safes
FPhone: {503 247-1711
TEXAS

Austin
Conningham Cnmpan;
o Plhnne (512} 459-894

Cunningham Company

Fhone: t214} 2334303
Hauston

Cunnmgham Cnmgewy

Phane: (F13) 68372301
UTAH

west Sountiful
Barnhitl Five, |ng,
Phone: [84071) 292-8981
WASHINGTON
Bellsvus
Western Technizal Sales
Phone: (206} 641-3900
WISCONSIN
W’alw:los:
L-Tec
Phnne fm: FR-1000

DISTRIBUTORS

ALAEAMA
Hunatsyille
Hawmilton/Avnet Elecironics
Phana: {205) 5331170
Picnear Electronics
Phone: [205) B37 8200
ARIZONA
Phuenix
HamiEtensAunet Elecirgrics
Phane: {§02) 275-7851
Liberty Electronics
Phune: (B02) 249-2232
LALIFGRNTA
Cosla Mesa .
Hhvnst Electionics
Fhone: {714} 734-6051
Culver City
Hamilten Electro Sales
Phone : (714} 558-7183
El Sepunde .
Liberty Efectronics
Fhone: (213) 322-B100

Irvine
Schweber Electranics
" Pr't ?_14] 556- 3880
Elmar Electmni:s
Phane: {415) 9%51-3611
Hamilton/Avnet Electronics
s Phg_ne: [415) 9A1-7000
an

am F‘;nfﬁvnet Electronics
Phone: {714) 279-2421
Liberty Electronlcs
Paone: (714) 5659171
Sunriyvale
litermark Electronics
Faone: (408) 734-1111
CANADA
Dawnsview, Dataria
Cesoo Electronics
Phore: {116} G61-0220
Zentronics
Phone; (d16) £35-28¢2
Mississauga, Onltarin
Hamilton/Avnet Electronics
Phona: {416} 677.7432
Marireal, dnebec
{esco Electronics
Phang: fsld) ?35 5511
Zentronics L
Phane: (514) ?35—5361
O1laws, Dntario
Casca Electronits
Phone; (613) 729-5118
HatmltonsAynet Eleclrm‘lics
Phone: (613) 226-1
Zentronics Ltd,
Fhone: {513} 238—5411
Quebes City
Gesco Electranics
Phone: (418) 524-4641
Yanceuver, B.C,

Bowtek Electranics Co., Lid,

Fhone: [604) 736-1141

ille 51, Lagrent, duebee
Hamultonﬂ\vnet Eleclromcs
Phane: [514] 33

COLORADD

Commerce City
Elmar E|eclronics

oer Phc-niI {303) 2879611

Hamlllnnfkvnet Etsctromes
Fhone: {303) 534-1212
CDNNELTICUT
Daabury
Schweber Electromics
Phone: {203) 792-3500
Beorgeiown
Hamilton Avnet Elecironics
Phone: (203} 762-0361
Hamden .
Arrgw Electrgnics
Phone: (303) 248-3801
FLORIOA
Ft. Lauderdale
Arrow Electramics
Phome: {305 776-F190
Hamilton /Avnet Electranics
Phone: (305 971-2803
Hallywaoed
Sehweber Electronics
Phone: (305 9270511
Melbourne
Arrow Elechromigs
Pheae: (305 775-1930
Oriando
Hammond Elecironics
Fagne; 1305) 241-6601
HEGRGIA
Atlanta
krraw Elecironics
Fhpne: [¢04) 4554054
Scmweber Electronics
Phone: (404) 449-9170
Daraville
Arrsw Elzgtromes
Phone: [A0d) 4354054
Norcrass
Hamilton/Awnet Elettronics
Phrare: {404} 445-C800
ILLiNOIS
Gricago
Arrow Electrot s
Phone. (312) 393-9420
Bell Inzustries
Phane: (312} 0829210
Elk Grove
Schweter Electranics
Phone: {312) 593-2740
Schiller Park
HamiltonsAynet Electronics
Phone: {312) 671-6054
INDIANA
Indiznzpolis i
Fioneer Electionics
Phone: [317] §45-7309
KANSAS
Lenexa
Hamiilon /Avnet Electmmcs
Phere: (913} 388-89
MARYLAND
Baltimere
Arrow Eleclrenics
Phoae: {3013 247-5200

liaithmlu\l'f
Pionesr Washington
Elgctronics

Phone: {301) 948-0710

Schweber Electronics

Fhonoe: [301} 840 5900
Hanover

Hamilten/Avnat Eleciranics

Fhane: {301) 795-5000
MASSACHUSETTS
Waltham

Schweber Elecironics

Phaona: (617) §50-8554
Wokurn .

Arrgw Electronics

Phene: (617) 933-8120

Hamiltan/Aynel Electranlcs

Phere : (617) 933-B020
MICHIGAN
Livonia

Hamiltgn;Aunet Eleglronics

Phone: {313] 522-4700

Fioneer Electronics

Phane: (313) 525-1800
Trey
Schweber Electronics

Phone: {313y 563-9242
MIHHESOTA
Bloomington .

Rerew Electronics

Phone: {612 37-6400
Eden Prairie

Schweber Elactronics

Phone- (B12) 941-5280
Edina

Hamilton/Aunet Electronics

Phone: (612) 941-3801
MISSOURI
Hazelwood

Hamiltan/Aynet Electronics

Fhone: {314) 731-1144
NEW MEXICO
Albuyuerque .

Hamilton/Avnet Electronics

Phone: (505} 765-1500
HEW YORK
Buttale

Sommit Diziributars

Phone: {716} 834-3450
East Syracuse

HamiltonsAvnet Elecironics

Phyas: {315) 437-2642
Farmingdale, L.1.

Arrow Electronics

Fhone: (S16) 634-6900
Rochester .

HamiltanfAynel Electronics

Phane: (716) 442-7820

Schwaber Electronics

Prone: (F16) 4242222
Westhary, 1.1,

Hamilten/Avnet Electrones

Phone: {516) 333-5800

dchweber Electronics

Phone: {316} 334-7474
NEW JERSEY
Cedar Brove

HamittontAamet Eleciranics

Frone: {210) 235-0800
Therry Hill

Milgray-Delaware valley

Phane: {(5Q3) 424-1306
Meorestawn

Arraw/Angus Electromcs

Fhane : (603) 235-1300
Mt, Laurel

Hamilvon; Avnel Electronics

Phoae: (£09) 234-2133
Saddlehroak)

Arrow E|sCIroRics

Phoge: (201) 797-5300
Somerset

Schweber Electranics

Phone: {201) 4636003
PENNSYLYANIA
Horsham

Sehwaber Elecironics

Phone: {215) 441-0600
Fittsburgh

PauneerﬁPntshur%

Phore: {412} 722-2300
NDATH CARDLINA
Greenshary .

Hammond Elecironics

Phone: (9199 275-6393

Fionzer Electromcs

Phames (919 273-484]
Raleigh

Hamilten/Aenet Eleciranics

Phong; {919) B29-2030
ORID
Beechwaood .

Schweber EIgctronics

Fhone: {216} 4542570
Glereland

Arrow Eleclrames

Fhone: (216) 464-2000

Hamilton/Avnet Elgclrofics

Phone: {218) 461-1400

Pioneer Standard Eleeiranics

Phone: {216} 587-3600

Sil|NEtics

Daytaw

Hami Ilnn;Avnnt Eln:tmmcs

Pheae: (513 43

Piangear Stannard Elaclrunucs

Fhone: {513) Z36-5000
lmturiugE

Arrow Elecironics

Fhone: (513) 253-5176
QELAHDMA

Tuls2
Component Specialties
Fhone: {313} F64-2820
TEXAS
Dallas
Component Spacialists
Fhone: {214] 3576511
Hamilton/Avngt Elactronics
Fhone: (ZE4) 661-8204
Quality Components
Fhone: (214} 387-4949
Schweber Electranics
Phene: (214) 661-5010
Hinston
Compenent Specialists
Fhene: {13 771-7237
Hamilton/Aynet Eleclranics
Pnone: {713} 7a0-1771
Quality Components
Phone: (713} 772-7100
Schweber Electrenics
Fhone: {713] 784-3500
UTRH
Salt Lake City
Al Electronics
Phone: {301) 486-4134
Hamilton /Avnel Elecimmcs
Phone: {501) 972-
WASHINETOH
Eellsvue .
Hamilton /Avnet Electronics
Phane: (206} 7A6-8750
Libariy Electronics
fhong. (206} 4538300
WISCAKEIN
Milwaukee .
Arrow Flectronics
Phane: (114} F64.5600
Hew Berlin
Hamilten/Avnet Electronics
Phone: {414) 784-4510

FOR SIGNETICS
PRODUCTS
WORLDWIDE

ARGENTINA
Fagesa L.y.C.
Buenas-Aires
Phone; 652-7438,/7474
AUSTRIA
Dsterreichische Philips

Wikn

Phane: 93 26 11
AUSTRALIA
Phiizps [ndusiries-ELCOMA

Lane-Cove H.5.W.

Phone : (02) 427-0883
Quesnsiand

Brisbane

(07 273-3332
South Australia

Adelnide

(0B} 223.4022
Yictora

Melbourne

{03) 699-0300
Westarn Australia

Perth

(09) 2 /-4199
BELGIUM
M.E.LE.

Brussels

Phene: 523 00 @0
BRAZIL
1brape, $.A.

San Paulg

Phone. 234-4511
CANADA
Philips Electron Devices

Toronto
Phone: 425-5161

GHILE
Philips Chilena 5.4,
Sanliage
Fhgae: 39-4001
COLOMBIA
Salape 5.4,
Bogoia
Phone: 600500
DENMARK
Miniwait A5
Kobenhawn
Phone: (01) 63 16 22
FIHLAND
Dy Philips Ab
Helsinki
Fhone: 172 71

FRANCE
RIE,

Paris

Phone: 355-44-39
BERMANY
Valve

Hamhur{g

Phane: {040} 3206-1
KOME KONG
Philias Howg Reng, Lid.

Hong Kong

Phone: 17-245121
1NDIA
Semicanductors, Lid,
fR‘EiPR%gENIMWE ONLY)

Phone: 2HHAT

INDONESIA

P. T. Philips-Ralin Electroqics
Jakarta
Phane; 581058

IRAN
Berheb Company, Lid.
Tahran
Phane: 831564
ISAAEL
Rapac Ejectronics, Lid.

Tal Aviy

Phgne: 477115-6-7
ITALY
Philips 5.5.A.

1ang
Phone; 2-6094
JAFAN
Signetics Japan, Lid.
Tokyo
FPhane: {03) 230-1521
KOREA
Philips Elect Xerea Lie.

Seau
Phone: 44-4202
REXICO
Elecirymica 5.4, de C.¥,
Mexico DLF.
Fhane: 533-1180
HETHERLANDS
Fhilipz Naderlapd B.Y,
Einghaven
Phana :mm 793333
HEW Z
Plulun Electm:al Ind, ELTOMA
Auckland
Phene: B67118
HORWAY
Electramea A.5.

Dsln
Phone: (02) 15 05 30
FAKISTAN
Elmac Ltd

Karachi

Phone: 513-122
PERU
Cagesa

Lima

Phone : 628599
PHILIPZINES
Philipa Industtizl Dev., In¢.

Makala-Rizal

Phone: 5G6E951-Y
SINGAPORE/MALAYSIA
Philips Singapore Pee., Lid,

Singapare

Phone: 538811
SOUTH AFRICA
E.D.A.L. (PTY), Lid.

Jatianneshurg

Phane: 24-6701-3
SPAIN
Copresa 5.4.

Barcelana

Phone: 329 63 12
SWEDEM
Elcoma A.B,

Slackholm

Phone; 08767 97 80
SWITZERLAND
Pl{llp! .ﬂ 6.

Pnone 0144 22 11
TAIWAN
Philipg Taiwan, Ltd.

Taipei

Fhuns: [02) §31-3101-5
THAILAND .
Samng Thorg Radio, LtK.

Hangkok

Prane: 252-7195, 252-1395
UNITED KINGDOM
Wnllard, Lid.

Landon

Phone: 01-540 6633
URITED STATES
Signeties International Corp.

unnyvale, Califamia

Phane: (408} 728-7700
URUGUAY
Luzilectron 5.8,

Monlevifea

Phane: 9143 21
VEMEIUELA
| miustrias Venezalanay
Philips §.4.

Caracas

Phqne: 360-511

Silnotics

a subsidiary of U.S. Philips Corporation

November 14, 1978

Dear Field Sales People;

The 8X%300 Programming Manual has a few errors in its present form.
Please note the changes listed below. Thank you.

Larry Leppert

-- 8X300 PROGRAMMING MANUAL ERRATA --

PAGE NO. 33:
Under the boldface type in the upper right corner which reads "Add

Instructions -- 0p Code 1", the next line should read "Add, Register,
IV Bus" instead of "Add, IV Bus, Register."

PAGE NO. 34 and 36:

Have been interchanged; that is, the text on page 34 should appear

on page 36 and the text on page 36 should appear on page 34. In
addition, on the existing page 36, the line in the upper left corner
which reads "Add, Register, IV Bus" should read "Add, IV Bus, Register."

PAGE NO. 75:

The assembler notation in the upper right corner should read "XMIT
053H, IYL", instead of "XMIT 027H, IVL." The result should refer to
"the byte at address 538" rather than "the Byte at Address 278."

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	_01

