intal
8080/8085 Assembly
Language Programming

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any
errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the
information contained in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance with
the terms of such license.

Intel Corporation assumes no responsibility for the use or reliability of its software on equipment that is not supplied by
Intel.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent
of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

ICE-30 LIBRARY MANAGER
ICE-48 MCS

ICE-80 MEGACHASSIS
ICE-85 MICROMAP

INSITE MULTIBUS

INTEL PROMPT

INTELLEC upPl

L

8080/8085 ASSEMBLY LANGUAGE
PROGRAMMING MANUAL

Copyright © 1977, 1978 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

I

PREFACE

This manual describes programming with intel's assembly language. it will not teach you how to program a computer.

Although this manual is designed primarily for reference, it also contains some instructional material to help the beginning
programmer. The manual 15 organized as follows:

Chapter 1. ASSEMBLY LANGUAGE AND PROCESSORS
Description of the assembler
Overview of 8080 hardware and instruction set
Description of 8080/8085 differences

Chapter 2. ASSEMBLY LANGUAGE CONCEPTS
General assembly fanguage coding rules

Chapter 3. INSTRUCTION SET

Descriptions of gach instruction {these are fisted alphabetically
for quick reference]

Chapter 4. ASSEMBLER DIRECTIVES
Data definition
Condiuonal assembly
Relocation

Chapter 5. MACRQOS

Macro directives
Macro examples

Chapter 6. PROGRAMMING TECHNIQUES
Programming examples

Chapter 7. INTERRUPTS
Description of the interrupi system.

Chapters 3 and 4 will fill most of the expenenced programmer’s reference reguirements. Use the table of contents or the
index to locate information guickly,

The beginning programmer should read Chapters 1 and 2 and then skip to the examples in Chapier 6. As these examples

raise questions, refer to the appropriate information in Chapter 3 or 4. Before writing a program, you will need to read
Chapter 4. The ‘Programming Tips’ in Chapter 4 are intended especially for the beginning orogrammer.

RELATED PUBLICATIONS
To use your Intellec development system effectively, you should be familiar with the following Intel
publications:
1515-11 8080/8085 AACRO ASSEMBLER QPERATOR'S MANUAL, 9800292
When you activate the assembler, you have the ophon of specifying a number of controls. The operator’s

manual descrises the actwvation sequence for the assembler. The manuai also describes the debugging tools
and the error messages suppHed by the assembler.

1515-H SYSTEM USER’S GUIDE, 9800306
User program: are commonily stored on diskette files, The [S1S-11 User's Guide describes the use of the text
editor for entering and maintaining programs. The manual also describes the procedures for linking and
tocating refoc itable program modules.

Hardware Referenc:s

For additionz! information about processors and their related components, refer to the appropriazte User’s
Manual;

8080 MICROCOMPUTER SYSTEMS USER’S MANUAL, 9800153

8085 MICROCOMPUTER SYSTEMS USER'S MANUAL, 9800366

Chapter 1.

TABLE OF CONTENTS

ASSEMBLY LANGUAGE

Introduction e
What Is An Assembler?

AND PROCESSORS

What the Assembler Does

Object Code
Program Listing

Symbol-Cross-Reference Listing
Do You MNeed the Assembler?

Overview of 808078085 Hardware

Memary

ROM

RAM .
Program Counter
Work Registers L.
Internal Work Registers
Condition Flags

Carry Flag

Sign Flag

Zero Flag

Parity Flag

Auxiliary Carry Flag
Stack and Stack Pointer

Stack Operations

Saving Program Status

tnput{Output Ports
Instruction Set
Addressing Mocles

implied Addressing

Register Addressing

Immediate Addressing
Direct Addressing
Register |ndirect Addressing
Combined Addressing Mades

Timing Effects of Addressing Modes

Instruction Naming
Data Transfer

Conventions
Group

Arithmetic Group

Hardwareflnstruction Summary

Logical Group
Branch Group
Stack,

O, and Machine Control Instructions
Accumulater Instructions .
Register Pair (Word) Instructions
Branching Instructions
Instruction Set Guide

1-1
1-1

1 1

o = =
v '
(]

[t

15
t5

15

15

16

11

19

19

1-10
110
111
1t
11
112
1113
113
114
115
115
115
115
115
115
116
116
116
116
1-16
1-i7
117
1-18
1-15
119
1-19
121
122
123

8085 Procassor Differences L. . . L L e e s 1-24

Bragramming for the 8085o 1-24
Conditional Instructions L . e 1-25
Chapter 2. ASSEMULY LANGUAGE CONCEPTS 2-1
Introduction - . L L. o e e e e 2-1
Source Line Format e ... 2-1
Character Set L L e 24
Delimiters e s 22
LebelfName Field e 23
Oueeode Fleld 0 o000 24
Operand Field00 24
Cemment Field o L L 0L 24
Coding Operand Field Information 2.4
Hexadecimal Data 0 L .o e 25
Ceamal Data L e 2-5
Octal Data 2-5
Birary Data O
Lecation Counter e . 26
ALCI Constant O 26
Lzbels Assigned Values .
Labels of lnmstruction or Data 2-6
EXPressions L .. w e e .26
Initructions as Operands e e e 2.7
Register-Type Qperands 2.7
Two's omplement Representation of Data 27
Symbols and Symbol Tables e e 29
Symbolic Addressing
Symbolic Characteristics St 2.9

Reserved, User-Defined, and Assembler-Generated Symbols 29

Global and Limited Symbols oL 2-10
Permanent and Redefinable Symbols e 211

Absolute and Relocatable Symbals . - 0 L. 2-11
Assembly-Time Expression Evaluation L. 21
Operators e e e e 2-11
Anthmetic Operators L. L. oo 212

Shift Operators Lo o212

Logical Operators 213
Compare Operators -o 2-13

Byte isolation Ogperators S

Pe missible Range of Values 215
Precedence of Operators 2-15
Relocatable Expressions e e e e . 2416
Chaining of Symbal Definitions 218
Chapter 3. INSTRLCTION SET e e e e e e e e 31
How tc Use this Chapter 31
Timing Information -

instructions are listed in alphazbetical order

¥i

Chapter 4. ASSEMBLER DIRECTIVES . . . & & i ivw e s dane e eases 4-1

Symbol Definition BT R (i S T e i 42
EQU Directive & « & ¢ v e s v o o o o o o« o o o o s 2 o s 4-2

SET Direetive: & % 5% 3 50 68 w8 2 manmemmiad e s s 4.3
Data Definition iR T R A A R e By 4-3
DE DIFCtIVE o o o oo a5 e e e e A SRR R R e 6 A 4-3

DW DIrective o i i e e e e e e e e e e e e 44
Memory Reservation ¢ ¢ v v v v e R e B 4-5
DS DGHINE: 0 5 5 % G e e e s T S e e S g 4-5
Programming Tips: Data Description and Access 46
Random Access Versus Read Only Memory 4-6

Data Description44 e e e e . 46

Dats ACCBES: G 5 5o 5 b e e e me S e e B 4-6

Add Symbols for Data Access 4-7
Conditiond]l Assembly’ . < « o 5 e sarar e e] SR w6 K & & W E 4-8
IF, ELSE, ENDIF Directives« v v v v v v v o v 4-8
Assembler Terminathon . . . o ¢« v is e i e s e s 4w e i E e b 4-10
END :Dirgetiw: . w5 5 v v sereasnranasasoid dalsine & W W B @ B8 & 410
Location Counter Control and Relocation 4-1
Location Counter Control (Non-Relocatable Mode) 411
ORG Direcliwe: < o wvmmssmmes e s s i eanis 4-11
Introduction to Relocatability 4-12
Memory Management v v e . e e e s e e e e 4-12

Modular Program Development 412

Directives Used for Relocation 414
Location Counter Control (Relocatable Programs) 4-14
ASEG: DIFSCtIVE. conmwnmniie B8 @ @G o BE E C B E D B e E 8 4-14

COEG DIrechve o v & w i gl s w00 8 8 8 8 5 ¥ w8 W W ® 415

DSEG Directive« . v vt e e e e e e e e 415

ORG Directive (Relocatable Mode) 4-16

Program Linkage Directives « v v v v v w w 416
PUBLIC Directive: . .. vvadadaiavmen wweon 417

EXTRN Dirsglie: oowovm v cmisie s n e s S s w6 mwmsa 417

NAME DEEIWE . cnwvnwpssmy ss oo s @8 o5 418

STKLN Directive o v v v i e e e e e e e 418

STACK and MEMORY Reserved Words 419
Programming Tips: Testing Relocatable Modules 419
Initialization Routines v . . w e e . . 4-19
Input/Output Lo e e e e 4-20
Remove Coding Used for Testing 4-20

Chapter 3. MACROS . cnuemsiss o d v b v i@ s 88 me 8 v 5% % 5-1
Introduction to Macros L L L L L L L ... 5-1
Why Use Macros? v o o v v v te o oo o o o oo o= 51
Wit s A Micre? s s s iss s aF s s R S E BEE R 5-1
Macros Vs. Subroutines i c i s s e s s s e e s e s 53

Chapter 6.

Chapter 7.

Appendix
Appendix
Appendix
Appendin

Uaing MBCTOS: « o .o o i e B o4 e B s 4 e e e H e e
Macro Definition i
Macro Definition Directives
MACRO Directive
ENDM Directive
LOCAL Directive . o « 6 o 5 5 50 % o5 % i % % 7
REPT Directive
IRP Directive RN R Al N e
IRPC Directive o oo s s B mE A mos a
EXITM Directive S ; 5 :
Special Macro Operators

Nested Macro Defimitions - . -

Macros Calls
Macro Call Format
Nested Macro Calls
Macro Expansion &+ e L i R e
MUl MEEYOE: o s B SR e R e R S b e R
Sample Macros

PROGRAMMING TECHNIQUES

Branch Taoles Pseudo-Subroutine SOy ENETEY G0 £ B
Iransterring Data to Subroutine |

Software Multiply and Divide . o .
Multibyte Addition and Subtraction oo, il B B o B 5 BE s B 8
Decimal Addition PR S U N %
Decimal Subtraction

INTERRUPTS e e e e

Interrupt Concepts W@ VR RO B OE W R w e W

Writing Interrupt Subroutines e

A INSTRUCTION SUMMARY

B ASSEMBLER DIRECTIVE SUMMARY o & &
G ASCII CHARACTER SET

D BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES

. 510

5-12

.. 512
. 512

. 5-14

515

. 516

. 516

6-1

. 6

6-3

.67

6-11
6-12

C 614

A-l
B-1
C-1
D1

Figure

14
1-2
13
1.4
1-5

LIST OF ILLUSTRATIONS

ASSEMELER QUTPUTS

COMPARISON OF ASSEMBLY LANGUAGE WITH PL/M .

808078085 INTERNAL REGISTERS
INSTRUCTION FETCH e
EXECUTION OF MOV M.C INSTRUCTION

1-2
1-4
1-6
1-8
14

1. ASSEMBLY LANGUAGE AND PROCESSORS

INTROBUCTION

WHAT

What

Almost every line of source coding in an assembly language source program translates directly into a machine
instruction for a particular processor. Therefare, the assembly language programmer must be familiar with both
the assembly language and the processor for which he is programming. ”

The first part of this chapter describes the assembler. The second part describes the features of the 8080 micro-
processor from a programmer’s point of view. Programming differences between the 8080 and the 8085 micro-
processors are relatively minor. These differences are described in a short section at the end of this chapter,

IS5 AN ASSEMBLER?

An assemnbler is a software tool — a program — designed to simptify the task of wniting computer programs. If
vou have ever written a computer program direclly in 2 machinerecognizable form such as binary or hexadecimal
code, vou will appreciate Ihe advantages of programming n a symbolic assembly language.

Assembly language operation codes {opcodes) are easily remembered MOV for move instructions, JMP for jump).
You can alse symbolically express addresses and values referenced in the operand field of instructions. Since you
assign these names, you can make them as mearningful as the mnemonics for the instructions. For example, if yvour
program must manipulate a date as data, you can assign it the symbolic name DATE. If your program contains a
set of instruciions used as a timing loop {a set of instructions executed repeatedly untit a specific amount of ume
has passed}, you can name the instruction group TIMER.

the Assembler Does

To use the assembler, you first need a source program. The source program consists of programmer-written
assemnbly language Instructions. These instructions are written using mnemonic opcodes and |abels as described
previously.

Assemnbly language source programs must be in a machine-readable form when passed to the assembler. The
Intellec development system includes a text editor that will help you maintain source programs as paper tape
files or diskette files. You can then pass the resulling sowrce program Fife to the assembler. (The text editor is
deseribed in the 1515-11 System User's Guide.)

The assembler program performs the clerical task of translating symbolic code into object code which can be
executed by the 8080 and 8085 micropracessors. Assembler cuiput consists of three possible files: the ofyect
fite containing your program translated into object code; the fist fife printout of your source code, the assembler-
generated obiject code, and the symbol table; and the symbol-cross-reference fite, a listing of the symbol-cross-
reference records.

1-1

Chapter 1.

Assembly Lan: uape and Processors

OBJECT

FILE

SOU RCE ASSEMBLER PROGRAM
PROGRAM - -
FILE PROGRAM LISTING

CROSS
REFERENCE
LISTING

Figure 1-1. Assembler Qutpuss

Object Code

For most micr scomputer apptications, you probably will eventually load the olyject program inlo some form of
read anly men ory, However, do not forget that the Intellec development system is an 3080 microcomputcr
system with va1dom access memory. In most cases you can lpad and execute your object program on the
development sstem for lesting and debugging. This allows you to tesl vour program before your prototype
application sys:em 15 fully developed.

A special feature of thus assembler s that it allows you 1o request object code in a relocatabie format. This frees
the programmer from worrymg about the eventual mix of read only and random access memory in the application
system; indivicuat portions of the program can be relocated as needed when the applicauon design is final. Also,

a large program can be broken into a number of separately assembled modules, Such modules are both easier to
code and 1o teit. See Chapter 4 of this manual for a more thorough description of the advantages of the refocation
feature,

Program Listing

1.2

The program lisiing provides a permanent record of both the source program and the objecl code. The assembler
also provides diagnosiic messages for cornmon programming errors in the program listing. For example, if you
specify a 16-b1 value for an instrucuion that can use only an 8-bit value, the assembler tefls you that the value
exceeds the pe missible range.

Chapter 1, Assembly Language and Processors

Symbol-Cross-Reference Listing

The symbol-cross-reference listing is anather of the diagnostic lools provided by the assembler. Assume, for
example, that your program manipulates a data field named DATE, and that testing reveals a program logic
error in the handling of this data. The symbol-cross-reference listing simplifies debugging this error because it
points you to each instruction that references the symbol DATE.

Do You MNeed the Assembier?

The assembler 15 but one of several tools available for developing microprocessor programs. Typically, choosing
the most suitable tool is based on cost restraints versus the reguired fevel of performance. You or your company
must determine cost restraints; the requived level of performance depends on a number of varables:

'] The number of pragrams o be written: The greaier the number of programs 1o be wnitten, the more
you need development support. Alsa, 1t must be pomnted oul Lhat there can be penalties for s
writing programs. When your application has access to the power of a microprocessor, you may be
able to provide custormners with cusiom features through program changes, Also, you may be able Lo
add features through programming.

. The time allowed for programeming: As the time allowed {or programming decreases, the need for
programming support increases,

. The ltevel of support for exisling programs: Sometimes programming errors are not discovered until
Lhe program has been i use for quite a while. Your necd for programming support increases if you
agree 10 correct such errors for your customers, The number of supported programs [use can
muliiply this requirement. Alse, program support Is frequently subject Lo stringeni time constraints.

If none of the factors deseribed above apply to your siluation, you may be able to gel along without the
assembler. Intet's PROMPT-80, for example, allows you to enter programs directly imlo pragrammable read only
memaory. You enter the program manually as a siring of hexadecimal digils. Such manual programming a5 relatively
slow and rore prone 10 human crror than computer-assisied programming. However, manuzl systems are one of
the least expensive tools available for microprocessor programming. Manual systems may be suitable for limled
applications, hobbyists, and those who wanl Lo explore possible applications for microprocessors.

If most of the factors listed previously apply 10 vou, you should explore the advantages of PL/M. PL/M is
Intel’s tugh-level language for program development. A& high-eve| language is directed more Lo problem sobving
than to a2 particular micreprocessor. This allows you Lo write programs much more quickly than a hardware-
oriented language such as assembly language. As an example, assume thal a program must move five characters
from one location in memory Lo another, The following example illustrates the coding differences between
assembly language and PL{M. Since instruciions have nol yet been described, the assembly language instructions
are represented by a flowchare,

1-3

Chapter 1. Assembly Lanzuage and Processors

14

ASSEIMBLY LANGUAGE CODING

LOAD REGISTER WITH NUMBER
OF CHARACTERS TO BE MOVED

LOAD REGISTER PAIR B WITH
ADDRIE SS OF SOURCE (FLD1)

LOAD ZEGISTER PAIR D WITH
ADDRESS OF DESTINATION
{FLLD2)

]

LOAD ACCUMULATOR WITH 1
BYTE FROM SOURCE FIELD

|

MOVE _HARACTER FROM
ACCUNULATOR TO DESTINA-
TION FIELD

INCREMENT SOURCE ADDRESS

INCREMENT DESTINATION
ADDRESS

DECREMENT CHARACTER COUNT

NG

CONTINUE

PLIMCODING

CALL MOVE{5FLDZFLDI};

CONTINUE

Figure 1-2. Comparison of Assembly Language with PL/M

Chapter 1. Assembiy Language and Processors

OVERVIEW OF 8080/8085 HARDWARE
To the programmer, the computer comprises the following parts:

Memory

The program counter

Work registers

Condition flags

The stack and stack pointer
Inputfoutput ports

The instruction set

Of the components listed above, memory is not part of the processor, but is of interest to the programmer.

Memory

Since the program required to drive a microprocessor resides‘in memory, all microprocessor applications require
some memary. There are two general types of memory: read only memory (ROM} and random access memory
{RAM).

ROM

As the name implies, the processor can only read instructions and data from ROM; it cannot alter the contents
of ROM. By contrast, the processor can both read from and write to RAM, Instructions and unchanging data

are permanently fixed into ROM and remain intact whether or not power is applied to the system. For this
reason, ROM is typically used for program storage n single-purpose microprocessor applications. With ROM you
can be ceriain that the program is ready for execution when power is applied to the system. With RAM a program
must be loaded into memory each time power is applied to the processor, Motice, however, that storing programs
in RAM allows @ multi-purpose system since different programs can be loaded to serve different needs.

Two special types of ROM — PROM {Programmable Read Only Memory) and EPROM (Eraseabie Programmable
Read Only Memory) — are frequently used during program development. These memories are useful during
program development since they can be altered by a special PROM programmer, In high-volume commercial
applications, these special memories are usually replaced by [ess expensive ROM’s,

RAM
Even if your program resides entirely in ROM, your application is likely to require some random access memory.
Any time your program attempts to write any data Lo memory, that memory must be RAM. Also, if your pro-
gram uses the stack, vou need RAM. If your program modifies any of its own instructions {this procedure is

discouraged), those instructions must reside in RAM.

The mix of ROM and RAM in an apglication is imporiant to both the system designer and the programmer.
Normalty, the programmer must know the physical addresses of the RAM in the system so that data variables

1-5

Chapter 1. Assembly Langaiage and Processors

can be assignec within thase addresses. However, the relocation feature of this assembler allows vou to code a
program without concern for the uitimate placement of datz and instructions; these program elements can be
repositioned af .er the program has been tested and after the system’s memory [ayout is final. The relocation
feature is fully explained in Chapter 4 of this manuai.

Program Counter
With the progrim counter, we reach the first of the 8080's internal registers illustrated in Figure 1-3.
NOTE

Except for the differences listed at the end of this chapter,
the information in this chapter applies equally to the 8080
and the 8085.

The program ¢sunter keeps track of the next instruction byte to be fetched from memory (which may be either
ROM or RAM . Each time 1t fetches an instruction byte from memory, the processor increments the program
counter by on. Therefore, the program counter always indicates the next byte to be fetched. This process
continues as leng as program instructions are executed sequentially. To alter the flow of program execution as
with a jump irstruction or a call te a subroutine, the processor overwrites the current contents of the program
counter with t1e address of the new instruction. The next instruction fetch occurs from the new address.

8080
laccumuLator] FLacs | 8085
HIGH Low
3
INSTRUCTON | B I ¢ | [sTack | POINTER |
DECODZR [o [e | [PROGRAM | COUNTER |
| DATA BUS _ATCH | | H | L | | ADDRESS I BUSLATCH |
8-bit 160it
bidirectional address bus
data bs
ROM RAM INPUT ouTPUT
PORTS PORTS
INSTRUCTIONS INSTRUCTIONS
CONSTANT VARIABLE
DATA DATA
STACK

Figure 1-3. 8080/8085 Internal Registers

16

Chapter 1, Assembiy Lanpuage and Processors

Waork Registers
The 8080 provides an 8-bit accumulator and six other general purpose work registers, as shown in Figure 1-3.
Programs reference these registers by the letters A [for the accumulator}, B, C, D, £, H, and L. Thus, the
instruction ADD B may be interpreted as ‘add the contents of the B register to the contenls of the accumu-

lator.

Some instructions reference a pair of registers as shown in the following:

Symbofic Reference Registers Referenced
B B and C
D BDand E
H Hand L
M H and L {as a memory reference)
PSW A and condition flags {explamed

later «n this section)

The symbaolic reference for a single register 1s ofien the same as for a register pair. The instruction to be executed
determines how the processor interprets the reference. For example, ADD B is an 8-tut operation. By contrast
PUSH B {which pushes the contenls of the B and C registers onto the stack) is a 16-bet aperation.

Notice that the letters H and M both refer to the H and L register pair. The choice of which to use depends on
the instruction. Use W when an instruction acts upon the H and L register pair as in INX H (increment the
contents of H and L by one). Use M when an instruction addresses memory via the H and L registers as in ADD

M {(add the contents of the memory location specified by the H and L registers to the contents of the accumu-
lator].

The general purpose registers B, C, D, E, H, and L can provide a wide variety of functions such as storing §-bit
data values, storing inlermediate resutts i arithmetic operations, and storing 16-bit address pointers. Because of
the 8080 extensive instruction set, it is usually possible to ackieve a common resuil with any of several
diffarent instructtons. A simple add to the accumulataor, for example, can be accomplished by more than hall a
dozen different instructions. When possible, it is generatly desirable to select 2 register-to-register Instructon
such as ADD B. These insitructions typically require only one byte of program storage. Also, using data already
present in a register eliminates 3 memory access and thus reduces the ume required for the operation.

The accumulator also acts as a general-purpose register. but 1t has some special capabilities not shared with the
other registers. For example, the inputfoutput instructions [N and QUT transfer data only between the accumu-
lator and external 1/O devices. Also, many operations involving the accumulator affect the condition fiags as ex-
plained in the next section.

Exarple:
The following figures illustrate the execution of @ move instruction. The MOV M.C moves a copy of the contents

of register C Lo the memory location specified by the H and L registers. Notice that this location must be in
RAM since data is to be written to memory.

i.7

Chapter 1. Assembiy Lanjuage and Progessors

8080
[ACCUMULATOR| FLAGS | 8085
HIGH LOW
Y, I B | c | | srack POINTER
DECOLIER | D | E J L PROGRAM COUNTER
DATA BUS LATCH | | H | L | | ADDRESS BUS LATCH
f 3

ROM

RAM

Figure 1-4. Instruction Fetch

The processor initiates the instruction fetch by latching the contents of the program counter on the address bus,
and then increments the program counter by one to indicate the address of the next instruction byte. When the
memory respc nds, the instruction is decoded into the series of actions shown in Figure 1-5.

NOTE

The following description of the execution of the
MOV M.C instruction 15 conceptually correct, but
does not account for normal bus control. For details
concerning memory interface, refer to the User's
Manual for your processor.

18

Chapter 1. Assembly Language and Processors

8080
8085
[accumuLaTOR] FLAGS |
[B ! C | HIGH LOW
INSTRUCTION | L STACK | POINTER |
DECODER :
I D [E ! | PROGRAM 1| COUNTER |
DATA BUS LATCH | H | L =] ADDRESS | BUS LATCH |
F

ROM RAM

Figure 1-5. Execution of MOV M C Instruction

To execute the MOV M,C instruction, the processor latches the contents of the C register on the data bus and
the contents of the M and L registers on the address bus. When the memory accepts the data, the processor
terminates execution of this instruction and initiates the next instruction fetch.

internal Work Registers

Certain operations are destructive. For example, a compare is actually a subtract operation; a zero result indicates
that the opreands are equal. Since 0t is unacceptable to destray either of the operands, the processor includes
several work registers reserved for its own use. The programmer cannot access these registers, These registers are
used for internal data transfers and for preserving operands in destructive operations.

Condition Flags

The 8080 provides five flip flops used as condition flags. Certain arithmetic and logical instructions alter one or
more of these flags to indicate the result of an aperation, Your program can test the setting of four of these
flags {carry, sign, zero, and parity) using one of the conditional jump, call, or return mstructions. This allows you
to alter the flow of program execution based on the outcome of a previous operation. The fifth flag, auxiliary
carry, is reserved for the use of the DAA instruction, as will be explained later in this section.

It is important for the programmer to know which flags are set by a particular instruction. Assume, for example,
that your program is to test the parity of an input byte and then execute one instruction sequence if parity is

even, a different instruction set if parity is odd. Coding a JPE {jump if parity is even} or PO {jump if parity is

-9

Chapter 1. Assembly Language and Processars

add) instruction immediately following the [N (input) instruction produces faise results since the IN instruction
does not affect the condition flags. The jump executed by your program reflects the outcome of some previcus
operation unri-lated to the IN instruction. For the operation to work correctly, you must include some instruc-
tton that aiters the parity flag after the IN instruction, but before the jump nstruction. For example, vou can

add zera to tle accumulator. This sets the parity flag without altering the data in the aceumulator.

In other cases you will want to set a flag with ong instrucuon. but then have a number of intervening nstruc-
tions before vau use 1t. In these cases, you must be certam that the intervemng instructions do not affect the

desired flag.

The flags sct by each nstruction are detailed in the individual instruction descriptions 1n Chapter 3 of this

manual,
NOTE
When a flag is ‘set” it is set ON (has the value onel;
when a flag 1s 'reset’ il is reset OFF {has the value
zerol.
Carry Fiag

As ts pame naplies, the carry flag 1s commonly used Lo indicate whether an addition causes a ‘carry’ into the
next lmgher oider digil. The ¢carry flag is also used as a 'borrow’ flag n subtractions, as explamed under Two's
Complement epresentation of Data’ in Chapter 2 of this manuab. The carry flag is also alfected by the logical
AND, QR anf exclusive OR instructions. These instructions set OGN or OFF particular bits of the accumulator,
See the descrionans of the ANA, ANL ORA, ORI, XRA, and XRI instructions in Chapter 3.

The rotate instructions, which move the contents of the accumulator ene position ta the telt ar right, treat the
carry bit as though it were a minth bit of the accumulator. See the descripuions of the RAL, RAR, RLC, and RRC
instructions ir Chapter 3 of this manual,
Example:
Addition of t'vo one-byte numbers can produce a carry out of the Fugh-order bt
Bit Number: 7654 3210
AE= 1010 1110
+74= 0111 0180
Q010 0010 = 22 carry flag = 1

An addition piat causes a carry out of the high order bil sets the carry flag to 1, an addition that does not cause
a carry resets the flag to zero.

Sign Flag

As explained inder “Two’s Complement Representation of Data® in Chapter 2, bit 7 of a result in the accumuiator
can be interpreted as a sign, Instructions that affect the sign Pag set the flag equal to bit 7. A zero in bt 7

Chapter 1, A biy L and Pr

indicates a positive value; a one indicates a negative value. This value is duplicated in the sign flag so that
conditional jump, call, and return instructions can test for positive and negative values.

Zero Flag
Certain instructions set the zero flag to one to indicate that the result in the accumulator contains all zeros,
These instructions reset the flag to zero if the result in the accumulzator is other than zero. A result that has a

carry 2nd a zero result also sets the zero bit as shown beiow:

1010 0111
+0101 1001

0000 0000 Carry Flag = 1
Zero Fiag = 1
Farity Flag
Parity 1 determined by counting the number of one bits set in the result in the accumulator. Instructions that
affect the parity flag set the flag to one for even parity and reset the flag to zero to indicate odd parity.
Auxifiary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the accurnulator. You cannot test this flag directly in
your program; it is present to enable the DAA (Decimal Adjust Accumulator) to perform its function.

The auxiliary carry flag and the DAA instruction allow you to treat the value in the accumulator as two 4-bit
binary coded decimal numbers, Thus, the value 0001 1001 is equivalent to 19. {If this value is interpreted as a
binary number, it has the vatue 25.) Motice, hawever, that adding one to this value produces a non-decimal
result:

0001 1001
+0000 0001

0001 1010 =1A

The DAA instruction converts hexadecimal values such as the A in the preceding example back into binary coded

decimal {BCD) format. The DAA instruction requires the auxiliary carry flag since the BCD format makes it
possible for arithmetic operations to generate a carry from the low-order 4-bit digit into the high-order 4-bit
digit. The DAA performs the following addition 1o correct the preceding examptle:

0001 1010
+0000 0110

2001 0000
+0001 0000 ({auxiliary carry}

00138 ¢000 = 20

Chapter 1, Assembly Lanuage and Processors

The auxiliary carry flag is affected by all add, subtract, increment, decrement, compare, and ali logical AND,
OR, and exclssive OR instructions. (See the descriptions of these instructions in Chapter 3.} There is some
difference in the handling of the auxiliary carry flag by the logical AND instructions in the 8080 processer and
the 8085 pro:essor. The 8085 iogical AND instructions always set the auxiliary flag ON. The 8080 logical AND
instructions s:t the flag to reflect the logical OR of bit 3 of the values involved in the AND operation.

Stack and Stack Pcinter
To understani the purpeose and effectiveness of the stack, il is useful to understand the concept of a subroutine.
Assume that sour program requires 2 multiplication routine. {Since the 8080 has no multiply instructions, this
can be performed through repetitive addition, For example, 3x4 is equivalent to 3+3+3+3.} Assume further that

your prograrr needs this mulliply routine several times. You can recode this routing inline each time it is needed,
but this can se a great deal of memory. Or, you can code a subroutine:

nline Coding Subroutine
n“ne_FOUtine cALL \
nline_zouline C{_LL = * cubroutine
nline routine CALL /

T .

The 8080 pruvides instructions that call and return from a subroutine. When the call instruction 1s executed, the
address of th: next instruction {the contents of the program counter! is pushed onto the stack. The contents of
the program :ounter are replaced by the address of the desired subroutine. At the end of the subroutine, a
return instruction pops that previously-stored address off the stack and puts it back into the program counter,
Program execution then continues as though the subroutine had been coded inline.

The mechaniim that makes this possible 15, of course, the stack. The stack is simply an area of random access
memory add. essed by the stack painter. The stack pointer 15 a hardware register maintained by the processor,
However, your program must initialize the stack pointer. This means that your program must load the base
address of th2 stack into the stack pointer. The base address of the stack is commonly assigned to the highest
available add-ess in RAM. This is because the stack expands by decrementing the stack pointer. As items are

112

Chapter 1. Assembly Langpage and Processors

added to the stack, 1t expands into memory locations with fower addresses. As items are remaoved from the
stack, the stack pointer is incremented back toward its base address. Nonetheless, the most recent item an the
stack is known as the "top of the stack.” Stack is still 2 most descriptive term hecause you can always put
semething gise ont Llop of the stack. In terms of programming, a subroutine ¢an czl! a subroutine, and so on.
The only limitation to the number of items that can be added to the stack is the amount of RAM available for
the stack,

The amount of RAM allocated to the stack 15 important to the programmer. As you write your program, you
must be certain that the stack will not expand into areas reserved for other data. For most applications, this
means that vou must assign data that requires RAM to the lowesl RAM addresses available. To be more precise,
you must count up all instructions that add data to the stack. Ultimately, vour program should remove from
the stack any data it places on the stack, Therefore. for any instruction that adds to the stack, you can sub-
tract any fiterveniag instruction that removes an item from the stack. The most critical factor is the maximum
size of the stack. Notice that you must be sure to remave data your program adds to the stack. Gtherwise, any
left-over items on the stack may cause the stack to grow into portions of RAM you intend for other data.

Stack Operations

Stack operations transfer sixteen bits of data between memory and 2 pair of processor registers. The two basic
operations are PUSH, which adds data to the stack, and POP, which removes data from the stack.

& call instruction pushes the contents of the program counter {which contains the address of the next instruction)
onto the stack and then transfers control to the desired subroutine by placing its address in the program counter.
A return instruction pops sixteen bits off the stack and places them in the program counter. This requires the
programmer to keep track of what is in the stack. For example, if you call a subroutine and the subroutine
pushes data onto the stack, the subroutine must remove that data before executing a return instruction. Other-
wise, the return nstruction pops data from the stack and places it in the program counter. The results are
unprediclable, of course, but probably not what you want.

Saving Frogrom Status

It is lkely that a subroutine requires the use of one or more of the working registers. However, it 1s equally
likely that the main program has data stored in the registers that it needs when control returns o the main
program. As general rule, a subroutine should save the contents of a register before using it and then restore
the contents of that register before returning control to the main program. The subroutine can do this by
pushing the contents of the registers onto the stack and then popping the data back into the registers before
execuling a return. The following instruction sequence saves and restores all the working registers. Notice that
the POP instructions must be in the oppaosite order of the PUSH instructions if the data is to be restored to its
original location.

1.13

Chapter 1. Assembly Langaage and Processors

SUBRTN: PUSH PSW
PUSH B
PUSH D
PUSH H

subrouting coding

POP H

POP D
POP B
POP PSW
RETURN

The tetters B, D, and H refer to the B and C, 0 and E, and H and L register pairs, respectively. PSW refers to
the program s alus word. The program staius word 15 a 16-bit word comprising ihe contents of the accumutator
and the five condition flags. (PUSH PSW adds three bits of filler to expand Lhe condition flags into a full

byie; POP PSY/ stnips oul these Niller bits.)

Inpuc/Output Ports

1-14

The 256 mpul foutput parts provide communication wilth the outside world of peripheral devices. The 1N and
OUT instructions imitiate data transfers,

The IN instruc tion latches the number of the desired port onto the address bus, As soon as a byte of data s
returned to thz data bus latch, it 15 wansferred into the accumulator,

The OUT inst-uction latches the number of the desired port onto the address bus and iatches the data in the
accumulator ante the data bus.

The specified r0rt number 15 duplicated on the address bus. Thus, the instruction IMN 5 latches thc_ it configura-
tion Q0G0 0101 Q00O G107 onlo the address bus.

Notice that th2 IN and OUT instructions simply imtiate a data transfer L is the responsibility of the peripheral
device to detest that 1L has been addressed. Notice aiso thal it is possible to dedicate any number of ports to

the same perip heral device. You might use a number of poris as control signals, for example.

Because input and output are almost totally application dependent, a discussion of design techniques i beyond
Lthe scope of tiis manual.

For additional hardware information, refer to the 8080 or 8085 Micracomputer Systems User’s Manual.

For related pragramming infarmation, see the descripuions of the [N, OUT. DI, EIl, RST, and RIM and 5IM
instructions s Chapter 3 of this manuzl. {The RIM and SIM instructions apply only to the 8085.)

Chapter 1. Assembly Language and Processors

Instruction Set

The 3080 incorporates a powerful array of mstructions. This section provides a general overview of the mstruc-
tion set. The detailed operation of each instruction is described i Chapter 3 of this manual.

Addressing Modes
Instructions can be categorized according to their method of addressing the hardware registers andfor memory .

Implied Addressing. The addressing mode of certan instructions is implied by the instruction’s function, For
example, the STC (set carry flag} instruction deals only with the carry flag; the DAA (decimal adjust accumu-
lator} instruction deals with the accumulator.

Register Addressing. Quite a large set of instructions call for register addressing. With these instructions, you
must specify one of the registers A through E, H or L as well as the operation code. With these instrucuions,
the accumuiator 1s implied as a second operand. For example, the instructuon CMP E may be interpreted as
‘compare the contenls of the E register wath the conlents of the accumulator

Most of the instructions that use register addressing deal with 8-bil values. However, a few of these tnstructions
deal with 16-bit register pairs. For example, the PCHL instruction exchanges the contents of the program counter
with the contenis of the H and L registers.

Immediate Addressing. Instructions that use immediale addressing have data assembled as a part of the instruction
stsetl. For example. the instruction CPl'C' may be interpreted as ‘compare the contents of the accumulalor with
the leiter C." When assembled, ihis instruction has the hexadecimal value FE43, Hexadecimal 43 is the internal
representation far the letter C. When this instruction 1s execuled, the processor fetches the first nstruction byte
and deterrmines that it must fetch one more byte, The processor fetches the next byte into one of its interna!
registers and then performs the compare aperation.

Motice that the names of the immediate nstruchions indicate that they use tmmediale data. Thus, the name of an
add instruction 1s ADD; the name of an add immediate instruction is ACE.

All but two of the immediate mstructions use the accumulalor as an implied operand, as in the CR1 instruction
shown previously. The MV! {move rmmedizte) instruction can move ils immediate data to any of the working

registers, including the accumulatar, or to memory. Thus, the instructon MVI DOF FH moves the hexadecimal
value FF to the D regester.

The LXI instruction (load register pair immediate) 15 even more unusual in that tis immediate data ts a 16-bit
value. This instruction is commonly used to load addresses into a register pair. As mentioned previolsly, your
program must initialize the stack pointer: L X115 the instruction most commonly used for this purpose. For ex-
ample, the instruction LX1 SP 30FFH loads the stack pointer with the hexadecimal value 20FF.

Direct Addressing. lump instructions include 2 16-bit address as part of the instruction. For example, the
instruction fMP T000H causes a jump to the hexadecimal address 1000 by replacing the current contents of the
program counter with the new value 1000.

Chapter T. Assembly Lang jage and Processors

{nstructions tfat include a direct address require three bytes of storage: one for the instruction code, and two
for the 16-bit address.

Register Indirect Addressing. Register indirect instructions reference memory via a register pair. Thus, the

instruction MOW M.C moves the contents of the C register into the memory address stored in the H and L
register pair. The instruction LDAX B loads the accumulator with the byte of data specified by the address
in the B and (register pair.

Combined Adc'ressing Modes. Some instructions vse a combination of addressing modes. A CALL instruction,
for example, combines direct addressing and register mdirect addressing. The direct address in a2 CALL instruction
specifies the a idress of the desired subroutine; the register indirect address 15 the stack pointer. The CALL
instruction pu-hes the current contents of the program counter into the memory location specified by the stack
painter.

Timing Effect: of Addressing Modes. Addressing modes affect both the amount of time required for executing
an mstruction and the amount of memory required for tts storage. For example, instructions that use implied or
register addres.ing execute very quickly since they deal directly with the processor hardware or with data already
present in haniware registers. More important, however, is that the entire instruction can be fetched with a

single memory access, The number of memory accesses required is the single greatest factor in determining
execution timing. More memory accesses require more execution time. & CALL instruction, for example, requires
five memory accesses: three Lo access the entire instruction, and two mare o push the contents of the program
counter onto the stack.

The processor can access memory once during each processor cycle, Each eycle comprises a variable number of
states. [The individual instruction descriptions in Chapier 3 specify the number of cycles and states required for
each mnstructic n,d The length of a state depends on the clock frequency specified for your system, and may
range from 483 nanoseconds Lo 2 microseconds. Thus, the timing of a four state instruction may range from
1.920 microse sonds through 8 microseconds. (The 8085 has a maximum cleck frequency of 320 nanoseconds
and therefore an execule instructions about 50% faster than the 8080.)

Instruction Namiag Conventions

The mnemonns assigned to the instructions are designed to tndicate the function of the instruction. The Instruc-
tions fall into the following functional categories:

Data Tronsfer Growp. The data transfer instructions move data between registers or hetween memory and
FERIStErS.

MOV Move

Mvi Move fmmediate

LDA Load Accumulator Birectly from Memory
5TA Store Accumulator Directly in Memory

LHLD Load M and L Registers Directly from Memory
SHLD Store H and L Registers Directly in Memory

ALL MNEMONICS © 1974, 1875, 1976, 1977 INTEL CORPORATION

116

Chapter 1, Assembly Language and Processors

An X' the name of a data transfer instruction implies that it deals with a register pair:

LXI

LDAX
STAX
XCHG
XTHL

i.oad Register Pair with mmediate data

Load Accumulator from Address in Register Pair
Store Accurulator in Address in Register Pair
Exchange H and L with D and E

Exchange Top of Stack with Hand L

Arithmetic Group. The arithmetic instructions add, subtract, increment, or decrement data in registers or

Memory.

ADD
ADI
ADC
ACl
sSUB
sul
SBB
SBI
INR
DCR
INX
DCX
DAD

Add to Accumulator

Add Immediate Data to Accumulator

Add to Accumulator Using Carry Flag

Add Immediate Data to Accumulator tsing Carry Flag

Subtract from Accumulator

Subtract !mmediate Data from Accumulator

Subtract from Accumulator Using Borrow (Carry} Flag

Subtract !mmediate from Accumulator Using Borrow

Increment Specified Byte by One

Decrement Specified Byte by One

Increment Register Pair by One

Decrement Register Pzir by One

Double Register Add: Add Contenis of Register
Pair to H and L Regster Pair

Logical Group. This group performs logical {Boolgan) operations on data in registers and memory and on

condition flags.

The Iogical AND, OR., and Exclusive OR instructions enable you to set specific bits in the accumuiator ON or

OFF.

ANA
ANI
ORA
ORI
XRA
XRI

Logicat AND with Accurnulator

Logical AND with Accumulator Using Immediate Data
Logical OR with Accumulator

Lagical QR with Accumulator Using Immediate Data
Exclusive Logical OR with Accumulater

Exclusive OR Using Immediate Data

The compare instructions compare the contents of an 8-bit value with the contents of the accumufator:

CMP
CP!

Carnpare
Compare Using Immediate Data

ALL MNEMONICS © 1974, 1875, 1978, 1977 INTEL CORPORATION

Chatter 1. Assembly Langnage and Processors

The rotate instructions shift the contents of the accumutator one bit position to Lhe left or right:

RLC Rotate Accumulator Left
RRC Rotate Accumulator Right
RAL Rotate Left Through Carry
RAR Rotate Right Through Carry

Complement a1d carry fiag instructions:

CMA Complement Accumulator
CMC . Complement Carry Flag
5TC Set Carry Flag

Branch Group. The branching instructions atter normal sequential program flow. either unconditionally or
conditionaily, The unconditional branching instructions are as follows:

JMP Jump
CALL Call
RET Return

Conditional brinching instructions examine the status of one of four condition flags to determine whether the
specified branch 15 to be executed. The conditions that may be specified are as follows:

NZ Not Zero {Z = O)
Z Zero (Z = 1)

NC No Carry {C = 0}
C Carry (C=1)

PG Parity Odd (P=0)
PE Parity Even (P = 1]
P Plus (5 = 0}

M Minus (S = 1}

Thus, the conditional branching instructions are specified as follows:

fumps Calis Returns

ic cC RC {Carry)

JNC CNC RINC [Ne Carry)
)z cz RZ (Zerol

JNZ CNZ RNZ {Not Zero]
IR CcpP RP {Pius}

M CM RM {Minus)

{PE CPE RPE {Parity Even)
PO CPO RPO {Parity Odd}

Two other instructions can effect a branch by replacing the contents of the program counter:

PCHL Move H apd L to Program Counter
RST Special Restart Instruction Used with Interrupts

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

113

Chapter 1. Assembly tanguage and Processors

Stack, 1/0, end Machine Control Instructions. The following instructions affect the stack andfor stack pointer:

PUSH
POP

XTHL
SPHL

Pusit Two Bytes of Data onto the Stack
Pop Two Bytes of Data off the Stack
Exchange Top of Stack with M and L
Move contents of H and L 1o Stack Pointer

The 1O instructions are as follows:

N
ouT

Iritiate Input Operation
Initiale Output Operation

The machine control mstructions are as follows:

Et
Di
HLT
NOP

Emable Interrupt System
Disable Interrupt System
Falt

Mo Operation

HARDWARE/INSTRUCTICN SUMMARY

The fallowing iliustrations graphically summarizce the insiruction sei by showing the hardware acted upon by
specific instrucuons, The type of operand allowed for each mstruction is indicaled through the use of a code.
When no cade is given, the instruction does not allow cperands.

Code

REGMS

Dg
Alg
Py
REGy
Dyg

Accumulator Instructions

Meaning

The operand may specify one of the 5-bit registers ABCDEH, or Lor M
{a memory reference wia the 16-bit address in the H and L registers), The
MOV instruction, which calls for two operands, can specify M for only one
of its operands.

Designates 8-bit immediate operand,

Designales 2 16-hit address.

Designates an 8-bit port number.

Designates 2 16-but register parr (B&C.D&E.H&L, or SP).

Designates 2 16-bDit immediate operand.

The following illusiration shows the nstruciions that can affect the accumulator. The instructions listed above
the accurnulator all act on the data in the accumulator, and all except CMA {complement accumulator) affect
ane or more of the condiuon flags. The instructions listed helow the accumulator move data into or out of the
accumulator, bul do not affect condition flags. The STC (set carry) and CMC {complement carry) instructions

are also shown here.

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

Chapter 1. Assembly Language and Processors

ADD AD!
ADC ACH
SUB Su1
BB SB
ana [REGMg i/ Dg
XREA XR1
ORA ORI
cMP cpl
RLC RAL RRC
RAR CMA DAA
INR
DCR} REGM,
——l ACCUMULATOR| FLAGS | STC CMC
HIGH LOW
|
| B | c STACK | POINTER |
MOV REGMS,RECM8| D | E | PROGRAM | COUNTER

IR

¥ - 1
IN Py OUT Pg

A
LDAX EC.DE MEMORY INPUT DUTPUT
STax | PORTS PORTS
LDA
sTa | 16
MWV! [;8 STACK

MOV F.EGMB,REG8

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION

i-20

Chapter 1, Assembly Language and Processors

Register Pair (Word) Instructions

The following instructions all deal with 16-bit words. Except for DAD [which adds thecontents of the B&C or
D&E register pair to H&L), none of these instructions affect the condition flags. DAD affects only the carry

flag.
[accuMuLATOR| FLAGS
HIGH LOW
| B | C SPHL +[STACK 1 POINTERl
1
— | D | E PCHL | PROGRAME CDUNTERl
| H L
L XTHL —
LHLD
SHLD
LXI REGIG,D16 m——— MEMORY
“““““““““ PUSH
STACK je—— PO?’ }B.D.H.PSW

ALL MNEMONICS © 1974, 1975, 1876, 1977 INTEL CORPORATION

1.21

Chapter 1. Assembly Laiguage and Processors

Branching Instructions

The followin: instructions can alter the contents of the program counter, thereby altering the normal sequential
execution flow. Jump instructions affect only the program counter. Call and Return instructions affect the
program counter, stack pointer, and stack.

|ACCUM JLATOR| FLAGS

HIGH LOW

|
| s [c | | sTack POINTER [
|

PCHL PROGRAM COUNTER RST
e o -

TR R S SR S—

JMP CALL RET

Ic ch] CC CNC RC RNC

jz Nzi, czZ oNz RZ RNZL ,
P M §> 16 cp ocm [TBRp M {16
JPE 1O | CPE CPO RPE RPO

MEMORY CONTROL INSTRUCTIONS
RST

NOP

HLT

El

Dl

SIM
|
RIM} 8085 only

ALL MNEMONICS 3 1974, 1975, 1976, 1877 INTEL CORPORATION

1.22

Instruction Set Guide

Chapter 1. Assembly Language and Processors

The following is a summary of the instruction set:

ADD ADI
ADC ACI
SUB Sul
SBB SBI
REGM D
ANA 8 AN L 8
XRA XRI
ORA ORI
CMP CPI
RLC RAL RRC
RAR CMA DAA
INR REGM
DCR; 8 .
r—{ACCUMULATOR[FLAGS]IS& cMe HIGH LOW
MOV REGMg,REGMg| B l c |g% REGg SPHII.>| STACK ! POINTER fe——
I D [E [PCHL»[PROGRAM | COUNTER |RST
—— I
iMP CALL RET
JC INC CC CNC RC RNC
= XTHL — jz gNz|, ez onz|, Rz RNZ|,
P {716 cpocM {16 Rp RM {16
IPE [PO CPE CPO RPE RPO
LHLD} A (IP OU':' P
g N
A gen STHD /16 8 8 CONTROL
' INSTRUCTIONS
STAX) MEMORY INPU'I: QUTPUT
PORTS PORTS RST
LDA A NOP
5TA 16 HLT
El
MVi Dg DI
MOV REGMg, REGM, F-r—e————— PUSH
8 8 STACK «— op l 8,0.H,PSW SIM T gogs oLy
} RIM
CODE MEANING
REGMB The operand may specify one of the 8-bit registers A,B,C,D.E.H, or L or M {a memory
reference via the 16-bit address in the H and L registersj. The MOV instruction, which
cails for two operands, can specify M for only one of its operands.
Dg Designates 8-bit immediate operand.
Alg Designatles a2 16-bil address.
Pg Designates an 8-bit port number,
REG16 Designates a T16-bil register pair (B&C,D&E H&L or 5F).
DTG Designates a 16 -bit immediate operand,

ALL MNEMONICS © 1974, 1975, 1876, 1977 INTEL CORPORATION

1.23

Chapter 1. Assembly Laguage and Processors

8085 PROCESSOR DIFFERENCES

The differencas between the 8080 processor and the 8085 processor will be more obvious to the system designer
than to the programmer, Except for two additional instructions, the 8085 ifstruction set is identical to and fully
compatible with the 8080 instruction set. Most programs written for the 8080 should operate on the 8085 with-
out modifica:ion. The onfy programs that may require changes are those with critical timing routines: the higher
system speed of the 8085 may alter the time values of such routines,

& partial listing of 8085 design features includes the following:

. A single 5 volt power supply.
[} Execution speeds approximately 50% faster than the 8080.
Incorporation in the processor of the features of the 8224 Clock Generator and Driver and the
8228 System Controller and Bus Driver,
. & non-maskable TRAP interrupt for handling serious problems such as power failures.
Three separately maskable interrupts that generate internal RST instructions.
Inputfoutput lines for serial data transfer.

Programming for the 8085

For the prog-ammer, the new features of the 8085 are summarized in the two new mstructions SIM and RIM,
These instructions differ from the 8080 instructions in that each has multiple functions, The SIM instruction
sets the inter-upt mask andfor writes out a bit of serial data. The programmer must place the desired interrupt
mask andfor serial output in the accumulator prior to execution of the SIM instruction, The RIM instruction
reads a2 bit o serial data if one is present and the interrupt mask 1nte the accumulator. Details of these instruc-
tions are covered in Chapter 3.

Despite the new interrupt features of the 8085, programming for interrupts is little changed. Notice, however, that
8085 hardwszre interrupt RESTART addresses fall between the existing 8080 RESTART addresses. Therefore,

only four bytes are available for certain RST instructions. Also, the TRAP interrupt input is non-maskable and
cannot be diiabled. If your application uses this input. be certain to provide an interrupt routine for it

The interrup s have the foliowing priority:

TRAP highest
RST7.5
R5T&.5
RS$TS.5
INTR lowest

When more han one interrupt is pending, the processor always recognizes the higher priority interrupt first,
These prioriiies apply only to the sequence in which interrupis are recognized. Program routines that service
interrupts hi ve no special priority. Thus, an RSTS5.5 interrupt can interrupl the service routine for an RST.5
interrupt. If you want to protect a service routine from interruption, either disable the interrupt system (DI
instruction), or mask out other potential interrupts (SIM instruction).

124

Chapter 1. Assembly Language and Processars

Conditional Instructions

Execution of conditional instrucLions on the 80835 differs from the 8080. The 8080 fetches all three instruction
byles whether or not the condition s satisfied. The 8085 evaluates the condition while it fetches the second
instruction byte. i the specified condition 15 not satisfied, the B085 skips over the third instruction byte and
immediately fetches the mext instruction. Skipping the unnecessary byte allows for faster execution.

1-25

2. ASSEMBLY LANGUAGE CONCEPTS

INTRODUCTION

Just as the English language has its rules of grammar, assembly language has certain coding rules. The source line
15 Lthe assembly language equivalent of o sentence.

This assembler recognizes three Lypes of source lines; mstructions, directives, and controls, This manual describes
mstructions and direcuives, Controls are described it the operator's manual for vour version of the assembler,

This chapter deseribes the general rules for coding source Hnes. Specific instructions {see Chapter 3} and
directives {see Chapters 4 and 5) may have specific coding rules, Even so, the coding of such instructions and
directves ntust conform (o the general rules in this chapter,

SOURCE LINE FORMAT
Assembly tanguage insuvcuions and assembler directives may consist of up ta four fields, as follows:

label: Opcode Operand Comment
MName

The fields may be separated by any number of bianks, but must be separated by ai feast one delimiter. Each
instruclion and direclive must be entered on a single line terminated by a carriage return and a iine feed, No
continuation lines are poassible, but you may have lines consisling enrely of comments.
Character Set
The following characlers are legal in assembly language source stalemenis:
. The letters of the alphabet, A through Z. Both upper- and lower-case letters are zllowed. [nternally,
the assembler treats all fetters as though they were upper-case, but the characters are printed exactly
a5 they were mpul in the assembly listing.

* The digits O through 9.

. The following special characters:

2.1

Chapter 2. Assembiy Lan jfuage Concepts

Character Meaning

+ Plus sign
- Minus sign
Asterisk
Slash
Comma
Left parenthesis
Right parenthesis
Single quote
& Ampersand
Colon
Dallar sign
Cormmercial ‘at’ sign
Question mark
Equal sign
Lecs than sign
Greater than sign
Percent sign
Exclamation point
blank Biank or space

: Semicolon

. Period
C Carriage return
FF Form feed
HY Horizonual tab

- e e g

0o g e

TR N

. in addition, any ASCII character may appear in a string enclosed in single quates of in @ comment.

Defimiters

Certain characters have special meaning to the assembler in that they function as delimiters. Delimiters define
the end of a ‘ource statement, 2 field, or a component of a field. The following list defines the delimiters
recognized by the assembler, Notice that many delinmiters are related to the macro feature explained in Chapter
5. Delimiters ased for macros are shown here so that you will not accidentally use a delimiter improperly.
Refer to Chajter 5 for a descripion of macros.

Character(s)

biank

%

Label/Name Field

Meaning

One or more
bianks

comma
parr of single
quote characters

pair of paren-
theses

carriage return
horizontal tab
semicolon
coton
ampersand

pair of angle
brackets

percent sign

exclamation
point

double semi-
colon

Chapter 2. Assembly Language Concepts

Lise
field separator or symbol terminator
separate operands in the operands field,
including macro parameters

delimit a characier string

delimit an expression

statement terminator

field separator or symbol terminator
comment field delimiter

delimiter for symbols used as labels

delimit macro prototype text or formal
parameters for concatenation

delimit macro parameter text which
contains commas or embedded blanks;
also used to delimit a parameter list

delimit a macro parameter that is to be
evaluated prior to substitution

an estape character used to pass the
following character as part of a macro
parameter when the character might
otherwise be interpreted as 4 delimiter

delimiter for comments in macro definitions
when the comment is to be suppressed when
the macro s expanded

Labels are always optional. An instruction label is a symbol name whose value is the location where the instruc-
uan is assembled. A lzbel may contain from one to six alphanumeric characters, but the first character must be
alphabetic or the special characters 7 or ‘@', The label name must be terminated with a colon. A symbol used
as a label can be defined only once in your program. (See 'Symbols and Symbo! Tables' later in this 'chapler,)

Chapter 2. Assembly Language Concepts

Alphanumerk. characters include the letters of the alphabet, the question mark character, and the decimal
digits 0 throcgh 9.

A name {s re-quired for the SET, EQU, and MACRO directives. Names follow the same coding rules as labels,
except that tiey must be terminated with a blank rather than a colon. The labeifname field must be empty for
the LOCAL ind ENDM directives.

Opcode Field

This requirec field contains the mnemonic operation ¢ode for the 80808085 instruction or assembler directive
to be performed.

Operand Field

The operand field identifies the data to be operated on by the specified opcode. Some instructions reguire no
operands, Ot 1ers require one or two operands. As a general rule, when twe operands are required (as in data
transfer and arithmetic operations), the first operand identifies the destination {or target) of the operation’s
resuft, and the second operand specifies the source data.

Examples:
MOV AC MOVE CONTENTS OF REG C TO ACCUMULATOR
My AB! MOVE B TO ACCUMULATOR

Comment Field

The optiona comment field may contain any information you deem useful for annotating your program. The
only coding requirement for this field is that it be preceded by a semicolon. Because the semicolon is a delimiter,
there s no reed to separate the comment from the previous field with one or more spaces, However, spaces are
cammonly Lsed to improve the readability of the comment. Although comments are always optional, vou should
use them libzrally since it is easier to debug and maintain a well documented program.

CODING OPERAND FIELD INFORMATION

24

There are four types of information {a through d in the foliowing list] that may be requested as items in the
operand fiel 1; the information may be specified in nine ways, ¢ach of which is described below,

Chapter 2, Assembiy Language Concepts

OPERAND FIELD INFORMATION

Information required

{al Register 1)
{b} Register Pair {2
{¢] immediate Data {3}
{d) 16-bit Address {4)
{5}
{6)
{7}
(8}
)]

Ways of specitying

Hexadecimai Data

Decimal Data

Octal Data

Binary Data

Locatian Counter {$)

ASCII Constant

Labels assigned values

Labels of instructions or data
E xpressions

Hexadecimal Data. Each hexadecimal number must begin with a numeric digit {0 through 9} 2nd must be

followed by the letter H.

Label Cocode Operand

HERE: MVI C.0BAH

Decimal Data.

Comment

(LOAD REG C WITH HEX BA

Each decimal number may be identified by the letter D immediately after 1ts last digit or may

stand alone. Any number not specifically identified as hexadecimal, octal, or binary 15 assumed to be decimal.

Thus, the following statemenis are equivaieni:

Label Cocode Operand
ABC: M1 E.15
M1 E. 15D

Comment

iLOAD E WITH 15 DECIMAL

Camment

Octaf Data. Each octal number must be followed by the letter O or the letter Q.
Label Opcode Cperand
LABEL: My 8,720

LOAD OCTAL 72 INTO ACCUM

Bingry Data, Each binary number must be followed by the letter B,

Ltabe! Cocode QOperand

NOW. My

2111101108

Comment

;LOAD REGISTER D
WITH OF6H

25

Chapter 2. Assembly L:nguage Concepts

Location Connter. The $ character refers to the current location counter. The location counter contains the
address wher2 the current instruction or data statement will be assembled.

tabet Opcode Operand Comment

GO JMP 5+6 S UMP TO ADDRESS 6 BYTES BEYOND
‘THE FIRST BYTE OF THIS
JANSTRUCTION

ASCH Constint, One or more ASCII characters enclosed in single quotes define an ASCH constant. Two
successive sihigle quotes must be used to represent ane single quote within an ASCIH constant.

t.abel Opcode Operard Comment
I E LOAD E REG WITH 8-BIT ASCIH
JREPRESENTATION OF *
DATE: D8 TODAY'™S DATE’

Labels Assig red Vafues. The SET and EQU directives can assign values to labels. in the following example,
assume that VALUE has been assigned the vatue 9FH: the two statements are equivalent:

__abef Opcode Operatd Comment
Al w1 BD.9FH
A M1 D.VALUE

Labels of Instruction or Data. The label assigned to an instruction or a data definition has as its value the
address of tie first byte of the instruction or data. Instructions elsewhere in the program can refer to this
address by 1.5 symbolic label name.

_abel Opcode Operand Commerts
HERE: IMP THERE JUMP TO INSTRUCTION AT THERE
THERE: MV 0.9FH

Expressions. All of the operand types discussed previously ¢an be combined by operators to form an expressian.
in fact, the example given for the focation counter (3+6) 15 an exprassion that combines the location counter
with the de:imal number 4.

Because the rules for coding expressions are rather extensive, further discussion of expressions 15 deferred until
later in this chapter.

26

Chapter 2. Assembly Language Concepts

Instructions as Operands. One operand type was intentionally omitted from the list of operand field infor-
mation: [nstructions enclosed in parentheses may appear in the operands field, The operand has the value of
the left-most byte of the assembled instruction.

Label Cocode Cperand
INS: bg {ADD)
The statement above defines a byte with the value 51H {the object code for an ADD C instruction). Such

coding is typically used where the object program modifies itself during execution, a technique that is strongly
discouraged. ’

Register-Type Operands, Only instructions that allow registers as operands may have register-type operands,
Expressions conlaining register-type operands are flagged as errors, Thus, an instruction like
IMP A

is flagged as an illegal use of a register.
The only assembler directives that may contain register-type operands are EQU, SET, and actual parameters in
macro calls. Registers can be assigned alternate names only by EQU or SET.

TWO'S COMPLEMENT REPRESENTATION OF DATA
Any 8-bit byte contains one of the 256 possible combinations of zeros and ones. Any particular combination may
be interpreted in a number of ways. For example, the code 1FH may be interpreted as an instruction (Rotate
Accumuiator Right Through Carry), as the hexadecimal value 1F, the decima! value 31, or simply the bit

pattern 00011311,

Arithmetic instructions assume that the data bytes upon which they operate are in the 'two’s complement’
format. To understand why, let us first examine two examples of decimal arithmetic:

35 35
SR
23 i23

Notice that the results of the two examples are equal if we disregard the carry out of the high order position in
the second example. The second exampie iilustrates subtraction performed by adding the ten’s complement of
the subtrahend (the bottom number) to the minuend {the top number}, To form the ten’s complement of a
decirmal number, first subtract each digit of the subtrahend from 9 to form the nine's compiement; then add one
to the result to form the ten’s complement, Thus, 99—12=87; 87+1=88, the ten’'s complement of 12.

The ability to perform subtraction with a form of addition is a great advantage in a computer since fewer cir-
cuits are required. Also, arithmetic operations within the computer are binary, which simplifies matters even more.

2.7

Chapter 2. Assembly Lat guage Concepts

The processol farms the two's complement af 2 binary vatue simply by reversing the value of gach bit and then
adding one tc the resuit. Any carry out of the high order kit is ignored when the complement is formed, Thus,
the subtractic n shown previously is performed as follows:

35=0010 011 0010 ool
=12 =0000 1100 =1111 00N +17111 0100

23 + 1 10001 111 = 23
111 0180

Again, by dis-egarding the carry out of the high order position, the subtraction 15 performed through a form of
addition. Hos rever, if this operation were performed by the 8080 or the 8085, the carry flag would be set OFF
at the end of the subtraction. This is because the processars complement the carry flag at the end of 2 subtract
operation s¢ hat it can be used as 2 ‘borrow’ flag in multibyie subtractions, In the example shown, no borrow
15 required, 5o the carry flag s set OFF. By contrast, Lhe carry flag s set ON if we subtract 35 from 12:

12 = 0000 1100 0000 1100
—35 = 0010 0011 = 1301 1100 +110% 1101

+ i 110 1001 = 233 or 145
1101 1101

In this case, "he absence of a carry indicates that a borrow is required from the next higher order byte, if any
Therefore, thz processor sets the carry flag ON. Notice also that the result 15 stored in a complemented form,
tf you want o nterpret this result as a decimal value, you must again form its two's complement:

110 1001 = 0001 Q110
+ 1

00at 0114 = 23

Two's compl iment numbers may also be signed. When a byte 1s interpreted as a signed twa's complement number,
the fugh order bit indicates the sign, A zero in this bit indicates a positive number, 2 one a negative number, The
seven low order bits provide the magnitude of the number. Thus, 0111 1117 equals +127,

At the begiming of this deseription of two's complement arithmetic, it was stated that any &-bit byte may con-
tain one of t1e 256 possible combinzuions of zeros and ones. It must also be stated that the proper interpretation
of data is a {rogramming responsibility.

As an examp.e, consider the compare mstruction. The compare fogic considers only the raw bit values of the
items being compared. Therefore, a negative two's complement number always compares higher than a posiive
number, beci use the negative number’s high order bit 15 always OM. As a result, the meanings of the flags set by
the compare instruction are reversed. Your program must account for this condition,

28

Chapter 2, Assembly Language Concepts

SYMBOLS AND SYMBOL TABLES
Symbolic Addressing

{f you have never done symbolic programming before, the following analogy may help clarify the distinction
between a symbolic and an absolute address,

The locations in program memory can be compared to z cluster of post office boxes. Suppose Richard Roe
rents box 500 for two months. He can then ask for his letters by saying ‘Give me the mail in box 500," or
‘Give me the mail for Roe.’ If Donald Smith later rents box 500, he too can ask for his mail by either box
number 500 or by his name., The content of the post office box can be accessed by a fixed, obsolute address
{500} or by a symbelic, varioble name. The postal clerk correlates the symbolic names and their absclute values
1n his log book. The assembler performs the same function, keeping track of symbois and their values in a
spymbol table. Note that you do not have to assign values to symbolic addresses. The assembler references its
location counter during the assembly process to calculate these addresses for you, {The location counter does
for the assembler what the program counter does for the microcomputer. It tefls the assembler where the next
instruction or operand is to be placed In memory.)

Symbeo} Characteristics
A symbol can contain ane to six alphabetic {A-Z) or numeric (0-9) characters {with the first character alphabetic}
or the special character ‘77 or '@, A dollar sign can be used as a symbol to denote the value currently in the
location counter. For example. the command

IMP $46

forces a jump to the instruction residing six memory locations higher than the [MP instruction. Symbols of the
form 'T?nnn' are generated by the assembler to uniquely name symbols local to macros.

The assembler regards symbols as having the following attributes: reserved or user-defined; global or limited;
permanent or redefinable; and absolute or relocatable.

Reserved, User-Defined, and Assembler-Generated Symbols
Reserved symbaols are those that already have special meaning to the assembler and therefore cannot appear as

user-defined symbols. The mnemonic names for machine instructions and the assembler directives are all reserved
symbols.

29

Chapter 2. Assembly Lan;uage Concepts

The following instruction operand symbols are also reserved:

Symbol Meaning

$ Location counter reference

A Accumulator register

B Register B or register pair B and C

C Register C

D Register D or register pair D and E

E Register £

H Register H or register pair H and L

L Register L

5P Stack pointer register

PSW Program status word (Contents of A and status flags)
M Memory reference code using address in H and L
STACK Special reiocatahility feature

MEMORY Special relocatability feature

NOTE

The STACK and MEMORY symbols are fully discussed
in Chapter 4.

User-defined -ymbols are symbols you create to reference instruction and data addresses. These symbols are
defined when they appear in the label field of an instruction or in the name field of EQU, SET. or MACRO
dirgctives (see Chapters 4 and 5).

Assembler-ger erated symbols are created by the assembler to replace user-defined symbols whose scope is limited
to a macro de finitien.

Globat and Lirmt-ed Symbols

Most symbois are global. This means that they have mezming throughout your program. Assume, for example,
that you assisn the symbolic name RTN to a routine, You may then code 4 jump or a call to RTN from any
peint in your program. If you assign the symbalic name RTN to a second routine, an error results since you

tave given multiple definitions to the same name.

Certain symb-ls have meaning only within a macro definition or within a call to that macro; these symbols are
‘local’ to the macro. Macros require local symbols because the same macro may be used many times in the
program. [f the symbolic names within macros were global, each use of the macro (except the first) would cause

multiple defiittions for those symbalic narmes.

See Chapter : for additional information about macros.

210

Chapter 2, Assembly Language Concepls

Perranent and Redefinable Symbols

Maost symbals are permanent since their value cannot change during the assembly operation. Only symbols
defined with the SET and MACROQ assembler directives are redefinable.

Absofute and Relocatable Symbols

An important attribute of symbols with this assembler is that of relocatability. Relocatable programs are
assemnbled relative to memory location zero. These programs are later relocated to some other set of memory
locations. Symbols with addresses that change during relocation are relacatabie symbols. Symbols with
addresses that do not change during relocation are absolute symbols. This distinction becomes impartant when
the symbols are used within expressians, as will be explained kater.

External and public symbals are special types of relocatable symbols. These symbols are required to establish
program linkage when several relocatable program modules are bound together to form a single application
program. External symbols are those used in the current program module, but defined tn another module.
Such symbols must appear in an EXTRN statement, or the assembler will flag them as undefined.

Conversely, PUBLIC symbols are defined in the current program module, but may be accessed by other
madules. The addresses for these symbols are resolved when the modules are bound logether.

Absolute and relocatable symbols may both appear v a relocatable module. References to any of the assembler-
defined registers A through E, M and L, PSW, 5P, and M are absolute since they refer to hardware locations.
But these references are valid in any madule,

ASSEMBLY-TIME EXPRESSION EVALUATION
An expression 15 @ combination of numbers, symbaols, and operators. Each element of an expression is a term.
Expressions, like symbols, may be absolute or relocatable. For the sake of readers who do not require the
relocation feature, absolute expressions are described first. However, users of relocation should read all the
fallowing.

Operators

The assembler includes five groups of operators which permit the following assembly-time operations: arithmetic
operations, shift operations, logical operations, compare operations, and byte 1solation operations. |t is important
to keep in mind that these are zll assembly-time operations. Once the assembler has evaluated an expression, it
becomes a permanent part of your program, Assume, for example, that your program defines a list of ten con-
stants starting at the label LIST: the following instruction loads the address of the seventh item in the list into
the H and L registers:

EXE H.LIST+6

MNotice that LIST addresses the first item, LIST+] the second, and so on.

21

Chapter 2. Assembly Lanivage Cancepts

Arithmetic Operitors
The arithmeti-. operatars are as follows:
Operator Mearung
+ Unary or tinary addition

— Unary or binary sublraction
i Muitiplication

f Division. Any remainder is discarded {7/2=3).
Division by zero causes an error,
MOD Modulo. Resull s the remainder causedby a

division operation. {7 MOD 3=1)
Examples:

The fotllowing expressions generate the bit pattern for the ASCI character A:

5+{—30% 3]

Motice that the MOD operator must be separated from its operdmds by spaces:
NUMBR MOD 8

Assuming tha. NUMBR has the value 25, (he previous expression evaluales w the value 1.

Shift Operators

The shift ope utors iare as foliows:

Operator Mearning
vy SHE x Shilt eperand “y' 1o the right 's' it positigns,
v SHL x Shift operand 'y’ to the left 'x' bt positions.

The shift opcrators do not wrapareund any bits shifted out ol the byle. Bil positions vacated by the shift
aperation are zera-litled. Notice that the shifl operator musl be separated {rom ils operands by spaces.

Example:
Assume that NUMBR has the value 101 0101, The effects of the shifl operators s as follows:
NUMBR 5HR 2 0001 0101

NUMBR SHL 1 1014 1010

Chaprer 2, Assembly Language Concepis

Notice that a shift one bit position to the left has the effect of multiplying a value by two; a shift one bit
position to the right has the effect of dividing a value by two.

Logical Operators
The logical operatars are as follows:
Operator
NOT
AND
OR

XOR

Meaning

Logical one’s complement

Logical AND {=1 if both ANDed bits are 1}
Logical OR {=1 if either ORed bitis 1}

Logical EXCLUSIVE OR (=1 if bits are different)

The logical operators act only upon the least significant bil of values invalved in the operation. Also, these
operators are commonly used i conditional {F directives. These directives are Fully explained in Chapter 4.

Example:

The following tF directive tests the teast significant bit of three items. The assembly language code that follows
the {F is assembled oniy if the condition & TRUE. This means that alt three fields must have a one bit in the

least significant bit position.

IF FLDT AND FLD2 AND FLD3

Compare Qperators
The compare gperators are as follows:
Operator

EQ
NE
LT
LE
GT
GE
NUL

Megring

Equal

Not equal

Less than

Less than or equal

Greater than

Greater than or equal

Special operator used to test for null {missing) macro
parameters

213

Chapter 2. Assembiy Laniuvage Concepis

The compare perators yield a yes-no result. Thus, if the evaluation of the relation is TRUE, the value of the
result is ail ores. !f false, the value of the result is all zeros. Relational operations are based strictly on magni-
tude comparicons of bit values. Thus, a two's complement negative number (which always has a one in its high
order bit} is g-eater than a two's complement positive number {which always has a zero in its high order bit).

Since the NU _ pperator appiies only to the macre feature, NEI. is described in Chapter 5.

The compare operators are commonly used in conditional IF directives. These directives are fully explained in
Chapter 4.

Notice that tl.e compare operator must be separated from its operands by spaces.
Example:

The following IF directive tests the values of FLD1 and FLD2 for equality. If the result of the comparison is
TRUE. the as;iembiy language coding following tite IF directive is assembled. Otherwise, the code is skipped over.

IF FLD1 EQ FLD2

Byte [solation Goerators

The byte isol ition operators are as follows:

Cperator Meaning
HIGH isolate high-order § bets of 16-bit value
LOW {solate low-order 8 bits of 16-bit value.

The assemble- treats expressions as 16-bit addresses, In certain cases. you need o deal only with a part of an
address, or v need to gengrate an 8-bit value, This s the funcuian of the HIGH and LOW operators.

The assernbler's relocation feature treats all external and relocatable symbols as 156-bit addresses. When one of
these symboli appears in the operand expression of an immediate instruction, It rmust be preceded by either the
HIGH or LON operator to specify which byte of the address s to be used in the evaluation of the expression,
When neithel operator is present, the assembler assumes the LOW operator and 1ssues an error message.

NOTE

Any program segment containing a symbol used as the
argument of 2 HIGH operator should be located only on
a page boundary. This is done using the PAGE option
with the CSEG or DSEG directives described in Chapter
4. Carries are not propagated from the low-order byte
when the assembler obiect code is relocated and the
carry flag will be lost. Using PAGE ensures that this
flagis Q.

Chapter 2. Assembly Language Concepts

Examples:

Assume that ADRS is an address manipulated at assembly-time for building tables or lists of items that must all
be below address 255 in memory, The following {F directive determines whether the high-crder byte of ADRS
is zero, thus indicating that the address 15 still less than 256:

IF HIGH ADRS EQ 0

Permissible Range of Values

internally, the assembler treats each term of an expression as a two-byte, 16-bit value. Thus, the maximum
range of values is OH through OFFFEH. All arithmetic operations are performed using unsigned two's comple-
ment arithmetic. The assembler performs no overflow detection for two-byte values, so these values are evaluared

modulo 64K,

Certam structions require that therr aperands be an eight-bit value. Expressions for these instructions must
yield values in the range —256 through +2335, The assembler generates an error message if an expression for one
of these instructions yields an out-of-range value.

NOTE

Only instructions that allow registers as operands may have
register-type operands. Expressions containing register-type
operands are flagged as errors. The only assembler directives
that may contain register-type operands are EQU, SET, and
actual parameters in macro calls. Registers can be assigned
alternate names only by EQU or SET.

Precedence of Qperators

Expressions are evaluated left to right, Operators with higher precedence are evaluated before other operators
that immediately precede or follow them. When two operators have equal precedence, the left-most is evaluated
first.

Parentheses can be used 1o override normal rules of precedence. The part of an expression enclosed in paren-
theses is evaluated first. If parentheses are mested, the innermost are evaluated first,

15{3 + 189 =5+2=7
15/{3+ 18/9) =15/(3+2)=15/5=3

2-15

Chapter 2. Assembly Lantuage Concepls

The following list describes the classes of operators in order of precedence:

. Parenthesized expressions
. NUL
. HIGH, LOW

. Multiplication{Division: *, {, MOD, SHL, SHR

° Addition/Subtraction: +, - {unary and binary)

° Relational Operators: EQ, LT, LE, GT, GE,NE
. Logical NOT

° Logical AND

° lL.ogical OR, XOR

The relational, logical, and HIGH/LOW operators must be separated from their operands by ar least one blank.

Relocatzble Expressions

Determining ©1e relocatability of an expression requires that you understand the relocatability of each term used
in the express on, This is gasier than it sounds since the number of allowable operators is substantially reduced.
But first it is tecessary to Krnow what determines whether 2 symbo! is absolute or relocatabie.

Absolute syrmoois can be defined two ways:

* A symbol that appears in a label field when the ASEG directive is in effect 15 an absolute symbol.
. A symbol defined as eguivalent to an absclute expression using the SET or EQU directive is an
at solute symbol.

Relocatable s'mbols ¢an be defined a number of ways:

. A symbol that appears in a label field when the DSEG or CSEG directive 15 in effect is a relocatable
symbol.

. A symbol defined as equivalent to a relocatable expression using the SET or EQU directive is
re ocatable.

. The special assembler symbols STACK and MEMORY are relocatable.

» E :ternal symbols are considered refocatable.

» A reference to the location counter (specified by the $ character) is relocatable when the CSEG or
D3EG directive is in effect.

The expressions shown in the following [ist are the only expressions that yield a relocatable result. Assume that
ABS is an absolute symbol and RELCC 15 a relocatable symbol:

ABS + RELOC
RELOC + ABS
RELOC ~ ABS

I

HIGH‘I
EL +
!kLOW) RELOC + ABS

HIGH Y
{LOW } RELOC — ABS

¢ HIGH
RELOC + !EjOW } ABS

{ HIGH

RELOC -~ {\ Low | MBS

216

Chapter 2. Assemily Language Concepis

Remember that numbers are absolute terms. Thus the expression RELOC - 100 is legal, but 100 — RELOC
is not.

When two relocatable symbols have both been defined with (he same type of reiccatability, they may appear In
certain expressions that yield an absclute result, Symbols have Lhe same type of relocatability when both are

relative to the CSEG location counter, both are relative to the DSEG location counter, both are relative to
MEMORY, or both are relative to STACK. The following expressions are valid and produce absolute results:

RELGCT — RELOC2
EQ
LT
RELOCT LE RELOC2
GT
GE
NE

Relocatable symbals may not appear in expressions with any other operators.
The fellowing fist shows all possible cambinations of operators with absofute and relocatable terms. An A in the

table indicates that the resulting address is absofute: an R indicates 2 relocatable address: an | indicates an
illegal combination, Notice thal only one term may appear with the last five operators in the lisi.

X absolute X absalute X relocatable X relocatable

Operator
P Y absclute Y relocatable Y absolute ¥ relocatable

R 14
R

=

NE
AND
OR
XOR
NOT
HIGH
LOW
unary+
unary—

ECE L T L A
r
-

I -~ e - i S

1

]

—
PR T At T T T A i
R PR EFFPEPFPEEFEPFEPRE DD

|
— N A m
|

217

Chapter 2, Assembly Larguage Concepts

Chaining of Symbol Definitions

The 1515-11 81180{8085 Macro Assembler is essentially a 2-pass assembler. All symbol table entries must be
resolvable in iwo passes. Therefore,

X EQU Y
Y EQU 1

is tegal, but it the series

X EQU ¥
Y EQU Z
Z EQU 1

the first line s iflegal as X cannot be resolved in two passes and remains undefined.

218

3. INSTRUCTION SET

HOW TO USE THIS CHAPTER

This chapter is a dictionary of 8080 and 8085 instructions. The instruction descriptions are listed alphabetically
for quick reference. Each description is complete so that you are seldom required to look elsewhere for addition-
al information.

This reference format necessarily requires repetitive information. If you are reading this manuai to learn about
the 8080 or the 8085, do not try to read this chapter from ACI {add immediate with Carry} to XTHL {exchange
top of stack with and L registers}. instead, read the description of the processor and instruction set in

Chapter 1 and the programming examples in Chapier 6. When you begin to have questions about particular
instructions, look them up in this chapier.

TIMING INFORMATION

The instruction descriptions in this manual do not explicitly state execution timings. This is because the basic
operating speed of your processor depends on the clock frequency used in your system.

The 'state’ is the basic unit of time measurement for the processor. A state may range from 480 nanoseconds
{220 nznoseconds on the 8085) to 2 microseconds, depending on the clock frequency. When you know the
length of a state in your system, you can determine an instruction's basic execution time by multiplying that
figure by the number of states required for the instruction.

Notice that two sets of cyciefstate specifications are given for 8085 conditional <ali and jump (nstructions. This
is because the 8085 fetches the third instruction byte onby if it is actuafly needed; i.e., the specified condition
is satisfied.

This basic timing factor can be affected by the operating speed of the memory in your system. With a fast
clock cycle and a slow memory, the processor ¢an outrun the memory. In this case, the processor must wait
for the memory to deliver the desired instruction or data, In applications with critical timing requirements, this
wait can be significant. Refer to the appropriate manufacturer’s literature for memory timing data.

31

Chagter 3. Instruction 5e

ACI

ADC

32

ADD IMMEDIATE WITH CARRY

ACI adds the :ontents of the second instruction byte and the carry bit to the contents of the accumulator and
stores the result in the accumulator.

Gpcade Operand
AC) data

The operand ssecifies the actual data to be added to the accumulator except, of course, for the carry bit. Data
may be in the farm of a number, an ASCI] constant, the label of a previcusly defined value, or an expression.
The data may not exceed one byte,

The assembrler s relocation feature treats ali external and relocatable symbols as 16-bit addresses. When one of

these symbols appears in the operand expression of an immediate instruction, 1t must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.

When neither dperator is present, the assembler assumes the LOW operator and issues an error message.

1T 1 9 0 1 1 1 0

data
Cycles: 2
States: 7
Addressing: immediate
Flags: £.5.PCY AC

Example:

Assume that the accumulator contains the value 14H and that the carry bit s set to one. The instruction ACT 66
has the following effect:

Accumutator T4H 00010100
Immediate data = 42H = 01000010
Carry 1

01010111 = 57H

ADD WITH CARRY
The ADC instruction adds one byte of data plus the setting of the carry flag to the contents of the accumufator,
The result 1 tored in the accumulater. ADC then updates the setting of the carry flag to indicaie the outcome

of the operat on.

The ADC ins ruction’s use of the carry bit enabies the program to add multi-byte numeric strings.

Add Register to Accumudator with Carry
Cocede

ADC

Chapter 3. Instruction Set

Operand

reg

The operand must specify one of the registers A through E, H or L. This instruction adds the contents of the
specified register and the carry bit to the accumulator and stores the result in the accumulator.

1 0 0 0 118 5 §
Cycles: 1
States: 4
Addressings: register
Flags: ZS5PCYAC
Add Memory to Accumulator with Carry
Opcode Cperand
ADC M

This instruction adds the contents of the memory location addressed by the H and | registers and the carry
it to the accumulater and stores the resuft in the accumulator. M is a symbaolic reference to the H and L

registers,
i 0 0 0
Cycles:
Slates:
Addressing:
Flags:
Example:

register indirect
Z2,5P.CY.AC

Assume that register C contains 3DH, the accumulator contains 42H, and the carry bit is set to zero, The
instruction ADC C performs the addition as follows: :

3DH = 00111104
42H = (1000010
CARRY = 4]

01111111 = 7FH

The condition flags are set as folows:

1l

Carry
Sign

Zero =
Parity
Aux. Carry =

IF

o= R oo o I = Y .

33

Chapter 3. Instruction Set

if the carry bit 15 set to one, the instruction bas the following results:

3DH = 0111108

42H = 01000010

CARRY = 1
10000000 = 8CH

Carry = {
Sign =1
Zero =0
Parity =0
Aux, Carry =1
ADD ADD

The ADD in truction adds one byte of data to the contents of the accumulator. The result is stored in the
accumutator. Motice that the ADD instruction excludes the carry flag from the addition but sets the flag to
indicate the jutcome of the operation.
Add Register to Register

Opcode Operand

ADD reg

The operand must specify one of the registers A through E, H or L. The instruction adds the contents of the
specified reg ster to the contents of the accumulator and stores the result in the accumulator.

e 0 0 0115 5 §

Cycles: 1
States: 4
Addressing: register
Flags: ZSPCY AC
Add From Memory
Opeode Operand
ADD M

This instruciion adds the contents of the memory location addressed by the H and L registers to the contents of
the accumulitor and stores the result in the accumulator. M is a symbolic reference to the H and L registers.

i 00 00 110

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z5.PCY.AC

34

ADI

Chapter 3. Instruction Set

Examples:

Assume that the accumulator contains 6CH and register D contains 2EH. The instruction ADD B performs the
addition as follows:

2EH 00101110
6CH 131100

SAH = 10011010

The accumulator contains the value 9AH following execution of the ADD O instruction. The contents of the O
register remain unchanged, The condition flags are set as follaws:

Carry = i
Sign =1
Zero =0
Parity =1
Aux, Carry =1

The following instruction doubles the contents of the accumulator:

ADD A

ADD IMMEDIATE

AD! adds the contents of the second instruction byte of the contents of the accumulator and stores the result
in the accumulator.

COpcode Operand
ADI data

The operand specifias the actual data to be added to the accumulator, This data may be in the form of a number,
an ASCI| canstant, the label of a previcusly defined value. or an expression. The data may not exceed one byte.

The assembler’s relocation feature treats all external and reloeatable symbols as 16-bit addresses. When one of
these symbois appears in the operand expression of an immediate instruction, it must be preceded by either

the HIGH or LOW cperator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assurnes the LOW operator and 1ssues an erqror message.

data
Cycles: -2
Skales: 7
Addressing: immediate
Flags: ZS5.PCY AC

35

Chapter 3. Instruction Se

Example:
Assume that he accumulator contains the value 14H. The nstruction ADY 66 has the following effect:
Q0010100

01000018
01010113 = 56H

Accumitator = 14H
Immediate data 42H

[}]
1]

Notice that the assembier converts the decimal value 66 into the hexadecimal value 42,

ANA LOGICAL AND WITH ACCUMULATOR

ANA perforrs a logical AND operation using the contents of the specified byte and the accumulator. The result
is placed in the accumulator.

Summary of _ogical Operations

AND produces a one bit in the result only when the corresponding bits i the test dala and the mask data are
anes.

OR produces a gne it in the result when the corresponding buts in ether the test dala or the mask data are
ones,

Exclusive OR produces a one bit only when the corresponding bits in Lhe test data and the mask data are
different; i.e. a one bit in either the test dala or the mask data — but not both — produces a one bit in the

result.
AND OR EXCLUSIVE OR
1018 1010 1010 1310 101¢ 1010
Qo000 1111 0000 1111 G000 1111
0000 1010 1030 1111 010 0101

ANMND Registe. with Accumitator
Opcode Operand
ANA reg

The operand must specify one of the registers A through €, H or L. This instruction ANDs the contents of the
specified register with the accumulator anpd stores Lhe resull in the accumulator. The carry flag is reset to zero.

|J0100|SSS

Cyeles: 1

States: 4
Addressing: register
Flags: Z5.P.CY AC

36

ANI

Chapter 3. Instruction Set

AND Memory with Accurmiator

Opcode QOperand

ANA M

This mstruction ANDs the contents of the specified memary location with the accurnulator and stores the result
in the accumulator, The carry flag is reset to zero.

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z5PLCY.AC

Example:

Since any bit ANDed with a zero produces a zero and any bit ANDed with a one remazins unchanged, AND is
frequently used to zero particular groups of bits, The following example ensures that the high-order four bits of
the accumulalor are zero, and the low-order four bits are unchanged, Assume that the C register contains OFH:

Accumulator = 1 1 1 1 1 100 = OFCH
C Register =0000 111 1 = 0FH
gooo 1100 =0CH

AND IMMEDIATE WITH ACCUMULATOR

AMI perfarms & logical AND operation using the contents of the second byte of the instruction and the accumu-
lator. The result is placed in the accumulator. ANI also resets the carry flag to zero.

Qocode Coerand

AMI data
The operand must specify the data to be used in the AND operation. This data mav be in the form of a number,
an ASCIl constant, the label of some previously defined value, or an expression. The data may not exceed cne
byte.
The assembler’s relocation feature treats all external and relocatable symbaols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the

HIGH or LOW operator to specify which byte of the address is 1o be used in the evaluation of the expression.
When neither operator s present, the assembler assumes the LOW operator and (ssues an error message.

37

Chapter 3. Instruction Se:

CALL

3-8

data
Cycles: 2
States: 7
Addressing: immediate
Flags: £.5.P.CY AC

Summary of Logical Operations

AND products a one bit in the result only when the corresponding bits i the (est data and the mask data are
ones.

OR produces a one bit in the result when the corresponding bits in etther the test data or the mask data are
Qnes.

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e. a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

AND OR EXCLUSIVE OR
1010 1010 1014 1010 1013 1010
0000 1711 Q000 1111 0000 1111
0000 1010 1016 1111 1010 0101

Example:
The following, instruction s used to reset OFF bit six of the byte in the accumulator:

AN{ 101111118
Since any bit ANDed with a one remains unchanged and a bit ANDed with a zero is rest to zero, the ANI
instruction sk own above sets bit six OFF and leaves the others unchanged. This techmique 1s useful when a
program uses Individual bits as statos flags.

CALL

The CALL wstructign combines functions of the PUSH and |MP instructions. CALL pushes the contents of the
program counter {the address of the next sequenual instruction) onto the stack and then jumps to the address

specified in tie CALL instruction,

Each CALL instruction or one of its varants implies the use of a subsequent RET (return) instruction. When a
call has no corresponding return, excess addresses are built up in the stack.

Chapter 3. Ipstruction Set

Opcode Operand
CALL address

The address may be specified as a number, a fabel, or an expression. {The label is most common.) The assembler
inverts the hugh and low address bytes when it assembles the instruction.

TP 0 1710t

low addr

high addr
Cycles: 5
States: 17 {18 on 80835)
Addressing: immediatefregister indirect
Flags: none

Example:

When a given coding sequence Is required several times in a program, vou can usually conserve memory by coding
the sequence as a subroutine invoked by the CALL instruction or one of its variants. For example, assume that
an appiication drives a six-digit LED display: the display is updated as a result of an operator input or because

of two different calculations that occur in the program. The coding required to drive the display can be included
in-line at each of the three points where it is needed, or it can be coded as a subroutine, [f the label DISPLY is
assigned to the first instruction of the display driver, the following CALL instruction is used to invoke the
display subrouting:

CALL DISPLY

This CALL instruction pushes the address of the next program instruction onto the stack and then transfers
control to the DISPLY subroutine. The DISPLY subroutine must execute & return instruction or one of its
variants 1o resume normal program flow. The following is a graphic illustration of the effect of CALL and return
instructions:

CALL _DISPLY ==~~~

—
e -,
_——
A e e
o

CALL DISPLY

Consideration for Using Subroutines

The larger the code segment to be repeated and the greater the number of repetitions, the greater the potential
memory savings of using a subroutine. Thus, if the display driver in the previous example requires one hundred

Chapter 3, Instruction Se:

cC

cM

3.10

bytes, coding it in-line would require three hundred bytes. Coded as a subroutine, it requires one hundred bytes
plus nine byt s for the three CALL instructions,

Notice that sibroutines require the use of the stack. This requires the application 1o include random access
memory for ihe stack. When an application has no other need for random access memory, the system designer
might glect to avoid the use of subroutines.
CALL IF CARRY

The CC instriction combines functions of the |C and PUSH instructions, CC tests the setting of the carry flag.
If the flag 15 set to one, CC pushes the contents of the program counter onto the stack and then jumps to the
address speci jed in bytes two and three of the CC instruction. If the flag is reset to zero, program execution
continues with the next sequential instruction.

Opcode Operand

CcC address

Although the use of a label is most common, the address may also be specified as 3 number or expression,

g o1 1 1 0 0

low addr

high addr
Cycies: 3 or 5 {2 or 5 on 8085)
States: 171 or 17 (9 or 18 on 8085)
Addressing: immediatefregister tncirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL nstruction but not for each of its closely related

variants.

CALL IF MINUS
The CM inst uction combines functions of the jM and PUSH instructions. CM tests the setting of the sign flag.
if the flag is set to one (indicating that the contents of the accumulator are minus), CM pushes the contents
of the progr.m counter onto the stack and then jumps to the address specified by the CM instruction. If the
fiag is set to zero, program execution simply continues with the next sequential instruction.

Opcode Operand

Ch address

CMA

Chapter 3, Instruction Set

Although the use of a fabel is most common, the address may also be specified as a number or an expression,

ioT o1 1 1 1 0 0

low addr
high addr
Cvcles; 3 or 5 {2 or 5 0on 8085}
States: 17 or 17 (9 or 18 on 8085}
Addressing: tmmediatefregister indirect
Flags: none

Example:
For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants,

COMPLEMENT ACCUMULATOR

CMA complements each bit of the accumulator to produce the one’s complement. All condition flags remain
unchanged.

Qpcode Operand
CMA

Operands are not permitted with the CMA insiruction.

¢c o 1 ¢ 1 1 1 1

Cvcles: 1
States: 4
Flags: none

To produce the two's compiement, add one to the contents of the accumulator after the CMA instructions has
been executed.

Example:
Assume that the accumulator contains the value STH; when complemented by CMA, it becomes DAEH:

S51H
0AEH

01010001
10101110

Chapter 3. Instruction Stt

CMC COMPLEMENT CARRY

If the carry flag equals zero, CMC sets it to one. if the carry flag is one, CMC resets it to zero. All other flags
remain unch: nged.

Opcode Operand
CMC

Operands are nol permitted with the CMC insiruction.

g 0o 1 1 1 1 1 1

Cycles: i
States: 4
Flags: CY only

Example:

Assume that a program uses bit 7 of a byte to control whether a subroutine is called. To test the bit, the pro-
gram loads the byle into the accumulator, rotates bit 7 into the carry flag, and executes a CC (Call if Carry}
instruction, biefore returping to the calling program, the subroutine reinitializes the flag byte using the following

code:
CMC SET BIT 7 OFF
RAR [ROTATE 8IT 7 INTO ACCUMULATOR
RET ‘RETURN
CMP COMPARE WITH ACCUMULATOR

CMP compar:s the specified byte with the contents of the accumulator and indicates the result by seiting the
carry and zero flags. The values being compared remain unchanged.

The zero flag indicates equality. Mo carry indicates that the accumeslator is greater than the specified byte; a
carry indicat:s that the accumudator is less than the byte. However, the meaning of the carry flag is reversed
when the values have different signs or one of the values is complemented.

The program tests the condition flags using one of the conditional Jump, Call, or Return instructions. For
example, | Z {Jump if Zero) tests for equality.

Functisnat Description:
Comparisons are performed by subtracting the specified byte from the contents of the accumulator, which
15 why the zero and carry flags indicate the result. This subtraction uses the processor’s internal registers

5o that source data is preserved. Because subtraction uses two's complement addition, the CMP instruction
recomplements the carry flag generated by the subtraction.

3412

Chapter 3, Instruction Set

Compare Register with Accamidator
Opcode Operand
CMP reg

The operand must name one of the registers A through E, H or L.

1T 0 1T 1 1|8 5 35

Cycles: 1

States: 4
Addressing: register
Flags: ZS5.PCY.AC

Compare Memory with Accumidator
Opecode Operarid
CMP M

This instruction compares the contents of the memary location addressed by the H and L registers with the
contents of the accumulator. M is a symbolic reference to the H and L register pair.

10 1t 1t 1 1 190

Cycles: 2

States: 7

Addressing: register indirect
Flags: Z5P.CY AC

Exampie 1:

Assume that the accumulator contzins the value QAH and register E contains the value 05H. The instruction
CMP E performs the following internal subtraction {remember that subtraction is actually two’s complement
addition}:

06001010
11111011
00000101 +{—carry}

Accumulator
+(~E Register}

After the carry is compiemented to account for the subiract operation, bath the zero and carry bits are zero,
thus indicating A greater than E,

Example 2:
Assume that the accumulator contains the value —1BH and register E contains 05H:
11100101

J1111011
11100000 +{—carry]

i

Accumulator
+{—E Register)

Chapeer 3. Instruction 5t

CNC

CNZ

3.14

After the CHP instruction recomplements the carry flag, both the carry flag and zero flag are zero. Normally
this indicate . that the accumulator is greater than register E. However, the meaning of the carry flag is reversed
since the val ses have different signs. The user program is responsible for proper interpretation of the carry flag.

CALL IF NO CARRY
The CNC in:truction combines functions of the |NC and PUSH instructions. CNC tests the setting of the carry
flag. If the fag is set to zero, CNC pushes the contents of the program counter onto the stack and then jumps
to the address specified by the CNC instruction.)f the flag 15 set to one, program execution simply continues
with the ne»t sequential instruction.
Opcode Operand

CNC address

Although th : use of a label is most common, the address may also be specified as a number or an expression.

T 1 0 1 0 1 0 0

low addr

high addr
Cycles: 3or 5 {2 ar 5 on BO85)
States: 11 or 17 {9 or 18 on 8085)
Addressing: immediatefregister indirect
Fiags: none

Example:
For the sake of brevity, an example 1s given for the CALL nstruction but not for each of its closely related
variants.
CALL 1IF NOT ZERO

The CNZ n: truction combines functions of the JNZ and PUSH instructions. CNZ tests the setting of the zero
flag. !f the fag is off (indicating that the contents of the accumulator are other than zero), CNZ pushes the
contents of he program counter onto the stack and then jumps to the address specified in the instruction’s
second and hird bytes. If the flag s set to one, program exgcution simply continues with the next seauential
instruction.

Opcode Operand

CNZ address

Although th2 use of a label is most common, the address may also be specified as a2 number or an expression.

CP

Chapter 3, instruction Set

low addr

high addr
Cycles: 3or 5 (2 or 5 on 80385)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/fregister indirect
Flags: none

Example:

For the sake of brevily, an example is given for the CALL instruction but not for each of its closely related
variants.

CALL [F POSITIVE
The CP instruction combines features of the |P and PUSH instructions. CP tests the setting of the sign flag. If
the flag is set to zere {indicating that the ¢ontents of the accumulator are positive}, CP pushes the contents of
the pragram counter onto the stack and then iumps to the address specified by the CP instruction. If the flag
is set to ane, program execution simply continues with the next sequential instruction.
Opcode Ooerand

CP address

Although the use of a label is more common, the address may also be specified as a number or an expression.

E A U R T N (R i

low address

iigh addr
Cycles: 3or5(2or 5 on 8085)
States: 11 or 17 (9 or 18 on 8085}
Addressing: immediatefregister indirect
Flags: none

Exampie:

For the sake of brevity, an example is given for the CALL Instruction but not for each of its closely related
variants,

Chapter 3.

CPE

CPl

Instruction Se:

CALL IF PARITY EVEN

Parity is even if the byte in the accumulator has an even number of one bits, The parity flag is set to one to
indicate this condition. The CPE and CPO instructions are useful for testing the parity of input data. However,
the [N instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H o the contents of the accumulator.

The CPE instiuction combines functions of the |PE and PUSH instructions. CPE tests the setting of the parity
flag. If the fleg is set to one, CPE pushes the contenis of the program counter onto the stack and then jumps

to the addres: specified by the CPE instruction. If the flag is set to zero, program execution simply continues
with the next sequential instruction.

Opcode Opergnd
CPE address

Although the use of a label is more common, the address may also be specified as a number or an expression.

11 1 0 1T 1 0 0

low addr

high addr
Cycles: 3or 5 (2or 5 on 8085}
States: _ 1T or 17 {9 or 18 on 8085}
Addressing: immediate/register indirect
Flags: none

Example:
For the sake >f brevity, an example is given for the CALL instruction but not for each of its closely related

variants,

COMPARE IMMEDIATE

CPl compares the contents of the second instruction byte with the contents of the accumulator and sets the zero
and carry flags to indicate the result. The values being compared remain unchanged.

The zero flag indicates equality. No carry indicates that the contents of the accumulator are greater than the
immediate da:a; a carry indicates that the accumulator is less than the immediate data. However, the meaning
of the carry flag is reversed when the values have different signs or one of the values is complemented.

Opcade Cperand

CPI data

CPO

Chapter 3. Instruction Set

The operand must specify the data to be compared. This data may be in the form of a number, an ASCII
constant, the label of a previcusly defined value, or an expression. The data may not exceed one byte.

The assembler’s relocation feature treats all external and relocatable symbols as 16-bit addresses. When ane of
these symbols appears in the operand expression of an immediate inslruction, it must be preceded by either
the HIGH or LOW operator to specify which byte of the address is 1o be used tn the evaluation of the
expression. When neither gperator is present, the assembler assumes the LOW operator and issues an error
message.

data
Cycles: 2
States: 7
Addressing: register indirect
Flags: ZSPCYAC

Example:

The instruction CPt 'C' compares the contents of the accumulator to the letter C (43H).

CALL IF PARITY ODD

Parity is odd if the byte in the accumulator has an odd number of one bits. The parity flag s set Lo zero to
indicate this condition. The CPC and CPE instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H to the contents of the accumulaior.

The CPO instruction combines functions of the PO and PUSH mnstructions. CPO tests the setting of the pariy
flag. If the flag is set to zero, CPO pushes the contents of the program counter onto the stack and then jumps
to the address specified by the CPO instruction. If the flag is sel to one, program execution simply continues
with the next sequential instruction,

Opcade Operand

CPO address

Although the use of z label is more common, the address may also be specified as a nurnber or an expression.

Tt 1 0 0 1 0 0

low addr

high addr
Cycles: 3or 5 {2 or 5 on 808%5)
States: 11 or 17 (9 or 18 on 8085)
Addressing: immediate/register indirect
Flags: none

3-17

Chapter 3.

CcZ

DAA

Instruction St

Example:

For the sake of brevity, an example is given for the CALL instruction but not for each of its closely related
variants,

CALL IF ZERO

The CZ instr iction combnes functions of the |Z and PUSH instructions. CZ tests the setting of the zero fiag.
If the flag is et to one {indicating that the contents of the accurmulator are zero), CZ pushes the contents of
the program sounter onto the stack and then jumps to the address specified in the CZ anstruction, If the flag
1s set to zero [indicating that the contents of the accumulator are other than zero}, program execution simply
continues with the next sequential istruction.

Opcode Operand
CZ address

Although the use of a label 1s most commen, the address may 2iso be specified as a number or an expression.

TT 0 0 1 1 0 0

low addr

high addr
Cycles: 3or 5 {2 or 5 on 8085)
States: 11 or 17 {9 or 18 on 8035)
Addressing: immecdiatefregister indirect
Flags: none

Example:

For the sake of brevity, an example 15 given for the CALL instruction but not for each of its closely related
variants,

DECIMAL ADJUST ACCUMULATOR

The DAA instruction adjusts the eight-bit value in the accumulator te form two four-bit binary coded decimal
digits.

Oocode Operand
DAA
Operands are not permitted with the DAA mstruction.
DAA s used when adding decimal numbers, it is the only instruction whose function requires use of the auxiliary

carry flag. In multi-byte arithmetic operations, the DAA instruction typically is coded immediately after the arith-
metic instruction so that the auxiliary carry flag is not altered unintentionally.

Chapter 3. tnstruction Set

DAA operates as follows:

1. If the least significant four bits of the accumulator have a value greater than nine, or if the auxiliary
carry flag is ON, DAA adds six to the accumulator,

2. If the most significant four bits of the accumulator have a value greater than nine, or if the carry
flag 15 ON, DAA adds six to the most significant four bits of the accumulator.

e 0 1 0 0 1 t 1

Cycles: 1

States: 4
Addressing: register
Flags: Z5PCY.AC

Example:

Assume that the accumulator contains the value 9BH as a result of adding 08 to 93:

Y AC

O 0
1001 0011
000g 1000

1001 1011 = 9BH

Since (QBH s greater than mine, the instruction adds six to contents of the accumulator:

CcY AC
0 i

1001 1011
9000 0119

1M¢ 0001 = AlH

Now that the most significant bits have a value greater than nire, the instruction adds six to them:

Cy AC

1 1
1010 0001
0110 0000
000G 0o

When the DAA has finished, the accumulator contains the value Q1 in a BCD farmat; both the carry and auxiliary
carry flags are set ON, Since the actual resuit of this addition is 101, the carry flag s probably significant to the
program, The program 15 responsible for recovering and using this information. Notice that the carry flag setting is
lost as soon as the program sxecutes any subsequent mstruction that alters the flag.

319

Chapter 3. Instruction 52t

DAD

DCR

320

DOUBLE REGISTER ADD

DAD adds the 16-bit value in the specified register pair to the contents of the H and L register pair. The result
15 stored in 4 and L.

Opcode Operand
B
b

DAD H
sp

DAD may add only the contents of the B&C, D&E, H&L, or the 5P (Stack Pointer} register pairs to the contents
of H&L. No ice that the fetter H must be used to specify that the H&L register pair 15 to be added to itself.

DAD sets th: carry flag ON if there is a carry out of the H and L registers. DAD affects none of the condition
flags other t1an carry.

IO OIR PIIOD1

Cycles: 3
States: 10
Addressing: register
Flags: cy

Examples:
The DAD instruction provides a means for saving the current contents of the stack pointer.

EXI H.00H CLEAR H&L TO ZEROS

cAD 5P GET 8P INTO H&L

SHLD SAVSP STORE SP iN MEMORY
The instruct on DAD H doubles the number in the H and L registers except when the operation causes a carry
out of the F register,

DECREMENT

DCR subtracts one from the contents of the specified byte, DCR affects all the condition flags except the carry
flag. Becaust DCR preserves the carry flag, it can be used within multi-byte arithmetic routines for decrementing
character coints and similar purposes.
Decrement }legister

Opcode Operand

BCR reg

Chapter 3. Instruction Set

The operand must specify one of the registers A through E, H or L. The instruction subtracts one from the
contents of the specified register.

OODDDl'lO'!

Cycles: 1
States: 5 {4 on 3085}
Addressing: register
Fiags: ZS,PAC
Decrement Memory
Opcode Qperand
DCR]

This instruction subtracts one from the contents of the memory location addressed by the H and L registers.
M is a symbolic reference to the H and L registers,

o o 1 1 0 1 0 1

Cycles: 3

States: 18

Addressing: register indirect
Flags: Z5.PAC

Example:

The DCR instruction is frequently used to control raulti-byte operations such as moving 2 number of characters
from one area of memory to another:

MV B,5H SET CONTROL COUNTER

Lxl H.260H ;LOAD H&L WITH SOURCE ADDR

LXI 0.200H (LOAD D&E WITH DESTINATION ADDR
LOGE: MOV AM LCAD BYTE TO BE MOVED

STAX D STORE BYTE

DCX P {DECREMENT DESTINATION ADDRESS

DCX M ;DECREMENT SOURCE ADDRESS

DCR B :DECREMENT CONTROL COUNTER

JZ LOOP :REPEAT LOOP UNTIL COUNTER=0

This example also illustrates an efficient programming technique. MNotice that the control counter is decremented
to zero rather than incremented until the desired count is reached. This technique avoids the need for a compare
ipnstruction and therefore conserves both memory and execution time,

321

Chapter 3, lastruction 5t

DCX DECREMENT REGISTER PAIR

DCX decrem ents the contents of the specified register pair by one, DCX affects none of the condition flags.
Because DC.: preserves all the flags, it can be used for address modification in any instruction sequence that
relies on the passing of the flags.

Oncade Operarrd
B
D
DX
c H
SP

DCX may dicrement onfy the B&C, D&E, H&L, or the 5P {Stack Pointer) register pairs. Notice that the letter
H must be used to specify the H and L pair.

Exercise car:: when decrementing the stack pointer as this causes a loss of synchromization between the pointer
and the actual contents of the stack.

‘0 OIR P!101 1

Cycles: 1
States: 5 {6 on 8085)
Addressing: register

Flags: none
Example:
Assume that the H and L registers contain the address 9800H when the instruction DCX H 5 executed, DCX
considers th: contents of the two registers to be a single 16-bit value and therefore performs a borrow from the
H register tc produce the value 97FFH.

DI ' _ DISABLE INTERRUPTS

The interrugt system is disabled when the processor recognizes an interrupt or immediately following execuiion
of a DI instiuction,

In applicatic ns that use interrupts, the DI instruction is commonly used only when a code sequence must not be
interrupted. For example, time-dependent code sequences become inaccurate when interrupted. You can disable
the interrup system by including 2 D1 instruction at the beginning of the code sequence. Because you cannot
predict the occurrence of an interrupt, include an E! instruction at the end of the time-dependent code sequence,
Cpcode Operand
Ol

Operands ar: not permitted with the D1 instruction.

322

El

Chapter 3. Instruction Set

Cycles: 1

States: 4

Flags: none
NOTE

The 8085 TRAP interrupt cannot be disabled. This special interrupt is
intended for serious problems that must be serviced regardiess of the
interrupt flag such as power failure or bus error. Hawever, no interrupt
including TRAP can interrupt the execution of the Dt or El instruction.

ENABLE INTERRUPTS

The EI instruction enables the interrupt system following execution of the next program instruction. Enabling
the interrupt system is delaved one instruction to allow interrupt subroutines to return to the main program
before a subsequent interrupt is acknowledged.

In applications that use interrupts, the interrupt system is usually disabled anly when the processor accepts an
interrupt or when a code sequence must not be interrupted. You can disable the interrupt system by including
a DI instruction at the beginning of the code sequence. Because you cannot predict the occurrence of an
interrupt, include an El instruction at the end of the code sequence.

Opcode Operand
E!

QOperands are not permitted with the E} instruction,

Cycles: 1

States: 4

Fiags: none
NCTE

The 8085 TRAP interrupt cannot be disabled. This special interrupt is
intended for sericus problems that must be serviced regardless of the
interrupt flag such as power failure or bus failure. However, no interrupt
including TRAP can interrupt the execution of the DI or £l instruction.

Example:

The Ei instruction is frequently used as part of a start-up sequence. When power is first applied, the processor
begins operating at some indeterminate address. Application of a RESET signal forces the program counter to

3-23

Chapter 3, Instruction fet

HLT

3-24

zero, A cormon instruction sequence at this point is EI, HLT. These instructions enable the interrupt system
{RESET alsc: disables the interrupt system) and halt the processor. A subsequent manual or automatic interrupt
then determines the effective start-up address.

HALT

The HLT initruction halts the processor. The program counter contains the address of the next sequential
instruction. Jtherwise, the flags and registers remain unchanged.

g 1 1 1 40 1 1 0

Cyeles: 1
States: 7 {5 on 8085}
Flags: nonhe

Once in the hait state, the processar can be restarted only by an external event, typically an interrupt. Therefore,
you should 2¢ certain that interrupts are enabled before the HLT instruction is executed. See the description of
the El {Ena)le Interrupt) instruction.

If an 8080 HLT instruction is executed while interrupts are disabled, the only way to restart the processor is

by applicatisn of a RESET signal. This forces the program counter to zero. The same is true of the 8085, except
far the TR.P interrupt, which 1s recognized even when the interrupt system is disabled.

The process or can temporarily leave the halt state to service a direct memory access request. However, the pro-
cessor reent rs the halt state once the request has been serviced,

A basic purpase for the HLT instruction is to allow the processor to pause while waiting for an interrupt from a

peripheral dzvice. However, a halt wastes processor resources and should be used only when there is no useful
processing tisk available.

INPUT FROM PORT

The IN inst uction reads eight bits of data from the specified port and loads it into the accumulator.

NOTE
This description is restricted to the exact function of the IN instruction.
Inputfoutput structures are described in the 8080 or 8085 Microcomputer
Systems User'’s Manual.
Opcode Operand

iN exp

The operan-1 expression may be a number or any expression that yields a value in the range GOH through OFFH.

Chapter 3, Instruction Set

exp
Cycles: 3
States: 10
Addressing: direct
Flags: none
INR INCREMENT

INR adds one to the contents of the specified byte, INR affects all of the condition flags except the carry flag.
Because [NR preserves the carry flag, it can be used within multi-byte arithmetic routines for incrementing
character counts and similar purpeoses.
{ncrement Register

Oocode Operand

INR reg

The operand must specify one of the registers A through E. H or L. The instruction adds one to the contents of
the specified register.

o o[p o p|1 0 0]

Cycles: 1
States: 5 {4 on 8085)
Addressing: register
Flags: Z5.pAC
Increment Memory
Opcode Cperand
INR M

This instruction increments by one the contents of the memory location addressed by the H and L registers. M
is & symbolic reference to the H and L registers.

o0 1 1 ¢ 1 0 O

Cycles: 3

States: 19

Addressing: register indirect
Flags: Z5PAC

3-25

Chapter 3, Instruction Szt

INX

jC

3-26

Example:

If register C contains 99H, the instruction INR C increments the contents of the register to 9AH.

INCREMENT REGISTER PAIR
INX adds oie to the contents of the specified register pair. INX affects none of the condition flags. Because
INX preservzs all the condition flags, it can be used for address modification within multi-byte arithmetic

routings.

Opcode Operand

INX

wTom

INX may inzrement only the B&C, D&E, H&L, or the 5P {Stack Pointer) regtster pairs, Notice that the letter H
must be used to specify the H and L register parr.

Exercise car2 when incrementing the stack pointer, Assume, for exampte, that INX 5P s executed after 2 number
of 1tems ha'e been pushed onto the stack. A subsequent POP instruclion accesses the high-order byte of the most
recent stack entry and the fow-order byte of the next older entry. Similarly, 2 PUSH tnstruction adds the two
new bytes t3 the stack, but overlays the low-order byte of the mast recent entry.

IOOtRPOOll

Cycles: 1

States: 5 {6 on 8085)
Addressing: register

Flags: none

Example:

Assume tha. the [and E registers contain the value O1FFH. The instruction INX D increments the value to
0200H. By zontrast, the INR E instruction ignores the carry out of the low-order byte and produces a result of
QFOOH. {This condition can be detected by testing the Zero candition flag.)

If the stack pointer register contamns the value OFFFFH, the instruction INX SP increments the contents of SP
to O00GH. "he INX instruction sets no flags to indicate this condition.

JUMP 1IF CARRY
The JC instruction tests the setting of the carry flag. If the flag s set to one, program execution resumes at the

address spe:ified in the JC instruction, If the flag is reset to zero, execution continues with the next sequential
instru¢tion.

JM

Chapter 3. Enstruction Set

Opcode Operand
JC address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the instruction.

low addr

high addr
Cycles: 3 {2 or 3 on 8085)
States: 10 {7 or 10 on 8085)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the JPQ instruction.

JUMP IF MINUS
The JM instruction tests the setting of the sign flag: If the contents of the accumuiator are negative {sign flag = 1},
program execution resumes at the address specified i the]M instruction. |f the contents of the accumulator are
positive (sign flag = 0), execution continues with the next sequential instruction.
Opcode Operand

] address

The address may be specified as a number, a [abel, or an expression. The assembler inverts the high and low
address byies when it assembles the instructions.

low addr
high addr
Cycles: 3 (2 or 3 on 8085)
States: 10 {7 or 10 on 8085}
Addressing: immediate
Flags: none

Example:
Examples of the variatiens of the jump instruction appear n the description of the PO instruction.

327

Chagpter 3, Instruction Sei

JMP

JNC

328

JUMP

The JMP inst uction alters the execution sequence by loading the address in its second and third bytes into the
program cour ter,

Opcode Operand
iMpP address

The address 11ay be specified as a number, a label, or an expression. The assembler inverts the high and low
address bytes when it assembles the address.

low addr

high addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump instruction appear in the description of the PO instructian,

JUMP IF NO CARRY
The JNC insiruction tesis the setting of the carry flag. f there is no carry (carry flag = 0), program execution
resumes at the address specified in the |NC instruction, If there is a carry {carry flag = 1), execution continues
with the next sequential instruction.
Qpcade Operand
JNC address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low
address byte. when it assembles the instruction,

1T 0 1 ¢ 0 10

low addr

high addr
Cycles: 3 {2 or 3 on 8085)
States: 10 {7 or 10 on 8085}
Addressing: immediate
Flags: nong

Chapter 3. [Instruction Set

Exampie:

Exampies of the variations of the jump instruction appear in the description of the PO nstruction.

INZ JUMP IF NOT ZERO
The |NZ instruction tests the setting of the zero flag. If the contents of the accumulator are not zero {zero
flag = 0}, program execution resumes at the address specified in the JNZ instruction. |f the conlents of the
accumulator are zero {zero flag = 1}, execution continues with the next sequential instruction.
Opcode Operand

INZ address

The address may be specified as a number, a |abel, or an expression, The assembler inverts the high and low
address bytes when it assembles the instruction.

low addr

high addr
Cycles: 3 (2 or 3 on 8085}
States: 10 (7 or 10 on 8085}
Addressing: immediate
Flags: none

Example:

Examples of the variatiens of the jump instruction appear in the description of the {PO instruction.

e JUMP IF POSITIVE
The |P instruction tests the setting of the sign flag. If the contents of the accumulator are positive (sign flag = 0,
program execution resumes at the address specified in the }P instruction. If the contents of the accumulator are
minus (sign flag = 1], execution continues with the next sequential instruction.

Opcode Qperand

1P address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and low order
address bytles when it assembles the instruction,

329

Chapter 3.

JPE

330

Instruction 5t

low addr

tugh addr
Cycles: 3 {2 or 3 on 8085)
States: 10 {7 ar 10 on 80835)
Addressing: immediate
Flags: none

Example:

Examples of the variations of the jump ipstruction appear in the description of the |PO instruction.

JUMP IF PARITY EVEN

Parity 15 even if the byte in the accumulator has an even number of one bits. The parity flag s set 1o one to
indicate this condition.

The JPE mstruction tests the sewting of the parity flag. If the parity flag is set to one, program execution resumes
at the addre:s specified in the |PE instruction. 1f the flag s reset to zero, execution continues with the next
sequential instruction.

Opcode Operond

JPE address

The address may be specified as 2 number, a label, or an expression. The assembler inverts the high and low
address byte. when it assembies the instruction,

The IPE anc |PO (jump if parity odd) instructions are especially useful for testing the parity of input data.
However. th : IN instruction does not set any of the condition flags. The flags can be set by adding 00H to the
contents of he accumulator,

tow addr

fugh addr
Cycles: 3 {2 or 3 on 8085}
States: 10 (¥ or 10 on 8085)
Addressing: immediate
Flags: none

Exampie:

Examples oi the vanations of the jump instruction appear in the description of the JPO instruction,

JPO

Chapter 3. Enstruction Set

JUMP [F PARITY ODD

Parity is odd if the byte in the accumuiator has an odd number of one bits. The parity flag is set to zero to
indicate this condition.

The }PO mstruction tests the setting of the parity flag. If the parity flag is reset to zero, program execution
resumes at the address specified in the JPO instruction. f the flag is set to one, execution continues with the
next sequentiat instruction.

Opcode Operand

JPC address

The address may be specified as a number, a label, or an expression. The assembler inverts the high and [ow
address bytes when it assembles the instruction.

The |PO and JPE {jump if parity even} instructions are espectally useful for testing the parity of mput data.
However, the IN instruction does nol set apy of the condition flags. The flags can be set by adding 00H to the
cantents of the accumulator.

low addr

high addr
Cycles: 3 (2 or 3 on B0&35)
States: 10 {7 or 1 on 8085}
Addressing: immediate
Flags: none

Example:

This example shows three different bul equivalent methods for jumping to one of two points in a program based
upon whether or not the Sign bit of 2 number is set. Assume that the byte to be tested s the C register.

fabel Code Operand
ONE: MOV a,C

ANI 80H

1Z PLUS

JINZ MINUS
TWO: MOV AC

RLC

[NC PLUS

JMP MINUS
THREE: MOV AL

ADI Q

M MINUS
PLUS: - SIGN BIT RESET
MINUS: - SIGN BIT SET

Chapter 3. Instruction Set

}JZ

LDA

332

The AND inmediate instruction in block OME zeroes all bits of the data byte except the Sign bit, which re-
mains unchinged. H the Sign bit was zero, the Zero condition bit will be set, and the |Z nstruction will cause
program co1trof to be transferred to the instruction at PLUS. Otherwise, the |Z mstruction will merely update
the progran: counter by three, and the |NZ instruction will be executed, causing control te be transferred to
the instruction at MINUS, {The Zero bit is unaffected by all jumgp instructions.)

The RLC instruction in block TWO causes the Carry bit to be set equal to the Sign bit of the data byte. If the
Sign bit was reset. the |NC instruction causes a jump to PLUS. Otherwise the JMP instruction 1s executed,
unconditionally transferring control to MINUS, (Note that, in this instance, a [C instruction could be sub-
stituted for the unconditional jump with identical results.}

The add im mediate instruction 1n block THREE causes the condition bits to be set. If the sign bit was set, the
M instruction causes program control to be transferred to MINUS. Otherwise, program control flows auto-
matically i1 to the PLUS routine.
JUMP IF ZERG

The }Z ins ruction tests the setting of the zero flag. If the flag is set to one, program execution resumes at the
address spe:ified in the | Z instruction. If the flag is reset to zero, execution continues with the next sequential
instruction.

Oocode Operand

iz address

The addres: may be specified as a number, 2 label. or an expression. The assembler inverts the high and low
address by:es when it assembles the instruction.

low addr

high addr
Cycles: 3 {2 or 3 on 8085)
States: 10 (7 or 10 an 808%)
Addressing: immediate
Flags: none

Example:

Exampies f the variations of the jump nstruction dppear in the description of the PO nstruction.

LOAD ACCUMULATOR DIRECT

LDA load: the accumulator with a copy of the byte at the location specified 1n bytes two and three of the
LA instr iction.

Chapter 3. Instruction Sst

Oncode Operand
LDA address

The address may be stated as a number, a previously defined label, or an expression, The assembler inverts the
high and low address bytes when it builds the instruction.

g 0 1 1 1 0 1 0

low addr

high addr
Cycles: 4
States: 13
Addressing: direct
Flags: none

Examples:

The following instructions are equivalent. When executed, each replaces the accumulator contents with the byte
of data stored at memory location 300H.

LOAD: LDA 300H

L.DA 3*(16*16}
LDA 200H+256

LDAX LOAD ACCUMULATOR INDIRECT

L DAX loads the accumulator with a copy of the byte stored at the memory location addressed by register pair
B or register pair D.

Opcode Operand
B
LDAX O ¥
J

The operand B specifies the B and C register pair; D specifies the D and E register pair. This instruction may
specify only the B or D register pair,

B 0 Olr 1 0 1 Ol
——
[0 = register pair B

1 = register pair D

Cyeles: 2

States: 7

Addressing: register indirect
Flags: none

3-33

Chapter 3. Instruction !et

LHLD

Example:

Assume that register © contains 93K and register £ contains 8BH. The following instruction icads the accumulator
with the cor.tents of memory location 938BH:

LDAX D

LOAD H AND L DIRECT

LHLD loads the L register with a copy of the byte stored at the memory location specified in bytes two and
three of the LHLD instruction. LHLD then loads the H register with a copy of the byte stored at the next
higher memuory location,

Opcode Ooerand
LHLD address
The address may be stated as a number, a label, or an expression.

Certain instiuctions use the symbolic reference M to access the memory location currently specified by the H and
L registers. _HLD is one of the instructions provided for loading new addresses into the H and L registers. The
user may al o load the current top of the stack into the H and L registers {POP instruction). Both LHLD and
POP replace the contents of the H and L registers. You can also exchange the contents of H and L with the D
and E registsrs {XCHG instruction) or the tap of the stack {XTHL instruction) if you need to save the current

H and L registers for subsequent use. SHLD stores H and L in memory.

g 0 1 0 1 0 1 0

low addr

high addr
Cycles:)
States: 16
Addressing: direct
Flags: none

Example:

Assume thal locations 3000 and 300TH contain the address 064EH stored in the format 4E06. In the following
sequence, the MOV instruction moves a copy of the byte stored at address 064E into the accumuiator:

LHLD 3000H SET UP ADDRESS
MOV AM LOAD ACCUM FROM ADDRESS

Chapter 3. [nstruction Set

LXI LOAD REGISTER PAIR IMMEDIATE

LXI is a three-byte instruction; its second and third bytes contain the source data to be loaded into a register
pair. LX| loads a register pair by copying its second and third bytes into the specified destination register pair.

Opcode Operand
B
D

LxI H data
sp

The first operand must specify the register pair to be loaded. LXI can load the B and C register pair, the D and
E register pair, the H and L register pair, or the Stack Pointer.

The second operand specifies the two bytes of data to be loaded. This data may be coded in the form of a num-
ber, an ASCII constant, the label of some previously defined value, or an expression. The data must not exceed
two bytes.

LXI is the only immediate instruction that accepts 2 16-bit value. All other immediate instructions require 8-bil
values,

Naotice that the assembler inverts the two bytes of data to create the format of an address stored in memaory.
LX! loads its third byte into the first register of the pair and its second byte into the second register of the
pair. This has the effect of reinverting the data into the format required for an address stored in registers. Thus,
the instruction LXI 8,'AZ" loads A into register B and Z into register C.

¢ 0iR PO O 0 1

low-order data

high-order data

Cycles: 3

States: 10
Addressing: immediate
Flags: none

Examples:

A comman use for LXI is to establish 3 memory address for use in subsequent instructions. in the following
sequence, the LXI instruction loads the address of STRNG into the H and L registers. The MOV instruction then
loads the data stored at that address into the accumulator.

LXI H.STRNG SET ADDRESS
MOV AM iLOAD STRNG INTO ACCUMULATOR

The following LXI instruction is used to initialize the stack pointer in a relocatable module. The LOCATE pro-
gram provides an address for the special reserved label STACK.

LXI SPSTACK
335

Chapter 3. instruction fet

MOV

3-36

MOVE
The MOV inttruction moves one byte of data by copying the source field into the destination field. Source data
remains unchanged. The instruction's operands specify whether the move is from register to register, from a
register to m-imory, or from memory to a register.
Move Register to Register
Opcode Operand

MOV regl reg2

The instruction copies the contents of reg2 into regl. Each operand must specify one of the registers A, B, C, D,
E. H or L.

When the saine register is specified for both operands {as in MOV A A), the MOV functions as a NOP (no opera-
tion} since it has no other noticeable effect. This form of MOV requires one more machine state than NOP, and
therefore ha: a slightly longer execution time than NOP. Since M addresses a register pair rather than a byte of
data, MOV MM is not allowed.

¢ | D D|]S 5 5

Cycles: 1
States: 5 (4 on 8085}
Addressing: register
Flags: none
Move to Meinory
Opcode Operand
MOV M.r

This instruction ¢opies the contents of the specified register into the memory location addressed by the H and L
registers. M s a symbolic reference to the H and L register pair. The second operand must address one of the
registers,

6o 1T 11 05 S 5

Cycles: 2
States: 7
Addressing: register indirect
Flags: nong
Move from Wemory
Opcode Qperand
MOV r.M

Mvi

Chaprter 3, Epstraction Set

This Instruction copies the contents of the memory location addressed by the H and L registers into the specified
register. The first operand must name the destination register. The second operand must be M. M is a symbolic
reference to the H and L registers.

o 1D D D1 1 0

Cycles: 2
States: 7
Addressing: register indirect
Flags: none
Examples:
Label Opcode Operands Comment
LDACC: MOV AM LOAD ACCUM FROM MEMORY
MOY E.A LCOPY ACCUM INTO E REG
NULOP: MoV cC NULL OPERATION

MOVE IMMEDIATE
MVI is a two-byte instruction; its second byte contains the source data to be moved. MV moves one byte of
data by copying its second byte into the destination field. The instruction’s operands specify whether the move
is to a register or to memaory.
Move Immediate to Register
Opcode Operand
MVI reg,data

The first operand must name cne of the registers A through E, H or L as a destination for the move.

The second operand specifies the actual data to be moved. This data may be in the form of a number, an ASCII
constant, the jabel of some previously defined value, or an expression. The dzta must not exceed one byte.

The assembler’s relocation feature treats all external and refocatable symbols as T6-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW operator to specify which byte of the address is to be used in the evzluation of the expression,
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

g0 0|0 O DJ1T 1 0

data
Cycles: 2
States: 7
Addressing: immediate
Flags: nong

337

Chapter 3. Enstruction et

Mave fmme fiate to Mamoary
Opcode Operand
MVI M.data

This instruc:ion copies the data stored in its second byte into the memory location addressed by H and L. M is
a symbolic eference to the H and L register pair,

O o v v 0 1 1 O

data
Cyeles: 3
States: 10
Addressing: immediate/register indirect
Flags: none

Examples:

The followig examples show a number of methods for defining immediate data in the MV! instruction. All of
the examples generate the it pattern for the ASCIH character A,

MVI M. 010000018
Mvi MA
MV MA41H
MVI M. 101Q
MV M.65
Mvi M, 5+30*2
NOP NO OPERATION

NOP perfor ns no operation and affects none of the condition flags. NOP s useful as filler in a timing loop.
Opcode Operand
NOP

Operands ale not permitted with the NOP instruction.

ORA INCLUSIVE OR WITH ACCUMULATOR

ORA perfoims an inclusive OR logical operation using the contents of the specified byte and the accumulator. The
result is plazed in the accumulator.

3-38

Chapter 3, Instruction Set

Summary of Logical Cperations

AND produces a ong bit in the result cnly when the corresponding bits in the test datz and the mask data are
one,

OR produces a one bii in the result when the correspanding bits in either the test data or the mask data are
ones,

Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e,, a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

AND OR EXCLUSIVE OR
1010 1010 110 1010 1016 1019
£ooo 1111 0000 1711 0000 1111
000G 1010 1070 1111 1010 0141

QR Register with Accumulator
Opcode Operand
ORA reg
The operand must specify one of the registers A through E, B or L. This instruction ORs the contents of the

specified register and the accumulator and stores the result in the accumutator. The carry and auxiliary carry
flags are reset to zero.

Cycles: 1

Siates: 4
Addressing: register
Flags: ZSPCY AC

OR Memory with Accumulator
Opcode Operand
ORA M

The contents of the memory location specified by the H and L registers are inclusive-ORed with the contents of
the accumutator. The result is stored in the accumulator, The carry and auxiliary carry flags are reset to zero.

i 01 1 90 1 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: ZS5PCY.AC

3-39

Chapier 3. Instruction Set

OR1

3-40

Exampie:

Since any Lit inclusive-ORed with 2 one preduces a one and any bit ORed with a zero remains unchanged, ORA
is frequently used to set ON particular bits or groups of bits. The following example ensures that bit 3 of the
accumulata: js set ON, but the remaining its are not disturbed. This is frequently done when individual bits
are used as status flags in 2 program. Assume that register D contains the value 08H:

Acoumulator = 0 1 0 0 0 0 1 1
Register D =00001000
01T 001011

INCLUSIVE OR IMMEDIATE

ORJ performs an inclusive OR logical operation using the contents of the second byte of the instruction and the
contents of the accumulator, The result is placed in the accumulator. QORI also resets the carry and auxiliary
carry flags to zero,

Opcode Operand
ORI data

The operar d must specify the data to be used in the inciusive OR operation. This data may be in the form of a
number, ar ASCH constant, the labei of some previously defined value, or an expression. The data may nat
exceed one byte.

The asseml-ler’s relocation feature treats all external and relocatable symbols as T6-bit addresses. When one of

these symktols appears in the operand expression of an immediate instruction, it must be preceded by either the
HYGH or LOW operator to specify which byte of the address is 1o be used in the evajuation of the expression.
When neitt er operator is present, the assembiler assume the LOW operator and issues an error message.

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z.5PSY AC

Summary of Logical Operations

AND prod ices 2 one bit in the result only when the corresponding bits in both the test data and the mask data
are ones.

OR produc es 2 one bit in the resuit when the corresponding bits in either the test data or the mask data are ones.
Exclusive OR produces a one bit only when the corresponding bits in the test data and the mask data are

different: v.e., a one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

Chapter 3. [nstruction Set

AND OR EXCLUSIVE OR
1010 1010 1010 1018 1010 1010
0000 1111 Q000 1111 (000 1111
0000 1010 1010 1111 1010 101

Example:

See the description of the ORA instruction for an example of the use of the inclusive OR, The following
examples show a number of methods for defining immediate data in the ORI instruction. All of the examples
generate the bit pattern for the ASCII character A,

ORI 010000018
ORI A
ORI 41H
ORI 101Q
ORI 65
ORI 5+30%2
ouT OUTPUT TO PORT

The OUT instruction places the contents of the accumulator on the eight-bit data bus and the number of the
selected port on the sixteen-bit address bus. Since the number of ports ranges from 0 through 255, the port
number is duplicated on the address bus.

It is the responsibility of external logic to decode the port number and to accept the putput data.

NQOTE
Because a discussion of inputfoutput structures is beyond the scope of
this manual, this description is restricted to the exact function of the
OUT instruction. Inputfoutput structures are described in the 8080 or
8085 Microcomputer Systems User’s Manual,
Opcode Operard
auT exp

The operand must specify the number of the desired output port. This may be in the form of a number or an
expression in the range 00H through OFFH.

11 0 1 g 0 1 1

exp
Cycles: 3
States: 10
Addressing: direct
Flags: none

341

Chapter 3. Instruction 5e:

PCHL

POP

3-42

MOVE H&L TO PROGRAM COUNTER
PCHL toads the contents of the H and L registers into the program counter register, Because the processor
fetches the mext instruction from the updated program counter address, PCHL has the effect of a fump instruc-
ton,
Opcode Cperand
PCHL

Operands are not permitted with the PCHL instruction.

PCHL moves the contents of the H register to the high-order eight bits of the program counter and the contents
of the L regi ter to the low-order eght bits of the program counter.

The user prodram must ensure that the M and L registers contain the address of an executable instruction when
the PCHL in:truction is executed.

Cycles: 1

States: 5 (6 on BO8S)
Addressing: register

Flags: none

Example:

One technique for passing dala to a subroutine is to place the data immediately after the subroutine cail. The
return addre: s pushed onto the stack by the CALL instruction actually addresses the data rather than the next
instruction a ter the CALL. For this example, assume that two bytes of data follow the subroutne call. The
following co-ling sequence performs a return to the next instruction after the call:

GOBACK: POP H GET DATA ADDRESS
INR L ADD 2 TO FORM
INR L IRETURN ADDRESS
PCHL JRETURN

FOP

The POP ins ruction removes two bytes of data from the stack and copies them to 2 register pair or copies the
Program Stitus Word into the accumulator and the condition flags.

POP Registe. Pair

POP copies he contents of the memory iocation addressed by the stack pointer into the low-order register of the
register pair. POP then increments the stack pointer by one and copies the contents of the resulting address into

Chapter 3. instruction Set

the mgh-arder register of the pair. POP then increments the stack pointer again so that it addresses the next
older 1tem on the stack.

Opcode Operand
B l
o

POP H
)

The operand may specify the B&C, D&E, or the H&L register pairs. POP PSW is explained separately.

IT'E‘R P‘OOOl

Cycles: 3

States: 10

Addressing: register indirect
Flags: nong

POP PSW

PGP PSW uses the contents of the memory localion specified by the stack pointer to restore the condition flags.
POP PSW [ncrements the stack pointer by one and restores the contents of that address to the accumuiator.
POP then increments the stack pointer again so that it addresses the next older item on the stack.

Cycles: 3

States: ig

Addressing: register indirect
Flags: Z5.PCY.AC

Exampie:
Assume that a subroutine is called because of an external interrupt. In general, such subroutines should save and

restore any registers it uses so that main program can continue normally when it regains control. The following
sequence of PUSH and POP instructions save and restore the Program Status Word and all the registers:

343

Chapter 3. Instruction et

PUSH
PUSH
PUSH
PUSH

TO w3
=

subroutine coding

FOP

H
POP D
POP B
POP PSW
RET

Natice that the seguence of the POP instructions is the opposite of the PUSH instruction sequence,

PUSH PUSH

The PUSH istruction copies two hytes of data to the stack. This data may be the contents of a register pair or
the Progran Status Word, as explained below:

PLISH Register Pair
PUSH decrenents the stack painter register by one and copies the contents of the high-order register of the

register pair to the resulting address. PUSH then decrements the pointer again and copies the low-order register
to the resul ing address. The source registers remain unchanged.

Opcode Operand
B
D

PUSH H
PSW

The operand may specify the B&C, D&E, or H&L register pairs. PUSH PSW is explained separatefy.

l1 1| R Pl 0 1 o0 1]

Cycles: 3

States: 11 {13 on B085)
Addressing: register indirect
Flags: nane

Example:
Assume tha: register B contains 2AH, the C register contains 4CH, and the stack pointer is set at SAAF, The

instruction 2USH B stores the B register at memory address 9AAEH and the C register at SAADH. The stack
pointer is su:t to SAADH:

344

Chapter 3, lInstruction Set

Stack Stack
Before PUSH Address After PUSH
SP before ———— xx M AF XX
XX SAAE 2A
%X 9AAD 4C - 5P after
XX 9AAC X%

PUSH PSW

PUSH PSW copies the Program Status Word onto the stack. The Program Status Word comprises the contents
of the accumulator and the current settings of the condition flags. Because there are only five condition flags,
PUSH PSW formats the flags into an eight-bit byte as follows:

t 0
[1oy

T 6 5 4 3 2
Isjz]oflaclojer

On the B0Z0, bits 3 and 5 are always zero: bit one is always set to one. These filler bits are undefined on the
2085.

PUSH PSW decrements the stack pointer by one and copies the contents of the accumulator to the resulting
address. PUSH PSW again decrements the pointer and copies the formatted condition flag byte to the resuiting
address. The cantents of the accumulator and the condition flags remain unchangad.

11 1 1 0 1 0 1]

Cycles: 3

States: 11 {12 on 8085}
Addressing: register indirect
Flags: rone

Example:

When a program calls subroutines, it is frequently necessary to preserve the Current program status so the calling
program can continue normally when it regains control. Typically, the subroutine performs a PUSH PSW prior to
execution of any instruction that might alter the contents of the accumulator or the condition flag settings.

The subroutine then restores the pre-call system status by executing a POP PSW instruction just before returning
contral to the caliing program.

RAL ROTATE LEFT THROUGH CARRY
RAL rotates the contents of the accumulator and the carry flag one bit posttion o the left. The carry flag, which
is treated as though it were part of the accumulator, transfers to the low-order bit of the accumutator, The high-
order bit of the accumulator transfers into the carry flag.

Opcode Operand

RAL

Operands are not permitted with the RAL instruction.

345

Chapter 3, Instruction 5t

[0 o 0o 1 0 1t 1t 1

Cycles: 1
States; 4
Flags: CY only

Example:

Assurne that the accumulator contains the value 0AAH and the carry flag is zero. The following diagrams illus-

trate the effect of the RAL instruction:

Before Carry
> (o]
Accumuiator
——1 0 1 0 1 0 1 0]«
After: Carry

Accumulator

01010100_]

RAR ROTATE RIGHT THROUGH CARRY

RAR rotate: the contents of the accumulator and the carry flag ane hit position to the right. The carry flag,
which is trezted 2s though it were part of the accumulator, transfers to the high-order bit of the accumulator.

The tow-ord:r bit of the accumutator transfers into the carry flag.
Opcode Cperand
RAR

Operands are not permitted with the RAR nstruction.

o o 0o 1 1 1t 11

Cycles: 1
Stales: 4
Flags: CY only

36

Chapter 3. Instruction Set

Example:

Assurne that the accumulztor contains the value 0AAN and the carry flag is zero. The following diagrams illus-
trate the effect of the RAR instruction:

Before: Carry

After: Carry

[o]

Accuemulator

g 1 ¢ 1 0 1 0 1

RC RETURN IF CARRY
T he RC instruction tests the carry flag. i the flag is set to one to indicate a carry. the instruction paps two
bytes off the stack and places them in the program counter, Program execution resumes at the new address in
the program counter. if the flag is zero, program execution simply continues with the next sequential instruction.

Oncode Cperand

RC

Operands are not permitted with the RC instruction.

L11011009

Cycles: lTor3

States: Sor Tt {6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its ciosely refated
variants.

347

Chapter 3.

RET

Instruction Set

RETURN FROM SUBROUTINE

The RET irstruction pops two bytes of data off the stack and places them n the program counter register.
Program ex icution resumes at the new address 1n the program counter.

Typically, F.ET instructions are used in conjunction with CALL instructions. {The same 1s true of the variants
of these instructions.] In this case, it is assumed that the data the RET instruction pops off the stack is a
return addr :ss placed there by a previous CALL. This has the effect of returning control to the next instruction
after the C.alL. The user must be certain that the RET instruction finds the address of executable code on the
stack. ! the instruction finds the address of data, the processor attempts to execute the data as though it were
code.

Opcode Operand
RET

Operands a ¢ not permitied with the RET instruction.

(11001001J

Cycles: 3

States: 10

Addressing: register indiract
Flags: none

Example:

As mentiored previausly, subroutines can be nested. That is, a subroutine can call a subroutine that calls
another subroutine. The only practical iimit on the number of nested calls is the amount of memory available
for stackin:; return addresses. A nested subroutine can even czll the subroutine that called it, as shown in the
following example. {Notice that the program must contain logic that eventually returns control to the main
program. Ctherwise, the two subroutines will call each other indefinitely.}

MAII PROGRAM

l SUBA: [m-. -
CnlLl SUBA/ CNZ SUBB T

SUBB: L

T CALL SUBA

RIM {8085 PRO-ZESSOR ONLY) READ INTERRUPT MASK

348

The RIM 1struction loads eight bits of data into the accumuiator. The resulting bit pattern indicates the current
setting of “he interrupt mask, the sefting of the interrupt flag, pending interrupts, and one bit of serial input data,
if any.

Chapter 3. Instruction Set

Opcode Operard
RiM
Operands are not permitted with the RIM instruction.

The RIM instruction loads the accumuiator with the following information:

7 6 5 4 3 2 1 0

5ID |17 |16 |15 | IEj 75|65 55

| L Interrupt Masks: = masked
|—|ntarrupt Enable Flag: T = enabled

Pending Interrupts: 1 = pending

Serial input Data Bit, if any

The mask and pending flags refer only to the RS5T5.5, RSTE.5, and RS8T7.5 hardware interrupts. The IE flag
refers to the entire interrupt system. Thus, the tE flag is identical in function and levef to the INTE pin on the

8080. A T bit in this flag indicates that the entire interrupt system is enabled.

¢ 0 1 ¢ 0 0 0 ©

Cyeles: i
States: 4
Flags: none

RLC ROTATE ACCUMULATOR LEFT

RLC sets the carry flag equal to the high-order bit of the accumulator, thus overwriting its previous setting. RLC
then rotates the contents of the accumulator one bit position to the left with the high-order bit transferring to

the iow-order position of the accumulator.
Opcode Cperard
RLC

Operands are not allowed with the RLC instruction.

o 0 0 0 0 1 1 1

Cycles: 1
States: 4
Flags: CY oniy

349

Chapter 3. Instruction Set

Example:

Assume that tie accumulater contains the value OAAH and the carry flag is zero, The following diagrams illus-
trate the effect of the RLC instruction.

Before: Carry

—{°

Accumulator

After: Carry

Accumulator

\01010101

RM RETURN IF MINUS
The RM instraction tests the sign flag. IF the flag is set to one to indicate negative data in the accumulator, the
instruction pcps two bytes off the stack and places them in the program counter. Program execution resumes at
the new addr:ss in the program counter. If the flag is set to zero, program execution simply continues with the
next sequent i instruction.

Opcode Operand

RM

Operands are not permitted with the RM instruction.

Cyclas: Tor3

States: Sor 11 {6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an exampie is given for the RET instruction but not for each of its closely related
variants.

3-50

RNC

RNZ

Chapter 3. Instruction Set

RETURN IF NG CARRY
The RNC instruction tests the carry flag. If the flag is set to zero to indicate that there has been no carry, the
instruction pops two bytes off the stack and places them in the program counter. Program execution resumes at
the new address in the program counter. If the flag is one, program execution simply continues with the next
sequential instruction.
Oocode Operand

RNC

Operands are not permitted with the RNC instruction.

Cycles: Tor3

States: 5o0r 11 (6 or 12 on B085)
Addressing: register indirect

Flags: none

Example:
For the sake of brevity. an example is given for the RET instruction but not for each of its closely related
variants.

RETURN [F NOT ZERO
The RNZ instruction tests the zero flag. If the flag is set to zero to indicate that the contents of the accumulator
are other than zero, the instruction pops two bytes off the stack and places them in the program counter. Pro-
gram execution resumes at the new address in the program counter. |f the flag is set to one, program execution
simply continues with the next sequential instruction.

Opcode Operand

RNZ

Operands are not permitted with the RNZ instruction.

Cycles: T1or3

States: Sar 11 (6 or 12 an Z085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an examele 15 given for the RET instruction but not for each of its closely related
variants.

3-51

Chapter 3. Instruction 5:t

RP

RPE

352

RETURN IF POSITIVE
The RP instriiction tests the sign flag, If the flag is reset to zero to indicate positive data in the accumulator,
the instruction pops two bytes off the stack and places them in the program counier. Program execution
resumes at th2 new address in the program counter. If the flag is set to one, program execution simply continues
with the next sequential instruction.
Qpcode Operand
RP

Qperands are not permitted with the RP instruction.

Cycles: tor3

States: 50r 11 {6 or 12 on BO8S)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely related
variants.

RETURN IF PARITY EVEN

Parity is ever if the byte in the accumulator has an even number of one bits. The parity flag is set 10 one to
indicate this condition. The RPE and RPO instructions are useful for testing the parity of input data. However,
the IN instruction does not set any of the condition fiags. The flags can be set without zltering the data by
adding O0H 10 the contents of the accumulator,

The RPE insiruction tests the parity flag. If the flag is set to one to indicate even parity, the instruction pops
two bytes of ' the stack and places them in the program counter. Program execution resumes at the new address
in the prograw counter. if the flag is zero. program execution simply continues with the next sequential instruc-
tion,

Opcode Operand

RPE

Operands are not permitted with the RPE instruction.

Cycles: Tor3

States: Sor 11 (6 or 12 on 8085}
Addressing: register indirect

Flaps: none

RPC

RRC

Lhapter 3. Instruction Set

Example:

For the sake of brevity, an exampie 15 given for the RET instruction but not for each of its closely related
variants.

RETURN IF PARITY ODD

Parity is odd If the byte in the accumulator has an odd number of one bits. The parity flag is reset to zero to
indicate this condition. The RPO and RPE instructions are useful for testing the parity of input data. However,
the [N instruction does not set any of the condition flags. The flags can be set without altering the data by
adding O0H to the contents of the accumulator.

The RPO instruction tests the parity flag. if the flag is reset to zero to indicate odd parity, the instruction pops
two bytes off the stack and places them in the program counter. Program execution resumes at the new address
in the program counter. If the flag is set to one, program execution simply continues with the next sequential
instruction.

Opcode Operand

RPC

Operands are not permitted with the RPO instruction,

11‘100000—|

Cycles: Tor3

States: Sor 11 {6 or 12 on 8085)
Addressing: register indirect

Flags: none

Example:

For the sake of brevity, an example is given for the RET instruction but not for each of its closely rgiated
variants.

ROTATE ACCUMULATOR RIGHT
RRLC sets the carry flag equal to the low-order bit of the accumulator, thus overwriting its previous setting. RRC
then rotates the contents of the accumulator one bit position to the right with the low-order bit transferring to
the high order position of the accumulator.
Opcode Operandg

RRC

Operands are not permitted with the RRC instruction.

353

Chapter 3. tnstruction Set

Cycles: i
States: 4
Flags: CY only

Example:

Assume that the accumulator contains the value OAAH and the carry flag is zero, The follov ing diagrams illus-
trate the effect of the RRC instruction:

Before: Carry

[T ;

Accumuliator

After: Carry

o

Accumulator

RST RESTART

RST 1s a special purpose CALL instruction designed primarily for use with interrupts. RST yiushes the conlents
of the program counter onto the stack to provide a return address and then jumps to one o eight predetermined
addresses. A three-bit code carried in the opcode of the RST inslruction specifies the jump .iddress,

The restart instruction is unique because i1t seldom appears as source code in an applications program. More often,
the peripheral devices seeking interrupt service pass this one-byte instruction to the processcr,

When a device requests interrupt serwice and interrupts are enabled, the processor acknowlecges the request and
prepares (s data lines to accept any ane-byte instruction from the device. RST is generally ~he instruction of
choice because its special purpose CALL establishes a return to the main program.

The processor moves the three-bit address code from the RST instruction into bits 3, 4, anc 5 of the program
counter. In effect, this multiplies the code by eight. Program execution resumes at the new address where eight
bytes are available for code to service the interrupt. If eight bytes are too few, the program can either jump to
or call a subroutine.

3-54

RZ

Chapter 3. Instruction Set

8055 NOTE

The 8085 processor includes four hardware inputs that generate internal RST
instructions, Rather than send a RST instruction, the interrupting device need
only apply a signal to the R5T5.5, R5T6.5, RST7.5, or TRAP input pin,

The processor then generates an internal RST instruction. The axecution
depends on the input:

INPUT RESTART
NAME ADDRESS
TRAP 24+
RSTS.5 2CH
RST6.5 34H
RST7.5 3CH

Notice Lhat these addresses are within the same portion of memory used by the RST instruction, and therefore
allow only four bytes — enough for a call or jump and a return — for the interrupt service routine,

if inciuded in the program code, the RST instruction has the following format:
Oocode Qperand

RST code

The address code must be a number or expression within the range QC0B through 1118.

[1 Tc ¢ c]1 1 7
—_—

Program T e ~
Counter 15 14 13 12 11 W % 8 7 [5 4 3 2 1]
After RST 4] i 0 g 0 0 0 0] 0 0 C C C 0 0 0
Cycles: 3
States: 11 {12 on 8085}
Addressing: register indirect
Flags: none

RETURN IF ZERO

The RZ instruction tests the zero flag. If the flag 1s set to one to indicate that the contents of the accumulator are
zero, the instruction pops two bytes of data off the stack and places them in the program counter, Program

execution resumes at the new address in the program counter, Hf the flag is zero, program execution simply
continues with the next sequential instruction,

3-55

Chapter 3.

S8B

356

Instruction Se

Opcode Operand
RZ

Operands are not permitted with the RZ instruction,

1 1 ¢ 0 1 0 40 0

Cycles: lor3

States: Sor 11 {6 or 12 on 8085}
Addressing: register indirect

Flags: none

Example:
For the sake of brevity, an example is given for the RET instruction but oot for each of its closely related
variants.

SUBTRACT WITH BORROW
SEB subtracts one byte of data and the setting of the carry flag from the contents of the accumitator. The
result is storel in the accumulator. SBB then updates the setting of the carry flag to indicate the cutcome of
the operation.
SBB's use of he carry flag enables the program to subiract multi-byte strings., 5BB incorporates the carry flag by
adding it to tie byte to be subtracted from the accumulator. It then subtracts the result from the accumulator
by using two'. complement addition. These preliminary operations occur in the processor's internal work registers
50 that the soJrce data remains unchanged.
Subtract Regi-ter from Accumudator with Barrow

Qocode Operand

SBB reg

The operand :nust specify one of the registers A through E, H or L. This instruction subtracts the contents of
the specified register and the carry flag from the accumulator and stores the result in the accumulalor,

10011LSSSJ
1

Cycles:

States: 4
Addressing: register
Flags: Z5.PCY.AC

Chapter 3, Instruction Set

Subtract Memory from Accurmlator with Borrow
Opcode Operand
SBB M

This instruction subtracts the carry flag and the contents of the memaory location addressed by the H and L
registers from the accumulator and stores the result in the accumulator,

i 00 1 1 1 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: ZSPCYAC

Example:

Assume that register B contains 2, the zccumulator contains 4, and the carry flag is set to 1. The instruction
SBB B operates as follows:

2H + carry = 3H
2's complement of 3H = 111111081

Accumulator = 00000100
1711101
00000001 = 1H

Natice that this two’s complement addition produces 2 carry. When SBB complements the carry bit generated
by the addition, the carry flag is reset OFF. The flag settings resulting from the 5BB B instruction are as
follows:

Carry =
Sign =
Zero =
Parity =
Aux. Carry =

- o o oo

SB1 SUBTRACT IMMEDIATE WITH BORROW

5Bl subtracts the contents of the second instruction byte and the setting of the carry flag from the contents of
the accumulator. The result is stored in the accumulator.

SBI's use of the carry flag enables the program to subtract multi-byte strings. 5Bl incorporates the carry flag by
adding it to the byte to be subtracted from the accumulator, [t then subtracts the result from the accumulator
by using two's complement addition. These preliminary operations occur i1 the processor’s internal work registers
so that the immediate source data remains unchanged.

3.57

Chapter 3. Instruction Se

The assembler s relocation feature treats all external and reiocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or L.OW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither perator is present, the assembler assumes the LOW operator and issues an error message.

Opcode Operand
SRBI data

The operand riust specify the data to be subtracted. This data may be in the form of a number, an ASCH
constant, the label of some perviously defined value, or an expression. The data may not exceed one byte.

11011113}

Cyceles: 2

States: 7
Addressing: immediate
Flags: Z5PCY.AC

Example:
The following sequence of instructions enables the program to test the setting of the carry flag:

XRA A
SBi 1

The exclusive OR with the accumulator clears the accumulator to zeros but does not affect the setting of the

carry flag. {Tte XRA instruction is explained later in this chapter.) When the carry flag is OFF, 5Bl 1 vields
3 minus one, Mhen the flag is set ON, 5B1 1 yields a minus two.

NOTE
This example s incleded for illustrative purposes. |n most

cases, the carry flag can be tested more efficiently by using
the JNC instruction {jump if no carry],

SHLD STORE H AND L DIRECT

SHLD stores t copy of the L register in the memory location specified in bytes twe and three of the SHLD
instruction. 54LD then stores a copy of the H register in the next higher memary location.

Opcode Operand
SHLD address

The address may be stated as @ number, a previously defined label, or an expression.

358

Chapter 3. finstruction Set

SHLD is one of the instructions provided for saving the contents of the H and L registers, Alternately, the H
and L data can be placed in the D and E registers (XCHG instruction) or placed on the stack (PUSH and XTHL
instructions),

low addr

high addr
Cycles: 5
States: 16
Addressing: direct
Flags: none

Example:

Assume that the H and L registers contain 0AEH and 29H, respectively. The following 15 an illustration of the
effect of the SHLD 10AH instruction:

MEMORY ADDRESS

109 10A 08 10C

Memaory Before SHLD oo 00 o0 00
Memory After SHLD 0o 29 AE o0
SIM (8085 PROCESSOR ONLY) SET INTERRUPT MASK

SIM is a multi-purpose instruction that uses the current contents of the accumulator to perform the following
functions: Set the interrupt mask for the B085's RSTS.5, RST6.5, and RS5T7.5 hardware interrupts; reset
RST7.5% edge sensitive input; and output bit 7 of the accumulator to the Serial Qutput Data latch.

Opcode Operand

SIM
Operands are not permitted with the SIM instruction. However, you must be certain to load the desired bit

configurations into the accumulator before executing the SIM instruction. SIM interprets the bits in the accumu-
lator as follows:

3-59

Chapter 3. Instruction Se:

3-60

7 & 5 4 3 2 1 1]

<OD {SDE | xxx | R7.5|MSE| M7 .5|M6.5|M5.5
R T g e e e

L RST7.5 MASK a
{RSTS.S MASK {1
RST5.5 MASK
i If 0, bits 0 — 2 ignored
Mask Set Enable If 1, mask is set
RESET RST7.5: If 1, RSTZ.5 flip flop is reset OFF
— ignored

=1f 1, bit 7 15 output to Serial Qutput Data Latch
— Serial Qutput Data: 1gnored if bit6=0

availabie
masked

Accurnulator its 3 and & function as enable switches. I bit 3 15 set ON (set to 1), the set mask function is
enabled. Bits O through 2 then mask or |eave available the corresponding RST interrupt. A 1 bit masks the

interrupt mak ng it unavailable: 2 0 bit leaves the interrupt available. If bit 3 is set OFF {reset to 0}, bits 0
through 2 hav: no effect. Use this option when you want to send a serial output bit without affecting the

interrupt masl..

Notice that the DI (Disable interrupts) instruction overrides the SH instruction. Whether masked or not, R$T5.5,
RST4.5, and 11ST7.5 are disabled when the DI instruction 15 in effect. Use the RIM (Read Interrupt Mask)
nstruction to determine the current settings of the interrupt flag and the interrupt masks.

H bit 6 is set to 1, the serial outpui data Functicn is enabled. The processor latches accumulator bit 7 into the
SO0 output vehere it can be accessed by a peripheral device, If bit 6 15 reset to 0, bit 7 15 ignored.

A 1 in accumnfator bit 4 resets OFF the RST7.5 input flip flop, Unlike R$TS.5 and 6.5. RST7.5 15 sensed via &
processor flip flop that is set when a peripheral device 1ssues a pulse with a rising edge. This edge triggered nput
supports devices that cannol maintain an interrupt request until serviced, RST7.5 is afso useful when a device
does not requ re any explicit hardware service for each interrupt, For example, the program might increment and
test an event counier for each interrupt rather than service the device directly,

The RST7.5 fip flop remains set until reset by 1) issuing 2 RESET to the 8085, 2} recognizing the interrupt, or
3) setting acct mulator bit 4 and executing a SIM instruction, The Reset RST7.5 feature of the SIM instruction
allows the pregram to override the interrupt,

The RS5T7.5 mput flip flop is not affected by the setting of the interrupt mask or the Ol instructicn and there-
fore can be se: at any time. However, the interrupt cannot be serviced when RST7.5 is masked or a D instruction
15 in effect.

00110000—‘

Cycles: 1
States: 4
Flags: none

Example 1: Assume that the accumulator contains the bit pattern 00011100, The SIM instruction resets the
RST7.5 flip flop and sets the RST7.5 interrupt mask. If an RST7.5 interrupt is panding when this 5{M instruction
is executed, il is overridden without being serviced. Also, any subsequent R5T7.5 interrupt is masked and cannot
be serviced urtil the interrupt mask is reset.

SPHL

5TA

Chapter 3. Instruction Set

Example 2: Assume that the accumulator contains the bit pattern 11007171, The SIM instruction masks out the
RSTS.5, RSTA.5, and RS5T7.5 level interrupts and latches a 1 bit into the SOD input. By contrast, the bit pattern
10080111 has no effect since the enable bits 3 and 6 are not set to ones.

MOVE H&L TO 5P

SPHL [vads the contents of the H and L registers into the SP {Stack Painter} register.

Opcode Operand

SPHL
Operands are not permitted with the SPHL instruction.
5P is a special purpose 16-bit register used to address the stack; the stack must be in random access memory
{RAM). Because different applications use different memory configurations, the user program must load the SP
register with the stack’s beginning address. The stack is usually assigned to the highest available location in RAM.
The hardware decrements the stack pointer as items are added to the stack and increments the painter as items
are removed.
The stack pointer must be initialized before any instruction attempts to access the stack. Typically. stack

initialization occurs very early in the program. Once established, the stack pointer should be zltered with
caution. Arbitrary use of SPHL can cause the loss of stack data,

I S A s I

Cycles: 1

States: 5 {6 on B085)
Addressing: register

Flags: none

Example:
Assume that the H and L registers contain 50H and OFFH, respectively. SPHL loads the stack pointer with the
value S0FFH.

STORE ACCUMULATOR DMRECT

STA stores a copy of the current accumulator contents into the memory location specified in bytes two and
three of the STA instruction.

Opcode Operand
STA address
The address may be stated 25 a number, a previousty defined label, or an expression. The assembler inverts the

high and fow address bytes when it builds the instruction.

3-6t

Chapter 3. Instruction Se:

low addr

high addr
Cycles: 4
States: 13
Addressing: direct
Flags: none

Example:
The following instruction stores a copy of the contents of the accumulator at memory focation 583H:
STA 583H

When assemblod, the previous instruction has the hexadecimal value 32 B3 05. Notice that the assembler inverts
the high and brw order address bytes for proper storage in memory.

STAX 5TORE ACCUMULATOR INDIRECT

The STAX ins ruction stores a copy of the contents of the accumulator into the memory location addressed
by register pai B or register pair D.

Opcode Qperond

8
STAX {D}

The operand E specifies the B and C register pair; D specifies the D and E register pair. This instruction may
specify only the B or D register pair.

|000|r|0010
R

L{O = register par B

1 = register pair D

Cycles: 2z

States: 7

Addressing: register indirect
Flags: none

Example:

If register B contains 3FH and register C contains 16H, the following instruction stores a copy of the contents
af the accumu ator at memory location 3F16H:

STAX B
3-62

Chageer 3, Instruction Set

STC SET CARRY

STC sets the carry flag to one. No other flags are affected.
Dpcode Operand
5TC

Operands are not permitted with the 5TC instruction.

o 0 1 1 0 1 o1 1

Cycles: 1
States: 4
Flags: Ccy

When used in combination with the rotate accumulator through the carry flag instructions. STC allows the pro-
gram to modify individual bits.

suUB SUBTRACT

The SUB instruction subtracts one byte of data from the contents of the accumulator, The result 15 stored in the
accumubator. SUB uses two's complement representation of data as explained in Chapter 2. Notice that the SUB
instruction excludes the carry flag {actually a ‘borrow’ flag for the purposes of subtraction) but sets the flag to
indicate the outcome of the operation.
Subtract Register from Accumulator

Copcode Operand

suB reg
The operands must specify one of the registers A through E, H or L. The instruction subtracts the contents of

the specified register from the contents of the accumnulator using two's complemnent data representation. The
result is stored in the accumuiator.

10010|SSSl

Cycles: i

States: 4
Addressing: register
Flags: ZS.PCY.AC

Subtract Memory from Accumudator
Opcode Operand

sue M

3-63

Chapter 3. Instruction Se

S5U1

364

This instructicn subtracts the contents of the memary tocation addressed by the M and L registers from the
contents of thz accumulator and stores the result in the accumulaior, M s a symbolic reference to the H and L
registers.

Tt 0 0 1 0 1 1 0

Cycles: 2

States: 7

Addressing: register indirect
Flags: ZSPLY AC

Example:

Assume that tye accumulator contains 3EH. The instruction SUB A subtracts the contents of the accumulator
from the accumulator and produces a result of zero as follows:

n

3EH
+(—3EH}

001311110
11800001 one's complement

1 add one to produce two's complement
carry out = 1 00000000 result = 0

The conditior: flags are set as follows:

Carry =
Sign
Zero =
Parity

Aux, Carey

I
N e O

Notice that tt e SUB instruction compiements the carry generated by the two’s complement addition to form a
‘borrow’ flag. The auxiliary carry flag is set because the particular value used in this example causes a carry out
of bit 3.

SUBTRACT IMMEDIATE
SU3 subtracts the contents of the second instruction byte from the contents of the accumulator and stores the
result in the iccumuiater. Notice that the SUI instruction disregards the carry {"borrow’) flag during the sub-
traction but sets the flag to indicate the outcome of the operation.
Opecode Operand

suU) data

The operand must specify the data to be subtracted. This data may be in the form of a number, an ASCH
constant, the label of some previously defined value, or an expression. The data must not exceed one byte.

The assemble s relocation feature treats all external and relocatable symbols a5 16-bit addresses. When one of
these symbol. appears in the operand expression of an immediate instruction, it must be preceded by either the

Chapter 3. Instruction Sec

HIGH or LOW operator to specify which byte of the address is to be used in the evaluation of the expression.
When neither operator is present, the assembler assumes the LOW operator and issues an error message.

T 1 ¢ 1 0 1 1 Q

Cycles: 2

States: 7
Addressing: immediate
Flags: Z5PCY AC

Example:

Assume that the accumulator contains the value 9 when the instruction SUI 1 s executed:

Accumulator
Immediate data (2's comp)

0000100t = 9H
1111111 =-tH
00001000 = gH

1]

Notice that this two's complement addition resuits in 2 ¢arry. The SUI instruction complements the carry
generated by the addition to form 2 ‘barrow” flag. The flag settings resulting from this operation are as follows:

Carry =
Sign =
Zero =
Parity =
Aux, Carry =

= == I = i =]

XCHG EXCHANGE H AND L WITH B AND £
XCHG exchanges the contents of the H and L registers with the contents of the D and E registers.
Opcode Operand
XCHG
Operands are not ailowed with the XCHG instruction.

XCHG both saves the current H and L and loads 2 new address into the H and L registers. Since XCHG is a
register-to-register instructicn, it provides the quickest means of saving andfor altering the H and L registers.

v 17 1 01 0 1 1]

Cycles: 1
States: 4
Addressing: register
Flags: none

3-65

Chapter 3, Instruction Set

XRA

3-66

Example:
Assurne that thz H and L registers contain 1234H, and the D and E registers contain QABCDH. Following

execution of the XCHG instruction, H and L contain OABCDH, and D and E contain 1234H.

EXCLUSIVE OR WITH ACCUMULATOR

XRA performs an exclusive OR logical operation using the contenis of the specified byte and the accumulator,
The result is pliced 1n the accumulator,

Summuary of Logical Operations

AND produces a one bit in the result only when the corresponding bits in the test data and the mask datz are
anes,

CR produces a one bit in the result when the corresponding bits in either the test data or the mask data are
ones.

Exclusive OR groduces a one bit only when the corresponding buts in the test data and the mask data are
different; i.e.. z one bit in either the test data or the mask data — but not both — produces a one bit in the
result.

ANLY OR EXCLUSIVE OR
1019 1010 1014 1010 1010 1010
0000 1111 0o0g 1111 0000 1111
0000 1010 1010 1171 1013 0107

XRA Register vith Accurmidator
COpcode Operand
XRA reg
The operand must specify one of the registers A through E, M or L. This instruction performs an exclusive OR

using the conte s of the specified register and the accumnulator and stores the result in the aceumulator, The
carry and auxit ary carry flags are reset to zero.

1o1o1|sssj

Cycles; 1

States: 4
Addressing: register
Flags: Z.5,P.CY AC

XRI

Chapter 3, Instruction Set

XRA Memory with Accumulator
Cpcode Operand
XRA M

The contents of the memory location specified by the H and L registers is exclusive-ORed with the contents of
the accumutator. The result is stored in the accurulator. The carry and auxiliary carry flags are reset to zero.

0 1T 0 1 1 1 0

Cycles: 2

States: ¥

Addressing: register indirect
Flags: ZSPCYAC

Examples:

Since any bit exclusive-ORed with itself produces zero, XRA is frequently used to zero the accumulator. The
following instructions zero the accumulater and the B and C registers.

XRA A
MOV B.A
MOV C.A

Any bit exclusive-ORed with a one bit is complemented. Thus, if the accumulator contains ail ones {QFFH),
the instruction XRA B produces the one's complement of the B register in the accumulator.

EXCLUSIVE OR IMMEDIATE WITH ACCUMULATOR

XR1 performs an exclusive QR operation using the contents of the second instruction byte and the contents of
the accumulator. The result is placed in the accumulator. XRI also resets the carey and auxiliary carry flags to
ZETQ.

Opcode Cperand
XR! data

The operand must specify the data to be used in the OR aperation, This data may be in the form of a number,
an ASCH constant, the label of some previously defined value, or an expression. The data may not exceed one
byte.

The assembler s relocation feature treats all external and relocatable symbols as 16-bit addresses. When one of
these symbols appears in the operand expression of an immediate instruction, it must be preceded by either the
HIGH or LOW cperator to specify which byte of the address is to be used in the evaluation of the expression.
When reither operator 15 present, the assembler assumes the LOW operator and issues an error message.

367

Chapter 3. Instruction Se

3-68

data
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,5,P.CY.AC

Summary of Lagical Operations

AND produce: a one bit in the result only when the corresponding bits in the test data and the mask data are
ones.

QR produces . one bit in the result when the corresponding biis in either the test data or the mask data are
ones.

Exclusive OR sroduces a one bit only when the corresponding bits in the test data and the mask data are
different; i.e., a one bit in either the test datz or the mask data — but not both — produces a one bit in the
resuft.

AND GR EXCLUSIVE OR
1610 1010 10191010 101¢ 1010
0000 1111 Q000 1111 0000 1111
000C 1010 1010 311N 1010 0101

Example:

Assume that 3 program uses bits 7 and 6 of 2 byte as flags that controf the calling of two subroutines. The
program tests the bits by rotating the contents of the accumulator until the desired bit is in the carry flag; a
CC instructior {Call if Carry} tests the flag and calls the subroutine if required.

Assume that t1e control flag byte 15 positioned normally in the accumulator, and the program must set OFF bit
6 and set bit ' ON. The remaining bits, which are status flags used for other purposes, must not be altered.
Since any bit 2xclusive-ORed with a one s complemented, and any bit exclusive-ORed with a zero remains
unchanged, thz following instruction is used:

XRI 110000008

The mstruction has the following results:

Accumulater = (1001100
Immediate data = 11000000
16001100

Chapter 3. Instruction Set

XTHL EXCHANGE H&L WITH TOP OF STACK

XTHL exchanges two bvtes from the top of the stack with the two bytes stored in the H and L registers. Thus,
XTHL. both saves the current contents of the H and L registers and loads new values into H and L.

Opcode QOperand
XTHL
Cperands are not allowed with the XTHL instruction,

XTHL exchanges the contents of the L register with the contents of the memory location specified by the SP
{Stack Pointer) register. The contents of the H register are exchanged with the contents of SP+1.

i1 1 0 ¢ 0 1 i

Cycles: 5

States: 18 {16 on 8085)
Addressing: register indirect
Flags: none

Example: *

Assume that the stack pointer register contains 10ADH; register H contains OBH and L contains 3CH; and
memaory locations 13ADH and 10AEH contain FOH and ODH, respectively. The following is an illustration of
the effect of the XTHL instruction:

MEMORY ADDRESS H L
10AC 10AD 10AE TOAF

Before XTHL FF Fo 0D FF 0B 3C
After XTHL FF 3C oB FF oD FO

The stack pointer register remains unchanged following execution of the XTHL instruction.

369

4. ASSEMBLER DIRECTIVES

This chapter describes the assembier directives used to control the 8080/85 assembler in its generation of object
coade, This chapter excludes the macro directives, which are discussed as a separate topic in Chapter 5.

Generally, directives have the same format as instructions and cap be interspersed throughout your program.
Assemnbler directives discussed in this chapter are grouped as foliows:

GENERAL DHRECTIVES:
. Symbol Definitien

EQU
SET

. Data Definition

DB
DW

- Memory Reservation
Ds

» Conditional Assembly
IF

ELSE
ENDI¥

[Assemnbler Termination
END
LOCATION COUNTER CONTROL ANDG RELOCATION:
. Location Counter Control
ASEG
DSEG

CSEG
ORG

. Program Linkage

PUBLIC
EXTRN
NAME
STKLN

Chapter 4. Assembler Dir :ctives

Three assembl xr directives — EQU, SET, and MACRO — have a slightly different format from assembly
language instrictions. The EQU, SET. and MACRO directives require a neme for the symbol or macro being
defined to be present in the iabel field. Names differ from labels in that they must aof be terminated with a
colon {:) as lasels are, Also, the LOCAL and ENDM directives prohibit the use of the label field.

The MACRC, ENDM, and LOCAL directives are explained in Chapter 5.

SYMBOL DEFINITION

The assembler automatically assigns values to symbaols that appear as instruction labels, This value 1 the current
seiting of the location counter when the instruction is assembled. (The location counters are explained under
‘Address Cont-ol and Relocation,” later in this chapter.)

You may defire other symbols and assign them values by using the EQU and SET directives. Symbols defined
using EQU caitnot be redefined during assembly; those defined by SET can be assigned new values by subsequent
SET directives,

The name reqiired in the label field of an EQU or SET directive must #ot be terminated with a colon.
Symbaols defired by EQU and 5ET have meaning throughout the remainder of the program. This may cause the

symbol to have illegal multiple definitions when the EQU or SET directive appears in a macro definition. Use
the LOCAL d rective (described in Chapter 5) to avoid this problem.

EQU Directive

4.2

EQU assigns t1e value of ‘expression’ to the name specified n the label figld.

Label Opcode Operand

name EQL! expression
The required .Jame in the fabel field may not be terminated with 2 colon. This name cannot be redefined by a
subsequent EOU or SET directive. The EQU expression cannot contain any external symbol. {External symbols

are explained under 'Location Counter Control and Relocation,” later in this chapter.}

Assemnbly-time evaluation of EQU expressions always generates 2 modulo 64K address. Thus, the expression
always yields 1 value in the range 0-65,536.

Example:

The following EQU directive enters the name ONES into the symbol table and assigns the binary value
111111 o

ONES EQU OFFH

Chapter 4. Assembier Directives

The value assigned by the EQU directive can be recalled in subsequent source lines by referring to its assigned

name as in the following IF directive:

IF TYPE EQ ONES

ENDIF

SET Directive

SET assigns the value of ‘expression’ to the name specified in the label field.

Label Opcode Operand

name SET expression

The assembler enters the value of ‘expression” into the symbol table. Whenever ‘name’ is encountered sub-
sequently in the assembly, the assembler substitutes its value from the symbol table. This value remains unchanged

untit altered by a subsequent SET directive.

The function of the SET directive is identical to EQU except that ‘name’ can appear in multiple SET directives
in the same program. Therefore, vou can alter the value assigned to 'name’ throughout the assembly.

Assernbly-time evaluation of SET expressions always generates a modulo 64K address. Thus, the expression

always yields a value in the range 0-65.536.

Examples:
Labet Dpcode Gperand Assembled Code
IMMED SET 5
ADI IMMED Ce05
IMMED SET 10H-6
ADI IMMED C60A

DATA DEFINITION

The DB {define byte) and DW (define word) directives enable you lo define data o be stored in your program.
Data can be specified in the form of 8-bit or Té-bit values, or as a string of text characters.

DB Directive

The DB directive stores the specified data in consecutive memory locations starting with the current setting of the

focalion counter.

43

Chapter 4. Assembler Di ectives

Labef Gpcode Operands
optional: DB expression(s) or string(s}

The operand “ield of the DB directive can contain a list of expressions andfor text strings. The list can contain
up to eight tctal items: list items must be separated by commas. Because of limited workspace, the assembler
may not be asle to handle a total of eight iterns when the list includes 2 number of complex expressions. If
you ever have this problem, it is easily solved: simply use two or more directives to shorten the list.

Expressions nwst evaluate to 1-byte {8-bit) numbers in the range —256 through 255, Text strings may comprise
amaximum cf 128 ASCI] characters enclosed in quotes.

The assemble s relocation feature treats all external and relocatable symbols as 16-bit addresses, When one of
these symbol: appears 1n an operand expression of the DB directive, it must be preceded by either the HIGH or
LOW operato- to specify which bvte of the address is to be used in the evaluation of the expression. When
neither opera .or is present, the assembler assumes the LOW operator and issues an error message.

If the option.| label 15 present, it is assigned the starting value of the !ocation counter, and thus references
the first byte stored by the DB directive. Therefore, the label STR in the following exampies refers to the letter
T of the strirg TIME. :

Examples:
Labef Opcode Operands Assernbled Code
5TR: DB TIME' 54494D45
HERE: D8 0A3H A3
WORD1: DB —03H,5*2 FOOA
DW Directive

44

The DW dire tive stores each 16-bit value from the expression list as an address. The values are stored starting
at the curren setting of the lacation counter.

Labet Opcode Operands
optionzl: Dw expression list
The least sigrificant eight bits of the first value in the expression list are stored at the current setting of the
location cour ter; the most significant eight bits are stored at the next higher location. This process is repeated

for each item in the expression list.

Expressions evaluate to 1—word {16-bit) numbers, typically addresses. If an expression evaluates to a single byte,
it 15 assumed ta be the tow order byte of a 16-bit word where the high order byte is all zeros.

Chapter 4. Assembler Directives

List items must be separated by commas. The list can contain up to eight total items. Because of limited work-
space, the assembler may not be able to handle eight complex expressions. !f you ever have this problem, simpiy
use two or more DW directives to shorten the list.

The reversed order for storing the high and low order bytes is the typical format for addresses stored in mermory.
Thus, the DW directive is commonly used for storing address constants,

Strings containing one or two ASCII characters enclosed in quotation marks may also appear in the expression
list, When using such strings in vour program, remember that the characters are stored in reversed order.
Specifying a string longer than two characters causes an error.

If the optianal label is present, it is assigned the starting address of the [ocation counter, and thus references the
first byte stored by the DW directive. {This is the low order byte of the first item in the expression list.)

Examples:

Assume that COMP and FILL are labels defined elsewhere in the program. COMP addresses memory tocation
3B1CH. FILL addresses memary location 3EB4H,

Labef Opcode Operands Assembled Code
ADDR1: DW COMP 1C3B

ADDR2: DwW FILL B43E

STRNG: DwW ACAB 41004241
FOUR: DW 4H 0400

MEMORY RESERVATION
DS Directive
The DS directive can be used to define a black of storage.
Label Opcode Operand
optional: DS expression
The value of ‘expression’ specifies the number of bytes to be reserved for data storage. In theory, this value may
range from 00H through OFFFFH: in practice, you will reserve no more storage than will fit in your availabie
memory and stilt leave room for the program.

Any symbol appearing in the operand expression must be defined before the asserbler reaches the DS directive,

Unlike the DB and DW directives, DS assembles no data into your program. The contents of the reserved storage
are unpredictable when program execution is initiated.

45

Chaprer 4. Assembler Dir zctives

If the optiona label is present, it is assigned the current value of the location counter, and thus references the
first byte of tre reserved memaory block.

If the value o1 the operand expression is zero, no memory is reserved. However, if the optional label is present,
it is assigned the current value of the location counter.

The DS direct ve reserves memory by incrementing the location counter by the value of the operand expression.

Example:

TTYBUF: 05 12 RESERVE 72 BYTES FCR
A TERMINAL QUTPUT BUFFER

Programming Tips: Data Description and Access
Randam Access Jersus Read Onfy Memory
When coding 1Jata descriptions, keep in mund the mix of ROM and RAM in vour application.

Generally. the DB and DW directives define constanis, items that can be assigned to ROM. You can use these
items in your program, but you cannat modify them. If these items are assigned to RAM, they have an initial
value that your program can modify during execution. Notice, however, that these initial values must be reloaded

inte memary srfor to each execution of the program.

Variable data n memory must be assigned to RAM,

Data Description

Before coding your program, you must have a thorough understanding of its input and autput data. But you'll
probably find it more convenient to postpone coding the data descriptions until the remainder of the program is
fairly well desgloped. This way you will have a better idea of the constants and workareas needed in vour program.
Also, the orgaization of 2 typical program places instructions in lower memory, foliowed by the data, foliowed

by the stack.

Data Access

Accessing dat: from memory is typically a two-step process: First you tell the processor where to find the data,
then the procissor fetches the data from memaory and loads it into a register, usually the accumulator. Therefore,
the following zode sequences have the identical effect of loading the ASCH character A into the zccumulator.

AAA: DB A ALPHA; DB ‘ABC’
LXI B.AAA LXI B.ALPHA
LDAX B LDAX B

4-6

Chapter 4. Assembler Directives

In the examples, the LXI instructions load the address of the desired datz into the 8 and C registers. The LDAX
instructions then load the accumulator with one byte of data from the address specified in the B and C registers,
The assembler neither knows nor cares that only one character from the threecharacter field ALPHA has been
accessed. The program must account for the characters at ALPHA+T and ALPHA+2, as in the following coding
sequence;

ALPHA; DB ‘ABC iDEFINE ALPHA

LXI BALPHA LOAD ADDRESS OF ALPHA

LDAX B iFETCH 15T ALPHA CHAR
INX B SET B TO ALPHA+
LDAX B JFETCH 2ND ALPHA CHAR
INX B SET B TO ALPHA+2
LDAX B ;FETCH 3RD ALPHA CHAR

The coding above is acceptable for short data fields like ALPHA. For longer fields, you can conserve memory
by setting up an instruction sequence that is executed repeatedly until the source data is exhausted.
Add Symbofs for Data Access
The following example was presented earlier as an illustration of the DS directive:
Labef Opcode Operand Comment
TTYBUF: 0s 72 ;RESERVE TTY BUFFER
To access data in this buffer using only expressions such as TTYBUF+1, TTYBUF+2, . . . TEYBUF+72 can be

a laborious and confusing chore, especially when you want only selected fields from the buffer. You can simplify
this task by subdividing the buffer with the EQU directive.

Labeal Opcade Goperand Comment
TTYBUF: Bs 72 JRESERVE TTY BUFFER
1D EQU TTYBUF {RECORD IDENTIFIER
NAME EQu TTYBUF+6 220-CHAR NAME FIELD
NUMBER EQU TTYBUF+26 T0-CHAR EMPLOYEE NUMBER
DEPT EQU TTYBUF+36 i3-CHAR DEPARTMENT NUMBER
SSNO EQU TTYBUF+4] SOCIAL SEC. NUMBER
DOH EQU TTYBUF+50 DATE OF HIRE
DESC EQu TTYBUF+56 ;}OB DESCRIPTION

Chapter 4, Assembier Dir:ctives

Subdividing d: ta as shown in the example simplifies data access and provides useful documentation throughout
your program. Motice that these EQU directives can be inserted anywhere within the program as you need them,
but coding th: m as shown in the example pravides a more useful recard description.

CONDITIONAL ASSEMBLY

4-8

The IF, ELSE. 2nd ENDIF directives enable you to assemble portions of your program conditionally, that is,
only if certain conditions that vou specify are satisfied,

Conditional a:sembly is especially useful when your application requires custom programs for a number of com-
mon options. As an example, assume that a basic control program requires customizing to accept input from
one of six dif erent sensing devices and to drive one of five different control devices, Rather than code somne
thirty separat- programs to account for all the possibilities, you can code a 5inglle program. The code for the in-
dividual sensas and drivers must be enclosed by the conditional dirsctives. When you need to generate a custom

program, you <an insert SET directives near the beginning of the source program to select the desired sensor and
driver routine ..

IF, ELSE, ENDIF Eirectives

Because these directives are used in conjunction, they are described together here.

Label Opcode Operand
ophional: {F EXPression
optional: ELSE —
opticnal: ENDIF —_

The assembler evaluates the expression in the operand field of the IF directive. If bit 0 of the resulting value 15
one (TRUE), Wl mnstructions between the IF directive and the next EELSE or ENDIF directive are assembled.

When bit O is zere (FALSE} these instructions are ignored. [A TRUE expression evaluates to OFFFFH and
FALSE to OH; anly bit zero need be tested.)

All statementt included hetween an {F directive and its required associated ENDHF directive are defined as an
I1F-ENDIF blozk. The ELSE directive is optional, and only ane ELSE directive may appear in an IF-ENDIF
block. When iicluded, ELSE is the converse of IF. When bit 0 of the expression in Lhe IF directive 15 zero, all
staternents be:ween ELSE and the next ENDIF are assembled. If bit 0 15 ane, these statements are ignored.

Operands are 1ot aliowed with the ELSE and ENDIF directives.
An IF-ENDIF block may appear within another [F-ENDIF block. These blocks can be nested to eight [evels.

Macro definitions [explained in the next chapter] may appear within an [F-ENDIF block. Conversely, IF-EENDIF
blocks may appear within macro definitions. (n either case, you must be certain to terminate the macro definition

Chapter 4. Assembler Directives

or IF-ENDIF block so that it can be assernbled completely. For example, when a macro definition begins i an
{F Block but terminates after an ELSE directive, only a portion of the macro can be assembled. Similarly, an
IF-ENDIF block begun withm a macro definition must terminate within that same macro definition.
NOTE

Caution 15 required when symbols are defined in IF-ENDIF

blocks and referenced elsewhere within the program. These

symbols are undefined when the evaluation of the IF ex-

pression suppresses the assembly of the [F-ENDIF block.
Example 1. Simple IF-ENDIF Block:

CONDY IFTYPEEQO

ASSEMBLED IF 'TYPE = O
#4S TRUE

ENDIF
Exarnple 2. IF-ELSE-ENDIF Block:

COND2: IF TYPEEQ(
ASSEMBLED IF 'TYPE = 0

A5 TRUE

ELSE
ASSEMBLED IF ‘TYPE = 0
15 FALSE

ENDIF

49

Chapter 4. Assembier Directives

Example 3. Nested IF’s:
COHD3: IFTYPEEQO

{ASSEMBLED IF 'TYPE = 0

1S TRUE
IF MODE EQ 1
LEVEL . ASSEMBLED IF TYPE =0
1 . AND 'MODE = 1" ARE BOTH
. TRUE
ENDIF
ELSE
LEVEL . {ASSEMBLED IF TYPE =0
2 . IS FALSE
IF MODE EQ 2

ASSEMBLED IF 'TYPE =0
IS FALSE AND 'MODE = 2
. dS TRUE
LEVEL ELSE
ASSEMBLED IF ‘TYPE = O
AND ‘MODE = 2' ARE BOTH
. {FALSE
ENDIF
ENDIF
ASSEMBLER TEFMINATION
END Directive
The END dirzctive identifies the end of the source program and terminates each pass of the assembler.
{abpef Opcode Operand
optional: END expression

Only one END statement may appear in a solirce program, and it must be the last source statement.

if the optional expression is present, its value is used as the starting address for program execution. If no ex-
pression is gisen, the assembler assumes zero as the starting address,

When a number of separate program modules are to be joined together, only one may specify a program starting
address. The module with a starting address is the main module. When source files are combined using the IN-
CLUDE cont-ol, there are no restrictions on which source file contains the END.

410

Chagpter 4, Astembler Directives

END-OF-TAPE INDICATION

The EOT directive allows you to specify the physical end of paper tape to simplify assembiy of multiple-tape source
programs.

EOT Directive
Labef CQocode Cperand
optional: EOT .

When EQT is recognized by the assembler, the message 'NEXT TAPE' is sent to the console and the assembler pauses.-
After the next tape is lcaded, a ‘space bar’ character received at the console signals continuation of the assembly.

Data in the operand field causes an error,

LOCATION COUNTER CONTROL AND RELOCATION
All the directives discussed in the remainder of this chapter relate directly to program relocation except for the
ASEG and ORG directives. These directives are described first for the convenience of readers who do not use the
relocation feature,
Location Counter Control {Non-Relocatable Mode])
When you elect not to use the relocation feature, an assembler default generates an ASEG directive for vouw. The
ASEG directive specifies that the program is to be assembled in the non-relocatable mode and establishes 2

location counter for the assembly,

The {ocation counter performs the same funciion for the assembler as the program ¢ounter performs during
execution, 1t tells the assembler the next memory location available for instruction or data assembty.

titially, the lecation counter is set to zero. The location counter can be altered by the ORG {origin) directive.

ORG Directive
The QRG directive sets the location counter to the value specified by the operand expression.
Lobef Opcode Operand
aptional ORG £XPression
The location counter 15 set to the value of the operand expression, Assembly-time evaluation of QORG expressions
alwavs yields a modulo 64K address. Thus, the expression always vields an address in the range 0 through

65,535, Any symbol in the expression must be previously defined. The next machine instruction or data item is |
assembled at the specified address.

41

Chapter 4. Assembier Di ectives

tf no ORG di-ective is included before the first instruction or data byte in vour program, assembiy begins at
location zero.

Your program can include any number of ORG directives. Multiple ORG’s need not specify addresses n
ascending seq tence, but if you fail to do so, you may instruct the assembler to write over some previously
assembled portion of the program.

It the optiom: | label is present, it is assigned the current value of the location counter before it is updated by the
ORG directive,

Example:

Assume that 11e current value of the location counter is OFH {decimal 15} when the following ORG directive is
encountered:

PaGl: ORG OFFH ORG ASSEMBLER TO LOCATION
OFFH (decimal 225}

The symbal FAGT is assigned the address OFH. The next instruction or data byte is assembled at location
QFFH.

Introduction to Ke ocatability

412

A major featiire of this assembler is its system for creating relocatable object code modules. Support for this new
feature incluces a number of new directives for the assembler and three new programs included in ISIS-1F. The
three new programs — LIB, LINK, and LOCATE — are described in the ISIS-1l System User's Guide. The new
assembler dir :ctives are described later in this chapter.

Relocatabilit allows the programmer to code programs or sections of programs without worrying about the
final arrangerient of the object code in memory. This offers developers of microcomputer systems major ad-
vantages in bwo areas: memory management and modufar program development.

Memoary Manage rent

When develojing, testing, and debugging a system on your Intellec microcomputer development system, your
oniy concern with locating a program is that it doesn’t overlap the resident routines of 1515-11. Because the
tntellec systen has 32K, 48K, or 64K of random access memary, the focation of your future program is not a
great concerr . However, the program you are developing will almost certainly use some mix of random access
memory {RAM), read-only memory {(ROM}, andfor programmable read-only memory {PROM). Therefore, the
location of v >ur program affects both cost and performance in yvour application. The relocatability feature allows
you to develop, test, and debug vour program on the InteHec development system and then simply relocate the
object code o suit your application.

The relocatability feature also has a major advantage at assembly-time: often, large programs with many symbols
cannot be as embled because of limited work space for the symbof table. Such a program can be divided into a
number of modules that can be assembled separately and then linked together to form a single object program.

Chapier 4. Assembier Directives

Modular Program Develapment

Although ‘relocatability’ may seem to be a formidable term, what it really means is that you can subdivide a
complex program into a number of smaller. simpler programs. This concept is best illustrated through the use of
an example. Assume that 2 microcomputer program is to control the spark advance on an automobile engine.
This requires the program to sample the ambient air temperature, engine air intake temperature, coglant tempera-
ture, manifold vacuum, idle sensor, and throttle sensor.

Let us examine the approaches two different programmers might take to solve this problem. Both programmers
want to calcufate the degree of spark advance or retardation that provides the best fuel economy with the lowest
emissions, Programmer A codes a single prograrn that senses all inputs and calculates the correct spark advance.
Programmer B uses a modular approach and codes separate programs for each input plus one program to calculate
spark advance.

Although Programmer A avoids the need to learn to use the relocatability feature, the modular approach used
by Programmer B has a number of advantages you should consider:

» Simplified Program Development
It is generally easier to code, test, and debug several simple programs than one complex program,

. Sharing the Programming Task

If Programmer B finds that he is falling behind schedule, he can assign one or more of his sub-
programs to another programmer. Because of his single program concept, Programmer A will
prabably have to compiete the program himself.

* Ease of Testing

Programmer B can test and debug most of his modules as soon as they are assembled; Programmer
A must test his program as a whole. Notice that Programmer B has an exlra advantage if the
sensors are being developed at the same time as the program. ¥ one of the sensors is behind
schedule, Programmer B can continue developing and testing programs for the sensors that are
ready. Because Programmer A cannot test his program until afl the sensors are developed, his
testing schedule 15 dependent on events beyond his control.

. Programming Changes

Given the nature of automotive design, 1t 15 reasonable to expect some changes during system
development. If a change to one of the sensors requires @ programming change, Programmer A
must search through his entire program to find and alter the coding for that sensor. Then he must
retest the entire program to be certain that those changes do not affect any of the other sensors.
By contrast, Prograrnmer B need be concerned only with the module for Lhat one sensor. This
advantage continues throughout the life of the program.

4-13

Chapter 4. Assembler Di-ectives

DIRECTIVES USED FOR RELOCATION

Several direc ives have been added to the assembler to support the refocation feature. These fall into the general
categories of location counter control and program linkage.

Location Counter Zontrol {Relocatable Programs)

414

Reiocatable srograms or program modules may use three location counters. The ASEG, DSEG, and CSEG
directives spcify which location cousnler s to be used.

The ASEG cirective specifies an absolute code segment. Even in a relocatable program module, you may want
to assign cer:ain code segments to specific addresses. For example, restart routines invoked by the RST instruc-
tion require specific addresses.

The CSEG cirective specifies a relocatable code segment. in general, the CSEG location counter is used for por-
tions of the program that are to be in some form of read-only memory, such as machine instructions and pro-
gram ¢onstats.

The DSEG ocation counter specifies a refocatabie data segment. This focation counter (s used for program
elements th it must be located in random access memory.

These direc ives allow you to control program segmentation at assembly time. The LOCATE program, described
in the IS15-11 System User's Guide, gives you control over program segment [ocation. Therefore, the guidelines
given above are only general since they can be overridden by the LOCATE program.

Regardless »f how many times the ASEG, CSEG, and DSEG directives appear in your program, the assembler
produces a single. contiguous module. This module comprises four segments: code, data, stack and memory.
The LINK nd LOCATE programs are used Lo combine segments from individual modules and refocate them in
memory. T iese programs are explained in the 1515-11 System User's Guide.

ASEG Directne

ASEG direts the assembler to use the location counter for the absolute program segment.
Labe! Opcode Cperand
optional: ASEG __
Operands zre not permitted with the ASEG directive.

Allinstruc jons and data following the ASEG directive are assembled i the absolute mode, The ASEG directive
remains in effect until 2 CSEG or DSEG directive 15 encountered.

The ASEG location counter has an mitizl value of zero. The ORG directive can be used to assign a new value to
the ASEG location counter.

Chapter 4. Assembler Directives

When assembly begins, the assembler assumes the ASEG directive to be in effect. Therefore, a CSEG or DSEG
must precede the first instruction or data definition in a relocatable module. If neither of these directives
appears in the program, the entire program 1s assembled in absolute mode and can be executed immediately
after assembly without using the LINK or LOCATE programs.

CREG Directive

CSEG directs the assembler to assemble subsequent instructions and data in the relocatable mode using the code
segment focation counter.

{abel Opcode Gperand
blank
optional: CSEG PAGE
INPAGE

When a program contains multiple CSEG directives, all CSEG directives throughout the program rnust specify
the same operand, The operand of a CSEG directive has no effect on the current assembly, but is stored with
-the object code to be passed to the LINK and LOCATE programs, {These pragrams are described in the 1515-11

System User's Guide.] The LOCATE program uses this information to determine relocation boundaries when it
joins this code segment to code segments from other programs. The meaning of the operand is as follows:

. blank — This code segment may be retocated to the next available byte boundary,

] PAGE — This code segment must begin on a page boundary when relocated. Page boundaries
oceur in multiples of 256 bytes beginning with zero {0, 256, 512, etc.).

. INPAGE — This code segment must il within a single page when relocated,
The CSEG directive remmains in effect until an ASEG or DSEG directive is encountered.

The code segment location counter has an initial value of zero. The ORG directive can be used to assign a new
value to the CSEG location counter.

DSEG Directive

OSEG directs the assembler to assemble subseguent instructions and data n the relocatable mode using the data
segment location counter,

Label Onpcode Operand
blank
optional: D3EG PAGE >
' INPAGE |

When multiple DSEG directives appear in a program, they must all specify the same operand throughout the
program. The operands for the DSEG directive have the same meaning as for the CSEG directive except that
they apply to the data segment.

4-15

Chapter 4. Assembler Drigctives

There 15 no ir teraction between the operands specified for the DSEG and CSEG directives. Thus, a code segment
can be byte r-locatable while the data segment is page relocatable.

The DSEG di sctive remains in effect until an ASEG or CSEG direchive is encountered.

The data segrient location counter has an initial value of zero, The QRG directive can be used to assign a new
value ta the DSEG location counter,

ORG Directive { Sefocatable Mode)

The ORG dir:ctive can be used to alter the value of the location counter presently in use.
Labe! Opcode Operand

optional; ORG expression

There are thr e Tocation counters, but only one location counter is in use at any given poini in the program.
Which one depends on whether the ASEG, CSEG, or DSEG directive is in effect,

Any symbol nsed in the operand expression must have been previously defined. An exception causes phase
errors for all abels that follow the ORG and a label error if the undefined error is defined later,

When the OFG directive appears in a relocatable program segment, the value of its operand expression must be
either absolu e or relocatable within the current segment. Thus, i the ORG directive appears within 2 data seg-
ment, the valte of its expression must be relocatable within the data segment. An error occurs if the expression
gvaluates to ¢ n address in the code segment.,

if the optionl label is present, It is assigned the current value of the location counter presently in use before
the ORG dir crive is executed.

Program Linkage Eirectives

Modular projramming and the relocation feature enable you to assemble and test a number of separate programs
that are to b: jomed together and executed as a single program. Eventually, it becomes necessary for these
separate programs to communicate nformation among themselves, Establishing such communication is the
function of the program linkage directives.

A program n.ay share its data addresses and instruction addresses with other programs. Only items having an
eniry in the ;ymbol table can be shared with other pragrams; therefore, the item must be assigned 2 name or a
iabel when it is defined in the program. !tems to be shared with other programs must be declared in a PUBLIC
directive,

Your prograin can directly access data or instructions defined in another program if you know the actual
address of tFe item, but this is unlikely when both programs use relocation. Your program can also gain access
to data or irstructions declared as PUBLIC in other programs. Notice, however, that the assembler normaliy

Chapter 4, Assembler Directives

flags as an error any reference to 2 name or label that has not been defined in vour program. To avoid this,
vou must provide the assembler with a list of items used in your program but defined in some other program.
These items must be declared in an EXTRN directive.

The two remaining program linkage directives, NAME and STKLN, are individually explained later in this chapter,

PUBLIC Directive
The PUBLIC directive makes each of the symbols listed in the operand field available for access by other programs.
fabel Opcode Operarids
optional: PUBLIC name—list
Each item in the operand name~Ilist must be the name or [abel assigned to data or an instructian elsewhere in
this program. When multiple names appear in the list. they must be separated by commas. Each name may be
declared PUBLIC only once in a program module. Reserved words and external symbols [see the EXTRN

directive below) cannot be declared to be PUBLIC symbols.

PUBLIC directives may appear anywhere within a program maodule.

if an item in the operand name—list has no corresponding entry in the symbol table (implying that it is unde-
fined), it is flagged as an error.

Example:

PUBLIC S5IN.COS,TANSQRT

EXTRN Directive
The EXTRN directive provides the assembler with a list of symbols referenced in this program but defined in a
different program. Because of this, the assembler establishes linkage to the other program and does not fiag the
undefined references as errors.
Label Opcode Operands

optional: EXTRN name—list

Each item in the name—list identifies a symbaol that may be referenced in this program but is defined in another
program. When multiple items appear in the ist, they must be separated by cornmas.

If a symbol in the operand name—list is also defined in this program by the user, or is a reserved symbol, the effect
is the same as defining the same symbol more than once in a program. The assembler flags this error.

EXTRN directives may appear anywhere within a program module.

A symbol may be declared to be external only once in a program module. Symbeols declared to be PUBLIC cannot
also be declared to be EXTRN symbois.

4-17

Chapter 4. Assembler Dhiectives

If you omit a symbol fram the name—list but reference it in the program, the symbol is undefined. The assembler
flags this erro-. You may include symbols in the operand name—list thal are not referenced in the program with-
out causing a: error.

Example:

EXTRN ENTRY, ADDRTN,BEGIN

MAME Directive
The NAME directive assigns a name to the obiect module generated by this assembly.
tabel Oocade Operand
optional: NAME module—name

The NAME cirective requires the presence of 2 module—name in the operand fieid. This name must conform to
the rules for Jefining symbols.

Module names are necessary so that you can refer to 2 module and specify the proper sequence of moduies
when a numter of modules are to be bound together,

The NAME cirective must precede the first data or instruction coding in the source program, but may follow
comments and control fines.

if the NAME directive is missing from the program, the assembler supplies a default NAME directive with the
modufe—nama MODULE, This will cause an error if you attempt to bind together several object program
modules and more than one has the name MODULE. Also, if you make an error coding the NAME directive,
the default name MODULE is assigned.

The module--name assigned by the NAME directive appears as part of the page heading in the assembly listing,

Example:

NAME MAIN

STKLN Directhe

Regardless o the number of obiect program modules you may bind together, only one stack is generated, The
STKLN directive allows you to specify the number of bytes to be reserved for the stack for each module.

fabef Opcode Operand
optional: STKLN eXpression

The operand expression must evaluate to a number which will be used as the maximum size of the stack.

4-18

Chapter 4. Assembler Directives

When the STKLN directive i1s amitted, the assembler provides a default STKLN of zero, This is useful when
multiple programs are bound together: only one stack will be generated, o only one program module need

specify the stack size. However, you should provide a ST LN if your module is to be tested separately and
uses the stack.

if your program includes more than one STKLN directive, only the last value assigned is retained.
Example:

STKLN i00

STACK and MEMORY Reserved Words

The reserved words STACK and MEMORY are not directives but are of interest to programmers using the
refocation feature. These reserved words are external references whose addresses are supplied by the LOCATE
program.

S5TACK is the symboiic reference to the stack origin address. You need this address to initialize the stack

painter register, Also, vou can base data structures on this address using symbolic references such as STACK+1,
STACK+2, ete.

MEMORY is the symbaolic reference to the first byte of unused memory past the end of your program. Again,
you can base data structures on this address using symbolic references such as MEMORY, MEMORY+1, ete.

Programming Tips: Testing Relocatable Modules
The ability to test individual program modules 15 a major advantage of modular programming. However, many

program modules are not logically self-sufficient and require some madification before they can be tested. The
following is a discussion of some of the more common madifications that may be required.

Initialization Routines
In most complete programs, 2 number of housekeeping or initialization procedures are performed when execution
first begins, If the program moduie you are testing relfes on initialization procedures assigned to a different

module, you must duplicate those procedures in the module to be tested. (Notice, however, that you can link
any number of modules together for testing.)

One of the most fmportant initialization procedures is Lo set the stack pointer. The LOCATE program determineas
the origin of the stack.

Your program should include the following instruction to initialize the stack pointer:

Lxl SPSTACK

419

Chapter 4. Assembler €irectives

Input{Output

When testing program modules, it is likely that some input or output procedures appear in other modules. Your
program must simulate any of these procedures it needs to operate. Since your Intetlec development system
probably has considerably more random access memory than you need to test a program module, you may be
able to simula e input and output data right in memeory. The LOCATE program supplies an address for the
reserved word MEMORY; this is the address of the first byte of unused memory past the end of your program,
You can acces. this memory using the symbolic reference MEMORY, MEMORY+1, and so on. This memory
can be used fcr storing test data or even for a program that generates test data.

Remove Coding Lised for Testing

After testing your program, be certain to remove any code you inserted for testing. In particular, make certain
that only one madule in the complete program initializes the stack pointer.

5. MACROS

INTRODUCTIGN TQ MACROS

Why Use Macros?

A macro is essentially a facility for replacing one set of parameters with another. In developing your program,

vou will frequently find that many mstruction sequences are repeated several times with only certan parameters
changed.

As an example, suppose that you code a routine that moves five bytes of data from one memaory location to
another. A little later. vou find yourself coding another routine 1o move four bytes from a different source
field to a different destination field. If the two routines use the same coding technjques. you will find that
they are identical except for three parameters: the character count, the source field starting address, and the
gestinatiun field starting address. Certainly it would be handy if there were some way to regenerate that orignal
rottine substituting the new parameters rather than rewrite that code yourself. The macro facility provides this
capability and offers several other advantages over writing code repetitiously:

» The tedium of frequent rewrite {and the probability of error) is reduced.

. Symbals used in macros can be restricted so that they have meaning only within the macro itself.
Therefore, as you code your program, you need not worry that you will accidentally duplicate a
symbol used In 3 macro. Also, a macro £an be used any number of times in the same program
without duplicating any of its own symbois.

] An error detected in a macre need be corrected only once regardiess of how many times the macro
appears in the program. This reduces debugging time.

. Duplication of effort between programmers can be reduced. Useful functions can be coflected in a
library to allow macros to be copted into different programs,

In addition, macros can be used to improve program readability and to create structured programs, Using macros
to segment code blocks provides clear program notation and simplifies tracing the flow of the program.

What [s A Macro?
A macro can be described as 2 routine defired in a farmal sequence of prototype instructions that, when caffed

within a program, results in the replacement of each such call with a code expansion consisting of the actual
instructions represented.

Chapter 5. Macras

The concepts ¢ f macro definition, call, and expansion can be illustrated by a typical business form letter, where
the prototype nstructions cansist of preset text, For example, we could define 2 macro CNFIRM with the text

Air Fi ght welcomes vou as a passenger.
Your Tight number FNO leaves at DTIME and arrives in DEST at ATIME.

This macro has four dummy parameters to be replaced, when the macro is called, by the actual flight number,
departure time destination, and arrival time. Thus the macro call might look like

CNFIRM 123, “10:45°, 'Ontario’, '11:52°

A second macro, CAR, could be called if the passenger has requested that a rental car be reserved at the desti-
nation airport. This macro might have the text

Your utomobile reservation has been confirmed with MAKE rent-a-car agency.
Finally, a mac:o GREET could be defined to specify the passenger name.

Dear JAME:
The entire tex - of the business letter (source file) would then look like

GRELT ‘Ms, Seannel’

CNFiM 123, '10:45°, ‘Ontario’, ‘11:52'

CAR 'Blotz’

We tr st you will enjoy your flight,

Since ely,

When this sou ce file is passed through a macro processor, the macro calls are expanded to produce the following
letter,

Oear Ms. Scannel;

Air F ight welcomes you as a passenger. Your flight number 123 feaves at 10:45 and arrives
in Ortario at 11:52, Your automobile reservation has been confirmed with Blotz rent-a-car
agency.

We trust you will enjoy your flight.
Since ely,

While this exanple itlustrates the substitution of parameters in 2 macro, It overlocks the relationship of the macro

processor and the assembler. The purpose of the macro processor is to generate source code which is then
assembled.

Chapter 5. Macros

Macros Vs, Subroutines

At this point, you may be wondering how macros differ from subroutines invoked by the CALL instruction.
Both aid program structuring and reduce the coding of frequently executed routines.

Cne distinction between the two s that subroutines necessarily branch to another part of your program while
macros generate in-ine code. Thus, a program contains only one version of a given subroutine, but contains as
many versions of 2 given macro as there are calls for that macro.

Notice the emphasis on ‘versions’ in the previous sentence, for this is 2 major difference between macros and
subroutines. A macre does not recessarily generate the same source code each time it is called. By changing the
parameters i a macro call, you can change the source code the macro generates, In addition, macro parameters
can be tested at assernbly-time by the conditional assembly directives. These two tools enable a general-purpose
macro definition Lo generate customized source code for a particular programming situation. Notice that macro
expansion and any code customization oceur at assembly-time and at the source code level. By contrast, a
generalized subroutine resides in your program and requires execution time,

It 15 usually possible to obtain similar results using either a macro or a subrouting. Determining which of these
facilities to use is not always an obvious decision. [n some cases, using a single subroutine rather than multiple
in-line macros can reduce the overali program size. In situations involving a large number of parameters, the use
of macros may be more efficient. Also. notice that macros can call subroutines, and subroutines can contain
MACros.

USING MACROS
The assembler recognizes the following macro operations:

MACRO directive
ENDM directive
LQCAL directive
REPT directive
IRP directive
IRPC directive
EXITM directive
Macro call

a & O & » & & 3

All of the directives listed above are related to macro definition. The macro call initiates the parameter sub-
stitution {macro expansion) process.

Macro Definition

Macros must be defined in your program before they can be used. A macro definition is initiated by the MACRO
assembler directive, which lists the ngme by which the macro can later be called, and the dummy parameters to
be replaced during macro expansion, The macro definition is terminated by the ENDM directive. The prototype
instructions bounded by the MACRO and ENDM directives are called the macro body.

Chapter 5. Macros

54

When label symbols used in a macro body have ‘global’ scope, multiply-defined symbol errors result if the macro
is calied more than once. A label can be given limited scope using the LOCAL directive. This directive assigns a
unique value o the symbol each time the macro is called and expanded. Dummy parameters also have limited
scope.

Qccasionally rou may wish to duplicate a block of code several times, either within a macro or in line with
other source vode. This can be accomplished with minimal coding effort using the REPT [repeat block), IRP
{indefinite repeat), and IRPC {indefinite repeat character) directives. Like the MACRQ directive, these directives
are terminatef by ENDM,

The EXITM cirective provides an alternate exit from a macro. When encountered, it terminates the current macro
just as if ENL['M had heen encountered.

Macro Definftior. Directives

MACRQ Dire -tive
Label Qpcode Operand
name MACROQ optional dummy parameter(s)

The name in he label field specifies the name of the macro body being defined. Any valid user-defined symbol
name can be ised as a macro name. Note that this name must be present and must #o¢ be terminated by a colon,

A dummy parameter can be any valid user-defined symbol name or can be null. When multiple parameters are listed,
they must be eparated by commas. The scope of 2 dummy parameter is limited to its specific macro definition. If a
reserved symt ol is used as a dummy parameter, its reserved value is not recognized. For example, if you code
A.8.C as a dummy parameter {ist, substitutions wilt occur properly. However, you cannot use the accumulator
or the B and Z registers within the macro, Because of the limited scope of dummy parameters, the use of these
registers is not affected outside the macro definition.

Dummy paratneters in a comment are not recognized. No substitution occurs for such parameters.

Dummy paratneters may appear in a character string. However. the dummy parameter must be adjacent to an
ampersand character (&) as explained later in this chapter.

Any machine instruction or applicable assembler directive can be included in the macro body, The distinguishing
feature of mazro prototype text is that parts of it can be made variable by placing substitutable dummy param-
eters in instruction fields. These dummy parameters are the same as the symbols in the operand field of the
MACRO dires tive.

Example:

Drefine macro MACT with dummy parameters G1, G2, and G3.

Chapter 5. Macros

NOTE
The following macro definition contains a potential error
that is clarified in the description of the LOCAL directive

later in this chapter.

MACT MACRO G1,G2,G3 iMACRO DIRECTIVE

MOVES. LHLD G1 MACRO BODY

MOV AM

LHLD G2

MOV B,M

LHLD G3

MOV cM

ENDM ;ENDM DIRECTIVE
ENDM Directive

Lobel Opcode Operand

- ENDM ——

The ENDM directive is required to terminate a macro definition and follows the last prototype instruction, It is
also required to terminate code repetition blocks defined by the REPT, IRFP, and {RPC directives.

Any data appearing in the {zbel or operang fields of an ENDM direciive causes an error.
NOTE

Because nested macro calls are not expanded during macro
definition, the ENDM directive to close an outer macra can-
not be contained in the expansion of an inner, 'nested’
macro call. [See ‘Nested Macro Definitions' later in this
chapter.)

LOCAL Directive

Label Opcode Operand

— LOCAL label name(s}

The specified label names are defined to have meaning only within the current macro expansion. Each time the
macro is called and expanded, the assembler assigns gach local symbol 2 unique symbol in the form #7annn.

The assembler assigns 770001 to the first local symbol, 770002 to the second, and 50 on. The most recent symbol
name generated always indicates the total number of symbals created for all macro expansions. The assembler
never duplicates these symbols. The user should aveid coding symbols in the form ??nnnn so that therg will not
be a conflict with these assembler-generated symbols.

55

Chapter 5. Macros

56

Dummy parameters included in a macro call cannot be operands of a LOCAL directive. The 'cope of a dummy
parameter is always local to its own macro definition.

Local symbols can be defined only within a macro definition. Any number of LOCAL direct ves may appear in
a macro definition, but they must all follow the macro call and must precede the first line o1 prototype code,

A LOCAL directive appearing outside a macro definition causes an error, Also, 2 name appeacing in the label
field of a LOCAL directive causes an error.

Example:

The definition of MACT {used as an example in the description of the MACRO directive} contains a potential
error because the symbol MOVES has not been declared local. This is a potential error since no error occurs if
MACT s called only once in the program, and the program itself does not use MOVES as a symbol. However,
if MACT is called more than once, or if the program uses the symbol MOVES, MOVES is a inuitiply-defined
syrbol. This potential error is avoided by naming MOVES in thie operand field of a LOCAL directive:

MACI MACRO G1,62,G3
LOCAL MOVES

MOVES. LHLD G
MOV AM
LHLD G2
MOV B,M
LHLD G3
MOV CM
ENDM

Assume that MACI is the only macro in the program and that it is called twice. The first tirie MACT is expanded,
MOVES is replaced with the symbol ?700017; the second time, MOVES is replaced with ?700J2. Because the
assembler encounters only these special replacement symbols, the program may contain the symbol MOVES
without causing 2 multiple definition,
REPT Directive

Label Opcode Operand

aptional: REPT expression

The REPT directive causes a sequence of source code lines to be repeated ‘expression’ times. All lines appearing
between the REPT directive and a subsequent ENDM directive constitute the block to be repeated.

When "expression’ contains symbolic names, the assembler must encounter the definition of he symbol prior to
encountering the expression.

The insertion of repeat blocks is performed in-line when the assembler encounters the REPT direciive. No
explicit call is required to cause the code insertion since the definition is an implied call for expansion,

Chapter 5. Macros

Example 1.
Rotate accumuiator right six times.
ROTRG: REPT 6
RRC
ENDM

Exampie 2:

The following REPT directive generates the source code for a routine that fiils a five-byte field with the character
stored in the accumulator:

PROGRAM CODE GENERATED CODING

LHLD CNTRI LHLE CNTRI

REPT 5 MOV M,A

MOV M.A INX H

INX H MOV M.A

ENDM INX H
MOV M.A
INX H
MOV M,A
INX H
MoV M.A
INX H

Example 3:

The following example illustrates the use of REPT to generate a multiplication routine. The multiplication is
accomplished through a series of shifts. If this technigue is unfamiliar, refer to the example of multiplication
in Chapter 6. The example in Chapter 6 uses a program loop for the multiplication. This exampie replaces the
loop with seven repetitions of the four instructions enclosed by the REPT—~ENDM directives.

Notice that the expansion specified by this REPT directive causes the label SKIPAD to be generated seven times.
Therefore, SKIPAD must be declared local to this macro,

FSTMUL: Mvi D0 FAST MULTIPLY ROUTINE

LXI HO MULTIPLY E*A — 16-BIT RESULT

AN HE&L

REPT 7

LGCAL SKIPAD

RLC GET NEXT MULTIPLIER BIT

ING SKIPAD 5DONT ADD IF BIT = 0

DAD D ;ADD MULTIPLICAND INTO ANSWER
SKIPAD: DAD H

ENDM

RLC

RNC

DAD D

RET

Chapter 5. Macros

This example i fustrates a classic programming trade-off: speed versus memaory, Although this example executes
mare quickly Uhan the example in Chapter 6, It requires mors memory,

IRP Directive
Labef Opcode Operand
opticnal: iRP dummy param, <list>

The operand field for the IRP {indefinite repeat) directive must contain one macro dummy parameter followed
by a list of actual parameters enclosed 1n angle brackets. IRP expands its associated macro prototype code sub-
stituting the fi'st actual parameter for each occurrence of the dummy parameter. IRP then expands the proto-
type code agait substituting the second actual parameter from the list. This process continues until the list is
exhausted.

The list of actsal parameters to be substituted for the dummy parameter must be enclosed in angle brackets
{< 2. Individu: | items in the list must be separated by commas. The number of actual parameters in the st
controls the n imber of times the macro body [s repeated: a list of n items causes n repetitions. An empty list
{one with ne arameters coded! specifies a null operand list. IRP generates one copy of the macro body sub-
stituting & nu! for each occurrence of the dummy parameter. Also, fwo commas with no intervening character
create a null garameter within the list. {See 'Special Operators’ later in this chapter for a description of null
operands.)

Example:

The following code sequence gathers bytes of data from different areas of memaory and then stores them in
consecutive by tes beginning at the address of STORIT:

PROGRAM CODE GENERATED CODING
Lx!} HSTORIT LXI H.STORIT
IRP X<FLD1,3E20H,FLD3> LOA FLD?
Lba X MOV M.A
MOV MA ENX H
INX H LDA 3E20H
ENDM MOV M.A
INX H
LDA FLD3
MOV M. A
INX H
IRPC Directive
Label Opocode Operand
optional: IRPC dummy param,text

5-8

Chapter 5. Macros

The IRPC (indefinite repeat character) directive causes a sequence of macro prototype instructions to be repeated
for each text character of the actual parameter specified. If the text string is enclosed in optional angle brackets,
any delimiters appearing in the text string are treated simply as text to be substituted into the prototype code.
The assembler generates one iteration of the prototype code for each character in the text string. For each
iteration, the assembler substitutes the next character from the string for each occurrence of the dummy param-
eter, A list of nn text characters generates n repetitions of the IRPC macro body. An empty string specifies a

nuil actual operand. IRPC generates one copy of the macro body substituting a null for each occurrence of the
durmmy parameter.

Example:
PROGRAM CODE GENERATED CODING
LHLD DATE-] LHLD DATEA
MVDATE: {IRFC X,1977 INX H
INX H MV M,1
My M X INX H
ENDM MvI M2
INX H
MvI M. 7
INX H
MV M,7

IRPC provides the capability to treat each character of a string individually; concatenation {described later in this
chapter} pravides the capability for building text strings from individual characters.
EXITM Directive
Label Opcode Operand

optional: EXITM —
EXITM provides an alternate method for terminating a macro expansion or the repetition of 2 REPT, IRP, or
IRPC code sequence. When EX!ITM is encountered, the assembler ignores all macro prototype instructions
located between the EXITM and ENDM directive for this macro. Notice that EXITM may be used in addition

to ENDM, but net in place of ENDM.

When used in nested macros, EXITM causes an exit to the previous level of macro expansion. An EXITM within
a REPT, IRP. or IRPC terminates not anly the current expansion, but all subsequent iterations as well.

Any data appearing in the operand field of an EXITM directive causes an error.
Example:

EXITM is typically used to suppress unwanted macro expansion. In the following example, macro expansion is
terminated when the EXiTM directive is assembled because the condition X EQ 0 is true.

Chapter 5, Mazacros

MAC3 MACRO XY

IFXEQOD
EXITM

ENDM

Soecial Macro Op trotors

In certain spec al cases, the normal rules for dealing with macras do not work. Assume, for example, that vou
want to specif- three actual parameters, and the second parameter happens to be the comma character. To the
assembler, the list PARM1,,,PARM3 appears to be a list of four parameters where the second and third param-
eters are missit g. The list can be passed correctly by enclosing the comma in angle brackets: PARMT (»PARM3.
These special ¢perators instruct the assembler to accept the enclosed character (the comma) as an actual param-
eter rather thay a delimiter.

The assernbler recognizes a2 number of operators that allow special operations:

& Ampersand. Used to concatenate (link} text and dummy parameters. See the further
discussion of ampersands below.

<O Angle brackets. Used to delimit text, such as lists, that contain other delimiters.
Notice that blanks are usually treated as delimiters. Therefore, when an zctual
parameter contains blanks (passing the instruction MOV A M, for example} the
parameter must be enclosed in angle brackets. This is alsa true for any other de-
limiter that is to be passed as part of an actual parameter. To pass such text to
nested macro calls, use one set of angle brackets for each level of nesting. {See
‘Nested Macro Defimitions,” below.}

B Double semicolon. Used before a comment in 2 macro definition to prevent
inclusion of the comment in expansions of the macro and reduce storage
requirements. The comment still appears in the listing of the definition.

! Exclamation point {escape character). Placed before a character {usually a
delimiter} to be passed as literalized text in an actual parameter. Used primariiy
to pass angle brackets as part of an actual parameter. To pass a literalized
exclamation point, issue !!, Carriage returns cannot be passed as actual parameters,

The 1" is always preserved while building an actual parameter. It is not

echoed when an actual parameter is substituted for a dummy parameter,
except when the substitution is being used to build another actual parameter.

5-10

Chapter 5. Macros

NUL fn certain cases it is not necessary to pass a parameter to a macro. It is
necessary, however, to indicate the omission of the parameter. The omitted
{or null} parameter can be represented by two consecutive delimiters as in
the list PARMT, PARM3. A null parameter can also be represented by two
consecutive single quotes: " ,PARM2 PARM3. Notice that a null is quite
different from a blank: a biank is an ASCI| character with the hexadecimal
representation 20H: a null has no character representation. In the assembly
listing 2 null fooks the same as 2 blank, but that s only because no substi-
tution has taken place. The prograrmmer must decide the meaning of a nult
parameter. Although the mechanismis somewhat different, the defaulis taken
for assembler controls provide a good example of what a null parameter can
mean. For example, coding MODBS5 a5 an assembler control specifies that
the assembier is 1o generate ohiect code for the 8085, The absence of this
control [which 1n effect is a null parameter) specifies that the assembler
is to generate only 8080 object code.

Assembler controls are explained in the fS/S-/f 8080/8085 Macro Assembler
Operator's Manual, 9800292,

Example:

In 2 macro with the dummy parameters W X,Y .2 it is acceptable for either
the X ar Y parameter to be null, but not both. The following 1F directive
tests for the error condition:

IF NUL X&Y
EXITM

When a macro 15 expanded, any ampersand preceding or following 2 dummy parameter in a macro definition is
removed and the substitution of the actual parameter occurs at that point. When it is not adjacent to a dummy
parameter, the ampersand is not removed and is passed as part of the macro expansion text,

NOTE

The ampersand must be immediately adjacent to the text being
concatenated; intervening blanks are not allowed.

i nested macro definitions {described below]) contain ampersands, the aonly ampersands removed are those adiacent
to dummy parameters belonging to the macro definition currently being expanded. All ampersands must be re-
maved by the time the expansion of the encompassing macro body is performed. Exceptions force illegal character
Brrors.

Ampersands placed inside strings are recognized as concatenation delimiters when adjacent to dummy parameters;
simifarly, dummy parameters within character strings are recognized only when they are adiacent to ampersands.
Ampersands are not recognized as operators in comments.

Chapter 5. Macros

Nested Macro Detinitions

A macro definition can be contained comgpletely within the body of another macro definition (that is, macro
definitions can be mested). The body of a macro consists of all text {including nested macro definitions)
bounded by maitching MACRO and ENDM directives. The assembler allows any number of macro definitions to
be nested.

When a higher- evel macro is called for expansion, the next Jower-level macro is defined and eligible to be called
for expansion. A lower-evel macro cannot be called unless all higher-level macro definitions have afready been
calied and exp:.nded.

A new macro nay be defined or an existing macro redefined by 2 nested raacro definition depending on whether
the name of the nested macro is a new label or has previously been established as 3 dummy parameter in a
higher-level ma:ro definition. Therefore, each time a higher-levei macro is calied, a lower-level definition can be
defined differe wtly if the two contain common dummy parameters. Such redefinition can be costly, however, in
terms of assermaler execution speed.

Since IRP, IRFC, and REPT blacks constitute macra definitions, they also can be nested within another definition
created by {RF, IRPC, REPT. or MACRO directives. In addition, an efement in an IRP or IRPC actual parameter
list {enclosed i1 angle brackets) may itself be a list of bracketed parameters; that is, lists of parameters can contain
elements that . re also lists.

Example:

LISTS MACRO PARAMI ,PARAMZ

ENDM

LISTS <A, B.C»

MACRO CALLS

Once 2 macro 1as been defined, it can be called any number of times in the program, The call consists of the
macro name and any actual parameters that are to replace dummy parameters during macreo expansion, During
assembly, each macro cafl is replaced by the macre definition code; dummy parameters are replaced by actual
parameters,

Macro Call Format

Labe! Opcode Operand
optional: Macre name optional actual
pararpeter(s}

Chapter 5. Macros

The assembler must encounter the macro definition before the First call for that macro. Otherwise, the macro
call is assumed to be an illegal opcode. The assembier inserts the macro body identified by the macro name
each time it encounters a czall to a oreviously defined macro in your program.

The positioning of actual parameters in a macro call is critical since the substitution of parameters is based
solely on position, The first-listed actual parameter replaces each occurrence of the first-listed dummy param-
eter; the second actual parameter repiaces the second dumemy parameter, and sa on. When coding a macro call,
you must be certain to list actual parameters in the appropriate sequence for the macro.

Motice that blanks are usually treated as delimiters. Therefore, when an actual parameter contains blanks
{passing the instruction MOV A M, for example] the parameter must be enclosed in angle brackets. This is also

true for any other delimiter that is to be passed as part of an actual parameter. Carriage returns cannot be passed
as actual parameters,

If a macro cail specifies more actual parameters than are listed in the macro definition, the extra parameters
are ignored. |f fewer parameters appear in the call than in the definition, a nult replaces each missing parameter.

Example:

The following example shows two czlls for the macro LOAD. LOAD is defined as follows:

LOAD MACRO G1,62,G3
LOCAL MOVES
MOVES: LHLD Gi
MOV AM
LHELD G2
MOV B.M
LHLD G3
MOV CM
ENDM

LOAD simply {oads the accumulator with a byte of data from the location specified by the first actual parameter,
the B register with a byte from the second parameter, and the C register with a byte from the third parameter,

The first time LOAD 15 called, 1t is used as part of a routing that inverts the order of three bytes in memary.
The second time LOAD s called, it is part of a routine that adds the contents of the B register to the accumu-
lator and then compares the result with the contents of the C register.

Chapter 5. Macros

MAIN PROGRAM SUBSTITUTION
INZ MEXT - INZ NEXT
LOAL FLDFLDH FLD+2 710001: LHLD FLD
MOV MA INVERT BYTES MOV AM
DCX H LHLD FLD+]
MOV MB MOV BM
BCX H LHLD F1L.D+2
MOV MC MOV CM
LOAD 3EQH,BYTE.CHECK MOV MA ANVERT BYTES
ADD B CHECK DIGIT DCX H
CMP C MOV MB
CNZ DGTBAD bexX H
MOV MC
770002: {LHLD 3EQH
MOV AM
LHLD BYTE
MOV BM
LHLD CHECK
MOV CM
ADD B WCHECK DIGIT
cMp C

Nested Macro Calls

CNZ DGTBAD

Macro calls (inzluding any combination of nested {RP, IRPC, and REPT constructs) can be nested within macro
definitions up to eight levels. The macro being called need not be defined when the enclosing macro is defined:
however, it mist be defined before the enclosing macro 15 called.

A macro defin tron can also contain nested calls to itself frecursive macre caifs) up to eight levels, as long as the
Tecursive macro expansions can be terrminated eventually, This operation can be controlled using the conditional
assembly direc ves described in Chapter 4 (IF, ELSE, ENDIF).

Example;

Have a macro :all itself five times after it is called from elsewhere in the program.

PARAM1
RECALL

PARAMI

5-14

SET 5
MACRO

IF PARAMT NE O

SET PARAMT -1

RECALL {RECURSIVE CALL
ENDIF

ENDM

Chapter 5. Macros

Macro Expansion

When a macro is called, the actual parameters to be substituted into the prototype code can be passed in one of
two modes. Normally, the substitution of actual parameters for dummy parameters is simply 2 fext substitution.
The parameters are not evaluated until the macro is expanded.

If a percent sign {%) precedes the actual pararneter in the macro call, however, the parameter is evaluated
immediately, before expansion occurs, and is passed as a decimal number representing the value of the param-
eter. In the case of IRPC, a "% preceding the actual parameter causes the entire text string to be treated as a
single parameter. One IRPC iteration occurs for each digit in the decimal string passed as the result of immediate
evaluation of the text string,

The normal mechanism for passing actual parameters is adequate for most applications, Using the percent sign
to pre-evaluate parameters is necessary only when the value of the parameter is different within the local con-
text of the macro definition as compared to its global value outside the macro definition.

Example:

The macro shown in this example generates a number of rotate instructions. The parameters passed in the macro
call determine the number of positions the accumulator is to be rotated and whether rotate right or rotate left
instructions are to be generated. Some typical calls for this macro are as follows:

SHIFTR ‘R"3
SHIFTR LBCOUNT =1

The second call shows an expression used as a parameter. This expression is to be evaluated immediately rather
than passed simply as text.

The definition of the SHIFTR macro is shown below. This macro uses the conditional IF directive to test the
validity of the first parameter. Also, the REPT macro directive is nested within the SHIFTR macro.

SHIFTR MACRO Xy
IF XEQ 'R’
REPT Y
RAR
ENDM
ENDIF
IF X NE ‘L°
EXITHM
ELSE
REPT Y
RAL
ENDM
ENDIF
ENDM

The indentation shown in the definition of the SHIFTR macro graphically illustrates the relationships of the IF,
ELSE, ENDIF directives and the REPT, ENDM directives. Such indentation is not required in vour program, but

may be desirable as documentation,

5-15

Chapter 5. Macros

The SBIFTR macro generates nothing if the first parameter is neither R nor L. Therefore, the following calls
produce no code, The resuft in the obiect program is as though the SHIFTR macro does not appear in the
$OUNCE Progra.n.

SHIFTR 3
SHIFTR ‘B2

The following call to the SHIFTR macro generates three RAR instructions:
SHIFTR 'R".3

Assume that ; SET directive elsewhere in the source program has given COUNT the value 6. The following call
generates five RAL nstructions:

SHIFTR ‘L% COUNT -]

The following is a redefinition of the SHIFTR macro. In this definition, notice that concatenation is used to
form the RAFI or RAL operation code. If a call to the SHIFTR macro specifies a character other than R or L.,
illegal aperatinn codes are generated. The assembler flags all illegai operation codes as errors.

SHIFTR MACRO XY
REPT Y
RA&X
ENDM
ENDM

NULL MACROS

A macro may legally comprise only the MACRO and ENDM directives. Thus, the following is a legal macro
definition:

NADA MACRO P1,P2.P3 P4
ENDM

A call to this macro produces ne source code and therefore has no effect on the program.
Although there is no reason to write such a macro, the null {or empty) macro body has a practical application.
For example, all the macro prototype instructions might be enclosed with IF-ENDIF conditional directives.

When none o: the specified conditions 1s satisfied, all that remains of the macro is the MACRO directive and
the ENDM di ective.

SAMPLE MACROS

The following sample macros further demonstrate the use of macro directives and operators.

Chapter 5, Macros

Example 1: Nested IRPC

The following macro definition contains a nested IRPC directive. Notice that the third operand of the outer
macro becomes the character string for the IRPC:

MOVE MACROC XYz

IRPC PARAM.Z
LHLD X&&PARAM
SHLD Y&&PARAM
ENDM

ENDM

Assume that the program contains the call MOVE SRC.DST,123. The third parameter of this call is passed to
the IRPC. This has the same effect as coding IRPC PARAM,123. When expanded, the MOVE macro generates
the fallowing source code:

LHLD 5RC1
SHLD DST1
LHLD 5RC2
SHLD DST2
LHED 5RC3
SHLD DST3

Notice the use of concatenation to form labels in this examptle.

Example 2 Nested Macros Used to Generate DB Directives

This example generates a number of BB 0 directives, each with its own label. Two macros are used for this
purpose; INC and BLOCK. The INC macro 15 defined as follows:

INC MACRO F1,F2
$ SAVE GEN
F1&F2. DB 0 GENERATE LABELS & DB's
$ RESTORE
ENDM

The BLOCK macro, which accepts the number of DB's to be generated (NUMB) and a label prefix (PREFIX}, is
defined as follows:

BLOCK MACRC NUMB.PREFIX
$ SAVE NOGEN
COUNT SET 0
REPT NUMB
COUNT SET COUNT*1
INC PREFIX%COUNT NESTED MACRO CALL
ENDM
§ RESTORE
ENDM

Chapter 5. Macros

5.18

The macro ca | BLOCK 3,LAB generates the following source code:

BLOCK JLAB
LABT. DB 0
LABZ: DB 0
LAB3: D8 0

The assembler controls specified in these two macros {the lines beginning with $) are used to cigan up the
assembly listit g for easier reading, The source code shown for the call BLOCK 3,LAB is what appears in the
assembly fisting when the controls are used. Without the controls, the assembly listing appears as follows:

BLOCK 3.LAB
COUNT SET 0
REPT 3
COUNT SET COUNT+1
INC LAB 3%COUNT
ENDM
COUNT SET COUNT+}
INC LAB 5%COUNT
LABTL: bB 0
COUNT SET COUNT+1
INC LAB.%COUNT
LABZ: B 0
COUNT SET COUNT+1
INC LAB %COUNT
LABD: DB 0

Example 3; A Macro that Converts Itself into a Subroutine

In some cases, the in-line coding substituted for each macro call imposes an unacceptable memory requirement,
The next thrie examples show three different methods for converting a macro call into a subroutine call. The
first ime the SBMAC macro is called, it generates a full in-line substitution which defines the SUBR subroutine,
Each subsequ:nt call to the SBMAC macro generates only a CALL nstruction to the SUBR subroutine.

Within the fo lowing examples, notice that the labe! SUBR must be global so that it can be called from outside
the first expaision. This is possible only when that part of the macro definition containing the global label is
called only once in the entire program.

Method #1: :dested Macro Definitions

Macros can b redefined during the course of a program. In the following example, the definition of SBMAC
contains its own redefinition as a nested macro. The first time SBMAC is called, it is full expanded, and the
redefinition ¢f SBMAC replaces the original definition. The second time SBMAC is called, only its redefinition
{a CALL inst-uction) is expanded.

SBMAC
SBMAC

LINK:
SUBR:

DUN:

Chapier 5, Macros

MACRO
MACRO

CALL SUBR #REGEFINITION OF SBMAC
ENDM

CALL SUBR
IMP DUN

RET

ENDM

Notice that both versions of SBMAC contain CALL SUBR instructions. This is necessary to provide a return
address at the end of the SUBR routine. The jump instruction jabelled LINK is required to prevent the SUBR
subroutine from executing a return to itself. Motice that the return address for the second CALL SUBR
instruction would be S{UBR if the jump instruction were omitted, The JMP DUN instruction simply transfers
control past the end of the subroutine.

NOTE

The assembler allows the use of a source line consisting
only of a label. Such a labei is assigned to the next source
line for which code or data is generaled, Notice that
neither code nor data is generated for an ENDM directive,
50 the label DUN is assigned to whatever instruction follows
the ENDM directive. This construct is required because the
ENDM directive itself may not be given a label,

Method #2: Conditional Assernbly

The second method for altering the expansion of the SBMAC macro uses conditional assembly. In this example,
a switch [F{RST) is set TRUE just before the first call for SBMAC. SBMAC is defined as follows:

TRUE
FALSE
FIRST
SEMAC

FIRST
LINK:
SUBR:

DUN:

EQu OFFH
EQU 0

SET TRUE
MACRO

CALL SUBR

iF FIRST
SET FALSE
JMP DuUN
RET

ENDIF

ENDM

Chapter 5. Macros

5-20

The first call o SBMAC expands the fult definition, including the call to and definition of SUBR:

SBMAC

CALL

IF
LINK: | P
SUBR.:

RET
DUN:

ENDIF

SUBR
FIRST
DUN

Because FIRST is TRUE when encountered during the first expansion of SBMAC, ail the statements between
IF and ENDII" are assembled into the program. In subsequent calls, the conditionally-assembled code is skipped
so that the suaroutine is not regenerated. Only the following expansion is produced:

SBMAC
CALL
IF

Method #3: Zonditional Assembly with EXITM

SUBR
FIRST

The third method for attering the expansion of SBMAC also uses conditional assembly, but uses the EXITM
directive 10 s ppress unwanted macro expansion after the first call. EXITM is effective when FIRST is FALSE,

which it is afrer the first call to SBMAC.

TRUE EQU
FALSE EQU
FERST SET
SBMAC MACRO
CALL
IF
EXITM
ENDIF
FIRST SET
JMP
SUBR:
RET
DUMN:
ENDM

OFFH
a
TRUE

SUBR
NOT FIRST

FALSE
DEIN

Example 4: Computed GOTQ Macro

Chapter 5, Macros

This sample macro presents an implementation of a computed GOTO for the 8080 or §085. The computed
GOTO, 2 commen feature of many high level languages, allows the program to jump to one of a number of
different iocations depending on the value of a variable. For example, if the variable has the value zero, the
program jumps to the first itern in the list; if the variable has the value 3, the program jumps to the fourth

address in the list,

In this example, the variable 15 placed in the accumulator. The list of addresses 15 defined as a series of DW
directives starting at the symbolic address TABLE. This macro (T]UMP) also modifies itself with a nested
definition. Therefore, oniy the first call to the T)UMP macro generates the calculated GOTO routine, Subse-

quent calls produce only the jump instruction JMP TJCODE.

TIUMP MACRO

TICODE: ADD
MVI
MOV
DAD
MOV
INX
MOV
XCHG
PCHL

TJUMP MACRO
1MP
ENDM
ENDM

Do
E.A

EM

DM

TJCODE

JUMP TO A—TH ADDR IN TABLE
MULTIPLY A BY 2

{CLEAR D REG

‘GET TABLE OFFSET INTO D&E

{ADD OFFSET TO TABLE ADDR N H&L
JGET 15T ADDRESS BYTE

GET 2ZND ADDRESS BYTE
JUMP TO ADDRESS

‘REDEFINE T{UMP TO SAVE CODE
NEXT CALL JUMPS TO ABOVE CODE

MNatice that the defimition of the TJUMP macro dees not account for loading the address of the address table
into the H and L registers; the user must load this address just before calling the T]UMP macro. The following
shows the coding for the address table {TABLE) and a typical call sequence for the TJUMP macro:

Mvi
LXi
TIUMP

TABLE: DW
DwW
DW

The call sequence shown above causes a jump

A2

H,TABLE

LocCo
LOCT
LOC2

to LOC2.

5-21

Chapter 5, Macros

5-22

Example 5. llsing IRP to Define the |ump Table

The TJUMP riacro becomes even more useful when a second macro {GOTOQ) is used to define the jump table,
load the addriss of the table into the H and L registers, and then call TJUMP, The GOTO macro is defined as
follows:

GOTO MACRO INDEX,LIST
LOCAL JTABLE
LDA INDEX LOAD ACCUM WITH INDEX
LXI H.TABLE LOAD H&L WITH TABLE ADDRESS
TIUMP CALL TJUMP MACRO
JTABLE: IRP FORMAL<LIST>
DW FORMAL SET UP TABLE
ENDM
ENDM

A typical call to the GOTQ macro would be as follows:
GOTO CASE «COUNT TIMER .DATE PTDRVR>

This cal! to th e GOTO macro builds a table of DW directives for the labels COUNT, TIMER, DATE, and
PTDRVR. It her loads the base address of the table into the H and L registers and calls the TJUMP macro.
If the value o the variable CASE is 2 when the GOTO macro is called, the GOTO and TIUMP macros
together caus a jurnp to the address of the DATE routine.

Notice that aiy number of addresses may be specified in the list for the GOTO routine as long as they all fit
on a single soarce line. Also, the GOTO macro may be called any number of times, but only one copy of the
coding for the TIUMP is generated since the T{UMP macro redefines itself to generate only a JMP T]JCODE
instruction.

6. PROGRAMMING TECHNIQUES

This chapter describes some techniques that may be of help to the programmer.

BRANCH TABLES PSEUDO-SUBRCUTINE

Suppose a program consists of several separate routines, any of which may be executed depending upon some
initial condition (such as a number passed in a register]. One way to code this would be to check each condition
sequentially and branch to the routines accordingly as follows:

CONDITION = CONDITION 17
IF YES BRANCH TO ROUTINE 1
CONDITION = CONDITHON 27
IF YES BRANCH TO ROUTINE 2

BRANCH TO ROUTINE N
A sequence as above is inefficient, and can be improved by using a branch table.

The [ogic at the beginning of the branch table program leads the starting address of the branch table into the H
and L registers. The branch table itself consists of a list of starting addresses for the routines to be branched to.
Using the H and L registers as 2 pointer, the branch table program loads the selected routine’s starting address
into the program counter, thus effecting a jump to the desired routine. For example, consider a program that
executes one of eight routines depending on which bit of the accumulator is set:

Jump 1o routine 1 if the aceumulator holds 00300001

L " 00000010
W m gmoe " 00000100
N R u " D003 000
T 50 u " " 00010000
0 [it A v " 00100000
b e g " 01000000
TR g» » » " 10000000

& program that provides such logic follows. The program is termed a ‘pseudo-subrouting’ because it 15 treated as a
subroutine by the programmer {i.e., it appears just once in memory), but is entered via a regular JUMP instruction
rather than via a CALL instruction.

6-1

Chapter 6, Programming Technigues

Main Prcgram Branch Tabie Jump
Program Routines

normazl subroutine return
sequence not followed by
branch table program

6-2

Lobef

START:

GTBIT:

GETAD:

BTBL:

Code
Lx!

RAR
ic
INX
INX

IMP
MOV
INX

MOV
XCHG

PCHL

ow
DW
DW
bW
DW
DW
DwW
bW

Operand

H.BTBL

GETAD

GTBIT
EM

DM

RGUT1
ROUT?2
ROUT3
ROUT4
ROUTS
ROUTS
ROUT?
ROUTS

Chapter 6. Programming Technigues

:REGISTERS H AND L WILL
POINT TO BRANCH TABLE

AH.LI=(HL)+2 TO
POINT TO NEXT ADDRESS
N BRANCH TABLE

BIT FOUND
LOAD JUMP ADDRESS
(ANTO D AND E REGISTERS

iEXCHANGE D AND E
WITH H AND L
JUMP TG ROUTINE
ADDRESS

BRANCH TABLE. EACH
ENTRY IS A TWO-BYTE
ADDRESS

(HELD LEAST SIGNIFICANT
BYTE FIRST

The control routine 2t START uses the H and L registers as a pointer into the branch table {BTBL} corresponding

to the bit of the accumulator that is set. The routine at GETALD then transfers the address held i the corres-

ponding branch table entry to the H and L regisiers via the D and E registers, and then uses a2 PCHL nstruction,
thus transferrning control to the selected routine.

TRANSFERRING DATA TO SUBROUTINES

A subrouting typically requires data to perform its operations. In the simplest case, this data may be transferred

in one OF more registers.

Sometimes it 15 more convenient and economical to let the subroutine load its own registers. One way to de this
is to place a list of the required data (called a parameter list] in some data area of memory, and pass the address

of this list to the subroutine in the H and L registers.

6-3

Chapter 6. Programrmming Techniques

For example, the subroutine ADSUB expects the address of a three-byte parameter iist in the H and L registers.
1t adds the first and second bytes of the list, and stores the result in the third byte of the list:

Label Code Operand Comment
LX1 H,PLIST LOAD H AND L WITH
:ADDRESSES OF THE PARAM-
ETER LIST
CALL ADSUB WCALL THE SUBROUTINE
RET1:
JLIST: DB [;FIRST NUMBER TC BE ADDED
OB 8 SECOND NUMBER TO BE
ADDED
DS 1 SRESULT WILL BE STORED HERE
EXi H,.LIST2 iLOAD H AND L REGISTERS
CALL ADSUB FOR ANOTHER CALL TO ADSUB
RET2:
LIST2: DB 10
DB 35
DS 1
ADSUB: MOV AM WGET FIRST PARAMETER
INX H ANCREMENT MEMORY
ADDRESS
MGV B,M JGET SECOND PARAMETER
ADD B ADD FIRST TO SECOND
INX H ANCREMENT MEMORY
:ADDRESS
MOV M.A STORE RESULT AT THIRD
PARAMETER STORE
RET RETURN UNCONDITIONALLY

The first time ADSUB is called, it loads the A and B registers from PLIST and PLIST+1 respectively, adds them,
and stores the result in PLIST+2. Return is then made io the instruction at RET1.

Chapter 6. Pragramming Techniques

First call to ADSUS:

H L
ADSUB: O O

——— ——
06 PLIST
08 PLIST+]
L= | 0EH PLIST+2

The second time ADSUB 1s called, the H and L registers pomt to the parameter list LIST2. The A and B
regrsters are loaded with 10 and 35 respectively, and the sum is stored at LIST2+2. Return is then made to
the (nstruction at RET2.

MNote that the parameter lists PLIST and LIST2 could appear anywhere in memory without altering the results
produced by ADSUB.

This approach does have its limitations, however, As coded, ADSUB must receive a list of two and only two
numbers to be added, and they must be contigucus in memary. Suppose we wanted a subroutine (GENAD)
which would add an arbitrary number of bytes, located anywhere in memory, and |gave the sum in the accumu-
lator.

This ¢an be done by passing the subroutine a parameter list which is a list of addresses of parameters, rather
than the parameters themselves, and signifying the end of the parameter list be a number whose first byte is
FFH ({assuming that no parameters will be stored above address FFOOH).

Call to GENAD:
H L
GENAD:
&—W_—.—/
PARMI1
ADR1 PARM4
ADR2
ADR3 PARM3
ADR4
FFFF PARMZ

As implemented below, GENAD saves the current sum {beginning with zerol in the C register, It then loads the
address of the first parameter into the D and E registers, |f this address is greater than or equal to FFOQH, it
reloads the accumuiator with the sum hefd in the C register and returns to the calling routine, Otherwise, it

65

Chapter 6. Programming Technigues

{oads the parimeter into the accumulator and adds the sum in the C register to the accumulator. The routine
then loops b..ck to pick up the remaining parameters,

Label Code Operand Comment
LXt HPLIST {LCAD ADDRESS OF
CALL GENAD ;PARAMETER ADDRESS LIST
HALT
PLIST: DW PARMT iLIST OF PARAMETER ADDRESSES
DW PARM2
DW PARM3
ow PARM4
DW 0FFFFH STERMINATOR
PARMT: DB
FARM4: DB 16
FARM3: CB 13
FARMZ: D8 82
CENAD: XRA A CLEAR ACCUMULATOR
LOOP: MOV CA SAVE CURRENT TOTAL iN C
MOV E.M GET LOW CRDER ADDRESS BYTE
{OF FIRST PARAMETER
INX H
MOV AM GET HIGH ORDER ADDRESS BYTE
OF FIRST PARAMETER
CPI OFFH LCOMPARE TO FFH
1Z BACK IF EQUAL, ROUTINE 15 COMPLETE
MOV D.A 1 AND E NOW ADDRESS PARAMETER
LDAX D ;[LOAD ACCUMULATOR WITH PARAMETER
ADD c ADD PREVIOUS TOTAL
INX H INCREMENT H AND L TO PGINT
TO NEXT PARAMETER ADDRESS
imp LooP {GET NEXT PARAMETER
BACK: MOV AL :ROUTINE DONE — RESTORE TOTAL
RET iIRETURN TO CALLING ROUTINE
END

66

Chapter 6, Programming Techniques

MNote that GENAD could add any combination of the parameters with no change to the parameters themselves.

The sequence;

LI HPLIST
CALL GENAD
PLIST: DW PARM4
Dw PARMI
DW OFFFFH

would cause PARMT and PARM4 to be added, no matter where in memory they might be located {excluding
addresses above FFOOH).

Manvy variations of parameter passing are possible, For example, if it is necessary to allow parameters to be
stored at any address, a calling program can pass the total number of parameters as the first parameter; the
subroutine then foads this first parameter into a register and uses 1t as a counter to determine when all param-
eters had besn accepted.

SOFTWARE MULTIPLY AND DIVIDE

The multiplication of two unsigned §-bit data bytes may be accomplished by one of two techniques: repetitive
addition, or use of a register shifting operation.

Repetitive addition provides the simplest, but slowest, form of multiplication. For example, 2aH*74H may be
generated by adding 74H to the {initially zeroed) accumulator 2AH times.

Shift operations provide faster multiplication. Shifting a byte left one bit is equivalent to multiplying by 2, and
shifting a byte right one bit 1s equivalent to dividing by 2. The following process will produce the correct 2-byte

resutt of multiplying 2 one byte multiplicand by a one byte multiplier-

A. Test the least significant bit of muoltiplier. If zero, go to step b. [f one, add the
multiplicand to the most significant byte of the result.

B. Shift the entire two-byte result right ane bit position.

C. Repeai steps a and b uniil all § bits of the multiplier have been tested.
For example. consider the multiplication: 2AM*3CH=9D8H

Step 1: Test multiplier Q-bit; it is O, so shift 16-bit result right one bit,

Step 2: Test multiplier T-bit; it is 0, so shift 16-bit result right one bit.

Step 3: Test multiplier 2-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit
result right one bit.

6-7

Chapter . Programming Techniques

68

Test multiplier 3-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit

LOW-ORDER BYTE
OF RESULT

00000000

00000000

00000000
(0000000
00000000
$0000600
19600000
10000000
11000000
11000000
01100008

137110000

Step 4:
result right one bit.
Step 5: Test multiplier 4-bit; it is 1, so add 2AH to high-order byte of result and shift 16-bit
result right one bit.
Step 6! Test multiplier 5-bit: it is T, so add 2AH to high-order byte of resuit and shift 16-bit
restlt right one bit.
Step 7: Test multiplier &-bit; it is 0, so shift 16-bit result right one bit.
Step 8: Test multiplier 7-bit: it is 0, so shift 16-bit result right one bit.
The result produced is 09D4.
HIGH-ORDER BYTE
MULTIPLIER MULTIPLICAND OF RESULT
Start 00111106{3C) 00301010{2A) 00000000
StepTa..
b 00000000
Step 28 . v i e e e
b 00000000
Step 3a .. Q0101010
b 00010101
Stepda.. e a1y
b 000111131
Step 5a . . 01001001
b 00100100
Step B2 e e 01001116
b 00100111
Step 7@ . e e e
b 00010011
Step Ba e
b 00001001

11011000{908)

Since the muitipfication routine described above uses a number of important programming techniques, & sample
program i5 g ven with comments,

The progran uses the B register to hold the most significant byte of the result, and the C register to hold the
lzast signific.ant byte of the resuit. The 16-bit right shift of the result is performed in the accumulator by two
rotate-night-1hrough-carry Instructions,

Zero carry and then rotate B:
B

Then rotate C to complete the shift:
B

Chapter 6. Programming Techniques

T

Register D holds the multipficand, and register C originally holds the muttplier.

MULT: MVl 8.0
MVI ES
MULTO: MOV AL
RAR
MOV C.A
DCR E
1Z DONE
MOV 4B
INC MULT
ADD D
MULT?: RAR
MOV B.A
IMP MULTO
DONE:

ANITIALIZE MOST SIGNIFICANT BYTE
OF RESULT

iBIT COUNTER

;ROTATE LEAST SIGNIFICANT BIT OF
MULTIPLIER TC CARRY AND SHIFT
LOW-ORDER BYTE QF RESULT

EXIT IF COMPLETE

ADD MULTIPLICAND TO HIGH-
{ORDER BYTE OF RESULT IF BIT
WAS A ONE

CARRY=0 HERE SHIFT HIGH-
{ORDER BYTE OF RESULT

An analogous procedure is used to divide an unsigned 16-bit number by an unsigned 16-bit number. Here, the
process involves subtraction rather than addition, and rotate-left instructions instead of rotate-right instructions,

69

Chapter 6. Programmng Techmiques

The followin;, reentrant program uses the B and C registers to hold the dividend and quotient, and the D and E
register to hold the divisor and remainder. The H and L registers are used to store data temporarily.

DIV: MoV AD NEGATE THE DIVISOR
CMA
MOV D.A
MOV A.E
CMA
MOV E.A)
INX D FOR TWO'S COMPLEMENT
LXI H.O ANITIAL VALUE FOR REMAINDER
MV A7 JINITIALIZE LOOP COUNTER
DVO: PUSH H SAVE REMAINDER
DAD D SUBTRACT DIVISOR (ADD NEGATIVE)
ING DV1 {UNDER FLOW, RESTORE HL
XTHL
DV FOP H
PUSH PSW SAVE LOOP COUNTER {A)
MOV AC 4 REGISTER LEFT SHIFT
RAL WITH CARRY
MOV C.A LY C—BoL—SH
MOV A.B
RAL
MOV B.A
MOV al
RAL
MOV LA
MOV AH
RAL
MOV H.A
FOP PSW RESTORE LOOP COUNTER (A}
DCR A DECREMENT IT
INZ DV KEEP LOOPING

POST-DIVIDE CLEAN UP
SHIFT REMAINDER RIGHT AND RETURN IN DE

ORA A
MOV AH
RAR

MOV DA
MOV AL
RAR

MOV EA
RET

END

6-10

Chapter 6, Programming Technlques

MULTIBYTE ADDITION AND SUBTRACTION

The carry flag and the ADC (add with carry) instructions may be used to add unsigned data quantities of
arbitrary length. Consider the following addition of two three-byte unsigned hexadecimal numbers:

32AFSA
+848A90

B76A1A
To perform this addition, add to the iow-order byte using an ADD instruction. ADD sets the carry flag for use

In subsequent instructions, but does not include the carry flag in the addition. Then use ADC to add to all
higher order bytes.

32 AF 8A
84 BA %0

B7 6A 1A
carry = 1 I carry = 1I

The following routing will perform this multibyte addition, making these assumptions:
The E register halds the length of each number to be added {in this case, 3).

The numbers Lo be added are stored from low-order byte to high-order byte beginning at memory locations
FIRST and SECND, respectively,

The result will be stored from low-order byte to high-order byte beginning at memory location FIRST, replacing
the original contents of these locations.

MEMORY

LOCATION befars after

FIRST A |— 4 ——— | 1A) carry
FIRSTH1 AF | = 4 ——® | BA D'carr\-r
FIRST+2 32 ! oo BT

A

SECND 90 |{— 0
SECND+1 BA BA
SECND+2 84 84

6-11

Chapter 6, Programming Tachniques

The followin } routine uses an ADC instruction to add the low-order bytes of the operands. This could cause
the result to be high by one if the carry flag were left set by some previous instruction. This routine avoids
the problem oy clearing the carry flag with the XRA instruction iust before LOOP.

Label Code Operand Comment
1AADD: 1.XI1 B.FIRST B AND C ADDRESS FIRST
LX! H.SECND H AND L ADDRESS SECND
XRA A CLEAR CARRY FLAG
LOGP: LOAX 8 LOAD BYTE OF FIRST
ADC M :ADD BYTE CF SECND
WITH CARRY
STAX B STORE RESULT AT FIRST
DCR E DONEIFE=0
k4 DONE
INX 8 POINT TO NEXT BYTE OF
FIRST
INX H POINT TO NEXT BYTE OF
SECND
IMP LOOP ADD NEXT TWO BYTES
DONE:
FIRST: DB 90H
DB 0BAH
DB 84H
SECND: DB §AH
b8 GAFH
DB 32H

Since none f the instructions in the program loop affect the carry flag except ADC, the addition with carry will
proceed corractly.

When locaticn DONE is reached. bytes FIRST through FIRST+2 will contain TAS6ABY, which is the sum shown
at the beginning of this section arranged from low-order to high-order byte.

In order to create a multibyie subtraction routine, it is necessary only to duplicate the multibyte addition routine
of this secticn, changing the ADC instruction to an SBB instruction. The program will then subtract the number
beginning at SECND from the number beginning at FIRST, placing tie result at FIRST.

DECIMAL ADDITION

612

Any 4-bit di ta quantity may be treated as a decimal number as fong as it represents one of the decimal digits
from 0 threngh 9, and does not contain 2ny of the bit patterns representing the hexadecimal digits A through F.
In order to .reserve this decimal interpretation when performing addition, the value 6 must be added to the
4-bit quantity whenever the addition produces a result between 10 and 15. This is because each 4-bit data
quantity car hold 6 more combinations of bits than there are decimal digits.

Chapter 6. Progr ing Technig

Decimal addition is performed by letting each 8-bit byte represent two 4-bit decimal digits. The bytes are
summed in the accumuiator in standard fashion, and the DAA (decimal adjust accumuiator) instruction is then
used to convert the B-bit binary result to the correct representation of 2 decimal digits. For multibyte strings,
you must perform the decimal adiust before adding the next higher-order bytes. This is because you need the
carry flag setting from the DAA instruction for adding the higher-order bytes,

To perform the decimal addition:

2985
+4936

7921

the process works as follows:

1.

Clear the Carry and add the two lowest-order digits of each number (remember that each 2
decimal digits are represenied by one byte).

85 = 100001018
36 = 007101108
carry = 0

/@1‘}“‘1313

Carry = 0 Auxiliary Carry =0
The accurmulator now contains OBBH.

Perform a DAA operation. Since the rightmost four bits are greater than 9, a 6 is added to the
accurmulator.

Accumulator = 1071110118
6= 0110B

110000018
Since the leftmost bits are greater than 9, a 6 is added to these bits, thus setting the carry flag.

Accumulater = 110000018
6=0110 B

1]001000018

7

Carry flag = 1
The accumulator now contains 21H. Store these two digits.

6-13

Chagter 6. Programming Techniques

3. Add the next group of two digits:

29 = 001010018
49 = 010010018

carry = 1

/ﬁlonmons
Carry =0

The accumulator now contains F3M.

Auxiliary Carry = 1

., Perform @ DAA operation. Since the auxiliary carry flag is set, & is added to the accumulator.

Accumuiator = 011100118
) QtioR

/,D]mmomB

Since the leftmost 4 bits are less than 10 and the carry flag is reset, no further action occurs.

Carry flag = 0

Thus, the correct decimal result 79271 15 penerated in two bytes.

A routine wich adds decimal numbers, then, 15 exactly anzlogous to the multibyte addition routine MADD of
the last sect on, and may be produced by inserting the instruction DAA after the ADC M instruction of that
example.

Each iteration of the program loop will add two decimal digits (one byte) of the numbers.

DECIMAL SUBTRACTION

Decimal subtraction is considerably more complicated than decimal addition. in general, the process consists of
generating 11e tens complement of the subtrahend digit, and then adding the result to the minuend digit. For
example, Lo subtract 34 from 56, form the tens complement of 34 (99-34=65+1=66). Then, 56+66=122. By
truncating ¢ ff the carry out of the high order digit, we get 22, the correct result.

The prablery of handling borrows arises in multibyte decimal subtractions. When no borrow occurs from a sub-
tract, you vant to use the tens complement of the subtrahend for the next operation. If a barrow does occur,
you want to usg the nings complement of the subtrahend.

Notice that the meaning of the carry flag 15 inverted because yvou are dealing with complemented data. Thus, a

one bit in te carry flag indicates no borrow; a zero bit in the carry flag indicates a borrow. This inverted carry
flag setting zan be used in an add operation to form either the nines or tens complement of the subtrahend.

614

Chapter 6. Programming Techniques

The detailed procedure for subtracting multi-digit decimal numbers is as follows:

1.

Set the carry flag = 1 to indicate no borrow.
L.oad the accumulator with 99H, represenuing the number 99 decimal.

Add rero to the accumulator with carry, producing either 99H or 2AH, and resetting the
carry flag.

Subtract the subtrahend digits from the accumulater, producing either the nines or tens
complement.

Add the minuend digits to the accumulator.

Use the DAA instruction to make sure the resuic in the accumulator is i decimal foremat, and

to indicate a borrow in the carry flag if one occurrel.

If there are more digits to subtract, go to step 2. Otherwise, stop.
Exampie:

Perform the decimal subtraction:

4358D
—13620

29960
Set carry = 1.
Load accumuiator with 99H.

Add zero with carey to the accumulator, producing 9AH.

Accumulator = 100110018
= 00000000B
1

100110108 = 9AH

Carry

Subtract the subtrahend digits 62 from the accumulator.

Accumulator = 1007110108
2 = 100111108

1] 601110008

6-15

Chepter 6. Programming lechniques

5. Add the minuend digits 58 to the accumulator.

Accumulator = 001110008
58 = 010110008

/@ 10019&05 = 90H

Carry =0 Auxiliary Carry =1

6. DAA converts accumulater to 96 {since Auxiliary Carry = 1) and leaves carry flag = 0
indicating that a borrow occurred.

7. Load accumulator with 99H.
8. Add zero with carry to accumulator, leaving accumulator = 99H,
9, Subtract the subtrahend digits 13 from the accumulator.

Accumulater = 100710018
73 = 111011018

7100001108
10. Add the minuend digits 43 to the accumulator.

Accumulator = 100001108
43 = 010000118

/ﬂ 1100&&13 = Co9H

Carry = 0 Auxiliary Carry = 0
11 DAA converts accumulator to 29 and sets the carry flag = 1, indicating no borrow occurred.
Therefore, the result of subtracting 1362 from 4358 is 2996,
The follawing, subroutine will subtract one 16-digit decimal number from another using the following assumptions:
The minuend 1s stored least significant {2} digits first beginning at location MINU.
The subtrahe wd 15 stored least significant (2) digits first beginning at location SBTRA.

The resuft will be stored least significant {2) digits first, replacing the minuend,

616

Label

psus:

LOOP:

DONE:

Code

LX1
LXE

MYI

STC
MvI

ACI
5UB

XCHG

ADD
DAA,

MOV
XCHG

DCR
1Z
INX
INX

IMP
NOP

Operand

D.MINU
H.SBTRA

c8

A99H

LOOP

Chapter 6. Programming Techniques

Comment

D AND E ADDRESS MINUEND
H AND L ADDRESS SUBTRA-
HEND

(EACH LOOP SUBTRACTS 2
DIGITS (ONE BYTE]),
:THEREFORE PROGRAM WILL
SUBTRACT 16 DIGITS.

SET CARRY INDICATING
NGO BORROW

(LOAD ACCUMULATOR
WITH 99H.

ADD ZERQ WITH CARRY
PRODUCE COMPLEMENT

OF SUBTRAHEND

SWITCH D AND E WITH
HAND L

ADD MINUEND

DECIMAL ADJUST
ACCUMULATOR

STORE RESULT

RESWITCH D AND E

WITH H AND L

DONE IFC =0

JADDRESS NEXT BYTE

OF MINUEND

ADDRESS NEXT BYTE

JOF SUBTRAHEND

GET NEXT 2 DECIMAL DIGITS

6-17

7. INTERRUPTS

INTERRUPT CONCEPTS

The foliowing is a general description of interrupt handling and applies to both the 8080 and 8085 processars,
However, the 8085 processor has some additional hardware features for interrupt handling, For more infor-
mation on these features, see the description of the 8085 processor in Chapter 1 and the deseriptions of the
RIM, StM, and RST instructions in Chapter 3.

Often, events occur external to the central processing unit which require immediate action by the CPU. For
example, suppose a device is sending a string of 80 characters to the CPL, one at a time, at fixed intervals,
There are two ways o handle such z situation:

Al

A program could be written which accepts the first character, waits until the next character is
ready [e.g., executes a timeout by incrementing a sufficientiy large counter), then accepis the
next character, and proceeds in this fashion until the entire 80 character string has been received.

This method is referred to as programmed Input{fQutput.

The device controller could interrupt the CPU when a character is ready to be input, forcing a
branch from the executing prograr to a special interrupt service routine,

The interrupt sequence may be illustrated as follows:

INTERRUPT
Normai - Program
Program o Execution
Execution Continues

Interrupt Service
Routine

71

Chapter 7. Interrupts

12

The 8080 cor tains a bit named INTE which may be set or reset by the instructions Ef and DI described in
Chapter 3, Whenever INTE is equal to 0, the entire interrupt handling systemn is disabled, and no interrupts
will be accepted.

When the 30¢ 0 recognizes an interrupt request from an external device, the following actions occur:

1. The instruction currently being executed is completed.

2. The interrupt enable bit, INTE, is reset = 0,

3. The interrupting device supplies, via hardware, one instruction which the CPL) executes, This
instruction does not appear anywhere in memory, and the programmer has no control over it,
since it is a function of the interrupting device’s controller design. The program counter is not
incremented before this instruction.

The instruction supplied by the interrupting device is normally an RST instruction {see Chapter 3), since this

is an efficient one byte call to one of § eight-byte subroutines located in the first 64 words of memory. For
instance, the device may supply the instruction:

RST OH

with each infut interrupt. Then the subroutine which processes data transmitted from the device to the CPU
will be called into execution via an eight-byte instruction sequence al memory locations 0000H to 0007H.

A digital inpt t device may supply the instruction:
RST 1H

Then the sub-outine that processes the digital input signals will be called via a sequence of instructions
occupying mamory locations O008H to QO0FH.

L Transfers
Device "a’ inni
control 1o Beginning of
= (000 subroutine for
supplie . RST OH 0007 device ‘a’
. Transfers o
Device 'b control to Beginning of
» (008 subroutine for
supplie . RST TH 000F device ‘b’

Chapter 7. [Interrupts

Transfers Beginning of
mnn
st trol ¢
Device 'x controi io 0038 subroutine for
supplies RST 7H 003F device x’

Note that any of these 8-byte subroutines may in turn call longer subroutines to process the interrupt, if
necessary.

Any device may supply an RST instruction (and indeed may supply any one-byte 8080 instruction).

The following is an exampie of an Interrupt sequence:

ARBITRARY
MEMORY ADDRESS INSTRUCTION
3co8 MOV CB e/ Interrupt from Device 1 A
= 3C0C MOV E.A
Device 1 supplies
RST OH
Program Counter =
3C0C pushed onto 8
the stack.
Control transferred to
to Q000
0000 Instruction 1
Instruction 2
RET ¥
Stack popped into c
program counter

Device 1 signals an interrupt as the CPU is executing the instruction at 3COB. This instruction is completed.
The program counter remains set to 3COC, and the instruction RST OH supplied by device 1 is executed.
Since this (s a call to location zero, 3C0C is pushed onto the stack and program control is transferred to
jocation OQ0OH. (This subroutine may perform jumps, calls, or any other operation,) When the RETURN is
executed, address 3COC is popped off the stack and replaces the contents of the program counter, causing
execution to continue at this point.

LChapter 7. Interrupis

WRITING INTERR JPT SUBROUTINES

74

In general, any registers or condition bits changed by an interrupt subroutine must be restored before returning
to the interrup ted program, or errors will occur,

For example, -uppose a program is interrupted yust prior to the instruction:
jC LOC

and the carry it eguais 1. If the interrupt subroutine happens to reset the carry bit before returning to the
interrupted program, the jump to LOC which should have occurred will not, causing the interrupied program
to produce erraneous results.

Like any othe subroutine then, any interrupt subroutine should save aL least the condition bits and restore them
before perfornming 2 RETURN aperation. (The obvious and most convenient way to do this is to save the data
in the stack, using PUSH and POP operations.}

Further, the i1 terrupt enable system is automatically disabled whenever an interrupt is acknowledged. Except in
special cases, therefore, an interrupt subroutine should include an El instruction somewhere to permit detection
and handling of future interrupts. One instruction after an EI is executed, the interrupt subroutine may itself be
interrupted. Tiis process may continue Lo any level, but as long as all pertinent data are saved and restored,
correct progra n execution will continue automatically.

A typical intesrupt subroutine, then, could appear as follows:

Code Cperand Comment
PUSH oW SAVE CONDITION BITS AND ACCUMULATOR

El RE-ENABLE INTERRUPTS

PERFORM NECESSARY ACTIONS TO SERVICE
:THE INTERRUPT

POR PSW {RESTORE MACHINE STATUS
RET RETURN TO INTERRUPTED PROGRAM

APPENDIX A. INSTRUCTION SUMMARY

This appendix summarizes the bil patterns and number of time states associated with every 8080 CPU
instruction. The instructions are fisted in hoth mnemomc (alphabetical} and operation code {numerical}
sequence.

When using this summary, note the following symbology.

DDD represents a destination register. 555 represents a source register. Bath DDD and $585 are interpreted
as follows:

DD or 8§55 Interpretation

Q00 Register B

0a1 Register C

10 Regisier D

01t Register £

100 Register H

o Regisier L

110 A memory register or stack pointer or PSW

{flags + accumulater)
111 The accumulator

Instruction execulion time equals number of time periods multiplied by the duration of a time period.

A time period may vary from 480 nanoseconds to 2 microseconds on the 8080 or 320 nanoseconds to 2
microseconds on the BOBS. Where twe numbers of Ume periods are shown (eq.5/11}, it means that the
smaller number of time periods is required if a condition is not met, and the larger number of time periods
is required if the condition is mel.

NUMBER OF TIME PERIODS

MNEMONIC D4 Dg D Dy Dy D, D, Do

8020 8085
CALL 1 1 0 0 1 1 0 1 17 15
CcC 1 i 0 1 1 1 a O 1117 918
CNC 1 | 0 1 a 1 0 o mnz 918
CZ i i 0 ¢ 1 1 0 0 1117 9/18
CNZ i 1 0 a 0 1 g 0 1117 913
CcP 1 1 1 1 ¢ i 0 a 1117 918
CM 1 1 i 1 1 1 0 g 1147 9/18
CPE 1 1 1 0 1 1 0 a 11117 7
CPQ 1 1 1 0 0 i 0 0 17 918
RET 1 1 0 I} 1 0 0 1 10 10
RC 1 1 0 1 1 0 0] 5111 6/12
RNC 1 1 0 1 0 Q 0 ¢ s{11 6412
RZ 1 1 0 0 1 Q 0] 511 5{12

ALL MNEMONICS®@ 1974, 1975, 1976, 1977 INTEL CORPORATION

Al

Appendix A. Instruction Summary

NUMBER OF TIME PERIODS
MNEMONIC | D5 Dg Ds D4 v D, Dy Dy 8080 8085
RNZ 1 1 0 0 0 0 Q 0 511 6112
RP 1 1 1 1 6 0 0 0 511 612
RM 1 1 1 1 1 0 0 0 5111 612
RPE 1 1 1 0 1 0 0 0 511 6112
RPO 1 1 1 0 0 0 0 0 s 612
RST 1 1 A A A 1 1 1 1 12
N 1 1 0 1 1 i 1 1 10 10
ouT 1 1 0 1 0 0 1 1 10 10
LXI B 0 0 a 0 0 0 0 1 10 10
LXi D 0 0 0 1 0 i} 0 i 10 10
£XI H 0 G 1 0 0 0 0 i 10 10
LXI 5P Q 0 1 1 0 0 o 1 10 0
PUSH B 1 1 0 0 a0 1 0 1 1 12
PUSH D 1 1 0 1 0 1 a 1 1 12
PUSH H 1 1 1 0] 1 0 1 11 12
PUSH PSW 1 i 1 1 0 1 0 1 1 12
POP B 1 1 a 0 0 0 0 1 10 10
POP D 1 1 Q0 1 0 0 0 1 10 10
POP H 1 1 1 0 0 0 0 1 10 10
POP PSW [1 1 1 0 0 0 1 10 10
STA 0 0 1 1 0 0 1 0 13 13
LDA 0 .0 1 1 1 0 1 0 13 13
XCHG 1T 1 1 0 1 0 1 i 4 4
XTHL 1 b 1 a 0 0 1 i 18 16
SPHL 1 1 1 1 1 0 0 1 5 6
PCHL 1 1 1 0 1 0 0 1 5 6
DAD B 0 Q 0 0 1 0 0 1 10 10
DAD D 0 Q a 1 1 0 0 1 10 10
DAD H 0 0 1 0 1 0 0 1 10 10
DAD 5P 0 0 i 1 1 0 0 [10 10
STAX B 0 0 0 a 0 0 1 0 7 7
STAX D a 0 0 1 0 0 i 0 7 7
LDAX B 0 0 0 0 1 0 1 0 7 7
LDAX D 0 o 0 1 1 0 1 0 7 7
INX B 0 0 0 0) 0 1 1 5 6
INX D 0) 0 1 0 0 1 1 5 6
INX 0 0 1 0 0 0 1 1 5 6
INX SP 0 0 1 1 0 0 1 1 5 6
MOV rq,i9 0 1 D D D 5 5 5 5 4
MOV Mir 0 1 1 1 8 s 5 5 7 7
MOV M 0 1 D D D 1 1 0 7 7
HLT 0 1 1 1 0 1 1 0 7 5
MVI ¢ 0 Q D D D 1 1 0 7 7
MVE M a 0 1 1 0 1 1 0 10 10
INR 0 0 D D D 1 0 a 5 4
DCR 0 0 D) D 1 0 1 5 4

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL. CORPORATION
A-2

Instruction Summary

Appendix A.

W

o

Q

[

[

S] CDODOoO0 00

w = LA AR IR A . R B e e e e o e e T At T N el o B T i ol el collh o i el = R

= <« N o S S S SR e

T

T8

o

o | 8

w = R R e i B e S S R T & T T o L LS oS SR S A L e e T e B S LT B TR P

o & — LR R R o T

=

=

=
=]
] O~ O~V NN OoOODOoO00DO0O00O0O0D D00, -~ QOO0 0 —— ——
-
=] O OO OV VI WV AW W — o o v e orm e e o b e e B e e e e e e e e = = e re e T T B — —
o~
=] —_—_—e AW R W Y e m m m m———— — —————r— —— 0000000000000
X
=] R = B = N = BEC - B B R I = TR — B - B - R B - B L~ Tl = B = B =R == B =
=+
O —_—_rmr e OO0, 00 00000000000~ —@00——«g 000
Uy
o e e D OO0 e - D000 3000 e - 000000000 00—
o
[D o000 0000000000 50D D0 D e e ek b = D00 — = = OO0 D
I~
] [R e B e B o R e e T T e e =T =T = R =T P T = I o= -
o
=z
o = = o
= LT EE - e on MMMM = = m O Xe
w "4 X ODombBD<tado 0Um O 4o — _ _ [——— (SRS R .y b
z 22008z s008 8z 00 S ZEER JBICE S nPasPR0000
= fEo0fsogadnd X OO0 LT XOUDA T XUy S SIS0 o0

A-3

ALL MNEMONICS ©1974, 1975, 1976, 1977 INTEL CORPORATION

Appendix A, Instructions Smimary

MNEMONLIC

o
]
o)
h
o
(¥,)
o
4
o
[P
o
(]
~

jw
o=

NUMBER OF TIME PERIODS

8080 8085

CMA
STC
CMC
DAA
SHLD
LHLD
RIM
Sim
El

]
NGP

O~ 00000 O0COo
O~ —~0oOCcooCQ oo
B e O o
[N - - R ==
=R =R R e =
CODOO0O 00 = - -
O = S OO = — = o

£ — = D D O D e e e

-
e N
—

N N - TR O -

PN

ALL MNEMONICS ©1874, 1975, 1976, 1977 INTEL CORPORATION

A4

Appendix A, Instruction Summary

The following is a summary of the instruction set:
3080/85 CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE

a1 oF OF oF QP or
CODE| MNEMONIC |CODE| MMNEMONIC JCODRE| MNEMONIC| [CODE] MNEMONIC|CODE| MMEMONIC|CODE] MHNEMONIC
g NQP B | BCX H 55 | MOV DM 81 ADD C AC | XRA H BT IRST 2
o1 Lxl BD1& | 2C INR L 57 MOV DA 82 ADD D AD | XRA L B8 | RC

02 | STAXB 20 | DCR L 58 MOV £ .8 83| ADD E AE | XEA M o9 |-

03 INX B JE | MY L.DB 8 | MOV EC 84| ADD H AF | XRA A DA [)C adr
B4 | INR B 2F | CMA 54 | MOV ED 85 ADD b B0 | ORA B D8 [IN D2
1] DCR B 30 SInt 58 | MOV EE 86 | ADD M B1 ORA C DC | CC Adr
0s MYl B.D3 31 LXi SPDI6| 5C | MDV EH 87 ABD A B2 | ORA D oD |-

a7 RLC 32 5TA Adr 5D | MOV EL B8 | ADC B B3 | ORA E DE [SBI D8
+1:] - 33 INX 5P 5E | MOV EM 39 ADC C B4 | ORA H OF [RST 3
09 DAD B 34 INRE M 5F | MOV EA 8A | ADC D B | ORA L ED | RFD

04 | LDAXB 35 DCR M &0 | MOV HB S8B| ADC E Bs | ORA M El POP H
0B | BCX B 36 | MVI M DS 61 MOV HLC 8C| ADC H 87 | ORA A E2 1PQ Adr
OC | NR C 37 5TC 62 | MOV HD 8D ADC L 88 | CMP B E3 | XTHL
oD § DCR C 38 — 63 | MOV HE B8E |l ApC M B9 | CMP C E4 | CPO Adr
GE | Mvl C.DS 9 DAD SP 64 | MOV HH 8F | ADC a BA | CMP D E5 |PUSH H
aF RRC 3A | LDA Adr 65 MOY H.L 8G] SUB B BE | CMP E E6 | ANI D&
mw | — 3B | DCX 5P 66 { MOV HM a1 sUg C BC | CMP H E?Y | RST 4
1 LXI p.B16 | 3C | INR A 67 MOV H.A a2 SUB BB | CMF L E3 | RPE

12 STAX D 30 | ODCR A 68 | MOV LB 93 | sug E BE | CMP M E9 | PCHL

13 | INX D 3E | MV ADS 69 MOV LLC 94| SUB H BF | CMP A EA [IPE Adr
t4 INR O 3F | CMC 64 | MOV LD 95 SUB L 0 | RMZ EB | XCHG

15 OCR D 40 | MOV BE 68 | MOV LE 96 | SUB M 1 POF B EC [CPE Adr
16 | MVl D,D8 41 MOV B.C 6C { MOV LH a7 SUB A c2 IMZ adr| EB | —=

17 RAL 42 MOV B.D G | MOV LL 98 SBB B C3 | IMP Adr| EE | XRI DB
18 —-— 43 MOV B.E GE | MOV LM 82 | SBE C Cd4 | CNZ Adr] EF | RST 3§
19 Dap o 44 MOV BH 6F [MOV L.A 9A| SBE D C5 | PUSH B Fo | rP

TA | LDAXD 45 MOV B.L w0 MOV M.B 9B | SBB E Ca | AaDl DB | F1 POP PSW
B | DCX D 46 MGV BM EE| MOV M.C 9C | SBB H Cc? RST O F2 IP Adr
C F MR E 47 MOV B.A 72 MOV MO 90| SBE L C8 | RZ F3] DI

D [DRC E 48 MGV CB 13 MOV M E 9E | SBB M o] RET Adri F4 j CP Adr
1E | MVl EDS 49 MoV CC T4 | MOV MH 9F | SBB A ca | J2 F5 | PUSH PSW
1F | RAR 44 | MOV C.D 75 MOV ML AD| AMA B cB | —— F&6 | ORI DE
] RIM 4B | MOV CE 75 | HET Al[ANA C CC | CZ Adr| FT | RST &
21 LXt HDBI6 [4C | MOV CH 17 MOV M4 AZ| ANA D CD | CALL Adr| F& | RM

21 SHLD Adr 4D 1 MOV CL 78 MOV A8 A3 | ANA E CE | ACI D8 | F3 | SPHL

23 INX H 4E | MOV CM 79 MOV AL Ad4| ANA H CF | R8T 1T Fa] IM Adr
24 INE H 4F | MOV C.A 1A MOV AD AF | ANA L po | RNC FB | Ef

25 ODCR H 50 MOV 08 TB | MOV AE AG{ ANA M 01| POP D FC | €M Adr
26 | MV} H.D& 51 MOV DC FC{ MOV A M AT ANA A D2 | INC Adr| FD | ——

27 DaA 52 MOV DD D | MOV AL A8| XRA B D3 | OUT D& | FE | CFI D8
28 [- 53 | MOV BE VE | MOV AM A%l XRA C D4 | CNC aAdr{ FF | RST 7
29 DAD H 54 MOV D H IF MOV AA AA| XRA D ps PUSH D

24 | LHLD Adr 55 MOV D.L 25, ADD B AB| XRA E D6 | 50U D8

DB = constant. or logicalfanthmetic expression that evaluates D16 = constant, or [ogicalfarithmetic expression that evaluates

toan 8 bit data quantity. toa 16 bt data quantity
Adr = 15-bit address

ALL MNEMONICS © 1974, 1975, 1976, 1977 INTEL CORPORATION
A5

Appendix A,

instruction et Guide

The foilowing 5o simmary ol the instraclion sel:

Instruction iummary

ADD AT
ADC ACH
5J8 sul
538 | gegm, s81 L pg
ANA, ANI
»RA XRI
CRA OR}
MP CPl
RLC RAL RRC
RAR CMA DAA
INR
DCR} REGMg
ACCUMULATOR] FLAGS 1|5£§ CMC HIGH LOW
MOV REGMg,REGMg[B i c]Dch; REG,¢ SPHI'_D{_STACK T POINTER st
| D I £ PCHL»{ PROGRAM ! COUNTER }-RST
LXI REGy¢,Dqg XCHG 'Y
C H L [
])
1MP CALL RET
XTHL I }NC] cC CNC] RC RNC
B] 12 INZ CZ CNZ 4 RZ RNZ A
M 16 cp om 16 RP RM 16
IPE JPO CPE CPO RPE RPC
LHLD} R I |
INP ouT P
/.—.—.—_/\..__
LDAX} BCDE o) e : 8 CONTROL
g INSTRUCTIONS
STAX MEMORY INPUT OUTPUT
PORTS PORTS RST
LDA
A NOP
STA 16 HLT
El
MVI Dy DI
MOV REGMg,REGIAy ——==——m— = PUSH
. STACK fe— orp } B.D,H.PSW gm] 8085 ONLY
CODE MEANING
RI':'GI’\-"E8 The operand may speeify one of the 8-bit registers ABCDEH, or L or M {2 memory
reference via the 16-bit address in the H and L registers). The MOV instruction, which
calls for two operands, can specify M for only one of 115 operands.
Dg Designates 8-bit immediate operand.
A16 Designates a 16-bit address.
s Designates an 8-bil port number,
REG¢ Designates a 16-bit register pair (B&C,D&E.H&L or SP).
g Designates a 16 -bit immediate operand.

ALL MNEMONICS © 1974, 1975, 1876, 1977 INTEL CORPORATION

Ab

APPENDIX B. ASSEMBLER DIRECTIVE SUMMARY

Assembtler directives are summarized alphabetically in this 2ppendix. The following terms are used to describe

the contenis of directive figlds,

NOTATION

Term

Expression

List
Name
Nuil
Oplab

Parameter

String

Text

tnterpretation

Numerical expression svaluated during assembly; must evaluate
Lo & or 16 bits depending on directive issued.

Series of symbolic values or expressions, separated by commas.
Symbaol name terminaled by a space.

Field must be empty or an error results.

Optional tabel; must be terminaled by a colon.

Dummy parameiers are symbols holding the place of actual
parameters {symbolic values or expressions} specified =lsewhere

in the program.

Series of any ASCII characters, surrounded by single quote marks.

Single quote within string is shown as two consecutive single guotes.

Series of ASCII characters,

Macro definitions and calls allow the use of the special characters listed below.

Character

&

(@

Functian
Ampersand. Used to concatenate symbaois.

Angle brackets. tised to delimit text, such as lists, that contain
other delimiters.

Double semicolon. tsed before a comment in a macro definition
to prevent inctusion of the comment in each macro expansion.

Exclamation point {escape character). Placed before a delimiter
to be passed as a literal in an actual parameter. To pass a literal
exclamation point, issue ‘f1.°

Percent sign. Precedes actual parameters to be evaluated immediately

when the macro is called.

ALL MNEMONICS © 71974, 1975, 1876, 1977 INTEL CORPORATION

B-1

Appendix B, Assembler D rective Summary

S5UMMARY OF DIFECTIVES

FORMAT FUNCTION

Label Jocade Operand(s)

oplab: OB exp(s) or string(s! Define 8-bit data byte{s). Expressions must evafuate
to one byte.

oplab: pl expression Reserve data storage area of specified length,

oplab: oW expls) or string(s) Define 16-bit data word(s). Strings-limited to 1-2
characters.,

oplab: ZLSE nuli Conditional assembly. Code between ELSE and

ENDIF directives is assembled if expression in IF
clause is FALSE. {See IF.}

oplab: ZND expression Terminate assembler pass. Must be last statement of
program. Program execution starts at ‘exp.’ if present;
otherwise, at location 0.

oplab: INDIF null Termunale conditional assembly block,

name =QuU expression Define symbol ‘name’ with value “exp.” Symbol is not
redefinable,

oplab: F expression Assemble code between |F and following ELSE or
EMDIF directive if 'exp’ is trug,

oplab: JRG expression Set location counlter to ‘expression.’

name ET expression Define symbal ‘name’ with value ‘expression.’
Symbol can be redefined.

MACRO DIRECTIV S

FORMAT FUNCTION
Label (pcade Operand(s}
null 1INDM null Terminate macro definition.
aplab: LXITM nubl Alternate terminator of macro definition. [See ENDM.}
aplab: IRP dummy param,(list} Repeat instruction sequence, substituting one character

form ‘list’ for ‘dummy param’ in each iteration.

ALL MNEMONICS @574, 1975, 1976, 1977 INTEL CORPORATION

B-2

Label

oplab:

null

name

oplab;

FORMAT

Opcode

[RPC

LOCAL

MACRO

REPT

RELOCATION DIRECTIVES

Label

oplab:

oplab:

oplab:

oplab:

oplab:

oplab:

oplab:

FORMAT

Opcode

ASEG

CSEG

DSEG

EXTRN

NAME

PUBLIC

STKLN

Operand(s)

durarmy param,text

label name(s)

dummy param(s}

expression

Operandys}

nuit

boundary specification

boundary specification

name{s)

module—name

namels)

expression

Appendix B. Assembler Brirective Summary

FUNCTION

Repeat instruction seguence, substituting ong
character from “text’ for ‘dummy param’ in each
iteration.

Specify label{s) in macro definition to have local
scope.

Define macro ‘name’ and dummy parameter(s) to be
used in macro definition.

Repeat REPT block ‘expression’ times,

FUNCTION

Assemnble subseqguent instructions and daia in the
absolute mode.

Assemble subsequent instructions and data 1n the
relocatable mode using the code location counter.

Assernble subsequent instructions and data in the
retocatable mode using the data location counter,

tdentify symbals used in this program maodule but
defined in a different module,

Assighs a name to the program module.

tdentify symbols defined in this module that are to
be available to other modules,

Specify the number of bytes to be reserved for the
stack for this module.

ALL MNEMONICS©7874, 1975, 1976, 1977 INTEL CORPORATION

B-3

APPENDIX C. ASCHI CHARACTER SET

{parity bit) always reset,

ASCII CODES
The 8080 and 8085 use the seven-bit ASCI) code, with the high-order eighth bit

GRAPHIC OR
CONTROL

NUL

SOH

STX

ETX

EQT

ENG

ACK

BEL

BS

HT

LF

VT

FF

CR

S0

St

DLE

DCI (X-ON)
BC2 (TAPEI)
DC3 (X-OFF!
DCA (AP}
NAK

SYN

ETB

CAN

EM

suB

ESC

F5

GS

RS

us

SP

!

ol

*

ASCH
{HEXADECIMAL}

00
o1
02
03
04
05
06
07
08
09
0A
0B
oC
on
0E
oF
10
11
12
13
14
15
16
17
18
19
1A
1B
1c
0
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

GRAPHIC OR
CONTROL

+

Ll JEE I R -

CHOIDIOCVOIR2ErAS"TOMMITIOEED LA

ASCIE
[HEXADECIMALL

pl:
2c
20
2E
2F
30
31
32
33
34
35
36
37
ag
39
34
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E-
4F
50
51
52
53
54
55

GRAPHIC OR

AsCll

CONTROL {HEXADECIMAL}

- e N XE <

Al
~ (e

1Y
a
b
[
d
e
f
9
h
1

I
k
|
m
n
[+)
p
q
r
5
t
u
v
n
x
v
z
{

|
i

{ALT MODE!

-—

DEL {RUB QUT}

56

57

58
B9
5A
5B
5C
50
5E
5F
60
61

62
63

64

65
66
67
68
69
6A
Gl
6C
8D
5E
SF
70
71

72
73
74

75
76
77
78
79

74
7B
7
70

-
i

7F

C-t

APPENDIX D.

BINARY-DECIMAL-HEXADECIMAL CONVERSION TABLES.

DA

Appendix D, Binary-Deci nal-Hexadecimal Conversion Tables

[T=3 -
@

D-2

251

503
007
014
]

os?
115
23Q
460

921
g43
686
372

e R -

137
274
548

09
19%
a8
796

592

75%

511
023

093

186
312
44
488

976
a53
06
812

627
254
509
ms

037
75
151
303

606
213
427
BSa

POWERS OF TWOQ

483
96%

934 5

8ES
38

476
9583
906
213

627
255
511
oz2

044
088
177
35%
"o
421
842
685

370
raG
481
953

827
855
"
423

846
692
g7
775

128

548

136

388

116
552
104
208

416
832
G564
328

656
32
624
248

486
992
984
968

436
g72
144
488

976
952
a04
808

HmMA Wk =g =]

Som

"

12
13
14
15

15
17
18
19

20
21
a2
23

24
25
26
27

28
29
0
3 |

3z
33
34
3%

36
37
38
39

40
4
42
43

44
45
46
47

48
49
50
a1

52
83
54
85

56
57
58
58

]
61
B2
83

25
625
812

906
953
876
488

244
122

030

015
Q07
003
o0g1

o0
000
oao
000

Q0¢
0ao
Q00
oo

Qoo
000

000

000
Q00
400
00g

0a0
2090
00C
aoa

Qo0
0an
Goo
uleln]

[1)]
000
Qo0
oo

oo
oo0
Qo0
Q00

000

000
Goo

Q0¢
000

Qoo
000

000
Qoo

25

125
562
281

140
Q70
035
517

258
629
Bid
907

853
476
238
e

059
029
014
oo?

003
om
000
000

000
000
000
QoG

000
Q00
Coo
000

000
000
000
000

Q00

000
000

000
000
000
oog

00¢
Qoo
00g
ooo

Q0
000

000

000
000

aoo

=

625
2
156
578

789
394
€97
348

674
aar
418
209

604
aq2
9o
450

726
862
an
465

222

25
126

062
53

632

315
158
579
289

644
322
181
580

29¢
645
322
661

83¢
415
207
103

551
275
637
818

o909
454
27
113

056
028
0ta
Qo7

003
om
Hue)
cao

000
000
000
0oco

000
000

000

000
000

aqo

5
25
625
812

406
203

550
175

183
536

298
49
674
287

B43
A
660
830

Nng

978
989

494
147
373
686

843
a1
210
108

552
EEi:]
88e
444

222
i1
056
az27

013

003
o

000
Q00
006G
000

25
125

81

90
€95
847
923

461
230
615
o7

653
226
913
458

228
614
807
403

701
350
875
837

418
g
BG4
427

T3
356
128
[1:]

044
022
511
755

877

469
T34

867
433

108

%

625
312
656
828

914
957
478
739

869
234
457
733

366

091
545

172
886
443
™

860
430
[AL)
357

678
839
419
209

604
302
151
525

87
893
4G
723

361
£80
240
420

25
125

062
031
518
257

628
a4
447
¥03

8%1
425
"2
B56G

928
464
232
516

BOg
404
202
801

BOG
400
TO0
850

425
462
el
Bi5

807
203
251
475

737
868
434
217

625
g12

206
453
226
613

BOG
903
8951
475

237
118
059
02%

o014
o7
003
oM

500
250
125
062

Qo3
515
267
628

814
a0y
983
976

588

497
248

25

125
562
281

640
320
660
830

815
957
478
138

863
434
v
858

929

232
€16

308
654
827
/M3

456
228
614
807

403
201

550

25

625
3Nz
156
078

Q29
519
750
i)

683
B4d
422
AR

355
677

6%

084
a2
021
10

75%
3n
188
094

547
73

443

125

oe2
531
765
882

a4
970
488
242

621
B10
905
452

726

i81
590

9%
647
823
411

205
602
8
400

625
812

406
03
as
€675

37
668

657

333
166

97

3%
697

924
962

430
a5

25

125
662
18t

890
945
472
238

618
80e
404
2

851
925

481

240
120
560
m0

125
062

15
507

253
676
813
o6

953
976
988
954

625
812

906

476
738

369

392
m

5

25

125
562 5
281 2%

140 6§25
570 312 &
285 156 25
142 578 12%

72
1 152

23
163
DECQ
8AC7

281
503
087
an

17
E8
918
SAF3
8O7E
8652
4578
Bae3
2304

68
099
592
474
599
594
504

6
268
204
19
§11
186
976
627
037
606

98

5F5
3B9A
408
4876
D4AE
4E72
1074
A4CE
&FC1
5084
A764
BIES

65
048
777
435
967
476
627
044
710
370
927
846

n

16
1
16
256
096
536
576
216
456
206
736
776
416
656
496
936
976

(/=T I = B A = -]

—
—_

0.10000
0.62500
0.39062
0.24414
0.15258
0.95367
0.59604
037252
0.23283
0.14551
0.90949
0.56843
0.35527
0.22204
0.13877
0.86736

0 m o~ bk = O 2

" Qe R §
[- AR -]

Appendix D, Binary-Decimal-Hexadecimal Conversiop Tables

00000
00000
0000
06250
768906
43164
68477
90298
06436
91622
47017
41836
13678
46049
78780
17379

POWERS OF 16 (IN BASE 10}

16"

POWERS OF 10 (IN BASE 16}

10
1.0000 0000 COUO
0.1999 9999 9989
0.28F5 C28F SC28
c.4189 374B CBAT
0.680B 8BAC 7i0C
0.A7CE AC47 1B47
0.10C8 F7AQ BSED
0.1AD7 F2g2aA BCAF
0.2AF3 1DC4 6118
0.4488 2FAQ 9BSA
0.6DF3 7F67 SEF6
0.AFEB FFOB CB24
0.1197 9981 2DEA
0.1C25 C268 4976
0.2002 370D 4257
0.48CE BE7B 9D58
0.7344 CASF 6226
0.8877 AA3Z I6A4
0.1272 5BD1 D243
0.1DB3 C34F BED2

0000
999A
FBC3
EF9E
B296
8423
8037
4858
738F
52CC
EADF
AAMFF
1119
81C2
3604

FOAE
8449
ABA1
AC3S

00000
00000
00000
00000
Q0000

25000
40625
628
51807
23792
$4870
09294
30808
56755
54721

MW oM OM M XM M M oM M oM X ¥ omx M A

1672
1674
167
1675
167"
16~
6%
16~
1677
16-“]
16-“
16—I!
16‘!3
16-14
15—1d
16-}5

X o M M X X X X X XM W X X X X M M X

1!
1072
1073
1074
107
1077
1678
107°
10—10
10—I2
10—[3
10-I4
10—I5
10“16
10-I8

D-3

Appendix D, Binary-Deciriai-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION

The table below prowide: for direct conversions between hexadecinal integers in the range 0-FFF and decimal integers in the
range 0-4095. For conversion of larger integers, the table valugs mav be added to the following figures:

+

He | D Hexadecimal Decimal

01 000 4 096 20 000 131072

02 Q00 8192 30 000 196 608

03 Q00 12 288 40 000 262 144

04 000 16 384 50 000 327 680

08 000 20480 60 000 393 216

06 00C 24 576 70 000 458 752

07 Q00 28672 80 000 524 288

08 000 32768 90 000 589 824

09 600 36 864 A0 000 655 360

0A 000 40 960 BO OGO 720 896

0B 000 4% 056 COo00 786 432

0C 000 49 162 DO 0G0 B51 968

0D 000 53 248 ED 00O 917 504

QFE 000 57 344 FO Do0 983 040

OF QG0 61 440 100 000 1048 576

10 000 65 536 200 000 20871562

11000 69632 300 000 3145728

12 000 73728 400 Q00 4 194 304

13000 17 B24 500 000 5242 880

14 000 871920 600 000 6 291 456

15000 86 016 700 000 7 340032

16 000 a0 112 800 000 8 38R 608

17 o0o 94 208 900 00 9437 184

18 GO0 98 304 AQC 000 10 485 760

19 0600 102 400 800 000 11 534 336

1A 000 106 496 CO0 000 12 582 912

1B 000 110 592 Ba¢ 000 13631 488

1C 000 114 688 EO¢ 000 14 680 064

10000 118 784 FOO 000 15 728 640

1€ 000 122 880 1 000 000 16 777 216

1F 000 126 976 2 000 000 33554 432

1] 1 2 3 4 5 <] 7 8 i} A B C oy E F

000 | Q000 0001 QOG22 Q0003 0004 (005 0006 0007 00DE 0009 0010 001t 0012 013 0014 0015
010 | 0016 O0D17 008 0019 0020 0021 (022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 (0032 0033 0034 0035 Q036 0037 (038 003¢ 0040 0C41 0042 0043 Q044 Q045 0046 Q047
030 [0048 0049 QLD Q06T HOSZ Q063 0054 DOSS 0056 Q057 Q058 0052 Q060 0061 0062 0062
040 | 0064 0065 Ot66 0067 0068 0069 0070 0671 0072 0073 G074 0075 0076 €O77 0078 Q079
050 | 0080 008 0082 (Q0B3 00B4 0085 (0BG 0087 0088 00BS 0090 003 Q092 0093 0094 Q095
060 | Q096 D097 0188 Q099 0100 MO 0102 0103 0104 105 0108 007 Q108 109 0119 Q113
07¢ |0v12 D113 0 14 Q115 0t16 Q117 0118 0118 0120 21 0122 0123 0124 0125 0126 0127
080 10128 0129 030 0131 0132 0133 0134 0135 (136 137 0138 01385 0140 41 (142 0143
090 (0144 0348 O 46 (47 M48 0142 0150 0151 0152 0183 0154 0155 0156 0187 0158 0159
CAC (0160 0161 0 62 0163 0164 01656 0166 0167 0168 01692 0170 0171 0172 173 M74 M75
DBO (0176 0177 0 78 0179 0180 018t 0182 0183 0184 0185 D186 0187 0188 0189 0190 019N
OCO 10192 0193 G 94 0196 0196 0197 0198 0199 0200 0201 0202 0203 (204 Q205 OQ206 0207
0DO | 0208 0209 OO 02t1 0212 0213 0214 0215 OG6 O17 0118 0219 0220 0221 0222 0223
DEO {0224 0225 0126 0227 Q228 (229 0230 023t 0232 0233 0234 0235 0236 0237 0238 0239
OFO | 0240 0241 Q42 0243 0244 0245 0246 0247 D248 0249 0250 0281 0262 0263 0264 0255

D4

Appendix . Binary-Decimal-Hexadecimal Conversion ¥ables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

a1 2 3 4 § 6 1 8 9 A 8 C O _E F
100 0286 0257 0258 0269 0260 0267 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 | 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 (0284 0286 0286 0287
120 [0268 0289 0290 0291 0292 0293 0294 0295 0296 0207 0298 0298 Q300 0301 0302 0303
130 [0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 | 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 (0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0358 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 037! (0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383
180 | 0384 0385 0386 0387 (0384 0389 0390 0381 0392 0393 0394 0395 (306 0397 0398 0399
190 | 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0215
140 [0416 0417 0418 0419 0320 0421 0422 0423 (0424 0425 0426 0427 0428 0420 0430 0431
1B0 | D432 0433 0436 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0O | 0448 0448 D450 0459 0452 (453 0454 04556 0456 0457 0458 0459 (460 (467 0462 0463
1D0 | 0464 0465 0466 0467 0468 0469 0470 (471 0472 0473 0474 0476 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
1FO | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0808 0608 0510 0519
200 ;| 0512 0513 0514 0516 G516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 | D544 (545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
220 | 0560 0561 0562 0563 0564 0565 (0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
240 | 0576 0577 0578 0579 0580 0581 OS82 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 | 0592 0593 0594 0595 0596 0597 OG99 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 | 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 | 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 O06I5 0636 0637 0638 0639
2800 | 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 | 0656 0657 0658 0650 0660 0661 0662 0663 0664 0665 0666 0667 0668 0660 0670 0671
240 | 0672 0673 0674 0875 0676 0677 0678 0679 O06BO 068 0682 0683 0684 0685 0686 0687
280 | 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C0 | 0704 0705 0706 0707 0708 0709 0710 071% 0712 Q713 0714 QM6 0716 0N17 D718 0719
200 | 0720 O721 0722 0Q¥23 Q724 0?25 0726 Q727 0728 0729 Q730 0731 0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0780 (751
2F0 | 0762 0753 0754 Q756 (0756 0757 0758 0799 0760 0761 0762 0763 QY64 0765 0766 0767
300 | 0768 0769 0?70 077t 0772 Q773 0774 0775 0776 0777 0778 0779 O7BO0 Q781 0782 0783
310 | 0784 Q785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 (796 0797 0798 0799
320 | 0800 Q301 0802 0803 0804 OBOS OBO6 0807 CBOB 0809 O0OB10 O8I 0B12 0B13 0814 0815
330 | 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0B28 0829 0830 0831
340 | 0832 08323 0834 0B35 O0B36 0837 0838 0839 0840 1 0842 0843 0B44 0B45 (846 0B47
350 | 0848 0840 0BS0 0851 0852 0853 0854 0855 0856 0857 0850 0850 OBGO 0B61 0B62 0863
360 | 0864 0865 OBG6 0867 0868 0860 0870 0871 O0B72 0873 0874 0875 0876 0B77 0B78 0879
370 | 0880 0881 0882 0883 0SB4 0885 0886 0887 0BBY 08GO 0BYD 0891 0892 0BY3 0894 089S
380 | 0896 0897 0898 0899 0900 090t 0802 0903 0304 0905 0906 0907 0908 0908 0910 0811
390 | 0212 0913 0914 09t 0916 0917 0918 0919 0920 082t 0922 0923 0824 0925 0926 0927
3A0 | 0928 Q929 0930 09N 0932 0933 0934 0835 09836 Q937 0838 0939 (0940 094t 0942 (0943
380 | 0944 0945 0946 0947 0948 0049 0950 0951 0952 0953 0954 0055 0956 0957 (0958 0059
3C0O | 0960 086) 0962 0962 0964 0965 0966 0967 0968 0968 0970 (0971 0972 0973 0974 0975
300 | 0976 0977 0978 0079 0980 0981 (0982 0083 0984 0985 0986 0967 0988 0989 Q990 0991
360 | 0992 0993 0994 0995 0996 0997 0998 0993 1000 100t 3002 1003 1004 1005 1006 1007
3F0 | 1008 1009 110 101 M2 1013 1014 1015 M6 1017 8 1019 1020 021 1022 1023

D-5

Appendix It Binary-Des imal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont’d)

] 1 2 3 4 5 6 7 8 o A B [D E F
400 (1024 1025 1626 1027 1028 102¢ 1030 103 1032 1023 1034 1035 1036 1037 1038 1039
430 (1040 1041 1042 1043 1044 1045 1048 1047 1048 1049 1080 1051 1062 1053 1054 1055
420 |1056 1057 1058 1059 1660 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 (1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1682 1083 1084 10BS 1086 1087
440 |10BB 10B9 108C 1091 1092 1093 1084 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 11104 1105 1106 1107 1108 1108 1110 1119 M2 113 1114 1115 1116 1117 1118 1119
460 (1120 M121 N22 1123 1124 M125 1126 0127 1128 1129 1130 1131 1132 1133 1134 1135
470 | 1136 1137 1138 1939 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 11651
4BO | 1152 1153 1154 1165 1156 1167 1188 3159 1160 1161 1162 11163 1164 3165 1166 11857
490 1168 1169 1170 117y 1172 41173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A0 |1184 1185 1186 1187 1i88 1189 1180 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 | 1200 1201 1202 1203 1204 1205 1206 1207 1208 1200 1210 1211 1212 1213 1214 1218
4C0 (1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1233 1240 1241 1242 1243 1244 1245 1246 1247
4E0 | 1248 1249 1250 1251 1262 1253 1264 1255 1266 1257 1258 1259 1260 1261 1262 1263
4FD 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1237 1278 1279
500 (1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1280 1299 1282 1203 1204 1295
510 | 1296 1297 1298 1289 1300 1301 1302 1303 1304 1305 7v308 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 |1328 1329 1320 133t 1332 1333 1334 133% 1336 1337 1338 1339 1340 1341 1342 1343
540 | 1t344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1366 1357 1358 1359
650 |1360 1361 1362 1363 1364 13656 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 139%
570 | 1392 1303 1394 1305 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
580 | 1408 1409 1410 1414 1412 14313 1414 1416 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SA0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1465
5B0 | 1486 1457 1458 145% 1460 1461 1462 1463 1464 1465 1466 1467 1468 1463 1470 1471
BCO (1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1467
600 | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1489 1500 150% 1502 1503
BED | 1504 1505 1506 1507 1508 1509 1510 1511 1612 1513 1514 1515 1516 1517 1518 1519
SF0 | 1520 162% 1522 1523 1524 1625 1626 1527 1528 1529 1530 1531 1532 1533 1534 15635
600 | ¥536 1537 1538 1539 1540 1541 1642 1543 1544 1545 1546 1547 1548 1549 1550 1561
6t0 | 1552 1553 1554 1656 1556 1557 1558 155 1560 1561 1562 1563 1564 1565 1566 1567
B20 | 1568 1569 1570 157t 1572 1573 1674 1575 15676 1677 1578 1570 1580 1581 1582 1583
630 {1584 1585 1586 1587 1588 1589 1590 1591 1592 1503 1594 1595 1506 1597 1598 1594
640 [1600 160t 1602 1603 1604 160% 1606 1607 608 1609 1610 1611 1612 1613 1614 1615
680 | 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 | 1632 1633 1634 1636 1636 1637 1638 1633 1640 1641 1647 1843 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1652 1653 1654 1656 1666 1657 1658 1659 1660 1661 1662 1663
680 | 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 | 1680 1681 1682 16B3 1684 1685 1686 16B7 (688 1689 1690 131691 16897 1693 1604 1695
BAD | 1696 1697 1698 1699 1700 1701 1702 1703 1704 131705 $706 19707 1708 1709 1710 1711
€B0 | 1712 1713 1714 1716 1716 AT 1TIB 1719 1720 4T 1722 1923 1724 1725 1726 1727
6CO | 1728 1728 1730 113 1732 1733 1734 1736 1736 1737 1738 1739 1740 1741 1742 1743
6DO | 1744 1745 1746 1747 1748 1749 1750 1751 17562 1753 1754 1765 1756 1757 1758 1759
6EQ | 1760 1761 1762 763 1764 1765 1766 1767 {768 1769 1770 1771 17172 1773 1774 1775
6F0 | 1776 1777 %778 1779 1780 178%1 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

D-6

Appendix B. Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION {Cont'd)

0 t 2 3 4 5] 7 8 9 A B C B E F
Y00 {1792 1793 1794 1795 1796 1787 1798 1799 1800 180t 1802 1803 1804 1805 1806 1807
10 | 1808 1809 1810 181F 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 | 1824 1B2% 1826 1827 1828 1829 1830 183 1832 1833 1834 183% 1B36 1837 1838 1838
730 | 1840 1B47 1842 1843 1844 1B45 1846 1847 1B48 1840 1850 18%Y 1852 1853 1854 1BSS
740 | 1856 1857 1858 1859 t860 1B61 1862 iB63 1864 1665 1B66 1867 1868 1869 1870 181
750 | 1872 1873 1874 1875 iB76 1877 1878 1879 1880 188% 1882 1883 1884 1885 1B86 1887
760 | 1888 16889 1890 1891 1892 1833 1894 1895 1896 1897 1898 1899 1900 1907 1902 1903
770 | 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1918
780 | 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 193 1932 1933 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1848 1949 1950 1951
780 | 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
180 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1882 1983
7C0 | 1984 1985 1986 1987 1988 1989 1980 1991 1992 1993 1984 1995 1936 1997 1998 1999
TO0 | 2000 2007 2002 2003 2004 20056 2006 2007 2008 2009 2010 2011 2012 213 2014 2015
7EQ | 2018 2017 2018 2019 2020 202t 2022 2023 2024 2025 2026 2027 2028 2029 2030 200
7FQ | 2032 2033 2034 2035 2006 2037 2038 2039 2040 2041 2042 2043 Was 45 2046 2047
80O | 2048 2049 2050 2051 2062 2083 2054 2085 2066 2067 2058 2059 2060 2061 2062 2063
810 | 2064 2065 2066 2067 2068 2069 2070 20M 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2087 20872 2083 2084 2085 2086 2087 2088 2089 2090 2091 2082 2093 2094 2085
830 | 2096 2097 2088 2099 2100 210% 2102 2103 2104 2105 2106 2107 2108 2109 2110 2141
840 | 2112 2113 2114 2115 2116 2M17 2118 2119 120 21121 2122 2123 2124 N5 N6 2127
850 | 2128 2129 2130 2131 2132 2133 2134 2135 21136 2137 2138 2138 2140 141 2142 2143
960 | 2144 2145 2146 2147 2148 2749 2150 2151 2152 2153 2184 2156 2166 2157 2168 2159
870 | 21680 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 H73 274 1178
880 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
BOG | 2192 2193 2194 2195 296 2197 2198 2198 2200 2201 2202 2203 2204 2205 2206 2207
8A0 | 2208 2209 2210 2211 2212 2233 2214 215 2236 27 I2NB 29 120 2221 2222 2223
aB0 | 2224 222% 2226 2227 2228 2229 2230 221 2232 2233 2234 223% 2236 2237 2238 2239
gC0 | 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 7754 2255
BDD | 2256 2257 2268 226% 2260 2261 2262 2263 22684 2265 2266 2267 2268 2269 2270 2271
9EC | 2272 2273 2274 2275 2278 2277 278 2219 2280 2281 2282 2283 2284 2285 2286 2287
af0 | 2788 2789 2200 2291 2292 2293 2284 2295 2206 2297 2208 2299 2300 2301 2302 2303
900 | 2304 2305 2306 2307 2308 2308 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 4328 2329 2330 233 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2385 2356 Q357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 72379 2380 2381 2392 2383
850 | 2384 2385 2386 2387 2388 2389 2390 2391 2302 2393 2394 2395 2396 2397 2398 2398
860 | 2400 2401 2002 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
070 | 2416 2417 24318 2419 2420 2421 2422 2473 2424 24725 2426 2427 2428 2479 2430 2431
O8O | 2432 2433 2434 2435 2436 2437 2438 2439 2440 244% 2442 2443 2444 2445 2446 2447
900 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2488 2459 2460 2461 2462 2463
9A0 | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2480 2491 2492 2483 2404 2495
9CO | 2496 2407 2408 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2508 2510 251
9p0 | 2512 2513 2514 2515 2516 2517 2818 2518 2523 2521 2822 2523 514 2825 2B26 72577
9EQ | 2628 2529 2530 2537 2532 25331 2534 2835 2536 2537 2538 2838 2540 2541 2542 2543
OF0 | 75484 2545 2546 2547 2548 2549 2660 2551 2552 2553 2554 25585 2556 2667 2558 2569

D-7

Appendix D, Binary-Decimal-Hexadecima! Conversion Tables

HEXADECIMAL-DECHMAL INTEGER CONVERSION {Cont'd)

1] 1 2 3 4 5 6 7 8 9 A B C D E F

ADD | 2560 2561 2562 2563 2664 2665 2566 2667 2668 2569 2570 2571 2572 72573 7574 2575
A0 | 2676 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 28B% 2530 260
AZ0 | 2592 2593 2594 2595 2596 2597 2598 2598 2600 260t 2602 2603 2604 2605 2606 2607
A30 | 2608 2608 2610 2611 2612 2613 2814 2615 2616 2617 2618 2619 2620 2621 2622 2623
AGD | 2624 2626 2626 2627 2628 2629 2630 263t 2632 2633 2634 2635 2636 2637 2638 2639
ASD | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
ABD | 2666 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2687 2668 2669 2670 2671
A0 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
AB(| 26B8 2689 2690 2691 2692 2603 2604 2695 2696 20697 2698 2699 2700 2701 2702 2703
AQD | 2704 2705 2V06 2707 2708 2709 2710 271t 2712 2713 2M4 27IS 276 27117 2F1B 2119
AAQ 2720 2721 2122 W3 2724 2725 2726 2727 2728 2729 2730 27 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 27%1
ACO | 2752 2753 2754 2755 2756 27B7 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADD | 2768 2769 2770 277% 2772 2773 2774 2778 216 2177 2978 2779 2780 2781 2782 2783
AEQ | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2795 2797 2798 2739
AFQ | 2800 2801 2802 2803 2804 2805 2806 2BO7 2808 2808 2810 2811 2812 2813 2814 2815
BOD | 2836 2817 2818 2819 2820 2821 2822 2823 2824 2825 12B26 2827 2828 2829 2830 2831
B10 | 2B32 2833 2834 2835 2836 2037 2838 2839 2040 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2B50 385} 2852 2863 2854 2855 2856 2B57 2858 2859 2860 2861 2862 2863
B30 | 2B64 2865 2B66 2067 2868 2869 2870 2871 2872 2873 2874 2875 2876 2B77 2878 2879
B40 | 2880 2881 2882 12883 2834 28856 2866 2887 2888 2E89 2890 2891 2892 2853 2894 2895
B50 | 2896 2897 2898 2899 2000 2901 2907 2903 2904 2005 2906 2907 2908 2909 2810 291
BEO | 2972 2913 29%4 2915 2Me 2917 20718 2970 2920 2021 2922 2923 2924 2926 2926 2027
870 | 2928 2929 2930 2931 2932 2933 2934 2935 7936 2037 2938 20239 2040 2941 2942 2943
880 | 2944 2945 2946 2947 2048 2949 2950 2951 2952 2053 20684 2055 2956 2957 2958 2959
BOO | 2960 2961 2862 2963 2964 2965 2966 2967 20688 2969 2970 297 2972 2973 2974 2975
BAD | 2076 2977 2078 2979 2980 2981 2982 2983 2984 2085 2986 2987 2988 2989 2980 2991

BBO | 2892 7093 2994 2095 2996 2097 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3002 3010 3011 3012 3013 3014 3075 3016 3017 3018 319 3020 3021 3022 3023
BDO | 3024 3025 3026 2027 3028 3029 3020 3031 3032 3033 3034 3035 3036 2037 3038 3032
BEO | 3040 3041 3042 2043 3044 3045 3046 3047 3048 3049 3050 3053 3052 3053 3054 3085
BFO : 305 3057 3058 3059 3ceC 3081 3062 3063 3064 3065 3066 3067 3068 3068 3070 3071

C00 {3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

C10 | 3088 3089 3090 30% 3092 3093 3004 3095 3096 3097 3088 3099 3100 3101 3102 3102

C20 | 3104 3105 3106 3107 3108 3109 3110 3111 311z 3113 3114 3115 3116 3117 3118 3119
C30 | 3120 3123 3122 3123 3124 3125 3126 3127 3128 3120 3130 31317 3132 3133 3134 3138
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

€80 | 3152 3153 3154 3185 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
Cg60 | 3168 3168 3170 3171 3172 N73 3174 3175 376 m77 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3196 3196 3197 3198 3199
C80 [3200 3201 3202 3203 3204 13205 3206 3207 3208 3209 3210 3231 3212 3213 3214 3215
Coc | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 32

Ca0 | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247

CBO | 3248 3249 3250 3251 3252 3253 3254 3256 3256 3267 3288 32589 3260 3261 3262 3263

CCO | 3264 3265 3266 3267 3268 3260 3270 3271 3272 3273 3274 3275 3276 3277 23278 3279
CDO | 3280 3281 3282 3283 2284 3285 3286 3287 3288 3289 3290 3791 3292 2293 3294 3295
CEOQ | 3206 3297 3208 3200 3300 3307 3302 3303 3304 3305 3306 3307 3308 3309 3310 3211

CFO [3312 3313 3314 3315 3316 3217 3318 3319 3320 3321 3322 2323 3324 3325 3326 3317

D-R

Appendix [, Binary-Decimal-Hexadecimal Conversion Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd}

0 1 2 3 4) 6 7 8 9 A B8 C D E F
000 j 3328 3329 3330 333! 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 43
D10 | 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 33655 3356 3357 3358 3369
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 33N 3372 3373 3374 3376
030 | 3376 3377 3378 3379 3380 3381 3382 33B3 3384 3385 3386 338Y 3388 3389 3390 339
D40 | 3392 3393 3394 23395 3396 3397 3308 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 {3408 3409 3410 3411 3412 3413 3414 3415 3416 347 3418 3419 3420 3421 3422 3422
D60 | 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3430 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3456
DBO | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 47
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 34B4 3485 3486 3487
DAQ | 3488 3489 3490 3491 3492 3403 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 35314 3616 3616 3617 3518 3519
DCO | 3520 3521 3522 3523 3524 3625 3826 3527 3528 3529 3530 3531 3532 3533 3834 353§
DDO | 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEG | 3552 3553 3554 3556 3566 3557 3558 3559 3560 3561 3562 3563 3664 3565 3566 3567
DFO | 3668 23569 3570 3671 3572 3673 23574 3576 3576 13577 3678 3679 3580 3581 3582 36583
EQG | 3584 3585 3586 3587 3588 35B9 3530 359t 3592 3693 3584 3595 3596 36OV 3598 3599
E10 | 3600 3601 3602 3603 3604 3605 3606 3607 3608 3809 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3628 3630 363%
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
£40 | 3648 3640 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES0 | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3I67B 3679
E6C | 3680 3681 3I6B2 3683 3684 3685 3686 36B7 IGBE 3689 3690 3691 3692 3693 3694 3695
E70 | 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 370 371
EB0 | 3712 3713 3714 3715 3ANE INT 3718 ING 370 37 372 3723 3729 3728 316 3TN
EQQ | 3728 3728 3730 3731 3732 3733 3734 3735 376 3737 3738 3739 3740 3741 3742 3743
EAD [3744 3745 3746 3747 374B 3749 3750 3IVB1 3752 3753 3I7H4 3755 3IV56 3757 3IT5B 3799
£80 | 3760 3761 3782 3763 3764 3766 3766 3767 3764 3769 370 3771 II72 37FI 37174 IS
ECO | 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 379%
EDQ | 3792 3793 3794 379% 3796 3797 3798 3799 3B00 3801 3802 3803 3B04 3805 3806 3807
EEQ | 3808 3809 3810 3811 3812 3813 3814 38315 3816 3817 3818 389 3820 3821 3822 3823
EFD | 3824 3825 3826 3827 3828 2829 3830 3831 3B32 3833 3834 3835 3B3I6 3837 3838 3839
FOO | 3840 384t 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 36654 3855
F10 | 3856 3857 3858 3859 3860 3861 J862 3863 3864 3865 3966 3867 3868 3869 3IBTO 3871
F20 | 3872 23873 3874 3875 3876 3877 3878 3679 13880 38B1 3882 3883 3884 3885 3886 3687
F30 ;3888 3839 3830 3891 3892 3893 3894 3895 3IBYE 3897 3898 3899 3900 3901 3902 3903
F40 | 3804 3905 3906 3907 3908 3909 3950 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3823 3924 3025 3926 3827 3928 3920 3930 393t 3932 3933 3934 3935
FGO | 3836 3937 3938 3939 3940 3941 38942 3943 3544 3845 3946 3047 3948 3949 3950 3951
F70 | 3852 3953 3954 3955 3086 3957 3958 3959 3960 3961 3962 3963 3964 JO65 3966 3967
F8C | 3968 3969 3970 3971 3972 3973 3974 3976 3976 3977 3978 3979 3980 3981 3982 3983
F90 | 3984 3985 3986 3987 3988 2989 3990 3991 39927 3993 3994 3995 3996 3997 3998 3999
Fal i 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 401t 4012 4013 4014 4015
FBO | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 403
FCO [4032 4033 4034 4035 4036 4037 4038 4039 4040 404t 4042 4043 4044 4045 4046 4047
FDO | 4046 4049 4050 4051 40652 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO | 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFQ | 4080 40B8: 4082 40B3 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Absolute symbols e e e e e e e e e e e s e 211, 216
Accumulator . . . L L L L e e e o TR, T
Sccumulator InstruCtions .+ . . . o 0w o L e e e e e e e e e e e i-ig
ACH Instruction O (57
ADC Imstruction L L L e e e e e e 3.2
ADD Instruction, . .. O 34
ADL Inmstruciion . . © . 0 L L L L L s e e e 35
Addressing Modes L L L L e e e e e, 115
Addressing Registers e e e 1-7
ANA [AND) Instruction L L L L e 36
AND Operator L N 233
ANl {AND Immediate) lnstructlon e e 37
Arithmetic Expression Operators L L. Lo e 212
Arithmetic Instructions L L L L 0L L 117
ASCIl Constant . . . L e 28
ASEG (Absolute Segmem]l Dlrectlve 4-F4
Assembler, Need for, . . L L L L -3
Assembler Character Set L L L L oL L 21
Assembler Compared with PL/M Lo 1-3
Assembler Function L L L e e e e 11
Assembler Termination e e e e 16
Assembly-Time Expression Evaluatlon 2-11
Auxitiary Carry Flag L L L e e e I-r
Auxiliary Carry Flag Setting — 8080!8085 leferences 112
Binary Data {Coding Rulest 26
blank {character] L . L L. e 2-3
Branching Instructions e 718, 7-22
Branch Table L e e e e 6-1
Byte lsolation Operations« . . L. oL e e s e 2-14
CALL instructicn L e e e e e e e e e e 3-8
Carry Flag e e e e e e e 1-1g
CC (Call if Carry} Instrucuon 310
CM (Call if Minus) Instruchion . . _ L .. e e e e e 310
CMA (Complement Accumuiator) Instruction L L. oo 377
CMC {Complement Carry) Instruction, 32
CMP (Compare] INSLTUcion v v v e e e e e B2
CNC (Call if no carry) Inmstruction L L. L 0L 3-14
CNZ {Call if not Zero) Instruction e e e 374
Combined Addressing Modes L . L L . L e 116
Comment Field N e 2-4
Compare Operators v« e e e e 2-13
Comparing Complemented DBata v . . 00 e e e e 28
Comparisons 0 Expressions L . L L e))
Complement Used for Subtraction L. L L oo e e 2.7
Complemented Data Lo 2B
Concatepation e e e e 5- 10 5 11, 5-15, 5-16

Condition Flazs
Caonditional & ssembly
CP (Call if Fositive] Instruction
CPE {Call if Parity Even) lnstruction
CPl {Compart Immediate) Instruction
CPQO [Call if Parity Odd} Instruction
CSEG (Code Segment) Directive
CZ (Call if Zero) Instruction

DAA
DAD
Data
Data
Data
Data

{(Double
Access Example
Defimtic-n
Crescript on Example

for Sutroutines

Data [abel

Data Transfer Enstruct:ons

DB (Define byte) Directive
DCR (Decrermrent] Instruction
DCX {Decrement Register Pair}
Decimal Addinon Routine
Decimal Data {Coding Rules)
Decimal Subt-action Rauting
Oelimiters

D1 (Disable Interrupts) Instruction
Direct Addressing L
Divide [Software Example,‘l

Division in Expressions
D5 (Define <toragel Directive
DSEG (Data Segment) Directive
Dummy Paraineters
DW (Define Wordl Directive

£l {Enable |iterruptsl Instruction
ELSE Directi-e
END Directiv:
ENDIF Direc ive
ENDM (End Macro) Dlrectwe
EOT Directive
EPROM

EQ Operator
EQLU Directiv:
EXITM (Exit Macro) Dlrectwe
Expression E:aluation
Expression O erators

Expressions e
Expressions, recedence of Operators
Expressions, lange of WValues

EXTRN Directive

{Decim: | Adjust Accumuiator) Instruction
Register Add} Instruction

-5

GE Operator Lo e e s e 213
General Purpose Registers L. Lo L Lo P7
GT Operator v . o e e e e e e e e 2-13
Hardware Overview Lo 1-5
Hexadecimal Data {Coding Rules) 2.5
HIGH Operator« 2-14, 3-2, 3-5. 3-7, 404
HLT (Halt} lnstruction L 3-24
B Directive L L e e e 4.5
{mmediate Addressing e e e, f-i5
fmplied Addressing . - L L L L e e e e 115
IN {Input) Instraction L L L 1-14, 3:24
INPAGE Reserved Word . . _ L o e 4-14, 4-F5
InputfOutput Ports L 1-14
INR ({Increment) Instruction 3325
Instruction Addressing Modes 0L o 115
Imstruction Execution, ., . . . e]
Instruction Fetch 1-8
Instruction Label . 2-6
Instruction Naming Conventions 116
lnstruclion Set Guide e e e e e e e e e 7-23
Instruction Summary L L L L L s e e e 1-19, 7-23
Instruction Timing e e e e e e 3-7
instructions as Operands e e e 2-7
INTE Pin e L e 3-49
Internal Registers L e e e e e 1-6
interrupt Subroutines . . . L L L L L L L L e e 74
IMterrupts L e e e e 71
interrupts {B085) s 1-24
INX {Increment Register Pair} Instructions L. . 3-26
IRP {indefinite Repeat) Directive 5.8, 512, 5.22

IRPC {Indefimte Repeat Character) ., . .
JC {jump if Carry}) Instruction

M (Jump if Minus) Instruction

JMP {jump} lestructron . ., L L, .
JNC (Jump if no carry) Instruction

JNZ {Jump if not zera} Instruction

JP {Jump if Positive} !nstruction
{PE {Jump if parity Even}
JPC {Jump if parity Odd}
iZ (Jump if Zero) Instruction

Label Field
Labels
LDA {Load Accumulator Direct) Instruction
LDAX (toad Accumulator indirect)

. 548, 5412, 57

. 326

LE Operatat e e e s e e e 213

LIB Program e e e e e e 4.12
LHLD {Loarl L Direct) Instruction, e e e 3-34
LINKS Progrim L e 4.12, 4-14, 415
Linkage e e s e s 4-16
List File e e e O R
LOCAL Dircctive s 5-5
LOCAL Syribols e e e e e e e e e s e e 56
LOCATE Pragram C e 412,443, 4414, 4419
Location Ccunter (Coding Rules] e e s, 28
Location Ccunter Control {Absolute Mode) 47t
location Ccunter Control {(Relocatable Mode) 4-14
Logical Imstiuctions . _ ., L L, R S
Logical Instuctions, Summary 36
Logical Cpe ators e L N
LOW Operaor . ., | | e ...,.,,.2?432353744
LT Operato, .. - & K |
EXI {Load Register Pa[r lmmedlale! L 335
Macros e e e e e - S |
Macra Calls P e 5-12
Macro Defirition RN L o O '
MACRO Diective e e, 54
Macro Expatsion . . L L L L L e s 5-15
Macro Pararseters L. e s 5-5
Macros wversus Subroutines, o S R T
Manual Programming e e 1-3
Memoaory R e e e e e .. 15
Memory Management WIth Reiocatlon e
Memory Reservation o .)
MEMORY lieserved Word e e e 4-19
MOD Operator e e e e e e e L 242
Modular Pregramming L L e e e e e e . 412
MODULE Lefault MName e e e 417
MOV (Move) Instruction o e R L]
Multibyte Addition Routines . 2
Multibyte Sibtraction Routine e e e e e e e 611
Multiplication in Expressions =, | s 22
Multiply {Software Example} L 67
MV! {Move Immediate} L 337
NAME Directive o o e e e e ... 4-718
NE Operatcr ., L. e e e e e 213
MNested Maco Calls, . O 5-14
Mested Mac-o Definitions e e e e e e e e e 5.12
MNested Sub outines e - .
Nire's Com3slement L ey

NOP {No t)peration) Instruction e e e e e .. 338

NOP wa MOV e I 3-36

NOT Operator L e 273
NUL Operator _ o o e e e e e e e e e 2-13, 5-7F
Null Macros L s e e e e 516
Null Parameter e e e e e e e e e e e 51
Object Code O, 1-2
Obiject File e e e 11
Octal Data {Coding Rubes) 25
One’s Complement, e 27
Opcode e e 11
Opcode Field . | | . s 24
Operand Field, . .. L, 24
Operand Field {Coding Rulesl 24
Operands e e 25
Operators, Expression . . ., 21
OR Operator, .. O
ORG (Origin} Directive (Absolute Model 411
ORG (Orgin} Directive (Relocatable Model . .,, 416
ORA {Inclusive OR} Instruction | 338
OR! {Inclusive OR immediate} 340
OUT Instruction . ., 0 000 114, 341
PAGE Reserved Word . . ., . .. 414, 4-15

Parity Flag R S X
PCHL (Move H & L to Program Counter] Instruction

............. 342
Permanent Symbels e 2-11
PLIM 1-3
PLIM Compared with Assembler | . . . L. i-3
POP Instruction, ., e e e e 3-42
POP PSW instruction e e e e e e s s e e 343
Precedence of Expression Operators Lo e 2-I5
Processor Registers L . .. o e e e 1-9
Program Counter Lo 1-6
Program Linkage Directives e e e e 4-16
Program LISLIRE e e 1-2
Program Status . , . . . A £ &
Program Status Word {PSW) L. L 1.14
Programming the 8085 e 1-24
PROM N e e e e e e 1-5
PSW e s 1-14, 345
PUBLIC Directive . |, , | | . . . e 4i7
PUSH Instruction | . ., . L L L e e 344
PUSH PSW Instriction 345
RAM 1-5
RAM wersus ROM L 46
RAL (Rotate Left through Carry) Instruction . ., ., 345

RAR (Rotite Right through Carry) Instruction
RC ({Return if Carry} Instruction
Redefimable Symbols
Register Acldressing
Register [ndirect Addressmg
Register Pzir Instructions e
Register Pzies
Relocatability Defined
Relpcatable Expressions
Relocatable Symbols
Relocation Feature
Reserved Zyrbaols
RESET Signal
RET (Return) Instruction
REPT Directive

RIM {Read {nterrupt Mask] 5085 Instruction
RLC (Rot:te Accumulator Left) {nstruction
RM {Retwrn if Minus} Instruction
RNC {Return if no Carry} Instruction
RNZ {Retern if not Zero} Instruction
ROM
RP (Retur: |f Pcrsmvei lnstructisn .
RPE (Return if Parity Ewen) Instruction . |
RPO (Retirn if Parity Odd) Instruction . .
RRC (Rotite Accumulator Right] Instruction
RST {Restart) finstruchion

RST5.5
RSTE.5
R5T7.5 . .
RZ (Return if Zﬂro} lnstructlon . L

Savings Program Status
SBB (Subiract with Borrow) Instruction

5Bl (Subtiact Immediate with Borrow) Instructmn

Scope of Symbols
SET Direc.ive
Shift Exprassion Operators

Shift Cperations in Expressions
SHL Oper itor
SHLD {Store H & L Direct) Instruction
SHR Cpertor
Sign Flag

5IM (Set Interrupt Mask} 8085 Instruct:on

Software Divide Routine
Software |Aultiply Routine
Source Code Format
Source Line Fields
Source Program File

SPHL (Mcve H & L to Stack Pointer) Instruction

. 348

3.49

. 350

351

3-54

. 349, 3-55, 3-539, 3-60

s e e 3-49, 3-55, 3-59, 3-60

. 349, 3-55, 3.59, 3-60

3-55

SP (Stack Pointer Register} 335

STA (Store Accumulator Direct] imstruction O -7
Stack L L L L e e e e e e e e s s i-12
Stack and Machine Control Instructions L Lo L. 719
Stack Operationso ..., e 1-13
Stack Pointer L L e e R L
STACK Reserved Word 4-19, 3-35
Start Execution Address o R S 1
STAX (Store Accumulator Ind:rect} Instrucnon 3-62
STC (Set Carry) Instruction oL e 363
STKLN Directive . e e s, %18
SUB (Subtract) [nstruct:on e R . - X1
Subroutine Data L L L L L. L 63
Subroutines . L . L L L L o e e e 112,39
Subroutines versus Macros e e e e e e e e 5-3
Subtraction for Comparisan oo e 312
SUI {Subtract Immediate} Instructlon T N 364
Symbol-Cross-Reference File e . o N P
Symbol Definition e, 42
Symbol Table oo, 29
Symbolic Addressing oL o R, 29
Symbols 2
Symbols, Absolute L. L 21
Symbols {Coding Rules) L e 29
Symbols, Global e 2-10
Symbols, Limited L, .. e . 2o
Symbols, Permanent L CLL 2N
Symbaols, Redefinable - N
Symbols. Relocatable e e e 1 B
Symbols, Reserved 2.9
TRAP Interrupt L L e e e 3-54
Ten's Complement e s 27
Testing Relocatable Modules B i
Timing Effects of Addressing Modes 18
TRAP [B085) L N S
Two's Complement Data Lo 27
Use of Macros . e s 5-i
Using Symbols for Data Access e T
Value of Expressions L . oL e e L 2-15
What is a Macro? L L L e L 52
Word Instructians N S Rt
Word Storage in Memory L . L. L o e e e e 4.4
Work RegIsters L . e e e 1-7

XCHG {Exclange H & L with D & E} !nstruction
XOR Operator
XREA (Exclusive OR])

XRI

XTHE (Exctange H & L with Top of Stack) Instruction

Zero

&

<>
CR

(1

Hnnnn

space

8080/8085 ifferences
8085 Featurss
8085 Proces.or

Instruction
{Exclus ve OR Immediate} Instruction

Flag

{amper:and)

{angle brackets)

{carriag: return character}
{colon)
{comm..}
{doublt semicolon)
{divisto 1) Operalor
{exclam ation posnt}
{thornzoika! tab character)
{minus, Operatar
{multip:ication] Operator
{parent teses)

{plus) Dperator

Symbo s

{semicclon}

{single quole)

{charac er}

8085 Progranming

. 510

5-10
22
22
22

.. 510
.22

510
22

. 212

2-12
2-2

. 212

35
22
22
22

1-24
1-24
-24
1-24

NOTES

NOTES

