ITI(SB Microcomputer Set Inte'

NOVEMBER 1973

8008 -
8 Bit Parallel
Central Processor Unit

USERS MANUAL

N Including:
:ntellec"

M:crocornputeﬁ Moqules |

i\m\\\\\\\\\\\\\\\\

@ Intel Corp. 1973

INTEL
SUPPORT
MAKES
SYSTENI
BUILDING
EASY.

The MCS-8™ parallel 8-bit microcomputer set is de-
signed for efficient handling of large volumes of data.
It has interrupt capability, operates synchronously or
asynchronously with external memory, and executes
subroutines nested up to seven levels. The 8008 CPU,
heart of the MCS-8, replaces 125 TTL packs, With it
you can easily address up to 16k 8-bit words of ROM,
RAM or shift registers. Using bank switching techniques,
you can extend its memory indefinitely.

The PL/M™ High Level Language is an easy-to-earn,
systems oriented language derived from IBM’s PL/I by
Intel for programming the MCS-8 and future 8-bit micro-
computers, It gives the microcomputer programmer the
same high level language advantages currently available
in mini and large computers. By actual tests, PL/M pro-
gramming and debugging reguires less than 10% of the
time needed for assembly language. The PL/M compiler
is written in Fortran |V for time-share, and needs little
or no alteration for most general purpose computers.

intellec™8 Development Systems provide flexible, inex-
pensive, and simplified methods for OEM product de-
velopment. They use RAM for program storage instead
of ROM, making program loading and modification
easier. The Intellec features are:

#® Display and Control Conscle

® Standard DMA channel

® Standard software package

® Expandable memory and |/0
® TTY interface

® PROM programming capability

The Intellec contro! panel is used for system monitoring
and debugging. These features and the many standard
Intellec modules add up to faster turn around and re-
duced costs for your product development.

And, There’s More ., ...

Intel’s Microcomputer Systems Group continues to de-
velop new design aids that make microcomputer system-
building easier. They will provide assistance in every
phase of your program development.

For additionat information:

Microcomputer Systems Group
INTEL Corporation

3065 Bowers Avenue

Santa Clara, California 95051
Phone {408) 246-7501

u il

intel
dglivers.

, 8008
8 Bit Parallel Central Processor Unit

The 8008 is a complete computer system central processor unit which may be interfaced with memories
having capacities up to 16K bytes. The processor communicates over an B-bit data and address bus and
uses two leads for internal control and four leads for external control. The CPU contains an 8-bit
parallel arithmetic unit, a dynamic RAM {seven 8-bit data registers and an 8x14 stack), and complete
instruction decoding and control lfogic.

Features
'm 8-Bit Parallel CPUon a ' R Directly addresses 16K x 8
Single Chip bits of memory (RAM, ROM,
m 48 Instructions, Data or S.R.) . '
Oriented ®» Memory capacity can be
indefinitely expanded
& Complete Instruction . through bank switching
Decoding and Control using 1/0 instructions
Included m Address stack contains
® Instruction Cycle Time — eight 14-bit registers
12.5 ;s with 30081 or 20 us (including program counter)
with 8008 which permit nesting of
subroutines up to seven
m TTL Compatible (Inputs, | levels
Outputs and Clocks) m Contains seven 8-bit
. registers
® Can be used with any type -
* or speed semiconductor u Interrupt Capability
memory in any combination B Packaged in 18-Pin DIP
BLOCK DIAGBAM PIN CONFIGURATION
o1 AL ATon para v
D, =—= COUNTER STACK Voo 0—11 18 f=—0 INTERRUPT
Dy=—1 110 : [Dy =] 2 17 j«—o0 READY
g:‘j i Dy O3 16 fe—0 ¢
D = - 1 DsO-'I—-"-" INTEL 15 j+—=< ¢4
D, oata | DeOw=ts T 1al o syne
BUS | D, 0=nl6 13f—o0 s,
INT —a]
p D, O~y 7 12 —=0 5y STATE
TG controL L[] TMiNe D, 0eals] - s,}
RDY —=] l l | Dy O]9 WfF—0 v
slo 5, slz ﬁt L SYNC

intalléc
A NEW, ERSY AND INEXPENSIVE WRY
TO DEVELOP MIGROGOMPUTER SYSTEMS

From Intel, the people who invented the microcom-
puter, comes a new. inexpensive and easy way to
develop OEM microcomputer systems. The wide-
spread usage of low-cost microcomputers is made
possible by intel's MCS-4 four bit, and MCS-8 eight
bit, microcomputer sets, To make it easier to uge
these microcomputer sets, Intel now offers complete
4-bit and 8-bit modular microcomputer development
systems called intellec 4 and Inteliec 8. The Intellec
modular microcomputers are self-contained expand-
ahle systems complete with central processor,
memory, /O, crystal clock, TTY interface. power
supplies, standard software. and a control and display
console.

The intellec microcomputer development systems
feature:
« 4-hit and 8-bit paraliel processor systems
* Program development using RAMS for easier
loading and madification
* Standard DMA channel
+ Standard software package
+ Crystal controiled clocks
= Expandable memory and 1/0
» Controlpanel for system menitoring and program
debugging
* PRCM programming capability
* Less time and cost for micrccomputer systems
development

The Intellec 8is an eight-bit modular microcomputer
development system with SK bytes cf memory. ex-

pandable to 16K bytes. At the heart of this system is
the Intel 8008 CPU chip which has a repertoire of 48
instructions, seven working registers, an eight level
address stack, interrupt capability and direct address
capability to 16K bytes of memory.

The Inteltec 4 is a four-bit modular microcomputer
development system with 5K bytes of program
memory. At the heart of this system is the Intel 4004
CPU chip with a repertoire of 45 instructions, sixteen
working registers. a four level address stack, and the
capability of directly addressing over 43K bits
of memory.

Standard Microcomputer Modules. The individual
modules used to devetop the 4-bit and 8-bit micro-
computer systems are also available as off-the-shelf
microcomputer building blocks. These include 4-bit
and 8-hit CPU modules, I/O Modules, PROM
Programmer Modules, Data Storage Modules,
Control Modules, a Universal OEM Module and other
standard modules for expanding the Intellec systems
or developing pre-production systems.

with these modules you can tailor the components
to your specific microcomputer needs, buying as little
or as much as you need to do the job.

Write for complete details on the Intellec modular
microcomputer development systems. They will be
available in 120 days, but plan now. Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051
(408) 246-7501.

Ad Reprint, June 1973_

See Appendix VI

CONTENTS

Page No.
I PO UGTION .« . . i it i e e e e e e e e e e 3
Il. Praocessor Timing e e 4
A.State Control Coding e 4
=S T T 3T 4
C.Cycle Control Coding e 5
. Basic Functional Blacks 7
A, Instruction Registerand Contrel o Lo 7
B.Memory. e 7
C. Arithmetic/Logic URIT e e it i e ¥
D.OBuffer e e e 7
v, Basic Instruction Set e e e 8
A Data and Instruction Formats it 8
B. Summary of Processar Instructions i i e 8
C. Complete Functignal Definition vt oo et e e 10
D. Internal Processor OPerationt n it e c et eiie e en e 18
V. Processor Control Signals e 18
Aobnterrupt Signal L e e e e 18
B. Ready Signal e e e e 20
Vi Electrical Specificationsttt 21
A .DC and Gperating Characteristics i 22
B. AC Characteristics e e e 23
C.oTiming Diagram it it ittt e e 23
0. Typical DC Characteristics e 23
. E. Typical AC Characteristics e e e 23
Vil The SIMB801 — An MCS-8MicroComputerc..u.. 24
A SIMB-O1 Specifications e 25
B. SIM8-01 Schematico ot e e e e e e e e 26
C. Systemn Description e e e e e e e e 28
D.Normal Operation e i 29
E. SIMB8-01 Pin Description i i i 3
Vil MCS-8 PROM Programming Systemt 33
A. General System Description and Operating Instructions 33
B, MP7-03 PROM Programmer ittt it eems et emnennn 32
C. Programming System INterconRection, . ..t i i a et n e 40
IX. Micro Computer Program Development a4
A, MCS-8 Software Library U A 44
B. Development of a Microcomputer System.0 o v it v et i ceenrau a5
C. Execution of Programs from RAM on SIM&-Q1 Using
Memaory Loader Control Programs e e 47
X, MCEB3-10 Microcomputer Interconnect and Contral Module, 49
XL Appendicest aa e 56
I. SIM8 Hardware Assembler 56
Il. MCS-B Software Package — Assembler 71
A. Assernbler Specifications e e 1
B. Tymshare Users Guide for Assembly ., g1
C. General Electric Users Guide for Assembly 81
D. Sampie Program Assembly e e e 82
Il MCS-8 Software Package — Simulator 84
CALIntroduction L. L L. e e e e g4
B. Basic Elements B4
C.UNTERP/B Commands v vttt it cnea e iaenans e, . 84
D. I/0 Farmatting Commands\ o oo e e e 88
E Error MesSagms v it iin st mce e mm e e meime e B9
FoEXamples L. i e e e e e e oy
IV, Teletype Modifications for SIM8-01 85
V. Programming Examples e o8
A. Sample Program to Search a Stringof Characters o8 -
8. Teletype and Tape Reader Control Program 99
C. Memory Chip Select Decodes and Output Test Program 09
O RAM Test Program ittt i e e e e 99 -
E. Boatstrap Loader Programot in et it e 100
Vi. [ntetlec 8, Bare Bones 8, and Microcomputer Medules 103
XL Ordering Information _ e 124
A Sales OFiCes e e e e e 124
B. DIstributors _ .. e e e 125
C. Ordering Information/Packaging information . . _ vt onnn. 126

NOTICE: The cireuits contained herain are suggested applicatians only, Intel Corporation makes no warranties whatsoever with respect 1o the com-
pleteness, acouracy, patent or copyright status, or applicability of the circuits 10 3 user’s requiraments. The user is cautioned to check these circuits
for applicabiity to his specific situation prior to use. The user is further cautioned that in the évint a patent ar copyright claim is made against him
25 a result of the use of these circuits, Intet shall have na liability to usar with respect to any such claim,

8008 Photomicrograph With Pin Designations

2

I. INTRODUCTION

The 8008 is a single chip MOS 8-bit parallel central processor unit for the MCS-8 micro computer

system. A micro computer system is formed when the 8008 is interfaced with any type or speed

standard semiconductor memory up to 16K 8-bit words. Examptes are INTEL’s 1101, 1103, 2102 (RAMs),
1302, 1602A, 1702A (ROMs), 1404, 2405 (Shift Registers}.

The processor communicates over an 8-bit data and address bus (D, through D;} and uses two input leads
(READY and INTERRUPT} and four output leads (Sg, $¢, S5 and Sync) for control. Time multiplexing

of the data bus allows control information, 14 bit addresses, and data to be transmitted between the

CPU and external mernory.

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag
bits, and an 8-bit parallel binary arithmetic unit which implements addition, subtraction, and logical
operations, A memory stack containing a 14-bit program counter and seven 14-bit words is used internally
to store program and subroutine addresses. The 14-bit address permits the direct addressing of 16K words
of memory (any mix of RAM, ROM or S.R.). :

The control portion of the chip contains logic to implement a variety of register transfer, arithmetic
control, and logical instructions. Most instructions are coded in one byte (8 bits); data immediate in-
structions use two bytes; jump instructions utilize three bytes. Operating with a 500k Hz clock, the
8008 CPU executes non-memory referencing instructions in 20 microseconds. A selected device, the
8008-1, executes non-memory referencing instructions in 12,5 microseconds when operating from an
800kHz clock,

All inputs (including clocks) are TTL compatible and all outputs are low-power TTL compatible.

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arlth—
metic, and jump to subroutine,

The normal program flow of the 8008 may be interrupted through the use of the “INTERRUPT"”
control line, This allows the servicing of slow 1/Q peripheral devices while also executing the main
program.

The “READY" command line synchronizes the 8008 to the memory cycle allowing any type or speed
of semiconductor memory to be used.

. STATE and SYNC outputs indicate the state of the processor at any time in the instruction cycle.

i1, PROCESSOR TIMING

The 8008 is a complete central processing unit intended for use in any arithmetic, control, or decision-
making system. The internal organization is centered around an 8-bit internal data bus. All communication
within the processor and with external components occurs on this bus in the form of 8-bit bytes of
address, instruction or data. {Refer to the accompanying block diagram for the relationship of all of

the internal elements of the processor to each other and to the data bus.} For the MCS-8 a logic 1" is
defined as a high level and a logic “0" is defined as a low level.

A, State Control Coding

Sg 5, S, STATE
The processor controls the use of the data bus and 0 1 0 T1
determines whether it will be sending or receiving 0 1 1 ™
data. State signals Sy, S,, and S,, along with SYNC 0 0 1 T2
inform the peripheral circuitry of the state of the 0 0 0 WAIT

. 1 0 0 T3

processor. A table of the binary state codes and 1 1 o STOPPED
the designated state names is shown below. 1 1 1 T4

1 0 1 TS

B. Timing

Typically, a machine cycle consists of five states, two states in which an address is sent to memory
{T1 and T2), one for the instruction or data fetch (T3}, and two states for the execution of the in-
struction (T4 and T5). If the processor is used with slow memories, the READY line synchronizes the
processor with the memories, When the memories are not available for either sending or receiving data,
the pracessor goes into the WAIT state. The accompanying diagram illustrates the processor activity
during a single cycle.

SN NN NN AN NN NN AN
o N NN n_n n R R
svnc" A — \ — \ L \ A \ { \
S, \ r i
v A\ J
S L/ \ /
™ T T2 WAIT T2 STOPPED T4 T5
HIGHER
LOWER 8-BITS EXTERNAL | INSTRUCTION HALT
cru 8-81TS ADDRESS, MEMORY OR DATA | INSTRUCTION EXECUTION OF
INTERRUFTED | ADORESS TWO BITS NOT READY | FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL {OPTIONAL) DATA OUT cPu
ouT (&-8ITS]
- TYPICAL PROCESSOR CYCLE -

INCLUDES T1, T2, T3, T4, 15

Figure 1. Basic 8008 Instruction Cycle

The receipt of an INTERRUPT is acknowledged by the T1l. When the processor has been interrupted,

this state replaces T1. A READY is acknowledged by T3. The STOPPED state acknowledges the receipt
‘of a HALT instruction.

Many of the instructions for the 8008 are multi-cycle and do not require the two execution states, T4
and T5. As a result, these states are omitted when they are not needed and the 8008 operates asyn-
chronously with respect to the cycle length. The external state transition is shown below. Note that the
WAIT state and the STOPPED may be indefinite in length (each of theése states will be 2n clock periods).
The use of READY and INTERRUPT with regard to these states will be explained later.

~

INSTRUCTION
JAMMED IN
ON INTERRUPT

YES

EXECUTION
COMPLETE?

INTERRUPTED?

Figure 2. CPU State Transition Diagram

. €. Cycle Control Coding

As previously noted, instructions for the 8008 require one, two, or three machine cycles for complete
execution. The first cycle is always an instruction fetch cycle (PCt). The second and third cycles are
for data reading (PCR), data writing (PCW), or 1/O operations {PCC}.

The cycle types are coded with two bits, Dg and D,, and are only present on the data bus during T2,

Dg D, |CYCLE FUNCTION

0 0 PCl- Designates the address is for a memory read
(first byte of instruction},

0 1 PCR Designates the address is for a memory read

data {additional bytes of instruction or data).
PCC Designates the data as a command |1/O operation.

PCW Designates the address is for a memory write
data.

—
—_ 0D

Dp 0y Dp D3 B4 Dy Og D7

T

INTERNAL DATA BUS

o
8 BIT CATA BUS -
INTERNAL DATA BUS
: —
3 T 1 ACCUMULATCR
REGISTER Q REGISTER b MEMORY CYCLE IINSTRUCUON REGISTER ol 2_5 : AND
5 CONTROL CODIN (s BITS} u S
{8 BITS) (s aITs} x °'§" SCRATCH PAD
. [AALKRAL) Yy Wi
S8 ol MEMORY
-] R
= [l g 1) 1
REGISTER Z| |2 %|a] 7T womDsx 8 BITS
1"" CARRY [3
AND L
LOOK AHEAD
(@ BiTS) - - ARITHMETIC INSTRUCTION MEMORY 4 3
uNIT AND >
- DECODER - MEMORY
CONTROL 1/0 CONTROL | | REFRESH MULTIPLEXER AND
T |COUNTER REFRESH [
8 - BIT PARALLEL | g - A FiERS
ARITHMETIC - MPLIFIER
—— uNIT e —5_;_“ r 1
| ;] o CK AN
- » | ADDRESS sTack anp
YA 4} [9 YR IE A = ™12 ™ srocram counter
CONDITION MACHINE STACK % E wly
FLIP-FLOPS (Z,C,5,F)—= -t GYCLE o L™y 8—- 8WORDS 2 14 BITS
’ CONTROL POINTER Eay 8
s AND GONDITION <el |% g:
LOGIC - i g I
2215 ™
S — el
| STATE TIMING -
sTaTus - GENERATOR -
SIBNALS - ¥ | i i
CLOCK
GENERATOR READY INT.
L % é EF EF
SYNC -7 -2
READY INTERRUPT

Figure 3. 8008 Block Diagram

i1l. BASIC FUNCTIONAL BLOCKS

The four basic functional blocks of this Intel processor are the instruction register, memory, arithmetic-
logic unit, and |/O buffers, They communicate with each other over the internal 8-bit data bus.

A. Instruction Register and Control

The instruction register is the heart of all processor control. Instructions are fetched from memory, stored
in the instruction register, and decoded for control of both the memories and the ALU. Since instruction
executions do not all require the same number of states, the instruction decoder also controls the state

transitions.

B. Memory

Two separate dynamic memories are used in the 8008, the pushdown address stack and a scratch pad.
These internal memories are automatically refreshed by each WAIT, T3, and STOPPED state. In the worst

case the memories are completely refreshed every eighty clock periods,

1. Address Stack

The address stack contains eight 14-bit registers providing storage for eight lower and six higher
order address bits in each register.- One register is used as the program counter {storing the effective
address} and the other seven permit address storage for nesting of subroutines up to seven levels,
The stack automatically stores the content of the program counter upon the execution of a CALL
instruction and automatically restores the program counter upon the execution of a RETURN. The
CALLs may be nested and the registers of the stack are used as last in/first out pushdown stack.

A three-bit address pointer is used to designate the present location of the program counter. When
the capacity of the stack is exceeded the address pointer recycles and the content of the lowest
level register is destroyed. The program counter is incremented immediately after the lower order
address bits are sent out. The higher order address bits are sent out at T2 and then incremented

if a carry resulted from T1. The 14-bit program counter provides direct addressing of 16K bytes

of memory. Through the use of an 1/0O instruction for bank switching, memory may be indefinitely
expanded. s i

2. Scratch Pad Memory or Index Registers

The scratch pad contains the accumulator (A register) and six additional 8-bit registers (B, C, D,
E, H, L). All arithmetic operations use the accumulator as one of the operands. All registers are
independent and may be used for temporary storage. In the case of instructions which require
operations with a register in external memory, scratch pad registers H & L provide indirect ad-
dressing capability; register L contains the eight lower order bits of address and register H contains
the six higher order bits of address {in this case bit 6 and bit 7 are ““don’t cares’}.

C. Arithmetic/Logic Unit {ALU)

All arithmetic and logical operations (ADD, ADD with carry, SUBTRACT, SUBTRACT with borrow,
AND, EXCLUSIVE OR, OR, COMPARE, INCREMENT, DECREMENT) are carried out in the 8-bit
paraiiel arithmetic unit which includes carry-look-ahead logic. Two temporary resisters, register ‘a” and
register 'b”, are used to store the accumulator and operand for ALU operations. in addition, they are
used for temporary address and data storage during intra-processor transfers. Four control bits, carry
flip-flop (¢} , zero flip-flop {2) | sign flip-flop {s) , and parity flip-flop (P}, are set as the result of each
arithmetic and logical operation. These bits provide conditional branching capability through CALL,
JUMP, or RETURN on condition instructions. In addition, the carry bit provides the ability to do mul-
tiple precision binary arithmetic.

D. 1/0 Buffer

This buffer is the only link between the processor and the rest of the system. Each of the eight buffers
is bi-directional and is under control of the instruction register and state timing. Each of the buffers is
low power TTL compatible on the output and TTL compatible on the input.

V. BASIC INSTRUCTION SET
The following section presents the basic instruction set of the 8008,

A. Data and Instruction Formats

Data in the 8008 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be
in the same format.

D7 Dg Dg Dy D3 Dy Dy Dy
DATA WORD
~The program instructions may be one, two, or three bytes in length. Muitiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend dn the particular operation
executed.

One Byte Instructions

Register to register, memary reterence
Uy Og Dg D, Oy Dy D | gi . ¥ ;
[7P P50 By B2 Dy Do | opcope 110 arithmetic o logical, ratate ar
return instructions

TYPICAL INSTRLICTIONS

Twa Byte instructions

]D? Dg Dg D4 By 0y Oy Dg] OP CODE

Dy D D, Dy Oy Dy O
[7 Dg O D4 Dy By Dy 0! OPERAND Immediate mode instructions

Three Byte bnstructians

|P7 Dg D5 D4 D3 B2 Dy Dg| op cooE

JUMP or CALL | j
IU? Dg D5 04 D3 D7 Dy Dof LOW ADORESS = instructions

|* X DgDy Dy Dy Dy Bgf HiGH ADDRESS* *For the third byte of this instruction, Og and D are “don’t care” bits,

For the MCS-8 a logic 1 is defined as a high level and a logic ‘0" is defined as a low level.

B. Summary of Processor Instructions

Index Register Instructions
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-
flops except the carry.

_ MINIMUM INSTRUCTION CCDE
MNEMONIC | STATES | D;Dg DgD4Dy D, DBy Dg DESCRIPTION OF OPERATION
REQUIRED
NWeqgrg (5) 11 D DD 5 § 5 [Load index register ry with the content of index register ra.
e {8) 11 DDD 1 1 1 |Load index register r with the content of memory register M,
LM {7 11 1 11 5 S 8 |Load memory register M with the content of index register r,
e @) 06 DBDD 110 Iogindex register r with data B . . . B.
B B B HB 8 BB
L 9 00 111 110 1504 memory register M with data B . . . B.
B B B B8 B B B B
INr {5) 00 DDD 0 0 € |increment the content of index register v (r # A),
DCr 5} 00 p DD 0 0 1 |Decrament the content of index register r {r # A},

Accumulator Group Instructions

The result of the ALLU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

ADr {5 10 000 5 5 § | Add the content of index register r, memnaory register M, or data
ADM {8 1t 0 0 00 1 1 1 |B...B tothe accumuiator, An overflow {carry} sets the carry
ADI (8 00 0 00 1 ¢ 0 | fiipfop.

B B B B B B 8 8
ACr {5} 10 001 § 5 5 [Add tha content of index register r, memary register M, or data
ACM (8) 10 o 01 1 1 1 | B...B totheaccumulator with carry, An overflow (carryl
ACI 8 oo 001 1 0 O | setsthe carry flip-flop.

B B 8 B B B BB
SUr {5} 10 010 § § 5§ |[Subtract the content of index register r, memory register M, or
SUM {8) 10 ¢ 10 1 1 1 [data...B fromthe accumulator. An underfiow (horrow}
:{9]] {8} 00 o010 t 0 0 |setsthe carry flip-flop.

. B B B B B B B B

SBr {5} 10 0 11 S5 § § | Subtract the content of index register r, memory register M, or data
SBM {8) 1 0 011 1 1 1 |dataB.,.B from the accumulator with borrow. An underflow
SBI 8} 0 0: 011 1 0 0 |[{borrow) sets the carry flipflop.

B B 8 B B B B B

MINIMUM

INSTRUCTION CODE

MNEMONIC STATES | D;D; DgDsD3 DyDi Dy DESCRIPTION OF OPERATION
REQUIRED)
NDr {5} t 0 1 00 § § S | Compute the logical AND of the content of index register r,
NDM (8) 10 1 00 1 1 1 memory register M, or data B . . . B with the accumulator,
NDI {8} 00 100 100 -
B B B B B E BB
XRr {5} 10 1 01 § 8§ 5 | Compute the EXCLUSIVE OR of the content of index register
XBM {8} 1.0 1 01 1 1 1| r, memory register M, ar data B . . . B with the accumulator,
XRI (8} o0 101 100
B B B B B B B B
ORr {5} 1.0 1t 10 S8 8 S | Compute the INCLUSIVE OR of the content of index register
ORM {8} 1.0 110 1 1 1 | r, memory register m, or data B . ., B with the accumulator .
ORI (8} 00 110 ‘1 00
) B B B EBEB E B E
CPr {51 10 1.1 1 5 5§ § | Compare the content of index register r, memory register M,
CPM 8} 10 1 11 1 1 1| ordataB...B with the accumulator. The content of the
CPI 8 00 t 11 1 0 0| accumulator is unchanged.
. B B BE BB BE B B
RLC (s} 0 0 0 00 0 1 0 | Rotate the content of the accumnulator left,
RRC (5} 00 0 01 0 1 0 | Botate the content of the accumulator right.
RAL {5} 0 0 010 0 1 0 | Botate the contant of the accumulator left through the carry,
RAR 15 o0 011 0 1 O | Rotate the content of the accumulator right through the carry,

Program Counter and Stack Control Instructions

4 mp (1) 01 X X X 1 0 0| Unconditionally jump te memory address B3 ... B3B2...B2.
82By B2B2Bz B28383
X X Bz B3Bs B3BaBg3
18) uFe {Bor11) 01 0 CqCz O O O Jumptomemory address B3 ... B382...B2 if the condition
BzB: BaBzBs B3 Ba B flipflop c.is false. Otherwise, execute the next instruction in sequence.
X X B3z BaBy B3B3Bsz
JTe 9 or11) o1 1 C4C3 0 0 O | Jumpto memory address By ... B3B2 ... B4 if the conditian
BypBs BaBpBo By 89 Bg| flip-flop ¢ is true. Otherwise, execuie the next instruction in sequence,
X X B3z B3B3y By BaBg
CAL (11} o1 X X X 1 t 0 | Unconditionally call the subrouting at memory address B3 . . .
By Ba BBz By By Bp By| B3Bo...By. Save the current address {up one tevel in the stackl,
X X B3 B3 By B3 BgBa
CFe {9or 11} o1 0 C4Csz 0 1 0| Call the subroutine at memory address Bz ... BaBz... B2 if the
B2 B2 Ba By B2 B89 Bo B| condition flip-flop c is faise, and save the current address (up one
X X B3 B3 B3 Bz B3 B3| tevel in the stack.} Otherwise, execute the naxt instruction in sequence,
CTe {9or11) 0t 1 C4C3 0 1 0 | Cal the subrqutine at memory address B3 .. .BaB2 ... B2 if the
B2 B2 B 82Bs By Bo Ba| condition flipfiop ¢ is true, and save the current address {up one
X X B3 B3B3 Bz B3 Bz| level in the stack), Otherwise, execute the next instruction in sequence,
RET {5) 00 X XX 1 1 1| Unconditionally return {down one level in the stack).
RFc (3or5) 00 0 Ca2Cz O 1 1| Return [down one level in the stack} if the condition flip-flop ¢ is
false, Otherwise, execute the next instruction in saguence,
RTe {3 or 5} 00 1 C4C3 0 1 1| Return {down one level in the stack) if the condition flipflop ¢ is
' true, Otherwise, execute the next instruction in sequence.
RST {5} 00 A A A 1t 0 1 | Calt the subroutine at memory address AAAQOO {up one level in the stack).
Inpurt/Qutput Instructions
INP (8l 01 o0 M M M 1 | Read the content of the selected input port {MMM) into the
accumulator,
ouT {6) 0 1 R R M M M 1 | Write the content of the agccumulator inta the selected output
port (RRMMM, RR £ 00].
Machine Instruction
HLT {4} 00 0G0 0 0 X | Enter the STOPPED state and remain thera until interrupted.
HLT (4 11 1 1 1 1 11 Enter the STOPPED state and remain there uatil interrupted,
NOTES: -

(1)

2
(3
(4}
(5}

585 = Source Index Register
DDD = Destination Index Register
Memary registers are addressed by the contents of registars H & L,
Additional bytes of instruction are designated by BBBBBBEB.

X = “Don't Care",
Flag flip-flops are defined by C4Cg3: carry [0D-overflow or underflow}, zero {01 result is zero}, sign {10-MSB of result is 1",
parity {11-parity is even}.

Thesa registers, r,, are desig'lated Alaccumulator—000},
BLOO1), CIO10Y, D011}, E{1001, HI101}, Lit10).

C. Complete Functionai Definition
The following pages present a detailed description of the complete 8008 Instruction Set.

Symbols Meaning
<B2> Second byte of the instruction
<B3> Third byte of the instruction
r One of the scratch pad register references: A, B, C, D, E,H, L
c One of the following flag flip-flop references: C, Z, S; P
C403 Flag flip-flop codes Condition for True
00 carry Overflow, underflow
01 zero Result is zero
10 sign MSB of resultis 1"
11 parity Parity of result is even
M Memory location indicated by the contents of registers H and L
{} Contents of location or register '
A Logical product
' Exclusive “or”
vV Inclusive “or”
A, Bit m of the A-register
STACK Instruction counter {P) pushdown register
P Program Counter
—-— Is transferred to
XXX A ''don't care”
888 Source register for data
oD Destination register for data

Register # Register Name
{S5S or DDD}

000
001
010
om
100
101
110

rEmooOoom>

10

INDEX REGISTER INSTRUCTIONS-

LOAD DATA TO INDEX REGISTERS — One Byte
Data may be loaded into or moved between any of the index reglsters or memory registers.

Lr,ry 11 DDD SS§ (r-,}--(r2} Load register r,; with the content of r;.

{one cyc!e — PCl) The content of r, remains unchanged. |f SSS=DDD,
' the instruction is a NOP (no operation).

Lrm 11 DDD 111 {r}=(M) Load register r with the content of the

{two cycles — memory location addressed by the contents of

PCI/PCR) registers H and L. (DDD#111 — HALT instr.)

LMr 11 111 S5S {M)={r} load the memory location addressed by

(two cycles — the contents of registers H and L with the content

PCI/PCW) of register r. {S5S8#111 — HALT instr.)

LOAD DATA IMMEDIATE — Two Bytes
A byte of data immediately following the instruction may be ioaded into the processor or into the.
memory .

Lrl 00 DDD 110 (r}+=—<By> Load byte two of the instructian into
{two cycles — <By> - register r.
PCI/PCR) __ .
LMI 00 1M 110 {M)=—<B,> Load byte two of the instruction into
{three cycles — <B,> the memory location addressed by the contents of
PCI/PCR/PCW)} registers H and L.

INCREMENT INDEX REGISTER — One Byte
INr 00 DDD 000 {r) = (r)+1. The content of register r is incremented by
(one cycle — PCI) . one. All of the condition flip-flops except carry are

affected by the result. Note that DDD#000 (HALT
instr.} and DDD#111 (content of memory may not
be incremented).

DECREMENT INDEX REGISTER — One Byte

DCr 00 DDD 001 (r)==(r)—1. The content of register r is decremented
{one cycle — PCI) . by one. All of the condition flip-flops except carry
are affected by the result. Note that DDD#000 (HALT
instr.} and DDD#111 (content of memory may not be
decremented}.

ACCUMULATOR GROUP INSTRUCTIONS

Operations are performed and the status flip-flops, C, Z, S, P, are set hased on the result of the operation.
Logical operations {(NDr, XRr, ORr} set the carry flip- flop to zero. Rotate operattons affect only the
carry flip-flop. Two's complement subtraction is used.

ALU INDEX REGiSTEF{ INSTRUCTIONS — Qne Byte
(one cycle — PCl}
Index Register operations are carried out between the accumulator and the content of one of the index
registers (SSS=000 thru $5S=110). The previous content of register SSS is unchanged by the operation.

ADr 10 000 SSS {A)—(A)+(r} Add the content of register r to the
content of register A and place the result into
: register A.
ACr 10 001 SS8S {A}—{A)+{r)+{carry) Add the content of register r

and the contents of the carry flip-flop to the content
of the A register and place the result into Register A.

SUr 10 010 - SSS {AY—{A)—{r} Subtract the content of register r from
the content of register A and place the result into
register A. Two’s complement subtraction is used.

1"

ACCUMULATOR GROUP INSTRUCTIONS - Cont’d,

SBr 10 011 858 {Al=-{A)—{r)—(borrow} Subtract the content of
register r and the content of the carry flip-flop from
the content of register A and place the result into

register A.
NDr 10 100 SSS (A)~{AJAlr) Place the logical product of the register
A and register r into register A,
XRr 10 101 588 {AY—{A}¥{r) Place the "exclusive - or’ of the
content of register A and register r into register A,
QORr 10 110 5888 (Al=—{AYV(r) Place the “inclusive - or” of the
content of register A and register r into register A,
CPr 10 1M SSS {(A)—{r} Compare the content of register A with

the content of register r. The content of register A
remains unchanged. The flag flip-flops are set by the
result of the subtraction. Equality {A=r} is indicated
by the zero flip-flop set to /1. Less than (A<r) is
indicated by the carry flip-flop, set to *1"".
ALU OPERATIONS WITH MEMORY — One Byte

{two cycles — PCV/PCR)

Arithmetic and logical operations are carried out between the accumulator and the byte of data

addressed by the contents of registers H and L.

ADM 10 000 111 {A)y—~(A)+{M} ADD

ACM 10 001 111 {A—{A}+(M)+{carry) ADD with carry

SUM 10 010 11 {Al—={A)—{M) SUBTRACT

SBM i0 011 111 {Ay—{A}—-({M)—{borrow) SUBTRACT with borrow
NDM 10 100 111 {A)—{AYA(M) Logical AND

XRM 10 101 1M1 (A)—A)¥(M) Exclusive OR

ORM 10 110 111 {AI—AIV(M) Inclusive OR

CPM 10 111 111 {A)—(M} COMPARE

ALU IMMEDIATE INSTRUCTIONS — Two Bytes
{two cycles —PCI/PCR)
Arithmetic and logical operations are carried out between the accumulator and the byte of data
immediately following the instruction.

ADI 00 000 100 (A)=-{A}+
<Bo> ADD
ACI 00 001 100 (AY=—{A)+<B2>+{carry}
<By> ADD with carry
Sut o0 010 100 (A} ={A)-<B2>
<By> SUBTRACT
SBI 0c oM 100 {A}={A)—<B2> —(borrow)
<Bo> SUBTRACT with borrow
NDI 00 100 100 {A)—{A}A<By>
<B2> Logical AND
XRi oo 101 100 (A}—{A}¥ <B2>
<B2> Exclusive OR
ORI 00 110 100 (A)=—{A}V <B2>
<Bs> tnclusive OR
CPI oo 111 100 (A)— <Bo>

<Bz> COMPARE

12

ROTATE INSTRUCTIONS — One Byte
{one cycle — PCI)
The accumuliator content {register A) may be rotated either right or left, around the carry bit or
through the carry bit. Only the carry flip-flop is affected by these instructions; the other flags are
unchanged.
RLC 00 000 010 AneiAm, Ag=A,, (carry)+A,
Rotate the content of register A left one bit.
Rotate A into Ag and into the carry flip-flop.

RRC 00 001 .- 010 A=A, Ar+Ag, (carry)=Ag
Rotate the content of register A right one bit.
_ Rotate Ay into A; and into the carry flip-flop.
RAL 00 010 010 Ams1—An Ag—{carry),{carry}=A,
Rotate the content of Register A left one bit,
Rotate the content of the carry flip-flop into A,.
: Rotate A, into the carry flip-flop.
RAR 00 011 010 Am=Am+1,A7 —({carry), (carry)+Ag
Rotate the content of register A right one bit.

Rotate the content of the carry flip-flop into A,
Rotate A, into the carry flip-flop.

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

JUMP INSTRUCTIONS — Three Bytes
{three cycles — PCI/PCR/PCR) :
Normal flow of the microprogram may be altered by jumping to an address specified by bytes two
and three of an instruction.

Jmp 01 XXX 100 {P)=<B5><By> Jump unconditionatly to the
{(Jump Unconditionaily) <Bs> instruction located in memory location addressed
<Bs3> by byte two and byte three.

JFe 01 0cL,; 000 If {c} = 0, (P}+<B3><By>, Otherwise, (P} = (P}+3.
(Jump if Condition <By> If the content of flip-flop ¢ is zero, then jump to
False) <Bg> the instruction located in memory location <Bz><By> ;

otherwise, execute the next instruction in sequence.
JTc 01 1C,C, 000 If {¢) =1, {P}+=<B3> <By> Otherwise, (P} = (P}+3.
{(Jump if Condltlon <By> If the content of flip-flop ¢ is one, then jump to the
True) <By> instruction located in memory logation <Bs> <By> ;

. otherwise, execute the next instruction in sequence.
CALL INSTRUCTIONS — Three Bytes

{three cycles — PCI/PCR/PCR)
Subroutines may be called and nested up to seven levels,

CAL 01 XXX 110 {Stack}=(P), (P}=<B,> <By>. Shift the content of P

(Call subroutine <By> 10 the pushdown stack. Jump unconditionally to the

Unconditionalty) . <Ba> instruction located in memory location addressed by
byte two and byte three.

CFc 01 0C,C, 010 If (¢) =0, (Stack}=(P), (P}+—<B3><B,>. Otherwise,

(Call subroutine <By> {P) = {P}+3. If the content of flip-flop ¢ is zero, then

if Condition False) <Bs> shift contents of P to the pushdown stack and jump

to the instruction located in memory location<Bp><By> ;
otherwise, execute the next instruction in sequence.

~CTe 01 1C,C; 010 If {c} = 1, (Stack)==(P}, {P)=<Bs><B,>. Otherwise,
(Call subroutine <B,> (P} = (P}+3. If the content of flip-flop ¢ is one, then
if Condition True} <Bz> shift contents of P to the pushdown stack and jump

to the instruction located in memory location<Bg>» <Bo>;
otherwise, execute the next instruction in sequence.
In the above JUMP and CALL instructions < B, > contains the least significant half of the address and
<Bs> contains the most significant half of the address. Note that Dg and D; of<Bj>are “don’t care”
bits since the CPU uses fourteen bits of address.

12

RETURN INSTRUCTIONS — One Byte
{one cycle — PCI)
A return instruction may be used to exit from a subroutine; the stack is popped-up one level at a time.
RET 00 XXX 11 (P}—(Stack). Return to the instruction in the memory
location addressed by the last value shifted into the
pushdown stack, The stack pops up one level.

RFc 00 0C,C; 011 If (¢} = 0, {P}={Stack}; otherwise, (P} = (P}+1.
{Return Condition if the content of flip-flop ¢ is zerop, then return to
False} the instruction in the memory location addressed by

the last value inserted in the pushdown stack. The stack
pops up one level. Otherwise, execute the next instruction

in sequence. _
RTc 00 1C,C; 011 If {c} =1, (P)—{Stack); otherwise, (P} = {P}+1.
{Return Condition . If the content of flip-flop ¢ is one, then return to
True) : the instruction in the memory location addressed by

the last value inserted in the pushdown stack. The stack
pops up one level. Otherwise, execute the next instruction
in seguence,
RESTART INSTRUCTION - One Byte
{one cycle — PCI}
The restart instruction acts as a one byte call on eight specified locations of page 0, the first 256 instruction
words,
RST 00 AAA 101 (Stack }=(P},(P}={000000 QCOAAADDD)
Shift the contents of P to the pushdown stack.
The content, AAA, of the instruction reqister is
shifted into bits 3 through 5 of the P-counter. All
other bits of the P-counter are set to zerg, As a one-
word “‘call”’, eight eight-byte subroutines may be
accessed in the lower 64 words of memory.

INPUT/OUTPUT INSTRUCTIONS
One Byte
(two cycles — PCI/PCC)
Eight input devices may be referenced by the input instruction

INP 01 ooM MM1 {A)={input data lines). The content of register A
is made available to external equipment at state T1
of the PCC cycle. The content of the instruction
register is made available to-external equipment at
state T2 of the PCC cycle. New data for the
accumulator is loaded at T3 of the PCC cycle.
MMM denotes input device number. The content of the
condition flip-flops, 5,Z,P C, is output on Dy, D,, D, , D,
respectively at T4 on the PCC cycle.
Twenty-four output devices may be referenced by the output instruction, '
ouT 01 RRM MMI1 {Output data lines)=(A). The content of register A
is made available 1o external equipment at state T1
and the content of the instruction register is made
available to external equipment at state T2 of the PCC
cycle. RRMMM denotes output device number {RR #
00). '
MACHINE INSTRUCTION
HALT INSTRUCTION — One Byte
(one cycle — PCI)

HLT 00 000 00X On receipt of the Halt Instruction, the activity of the
or processor is immediately suspended in the STOPPED
i1 111 111 state. The content of all registers and memory is un-

changed. The P-counter has been updated and the
internai dynamic memaories continue to be refreshed.

14

D. Internal

Processor Operation

Internally the processor operates through five different states:

signal distinguishes between the two clock periods

of each state.

Internal State Typical Function
NORMAL Send aut lower eight bits of address and increment program counter,
T Send out lower eight bits of address and suppress incrementing of pragram counter and
INTERRUPT acknowledge interrupt,
Send out six higher order bits of address and two control bits, Dgand D7, Increment
T2)
program caunter if there has been a carry fram T1.
WAIT Wait for READY signal to come true. Refresh internal dynamic memaories while waiting.
T3 NORMAL Fetch and decode instruction; fetch data from memory; output data to memoary. Refresh
internal memories.
STOPPED Remain stapped until INTERRUPT occurs. Refresh internal memories.
Execute instruction and apprapriately transfer data within processor, Cont_ent of data
T4 and TS ~—— bus transfer is available at 1/0 bus for convenience in testing. Some cycies do not require
these states, In those cases, the states are skipped and the processor goes directly to T1.
The 8008 is driven by two non-overlapping clocks. — -’
Two clock periods are required for each state of
the processor. ¢4 is generally used to precharge all o o org
- data lines and memories and ¢, controls ali data
transfers within the processor. A SYNC signal _
{divide by two of ¢5) is sent out by the 8008, This oy o o

SYNG j \) l-
I-G‘ONE_MACHINE STATE*—‘

Processor Clocks

The figure below shows state transitions relative to the internal operation of the processor. As noted

in the previous table, the processor skips unnecessary execution steps during any cycle, The state _
counter within the 8008 operates is a five bit feedback shift register with the feedback path controlled

by the instruction being executed. When the processor is either waiting or stopped, it is internally

cycling through the T3 state, This state is the only time in the cycle when the internal dynamic memories
can be refreshed.

{CYCLE 1} {HLT # INT + RETURN (CF)} + [CYCLE 2) {OUT + LMr} + (CYCLE 3} (LMI + JUMP (CF} + CALL ICF})

CYCLE 1

{CYCLE 1) (HLT « INT) +RDY

CYCLE 2 L

Iy

{CYCLE 2] ILMI + JUMP + CALL)

{CYCLE 1) [LrM + ALUM + ALUI + INP + CUT + Lrl + JUMP + CALL)

{CYCLE 1) {LMr}

NORMAL RETURN AT END OF MEMORY CYCLE

NOTE: C.F. INDICATES A FAILED CONDITHON

Transition State Diagram {Internal)

The following pages show the processor activity during each state of the execution of each instruction.

15

INTERNAL PROCESSOR OPERATION

INDEX REGISTER INSTRUCTIONS

INSTRUCTION CODING # OF STATES MEMORY CYCLE ONE (1}
OPERATION | TO EXECUTE
D;bg DgDaD; DDy D, INSTRUCTION T1{2 T2 T3 Ta(3) 15
11 CDD § 5 5 Lryra 5 PCLOUT | PCHOUT | FETCH INSTR.A5] SSSTOREG.b | REG.b TO DDD
: (4 TO IR & REG. b (6}

T 1 GBbo 111 e g FCLOUT | PCOUT | FETCH INSTR. -
TO IR & REG. b {7 .

T L S 5 8 LMr 7 PC_OUT | PCHOUT | FETCHINSTR, | 55570 REG.b .
TO IR & REG. b

g0 DDODO 110 Lel B PC_OUT | PCHOUT | FETCH INSTR, _
TO IR & REG.b -

0 0 T 1 1 110 [T g PCLOUT | PCHOUT | FETCH INSTR. -
TO IA & REG. b

00 DDD 000 INr 5 PCLOUT | PCHOUT | FETCH INSTR, X ADD OP - FLAGS
TO IR & REG. b AFFECTED

06 O0OODD 001 DCr 5 PCLOUT | PCHOUT | FETCH INSTR, X SUEB OP - FLAGS
TO IR & REG. b AFFECTED

ACCUMULATOR GROUP INSTRUCTIONS

10 PP P § 58§ ALUOP r 5 PCLOUT | PCHOUT | FETCH INSTA, | SSSTOREG.b | ALUOP- FLAGS
TO IR & REG. b AFFECTED

70 P PP T 11 ALUCP M 8 FCLOUT | PCHOUT | FETCH iNSTR, —
TO IR & REG. b

66 P FP 100 |ALUGFI 8 PCLOUT | PCHOUT | FETGH INSTR, -
TOIA & REG. b

0o G000 Ot & RLC 5 PCLOUT | PCHOUT | FETCH INSTR, X ROTATE REG. A
TO IR & REG. b CARRY AFFECTED

o0 C01 0t o ARC 5 PCLOUT | PCHOUT | FETCH INSTH, X ROTATE REG. A
TG IR & REG. b CARRY AFFECTED

G0 o106 010 AAL 5 PC_LOUT | PCHOUT | FETCH INSTR. X ROTATE AEG. A
TO 1A & REG. b CARRY AFEECTED

bo o011 @10 RAR 5 PCLOUT | PCHOUT | FETCH INSTR. x ROTATE REG. A
TO IR & REG. b CARRY AFFECTED

PROGRAM COUNTER AND STACK CONTROL {NSTRUCTIONS

01 XXX 100 SMP tt PCLOUT | PCHOUT | FETCH INSTR, -
TO IR & REG. b -~

o 1 ¢ucc 000 JFe Sor 11 PC OUT | PCHOUT | FETCH INSTR, _
TO iR & REG. b o

o 1 1CC 000 ITe Sor 11 PCLOUT | PCOUT [FETCH INSFR,
TOIR & REG. b -

o 1 XXX 1140 CAL 1 FCLOUT | PCOUT | FETCH INSTH. —
TO iR & REG. b T

o 1 0o cCc 010 CFc For 11 PCLOUT | PCHOUT | FETCH INSIR, -
TC IR & REG. b v

0 1 TcCCc a1¢o CTe gor 11 PC_OUT | PCHOUT | FETCH INSTR. —
TO IR & REG. b o

o0 XX %X 111 RET 5 PCLOUT | PCHOUT | FETCH INSTR, | POP STACK X
TO IR & REG. b

90 oecc o011 RFc 3ar5 PCLOUT | PCHOUT | FETCH INSTH, |FPOP 5TACK (13 X
TO IR & AEG. b

) 1€ C 011 ATc 3075 PCLOUT | PCHOUT | FETCH INSTR. | POF STACK (13} X
TOIR & AEG. b

o0 AAA 104 AST 5 PC_OUT | PCuOUT | FETCH INSTH. |HEG. a TOPCH | REG, b TO PCL
TC REG,b AND 1143
PUSH STACK
[(D~REG. 2)

1/O INSTRUCTICNS

K] G O0OM MM:? INF 8 FCLOUT | PCHOUT | FETCH INSTR, i
TO IR & REG. b T

K] ARAM MM ouT [PCLOUT | PCHOUT | FETCH INSTH, _
TO IR & REG. b o

MACHINE INSTRUCTIONS

60 @090 00 X HLT 4 PCLOUT [PCHOUT | FETCH INSTR.

: TC iR & REG.b

& HALT (18}

1t t 11 111 HLT 4 PCLOUT | PCROUT | FETCH INSTR.
TO IR & REG. b
& HALT (18)

NOTES: :

1. The first memory cyels is aiways a PCl (instruction) cycle,

2, Intarnally, states are defined as T1 through T5. |a some cases
more than one memary cycle is required to exacute an instruction.

3. Content of the internal data bus at T4 and T5 s available at the
data bus. This is designed for testing purposes only.

4, Lower order address bits in the program counter are denoted
by PCp and higher order bies are designated by PCH,

5. During an instruction fetch the instruction comes from memary

te the instruction register and is

decoded,

16

-

o

and data transfers (Register 8 and Register b.)

“8om~

. These stetes are skippad,
PCH cycle [Memory Read Cyce),
;"X denotes an idie state,
. PCW cycle (Memory Write Cycle).
. When tha JUMP is conditicnal and the condition fails, states

. Temporary registers are used internally for arithmetic operations

T4 and TS are skipped and the state counter advanzes to
the next memory cycla.

MEMORY

CYCLE TWO

MEMORY CYCLE THREE

T3

T T2

T2

T4

REG, L OUT

REG. 5 CUT

DATA TO

8l REG.b
REG. L OUT REG,HOUT | REG.b
130 T oUT AR DN
PC OUT (B} PCHOUT DATA TO X REG. b
REG. b To DDD CEATTLLRLT w
PCy OUT 18) | PCHOUT DATATO REG.L

REG. b

REG. L OUT

BATATO

TaLuol

18} REG, b AFFECTED
PC_OQUT (8] PCHOUT DATATO X ARITH OP - FLAGS [
REG, b

AFFECTED

LOWER ADD.

HIGHER ADD.

PCLOUT(8) | PCHOUT . PCLOUT(8I PCHOUT REG.s REG.b
TO REG.b i REG. a TO PCYy TO PCL
PCLOUT 18 PCHOUT LOWER ALD. PCLOUT(B] PCHOUT HIGHER ADD,| REG.a REG, b
70 REG. b REG.a {11} TOPCH TO PCL
PCLOUTIS) | PCyOUT LOWER ADD. - PCLOUTI) PCYOUT |HIGHER ADD| REG.a REG.b
TO REG. b REG.a (11} TOPCH TO PC
PCLOUT|g) | PCHOUT LOWER ADD. - PCLOUTI8} PCYOUT [HIGHER ADD| REG.a REG.B
TO REG. b REG.a TO PCH TO PG
PCLOUT{8) | PCHOUT LOWER ADD, _ PCLOUT{S) PCHOUT |HIGHER ADD.| REG.z REG.b
TQ REG. b l REG.a 112)| TO PCy TO PCL
PCLOUT{8) | PCHOUT LOWER ADD. - PCLOUTISH PCHOUT [HIGHER ADD.| REG.a REG. b
TOREG. b REG.a 12)] TOPCH TO PCL

REG. A REG.b DATATO [CGND#| REG.b

roour '8 | Toour REG.b JouTi16] TOREG.A

REG. A 115! REG.b x N

TO DUT TOOUT 1171 PR AR S P

12. When the CALL is canditional and the condition fails, states
T4 and TS are skipped and the state counter advances to
the next memory.cycle, If the condition is true, the stack
is pushed at T4, and the lower and higher order address
bytes are loaded inta the program counter,

13,

When the RETURN conditicn is true, pop up the stack;

otherwise, advance to next memory cycle skipping T4 and TE&,

are set 10 zéro; zeros are loaded into PCH.

. Bits O3 through Dg are lgaded into PC and all other bits

15. PCC cycle {I/0 Cyelel,

16. The content of the conditicn Flip-flops is aveilable at the data bus:
$at Dp, Z at Dy, Fat Dy, C at D3.1D4 — D7y all anesi

17, A READY command must be supplied for the OUT operation
t¢ be completed, An idle T3 state is used and then the state
counter advances 1< the next memory cycle.

18, When 3 HALT command occurs, the CPU intérnally remains
in the T3 state until an INTERRUPT is recognized. Externally,
the STOPPED state is indicated.

17

. V. PROCESSOR CONTROL SIGNALS

A. Interrupt Signal {iNT)

1] INTERRUPT REQUEST
If the interrupt line is enabled {Logic “'1”’), the CPU recognizes an interrupt request at the
next instruction fetch (PCI) cycle by outputting Sg S, 8, = 011.at T11 time. The lower
and higher order address bytes of the program counter are sent out, but the program
counter is not advanced. A successive instruction fetch cycle can be used to insert an
arbitrary instruction into the instruction register in the CPU. {If a multi-cycle or multi-
byte instruction is inserted, an interrupt need only be inserted for the first cycle.}

When the processor is interrupted, the system INTERRUPT signal must be synchronized with
the leading edge of the ¢4 or ¢, clock. To assure proper operation of the system, the interrupt
line to the CPU must not be allowed to change within 200 ns of the falling edge of ¢4. An
example of a synchronizing circuit is shown on the schematic for the SIM8-01 {Section VIi),

(4
| : | |
| .
INTERRUPT T |
TO SYSTEM / \ 5 |
| '
SYNCHRONIZED I 1 i
INTERRUPT TG
cru _/;:E;F |
i | I
T11 INTERRUPT (
ACKNOWLEDGE % '

INTERRUPT
I i RECOGNIZED

Figure 4. Recognition of Interrupt

If a HALT is inserted, the CPU enters a STOPPED state; if a NOP is inserted, the CPU
continues; if a “JUMP to 0 is inserted, the processor executes program from location 0,
etc. The RESTART instruction is particularly useful for handling interrupt routines since
it is a one hyte call,

18

2)

ADDR, LOCATION PC CONTENTS

N-1 INTR.N-1 N {INTERRUPT ARRIVES HERE)
— N INSTR. N
N+1 INSTR.N+1 .
| USER SUPPLIES ALTERNATE
INSTRUCTION (RESTART OR
CALL TO SRT), RELEASES
INTERRUPT,
PC IS SAVED IN STACK
(VALUE = N)
SUBROUTINE FOR HANDLING INTERRUPT:
S INSTR. S
S+1 INSTR.S+1
S+2
| ___S+K RETURN — STACK POPS — WITH VALUE N

\ AFTER COMPLETION OF SUBROUTINE, 8008 RETURNS TO
EXECUTE ORIGINALLY REQUESTED INSTRUCTION, WHICH
BLOCKING ADVANCE OF PC HAS SAVED.

Figure 5. B0O8 Interrupt

START-UP OF THE 8008 _

When power (Vpp) and clocks (#q, ¢z} are first turned on, a flip-flop internal to the
8008 is set by sensing the rise of Vpp . This internal signal forces a HALT (00000000}
into the instruction register and the 8008 is then in the STOPPED state. The following
sixteen clock periods after entering the STOPPED state are required to clear {logic “0")
memories {accumulator, scratch pad, program counter, and stack). During this time the
interrupt line has been at logic “*0°’. Any time after the memories are cleared, the 8008
is ready for normal operation.

To reset the flip-flop and also escape from the stopped state, the interrupt line must go to.

a logic ““1”; It should be returned to logic 0"’ by decoding the state T 11 at some tirmne later
than ¢ . Note that whenever the 8008 is in a T 11 state, the program counter is not incre-
mented. As a result, the same address is sent out on two successive cycles.

Three possible sequences for starting the 8008 are shown on the following page. The
RESTART instruction is effectively a one cycle call instruction, and it is convenient to use
this instruction to call an initiation subroutine, Note that it is not necessary 1o start the
8008 with a RESTART instruction,

The selection of initiation technique to use depends on the sophistication of the system
using the 8008. If the interrupt feature is used only for the start-up of the 8008 use the
ROM directly, no additional external logic associated with instructions from source other
than the ROM program need be considered. |f the interrupt feature is used to jam in-
structions into the 8008, it would then be consistent to use it to jam the initial instruction.

The timing for the interrupt with the start-up timing is shown on an accompanying sheet.
The jamming of an instruction and the suppression of the program counter update are
handled the same for all interrupts.

18

EXAMPLE 1:

Shown below are two start-up alternatives where an instruction is not forced into the B0O0B during
the interrupt cycle. The normal program flow starts the 8008,

a. 8008 ADDRESS QUT INSTRUCTION iN ROM
000000 00000000 NOP (LAA 11 000 000) |
000000 00000000 NOP | Entry Directly To
000000 OOOCCOODO1 INSTR, Main Program
000000 00CG0Q00010 INSTR, i
b 8008 ADDRESS OUT INSTRUCTION IN ROM
000000 00D0O00DO0O RST {RST =00 XYZ 101) |
000000 OOXYZOOO INSTRy L A Jump To The
000000 OO0OXYZ001 INSTR, Main Program
EXAMPLE 2:

A RESTART instruction is jammed in and first instruction in ROM initially ignored.
8008 ADDRESS OUT INSTRUCTION IN ROM

000000 0O0CO0O0QO0O0QOO INSTR, {RST =00 XYZ 101)

Q000000 00XYZO0OOAQ INSTR, Start-up
000000 00XYZO0O01 INSTR, Routine
Q00C0D000 OOnNnNnonnnN RETURN

000000 0000CGO0O00O INSTR, (INSTR; executed now} Main Program
O00000 0000CGO0O01

INSTR;

Note that during the interrupt cycle the flow of the instruction to the 8008 either from ROM or
another source must be controlled by hardware external to 8008,

START-UP OF THE 80068

Ready (RDY)

The 8008 is designed to operate with any type or speed of semiconductor memory. This flex-
ibility is provided by the READY command line. A high-speed memary will always be ready
with data (tie READY line to V¢) almost immediately after the second byte of the address
has been sent out. As a result the 8008 will never be required to wait for the memory. On the
other hand, with slow ROMs, RAMs or shift registers, the data will not be immediately avail-
able; the 8008 must wait until the READY command indicates that the valid memory data is
available. As a result any type or any combination of memory types may be used. The READY
command line synchronizes the 8008 to the memory cycle. When a program is being developed,
the READY signal provides a means of stepping through the program, one cycle at a time.

20

VI. ELECTRICAL SPECIFICATION

The following pages provide the electrical characteristics for the 8008, Al of the inputs are TTL
compatible, but input pull-up resistors are recommended to insure proper V,,, levels. All outputs are
low-power TTL compatible. The transfer of data to and from the data bus is controlied by the CPU.
During both the WAIT and STOPPED states the data bus output buffers are disabled and the data bus
is floating,

FROM $—

|
[

INTERNAL |

DATA BUS DATA BUS
! 1o

|

TO INTERNAL , : |
DATA BUS l—l . |

QUTPUT :

: DISABLE |

Vee Vee Vee |
; I

|

| |

8008 Vce
Vee |

Figure 6. Data Bus 1/O Buffer

Vbp
r—=- - =m——— T |
' |
| - !
i
| |-
§ 3——|—> ouT
l |
| T
IN — I
I .
L —_ e] e
Vv V
Vee _ cC cC
Input Buffer Output Buffer
(¢4, ¢, RDY, INT) - ~ {SYNC, S, 8,, 55)

Figure 7. 1fO Circuitry

2

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias

Storage Temperature

fnput Voltages and Supply
Voltage With Respect
1o VCC

Power Dissipation

0°C to +70°C

—55°C 1o +150°C

+0.5 to —20V
1.0wWa@ 25°C

D.C. AND OPERATING CHARACTERISTICS

Ta =0%C w0 70°C, Vo = +6V +5%, Vg = —9V £5% unless otherwise specified. Logic 1" is defined
as the more positive level {V,;;, Vg, 1. Logic “0" is defined as the more negative level {V,, , Vo b

*COMMENT

Stresses above those listed under *Absolute Max-
imum Ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device at these or any other
condition above those indicated in the operational

sections of this specification is not implied.

LIMITS | TEST
—d
SYMBOL PARAMETER min. [Tve. | max | "M | conpimions
by | AVERAGE SUPPLY CURRENT-
QUTPUTS LOADED" 30 60 . mA | T, =25°C
I, INPUT LEAKAGE CURRENT 10 | aA | Y, =0V
. i —]
v, INPUT LOW VOLTAGE }
HNCLUDING CLOCKS) Voo Vo421V
Vi | INPUT HIGH VOLTAGE _ E
| (INCLUDING CLOCKS) Vge—1.5 Vi t03
V, | OUTPUT LOW VOLTAGE 0.4 "l =0.44mA
€, = 200 pF
Vgy | OUTPUT HIGH VOLTAGE Vo -15 V| 15, =0.2maA

A.C, CHARACTERISTICS

*Measurements are made while
the BOOB is executing a typical
sequence of instructions. The
test load is selected such that
at Vo = 0.4V, 15 = D.44mA
on gach output.

Ta=0°C 1o 70°C; Vo = +8YV £5%, Vpp = -9V £5%. All measurements are referenced to 1.5V levels.

8008 8008-1
LIMITS LIMITS
SYMBOL PARAMETER UNIT | TEST CONDITIONS
MIN. | MAX. MIN. | MAX.
toy CLOCK PERIOD 2 3 125 | 3 Hs | tptge=50ns
tRtp CLOCK RISE AND FALL THVES 50 50 ns
Y PULSE WIDTH OF ¢, .70 .35 ps
t42 PULSE WIDTH OF ¢o 55 .35 us
o1 CLOCK DELAY FROM FALLING .90 1.1 1.1 us
EDGE OF ¢, TO FALLING EDGE '
OF ¢,
tp2 CLOCK DELAY FROM ¢, TO #, 40 35 us
53 CLOCK DELAY FROM ¢, TO ¢, 20 20 s
top DATA OUT DELAY 1.0 1.0 #s | C = 100pF
ton HOLD TIME FOR DATA BUS OUT 10 10 us
iy HOLD TIME FOR DATA IN {1 1] s
tsp SYNC OUT DELAY .70 70 ps | C = 100pF
tgq STATE OUT DELAY (ALL STATES 1.1 1.1 ps | € =100pF
EXCEPT T1 AND T11}12)
tgo STATE OUT DELAY (STATES 1.0 1.0 ps | € = 100pF
T1 AND T}
trw PULSE WIDTH OF READY DURING | .35 35 4s
$,, TO ENTER T3 STATE
tRD READY DELAY TO ENTER WAIT .20 20 s
STATE

1] |2}

1y MINZ 150

22

If the INTERRUPT is not used, ali states bave the sarme output delay, 1g,.

TIMING DIAGRAM

'C\‘ -
/ _‘i <~ o3 12]
4 [& o
o J u Y j 12 LU Y 12 J"‘:‘ 11
il to'l = | tDZ e
 osr ¥ B Gat / \
o y 21 3 y o4 l 21 ‘ o922 “n
-~ ey e q—lsn—u’
SYNC —/ x 1 \ fimrped
_ gy —m|-tso+| | (=20 =t
i —— ']
‘R DATA IN
OATABUS | == =—am | S U PUR N —p—— I‘____-_-“-——_-—-----
LFINES 3 "
0 ...0p0 | === — o U o e e e e - g ———
Br - Do Jr ADDRESS QUT i)r DATA OUT .
(U N 3 (W — —
! top] toy !-— ton ety
) y i \
2o / -
S‘I S —— P, Y —
——]
STATE | J'
LINES
\
55 { . \
! 1= LRy [
. o
/ |-
READY < —— N 7| the
1
L wa
’ T, T, Ta - T, i
MNates: 1. READY line must be a 0" prior to ¢92 of T2 10 guarantee entry into the WAIT state.

2.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPFLY CURRENT [ma), e

POWER SUPPLY CURRENT
vS. TEMPERATURE

H 12 H
e v, L
o =147y,

- tay
_‘___L__:EEA:;___‘__

i 1

1

m m a0 50 L]

AMBIENT TEMPERATURE 1*C1

M

[

TYPICAL A.C. CHARACTERISTICS

DATA OUT DELAY VS.
QUTPUT LOAD CAPACITANCE

=0y

Wa

v

OUTPUT DELAY fush toy 8 Wy,

w0 w00 (L] 200 250

VAT BUS TAPLCITAMCE IpFt. Cypp

n

QUTPUT SINRING CURRENT (ma]. I,

24

il
[

0

QUTPUT SINKING CURRENY
" WS, TEMPERATURE.

\
\Q’E:-ii:‘;“v
N " O AY H""""--"--....
14} - -
] M M w 0 @ W &\

w

AMBIENT TEMPERATURE (C!

INTERRUPT line must not change levels within 200ns (max.) of falling edge of ¢1.

QUTPUT S0URCE CURRENT
VS, OUTPUT VOLTAGE

[T 1

i

L
I

=

Vo *BY

. T - WL

b

OUTPUT SOURCE TURRENT (mAl, lgy

L N

20 30 40

OUTPUT VOLTAGE V), Yo

5D

CAPACITANCE f=1MHz; T, = 25°C; Unmeasured Pins Grounded

SYMBOL TEST TYP. LI PE) MAX.
Cin INPUT CAPACITANCE 5 0
Coe DATA BUS 1/O CAPACITANCE 5 10
Cour OUTPUT CAPACITANCE B 0

Vil THE SIM8-01 — AN MCS-8T-M- MICRO COMPUTER

During the development phase of systems using the 8008, Intel’s single chip 8-bit parallel central processor
unit, both hardware and software must be designed. Since many systems will require similar memory and

1/0 interface to the 8008, Intel has developed a prototyping system, the SIM8-01. Through the use of this
system and Intel’s programmable and erasable ROMs {1702}, MCS-8 systems can be completely developed
and checked-out before committing to mask programmed ROMs (1301).

The SIM8-01 is a complete byte-oriented computing system including the processor (8008}, 1K x 8 memory
{1101}, six 1/O ports (two in and four out), and a two-phase clock generator. Sockets are provided for 2K

x 8 of ROM or PROM memory for the system microprogram. The SIM8-01 may be used with either the
8008 or 8008-1. To operate at clock frequencies greater than 500kHz, former SIM8-01 boards must be
maodified as detailed in the schematic and the following system description. Note that all Intel-developed
8008 programs interface with TTY and require system operation at 500kHz. Currently, the SIM8-01 is
supplied with the 8008-1 CPU and the system clock preset to 500kHz.

The following block diagram shows the basic configuration of the SIM8-G1. All interface logic for the
8008 to operate with standard ROM and RAM memory is included on the board. The following pages
present the SIM8-01 schematic and detailed system description.

12 INPUT PORTS AND
INTERRUPT INSTRUCTION
PORT

1111111

BUFFERS
&% .
MPXERS J=

> MEMORY
ROM - RAM
8 BITS/BYTE
TO 16 K BYTES

irl [y

YYEYE] L & & 3

» /0
8008 ~ DEVICE 10
DATA MEMORY, L : SELECT OUTPUT

BUS INTERRUPT DATA
& INPUT [1 I

ENABLES ADDRESS, CONTROL ADDRESS

REGISTER - 8 BITS REGISTER - 8 BITS

L YITISEEE EXES!

¥

]

P

AR ‘F‘I

1

BUFFERS

STATUS

SYNC LOGIC RW
8008 - - EXTERNAL INTERRUPT

INT.
- i CLOCK
- GENERATOR

READY

Figure 8, MCS-8 Basic System

24

MEMDRY
ADDRERS IN

StM8-01 SPECIFICATIONS

Card Dimensions:
» 11.5 inches high
s 9.5 inches deep

System Components Included on Board:
« 8008-1
s Complete TTL interface to memory
*« 1K x 8 RAM memory
* Sockets for 2K x 8 PROM memory
* TTY interface ckts, '
¢ Two input and four output ports (8 bits each)
* Two phase clock generator

Maximum Memory Configuration;
*+ 1K x 8 RAM
¢ 2K x 8 PROM
« All contrel lines are provided for
‘memory expansion

Operating Speed
e 2 us clock period
* 20 us typical instruction cycle

D.C. Power Requirement:
» Voltage:
Vee =BV £5%
TTL GRD =0V
Vpp = —9V 5%

¢ Current:
Eight ROMs
Typical Maximum
ee 25amps 4.0 amps,
lpg = 1.0amps 1.5 amps.
Connector:

» Wire wrap type Amphencl 86 pin
connector P/N 261-10043-2

Chy
oyl —
2| &=
21} Fon
sy FoCM
T —
14 14 14 1 _lu 14
€8 [] TS =3 =3
L% — — ”
o—— — = Y E:
A — b 4 LE] *B
By 172 1702 1702 RLH 1702 - 102 e BRL P &
n - - — — 12
. i s Ag a4 Ay L] _ b e 1 A el
Py I — - b TRy
.] . Yo
£ - 7 7
i Oy 0
TTIs N Yy T T T T T o]
1N Py 1N Py T Py ITE TH* 1 § o
3 1l i - 14 I L
ry ry T ro 'y ’y | DATA FRCM
. - MEMORY
Spr
R R o,
_{r 3 i
Hw o= sl 3 3] - 3 = 3 oS
Lem DSL‘I? = - - - p 4 = -+ |
Ressw 00 101 1m 1101 —] 11m 3 1 L)
pata iz -] .o, = Ag &,
N A A - — l+— l+— - 1 | e -
) RoW
i ey T T re T T T
!
1
| 1) p 3 i ! * i,
| - 3] = = = = = L13
ha 3 - 3 = 3 3
! aam . |- — [— -3 - — = - 3 -
- L 1 1101 - 0] = 1m : 11 = L] q 1
n — A — A - - —~ A . A. . =
f 1 ~ 49 ™ =3 " P43 | = S B = s B
: . [
’ " -y - - r > 11!
i B) : ! 5) % o,
- -4 | — - [
1 : L. [3 | L | 3]| 2 L | 3 , 12
flanam] 1 [1 o~ 190 = M = 101 = 1" 1N
- : — — =g - - Ay
& A [45 Agt | 1 P e Py ANe= A {43] || L™ 12
' H AN
- * + FY - * + Fax, H
i | My
I " 1 I !] T s -
T+ < hl | 3 InE=] |3 - | | | 3 = | (d = L.
— 1o] nm =] 101 = 110t] nm = 19t = Mot = 10
Agr 17] A e A - Ay = 23 } A] A]] 12
am M aw 7 = - n] N N N AT
< - - > r - ' L]
™ T % — 0y
NOTE: M1y -y RAN
SEV - FINE L OATA Ih
v -PIN4LE .
PIH 4 MOT BSED - DATA OUT

Figure 9. MCS-8 Memory System

25

DATA

FROM TTY TRANSMITTER TAPE READER CONTROL z»

SYue JLTE W

Ass o

3_.q_4—
2 iod

A e

a4

! : ' ' #4 3
e 1}"{ #r gt

if] W et 2

A TEZNIE

LA h
i it S L0 oo e
;' - ' |

: . IAPE

FASLY : CLOCK

15 “ P ; ADJUSTMENTS
¥ R Do Ry tgy

Ry tpr tLocH
Ly LI LENERATOR
¥ o Ry ey

5 ' THTCYELE Tr22
i

1

Tie g1 2 yis. ASSe EHow
ol AL /9 A
ALY [« L2 Ase? e
i Til -

bl 2K

A Sowe ZINTERRURT
PUSH BUTTON

0

Yo ST

* Tictar Do e

* ri-i5 D
AAM TSk Ot
DATA (N 25525 oa

44

EXPANSION

-
b
%
bt
4

MPX
MEMORY DATA
ENPUT FORT o
JNPUT PGRT 1

Trsg TAl
SASITE
STy MOR
T T
Ji- /% THR

7y MWD)
%0 Ay 4 5<% <= !
Ji-ESIEE do e Li 50 r

T8t I; 7 Fa Ll f 7

frotsacriy To +EVIT7-25 DATA COMPLEMEN T
2 TE Fa Fr) £ie

. 25| 48] 7
e O Dy 'ﬁ'o'ﬁ Kz 5¢ S/

-2l T —

T2 Ty

MPX wt- W her
winomvonta | B 470
INPUT PORT & - Mo 8243 2
WPUT PORT 1 737 TAe PALL

i .l
hod
3 z&%&
3
Tany
L
E:[Ehh\g_
O
x
R
P
k&
§! fu -
e,
3
e
2

e
B
=
)
]
L
S R
‘LQLL}_
N
R
EIN
3>
™Y

&

IRy B

INTERRUPT v %
INSTRUCTION o
PORT lJﬁ% §}

. Ji &

I oy

PIVIVAVITIV VA

26

7 LI
- il T2-8 EMARLE (uoﬂmu.y)

[or
yin 2
- A E AP
£ g RS
2 Vi-g
- TFr-gae VoM-Fvars
£ & ouf el en] et cad £o 72.35% ,()
" e 41 .
FIR oy T T]
-5 b s
Cof-T VL
e.f"::::’.::{:‘: = ..J-°_°.r?0t\"”" (+Svorrs)
el mEDn
- (¥ L3 3
Iy
Tr-68 AE
% 4 pep
=5, s o
T/~ 76 HOPOELS ¥
%% &
= : o CYQLE courdol
— re 78 ea.} pivyr g
e .
20 - - P— = S-3 #
o o%_@)_-f—- Fr-s w f LAE
oy O [528 LareH
1 Pl - S— Y
2353
‘l.l I.(
13¢5 4
Madir
-T2-47 A
T2
g4 cow arars
F-é3 Aboress oar
%
Tz-as Ay
1 J2-8 Riw
AEP-muy
ATEL- Py Aps- pew 15 .
YRR 76T ro sz Wi
, _
2] 228 fiy J2- 6/ OA#
"Li ':. /, r‘ﬁ. is:':z T PT
Eas 7 # Swr
zh — Zeh PP 755 merr §
T (‘ﬁ‘ﬂ? T A7 'fﬂjjs
-y E Fz-47 oA
arL- M s Ay 2w 7
AT3 - PruPfes A Pfﬂffﬂj‘a, W
2 & P2 YT
y ul E" b s 7
R JZ- 78
- . F2- b0 QUTRuT
<! | J2-45 pyar s
) 473 | I 460 | TEST T
< ¥ = Fr-I5 087
L FoL oy s A7g PN IEST
/s . AT LT ra20 W,
= T LLAE AATER -y) 2_’
4t B iy ” JZ-76 Dt
7."1?/ Ay ¥ d jod rr] w 4 X Je-Id
r “ i T TEEG owsur
rA—g 877 . = -_;:-.:5 AT 2
A i X A7 ([- —
N—Ee 7 4 ES ey
dw-g; AI-FN I oS
W £ AT12N T | 72-30 W
] Dg RIW Ag : 7(; gy 7z a2é
IN ~ |[% N
RAM DATA X e Tegk ourhur
IN —:z-.gs' arrs
MEMORY 2|l 477 o
ADDRESS " 7 ez 007
N "11"-""“}-‘ -..,L-t.’"'f.’}f-f_l{ r
MEMORY ARRAY Voo
2K x 8 ROM " Lk
——— 1K x 8 RAM
] —
e {Refer to memory Tz 700% 5ol | mmwoer
. JE- F & Sy PAN IO
drawing on page 256) >z +
CSu = - 32 -8S Fag
! A T
] - =
Do ROM yl :’rfi‘;j % BoM CHiP SELEaT
csS, T35 avE
DATA FROM M ﬁ‘;: %:_.;,
MEMORY mﬁ Jze g
o 1A} K a3 L L pam awwm sEceer
7 CMyg - T/ 78 Y
NOTE: R
THIS SCHEMATIC A
1S INCLUDED FOR e i
i .
REFERENCE ONLY. “
o g Rilpo {No.00014)

- Figure 10. Complete SIM8-01 Schematic

SYSTEM DESCRIPTION

The 8008 processor communicates over an 8-bit data bus {Dg through D7) and uses twe input lines
{READY and INTERRUPT) and four output lines (Sg, S;, S5, and SYNC) for control. Time multi-
plexing of the data bus allows control information, 14-bit addresses, and data to be transmitted between
the CPU, memory, and [/O. All inputs, outputs, and control lines for the SIM8-01 are positive-logic
TTL compatible.

Two Phase Clock Genefator

The basic system timing for the SIM8-01 is provided by two non-overlapping clock phases generated

by 9602 single shot multivibrators {A4, A5). The clocks are factory adjusted as shown in the timing
diagram below. Note that this is the maximum specified operating frequency of the 8008. In addition,
all Intel-developed TTY programs are synchronized to operate with the SIM8-01 at 500kHz. The
clock widths and delays are set in accordance with the B008-1 specification since an B008-1 is provided
on the board. An option is provided on the board for using external clocks, If the jumper wires in box
A are removed, external clocks may be connected at pins J1-562 and J1-12. {Normally these pins are
the output of the clock generators on the board.} The clock generator may be adjusted for operation
up to 800kHz when using the B008-1 at maximum speed.

|

t —-

{2us) |

f ‘\ / tr tE
1 |
(500ns} - 159 - 10-90% OF INPUT
(1000n:) ; AMPLITUDE
[tpy —— -
& A (500ns3)
. '-"—tw-—--h-
1500ns)

Figure 11. SIM8-01 Timing Diagram
Memory Organization

The SIM8-01 has capacity for 2K x 8 of ROM or PROM and 1K x 8 of RAM. The memory can easily
be expanded to 16K x 8 using the address and chip select control lines provided. Further memaory
expansion may be accomplished by dedicating an output port to the control of memory bank switching,

In an MCS-8 system, it is possible to use any combination of memory elements. The SIM8-01 is
shipped from the factory with the ROM memory designated from address 0 —= 2047, BAM memory
from 2048—= 3071, and memory expansion for all addresses 3072 and above. Jumper wires provided
on the board (boxes C, D, E} allow complete flexibility of the memory organization. They may

be rearranged to meet any requirement. the Intel 3205 data sheet provides a complete description of
the one of eight decoder used in this system. the 3205 truth table is shown below,

ADDRESS ENABLE OUTPUTS
Aq 2 E» 3

I
L]
) =3
]

XYXXXXXIFICrIrIr
HERHKHKTIIC-FILr-
MMM TT T I
ITTIr-rFFTIITTITIEIT|M
IZTTITIIITIIIIII~|O
ITTIITTIITILTIIIICI(-
ITITITITITITITIITICITINN
ITIIITITIIIICIIT
ITITIITIITIII-ZIII®
IZIZIIIIITICrIIIIL|W
TIIITTIIT-IIITILII|®
ITTITIEIrIXTITIIIL~

Control Lines
® [nterrupt

The interrupt control line is directly available as an input to the board. For manual controi, a normaliy
open push-button switch may be connected to terminals J1-b0 and J1-63, The interrupt may be inserted

28

under system control on pin J1-1. An external flip-flop (A33) latches the interrupt and is reset by T11
when the CPU recognizes the interrupt. Instructions inserted under interrupt control may be set up
automatically or by toggle switches at the interrupt input port as shown on the schematic. Use the
interrupt line and interrupt input port to start up the 8008 .

Note that the interrupt line has two different connections to the input to the board {box B). The path
from J1-1 directly to pin 4 of package A3 is the normal interrupt path (the board is shipped from the
factory with this connection}. if the connection from pin 8 of package A15 to pin 4 of package A3 is
made instead, the processor will recognize an interrupt only when it is in the STOPPED state. This is

used to recognize the "*start character’” when entering data from TTY,

® Ready

The ready line on the 8008 provides the flexibility for operation with any type of semiconductor memory.
On the SIMB-01 hoard, the ready line is buffered; and at the connector {J1-30), the READY line is active
low. During program development, the READY line may be used to step the system through a program.

NORMAL OPERATION OF SYSTEM

The 8008 CPU exercises control over the entire system using its state lines {S 0 S1. 52} and two control
bits (CCO, CC1} which are sent onto the data bus with the address. The state lines are decoded by a
3205 (A44) and gated with appropriate clock and SYNC signals. The two control bits form part of the
control for the multiplexers to the data bus (A55, AB6), the memory read/write line {A33) and the 1/O
ling (A17).

In normal operation, the lower arder address is sent out of the CPU at state T1, stored in 3404 latches
{AB9, A72) and provided to all memories. The high order address is sent out at a state T2 and stored in
3404 latches (A72, A73). These lines are decoded as the chip selects to the memory, The two highest
order bits (CCQ, CC1} are decoded for control.

- To guarantee that instructions and data are available to the CPU at the proper time, the T3 state is
anticipated by setting a D-type flip-flop (A16) at the end of each T2 state, This line controls the
multiplexing of data to the 8008. This flip-flop is reset at the end of each T3 state. {n addition, switched
pull-up resistors are used on the data-bus to minimize data bus loading and increase bus response. The use
of switched resistors on the data bus is mandatory when using the 8008-1. SIM8-01 boards built prior to
October, 1972 must be modified in order to operate with the 8008-1 at clock frequencies greater than 500kHz.

Normally, the 8008 executes instructions and has no interaction with the rest of the system during states
T4 and Th. In the case of the INP instruction, the content of the flag flip-flops internal to the 8008 is
sent out at state T4 and stored in a 3404 latch {A43),

Instructions and data are multiplexed onto the 8008 data bus through four multiplexers (A55, AB6, A69,
A70). In normal operation, line #1-29 should be at +5V in order for “true’” data to reach the 8008 data bus,

System 1/0

The SIMB-01 communicates with other systems or peripherals through twe input ports and four output ports.
All control and 1/Q selection decoding lines are provided for expansion to the full complement of eight input
ports and twenty-four output ports. To expand the number of input ports, break the trace at the output of
Device AB8, pin 11, and generate input port decoding external to the SIM8-01. Control the input multi-
plexer through pin J1-69. The output ports latch data and remain unchanged until referenced again under
software control. Note that all output ports complement data. When power is first applied to the board,

the output ports should be cleared under software control to guarantee a known output state. To enable the
1/O device decader, pin J2-8 should be at ground.

Teletype Interface

“The 8008 is designed to operate with all types of terminal devices. A typical example of peripheral interface
is the teletype {ASR-33). The SIMB-01 contains the three simple transistor TTY interface circuits shown on
the following page. One transistor is used for recetving serial data from the teletype, one for transmitting
data back to the teletype, and the third for tape reader control,

The teletype must be operating in the full duplex mode, Refer to your teletype operating manual for making
connections within the TTY itself. Many models include a nine terminal barrier strip in the rear of

29

the machine. 1t is at this point where the
connections are made for full duplex)
operation. The interconnections to the ol @
SIM8-01 for transmit and receive are made FULL DUPLEX :
at this same point. = @
RECEIVE NE.’ ~ @
A complete description of the interconnection FROM SIMB-01 { 2o |le| @
of the SIM8-01 and the ASR-33 is presented
in Appendix IV. | @ |
SEND
TO SIM8N {*2'37 < @
J2.59 w| @
v @
-1 @
|

Figure 12. Teletype Terminal Strip

DATA

FROM

siMe-01
Jz.27

FROM TTY TRANSMITTER TAPE READER CONTROL TO TTY RECEIVER

Figure 13. SIM8-01 Teletype Interface Circuitry

To use the teletype tape reader with the SIM8-01, the machine must contain a reader power pack.
The contacts of a 10V dc relay must be connected in series with the TTY automatic reader {refer
to TTY manual} and the coil is connected to the SIM8-01 tape reader control as shown.

For all Intel developed TTY programs for the SIM8-01, the following I/O port assignments have been made:

1. DATAIN -- INPUT PORT 0, BIT 0 {J2-83 connected to J1-11)}
2. DATA OUT - GUTPUT PORT 2, BIT 0 {J1-84 connected to J2-36)
3. READER CONTROL -- QUTPUT PORT 3, BIT 0 (J2-27 connected to J2-44)

Note that the SIM8-01 clock generator must remain set at 500kHz, Alt Iintel developed TTY programs
are synchronized to operate with the S1IM8-01 at 500kHz.

In order to sense the start character, data in is also sensed at the interrupt input {J2-83 connected to J1-1)
and the interrupt jumper {(box B} must be between pin B of A15 and pin 4 of A3. It requires approximately
110ms for the teletype to transmit or receive eight serial data bits plus three control bits. The first and last
bits are idling bits, the second is the start bit, and the following eight bits are data. Each bit stays 8.09ms.
While waiting for data to be transmitted, the 8008 is in the STOPPED state; when the start character is
received, the processor is interrupted and forced to call the TTY processing routine. Under software control,
the processor can determine the duration of each bit and strobe the character at the proper time.

A listing of a teletype control program is shown in Appendix V.,

SIM8-01 MICRO COMPUTER BOARD PIN DESCRIPTION

Pin Mo. Conoectar 5 1 Degcription Bin bo. Connector sywhol Description
2,4 J1 +5% +5¥DC POWER SUBPLY 57 J1 Dy FAN DATA IN D
B4 @ &b az -5y -9VDC POMER SUPPLY 53 I1 Pg Rilt DRTR IN Dg
1,3 Iz aND GROUND £ a1 Py RAM DATA IN D,
&0 a1 o, DATA FROM MEMORY § BIT § 448 It WALT STATE CUUNTER
&3 ax o, UATA FROM MEMORY 1 BIT 1 4% I T STATE COUNTER
17 a1 L DATA FROM MEWCRY 2 BIT 2 16 I L STATE COGNTER
37 a1 LN DATA FROM MEMORY 3 BIT 3 a5 Il ErF STATL COUNTER
33 32 ", DATA FHOM WGMORY 4 BIT 4 1z 11 b STATE COUNTER
41 72 "o, OATA FROM MEWORY 5 BIT § 4 J1 s STATE COUNTER
45 az o, DATA FROM MEWORY ¢ BIT 6 a7 a1 T STATE COUNTER
4 32 MD, SATA FROM MeMORY 7 BIT 7 3 7L Ty STATE COUNTLR
1 a1 tag DATA INPUT BORT @ BIT B 3 a1 ey RANM CHIP SELECT §
10 a1 A, DATA INPUT DORT @ EIT 1 a a1 oy RAN CHIP SELECY 1
4 ai La, DATA INPUT PORT @ BIT 2 e 5l oy RAM CHIP SELECT 2
12 1 ta, DATA INPUT BORT g BIT 3 6 32 My RAM CHIP SELECY 3
28 J1 Iag DATA INPUT PORT g BIT 4 “ 72 o, RAH CHIP SELZCY 4
13 I A ONTA INPUT BORT @ BIT 5 4 .2 ey RAM CHIP SELECT 5
37 n Tag DATA [NPUT PORT § BIT § 85 L o FAH CHIP SELECT &
3 n 13, UATA INPUT PORT g BIT 7 a2 I oy FAM CHIP SELECT 7
6 a1 18, DATA INPUT EORT 1 SIT B as 2 g RO CHIP SELECT §
13 a1 18, LATA INPUT PORT 1 BIT 1 L o e ROt CHIP SELECT 1
16 a1 i3, DATA INPUT PORT 1 uIT 2 62 a1 €5, ROM CHIF SELECT 2
21 n 18, DATA IKPUT PORT 1 BIT 3 64 a1 €S, FOK CHIF SELECT 3
2 a1 18, OATA INPUT PORT 1 BIT 4 e Il o5, ROM EHIP SELECT 4
3t J1 1B, DATA IHPUT BORT 1 BIT 5 e Iz Cs5 ROM CHIF SELECT 5 .
34 1 1B, DATA LPUT PORT 1 BIT § 1% a2 3 ROM LHIF SELECT ©)
) a1 18, LATA INPUT PORT 1 BIT 7 2 a2 cs., BOH CHIP SELECT 7
61 a2 "ﬁﬁ oureuT posr 4 BIT § H J2 s, L0 DECOLE OUT Qg
67 J2 nhy QUPEUT PORT # BIT 1 1 ‘{2 5 m m?c:omz‘ our @,
54 a2 ‘i_-’az CUTEUT PORT # LIV 2 i; :'2 g5 if; z;gﬁ: z:TT 25
st a2 B3 DUXPUT POAT # EIT 3 14 a2 7 £/0 DECODE OUT o
33 a2 By OUIEUT PGRT § AIT & 1 J2 63 I/0 DECODE CUT 03
T a2 g CUTEUT PORT & 5IT 5 -2 i 2
Do om Srmn o meme
a7 a2 @, QUTBLT FORT # LT 7 : E,ﬂ N 1-:1.19 FLOR- 3
75 a2 5, OUTFUT PCRT 1 BIT @ . a1 z FLAG FLIF FL0P-gorn
T ¥2 o5, OUTPUT PORT 1 BIT 1 21 1 5 PLAG FLir PLOFpmny) o
78 a2 o, QUTPUT PORT 1 BIT 2 25 1 = YLAG FLIP FLOR apey
&0 a2 UB, OUTPUT PORT 1 BIT 3 7 a1 b INTCRRUPT INSTRUCTIGH LHEUT g
65. g2 ?4 OUTPUT PORT 1 BIT 4 3 a1 Do INTERMUPY INSTRUCTLGH INPUT 1
37 32) OUTHIT FORT 1 BIT 5 18 it o INTEPRUPT INSTRUCTION IHFUT 2
§2 32 02y OUTPLT PORL L BIT § 29 a1 Dz INVERFUPT INSTRUCTION YNPUT 3
a3 12 o, omul'r PORT 1 Q1T 7 24 J1 u: INTERRUPT INSTRUCTION IHBUT ¢
i: j: zg zxt: ::2:: ; ::: f 27 5 b, TWTERRUPT INSTRUCTION INEUT 5
1 1 a1 D IHTERRUPT INSTRLCTION THBUT 6
2% Iz x, QUIFUT PORT 2 BIT 2 40 I1 ps INPERRUPT INSTEUCTION THMEUT 7
24 3z o, QUTPIT PORT 2 BIT 3 59 12 ? PROM TTY TRANGMITTER I
2 12 E‘, CUTPUT PORT 2 BIT 4 17 12 FROM TTY TRANSMITTER our) TTC BUFFER
12 I 9y OUTPUT PORT 2 BIT 3 83 12 DRTA FROM TTY TRANSMITTER BUFFER
15 a2 & OUTPUT PORT 2 BIT & o 12 TAPE RPADER CONTROL IN
2 a2 &y OUTPUT PORT 2 BIT 7 18 32 TAVE READLR CONTROL OUT
a a2 By QUTEUT PORT 3 BIT £ 22 Jz2 TAFE HEADER COHTROL {-3VDC) ’
43 J2 by OUTFUT PORT 3 BIT | 24 J1 DATA TO TTY RECEIVER BUFFER
k1] 2 532 CUTPUT PORT 3 BIT 2 10 Iz 40 TTY RECETVER ot
42 hr ﬁl QUTFUT BORT 3 EIT 3 86 n T TTY RECEIVER oD e
33 72 ﬁ‘ GUTEUT PORT 3 BIT 4 a6 2 0 TTY RECEIVER OUT T BUEFER
29 az &, CUTPUT BORT 3 BIT & o1 12 READ/WRITE
28 7z el DULPUT POFT 3 PIT 6 72 o g MULTIPLEXER CONTEOL, LINES 4263
£ 12 3., CUTPUT PORT 3 LIT ? m 71 3L MULTIBLEXER CONTROL LINES NB267
&3 72 Ay LW ORSER ADDECSS DUT 68 A 1 MULTIELEXSE CONTROL LINES NEZ26I
22 7 A LOW ORDER ADDRESS ol 8 J1 SE1 MULTIPLEXER CONTROL LINES NE2ZE?
58 a2 A, LOW ORDER ALDRESS GUT 2 n ORTA COMPLERENT
23 J2 a, L0 ORDLR ADDRESS OUT 03 n 3 §, CLOCK talternata clock)
€3 72 2y LoW GRDER ADLRESS OUT 12 Il 2, ¥, CLOCK (alternate clack)
17 a2 A, LW URDER ADDRESS OUT 75 n STRC EYRE our
3z - az g LOW DROER AUDRESS OUT 10 - RERDY READY IN
4 a2 A, LM CROER AUDRESS OUT 1 - INTERRUPT [WTERRUPT I
1] n Ry HIGH CROER ADDRESS OUT g a2 /0 ENABLE EMABLE F I/0 DEVICE DECODER
67 11 Ay HIGH ORGER ADDRESS DOT ’ 19 32 7% SVYSTEM L/0 CONTROL
30 J1 A HIGH CRDER ADDRESS QUT 77 a2 N SYSTEM INDUT CONTROL
56 ¥z Ay HIGH OPDER ADDRLSS OUT 50 a1 N.0.- PUSH BUTTOK su:‘rcu} INTERRUPT
7% Il 8, HIGH DROER ADDEESS OUT 53 J1 §.C. PUSH BUTTON SWLTCE,
7 st A, WIGH GROER ADDRESS OUT : sz az g OUTPUT LAYCH STROEE PORT @
4 a1 ey CYCLE ZONTROL CODING KN J2 w, QUTPUT LATCH STROBE PORT 1
73 1n e, CYCLE CONTROL CODING a0 J2 ", GUTPUT LATCK STRQBE PORT 2
51 I oy RAM DATR 1IN Dy 30 Iz v, OUTPUT LATCE STROEE PORT 3
15 J1 By RAM DATA IN Dy 22 kil Wz CrWLlE INTERRUPT CYCLE INCICATOR
L1 J1 Dy RRM DRTR IN D, 3z J1 I, ANTICTPATED T, GUTPUT
58 a1 o, RAM DATA IN D, 15 Ji 3, ANTICIPATED T, OUTPUT
sk L D, RAM DATA IN D,

N

JUMPER
wIRES
1P

e

INSULATED
JUMPER
|~ wirgs

R

-, = I
egmre [v = T i [a— 4
é.OT.A _ .Tl. _vl.;_ _uA_ M
o< z
o = I é@flm“u
oamo ¢~ o >[5]]
L 2 oo Do crgE-e 5
oo —— — = = =
z = m = = e
) =
v - " = te, [T
b [b2 JTE
= J
) SRR % P 3 3T P f
e
NOBC egpe
- “& ¢ = P2
S e e :
@ of T Jo oo ey :

3}

Meol) 3

I

Figure 14. SIMB-01 Assembly Diagram

VIIl. MCS-8 PROM PROGRAMMING SYSTEM

A, General System Description and Operating Instructions

intel has developed a low-cost micro computer programming system for its electrically programmable
ROMs. Using Intel’s eight bit micro computer system and a standard ASR 33 teletype {TTY), a
complete low cost and easy to use ROM programming system may be assembled. The system features
the following functions:

1)
2}
3)
4)
5)

Memory loading
Format checking
ROM programming
Error checking
Program listing

For specifications of the intel PROMSs, {1602A/1702A) refer to the Intel Data Catalog.

ROM MEMORY
i
1
PROM SOCKET
¢ 1 2 3 4 6 & 7
gl |zl |12 7
[w @
E g 2 |]
Ty) J— i H MP7.03
AQ8E1 4 PROM PROGRAMMING
ADdag | PROGRAM sanke OO000000 BOARD

st [10000000
sz [[O00000

wwa00000000 -1-——»E

AAM
MEMORY

Figure 15. MCS-8 PROM Programming System

This programming system has four basic parts:

1)

2)

3}

4)

The micro computer {SIM8-01})
This is the MCS-8 prototype board, a complete micro-computer which uses 1702A PROMs
for the microprogram contral, The total system is controlled by the 8008 CPU.

The control program (A0860, A0861, AD863}

These control ROMs contain the microprograms which control the bootstrap loading, pro-
gramming, format and error checking, and listing functions. For programming of intel’s
1702A PROM, use control PROM A0BG3.

The programmer {MP7-03)
This is the programmer board which contains all of the timing and level shifting required to
program the Intel ROMs. This is the successor of the MP7-02.

ASR 33 (Automatic Send Receive} Teletype
This provides both the keyboard and paper tape /O devices for the programming system.

In addition, a short-wave ultraviolet light is required if the erasable and reprogrammable 1702As

are used.

This system has two modes of operation:

1)

2}

Automatic — A paper tape is used in conjunction with the tape reader on the teletype.
The tape contains the program for the ROM,

Manual — The keyboard of the TTY is used to enter the data content of the word to
be programmed. :

PROGRAMMING THE 1602A/1702A

Information is introduced by selectively programming “1”'s {output high) and “‘0”s {output low) into the
proper bit locations. Note that these ROMs are defined in terms of positive logic.

Word address selection is done by the same decoding circuitry used in the READ mode. The eight
output terminals are used as data inputs to determine the information pattern in the eight bits of
each word. A low data input level {ground — P on tape) will leave a 1" and a high data input ievel
{(+48V — N on tape} will allow programming of “0”'. All eight bits of one word are programmed
simultaneously by setting the desired bit information patterns on the data input terminals,

TAPE FORMAT

The tape reader used with a model 33 ASR teletype accepts 1" wide paper tape using 7 or 8 bit
ASCIH code. For a tape to correctly program a 1602A/1702A, it must follow exactly the format rules
below:

Start Characterl Stop Character Data Field MSB (Fin 11} LSB (Pin 4)
Leader: BPPPNNNNNFBNNNNNNPPF...BNPNPPPNNF Trafler:
Rubout for at ' s R ., Rubout for at
least 25 frames. 1 T Y least 26 frames
Word Field 0 Word Field 1 Word Field 255
!

The format requirements are as follows:

1) There must be exactly 256 word fields in consecutive sequence, starting with word field 0
(all address lines low)} to program an entire ROM. If a short tape is needed to program only
a portion of the ROM, the same format requirements apply.

2} Each word field must consist of ten consecutive characters, the first of which must be the
start character B, Following that start character, there must be exactly eight data characters
(P's or N’s) and ending with the stop character F. NO OTHER CHARACTERS ARE
ALLOWED ANYWHERE IN A WORD FIELD. If an error is made while preparing a tape
and the stop character “’F** has not been typed, a typed “B’* will eliminate the previous
characters entered. This is a feature not available on Intel’s 7600 programmer; the format
shown in the Intel Data Catalog must be used when preparing tapes for other programming
systems. An example of this error correcting feature is shown below:

TYPED ON TTY PROGRAMMED IN ROM
BNNPPNPBNPPPNPNPF » NPPPNPNP
data word

§ eliminated

1f any character other than P or N is entered, a format error is indicated. |f the stop
character is entered before the error is noticed, the entire word field, including the B
and F, must be rubbed out. Within the word field, a P results in a high level output,
and N results in_a low leve!l output. The first data character corresponds to the desired
output for data bit 8 {(pin 11}, the second for data bit 7 (pin 10}, etc.

3} Preceding the first word field and following the last word field, there must be a leader/
trailer length of at least 25 characters. This should consist of rubout punches.

34

4} Between word fields, comments not PROM PIN CONFIGURATION

containing B’s or F's may be inserted. _ AT e
It is important that a carriage return a2 al ¢
and line feed characters be inserted : ik 2| s,
{as a “"comment”) just before each _ TATAOUT 14 W ;[Ay
word field or at least between every "CATA OUT 2 » L
four word fields. When these carriage maTATUT 3 6 R
returns are inserted, the tape may be pATAGUT A T b
. . +DaTAOUT 5 4 17| Ay
easily listed on the teletype for oo o) o v
purposes of error checking. 't may voxra cor 1 10 w[J'e
also be helpful to insert the word coara oot o 11 gwe vk e
number (as a “comment’} at least Cved n [Jrroana
every four word fields. N

IMPORTANT

It should be noted that the PROM’s are described in the data sheet with respect to positive
logic (high level = p-logic 1). The MCS-8 system is also defined in terms of positive logic.
Consider the instruction code for LHD (one of the 48 instructions for the MCS-8).

T11T01011
When entering this code to the programmer it should be typed,
BPPPNPNPPF

This is the code that will be put into the 1302, Intel’s mask programmed ROM, when the
final system is defined, .

OPERATING THE PROGRAMMER

The S1M8-01 is used as the micro computer controller for the programming. The control program
performs the function of a bootstrap loader of data from the TTY into the RAM memory. It then
presents data and addresses to the PROM to be programmed and controls the programmlng pulse.

The following steps must be followed when programming a PROM:

1} Place control ROMs in SIM8-01

2) Turn on system power _

3} Turn on TTY to “line” position

4) Reset system with an INTERRUPT (Instr. RST = 00 000 101}

5) Change instruction at interrupt port to a NO OP

6) Start system with an INTERRUPT (Instr NG OP = 11 000 000}

7) Load data from TTY into micro computer memory

8) Insert PROM into MP7-03

9) Program PROM

10} Remove PROM from MP7-03. To prevent programming of unwanted bits,

never turn power on or off while the PROM is in the MP7-03.

" LOADING DATA TO THE MICRO COMPUTER {THE BOOTSTRAP LOADER)
The programming system operates in an interactive mode with the user, After resetting and starting

the system with an INTERRUPT [steps 4), 5}, 6}1, a “*" will appear on the TTY. This is the signal
that the systern is ready for a command.. To load a data tape, the following sequence must be followed:

x

TYPED BY SYSTEM TYPED BY USER

Ready for command ———— " *T %«————— DATA ENTRY command

Request for RAM BANK # ———————#& Bn .«———— RAM BANK in which data will be stored.
Enter bank number {8, 1, 2 or 3). Each
bank stores 256 bytes.

Request for address field 3 A

within RAM BANK
Xxx J——————— |nitial address
Address @ through 255

Yy e—————— Final address

Start tape reader and load data into RAM
memory. Data entry must be in specified
format. All format checking is done at this
time. 1f data is entered from the keyboard,
depress the RETURN key after manually
Y entering each complete word,

Ready for new command —— ¥ *

This RAM bank may be edited by re-entering blocks of data prior to programming a PROM. More than
one RAM bank may be loaded in preparation for programming several different PROMs or to permit
the merging of blocks of data from different banks into a single PROM, (See the explanation of the
CONTINUE command in section 1X.)

FORMAT CHECKING

When the system detects the first format error (data words entered either on tape or manually),
it will stop loading data and it will print out the address where the format error occurred,

At this time, an "R’ may be typed and the data can be RE-ENTERED manually. This is shown below.

EXAMPLE 1:
(@20 BNPNPNPNPF
921 BPPPPNNNNF
@22 BENNNNPPPPN FE
Q22 = format error indicated at address
#022 {too many characters in
data field).
Listing R = RE-ENTER command
by ! BNNNNPPPP F=——Stop tape reader and manually
TTY RE-ENTER the data word
023 B NP NP NP NP F-w——— Start the tape reader and continue
024 BPNM FE
24 = Format error indicated at address

#024 (iliegal character in data field).

- RE-ENTER command
BPNPNPNPNF-=— RE-ENTER data

Continue to completion of data
entry.

" - : Ready for new command

PROGRAMMING

After data has been entered, the PROM may be programmed. Data from a designated address field
in a designated RAM bank is programmed into corresponding addresses in the PROM, A complete
PROM or any portion of a PROM may be programmed in the following manner;

TYPED BY svsrsm/’f— TYPED BY USER

Ready for command A Program command

Request for RAM BANK # ———— - Bn RAM BANK in which data has been stored.
[Enter bank number {®, 1, 2 or 3). Each

! bank stores 256 bytes.
Request for address of data__ 3 A

field within RAM bank
XXX Initial address
Address @ through 255
yyy Final address

TTY will list data address as each Iocatjon
in PROM is programmed,

Ready for new command ————— P *

ERROR CHECKING

After each location in ROM is programmed, the content of the location is read and compared against
the programming data. In the event that the programming is not correct, the ROM location will be
programmed again. The MCS-8 programming system allows each location of the ROM to be repro-
grammed up to four times, A “$" will be printed for each reprogramming. If a location in ROM will
~ not accept a data word after the fourth time, the system will stop programming and a “?"” wilt be
printed. This feature of the system guarantees that the programmed ROM will be correct, and in-
completely erased or defective ROMs will be identified.

EXAMPLE 2:

2nd programming

+—— 3rd programring

Llsted
P06 $ % $? w—— failure to program
System

1 tst programming

If a location in the ROM will not program, a new ROM must be inserted in the programmer. The
system must be reset before continuing. {If erasable ROMs are being used, the “faulty” ROM should
be erased and reprogrammed).

PROGRAM LISTING

Before or after the programming is finished, the complete content of the ROM, or any portion
may be listed on the teletype. A dupllcated programming tape may also be made using the teletype
tape punch. To list the ROM:

TYPED BY SYSTEM TYPED BY USER

Ready for command *L e} ~——— 1 ist command
Request for PROM address ———— [A
xxX 4——— Initial address
yyy -4——————— Final address

l ‘li Listing from PROM

Ready for new commang ——— ™ *

The listing feature may also be used to verify that a 1702A is completely erased.

EXAMPLE 3:

Ready for command —» *T - CATA ENTRY
B@ 7
A | Specification of RAM

16]610) memory address
@10

oo
o
002
0R3
o4
005
006
o7
008
009
210

Ready for command - *pP - - PROGRAM
BO 1
A i Specification of PROM
P05 : locations to be programmed
Qo8 _

1)]
086 |- Programming of PROM and
Qa7 verifying correct transfer of

a08 1 data

Ready for command - *L = LIST

Loading of data listing of
— tape and verifying correct
tormat

DWW EW@mODwW
vZFUWFZ2ZUUTUTO>
VFUZTUVZTUVWGTOVTUD
222V =Z2"07T0VD =202
VZ2UZZ2ZTVWOUTOw
bR B v T = B = B i« B » iy = iy = M
TU AT 2TUODOTUTOOD
TTUTWMTUOUUDZFVUF
FZFZTWUWTTVOUTU R
MMM NN

—

A
aeo — Address specification
010 _

000
oo
002
803
004
025
06
0a7
008
09
019

Ready for command —

B

— Listing of PROM

DoDoOoODoOEPEDm
v B i + Rio= i v o e = i = B v B v Jin v
TTZ2TU T 0TCTTOTOO
VO UOUZFZZ2UTOUU00
e M= = B = iy = B e v iy = e = iy = B]
=B = R i o B i = B =i v M v B v g
VOV VODVDOVTOVTWTOWTWTDODT
MWV ODOWMTDTUVOUVUTT
MT MMM MMM MM

1702A ERASING PROCEDURE

The 1702A may be erased by exposure to high intensity short-wave ultraviolet light at a wavelength
of 2637 A. The recommended integrated dose (i.e., UV intensity x exposure time) is 6W-sec/cm?.
Example of ultraviolet sources which can erase the 1702A in 10 to 20 minutes is the Model S-52 and
Modet UVS-54 short-wave uitraviolet lamps manufactured by Ultra-Violet Products, Inc. {San Gabriel,
California).” The lamps should be used without short-wave filters, and the T702A to be erased should
be placed about one inch away from the lamp tubes.

MP7-03 PROM Programmer

The MP7-03 is the PROM programming board which easily interfaces with the SIM8-01. All

address and data lines are completely TTL compatible. The MP7-03 requires +5VDC @ 0.8 amps,

-9 VDC @ 0.1 amps, and 50 Vrms @ 1 amp. Two Stancor P8180 (or equivalent) filament transformers
{25.2 Vrms @ 1 amp) with their secondaries connected in series provide the 50 Vrms,

This programmer board is the successor of the MP7-02. The MP7-03 enables programming of intel’s
17024, a pin-for-pin replacement for the 1702,

When the MP7-03 is used under SIM8-01 control with control ROM A0B62 replaced by A0863, the
1702A may be programmed an order of magnitude faster than the 1702, less than three minutes.

IMPORTANT:
Only use the AOB63 control PROM when programming the new 1702A. Never use it when programming
the 1702. The programming duty cycle is too high for the 1702 and it may be permanently damaged.

The MP7-03 features three data control options:

1} Data-in switch {Normal-Complement). If this switch is in the complement position, data
into the PROM is complemented,

2} Data-out switch (Normal-Complement). I this switch is in the complemeht position, data
read from the PROM is complemented,

3) Data-out switch {Enable-Disabie). If this switch is in the enable position, data may be read
"~ from the PROM. In the disable position, the output line may float up to a high level
(logic **1”). As a result, the input ports on the prototype system may be used for other
functions without removing the MP7-03 card.

MP7-03 Programmer Board Specifications

Features:

®High speed programming of Intel’s
1702A (three minutes)

® |nputs and outputs TTL
compatible

- ®Board sold complete with trans-

formers, capacitor and connector

Directly interfaces with SIM8-01
Board

Dimensions:
8.4 inches high
9.5 inches deep

Power Requirement:
Vee =45 @ 0.8 amps
TTL GRD =0V
*Vpp = —9V @ 0.1 amps
Ve = B0Vims @ 1 amp

Connector:
a. Solder lug type/Amphencl
72 pin connector
P/N 225-23621-101
b. Wire wrap type - Amphenol
72 pin connector
P/N 261-15636

*This board may be used with a =10V
supply because a pair of diodes (i.e. 1N914
or gquivalent} are located on the board in
series with the supply. Select the appropriate
pin for either —9V ar —10V operation,

A micro computer bulletin which describes the modification of the MP7-02 for programming the
1602A/1702A is available on request. These modifications include complete failsafe circuitry (now
on MP7-03} to protect the PROMSs and the 50V power supply.

C. Programming System Interconnection

+# GND -av

1

] 1

: 13 24 QUTPUT 13,75 1921 20 ENABLE *5
55 PORT ¢ A
ORn ¢ +
1163 Y] 47 k] DATA QUT
INTERRUPT ANC 287 c-)ia L :1 " mmn_e°—_|
" Y - — 3
= ﬂ%% Sl . A! M 47K
R .
E R e b < K
*5_\" .84 Frory LeLi -] M
e A
ORG _ - .
READY ‘\— N 1250 on > 3
7
J2-47 - > a9
N 244 __ DUTRUT _ ©
AT [V NORMAL
= R e ki | e
.J;:?] - - °d & DATA IN
082 o _ Dy I
218 J2.7a E-é_; B 97 COMPLEMENT i3
J92.60 == - =12 COMP. o— I DATA OUT
TAPE J285 DT?‘ Hag 3 _\01
AEADER 5tM8-01 085 - Daf o, MPTOR r—
CONTROL 25— N
J2.28 12824008 - 0y 52 ® NORMAL
s2.652BL - - Daf g, 7
[—st ll’hél;UTT 5
! 1
Y L - .I.D‘ 32
TTY v 181 _ 2
FRINTER 113 ";2 T{D e 9
RTE L - + ',D’ 3%
240 nn e - + :o: a8
m ik 184 - Ll
i AU IO "
Hl oy aaf — T 42
an nul® - - 10,12
1Ty 187 EEETEE
KEYBOARD \ e -
OR TAPE READER — Y,
250 fﬁ'ﬁo‘ H-H s ”
M "
NOTES: - O‘—Dz 7K ‘: b P el IR ERER |“m1°]
. SIMBOZ Connactor: e ;::.?.::;: PPy ™ lesv |45V HY
Wire wrae tyoe/ Amphonl ” LEELEE
88 pin connsctor P/N 261100432 ‘r '
2 MPTOZ Comnwctors: ot INENN Y
a. Solder lug type/Amphenol RYERE L—D—-H_——W_'
72 pin connector PIN 226.23621.101.
. Wire sap type/ Amnglhenot |shown aboval)] l I ! I]
72 pin connector P/N 261-15826-2. b= —D—H—W\:—
I If the use of tha 24 gin socket on the MP7-03 is not desirad, the
pin connections for externsl socket s s foHaws: ’HIL D |1 A
EXTERNAL SOCKET PROGRAMMING I b
N >
MP7.03 MPO3
FUNCTION PIN FUNCTION A R
A, "OUT" DEVICE UNDER TEST 56 [B3 e —— _D___N_w_“
A‘ .] D. B1 | |
Ay & B, B e D> — e
Ay 62 0, 7)
A o CHIP SELECT OUY 72 — _D_H_MA,.__
Ay &6 PROGRAM OUT 2 LED 22011
'™ 58 Ve QUT 24 SN‘?,':?N MV.108 ww
A 70 Vaa OUT 26 MORSANTO
D, "OUT" DEVICE UNDER TEST 7 Vgp QUT 2
& ouT 30
L, Voo The ete in jon b the 5IMB-01 snd the MP7.03
o, 67 ¢1,92 QUT 2 is provitied by the MCBES-10 systern interfyce and control module,
0, - S the MCBE-TT chescription.

Figure 16. MP7-03/Sim8-01 PROM Programming System

: GHEFRHO
g?: T @ 3o GQQ °m
o 3 e I
5] 5 feE
a7 =y i
+ @ o| GEE

{EE O

&

<

223
G Red O

waz

239
21}
E47

| 2o

B

» ~ED

S ey FO

H=E
[4T3

Griesitey

CRICEEI TS
O €2
EAY
olesmo

LEY,
G- Eze o)

SR O gdE
- G4

L35

<
§0 __

(bl

8

HO0
®

HOOG
OO
O

QT RIG,

f

®,

@
®
®
o

=

EatEriad;

Bt)

e)
ETE)

AT Yo
37
E1E
T[a O
Fanl
L) cmiso

e
L4
c@mno J
CHeeil-
iy
GHEsel<

G-'.ﬂ

—

GHETH-O
Ea TS
C D]
EaE
@225

") Grew

CZie)
lrk“jr

"
L

b
.

l :,_’._J

A

W

S

L]
'

b

-

n

1A
P
rs
A
I::
S
1)
e Y
|
L
‘lﬁ
1]
i |
P o
o Y

N
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Solder Connacior PN 22623827101 P W WL KT WFET BTCESEAZY X WY UTSLEHAEPHNMLIEKT JHEEDCLESR

Anmpino|
Witwwriap Conmactor F/NO261 156057 FOGI 67 65 B 61 59 57 55 EY BT 46 47 45 43 41 H 37 B NP 2 27 X 23 M W 17 15 13 11 & T 5 31 I
Wit ewray P.'N.vrnu 1072 W OBE 66 B4 62 B0 B3 54 54 52 G0 4B Ak L4 47 &) 3B 3% M 37 M 2 XN 24 27 20 M 16 W 12 W B E 4 2 [t =
Figure 17a. Component Side of MP7-03 Card
Solder Cormecior P 225-03621-101 1 2 2 & 5 & 7 & 5 3 1172 13 14 15 ¥ VOB 98 20 2 22 231 M XM HA XN N R MHEDN ‘
EL]
Wirwwrap Canmecier PIN 261.15635-2 24ss‘nlzuw‘axlzz-zlzszsmxzuzsmwczu&asuszysasasumuaﬁsamn

Wiswrap Contwetor PIN VPBOTEJGEQDAT 1 2 5 7 9 11 13 15 17 19 21 23 252 27 29 31 33 35 37 M N 43 46 47 48 51 53 55 57 W9 61 &3 &5 B B N M

Figure 17b. Pin Definition — Reverse Side of MP7-03 Card

M

POWER SI.IPPI.IY REBULATOR

— €20, 54F, S0V,

PRGM
RI02 R4 ‘_@
10K 55, B PIN 12
DT
AN éﬁﬁ
xRt S
TNSZE8A
[
er L 103
200pF WK
1: = Veos Vo QUT
7 PIN 12
o.uT.
A104 % A0
4K b PIN 14
..\mo l” DALT,
e o &
06 VARG
NS 742 R52 RB3
A 47K 4. TK PIN 16
- azv)) v DT,
Ao 5 "'zc ‘" = = o5 fz¢]
T 0vuF .. 17 v
[NE 550 Ba —[]
ry B Lmns
e " DT,
[- Imo
PULSE OF 47.0v e =
o fao]
30
CR1Z L PiN 24
THADOZ DALT,
1
+5
RS
+5 20K [3.0ms] +30v
R Az
ﬂsgz 47K 5
{15503}
f‘ ol Az Ri9
6 108 1K 27K
1 |2 une | icn
HEL 2
w60z " SNT406 h
Ic1z
o T
3 R21 I 3.0ms
7K
11 W
SNPADE CRS
Icn 91
rzo| | € mie
Fe PR
12, 12
| ®o
SN7405 =
it 1
Azl
70
) B
SNTA0S

s L L L
ad -rc‘n =N]
17 AVaF| 10F [A0F
onD [y LV L

42

WIRE WRAF CONNECTORS,

iIc 1

MNOTES. Unkess orberwise speceliod -

1. RESISTORS ARE AATED IN Tis %W, 10%

2, TRANSISTORS ARE 3E6021, or ZNIB52 pr ZNIT22.
3, PN NUMBEAS ARE SPECIFIED FOR AMPHENGL

@
]
oara iy [h—p))

DATA LN

cnnmol.@
patAouT 1 fea—

DATAOUT [

ENABLE |

{28}

E_

DATA IN

enAaLE 31

R4T
B.BK

As?
10
DATA t
PN 4
Rt OULT.
1K
Ads
45 = = 68K
Ao rvw—
sax MA——3
o ASD y
= 100
RES DATA 2
kL9 L FIN G
Reo DT,
7 1K
A9
100
GATA 3
NG
DT

DATA OUT
CONTROL E

[2}-——

RADY
= = 68K

T
DATA DRIVER

ADORESS
CONTROL

Vg OUT

T
ADDRESS DRIVER

A2 —arad 1 24 ¥ono

Al 2 np—on

Al — 3 np—tz

DATA OUT 1 ——F 4 (LSB] 22— a3

2 s 20— a1

33— 10— As

L) T 18— AG

[8 17 a7

a——Ja % Voo

—J 15 |—— Vg

DATA GUT 8 11 {MaH) up—=cs
Voo 12 13 |——— PROGRAM

GEVIGE T BE PROGRAMMED

NOTE:
THIS SCHEMATIC
15 INCLUDED FOR
REFERENCE ONLY,

Figure 18. MP7-03 PROM Programmer Board Schematic

43

IX. MICROCOMPUTER PROGRAM DEVELOPMENT

A,

MCS.8 Software Library

1.0 PL/M™ COMPILER — A High Level Systems Language

It's easy to program the MCS-8 Microcomputer using PL/M, a new high level language concept developed to meet
the special needs of microcomputer systems pregramming. Programmers can now utilize a true high level language
to efficiently program microcomputers. PL/M is an assembly language replacement that can fully command the
8008 CPU and future processors to produce efficient run-time object code. PL/M was designed to provide addi-
tional developmental software support for the MCS-8 microcomputer system, permitting the programmer to con-
centrate more on his preblem and less on the actual task of programming than is possible with assembly language.

Programming time and costs are drastically reduced, and training, documentation and program maintenance are
simplified. User application programs and standard systems programs may be transferred to future computer sys-
tems that support PL/M with little or no reprogramming. These are advantages of high-level language program-
ming that have been proven in the large computer field and are now available to0 the microcomputer user.

PL/M is derived from IBM's PL/I, a very extensive and sophis- [«ess wiom wsraiinr pas 1
ticated language which promises to become the most widely T e st o e,
. . i B Sulin i TAYTTLE RS EDLLONSL
known and used language in the near future. PL/M is de- }EALAESTE 4 ThUTIF L5 A PRuE, 4
- . . H FINE Rfa At
signed with emphasis on those features that accurately reflect | 2 ¢ i LEre e
the nature of systems programming requirements for the | 3 £
» *ep3 L s 7
MCS-8 microcomputer system. ocre ¢ fwo 4§
(101 ;'lﬂ r
§OPAIMUIZY = *Apk; e 1 1% a4 PRIHD =S
. - Bher Jerrared B R
fégn_; AL °§_;"FLE-u::Ec‘_IL-:H«'tru 1 axp 5B, :::; g: ;Eg Li
P A A R w
TetLasE - prie: veac 13 W a
“LCLERr B oBe0 JERL My | Hel
DEAMR LN LLY "2y FLLED CITERALLY *E° ¢ P MILS P TH BT,
EMEE sLa2arin Lal L
FRIZEL; = TACL; sm 2 15 & PHIHE #f (LR T4 ty | LI}
[T LograL
nd o} o= ® TG 5S¢ Bry% a4l (2] AR
PHE'I_E!H = FLLSLI #m [%]T[4_]ZE TADLE TO Tdy5C &/ g:.‘; ::!E?iia E:‘I' :.l
;a_u-:iL_a_l PTG 43 Bi e LBOP URTIL TEST IR PRLME FAILS e EriC pderzn e 1y e e LimaLiEE TARLE D rALSE e
L ux; Fegrrea Lal Hy Bt g
e] A0z L
.2 5 !’nll‘r -t :::; Il-:: :z: ::E
Thut wagg rLOCD lf:l L
was od v
LLEDRE 0 Kyl LT}
E0F s END B RADLIAR af B
LLEST PR LY i
RudP 4LF2 (3] H.7
cans I.:U‘l‘?? RHILE | 103 W 0% &1 fw OGS USTIL TEST FOR HAIAL FA1LS ur
PL;M Coding vEIZ Neaprnia) [N H 1
LERD A Hiw LY
Program Development Time: 15 minutes WESR MachD eSSERELEAT PubE 2
Ri&? E&isi‘ﬁﬂa Lel Hik
E-’;Eg * LaR T ok fet
ol SuH R
PL/M vs ASSEMBLY LANGUAGE be2s Lhsces B e
As an exampie of comparative prograrming effort betwean PL/M and assern- i W s
bly fanguage, this program to computer prifme numbers was written twice, propg Lot M
first in PL/M, and then in assembly language. The PL/M version wag,written FrP me B
in fifteen minutes, compiled correctly on the second try fan "end" was wtat cisrvn 'i""'m Looe4
omitted the first time) and ran correctly the first time. The program was e e s
L} i 5= oy ok FO|HE #
then coded in Intef MCS-8 assembly fanguage. Cading took four hours, Desd suasaind e
pragram entry and editing another two hours, debug took an hour to find) i;‘ pen l'.’
Incorrect register designation, the kindg of problem completely eliminated by ALY ATsEQ , M
coding in PL/M. Results of this one short test shows a 28 to 1 reduction in A
coding time. This ratio may be somewhat high, overalf ratio in & mix of pro- WA
grams is more on the order of 10to 1. P
M i
:fl M1
*1
-
dea PP | e 'I“;" Bin
L
- . BCED A4LEID WP LogEn
PL/M is An Efficient Language e B 2 e mnste o
Lrag s rL
Tests on sample pragrams indicate that a PL/M program can g f?!;‘:jgfgf:"' o okt ey 4
be written in less than 10% of the time it takes to write the . -
same program in assembly language with little efficiency et woom
loss. The main reason for this savings in time is the fact _
that PL/M allows the programmer to define his problem in Assembly Coding
terms natural to him, not in the computer’s terms. Consider - Program Development Time: 7 hours

the folowing sample program which selects the largest of

two numbers. In PL/M, the programmer might write:

IfA>B,thenC=A; else C=8;

Meaning: '‘If variable A is greater than variable B, then assign A to variable C; otherwise, assign B to C.”*

a4

A corresponding program in assembly language is twelve separate machine instructions, and conveys little of
original intent of the program.

Because of the ease and conciseness with which programs can be written and the error free translation into
machine language achieved by the compiler, the time to program a given system is reduced substantially over
assembly language.

Debug and checkout time of aPL/M program is also much less than that of an assembly language program, partly
because of tha inherent clarity of PL/M, but also because writing a program in PL/M encourages good program-
ming techniques. Furthermore, the structure of the PL/M language enables the PL/M compiler to detect error
" conditions that would slip by an assembler. The PL/M compiler is written in ANS| FORTRAN IV and thus will
execute on most large scale machines with little alteration,

2.0 MCS-8 CROSS ASSEMBLER SOFTWARE PACKAGE

The MCS-8 cross assembler translates a symbolic representation of the instructions and data into a form which
can be loaded and executed by the MCS-8. By cross assembler, we mean an assembler executing on a machine
other than the MCS-8, which generates code for the MCS-8. Initial development time can be significantly re-
duced by taking advantage of a large scale computer’s processing, editing and high speed peripheral capability,
Programs are written in the assembly language using mnemonic symbols both for 8008 instruction and for special
assembler operations. Symbolic addresses can be used in the source program; however, the assembled program
will use absolute address. (See Appendix !1.}

The Assembler is designed to operate from a time shared terminal. The assembled program may be punched -
out at the terminal in BNPF format. ' '

The Assembler is written in FORTRAN 1V and is designed to run on a PDP-10. Modificatioﬁs to the program
may be required for machines other than PDP-10.

3.0 MCS-8 SIMULATOR SOFTWARE PACKAGE

The MCS-8 Simulator is a computer program written in FORTRAN |V language and called INTERP/8. This
program provides a software simulation of the Intel 8008 CPU, along with execution monitoring commands to
- aid program development for the MCS-8.

INTERP/8 accepts machine code produced by the 8008 Assembler, along with execution commands from a
time sharing terminal, card reader, or disk file. The execution commands allow manipulation of the simujated
MCS-8 memory and the BODB CPU registers. In addition, operand and instruction breakpoints may be set to
stop execution at crucial points in the program. Tracing features are also available which atlow the CPU opera
tion to be monitored. INTERP/8 also accepts symbol tables from either the PL/M compiler or MCS-8 cross
assembler to allow dehugging, tracing and braking, and displaying of program using symbaolic names.

The PL/M compiler, MCS-8 assembler, and MCS-8 simulator software packages may be procured from Intel on
magnetic tape. Alternatively, designers may contact several nation-wide computer time sharing services for access
to the programs.

4.0 BOOTSTRAP LOADER FOR SIM3-01
When developing MCS-8 software using the SIM8-01, programs may be loaded, stored, and executed directly from
RAM memory. Aset of three 1702A control PROMs (1702A/860 set} is required for this function. In addition,

this same control PROM set is requiréd when the SIM8-01 is used as the controller for PROM programming.
(See Appendix V.)

5.0 SIM8 HARDWARE ASSEMBLER

The SIM8 Hardware Assembler is a program which translates a symbolic assembly language into an octal repre-
sentation of the SIM8 machine language. An auxilliary program then transtates the octal object code into the
“BNPF* format suitable for bootstrap loading or PROM programming. Eight PROMs and three tapes (1702A/
840 set}!” containing the assembly program plug into the SIM8-01 prototyping board permitting assembly of
all MCS-8 software when used with an ASR 33 teletype.

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a
name table. On a second pass the assembler translates the source using the previously determined name values,
creates an octal object paper tape, and if directed, writes the object code into Read/Write memory.

The assembler's commands allow for TTY keyboard manipulation of R/W memory and execution of stored pro-
grams so that programn debugging may be undertaken directly after assembly. 1f a “BNPF* tape is desired, an
auxilliary “'tape generator’” program may be |oaded and executed by the assembler. (See Appendix 1.}

6.0 PROGRAM LIBRARY

These program listings are available to all Intef microcomputer users. We encourage alf users to submit all non-proprigtary
programs to Intel to add to the program library so that we may make them available to other users.

*

MCS-8 bootstrap loader and contrel program and PROM programming

systems routine for the StM8-01 and $1M8-01/MP7-03 PROM pro-

gramming system {ADS860, A0B61, A0863) [1],
Floating point multiply routine for the MCS-8.
+* Fixed point multiply routine for the MCS-8,

Fast Fourier transfarm program for the MCS-8 using the algorithm by

G.0, Berglund {see |EEE Transactions on Computers, April, 1972),

Cebag Program

Binary Search Routine

Interrupt Servige Routine

Analog to digital controlier — MCS-8.

by CALCOMP,

MCS.8 driving an incremental X-Y plotter such as those manufactured

* ¥ & @

»

Three dimensional blackboard strake generator using MCS-8.
MCS-8 program for saving CPU states on an interrupt,

MCS-2 program for controlling the timing for a serial input
from a teletype,

Fast Fourier transform program for the MCS-8,

MCS-8 Assembler for use an HP 2100

MCS-B telatype and tape reader contral program {ADBDD} [11.

MCS-8 memory chip seiect decode and output test program
for the SIM8-01 card (A0801) [1],

MCS-8 RAM tast program for the SIM8-01 card {40802} [11.
Single precision multiply/divide,

Program written by Intel. ® Program submitted by customers,

Note 1. These are the program numbers that should be used when ordering the programs in PROMs,

B. Development of a Microcomputer System

The flowchart shows the steps required
for the development of a microcomputer
system, The SIM8-01 system can be used
throughout the complete cycle for pro-
gram assembly, PROM programming, and
prototype system hardware. Ultimately,
custom systems using 17024 PROMs may
be delivered, For high volume applications
{100 or more identical systems} lower
cost metal masked ROMs may be used.

To combine the advantages of the metal
masked ROM and the PROMS, subroutines
may be stored in metal masked ROMs
and a customized main program may be
stored in PROM,

Determine 1/0
RAequirement

Determine RAM
Requiverneet

y

Write Sampde Programs:
Datarmine ROM Requirement

¥

Develop Systemn Program
Uzing 1702A FRONs

¥

Asmembla Program
and Debug

Program
Oparational ?

Build Pre M L
e ROWs Individual Systems
Systerns Lisiay for High Volume Using
17024 PROMSs . |
Production 17024 PROMs

C. Execution of Programs from RAM on SIM3-01 Using Memory Loader Control Programs

The previous section provided a description of the preparation of tapes and the programming of PROMSs for permanently
storing the microcomputer programs. During the system development, programs may be loaded, stored, and executed direct-
ly from RAM memory. This section explains these additional features.

ROM MEMORY
L

12 3 a5 & 7 . SIMB-01 MEMORY ORGANIZATION
=] = [@
ol (2] e . ROM 1 256-511
ACBEO L ROM 2 512.767
. contRoL | — 7 - ROM 3 762.1023
A0B61 1
A0g63 PROGRAM [_B‘”"K C_0000dn ROM 4 10124-1278
: ROM 5 1280-1535
-, sana 0000000 AOM 6 1636.1791
MEMGRY | ROM 7 179222047
n .
teenz N 000008 RAM BANK I 20458.2303
. RAM BANK 1 2304-2559
[BAnK 3 D D B [] D D D ':'_ 4—" ATSL*;3 RAR BANK 7 2560-2815
RAM BANK 3 2816.3071
SINGE. N

Figure 19. MCS-8 Operating System

The systern has three basic parts:

1. The microcomputer {SIM8-01}

2. The bootstrap memory loader control program {(A0B60, A0861, AD863)

3. ASR 33 {Automatic Send Receive) Teletype

The control program provides the complete capability for executing programs from RAM. Two additianal program commands

are required; "“C", the CONTINUE command for loading more than one bank of memory, and “E", the program EXECU-
TION command.

QOperating The Microcomputer System

To use the SIM8-01 as the microcomputer controller for the bootstrap loading of a program from the TTY into RAM memory
and the execution of programs stored in RAM, the following steps must be followed:

1. Place control ROMs in 5IM8-01
2. Turn on system power
3. Turn on TTY to “line” position
4, Reset systentwith an INTERRUPT (Instr. RST = 00 000 101
6. Change instruction at interrupt port to a NO OP
6. Start system with an INFTERRUPT (instr. NO OGP = 11 000 000)
7. Load data from TTY into microcomputer RAM memory
8. Execute the program stored in RAM
Loading Of Multiple RAM Bank.s TYPED BY S3YSTEM) TYPED 8Y USER
Ready for command t *T w—— DATAENTRY command
Through the use of the command “C”, Request for FAM BANK = —= Bp ft——— RAM BANK = in which cata will be stored. Enter
{CONTINUE) subsequent BAM banks may B | A bank nurober {§(1.2,3)_ Each bank stores 256 bytes.
be loaded with data without entering a new Request for Address Fie‘d///‘ xx Jer—— [nitist Address
within RAM BANK - 255 46— Final Address = 265

data entry command and new mermory bank
and address designations. |

- -~ Start tape reader and load data into RAM memaory.
Data entry must be in specified format, All bormat

Nate that the CONTINUE command should ‘I checking is done at this time, 1t gar:a is entered from
- the keyboaid, depress the RETURN key after manually
only be used when the subsequent RAM will e ing sach complets werd,
be completely loaded with 256 bytes of data. Ready for new command ¢ CONTINUE command
For partaal |Dad|ng of RAM banks, always 11 Start tape and continue {oading data inta
use the DATA ENTRY command. The con- RAM memory. Data is loaded into the next A AN

- BANK {n+ 1} beginning with adrdress B and
Ready for new command - ending at address 255,

tent of a RAM bank may be edited by using
the DATA ENTRY command and revising

47

and re-entering sections of the bank., When a program is being stored in memory, the first instruction of the program shouid
be located at address GBP in a RAM bank, The entire RAM memory with the exception of the last fifteen bytes of RAM
bank 3 may be used for program storage in conjunction with the bootstrap loader.

Program Execution

The program which has been loaded into RAM may be executed directly from RAM,

TYPED BY SYSTEM TYPED BY USER
Ready for command ——~————.—p | *E |--4——— Program EXECUTION command

Request for RAM BANK # ——» | Bn |-«——— RAM BANK in which the program has been stored.

The first instruction in a prograrn must be at address
B in a RAM bank.

Program beginning at address 980 of RAM BANK # n
will be executed by the MCS-8 system.

To return to the bootstrap control program, the
ending statement of the program being executed

n H
Ready forcommand — | * should be "JMP 462

CAUTION: When executing a program fram a sing’e RAM bank or multiple RAM banks, care must be taken
to insure that all JUMP addresses and subroutine CALL addresses are appropriately assigned
within the memory storage being used,

Summary of System Commands
Using Intel’s speciél control ROMs [AO860, A0B6T, AO0BG3) the following control commands are available:

COMMAND EXPLANATION

T DATA ENTRY — Enter data from TTY into a RAM bank

C CONTINUE — Continue entering 256 byte blocks of data into subsequent
RAM banks

R RE-ENTER — Re-enter a data word where a format error has occurred and
continue entering data

E EXECUTE — Execute the program stored in RAM memory

P PROGRAM — Program a PROM using data stored in RAM memory

L LIST — List the content of the PROM on the TTY

The complete Bootstrap Loader Program is presented in Appendix V.

X. MCB8-10 MICRO COMPUTER INTERCONNECT AND CONTROL MODULE

The MCB8-10 is a completely assembled interconnect, display and control switch assembly which elim-
inates all hand wiring associated with an MP7-03/SIM8-01 setup. With the additions noted below, it
becomes a self-contained system featuring the following:

1. General Purpose Micro Processor with {/0 and Display {(with SIM8-01, power supplies)

2. Automatic PROM Programming {with SIM8-01, PROM set ADBG0O, A0BG1, ADB6E3, MP7-03, power
supplies, TTY) ' '

3. Test System for checkout of programs, features single-step capability {with SIM8-Q1, power supplies)

The MCB8-10 shown in Figure 20 includes the following:

1. All interconnect circuitry necessary to implement the programming system described in Section VIilI
of the MCS-8 Users Manual,

2. Connectors for the SIM8-01 and MP7-03 boards. .

3. A zero insertion force 24-pin socket for PROMs to be programmed. Appropriate connections to the
MP7-03 connector are provided. _

4. Teletype, keyboard, printer, tape punch and reader control connections to SIM8-01, Access to these
signals is provided by a 16-pin socket (TTY-J8). A flat cable is provided for the connection,

5. Control switches (2) and logic necessary for true-complement of programmer input or output data.

6. Breakout of all computer signals to open sockets for easy access, This includes output ports, flags
{carry, sign, parity, zero}, |/O decode (select 1/0 port 0, 1, 2, 3), 1/0 selection, cycle control, two
decoded states (stop and wait}, lower and higher order address.

7. 60 bits of LED display from StM8-01.

8. All control lines are “OR-tied”” to MCB8-10 or its connectors for external control,

9, Two toggle switches are provided for the following operations:

J283

————

- a1 :

. 516 —| TTYIN
813 INTERRUPT |
510Q |
|
|
= |

| siM801
|
|
|
I l
TTY [

816 o= 14D

|

il . IN-AD ? I

a. For AQ860 program (Bootstrap Loader and PROM programmer control ROMs), set the switches
as shown in the figure above.

b. For AQ840 program (SIM8 Hardware Assembler} set S16* to “INTERRUPT"” and S15* to “TTY".
¢. For operation not using teletype as an 1/0 device, set S16 to “INTERRUPT"” and S15 to “IN-AQ".

10. Two memontary pushbutton switches are used for interrupt and single step function,

11. 8 toggle switches are provided for interrupt instruction input,

12. A toggle switch is provided for “WAIT" control.

13. Two transformers, 115V AC/220V AC, capacitor, fuse holder and AC input jack wired to develop
the unregulated 80V DC which in turn is regulated on MP7-03 to 47V DC programming voltage,

14. A control switch for disabling the programming voltage.

15. Input jacks for applying externally supplied +5V DC and -9V DC to the assembly. (Note: internal
supplies are not included}.

*See figure 24,

The setup for the PROM programming application is shown in Figure 21. The MP7-03 {rear) and the
SIM8-01 boards are instailed in the MCB8-10.

Figure 20. MCB8-10

Figure 21. MCB8-10/MP7-03/5IM8-01 System

A. Micro Processor System

When the MCB8-10 is used as a microprocessor, its features, such as the display (for the output ports,
i/Q decode, flag flip flops, cycle control, step and wait state, and in and out control and input ports},

may be utilized at the discretion of the user. As an example, consider the testing of the $iM8-01 boards
loaded with a PROM containing the following program: Read Port A and Port B, add the two values and

output the results at Port A. The test could be implemented by connecting 8 switches to the A and B
input sockets. The actual switch circuit would consist of a single pole double throw switch wired with

one pole to ground and the wiper wired to the appropriate socket connector pin in accordance with the

MCB8-10 schematic. The SIM8-01 is then inserted into the “SIM8-01" connector and a bench supply
connected to the +bY DC and the -9V DC input jacks. The actua! test may now be performed, The
system is started according to the user’s instructions and the program is executed. The result appears
at the LED display and may be verified for correctness. The display lights of interest are identified on

the system'’s printed circuit board {Figure 22} as "OUTPUT PORTS"” 0, 1, 2, 3 (Bits 0-7}.

FELIV -Y
. - 5 . Gl GMD 4+ 3¥ =T unwmn
in teL
©ere / .J . . ‘ *
° - s
[T YT Y] XTIy a1 e
asennsnvves nafefy sasssanensejiense
\
MPT_0%
L]
FIS
- - y) *e -
-] H ==
SPaRE
s s H == ey "
- - = - - V2 snp
- - - ==z 0
- -
ae
- -
[
-
- -
- -
- -
- .
- -
1 ‘u
w B
- .y
° “ £ i
YL
L e)
hy []
L]
FLE)
ARE QU Obss SRRROUAGSNE SARPRRRASRYARENNT & & & & ASDEPERR - e
B Yoo
-
] 1 B
.3
[FRGGRAMMER CATL " ® Em A& =S - - .. . R - - e e - Ry
L] ‘iTW'IlYiTi!l!i'D 7.9432!0!?.143 (I 4 y PG
TRUE QUTPUT PORT 3 CUTRUT POAT 7 QUTRUT BORT | ;
ENABLE ak.
1
o8 ‘000600000 0 o @ e 0 |0
COMPLEMENT 'TMSABLE ? [A . 3 t ' 0 | WTERRUPT WAIT SINGLE STEF \ CANC CONTE . ad MDA
o WMTERRUPT (HSTAUCTION NPT P SYSTEM WTERFACE &NC CONTE L WMODULE *
MO AL

Figure 22. MCBB8-10 Printed Circuit Board

B. Programming System

Consider the actual programming (in the hardware sense} of the 1702A PROM in the example above. The system can
perform this function with the addition of an MP7-03 board inserted into the MP7-03 connector. An automatic pro-
gramming system which allows data entry from a keyboard ot paper tape, automatic verification, listing of ROM contents,
and hands-off programming is provided by the further addition of three preprogrammed PROMs {ADB60, ADB61, AD863)
and a madified teletype. The teletype modification consists of the addition of simple relay network described by the
MCS-8 Users Manual. The procedure for programming a PROM, then, is as follows:
1. Insert MP7-03 and SIM8-01 boards ($IM8-01 loaded with PROMs A0860, A0B61, AD363).
2. Connect teletype to “TTY" socket,

3. Connect +5V DC, -9V DC and 116/220V AC. Verify 115/220 switch is in proper position,

4, Insert instruction 00000101 with the 8 toggle switches provided for interrupt instruction input (i.e., RESTART

to location 0).

Depress “INTERRUPT""

Insert instruction 11000000 (i.e., NOP} with the same 8 toggle switches

Depress “INTERRUPT”
. Set PROG.AC' to "ON"
. Set data enable switch to “ENABLE".
Set the data “IN/QUT" switches to “TRUE" or "COMPLEMENT"
. Place teletype in “ON-LINE"” mode
. Insert PROM
. Use AOBGO program directives as described in Section 1X of this Users Manual.

D00~ m M,

C. Program Debugging

Program debugging may be performed by using the “SINGLE-STEP" switch and LED display provided.
The procedure is as follows:
1. For executing program in ROM {or ROMs):
. Turn off system power.
. Set toggle switch to “"WAIT",
. Insert programmed ROM {or ROMs).
. Turn on system power,
. Set interrupt instruction input {using the 8 toggle switches provided) with an RST O (00000101)
instruction,
Depress “INTERRUPT" switch. . :
g. Depress “SINGLE-STEP” switch. This causes the CPU to execute the RST 0 instruction.
h. Continue to depress “SINGLE-STEP " switch to advance the program one location at a time (a
three-byte instruction requires three depressions of the “SINGLE-STEP" switch).
2. For executing program in RAM:
a. Load program in RAM using A0860, A0B61, AOB63 program.
b. Set toggle switch to “"WAIT",
c. Set interrupt instruction input (using the 8 toggle switches provided) with a JMP instruction to
‘select the desired RAM bank where the program has been loaded in step a. Enter the three byte
JMP instruction as follows:
Load 1st byte {(01000100).
Depress “INTERRUPT" switch.
Depress “SINGLE STEP” switch.
Load 2nd byte.
Depress “"SINGLE-STEP’ switch,
Load 3rd byte.
Depress “SINGLE-STEP” switch,
Set the 2nd and 3rd bytes according to the following examples:
For BANK 0 —
00000000 {2nd byte)
00001000 (3rd byte)
For BANK 1 —
00000000 {2nd byte}
00001001 (3rd byte)
For BANK 2 —
00000000 (2nd byte)
00001010 {3rd byte)

o0 oo

h

§1

7l

L-

2|
[L
POV LEACEY | g
« [32}

|

sl

SRR

]

- o
ITERRURT 1k E,_
Yes-
Ir

Tre

=
DATA. rIoké TTY
TERLHWITTaR MRE_ -E Sie
e -k : :
i L
)]
L :
Ny
. '
1
[TN L R T o1
FORT £ ‘. 3
= i
['
=
5 =
H |
'. I
L’ :' 45 IE
__ * JE
|, 3 y
Pt
'E{ e E :
Faa I o I E|
f i T !
’Ej"' s el I E
BRTR WPIT — . €5 e [y
POt 0 =)) e T —E]
1 = aa} T
1 [} Lo i i
— Folrk - I =
£ - 42 P
T . 1
“E‘" £ | i ',—‘
e a4 v
Tl £ L [Tal
— P et [
B2y I [M= I
e e
'3
Bhg P —
1 L
LAl &
Zl Ll
{ st = § |
— e g -
2z
b o5 - 1 ¥
" Lo #7 T
SATEUT PORT -'I H b9
"—‘ o= 1Y
TS
S 2l
B
E G B i1 i
- os] T E'
— s !
L._"l‘:‘l £11 \ i I ;r:]
"’l.__r"‘s' [LENFN — ‘ql
lens s | [B ;
— [
e v 2
3D 5 L
T Frz M [Iy
= e — :—3-!'
ill:"l TR 21 '
1 ' i) i 1, v - L]
= b
outruT poary | i Bun e | . o
o &) T —_—
EmLrTE o
" 3 LD A 1 h L3}
21 -]
ol N[—
1 WAD 4B —].:J
I
blth‘:_ Rod o [= T
el s g — =
e e R IE]I
e A

TATE T T

[T T s

DUTRIT PoRT

Tafe ELap<t oumh

DUTRT FOLT 3

oy

v ® - =

A
H

[l
"

-

1

BB
FT
B

MEIRGN

Low CRGEE
ADDELL S SUT

vl SROEE
AGDEERT T

R B R EL
\(B

CFSLE CoLTEDL SO0 W

ST ZoNTES L O

DT 1h

a

-+

x

-

1

]
+
&

.-

H

[
»
n

gl

5

‘_Zé IEYE]

ol
B

LEf e
EE R A
I o
el Lam %,
Ll £ bl I
I“ Teauw ™
P P WY W |
o) Lo 3T
= Baa T
— s
haet Eak ™
[

9

by
w

L LR DY I P

|

¥

E L
L—.i Piate)
= R

5]
i

.
M

ETT G

|
]

5
a
[

Eyr)

)
v
e

B

H
A

112 s 5

(=]

:

k
=

M

"
I
3
1]
w

e

HNENENENE
K

b

+ T4 -
| 2% «oa
— [

1% s | '@
:.. Tese 2o T 1
L 21T Lxpoa
oxg T

i
5

i
L

i
-

4

v

I

HETER. UuLELd OTHEDWIBL AR

. e

ENS ATOR MAukE LlE 430 A ke 10 T

2. Ain LEPE ALK PALT M&. QL SSL-25, ZED-

(==
[a=

J4 To T3 ARL

AT QAP BoSCET

Coy Tl T Iy SOLERT AEE MOUWTED TR SHARRS

52

CATa IMPUT SO AT

#ute wrﬁtE)
= L
L I

|
o]
’ 1 i

STTE wun(@_,__—__,__E
A |
N F
[—
i !

]
]
s fof—————1]

RalA WP SEEET — 4 [

i
:flp—— -

= =

3 SR -y

Ry SHLP DRELT <o Ll . |
) Ry
— L

72 L

p—F

D 1 P

o] [ra]

! '
7(] (21
o s o
[__E
| Eiip T —
— Wi E
R1d T ™
[E] :

B
Bz P i
r !

LEE& T

ey T E‘
1fo CREoOE Sut = i)

2
(5] =]
i

T

]
B G G L G
HNDNEROND)ENON

TEREET eeLe

Flom PP @R el

:
;

Prer

ey

[
s e
P 1)
e 2
= -9

w

™

Pt

5

o
3

1
&
] w%?\;
ot
F

HTEEELPT nusTEusnEe
T

B TA SuT

]
i Ed
| 5
=] - =
| a} -
i - E_n'tmme-:/"
3 el KRR B
. 3
| —— =
] 1}
i o
3 i1 1180 vee
1 Lad
H G at
<]] -
i L
1
\
2]

DaTa 1ay

L

DT, ST

Pl YT TSt . .
TV EFFER,

FEGR T TR TTEE o
TIT BuFREE
'

ThPE SATEE SATES. ﬂJrE

TLFE ERAPEE SonTER. E
Lo B}

J -
o TTY paTER @—_7;
J7
=TT m i
]
T TTY =
i ra
.E ey .
= Y oade g | I
¥ e W0 seareo [H | <
]

FHE L =
LuABLL oF /o E Ll 3
OEv| O DO T, £ ar ' —
Tt 4
A
wNue ouT I

oy artek

[=]
LTER e -:mu_i—-
1

=]

L
)

AoTEEAs SuT
DREYICE BJGER TRAT T

EIHEIE] SRR ESD

fEoW To TS
P b

SIEIE]E

1
|

DATA, OnAT
CEVICE HMCEL TEST

|

[RTel1e] x|][] s LGl EiTedie v e [ol 1+ T I BRI T T[] Lo

fe o e o oo @ oz p g0 ¢ 0+ 21

e SR T T |32

PROmER auT (22

Vaay cur

vae suT (14

Vo QuUT (s,

vez ST

*
]

53

Figure 23. MCB3-10 Schematic {No. 00026)

For BANK 3 —
00000000 {2nd byte)
00001011 {3rd byte)
The above procedure causes the CPU to execute the JMP instruction that has been jammed in.
d. Continue to depress "SINGLE-STEP” switch to advance the program one location at a time.

D. Procedural Precautions

1. CAUTION: Do not remove DC power while programming AC power is on. Permanent damage to
MP7-03 and PROM may result.

2. The MP7-03 board should be removed when SIM8-01 is not programmed to drive it,

3. Power up and power down for the programming system should be performed-as follows:
a, +6V DC and -9V DC on
b. Restart procedure:

-Restart instruction 00 000 101

~Interrupt

-Restart instruction 11 000 000

-Interrupt

. TTY on

. Programming AC on

. Insert PROM

Execute

. Remove PROM

. Programming AC off

TTY off

+6V DC and -8V DC off

oo s, 00

® @
QRRIQ /
© qe B T 59 Ba & & ﬁ- &
i B ~
R Bl s Bl o] &t Uf}% .
= It
3 % | 8]
| 0000 9000000000600 0000 ones e)o ég
@ ; Q9 oooooooo oooooooo poououoa QQORPAVT 5| LQ 9
OO 0000000 @ﬁ@oﬂ - etole
D ®

Figure 24. MCBB-10 Assembly Drawing

54

MCB8-10 INTERCONNECT AND CONTROL MODULE

MCE3-10

sIMB-01 MCBE-10 SIM8-01

Pin No. _ Connactor _ Symbel Dagcription Connection Pin No. __ Connsctor _Symbal Description Cannection
1,4 J1 +5% +5VDC POWER SUFPLY 57 1 g RAM BATA IN Dy 156
gt & &6 a2 —uv —9VDC POMER SUPPLY 35 L Dg FAM DATA [N D¢ 457
b3 a2 GHE: CROUND 54 a1 2y AAM DATA IN Dy 458
&0 Il O oATA FROM MEMORY @ BIT @ | J518 4B Ji WALT STATE COUNTER 4.1
83 J1 R uATA FROM MEMORY 1 BIT 1 | 4516 4 a1 STATE COUNTER 48
17 1 n, OATA FROM MEMORY 2 5IT 2 | 4514 1% 51 STATE CQUNTER 347
17 JL o, DATA FROM MEMORY 3 BIT 3 | Jsaa 15 J1 STATE COUNTER -2
38 a2) UATA FROM MEMORY 4 BIT 4 | J5a2 az 3 HTATE COUNTER M6
a 12 e LATA FEOM MEMORY 5 BIT 5 | J511 14 an STATE COUNTER 5
15 JT M.Dls DATA PEDM MEMOKY & BIT & J45-10 ai a1 1 ‘STATE COUNTER 444
24 a2 w, DATA PROM MEMORY 7 BIT 7 | J59 a3 J1 Ty STATE COUNTER 43
11 41 1R, DATA INFLT PORT ¥ BIT B {B157 7101 78 a1 Hy RAM CHIF SELECT B a1
10 a1 ta DATA INBUT PORT § BIT 1 702 81 at oMy RAM CRIP SELECT) 7.2
14 a1 1A, DATA INPUT BORT # BIT 2 no-3 53 a1 %2 RAM CHEP SELECT 2 I3
18 ‘n 13, UATA INPUT PGRT @ oIT 3 04 & a2 oMy RAM CHIP SELECT 3 Ji4
28 It i, DATA IHPUY PORT @ BIT 4 05 : 42 Chy RAN CHIP SELLCY 4 I8
33 3l ™ DATA INPUT PORT @ EIT 5 H06 4 12 s RAR CHIP SELECT 5 918
37 3l Thy BATA LNPUT PORT @ BIT 6 107 &5 al E“:“s RANM LHTP STLELT o T
16 51 1, LATA INPUT BORR @ MIT 2 Aos B2 a1 &, SAM CHIF SELECT 7 8
& J1 1B, DATA INPUT PORT i BIT @ Ji0-18 Be a2 T3 RON CHIP SELECT @ - 718
13 ai i, LATA INEUT PORT 1 51T 1 LR s o 5y ROM CHIP SELLET 1 T3
16 Ji 18, DATA IFELT FORT 1 BIT 2 H014 52 o o5, FOM ChIP SELLCT 2 4714
21 51 13, BATA INEUT PORY 1 BIT 3 o33 64 a1 = RGN ChIP SELECT 3 s
26 J1 .T:B‘ DATA TYBUT BORT 1 RIT 4 012 ki J1 Ef;‘ ROM CHLE SERECT 4 J7-12
a1 JL 18, DATA IWPUT POET 1 BIT 5 J011 15 a2 == ROM CHIF SELECT 5 I711
34 11 18, 0ATA INIUT PORT 1 BIT 6 J1020 46 a2 TEg ROM CHIF SELECT & J7-10
39 I B, DAT: INFJT PORT 1 BIT 7 iT0a Tz J2 E;_‘, ®OM CKIF SELECT 7 JTa
a1 I3 ﬂp DUTPUT PORT B AIT § 1316 3 J2 U? 140 DECODE QUL Oy J12-8
67 g2 5, GUTPUT PORT § AIT 1 1315 13 a2 g 1/0 DECODE OVT O e
54 a2 Ty oUrPLT PORY § LT0 2 J13-14 1 2 5 L/ pretue OLT Gy Hz8
51 52 DAy SUTPUT PORT @ BIT 3 1313 15 a 5, L/ DECODE GuT' 0, 125
53 R F] oA, OUTPUT PORT @ BIT 4 nais 14 1 % 170 DECODE OUT ©, 124
- iz g T g o1t s 311 11 g2 o, L/D DLCODE GUT Oy ne-a
50 12 " g doLIv B Ng10 ¥ hs é’l I/0 LECOUE QUT ©) N
47 o2 3K, GUTPLT ¥ ool 7 nas 7 Iz E—f I_f o pregnm out Gy 9121
75 a2 GE CUTEUT 1 BIT & 131 2 :1 : ::E T st o9
B0 1z of, OQUTEUT PORT 1 bIT L 132 23 I B FME :: :ii—zer? 1520
73 12 om, OUTPUT PORY 1 BIT 2 153 e " . finc FLID FLOP'P"“Y -1z
i a2 Gy OUTEUT 20T 1 511 3 184 7 1L LUTCRAUPT nsu‘-nf.:frrllzn TupLT Pl
b2 IR oA, QUTPUT PORT 1 LIT 4 4135 o 11 o0 INTERKUPT 1;«|s-rm.\:.-r1.0'l IdPL i o
57 Iz 5B, QUTPUT BORT 1 2IT 5 nE6 18 - 11 21 IINTERFUPT ms-rsuc'rro: 1[:“2 F g
62 J2 o8, OUTEUT EORY 1 BIT & HaT . a1 Dz THTEREYET T i I:‘:L.:. 4 93
55 ST oF, OUTPUT YORT 1 w1t 7 L4 24 a1 o x\m:mw; I\'S“‘RL-L'T-: s 1 U--r 3 o
26 52 ERS’ QUTPUT PORT 2 BIT # 1118 27 n 4 K;TE“:P; ;S;RU{_.T:OL HPL. . e
34 J2 o, OUTPUT ZORT 2 5IT 1 1115 8 a1 By LtTERRUP,‘_ i:‘s;R ,T:& MRS o
23 12 X, OQUTPUT 20RT 2 aIT 2 1114 1 40 31 26 I:TERRUP; 1;.15211;'1"0-‘" i;:: : e
24 Jz oC, OUTPUT FORT 2 LIT 3 J1113 . gz o Flm\; N LT o8
22 o2 E“ QUTEUY PORT 2 BIT 4 J11-12 37 J2 F‘!O.-M Y _R;\.\{SMI'!‘TE:R IN__ TIY BUFFER 4
19 a2 = QUTPYT PORT 2 BIT 5 a1 63 Iz DATA ;;;HT:;L;S:;;;:”:? o
16 2 oC UUTPUT PORT 2 BIT & 41110 27 a2 TAPL READER PONTIE ® BUFFER TTY, 816
21 sz o CUTEUT FORT 2 81t] n1-g) - o 111
a1, J2 .TF QUTELT PORT 3 HIT J12-1 ;: j; ;::: mi: Eg::gi om" o7
43 J2 &, QUTPUT PORY 3 BIT 1 a1z Ba 1 DATA 'm o1y nzcswzn[;i‘?m -6
23 Jz 30, OUTPUT PORT 3 uIv 2 J11-3 10 12 R 71118
42 22 30, OUTBUT PURT 3 BIT 3 4114 6 11 :no i RSCH":ER our . a1
33 52 5, GUTEUT POWY 3 BIT 4 J11-5 ‘0 . Td TTY RECETVER T TTY BUFFER 9812
P a1z ﬁs CUTBUY PORT 3 BIT S 4115 sl 72 ﬁa;ikﬁinv“ wr &1
26 22 ‘ﬁé OUTPLT ZORT 3 AIT & e kr J1 L) MULTIPLEXER CONTROL LINES MB263

3 g Xy OUTRUT ZORT 3 <11 7 a8 41 al SLE MULIIPI.L“XF‘-R CONTROL L.‘L;IES 48263

6% w3 AH LOW GRLEH ABDRLSS OJT 469 69 Jl i1 KULTIPLE: L‘R CONTROL LIMES ;IBZE;

8 2 Ay oK DRGLR ADDRESS OUT J&10 ' a I EL1 KULT1PLEX:R CChTROL Ll:\l}.'s 8267

53 2z a, LOW ORDER ADDRESS OUT Jg11 29 a1 ORTH can;p:men'r e 4916
23 &2 Ay LOW ORULE ABLRESS QUT 512 a2 Il] @, CLECK falteraace clock) J-i::LG
B3 < Ay LC%W ORCZR ADLRESS OUT 4613 12 al ul 9, CLoCK (alternate clock) 15
17 a2 Ag Lo GROER ADGRESS OUT J6-14 5 Il sim sinc oot ’ 1410
12 a2 Ay L ORUER ALORESS OUT 615 30 J1 FEADT READY IN

45 o fy L0 OECEIR ADRLSS OUT J6-168 1 a1 IWNTERRUEY INTERRUPT IN TTY. 516
68 7 Ay BIGH ORDER ADLRESS OUT JE-1 8 a2 " I/0 EMABLE ENABLE OF T/ DEVICE DBCOBER 1413
67 <l Ry HIGi QRLLR ADDRESS OUT Je-2 19 12 I/ SYSTEM 1/0 COKTROL EIE:}
80 1 A HIGH ORDER ADORESS OWT J&3 7 12 W SYSTEM INPUT GCOWTROL da1z
EL T A HIGH DRDZR ADDRESS OUT Ja-4 0 Jl 5.0 PUSH BUTTON SWITCH s1%
76 o1 Bla HISH ORDER ADDEESS OUT J6-5 53 an L. PUSH RUTTON Swn‘cu} TNTERRIEL 12
71 Il A2 KIGH ORDER ADLRESS OUT dé-6 L2 a2 [OUTFUT LATCH STROBE PORT P

T4 Il CCB, SYCLE CONTRCL CORING J6-T7 71 k] NG CUTPUT LATCH STROME PORT L

73 J1 ol CYCLE CONTRGL SODING I5-8 20 gz .n; OUTPLT LATCH STROBE PORT 2

L ¥ Sl ng] #AM DATA IN 3” 451 30 Iz s AUTFUT LATTH STROBE PORT 3

15 aL v, RAM DATR 1N D. 52 22 31 I87 CYOLE INTERRUPT CYCLE INLICATOR q12:16
56 3. EN RAM DATR TN D, 153 32 ! T3, ANTICIEATED T, OMTEUT

5% JL 2y RAM UATA 1K 2, J5-4 a5 JL T, ANTICIFATER T, JUTRUC

54 a1 3 BAM DATA IK 0, 155 .

BS

APPENDIX I. SIM8 HARDWARE ASSEMBLER

1.0 INTRODUCTION

The SIM8 Hardware Assembler is a program which translates a symbolic assembly language into an octal representation
of the SIMB machine language. An auxilliary program then translates the octal object code into the “BNPF” format
suitable for bootstrap loading or PROM programming. The program operates on the SIM8-01 micro computer system
with an ASR 33 teletype and utilizes all memory of that system. The components included are the following:

8 PROMs (1702): AQB40, A0B41,, A0B4?
8 RAMs 1101): Last 256 bytes of assembler
24 RAMs {1101): Mame table or object code

Upon purchase of the assembler the customer will receive the following:

8 PROMs (AQ840-A0847) or B paper tapes

1 “SIM@8 Hardware Assembler - page 8 paper tape {(A0B48)
1 “BNPF Tape Generator’’ (OCTAL) paper tape (A0849)

1 "BNPF Tape Generator” {SOURCE) paper tape {A0850}

1 “BNPF Tape Generator” Listing

1 SIMB Hardware Assembler Listing

1 8008 Users Manual

A system block diagram is given in Figure 1.1.

ROM MEMORY

|
J |

1 2 3 4 & 6 7
5| (5] [5] tst (3! 18] g (3] ¢ conTROLs
é

o 10000000 —
w__| |=00000000 4 sy
v I o: 10000000
L [0000000D0 j4 -

SIMB-O1

Figure 1.1. SIM8 Hardware Assembler System Configuration

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a name tabie.
On a second pass the assembler translates the source text using the previously determined name values, creates an octal
object paper tape, and if directed, writes the object code into Read/Write memory.

The assernbler’s commands allow for TTY keyboard manipulation of R/W memory and execution of stored programs
so that program debugging may be undertaken directly after assembly. [f a “BNPF™ tape is desired, an auxilliary “tape
generator” program may be loaded and executed by the assembiler,

2.6 DESCRIPTION
2.1 Assembly Passes

During Pass 1 the assembler reads the paper tape, constructs a name table and generates a listing. The listing consists of
a line by line copy of the source text with each line prompted by an assembly address. When the assembler detects

a source termination the process is stopped and a symbol table listing all labeled lines is generated. At this point

no diagnostics have been acted upon.

56

During pass 2 the assernbler generates an object code by reading the source tape and interrogating the name table

for all labeled addresses. The object code is written into pre-assigned R/W memory or onto paper tape at the operator's
option, Diagnostics performed during pass 2 result in omission of the erroneous line and a printout signaling the error.
Errors detected are given below:

Detectable Errors
1. Unrecegnized mnemanics
2. Unidentified labels
3. itlegal restart instruction
4, Non numeric literals
5. litegal |/0 instruction formats

2.2 Operating Procedures

In addition to being an assembler, this program offers some of the features of a teletype operating system, Hs commands
offer the operator a useful interactive mode. The commands “‘LOAD", “DUMP”’, and ""BEGIN" allow the operator to
read, write, and execute small programs directly from the keyboard,

The assembler requires a source text presented via a teletype reader. The first step of the assembly procedure is therefore
the preparation of a punched paper tape version of the source text. (See Section 9 for details.}) This is accomplished
in an “'off line’” mode.

Before proceeding with the “on line"” operations the hardware configuration must be correct. This requires a system
equivalent with one exception to the $IM8-01 portion of the MP7-02/SIMB.01 PROM programming system described

in the 8008 Users manual. The exception is the teletype connection, On the programming system the teletype transmit
-Jine drives both the interrupt line and the TTY buffer. The hardware assembler, however, must receive TTY data from
the buffer only, so the interrupt must not be connected. A detailed description of the required connections for the
Hardware Assembler is given in Section 10. '

The assembler is a program which resides in nine 256 byte blocks or “pages’” of memory. On the SIM8-01 eight pages
are permanently stored in the “read only™ section of its memory. The ninth page must be reloaded into R/W memory
at each “power on” and becomes the second step in the operating procedure. To accomplish this, the paper tape
containing the octal version of “SIM8 Hardware Assembler - Page 8" is placed in the reader. I the “interrupt” input is
stimulated, the assembler will bootstrap its 9th page into the R/W memory.

The assembler is now ready to execute commands

The third step of the procedure is pass 1 of the assembly. To accomplish this the source tape is placed into the reader and
the command below is typed.

ASSEMBLE: 032: 000:

The numeric values select the memory origin point for the assembly. When the reader is placed in the “start” mode the
assembler will read the tape, generate a listing, and assembie a name table.

The fourth step is pass 2 during which the assembler rereads the source tape and compiles the object code. Line
addresses and an octal representation of the object code is printed on the TTY and, if desired, simultaneously loaded
inte memory. Pass 2 may be initiated by typing “LOAD:" or “LIST:". “LOAD" will result in loading of memory
and “LIST"” will not. If the paper tape punch is enabled, an octal tape of the abject code is created, Diagnostics are
performed by the assembler during this pass and errors are flagged by a "7,

At this point the errors have been flagged and an edit of the source tape may proceed, 1f the program has been {oaded
into memory interactive editing is possible. This procedure is continued until the assembly is correct.

If the “BNPF" formatted object tape is required, an auxilliary program must be loaded into memory and executed. The
“LOAD:" command is used to load the program "BNPF Tape Generator” into memory, The octal tape (256 character
maximum)] is then loaded into another area of the memory with a second “LOAD:"” command. The tape generator
program is executed by asserting the command “BEGIN:"”, The tape generator program accepts a three digit octal value
terminated by a calon as a start address and begins to translate the memory contents into the “BNPF” format. A print-
out and a paper tape will be generated. Sample listings generated during each step described abyove are given in Figures
2.1, 2.2, 2.3, 2.4, and 2.6. Another example with a step-by-step procedure is given in Section 9.

57

ASTST

LAB
LCM
JMP ASTST
END

Figure 2,1, Listing of Source Tape

032 000
032 001
032 002
032 D04

| ASTST
KEYBOARD —» LIST:
PASS 2 [LOAD:

Qctal Object [032 000
Code

PASS 1

KEYBOARD - ASSEMBLE: 032: 000:

ASTST LAB
LCM
JMP ASTST
END

032 00

032: 000:

301: 327: 104 a32: 000:

Figure 2,2.

Assembly Listing

KEYBCARD —» LOAD: 013: 00OO:
013000 106: 326:

Tape
Generator

013150 153: 007:

Q00: 106: 237: 000: 354: 066:

050: 357: 361. 007

Figure 2.3. Load of Tape Generator

KEYBOARD — LOAD: 012: 000:

Octal Object { 032000 301:
Code

327 104: 032: 000:

Figure 2.4. Loading of Octal Object Code

KEYBOARD —= BEGIN: 013: 000:

“BNPF*
Object
Code

012:

000 BPPNNNNNPF
m‘ L]
002
003 ’
004 BNPNPNNPPF

Figure 2.5. Execution of Tape Generator

2.3 Assembly Language

The assembler operates with the 64 character subset of ASCI| generated by the ASR-33 teletype with the commercial

at sign, @ given special significance and control characters,

carriage return, and linefeed. Instruction source fields utilize

a subset of the above including numerics, upper case alphabetics, the colon, quote sign, commercial at, and the control

characters.

The MCS5-8 instruction mnemonics as described in the MCS-8B manual and pocket guide are recognized by the assembler,
The instructions set is augmented by three pseudo operators, “PAM”, “ADR" and “LOC" which simplify the assembly

process.

Symbolic addressing and selection of constants are provided by the definition of labels and use of the pseudo operators.

A comment field is also provided.

3.0 ASSEMBLER COMMANDS

Five commands are used to direct the assembler which provide for teletype/memory interaction, assembly, and execution
of loaded programs. They are defined as follows: i

LOAD: The LOAD command is used to store keyboard ar paper tape entties into consacutive locations beginning with an
address specified by an address modifier, The modifier consists of 2 three digit octal numbers each terminated by a colon,
The first defines a page address (see memory organization - section 5.0} and the second defines the character address,
The format, described below, requires that leading zeroes be typed. Note that the character address has the range 00D to
3775 =256,4 LOAD: 011: 008:

Page Char, .
Characters of the input tape must be 3 digit octal with leading zeroes, terminated with a colon. During an assembly the
LOAD command may be used without a maodifier to initiate pass 2. The source tape is then loaded and the object code
is printed on the teletype printer and stored into memory as well.

DUMP: The DUMP command is used to display rhemory contents on the teletype printer. The command requires two
address modifier pairs similar to that described for the LOAD command. The first pair is the address of the last content
to be printed and the second pair is the first. The format is as follows:
Last Address First Address
o ' - : 1
DUMP: 011: 008: 011: 000:
Page Char. Page Char.

The printout is 3 digit obtal with 8 characters per line. Each line is prompted by a 6 digit octal memory address.

ASSEMBLE: The assemble command initiates pass 1 of the assembly, It is associated with an address modifier which
establishes the origin of the program to be assembled, This address need not be related to the usable memory of the
5IM8-01 card performing the assembly. The format of the command is described below:
Origin

ASSEMBLE: £832:, 000

Page Char,
LIST: The LIST command is recognized only during an assembly. |t will initiate pass 2 in such a way that the source
tape is loaded and the object tode printed but not stored in memory. The LIST command does not require an address
madifier. Its format is simply:

LIST:

BEGIN: The BEGIN command will initiate execution of a program located at the address specified by its address
maodifier. |f an RST¢ instruction is hardwired into the interrupt input port, assembler control may be recovered

by generating an external interrupt. /t should be noted that the ninth page of memory is not protected, hence care in
execution of a secondary program is warranted, The format of the instruction.is as follows:

Addreg Madifier
.032. 000:,
Page Char,

BEGIN:

4.0 NUMBER SYSTEM
- All numbers used by the assembler are in three digit octal form and require leading zeroes to be typed.

50 MEMORY ORGANIZATION

Interaction with memory requires an understanding of its utilization by the assembler. The memory consists of 3000
8 bit bytes each directly addressable by the CPU. It is organized in blocks of 256 bytes called pages as shown in Figure
5.1. Addresses are specified by 2 three digit octal numbers each terminated by colon. The first number presented to
the assembiler is interpreted as a page designator and the second as a character designator.

59

1PAGE =256 BYTES = 2K BITS
PAGE CHAR.) PAGE CHAR.
i 000: G00: I
00g:; 377
001: 0D
001: 377:
002: 000:
002: 377:
003: 000:
003: 3 1702
ASSEMBLER 004: 000: PROM
{DARK)} 004: 377
0a5: 000:
005 377
00&: 000:
006: 377
007: 000:
007: 377:
mo: 000:
; o010: 377:
! 011 D00
*011: 020: PAGE 9 011 377 1101
NAME TABLE . _ ; : R
AND Gi2: 000: PAGE 10 012 277
QBJECT CODE 013: 000 - :
PAGE 11 i
i 013 377: A
NAME TABLE BEGINS AT 017: 0Z0:
SPACE AVAILABLE FOR VOLATILE AND —
OBJECT CODE LQAD UNPROTECTED
DURING ASSEMBLY =752 — 8X [Number of Names}
MAXIMUM NUMBER OF NAMES = 94

Figure 5.1 Memory Map

The assembler resides in the {irst 9 pages of memory. Twao bytes of the 10th page are also dedicated. The first 8 pages,
number 0 through 7, are preprogrammed read only memories and the Sth resides in read write memory, page 8. The last
page is volatile and must be reloaded if power is removed. The memory is unprotected so care must be exercised in
selection of the assembly origin if the object code is to be stored in memory.

The name table created during pass 1 begins at location 011: 020: and displaces 8 contiguous locations for each entry.
The usable R/W memory for loading of object code in pass 2 diminishes as the table develops. The maximum number of
names allowed is 94.

6.0 FORMAT

The assembler is a line-statement, fixed format assembler. Each field of the source statement is defined by its position
in the line. If the positional format is violated the assembler will reject the statement. The format, depicted in Figure
6.1, provides fieids for a 6 character 1abel, a 3 character instruction, a 6 character operand, -and variable length comment,
The line is terminated by a carriage return followed by a linefeed but may be entirely cancelled by a commercial at

sign, @,

Detailed descriptions of the fields are provided in the following sections.

LABEL MNEMONIC OPERAND COMMENT
] 6 O 6 | - CrLf
{ | | L
LEFT \ /
MARGIN UNCOMMITTED TERMINATOR

Figure 6.1 Source Line $Statement Format

60

6.1 Labels

Any line of the assembly may be assigned a label by placing a one to six character name into the label field. The label
field is the first six positions of each line. If no label is to be assigned to the line, the field must be filled with spaces,
Each entry into a label field must satisfy the following requirements.

1. The name must be left justified in the field.

2. The name can contain any character except the commercial at sign, @,
3. All unused positions in the field must be filled with spaces.

4, The name must appear exgctly once in a label field of the source text.

§. The tatal number of names for a single assembly cannot exceed 94. -

6.2 Instruction Mnemonics

All mnemeonics defined in the MCS-8 Users Manuat and pocket guide are recognized by the assembler, A concise descrip-
tion of each is provided in Appendix A, The reader is referred to the Users Manual for detailed information.

Further explanation and qualifications related to some of the instructions is given below.

JUMP and CALL: The operand field of a JUMP or CALL instruction can contain either a name or an address. I a
name is used, it must be defined at some point in the source input or an error message will result, 1f an address is used,
the assembler expects the first three digits to be the octal value of the page address and the second three to be the value
of the character address. Examples of the two forms are given below:

6SPACESTO ' FILL UNUSED
FiLL NAME FIELD INSTRUCTION NAME NAME FIELD

NN

MO mrirm JMP O START M COMMENT

mommrme JMP 1 004006 M COMMENT

/ 2\

PAGE 4 CHARACTER 6

RESTART: The assembler operates on the operand field of a RESTART instruction in the same manner as on the
operand field of a JUMP or CALL instruction. Its assembled value, however, must be consistent with the 6 bit "AAA
000" format utilized by the processor, If not,an error indication will result.

IMMEDIATES: All Immediate instructions such as LAl can have an operand field occupied by a three digit octal
number (left justified within field} or a character surrounded by double quote marks. {See section 6.3} If an octal
number is found, it will be assembled directly as the immediate value. If a quote mark is found in the first position

of the field, the ASCIH equivalent of the character in the second position will be used as the operand value. If the first
character of the operand field is neither a number or double quote mark, an error message will result, Examples of the
formats are given below: '

' LEFT JUSTIFIED
NUMERIC

\

MM LAl M 567 M1 COMMENT

mrmmorm LA “A” 1 COMMENT

/

OUOTE MARK IN IMMEDIATE VALUE IS AN
FIRST POSITION ASCIt A = 11000001

61

INPUT: The INPUT instruction may have either a name or an octal digit with two leading zeroes. The three digit
numeric value is of the form ""00X’" where X can vary from zero to seven, The formats are as follows:

AT INP 1 NAME 171 COMMENT

KM INP /007 M1 COMMENT
CONSTANTS

The name must assemble to a value between 0 and 7, and numerics must be within the specified range or an error flag will
result.

OUTPUT: The OUTPUT instruction format is sirilar to the INPUT instruction but range of operand values islarger.
Numeric operands may assume values from octal 010 to octal 037. The leading zero is required. Names must assemble
to values within the specified range or an error flag.will result. Examples of the formats are given below:

AMmMmreri out M NAME M1 COMMENT

MM OUT rt 037 rirtrmM COMMENT

CONSTANT MAXIMUM
VALUE

HALT: The HALT instruction may be used as a pseudo operator. |f the operand field is blank, it will assemble to its
normal value of 000, If a non-zero value is placed into the first three digits of the operand field, that value will be
assigned. If a quote mark is found in the first position of the operand field, the ASCEl value of the digit in the
second position will be assigned.

6.3 Pseudo Operators

Four additional instructiorns are provided to simplify the assembly process. These insfructions are “pseudo operators’
because they are not included in the MCS-8 instruction set. These instructions provide for name address assignment,
memary block address assignment, a double register load for the H and L. registers (see BO08 Manual), and termination

of each pass of the assembly,

Detailed descriptions of these instructions are provided below: _

PAM: The instruction “"PAM" will assemble as two instructions, *'LH!” followed by an “LLI". 15 operand field will

be interpreted as two 3 digit octal values. The first and second values specify the LH1 and LLI operand fields, respectively.

The values may be numeric or named, but must meet the format requirements of the JMP or CALL instructions, The
realizable range of the first is octal 000 to 077 and 000 to 377 for the second. An example is given below:

* SOURCE
SOURCE o« MMM PAM 1 010377 COMMENT

EQUIVALENT M M1 LHI M1 010 1M1 M) COMMENT

STATEMENT

M LU 377 MM COMMENT

ADR: The instruction “ADR" is non-executable and may appear anywhere in a program except the first instruction.
The address specified in the operand field will be assigned to the name specified in the instruction. With this instruction,
names may be assigned to external subroutines and 1/0 units. An example is given below:

SOURCE
SounCE nr START M ADR 1 001377 COMMENT

_RESULTOF '
L O START ~e———— 001377

LOC: The instruction “LOC" is nonexecutable and must only appear after the last executable instruction. [t is used
to reserve blocks of memory locations directly after the assembled programs and to assign a name to the first location.

The name field should contain the desired name and the operand field should contain two three-digit octal numbers to
indicate the length of the array, The form of the number is the same as that used to indicate an address, For example,
the number 001000 would reserve 256 focations and the number 000377 would reserve 255 locations.

END: [f the instruction END is encountered by the assembler it will terminate the current pass in process.

"HALT: If the operand value of a HLT instruction is non-zero it is treated as a pseudo operator. Section 6.2 provides
a detailed description.

7.0 ERROR FLAGS

Diagrostics performed in pass 1 and pass 2 may result in error flags during pass 2, If an error is detected, the invalid
source entry Tollowed by a question mark is printed. If the error exists in the operand field but not in the instruction
field, the object code for the instruction will be printed and punched. The assembly must therefore be repeated after
source text corrections are made.

The conditions that result in error flags aré described below:

INVALID MNEMONICS

Every mnemonic field must contain three letters which can be exactly identified as an instruction; otherwise, it will be
rejected as an error.

UNDEFINED NAMES

If a referenced name is not found an error message will resuht.

INVALID RESTART ADDRESS) .

The RESTART instruction operates on the operand in the same manner as the JUMP and CALL instruction, except that
it requires that the resulting address be one of the valid restart locations. If this is not true, an error message will result.
INVALID OPERAND FIELD FOR IMMEDIATES _

For immediate instructions, the first character of the aperand field must be a number or a quote mark.

" INVALID OPERAND FIELD FOR JUMP AND CALL INSTRUCTIONS

Operand fields for JUMP and CALL instructions must be a valid name or an octal number,

INVALID OPERAND FIELDS FOR INPUT/OUTPUT INSTRUCTIONS

Section 6.2 defines valid operands fields for the input and output instructions. I those definitions are wolated in the
source text, error flags will result,

80 OUTPUT TAPE

The assembler generates an octal output tape representation of the object code. Each byte is represented by three digits
terminated with a colon {see Section 9). Lines of 8 bytes are prefixed by the address of the first byte. The address is
not terminated by a coion and will therefore not be accepted by the assembler “LOAD" instruction.

The octal listing is compact and intended for editing operations. To perform standard Intel programming functions, a
“BNPF" formatted tape version of the octal tape must be prepared. To accomplish this, a “BNPF Tape Generator’
program supplied by Intel, and a page of the octal object code is loaded into memory. The BEGIN instruction is then
used to execute the ' Tape Generator’’ program which reads 256 hytes of memory, transtates them to a “BNPF** format,
and transmits them to the tefetype for printing and punching.

As an option a “BNPF Tape Generator” source tape s provided so that the customer may assemble the auxilliary
program with an origin of his choosing, Section 11 provides a detailed, step-by-step description.

A detailed description of the procedure and tape outputs is provided in Section 9.

63

9.0 SAMPLE ASSEMBLY WITH A STEP-BY-STEP PROCEDURE

The sample program used in this description is not executable, but includes every instruction, several register pair selections,
erroneous instructions, and the pseudo operators.)

STEP1. PREPARE SOURCE TEXT

The first step, after handwriting of the program, in symbeolic language, is to create a punched paper tape and print out on
an ASR 33 teletype. The result of this transcription applied to the sample program is shown in Figure 9.1,

The procedure for creating the source tape is given below:

1. The TTY was placed in the "offline” mode,
2. The paper tape punch control was placed in an “on™ condition.
3. Handwritten data was keyed into the teletype keyboard.

Some typographical errors were edited by using the TT Y"s backspace punch conitrol and rubout character, The rubout is
an alt "'1"'s character which effectively deletes any character over which it is superimposed. The procedure is as follows:

1. Determine the number of backspaces required to return the punch to the erroneous character.

2. Depress the paper tape punch backspace control until the erroneous character is reached.

3. Enter a “rubout™ from the keyboard. |f a new character must be inserted, the previous character and the remaining
line or lines must be deleted with rubouts.

4, Enter the desired character and remaining lines.

The assembler’s recognition of a commercial at sign, @, may be used as an editing feature since it will effectively
delete the line from the assembly process.

Some comments regarding the format are given below.

1. The first line of the source listing must be named.
2. Strict adherence to the positional nature of the format is essential.
3. The source listing is terminated by the pseudo operator END.

STEP2. PREPARE SIM8-01

Step 2 of the procedure is the preparation of the SIM8-01. This requires loading of the assembler ROMs, presetting the
interrupt instruction, and bootstrap loading of the last page of the assembler into R/W memory. The procedure is as
follows:

1. Wire SIMB-01 connections in accordance with 8008 Users Manual description of MP7-03/SIM8-01 PROM Programming
Systems with exceptions cited in Appendix C of this note.

. Hardwire or select by switch a RESTART instruction {00000101) at the interrupt port (see BOO8 Users Manual).

. Install 8 1702 PROMs, AD840 to ADBA7, into the SIM8B-01.

Connect a teletype and power supplies to the SIM8-01 as described in the section VI1 of the 8008 Users Manual.

. Place the teletype in the “ON-LINE" mode and set the reader to “FREE".

. Place the paper tape “SIMB Hardware Assembler - page 8 for 1101 RAM” {A0848) in the reader.

. Depress the interrupt switch,

. Place the reader in the start mode.

0O~ oMb WA

Approximately 256 locations will be loaded into RAM starting at location 010: 000: At completion of load the assembler
is ready 1o receive commands. Note that Tts readiness to accept a command js not prompted by a special character such
as carriage return,

STEP3. COMPLETE PASS1

With the reader placed in a “free’” or “off"” mode the source paper tape is placed into the reader. The assembler command
and an origin for the program is then input from the keyboard. The command is shown below:

ASSEMBLE: ,71 032: — 000:
l__.,.__J
SIGNIFIES SPACE ORIGIN

AFSEMBLE: 932y d93:
ASTST LAS
LCH

L~
LMD

FIRST CHARACTER / Let 123
MUST HAVE NAME po A
DCL
ADA
ACH
suc
SBD
NDE
i
%L,
cem
ADI “A"
ASI A"
SUl "g»
SBI "D%
NDL =E~
ARI TP
any ~g~
CRl "y~
Le
e
RAL
LT
o) JHP 323093
JFG JNe
JFZ Jup
JFS JNP

JEE P
/ JIC JHp
JTZ JHr
LEFT MARGIN yTE IMp
JTE SN
[Cal. Gal, CAL
CFC CAL
CFZ CAL
CFS CAL
CEP CAL
. Cal
CTIZ CaL
CTS CAL
CT? 13018

3

RF3

RST @999T9
EST TTYOT
TTYOT AOR 999060
INF add
I¥P TYIN
oUT 333
QUT TYOT
HLT
RLT 123
PAM THTAY
*AM 2320123

THE FOLLOWING INSTRUCTIONS ARE IN ERRDR O

THE FOLLOUWING INSTRUCTIONS ARE NONEXEGCUTAHLE @

TSTLC LOC 29489
TITAY LOC 921889
ENDLC LOC eogedl

PASS TYIN ADR 303839
TERMINATORA —— Trot g: 2313829

CONTROL CHARACTER
“DELETING* LINE

Figure 9.1 Source Listing

65

LINE ADDRE!

SSES

ASSIGNED BY/

ASSEMELER

ASSEMBLEY 332¢

arz
32
932
a32
a2z
a32
LEz
a3z
332
#32
L5 1]
axe
LsT
a2z
[&}
#32
a3a
a2
iz
a3z
32

FLL]
ant
seZ
{1 K]
aas
a7
eia
ALt
8Lz
LTE]
al4
oL5
ats
a?
aza
331
23
azs
et
B3
833
935
231
LH)
a2
[TE]
(1T
a4
s
as3
ass
ast
264
967
LaF]
ars
189
103
a32 La4
- LLI
LA
7
£28
125
tas
L1
134
1315
138
17
149
Lal
Lag
143
L&
LAS
Lad
146
La7
154
151
152
153
L34
1.1
161

1435

1568
L6%
167
17
it
L?73
176
asi
202
2m
204
297

21
2L
e
212
213
2L3
213

ASTST

a3z
[k}
2
LAF]
312
a3z

"2
a32
[k}
asa
axz
a2
iy
L X]
13

TIeotT
TSTLE
TSTAY
ENDLC
iy
TYOoT

saae ‘\
ASTST LA9
Lo
LHD
LEi
LNI
INH
DCL
ADA
ALB
5U¢
SBD
NDE
XqH
ORi,
M.
ADI
AGT
st
sB1
NDJ
X8I
onl
arl
RLS
i i
RaL
RAQ
-
Jrc
JrL
Jrs
Je
JIC
JTL
JTS
JTP
CaAL
Crc
CFZ
crs
cre
CTC
CTL
Cts
cre
SET
}TC
RTZ
RIS
it
RFC
L
nrs
RFP
q5T
RST
AR
N
e
T
T
HLT
HLT
HLT
PAM
PAN

KEYBOARD INPUT

123

™

"ar
L1
now
nge
g
-
iy

H"

dzenas

Cal

AlEdle

940972
TTYOT
aasssa
w3
TYIN
013
TYOT,

TTYOT

122
e
TSTAY
22412

THE FOLLOWING INSYRUCTIONS ARE IN EAROA ¢
INA
INM
DCA
DM
LAI
JHe
CAL
RES
TES
LM
CAL CAL
ADL 4’

THE FOLLOVING INSTRUCTIONS ARZ NOMEXECUTABLE #

TSTLC LOC daans|

TITAY LOG 391087

ENDLC LOC 9a88dl

TYIN AOR delaas

TYOT ADR 331830
END

ASTSY

TYOT
da3331

aaa
a45
199
L1
211
12
212
/=3
L3 1]

SYMBOL TABLE

Figure 9.2 Pass 1 Listing
66

The origin may assurne any octal value fram 000: 000: to 777: 777: without consequence if a load command is not used
to enter pass 2, If a load command is used to start pass 2, the object code will be loaded into memory beginning at the
specified origin. If this is done the operator must be sure that page 9 and the name table created during pass 1 are not
affected. {See Figure 1.} As an example, if 30 names are used, only 512 object code locations remain available (012:
000: to 013: 377:). An example of the listing generated during pass 1 is given in Figure 9.2, The example is a test
program which includes all instructions, pseudo ops, and some erroneous instructions. The assembler reads the source
tape, prompts all assembly lines, ignores comments, and generates a symbol table. The completion of pass1 is

evidenced by the completion of the symbol table.

STEP4. COMPLETEPASS2

Pass 2 requires a reread of the source paper tape so it must be repositioned with the reader in a “STOP” or FREE"™ mode.

A "LOAD" or a “LIST"” command is used to initiate pass 2 of the assembly. The load command will cause the object code

to be loaded into memory during pass 2. A list command will not affect memory. When the load instruction is used the
object code must not overlap dedicated memory. (See Figure 5.1.) The commands are entered from the keyboard as follows:
LOAD: or LIST:

A listing generated during pass 2 is shown in Figure 9.3. If the paper tape punch is turned on when the ¥*LOAD:" or
“LIST:" command is typed, an octal version of the object code is generated.

LIST:
KEYBOARD o
INPUT LBaD: a3z: 933
a32 aas 380s 3271 3T1: 04S: 1235 @76+ 2367 359 |
#32 ata @651 288 2101 222t 233+ 244 2535 266a
332 928 27Ty F04r 3IF1: 2)ay I¥2: 324: 331: FI4
832 da30 JAes Fa4: 3353 A54e 306 A543 JAT: FTa:
332 a4ad A1@: 992 F12: A22: F32: 194 373 F24:
a32 059 1921 8453 #323 1101 945: 9321 1297 Fa5:
332 349 #32y 129y F45p #32: lad: 45y 93231 1571 .
232 aT9 2452 2321 1603 dAS: @I2r 174 345t @32 > OCTAL OBJECT CODE
32 139 1961 190: 4323 122% 1391 432: 112¢ Lo
232 113 232s 1221 130r 3321 1321 193r 4323 122
232 128 199+ 832 152+ 199y 932¢ 1521 199: 532
532 139 1721 @13: #)%: BaT: 343: 9%3: As): A7
312 Lag A33s Al3r F23; 33 ITS: A45r 18T: 1a7:
232 138 1671 1671 3991 1231 301% 356+ 932k 663
932 158 ° 212: 9555 2261 966t 1233 P,
PARTIAL OUTPUT THA ? h
FOR LAI {OPERAND TE ?
(S MISSING)
} sca |)
' peM *
361 '
: LAl +
194 _
JHB ASTSY T
1851 > RESULT OF
CaL ? DIAGNOSTICS
RES TYOT 7
nES avesalT
. N
Lre ? \
@3z 173 186+ ERROR FLAG
GAL CAL 17
Fa4t
L] 1]
ADI *A ? J

Figure 9.3 Pass 2 Listing -

STEPS5. EDIT AND REASSEMBLE |

If errors occur during the assembly, the source text should be edited and the assembly process repeated, 1f no assembly
errors occur, the user may elect to load the program into memory, assert the “BEGIN" command, and execute the
program, Caution is warranted in this case because the load of the program or its execution may alter the name table
or the 8th page of the assernbler, An example of the load and execute is provided in the next section {("BNPF" tape
generation).

67

STEPS8. CREATE A “BNPF” PROGRAMMING TAPE

The octat object tape of the assembler is not suitable for PROM programming or bootstrap loading so the next step is
the conversion of the octal tape into a “BNPF " formatted tape,

In summary, this requires the following:

1. Loading of a "BNPF Tape Generator” program (Tape A0849) into R/W memory.
2, Loading a block of 256 bytes of_ memory with octal object code.
3. Executing the “BNPF Tape Generator’’ program which creates the desired output tape.

A detailed description is provided below:

The "BNPF Tape Generator” program reads 256 memory locations, transiates them, and sends them to the TTY, If the
punch is on, a "BNPF" tape will be generated, The RAM must therefore be loaded with the octal data that must be
translated. The load command; LOAD: 012: 000: was used 1o load the test tape into locations 012: 000: to 012: 157:
as shown in Figure 9.4. Note that the load instruction does not prefix the data. Also, RAM overlap onto “BNPF" at
013: 000: arid page 8 at 010: 000: must be avoided by proper addressing. With object code loaded a transiation may
now be accomplished, The begin instruction is used 1o jump to the “BNPF* program loaded at 013; 000:, The punch
is turned on and 256 lines of “BNPF” tape are generated. The command; BEGIN: 013: 000: was used as shown in

Figure 9.5. Long tapes must be processed in blocks of 256 eight bit codes.

INPUT

FOR LATER USE e
a13

713
a3
Li%]
213
9L
3
B
213
o3
[T K]
at3

212
KEYBOARD / 32

INPUT ;gg
|-k}
32
332
| x}-]
&3z
32
- k1]
2
[k3]
32
J3g

[-LF]
194
[L.1-3]

232

LOAD:
ASSEMBLER OUTPUT/ aL3 eas

e
a2
a23a
FAl
a3a
LT
ara
139
Lig
129
115
1a3
133

L1]]
ate
[4.
a3s
a4e
asy
268
ara
129
1149
128
L39
149
150
168
INA

Ny

CAL
u4T
LEL
LFH

173
caL

L D1

ADY

/m' al3z: 04
KEYBOARD

at3: Pad

1861
a3ds
133
22
1563
4351
1613
p.LIY]
asss
(kLR
aLh
117:
2452
1531

LOAD: &12: ddd:

el I]
LLYE
27TT:
LLLY]
k17-1)
L&Fy
a3y
qass
124y
#3231
L3t
172¢
- LB E]
18T
2)ae

ASTIY

TYOT

3aaasl

1342
cal.

ar

3261
L1y
L3
FI Y]
KNAR]
13y
qT6)
1563
a5
121¢
2361
alls
256
ariy

27y
239y
asa
Ay
32t
das5¢
139¢
[L E$
1231+
122y
312y

a9

7

?

T

L4

1

1

213y
16Ty
#5453

and: 136e
193; af6sr
397y 136:
3a7r 325
6Ay LI
IG5 1692
Fld: 135
147 136y
#LI5 3661
BL31 A6y
I&r A45:
IThe 133
913y 266
853 357«

3T3; dAbe
2iLs 222+
3811 Al
3a5: 354
a2y W22«
332 1id:
a4y 3321
153: A4S«
3323 132
L3ge al2:
152y 103t
a19¢ 20Ty
3231 3331
a3 123
EE 113]

231:
3717
KK
k3E-1]
k73
AT
325%
14aTe
1681
Jag
as&s
Lole
I54¢
3610

123¢
233:
392y
Jas:
LEF]]
A4S,
14%:
a3z
L#3
I
3324
]
arge
391
122

20012
385
2133
456
313
EELY]
938
a3
13T
945
aiir
213
T
LI}

ate:
2343
p2as
g541
1343
#i2s
2452
173
a3ze
1331
1522
2331
#55¢
E LT

3541
LLYE]
PGS
LA
50
R T]
#5512
2as5s
29y
194¢
[L1Y]
LELY
-3 1]

2561
2353
18y
3873
X391
129y
32y
2452
112¢
@2z
183
4433
1873
Fa

65 3
LLd:
Lldy
[-L1.3]
3721
LY
@i
jea.
atas
124
1611
a6

tigs

L2103
1311
L
ITAL
3238
43¢
158:
321
13d1
1a2:
32
7131
197t
55

“"BNPF TAPE GENERATOR™
DBJECT CODE, THIS IS
LOADED INTO MEMQRY
BEGINNING WITH LOCATION
013: 000:

ASSEMBLY OBJECT
CODE (ERRORS
INCLUDED). THIS

IS LOADED INTO .
MEMORY BEGINNING
WITH LOCATION

012: 000:

Figure 9.4. Loading of “BNPF Tape Generator” and Object Code

68

START OF PROGRAM
TO BE EXECUTED

BEGIN: 313¢ 499
KEYBOARD INPUT B2 START OF DATA BLOCK
Wa BAENMNENPF
a3 RPNPNPEPR
32 ORPPRPHPRF
a3 SNNPHNPPET
04 BNPNPNNEPF
Bos BINPAPPRNF
835 BPHPKPPPNT
97 BANPNDRNNF
"3 BUNPRRMNTT
&Ll BPNNNINNNF
a1z BENNNPHNPF
I BPNSPNUPNF
348 BNNNNNNNEF
3T INANHNNNNE
354 ANHHNEINNF
354 BHUNNMEENT .
388 BHNYMReIPT / ouUTPUT
353 BHHNNINIRIT
354 BHMNNNNUNF
355 SHNNRNENNF
356 BNINNGNNRF
357 BANNNRRWRF
s BYPEHNNNNE
351 BHPNNNMINT
asa BENNNHNPRT
363 BHBRIENNNF
364 SNPRIENNT
s BHHENI
368 BHESNNPENF
367 INANNNNNF
373 BNNNNNPNPF
311 BUNHNWPHUF
372 BHNHHRNE
a7z BHPHNNNANF
374 SHPNNNNNNF
375 BHNNNNNRPY
376 BUPHNNNIRT
377 BPPRCRPERF

Figure 9.5. Output of “BNPF Tape Generator”

10,0 HARDWARE CONFIGURATION DETAILS

The basic wiring required for the assembler is shown in Figure 10-1. This is compatible with the PROM programming
system with two exceptions:

1. The auxilliary interrupt input {J1-1} is not used by the assembler and must be grounded. The PROM Programming
System software utilizes this input to initiate a teletype receive sequence, A switched selection is recommended.

2. The interrupt instruction port can be permanently wired as an RST instruction for the assembler but must be
selectable for the Bootstrap. Loader program. To satisfy both, it is recommended that switches be used to drive
inputs J1-7, 9, 18, 20, 24, 27, 38 and 40 between ground and +5V.

+6Y 10V
T *— J284, 86
J.2 4
I J21.3

AUX. INTERRUPT

ne | 0 / INPUT. {This is an
exeprion t the
MANUAL ‘
INTERRUPT L] J1-50 PROM programming

tam,
- ne systmm.]
N-30
Ji RESTART
+5Y 1-9,20,24,27, 38,40 = INETRUCTION
{Recommend use
— of switches 1o
ASSEMBLER = sglect thess levels)
'T J1-28
41 N3 18 '
- I—J 12-36
PROG. 1111 NE:7
J2B3 J2-44
C 3.5
-1
I—— | J283
Optionat Switch for 11-1, 1218
TAPE
AEADER
CONTROL
J2.28
1186
TTY
PRINTER

| JZ2-40

| 4237
TTY KEYBOARD
OR TAPE READER

| 252 gimg.;m

Figure 10,1, SIM8-01 Minimum Configuration Requirement

110 ASSEMBLY OF “BNPF TAPE GENERATOR”

The tape “BNPF Tape Generator” {source), tape AQB50, may be used to relocate the “BNPF Tape Generator” ohject
code. The abject code, AD849, provided has origin 013: 000: and may be changed if desired.

The assembly process described in Section 9 is applied to the source tape AG850. At Step 3 {Section 9) of the
assembly, the origin is changed to the value desired. When Steps 4 and 5 are completed, an object code for the
relocated tape generator is created, The object tape may then be loaded at the new location using the “LOAD”
command and executed using the “BEGIN" command, {See Step 6 of Section 9.

70

APPENDIX Il. MCS-8 SOFTWARE PACKAGE -- ASSEMBLER

A, Assembler Specification

1.0 GENERAL DESCRIPTION

The 8008 Assembler generates object programs from symbolic assembly language instructions, Programs are written in
the assembly language using mnemaonic symbols both for 8008 instruction and for special assembler operations. Symbolic
addresses can be used in the source program; however, the assembled program will use absolute addresses.

The Asserbier is designed to operate from a time shared terminal with input by paper tape or directly from the terminal
keyboard. The assembled program is punched out at the terminal in BNPF format paper tape.

This routine is written in FORTRAN |V. [t may be procured from Intel on magnetic tape. Alternatively, designers
may contact several nationwide timesharing services for access to the programs.

The program specifications are presented first and are followed by a user’s guide for some of the timesharing"services.

1.1 Assemblar Uss and Operation

Source programs are written in assembly language and edited prior to assembling, using the time sharing EDITOR program.
Edited programs can then be assembled. The Assembler processes the source program in two passes.

The Assernbler generates a symbol table from the source statement names in the first pass and checks for errors.

In the second pass the Assembler uses the symbol table and the source program to generate both a program listing and an
absolute binary program. Error conditions are indicated in the program listing.

1.2 Symbol Usage

Symbols can represent specific addresses in memory for data and program words, or can be defined as constants, Symbols
are used as labels for locations in the program or as data storage area labels or as constants, '

Expressions can be formed from a symbol combined by plus or minus operators with other symbols or numbers to

. indicate a location other than that named by the symbol. Every symbol appearing as part of an operand must also
appear as a statement label or else it is not defined and will be treated as an error, Symbols that are used as labels for -
two or more statements are also in error,

1.3 Absclute Addressing _

Object programs use all absolute addresses. The starting address is specified by a pseudo instruction at the beginning of
the source program. All subroutines referenced by symbol in the main program must be assembled as part of the main
program. Subroutines not assembled with the main program must be referenced by their starti ng addresses.

1.4 Program Addresses

Consecutive memory addresses are generated by the Assembler program counter and assigned to each source statement.
Two byte source statements are assigned two consecutive addresses and three byte source statements are assigned three
consecutive addresses. :

The starting address is set by an ORG pseudo instruction at the beginning of the source program.

15 Output Options

The Assembler output is stored in files and can be read out in several forms under control of the time sharing EXECUTIVE,
Some of the options available are:

a, binary paper tape at the terminal;

b. card output at computer center;

¢. program listing at the terminal;

d. program listing at the computer center;

e. symbol table listing at the terminal;

f. symbol table listing at the computer center,

2.0 INSTRUCTION FORMAT

The Intel Assembly program consists of a sequence of symbolic statements. Each source language statement contains a
maximum of four fields in the following arder:

location field;

operation field;

operand field;

comment field.

The format is essentially free field.' Fields are defimited by one or more blanks, Blanks are interpreted as field separators
in all cases, except in the comments field or in a literal character string. :

"

Each statement is terminated by an end of statement mark, On punched paper tape a carriage return and a line feed punch
terminates a statement,

The maximum length of any statement is 80 characters, not including the end of statement mark. The instruction must
end prior to character 48 but the comments may extend to column 80,

2.1 Symbols .

Symbols are used in the location field and in the operand field. A symbol is a sequence of one to six characters repre-
senting a value, The first character of any symbol must be an alphabetic, Symbaois are comprised of the characters A
through Z, and zero through nine.

" The value of a symbol is determined by its use. In the location field of a machine instruction or a data definition, the value
assigned to the symbot is the current value of the program counter, In the focation field of an EQU pseudo instruction,
the value of the operand field is assighed to the symbol.

An asterisk is a special purpose symbol. It represents the location of the first byte of the current instruction, Thus if
an operand contains *-1, then the value caiculated by the Assembler is one less than the location of the first byte of the
current instruction,

Examples of legal symbols:
MAT START2
MIKE Z148
TED24 RONA3Z
*

2.2 Numeric Constants

Two types of numeric constants are recognized by the Assembler: decimal and octal. A decimal number is represented
by one to five digits (0-9) within the range of 0 to 16383. An octal number contains from one to five digits (0-7} followed
by the letter B, The range of octal numbers is 0 to 377778.

Numeric constants can be positive or negative, Positive constants are preceded by a plus sign or no sign. Negative constants
are preceded by a minus sign. There can be no blanks between the sign and the digits. 1f a minus sign precedes the number,
then the complement of the binary equivalent is used.

2.3 Expressions

Expressions may accur in the operand field. The Assembler evaluates the expression from left to right and produces an
absolute value for the object code, There can be symbols and numbers in expressions separated by arithmetic operators +
and — Octal decimal numbers are acceptable, No embedded blanks are aliowed within expressions.

Parentheses are not permitted in an expression. Thus terms cannot be grouped as in the expression Z-{4+T). That expres-
sion must be written as Z-4-T to be acceptable to the Assernbler,

2.4 Location Field

The location field of a statement contains a symbo! when needed as a reference by other statements, |f a statement is not
referenced explicityly, then the location field may be blank,

The symbol must start in column 1 of the statement. That is, if a symbol is required it must be punched immediately
following the end of statement mark of the preceding statement. The Assembler therefore assumes that if column 1 is
blank, the location field of that statement does not contain a symbol.

Column 1 of the location field can also indicate that the entire line is a comment. |f an asterisk occurs in column 1, then
positions 2 through 80 contain remarks about the program, These remarks have no effect on the assembled program but
do appear in the output listing. '

2.5 Operation Field

The operation field must be present and is represented by a mnemonic code, The code describes a machine operation or
an Assembier operation.

The operation code follows the location field and is separated by one or more blanks from the location field. The opera-
tion field is terminated by a blank or an end of statement mark when there is no operand field and no comment field,

Examples of machine operations:

LAB Load Register A with the contents of Register B

CPM Compare contents of A register with contents of merory location m,
Example of Assembler operation:

ORG Set program counter to specified origin

2.6 Operand Field
The contents and significance of the operand field are dictated by the operation code. The operand field can contain the
following: '

blank

symbol

numeric

expression

data list

The operand field follows the operation code and is separated from that code by one or more blanks. The operand is
terminated by a biank or an end of statement mark if no comments follow the operand,

Examples of operands:

DANI MIKE2-MIKE4 + 1
1438 773B + X2

1869 *1

ARON+33B AA44.22B

{blank)

2.7 Comment Field

The comment field is optionat. It follows the operand field and is separated from that field by at least one blank. If
there is no operand field for a given operation code, then the comment field follows the operation field. Once again at
least one blank separates the operation code and the comments. Comments must terminate on or before the 80th charac-
ter position. |f the comment extends beyond that position, it will be truncated on the output listing. Comments up to
the 48th character position are printed along with the source code. 1f comments are in positions 49 through 80, then
they are printed on the next line,

3.0 MACHINE OPERATION

Each instruction in the BODB repertoire can be represented by a three letter mnemonic in the 8008 assembiy language.
For each source statement in the assembly language {except for some pseudo instructions), the Assembler will generate
one or more bytes of cbject code. Source language statements use the following notation:

Label — Optional statement label;
Operand — One of the following:
data — A numbar, symbol or expression used to generate the second byte of an immediate instruction,
address — A number, symbol or expression used to generate the second and third bytes of a call or jump
instruction.
device — A number, symbol or expression used to define input/output instructions to select specific devices.
start — A number, symbol or expression used to define a starting address atter a restart instruction.
Comment — Optional comment,
{ } — Information enclosad in brackets is optional.

3.1 Move Stataments- - 1 byte, or 2 bytes when operand is used,

Move instructions replace the contents of memory or of the A, B, C, D, E, H and L Registers with the contents of one

of the Registers A, B, C, D, E, H or L or with the contents of the memory location specified by H and L or with an
operand from the second byte of the instruction. In what follows, ry can represent A, B,C, D, E, H, L, or M. r, can
represent A, B, C, D, E,H, L, Mor !, If ry=M, the contents of memaory are replaced by the contentsof 5, Ifry; = M,

- the contents of r are replaced by the contents of memory. | r, =), the contents of ry are replaced by the operand from
the second byte of the instruction,

{Label} [Lryr, | data | (Comment)
Move r, tary. '
Examples:
Label | LEH | [Comment
Move H to E.
Labe! | LAM | | Comment

Load A from memory.

Label | LMB | [Comment

Move B to memory.

73

Label | LCI [" 062B" | Comment
t oad octal 062 into C.

Label | LMI | 135B |Comment
Load octal 135 into memory.

The contents of the sending location are unchanged after each move. An operand is required if and only if ry= 1.

3.2 Arithmetic and Logical Operation Statements - - 1 byte, or 2 hytes when operand is used.

These instructions perform arithmetic or legical operations between the contents of the A Register and the contents
of one of the Registers B, C, D, E, H or L or the contents of a memory location specified by H and L or an operand,
The result is placed in the A Register. |n what follows, rmay be B, C, D, E, Hor L, M or i. 1fr =M, memory location
is specified, If r = |, the operand from the second byte of the instruction is specified.

3.2.1 (Label} | ADr 1| data | (Comment}
Add r to A,
322 ' © [Label | ACr T data I {Comment)

Add r to A with carry,

3.2.3 {Label) | SUr | data | (Comment)
Subfract r from A.

3.2.4 (Label) | _SBr | data | {Comment)

Subtract r from A with borrow.

3.25 {Label) | NDr | data | {(Comment)
Logical AND r with A.

3.26 {Label) | XRr | data | {Comment)
Exclusive OR r u_vith A,

3.2.7 {Labehl | ORr | data | {Comment)
Inclusive OR r with A. '

3.2.8 (Labely [CPr | data [{Comment)
Compare r with A,
Examples: '
Label 1 ADB | | Comment
- Add B to A,
Label | SUM 1 | Comment

Subtract the contents of the memory location
specified by H and L from A,

Label | CPI | 024B | Comment:
Compare octal 024 with A
An operand is required if and only if r =1,
33 Rotate Statements - - 1 byte

3.3.1 {Label) | RLC | T {Comment)
Rotate A one bit left. -

74

3.3.2 (Label} | RRC | t {Camment)
Rotate A one bit right.

3.3.3 {Label) | RAL | T {Comment)
Rotate A through the carry one bit left.

3.3.4 (Label} | RAR | [{Comment)
Rotate A through the carry one bit right.

34 Call Statements - - 3 bytes

Call instructions are used to enter subroutines. The second and third bytes of call instructions are generated from source
program operands and are used to address the starting locations for the called subroutines, An operand is always required.

3.4.1 {Labet} [CAL 1 address | {Comment)

Call subroutine unconditionally.

342 {Label} | CTC | address | {Comment)

Call subroutine if carry = 1.

-3.4.3 {Label) | CFC | address|{Comment}
Call subroutine if carry =0

344 {Label) | CTZ | address | {Comment)

Call subroutine if accumulator = 0.

345 {Label) | CFZ | address | {Comment)

Call subroutine if accumulator #0.

346 {Label} | CTP | address {Comment)

Calf subroutine if accumulator parity is even.

3.4.7 . {Label) | CFP | address |{Comment}
Call subroutine if accumulator parity is odd.

3.4.8) {Label) | CTS | address [{Comment}

Call subroutine if accumulator sign is minus,

3.4.9 {Label) | CFS | address [{Comment)
Call subroutine if accumulator sign is pfus.
At the conclusion of each subroutine, control returns to the address ““Label + 3",

35 Jump Statements - - 3 bytes

Jump instructions are used to alter the normail program sequence. The second and thikd bytes of jump instructions are
generated from source program operands and are used as the address of the next instruction. An operand is always
required.

3.56.1 (Label) [JMP | address] (Comment)

Jump to address unconditionally.

3.5.2 {Label 1 JTC | address| (Comment)
Jump to address if carry = 1.

353 (Label} [JFC | address | {Comment)
Jump to address if carry = 0.

75

354 {Label}) 1 JTZ2 [address [{Comment)

Jump to address if accumulator = 0.

355 {Label) | JFZ | address [{Comment)
Jumnp to address if accumulator # 0,

3.6.6 {Label) | JTP [address [{Comment)

Jump to address if accumulator parity is even,

357 {Label} [JFP | address [{Comment}
Jump to address if accumulator parity is odd.

3.5.8 {Label) | JTS [address [{Comment)

Jump to address if accumulator sign is minus,

359 {Label} | JFS [address {{Comment)
Jump to address if accumulator sign is plus.

3.6 Return Statements - - 1 byte

Return instructions are used at the end of subroutines to return control to the address following the call instruction that
entered the subroutine. In what follows, assume a subroutine was called as shown:

MAIN | CAL [SUBRTN | Comment

3.6 {Labetl { RET | I (Comment)
Return unconditionally to “MAIN + 3"

36.2 {Label} | RTC i [{Comment)
Return to “"MAIN + 3" if carry = 1.

3.6.3 {Labely | RFC | i {Comment}
Return to “MAIN + 3” if carry = 0.

36.4 {Labely | RTZ | | {Comment)
Return to “MAIN + 3" if accumulator = 0,

3.656 {Label} | RFZ l | {Comment}
Retwm to “MAIN + 3" if accumulator # 0,

3.6.6 {Labet) | RTP | [{Comment)
Return to “MAIN + 3" if accumulator parity is even.

3.6.7 {Label T RFP | I {Comment
Return to “MALN + 3" if accumulator parity is odd.

3.6.8 {Label) | RTS | | (Comment)

Return to “MASN + 3" if accumulator sign is minus,

368 (Label} T RFS | [{Comment)
Return 1o “MAIN + 3" if aecumulator sign is plius.

76

37 input/Cutput Statements - - 1 byte
These instructions are used to input or output data, one byte at a time, between the A Register and the externat device
selected by the operand. An operand is always required.

3.7.1 {Label) T INP | device | {(Comment)
Inputs one byte of data from device to the
A Register,
3.7.2 {Labet) | OUT | device | {Comment]
' Qutputs one byte of data from the A Register
to device.

The device operand must have a value between 0 and 7 for input instructions and between 10 and 37 octal for output
instructions,

38 _ Increment/Decrement Statements - - 1 byte

These instructions are used to increment by one or decrement by one any of the registers r. In what follows, r can
represent B, C, D, E, H or L. Increment and decrement operations affect the accumulator conditions zero, parity and
sign, but not carry. '

3.8.1 {Labey T INr | I (Comment)
Add 1tor.
382 : {Labe [DCr | [{Comment)
Subtract 1 fromr
Example:]
Label | INB | I {Comment)
Add 1 1o B.

39 Halt Statement - - 1 byte
The halt instruction is used to stop the 8008 processor.

{Label}) | HLT i [{Comment)

310 Restart Statement - - 1 byte -

The restart instruction is used in conjunction with an interrupt signal to start the 8008 after a halt. The program counter
is set to a starting address equal to the operand multiplied by octal 10, A start operand is required which may have a
value from O to 7.

(Label) [RST | start [({Comment)

an Load Address Statement - - 4 bytes

This instruction is used to load H and L with a memory address and is simply an assembly language convention equwalent
to the two separate instructions LH) and LLI. An operand is required.

{Label} | SHL | address | {Comment)

4.0 PSEUDO INSTRUCTIONS

The purpose of pseudo instructions is to direct the Assembler, to define constants used by the object code, and define
values required by the Assembler. The following is a list of pseudo operatians,

ASB Define paper tape output

ORG Define origin of program

EQU Define symbo! value for Assembler
DEF Define constants for object code
DAD Define two byte address

77

4.1 Program Origin

The program origin can be defined by the user by an ORG pseudo operation. 1f no ORG statement is defined, the origin
is assumed to be zero. The origin can be redefined whenever necessary by including an ORG statement prior to the
section of code which starts at a specific program location.

The format of the ORG statement is:

| ORG | n [{Comment)

The operand n can be a number symbaol, or an expression, If a symbaol is used it must be predefined in the code.
Example of the ORG statement:

LAB . {nstruction starts in LOC 0000
LCD

ORG 1000B _
SAM LCD {nstruction stored in LOC 1000

ORG 5000B
SALLY DEF 1,4, 777B, 7000B Data starts in LOC 5000
END

4.2 Equate Symbol

A symbol can be given a value other than the one normally assigned by the program location counter by using the EQU
pseudo operation. The symbol contained in the location field is given the value defined by the operand field,

The EQU staternent does not produce a machine instruction or data word in the object code. |t merely assigns a value to
a symbol used in the source code.

Format of the EQU statement:

Symbol | EQU | operand | (Comment)

The operand may contain a numeric, a symbol, or an expression. Symbols which appear in the operand must be pre-
viously defined in the source code.

All fields are required except for the comment field, which is always optional.
Example of EQU statements:

TELET EQU 4
MAGT2 EQU 2
MAGTG EQU B
SAM EQU 1000B

INP TELET
LAB

CALL SAM
OUT MAGT2

4.3 Define Constant

Constant data values can be defined using the DEF pseudo statement. The data values are placed in sequential words in
the object code. |f a symbol appears in the location field, it is associated with the first data word. That symbol can be
then used to reference the defined data,

Format of the DEF statement:

{Symbol}l DEF | datalist | {Comment)

The data list consists of one or more terms separated by commas, There can be no embedded hlanks in the data list
{except in a literal character string). The:terms can be octal or decimal numerics, literal character strings, symbols or
expressions.

78

A literal character string is enclosed in single quote marks ["). it can contain any ASCII characters, including blanks.
The internal BCD 8 bit codes corresponding to the given characters are stored in sequential bytes, one character per
byte. o

QOctal and decimal numbers are stored one per byte in binary.
Qctal numbers must be in the range 0 to 3778,

Decimal numbers must be in the range 0 to 255.

Two's complements are stored for minus numbers,

The program counter is incremented by one for each numeric term in the data string and by n for each literal string of n
characters.

Examples of data strings:

MESS1 DEF ‘SYMBOL TABLE OVERFLOWED', Y-2, SUB2

MESS2 DEF ‘LITERAL STRING 1, 'TLITERAL STRING 2’

MASKS DEF 778, 177B, 130B, LABEL 3, X + 3 Required masks
DEF 24, 133, 37B, 99, 232, 'ERROR’ Required constants

4.4 Define Address

Program addresses, defined by alphabetic symbols, are stored as data by the DAD pseudo operation. The 16 bit address
is stored in sequential bytes; the first byte contains the 8 least significant bits and the second byte contains the 8 most
significant bit of the address..

Format of the DAD statement:

(Symbol} | DAD | datalist | {Comment)

The data list consists of one or more symbols separated by commas. There can be no embedded blanks in the data list.
The program counter is incremented by two for each symbol in the data list.
Examples of DAD statements:

LINK DAD suB1, 5UB2, SUB3
ERRSUB DAD ERRORX Print Errors
DAD SOCTAL, SPECM, SYMBOL, SEXPR, SLIT

45 End of Source

The end of the source code statements is defined with the END pseudo statement. The END operation code generates
no object code; it merely signals to the Assembler that there is no more source code.

Format of the END statement:

| enp | ' (Comment)

Note that no symbol is allowed in the location field of the END statement.

4.6 Assermbler Paper Tape Ouiput

The format of the paper tape output is defined by the ASB pseudo output. The operand specifies the format with the
following mnemonic codes.

F1601— 1601 format described in Intel Data Catalog.
FB008- F8008 Format (This logic is not included in the Assembler but the position of the code is described
in the PAPER Subroutine.}

The entire 80 character statement is written on the paper tape file as the first record. 1t is used to describe the contents.
of the paper tape. If no ASB pseudo operation appears, then format F1601 is assumed and a string of asterisks appear
on. the paper tape file as the first record,

Examples of ASB statements:

ASB F1601 Keyboard Code
ASB F1601 Data Transmission Code

5.0 ERRORS

Various types of errors can be detected by the Assembler, Message is emitted following the statement which contains
the efror. The error messages and their meanings follow,

$ERRORS ILLEGAL CHARACTER X .

The special character X (such as $, /.,) appears in the statement {not in the comment) or perhaps a required
operand fieid is missing.

$ERRORS MULTIPLY DEFINED SYMBOL XXXXXX

The symbol XXX XXX has been defined more than one time.

$ERRORS UNDEFINED SYMBOL XXXXXX
The symbol XXXXXX has been usaed but never defined.,

$ERRORS ILLEGAL NUMERIC CONTAINS CHARACTER X
An octal nurnber includes an illegal digit {such as 8 or 8} or the numeric contains non numeric characters,

$ERRORS ILLEGAL OPCODE XXX
The operation code XXX is not one of the acceptable mnemonics.

$ERROR$ MISSING OPERAND FIELD
No operand found for an operation code which requires one,

$ERRORS ILLEGAL VALUE = ¥YYYYY, MAXIMUM = XXXXXX
The numeric value of an octal or decimal number of an expression has overflowed its limit.

XAXAXX= 3778 for 1 byte operands or data word
KUK X = 37777B for 2 byte operands

XXAXXX= 37B for output device numbers
XXXKXXX= 7 for input devicg numbers
YYYYYY= given operand value

SERRORS ILLEGAL SYMBOL

A location field contains a symbol that has more than six characters or that does not start with an alphabetic.
SERROR$ MISSING LABEL

The label, which is required by the EQU pseudo operation, is missing.

SERRORS$ SYMBOL TABLE OVERFLOW, MAXIMUM = XXXXXX

Too many symbols in source program to fit into allocated symbol table,

SERRORS$ LINE OVERFLOW, MAXIMUM = XXXX

Input line axceeds 48 characters; or missing carriage return,

$ERROR$ ERRONEOUS LABEL .
Opcodes END and ORG may not have a label,

SERRORS ILLEGAL ORIGIN XXO(OXXX is less than XXXXXX
Value of new origin is less than current program count.

$ERRORS ILLEGAL OPERAND
DAD opcode requires symbolic operand

6.0 SYSTEM OPERATION

Source programs may be entered directly from the terminal keyboard or through a paper tape reader into a file. The user
can then edit the source program by calling the EDITOR routine. After editing, the user calls and runs the ASSEMBLER
routine, :

6.1 Output Control _
At the conclusion of the Assembly process, the user can request the following output:

Local binary object tape
Remote binary object tape
Local program listing

Remaote program listing

Local source statement listing
Rernote source statement listing
Local symbol table listing
Remote symbol table fisting
Remote card object deck

6.2 Binary Output
The formatted object code is punched out on request in sequence on 8 level paper tape.

6.3 Program Listing
The printout of the program listing will have the following format:

Columns

1-5 Location {octal} of first byte of object code

6-7 Blank

8-10 First byte object code word in octal
11 Biank

12-14 Second byte object code word in octal
16 Blank

16-18 Third byte object code word in octal
19 Blank

20-22 fourth byte object code word in octal
23-24 Blank

26-72 First 48 characters of source statement

B. Tymshare User's Guide for Assembly

This section contains the operating procedure for the Tymshare PDP-10 version of the assembler. Information on
manipulation and editing of files is contained in the TYMEX and EDITOR reference manuals distributed by Tymshare.

The assembly language is described in Section A of this appendix. In addition to the standard features, the Tymshare
PDP-10 version of the assembler permits the use of tabs in place of blanks {outside ASCII string constants), simplifying
formatting of the assembly listings, (*"Tabs" are set in every eighth column in the PDP-10 system,)

To use the assembler, the user must create an assembly language source file on the disk, This file may not contain line
numbers, The file name consists of one to five characters with the file name extension “.DAT".

 To start the assembly, type:
RUN (UPL) ASMB 0

in either the TYMEX or PDP-1Q mode. The assembler will request the input (source} file name, The user replies by
typing the file name exclusive of the .DAT file name extension. For example, if the source file is named SRC.DAT, the

reply is SRC ..

When the assembly is complete, the assembler will type a stop message and return to the monitor. Cutput files from the
assembler may then be listed or punched on the user’s terminal,

Three output files are produced by the assembler:

LOGOU.DAT contains the assembly listing
LOGBI.DAT contains the 1601/1701 object tape
LOGMI.DAT contains intermediate pass code (this file may be deteted to reduce storage charges)

The output from the assernbler is described in Section A of this appendix. Section F contains an example of the assembly
language listing.

C. General Electric User’s Guide for Assembly

This section contains the operating procedure for the General Electric version of the assembler, |nformation on manipu-
lation and editing of files is contained in the COMMAND SYSTEM and ELITING COMMANDS reference manuals dis-
tributed by General Electric. The assembly language is described in Section A of this appendix.

To use the assembler, the user must create an assembly language source file on the disk. This file may not contain line
numbers. The file name consists of one to eight characters. Output files for the assernbler must already exist or be

created hefpre starting the assembler. The files referenced are LOGOUT, LOGMID, and LOGEIN, All of these files are
sequential ASCIl, No password is permitted for any assembler file,

81

To start the assembler, type:
OLD ASMS ¥

When the program prints "READY", type:
RUN ¥

The assembler will request the input file name. The user replies by typing the source file name of the file to be assembled.

When the assembly is complete, the assembler will type a stop message and return to. the monitor. Qutput files from the
assembler may then be listed or punched on the user’s terminal.

Three output files are produced by the assembler:

LOGOUT contains the assembly listing
LOGBIN contains the object tape
LOGMID contains intermediate pass code (this file may be deleted to reduce storage charges}

The output from the assembler is described in Section A of this appendix. Section D contains an example of the
assembly language listing {leading zeroes are suppressed by the Generai Electric version of the assembiler).

D. Sample Program Assembly

1: My PRapd
2t HULD9E 2oe1l
3 MuLARY ARPES
45 uMUL Haazs
51 JMULS pen4d
Gl PP QDB42
T OUNLLFL 22054
a3 arv ELLL T
95 QIV@RH pRET7S
i@ GIveel g@i1d
11t Divig2 eo1 4
12: udIvS p@1da
135 UGy BRL4é
1a: UDIVES @151
151 uDlvel €P173
14: DNEL ez

IS IS R EIETEss IS iEa=ScsriiSciZEsSsryr=Ccaigdl

Lne OBJECT CODE SQURCE STATEMENTS

EEEP LI SIS IS LS Fr LN SC SIS SIITIBLIASC RISy ExIm i

FELEL] + MUL ~ SIGWED INTEGER MULTIPLY

BBRap e CALL! SRGUMENTS JN C 2 D

FIIE] ¢ EXITI HI QRDER PRADUCT [N B

fddee . L] LG ORGER PADDUCT IN C

WY *» REGS) A8, Ci D€y AND FLAGS ALTEREV

LIS # TIHE? 1074 Y0 3493 MICKOSECONDS (BOMY)

28098 250 MUL XRA 1) COUNT ANG NEGATE
PA921 Iap LEA HEGAT [VE &RGUMENTS
gBmez 222 SUC

#2083 167 211 202 JTS nyLBad

B08P6 158 @13 09D Jt HUL 632

ELLISRRFL LCA

W1z W INE

a1z 258 KuL2BE XRa

PRULS 225 Sug

0815 168 825 PR JTS L1

agaze 159 @25 @#pa JTE MuLER1

PRAZ 1IN LO&

BOBZ4 AR INE

veR25 4 MULREYL LAE 25 MOYE COUNT mgD 2
29026 P32 RAR TO CARAY

owaz? 106 B35 fBd . CAL IR 31 CALL *UNS]GMED
BEA):2 142 Z9a 200 CTC OMEG ML TIPLY!, IF CAMRY
B3B38 pE7 RET WEGATE RESULT: ERIT
- L * UKL, = UNSICMED INTEGER MULTIPLY

REPAn * CALL! MRGUMENTS INC &2 D

[:1::R 1] # f£x|T: W] QAQER PRODUCT IN B

[a1 . L0 DRDER PRGODUCT IN C

BoB s » RESSD AsBaBL, AND FLAGS EXCEPT CARRY ALTERED
.ET.EFY « TIME: A9 TO 1134 WICROSECOWDS (ePwd|

NE.)1Y * UMLS ~ MULT[=PREC[SLON MULTIPLY ENTAY
LT-I:RYS . {BRE v C ® D & B)

BOA3L B16 DoE UHLL LB]

Q504D A4s P11 UMULS LEL]

2pd4z 3oz UNULBE LAC 17 ROTATE CARRY INTO
aen4y g3z RAR PROOLCT ~ MULTIPLIER

82

NFP 44
[LEEE
Qua4s
27847
HYP5H
AQa%F
2AAG4
20255
20358
2apsl
D As1
0arK1
32061
AlAeL
9881
degsl
1LY
ol
Ed &1
Bape2
eoper
PR
208867
negve
daar3
BEaTY
eper?
eulea
gRiel
o166
Agipy
rd1 12
Be111
pe112
BRL1%
BR1LéE
aa117
BE12e
aa12t
2122
28123
89124
20125
BuYLes
axzz?
a{L32
20133
ae3134
20135
20135
28137
eal4a
adl4z
22543
Bl a4
po144
B0t 44
gp1a4
B 44
uP1a4
144
ad144
Hor4s
@144
APl A4
A6l
ae159
#8151
apis2
APLET
BA1 54
Pa15%
de1%s
22151
20162
22163
2ils4
Bd1s?
CLIRE R
n17s
22174
RB175
gLy
02 Ee
eazar
agzaz
BRI
:1-F L]
BB2 g4
enripa
apzad
goza4
DAz
aB2p4
Aoz ps
A2es
gazas
fozes
e2or
Ppo211
epz212
BE213
214

iga
:E58
453
38t
184
283
a3z
319
184

256
340
221
160
156
240
186
258
223
168
15#
3z
a4a
iga
€32
184
@32
348
250
2b2
B&S
3d
223
0e3
258

4
128
259
222
32
Z5@
221
312
521
222
L.Lx)

LEL)
246
361
310
Ip2
B2z
ize
a4y
158
e
paz
223
1989
23
184
922
Jap
22&
252
328
3g4

£32°

Bp7

259
222
328
.1 L]
231
318
ayr

BS54

gdg

D75
[
204

110
i1s

14p

o

Ly
a1

173 008,

151 @94

aen

Baa
paa
e
apa
apa

ope

151 @pd

377

P N Y

D e vk om kA

k4
™
o

LCA
OCE
RTE
LAB
JFC
a00
UMUL@L RaR
LBA
JHF

PR NN

uMuL a1

LIS

2
3

L]

)
J

SHARED REGISTER,
FORCING NEXT LS®

TD CARRY

EX[T If BTH I[TERATION
IF STER (1) SET CaRRAY
ADD HUL TIPLIZAND to
PRODUCT

ROTATE MOST S1GHIF IGA
PRODUCT AND GO TU (1)

D1¥ = SIGMED IWTEGER DI¥I0E

CALLY HI ORDER DIYIDEND
LD QHDER DIVIDEND IN C
DIVISOR 1IN D

EXIT! QUOTIENWT IN C
REMAINDER [N B
GVERFLOW FLAG IN CARRY (CYREEMIV)

IN B

¢ REGS: 4.BCoDsEe AND FLAGS ARE ALTERED
» TIME® 922 T0 1416 MICROSECOMOS 182M8)
1} COUNT AND NEGATE

Iy ¥R A

DIVEB1 LAE
RAR
Cal
RAR
LE&
¥R A
ORC
RTS
Lag
0
RFC
YRA
GRE
JFS
XRA
UG
LCA
FCTY
suB

&

oIve@z LAl
RaL

RET

uDIvs L91
upty LE]
LAB
uolyeeg LBA
L&C
Ral
LCH
0CE
JT2
LAB
Rkl
sUD
ST
ADD
JMP
uoIval RAL
LE&
Lal
ARG
LCA
LAE
RAR
RET

YRk
e
LCh
LAl
SBE
La#

RET.

END

DIvees
DIveaAd

DNEG

OIvedl
DIveRl

oIV

DIvas:z

2098

IH C

9

upIvel

Unives

uoivap

3FIB

NEGATIVE ARGUMENTS

2) WOVE GOUNT MOD 2

3

4

&

1

H

TD GARRY

CALL 'wOlv?
EXIT WLTH CamRY
c @ IF OVERFLOK
OCCURRED

IF CARRY WAS
SET IN STEP (&)
NEGATE QUOTIENT
AND REMAINDER

SET CARAY aAND
EX[T

UDIV = UMSIGNED INTEGER OIVIDE
CALL: HI DROER DIVIDEND IN B
L0 ORDER DIYIDEND [N C
RIVISOR IN O
EXITH QUQTIENT
-REMAINDER IN B
HDTE: OVERFLOW IF B »= O
REGS® A4,H.C.E, AND FLAGS EXCEPT CAARY ALTERED
TIME: 7ed TO 1298 HICRUSECONDS (B8P5)
UDI¥S - SINGLE PRECISION DIVIDEND ENTRY
3

RATATE CARRY INTO
DIVIDEND ~ WUOTIENT
SHARED REGI1STER,

" FORCING NEXT MSB

TO CARRY

2! RDTATE mSH INTO

3

4

MY ORDER QUOIIEN]
SUBTRACT DIVISORF LF
LESS THAN Hl OROER oU
Go 10 (1} .

ELSE ADD 1T Bal

AND GO TO {1)
COMPLEMENT GUOT IENT
AND EX1Y

DNEG = DMWIBLE PRECISION NEGATE

CaLL | H] QRODER IN B
Lo ORDER IN €

EX1Tt H] ORDER I B
Lo ORQER IN €

REGS! 4.B,C, AND FLAGS ARE ALTERED

TIME: 76 HICROSECONDS (B2D8)

HDTEY =32768 CANNOT BE NEGATED

APPENDIX 11l. MCS-8 SOFTWARE PACKAGE — SIMULATOR

A, Introduction
This Appendix describes the use of a FORTRAN IV program called INTERP/8. This programn provides a software simu-
lation of the INTEL 8008 CPU, along with execution monitoring commands to aid program development for the MCS-8,

INTERP/8 accepts machine code produced by the INTEL 8008 Assembler, along with execution commands from & time-
sharing terminal, card reader, or disk file. The execution commands aflow manipulation of the simulated MCS5-8 memory
and the 8008 CPU registers. In addition, operand and instruction breakpoints may be set to stop execution at crucial
points in the program. Tracing features are also available which allow the CPU operation to be monitored. INTERP/8
provides symbolic reference to storage locations as well as numeric reference in various number bases. The command
language is described in the paragraphs which follow.

B. Basic Elements

All input to INTERP/8 is “free form®. Numbers, symbelic names, and spécial characters may be placed anywhere within
the input line (see margin commands in Section D). Comments may be interspersed in the input, but must be enclosed
within the bracketing symbols /* and */,

1. Numbers. Numeric input to INTERP/B can be expressed in binary, octal, decimal or hexadecimal. The letters B, O,
Q, D, and H following the integer number indicates the base, as shown below:

Number Value
110118 11011,
28D 2849
330 33,
330 33g
1CH 1Cq5
28 28.p

A decimal number is assumed if the base is omitted, Note that although O is allowed to indicate octal integers, Q is also
permitted to avoid confusion with the integer 0. Note that the leading digit of a hexadecimal number must be one of
the digits 0, 1, .., , 9. Thus, EF2,5 must be expressed as 0EF2H,

On output, INTERP/8 indicates octal integers with Q and omits the D on decimal values., The base used on output de-
faults to decimal, but may be changed by the user, {See the BASE command in Section C,}

2. Symbolic Names. Symbolic names are strings of contiguous alphabetic and numeric characters not exceeding 32
characters in length. The first character must be alphabetic, Valid symbolic names are:

SYMBOLICNAME

X3

G1G2G3

LONGSTRINGOFCHARACTERS
3. Special Characters. The special characters recognized by INTERP/8are: $=./({)+ ", . All other special charac-
ters are replaced by a blank,

C. INTERP/8 Commands
The commands avaitable in INTERP/B are summarized briefly below. Full details of each command are given in following
paragraphs,

Command Purpose

LOAD Causes symbol tables and code to be loaded into the simulated MCS-8 memory.
GO Starts execution of the loaded 8008 code.

INTER Simulates an 8008 interrupt,

TIME Displays time used in the 8008 simulation.

CYCLE Allows the simulated CPU to be stopped after a given number of cycles.

TRACE Enables tracing feature when particular portions of the program are executed,
REFER Causes the CPU simulation to stop when a particular storage location is referenced,
ALTER Causes the CPU simulation to stop when the contents of a particular memory location is altered,
CONV Displays the values of numbers converted to the various number bases,

DISPLAY Displays memory locations, CPU registers, symbolic locations, and 10 ports,

SET Allows the values of memory locations, CPU registers, and 1O ports to be altered.
BASE Allows the default number base used for output to be changed.

PUNCH Causes output of machine code in BPNF format.

END Terminates execution of an 8008 program,

B4

The commands NOTRACE, NOREFER, and NOALTER.are also defined. These commands negate the effects of TRACE,
REFER, and ALTER, respectively. In all cases, the commands may be abbreviated {but not misspeiled!). These abbre-
viations are indicated with the command description.

Commands are typed anywhere on the input line, with as many commands on a line as desired. The symbol *.” must
follow each command.

‘The end of data for the execution of INTERP/8 is indicated by a “$EOF* starting in column 1 of the last card,

1. Range-Lists. Many of the INTERP/8 commands accept a “range-list” as an operand. Tracing, for example, can be
enabled for a specific range of addresses in the program. The range-list specifies a seqquence of contiguous addresses in
memory, or a range of numeric values to which the command is applied.

In its simplest form, a range-list is a number [binary, octal, decimal, or hexadecimal}, or it may be a pair of numbers
separated by the symbol “TO:" Thus, valid range-lists are:

10 :

630

50 TO 63Q

OFH TO 110011118,

A, range-list, however, can also reference a symbolic location, with or without a numeric displacement from the location.
Suppose, for example, the symbols START and INCR appear at locations 10 and 32 in the source program. Valid range-
lists involving these symbols are:

START (Same as 10)
START+6 {Same as 16)
START-101B (Same as b}
10 TO INCR (Same as 10 TO 32}
START+3 TO

INCR--2 {Same as 13 TO 30}

The range-list may also contain a reference to the current value of the program counter of the simulated 8008 CPU. The

symbal “'*" represents this value. 1f the value of the program counter is 16, for example, the following is a valid range-

list: '
STARTTO * {Same as 10 TO 16}

The exact use of the range-list is illustrated with the individual commands,

2. Notation. The following notation is used to describe the INTERP/8 command structure. Elements enclosed within
braces { and } are optional, while elements enclosed within the brackets [and] are alternatives, where at least one
alternative must be present.

A range-list, for example, can be specified as:
range-element { TO range-eleme_nt}
where a range-element is defined as:

number + number
symbolic-name - number
*

As mentioned previously, command names can always be abbreviated. The required portion of the command is under-
lined in the command description. The symbol “TO" in the range list can be abbreviated as “T." Thus the range
list above can be redefined as:
range-element { TO rang&element} .
Finally, the ellipses . . . " indicate a list of indefinite length.

The commands are given alphabetically in the following paragraphs starting with a prototype statement using the above
notation, A brief description is then given, followed by examples.

3| ALTER range list {, range-list, range-list, . . . , range-list } .

NOALTER
The ALTER command is an operand breakpoint command which causes the execution of the 8008 CPU to stop when-
ever an attempt is made by the CPU to store values into a memory location specified in the range-list. When the break-
point is encountered, INTERFP/8 prints ALTER x, where x is the value of the program counter. Execution can be
started again with the GO, RUN, or INTER commands. Examples of the command are:

ALTERC

ALTEROTO 10

ALTER 10 T INCR.

ALTER START + 2 TO INCR — 0AH

AL 5, START, X2, 7 T 10, INCR—3

4, BASEq|DEC

This command causes the INTERP/8 system to use the number base specified by the second argument when printing
results, This command has no effect on the number bases which are acceptable in the input.

5. CONV range—list{,range-list, range-list, . . ., range-list } .
The conversion command prints the values of the numbers specified in the range-list in binary, octal, decimal, and hexa-
decimal forms. Examples are:

CONV 23

CONV*,

CON 10 TOSTART + 3

CO 10, 30, 28Q, 1101B T 33H
6. CYCLE Number
The cycle command causes a breakpoint to occur when the CPU cycle count reaches its current value plus the number
specified in the cycle command {see the GO command, alsa},
7. DISPLAY display element { , display-element, . . . , display-element }
The display command causes the values of memory locations, symbolic names, CPU registers, and 10 ports to be printed.
The output form of these values is determined by the current default base (see the BASE command). The width of the
output line determines the output formatting (see the $WIDTH command of Section D},

In its simplest form, a display-element can be one of the 8008 CPU registers:

CY ({carry) D PS {entire program stack}
z {zero) E PSSO
S (sign} H PS 1 {program stack elernents}
P {parity) L e
A HL (H&L) PS7
8 SP {program stack pointer)
C PC (program counter)
In this case, valid DISPLAY commands are:
DISPLAY CY
DISPCY, 2, H, HL.
DP, A, PSO0.

A display-element can ailso be the symboi CPU, in which case all registers are displayed.

The values latched into the 10 ports can be displayed by using a display element of the form:
PORT range-list

The ports specified in the range-list (between 0 and 31) are printed. Examples are:
DISPLAY PORT O
DI PO 3, PO 5, PORT 5 TO 8, PO 1001B

The contents of the symbol table can be examined by using a display-element of the form:
-

SYMBOLS < | symbolic-name
: number

The form

DISPLAY SYMBOLS,
prints the entire symbol table, while the form

DISPLAY SYMBOLS number,
responds with the symbolic name (t a numeric displacement} which is closest to the address specified by the number.
Examples are:

DISP SY.

D1 5Y OFFH, SY 32

if the symbol *'**" is used in the command, the symbolic location ¢losest to the current program counter is printed,

The values contained in memory locations can also be displayed. In this case, the display-element takes the form
CODE
BIN
MEMORY range-list ocT
DEC
HEX

The range of elements printed is specified in the range-list, while the form of the elements in the display is controlled by
the command CODE (decoded instructions) or one of the number bases. I the form is omitted, the default number base
is used in the display (see the BASE command}. Valid DISPLAY commands are:

DISPLAY MEMORY 20, '

DISP MEM 20 TO 30H,

DI M START T START+5.

DI MEM @ TO 30 CODE.

DMOT 30D, M40 TO INCR+10 OCT.
The various display-elements may be mixed in a single DISPLAY command.

8. END.

The END command reinitializes the INTERP/8 system. I another program is subsequently loaded into memory, all
break and trace points are reset. Otherwise, the currently loaded program may be rerun with all break and trace
points remaining.

250 {[ou]}

The GO command causes the execution of the loaded program to begin. [n the case that a break point was previously
' encountered, the execution continues through the breakpoint, If the GO is followed by a *, the breakpoint addresses
are printed as they are encountered, but the 8008 CPU does not halt until completion. If the GO is followed by a number,
the effect is exactly the same as o
CYCLE number. GO.

10. INTER {number {number { number }} }
The INTER command simulates the 8008 interrupt system. The numbers whlch follow the INTER command correspond
to an instruction and its operands which will be “jammed” into the instruction register. 1f no instructions follow the
INTER command, the instructions from the last interrupt are used. 1¥ no previous command has been specified, a LAA
{NOP] instruction is used. The INTER command causes the simulated execution to continue, Examples are:

INTER.

INT.

{NTER D0010101B (this is an RST 200Q).

11. LOAD number {number}
The LOAD command reads the symbol table and 8008 machine code into the simulated memary. The form

LOAD number.
reads only the machine code from the file specified by number {see file numbering in Sectlon D). The form

LOAD number number.
reads the symbol table from the file specified by the first number and the machine code from the second file. The symbol
table is in the form produced by the 8008 assembler (i.e., the first part of the listing file), and the machine code is in
“BNPF' format {see PROM programming specifications in the INTEL Data Catalog). This format is also produced by
the INTEL 8008 assembler. The end of the code file is indicated by a “$" appearing in the input. INTERP/8 responds
to this command by printing the number of locations used by the program, Examples are:

LOAD 1.

LOAD B 7.

12, [%;EE?-'ER range-list { range-list, . . ., range-list } .
This command is similar to the ALTER command except that a breakpoint occurs whenever any reference to the memory
location takes place, Thus, an instruction fetch, an operand fetch, or an operand store all cause a breakpoint when this
command is used. Examples are:

REFER 10,

RE 10 TO 30Q.

REF 5, 7, START TO START + 5, 710Q.

NOREF 0 TO 10,

13. RUN.
The RUN ¢command has exactly the same effect as the command GO * .

14. SET. set-element { , set-element, ..., set-element
The SET gcommand allows memory Iocatlons, CPU registers, and 10 poris to be set to specific values. The register names
described under the DISPLAY command can be used in the set-element:

. I:number}
register = .

87

The value of the specified register is set to the number following the =" or to the value of the program counter if ~****
is specified. Thus, valid commands are:
SETZ=0
SEA=3, B=77Q, PS0=0EEH,
SHL =28,
A set-element can also be the symbol “CPU™ in which case all registers are set to zero, including the simulated 8008 timer.
Examples are:

SET CPU.
SCP,PC =25,

The values of 10 ports can also be set by using a set-element of the form
PORT range-list = number { number number ... number}

In this case, the O ports specified in the range-list are set to the list of numbers following the “="_ If more ports are
spevified than there are numbers in the list, the numbers are reused starting at the beginning. Examples are:

SET PORT 5 = 10,

SETPO6TOB=123

SPO10TO13=7702,

S PO 8 = 10B, PO 12 = 13H, PO 30Q = 16.
The values contained in memory locations can be altered directly by using a set element of the form

MEMORY range-list = number { number . .. number
As in the case of 10 ports, the memory locations are filled from the list to the right of the equal sign, with numbers
being reused if the list is exhausted. Examples of this command are:

SET MEMORY 0=10,

SMEMOTOGB0=0.
The SET command does not change break or trace points which are in effect.

SMSTART TC START+5 = 111110008 22Q 33H.
As in the DISPLAY command, set-elements of each type may be intermixed:
SET CP, CY=0, M5 = 10, PO 6=12, PC = 30,
15. TIME.
The TIME command causes INTERP/8 to print the number of states used by the simulated 8008 CPU since the last
LOAD, END, or SET CPU command.

16. [TRACE
NOTRACE

range—list{ . range-list, . . ., range—list} .

The TRACE command causes the INTERP/8 system to print the CPU register contents and the decoded instruction
whenever an instruction is fetched from the memory region specified in the range-list. The form of the elements in the
trace is defined by the current default base (see BASE command}. The trace shows the register contents and operation
code before the instruction is executed. The result of the operation is found in the next line of the trace, or through
the DISPLAY CPU command.

A heading showing the various columns in the trace is printed after each tenth line of the trace. Examples of the TRACE

- command are:

THRACE 0 TO 100.

TR START TO START + 111B.

NOTRACE START, INCR, FOUND TO FOUND+3, 7Q.
17. PUNCH range fist { number } |
The PUNCH command causes the specified region of the simulated memory to be output in the BPNF format. If the
number is present, the code is written into the corresponding INTERP/B output file; otherwise the currently defined
file is used. Examples are:

PUNCH 0 TO OFFH.

PU START TO FINISH.

D. 1/O Formatting Commands

INTERP/8 has a generalized 1/0 formatting interface which is somewhat dependent upon the installation, 1n general,
a number of files are defined by file numbers (not necessarily corresponding externally to FORTRAN unit numbers),
These file numbers correspond to devices as follows:

. INPUT TYMSHARE GE
INTERP/8 No. Device PDP-10 Device File Name File Name
' 1 User’s Console TTY 6 :

2 Card Reader CDR 2
3 Paper Tape PAP &
4 Magnetic Tape MAG 16
5 Magnetic Tape DEC9
6 Disk DISK 20 FOR20.DAT LOGOUT
7 Disk DISK 21 FOR21.DAT LOGBIN
QUTPUT
INTERP/8 No. Device POP-10 Device File Name
1 User's Console TTYS
2 Printer PTR 3
3 Paper Tape PAP 7
4 Magnetic Tape MAG 17
5 Magnetic Tape DEC 10
6 Disk DISK 22 FOR22.DAT Disk ¢1
7 Disk DISK 23 FOR23.DAT Disk ¢2

I/O functions are controlled through “*$" commands which may be interspersed throughout the input.

Ahy input fine with a “$" in column one, followed by a non-blank character is considered an 1/O command. The card is
then scanned for an ="' followed by & decimal integer. The character following the $" and the integer value affect the
{/0 formatting functions as follows: -

Control Meaning Initial Value
SCOUNT =n Start the output line count at the value n, 1
$DELETE =n Delete all characters after column n of the output 120
$EOF =1 End-of-fite on this device 0
$INPUT =n Read sUbsequen input from file number n 1
$LEFT =n Ignore character positions 1 through n-1 of the input. T
$OUTPUT =n Write sibsequent output to file number n, 1
$PRINT =n Controls listing of the output, If n =0, input lines are not printed; 0
otherwise input is echoed.
SRIGHT =n lgnore all character positions beyond column n of the input, ' B0
$TERMINAL=n INTERP/8 assumes conversational usage if n = 1; otherwise batch 1
processing is assumed, '
SWIDTH=n This command sets the width of the output line. Note that this affects 72

the format of the DISPLAY MEMORY command.
The default values shown above assume conversational use with a teletype or similar device. The defaults can easily be
changed by recompiling the INTERP/8 program,

In the case of controls which take on only 0 or 1 values {e.g., $SPRINT, STERMINAL, and $EQOF), the equal sign and
decimal number may be omitted. The value of the control is complemented in this case.

E. Error Messages

£ " R DR £ 5 § & G E B

EXECUTION ERRGRS

1 BANGRAM COUNTER STACK DVERFLOM

2 PRIGRAM COUMTER STACK UNDERFLOW

3 PROGRAH COUNTER OUTSIOE SIMULATED MCS~8 MEMORY
4 MEMORY REFERENCE "

COMHAND HQOC ERRORS

AEFEREMCE OUTSIDE SIMULATED HES-3 MEMORY

INSUFFICIENT SPACE REMALNING [N SIHULATED MCS-8 MEMORY
EHR=-OF~F 1LE ENCOUNTERED GEFNORE EXPECTED

IMPUT FILE NUMBER STACK OYERFLDW (MaX 7 INDIRECT REFERENCES)
UHUSED

Ao O PO

18 10 FORMAT COMAAND ERRAR (TOGGLE HAS VALUE OTHER THAN 8@ OR 1}
11 UNUSED -
13 IRVaLID SEARCH PARAMETER IN DISPLAY SYMEOL COMMAND (MUST BE
SYMRDLIC MAME, ADORESS, OR #}
14 O1SPLAY SYHBOLS COMMAMD I NV A ID SIMCE NoO SYMpOL TagLE EXI5TS
15 UNUSED
16 UNRECOGNTZED COMMAND SR INYALID FORMAT IN CUOMMAND MODE
17 MISHING . DR ENTRA CHARACTERS FOLLOWING COMMAND
16 LOWER EDUND EXUCEEDS UPPER BOUND OR 1S LESS THAN ZERD
IN RaWGE LIST
19 ThE FORMAT OF ThE SYMBDL TABLE 15 INVALID (MUST BE 4
SENUENCE OF THE FORM N 5Y AD. WHERE N 15 AN INTEGER,
SY IS THE SYMBOLIC NAME, AND AD 15 THE A0DRESS (1w DCTALY)
0 INVALIN CHARACTER 1N MACHINE CODE FILE.
21 UMUSED

F. Examples

22 UNRECOGNIZED DISPLAY ELEMENT OR INVaLID QISPLAY FORMAT

23 SYMBOLIC WAME MOT FOUND JN SYMBOL TaBLE

24 INYALID ADORESS OR NO SYMBOL TABLE PRESENT IN DISPLAY SYMEOL
COMMANT

25 OUTPUT DEYICE WIDTH TGO NARRONW FO® DISPLAY MEMORY COMMAND
[USE SWIDTH = N 10 FORMAT COMHAKD TO INCREASE WIDTH)

26 TRVALTD RADIX [N MEMORY DISPLAY COMMAND {MUST 8E GCODE, BN,
ceF. DR GECY

27 UNRECOGHIEED SET ELEMENT IN SET COMHAND

28 MISSING SET LIST IN SET COHMaNG

2¢ IMYEL IO SET LIST QR SEY VALUE IN SET COMMAND

3@ MISSIMG QR MISFLACED = [M SET COMMANE

n HISSING FROGRAM STACK ELEMENT MUMBER IN SET PS N
COMMAND :

3z INVAL [D INTERAUPT CODE SPECIFICATION (EITHER MORE THAW THREL
BYTES. OR £LEHENT EXLFEDS 295}

Two sample INTERP/8 executions are given in this section which illustrate the commands available with the INTERP/8
system. The first example ilustrates the basic commands, A simple program is constructed in the simulated MC5-8
memory. This program is then executed, showing the use of break and trace points. The second execution shows the

use of symbol tables and 8008 code which is produced by the INTEL 8008 assembler. In each case, the actual commands
which initiate the INTERP/B system may vary from installation to installation.

+F INTE

BEGIN
/% Thls 15 AN EXAMPLE OF THE USE OF THE 1INTERP/E SYSTER.

IN THIS EXAFPLE. THE PAS1C COMMANDS WILL FAE CEPCPETRATEL
ekbL & SIMFLE PRCGRAN WILL BE CUNSTRULTED ANL EXECUTED w»/
/% THE WUMPER CONVERSIOM CLMMAKL IS USED FIRST e/
LRV 1P

8108 120 12 Ak
CON 100,

18398 188 & gk
CGM 3 TR 8.

118 2@ 3 3K
183EB a4 4 4aH
18l S@ 5 5H
LI1gE &¢ & &H
11t T8 7 TH
19000 18 £ &h

#w» NEXT, THE VAPIOUS DISPLAY AND S5ET CORFANLS ARE DEPGRETRATEL +*/
LISPLAY CPU.

CYL5F A B ¢ il E H L HL §F Pse

R nbs T 10 B R L DL L R L R R B L R L g o R 1 L

L15F A,D.HL.

A =R

=g

HL = &

D15 PORT &r P5 @, MEM 5.

/¢ EEMORY LDCATIOK 5 WAS BOT D1SPLAYED SINCE KO PHOGRAM HAS EEEM
LOADED »/

SET H = 5., L=1#4. DISF CPU.

SET OK

€YZ5PF & -] c o E H L HL P FLR

GIP0 PRE 2PF PRSP DOY SPO*PRSe@RMn@ | 285 290 EEQPE

#% KOTE THAT THE ELEMENTS WHICh RAVE CHANGED EIKCE ThE LAST LISPLAY

ARE PRECEDED BY AM ASTERISK «/

EET RL = EEEFH. LIS CP.

SET OK

CYISP A B c D E H L HL 5P FP5é
fEBS HPD SEP P2 BOO BES+214x237+B382) sed dodpe
CONV S)BEJ.

t118ilB11118 73570 3823 EEFH
/% NOW CHANGE THE DEFAULT KUMBER DASE TO HEXADECIMAL »/
BASE HEX« DISF CPU.
HEX BASE QK
CYISP &] G] E H L HL SP -1]
PREP BESH PPFH f#2H POH 2FH @EH EFH QEEFH A90K A0EPH
#» THEN CHANGE BASE TD OCTAL =7/

BASE 0G. DI CP,

OCT BASE OX
CYZEF A -] c b] E H L HL 5P PSR
28eP 2PEQ BEBC RO OOOC JPPOQ BI6D ISTC BTISTA VPOY QdBERQ

#+ KOW PLACE A SIKPLE PROGGRAN INTC MEMORY STARTIKG AT LOCATION 12.
THIS PROGRAM WILL ALTER THE YALUE OF KEMCRY CELL 2€R BY ADLCIKG

T0 THE CURRENT VAUNUALUE OF THE CELL. [n SYMBOLIG FORM. TFE fnp-
CGRAM IS AS FCLLOWS... LMl B, LLI 20@, LEF, INBE. LMB. KLT.

THE LOAD COPERATION BELOW I3 A 'DUMMY® OPERATICK 50 THAT MIMCHY IS
INITIALIZED FROPERLY. =/

LOAD 1.

5

2q LaAp OK
U15PLAT MEMORY 12 YU 20.

BOAI2Q QU0Q ARAQ DQIC DABE IVEQ PORQ PIPA dPEL EBO0 PORD PeAR
BASE DEC.

DEC BASE GX
SET MEM |2 TO 20 = BPIRSS10B @ /» THIS 15 LH1 @ »s

@P11B11EB 23@ /» LLI 280 »/
118811118 7w 13 »/ PORDILOAQD s IKD &/

111118818 /= LK) #7 @ £ HLT =/

SET UK
DI ME 1€ TO 24@.

e

PAE1Y 046 ABR P34 200 207 BAZ Zag #00 bad 0B 054
pI M 1@ TO 28 CODE. :

OBd18 LHI.A®H LLI.C8H LBM IKH LM HLT LWI.@&0H Ll
/% NOTE THAT THE *," SEPARATES EL:HEN?S WHICH ARE PART OF THE
SAME IMSTRUCTION (THE SECON D AND THIRD BYTES ARE IN HEX) w»/
CONV BCAH.

f1eSIdeEE 3100 208 CBH

/% WE CAN NOW ENECUTE TH E PROGRAM BY SETTING THE PRUGRAM CCURTER
TO LOCATION i@ =/

SET PCwi@. [CP.

SET 0K

CYISP A @ c D E H L Hl, SP P38
G2Pa 300 S 9490 A48 PPE Q14 239 FIBZI VALY

5E HL=@,

SET OK

GO-

HLT CYCLE 56

P1 LPR.

CYZ5P A B c o E H L HL SP Ps@
pead POADRE BAE ARD SR 20 g209 17
DI HEN 282.

op2pe BB .
/% MEMORY LOCATIDN 248 HAS BEEN JNCREMNTED -»- OV TURN OF THE
TRACE AND EXECUTE THE PHOGAAM AGAIN w»7/

TRACE @ TO [8#: GO.

TRACE OK
SaE0 20K 801 403 02D avd GFD 2P BI289 PIP HOQLT
BLT
RLT CYCLE 6¢
CPU WUST FIRST BE INITIALIZED T€ ZERO »+ SET CPUs GC»

SET Ok

GER9 SRNsPEN 02D SEF BEN GROLRPA+QPEID O22+APRE0
HLT .

HLT CYCLE &

bl cMr.

oYsr A B ¢ <] E B L HL 5» P5a
FHID UbE JEf NFD BOP 08P P09 G4F APORE ONE E2OAD
/% FORGOT TO SET PC = 18, TH\ AGAIN s SET ¢PY, PCa)d. GO.

SET OK N

BA8N B9 908 DUQ IO FOR OEF JUG BIOYN FOO=POPID
LHI &

SE0D 828 00U BEO BOR 0GR OP AR PIROE SOP2A301Z
LLI 289

EEOS S02 BRE WD PED SEG JEAZESL$R220 BEBeRRRIQ
LBk

BASE ENCrGVL OON 46N OO PO Zof UB2NP NOSIOOIIS
B
BPEa BaBws82 PEF O80 S8 0F 200 DA2EQ SIPWRRVIE
LMB

A00P N0 402 PEF 240 DOE 488 208 A62UA DAD«BER)T

HLT

HLT CYCLE af

/% NOW TRY THE SAME EXECUTION WITH THE TRACE EMABLED OVER ONLY

PART OF THE FPROGRAN »/
NOTRACE 8 TO 00+ TRACE 12 TOD 14, 47 -

TRACE OK
TRACE (K
SET ¢PU, PCei8. GO,

SET OK
9299 ASE+080 397 999 Q20 PDS+200+00000 POA+PAE |2
L1l 222
fA00p ove 9dd 409 PO BPD FOO2RIPR2ND POA=RERI1 4

"

LBM
#2081 PAA+09] PED G900 GDP OO0 Z0@ 00205 0OAFBELT
HLT

HLT CYCLE 48
#% SWITCH BACK TD FULL TRACE =/ TR @& 10 180.

TRACE 0K
DISP WEW 200

08238 #
7% NOW RUN THE CPU FOR ONLY A FEV I[NSTRUCTIONS AT A TIME. 1N THIS

WAY THE EXECU TIOK CAN BE ROXKITORED EASILY =s

GO 2.

G0 OK . . -
cvzsPp 4 B € o E X L HL SF PSP
08 092 2037 A%e 3DQ 2P0 PO 200 HI2BQ B AFBLT
HLT

HLY CYCLE &4

SET CPU, PCald. GO 2.

SET 0K

Gd oK

»0030 FOP+POE COZ AOR 202 DOLAQP»OPeOZ OOExDRAE
LAl B

BEOE DG PEY 088 BE0 EAY PPD 2D APIEE MOPXRURI2
LL! 2089

CYCLE AT 14

DI LPU.

CyzsP A B € D E K L HL SP Ps@
BOB0 §00 D29 D8P BOC AdQ F02+2B=P0200 BOUSPE] 4
GO 1.

G0 OK
G008 200 Q9D POD DPEE PPP OBS 208 02P0 GBE PeailA
LEM

CYCLE AT 15
DI Crit.

CYrsP A 88 € D E H L HL 5P PsQ
G020 GDP+333 de0 20D PAP DOD 250 PE220 JPABIALS
GO =,

A099 2dd P9I NG BOA GRA PAAJ 240 AP2HT Q02 ORDIS
INB
DABE PUS«3da ABE O824 J@d RAd 289 APZII AAAXQY| S
LMB

P2éd 20d o204 PAS 2P0 AP RIG 20¢ OG2E0 POA«BREIT
HLT

HLT CYCLE 43

D1 CPU.

CYZSP A B < -] E H L HL 358 251
2888 2a¢ 9%4 200 038 G0 022 200 Q0208 PI@ AeRi7

/% WE CaN SET BREAK POINTS IN THE COLE 5D THIANTAAT EXECUTION STCPS

VHEN A PARTICULAR INSTRUCTION IS FETCHED. -

SET CPULPC=1@. TR 8@ TO 109+ REFER 12 TO 14.

SET OK
TRACE OK
REFER OK
GO.

*3EAQ PAP=A00 PBQ 930 VD PAA*PEA 2P0 BPdweOEIQ
LHI 8 :

g0dd AA9 P93 229 AP £OC FP2 AP9 PRAPD SABeARP]2
LL1 z2od
REFER AT 12

DI CPU.

CYZsP a B c o E H L RL 5P Ps@
PABR J09 J7Q POJ DUQ P09 202 PP ABARD MEA Qe012

#+ THE EXECUYTION CAN ALSC BE STOPPED WHEN THE PROGPAM REFERS

TG MEMORY LOCATI ON 288 »/

REFER 280. KOTHACE @ TO 188« SET CPO.PC=l@. GO.

REFER OK
TRACE OK
EET 0K
REFER AT 14
bl CPU.

CYzsPp A B c] E H L HL SP PSE
2980 JE8 BEC ST SEd OB AQQREErAR2DO BDEvENRI4
DI KEM !4 CODE.

9Fpl14 LEH
GO 1. PI CP.

GO DX

CYCLE AT 13

CYISP A B € e X H L HL Sp psd
29 APAEPS EDQ 08P PO0 FOQ 20D JORGE POPERARlT

F* TH1S SHOWS THE VALUE FETCHED FROM LOCATICK 28P. WE CAMN S5TOP
THEE FROGRAM ON A STORE INTO LOCATION 280 AS WELL =~

NOREF 24@. ALTER 288, SET CP., PC=1D. GO.

REFER 0OX
ALTER OK
SET OK

ALTER AT 14
OI CFU.

CYISP A B 4 I £ H L KL sP pog

wfPE] BOE=FEL EO8 CBB FOP POd 2048 Q€200 PRERdRIS
DM 16 €G-

P36 LMB
s+ THE REGISTER DUMP SHOVWS THAT & WILL BE STOAED AT LOCATION 20@.

EXAMINE LOCATICN 2#8, RUN THE MACHIME FOR ONE CYCLE. AND EXAMINE

THE CELL AGAIN =s

DI MEM 2@ . G0 L. DI MEM 2884

aaz0s EES
G0 0K

CYCLE AT 17
M e

sm NOW GET A COMPLETE MEMORY DUMP 1IN BINARY =/
Dl MEM @ TO 7772 BIK.

20008 PRNONPSIE SORBASDAR PPPRALECER DOPEEDINE -]}

THLS EXAMPLE SHOWS A CONPLETE ASSEMBLY AND [NTERP/E EXECUTION

TYPE ASMI.DAT]
% SAMPLE MC5-6 PRACGRAM (PAGE 47 OF %888 MANUAL)
START LLI 208

LHL #
LOOP LaM

CPY &b

JTZ FOUND

CAL 1NCR

LAL

cpl zo@

JFZ LOGP
FOUND RET
BGR 1N

RFZ

IMH

RET

END

R AEME

PLEASE TYPE INPUT FILE WAME
ASHI

EEREREEEN NN RS T

BBPE INTEL ASSEMBLER

CPU TIMEr 3.72 ELAPSED TIME) 9.73
NO EXECUT 10N EREORS DETECTED

EXIT
"

~RENAME FOR2D.DAT = LOGOU.DAT,
FILES RENAMED3

LOGOV -DaT

LOGBI «DAT

FORZI «DAT = LOGBI JDAT

+TYPE FOR2@.DAT

085 SDECRTBOE Q0DENODRD RPPPIRMES QoPNUPOOE RAIC1) 10D S22BARERE
POPIZ BPL1S1 188 11SE|PASE ii#BI111D OEPRISEPAE LILLLIOBIE POEOIRPRE
ARLIE PALRAIIINE PESANEDIE EUIL8]LEE VROOOODOE PEOEPONRD PRAPEZOBAE

28824 FROEBHI23 2 L] & am @
L FhL L -] a8 118 L L
[lpa L] B B o8) L

BESLN SOUNISRRE DRRREERNG

/% AND THEN PUNCH THE CODE BETWEEN LOCATIONS 18 AND 22 (WE WILL USE
THE CONSOLE AS THE OUTPOT DEVICE) =/

PUNCH 1€ TO 28 1.

LTI TR
8 BHMNNMNNNT BHNENINNAT DNNPRPPPNF BNNNNNNEWF
BRNPPNPPEY EPPENPHNNF BPPNEPFPPF BNNNNP NKNF
1¢ EPPPPPNNPT BENKNNNENF BERNPHPPPNF BNNNKNENNF
HNNPPNPPEr BNNKNKNLENF BHNNNNNENE BNENNRNNNT
’ ARERERR R

N
NG -

SEOF

CPU TIMEr 12493 ELAPSED TINEY 46312.73
WO EXECUTION ERRORS DETECTED

SYMBOL VALUE

EARmaEssaEEmsREERSEERE

it START O2ddd

2r LOOP fe834

3¢ FOUND #E42)

ar INCR FEAZ24

a I TII I] A

tC
«TYPE DOR 1S

TYFE FOR2! +DAT

ERR AR AR N RN AR RN R AR R R AR RS RN R LR RN b b
EL T TTTY]

(T LLERELL LY L] L L Ll L] »

LTIl LT L]

® BRNPPNFPNF BPPENPRNNF BNEFPKPPPNF ENNNNMENNF
BPPHNNEPPF BENNFPPPHNNF ENNPNPRPNF BNPPNPNEEF
8 BMNNPRMPPF BNNKEKNWWNF ENPNNRPPRF BNNNPNEKNF
BHNXNENNNF SPPNENFPHF ERNNPPPPNAF BPPNPPFNNF
14 BNPRMEKNEF BANNNEPHNF SNNNNMNNNF BENNKNPPPF
BNNFPRNNNT DHHENPKPPF HNENPHPHENF HNXNKNPPRF
24 BHNNNHNENNF EBHNHNKNNKF ENNNNENBNF BRNNNNBBNF
BRNNNNNNNF BNNRNNENNF BENNNKKKKF BNNNRENNKNF
32 BNNNRKNNNF DNNNHENNENF BNM+C

THE {ODE FILE MUST BE TERMIMATED BY A § IN THE IKFUT == USE TECQ
TECD FOR2] .DAT

92

- 32 s
“BLITSS
32 DMNMNMNKAF BHMMMPKMRT DENESNMWNF HNKNNNENNF

=I5
“EXSS

- INTE
LOADIKG

LOADER 19K CORE
EXECUTION

BEGIN
F4 THE SYMBOL TABLE AND CODE WILL HOVW BE LOADED +/

LOAD 6 7.

32 LOAD DK
D1 SYMEOLS.

START
Logp
FOUND
INCR

oeRER0y ¢990d BAIFH
Pan&d4qd oAPD4 DABAH
geapzia apdly ##13H
peeeRay QoD PR iaH
DI SYMBOL LOOF.

BAAORAC BBOBA ABEAH
DI SYMBOL LAP.

Looge

(ee#27) ERROR 23 MNEAR IaP
/% EAROR MESSAGE HAS LINE WUMBER ERROR NUMBER AND ITEM LN ERROR. IN

TH1IS CASEs THE 5YMBEOL GOULD ROT BE FOURD IN THE TADLE #/

ol SY 13H.

FUIND
D1 SY 12H.

FOUND~=1
DI 5T &.

LOOP+4
Dl SY ¥.

START
/% HOW TRKE A LOOK AT MEMORY IN HEXADECIMAL AND IN CODE FOREAT =/

DI MEM A TO 1B@ KEX. MEM @ TO 198 CCDE-

2agPd 36H CHH 2EH #8H CYH ICH ¢EH 68H I3H A0h 46H iaH @@k C6H ICH DCH
addts 4gi #aH POK BYH 38H @BM 26H PTH OFH @PH 29H BAH JOH PAH DYPH PEH
46832 0PH edH EK PPH 9¢E A¥H 0H SBH OOH 0eH @8H ¢28H eH 2DH 96H @aH

Paese 28y &8H 28N POH PAH

Pendd LLILCEH LN1,080H LAN CPI,2EH JTZ.13H.,80K CAL,14H.d8E LAL CPI1,DCH
82816 JFI,dqH,08% RET INL RFZ IKK RET HLT HLT HLT HLT KLT HLT HLT HLT
A3PA2 HLT HLT HLT KLT HLT WLT HLT KLT HLT ELT HLT HLT HKLT HLT HLT KLT

02896 HLT HLT HLT HLT HLY
#% THIS PROGRAM SEARCHES FGR A 46 STARTING AT LOGATION 2P@ IN
MEMORY. WE WILL STAHT BY PLACING A SEQUENCE OF NUNGERS IN THESE

LOCATIODNS L4

EEY MEM 208 TO 214 = 43 45 48 20N 11113636. DI WMEW 280 TO 210.

"HATHER THAN & HLT.

SET OK

20200 Aa3 446 P48 BI2 120 @43 246 @48 BI2 120 931
#% GET A COMPLETE TRACE GF THE PROGRAM »/ TR 8 TOD 0128.

TRACGE OK
GO+

LYE5P A B € o E H L KL 5P P58
20w ap dwdp *FAF=ACRAFrRRD vEDDED
Lil 200
0a38 280 080 202 20¢ DOR FEO«ANP+RA2PE EOE+RAODZ
ML @
82 290 PDF 0B@ 029 49 VA0 200 EA208 edU~CODPP4
LAM

BONSTRAZ PP OZ7 OFP 0949 989 200 OPIZE PRETANORS
CPl 4t

w LB 043 028 092 922 HOF P00 200 DOZE0 PES+DM097
JTZ 19

1818 843 020 #20 OPF W07 202 290 JO200 AONwHROID
CAL 290

1918 84) 968 D20 H00 B0 OG0 290 PI20P 3P| »203] I+0302¢
INL .
el a3 450 GO FFS 009 JAR25)egR2d) 01 0P3) Iegeaz)
RFE

13ii 843 000 Qb Pa2 DA JBD 2| IOAS)*JI0 2AV1Y

LAL

1211»201 200 PS5 A0 3¢ 2dd 201 PO2Q] f2R+AAR)a
CP1 z2¢2-
€Y25F A B < b E H L HL SP Fs@
1511 201 08@ 849 QP22 B9 @90 28] PB2¢| E0d+03A!6
OF2 A

1811 201 2AQ AAQ ABE AQA PO Z9] BE291 eqo+03004
LaM

10 1+846 Q0P 237 ASC 280 QUD 201 Of201 PRe=PARES
£PL 48 '

*Pi@1 Ba& BDP €00 P20 POF BA¢ 24l e02P] FPOw-RdaRT
JTZ 1S

alel gas ePd @B PO POC GE@ 2@1 0020) PEP=YRP19
RET

EXECUTION ERROR 2 AT 22

#% THE ERRQR OCCURS BECAUSE THE PROGHAM TEAMINATES WITH &4 RET

FEX TH E INSTRULTIDN IN MERORY »/

DI WEM 19.

Rl Ay
DI MMAMMEM 19 COD.

898219 RET

SET M 19 = 3. DI MEM 1% CO.

SET OK
Po@lg HLT
NOTR @ TQ |83 SET CFU. Gb.

TRACE 0K

SET Gk

HLT CYCLE 117
DI CPU.

CYLsPF Ao B ¢ D E H L HL SsP Pse
FIR] FAS B39 S4¢ BOB £BF UBH 201 00201 958 d0A19
r» THE PROGRAM TERMINATES CORRECTLY AFTER 117 HAGHINE STATES 7/

TIME.

TIME=11Y
/% SET SKELECTIVE BREAX POINTS w»s

REF STAMT. INCR+l, LOOF. SET CPU. GO,

REFIR 0K
SET OK
REFEA AT 4
DI 5Y 4.

START
-1

REFER AT 4
CI SY %a GO

LooP
REFER AT 21
DI 5Y *=. GO-

INCR+1
REFER AT 4
b 5Ya.

aa0020C AP398 GARBH STAAT
EOQ0R4Q #3304 QA2aM LOOP
08Rd230 dPAIS 2013H FOUND
B2FO2 A0 BTIZO GOLAN INCR
WOREF S5TART TO INCR+5.

HEFER OK
/% SET SELECTIVE TRACE POINTS (TRACE AND REFER POINTS CAN BE

Iw EFFECT

AT THE SAME TIME. LF DESIRED) »/
TR START. LO&OP. FOUND, REFER FOUND. GO.
TRACE O

REFER OK
wiE1 1«28 P2 290 Q2O 209 AP 281 AE201 PED.A22P4

LAN

=FLELsI46 BOU OSSN ORG 203 9Of 2P1 PE2E| GPO+PDOTY
HLT

REFER AT 19

D1 CP,

CYISP & B c I £ H L HL SP a1
Biftl 946 3 SEF 808 0RO FPR 2E1 BB8221 SBC NENIS
SET GP- GD.

SET 0K

«d000+034 S8 $00 Fed 400 23F=0P+20A00 PPI=IBRAG
LLY 2a8

€00¢ od¢ S8d PP JBF 0P FEO20d»30280 009xDdAd4
LaM

#l81]1%2¢) AP £2§ SEE O00P CUQ2D1+98201 0P SR04

Lan

*s@1P w04t PO BEQ DAS POE B 2P DeZE| PEONEDALYT
HLT

REFER AT %

GO

G101 PAG PBQ O40 J80 MO0 GND 241 G201 PE0 QON1Y
HLT
HLT GYGLE 117

/% THE ONLY REMAINING COMMANCS TO ILLUSTRATE ARE HTHE SET AND
ICIEPLAY

PORTS COMMANDS wr
DI PORYT a.

Pasg
DI PORT 4, PO 24 PO T TO 490G

Pawl

Paw~g

PTed PBap

DI PO 28 TO 25.

Pedwid PR1=0 P22ud P2)=F# PRAalb PRSwd
SET PORT 5 = I1LB@1108B, PO {#H = S50,

SET OK
b POR S TO 17.

P52294 P&e@ PT=@ PEapf P9sQ Plfief Pli=@ PL2aD PLI®) Pia=pP PIS=@
Flé=as P

17 =g

END .

1EOF

APPENDIX IV
TELETYPE MODIFICATIONS

The SIM8-01 microcomputer systems and associated software have been designed for interface to a
model ASR 33 teletype wired in accordance with the following description.

The ASR 33 teletype must receive the following internal modifications and external connections:

Internal Modifications

1.

The current source resistor value must be changed to 1450 ohms. This is accomplished by mowng a
single wire, (See Figures 5 and 6.)

. A full duplex hook-up must be created internally. This is accomplished by moving two wires on a

terminal strip. {See Figures 4 and 6.)

. The receiver current level must be changed from 60mA to 20mA. This is accomplished by moving a

single wire. (See Figures 4 and 6.}

. A relay circuit must be introduced into the paper tape reader drive circuit. The recommended circuit

consists of a relay, a resistor, a capacitor and suitable mounting fixture. An alternate circuit utilizes

a thyractor for suppression of inductive spikes. This change requires the assembly of a small “vector”
board with the relay circuit on it. 1t may be mounted in the teletype by using two tapped holes in
the mounting plate shown in Figure 1, The relay circuit may then be added without alteration of

the existing circuit. {See Figures 2, 3, and 6.} That is, wire ""A”, to be connected to the brown wire
in Figure 2, may be spliced into the brown wire near its connector plug. The “line’” and “|local™ wires
must then be connected to the mode switch as shown. Existing reader control circuitry within the
teletype need not be altered.

External Connections

1. A two-wire receive loop must be created, This is accomplished by the connection of two wires between

the teletype and the “SIM” board in accordance with Figure 6,

2. A two-wire send'toop similar to the receive loop must be created. (See Figure 6.)

3. A two-wire tape reader loop connecting the reader control relay to the ““SIM” board must be

created. (See Figure 6.)

IR MOUNT ING POSITION
B FOR CIRCUIT CARD

Figure 1. Relay Circuit {Alternate}

Figure 2. Distributor Trip Magn.et Figure 3. Mode Switch {Rear View)

Figure 4. Terminal Block Figure 5. Current Source Resistor

(IS8 E GRE
Lo 2|

!._w _T—l i

2 5
12an ‘
| ___I | @ CURBEENT SOUEPLE EINISTOE

WHEL L OO 3002000 AR

TEEMIL AL =TEW 151411 LEE F 5
ALTEEMATE RELLY CHROWT SCE Fla. 4
SEE Fid 1
[@] Vo zoma
T | j
| 2Ms-o |a-01 B0 |FuLL CuPLEX 1: ®<~v——- VEL Loma (=
®(B el LEE Sig.4
s _— " [wHY S B
¥ S| B - ———
e o din
T ai-to|dz-sol — — —— 4 @(L
| N E T LM
o | T S Fulh DWUPLEY
ul w 17,4 BELY YEL
.0
4 1 o e e e
3 BE o perparE T T 2% oo HALE ::um_zx\ @
L 1=l 1
2 SENT
o] e — e —-
2 LA ci-r |dresip — — — — } =2y
z ¢ ! 2% WET] RED 3
: I BLK
uf [EC 2 l b % Bl -
O T - e Py I oo
K | | --L“] K= D
u —~ ! [7.) SsTEBUTSR
I - ___._// TRIF madamET
a0t N SEE Tl T
L BE J2-4g |1 & :_ I
TASFE —d na-
FEACER | ‘% o
COCMTE L ‘D Saue
1 SIS | JE-2&
@ |
E' [POTTER & BRUNFIELD

. T .
i ReLayY [t 33Vl
HOTES . JulESS OThCEw/nE SFesinied 2 R-SOE] bk IR
VS
. - S SEE Fla | -

LUDTEMER ERTEZuiAL G an e
ta T = W Thied Daduil LIuNES EordCSiaTh

CUBTOWMEY BLoU. RECD MODIFICATIG %

MO DE WITCH
(ERQNT NEw}

IM 1S INTERNAL MODIFICATION SCE Fla 3
EC IS EXTERNAL CONNECTION :)

Figure 6. Schematic

SWITCH ,

] |
| . |
] KEY BOARD I Nosoe
el : | [y
REED I |
RELAY l |
| PRINTEZ JNIT - !
CAPACITOR —4_® | o .
| | PLINGH
|
ggEgEET I TISTE BUTCE: |[
TP WAAGNET
RESISTOR | P s | I
POWER |
SUPPLY [O :/-M\MOTOQ |
| — |
TERMINAL i |

STRIP ; i
TOP VIEW

! TELETYPE MODEL 33TC

Figure 7. _Block Diagram

97

APPENDIX V. PROGRAMMING EXAMPLES
A. Sample Program to Search A String Of Characters In Memoryll.ocations 200-219 For A Period {.)

MNEMONIC OPERAND EXPLANATION BYTES LOCATION ROM CODE COMMENT

Start: LLI 200 Load L with 200 2 100 00110110
101 11001000 {200)
LHI 0 Load H with O 2 102 00101110
103 DOODO0G o)
Loop: LAM Fetch Character from 1 104 11000111 ASC I
Memory
cPl "y Compare it with pericd 2 105 00111100 ASCII
106 00101110 {+)
JTZ Found If equal go to return 3 107 01101000
108 01110114 (119)
109 00000000
CAL INCR Call increment H&L 3 110 1000110
subroutine 111 00111100 (60)
112 00000000
LAL Load L to A 1 113 11000110
CPI 220 Comgpare it with 220 2 114 DOT11100
115 1011100 {220}
JFZ Loop If unequal go to loop 3 116 01001000
117 01101000 (104)

118. 000000G0

Found: RET Return 1 119 00000111

INCR: INL Increment L 1 60 00110000
RFZ Return if not zero 1 81 0000101
INH increment H 1 62 00101000
RET Return 1

63 0000011

101 10%

INIT LA ZE
H& L TO 00

104

o4 FETCH CHARRCTER
FHOM MEMCRT

IH B b ALDDAESS:

RE TUAN

11pz

CaLL
SUBADUTINE TO
WNCREMENT
HAL

Subroutine to Search for Period.

96

B. Teletype and Tape Reader Control Program (A0800)

BEGIN LAl
ouT
XRA
ouT
cAL
P
TAPE ral
ouT
CAL
TTY HLT
CaAL
wA
out
INP
LCcI
XRC
ouT
LEI
TTYIN CabL
INpP
LGT
XRC
UT
RAR
LaR
FAR
LBA
1NE
JFZ
LaB
ouT
su1
LBA
cat
LAT
ouT
RET
TIYpl LDI
sT IND
JFZ

1
12B

138
TAPE
EECIN
1

13
TTYD1

TTYCE
13B
aB
258
128
248
ITYD!
0B
255

i2B

TIYIN

11B
i28

TTYD1
i8R
11%
ST

RET

TTYD2 LI

BE

572 IND

JFZ
RET
END

5T2

SUPPRESS TTY

oUTPUT 2

CLEAR AC

QUTPUT 3 - TAPE REAPER COVTROL
catl FOR TAPE READER CONTe RT»

TAPE READER ENABLE CODE
QUTRUT 3 = ENABLE TAPE REAPER
TAPE RE&UER CONTRIL DELAY
walT FOR TTY START PULSE

TTY DELAY = &+468 MSEC.

TAPE READER CISAFRLE CADE
QUTPUT 3» DISSPLE TAPE READER
INPUT O» READ S5TART PULSE
COVPLEMENT TTY START PULSE
EXCLUSIVE-OR REGs C

OUTPUT 2s JUTPUT START PULSE
TTY CaTA SAMPLING COUNTER
TTY DELAY = 90172 MSEC.

READ TTY L&2TA INPUT
COMPLEMENT TTY DATA

QUTPUT 2» TTY DATA QUT
ST3RE TTY DATA
LOAD TIY DATA TO REC. B

LOoAD aC T) REG. E

E=E~+ |)

JUMP IF ZERO F/F 15 NQT S5ET
LOAD REGs B TC ag

QUTPUT 1s» TTY CHARACTER
REMOVE PAREITY BIT

STORE TTY INPUT LATA

SUPPRESS TTY
2.012 MSEC. DELAY
D=5L + 1}

4458 MSEC. PELAY

D=D4+ 1

C. Memory Chip Select Decodes and
Output Test Program (A0801}

BEGIN LAL
out
QuT
our
ouT
oUT
out
oUT
JUT
caL
CAL
Cal
CaL
XRAa
ouT
ouT
out
out
ouT
ouT
ouT
ouT
LCI
LLI
LHI

CSTEST LAH
oyT
LAL
our
XRA
Lma

15
10B
1B
128
13B
14B
158
18E
178
DELAY
DELAY
DELAY
DELAY

108
116"
128
138
148
158
168
178
240
252B
1]

10B

11B

LaaD 15 T0 AC

WRITE T2 JUTPUT 0

DELAY 16436 MSEC.

CLEAR AC

LOAD 240 TO REGCa € :
LOAT 25pB(OCTALY TO RECe C
LOAD O TO REC. H

Loal H TJ aC

LoAD L TO aC

CLEAR AC
WRITE AC T MEMORY

CAL DELAY

CalL DELAY
INH H=H=+ 1
ING C = C +1
JFZ CSTEST
JMP BEGIY
DELAY LD! O LOAD 0 TO REC. D
Dt END ’ DaeD+ |
JFE D1
RET
END
D. RAM Test Program (A0802)
BECIN LAI 0 LgaD 0 T) AC
OUT 108 WRITE TO OQUTPUT ©
0UT 11B . WRITE TO DUTPUT 1
OUT 128 - WRITE TO OUTPUT 2
OUT 13B WRITE TO OUTPUT 3
LBI & LOAD 8 TO RECa. B
LC1 O LOAD O TO REG. ©
LHI 8 LOAD 8 TO REC H
LLI O LOAD ¢ 1O REG. L
LM1 ZRA CLEAR AC
LMe Lma - LOAD AC TQ MEMORY
INL L= L + 1
CPL AC - L
JFZ LM2 JUME IF AC IS NOT ZERD
19K H=H+1
Lay 12 LJAD 12 TO AC
CcrH aC-H
JFZ LMl JUME IF AC 1S NOT ZERD
LHI &
REPTZ LAB LOAD REC. B 70 aC
oUT 108
REPTS LLC LOAD REC. C TO L
LAC LOAD REC. C TO AC
ouUT 13B
Lal 255 LOAD 255 TO AC
LMA LOAD AC TG MEMORY
CPM : AC-M
JFZ ERROR JUMP IF AC 15 NOT ZERQ
REPT2 LaH LOAD REC. H TD at
0UT 10B
REPTS XRA CLEAE aC
1N L=1L+1
CPL - ac - L
JTZ REPT1 JUME IF ACs0
LaL LOAD RECs L TO AC
ouT 11B
RA CLEAR AC
CPM _ AC-M
JFZ ERRGR JUFMP IF AC 1S5 MNOT ZERO
JMP REPTS
REPT1 INH H=H=+1
LAl 12
CPH
JTZ CONT
XRA
CpM
JFZ ERROR
JMP REPT2
CONT LHBP LOAD REC. B TO H
XRA
INC CagC + 1
cpc - ac - ¢
JFZ REPT3
1NB BaB+ 1
LHB LOAD RECs B TO H
Lal 12
CPB aC-g
JFZ REPTA
JMP BECIN
ERROR LAI 240 LOAL 240 TO aC
ans AC=AC+E
OUT 10E -
LaL LOAD REC. L TO AC
OUT 1B
LAM LOAD MEMORY TO AC
ouUT 128
LAC LOAD REC. C TO AC
OUT 143B
HLT
END

E.

P9

PR R]

19
20
a1
22
24
7
28
30

Lis

n7
118
119
121
182
123
125
126
128

&5
168
87

&7

an

24

1£8

ar

a5

a8

i

L]

ad

53

26

1 193

26
200

TE

123

200

10

BE

isg
158

192
152

30

TE

199

2040

199

agq
Loa

129
200

L1
aq
199

224
104

129
200
33

Bootstrap L oader Program
{Inte! Tape Numbers AQBE0, ADB61, AD863, Nov. 16, 1972)

]

206

194

i5

248

35

255

24

121

5Y

L]

48

8z
10

71

4

38
Lo

a7

11
24l

00
15

106
LoQ

48

1
135

ORc
MECIN LAI
auT
ARA
ouT

o
1
12p

138

EADER COMTROL

HLT

JMP START

SUPPRELS TTY
QUTPUT 2

CLEAR aC

QuTPULl 3 - TAPE R

-
*TELETYPE TapE READFR & 10 CONTROL

*

TAPE LAl 1
£ CODE
auT 1as
TAPE READER
TTY HLT
T PuLSE
LTI 194
c.
513 1
JFZ 5T2
*RA
LE EOLCE
ouT 138
TAPE READER
aur 18B
S5TRRT FULSE
LEI 243
COUNTER
TIYIN CAL TTYDL
SEC.
18P 0B
Ut
AR 255
Ta
ouT 128
& oUT
RAR
LAR
REG. B
HAR
L34
1NE
JFZ TTVIN
15 NOT SET
LAE
NDI 127
LBA
aThA
CAL FTYDL
LAT 1
out 128
RET
LaA
Loa
LAA
LaA
Lfdy
L]
#TTY DELAY - 8.7 MSEC.
.
TTYDL LDI 121
5T 1ND
JFZ 5T
BET

*
#BLCD TO BINARY COWVERSIDN

*
BCDRTY LAM
sl
LBA
BCL
LaM
sul
LEA

© BEY JIZ

(-5
ata
LFE
CE
JMP
gBz ICL
Lam
S
LEA
BBZ JTE
LAT
ATE
LEA
LCE
JMP
B4 RET

.
*BLMARY TG

.
BINGCD LHIL
LLI
BNED Lcl
LAF
EDI SUT
JIC
1inc
JME
BD2 Lel

a8

BB
in

BB}

BE4
Lo

BRI

BCH
1l

ral
100
ED2

BDL
oo

ag

10
BT 4

CONVERSLON

TAPE AEADEFR ENaPL
QUTFUT 3 - EVAPLE
wall FOnL ITY STAR

ITT LELAY - & MSE

THPE REATER DISAE
QUTFUT 3» DISAPLE
GUTEUT & OUTPUT

TTY DATA SAMPLING
TIY DELARY ~ &.T ¥
READ TTY DATA TNP
COMPLEMEYT TTY D4
QUTPUT 2+ TITY TAT

STORE TTY D&TA
LOAD TTIY DATR TO,

LOAD AGC TO REG. B
E=E+ 1 -
JP IF ZERD FAF

LOAD REG- B TO AC
REMOVE PARITY PIT
STORE TTY INFUI D

SUPPRESS TTY

NOP

K.7 MEEC. DELAY
OmTre 1

LgaD LIB TO A
ACani-af
LOAD A TD B
T=L-1

LDAT M TO A
Amfi-af

LOAD A TO F
1F awd JIMF

ATwy}

AC2aC+E

LOAL AC 7O REC- B
E=E-1]

L=L-1

Loac o 10 A
Amp=AK

LoaD & TO E

ACm 30N

AC=pCt+E

LOAD AC TO REG. B
ExF-1

CLEAR REC. C

AC=AL- 100
JURR IF AC<10D
Cafe]

LoaD L00 TO REC.

AC=ACHR

LOAD AC T} REG. B
Ampedl

AmBED

LOAD A TD MEMORY
CLEAR REC. ¢
LOAD B TO A
AGSAC~ 1D

JUMP IF AC<1D

100

1m
132
135
137
139
139
L&L
142
143
148
L4
147
L4
1as
159
150
150
150
152

15%
154
159
160
161
163

16&
L&7
Lén

L&9
170
179
173
174
17%
i7e

iTe

1eg
184
185
186
185
L1ES
186

188
1%1
153
196
197
197
1%7
197

202
203
203
203
203

208
211

215
216
2le
=183
215
219
281
224
28T
28

23
233

23a
235

238
e3s
239
239
239
2ag
nas
245

248
850
252
254

255
258

260
282
263
266
268

2T
27a
278

278

200
BE
1g%
200
15
T2

70

T
1o
0
T4
0

ag
249

1]
T2

70

185
T2

&b
54

248
10
sa

185

108

185
Loa

(313
10a

.3

126
[§+]

L1

48

253
55

152

=4k
55

14l
150

138
150

191
50

168
iga

12

185
193
150
1886
253

g

4:3°)

&6
239
i1

€sh
248

250
B

40
TR

49
66

za8

teq

oo

@ oo 9

JMF BD2
BDa LBl 10

LAL a8

LAl a8

L
#TTY QUTPUT ROUTINE
E
TTYOUT LCI 253
TT7YC caL TTYD1
Cs
13C
JFZ TTYO
ARa
QUT LEB
LCI 248
T CaLl TTYDl
MSEC
LaPp
QuUT 128
RAR
RY
LBa
LRI 0
RAR
AEE
Laa
INE
JFE TTYL
ZERD
caL TTYDI
MSEC .
LAl L
OUT 128
RET

-
*CARRIACE RETURN Lk LINE FEED
. -

LALF LRI 215B
CR
Cal TTYOUT
LF LBT 212Pp
gat TTYOUT
RET
-
*ERROR STCMAL
*
ERHOR LBl 27178
CAL TTYQUT
RET
-

*TYPE B AND LDENTLFY BAX BANK
-

ADRESH CAL CRLF

LBI A0EE
Cal, TTYOUT
CAL 1TY
NPUT .
LME
MORY
BET

*

CmC+l

BE = 10
ACaAC+E
LOAD &C TO REC B
AxpA+ant
LELLIY

LaL+}

LOAD A TO ¥
A=A+id
A=A+B

LaL+t

LOAD & TO M
RETURN

Capsd
LELAY - 3-01f M3E

C=Ce)

ITY START FPILSE
REC C=gag
TTY DELAY =~ 9.0}9

L&D TATA TO &C
GUTPUT DATA
STORE DwTA T CAR

LOAT: & TO P

AC = O

RESTORE T&TA BIT
RESTORE thiTa
STIRE

CuC+}

JIMP IF AC IS WNOT

TTY CELAY =+ 9.012

Amfit]
SUFPRESS TTY

CRERIACE RETURN -

TYFE CR
LINE FEED - LF
TYPE LF

L& 5]
TYRE {%}

Loap (B2
TYFE (P}
CalL FOR TIY KE 1

STORE LHPUT 1M ME

*TYPE A4 AND IDENTIFY INITIAL AND FINAL LOCATION

"
ADREEL CAL CALF

LBL 2R

faL TTY0uUT
A CAL CRLF

LEL 253
ADE Cal TTY
RPUT

InL

e
TO ™

INC

JFZ AD2
ZERD

RET,

"

*DATA INPUT RDUTIME

"

DATAIN CAL TAPE
LAl 1028
PR
JFZ DATATN

L4 -1

DATAL LHI 11
LLl 255
LAl 2ap
LMa

NIE

DATaZ CAL TAPE
LL1l 2%0

LAT 120F

CFE

JTZ PDATA
LAT 116B

<en

WTZ NDATA
Lal 102E

[]

STE DATA)

T INSTRCTION
LA&T 1778

LOADR A
TYPE {&)

T=053
CaLL FOB TTY HB)

LaL+l
LOAD TTY KF INPUT

C=C+1
JuME IF C 15 30T

RERD TaAPE

LOAT CB)

SEARCH FOR (B)
JUMP IF [T IS5 90T

Haljy

L=255

ATA BIT COUNTER
STORE DwTh B1T CO

READ TAPE
MEMORY LOG. EQDR D

LAD {p)

SEARCH FOR (P2

IF CPY S5TIRE (11}

Laal {N}

EERRCH FOR (M)

IF () STARE 0}

LOAT (BY

5EARCH FUR (B2

1F (BY DELETE LAS

LUATD CRO2

280
:1-1

aga

L
2D

293
2946

258
299
0D
ac
oz
305

308
g7
aos
309
311
ae

313
34

317

380
azz
23

Az6
328
ag9

a32
3
338

Jal
da4

a4s
Jas
das
Jas

aat
Jan
349
50
351
sz
353
54

54
354
156
a59
61
364
64
d69

ata
a7s
a7g
380
as]
g2
aga
385
288
389

391

394
A6
397
39T
397
397
399
403
40a

anTr

a1
213
a1s

L12-1
a1g
480

423
AR4
AES
427
429
431

432
LEx]

434
435

185
72

T0

e

10
[}
26

L99
18

248

18

199
18

248

207

8
2a9

70

{85
104

185
104
-3
165
T2
0

68
is8

132
192
192
192
158
1g2

54
70
m
Ta
70
]
209
70

4%
189

258

48
249

L]
250

3a

90

55

98

ag

52

255

255

70
BE
L1
248
127
34
0
255

160
150
165
130
187

188
253

99
253

11

203
216

224
186

246
42

&2

48
252

oo

[~ = - = N =

£PE

JFZ FMEROH
T

ChL RUBCOUT
OUTIHE

+HP DATAZ

FMEADR CAL FORMAT
RROR ROUTINE

JMP DATAEN
poaTA LAL |
ay
RAR
LAM
RraL
LMa
JMP DATAS
NDATA XRA
Y
Lam
RAL
L
DeTA3 LLI 255
Lam
NB
TER
LMB
JFZ DATAZ
ZERO
FDATA CAL TAPE
ur
Lal 1088
cPpB
JIZ DATA4
15 Fy
LaI 1028
ceb
JTZ DATAS
UCTION IF IT 15 B2
LAI 177B
JFZ FMEROR
tRO>
CAL RUBOUT
TINE
JMP DATAZ
DATA4 XRA
¥
DATAEM RET

L]
*HUBOYT ROUTINE
*

RUBDUT LAA
LaA

LAR
LAA
Laa
Laa
Laa
HET

*
*FORMAT ERROR ROUTINE

*
FORMAT LEI 240P
CAL TIYOUT
LBl J06E
GAL TTYUUT
LBl 3058
cal TTYOUT
LI5STa CAL CHLF
PRINTA LL1 253
LB¥
CAL EBINBCD
LEl 253
peL
DCL
LaM
anl
LBA
CAL TIYOUT
sl
- THE
JFL FHl

128

Lal !t
HET

SEARCH FOR RUBOUT
JUMP TF ROT RUROU

GALL FOR EUROUT R
CALL FOR FORMAT E

REPLACE 1P) WITH
ROTATE RIGHT

ROTATE LEFT
CLERR AC ANEP CARR
RUOTATE LEFT

Loan » 1O 8
INC DATR BIT CDUA

JUMP [F B IS NOT
CALL FOR TAPE INP

LJAD (F)
SEARCH FOR (F>
5TORE DATA IF IT

LOAD (B)
SEARCH FUR (82
DELETE LAST INSTR

LOAR (ROJ
SEARCH FOR (ROJ
JUMP IF 1T 15 NHOT

CALL FOR (RO ROUT

CLEAR AC AND CARR

LJAD {(5P)
TYPE (SP)
Loap cF2
TYPE (F?
Loan (E>»
TYPE (E}

Le253

LOAD MEMORY TO B
BIN TO BCD CONY
E=253

Lal=1

Lal-1

LOAD MSD TO AL
ACmACH | 2R

LDAD AC TO B
TYPE BCD LOCATIOW
L=L+1

EmE+|

JIMP IF E IS5 NOT

FORMAT ERROR FLAG

SENTER ADDHESS AND CONWERT THEM INT0 BINARY AEP.

E]
ENTERA LML 11
LLT 240
ENTERH CAL ADRESH
ENTERL CAL ADRESL
RESS
caL ARl
55
Gal CGRLF
LLI B4&
Cal. BCDBIN

LCE

DCL

CAL BPCDBIN
ARY

ocL

LAM

S5UL aA

ADl B

LLI 252

LA

INL
LFE
ES5 IN M

LMC

H=1)

L=240

EWTER BANK W0.
ENTER INITIAL ADD

ENTER FINalL ADDAE

Le2as
FINAL ACRES~-BINAR

LOAD B 10 C
LulL=~]
INITIAL ADRES-BIN

LaL-1

AC=M

ACaAC-48

AC=ali+8

Le=gsp

STORE BAYMH NG IN

L=L+1=8%3
STORE INITIAL ADR

Lal+lumfzia
STORE FIMAL ADRES

101

ajs
437
437
A37
437
439
44l
LE
443
ELEd

445
408
any
448
408
448
448
asg
452

453
454
a5%
458
459

a5

462
A62
L1
482
aEs
A6T
aTd

4T3
475
A&
£79
451
482
485
A48T
488
A4%1
a93
494
a97
499
500
S03
505
S04

s
515
51%
515
515
S8

521
582
525
587
528

531
532
533

534
537
5a0

583
586

5%l
373
594
555
596

598
599
s00
&2
603

104

18%
104

183
104

185
104

185
16

185
104

1]

L
252

Ll
£54

205

186
£I0
150

L2

-

&9
k3 |
-1
&7

L
76

&
80

181

197
206

141
239

206
254Q
181

192
206

11
240

203
186

48

- 20 - N o

197
£06

258

255

LB~}

[+3

-

-

-

[=R~]

o

*

HET

*5ET ADDRESS TO [107 RaAM
*

SETHA

ouT o

LK1
LLI
LDM
INL

11
ase

LaM

our

LLA
LD
RET

10B

L
#ADDRESS CHECHINC
+

ACHECH LHI 11

10 AC

CHECK

LLI
LAM

DCL
CPM
<TL
LCw
ING
LM
RET

254

CHECK

-
*FROGEAM BEGINS

.
START

NPUT

CAL
LEL
CAL
caL

LAl
CPR
<STL
LAl
CPR
JTZ
LaI
CFE
JTE
LAl
PR
JTZ
LAl
CFE
JTZ
Lal
GPE
JTZ
caL
JMF

*
*LaaD DATA

)
TAPELIN
READIN
OUT INE

RY

EXELUT

BANKD
BANK1
BANKZ
BANK2

CONTIN

CAL
cAaL

RAR
JTE
LLT
LCM
CAL

LA
WT
LMa

caL
JTZ
JME

CRLF
2528
TTYOUT
TTY

LE4B

TAPEIN
1058

EXECUT
Lezp

REATMN
1038

CONTIN
L14B

LISTIN
1208

PROGRM
ERROR
START

INFUT TG 1101 faM

ENTERR
IATAIN

START
250

SETHMA

1B

ACHECK
START
READINY
i1

2at
A/00DB
a4400B8
50008
54008
ADRESH
GRLF

a8
3

B

BANKO
?

BANKL
10

BANH2
11

BANHZ
ERROR
START
11
258

255

HEADNIN

H=11

L=gsp

BaNy MO TO D
LalL+{=H25%

INIT ADR TO E
WEITE ADDRESS T9

Loalr AC TO L
T TOH = padd N

H=11
L=nb4
LOADR FINAL ATRFESs

Ll -|ufEy
COMPARE1&F~AT
JIME IF AF-AT=D
Laal at T ac
AlwAT+)

LaE Al T MEVMORY

Bu@52E
TYPE %)
CALL FOR TIY KE I

LORD €T2 TO AQ
AC-F

JUMP IF AC+Bal
ACB 1058, LE)
AC-B

JOMP IF AC-B=0
AC=128B- CRJ
ac-g

JUMP IF AC-B=0
AC= 138, (C2
AC-3

JUMP IF AC-E=x0
AC=e1148s (LY
Ac-B

SUME IF AC-P=0
AT=1E08B, (F}
AC-B

JUMFP 1T AC-B=0
TYFE {72

ENTER ADDRESS
REAL* TAFE INPUT R

CHECK FUR FE FLAC
JUMP IF CARRY=1
La2sn

LOAD MEMORY TO C
SET MEMORY ADDRES

LOAD DATA TO WMEMO

COMPARE AF AND Al
JUME 1F A=

READ INPUT DATA
H=11

Lugan

Bamy 0 LOGATION
BANH 1 LOCATIDN
BANK & LOCATIGN
BANK 1 LOCATION
ENTER BANK HO

LOAD MEMORY TO AL
AC=AC-a8

ACoAC+E

LOAD AC TO M
AGxS

AC=AC~H

JUMP 1F ACe(

D=l 1
BAMH=BANY+ |
L=L+]

CLEAR A
INITIAL ADRES=Q

FiNal ACHES=2%55

506 . Ae=d
605 +PROM LTSTING ROUTINE’ 690 &2 175 B JUELISTH
606 * £93 L]
606 a6 11 LISTIN LHT 11 H=11 693 +PRCY PROCEAMMER
608 54 240 LLI 240 Lw2aQ 693 *
10 70 148] CAL ENTEEL ENTER INITIAL & F 693 70 14l 1 PEOCRY CAL ENTERA EMTER MEMORY ALCR
IYAL ADR. E3S
613 T0 18 O LisTER CAL CRLF 596 54 255 Ll LLl 285 RFPFOCRAM COMTR.
&16 5S4 251 Lbtr s L=25] -2:1: 6 283 LAT 253 AC=pey
618 ¢ asp LAl 252 M. OF INSTR. PER 700 248 LMR LUAD &0 70O ¥FMOFY
LINE Tol 14 14l LBl ZISE CAER1ACF RETUEM
€20 248 Lia LOAD AC TO MEMORY Fe3 70 150 O CHL TTYOUT
21 TG 118 1 LIST1 AL PRINTA FRINT ADDRESS 706 T0 181 [2L CAL SETMA 5FET AELEFESS 1o 17
624 14 16D LEBI 240B LORE [5P) ne
626 F0 130 O CAL TTYOUT ERINT {5FP] 709 & 255 LAl 25§ COMPLEMENT I¥PUT
685 14 194 LBl 3028 LOAD [E) CaTA
€3l 70 150 9 AL TIYQUT PRINT ([E) 711 17% XEN LOAD DaTa 12 af
634 54 253 LLi 253 L=2%3 Tie B3 arT e WEITE CATS TO OUT
536 199 LAK LOAD Al TO &C)
637 S1 GUT §0B QUTPUT Al 10 OUT 713 & & tal & AC=d4s TELAY
o 715 8% QUT 138 PROCFAM PULSE ENA
638 3B 2aF LEI 248 READ DELAY/DATA B) BLE
17T CONTR 715 38 197 LEI 197 E=]197- BELAY = 52
40 67 NP 1B READ IWPUT FROM 1 0 M3EC.
702 7LE T 55 0 PCa caL TTYR DELAY - B.&72 MSE
sal 18 L1572 RAL Ce
$42 Sa 249 LL1 2a% Lu24% 721 32 INE EmEs i
44 248 LMA SAVE THFUT DATA 722 T2 o6 2 JFZ PG4 JiUMP IF E IS NOT
685 96 lhg 2 JIC PRINTP PRINT (FP1 LF CARR o
=1 725 & 0 LAl 0 AC=0
&a8 LA 206 LBI 3168 Loab [x] 727 87 GUT 13B DISABLE PRRCR4M P
650 70 150 O CAL TTYOUT FRENT (3] ULSE
453 o8 la9g 2 <HP LISTA f2B as RET 5 CELAY APPROXI. 2
656 14 208 PRINTF LBl 3209 LOAD TP MSEC
£58 T} 150 1] CAL TTYOUT FRINT L[FR] 729 6T N9 1P RESD DAIA FROM 17
661 19% L15ST2 LAM LOAD DATA TO AC ng
662 32 TNE E=E+1L 730 191 o COMPARF DATA
663 72 129 2 JFE LIST2 JUMP IF E I5 NOT 731 164 2a& -] JTZ PCS JUME 1F COMDARED
a 734 14 164 LBI 2a4B LOAD {%]
6EE la 198 LBI 306B LOAD [F) 136 70 450 0 CAL TTYOUT PRLNL*]
s68 10 156 O caL TIYOUT PRINT CLF1 739 a6 11 LHI 11
471 ta 160 LBl 2a0d LOAD L[5P1 THL 84 255 LL] 258
673 TO 150 a CaL TTYOUT PRINT [S5P] 743 207 LAM
676 T0 192 1 CAl ACHECK aF - a1 748 B INB
&79 104 206 1 JTZ START Tas zay LME LOAD B TO MEMORY
EB2 54 251 LLI 25t LOAD LINE COMNTR. 746 T2 194 2 JFI PC2
TO Ac Fap 70 191 O CAL ERFUR PRINT 122
84 215 LeM LOAD MEMORY TD C 752 70)13 1 CAL LISTA PRINT ADDRESS
¢85 16 InG C=C+t 755 63 206 1 JMP START
686 250 Ltmc S8 10 192 | PCE CAL ACHECK
BT L0& 101 2 J1Z LISTER JUME IR LINE COYI TE1 104 P06 1 JT7 STaRT
754 &8 184 2 JMP PCI CONTINUE FROC. NE
T [9STH.
767 END

102

APPENDIX Wi

intdlec'8

Bare Bones 8

- and
Microcomputer
Modules

The widespread usage of low-cost microcomputer systems is made pos-
sible by Intel’s development and volume production of MCS-8 micro-
computer sets. To make it easier to use these sets, Intel now offers
complete 8-bit modular microcomputer development systems called
Intellec 8,

The Intellec modular microcomputers provide a flexible, inexpensive,
and simplified method for developing OEM systems. They are self-
contained, expandable systems compiete with central processor, mem-
ory, 1/0, crystal clock, power supplies, standard software, and a control
and display console.

The major benefit of the Intellec modular microcomputers is that ran-
dom access memories (RAMs) may be used instead of read-only-mem-
ories {ROMs} for program storage. By using RAMs, program loading
and modification is made much easier. In addition, the Intellec front
panel control and display console makes it easier to monitor and debug
programs, What this means is faster turn-around time during develop-
ment, enabling you to arrive at that finished system sooner.

The Intellec 8 Eight-Bit Microcomputer Development System. The
[ntellec 8 is a microcomputer development system designed for applica-
tions which require 8-bit bytes of data to perform either binary arith-
metic manipulations or logical operations. The Intellec 8 comes com-
plete with power supplies, display and contrel panel, and finished cabi-
net. It can directly address up to 16k 8-bit bytes of memory which can
be any mix of ROMs, PROMs, or RAMs. The Intellec 8 is designed
around the |ntel 8008 central processor chip. There are 48 instructions
including conditienal branching, binary arithmetic, logical, register-to-
register, and memory reference operations. 1/0 channels provide eight
8-bit input ports and twenty-four 8-bit output ports — all completely
TTL compatible. The unit has interrupt capability and a two-phase
crystal clock that operates at BOOkHz providing an instruction cycle
time of about 12.bus.

Bdre Bones 8. The Bare Bones 8 has the same capability as the Intellec
8 only it does not include the power supplies, front panel, or finished
cabinet. .)t is designed as a rack-mountable version.

The Intellec 8 system comes with a standard software package which
includes a system monitor, resident assembler, and text editor. The
programmer can prepare his program in mnemonic form, load it into the
Intellec 8, edit and modify it, then assemble it and use the monitor to
load the assembled program.

Other development tools for the Intellec 8 include a PL/M compiler,
cross assembier, and simulator designed to operate on large scale general
purpose computers. PL/M, a new high-level language, has been develop-
ed as an assembly language replacement. A PL/M program can be writ-
ten in less than 10% of the time it takes to write that same program in.
assembly language without loss of machine efficiency.

Standard Microcomputer Modules. Microcomputer Modules, standard
cards that can be purchased individually so that the designer can develop
his system with as little or as much as he needs, are also available.

Additional CPU, Memory, Input/Qutput, PROM Programmer, Universal
Prototype, and other standard modules provide developmental support

"and systems expansion capability.

103

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

intal’

MCS-8 MICROCOMPUTER DEVELOPMENT SYSTEMS

m |ntellec 8 (immB8-80A): Complete Microcomputer
Development System
Central Processor Module
RAM Memory Modules (8192 x 8)
Input/Qutput Modute {TTL compatible)
PROM Memory Module {4k x 8 capacity;
1k Resident System Monitor included)
PROM Programmer Moduile
Control Console and Display
Power Supplies and Cabinet
® Bare Bones 8: MCS-8 System without power
supplies, cabinet, or control console
® Standard Software
Resident Assembler
System Monitor Text Editor

Requires
8k of RAM

The Intellec 8 is a complete microcomputer development
system for MCS8 microcomputer systems. Its modular
design allows the development of any size MCS-8 system,
and it has built-in features to make this task easier than
it has ever been before.

The basic Intellec 8 (imm8-80A) consists of six microcom-
puter modules {CPU, 2-RAM, PROM, {/0 and PROM pro-
grammer), power supplies, and console and displays in a
small compact package. The heart of the system is the
imm8-82 Central Processor Module. It is built around
Intel's 8008-1, an 8-bit CPU on a chip. [t contains all
necessary interface to control up to 16k of memary, eight
8-bit input ports, twenty-four 8-bit output ports, and to
respond to real time interrupts.

The Inteilec 8 has 8k bytes of memory in its basic con-
figuration and may be expanded up to a maximum of
16,384 bytes of memory. Of the basic 9k bytes of mem-
ory, 8192 bytes are random access read/write memory
located on the imm6-28 RAM Memory Modules and are
addressed as the lower 8k of memory. This memory may
be used for both data storage and program storage. The re-
maining 1024 bytes of memory are located on the immB-26
PROM Memory Module and addressed as the upper 1280
bytes of the 16k memory, This portion of memory is a
system monitor in five 1702A PROMs. Eleven additional
sockets are available on the imm6-26 for monitor or pro-
gram expansion. Control for the PROM Programmer
Madule (immB-76} is included with the monitor for system
control.

PROM memory modules and RAM memory modules may
be used in any combination to make up the 16k of direct-
ly addressable memory. Facilities are built into these
modules so that any combination of RAM and ROM or
PROM may be mixed in 266 byte increments.

Input and output in the Intellec 8 is provided by the
imm8-60 /0 module. |t contains four 8-bit input ports,
and four 8-bit output ports. In addition it contains a
universal asynchronous transmitter/receiver chip as well
as a teletype driver, receiver, and reader control. Bit serial
communication using only the teletype drivers, receivers,
and the 1/Q port, is also possible with this module.

The universal asynchronous transmitter receiver chip may

104

= Ok bytes of Memory {expandable ta 16,384 bytes
— Intellec 8}

5k bytes of Memory {expandable to 16,384 hytes —
Bare Bones 8}

Direct Access to Memory and 1/0

Four 8-bit input ports {expandable to eight)

Four 8-bit output ports (expandable to twenty-four)
Universal Asynchronous Transmitter Receiver for
serial communications interface

® Real time interrupt capability

B Crystal controlled master system clock

operate at either 110 baud for standard teletype inter-
face or 1200 baud for communication with a high speed
CRT terminal. Additional 1/Q modules, imm8-60, and
output modules, imm8-62, can expand the |/O capability
of the Intellec 8 to eight input ports and twenty-four
output ports, all TTL compatible.

An interrupt line and an 8-bit interrupt instruction port
is built into the imm8-82 Central Processor Module. When
an interrupt occurs, the processor executes the instruction
which is present at the interrupt instruction port. In the
intellec 8, both the interrupt line and the interrupt instruc-
tion port are connected to the console, The processor
may be interrupted by depressing the switch labeled INT,
and the interrupt instruction is entered in the ADDRESS/
INSTRUCTION/DATA switches.

Additional module locations are available in the Intellec 8
so the user may develop his own custom interface using
the imm6-70 Universal Prototype Module. All necessary
control signals, data, and address buses are present at the
connectors of the unused module locations for this ex-
pansion. When memory, 1/0, and custom interfaces are
added to the Intellec 8, care should be taken not to ex-
ceed the built-in power supply capability.

Every Intellec 8 comes with three basic pieces of software,
the systems monitor, a resident program located in the
upper 1280 bytes of memory, a symbolic assembier and
a text editor. The resident systems monitor allows the
operator to punch and load tapes, display and alter mem-
ory, and execute programs.

With the PROM Programmer Module, 1702A PROMs may
be programmed and verified under control of the system
monitor,

The text editor is 3 paper tape editor to allow the oper-
ator to edit his source code before assembly. The assem-
bler takes this source tape and translates it into object
code 10 run on the Intellec 8 or any MCS-8 system.

The Intellec B microcomputer development system is also
available in a Bare Bones 8 version. In this version the
power supply, chassis, console, and display are removed
leaving the user a compact rack mountable chassis to
imbed in his own system.

Intel ~ Intellec 8/Bare Bones 8 | ICRO

COMPUTERS

SYSTEMS BLOCK DIAGRAM

DISPLAY
AND CONTROL
SWITCHES
. INTERRUPT INSTRUCTION BUS
cPU FRONT PANEL
imms-82 CONTROL LOGIC
< CONTROL BUS >
DATA FROM MEMORY
[1 [i
MEMORY ADDRESS BUS/OUTPUT DATA
[1 j
DATA TO MEMORY
DATA FROM MEMORY
MEMORY
MODULE
RAM OR PROM
immG-28 immG-26
DATA TO MEMORY >
L JJ. ® ANY COMBINATION TO
et S 8 B ~ # MAX 16k OF MEMORY =l
. DATA FROM MEMORY i
. MEMORY
MODULE-
RAM OR PROM
imm&-28 imme-26
DATA TO MEMORY >

DATA INPUT BUS MEMORY ADDRESS BUS/OUTPUT DATA
4%2‘;; [32 DATA LINES >
4 QUTPUT
PORTS < 33 DATA LINES INPUT/
OQUTPUT OUTPUT 8
MODULE MODULE 84 DATA LINES > OUTPUT
TELETYPE OR : imm8.60 imimg-62 PORTS
co&%ﬁfgﬁﬁms SERIAL > < MEMORY ADDRESS BUS/OGUTPUT DATA > .
INTERFACE
CONTROL BUS
omre [__3zDatA Lines
4 OUTPUT =
< 32 DATA LINES INPUT/
FORTS OUTPUT OUTPUT g
MODULE MODULE 64 DATALINES _ » OUTPUT
TELETYPE OR immB-60 imm8-62 PORTS
co;:,tﬁ},!,?g T TIONS < SERIAL > < MEMORY ADDRESS BUS/OUTPUT DATA>
INTERFACE

106

i Intellec 8

INTELLEC 8 CONTROL CONSOLE AND DISPLAY

The Control Console directs and monitors all activities of the L]
Intellec 8. Complete processor status, machine cycle condi-

tions and operational control of all processor activity are
provided, and additional controls facilitating program de-
bugging and hardware checkout are included on the control
console.

m STATUS is a display of the operating mode of the pro-
cessor.

1. RUN indicates the processor is running.

2. WAIT indicates the processor is waiting for memory or 1/0 to
be available,

3. HALT indicates the processor is in a stopped state.

4, HOLD indicates an |/O or memory access is in progress from
the Control Console (occurs with WAIT or HALT).

5. SEARCH COMPL indicates the processor has executed instruc-
tions until the search address and pass counter settings have L
been reached. (See LOAD PASS 26, and SEARCH-WAIT 33)

6. ACCESS REQ indicates an |/O or memory access is pending
from the Control Console.

7.INT REQ indicates an interrupt is pending from the Control
Console (see INT 38).

8. INT DISABLE not applicable.

CYCLE provides continuous display of the processor’s

machine cycle status.

9. FETCH indicates the current machine cycle is fetching an
instruction from memory.

10. MEM indicates the processor is executing a memory read (PCR)
or memory write (PCW) cycle, or, under manual control, a
direct access to memory is in progress.

11.1/0 indicates the processor is executing an |/O read or write
cycle (PCC) or, under manual control, a direct access to 1/0 is
in progress.

12. DA indicates a direct access to memory or 1/O is in progress.

13. READ/INPUT indicates a memory or input read operation is
in progress.

14. WRITE/OUTPUT indicates a memory or output write operation
is in progress.

15. INT indicates an interrupt cycle is in progress.

16. STACK not applicable.

ADDRESS is a display of memory and 1/0 address.

17.INDICATORS 14-15 not applicable.

18.INDICATORS 0-13 are a display of the address of memory
being accessed during a Fetch, Read, Write, or during manual
MEM ACCESS.

19. INDICATORS 9-13 are a display of the /O address during an
input, an output, or during a manual 1/0 ACCESS.

i

DOOOO®O®
MCS

STATUS
SRCH ACCESS INT
RUN WAIT HALT HOLD COMPL FREQ REQ DISABLE

INSTRUCTION | DATA
7 & 3

ADDRESS [DATA
MEM ADDRESS HIGH | 1/O ADDRESS /| SENSE DATA
15 1« 13 12 n 0

ADDRESS CONTROL

(»)) () (2) §3) 19 (5) () (1) @

CYCLE e Tl e 7 3
READ/ WRITE)
FETCH MEM o DA NPUT OUTPUT INT - STACK

REGISTER/FLAG DATA
7 6 3

ADDRESS / INSTRUCTION / DATA’
M!M ADDIESS LOw .i' INT |N5T1 DMA / PASS 'C.DUNI'

7 o
== I II.'

CONTROL

LOAD 1/ MEM SRCH- STEP/

PASS DECR INCR 1OAD ACCESS ACCESS WAIT
N S -

intgl corparation

WAIT CONT DEP AYGE':I INT RESE
I A IS I .
E EEHEE

(39 () (1) @) @9 %)

Intellec 8

MICRO
COMPUTERS

= |INSTRUCTION/DATA is a display of the instruction

or data.

20.INDICATORS 0-7 are a display of the instruction or data
between the processor and memory or 1/0,

REGISTER/FLAG DATA is the display of the proces-
sor data bus during executions of an instruction (dis-
play is dependent upon instruction being executed).

21.INDICATORS 0-7 are a display of the contents of the CPU data
bus when the instruction is executed. In the case of move
instructions, the contents of the source register is displayed.
Flags C, P, Z, and S are a special case. The flag status appears
in the lower four bits, only when an input instruction is
executed,

ADDRESS/DATA These eight switches provide entry
of address or data for manual or SENSE operation of
the processor (see SENSE 30).

22.MEM ADDRESS HIGH The upper six bits of memory address
for direct access or search operations are entered here.

23.1/0 ADDRESS The five bit |/O address for manual 1/0 ACCESS
is entered here,

24.SENSE DATA Data to be input during a SENSE mode
operation is entered here (see SENSE 30).

intgllec 8

107

ADDRESS/INSTRUCTION DATA These eight

switches provide entry of data, address, and instruc-

tions during manual or interrupt operation of the

pracessor.

25. MEM ADDRESS LOW The lower eight bits of memory address
for direct access or search mode operation are entered here,
INT INST During an interrupt cycle the interrupt instruction is
fetched from here (see INT 38).

DATA Data for deposit to memory or an output port during
manual operation is entered here (see DEP 36 , and DEP AT
HLT 37).

PASS COUNT Data to be loaded into the pass count register is
entered here (see LOAD PASS 26.).

ADDRESS CONTROL These four switches control

addressing of memory and 1/0 and loading of the

search address during manual operation of the proces-

sor.

26. LOAD PASS Loads pass count into pass count register (PASS
COUNT is the number of times the processor will iterate

* through the search address during a search operation before in-

dicating SEARCH COMPLETE (see SEARCH-WAIT 33 and
SEARCH COMPL 5)

27.DECR decrements the loaded address by one (see LOAD 29).

28. INCR increments the loaded address by one (see LOAD 29).

29, LOAD loads contents of address high and low into memory
access register for manual direct access to memory or search
mode operation (see MEM ACCESS 32 , and SEARCH-WAIT
33).

MODE These five switches select the processor’s mode

of operation.

30. SENSE causes the processor to input data from the SENSE
DATA switches during execution of an input instruction instead
of the addressed input port (see SENSE DATA 24).

31.1/0 ACCESS provides access to any input port and control of
any output port when the processor is in a WAIT mode,

32. MEM ACCESS allows access to and control of any location in
memory when the processor is in the WAIT mode.

33.SEARCH-WAIT provides for execution of a program to a
specific location, where the processor enters a wait mode and
displays current system conditions.

34 WAIT causes the processor to go into a manual WAIT mode.

CONTROL These five switches provide operator con-

trol of the processor.

35.STEP/CONT provides single step execution of a program while
the processor is in a WAIT mode or continuation of a program
from the SEARCH COMPLETE condition.

36. DEP deposits an 8-bit word to memory or output during a
memory or | /O access operation (see DATA 25),

37.DEP AT HLT deposits an 8-bit word to a selected memory lo-
cation or output automatically during a programmed HALT
(see DATA 25).

38. INT causes the processor to execute an interrupt cycle, fetching
the interrupt instruction from the INT INST switches (see INT
INST 25).

39. RESET causes processor to begin execution of program at
memory location zero by resetting program counter to zero.
All other registers remain unchanged.

POWER and PROM PROGRAMMING

40. PRGM PROM PWR Power switch for high voltage used
with PROM programmer.

41.POWER Key operated main power switch

42.PRGM PROM Zero insertion force socket for 1602A or
1702A PROM to be programmed

Intellec 8/Bare Bones 8

Y MIBRE
COMPUTERS

intal

SYSTEMS SOFTWARE

The Intellec 8 and Bare Bones 8 Microcomputer Development Systemns come with

three pieces of software:
Assemblar.
ipaded with the System Monitor,

SYSTEM MONITOR

Loads and punches paper tape

Displays and alters contents of memory
Fills memory with constants

Executes programs in memory

Moves blocks of data in memory
Programs 1602A or 1702A PROMs

The System Monitor is contained in five 1702A PROMs
and is assigned to the upper 1280 words of memory,
leaving the lower 15k of memory for program and data
storage. This executive software allows the operator to
toad and punch BNPF or hexadecimal format tapes, dis-
play and aiter memory, load constants to memory, move
blocks of RAM memory, and execute user programs.

The System Maonitor is extended by the control software
for the immB-76 programmer module, which gives the
monitor the ability to program 16024 to 1702A PROMs
as well as being able to load memory from already pro-
grammed PROMs for duplication and verify the contents
of PROMs against master tapes.

TEXT EDITOR

e Edits symbolic data from paper tape with data from
operator’s terminal

Edited output is available via paper tape

Appends text to editor input buffer

Moves pointer to any desired location

Finds and inserts or substitutes strings

Deletes lines selectively

The Text Editor allows the operator to edit his source
code, making corrections and additions. He may append
code, delete code, focate strings, insert strings, substitute
strings and output edited code via paper tape. The text
editor runs an a minimum inteliec 8 system with teletype
0. {(Reguires a minimum of 8k x 8 of RAM.}

108

Resident System Monitor, Text Editor and Symbolic
The Text Editor and Assembler are supplied on paper tape and are

ASSEMBLER

o Standard symbolic assembler
® |nput via prepunched paper tape
& Qutput in 8008 ohject code

The Symbolic Assembler is a multipie pass type. During
Pass 1 the assembler reads the source code from the paper
tape and generates a symbol table for later use. During
Pass 2 the assembler generates the assembly listing. Also
at this time, any detectable errors such as undefined jumps
or missing symbols are indicated by a diagnostic printout
on the teletype. Pass 3 may now be run. It generates

object code, and punches it on paper tape. [Requires a
minimum of 8k x 8 of RAM.]

DEVELOPMENT SUPPORT:
PL/M COMPILER, ASSEMBLER and SIMULATOR

In addition to the standard software available with the
Inteilec B, Intel offers a PL/M comgpiler, cross assembler,
and simulator written in FORTRAN 1V and designed to
run on any large scale computer. These routines may be
procured directly from Intel, or alternatively, designers
may contact a number of nation-wide computer time-
sharing services for access to the programs, The cutput
from both PL/M and the MCS-8 Assembler may be run
directly on the Intellec 8 Microcomputer Development
System.

PL/M Compiler: PL/M is a high level procedure-oriented
systems tanguage for programming the Intel MCS-8 micro-
computer. The language retains many of the features of
a high-level language, without sacrificing the efficiencies
of assembly tanguage. A significant advantage of this
language is that PL./M programs can be compiled for either
the Intel 8008 or future Intel 8-bit processors without
altering the original program. :

Assembler: The MCS-8 Assembler generates object codes
from symbelic assembly language instructions. It is de-
signed to operate from a timeshared terminal.

Simulator: The MCS-8 Simulator, cailed INTERP/8, pro-
vides a software simulation of the Intel 8008 CPU, along
with execution monitoring commands to aid program
development for the MCS-8.

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

intal

SYSTEMS SPECIFICATIONS

Word Size: Data: 8 bits
Instruction: 8, 16, or 24 bits
Memory Size: 9k bytes Intellec 8/5k bytes Bare Bones

expandable to 18k bytes

48, including: conditional branching,
binary arithmetic, logical, register-to-
register and memory reference
operations

Machine Cycle Time: 1256us

System Clock: Crystal controlled at 800kHz +0.01%

_ Instruction Set:

1/0 Channels: 4 expandable to
8 input ports TTL
4 expandable to Compatible
24 cutput ports

Interrupt: © Single Level

Direct Access to Memary: Standard via control console
Memory Cycle Time: 1us
Operating Temperature: 0°C to 55°C
DC Power Supplies: Vg =8V, Igc= 124"
{standard Intellec 8) Vop = —9V. lpp = 1.8A%
Vg = =12V, lgg = 0.06A

DC Power Requirement: Vi = BVEE%, |n = 11A max,,6A typ,

© Vpp =—9+5%, Ipp = 1A max., 0.5A typ.

Vgg = —12V5%, lgg = 0.03A max., 0.016A typ.

AC Power Requirement: B60Hz, 115 VAC, 200 Watts

(standard Inteltec 8} "Larger power supplies may be requirec for

expanded systems,
Intellec 8: 7% x 17 1/8" x 12 1/4*
{table top only]
Bare Bones 8: 6 3/4" x 17" x 12"
{suitable for mounting in standard
RETMA 7* x 19" panel space}

Physical Size:

Weight: 301b,
Standard Software: System Manitor
Resident Assembler

Text Editor

Support Software: PL/M Compiler written in
Cross Assembler FORTRAN IV
Simulator

STANDARD SYSTEMS and OPTIONAL MODULES

intetlee 8 {imm8-B0A) Standard System includes the following
Moduies and Accessories:
® (Central Processor Module
® |nput/Output Module
PROM Memary Module
RAM Memory Modules (Two)
Chassis with Mother Board
. Power Supplies

® Control and Display Panel
® Finished Cabinet
® Standard Software:

System Monitar

Resident Assenbler

Text Editar
. * PROM Programming Module
Bare Bones 8 {imm8-81} Standard System includes the following
Modules: i

o Standard Software:

Central Processar Module
Input/Qutput Module
PROM Memory Module
RAM Memoary Madule
Chassis {rack mountable
with Mother Board)

Systemn Monitor
Resident Assembler *
Text Editor *

*Requires a minirmum of
Bk of RAM

Optional Modules available for the Intellec 8 and Bare Bones 8:
® Additional 1/0 or Qutput Modules

Additionat RAM Memory Modules

Universal Prototype Module

Module Extander

Rack mounting kit for Intellec 8

YUY

-
\

BUS INTERFACE
FRONT PANEL CONTROLLER

CUSTOM INTERFACE MAY BE ussn__>\/
IN ANY GF THESE LOCATKINS

Inteliec 8 and Bare Bones 8 Module Assignments

The standard intellec 8 comes with the modules
shown, Expansion capability af bath 1/0 and
Memory to a full MCS-8 system i3 provided by
using open locations on the motherboard.

PROM, PAOGRAMMER MODULE

|n'['e[Microcomputer Modules

imm 8-82 CENTRAL PROCESSOR MODULE

® Completa Central Processor Module with ¥ Directly addresses eight input ports and
system clocks, interface and control for twenty-four output ports
memory, 1/0 ports, and real time interrupt ® Subroutine nesting to seven levels
® The heart of this module is Intel’s 8008-1 & Real time interrupt capability
processor on a chip — p-channel silicon gate = Direct memory access capability
MOS . . u |nterface to memory, 1/O and interrupt ports
® 48 instructions, data oriented through separate TTL buses
B Accumulator and six working registers ® Two phase crystal clock — 800kHz
® Direct addressing of up to 16,384 bytes of - ® 12.5ps instruction cycle

memory. (PROM, ROM, or RAM)

The imm8-82 Central Processor Module is a complete 8-bit parallel central processor unit. |t contains complete:
control for interface to memory and 1/0. This is the main module in Intel's Intellec™ 8 systems.

The imm8-82 is built arcund Intel’s 8008-1 CPU on a chip. [t executes 48 instructions including conditional
branching, register to register transfers, arithmetic, logical and 1/0 instructions. Six 8-bit registers and an 8-bit
accumutator are provided. Subroutines may be nested to seven levels, Real time interrupt capability is provided
and the processor may directly address up to 16,384 bytes of memory.

The immB8-82 has a fourteen bit TTL compatible memory address bus, an 8-hit data output bus and an 8-bit
memory data input bus. Memaory read and write signals and the wait request signal provide interface at TTL
levels to any type of memery (including PROM, ROM, and RAM). Asynchronous interface to slower speed
memories (access > 1us) is provided by the wait request signal. This causes the processor to wait for memory
response 10 a read or write command.

The Central Processor Module directly addresses up to eight 8-bit input ports and twenty-four 8-bit output ports.
The 5-hit /O address is contained in the upper byte of the memory address bus. Addresses 0 through 7 are
defined as input ports, and B through 31 as output ports. Control signals, 170 cycle, 1/C in and 1/0 out, define
the 1/0 cycle and its function. An 8-bit data cutput bus and an 8-bit data input bus, both TTL compatible,
provide data channels in and out of the processor module.

Real time interrupt capability and direct memory access capability complete the {ist of functional features for
the imm8-82. During an interrupt, the Central Processor Module responds to the instruction presented at the
8-bit interrupt instruction port. Unless the main program flow is altered by the interrupt instruction, the exe-
cution will continue where it left off before pracessing the interrupt. Eight bits of data including sign, carry,
zero and parity flags are iatched on a separate bus during the execution portion of most instructions.

The direct memory access capability allows an alternate source to access memory or |/0 while temporarily sus-
pending processor operation. At the end of this atternative access to memory, the processor may return to nor-
mal program execution,

All system timing is derived from a two phase crystal clock running at 800kHz. Tthis gives a machine cycle time
of 12.5us+ 0.01% and provides an accurate timing source for software detay foops and other timing requirements,

Central Processor Module

110

ntel

Microcompu_ter Modules

MICRO
COMPUTERS

Central Processor Module Specifications

Word Size:

Central Processor:

Instruction Set:

Memory Addressing:

Instruction: 8, 16, or 24 bits

Data: 8 bits

8008-1 CPU, B bit accumulator, six
8-bit registers, subroutine nesting to
seven levels, interrupt capability,

. asynchronous operation with memory

48 including conditional branching,
binary arithmetic, logical operations,
register-to-register transfers, and 1/0
Any combination of PROM, ROM and

Systern Clock:

Connector:

Board Dimensions:

Crystal controlled, B00kHz + 0.01%

Processor eycle time: 12.5us

Dual 50-pin on 0.125 in, centers,

Connectors in rack must be positioned

on 0.5 in. centers min.

Wirewrap P/N C800100 from SAE
P/N VPBO1C50EDQAT

from CDC
6.181in. x 8.0 in, x 0.062 in. Board 10
be on 0.5 in. centers minimum

RAM up to 16,384 bytes Operating Temp : 0°C 1o +55°C
Memory Interface: Address: 14 bits TTL latching bus DC Power ’
Data: 8bit TTL bus to and from Requirements: Vg =45V 2 5%,
memory log = 2.2A max, 1.0A typical
1/0 Addressing: Input: Eight 8-bit input ports Vpp = -9V £ 5%,
Qutput: twenty-four 8-bit latching Ipp = 0.06A max., 0.O3A typical
outPuT ports Support Sof PL/M Compil
. . upport Software: ompiler i i
1/0 Interface: 8-bit TTL campatible buses to and from Ppo Cross Aser:bler Written in
CPU. 8-bit TTL fatched bus with ! FORTRAN IV
X . X . Simulator
execution data including flags {sign,
parity, zero, and carry information)
L] -
imm8-82 Block Diagram
{INT ACK] TiT -—of
T -—
T3 -—of DATA FROM
CPU = MBI 0.7}
et L] : ol
i
{FALT ACK} STOP -t— 7| PATAMUX [=—pgpr H10-D
{WAIT ACK) WAIT -— INPUT PORT
TSy CEESEQ?L BATA {INO.7)
IPCA} MEM READ CYC —
PROCESSOR | sy o TN CYC
cycLE us | (PO MEM WRITE CVC - - OSC
{PCC} /G CVC -t = SYNC A| CPUCLOCK
{PCIl FETCH CYC ~%— ot - BUS DUT
- -z
CONTROL \ '
LOGIC
WAIT REQ —— | _h_-
cru AOLD REQ —— READY _] B
CcTL INT REQ —— INTERRUPT . MEMORY \map 013)
BUS | HALT INT REQ — _STATE LINE§ 2008 cPU |t 8 BUS .8 | aooress | .« ADDRESS
N JAM ENBL — _ __SYNC -7 ORIVER 7 LATCHES | -
;’.
}—a {CCO!
RAM MOD ENBL ——— | tcmlr
PROM MOD ENBL ——e] BUSETL . +
ADDRESS CONTROL +
CYCLE CODING {CCa, CC1!
B__ DATATO
+ mMEMQRY ‘DB 07}
Iy T |—= 40 (5)
|—- 70 oUT 8 | TA1 (2}
—» DEIN e ——= TdZ {F)
L » DR OUT E’:‘J’:T“RF:IFE REG/FLAG |— T43 (@)
— BUSAUSY SIGNALS LATCH | — T4
— R - TG
—= AOLDACE — Ta6
L= (NT REQLTH - T47

111

MICRO
COMPUTERS

|nte| Microcomputer Modules

®» 4096 B-bit bytes per module
= Static memory, no clocks required

& Interfaces with the imm8-82 8-bit
Central Processor Module

= Single +56V power supply

imm6-28 RAM MEMORY MODULE

® Low power requirements

B For use in expansion of Intellec 8 systems to 16k

bytes of memory

® Built-in decoding of module select for expansion

to 65k bytes of memory

RAM Memory Module

The imm6-28 RAM Memaory Module is a standard 4k x 8 memory module designed for use with the Intellec 8
Microcomputer Development System. This module contains address and data buffers, read/write timing circuits
and is implemented with Intel’s 2102 1k % 1 static RAM. Although the basm memory madule is 4096 x 8, con-
figurations as small as 1024 x 8 are also available.

The immB-28 RAM Memory Module is used with the MCS-8 Micre Processor in configurations of up to 16k bytes
of memory (4 modules). The imm8-82 Central Processor Module directly interfaces with the imm6-28 RAM
Memory Module with all module select decoding done directly on the connector. This allows an imm6-28 to be
moved to any location within the 18k of memory without making any changes in the module,
decoding altows additional expansion of memory by bank switching.

This builtin

112

Microcomputer Modules COMPUTERS

el

RAM Memory Module Specifications

Memory Size:
Word Size:
Memory Expansion:

Cycle Time:
Interface:
Capacity:
Connector:

Board Dimensions:

Operating Temperature:

DC Power Reguirement:

4k bytes

8 bits

To 65k bytes (16 modules}

1us

TTL compatible inputs; open collector outputs {positive true logicl
4096 bytes

Dual 50-pin on 0.125 in, centers. Connectors in rack must be positioned on 0.5 in, centers min.

Wirewrap P/N C800100 from SAE
P/N VPBO1CBOEDOAT from CDC
6.18in. x 8.0 in, x 0.062 in, Board to be on (.5 in. centers minimum.
0°C 1o 65°C
Voo = 1BV + 5%, Igc= 2.5A max., 1.26A typical

imm6-28 Block Diagram

R/W
READ/
BYTE 1 whITE |
CONTROL ™
BYTE Z
¥ ¥
DBy e —— = MDo
08 —————————————] e . M1
DEy —m8M8M b ————————— = MDZ
-]) B
_— MEMDRY ARRAY I,
ey INPUT / / OUTPUT MD3
DBy ————] BUFFER | / 4096 x 8 s BUFFER L % wmDs
DBS_'_"-'""_'_"' ——————— L]
DBS_"'-'_'_." e —— Y.]
DBy ————————————] p—————————= MD?
DATATO : DATA FROM
MEMORY * i [MEMORY
MAD 12 ———————————]
MAD 13 -————————n MODULE SELECT
MAD 13—
MAD 13 —————————— 12
-
MAD 14 —————————— 3=
MD 14 i eeeetsirrrd
MODULE o
MAD 15 ———-—-———=] SELECT -
. LOGIC ADDRESS BUFFER
WMAD i5 #———— .

ME 12 ——— i B

™S 13

MS 14 ——————————

M5 15

RAM
MOC ENBL
ADRSTB

—_—]

—_—

MAD O MAD 1 MAD 2 MAD 3 MAD 4 MAD 6 MAD 6 MAD 7 MAD S MAD 9 MAD 10 MAD 11

MEMORY ADDRESS

- 1

113

|nte| Microcomputer Modules

imm6-26 PROM MEMORY MODULE

8 Provides sockets for up to sixteen PROMs ®m Accepts Intei 1602A or 1702A PROMs or
{4096 x 8) - 1302 ROMs
® Static memory, no clocks required ® Lagic to allow any mix of PROM in 256 byte

{8-bits) increments with RAM to 16k when used
with the immB8-82 B-bit Central Processor Module

® Built in decoding of module select for expansion
to 65k of memory

® [nterfaces with imm$8-82 8-bit Central
Processor Module

The immB6-26 PROM Memory Module may be used with the imm8-82 8-bit Central Processor Module for non-
volatile program storage. Each PROM Memory Module has sockets for from one to sixteen of Intel's 16024 or
1702A PROMs. In addition, the 1302 mask programmed ROM may be used in place of the PROMs in OEM
applications. .

The PROM Memory Module is used for program storage and look-up-tables with the MCS-8 8-bit Micro Proces-
sor. 1t interfaces directly with the immB-82 Central Processor Module and may be used with the imm6-28 RAM
Memory Module in any combination to 16k bytes. Special control logic on the imm6&-28 module allows any mix
of PROM and RAM in a system in 256 byte increments.

For memories larger than 4k bytes, decoding on the module allows addressing of up to sixteen imm6&-28 modules
for a total of 65k bytes of memory. The decoding is accomplished on the module connector. Any imm6-26
may be plugged in to any memory module connector,

PROM Memory Module

14

MICRD
COMPUTERS

Microcomputer Modules

el

PROM Memory Module Specifications

Memory Size:

Word Length:
Memory Expansion:
Interface:

Capacity:
Connector:

Board Dimensions:
Operating Temperature:

DC Power Requirement:

dk bytes
8 bits
To 65k bytes {16 modules)
TTL compatible inputs; open collector outputs {positive true logic)
2566 to 4096 bytes in 256 byte increments
Dual 50-pin on 0.125 in, centers. Connectors in rack must be positioned on 0.5 in. centers min,
Wirewrap P/N CB00100 from SAE
P/N VPBO1C50EQDAT from CDC ,
6.18 in. x 8.0 in. x 0,062 in. Board to be on 0.5 in, centers minimum,
0°C o 55°C
Ve = +5V 5%
Vpp =9V 6%

lee = 1.BA max., 1.1A typicalf!

Ipp = 1.6A max., 1.0A typical "

{(1)Board Ioaded with all 16 PROMSs.

imm6-26 Block Diagram '

MAD 0
MaD 1 -
—_]
MAD 2 8
MAD 2 *1 ADDRESS !
MAD 4 »] BUFFER - MO0
MAD B - ——L 0*1
MAD 6 - ™ MD2
MAD 7 - - MD3
MEMORY i3 o DATA
ARRAY 7 BUFFER |———— i MD4
l—
wADS . MDS
—
MmapD g —————) CHIP 16 266 k B . MD§
) SELECT re - o L = MDY
MAD 13 -f LOGIC 4095 x B
AD 11 - DATA FROM
MEMORY
Jy
MAD 12 -
WMAD 12 -
MAD 13 - MODULE SELECT
MA -— . —
MAD 13 —8= RAM MOD ENBL
MAD 14 -
MAD 14— —
MODULE
MAD 15 »{ SELECT
R LOGIE
WAD 15
M5 12 -
ME1T—————
mMS 14 -
MS 15 -
PROW MOD *
ENBL

115

|ntel Microcomputer Modules

imm8-60 INPUT/OUTPUT MODULE

Four 8-bit input ports and four 8-bit latching output ports

TTL compatible

Interfaces directly with imm8-82 Central Processor Module
Teletype asynchronous transmitter/receiver and controls on board
Transmission rates of 110 or 1200 baud

Crystal ciock for asvnchronous transmitter/receiver

Capable of high speed serial communications to 9600 baud

The imm8-60 1/0 Module provides four 8-bit TTL compatible input ports and four 8-bit TTL compatible latch-
ing output ports. |t interfaces directly with the imm8-82 Central Processor Module. Built-in decoding on the
board provides for expansion of 1/0 to the maximum with the addition of one immB8-60 and two imm8-62 Qut-
put Modules {eight input ports and twenty four output ports).

For more efficient use of the imm8-82 Central Processor, an asynchronous transmitter receiver is included in the
module. This frees the processor of time-censuming bit manipulation during bit serial data transmission, The
transmitter receiver operates at either 110 or 1200 baud and by alteration of the basic clock frequency, data
rates to 9600 baud may be obtained. The module contains drivers and receivers for connection 10 a teletype.
These may be used with the asynchronous transmitter receiver or directly with 1/0 ports for bit serial transmis-
sion and reception of teletype data,

The module is configured with all comman control signals bused to the module on the PC connector, while all
|/0 signals are avaiiable at the ribbon connectors on the top of the module.

T,

1/0 Module

116

ntel’ Microcomputer Modules -

170 Module Specifications

Word Size: 8 bits
Capacity: Four &bit input ports, four B-bit output ports
1/C Interface: Input ports; TTL compatible {complement Data In)

Output ports: TTL compatible {complement Data Out}
Communications Interface: _
Direct: TTL compatible input and output
TTY: 20mA TTY interface with discrete transmitter and receiver
TTY RDR Control: Discrete relay interface

Serial Communication Rate: Crystal controlled to 110 ar 1200 baud _
Cannector: Dual 50-pin on 0.125 in, centers, Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N C800100 from SAE
P/N VPBO1CS50EQQAT from COC
Ribhon Type P/N 3417 from 3M
Board Dimensions: 6.18in. x B.0 in, x 0.062 in. Board to be on 0.5 in. centers minimum,
Operating Temperature: 0°C to 55°C
DC Power Requirement: Voe = +8V £ 6%, Igc = 0.820A max., 0.478A Typical
Vpp = —~9V £ 5%, ipp = 0.080A max., 0.050 Typical
Vg = —~12V £ 5%, Igg = 0.030A max., 0.016A Typical

imm 8-60 Block Diagram

SERIAL SERIAL
FROMTTY TTY DATA IN CRYSTAL DATA OUT Y ™ TTY
™) RECEVER cLock *1 TRANSMITTER >

Yy

COMMUNICATIONS
PARALLEL DATA OUT .2 INTERFACE __ PARALLEL DATA IN

{RECEIVED DATA) ’ {TRANSMITTED DATAI

A &
RESET - TTY ROR | TO READER

. g | CONTROL RELAY
STATUS OUT 5 . ,r
DATA FROM CPU ! .8
ri * &
ADDRESS BUS /5 _ | .8 PORT 0
gl PORT 7 T—
CONTROL BUS | seLect 4 - B FOAT 1
- 7 =1 ouTPUT 7 ;?#?u?”
) 8 PORT 2
B LATCHES i - PORTS
P ,,a PORT 3 _
3
\ ' L8 DATA TO CPU
FOUR ¥y 7 o
BBIT = NPUT
INPUT MUX
PORTS -

117

|nte|° Microcomputer Modules |

imm8-62 OUTPUT MODULE

® Eight 8-bit Latching Qutput Ports

=& |nterfaces Directly with imm8-82 CPU Module

8 Decoding for Expansion to Full Qutput Complement
® TTL Compatible

The imm8-62 Output Module provides eight 8-bit latching output ports for direct interface with the imm8-82
CPU Module, Each port is individually addressable, and all outputs are TTL compatible, The module address
includes decoding for expansion to a full complement of 24 output ports, This may be accomplished by using
two imm8-60 1/0 Modules and two immB8-62 Output Modules. All output signals are available through a ribbon
connector at the top of the module, '

»
H A

A

¥

e
-

2
) 1,

i . !_
' : .) A
Ilﬁ‘ I-. I.... "'l II l l" . l I

Output Module

118

: MICRO
inte[" . Mlcrocomputer__Modu!_c_a_s .

Output Module Specifications

Word Size: 8-bits

Capacity: Eight 8-bit latching output ports

interface: ' TTL compatible {complement Data Qut}

Connector; Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in, centers min.

Wirewrap P/N CB00100 from SAE
P/N VPBO1CS0EQOAT from CDC
Ribbon Type P/N 3417 from 3M
Board Dimensions: 6.18 in. x 8.0 in. x 0.062 in, Board 1o be on 0.5 in. centers minimum,
Operating Temperature: 0°C to 55°C
DC Power Requirement: Vee = +5V 2 b%, loc = 0.840A max., 0.420A typical

imm8-62 Block Diagram

i - FOATG ° |
B —r—
. v # FORT 1
DATA FROM CPU L%, :
28 ——
v - FORT 2
L8 -
- » FORT 3 EIGHT
- s,
LATCHES —
A - FORTA PORTS
/8
- = PORT &
L3 -
. PORT &
+ B
ve = FORT 7
ADDRESS BUS i e A
PORT
CONTRGL BUS a] SELECT

119

I Microcomputer Modules

imm6-76 PROM PROGRAMMER MODULE

R High speed programming of Intel's B Direct interface with Intel’s Intellec 8
1702A or 1602A PROM Microcomputer Development System

= All necessary timing and level =& Complete software necessary for use
shifting included included with intellec 8 system monitor

The imm6-76 PROM Programmer Module provides all necessary hardware and software to add PROM program-
ming capability to the Intetlec B microcomputer development system,

The module has been designed to slip into the Intellec 8 and provides all connections to the zero insertion force
socket on the front panel. All required timing and level shifting is accomplished on the module utilizing the high
voltage power supply already located in the intellec 8.

Software te control programmer operation is included as part of the {ntellec B system monitor. This software
is specifically written for the intellec 8 and allows both programming and verification of 1602A and 1702A
PROMSs. In addition, the contents of any PROM may be listed or unloaded into memory for duplication.

The imm6-76 may also be used as a stand alone PROM programmer with toggle switches or with another com-
puter providing data address and control signals.

imm6-76 Biock Diagram

4B ADDRESS
ADDR (0-7) 7 " | BUFFERS .8 7
AND - & ADR OUT
ADDR CTL —] LEVEL -7
SHIFTERS Voes
5, CONTRDL BUS N
H i
———————]
, GND cowen | PRGM
. Veg — SUPFLY . 1GND
CS (0-3) =gt PROGRAM REGULATOR Yoo
PULSE Vpp ——————= -t Vg [~ TG PROM
4 TIMING BUFFERS
CONTROL _| STAT [0.3) st Vp ———ie] AND LEVEL [V55
INTERFAGE SHIFTERS
——— = 5
Voes
.8
DATA IN (0-7) + -
]
DATA OUT {0.7) = + DATA
- BUFFERS
DATA OUT CTL AND - VA DATA (0.7} |

DATA OUT ENBL = ShiTERS
DATA IN CTL -
DATA (N ENBL -

PROM Programmer Module Specifications

System Interface: All inputs and outputs are TTL compatible and available at the ribbon connector at the top of the
module. Control for either “True’ or “False” data is provided. Direct interface to Intellec 8.

Control Software: Included in the Intellec 8 executive monitor,

Connector: Dual 50-pin on 0.125 in, centers, Connectors in rack must be positioned on 0.5 in. centers min.
Wirewrap P/N CB00100 from SAE
P/N VPB)1CS0EQDAT from CDC
Ribbon Type P/N 3417 from 3M

Board Dimensions: 6.18in, x 8.0 in, x 0.062 in. Board to be on 0.5 in. centers min.
Operating Temperature: 0°C to +55°C
DC Power Requirements: Vg = 46V £ 5%, loe = 0.8 A max., 0.5A typical

Vop = -9V £ 6%, Ipp = 0.1A max., 0.08A typical

Vp=+50V, 1p = 1.0A max.

120

|nte| Microcomputer Modules

imm6-70 UNIVERSAL PROTOTYPE MODULE

u Provides breadboard capahility for developing ® Capacity for 60 16-pin or 14-pin sockets or 24
custom interfaces _ 24-pin sockets

¥ Standard size of all microcomputer modules a® All power is bused on board. Pins on PC

= 3M 40 pin ribbon connector on top of module connector and pins to individual sockets are
provides direct 1/O connections uncommitted for maximum flexibility

® Will accept standard wirewrap sockets with 0.1 in.

x 0.3 in. or 0.1 in. x 0.6 in lead spacing

The imm6-70 Universal Prototype Module is a standard size microcomputer module with power buses which in-
terface with the Intellec 8. It provides a standard format for prototyping both customer interface and system
control. 1/0 interface is provided through ribbon-type connectors on top of the moduie.

The module will accept dual in-line packaged components having pin center-to-center dimensions of 0.100 inch
by 0.300 inch or 0.100 inch by 0.600 inch. These parts should be mounted in standard wirewrap sockets.

TR

T

TNEREERRIZNINREY

Universal Prototype Module

Universal Prototype Module Specifications

Capacity: 60 16-pin or 14-pin sockets or 24 24-pin sockets, Standard wirewrap sackets with pins on
0.100 in. by 0.300 in. centers or 0.100 in. by 0.600 in. centers. Board spacing dependent on
components and sockets used.

Connector: Dual 50-pin on 0,125 in. centers.
Wirewrap P/N CB00100 from SAE
P/N VPBO1CSOEDOA] from CDC
Ribbon Type P/N 3417 from 3M
Board Dimensions: 6.18in. x 8.0in. x 0,062 in. Board to be on 0.5 in. centers minimum,

171

|nte| Microcomputer Modules

imm6-72 MODULE EXTENDER

= Allows any module to be extended for ease of ® Standard dual 50-pin configuration for use with
debugging, testing, and maintenance all microcomputer modules

The imm6-72 Module Extender is designed to be used with the Intellec B system. It allows the operator to ex-
tend any module out of the cage for servicing whiie maintaining all electrical connections.

TR

Module Extender

Module Extender Specifications

Connector: ' Duat 58-pin on 0.125 in, centers, Connectors in rack must be positioned on 0.5 in. centers min,
Wirewrap P/N CBO0100 from SAE

P/N VPBO1CS0EQDA from CDC
Extending connector is mounted on board.

Board Dimensions: 6,18 in, x 8.0in x 0,062 in, Board to be on 0.5 in. centers minimum,

122

123

WESTERN

William T. Q°Brien
17291 rvine Blyd., Suite 262

U.S. SALES AND MARKETING OFFICES

U.5. MARKETING HEADQIARTERS

3065 Bowars Avenue
408;’246-?501 TWX: 910-338-0026

Telex: 34-6372

“Santa Clara, Californis 95051

MID-AMERICA

Wick Carrier

13333 M. Central Expressway
214/234-1109, TWX: 910-867-4763

Hank 8'Hara

3065 Bowers Ave

NATIONAL SALES MANAGER

40872467501, TWK 910-338.0026

Tefex: 38-6372

"Sants Clara, Galifornia 95051
U.S. REGIONAL SALES MANAGERS" OFFICES

NORTHEASY

Jarnes Saxton

2 Militia Drive, Soite 4
B17/861-1136, Telex: 92-3493
*Lexington, Massachusetts 02173

*Daflas, Texas 75231

714/838-1126, TWX: 914-598-1114 Suite 110
*Tustin, Calilornia 92680
ARTFONA FLORIDA
Sales Enginesring, 1nc. Semtronic Assaciates, The.
7155 E. Thomas Road, No. 6 P.0. Box 1449
6027945-5751, TWX: 910-050-1288 305/771-0010
Scottudale 55252 Pampano Beach 33061

CALIFORNIA
Intel Corp.
3065 Bowers Ave
40872467501, TWX 910-338-0026
*Sants Clara 9505
Intel Corp.
17291 irvine Blvd.. Suite 262
714/838-1126, TWX: 910-585-1114
“Tustin 92680
Earle Associates, Inc.
4433 Convay Street, Suite A
714/278-5441, TWX: 910-335-1585
San Diege 32111

COLORADO

Intel Carp.

1341 South Lima St.
303551125
*Aurora 80010

CANADA
Multilek, Ing,
4 Garran Street
613/825-4695
Dttzwa, Datario K2C 3H2

*Dirgct intsl Office

Eemtronic Associates, Inc.
685 Chelsea Raad
305/831-8233

Longwood 32750

ILLINOIS

Mar-Con Associates, Inc.
4836 Main Streat
312/675-6450

Skokie 60076

MARYLAMD
Barnhill and Assotiates
1931 Greenspring Drive
301/252-5610
Timonfum 21093
Barnhill and Associales
P.0. Box 251
30172625610
Glon Aem 21057

MASSACHUSETTS
Intel Corp.
2 Militia Brive, Suite 4
617/861-1136, Telox: 82.3433
*Laxington 02173
Datcom
7A Cypeess Drive
617/273-2990
Burlington 31803

U.S. SALES OFFICES

MICHIGAN
Sheridan Associates, Ing.
33708 Grand River Avenue
3137477 3800
Farmington 48024

MENNESDTA

Intel Carp.
800 Southeate Office Plaza
5001 West 78th Street
612/835.6722

"Bloomington 55437
E.C.R., Inc.
5280 W Tdth Stre
612/831.4547, TWX 910-676-3153
Minneapolis 55435

MISSOURI
Sheridan Associates, Inc.
110 §. Highway 140, Suite 10
314/837-5200
Florissant 63033

NEW IERSEY
Addem
Post Oﬁ‘lce Box 231
516/567-5300
Keasbey 082332

NEW YORK
Ossmann Components Sales Corp.
395 Cleveland Drive
716/832-4271
Buifalo 14215
Addern
37 Pionaer Blvd,
516/567.5500
Huntington Station, L.1. 11746

MiD-ATLANTIC
Hank Smith

NEW YORK {Continued)
QGssmann Components Sales Corp.
280 Metra Park
716/442.3290
Rochester 14623

Qssmann Cnmponents Sates Corp.
1311 Vestal Parkway E.
£07/785-9949

Yestal 13850

Ossmann Components Sales Corp.
132 Pickard Building
316/454-4477

Symacuss 13711

QJssmann Components Salas Corp.
411 Washington Avenua
914/338-5505

Kingston 12401

HORTH CAROLINA

Barnhill and Assotiates
6030 Bellow Strest
919/787.5774

Raleigh 27602

OHIO
Sheridan Assogiates, Ine.
10 Knollerest Drive
513/761-5432, TWX: 810-461-2670
Cincinnati 15237

Sheridan Associates, Inc.
7800 Wal? Street
216/524-3120
Clevedand 34125
Sheridan Associates, 1nc.
Shiloh Bldg., Suite 250
5045 Morth Main Street
513/277-8911

45405

30 South Valley Road
215/647-2615, TWX: 510-663-7763
*Panli, Pennsylvania 19301

PENNSYLYAMIA
Yantage Sales Company
21 Bala Avenue
215/667-0990
Bala Cynwyd 19004
Intel Carp.
30 South Valley Agad
215/647-2615, TWX: 510-E68-7768
*Paoli, Pennsylvania 19301

Sheridan Assotiates, Inc.
4268 North Pike,

North Pike Pavilion
412/373-1070
Monroeville 15146

TEMNESSEE
Barnhill and Associates
208 Chicasaw Drive
§15/928-0184
Johnson City 37601

TEXAS
Evans and McDowell Associates
13333 M. Centra! Expressway
Room 180
214/23B-7157, TWX: 910-B67 4763
Dallas 75222

VIRGMIA
Barnhilt and Associates
£.0, Box 1104
703 /846-4624
Lmchburg 24505
WASHINGTON
50.R2 Products and Saias
14040 N.E, Bth Stre

206/747-7424, TWX 910 443-2305
Bellowae 38007

EUROPEAN MARKETING OFFICES

DENMARK FRANCE ENGLAND GERMANY
John Johansen Bernard Giroud Keith Chapple Erling Helst
Intel Qffice intel Office {nte! OHice Intel Office
Vester Farimagsgads 7 Cidex R-141 Broadfield Housa WoHratzhauserstrasse 169
45-1-11 5644 Telex: 19567 gl] G;? -B0-75, Telex: 27475 ;?Bjit;le2$ 'I;Wn;;;?;&a ;6983323, TEIE;‘.lﬁ-ZIZSTO
0K 1806 Copenhagen V 4.534 Rungis ol ey.'mef:rxli urchen
INTERNATIONAL DISTRIBUTORS
AUSYRALIA DENMARK GERMANY NETHERLANDS SWEDEN .
A.). Ferguson (Adejaide) PTY, Ltd, Scandinavian Semicanduct Alfred Neye Enstachnik GmbH Inelco N.¥. Nordisk Elektronik AB
125 Wright Stroet Supply A/S Schillerstrasse 14 Waerdestein 205 Fach
51-6895 20, Nannasgade 041 06/612-1, Telas: 0213590 Posthus 7815 08-24.83.40, Telex: 10547
Adelaide 5000 Telex: 19037 2085 Quickborn-Hemburg 0204416 66, Telex: 12534 $-103 Stockholm 7
AUSTRIA DK-2200 Capenhagen N Amstordam 1011 SWITZERLAND
Bacher Elektronische Gorato GmbK F":{“"? o ls::fs:s ta No:w:vk Erktont (ors A7 Industrade AS,
Maidlinger Haupstrasse avitinna e ardisk Eiektronik (Narge
02229301 43, Telex: (01} 1532 0. Box 468 5o Jabatinsky Road Mustads Yei 1 Postcheck 80 - 21190
A 1120 Vienna 90-61451, Telax: 12426 25 28 39, Telox: TSEE-1L 333192 502590, Telex: 16963 01-60-22-30, Telex: 56788
BELGILM SF 00100 Helalnki 10 Ramat - Gan 52 454 Oso 2 8021 Zurich
Inelco Belgium S.A. FRANCE ITALY SOUTH RERICA UNITED NINGDOM
Avenue Val Duchesse, 3 Tekelec Airtronic E‘!edra 35 - 3 Elsctrenic Building E| Walmore Electronics Lid.
{02) 60 Q0 12, Telex: 25441 Cite des Bruyeres (6‘2)‘-‘;';5’_1)";'}3,“ Visdana gsng Box x 4609 0181 5 [1)};1“? Lﬂamvﬂon Street
B-1160 Brunsltes Rug Carle Vernet 50122 Milane Pruiuf'sa Telex: 30181 01-696.0201, Telex: 28752

625-02-35, Tetex: 25997
92 Sewres

QRIENT MARKETING OFFICES

ORIENT MARKETING
HEADQUARTERS
JAPAN

Y. Magami

Intel Japan Carp.

Kashara Building

1-B-10 Uchikanda, Chiyoda-Ku
03-295 5441, Telex: 7§1-28426
Tokyoe 101

ORIENT DISTRIBUTORS

JAPAN

124

Pan Elektron [nc.

Ma. 1 Higashikata-Machi
0a5-471-8321, Telex: 781-4773
Midori-Ku, Yokohama 226

Londont WC2H 9BS

WEST

U.S. DISTRIBUTORS

MID-AMERICA

NORTHEAST

SOUTHEAST

ARIZONA

Hamiitan /Awnet Electronics
2615 South 2)st Street
602/275.7851

Phoenix 85034
{ramer/Arizona

2816 N. 16th Street
602/263-1112

Phoenix 55008

CALIFORNIA

Hamilton/Awmet Electronics
° 340 E. Middlafield Road

415/961.700(0

Mountain Yiew 34041

Cramer/San Francisco

720 Palomar Avenue

408/739.3011

Sunnywale 94086

Hamilton Electre Sales

10912 W. Washingtan Elwd.

213/870-7171

Culver City 20230
Cramer/Los Angeles
1720] Daimler Sfreet
714/379-3000

lrvine 92705

Hamilton/Aunet Elactronics
8817 Complex Drive
714/279-2421

San Diego 32123

Cramer/San Dingo
8975 Complex Drive
714/565-1881

San Diego 92123

COLORADO
Cramer/Cenver

5465 E. Evans Place at Hudson

303/758-2100
Denver 30222

Hamilton/Avnet Electronics
5921 N. Broadway
303/534-1212

Denver 80216

NEW MEXICO

Cramer/New Mexico

137 Vermont, N.E.
505/265-5767
Albuquarqgua 37108
Hamilton/Aynet Electronics
2450 Baylor Orive 5.E.
505/765-1500
Albugiveryue 37117

OREGON

Almac/Stroum Electronivs
8882 S_W. Canyan Rpad
503/292-3534

Portland 97225

UTAH

Cramer/Utah

391 W, 2500 South
B301/487-3681

Salt Eake City 84115
Hamilten /Awmet Electronics
647 W. Hillinis Road
801/262-8451

Salt Lake City 34115

WASHINGTON

Hamilton /Avnet E|ectronics
13407 Narthrup Way
206/746-8750

Bellewue 93005

Almacy/Stroum Electronics
5811 Sixth Avenue South
206/763-2200

Seattle 93108
Cramer/Seattle

5602 Sixth Avenue South
20G/762-5755

Swattle 98108

ILLINOIS
Cramer/Chicago
1911 South Busse Road
312/593-3230
Mt. Prospect 60056
Hamtlten/Awnet Electronics
3901 North 25th Avenue
312/678-6310
Schiller Park 60176

KAMSAS
HamiitanfAvRet Electronics
37 Lenexa Industrial Center
913/888-8900
Lepuxa 66215

MICHIGAN

Sheridan 3ales D,

33708 Grand River Avenue
313/477-3800

Farmington 42204
Cramer/Detroit

131593 Wayne Road
313/425.7000

Livonia 48150
Hamiltgn/Awnet Electionics
12870 Farmington Road
313/522.4700

Livonia 48150

MINNESOTA
Cramer/Bonn
7275 Bush Lake Road
512/941.4860
Edina 55435
Hamilton/Avnet Electronics
2850 Matro Drive
612/854-4800
Minneapolis 55420

Industrial Components, Inc.

52580 West 74th Street

612/831.2666

Minneapotis 55435
MISSOURI

Sheridan Sales Ce,

110 South Highway 140, Suite 10

314/833-5200

Florissant 3033
Hamilton/Avnet Electronics
392 Brookes Drive
314/731-1134

Mazelwood 53042

Cramer/Tri-States, Inc.
666 Redna Terrace
513/771.6441
Cincinnati 45215

Hamilton/Awmet Electronics
118 West Park Road
513/433-0610

Dayton 45459

Sheridan Sales Co.

10 Knollcrest Drive
513/761-5432
Cincinnatl 45237
Cramer/Cleveland

5335 Harper Road
216/248-7740
Cleveland 44133
Sheridan Bales Ca.
7300 Wall Street
216/524-8120
Cleveland 43125
Sheridan Sales Co.
Shiloh Bldg., Suite 250
5045 North Main Street
513/277-B911

Dayton 45405

TEXAS

Cramer Electronics

2970 Blystane
214/350-1355

Dallas 75220
Hamiltan/Awnet Electronics
1445 Sigma Road
214/661-8661

Dallas 75240

Hamilton /Avnet Elecironics
216 West Clay
713/526-4661

Houston 77013

WISCONSIN

Cramer /Wisconsin
430 West Rawson
414/764-170D
Oak Creak 53154

125

CONNECTICUT

Hamilton/Awnet Electronics

643 Danbury Read
203/762-0361
Geovgetown 06829

Cramer/Connecticut
36 Dodge Avenue
203/235.5641
North Haven (16473

MARYLAND

Cramer/EW Baitimore
922-24 Patapsca Avenue
30)/358-0100
Baltimors 21230

Cramer/EW Washingten
16021 Industrial Drive
301,948-0110
Gartharsberg 20760

Hamiitan/Awmet Elect
7255 Standard Drive
301/796-5000
Hanower 20175

MASSACHUSETTS
Cramer Electronies, Inc.
85 Wells Avenus
617/969-7700
Mewton 02153

Hamilton/Avnet Electronics
185 Cambridge Street
617/273.2120

Burlington 01803

NEW JERSEY

Hamillon Electra Sales
218 Littls Falls Road
201/235-83800

Cedar Grove 07009
Cramer/New lgrsey
No, T Barrett Avenue
201/935-5600
Moonachie 07074 |

Hamiiton/Avnet Ei its

ALABAMA

Cramer/EW Huntsyilla, Ing.
2310 Bob Waltace Avenue
205/939.5722

Huntsville 35805

FLORIDA

Cramer/EW Hoilywaod
4035 North 25tk Avenue
305/923-5181

Hollywood 33020
Hamilton/Avnet Electronics
4020 North 29th Avenue
305/925-5401

Hollywood 33021
Cramer/EW Odando

345 North Graham Avenue
305/894-1511

Orfande 32814

GEDRGIA
Cramer/EW Atlanta

3923 Qakeliff Industrial Conrt

404/448-9050
Atlanta 30340

Hamilten/Aynet Electronics

6700 Interstate 85 Actess Road

404 /448-0800
Morcross 30071

NORTH CAROLINA
Cramer Electronics
938 Bnrke Street
519/725-8711
Winston-Satem 27102

CANADA

BRITISH COLUMBIA

*L.A. VARAH Ltd.
2077 Aiberta Sireet
808/873.3211

113 Gaither Drive

East Gata Industrial Park
60%/234.2133

Mt. Laurel 03057

Cramer/Pennsylvania, Inc.
7300 Route 130 Narth
609/662-506]
Pannsauken 02110

HEW YORK

Cramer/Binghamton
3220 Watson Boulevard
607 /7546661

Endwell 13760

Cramer /Rochester

3000 Winton Read South
716/275-0300
Rochester 14623

Cramer/Syracuse

6716 loy Road
315/437-B671

East Syracuse 13057
Hamilton /Aynet Electronics
5400 loy Road
315/437-2642

Syracuse 13057
Cramar/Long isfand

29 Oser Avenue
516/231.5600

Hauppauge, L), 11787
Hamilten/Avnet Electronics
70 State Street
H16/333-5800

Westbury, L), 11590

PENNSYLVANIA
Sheridan Saies Co.
4268 North Pike
Morth Pike Pavilion
4127373-1070
Muanroevllle 15146

ONTARIO
Cramer/Cangada

820 Alness Avenus, Unit No, 9

Downsview

#£18/661.9222

Toronto 332
Hamilton/Avnet Electronics
5291 Dormain Rd., No. 19
416/677-7432

Mississanga
Hamilton/Avnet Electronics
&80 Lady EHen Place
613/725-3071

Ottawa

QUEBEC
Hamilton /Avnet Elecfronics
935 Monte De Liesse
514/735-6393
St. Lawrent, Montreal 377

Ordering Information

1. The 8008 {CPL) is availabla in ceramic only and should be
ordered as CB008 or C2008-1.

2, SIM8.01 Prototyping System
This MCS-8 systemn for program development provides camplete
interface between the CPU and ROMs and RAMs, 1702A eiac-
trically programmable and erasable ROMs may be used for the
program development. Each board contains one 80038 CPU,
1tk x 8 RAM, and sockets for up to eight 170243 {2k x 8 PROM],
This systern should be ordered as 5iMB8-01 [the number aof
PROM:s shoutd also be specified).

3, Memory Expansion
Additional memary for the 8008 may be developed fram indivi-
dusl memory compoenents. Specify RAM 1101, 1103, 2102;
RCM 1702, 1302,

4, MP7-03 ROM Programmer
This is the prograrmmer board for the 1702A. The 1702A control
ROMs used with the SIM8-01 for an automatic programming
system are specified by pattern numbers ADBB0D, ADB&ET, ADBG3.

5. MCB8-10 System [nterface and Control Module
The MCBE 10 is a complete chassis which provides the intercon-
nection between the SIM8-01 and MP7-D3. In addition, the
MCB8-10 provides the 50Vrms power supply for PROM program-
ming, complete output display, and single step control capability
for program development,

6. Bootstrap Loader
The same control ROM set used with the PROM pragramming
system is used for the boatstrap loading of programs inta BAM
‘and execution of programs from RAM. Specify 1 702A PROMs
programmed to tapes AO0BB0, AQ861, and ADBG3.

Packaging Information

10.

. SIM8 Hardware Assembler

Eight PROMs containing the assembly program plug inta the
SIMB-01 prototyping board permitting assembiy of all MC5-3
software. To order, specify C1702A/844 set.

. PL/M Compiler Software Package

Programs for the MCS-8 may now be developed in a high leve!
language and compiled to BOOB machine code. This program is
written in FORTRAN 1V and is available via time sharing service
or directly from Intel,

. MCS-8 Cross Assembiler and Simulator Software Package

This software program converts a list of instruction mnemanics
inta machine instructions and simulates the execution of instruc-
tians by the 8008. This program is written in FORTRAN 1V
and is available via time sharing service or directly from Intel.

Intellec 8
The intellec B, Bare Bones 8, and microcomputer modules must
be specified individually by product code,

imm8-80A (ntellec 8 {complete table top system)

imm8-81 Bare Bones 8 {complete rack mountable system)

immB-82 Central Processor — includes 8008-1 CPU crystal
clock and interface logic

immG-26 PROM Memory — includes sockets for sixtean
1702A PROMs

immB-28 ARAM Memory — 4k x B static memaory

imm8-60 Input/Output — 4 input and 4 autput ports

imm6-76 17024 PROM programmer and control software

imm&-7¢ Universal prototype module

imm6-72 Module extender

i

CERAMIC PACKAGE OUTLINE

ALTEANATE #IN -1 IDENT.
1IF HO NOTCH AT END OF PKG) "~

Ll

B — = g — o a — g e — e —)

126

MCS-8"" Instruction Set

INDEX REGISTER INSTRUCTIONS
The load instructiors do not aMect the Hag flip-flops. The increment and decrement instructions atfect all flip-flogs axcept the carry,

M LA INSTRUCTION CODE
MNEMONIC | STATES DyDg OgD,03 Dply 0, DESCRIPTION OF OPERATION
REMMAED .
Migeg s 11 DDOD § 5 B | Losd index register £y with the content G indes ragter ry.
T2 Lrm 18} B DO D T 1 1 | Load indew ragisier r wath 1he content of memory regqister M
L TR 11 T 1 5 £ S [Load memory reggter M weih the content of ndex register T,
ETRT (st oo bno VU0 T g e register 5 with daip B, B,
3 8 E B B B BB R
LMl 9 00 1Tt VT8 e memary registar M with data B . . B,
BEg BBB_BBE |
1Ne 15 oo oGoD 0 0 0 [increment the content of index regicter rir # A
GCr 5] O o oDDo O 0 1 |Decrement the comtent af ingex register ¢ ir 3 A),
ACCUMULATOR GROUP INSTRUCTIONS
The result of the ALU mstructions affect alt of the flag flip-Hops. The rotate instructions affect onfy the carry flip-flop,
ADr [o) § 5 5 [Addthe cantant of index remistar 1, memary register M, or dats
ADM [E]} 10 L= 1 1 1 | &, Broesccurmulator. &n nuerfow |carryl sets 1he carry
ADL [) RG] 10 D | fupiop
B AE EBE_BEEH
Al 5] 10 9 0 5 5 5 | Addihe cantsnt ol index register r, memary register M, o date
ACM 13 1 0 00 3+ 1} 1_|8...B towheaccumulaios with corry, An averflow learryt
=) =] B0 00 1 1080 seuihecry fipflop
B B EBE B B B
Slr 151 10 o910 § 5 5 Subtract the contem of index regisier r, mMemaory registar M, or
SUM 18 10 010 1 1 1 _jdaraB .. B from the acsumulater. An underfion {barrowt
U \ 181 90 o010 1 0 4 Usersehe caery flipfloo,
a e E BB BE E B
58 15l 1 Q0 3 11 5 5 8
SBM 1Bl 10 01 1 1 1 Subrracr the conter of index regisier r, memory regester M, or data
SHI 81 o0 01 1 1 0 O |datad ., Blramthe accumulator with bocrow, An underd low
BE B BB E B g @ |lborow] segche cerey llipflop.
MDr [1:3] [10 L] “‘5 III . 5 5 & _ Compute the logicgl AND of the sontent of index register r,
MNDM i3 ! 10 T 00 111 memory register M, or data B ., . B with rhe ageumulatar,
HDI 18] [T 1] 1090 100
. B B E BB BE BB
ARr " ish 10 1.4 1 5 5§ 5§ |Compuwe the EXCLUSIVE DR of the comwnt af index register
XAM A8y 10 101 P 1 1 [r, nernory repister M, or data B . B with Lha sccumulator, i
xRl 1€} L] 161 100
BB B B8 EEBE
ORr 5} 1.0 110 5 5 5 [Compue the INCLLISIVE OR of the content of index regsier
ORM 15 10 1110 1.1 1 [r, memowey register m, or data B . B with the accumularng: ,
ORl [[:1] 00 118 100
BB BE B E EEEB
CPr &l 10 111 5 5§ § [Cormpare the content of index register r, memaey register M,
CPM 18) 10 111 1 1 1 |ordaaB ., .8 with the accumulater. Tha cantent of the
CF| 8 o0 111 1 0 0 |accumulator is unchanged.
B E B BER E 6 B
ELC [5} oo 0o 0 1 0 |Rotare the @ntent of the accunmlater kefe,
RAC 15} 00 901 0 1 0 |Rotatzihe content of the accurmulator right,
RAL 151 00 01ug 0 1 0 |Rotate the content of thi acoumulator 1#11 thraugh the carry,
RAR 13 L] 011 O 1 0 |Rotate the contant &f the accumulatet right through the camy,

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

4l gap [REH o1 X X X 1 0 0 |Unconditionally jumg to memory address Bz .. Bglz .. Bg.
Bz 62 ByBzBz BBy By
. X X BgBH3By ByBaby
18] JFc 1% or 11} 01 0 GGz 0 00 |Junp o memory address By .. BBz .. By if the condition
BpBy Bp BBz B Bz By (tipflop s falwe. Othenwaze, extcute The next instruction in sequence,
X % Bz Baby BgBgB3
ITe [&ar 111 [1 Ca€z 0 0 9 |Jumpiomemory addeess B, BgBz . ., Bg if 1he condirion
By By By By By By Ba Bo |flipdlop ¢ is trus. Otherwise, sxtcute The next instruchion in siquenos.
W X ByB3By BaB3By
caL 111 g1 X KX 1.1 0 (W i v el the at memory address By .. .
By By Bz Bg Bg Bz Bz By |BgB2 . .. Bp. Sawve the current sodeess [up one level i ihe stack].
X X ByBzBy ByByBy
CFc Bar 11} a1 0 €4z O 1 0 |Callrhe subroutine ar memaony address By ., BaBs .. By il the
BBz By By By By Bz B2 |condition Mig-flop o ks ki, and save the curremt ackdress [up one
XX Bg By By By By By |lewel in the stack } Ditherwise, axacute tha next instruction in sequence,
CTc [EEALD [1 CqCy D 1 O |Caltthe subrouting al memary address By , .. BgB2 . . By if the
BaBz EaBpBz B85 By Jeondition Hipflop ¢ i wrue, and save the current sddress (up ane
X X By B3 By By B Bz |hewal in the stack). Othervvise, executs the Next ngtrsction n shquence,
RET 51 a0 XXX 1 1 1 junconditionally retuen {dawn one level in 10 stackl_
AFg {3or Bl G 0 Q CqC3 0 1 1 [Return ldewn one level in the siackl if the condition Flip-flog ¢ i3
false, Otherwise, axecine The Next IStFUCION iN SeguEnch
ATc (3 or 5l 00 1 €C4Cz 0 1 § (Feturn {dawn ong leved in the siackl il the conditan flip-llog c is
true. Othetwice, axecube The nexl iRIILCTAR (1 Bguence
RST 1] 00 A A & 1 & t |Calt ihe subroutine a1 memory address AAA000 hlé one tmval i the stackl.
INPUT/OUTPUT INSTRUCTIONS
e] 01 00 M MM |Red the content of the seiécted input port (MMM into the
LT P T
[T 18 0 R R M MM 1 {¥re (he comient ol the scnumukion ihie the salected oulpul
port IAAMMM, RA 4 00
MACHINE INSTRUCTION
[T [0 % 0 0 O 0 0 % |Erer the STOPPED mate and remain theve until interrupied,
I HLT | {4 1t 111 1t 1]Enlnr the STOPPED state and remain there unnl wnterrupres . -
NOTES:
11 555 = Source Indax Register These registers, f, are denignated Alscturnuiator -DOO, - .
DOD = Dectination hydex Fegister B{OOT), CI010), D401 14, E[100), HOOME, L1100,
12} Memory registers are addreszed by the condents of regstera H & L.
& Addicional bytes at mstruction are designgred by BEBBBEBE.
] X« "Dan‘t Care™.
150 Flag thp-tlops are detined vy C4C3: carry (00-overtiov or underflow], zero (1-resulr s zerol, sgn [10-MEE of resyln is 1)

party [11.parmy is fvenj

intel® Microcomputers. First from the beginning.

INTEL CORPORATION « 3065 Bowers Avenue, Santa Clara, California 95051 « {408) 246-7501

51974/Printed in U.S.A./MCS-056.0574.25K

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	xBackA
	xBackB

