
The Motorola 6800 Instruction Set

Two Programming Points of View Paul M Jessop
1157 Warwick Rd
Solihull

Instruction Field Encoding.

I 1 I X I X I X I I I Group 1: Du al operand instructions

o = A, S 00 = I OP 1 = B, X 01 = D 10 = X 11 = E

I 0 I I X I X I I I I I Group 2: Single operand instructions

00 = I OP 01 = 0 10 = X 11 = E

10 1010 101 0 I 1 Group 3: TPA, TAP and NOP

OP

I 0 I 0 I 0 I 0 11 1 Group 4: Condition code instructions

OP

1010101 1 1 1 1 1 1 Group 5: Accumulator instructions --..-
OP

1 0 1 0 11 1 0 1 1 1 1 1 Group 6: Branches

Condition

1 0 1 0 11 11 1 0 1 Group 7: Stack and index register control

OP

1 0 1 0 11 11 1 Group 8: Interrupt and subroutine control --..-
OP

Figure 7: One way to organize one's viewpoint of the Motorola 6800 instruc-
tion set is to view it as a number of instruction groupings, broken down by
internal binary fields for selection of instructions within the group. This
viewpoint is most appropriate for those working directly in binary, or or-
ganizing the code generation parts of an assembler or compiler.

84 BYTE January 1978

West Midlands 891 3HQ
ENGLAND

When faced with the problem of trying to
hand assemble a machine language program,
the task of looking up each of the op codes
in the manufacturer's data can be quite
daunting. Admittedly, some become familiar
before very long but the less common in·
structions still cause problems (do you 6800
users remember the hexadecimal op code for
TPA?) . Two solutions to this dilemma are
suggested here . The first is suitable for
"switch flippers" and the second for users
of MIKBUG and other systems with hexa-
decimal dump and load functions.

The First Solution: Use Instruction Fields
Anyone who has seen the programming

books for the DEC PDP 8 will be familiar
with the principles involved. In the PDP 8
instruction set, the first three bits of the
12 bit word define the type of instruction
and the remaining bits each have a separate
function. This is of course a gross simplifi-
cation and is not true for memory reference
and 10 instructions but it underlines the
basic ideas. NoW, study of the 6800 op
codes reveals some interesting facts at the bit
level. These are outlined in figure 1.

These patterns are naturally related to the
instruction decoding which goes on
inside the ch ip, but they are a godsend to
the programmer who must work in binary . A
couple of words of explanation are needed .
Branch to subroutine occurs in an unex-
pected place but it is easy to remember if
thought of as Jump, mode immediate. The
general ization in group 1 bit 6 that a zero
implies accumulator or stack pointer
ad.dressing does not hold true for compare
index register (CPX), where it implies index
register addressing. Naturally, the store
instructions (ST A, STS and STX) do not
exist in immediate mode in the published
definition of the 6800 instruction set.

The Second Solution: The Ordered
Manual Lookup Table

The appropriate information is contained
in figure 2. This should be a great boon to
anyone who, for lack of memory or 10

devices, has no assemb ler. The table is
arranged in such a way that the first hexa-
decimal dig it is the horizontal coordinate,
just as the x component comes first in a
pair of Cartesian coordinates. The credit for
inspiring this technique must go to Mr Fugi tt
(March 77 BYTE, page 36) for his 6502
table, but this tab le for the 6800 is some-
what more useful for both assembling and
disassembling because of the way the codes

The Ordered Manua l
Lookup Table

fal l into gmups and the address ing modes
fall into neat vertica l lines.

By way of a fina l word, the tab le can, if
reduced sma ll enough, make a very handy
reference card . Mine has, on the front,
tables to convert between hexadecimal,
octal and decimal, and, on the reverse,
the cond ition s required for branches, '
the restart vecto rs, details of the control
code register and the stack register. -

D Accumulator A
as one operand

NBA = And accumulators
HCF = Halt and catch fire

D Accumulator B
as one operand

D Miscellaneous
instructions

8 Unimplemented

Undocumented
instruction:

F SEI • BLE SWI

E CLI • BGT WAI

0 SEC • BLT •
C CLC • BGE •
B SEV BMI RTI

A CLV • BPL •
9 DEX DAA BVS RTS

III

INX • BVC • :c 8 .<:I >
TPA)leA-*' BEQ ' f'pSH ',i','

mB '

Z

" 7
c:
0

TAP BNE PSH
':,: ' A

" III
6

0
-'

5 • • BCS TXS
,

• BCC DES 4
I

3 • • BlS 1"l,< P.Uk

....
2 • • BHI PUL

A

NOP • INS

o • BRA TSX

o 2 3

STS. STX, STA, STB = store immediates

See "Undocumented 6800 In structions"
by Gerry Wheeler, page 46, December
1977 BYTE.

ACCA ACCB X E I

CLR CLR CLR CLR

• • JMP JMP LDS

TST TST TST TST BSR

INC INC INC INC CPX

• • • • ADD

DEC ? DEC DEC DEC ORA

ROL ,. ROL ROL ROL ADC

ASL ' ASL ASL ASL EOR

ASR ASR ASR ASR

ROR ROR ROR ROR LDA

• • • • BIT

LSR lSR LSR LSR AND

COM COM COM COM • :.,
• • • • SBC

• • • • CMP

NEG NEG NEG NEG SUB

4 5 6 7 8

High (First) Nybble

D X E

STS STS STS

LDS LDS LDS

JSR JSR

CPX CPX CPX

ADD ADD ADD

ORA ORA ORA

ADC ADC ADC

EOR EOR EOR

ST A STA STA

LDA LDA LOA

BIT BIT BIT

AND AND AND

• • •

SBC SBC SBC

CMP CMP CMP

SUB SUB SUB

9 A B

I D X E

STX STX STX

LDX LOX LOX LOX

• • •
• • • •

t ADD AbO ADD t}.DD
<

ORA ORA ORA . OflA

ADC ADC ADC ADC

EdR EOR ' EOR EOR

17'
STA S'l"A

i:{ LDA l:DA LDA lOA
·l .,:

'SrT BIT BIT 'SI,T .
"

;;:f.l.ND ANq;, AND

• • • •

SBC IX'SBC 'l' :' SBC ' !lBC
li' "

CMf> I," CII(1P" CMP <;:MP

SUe SUB .
, . : .. "'. ' :

C D E F

Figure 2: A second way of viewing the 6800 instruction set is from the viewpoint of a hexadecimal matrix, Here a map of the
6800 instruction set has been broken up into several overall regions, with color coding indicating references to accumulators A
and B. Unimplemented and undocumented instructions are shown with a black dot; undocumented, but implemented instruc-
tions are shown with cross hatching to indicate "use at own risk."

BYTE January 1978 85

