ITI(SG Microcomputer Set Inte| -

NOVEMBER 1973

8008 - -
8 Bit Parallel
Central Processor Unit

USERS MANUAL

' Including:
:n@!lec“

M:crocomputer Modules |

\\\\\\\\\\\\\\\\\\\\\\\

& Intel Corp. 1973

INTEL
SUPPORT
MAKES
SYSTENI
BUILDING
EASY.

The MCS-8™ parallel 8-bit microcomputer set is de-
signed for efficient handling of large volumes of data.
It has interrupt capability, operates synchronously or
asynchronously with external memory, and executes
subroutines nested up to seven levels. The 8008 CPU,
heart of the MCS-8, replaces 125 TTL packs, With it
you can easily address up to 16k 8-bit words of ROM,
RAM or shift registers. Using bank switching techniques,
you can extend its memory indefinitely.

The PL/M™ High Level Language is an easy-to-earn,
systems oriented language derived from IBM’s PL/I by
Intel for programming the MCS-8 and future 8-bit micro-
computers, It gives the microcomputer programmer the
same high level language advantages currently available
in mini and large computers. By actual tests, PL/M pro-
gramming and debugging reguires less than 10% of the
time needed for assembly language. The PL/M compiler
is written in Fortran |V for time-share, and needs little
or no alteration for most general purpose computers.

intellec™8 Development Systems provide flexible, inex-
pensive, and simplified methods for OEM product de-
velopment. They use RAM for program storage instead
of ROM, making program loading and modification
easier. The Intellec features are:

#® Display and Control Conscle

® Standard DMA channel

® Standard software package

® Expandable memory and |/0
® TTY interface

® PROM programming capability

The Intellec contro! panel is used for system monitoring
and debugging. These features and the many standard
Intellec modules add up to faster turn around and re-
duced costs for your product development.

And, There’s More ., ...

Intel’s Microcomputer Systems Group continues to de-
velop new design aids that make microcomputer system-
building easier. They will provide assistance in every
phase of your program development.

For additionat information:

Microcomputer Systems Group
INTEL Corporation

3065 Bowers Avenue

Santa Clara, California 95051
Phone {408) 246-7501

u il

intel
dglivers.

8008
8 Bit Parallel Central Processor Unit

The 8008 is a complete computer system central processor unit which may be interfaced with memories
having capacities up to 16K bytes. The processor communicates over an 8-bit data and address bus and
uses two leads for internal control and four leads for external control. The CPU contains an 8-bit
parallel arithmetic unit, a dynamic RAM (seven 8-bit data registers and an 8x14 stack), and complete
instruction decoding and control logic.

Features
m 8-Bit Parallel CPU on a ' m Directly addresses 16K x 8
Single Chip bits of memory (RAM, ROM,
® 48 Instructions, Data or S.R.) . |
Oriented ® Memory capacity can be
indefinitely expanded
® Complete instruction through bank switching
Decoding and Control using I/0 instructions
Included ~ ™ Address stack contains
® Instruction Cycle Time— eight 14-bit registers
12,5 us with 8008.1 or 20 1S (including program counter)
with 8008 which permit nesting of
- : subroutines up to seven
"m TTL Compatible (Inputs, | levels
Outputs and Clocks) m Conlains seven 8-bit
_ . registers
N Can be used with any type -
~or speed semiconductor # Interrupt Capability
“‘memory in any combination ® Packaged in 18-Pin DIP
BLOCK DIAGRAM PIN CONFIGURATION
gn : ACCUMULATOR, DATA \J
AP QRS PR0S C mo—{t oo wrernwer
Dy =+t 0 [Dy Qetsmf 2 17 f#—0 READY
323)] D, Owu]2 16 fu—0 0,
D, ~—n - 1 : D04 yreL 15 f+—0
D, - ! DnTA_D4°"'—"5 8008 14 |—»O SYNC
' BUS | D, Owwmlg 130 §,
S INSTRUCTION DECODING |at Timing D, Ot 7] e S'}STME
AND CONTROL . 3, O & 105,
RDY — l ‘L | D, O]o 10}—0 v
s{ 8, s{ 1 J;z SYNC

intallec
A NEW, ERSY AND INEXPENSIVE WRY
TO DEVELOP MICROGOMPUTER SYSTEMS

From Intel, the people who invented the microcom-
puter, comes a new, inexpensive and easy way fo
develop OEM microcomputer systems. The wide-
spread usage of low-cost microcomputers is made
possible by Intel's MCS-4 four bit. and MCS-8 eight
bit, microcomputer sets. To make it easier to use
these microcomputer sets, Intel now offers complete
4-hit and 8-bit modular microcomputer development
systems called Intellec 4 and intellec 8. The Intellec
modular microcomputers are self-contained expand-
able systams complete with central processor,
memory, /O, crystal clock, TTY interface, power
supplies, standard software, and a control and display
console.

The Intellec microcomputer development systems
feature:
» 4-bit and 8-bit parallel processor systems
= Program development using RAMS for easier
loading and maodification
* Standard DMA channel
» Standard software package
* Crystal controlled clocks
* Expandable memory and 1/Q
« Control panel for system monitoring and program
debugging
+ PROM programming capability
« Less time and cost for microcompuler systems
development

The Intellec 8 is an eight-bit modutar microcomputer
development system with 5K bytes of memory. ex-

pandable to 16K byies. At the hgart of this system is
the intel 8008 CPU chip which has a repertaire of 48
instructions, seven working registers, an sight level
address stack, interrupt capability and direct address
capability to 16K bytes of memory.

The intellec 4 is a four-bit modular microcomputer
development system with 5K bytes of program
memory. At the heart of this system is the Intel 4004
CPU chip with a repertoire of 45 instructions, sixteen
working registers, a four level address stack. and the
capability of directly addressing over 43K bits
of memaory.

Standard Microcomputer Modules. The individual
modules used to develop the 4-bit and 8-bit micro-
computer systems are also available as off-the-shelf
microcomputer building blocks. These include 4-bit
and 8-bit CPU modules. 1/0 Modules, PROM
Programmer Modules, Data Storage Modules.
Contraol Modules, a Universal OEM Module and other
standard modules for expanding the Intellec systems
or developing pre-production systems.

With these modules you can tailor the components
to your specific microcomputer needs, buying as little
or as much as you need to do the job.

Write for complete details on the Intellec modular
microcomputer development systems. They will be
available in 120 days, but plan now. Intel Corporation.
3065 Bowers Avenue, Santa Clara, California 95051
{408) 246-7501.

n
delivers.

Ad Reprint, June 1973

See Appendix VI

CONTENTS

Page No.
i Introduction A 3
1. Processor TImMHNG L e e 4
AState Controd Coding .« e e e 4
B Timing . . . e e e e e e e e 4
C.CycleControl Codingttt et i 5
1, Basic Functional Blocks e 7
A. Instruction Registerand Contrel 7
B MmOy . . L e e e e, 7
C. Arithmetic/Logic Unitt o e e e e e 7
D O BUffer . . e e e 7
v, Basic Instruction Set P e 8
A. Data and Instruction Farmatst e e, 8
B. Summary of Processor Instructions. I 8
C. Complete Functional Definition« . i i vttt i st i v e i e e ae e 10
D. Internal Processor Operation e e 15
V. Processor Control Signalso e e]
A nterrupt Signal . .. L e i e e e 18
B. Ready Signat e e 20
VI, Electrical Specifications @ .t [21
A, DC and Operating Characteristicst enn.. 22
B. AC Characteristics e et e e 23
C. Timing DIagram e i e e e e e B
D, Typical DC Characteristics e e e 22
. E. Typical AC Characteristics e e e 23
Vil The 5IM8-01 — An MCS-8 Micro Computerc..... L. 24
A.SIMB-01 Specificationsottt ittt e e e e e e 25
B.SIMB-0T Schematico e e e e 26
C. Systemn Descriptiont e e, 28
Do MNormal Operation e e et e e e 29
E. SIMB-01 Pin Descriplion ettt et aiaaae e 3
VIIL MCS-8 PROM Programming SYstemttt 33
A General System Description and Operating Instructions 33
BE. MP7-03 PROM Programmert ettt et cmennn 39
C. Programming System Interconnection it iu i in . 40
IX, Micro Computer Program Development i o 44
A MCS-8 Software Library e e 44
B. Devetopment of a Microcomputer System.t i i n it e 48
C. Execution of Programs from RAM on SIMB-01 Using
Memory Loader Control Programs ., e e e 47
X, MCBS-10 Microcomputer Interconnect and Control Module, 49
xi. Appendices L L i e e e e e 56
I. SIM8 Hardware Assemblerttt 56
Il. MCS-8 Software Package — Assembleru.ouu... FA|
A, Agsermbler Specifications i e e e 71
B. Tymshare Users Guide for Assemblyt uunr.. 81
C. General Electric Users Guide for Assembly 31
D. Sample Program Assembly 82
I1l. MCS-8 Software Package — Simulator u... B84
CAINtroduCTion L L e et 84
B. Basic Elements i e 84
C.INTERP/B Commands it e ae s 84
D. I/C Formatting Commands0t unent o ee cnareee e e 88
E. Error Messagest i e 89
o EXamMPIeS i i e i e e e 90
IV. Teletype Modifications for SIMB-01 95
V. Programming Examplest e £}
A, Sample Program to Search a String of Characters 98 -
B. Teletype and Tape Reader Contral Program 09
C. Memory Chip Select Decodes and Output Test Program 29
D. RAM Test Program ittt ettt e e e i e g -
E. Bootstrap Loader Program vt v et ot i i i e 100
V1. Intellec 8, Bare Bones B, and Microcomputer Modules 103
XII. Ordering Information 124
A Sales Offices L. . e e e e 124
B. Distributors . .. i e e e 125
C. Ordering Information/Packaging Information ccuu.... 126

NOTICE: The circuits contained herein are suggestad applications anly, Intel Corporstion makes no warranties whatsoever with respect to the com-
pleteness, accuracy, patent or capyright status, or applicability of the cirguits 10 8 user’s requirements, The user is cauticned to check these tircuits
for applicability to his specific situation prior o wse. The usar is further cautionad that in the event a patent or cogyright claim it made against him
as a result of the use of these circuits, intel shall have na liability te user with respect to any such claim,

8008 Photomicrograph With Pin Designations

. INTRODUCTION

The 8008 is a single chip MOS 8-bit paraliel central processor unit for the MCS-8 micro computer

system. A micro computer system is formed when the 8008 is interfaced with any type or speed

standard semiconductor memory up to 16K 8-bit words. Examples are INTEL’s 1101, 1103, 2102 (RAMs),
1302, 1602A, 1702A (ROMs), 1404, 2405 {Shift Registers).

The processor communicates over an 8-bit data and address bus (D, through D) and uses two input leads
{(READY and INTERRUPT} and four output leads (Sg, 54, S5 and Sync} for control. Time multiplexing
of the data bus allows contro! information, 14 bit addresses, and data to be transmitted between the

CPU and external memory,

This CPU contains six 8-bit data registers, an 8-bit accumulator, two 8-bit temporary registers, four flag
bits, and an 8-bit parallel hinary arithmetic unit which implements addition, subtraction, and logical
operations. A memory stack containing a 14-bit program counter and seven 14-bit words is used internally
to store program and subroutine addresses. The 14-bit address permits the direct addressing of 16K words

of memory {any mix of RAM, ROM or S.R.}.

The control portion of the chip contains logic to implement a variety of register transfer, arithmetic
control, and logical instructions, Most instructions are coded in one byte (8 bits); data immediate in-
structions use two bytes; jump instructions utilize three bytes. Operating with a 500kHz clock, the
8008 CPU executes non-memory referencing instructions in 20 microseconds. A selected device, the
8008-1, executes nen-memory referencing instructions in 12.5 microseconds when operating from an
800kHz clock.

All inputs {including clocks} are TTL compatible and all outputs are low-power TTL compatible.

The instruction set of the 8008 consists of 48 instructions including data manipulation, binary arith-
metic, and jump to subroutine, .

The normal prograi’n‘ flow of the BOO8 may be interrupted through the use of the “INTERRUPT”
control line. This allows the servicing of slow |/Q peripheral devices while also executing the main
program. :

The “READY" command line synchronizes the 8008 to the memory cycle allowing any type or speed
of semiconductor memory to be used.

~ STATE and SYNC outputs indicate the state of the processor at any time in the instruction cycle,

i, PROCESSOR TIMING

The 8008 is a complete central processing unit intended for use in any arithmetic, control, or decision-
making system. The internal organization is centered around an 8-bit internal data bus. All communication
within the processor and with external components occurs on this bus in the form of 8-bit bytes of
address, instruction or data. { Refer to the accompanying block diagram for the relationship of all of

the internal elements of the processor to each other and to the data bus.) For the MCS8 a logic ‘1" is
defined as a high level and a logic 0" is defined as a low level.

A. State Control Coding

So S, S, STATE
The processor controls the use of the data bus and 0 1 0 T1
determines whether it will be sending or receiving 0 1 1 Tl
data. State signals S,, S,, and S,, along with SYNC 0 0 1 T2
inform the peripheral circuitry of the state of the ? g g 1"'1’;”
processor. A table of the binary state codes and 1 1 o STOPPED
the designated state names is shown below. 1 1 1 T4

1 0 1 TS

B. Timing

Typically, a machine cycle consists of five states, two states in which an address is sent to memory
{T1 and T2), one for the instruction or data fetch (T3), and two states for the execution of the in-
struction (T4 and T5). If the processor is used with slow memories, the READY line synchronizes the
processor with the memories. When the memories are not available for either sending or receiving data,
the processor goes into the WAIT state. The accompanying diagram illustrates the processor activity
during a single cycle.

NI W W I W WO W WO Y V7 WY WY WO W WY VRV WY) W
AN\ N
svne T\ A \ 1 \
Sl \ 7
s/ \ / \
% -/ "\ /
™ T T2 wAIT T3 STOPPED T4 TS
HIGHER
LOWER €.BITS EXTERNAL | INSTRUCTION HALT
cPU 8-BITS ADDRESS, MEMORY O DATA | INSTRUCTION EXECUTION OF
INTERRLFTED | ADDRESS TWO BITS | nOT READY | FETCH, OR | RECEIVED BY INSTRUCTION
ouTt CONTROL [OPTIONAL) DATA OUT cPuU
out (8-8ITS}
- TYPICAL PROCESSOR CYCLE

INGLUDES T1, 72, T3, T4, TS

Figure 1. Basic BO08 Instruction Cycle

The receipt of an INTERRUPT is acknowledged by the T1l. When the processor has been interrupted,

this state replaces T1. A READY is acknowledged by T3. The STOPPED state acknowledges the receipt
of a HALT instruction.

Many of the instructions for the 8008 are multi-cycle and do not require the two execution states, T4
and T5. As a result, these states are omitted when they are not needed and the 8008 operates asyn-
chronously with respect to the cycle length. The external state transition is shown below. Note that the
WAIT state and the STOPPED may be indefinite in length (each of these states will be 2n clock periods),
The use of READY and INTERRUPT with regard to these states will be explained later.

u

INSTRUCTION
JAMMED iN
O INTERRUPT
CYCLE?,

YES

INSTR.
EXECUTION
CUOMPLETE?

INTERRUFTED?

Figure 2. CPU State Transition Diagram

C. Cycle Control Coding

As previously noted, instructions for the 8008 require one, two, or three machine cycles for complete
execution. The first cycle is always an instruction fetch cycle (PCI}). The second and third cycles are
for data reading (PCR), data writing {PCW}, or /O operations (PCC).

The cycle types are coded with two bits, Dy and D,, and are only present on the data bus during T2.

Dg D, |CYCLE FUNCTION

0 0 PCi Designates the address is for a memory read
{first byte of instruction).

0 1 PCR Designates the address is for a memory read

data {additional bytes of instruction or data).
“PCC Designates the data as a command |/O operation.

1 1 PCW Designates the address is for a memory write
data.

—
o

Do Oy Dp b3 D4 D Dg Oy

T

INTERNAL DATA BUS

SYNG P #)

e
@ BIT DATA BUS - Pepr—
55 OR DOD
INTERNAL DATA BUS
il
' ¥ t1 —
s |8 | AccumuLator
INSTRUCTION REGISTER [ACD w [
REGISTER 0 REGISTER b MEMORY CYCLE ° PONTER |- oml = |l s v AND
(8 BITS) {8 BITS) CONTROL_GOD) (8 BITS) anc] [2e] 128w
o g SCRATCH PAD
! S TYYYYTYYY R 22z i
SR o b MEMORY
* R
REGISTER E% SE[w 7 womosx 8BTS
- CARRY Bl | % E
AND _ 1| =
LOOK AHEAD
(6 BITS} - - ARITHMETIC INSTRUCTION MEMORY i L 3
uNIT AND
- DECODER - N MEMORY
CONTROL 1/C GONTROL REFRESH MULTIPLEXER AND
*counTer REFRESH
B - 6IT PARALLEL | g -
ARITHMETIC - AMPLIFIERS
uNIT il —.1 Y : :
] i 1
- . |» ACORESS sTack AND
. o [
EREE ¥ [Rlgsq 2 i E ™ PROGRAM COUNTER
CONDITION MACHINE STACK tREE
FLIP-FLOPS {Z,C,5,P} = CYCLE oonTer| 12 Wimg g™ 8WOoRDSx 14 BITS
AND CONDITION CONTROL <l |28
LOGIC - e
225
| STATE TIMING -
staTus % : - GENERATOR -
SIGNALS * ¥ ¥
_ TLOCK
SENERATOR READY INT,
éé é FE £k
g2 9) Sg é ;

READY INTERRUPT

Figure 3. 8008 Biock Diagram

l. BASIC FUNCTIONAL BLOCKS

The four basic functional blocks of this Intel processor are the instruction register, memory, arithmetic-
logic unit, and I/O buffers. They communicate with each other over the internal 8-bit data bus.

A. Instruction Register and Control

The instruction register is the heart of all processor control. Instructions are fetched from memory, stored
in the instruction register, and decoded for control of both the memories and the ALU. Since instruction
executions do not all require the same number of states, the instruction decoder also controls the state
transitions. '

B. Memory

Two separate dynamic memories are used in the 8008, the pushdown address stack and a scratch pad.
These internal memories are automatically refreshed by each WAIT, T3, and STOPPED state. In the worst
case the memories are completely refreshed every eighty clock periods.

1. Address Stack

The address stack contains eight 14-bit registers providing storage for eight lower and six higher
order address bits in each register. One register is used as the program counter {storing the effective
address} and the other seven permit address storage for nesting of subroutines up to seven levels.
The stack automatically stores the content of the program counter upon the execution of a CALL
instruction and automatically restores the program counter upon the execution of a RETURN. The
CALLs may be nested and the registers of the stack are used as last in/first out pushdown stack.

A three-bit address pointer is used to designate the present location of the program counter. When
the capacity of the stack is exceeded the address pointer recycles and the content of the lowest
ievel register is destroyed. The program counter is incremented immediately after the lower order
address bits are sent out. The higher order address bits are sent out at T2 and then incremented

if a carry resulted from T1. The 14-bit program counter provides direct addressing of 16K bytes

of memory. Through the use of an 1/0 instruction for bank switching, memory may be indefinitely
expanded. : :

2. Scratch Pad Memory or Index Registers

The scratch pad contains the accumulator (A register) and six additional 8-bit registers {B, C, D,
E, H, L). All arithmetic operations use the accumulator as one of the operands. All registers are
independent and may be used for temporary storage. In the case of instructions which require
operations with a register in external memory, scratch pad registers H & L provide indirect ad-
dressing capability; register L contains the eight lower order bits of address and register H contains
the- six higher order bits of address {in this case bit 6 and bit 7 are "“don’t cares™).

C. Arithmetic/Logic Unit (ALU)

All arithmetic and logical operations {ADD, ADD with carry, SUBTRACT, SUBTRACT with borrow,
AND, EXCLUSIVE OR, OR, COMPARE, INCREMENT, DECREMENT!) are carried out in the 8-bit
parallel arithmetic unit which includes carry-look-ahead logic. Two temporary resisters, register “a” and
register *'b”, are used to store the accumulator and operand for ALU operations. In addition, they are
used for temporary address and data storage during intra-processor transfers. Four control bits, carry
flip-flop (€) | zero flip-flop (2} | sign flip-flop (S}, and parity flip-flop {P) , are set as the result of each
arithmetic and logical operation. These bits provide conditional branching capability through CALL,
JUMP, or RETURN on condition instructicns. In addition, the carry bit provides the ability to do mu!-
tiple precision binary arithmetic.

D. 1/0 Buffer

This buffer is the only link between the processor and the rest of the system. Each of the eight buffers
is bi-directional and is under control of the instruction register and state timing. Each of the buffers is
low power TTL compatible on the output and TTL compatible on the input.

V. BASIC INSTRUCTION SET
The following section presents the basic instruction set of the 8008,

A. Data and Instruction Formats

Data in the 8008 is stored in the form of 8-bit binary integers. All data transfers to the system data bus will be
in the same format.

D7 Dg Dg Dy D3 Dy Dy Dy
DATA WORD
~The program instructions may be one, two, or three bytes in length. Muitiple byte instructions must be stored
in successive words in program memory. The instruction formats then depend dn the particular operation
executed.

One Byte Instructions

Register to register, memary reterence
Uy Og Dg D, Oy Dy D | gi . ¥ ;
[7P P50 By B2 Dy Do | opcope 110 arithmetic o logical, ratate ar
return instructions

TYPICAL INSTRLICTIONS

Twa Byte instructions

]D? Dg Dg D4 By 0y Oy Dg] OP CODE

Dy D D, Dy Oy Dy O
[7 Dg O D4 Dy By Dy 0! OPERAND Immediate mode instructions

Three Byte bnstructians

|P7 Dg D5 D4 D3 B2 Dy Dg| op cooE

JUMP or CALL | j
IU? Dg D5 04 D3 D7 Dy Dof LOW ADORESS = instructions

|* X DgDy Dy Dy Dy Bgf HiGH ADDRESS* *For the third byte of this instruction, Og and D are “don’t care” bits,

For the MCS-8 a logic 1 is defined as a high level and a logic ‘0" is defined as a low level.

B. Summary of Processor Instructions

Index Register Instructions
The load instructions do not affect the flag flip-flops. The increment and decrement instructions affect all flip-
flops except the carry.

_ MINIMUM INSTRUCTION CCDE
MNEMONIC | STATES | D;Dg DgD4Dy D, DBy Dg DESCRIPTION OF OPERATION
REQUIRED
NWeqgrg (5) 11 D DD 5 § 5 [Load index register ry with the content of index register ra.
e {8) 11 DDD 1 1 1 |Load index register r with the content of memory register M,
LM {7 11 1 11 5 S 8 |Load memory register M with the content of index register r,
e @) 06 DBDD 110 Iogindex register r with data B . . . B.
B B B HB 8 BB
L 9 00 111 110 1504 memory register M with data B . . . B.
B B B B8 B B B B
INr {5) 00 DDD 0 0 € |increment the content of index register v (r # A),
DCr 5} 00 p DD 0 0 1 |Decrament the content of index register r {r # A},

Accumulator Group Instructions

The result of the ALLU instructions affect all of the flag flip-flops. The rotate instructions affect only the carry flip-flop.

ADr {5 10 000 5 5 § | Add the content of index register r, memnaory register M, or data
ADM {8 1t 0 0 00 1 1 1 |B...B tothe accumuiator, An overflow {carry} sets the carry
ADI (8 00 0 00 1 ¢ 0 | fiipfop.

B B B B B B 8 8
ACr {5} 10 001 § 5 5 [Add tha content of index register r, memary register M, or data
ACM (8) 10 o 01 1 1 1 | B...B totheaccumulator with carry, An overflow (carryl
ACI 8 oo 001 1 0 O | setsthe carry flip-flop.

B B 8 B B B BB
SUr {5} 10 010 § § 5§ |[Subtract the content of index register r, memory register M, or
SUM {8) 10 ¢ 10 1 1 1 [data...B fromthe accumulator. An underfiow (horrow}
:{9]] {8} 00 o010 t 0 0 |setsthe carry flip-flop.

. B B B B B B B B

SBr {5} 10 0 11 S5 § § | Subtract the content of index register r, memory register M, or data
SBM {8) 1 0 011 1 1 1 |dataB.,.B from the accumulator with borrow. An underflow
SBI 8} 0 0: 011 1 0 0 |[{borrow) sets the carry flipflop.

B B 8 B B B B B

MINIMUM INSTRUCTION CODE
MNEMONIC STATES | DyDg DgDyD3 DDy DESCRIPTION OF OPERATION
REQUIRED)

NDr (5) 10 100 S 5 S | Compute the logical AND of the content of index register r,
NDM i8) 1 0 10 0 1T 11 memory ‘register M, or data B , . ., B with the accumulator,
NDI {8 00 100 100 _

B B B B B E B B
XRr {5} Tt 0 101 8§ 8§ § | Compute the EXCLUSIVE OR of the content of index register
XRM 18) 10 1. 01 1 1 1] r, memory register M, or data B , , . B with the accumulator,
XRI {8} 00 101 100

BE B B B B B B B
ORr 1] 10 1. 1.0 S § 5 { Compute the INCLUSIVE QR of the content of index register
ORM (8} 10 110 1 1 t | r, memary register m, or data 8 . . . B with the accumulator .
ORI (8) 0Q 110 1 0 0

) B B B BB B BB

CPr {5) 10 1.1 1 § 5 5 | Compare the content of index register r, memaory register M,
CPM {8} 10 111 1 1 1| ordataB...B with the accumulator, _The content of the
CPI (8} g0 111 1 0 O | accumulator is unchanged,

B B B B B B BB
RLC {6} 0 0 0 Do 0 1 0 | Rotate the content of the accumulator left.
RRC {5} 00 0 0 1 0 1 0 | Rotate the content of the accumulator right.
RAL {5) 0o 010 0 1 0O | Rotate the content of the accumulator ieft through the carry.
RAR {5) 00 0 11 0 1 0 | Rotate the content of the accumulator right through the carry.

Program Counter and Stack

Control Instructions

4l ymp {11) 01 X X X 1 0 0| Unconditionaly jump to memary address B3 ., . B3gB2...B2.
Bz Bz ©2BzBz B2B783
X X B3BzB3 BaBaBgl -
{8} gFe (@or 11} 01 0 C4C3 O O O | Jumpte memory address Bz...BgBz...Ba if the condition
By By ByBaBos Bg Ba Bl flipflop c.is false. Otherwise, exacute the next instruction in sequence.
X X B3 B3B3 B3 B3B3
JTe {9or 11} 01 1 C4C3 0 O 0| Jump to memory address B3, ., B3Bp ... By if the condition
BpBy BzBy Bz 82 Bs Byl flipflop cis true, Otherwise, execute the next instruction in seguence.
X X BzBzBy Bg3B3Bg
CAL {1 [V | X X X 1 1 0| Unconditionally call the subroutine at memory address B3 . ..
BBz Bz BBy Bo By Bal B4Ba ... Ba, Save the current address lup one level in the stack),
X X B3BaBy B3BaBgy - -
CFe {9 or 11) 01 0 C3Cz © 1 0| Call the subroutine at memory address B3 .. .B3B2 ... Bz if the
By By BBy By B2 Bg Bg| condition flip-flop ¢ is false, and save the current address {up one
X X B3 B3 B3 B3 B3 B3| lewel in the stack.} Otherwise, execute the nextinstruction in sequence.
CTe 9 or 11} 01 1 C4C3 O 1 0| Call the subroutine at memory address B3 .. .BgBz ... Baif the
Bz By B BypBy Bp Bo Bol condition flip-flop ¢ is true, and save the current address {up one
X X B3B3 B3 Bz B3 Bal level in the stack). Otherwise, execute the next instruction in sequence,
RET {5) o0 X X X 1 1 1 | Unconditionally return {down one level in the stack).
RFec {3 or 6) 00 0 C4C3 © 1 1| Return (down one level in the stack} if the condition flip-flop ¢ is
false, Otherwise, execute the next instruction in sequence,
RTc {3 or 5} 00 1 €C4Ca 0 1 1| Return (down one level in the stack) if the condition flip-flop ¢ is
true. Otherwise, exectte the next instruction in sequence.
RST {5) 00 A A A 1 0 1 | call the subroutine at memory address AAADOO {up one level in the stack},
Input/Qutput Instructions
INP 8 01 00 M M M 1 | Read the content of the selected input port (MMM} into the
accurmnulator,
ouUT {B) 0o 1 R R M M M 1 | Write the content of the accumulator inte the selected output
port {(RRMMM, RR # 00},
Machine Instruction
HLT 4} 00 0 00 0 0 X | Enter the STOPPED state and remain there until interrupted,
HLT (4} 1 1 1 11 1 1 1 Enter the STOPPED state and remain there until interrupted.
NOTES: .
{1} 58S = Sourca Index Register These registers, rj, are designated A{accumulator—000),
DDD = Destination |ndex F!egister:l_BIGDﬂ, cro10), D{O11), E{100}, H{101}, L1104
{2} Memory registers are addressed by the contents of registers H & L.
{3) Additional bywes of instruction are designated by SEBEBBBE.
{4} X = "Don't Care”,
{5} Flag flip-fiops are defined by C4Cx3: carry [00-overflow or underflow}, zero (01 -result is zero}, sign {10-MSB of result is *17),

parity {11-parity is even},

C. Complete Functionai Definition
The following pages present a detailed description of the complete 8008 Instruction Set.

Symbols Meaning
<B2> Second byte of the instruction
<B3> Third byte of the instruction
r One of the scratch pad register references: A, B, C, D, E,H, L
c One of the following flag flip-flop references: C, Z, S; P
C403 Flag flip-flop codes Condition for True
00 carry Overflow, underflow
01 zero Result is zero
10 sign MSB of resultis 1"
11 parity Parity of result is even
M Memory location indicated by the contents of registers H and L
{} Contents of location or register '
A Logical product
' Exclusive “or”
vV Inclusive “or”
A, Bit m of the A-register
STACK Instruction counter {P) pushdown register
P Program Counter
—-— Is transferred to
XXX A ''don't care”
888 Source register for data
oD Destination register for data

Register # Register Name
{S5S or DDD}

000
001
010
om
100
101
110

rEmooOoom>

10

INDEX REGISTER INSTRUCTIONS:

1

LOAD DATA TO INDEX REGISTERS — One Byte
Data may be loaded into or moved between any of the index registers, or memory registers.

Lryry 11 DDD 5SS {rq)={ry} Load register r; with the content of r,.

{one cycle — PCl}) The content of r, remains unchanged. If S$5=DDD,
) the instruction is a NOP (no operation),

LrM 11 DDD 1M1 {r)={M} Load register r with the content of the

{two cycles — memory location addressed by the contents of

PCI/PCR} registers H and L. {DDD#111 — HALT ipstr.}

LMr 11 111 SS§ {M)={r} Load the memory location addressed by

{two cycles — the contents of registers H and L with the content

PCi/PCW) of register r. (8554111 — HALT instr,)

LOAD DATA IMMEDIATE — Two Bytes
A byte of data immediately following the instruction may be loaded into the processor or into the .

memory

Ll 00 DDD 110 (r)=—<B,> Load byte two of the instruction into
{two cycles — <B,> - register r.
PC1/PCR) ‘ .
LMl _ 00 111 110 {M)~— <B,> Load byte two of the instruction into
(three cycles — <By> ‘the memory location addressed by the contents of
PCI/PCR/PCW) registers H and L.
INCREMENT INDEX REGISTER — One Byte '
INr 00 DDD 000 {r)=—{r}+1. The content of register r is incremented by

{one cycle — PCI) one. All of the condition flip-flops except carry are
affected by the result. Note that DDD#000 {HALT
instr.) and DDD#111 (content of memary may not

be incremented).

DECREMENT INDEX REGISTER — One Byte

DCr 00 DDD 001 (r}={r}—1. The content of register r is decremented

(one cycle — PCI) . by one. All of the condition flip-flops except carry
are affected by the result. Note that DDD#000 {HALT
instr.) and DDD#111 {content of memory may not be
decremented).

ACCUMULATOR GROUP INSTRUCTIONS

Operations are performed and the status flip-flops, C, Z, S, P, are set based on the resuit of the operation.
Logical operations (NDr, XRr, ORr} set the carry flip-flop to zero. Rotate operations affect only the
carry flip-flop. Two's complement subtraction is used. '

ALU INDEX REGISTER INSTRUCTIONS — One Byte
(one cycle — PCI)
Index Register operations are carried out between the accumulator and the content of one of the index
registers {SSS=000 thru $5S=110). The previous content of register 888 is unchanged by the operation.

ADr 10 000 5SS (A)={A)+{r} Add the content of register r to the
content of register A and place the result into
: register A. '
ACr 10 001 SSS {A){A}+{r)i+{carry) Add the content of register r

and the contents of the carry flip-flop to the content
of the A register and place the result into Register A.

SUr 10 010 SSS A}~ A}—(r) Subtract the content of register r from
the content of register A and place the result into
register A. Two's complement subtraction is used.

1

ACCUMULATOR GROUP INSTRUCTIONS - Cont'd.

§Br 1 011 SSS {A)=(A)—(r}—(borrow) Subtract the content of
register r and the content of the carry flip-flop from
the content of register A and place the result into

register A,
NDr 10 100 SSS (A)—{A)Alr) Place the logical product of the register
A and register r into register A.
XRr 10 101 SSS (A)—{A)¥(r} Place the “exclusive - or'" of the
content of register A and register r into register A,
ORr 10 110 8SS {A)—{A)V{r} Place the “inclusive - or”’ of the
content of register A and register r into register A.
CPr 10 111 SSS {A)—{r) Compare the content of register A with

the content of register r. The content of register A
remains unchanged. The flag flip-flops are set by the
result of the subtraction. Equality {A=r} is indicated
by the zero flip-flop set to 1. Less than {A<r) is
indicated by the carry flip-flop, set to "*1”.
ALU OPERATIONS WITH MEMORY — One Byte

{two cycles — PCI/PCR) :

Arithmetic and logical operations are carried out between the accumulator and the byte of data

addressed by the contents of registers H and L.

ADM 10 000 111 {A)—AH{M) ADD

ACM 10 001 11 (Ar—{A}+(M)+{carry} ADD with carry

SUM 10 010 1M (AF—{A)—{M) SUBTRACT

SBM 10 011 1111 {Al—A}—({M)—(borrow} SUBTRACT with borrow
NDM 10 100 111 {Al—(A}A(M} Logical AND

XRM 10 101 1M1 (A)—(A}¥{M} Exclusive OR

ORM 10 110 111 {A—AV(M) Inclusive OR

CPM 10 11 IR} {A}—(M) COMPARE

ALU IMMEDIATE INSTRUCTIONS - Two Bytes
" {two cycles —PCI/PCR)
Arithmetic and logical operations are carried out between the accumulator and the byte of data
immediately following the instruction.

AD! 00 000 100 {A)=—{A})+<B2>
<Bay> ADD
ACH 00 0 100 {A}—{A}+<Ba>+{carry)
<Bjy> _ ADD with carry
Sul 00 01 100 (A)={A}—<B2>
<B2> SUBTRACT
SBI 00 011 100 {A}={A})—<Bz> —(borrow}
<Ba>» SUBTRACT with borrow
NDI 00 100 100 {A}—{A)A>
<B2> Logical AND
XRI 00 101 100 (A)—{A}¥ <B2>
<By> Exclusive OR
ORI 00 110 100 {A)=={A)V <B2>
<Bo> Inclusive OR
CcPl 00 111 100 (A)— <B2>

<Bs> COMPARE

12

ROTATE INSTRUCTIONS — One Byte

{one cycle — PCI)

The accumulator content {register A} may be rotated either right or left, around the carry bit or

through the carry bit. Only the carry flip-flop is affected by these instructions; the other flags are

unchanged.

RLC 00 000 010 AmiAm, Ag*Ay, {carry)=A;

: Rotate the content of register A left one bit.

Rotate A; into Ap and into the carry flip-flop.

RRC 00 001 . 010 A=A, Az+Ag, lcarry)+Ap
Rotate the content of register A right one bit.
Rotate Ag into A; and into the carry flip-flop.

RAL 60 010 010 A A Ag—lcarry),(carry}=A;
Rotate the content of Register A left one bit.
Rotate the content of the carry flip-flop into A,,
Rotate A, into the carry flip-flop.

RAR o0 011 010 Am=Am+1, Az =(carry}, (carry}+Ag
Rotate the content of register ‘A right one bit.
Rotate the content of the carry flip-flop into A,.
Rotate A, into the carry flip-flop.

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

JUMP INSTRUCTIONS — Three Bytes
{three cycles — PCI/PCR/PCR)
Normal flow of the microprogram may be altered by jumping to an address specified by bytes two
and three of an instruction.

JMP 01 XXX 100 (P}»<By><B2> Jump unconditionally to the
{Jump Unconditionally} <Bs> instruction located in memory location addressed
<B3> by byte two and byte three.

JFc 01 0Cc,.C,; 000 If (c} = 0, {P}-<Ba> <B,> Otherwise, (P} = (PH3.
{(Jump if Condition <By> if the content of flip-flop ¢ is zerg, then jump to
Faise) <B3> the instruction located in memory location <Bs3><By>;

otherwise, execute the next instruction in sequence.
JTc 01 1C,C; 000 If {¢) = 1, {P}=<B3> <B,> Otherwise, (P) = (P}+3.
(Jump if Cond|t|on <By> If the content of flip-flop c is one, then jump to the
True) <By> ~instruction located in memory location <B3> <By> ;

otherwise, execute the next instruction in sequence.

CALL INSTRUCTIONS — Three Bytes
(three cycles — PCI/PCR/PCR)
Subroutines may be called and nested up to seven levels.

CAL 01 XXX 110 {Stack}=—(P), (P}=<B;> <By>. Shift the content of P

(Call subroutine <By> to the pushdown stack. Jump unconditionally to the

Unconditionally} <By> instruction located in memory location addressed by
byte two and byte three.

CFc 01 0C,C, 010 If (c) =0, (Stack}=(P), (P}—<B3><B,>. Otherwise,

{Call subroutine <By> (P} = (P}+3. If the content of flip-flop ¢ is zero, then

if Condition False) <Bg> shift contents of P to the pushdown stack and jump

to the instruction located in memory location<Bo> ;|
otherwise, execute the next instruction in sequence.

CTc 01 1C,C; 010 If {c} = 1, (Stack}=—(P}, (P)}+<Bz><B,>. Otherwise,
{Call subroutine <By> (P} = (P}+3. If the content of flip-flop ¢ is one, then
if Condition True)} <Bz> shift contents of P to the pushdown stack and jump

to the instruction located in memory location<Bs> <Bo>;
otherwise, execute the next instruction in sequence.
In the above JUMP and CALL instructions < B, > contains the least significant half of the address and
<B3> contains the most significant half of the address. Note that Dg and D; of<B3;>are “‘don't care”
bits since the CPU uses fourteen bits of address.

13

RETURN INSTRUCTIONS — One Byte
(one cycle — PCI)
A return instruction may be used to exit from a subroutine; the stack is popped-up one level at a time.
RET 00 XXX 11 {P}=—(Stack}. Return to the instruction in the memory
location addressed by the last value shifted into the
pushdown stack. The stack pops up one level.

RFc¢ 00 0C,C; OM If (¢} =0, {P}={Stack); otherwise, {P} = {P}+1.
(Return Condition tf the content of flip-flop ¢ is zero, then return to
False) the instruction in the memory location addressed by

the last value inserted in the pushdown stack. The stack
pops up one level, Otherwise, execute the next instruction

in sequence. _
RTc 06 1C,C, 011 If {c} =1, {P}={Stack); otherwise, (P} = {P}+1.
{Return Condition .+ I the content of flip-flop ¢ is one, then return to
True) . ' the instruction in the memory location addressed by

the tast value inserted in the pushdown stack. The stack
pops up one level. Otherwise, execute the next instruction
in sequence.
RESTART INSTRUCTION - One Byte
{one cycle — PCI)
The restart instruction acts as a one byte call on eight specified locations of page 0, the first 256 instruction
words,
RST 00 AAA 101 {Stack)=(P),{P)~(000000 D0AAADOD)
Shift the contents of P to the pushdown stack.
The content, AAA, of the instruction register is
shifted into bits 3 through 5 of the P-counter. All
othar bits of the P-counter are set to zero. As a one-
word “call”, eight eight-byte subroutines may be
accessed in the lower 64 words of memory,

INPUT/OUTPUT INSTRUCTIONS
One Byte
(two cycles — PCI/PCC}
Eight input devices may be referenced by the input instruction

INP 01t 00M MM1 {A)={input data lines). The content of register A
is made available to external equipment at state T1
of the PCC ¢cycle. The content of the instruction
register is made available to-external equipment at
state T2 of the PCC cycle. New data for the
accumulator is loaded at T3 of the PCC cycle.
MMM denotes input device number, The content of the
condition flip-flops, 8,Z,P C, is output on D, D,, D,, D,
respectively at T4 on the PCC cycle.

Twenty-four output devices may be referenced by the output instruction,

ouT 01 RRM MM {Output data lines)=—({A}). The content of register A
ts made available to external equipment at state T1
and the content of the instruction register is made
available to external equipment at state T2 of the PCC
cycle. RRMMM denotes output device number (RR #
00).

MACHINE INSTRUCTION
HALT INSTRUCTION — One Byte
{one cycle — PCI)

HLT 00 000 00X On receipt of the Halt Instruction, the activity of the
or processor is immediately suspended in the STOPPED
T 11 111 state. The content of ail registers and memory is un-

changed. The P-counter has been updated and the
internal dynamic memaories continue to be refreshed,

14

D.

Internal Processor Operation

Internally the processor operates through five different states:

signal distinguishes between the two clock periods

of each state.

Internal State Typical Function
NORMAL Send out lower gight bits of address and increment program counter.
T Send out lower eight bits of address and suppress incrementing of pragram counter and
INTERRUPT acknowledye interrupt. :
T2 Send out six higher order bits of address and two contrel bits, Dg and D7, Increment
program counter if there has been a carry from T1.
WAIT Wait for READY signal to come true. Refresh internal dynamic rmemories while waiting.
] NORMAL Fetch and decode instruction; fetch data from memory; output dats to memory. Refresh
internal memaories,
_STOFPED Remain stapped until INTERRUPT occurs, Refresh internal memories,
Execute instruction and appropriately transfer data within processor. Content of data
T4 and TS — bus transfer is available at 1/O bus for convenience in testing. Some cycles do not require
these states, In those cases, the states are skipped and the processor goes directly to T1,
The 8008 is driven by two non-overlapping clocks. ’.-—chg.-{
Two clock periods are required for each state of
the processor, ¢ is generally used to precharge ail o oy o
- data lines and memories and ¢ controls all data
transfers within the processor. A SYNC signal _
{divide by two of ¢,) is sent out by the 8008. This o o o2

SYNC j \) l-
)——— CNE MACHINE STATE4D-|

Pracassor Clocks

The figure below shows state transitions relative to the internal operation of the processor, As noted

in the previous table, the processor skips unnecessary execution steps during any cycle, The state

counter within the 8008 operates is a five bit feedback shift register with the feedback path controlled
by the instruction being executed. When the processor is either waiting or stopped, it is internally

cycling through the T3 state. This state is the only time in the cycle when the internal dynamic memories
can be refreshed,

{CYCLE 1} {HLT » INT + RETURN (CF)} + ICYCLE 2) [QUT + LMr} + (CYCLE 3) {EMI + JUMP CFl + CA.LL {CF))

]

CYCLE 1
CYCLE 2 ™ -y T2 T3 -] T4

CYCLE 3

)

{CYCLE 2) {LMI + JUMP + CALL)

ICYCLE 1) (HLT = INT} +RDY

1

¥

75

{CYCLE 1) [LrM + ALUM + ALUL + INP + OUT + Lrl + JUMP + CALL}

[CYCLE 1} (LMr}

MORMAL ARETURN AT END OF MEMORY CYCLE

NOTE: C.F. INDICATES A FAILED CONDITION

Transition State Diagram (lnternal)

The following pages show the processor activity during each state of the execution of each instruction.

15

INTERNAL PROCESSOR OPERATION

INDEX REGISTER HNSTRUCTIONS

INSTRUCTION CODING #0OF STATES MEMORY CYCLE ONE {1)
OPERATION | TO EXECUTE
D;Dg DghyDy DyD,Dg INSTRUCTION T2} 171 T3 Ta(3) T5
11 DDD S5 8§ Lrqrg 5 PCLOUT | PCHOUT | FETCH INSTR{5{ SSSTOREG.b | REG.b TG DOD
: (4 TO IR & REG. b i6)
T 1 [v R M L B FCLOUT | PCHOUT | FETCH INSTR, -
TO A & REG. b {7
T 1 T 11 5 5 5 LMr 7 PCLOUT | PCHOUT | FETCH INSTR, | S85TO REG. b -
TO IR & REG. b R
C aQ DDOD 110 LA B PeLOUT | PCHOUT | FETGH INSTR. -
TOIR & REG. b o
0 0 1 11 110 Ll g PCLOUT | PCHOUT | FETCH INSTR. -~
TO IR & REG.b
00 ODD 000 INr 5 PC_OUT | PCHOUT | FETCH INSTR, X ADD OP - FLAGS
TO IR & REG. b AFFECTED
00 OODD 0201 DCr 5 PCLOUT | PCROUT | FETCH INSTR. X SUB OPF - FLAGS
TO IR & REG. b | AFFECTED
ACCUMULATOR GROUP INSTRUCTIONS
16 PFPFP S 88§ |ALUOPr 5 PCLOUT | PCHOUT | FETCH INSTR. | S5 TOAEG:b | ALUGP-FLAGS
TO IR & REG. b | _AFFECTED
T0 PPP T 1 1 ALUCP M 8 PCLOUT | PCHOUT | FETCH iNSTR. —
TO IR & REG. b
00 PPP 100 |ALUOFT [PC_LOUT | PCHOUT | FETCH INSTR. -
TC IR & REG. b
00 000 a140 RLC 5 PCLOUT | PCHOUT ! FETCH INSTR. X ACTATE REG, A
. TO IR & AEG. b CARRY AFFECTED
C o0 061 01 0 RRC 5 PCLOUT | PCHOUT | FETCH INSTH. X ROTATE AEG. A
TO IR & REG,b CARRY AFFECYED
G0 010 ©310 AAL 5 PC OUT | PCHOUT | FETCH INSTR. X ROTATE REG. A
YO IR & AEG, b CARAY AFFECTED
00 ot 010 RAR 5 PC OUT | PCHOUT | FETCH INSTR, X ROTATE REG. A
TO IR & REG, b CARRY AFFECTED
PROGRAM COUNTER AND STACK CONTROL {NSTRUCTIONS
01 X X X 1040 JMP 11 PCLOUT | PCHOUT | FETCH INSTR. -
TO IR B REG.b "~
0D vCC 00C T Qor 1t PCLOUT | PCHOUT | FETCH INSTR. -
TO1IR & AEG. b .
6 1 1CC 0O O e Qor 11 PCLOUT | PCOUT | FETECH INSTA. .
TO IR & REG. b
o 1 XXX 110 CAL T PC OUT | PCHOUT | FETCH INSTR. —
TO IR & REG. b T
' 0 1 ¢ cCC 010 CFc For 11 PCLOUT | PCuGUT | FETCH INSTR. -
TG IR & REG. b o
] TCC 010 CTc For 11 PCLOUT | PEQOUT] FETCH tNSTH, -
TO IR & REG. b .
o o XX X 111 RET 5 PC_OUT | PCHOUT | FETGH INSTR, | POP STACK T X
TO IA & REG. b
ce O0cCC o131 RFc 3or 5 PCLOUT | PCHOUT | FETCH INSTR. | POPSTACK {13} X
TO IR & AEG. b
) 1T CC 011 ATe 3ors PCLOUT | PCHOUT | FETCH INSTR. | POP STACK (12 X
TO IR & REG. b
00 AAA 101 RST 5 PCLOUT | PCHOUT [FETCHINSTR, |REG.a TOPCH | REG.b TD PCL
TO REG, b AND o
PUSH STACK
{0~REG, a)

1/Q INSTRUGTIONS

o ¢ o0m M M1 INP g) PC{OUT | PCHOUT | FETCHINSTR, -
TO IR & REG. b o
01 AR M M M 1 ouT [PLLOUT | PCHOUT | FETCH INSTH, N
TG iA & REG. b o

MACHINE INSTRUCTIONS

[+ I] 00 048 X HLT 4 PCLOUT PCHOUT FETCH iNSTR,
TO IR & HEG. b
& HALT 18]
11 111 111 HLT 4 PCLOUT PCROUT | FETCH INSTR.
| TOR & REG. b
& HALT (18]
NOTES:)
1. The first memary cycle is always a PCI (instruction} cycte, 6. Temporery registers are used internatty for arithmetic operations
2_ Internally, states are defined as T1 through 76, |n some cases and data transfers {Register a and Register b}

mare than one mamory cycla is required to execute an instruction, 7. These states are skipped,
3, Content of the intarnal data bus at Td and TS is available st the 8. PCR cycle {(Memory Read Cyctel.

data bus. This Is designed for testing purposes only. 9 X" danotes an idie state.
4. Lower order address bits in the program counter are denoted 10, PCW cycle {Memory Write Cycleld,

by PC_ and higher order bits are designated by Py, 1. When the JUMP is conditional and the condition fails, states
§. Dwring an instruction fetch the instruction comes from meEmaory T4 and TS5 are skipped and the state counter advances to

to the instruction register and is decoded, the next memary cycla,

16

MEMORY CYCLE TWO MEMORY CYCLE THREE

T2 T3 T4(3 TS T2 T3 "I T4 (R TS

AEG.LOUT | REG.HOUT | DATATO

& REG.b
REG.LOUT | REG.HOUT | REG.b
{10} TO OUT o
PCLOUT (8) | PCHOUT DATATO x T
REG. b T0O DDD St
PCLOUT (8) [PCHOUT DATATO REG. L
REG.b - ouTi10}

“HEG LOUT | REG. H OUT | DATATOD ALUOP - FLAGS

a} ‘REG. b AFFECTED
PC OUT (8} PCHOUT DATATO X ARITH OF - FLAGS |:
REG. h] AFFECTED

PCLOUT B} | - PCHOUT LOWER ADD. ' o PGLOUT(8) PCHOUT [HIGHER ADD.| REG.a REG.b

.JTOREG.b o REG. a TO PCH TO PCL

PCLOUT (8} | PCHOUT LOWER ADD. | PocLouTis PCHOUT |HIGHER ADD] REG.a REG. b

TO REG.b " REG.a (11} TOPCH TO PG

PCLOUT (8t | PCHOUT LOWER ADD. - PCLOUTIS) PCLOUT |HIGHER ADD| REG.a REG. b

TO REG. b REG,a (11)| TOPCH TO PCy_

PCLOUT (8] | PCHOUT LOWER ADD. - PCLOUT(8} PCHOUT [HIGHER ADD.] REG.a REG. b
TO REG. b REG. a TG PCH TOPC

PCLOUT{g) | PCHOUT LOWER ADD, _ PCLOUT(S) PCHOUT |HIGHER ADD,| REG.a REG.b

TO REG.b » REG.a 112)| TQPCH TO PCL

PCLOUT(8) | PCyouT [LOWER ADD. - | PCLOUTIS) PCHOUT [HIGHER ADD.| REG.s REG. b

REG.a (12} TO PC

TOREG, b

T

REG. A 15 REG.b DATATO [COND ff REG.b
TO OUT[TO OUT REG. b oUT {16] TOREG. A
REG, A {15} REG.b X S S

TOOUT TO OUT 117)

12, When the CALL is conditional and the condition fails, states 15. PCC eycle {I/O Cycle},

T4 and T5 are skipped and the state counter advances to 16. The content of the condition flip-flaps is svailable at the data bus:
the next memory .cycle, If the condition is true, the stack S at Dp, Z at Dq, P at Dy, C at D3.{Dg — D7 ali ones}
is pushed at T4, and the lower and higher ordsr address 17, A READY command must be supptied for the OUT operation
bytes are loaded into the program counter. to be compieted. An idle T3 state is used and then the state

13, When the RETURN condition is trus, pop up the stack; counter advances to the next memary cycle,
otherwise, advance to next memory cycle skipping T4 and T5. 18. When a HALT command oceurs, the CPU internally remains

14, Bits D through Dy are leaded into PC and all other bits in the T3 state untii an INTERRUFT is recognized, Externally,
are set to 2ero; 2eros are loaded into PCH. the STOPPED state is indicated,

17

'R

PROCESSOR CONTROL SIGNALS

A. Interrupt Signal {INT)

1)

INTERRUPT REQUEST

If the interrupt line is enabled (Logic **1"'}, the CPU recognizes an interrupt request at the
next instruction fetch {PCI) cycle by outputting §45, S, = 011 at T1l time. The lower
and higher order address bytes of the program counter are sent out, but the program
counter is not advanced. A successive instruction fetch cycle can be used to insert an
arbitrary instruction into the instruction register in the CPU. {If a multi-cycle or multi-
byte instruction is inserted, an interrupt need only be inserted for the first cycle.)

When the processor is interrupted, the system INTERRUPT signal must be synchronized with
the leading edge of the ¢4 or ¢, clock. To assure proper operation of the system, the interrupt
line to the CPU must not be allowed to change within 200ns of the falling edge of ¢4. An
example of a synchronizing circuit is shown on the schematic for the SIM8-01 (Section VII).

L2] L] #n !

INTERRUPT

TO 5¥YSTEM ’

SYNCHRONIZED I el

cry > 200ns [

T11 INTERRUPT [f
ACKNOWLEDGE “

INTERRUPT
l i RECOGMNIZED

Figure 4, Recognition of Interrupt

It a HALT is inserted, the CPU enters a STOPPED state; if a NOP is inserted, the CPU
continues; if a “JUMP to 0" is inserted, the processor executes program from location O,
etc. The RESTART instruction is particularly useful for handling interrupt routines since
it is a one byte call,

2}

ADDR. LOCATION PC CONTENTS

N—1 INTR.N-1 N {INTERRUPT ARRIVES HERE)
—» N INSTR.N
N+ INSTR.N + 1
| USER SUPPLIES ALTERNATE

INSTRUCTION (RESTART OR
CALL TO SRT), RELEASES
INTERRUPT,
PC IS SAVED IN STACK
{VALUE = N)

SUBROUTINE FOR HANDLING INTERRUPT:

S INSTR. S '

S+1 INSTR. S + 1

S+2

S+K RETURN — STACKPOPS — WITH VALUEN

\ AFTER COMPLETION OF SUBROUTINE, 8008 RETURNS TO
EXECUTE ORIGINALLY REQUESTED INSTRUCTION, WHICH
BLOCKING ADVANCE OF PC HAS SAVED.

Figure 5. 8008 Interrupt

START-UP OF THE 8008 .

When power {Vpp } and clocks {¢1, ¢2) are first turned on, a flip-flop internal to the
8008 is set by sensing the rise of Vpp . This internal signal forces a HALT (00000000}
into the instruction register and the 8008 is then in the STOPPED state. The following
sixteen clock periods after entering the STOPPED state are required to clear (logic “0")
memories (accumulator, scratch pad, program counter, and stack}. During this time the
interrupt line has been at logic “0". Any time after the memaries are cleared, the 8008
is ready for normal operation.

To reset the flip-flop and also escape from the stopped state, the interrupt line must go to.
a logic “1”; It should be returned to logic “‘0” by decoding the state T11 at some time later
than ¢ ,,. Note that whenever the 8008 is in a T11 state, the program counter is not incre-
mented. As aresult, the same address is sent out on two successive cycles.

Three possible sequences for starting the 8008 are shown on the following page. The
RESTART instruction is effectively a one cycle call instruction, and it is convenient to use:
this instruction to call an initiation subroutine. Note that it is not necessary to start the
8008 with a RESTART instruction.

The selection of initiation technique to use depends on the sophistication of the system
using the 8008. If the interrupt feature is used only for the start-up of the 8008 use the
ROM directly, no additional external logic associated with instructions from source other
than the ROM program need be considered, |f the interrupt feature is used to jam in-
structions into the 8008, it would then be consistent to use it to jam the initial instruction.

The timing for the interrupt with the start-up timing is shown on an accompanying sheet.
The jamming of an instruction and the suppression of the program counter update are
handled the same for all interrupts. :

19

EXAMPLE 1:

Shown below are two start-up alternatives where an instruction is not forced into the 8008 during
the interrupt cycle. The normal program flow starts the 8008.

a. 8008 ADDRESS OUT INSTRUCTION IN ROM
000000 00000000 NOP {LAA 11 000 000} |
000000 OOODOCOOOCO NOP | Entry Directly To
000000 00000001 INSTR; Main Program
000000 OO0OQOCGOO1Q INSTR; 1
b. 8008 ADDRESS OUT INSTRUCTION IN ROM
000000 00000000 RST (RST =00 XYZ 101) |
000000 OOXYZOOO INSTR; L A Jump To The
Q000C0D0 0O0OXYZOO1 INSTR; Main Program

EXAMPLE 2;
A RESTART instruction is jammed in and first instruction in ROM initially ignored.

8008 ADDRESS QUT INSTRUCTION IN ROM

Qoo0000 OODOOOCOCOC INSTR;, (RST =00 XYZ 101)

000000 00XYZ20D0DO0 INSTR, Start-up
000000 00XYZOO1 INSTR, Routine
000000 O0OQ0nNRnnnnao RETURN

0000CO0 O0OO0OO0O0O0D INSTR; {INSTR; executed now} Main Program
Q00000 0O00CGOO0O01

INSTR,

Note that during the interrupt cycle the flow of the instruction to the 8008 either from ROM or
another source must be controlled by hardware external to 8008.

START-UP OF THE 8008

Ready (RDY)

The 8008 is designed to operate with any type or speed of semiconductor memory. This flex-
ibility ts provided by the READY command line. A high-speed memory will always be ready
with data {tie READY line to Ve¢) almost immediately after the second byte of the address
has been sent out. As a result the 8008 will never be required to wait for the memory. On the
other hand, with slow ROMs, RAMs or shift registers, the data will not be immediately avail-
able; the 8008 must wait until the READY command indicates that the valid memory data is
available. As a result any type or any combination of memory types may be used, The READY
command line synchronizes the 8008 to the memory cycle. When a program is being developed,
the READY signal provides a means of stepping through the program, one cycle at a time.

20

VI. ELECTRICAL SPECIFICATION.

The foliowing pages provide the electrica! characteristics for the 8008, All of the inputs are TTL
compatible, but input pull-up resistors are recommended to insure proper Vy, levels. All outputs are
‘low-power TTL compatible, The transfer of data to and from the data bus is controlled by the CPU.
During both the WAIT and STOPPED states the data bus output buffers are disabled and the data bus
is floating.

FROM 4

INTERNAL)
DATA BUS }—'14—-5 DA";J%B us

|
|
TO INTERNAL , : |
DATA BUS |—| B
OUTPUT J :
. DISABLE i
Vee Vee Vee |
: X
|
— I
8008 Vee : |
Vee
___________________________ _I
Figure 6. Data Bus 1/O Buffer
Vbp
F——————— e === - ==
' |
: -5
| T
§ ¥——f——— OuT
| 1
| |
N — [
| 1.
b m et e e e e — —] L —
Vee
Ve :
Input Buffer . Output Buffer
{4, 6. RDY, INT} o {SYNC, Sy, Sy, Sp}

Figure 7. 1/0 Circuitry

2

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature
Under Bias

Storage Temperature

fnput Voltages and Supply
Voltage With Respect
1o VCC

Power Dissipation

0°C to +70°C

—55°C 1o +150°C

+0.5 to —20V
1.0wWa@ 25°C

D.C. AND OPERATING CHARACTERISTICS

Ta =0%C w0 70°C, Vo = +6V +5%, Vg = —9V £5% unless otherwise specified. Logic 1" is defined
as the more positive level {V,;;, Vg, 1. Logic “0" is defined as the more negative level {V,, , Vo b

*COMMENT

Stresses above those listed under *Absolute Max-
imum Ratings” may cause permanent damage to
the device. This is a stress rating only and func-
tional operation of the device at these or any other
condition above those indicated in the operational

sections of this specification is not implied.

LIMITS | TEST
—d
SYMBOL PARAMETER min. [Tve. | max | "M | conpimions
by | AVERAGE SUPPLY CURRENT-
QUTPUTS LOADED" 30 60 . mA | T, =25°C
I, INPUT LEAKAGE CURRENT 10 | aA | Y, =0V
. i —]
v, INPUT LOW VOLTAGE }
HNCLUDING CLOCKS) Voo Vo421V
Vi | INPUT HIGH VOLTAGE _ E
| (INCLUDING CLOCKS) Vge—1.5 Vi t03
V, | OUTPUT LOW VOLTAGE 0.4 "l =0.44mA
€, = 200 pF
Vgy | OUTPUT HIGH VOLTAGE Vo -15 V| 15, =0.2maA

A.C, CHARACTERISTICS

*Measurements are made while
the BOOB is executing a typical
sequence of instructions. The
test load is selected such that
at Vo = 0.4V, 15 = D.44mA
on gach output.

Ta=0°C 1o 70°C; Vo = +8YV £5%, Vpp = -9V £5%. All measurements are referenced to 1.5V levels.

8008 8008-1
LIMITS LIMITS
SYMBOL PARAMETER UNIT | TEST CONDITIONS
MIN. | MAX. MIN. | MAX.
toy CLOCK PERIOD 2 3 125 | 3 Hs | tptge=50ns
tRtp CLOCK RISE AND FALL THVES 50 50 ns
Y PULSE WIDTH OF ¢, .70 .35 ps
t42 PULSE WIDTH OF ¢o 55 .35 us
o1 CLOCK DELAY FROM FALLING .90 1.1 1.1 us
EDGE OF ¢, TO FALLING EDGE '
OF ¢,
tp2 CLOCK DELAY FROM ¢, TO #, 40 35 us
53 CLOCK DELAY FROM ¢, TO ¢, 20 20 s
top DATA OUT DELAY 1.0 1.0 #s | C = 100pF
ton HOLD TIME FOR DATA BUS OUT 10 10 us
iy HOLD TIME FOR DATA IN {1 1] s
tsp SYNC OUT DELAY .70 70 ps | C = 100pF
tgq STATE OUT DELAY (ALL STATES 1.1 1.1 ps | € =100pF
EXCEPT T1 AND T11}12)
tgo STATE OUT DELAY (STATES 1.0 1.0 ps | € = 100pF
T1 AND T}
trw PULSE WIDTH OF READY DURING | .35 35 4s
$,, TO ENTER T3 STATE
tRD READY DELAY TO ENTER WAIT .20 20 s
STATE

1] |2}

1y MINZ 150

22

If the INTERRUPT is not used, ali states bave the sarme output delay, 1g,.

TIMING DIAGRAM

'C\‘ -
/ _‘i <~ o3 12]
4 [& o
o J u Y j 12 LU Y 12 J"‘:‘ 11
il to'l = | tDZ e
 osr ¥ B Gat / \
o y 21 3 y o4 l 21 ‘ o922 “n
-~ ey e q—lsn—u’
SYNC —/ x 1 \ fimrped
_ gy —m|-tso+| | (=20 =t
i —— ']
‘R DATA IN
OATABUS | == =—am | S U PUR N —p—— I‘____-_-“-——_-—-----
LFINES 3 "
0 ...0p0 | === — o U o e e e e - g ———
Br - Do Jr ADDRESS QUT i)r DATA OUT .
(U N 3 (W — —
! top] toy !-— ton ety
) y i \
2o / -
S‘I S —— P, Y —
——]
STATE | J'
LINES
\
55 { . \
! 1= LRy [
. o
/ |-
READY < —— N 7| the
1
L wa
’ T, T, Ta - T, i
MNates: 1. READY line must be a 0" prior to ¢92 of T2 10 guarantee entry into the WAIT state.

2.

TYPICAL D.C. CHARACTERISTICS

POWER SUPPFLY CURRENT [ma), e

POWER SUPPLY CURRENT
vS. TEMPERATURE

H 12 H
e v, L
o =147y,

- tay
_‘___L__:EEA:;___‘__

i 1

1

m m a0 50 L]

AMBIENT TEMPERATURE 1*C1

M

[

TYPICAL A.C. CHARACTERISTICS

DATA OUT DELAY VS.
QUTPUT LOAD CAPACITANCE

=0y

Wa

v

OUTPUT DELAY fush toy 8 Wy,

w0 w00 (L] 200 250

VAT BUS TAPLCITAMCE IpFt. Cypp

n

QUTPUT SINRING CURRENT (ma]. I,

24

il
[

0

QUTPUT SINKING CURRENY
" WS, TEMPERATURE.

\
\Q’E:-ii:‘;“v
N " O AY H""""--"--....
14} - -
] M M w 0 @ W &\

w

AMBIENT TEMPERATURE (C!

INTERRUPT line must not change levels within 200ns (max.) of falling edge of ¢1.

QUTPUT S0URCE CURRENT
VS, OUTPUT VOLTAGE

[T 1

i

L
I

=

Vo *BY

. T - WL

b

OUTPUT SOURCE TURRENT (mAl, lgy

L N

20 30 40

OUTPUT VOLTAGE V), Yo

5D

CAPACITANCE f=1MHz; T, = 25°C; Unmeasured Pins Grounded

SYMBOL TEST TYP. LI PE) MAX.
Cin INPUT CAPACITANCE 5 0
Coe DATA BUS 1/O CAPACITANCE 5 10
Cour OUTPUT CAPACITANCE B 0

Vil THE SIM8-01 — AN MCS-8T-M- MICRO COMPUTER

During the development phase of systems using the 8008, Intel’s single chip 8-bit parallel central processor
unit, both hardware and software must be designed. Since many systems will require similar memory and

1/0 interface to the 8008, Intel has developed a prototyping system, the SIM8-01. Through the use of this
system and Intel’s programmable and erasable ROMs {1702}, MCS-8 systems can be completely developed
and checked-out before committing to mask programmed ROMs (1301).

The SIM8-01 is a complete byte-oriented computing system including the processor (8008}, 1K x 8 memory
{1101}, six 1/O ports (two in and four out), and a two-phase clock generator. Sockets are provided for 2K

x 8 of ROM or PROM memory for the system microprogram. The SIM8-01 may be used with either the
8008 or 8008-1. To operate at clock frequencies greater than 500kHz, former SIM8-01 boards must be
maodified as detailed in the schematic and the following system description. Note that all Intel-developed
8008 programs interface with TTY and require system operation at 500kHz. Currently, the SIM8-01 is
supplied with the 8008-1 CPU and the system clock preset to 500kHz.

The following block diagram shows the basic configuration of the SIM8-G1. All interface logic for the
8008 to operate with standard ROM and RAM memory is included on the board. The following pages
present the SIM8-01 schematic and detailed system description.

12 INPUT PORTS AND
INTERRUPT INSTRUCTION
PORT

1111111

BUFFERS
&% .
MPXERS J=

> MEMORY
ROM - RAM
8 BITS/BYTE
TO 16 K BYTES

irl [y

YYEYE] L & & 3

» /0
8008 ~ DEVICE 10
DATA MEMORY, L : SELECT OUTPUT

BUS INTERRUPT DATA
& INPUT [1 I

ENABLES ADDRESS, CONTROL ADDRESS

REGISTER - 8 BITS REGISTER - 8 BITS

L YITISEEE EXES!

¥

]

P

AR ‘F‘I

1

BUFFERS

STATUS

SYNC LOGIC RW
8008 - - EXTERNAL INTERRUPT

INT.
- i CLOCK
- GENERATOR

READY

Figure 8, MCS-8 Basic System

24

MEMORY

SIM8-01 SPECIFICATIONS

Card Dimensions:
* 11.5 inches high
s 9.5 inches deep

System Components Included on Board:
- « 8008-1
» Complete TTL interface to memory
« 1K x 8 RAM memory
» Sockets for 2K x 8 PROM memory
¢ TTY interface ckts. ' _
« Two input and four output ports {8 bits each})
* Two phase clock generator

Maximum Memory Configuration:
*« 1K x 8 RAM
e 2K x 8 PROM -
+ All control lines are provided for
‘memory expansion

Operating Speed
* 2 us clock period
* 20 us typical instruction cycle

D.C. Power Reguirement:
e Voltage:
Voo =5V 5%
TTL GRD = 0V
Vpp = —8V 5%

* Current:

Eight ROMs

Typical Maximum

25amps 4,0 amps.

1.0 amps

fec

1

i DD 1.5 amps.

Connector:
* Wire wrap type Amphenol 86 pin
connector P/N 261-10043-2

14 1L 14 14 1] 14 u [e
] I3 =3 3 =3 53] [
2 M Ay — — LN EH
= ay A — - [N I} 5
g% By 1702 1M 170z ime -] 1z 02 iz] vor g HE
A A - — 12
g > S A * 3 A 5 g an Vo
= A By — — v e
P Ay - — "i: E_ -
Ay Ay —] - —
o s L) .
T T Lui P Ny T T
:]|_| gk T 3 NS P - P HE Hi* T o
1 1a L i H 13 11 11 13
: - 1 ’ y LamS < ry r | DATa FROM
L T MEMORY
; 4
{ o
o5 Tr =3 - 3 3 - 3
[8a u 4 L 3 a— -
Kams 1 HH 101 = 110 nn = 110
A .] - Ax | An i Ax | |
T y T T T T
i A A " i) L i &,
et = 12| 3 =] = = = 3 S 13
Ram 4 3 4+ | T -+ | 3 - I = -4 3 4 3
..t::: 1m] 1101 = o ' 1m o Rh] - mm 7 1301 = 101
Ay 3 — —] —] - . A — 4 =
= |] o~ {1 1] = il = g4 %= |ll3 LI B u 1z 5 ran
: Fe R
— T T T T T - .
B I I I 1 I 1 CENRES
e U 1 1 . =] = = = 3 B 13
] — 3 = —] [- [— — — - - 5 [+
,:':: 11 3 mm — T = Rl = 1107 = 1M = 1] 1M
A G 4] > e~ U4~ = e N A B 1L
T AW .
. 5 L - Y - - - - 1 15
i &,
! M I) 1 1)) T -
N = baf | 4 3 '3 = 3 3 q ©
—] Nl . — = — i — =] — - - - -] |+1a
— 1w - Ll = T i 1 - "o = 1ot = et = 110
= = i I = A 3 . -
N By 12 E S 3 P 3 Ay = Aua 3 = 3 A = Hn 12
Riw A 5.1
- - - . - - - 1)
N 15 — + 5 Lo,
: —_—
NOTE: 11017 i — -y A
+5¥ — FIN B ' CATAIN
-oy —PIN 4 &
FiM M NOTUGEQ . DEVAOGUT L. 00000 0—e———m e 0 - o

Figure 9, MCS-8 Memory System

26

DATA

FROM TTY TRANSMITTER TAPE READER CONTROL z»

SYue JLTE W

Ass o

3_.q_4—
2 iod

A e

a4

! : ' ' #4 3
e 1}"{ #r gt

if] W et 2

A TEZNIE

LA h
i it S L0 oo e
;' - ' |

: . IAPE

FASLY : CLOCK

15 “ P ; ADJUSTMENTS
¥ R Do Ry tgy

Ry tpr tLocH
Ly LI LENERATOR
¥ o Ry ey

5 ' THTCYELE Tr22
i

1

Tie g1 2 yis. ASSe EHow
ol AL /9 A
ALY [« L2 Ase? e
i Til -

bl 2K

A Sowe ZINTERRURT
PUSH BUTTON

0

Yo ST

* Tictar Do e

* ri-i5 D
AAM TSk Ot
DATA (N 25525 oa

44

EXPANSION

-
b
%
bt
4

MPX
MEMORY DATA
ENPUT FORT o
JNPUT PGRT 1

Trsg TAl
SASITE
STy MOR
T T
Ji- /% THR

7y MWD)
%0 Ay 4 5<% <= !
Ji-ESIEE do e Li 50 r

T8t I; 7 Fa Ll f 7

frotsacriy To +EVIT7-25 DATA COMPLEMEN T
2 TE Fa Fr) £ie

. 25| 48] 7
e O Dy 'ﬁ'o'ﬁ Kz 5¢ S/

-2l T —

T2 Ty

MPX wt- W her
winomvonta | B 470
INPUT PORT & - Mo 8243 2
WPUT PORT 1 737 TAe PALL

i .l
hod
3 z&%&
3
Tany
L
E:[Ehh\g_
O
x
R
P
k&
§! fu -
e,
3
e
2

e
B
=
)
]
L
S R
‘LQLL}_
N
R
EIN
3>
™Y

&

IRy B

INTERRUPT v %
INSTRUCTION o
PORT lJﬁ% §}

. Ji &

I oy

PIVIVAVITIV VA

26

2 55—

* oy
il . MORMALLY
Iy _.rZ EENVARUE LD A AED

- . gaw Vou-tvers
' T B)

iR 4

el

XN

W Jf-L VEL
e S CAE PP

| Pt ep
- *Jf2-3

Tr-b8 A8
TindP HreH DROER
JI-Th HOPPESS ouT
T - T, A

3
T- 2 cop CYeif ConTlol
S 78 e } c?va&

F 3 -
W [———a 5 s #

_@:’_J—. TS5 » FiLd &

L E 23 LATEH

ada | . Zw-xse

h

Te-67 As
-8,
JE- 8 LW OFoEs

Ti- 48 AdorEST our

L T2 8¢ Riw

AST-Fary
ATE-Oorsy Apd- pow 15

o T
YAT8 2N TOE 1o 52 W

&

, s
’? w J}' L _{f:g‘; 0Aé

).{s4 o) y; y7a SE SV murpur
Zh = 5.5 pewr ¢
S
Vi

Aoy A T 47 yes
| . - 7 B3 v

ATE - WA IE Ago.mv 7
A73 - P IS Sl PN vy W

. 4
w 2.

g% Jz-75 08d

Tah . T2-62 QUTRPLT
V73N ki T2 65 pper,

e

F?

=
57
%
S
Y

| 472 (
| #5L s %ixji,f
TV REAE LATEN
ANy %
{lr

[B

iE

\.
NS
)

o
k
3% g

JE

Nk
b
[~

(2]
-

ARy
i
N
j
g
M

A
—
A A
el

M dd

T EEER

AIp-Pi¥ 7405
w AIT-2N T s 3

1 23 - Yy
Dy Dor:':qw Mg ﬁ 7 =J2:2t 0 #

RAM DATA R 231 swrpar
N i) el e 35 musrs

MEMORY —
&
ADDHESE '/ or7

MEMORY ARRAY
2K x 8 ROM
1K x 8 RAM

{Refer to memory

drawing on page 25} S,

FFVIE e g -1;4—1,—’,,?:‘, r

ROM Bon Coltl Sacgar

DATA FROM &,
Ch
MEMORY :Aa

D4 CMg

Dg

) EAus oo paigcT
e

NOTE: _ A
THIS SCHEMATIC | R A
IS INCLUDED FOR —d A
REFERENCE ONLY. e Bl iNe.000ta)

Figure 10. Complete SIM8-01 Schematic

7

SYSTEM DESCRIPTION

The 8008 processor communicates over an 8-bit data bus (Dg through D7} and uses two input lines
{READY and INTERRUPT) and four output lines {Sq, S4, S9, and SYNC) for controf. Time multi-
plexing of the data bus allows control information, 14-bit addresses, and data to be transmitied between
the CPU, memory, and 1/0. All inputs, outputs, and contro! lines for the SIM8-01 are positive-logic
TTL compatible,

Two Phase Clock Generator

The basic system timing for the SIM8-01 is provided by two non-overlapping clock phases generated
by 9602 single shot multivibrators {A;, A;). The clocks are factory adjusted as shown in the timing
diagram below. Note that this is the maximum specified operating frequency of the 8008. In addition,
all Intel-developed TTY programs are synchronized to operate with the SIM8-01 at 500kHz. The
clock widths and delays are set in accordance with the 8008-1 specification since an 8008-1 is provided
on the board. An option is provided on the board for using external clocks, If the jumper wires in box
A are removed, external clocks may be connected at pins J1-52 and J1-12. {Normally these pins are
the output of the clock generators on the board.) The clock generator may be adjusted for operation
up to 800kHz when using the 8008-1 at maximum speed.

- t oY . ————— |
{2ps)
' \] —tg tE
% — Jq—tm-—-»—n- 1
{500 ns) -t o1 - 10-90% OF INPUT
(1000ns) AMPLITUDE
e R
v \ (500ns)
? - -1 @2—-‘
(500 nsh

Figure 11. SIMB8-01 Timing Diagram

Memory Organization

The SIM8-01 has capacity for 2K x 8 of ROM or PROM and 1K x 8 of RAM. The memory can easily
be expanded to 16K x 8 using the address and chip select control lines provided, Further memory
expansion may be accomplished by dedicating an output port to the control of memory bank switching.

In an MCS-8 system, it is possible to use any combination of memory elements, The SIM8-01 is
shipped from the factory with the ROM memeory designated from address 0 —» 2047, RAM memory
from 2048—=23071, and memory expansion for all addresses 3072 and above. Jumper wires provided
on the board {boxes C, D, E} allow complete flexibility of the memary organization. They may

be rearranged to meet any requirement, the Intel 3205 data sheet provides a complete description of
the one of eight decoder used in this system. the 3205 truth table is shown below.

ADDRESS ENABLE _ QUTPUTS

Ag AL A | By Ep Ez[0 1 2 3 4 5 6§ 7
Lt L L |t € H|L ®H H H H H H H
H L L |& L H'H L H H H H #® H
L H L | L L HIH H L H H H H H
H H L !L L H|H H #H L H H # H
L L H:L L HI|H H H H L H H H
H L H L L H|H H H H H L H H
L H H ., L L HI|H H H H H. . #H L H
H H HJ|L L H|H H H H H H H L
X X X | L L LJ|H H H H H H H H
X X X |H (LJ|H H H H H H H H
X X X |L H LJ|H H H H H H H H
X X X |H H L}H H H H H H H H
X X X |{H L H{H H H H H H H H
X X x|t H HI|{H ®H H H H H H H
X X xXx{H H HIH H H H H H H H

Control Lines
#* Interrupt

The interrupt control line is directly available as an input to the board. For manual control, a normally
open push-button switch may be connected to terminals J1-50 and J1-63. The interrupt may be inserted

28

under system control on pin J1-1, An external flip-flop {A33) latches the interrupt and is reset by T11
when the CPU recognizes the interrupt. Instructions inserted under interrupt control may be set up
automatically or by toggle switches at the interrupt input port as shown on the schematic, Use the
interrupt line and interrupt input port to start up the 8008 .

Note that the interrupt line has two different connections to the input to the board {box B). The path
from J1-1 directly to pin 4 of package A3 is the normal interrupt path (the board is shipped from the
factory with this connection). If the connection from pin 8 of package A15 to pin 4 of package A3 is

made instead_the processor will recognize an interrupt only PED state. Thisis

used to recognize the “'start character’” when entering data from TTY.

® Ready

The ready line on the 8008 provides the flexibility for operation with any type of semiconductor memory .
On the SIM8-01 board, the ready line is buffered; and at the connector {J1-30), the READY line is active
low. During program development, the READY line may be used to step the system through a program.

NORMAL OPERATION OF SYSTEM

The 8008 CPU exercises control over the entire system using its state lines (S 0. S1, Sy} and two control
bits (CCO, CC1} which are sent onto the data bus with the address. The state lines are decoded by a

3205 (A44) and gated with appropriate clock and SYNC signals, The two control bits form part of the
control for the multiplexers to the data bus (A55, A56), the memory read/write line {A33) and the 1/0

line (A17). h

In normal operation, the lower order address is sent out of the CPU at state T1, stored in 3404 latches
(AB9, A72} and provided to all memories. The high order address is sent out at a state T2 and stored in
3404 latches {A72, A73). These lines are decoded as the chip selects to the memory. The two highest
order bits (CCO, CC1} are decoded for control, .

- To guarantee that instructions and data are available to the CPU at the proper time, the T3 state is
anticipated by setting a D-type flip-flop {A16) at the end of each T2 state. This line controls the
multiplexing of data to the 8008, This flip-flop is reset at the end of each T3 state. In addition, switched
pull-up resistors are used on the data-bus to minimize data bus loading and increase bus response. The use
of switched resistors on the data bus is mandatory when using the 8008-1. SIM8-01 boards built prior to
October, 1972 must be modified in order to operate with the 8008-1 at clock frequencies greater than 500kHz.

Normally, the 8008 executes.instructions and has no interaction with the rest of the system during sfates '
T4 and T5. In the case of the INP instruction, the content of the flag Hip-flops internal to the 8008 is
sent out at state T4 and stored in a 3404 latch (A43).

Instructions and data are multiplexed onto the 8008 data bus through four multiplexers (A55, A56, ABY,
A70}. In normal operation, line J1-29 should be at +5V in order for “‘true” data to reach the 8008 data bus.

System /0

The SIM8-01 communicates with other systems or peripherals through two input ports and four output ports,
All control and /0 selection decoding lines are provided for expansion to the full complement of eight input
ports and twenty-four output ports. To expand the number of input ports, break the trace at the output of
Device A68, pin 11, and generate input port decoding external to the SIM8-01. Control the input multi-
plexer through pin J1-69. The output ports latch data and remain unchanged until referenced again under
‘software control. Note that all output ports complement data. When power is first applied to the board,

the output ports should be cleared under software control to guarantee a known output state. To enable the
1/0 device decoder, pin J2-8 should be at ground.

Teletype Interface

_ The 8008 is designed to operate with all types of terminal devices. A typical example of peripheral interface
is the teletype (ASR-33}. The SIMB-01 contains the three simple transistor TTY interface circuits shown on
the following page. One transistor is used for recetving serial data from the teletype, one for transmitting
data back to the teletype, and the third for tape reader control. o

The teletype must be operating in the full duplex mode. Refer to your teletype operating manual for making
connections within the TTY itself, Many modeis include a nine terminal barrier strip in the rear of

29

the machine, It is at this point where the
connections are made for full duplex /——j
operation. The interconnections to the COLL DUPLEX I —
SIM8-01 for transmit and receive are made
at this same point. "L @
RECEIVE { ne |~ @
A complete description of the interconnection FROMSIMTT 1} e | e[
of the SIM8-01 and the ASR-33 is presented
in Appendix V. - w| @
TO SIM8-01 [v‘”’ | O
J2.59 ol @
~ @
=
Figure 12. Telstype Terminal Strip
R62 3 OATA
10052 FROM
Sims-01
RGO J2.27
10k R61
5.6k 8 4
A57 -._JM;Do—S-Do-»ma
2.7k as A27 AZT7
aNzzz 7904 T4O4
c20
k a1
D
-9
FROM TTY TRANSMITTER TAPE READER CONTROL TO TTY RECEIVER

Figure 13. SIMB-01 Teletype Interface Circuitry

To use the teletype tape reader with the SIM8-01, the machine must contain a reader power pack,
The contacts of a 10V dc relay must be connected in series with the TTY automatic reader (refer
to TTY manual} and the coil is connected to the SIM8-01 tape reader control as shown.

For all Intel developed TTY programs for the SIM8-01, the following i/O port assignments have been made:

1. DATAIN - INPUT PORT 0, BIT 0 {J2-83 connected to J1-11)
2. DATA OUT - OUTPUT PORT 2, BIT O {J1-84 connected to J2-36)
3. READER CONTROL - QUTPUT PORT 3, BiT 0 {J2-27 connected to J2-44)

Note that the SIM8-01 clock generator must remain set at 500kHz. All Intel developed TTY programs
are synchronized to operate with the SIM8-01 at 500k Hz. ‘

in order to sense the start character, data in is also sensed at the interrupt input {J2-83 connected to J1-1)
and the interrupt jumper (box B) must be between pin 8 of A15 and pin 4 of A3, It requires approximately
110ms for the teletype to transmit or receive eight serial data bits plus three control bits. The first and last
bits are idling bits, the second is the start bit, and the following eight bits are data, Each bit stays 9.09ms.
While waiting for data to be transmitted, the 8008 is in the STOPPED state; when the start character is
received, the processor is interrupted and forced to call the TTY processing routine. Under software control,
the processor can determine the duration of each bit and strobe the character at the proper time.

A listing of a teletype control program is shown in Appendix V.

SIMB-0T MICRO COMPUTER BOARD PIN DESCRIPTION

Fin Ho. Connector Symbol Description Fin bho, sonnectar Sywbgl Pescription
2,4 31 +57 +SVDE POWER SUPPLY 57 a oy RAK DATA N D
84 & B6 az e -SUDC POMER SUPPLY 35 a1 Py RAM DATA 1¥ By
1,3 a2 cHD GROUND e J1 D4 RAK DATA IN D,
60 a1 Ho, DATA FROM MEMORY @ BIT § 18 a1 atd STATE COUNTER
63 a1 o, URYA FROW MEMORY 1 BIT 1 18 a T3 STATE COWNTER
17 1 w, DATA FROM MEMORY 2 BID 2 46 I ’EI STATE COUKTER
7 a1 e, DATA FROM MEMORY 3 BIT 3 45 Jl Ts_ﬁf STATE CUUNTER
38 32 o, UATA FROM MEMORY 4 BIT 4 42 n T2 STATE COUNTER
a1 a2 o, LATA FROM MEMORY 5 BIT 5 “" at Ty STATE COUNTER
PH 32 Ko, DATA PROM WEMORY 6 BIT 6 47 3L nr STAYE COUNTER
T az D, DATA PROM MEMORY 7 BIT 7 4 a1 Te SIME COUNTER
1 a1 thg DATA INSUT PORT @ BIT 8 7 a1 Py FAM CHIF SEL:cT g
10 a1 A, DATA INPUT FORT @ BIT 1 a1 a1 oy RAM CHIP SELECT 1
4 a1 tA, DATA INPUT PORT § BIT 2 83 al R, - mAM CMIP SELECT 2
19 Il in, DATA INPUT PORT § BIT 3 6 a2 o, Al CHIP SELECT 3
28 a1 Ia, DATA IKEUT PORT § BIT 4 2 J2 Cty RAM CHIP SELECT 4
13 LH m OATA INPUT BGRT g BIT S a2 o RAM CHIP SELECT 5
27 a1 T BATA INPUT PORT § BIT & 8% o Mg EAI CHIF SELECT &
36 n 1, LATA INPUT PORY § BIT 7 82 o M, FAR CHIP SELECT ?
§ a1 1B, DATA INPUT FORT 1 BIT g 83 J2 CEy ROM CHIP S'TLECT B
13 o 1B, LATA INPUY PORF 1 BIT 1 12 I o5 FoM CHIF SELsCT 1
15 5L 1B, DATA IXPUT PORT L BIT 2 62 JL sy ROM CHIP SELECT 2
2 a1 I, DATA INPUT PORT 1 BIT 3 e L CEy ROl CHIP SELECT 3
26 a1 1B, DATA INFUT PORT 1 BIT 4 7o a1 c3, ROM CHIP SELECT 4
i i B, DATA IWPUT PORE 1 EIT 5 e a2 Cag ROM CHIP SELECT 5
k2 31 B, DATA INFUT PORT L BIT 6 i J2 5 ROM CHIP SELECT §
39 a1 1B, DATA INEUY POT 1 BIT 7 2 22 3, ROM CRIP SZLECT 7
- e I L - B @ emmon
&7 Iz oA GUTPUT PORT @ BIT 1 2 13 56 10 DECADE QUT 06
84 T2 e OUTPUY PORT § LIV 2 15 32 P 145 BECODE OUT
51 a2 o, OQUYPUT PORT # BIT 3 4 : 1
g = PUT PORT § BIT 4 14 Jz T, 10 DECODE OUT O,
53 oz 1 our 11 a2 i 1/0 DECODE QUT O
49 J2 R QUTPUT PORT § aIT 5 3) 2
3 o i] 32 g, 1/0 DECOLE OMT 0
50 Jz '3 QLIT.w FORT § bh. 6 7 12 5 1/0 BECODE OUT 0
N 7 §7 OUIFET FOIT B KIT 7 3 I E’ FLAG FLIP rwp.sfgn
73 a2 ?39 OUIEUT PORT 1 BIT § 5 Ji g FLAG FLIP FilE garg
80 32 5, OUTEUT PORT 1 AIT 1 21 " - FLAG FLIP FLOP.pariay
3 a2 T, QUTPUT PORT 1 BIT 2 a5 1 = VLAG FLIP FLOP ey
o6 12 OBy QUTRUT PORT 1 BIT 1 7 a1 o INTERRUFT INSTRUCTION INPUT §
gl Iz OB, OUTPUT FORT 1 BIT 4 9 2 o INTERRUPT INSTRUCTION INpUZ 1
57 gz 0_55 OUFRUT PORT 1 BIT 5 18 J1 Dl INTERRUEFT INSTRUCTION ImpuT 2
62 a2 DHg OVTPUT BORT L HIT & 20 a1 o TTERRUPT INSTRUCTION INDLT 3
55 J2 8, GUTPUT PORT 1 3IT 7 24 J1 o INTERRUPT INSTRUUTION INPUT 4
36 32 gp OUTPLT FORT 2 BIT § 27 a1 o INTERRUPT INSTRUCTION INPLY S
3 9z 1 OUTEVE PORT 2 BIT 1 38 ai b TATERRUPT INSTRUCTION IHPUT &
25 a2 5, QUIPLT PORT 2 BIT 2 40 a1 n: INTERRUPT INSTRUCTION INFUT 7
24 a2z oe, QUTBUT PORT 2 LIT 3 53 - FROM TTY TRANSHITTER
22 12 E{ QUTPUT PORT 2 BIT 4 37 2 FNCM TTY TRANSMTTTER oppb VIY¥ BUFFER
1% a2 “Cg QUIEUT PORT 2 BIT 5 83 J2 DATA FROM TTY TRAKEIMITTER BUFFER
16 2 ” QUTFUIT PORT 2 BIT 6 27 a2 TAPE READER COMTROL IN
21 sz [GUTEUT PORT I BIT 7 18 2 TAPE READGR CONTROGL QUT
4 a2 by OUTPUT PORT 1 BIT 4 28 a2 TAPE READER CONTROL (-8VDC)
43 2 am OUFPUL PORT 3°LIT 1 Y kP! DATA TO TTY RECEIVER BUFFER
19 pr] 532 QUTPYT PORT 3 HIT 2 10 Iz .'.i-u TTY BECEIVER our
4z J2 553 OOZPUT FORT 3 BIT 2 a6 1 ™6 TTY RECELVER v
33 gz a5, QUTPUT BORT 3 BIT 4 1 . cE o TTE BUFFER
2% a2 ‘o‘Es CUTPLY PORT 3 BIT 5 al 12 mgﬁzmn aur
2 Iz Q_D'G OQUFPUT RORT 3 EIT § 12 Jl g MULTIPLEXER CONTROL LIMES KA263
H 72 eo; BUTEUT PORT 2 BIT 7) 71 stg MULTIPLEXER CONTROL LINES N8267
58 a2 Ag LG ORDER ACDRESS OUT 58 J1 11, MULTIPLEXER CONTROL LINES N$263
az Iz ! LOW URDER ADDRESS auT ' 3 J1 SL1 HULTIPLEXER COMTROL LINES N3Z67
58 a2 A, LOW GRDER AUDRESS ol 26 i DATA CONPLERERT
23 a2 Ay LOW ORDLR ADURESS oUT s2 1 9, B, CLOCK lalternate clock)
63 12 A, LOW ORDER ADURESS otrr 12 n 9, 9, CLOCK {alternate clock)
17 J2 .\5 LOW ORDER ADDRESS OUT 75 J1 5o EYRC ouT
32 © a2 A LOW ORBER AUDRESS OULT n n EEADY mEapy
I 52 A, LOW ORDER AUDRESS DUT : 1 INTERRUPT INPERRUPT IN
&8 J1 Ag HIGH CRUZR ADDRESS OUT a Jz 1/0 ENABLE ENABLE OF I,0 DEVICE DECCDER
&% 21 A HIGU ORDER ADDRESS QUT 75 Iz 7 SYs1EM 10 CONTRORL
a0 a1 Al HIGH DRDER ADDRESS ODUT 7 g2 ™ SYSTEM INEUT CONTHDL
56 a2 Ay HIGH ORDER ADDRKSS OUT s il N.3. - PUSH EUTTON swxmn} IHTERRUPT
76 Fl Ay HIGH ORDER ADCEESS OUT 53 31 NG, PUSH BUTTON SWITCH
T1 gl Ay HIGH ORDER ADDRESS QUT 52 J2 Wy QUTPUT LATCH STROBL PORT &
T Ji Ly CYCLE CONTROL CODING 71 J2 W) OUTPUT LATCH STRORE poRT 1
73 a1 ccy CYCLE CONTROL CODING 20 Jz Wy OQUTPUT LATCII STROBE BORT 2
&l J1 O RAM OATR IN Cy k] J2 Wy COTEUT LATCH STROEE PORT 3
15 11 By B2M DATA I¥ D, FH Ji INT CYCLE INTERRUPT CYCLE INEICATOR
56 J1 Dy RRM DATA IN o, 32 J1 ﬁn ANTICIPATED T, OUTPUT
59 s1 oy FAM DATA IN Dy 35 I1 3y ANTICIEATED T, OUTRLT
58 a1 o, RaM DATA IN D,

31

(o
i

A

Fa q
W
= 1

L] WS L

o 8 LN B Y
' HH

T 1—v-l' ¥ o 1 ‘
034 a3t ™ 440 adt aaz Dcm
1l LJ_ i | L]

—

E

CId
- - - _ w=
—) ‘“‘OT' =] -l T
Add A A 4Y A 44 & 50 A 51 A5 AN
4l L L
o - o . £19 5
Lol
—l o BEa 1 *v—'l 1 =
KD I A A$3 AR ABS ML AEE
] LA |

| []
ATo it e
_ ,4 In

2o |

b & el T e B SO s

o0t

JURPEE
WIRES
/ 1 PL

INSULATER
JUMPER
WLIRES
FFL

Maell 3213 !I 35 SIMB-01

. — Izﬂ I |

Figure 14. SIM8-01 Assombly Diagram

VHI. MCS-8 PROM PROGRAMMING SYSTEM

A,

General System Description and Operating Instructions

Intel has developed a low-cost micro computer programming system for its electrically programmable
ROMs. Using Intel’s eight bit micro computer system and a standard ASR 33 teletype (TTY), a
complete low cost and easy to use ROM programming system may be assembled. The system features
the following functions: :

1)
2)
3)
4)
5)

Memory loading
Format checking
ROM programming
Error checking
Program listing

For specifications of the Intel PROMs, (1602A/1702A) refer to the Intel Data Cata log.

ROM MEMORY
4 -
PROM SOCKET
¢ 1 2 3 4 5 8 7 .
2] 5] [g 4
e | -
MP7.03
A0860 | (onrroL = 0000000 PROM PROGRAMMING
o3 [PROGRAM BOARD

st (0000000
saw2 [[JJ00000

=3 [JO000000 ﬂ——@

RAM
MEMORY

Figure 15. MCS-8 PROM Programming System

This programming system has four basic parts:

1)

2)

3)

4)

The micro computer {(SIM8-01) '
This is the MCS-8 prototype board, a complete micro-computer which uses 1702A PROMs
for the microprogram control. The total system is controlied by the 8008 CPU.

The control program {AQ860, A0861, A0863)

These control ROMs contain the microprograms which control the baotstrap loading, pro-
gramming, format and error checking, and listing functions, For programming of Intel’s
1702A PROM, use control PROM A0S63. :

The programmer (MP7-03)
This is the programmer board which contains all of the timing and level shifting required to
program the Intel ROMs. This is the successor of the MP7-02.

ASR 33 (Automatic Send Receive} Teletype
This provides both the keyboard and paper tape 1/0 devices for the programming system.

In addition, a short-wave ultraviolet light is required if the erasable and reprogrammable 1702 As

are used.

This system has two modes of operation:

1

2)

Automatic — A paper tape is used in conjunction with the tapé reader on the teletype.
The tape contains the program for the ROM,

Manual — The keyboard of the TTY is used to enter the data contént of the word to
be programmed,

PROGRAMMING THE 1602A/1702A

Information is introduced by selectively programming “1's (output high) and ““0”’s {output low) into the
proper bit locations, Note that these ROMs are defined in terms of positive logic.

Word address selection is done by the same decoding circuitry used in the READ mode. The eight
output terminals are used as data inputs to determine the information pattern in the eight bits of
each word. A low data input level {ground — P on tape} will leave a “1" and a high data input level
(+48V — N on tape) will allow programming of “0”. All eight bits of one word are programmed
simultaneously by setting the desired bit information patterns on the data input terminals,

TAPE FORMAT

The tape reader used with a model 33 ASR teletype accepts 17 wide paper tape using 7 or 8 bit
ASC!I code. For a tape to correctly program a 1602A/1702A, it must follow exactly the format rules
below:

Start Characterl S1op Character Data Field MSE (Pin 11} LSB (Pin 4}
Leader: BPPPNNNNNFBNNNNNNPPF,..BNPNPPPNNF Tralter:
Rubout for at L o P ., * Rubout for at
least 25 frames. T —r Ll least 25 frames
Word Field ¢ Waord Fiald 1 Word Field 255
El

The format requirements are as follows:

1} There must be exactly 2566 word fields in consecutive sequence, starting with word field O
{all address lines low) to program an entire ROM. If a short tape is needed to program only
a portion of the ROM, the same format requirements apply.

2} Each word field must consist of ten consecutive characters, the first of which must be the
start character B. Following that start character, there must be exactly eight data characters
(P's or N's) and ending with the stop character F. NO OTHER CHARACTE RS ARE
ALLOWED ANYWHERE IN A WORD FIELD. If an error is made while preparing a tape
and the stop character ““F'* has not been typed, a typed B will eliminate the previous
characters entered. This is a feature not available on intel’s 7600 programmer; the format
shown in the Intel Data Catalog must be used when preparing tapes for other programming
systems. An example of this error correcting feature is shown below:

TYPED ON TTY PROGRAMMED IN ROM
BNNPPNPBNPPPNPNPF » NPPPNPNP
data word

eliminated

If any character other than P or N is entered, a format error is indicated. |f the stop
character is entered before the error is noticed, the entire word field, including the B
and F, must be rubbed out. Within the word field, a P results in a high level output,
and N results in a fow level output. The first data character corresponds to the desired
output for data bit 8 (pin 11}, the second for data bit 7 (pin 10}, etc.

3) Preceding the first word field and following the last word field, there must be a leader/
trailer length of at least 26 characters. This should consist of rubout punches.

]

4) Between word fields, comments not PROM PIN CONFIGURATION

cgntaining B's or F's may be inserted. .) ATV oo
It is important that a carriage return a2 al ¢
and line feed characters be inserted ag 3 2fg,
(as a “"comment”) just before each _ maTaoT 14 aset ;| oag
word field or at least between every "OATA OUT 2 8 oA
four word fields. When these carriage oATROUT 3 0 ®r ot
returns are inserted, the tape may be oo a7 s

. . ‘DATACUT 5= A 17 4y
easily listed on the teletype for D oLy

. 1 W6 Veg

purposes of error c:'hecklng. It may woars oo 1) 0 . _:Iv,, .
also be helpful to insert the word wonraout s 11 messt 1e |
number {as a “‘comment”) at least veed 12 s frrosns

every four word fields.

IMPORTANT

It should be noted that the PROM's are described in the data sheet with respect to positive
logic (high level = p-logic 1). The MCS-8 system is also defined in terms of positive logic.
Consider the instruction code for LHD {one of the 48 instructions for the MCS-8).

117101011
When entering this code to the programmer it should be typed,
BPPPNPNPPF

This is the code that will be put into the 1302, Intel’s mask programmed ROM, when the
final system is defined. . :

OPERATING THE PROGRAMMER

The SIM8-01 is used as the micro computer controiler for the programming. The control program

performs the function of a bootstrap loader of data from the TTY into the RAM memory. It then
presents data and addresses to the PROM to be programmed and controls the programming puise,

The following steps must be followed when programming a PROM:

1) Place control ROMs in SIM8-01

2} Turn on system power

3) Turnon TTY to “line” position

4) Reset system with an INTERRUPT (Instr. RST = 00 000 101)

5) Change instruction at interrupt port to a NO OP

6) Start system with an INTERRUPT {Instr NO OP = 11 000 000)

7} Load data from TTY into micro computer memory

8} Insert PROM into MP7-03

9) Program PROM _

10} Remove PROM from MP7-03, To prevent programming of unwanted bits,

never turn power on or off while the PROM is in the MP7-03,

- LOADING DATA TO THE MICRO COMPUTER {THE BOOTSTRAP LOADER)
The programming systern operates in an interactive mode with the user. After resetting and starting

the system with an INTERRUPT [steps 4}, 5), 6}], a **"" will appear on the TTY. This is the signal
that the system is ready for a command.. To load a data tape, the following sequence must be foltowed:

TYPED BY SYSTEM TYPED BY USER

Ready for command ﬁs———«— DATA ENTRY command
Request for RAM BANK # Bn 44— RAM BANK in which data will be stored.

Enter bank number (@, 1, 2 or 3). Each
bank stores 256 bytes.

Request for address field % A
within RAM BANK

xxx #——— Initial address
Address § through 255

yyy —— Final address

Start tape reader and load data into RAM
memory. Data entry must be in specified
farmat. All format checking is done at this
time. |f data is entered from the keyboard,
depress the RETURN key after manually
¥] entering each complete word.

Ready for new command ———— 1~ *

This RAM bank may be edited by re-entering blacks of data prior to programming a PROM. More than
one RAM bank may be loaded in preparation for programming several different PROMs or to permit
the merging of blocks of data from different banks into a single PROM. (See the explanation of the
CONTINUE command in section IX.)

FORMAT CHECKING

When the system detects the first format error {data words entered either on tape or manually),
it will stop loading data and it will print out the address where the format error occurred.

At this time, an “R” may be typed and the data can be RE-ENTERED manually. This is shown below.

EXAMPLE 1:
P20 BNPNPNPNPF
@21 BPPPPNNNNF
022 BNNNNPPPPN FE
@22 = format error indicated at address
#022 (too many characters in
data field),
Listing R - RE-ENTER command
by BNNNNPP PP F-«—— Stop tape reader and manually
7Y RE-ENTER the data word
23 B NP NP NP NP F-«—— Start the tape reader and continue
024 BPNM FE
824 = Format error indicated at address
#024 (illegal character in data field).
R - . RE-ENTER command
BPNPNPNPNF-=——REENTER data
, Continue to completion of data
entry,
B * - ' Ready for new command

PROGRAMMING

After data has been entered, the PROM may be programmed, Data from a designated address field
in a designated RAM bank is programmed into corresponding addresses in the PROM. A complete
PROM or any portion of a PROM may be programmed in the following manner:

TYPED BY SYSTEM r TYPED BY USER
Ready for command ——— 1" *P 4————— Program command

Request for RAM BANK # ——— - Bn RAM BANK in which data has been stored.
I Enter bank number (@, 1, 2 or 3}, Each

: bank stores 256 bytes.
Reguest for addressof data % A

fietd within RAM bank
xxX 46— Initial address
Address @ through 255

Yvy Final address

TTY will {ist data address as each location
in PROM is programmed, :

Ready for new command ——— % *

ERRCOR CHECKING

After each location in ROM is programmed, the content of the location is read and compared against
the programming data. In the event that the programming is not correct, the ROM location will be
programmed again. The MCS-8 programming system allows each location of the ROM to be repro-
grammed up to four times. A %’ will be printed for each reprogramming. If a location in ROM will
_ not accept a data word after the fourth time, the system will stop programming and a “?” will be
printed. This feature of the system guarantees that the programmed ROM will be correct, and in-
completely erased or defective ROMs will be identified.

EXAMPLE 2: :
tst programming
l l 2nd programming

+——— 3rd programming

L:sted
P06 $ $ % ? «—— failure to program
System

If a location in the ROM will not program, a new ROM must be inserted in the programmer. The
system must be reset before continuing. (If erasable ROMs are being used, the ‘‘faulty” ROM shouid
be erased and reprogrammed).

PROGRAM LISTING

Before or after the programming is finished, the complete content of the ROM, or any portion
may be listed on the teletype. A duplicated programming tape may also be made using the teletype
tape punch. Ta list the ROM;

TYPED BY SYSTEM TYPED BY USER

Ready for command ————— ™ "L -«——— list command
Request for PROM address ————— 1w A
xxx ~4————— |Initial address
yyy «—— Final address
l :’——‘—- Listing from PROM
Ready for new command ™ -

The listing feature may also he used to verify that a 1702A is completely erased.

EXAMPLE 3:

Ready for command —>*T = DATA ENTRY
B@]
A | Specification of RAM
111111 memory address
@10

)
o}
(a2
003
004
005
0o6
0@z
08
09
Rl

Ready for command —» *P - - PROGRAM
B& n
A | Specification of PROM
@05 locations to be programmed

003 -

05]
on6 |__ Programming of PROM and

oa7 verifying correct transfer of
ag8 data

|

Leoading of data listing of
— tape and verifying correct
format

[erlvelvNoolvNerlso e ool Ko
VE2ZUZZTVTUVUZ
VZUVZUZTVOODCD
22202V =290 2=2
VU ZZZTUUWTOUW
TUOWYZ TV OU 2
PTOUZTUZTDUVWOVUD
POV UUZTVUZF
ZZUTUUUOUVUIUT=
TTMMMMTA MMM TR

1

Ready for command —* *L = LIST
A _
00 — Address specification
o190 _

21016
01
P02
003
004
005
lbls]
0a7
0e8
0ea
910

Ready for command —

J

— Listing of PROM

o OooOoODoO@@DW oW
T o B v Rio- e v e e = By = Bt ¢ Bt ¢ i o
TTZZU 00U TWTODTW
=M= « B S o= i = R v v iy v R v
e = N = M = e gy = B = s v« B ¢
TUZFUZFUUT OO
=B v M B v e v By w iy~ i = i = i v
TTUTU UMDV UWMTWW

i e B e M T e M M 2 B 3 |

[

1702A ERASING PROCEDURE

The 1702A may be erased by exposure to high intensity short-wave ultraviolet light at a wavelength
of 2637 A. The recommended integrated dose (i.e., UV intensity x exposure time) is 6W-sec/cm?.
Example of ultraviolet sources which can erase the 1702A in 10 to 20 minutes is the Model S-52 and
Modet UVS-54 short-wave uitraviolet lamps manufactured by Ultra-Violet Products, Inc. {San Gabriel,
California).” The lamps should be used without short-wave filters, and the T702A to be erased should
be placed about one inch away from the lamp tubes.

MP7-03 PROM Programmer

The MP7-03 is the PROM programming board which easily interfaces with the SIM8-01. All

address and data lines are completely TTL compatible. The MP7-03 requires +5VDC @ 0.8 amps,

-9 VDC @ 0.1 amps, and 50 Vrms @ 1 amp. Two Stancor P8180 (or equivalent) filament transformers
{25.2 Vrms @ 1 amp) with their secondaries connected in series provide the 50 Vrms,

This programmer board is the successor of the MP7-02. The MP7-03 enables programming of intel’s
17024, a pin-for-pin replacement for the 1702,

When the MP7-03 is used under SIM8-01 control with control ROM A0B62 replaced by A0863, the
1702A may be programmed an order of magnitude faster than the 1702, less than three minutes.

IMPORTANT:
Only use the AOB63 control PROM when programming the new 1702A. Never use it when programming
the 1702. The programming duty cycle is too high for the 1702 and it may be permanently damaged.

The MP7-03 features three data control options:

1} Data-in switch {Normal-Complement). If this switch is in the complement position, data
into the PROM is complemented,

2} Data-out switch (Normal-Complement). I this switch is in the complemeht position, data
read from the PROM is complemented,

3) Data-out switch {Enable-Disabie). If this switch is in the enable position, data may be read
"~ from the PROM. In the disable position, the output line may float up to a high level
(logic **1”). As a result, the input ports on the prototype system may be used for other
functions without removing the MP7-03 card.

MP7-03 Programmer Board Specifications

Features:

®High speed programming of Intel’s
1702A (three minutes)

® |nputs and outputs TTL
compatible

- ®Board sold complete with trans-

formers, capacitor and connector

Directly interfaces with SIM8-01
Board

Dimensions:
8.4 inches high
9.5 inches deep

Power Requirement:
Vee =45 @ 0.8 amps
TTL GRD =0V
*Vpp = —9V @ 0.1 amps
Ve = B0Vims @ 1 amp

Connector:
a. Solder lug type/Amphencl
72 pin connector
P/N 225-23621-101
b. Wire wrap type - Amphenol
72 pin connector
P/N 261-15636

*This board may be used with a =10V
supply because a pair of diodes (i.e. 1N914
or gquivalent} are located on the board in
series with the supply. Select the appropriate
pin for either —9V ar —10V operation,

A micro computer bulletin which describes the modification of the MP7-02 for programming the
1602A/1702A is available on request. These modifications include complete failsafe circuitry (now
on MP7-03} to protect the PROMSs and the 50V power supply.

C. Programming System Interconnection

+ GND —gv
I] .
3413 24 oUTPUT 13,98 18,21 20 ENABLE *P
88 OBy PORT 6 A, [e
J1.63 J2.51 - A 47 32 DATA QUT
NC 5ii
mtenn:igf Py LLN: - A1 is msanLE]
oAz _ - =
{ne L] ey re hes +5
= J1.50 oA A .
H-29 J2E— -
3% G4 i Ay 47K
E 1253F— - - a 56 %W
+5 = 84 12ag]0AB - LI P 2
‘\-—.— 1250088 ol
READY -3 e gy - A a
J2a7jRA7 . P
J244 __ GUTPUT o AL 46
- [1275 _':EMORT - - Ao _______/“"“—‘”L
227 12.80 JEB1 o Dz = 7
128 — o o
082 3 COMPLEMENT |
1216 127 = - o 27 =
e = - - o kit COMP, e
T 5 »
TAPE simaar 2B - ol werea L
READER o [o 1 =
CONTROL — D
228 242020 - D’ B2 - NORMAL
ey L1 - Ll I 9 i
l—.n-as t INPUT 5
I8¢ PORT 1
nefEe ;D‘ 32
CTTY v 181 o 2
PRINTER Nz o M H
.16 - 41— 36
42 0,
'J"‘:‘:’ nz 2 - +H :0‘ £
- 184 - s]
E 11 N8 TBS +H {'ID. 40 n
- - L
12.83 na E -+ L ho
14237 134 - - 12
TTY 107 _. EEEEEEL
KEYBOARD nm WA RERRART b
OR TAPE READER | o 501 ““““ﬂ
et J2.53 J2.43 L T Tt B 7
23— -1t i gy L S L

MNOTES: . Opa 47K 5 * P RW,

1. 5IMB.0Z Conmector: - w5 ﬁ:" $SS I IT* by asv Hv
Wire wrap type/Amphanc ||||||| X
B8 pin connector P/N 261-10043.2,

2, MP702 Connectors: ——4 & > ||E|||‘

n. Solder lug typa/Amphanol 16T L_D_N_m_,
77 pin connector PIN 225-23621-101,
b. Wire wrag typh/ Amphonot (shown above) NENAN
72 gin commector P/ 261.15636-2. L1t ‘_—D_H_W"_‘
3. i the upe of the 24 pin socket on the MP7.09 is not dwimd, the
_EXTERNAL SOCKEY PAOGRAMMING E I l ’
1 — >ty
MF7-03 MP7-03
FUNCTION PIN FUNCTION e 11
A, “OUT" DEVICE UMDER TEST 56 by 63 [L p—— _H__w\,_a.
A, 58 Dy B
A w o, © |- D ——y
Ay 62 Dy 57 |
Ay 6 CHIF SELECT OUY 72 ——— — _D_M—
A 68 PROGRAM OUT 22 sn7e0rN LED zon
Ay &8 Ve OUT 24 ™ Mv-108 uw
N x Voo OUT 2 MONSANTO
'aa
D, “OUT" DEVICE UNDER TEST n Yoy QUT u
L, 89 VopOUT %0 The complete in jon | the SIMS-0% snd the MP7-03
Dy 67 31,02 OUT Z s provited hy the MCBR-10 syster interface sed control madule.
o, & Soa The MCBE- 10 description.

Figure 16. MP7-03/Sim8-01 PROM Programming System

DATA N

DATA OUT

Eta
[
o ©
flese e
3 azo o
OHETFC
EJ' o G eE G0
T
[g€Ze}-€)

Sl A1 2]

O 9&5 -s— :
| O . .g: 33{

o4me D e

T GIHO

4
- 9

[-XX3 QL6 -3

WEZ

[=as -5
wia]
Bt

ICaWLEY
Edi

T g4 O
‘a7 Y
[ZINE]

T
B+ RS)
£33
CHeas b,
ColCED)
3]

©

B

@z

G‘

6"6 ® 6
),

/"
{@m O
3 EETHO) SN
PPTP RPDY @ Pg Qe '%(E ﬁ
HIEELIR T ERITIRTIERE
M 000 L) (') 6
__E_cz

=
=
s
]

L s
:
L]
' ‘_:
p
-

e
B
1
a
l 5
-
]
I
5]
22

!
— ' rea

N _
IIIIIlIIIIIIIIIIIIIIIIIIII'III'IIIIIII

Soder Cornector PN 22623621101 R F N M L v J HF QZYKWVUTSRPN“LKJHFEDCEA

Witwwrwp Convorot P/M 261156362 TI EJ @7 &5 B3 61 59 57 BE 53 51 a0 47 46 43 41 30 37 35 A 3 2 27 X 23 21019 17 15 13 1. P L3 oq

ﬂi@nmpmmﬂli:ﬁiﬂl,kl T2 70 BE GG B4 6@ 60 5B 56 B4 SZ GO AR 4B 44 22 A0 M 36 M 32 30 PE ZE 4 22N M W6 M 12 10 8 & 4 2 coC

Figure 17a. Compenent Side of MP7-03 Card

Soider Cacnector PN 275-23621-101 1 2 3 4 5 & F B 9 WITIZ 1344 15 V6 FF 1B 19 AN X X3 x4 X o2 X7 OZE M X 1 37 3B M K 6

Annghored
Wrwuw ap Comemcion Pitd 261.15636.2 2 4 B 310121416“1‘022-2‘KBM&S‘SM‘Q““‘G“W“S‘S@HWSZMSBS&N?ZI

Wirewap Commcior FHVPBOIEIGEDOAT 1 3 5 7 0 1% 13 15 17 19 21 21 24 27 20 N 3 ¥ 37 I AL 43 45 4T 49 F1 B3 55 BY 59 W1 B3 65 67 6% A CDC

Figure 17b. Pin Definition — Reverse Side of MP7-03 Card

4

POWER SLPP’hiY REGULATOR

Ll
+I Icm. SuF, S0V,
Y A
FILTER CAP - "3 PAGH
<
+tov [1}—1 p g T - 1z
@ J EL9W wuE 1702 PN 3
. 5“‘5 DALT.
%1
VR4
7K F al
TNETSHA
i3]
R e A103
mpFI 100K
i Vecs Vigps OUT
— — cCs
E‘r PIN 12
> DT
[e $owo
- > A7 *
< R96 £ P
N 14
Yo k< l"D,u_T.
c2t : P cs 72
-3 vis {2
lusm Res <
= 10K PIN 16
= v 2 v DUT.
A cw 5 4le 2 2
T MuF [1.C. 77 100pF Vi _%
NE 550 £7]
VR, VA
® 13 = = = Inm2s4A SRS _Lcm Lmn 15
7T % WK 2000F BT
l l ADJ FOR Ve Isov) I
] PULSE OF i70v - —
_,,,.__._k}
::nr Vou
e &l
e PiN 24
I.'IHF DALT.
PROGRAM PULSE TIMING
L 1
+5
Az
+5 : 20K [3.0ms) E-]
Rz Az6
13K A ¥
1155u1) 4
GpF 155y DuFi*
T Tis
802 . 602 \
oz | Iz ‘—I [——
3 e M ?13 h 300
= IID Y
SNTADS
Ic 1 L
A
L i) 8

[Jienif]

Rz21
A70
9 L]
SNTADG
(1}

[7]
e T L T 1 b
T‘J" f" ¢ [=:] 10
A uF] tuF | 1efF
ano [19}— -i—'“"’__
- - 3 =
P

42

NOTER: Unlats otharwieg specifnd—
1. REMSTORS ARE RATED IN 5 %W, 10%.

2. TRANSISTOAS ARE SEG02Y, or 2MI850 o 2N3T2Z

3. PIN NUMBERS ARE SPECIFIED FOR AMPHENOL
WIRE WRAP CONNECTORS,

a7 .
66K Vggs DUT

9
DATA ml.—l)

DCATAIN E:I
CONTROL SNTA0G

10
BaTAOUT 1 [z— 2 ce|m

DATA DUT T
ENABLE AESS |
controL 2}
5\ AA——{]
B> 2
100
SN7402 .
6 4 DATAZ
— ics [s e PIN 5
D.U.T. [}
DATA IN

exagLe (31

SN7486

12
12 l !IC 'Ilfl;‘1
SN7a03

?

DATA OUT H
CGNTROL

?_

;

- |
T
ADDRESS DAIVER

7
B

az——1 24— Voo
Al 2 21 IS
A ——3 22 L
DATA £UT 1 4 {L56] 21— a3
2 s 20— A4
3 [18— A5
4 7 18— 85
5 i 17 a7
L] 9 15 Vea
—]10 15— Vi
DATAQUT 8 ——1 11 iMSBI up—7is
Ve 13 13 p—— PROGRAM
DEVICE TO BE PROGRAMMED
NOTE:

THIS SCHEMATIC
IS INCLUDED FOR
REFERENCE ONLY.

1
DATA DAIVER

Figure 18. MP7-03 PROM Programmer Board Schematic

a3

IX. MICROCOMPUTER PROGRAM DEVELOPMENT

A.

MCS-8 Software Library

1.0 PL/M™ COMPILER — A High Level Systems Language

It's easy to program the MCS-8 Microcomputer using PL/M, a new high level language concept developed to meet
the special needs of microcomputer systems programming. Programmers can now utilize a true high level tanguage
to efficiently program microcomputers. PL/M is an assembly language replacement that can fully command the
8008 CPLU and future processors to preduce efficient run-time object code. PL/M was designed to provide addi-
tional developmental software support for the MCS-8 microcomputer system, permitting the programmer to con-
centrate more on his problem and less on the actuat task of programming than is possible with assembly language.

Programming time and costs are drastically reduced, and training, documentation and pregram maintenance are
simplified. User application programs and standard systems programs may be transferred to future computer sys-
tems that support PL/M with little or no reprogramming. These are advantages of high-level language program-
ming that have been proven in the large computer field and are now available to the microcomputer user.

PL/M is derived from IBM’s PL/I, a very extensive and sophis- e rcas assracin: raoe s

ticated language which promises to become the most widely st s T s serp s am v,
. . 13 UL'I!-‘:'I ?‘{! A ‘7!'\‘L 'I; ALOME T
known and used language in the near future. PL/M is de- PARIRGIER S AT E s ke e
. - - e i EQd L] PR PLZISTERS
signed with emphasis on those features that accurately reflect | ; T '
the nature of systems programming requirements for the | R Y
. AROF L] [ou El
MCS-8 microcomputer system. #rie S
1L ‘Sflﬂh
FOPOCMERLY = TARE; fw) {5 & POIAS u/
REPQ HE e '
el SauPLE PIIGTLw a:cg .1&-?::['-'..1 ,:: :.:Pl-.;
LOCATE KLl PRI©T RUWSEA5 CDTWESY 1 40D 58, BP2é Bu LE0 =
PUT 453018 1% TRUTH TuilD A% TOLLDRSE faprca vay !
PALKES])L ¢ TALE IT | |§ 4 BRINE . p oo
i BRAR €L L) Brb
RECLARE = VS £5 ROy Lom
RECLeRr 41 BBI0 ERL By Hel
DEELAAL 7 "1, FALSE CITERRLLY PRI FBO| L P TD ST
LPer 5832200 R hel
FRIMEGL: = *ALEG #» & 15 & PRIHE #f [IR AT P M2
iE15 [§.LLEH
Do % o= ¥ TR S, ARIS aaky Eul 45
PAIMZIE = LS00 o [K17TLALITE TAGLE TO FRLSE =/ g}: :;-“f"“i' E:!I' :-I
K= ogi e iy |
09 S11LE | M3 H 3 ki e L00F UATLL TESY RO PAINE FAILS o/ :"‘E B ehET 11« FAiEs so L1*Taciir ABLE 1D FALSE o
: b ALF TeaTR RO R Ry P
TRy e o A
BQ: S FOL'D L PRINE wy 0335 C5 uiev Hoa
PSiBEIZ) = TRyL ARES ALCN ALl [}
M £pFy rl vgd Pk
Ny 4fdY B L LYl
A474 JLFEE vyl LI |
TOF s f80 GOF ERSLTAN ag o
EARC NeAXPIRN oA L3
&L2a aCelr vyl LG
B2 -‘an?? mellD 3 OFDD K €3 QN Fa o BOM PNTIL TEST FOR PRJsf FAILS »r
PL/M Codlng mr32 3ia2para o wet
Program Development Time: 15 minutes WESH Wagdd ISSTROLER: Pegr 2
PAXT J64J2ERA Lal Hem
Ezan or ROV "ed
At Loge g
Epdn el SuR 4
PLM vs ASSEMBLY LANGUAGE voay py I
Ay an axampie of comparative programming effart betwean PL /M and assem- ey o P aas
bly language, this program to computer prime numbers was written twice, e o Yot T Ve
first in PL /M, and then in assembly language, The PLM version wag written HREH M B
in fifteen minutes, compiled correctly on the second try {an "end”' was et aszom e Looes
a 3 r - . 0a u 1
omitted the first time) and ran correctly the first time. The program was e S K e 1 et

DO fm FQURU & PUIME =f
Lel ek

then coded in Iritel MCE-8 assemnbly language. Coding took four hours,

pragram entry and editing another two hours, debug toak an hour to find EEF E '
incorrect register designation, the kind of problem completely eliminated by E e
coding in PLM. Rasuits of this one shart test shows a 28 to 1 reduction in AT
coding time. This ratio may be sormewhat high, overali ratio in a mix of pro- e
grams is more on the order of 10to 1. e
HDY LI1Y
Zare Siae meoo
i :JOP‘!D‘
A4A TLLTRTAD [Hel
e 't
Abs T -
PL/M Is An Efficient Language e o
UZEE AT
Tests on sample programs indicate that a PL./M program can T Rt
be written in less than 10% of the time it takes to write the runs bt 1w
same program in assembly language with little efficiency P " Boos
loss. The main reason for this savings in time is the fact -
that PL/M allows the programmer to define his problem in Assembly Coding
terms natural to him, not in the computer's terms. Consider - Program Development Time: 7 hours

the following sample program which selects the largest of

two numbers. [n PL/M, the programmer might write:

IfA> B, thenC=A; eise C = B;

Meaning: “'If variahle A is greater than variable 8, then assign A to variable C; otherwise, assign B to C.”

a4

A corresponding program in assembly language is twelve separate machine instructions, and conveys little of
original intent of the program.

Because of the ease and conciseness with which programs can be written and the error free translation into
machine language achieved by the compiler, the time to program a given system is reduced substantially over
assembly language. :

Debug and checkout time of a PL/M program is also much less than that of an assembly language program, partly
_because of the inherent clarity of PL/M, but also because writing a program in PL/M encourages good program-
ming techniques. Furthermore, the structure of the PL/M language enables the PL/M compiler to detect error
- conditions that would slip by an assembler. The PL/M compiler is written in ANSI FORTRAN IV and thus will
execute on most large scale machines with little alteration. : : '

2.0 MCS-8 CROSS ASSEMBLER SOFTWARE PACKAGE

The MCS-8 cross assembler translates a symbolic representation of the instructions and data into a form which
can be loaded and executed by the MCS-8. By cross assembler, we mean an assembler executing on a machine
other than the MCS-8, which generates code for the MCS-8. lInitial development time can be significantly re-
duced by taking advantage of a farge scale computer's processing, editing and high speed peripheral capability.
Programs are written in the assembly tanguage using mnemonic symbols both for 8008 instruction and for special
assernbler operations. Symbolic addresses can be used in the source program; however, the assembled program
will use absolute address. {See Appendix H.)

The Assembier is designed to operate from a time shared terminal. The assembled program may be punched -
out at the terminal in BNPF format.)

The Assembler is written in FORTRAN IV and is designed to run on a PDP-10. Modificatioﬁs to the program
may be required for machines other than PDP-10.

3.0 MCS-8 SIMULATOR SOFTWARE PACKAGE

The MCS-8 Simulator is a computer program written in FORTRAN IV language and called INTERP/8. This
program provides a software simulation of the Intel 8008 CPU, along with execution monitoring commands to
aid program development for the MCS-8. :

INTERP/8 accepts machine code produced by the 8008 Assembler, along with execution commands from a
time sharing terminal, card reader, or disk file. The execution comtmands allow manipulation of the simuiated
MCS-8 memory and the 8008 CPU registers. In addition, operand and instruction breakpoints may be set to
stop execution at crucial points in the program. Tracing features are aiso available which atlow the CPU opera
tion to be monitored. INTERP/8 also accepts symbol tables from either the PL/M compiler or MCS-8 cross
assembler to allow debugging, tracing and braking, and displaying of program using symbolic names.

The PL/M compiler, MCS-8 assembler, and MCS-8 simulator software packages may be procured from Intel on
magnetic tape. Alternatively, designers may contact several nation-wide computer time sharing services for access
to the programs. .

4.0 BOOTSTRAP LOADER FOR SIM8-01
When developing MCS-8 software using the $IM8-01, programs may be loaded, stored, and executed directly from
RAM memory. A set of three 1702A control PROMSs {1702A/860 set} is required for this function. In addition,

this same control PROM set is requiréd when the SIMB-01 is used as the controller for PROM programming.
{See Appendix V.)

5.0 SIM8 HARDWARE ASSEMBLER

The SIM8 Hardware Assembler is a program which translates a symbolic assembly language into an octal repre-
sentation of the SIM8 machine fanguage. An auxilliary program then translates the octal object code into the
“BNPF’" format suitable for bootstrap loading or PROM programming. Eight PROMSs and three tapes {17024/
840 set}!" containing the assembly program plug into the SIM8-01 prototyping board permitting assembly of
all MCS-8 software when used with an ASR 33 teletype.

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a
name table. On a second pass the assembler translates the source using the previously determined name values, .
creates an octal object paper tape, and if directed, writes the object code into Read/Write memory.

The assembler's commands allow for TTY keyboard manipulation of R/W memory and execution of stored pro-
grams so that program debugding may be undertaken directly after assembly. f a “BNPF" tape is desired, an
auxiltiary “tape generator’”” program may be loaded and executed by the assembler. (See Appendix 1.}

6.0 PROGRAM LIBRARY

These program listings are available to all Intel microcomputer users. We encourage all users to submit all non-proprie tary
programs to Intel to add to the program library so that we may make them available to other users.

+*

MCS-8 bootstrap loader and control pragram and PROM programming

systems routine for the SIMB8-01 and SIMB-01/MP7-03 PROM pro-

gramming system {AOBBD, A0851, A0g62) 1],
Floating point muitiply routine for the MCS-8,
Fixed point muitiply routine for the MCS-8.

Fast Fourier transform program for the MCS-8 using the algorithm by
G.D, Bergiund (see IEEE Transactions on Computers, April, 1972},

Debug Program

Binary Search Routine

{nterrupt Service Routine

Analog to digital controfler — MCS-8.

by CALCOMP.

MCS-8 driving an incremental X-Y plotter such as those manufactured

* % & &

Three dimensional blackboard stroke generator using MCS-8.
MCS-8 program for saving CPLJ states on an interrupt.

MCS-8 program for controiling the timing for a serial input
froma teletype,

Fast Fourier transform program for the MCS-8,

MCS-8 Assembler for use on HF 2100

MCS-8 teletype and tape reader control program (A0800} (1]

MC5-8 memory chip salect decode and output test program
for the SIM8-01 card {A0801) [1],

MCS-8 RAM test program for the SIM8-01 card (A02023 (1],
Single precision multiply/divide.

Pragram written by Intel, » Program submitted by custorners,

Note 1. These are the program numbers that should be used when ordering the programs in PROMs.

B. Development of a Microcomputer System

The flowchart shows the steps required
for the development of a microcomputer
systern, The SIM8-01 system can be used
throughout the complete cycle for pro-
gram assembly, PROM programming, and
prototype system hardware. Ultimately,
custom systems using 1702A PROMs rmay
be delivered. For high volume applications
{100 or more identical systems) lower
cost metal masked ROMs may be used.

To combine the advantages of the metal
masked ROM and the PROMsS, subroutines
may be stored in metal masked ROMs
and a customized main program may be
stored in PROM,

Determing 1/0
Requiremant

¥

Determine ALAM
Requirement

¥

Writa Sampla Progams:
D ina ROM Raquiremer

Y

Devekop Systewn Program
Lising 1702A FROMs

¥

Assemble Pragram
and Debug

Program
QOperational?

Yeox Hi No
Production?

¥ ¥ Y

- Order Metal Cuttomize
Bﬂiml:'ﬁg;‘:n"““ Masked ROM: Individuat Systems
for High Volume Using
1702A PROMs Production 1702A PROM:
¥ Y ¥
Deliver

46

C. Execution of Programs from RAM on SIM8-01 Using Memory Loader Control Programs

The previous section provided a description of the preparation of tapes and the programming of PROMs for permanently
storing the microcomputer programs. During the system development, programs may be loaded, stored, and executed direct-
iy from RAM memory. This section explains these additional features.

ROM MEMORY
——e 1

1
|

SIME-01 MEMORY DRGANIZATION

) 3 4 5 B 7

ﬂ

2 ROM & . BOpL255
8 _ ROM 1 256:611

wm-

AGBG0 ROM 2 512-767
gggg;} sovtees 4 fom- 00000000 ROM 4 e
e J0JB0C0O0 FOM 8 i
210000000 | RAMBANKD - 20482301
 lews00G0000 M—m—p 2 RAMBANK2 7500585

BamMBANK 3 Z816-3071

FGERL]

Figure 19. MCS-8 Operating System

The system has three basic parts:

1. The microcomputer [SIMS8-01}

2. The bootstrap memory loader control program {AD860, A0861, A08E3)
3. ASR 332 {Automatic Send Receive) Teletype

The control program provides the complete capability for executing programs from RAM, Two additional program commands
are required; “C”, the CONTINUE command for loading more than one bank of memory, and “E", the program EXECU-
TION command,

QOperating The Microcomputer System

To use the SIMB8-01 as the microcomputer controller for the bootstrap loading of a program from the TTY into RAM memory
and the execution of programs stored in RAM, the followmg steps must be followed:

1. Place control ROMs in SIM8-01
2. Turn on system power
3. Turn on TTY to “line” position _
4. Reset systerit with an INTERRUPT {Instr. RST =00 000 101
5. Change instruction at interrupt port to a NO OP
6. Start system with an INTERRUPT (Instr. NO OP = 11 000 000}
7. Load data from TTY into microcomputer RAM memory
8. Execute the program stored in RAM
Loading of Multiple RAM Banks TYPED BY SYSTEM TYPED BY USER
: Ready for commang ———————m *T #—— DATA ENTRY command
Through the use of the command “C”, Request for RAM BANK = ——a Bn H——— RAM RANK = in which data will be stored. Enter
{CON'”NUE} subsequent RAM banks may 3 | A tank number {8,1,2,3). Each bank stores 256 bytes,
be loaded with data without entering a new Reguest for Address FiV wxx fo—— iritial Address
data entry command and new memory bank within RAM BANK 235 p— Final Address = 265

. . [—— Start tape reader and toad data into RAM memary,
and address demgnatlons. Data entry must be in specified format, All format

Note that the CONTINUE command should | checking is done at this time, |f data s enlered trom

. - the keyboard, depress the RETURN key after manualty
only be used when the subsequent RAM will entering each complete word.
be completely loaded with 256 bytes of data.

Ready for new command ‘“C COMTINUE command
For partial loading of RAM banks, always T— Start tape and continue Isading data imo
use the DATA ENTRY command. The can- RAM memory, Data is loaded inte the rext RAM

BANK [n + 1} beginning with address G36 and
Ready for new command ——— ending at address 255.

tent of a RAM bank may be edited by using
the DATA ENTRY command and revising

47

and re-entering sections of the bank. When a program is being stored in memory, the first instruction of the program shouid
be located at address 3P in a RAM bank. The entire RAM memory with the exception of the last fifteen bytes of RAM
bank 3 may be used for program storage in conjunction with the bootstrap loader,

Pragram Execution
The program which has been loaded into RAM may be executed directly from RAM,

TYPED BY SYSTEM TYPED BY USER
Ready for command ———— . | *E | ~4———— Program EXECUTION command

Request for RAM BANK # — | Bn |-«——— RAM BANK in which the program has been stored.

The first instruction in a prograrn must be at address
208 in a RAM bank,

Program beginning at address 80 of RAM BANK # n
will be executed by the MCS-8 system,

To return to the bootstrap control program, the
ending statement of the program being executed

L
Ready for command — | should be "JMP 462"

CAUTION: When executing a program from a sing/s RAM bank or multiple RAM banks, care must be taken
to insure that all JUMP addresses and subroutine CALL addresses are appropristely assigned
within the memory storage being used,

Summary of System Cammands
Using Intel's special control ROMs (A0860, AOBE1, AOBE3} the following control commands are available:

COMMAND EXPLANATION

T DATA ENTRY — Enter data from TTY into a RAM bank

C CONTINUE — Continue entering 256 byte blocks of data into subsequent
RAM banks

R RE-ENTER — Re-enter a data word where a format error has occurred and
continue entering data

£ EXECUTE — Execute the program stored in RAM memory

P PROGRAM — Program a PROM using data stored in RAM memory

L LIST — List the content of the PROM on the TTY

The complete Bootstrap Loader Program is presented in Appendix V.

X. MCB8-10 MICRO COMPUTER INTERCONNECT AND CONTROL MODULE

The MCB8-10 is a completely assembled interconnect, display and control switch assembly which elim-
inates all hand wiring associated with an MP7-03/SIM8-01 setup. With the additions noted below, it
becomes a self-contained system featuring the following:

1. General Purpose Micro Processor with {/0 and Display {(with SIM8-01, power supplies)

2. Automatic PROM Programming {with SIM8-01, PROM set ADBG0O, A0BG1, ADB6E3, MP7-03, power
supplies, TTY) ' '

3. Test System for checkout of programs, features single-step capability {with SIM8-Q1, power supplies)

The MCB8-10 shown in Figure 20 includes the following:

1. All interconnect circuitry necessary to implement the programming system described in Section VIilI
of the MCS-8 Users Manual,

2. Connectors for the SIM8-01 and MP7-03 boards. .

3. A zero insertion force 24-pin socket for PROMs to be programmed. Appropriate connections to the
MP7-03 connector are provided. _

4. Teletype, keyboard, printer, tape punch and reader control connections to SIM8-01, Access to these
signals is provided by a 16-pin socket (TTY-J8). A flat cable is provided for the connection,

5. Control switches (2) and logic necessary for true-complement of programmer input or output data.

6. Breakout of all computer signals to open sockets for easy access, This includes output ports, flags
{carry, sign, parity, zero}, |/O decode (select 1/0 port 0, 1, 2, 3), 1/0 selection, cycle control, two
decoded states (stop and wait}, lower and higher order address.

7. 60 bits of LED display from StM8-01.

8. All control lines are “OR-tied”” to MCB8-10 or its connectors for external control,

9, Two toggle switches are provided for the following operations:

J283

————

- a1 :

. 516 —| TTYIN
813 INTERRUPT |
510Q |
|
|
= |

| siM801
|
|
|
I l
TTY [

816 o= 14D

|

il . IN-AD ? I

a. For AQ860 program (Bootstrap Loader and PROM programmer control ROMs), set the switches
as shown in the figure above.

b. For AQ840 program (SIM8 Hardware Assembler} set S16* to “INTERRUPT"” and S15* to “TTY".
¢. For operation not using teletype as an 1/0 device, set S16 to “INTERRUPT"” and S15 to “IN-AQ".

10. Two memontary pushbutton switches are used for interrupt and single step function,

11. 8 toggle switches are provided for interrupt instruction input,

12. A toggle switch is provided for “WAIT" control.

13. Two transformers, 115V AC/220V AC, capacitor, fuse holder and AC input jack wired to develop
the unregulated 80V DC which in turn is regulated on MP7-03 to 47V DC programming voltage,

14. A control switch for disabling the programming voltage.

15. Input jacks for applying externally supplied +5V DC and -9V DC to the assembly. (Note: internal
supplies are not included}.

*See figure 24,

The setup for the PROM programming application is shown in Figure 21. The MP7-03 {rear) and the
SIM8-01 boards are instailed in the MCB8-10.

Figure 20. MCB8-10

Figure 21. MCB8-10/MP7-03/5IM8-01 System

A. Micro Processor System

When the MCB8-10 is used as a microprocessor, its features, such as the display (for the output ports,
i/Q decode, flag flip flops, cycle control, step and wait state, and in and out control and input ports},

may be utilized at the discretion of the user. As an example, consider the testing of the $iM8-01 boards
loaded with a PROM containing the following program: Read Port A and Port B, add the two values and

output the results at Port A. The test could be implemented by connecting 8 switches to the A and B
input sockets. The actual switch circuit would consist of a single pole double throw switch wired with

one pole to ground and the wiper wired to the appropriate socket connector pin in accordance with the

MCB8-10 schematic. The SIM8-01 is then inserted into the “SIM8-01" connector and a bench supply
connected to the +bY DC and the -9V DC input jacks. The actua! test may now be performed, The
system is started according to the user’s instructions and the program is executed. The result appears
at the LED display and may be verified for correctness. The display lights of interest are identified on

the system'’s printed circuit board {Figure 22} as "OUTPUT PORTS"” 0, 1, 2, 3 (Bits 0-7}.

FELIV -Y
. - 5 . Gl GMD 4+ 3¥ =T unwmn
in teL
©ere / .J . . ‘ *
° - s
[T YT Y] XTIy a1 e
asennsnvves nafefy sasssanensejiense
\
MPT_0%
L]
FIS
- - y) *e -
-] H ==
SPaRE
s s H == ey "
- - = - - V2 snp
- - - ==z 0
- -
ae
- -
[
-
- -
- -
- -
- .
- -
1 ‘u
w B
- .y
° “ £ i
YL
L e)
hy []
L]
FLE)
ARE QU Obss SRRROUAGSNE SARPRRRASRYARENNT & & & & ASDEPERR - e
B Yoo
-
] 1 B
.3
[FRGGRAMMER CATL " ® Em A& =S - - .. . R - - e e - Ry
L] ‘iTW'IlYiTi!l!i'D 7.9432!0!?.143 (I 4 y PG
TRUE QUTPUT PORT 3 CUTRUT POAT 7 QUTRUT BORT | ;
ENABLE ak.
1
o8 ‘000600000 0 o @ e 0 |0
COMPLEMENT 'TMSABLE ? [A . 3 t ' 0 | WTERRUPT WAIT SINGLE STEF \ CANC CONTE . ad MDA
o WMTERRUPT (HSTAUCTION NPT P SYSTEM WTERFACE &NC CONTE L WMODULE *
MO AL

Figure 22. MCBB8-10 Printed Circuit Board

B. Programming System

Consider the actual programming (in the hardware sense} of the 1702A PROM in the example above. The system can
perform this function with the addition of an MP7-03 board inserted into the MP7-03 connector. An automatic pro-
gramming system which allows data entry from a keyboard ot paper tape, automatic verification, listing of ROM contents,
and hands-off programming is provided by the further addition of three preprogrammed PROMs {ADB60, ADB61, AD863)
and a madified teletype. The teletype modification consists of the addition of simple relay network described by the
MCS-8 Users Manual. The procedure for programming a PROM, then, is as follows:
1. Insert MP7-03 and SIM8-01 boards ($IM8-01 loaded with PROMs A0860, A0B61, AD363).
2. Connect teletype to “TTY" socket,

3. Connect +5V DC, -9V DC and 116/220V AC. Verify 115/220 switch is in proper position,

4, Insert instruction 00000101 with the 8 toggle switches provided for interrupt instruction input (i.e., RESTART

to location 0).

Depress “INTERRUPT""

Insert instruction 11000000 (i.e., NOP} with the same 8 toggle switches

Depress “INTERRUPT”
. Set PROG.AC' to "ON"
. Set data enable switch to “ENABLE".
Set the data “IN/QUT" switches to “TRUE" or "COMPLEMENT"
. Place teletype in “ON-LINE"” mode
. Insert PROM
. Use AOBGO program directives as described in Section 1X of this Users Manual.

D00~ m M,

C. Program Debugging

Program debugging may be performed by using the “SINGLE-STEP" switch and LED display provided.
The procedure is as follows:
1. For executing program in ROM {or ROMs):
. Turn off system power.
. Set toggle switch to “"WAIT",
. Insert programmed ROM {or ROMs).
. Turn on system power,
. Set interrupt instruction input {using the 8 toggle switches provided) with an RST O (00000101)
instruction,
Depress “INTERRUPT" switch. . :
g. Depress “SINGLE-STEP” switch. This causes the CPU to execute the RST 0 instruction.
h. Continue to depress “SINGLE-STEP " switch to advance the program one location at a time (a
three-byte instruction requires three depressions of the “SINGLE-STEP" switch).
2. For executing program in RAM:
a. Load program in RAM using A0860, A0B61, AOB63 program.
b. Set toggle switch to “"WAIT",
c. Set interrupt instruction input (using the 8 toggle switches provided) with a JMP instruction to
‘select the desired RAM bank where the program has been loaded in step a. Enter the three byte
JMP instruction as follows:
Load 1st byte {(01000100).
Depress “INTERRUPT" switch.
Depress “SINGLE STEP” switch.
Load 2nd byte.
Depress “"SINGLE-STEP’ switch,
Load 3rd byte.
Depress “SINGLE-STEP” switch,
Set the 2nd and 3rd bytes according to the following examples:
For BANK 0 —
00000000 {2nd byte)
00001000 (3rd byte)
For BANK 1 —
00000000 {2nd byte}
00001001 (3rd byte)
For BANK 2 —
00000000 (2nd byte)
00001010 {3rd byte)

o0 oo

h

§1

para |
FEDA AEWORT di

EATA niiw TTY
TRl T T BT

TR ey
PaRY

REN N

£
]

[

DATA IMAUT
POET =

L3
v

s

LI

31]

-

JLE

Tl B

oot PoeT g

3
b

=
*
o

;

o

1]
:L‘
|
Ezsg

4

i

2], (8], [5]

B ETELRT

LD Ew
e N 2
o 48
[

-

3 '['F] 5]

SuTEUT BoRt | | T

eru

(£)

1

IFIN

B ELFLGIE

OATA, TE THY
[TIT Ty

wThLT PaRT 2 —

QUTRT FORT 3 =

Lt SRDER,
ADDEET S CuT

»

n

?

—

»

>

wian ceome | .

ARy Gt

"

2

|_;i

+
L]

]
93
5

BEHESEHE
HEH
37| 37

| ﬁ
T

%/

] [T
i L
Lap &)
'9| a1 N .E]”.-
n Ef My
R —
— e —
et Teas =, E
r] L
.L-l LD = —
4 e = 14

:l
/1
H

4t
|

Pk
J,_L;ﬁi

[T- R

37

[L L L) E
e] [l
en w2 | '[:
_Zﬂ'jl rig ™ |;}
——t !
LEm
3 sl it N
. Eaa e '—'EI
' an o
n
.‘ Eeq 7 ql
1 I

TS Lec g
P -t

!
™

ﬁ

M e

-
o
]
B
3

&

§
\

ITe am 1§

5
E

7
y[B
| (5]

s

130

ERCRANE
Lk

£l

-
(3
TTe AP
g
al-IT -ty
| [T
110 LRl
L
11 Lms
L2 .
THr Leo
Za

i
ﬁé]ﬁ- E

8

:

o

i o
229 -t

BB

i
LR

i

[t AR | "
CYALE comTiel cabiu :EI_ | I
sk CouTdal come 1:‘ 2UE LEE 4 ‘E'
- Tha
ERA :9 ‘;
] JE
B
B0
i
b
i i
. o
u‘:‘u 1 ;
pata . I'E EI
[L
s =
- 5‘ 1 |
B

HETER. uuEAS OTUELW

AL wPELFE D

S ALl ERBBTOL VLD AEE 433 A e 1870,

% Aol LADN LRE

EB= e

FALT sf. BT ARL-Nd, Bxi.

Te T AEE MAT ChSwE LoatrY.

LJ;- S T T, 16V DACKETY MK MOUMTEE Sel Slhdes

52

It T
wrwre gomed [ga] |
=T) [T D
[Ao i
anre s o] YT] -
_!]us ey |
STATE Couw - o _umzs B -5 5
= il | — T2
w : 5] }
san cowmm [, > w LS i3
- j: t ol bl
! t | |k -a [e=
rate MEE ™ —-_: — 3 [
= g JoSEs —m T o
T LTy [e e
7 I e It IR 3
T ; ¥ ALE] =
i [. ZE - N 3 + [I]
s'rnl-_i...-n\-n_.uJ . ,_|,' - ! [o - | dl -
S ! ! 5ue o1 P ! S
BT MMWKIE____E 2 [a) ZI 12}
hrd o MTEERLFT mgTRucnest | | 218 a “ - | i =
_’E L Th D s o, se? ! — L . L
| <= 3 [r]te, - 1ee vee
. BT e " B
o E T Mty _’a‘q_’ L am ¥] #HE S |3
E_ 4k - a [« 5
83 ' Blee o o I L
z {83} t I B _0\?, i
= L (e ey S ' paTR SuT
o B “fe — Tl
[RIS . £ r i
Rald SHIP %EL4ET —] . ! : Pt - N i
4 ™ - 1as3 = 3 DaTa LM
il . fa]
L o 1 i 1 i
5 H T
LY ity 34 lj &l A oama, SuT

|

2
&

FEam TTY TR
TTY mueFEE

FREW TV TETHTTER [
TTY BUFEER

TAPE BELTER cmtey o]

LPOETES DT
DEVIGE LODRE TRWY T

TAFT EEADRE GO,
L ~av oo}y
To TTY MLWTER

!

B G T T

B

I I
G (]
!
I EIE) EN T T RIS BT ST JI'I*L‘I‘J__‘-'!‘J.L?J.-

208 P SELLCT —

b
~

e Ty

X,
HEN

<[
T
5|[:|7“ ACTL L P
g’ ot
™ [to] v P
I . | . Peom To e
) b 1= Profiga mieuT oo | T1 ey L PR EL
— ! - e CaTA SWT
T il——‘—'—E ¥ maTmaa O uam«.. SEVICE UNDED TOWT

LHABLL o TG
D Ol DS DN,

SYHE auT

iz
1
H
I il
|
1 [F =k} —
A EY L E‘-——
L] ¥z T, = {avTeriTT
4

&[]
p%
!
WEI I I I ST YA £

§
4
£
g
| EGIEEE

S| F] B el IR E EIRTE TR e

oo
CLrgrunTs ance

T

Ijc ceceor cut —]

HIENEHEN D

[T
[
ne

IWTESRRT o iz}

-]
Shalpd STEF

:] !
oATL Pt camPguent) s

v
EFa T

1 wmenl
e L]
Em T LR

B -9

53 Figure 23. MCB8-10 Schematic (No. 00026}

For BANK 3 —
00000000 (2nd byte)
00001011 {3rd byte)
The above procedure causes the CPU to execute the JMP instruction that has been jammed in,
d. Continue to depress “SINGLE-STEP” switch to advance the program one location at a time.

D. Procedural Precautions

1. CAUTION: Do not remove DC power while programming AC power is on. Permanent damage to
MP7-03 and PROM may result.

2. The MP7-03 board should be removed when SIM8-01 is not programmed to drive it,

3. Power up and power down for the programming system should be performed- as follows:
a. +bV DC and -9V DBC on
b. Restart procedure:
—Restart instruction 00 000 101
-Interrupt
—Restart instruction 11 000 000
—Interrupt
. TTY on
. Programming AC on
. Insert PROM
. Execute
. Remove PROM
. Programming AC off
TTY off
+5V DC and -9V DC off

oW - 00

©
®
@
B o0 oo ogoooooooooooo oooo 0000 s|0 o
@ T s R0 00000900 QUOVOROY PO0000000 00OPI000 s L0 S
Glazo i@'@@‘@@@ @ @' 32 QDO
B €3 a3

Figure 24. MCB2-10 Assembly Drawing

54

MCBS8-10 INTERCONNECT AND CONTROL MODULE

SIME-01 MCESB-10 SIM3a-01 MCB2-10
Pin Na. Connector _ Symbal Description & i FinMNg. © Symbal Dascription Costnaction
2,4 21 +5V +5VDC POWLR SUBPLY 57 n by RAM DATA IR 05 155
84 & 86 12 -5y -BVDC POMER SURPLY 53 ai Dg BAM DATA IN D¢ 453
1.3 72 GHD SROUND =4 a1 By RAMODATA IR 35 158
60 71 D, DRTA FROM MEMORY § BIT §# | J5-16 18 Ji RATT STATE COUNTER j:';
63 Il M, UATA FROM MEMORY 1 BIT 1 | J515 iy a1 T STATE COUN:ER o
7 1 un, LATA FHUM MemORY 7 BIT 2 | J514 46 a1 T STATE COUNTER J“-;
E I1 M4 DATA FROM MEwORY 3 BIT 3 | J513 45 a1 STHE ST-“'Ej C‘DL!“f'I:F:R J4:6
38 I MD, LATA FROWM MCMORY 4 EB1T 4 | JB12 42 Ji STATE (:DL.N'H,R e
al 12 "D, UATA FROM MEMORY 5 BIT 5 | I511 4 an ST‘“EI LOU"TE_R) '4
13 32 1 DATA FROM MEMORY & BIT 6 | J510 b JL o STATY COUNTER N
4 az o DATA FROM MEMORY 7 BIT 7 | J59 a3 1 Ty SIATE COUNTER 443
11 11 IA; CATA INPUT PORE ¥ BIT B (815) J10-1 79 J: SE»{“ x E:i: :if:: T j;;
10 1 tay LATA INPUT PORT § BIT 1 Joz : jl ‘ﬁl w i J'.':s
14 J1 L&, DATA INPUFT PORT B BET 2 410-3 . W Eﬁz m CHtp SELECE 3 e
19 J1 LAy UATA INPUT PORT § wiT 3 no4 ; 3 &EJ A CHoP SELee 1 o
28 Jr fa, DATA INFUT PORT @ BIT & nes : b 544 oo CH;P S i
33 J1 o, DATA INPUT PORT § BT 5 106 o " E’_iis A CHIP SELECT § i
37 a1 A DATA INPUT PORT § BIT 6 0.7 a o ciﬁ fa CULP SLLECT o s
16 J1 LA, UATA INFUT POKL @ BIT 7 J108 o - = 7 rom CHre SELECT £ e
€ J1 I8, DATA INPUT PORT 1 BIT @ Ji0-16 »5 n EF oM CiLLE SerelT 1 - ris
13 a1 i, DATA IHPUT PORT 1 BIT L J0-15 oz " El RO Gl SELECT 2 i
15 Jl 152 DATA INPLT PORT 1 BIT 2 J10-14 1 o éz 20K CHIF SELECT 2 T3
2l 11 By DATA INPUT DORT 1 EIf 3 J0-13 o " C‘;z com Cun ey 4 Pl
26 a1 TB, DATA IUFUT PORT) BIT 4 J10-12 - i i i g
a1 1 18, LATA INPUT FORT @ BIT 5 J10-11 23 32 g BOM CEIP SELECT 5 .
34 J1 18, UATA INFUT PORT 1 BIT & J16-10 46 22 fﬁ Fom ca1e S"LECT § e
) LH 3B, UATA LWPUT PORT 1 LIT 7 aoe 72 a2) RoM CLIE SELECT 7 8
. 5 Jz 2] I/ LECDOE OUT 0 nzg
61 az Tag oUteTr Post B EIV n318 7) 1]
- 13 az [I/0 BECOUE OVT O Nz
o 2 ! OUTEUT FOAT § BIT 41315 12 Jz Ess 1/0 BLCOUS OLT u? N2-6
54 J2 g CUTPLT FORE FoLI0 2 a1 15 Jz 5 1/0 BECODE Gul 0: 125
5L 9z PRy DUTPLL PORE § BIT 3 N1 14 Jz 64 170 VECODE OUT 0y J124
53 g2 ARy CLEPUT PORT B BIT 4 1318 0 2 63 170 orcons ouT o, n2a
49 J2 _1:\5 CUTPLL PORT F oIT 5 J1311 s 12 62 176 BCOLE OUT o ag
50 32 Mg LTy PORL B LIT & S13-1p 7 32 51 1/0 DECODE oUf @ n21
27 12 o, CUTBLT BONT @ LIT 7 nie 5 a1 g’ FLAG FLIP FLOF-Sign -9
75 2 ﬁﬂ aUTRUT oWy L BIT Jid1 5 n - FLAG FLIF FLOFserc P
§0 12 &, OUTEUT PORT 1 mIT L 132 73 11 € FLAG FLIP FLOP.payity o1z
78 J 8, OLTPUY PORY | BIT 2 J13-3 25 n - VLAG FLIP FLOR.Carry 11
&0 a2 GEy OUTFPUY #OxI 1 E1v 3 13-4 7 1L b IWTERRUPT IXSTRUCTION LAFUT B 3.
5 g2 ﬁ‘ QUTPIT PORT 1 BIT 4 136 9 21l DO INTERRUFL INSTRDCTIOS IN;JI,’I‘ 1 Jo-2
57 a2 o, OQUTPUT FORT 1 LIT 5 188 v - gl o IRTERRUPT INSTRELCTION TAPUT 2 -3
62 a2 o8 OUTPUT POWL 1 BIT 6 137 20 JL o INUERRUPT INSYRUCTEON INPUT 3 Jo4
53 Jz o8, PUTPUT PORT 1 wIl 7 nas 24 b3 . INTERRUPT INSTELUTION INPUT & a5
16 Jz o, QUFPUT PORT 2 ATT B J1-18 27 J1 o INTLRRUBT INSTRUCTION INPLT & 196
M 2 oy QUTPUT PORT 2 BT 1 15 18 51 b TRTERRUPT IHSTRUCTION INBGT 6 387
2 Jé &, OUTPUT PORL 2 bIT 2 1-1a w0 11 e INTERRUBT IHSTRUCTION INEUT 7 94
24 J2 EJ OUTTUT PORT 2 Wit 3 11z 59 1z 7 FEEM T TRANSMITTER ¥ '
22 az =, QUTEUT FORT 2 BIT 4 niiz 17 1z FROM TTY TRARSMITTER aur} TTY BUFFER | g
19 12 =, OUTPUT PORT 2 BIT 5 1111 a3 JE DATA FROM TTY TRANSMITTSR BUEFER TTY, 516
18 "2 g CUTPUY FORT 2 BIT & 2110 27 JE TAPE READER COMTROL IN 3111
21 az o_c? QUTPLY FOET 2 BIT 7 4119 18 12 [AFE BEADCA CONTROL OUT 15T
44, az @ DUPELT rOET 3 LIT @ J11-1 28 52 TAPE MEADER COMTROL i—9VD<] 58
a3 J2 &0, SUTPLT PORT 3 BIT 1 1.2 a4 N BATA 16 TTY RECETVER BUFFER Hite
kL] Ji ﬁz QLTEUT PORT 3 Bl 2 411-3 10 1z TO TTY RECEIVER oUT 1813
4z 12 a0, OUTPUT PORT 3 BIL 3 114 56 a1 0 TTY RECEIVER OUT 1o nupFeR a1z
33 33 65'4 QVFTPUT PORT 3 BIT 4 ni-G 20 72 10 TY RECETVER OUT a1
9 J2 . UUTPUY PORE § BIT 5 4118 81 72 READ/WRITE
26 12 g CULBUT PORT 3 BIT & -z 72 J1 e MULTIPLEXER CONTROL LINZE HEZ63
3 Je ﬁ? CUTBLT PORT 3 81T 7 qe al Jl SLF - MULTIPLEXER CONTROL LZIJZS HB26T
i o g LOW OROER ADLRESS GUT 168 . &% J1 L MULTEFLEXLR CONTROL LINES NB2B3
[:¥] 12 By LW OROER ADDRESS CLet J8-10 2 I a1 MULTIRLEKER CONTRGL LINES NEZ6T
58 J2 Ay LW ORUER MUDRESS CLT 11 29 m DATA COMBLEMENT 916
23 Iz Ay LOw ORDLR ADLRESS QLT 12] J1 B §, CLOCK {aiternate clock) 14.16
LY J2 A, LOW OFDER ADDPESS OUT 13 12 11 ¥y 2, CLOCK {alternate clock! J14-15
17 J2 Ag LOW ORDER AUDRESS OUT J6-14 75 J1 SYHC HYHC OUT J410
32 a2 A LOK ORDER AUDRESS OLT J6.15 11 Il HEALT READY IN
48 az Ay LOW CRDER AUDRLESS OLT J6-16 1 F1 INTERBUPT INTERRLET IN TTY, 316
68 a1 Ag BICH ORDEE AULRESE CUT 761 e 12 ‘1,0 EWABLE ENABLE OF 1,0 DEVICE DECODRE J4-13
H a1 By RIGH ORDER RODRESS wUT 16-2 78 a2 7 SYSTEM I/0 CONTROL e
i0 31 A HLGH ORDER ADDRESS Qur J6-3 17 a2 iy SYSTEM INPUT CORTROL J412
54 12 A LIGH ORUER ADDRESS OUT J6d a0 Jl .. PUSH BUTTON swi‘rcu} INTERRUBT §12
16 Il Ry HIGH ORDLR ADDRESS OUT J6-5 53 a1 u.C. PUSH BUTTON SW1TLH, 512
7L 11 Ay HIGH ORDER ADDRESS QUT Je-5 L¥3 a2 g QUTFUT LATCH STROSBL PORT @
74 11 coy CYCLT CONTRUL COBING J6-7 71 a2 u DUTFUT LATCH $TROBE PORPT L
73 J1 oy CYCLE CONTROL CODTHG dé-8 0 a2 by DUTPLT LATCH STEOBE PORT 2
61 J1 og RAM DATA IN Dy 451 20 a2 Wy OUTPUT LATCH STROEE PORT 3
15 gl [J1 RAM DATA EN Dl J52 2z I INT CYCLE INTERRUZT EYCL!’? IRCICATOR J12-16
36 J1 b, FAM DATA IN O, 53 12 a1 T3, ENTICIPATED T, GUDBLT
59 J1 by FAM GATA IN Dy I54 15 a1 T3, ANTTCIPATED T, OUTPLT
Sk J1 34 AAM GATA IN Dy J5-5

55

APPENDIX |. SiM8 HARDWARE ASSEMBLER

1.0 INTRODUCTION

The SIMB Hardware Assembler is a program which translates a symbolic assembly language into an octal representation
of the SIM8 machine language. An auxilliary program then translates the octal object code into the “BNPF" format
suitable for bootstrap loading or PROM programming. The program operates on the SIMB-01 micro computer system
with an ASR 33 teletype and utilizes all memory of that system. The components included are the following:

8 PROMs (1702): A0B40, AOB41,, A0847
B RAMs 1101): Last 256 bytes of assembler
24 RAMs (1101): Name table or object code

Upen purchase of the assembler the customer will receive the following:

B PROMs {AQB40-A0847) or B paper tapes

1 “SIM8 Hardware Assembler - page 8" paper tape {A0848)
1 “BNPF Tape Generator” {OCTAL) paper tape {A0849)

1 “BNPF Tape Generator” {SOURCE) paper tape (A0850)

1 “BNPF Tape Generator” Listing

1 SIM8 Hardware Assembler Listing

1 8008 Users Manual

A systemn block diagram is given in Figure 1.1.

AROM MEMORY

|
r |

1T 2 3 4 5 & 7
¢l [s1 [s] [¢} 5] Il T¢] [5] 14 cONTROLS
|EENEIEIEIEE
| |<} |<] |<] |<| }<]| |<] |2

o 00000000 —
w_ | |»O0o0o0oo fé o
w1 ew: 00000000
00000000 ¢ N

SIM8-01

Figure 1.1. SIM8 Hardware Assembler System Configuration

The assembler accepts the source text from the paper tape reader on the first of two passes and constructs a name table,
On a second pass the assembler translates the source text using the previously determined name values, creates an octal
object paper tape, and if directed, writes the object code into Read/Write memory.

The assembler’s commands allow for TTY keyboard manipulation of R/W memory and execution of stored programs
so that program debugging may be undertaken directly after assembly. 1f a “BNPF’ tape is desired, an auxilliary “tape
generator” program may be loaded and executed by the assembler.

20 DESCRIPTION
2.1 Assembly Passes

During Pass 1 the assernbler reads the paper tape, constructs a name table and generates a listing, The listing consists of
a line by line copy of the source text with each line prompted by an assembly address. When the assembler detects

a source termination the process is stopped and a symbol table listing all labeled lines is generated. At this point

no diagnostics have been acted upon.

During pass 2 the. assembler generates an object code by reading the source tape and interrogating the name table

for ail labeled addresses. The object code is written into pre-assigned R/W memory or onto paper tape at the operator’s
option. Diagnostics performed during pass 2 result in omission of the erroneous line and a printout signaling the error.
Errors detected are given below:

Detectable Errors

Unrecognized mnemonics
Unidentified labels

lllegal restart instruction

Non numeric literals

. IMegal 1/0 instruction formats

N

2.2 Operating Procedures

In addition to being an assembler, this program offers some of the features of a teletype operating system. lts commands
offer the operator a useful interactive mode, The commands “LOAD", “DUMP”, and “BEGIN" allow the operator to
read, write, and execute small programs directly from the keyboard.

The assembler requires a source text presented via a teletype reader. The first step of the assembly procedure is therefore
the preparation of a punched paper tape version of the source text. {See Section 9 for details.) This is accomplished
in an “off line"” mode,

Before proceeding with the “on line” operations the hardware configuration must be correct. This requires a system
equivalent with one exception to the SIM8-01 portion of the MP?-02/SIM8-01 PROM programming system described

in the 8008 Users manual. The exception is the teletype connection. On the prograrmnming system the teletype transmit
-tine drives both the interrupt line and the TTY buffer. The hardware assembler, however, must receive TTY data from
the buffer only, so the interrupt must not be connected. A detailed description of the required connections for the
Hardware Assembler is given in Section 10.

The assembler is a program which resides in nine 258 byte blocks or “pages” of memory; On the SIM8-01 eight pages
are permanently stored in the “read only’" section of its memory. The ninth page must be reloaded into R/W memory
at each “power on” and becomes the secotd step in the operating procedure. To accomplish this, the paper tape
containing the octal version of “SIMB Hardware Assembler - Page 8” is placed in the reader. If the “interrupt” input is
stimulated, the assembler will bootstrap its 9th page into the B/W memory.

The assembler is now ready to execute commands,

The third step of the procedure is pass 1 of the assembly. To accomplish this the source tape is placed into the reader and
the command below is typed,

ASSEMBLE: 032: 000:

The numetic values select the memaory origin point for the assembly. When the reader is placed in the “start” mode the
assembler will read the tape, generate a listing, and assembie a name table.

The fourth step is pass 2 during which the assembler rereads the source tape and compiles the object code. Line
addresses and an octal representation of the object code Is printed on the TTY and, if desired, simultaneously loaded
into memory. Pass 2 may be initiated by typing “LOAD:" or “LIST:". “LOAD" will result in loading of memory
and “LIST* will not. [the paper tape punch is enabled, an octal tape of the object code is created. Diagnostics are
performed by the assembler during this pass and errors are flagged by a "?”,

At this point the errors have been flagged and an edit of the source tape may proceed. 1f the program has been loaded
into memery interactive editing is possible. This procedure is continued until the assembly is correct.

If the “BNPF*" formatted object tape is required, an auxilliary program must be loaded into memory and executed, The
»1 QAD:"” command is used to load the program “BNPF Tape Generatot” into memory. The octal tape {296 character
maximum] is then loaded into another area of the memory with a second “LOAD:" command. The tape generator
program is executed by asserting the command “BEGIN:”. The tape generator program accepts a three digit octal value
terminated by a colon as a start address and begins to translate the memory contents into the “BNPF"" format. A print-
out and a paper tape will be generated, Sample listings generated during each step described above are given in Figures
2.1,2.2,2.3, 2.4, and 2.5. Ancther example with a step-by-step procedure is given in Section 9,

57

ASTST LAB
LCM
JMP ASTST

END

Figure 2.1. Listing of Source Tape

KEYBQARD = ASSEMBLE: 032: 000:
032000 ASTST LAB
032 001 LCM
PASS 1 -4 032002 JMP ASTST
032 004 END
| ASTST 032 00
KEYBOARD —= LIST:
PASS 2 [LOAD: 032: 000:
Octal Object | 032000 30%: 327: 104: 032: 000:
Code
Figure 2.2. Assembly Listing
KEYBOARD —» LOAD: 013: 000:
013000 106: 326: 000: 106: 237: 000: 354; 066:
Tape : :
Generatar . .
013150 153: 007: 0560: 357: 361: 007:
Figure 2.3. Load of Tape Generator
KEYBOARD —= LOAD: 012: 000:
Octal Object _ 032000 301: 327: 104: 032: 000: sae

Code

Figure 2.4. Loading of Dctal Object Code

KEYBOARD —~ BEGIN: 013: 000:

JIBN PF i
Object
Code

012:

000
L1y
002
003
004

BPPNNNNNPF

BNPNPNNFPPF

Figure 2.5. Execution of Tapa Generator

2.3 Assembly Language

The assembler operates with the 64 character subset of ASCi| generated by the ASR-33 teletype with the commercial
at sign, @, given special significance and control characters, carriage return, and linefeed. Instruction source fields utilize
a subset of the above including numerics, upper case alphabetics, the colon, quote sign, commercial at, and the control

characters.

The MCS-8 instruction mnemonics as described in the MCS-8 manual and pocket guide are recognized by the assembler.
The instructions set is augmented by three pseudo operaters, "PAM™, "ADR" and “LOC” which simplify the assembly

process,

Symbolic addressing and selection of constants are provided by the definition of labels and use of the pseudo operators.

A comment field 1s also provided.

3.0 ASSEMBLER COMMANDS

Five commands are used to direct the assembler which provide for teletype/memory interaction, assembly, and execution
of loaded programs. They are defined as follows:

LOAD: The LOAD command is used to store keyboard or paper tape entries into consecutive focations beginning with an
address specified by an address modifier. The modifier consists of 2 three digit octal numbers each terminated by a colon.
The first defines a page address (see memory organization - section 5.0} and the second defines the character address.

The format, described below, requires that leading zeroes be typed. Note that the character address has the range 000 to

37753 =256;5, LOAD: 0O11: 008:
Page Char,

Characters of the input tape must be 3 digit octal with leading zeroes, terminated with a colon. During an assembly the
LOAD command may be used without a modifier to initiate pass 2. The source tape is then loaded and the object code
is printed on the teletype printer and stored into memory as well,

DUMP: The DUMP command is used to display memory contents on the teletype printer. The command'reqﬁires two
address medifier pairs similar to that described for the LOAD command. The first pair is the address of the last content
to be printed and the second pair is the first. The format is as follows:

Last Alddress First Alddress
! T 1

T
DUMP: O13: 008:;, 011:, 000:
Palge Char. Palge Char.

The printout is 3 digit octal with 8 characters per line. Each line is prompted by a & digit octal memory address.

ASSEMBLE: The assemble command initiates pass 1 of the assembly. 1t is associated with an address modifier which
establishes the origin of the program to be assembled. This address need not be related to the usable memory of the
SIM8-01 card performing the assembly. The format of the command is described below:
Origin '

ASSEMBLE: 032 000:

Page Char, -
LIST: The LIST command is recognized only during an assembly. |t will initiate pass 2 in such a way that the source
tape is loaded and the object code printed but not stored in memory. The LIST command doss not require an address
modifier. Its format is simply:

LIST:

BEGIN: The BEGIN command will initiate execution of a program located at the address specified by its address
maodifier. If an RET¢ instruction is hardwired into the interrupt input port, assembler control may he recovered

by generating an external interrupt. ft should be noted that the ninth page of memory is not protected, hence care in
execution of a secondary program is warranted. The format of the instruction is as follows:

Address Modifier

BEGIN: '.032: 000;,
Page Char,

4.0 NUMBER SYSTEM

: All numbers used by the assembler are in three digit octal form and require leading zeroes to be typed.

50 MEMORY ORGANIZATION

Interaction with memaory requires an understanding of its utilization by the assembler. The memory consists of 2000
8 bit bytes each directly addressable by the CPU. It is organized in blocks of 256 bytes called pages as shown in Figure
5.1. Addresses are specified by 2 three digit octal numbers each terminated by colon, The first number presented to
the assembler is interpreted as a page designator and the second as a character designator.

59

1 PAGE = 2566 BYTES = 2K BITS
PAGE CHAR, PAGE CHAR.
I 000: 008: i
000: 377
a01: 000:
001:; 377
002: 000:
002: 37
003: 000:
003: 377: 1702
ASSEMBLER oc4: 00Q: . PROM
{DARK] 004: 377
DOS&: 000:
005; 377:
DOG: 0aQ0:
006: 377:
007: Q00:
po7: I y
010: 004
010: 377:
o1 000:
NAMETABLE 415, 000 : ' RW
AND PAGE 10 012 377
OBJECT CCDE 013: 000 : :
PAGE 11
L 013: 377:
NAME TABLE BEGINS AT D11: 020:
SPACE AVAILABLE FOR VOLATILE AND
OBJECT CODE LOAD UNPROTECTED
DURING ASSEMBLY =752 — BX {Number of Names}
MAXIMUM NUMBER OF NAMES =94

Figure 5.1 Memory Map

The assembler resides in the first 9 pages of memory. Two bytes of the 10th page are also dedicated, The first 8 pages,
number O through 7, are preprogrammed read only memories and the 9th resides in read write memory, page 8. The last
page is volatile and must be reloaded if power is removed. The memory is unprotected so care must be exercised in
selection of the assembly origin if the object code is to be stored in memory,

The name table created during pass 1 begins at location 011: 020: and displaces 8 contiguous locations for each entry.
The usable B/W memory for loading of abject code in pass 2 diminishes as the table develops. The maximum number of
names allowed is 94,

60 FORMAT

The assembler is a line-statement, fixed format assembler, Each field of the source statement is defined by its position
in the line. If the positional format is violated the assembler will reject the statement. The format, depicted in Figure
6.1, provides fields for a 6 character label, a 3 character instruction, a 6 character operand, and variable length comment.
The line is terminated by a carriage return followed by a linefeed but may be entirety cancelled by a commercial at

sign, @.

Detailed descriptions of the fields are provided in the following sections.

LABEL MNEMONIC OPERAND COMMENT

i | / | / |
—-=:2 -3 1 }—6 , > CrLf

weer \ /

MARGIN UNCOMMITTED TERMINATOR

Figure 6.1 Source Line $tatement Format

B0

6.1 Labels

Any tine of the assembly may be aé;sign_ed a label by placing a one to six character name into the labet field. The label
field is the first six positions of each line. 1 no label is to be assigned to the line, the field must be filled with spaces,
Each entry into a fabel field must satisfy the folfowing requirements.

1. The name must be left justified in the field.

2. The name can contain any character except the commercial at sign, @,
3. All unused positions in the field must be filled with spaces.

4. The name must appear exactly once in a label field of the source text.

5. The total number of names for a single assembly cannot exceed 94,

6.2 Instruction Mhemonics

All mnemonics defined in the MCS-8 Users Manual and pocket guide are recognized by the assembler. A concise descrip-
tion of each is provided in Appendix A. The reader is referred to the Users Manual for detailed information.

Further explanation and qualifications related to some of the instructions is given below.

JUMP and CALL: The operand field of a JUMP or CALL instruction can contain either a name or an address, Ifa
name is used, it must be defined at some point in the source input or an error message will result. If an address is used,
the assernbler expects the first three digits to be the octal value of the page address and the second three to be the value
of the character address. Examples of the two forms are given below:

6SPACES TO ' FILL UNUSED
FILL NAME FIELD INSTRUCTION NAME NAME FIELD

N NS/

PO JMP M START 1 COMMENT

mmommmrm JMP M 004008 1 COMMENT

/ 2\

PAGE4 CHARACTER 6

RESTART: The assembler operates on the operand field of a RESTART instruction in the same manner as on the
operand field of a JUMP or CALL instruction, |is assembled vatue, however, must be consistent with the 6 bit "AAA
000" format utilized by the processor. 1f not,an error indication will result.

IMMEDIATES: All Immediate instructions such as LAl can have an operand field occupied by a three digit octal
number {left justified within field) or a character surrounded by double quote marks. (See section 6.3) If an octal
number is found, it will be assembled directly as the immediate value, If a quote mark is found in the first position

of the field, the ASCH equivalent of the character in the second position will be used as the operand value, If the first
character of the operand field is neither a number or double quote mark, an error message will result, Examples of the
formats are given below: '

"LEFT JUSTIFIED
NUMERIC

\

MM LA M 567 MMM COMMENT
Ao LA “A” i COMMENT

{1IUOTE MARK IN IMMEDIATE VALUE IS AN
FIRST POSITION ASCI A = 11000001

61

INPUT: The INPUT instruction may have either a name or an octal digit with two leading zeroes. The three digit
numeric value is of the form ‘00X where X can vary from zero to seven. The formats are as follows:

MMM INP M1 NAME 111 COMMENT

Ferrmrr INP 1007 M COMMENT
CONSTANTS

The name must assemble to a value between 0 and 7, and numerics must be within the specified range or an error flag will
result.

OUTPUT: The OUTPUT instruction format is similar to the INPUT instruction but range of operand values is larger.
Nurmeric operands may assume values from octal 010 to octal 037. The leading zero is required. Names must assemble
to values within the specified range or an error flag will resutt. Examples of the formats are given below:

s OUuT M1 NAME M1 COMMENT

Moo ouT M 037 1M1 COMMENT

\

CONSTANT MAXIMUM
VALUE

HALT: The HALT instruction may be used as a pseudo operator, |f the operand field is blank, it will assemble to its
normal value of 000. If a non-zero value is placed into the first three digits of the operand field, that value will be
assigned. |f a quote mark is found in the first position of the operand field, the ASCEI value of the digit in the
second position will be assigned.

6.3 Pseudo Operators

Four additional instructions are provided to simplify the assembly process. These instructions are "pseudo operators™
because they are not included in the MC5-8 instruction set. These instructions provide for name address assignment,
memory block address assignment, a double register load for the H and L registers {sce 8008 Manual), and termination
of each pass of the assembly.

Detailed descriptions of these instructions are provided below:

PAM: The instruction “PAM® will assemble as two instructions, ““LHI” followed by an “LLI". Its operand field will

be interpreted as two 3 digit octal values. The first and second values specify the LHE and LLI operand fields, respectively,
The values may be numeric or named, but must meet the format requirements of the JMP or CALL instructions. The
realizable range of the first is octal 000 to 077 and 000 to 377 for the second. An example is given below:

b SOURCE
STATEMENT MOreTmr PAM M 010377 COMMENT

EQUIVALENT p=y /) r1 111 LHI 11 010 11171 M1 COMMENT

STATEMENT

MO LLE 377 1m M COMMENT

ADR: The instruction “ADR" is non-executable and may appear anywhere in a program except the first instruction,
The address specified in the operand field will be assigned to the name specified in the instruction. With this instruction,
names may be assigned to external subroutines and 1/0 units. An example is given betow:

SOURCE
srarement START ™1 ADR 1 001377 COMMENT

_ RESULT OF
ASSEMBLY START <w4—- 001377

LOC: The instruction “LOC" is nonexecutable and must only appear after the last executable instruction. It is used
1o reserve blocks of memory locations directly after the assembied programs and to assign a name to the first location.

The name field should contain the desired name and the operand field should contain two three-d igit octal numbers to

indicate the length of the array. The form of the number is the same as that used to indicate an address. For example,
the number 001000 would reserve 256 locations and the number 000377 would reserve 2565 locations.

END: [f the instruction END is encountered by the assembler it will terminate the current pass in process.

" HALT: If the operand value of a HLT instruction is non-zero it is treated as a pseudo operator, Section 6.2 provides
a detailed description.

70 ERROR FLAGS

Diagnostics performed in pass 1 and pass 2 may result in error flags during pass 2. If an error is detected, the invalid
source entry followed by a question mark is printed. If the error exists in the operand field but not in the instruction
field, the object code for the instruction will be printed and punched. The assembly must therefore be repeated after
.spurce text corrections are made.

The conditions that result in error flags are described below:

INVALID MNEMONICS

Every mnemonic field must contain three letters which can be exactly identified as an instruction; otherwise, it will be
rejected as an error,

UNDEFINED NAMES

If a referenced name is not found an error message will result,

INVALID RESTART ADDRESS . . _

The RESTART instruction operates on the operand in the same manner as the JUMP and CALL instruction, except that
it requires that the resulting address be one of the valid restart locations, If this is not true, an error message will result.
iNVALID OPERAND FIELD FOR IMMEDIATES .

For immediate instructions, the first character of the operand field must be a number or a quoie mark,

~ INVALID OPERAND FIELD FOR JUMP AND CALL INSTRUCTIONS

Operand fields for JUMP and CALL instructions must be a valid name or an octal number.

INVALID OPERAND FIELDS FOR INPUT/OUTPUT INSTRUCTIONS

Section 6.2 defines valid operands fields for the input and output instructions. If those definitions are violated in the
source text, error flags will result.

8.0 OUTPUT TAPE

The assembler generates an octal output tape representation of the object code. Each byte is represented by three digits

terminated with a colon (see Section 9}, Lines of 8 bytes are prefixed by the address of the first byte. The address is
not terminated by a colon and will therefore not be accepted by the assembler “LOAD" instruction.

The octal listing is compact and intended for editing operations. To perform standard Intel programming functions, a
“BNPF" formatted tape version of the octal tape must be prepared. To accomplish this, a “BNPF Tape Generator”
program supplied by Intel, and a page of the octal object code is loaded into memory. The BEGIN instruction is then
used to execute the “‘Tape Generator” program which reads 256 bytes of memory, translates them to a “BNPF'’ format,
and transmits them to the teletype for printing and punching.

As an option a “BNPF Tape Generator'’ source tape is provided so that the customer may assemble the auxilliary
program with an origin of his choosing. Section 11 provides a detailed, step-by-step description.

A detailed description of the procedure and tape outputs is provided in Section 9,

63

9.0 SAMPLE ASSEMBLY WITH A STEP-BY-STEP PROCEDURE

The sample program used in this description is not executable, but includes every instruction, several register pair selections,
erroneous instructions, and the pseudo operators, '

STEP1. PREPARE SQURCE TEXT

The first step, after handwriting of the program, in symbolic language, is to create a punched paper tape and print out on
an ASR 33 teletype. The result of this transcription applied to the sampie program is shown in Figure 9.1,

The procedure for creating the source tape is given below:

1. The TTY was placed in the "offline” made.
2. The paper tape punch control was placed in an ““on’” condition.
3. Handwritten data was keyed into the teletype keyboard.

Some typographical errors were edited by using the TTY's backspace punch controf and rubout character. The rubout is
an all “1"s character which effectively deletes any character over which it is superimposed, The pracedure is as follows:

1. Determine the number of backspaces required to return the punch to the erroneous character.

2. Depress the paper tape punch backspace control until the errongous character is reached.

3. Enter a “rubout” from the keyboard. {f a new character must be inserted, the previous character and the remaining
line or lines must be deleted with rubouts.

4, Enter the desired character and remaining lines.

The assembler's recagnition of a commercial at sign, @, may be used as an editing feature since it will effectively
delete the line from the assembly process.

Some comments regarding the format are given below.

1. The first line of the source listing must be named.
2. Strict adherence to the positional nature of the format is essential.
3. The source listing is terminated by the pseudo operator END,

STEP2. PREPARE $1M8-01

Step 2 of the procedure is the preparation of the SIM8-01. This requires loading of the assembler ROMs, presetting the
interrupt instruction, and bootstrap loading of the last page of the assembler into R/W memory. The procedure is as
follows:

1. Wire $IM8-01 connections in accordance with BOOR Users Manual description of MP7-03/5IM8-01 PROM Programming
Systems with exceptions cited in Appendix C of this note.

. Hardwire or select by switch a RESTART instruction {00000101) at the interrupt port (see 8008 Users Manual}.

. Install 8 1702 PROMSs, A0B40 to ADB47, into the SIM8-01.

Connect a teletype and power supplies to the SIM8-01 as described in the section Vil of the BO08 Users Manual.

. Place the teletype in the “ON-LINE” mode and set the reader to “FREE”,

. Place the paper tape “*SIM8 Hardware Assembler - page 8 for 1101 RAM’" {A0848) in the reader.

. Depress the interrupt switch.

. Place the reader in the start mode.

Approximately 256 locations will be loaded into RAM starting at location 010: 000: At compietion of load the assembler
is ready to receive commands. Note that its readiness to accept a command is not prompted by a special character such
as carriage return,

O~ MO W N

STEP3. COMPLETE PASS1

With the reader placed in a *“free’” or “'off” mode the source paper tape is placed into the reader, The assembler command
and an origin for the program is then input from the keyboard. The command is shown below:

ASSEMBLE: f/—. 032: — 000:
—
SIGNIFIES SPACE ORIGIN

AJSEMBLE: #32¢ 233:
ASTST La9

/
LMD
FIRST CHARACTER / LEL 123
MUST HAVE NAME LML "o

ADT “a"
AGL A"
L o
381 "o~
NDI “E™
X1 P
ORI g~
CPL "H™

NP JME F2950F
JFC JMm
JFL JHE
JF 3 Jup

JFP JMP
/ JIS JHp
LEFT MARGIN JIZ Jup

3
g

RST @29TH
BST TTYOY
TIVOT ADR 383460
IND 333
IRF TYIR
oUT 233
ouT TYoT
HLT
HLT t23
HLT "a"
PAM THTAY
AN 322123

THE FOLLOWING INSTRUCTIONS ARE IN ERROR 0

INA
1M
oA

JHP ASTSY

RES TYOT
RES JI3aNL

CAL QAL
ADI *A"

THE FOLLOVING INSTRUCTIONS ARE NONEXECUTASLE @

TITLG LDC a9asat
TSTAY LOC 291027
ENOLC LOC d3qaa]

PASS TYIN ADR 803330
TERMINATOR ——— TYOT m 333939

CONTROL CHARACTER
"DELETING" LINE

Figure 9.7 Source Listing

65

LINE ADDRESSES

ASSEMALE: 332¢ 298¢ \

ASSIGNED av/
ASSEMBLER

a2 392 A4TST LAS KEYBOARD INPUT
332 BT LCNM

32 303 LMD

932 033 LEI 12}
a2 eas LMD e
o932 oa? INH

32 o1a 0L

32 ail ADA

aza w2 ACB

a3z 313 5UG

432 J14 38D

832 415 NDE

832 a1s by]

3z 217 ORL

132 s2n 4.

532 Az21 ADL =A™
32 923 AGL rB*
¥3x @25 L1H S
432 031 §81 ~Dv
e3a eat DI “E"
932 933 XR1 "F
832 838 ont wg*
132 937 CPI “H"
232 A4 mLS

332 A42 e

832 sa3 AL

332 BA4 RAR

832 943 JMP JME 20008
a3z #5s JFG JMP
832 @53 Jry JHe
32 456 JFS JuE
232 961 Jre Jye
32 6A JTC S
832 247 JTZ o

932 o72 JTS JNP
438 478 JTP JHP
a2 89 CAL CAL CAL
232 193 CFC CAL
832 a4 crz CAL
432 11! Crg Gal
@32 L1 CFP GAL
"2 U7 CTC CAL
632 122 Tt CcaL
a2 L2s CTS CAL
232 139 cTr 313318
932 L1 RET

BAZ 134 T

32 138 arz

32 124 RTS

832 117 are

232 Lagd e

232 L4l RrL

2 4R ars

332 142 RFR

832 LA4 R5T N@9379
232 LAS RSt TTYOT
#32 148 TTYOT ADR 008863
332 148 18P wa3
93z La7 INP TYIN
#32 154 oUT 833
9z 151 out TYaT
932 152 HLT

92 153 KLT 123
232 134 HLT A"
32 15% PAM TSTAY
232 161 PAN 92012)
232 188 THE FOLLOWING INSTHRUCTIONS ARE IN EAR0R ¢
92 168 INA

2 156 M

912 167 DCA

a3z 174 DoN

oz 1M Lat

202 173 JHB ASTSY
a3z 174 CAL

a2 231 RES TYOT
232 2082 AES a6l
2 203 LM

32 284 CAL (AL
a2 287 ADI *a’
I 211 THE FOLLOVING LHSTRUCTIONS ATE NONEXECUTABLE ®
a3 2Ll TSTLC LOC adaani
212 212 TSTAY LOC aalasy
B33 212 ENDLC LOC #88891
813 213 TYIH ADR 693309
a33 213 TY0T ADR 931838
231 213 EMD

ASTST 832 393

Jn 332 4as

GAL 232 199

TTYOT 093 34Q

TSTLC 832 21! SYMBOL TABLE
ISTAY 932 212

ENDLC d33 21

TYIN 983 a9

TYOT #3) 992

Figure 9.2 Pass 1 Listing

86

The origin may assume any octal value from 000: 000: to 777: 777: without consequence if a load command is not used
to enter pass 2. If a load command is used to start pass 2, the object code will be loaded into memory beginning at the
specified origin. If this is done the operator must be sure that page 9 and the name table created during pass 1 are not
affected. {See Figure 1.} As an example, if 30 names are used, only 512 object code locations remain available (012;
000: to 013: 377:). An example of the listing generated during pass 1 is given in Figure 9.2. The example is a test
program which includes all instructions, pseudo ops, and some erroneous instructions. The assembler reads the source
tape, prompts all assembly lines, ignores comments, and generates a symbol table. The completion of pass1 is
evidenced by the completion of the symbol table. '

STEP 4. COMPLETE PASS 2

Pass 2 requires a reread of the source paper tape so it must be repositioned with the reader in a “STOP” or “FREE” mode.

A "LOAD” or a “LIST" command is used 1o initiate pass 2 of the assembly. The load command will cause the ohject code
to be loaded into memory during pass 2. A list command will not affect memory. When the load instruction is used the
object code must not overlap dedicated memory. {See Figure 5.1.) The commands are entered from the keyboard as follows;
LOAD: or LIST: '

A listing generated during pass 2 is shown in Figure 8.3. If the paper tape punch is turned on when the *LOAD:" or
“LIST:"” command is typed, an octal version of the object code is generated.

LIST:
KEYBOARD /

INPUT LOADY 2321 9301
-
@32 sas 391t 32Te 3TAs BASt 123: 8763 256; 3581
22 219 @8l 298¢ 211 222y 2337 T4d: 2551 2681
332 928 2771 Go4s 3F1: B)Ar J32: @245 31331 B34)
832 dae Q&1 Fqa: 3Ia5y A54 336 BS54 397z AT
232 040 123 932: 012: A22: F3I2: 184¢ T3 3290:
232 9% 1921 @45: 3321 1194 A45+ 432t 123 F45¢
232 359 9321 113r 245y 3321 14F: F459 @33p 153¢
332 479 445+ A32: 14601 94S: 323 1794 A45: 432: OCTAL OBJECT CODE
732 140 1851 1ad: 2321 1221 1991 4321 112¢ 108:
%2 113 A32r 1227 130: @I2¢ 1321 193: %32¢ la2e
232 120 L#3s B32¢ 1523 1983 232 162: 180z 232:
%32 139 172¢ Blas #13: 937; 2431 3531 A53: A3
32 148 %@3x A13r 9233 23331 3745: §65: 187: 187:
232 159 1&7s 157¢ 339 123¢ 31313 23563 032t 0663
332 jam o 212: 9553 329 MSAr 123 S
PARTIAL OUTPUT 1Ha ? C0
FOR LAI {OPERAND 6 ?
1S MISSING))
S8 DCA ?
e ?
[-3 ’
LAt ?
1%ar
JH® ASTSY 7 :
1241z o > RESULTOF
AL ! DIAGNOSTICS
mES TYIT ?
XES Boagel?
. s
LFd T \
a3z 179 185 . ERROR FLAG
CAL caL 1
ana:
ADI *a' 7 : J

Figure 9.3 Pass 2 Listing

STEP5. EDIT AND REASSEMBLE

If errors ocour during the assembly, the source text should be edited and the assembly process repeated. |f no assembly
errors occur, the user may elect to foad the program into memory, assert the “BEGIN” command, and execute the
program, Caution is warranted in this case because the load of the program or its execution may alter the name table
or the 9th page of the assembler. An example of the load and execute is provided in the next section {"BNPF"” tape
generation},

STEPG6. CREATE A “BNPF” PROGRAMMING TAPE

The octal object tape of the assembler is nat suitable for PROM programming or bootstrap loading so the next step is
the conversion of the octal tape into a "BNPF" formatted tape.

In sumimary, this requires the following:

1. Loading of a “BNPF Tape Generator’’ program {Tape A0849} into R/W memory,
2. Loading a block of 256 bytes of_ memoty with octal object code.
3. Executing the “BNPF Tape Generator’” program which creates the desired output tape.

A detailed description is provided below:

The “BNPF Tape Generator” program reads 256 memory locations, translates them, and sends them to the TTY. [f the
punch is on, 2 “BNPF"” tape will be generated. The RAM must therefore be loaded with the octal data that must be
translated. The load command; LOAD: 012: 000: was used to load the test tape into locations 012: 000: to 012: 157:
as shown in Figure 9.4. Note that the load instruction does not prefix the data, Also, RAM overlap onto "BNPF™ at
013: 000: arid page 8 at 010: 000: must be avoided by proper addressing. With object code loaded a transiation may
now be accomplished. The begin instruction is used to jump to the “BNPF* program loaded at 013: 000:. The punch
is turned on and 256 lines of ’BNPF" tape are generated. The command; BEGIN: 013: 000: was used as shown in
Figure 9.5. Long tapes must be processed in blocks of 256 eight bit codes,

32
KEYBOARD / 232

INPUT a3
932

aaz
332
332
8i2
Lk}
LEr
32

aghs
194

1541

232

/LOEDI #4131 9991
KEYBOARD

LOAD: S12y oodr

L B X

INPUT
LOADS 913 aags

ASSEMBLER OUTPUT =" at3 oo 1061 3265

FOR LATER USE 4.3 Ma oaAs A5
2413 829 23131 2L
aL: eid az21 M
3 947 1562 371
33 o5 A%41 213
L ep 161¢ 4TSy
3Ly arte A461 156%
313 L39 2433 434,
a3 L1a 120 121¢
813 123 #L3e AART
a13 Lia 317: Alls:
dLy taa #6551 B56s
ALl |50 153t 913y

ons 3aLy 32Ty
as asly 239
aze 217 804
L2t] 041 Gads
ead 11ax 3922
as53 193¢t #4453
359 ai2g 139:
aTe a4%: Q329
129 185y 133«
Lia $321 1221
Le& 190 312¢
132 1723 3l
LAY a8y A13:
159 16T 1872
164 2121 BS5¢

18 1

THe 4

A ?

DoH ?

LAl k4

JNF ASTST ?

Cal ?

®%T TYOT 1

»R3T 3993917

LFY *
17 1362

CAL CGAL 7

ADL A" ?

a87: 1346y
1083 g0
307y 136:
39Ts 2%
aé3y Lide
966+ L6
atds 194t
347 106
@131 P66
#13: dass
1§ A45:
371 1iO
i3y A561:
as@s 15T

313 a5
2tLlr 2224
301z F1an
3a%s A54:
Fi21 232y
332y LI
aasr 432y
158x Q452
432y 132
L33: 3I21
152z a3y
4183 @37y
323r 31t
20y 122
201 I6he

237
377
233
1180
F4Ts
3T
3261
34Ty
16@1
J2ds
LT3
L&1e
} 54
3512

23y
233:
Ja2s
304y
232
2431
143
ai2rs
LAy
132
3321
L ENE]
37%:
30ty
[F#1]

03¢
kLR
F13:
24563
9131
356y
5L
83
T
45«
aidr
a3
T
on7:

aTs:
2441
adar
%641
%2 7]
Jazr
aase
17
32
LI%y
152
FLER]
8453
55

LT T
dalsz
BLE
a3z
[.11.B)
3131
56¢
a85:
q22s
194
[L1Y]
2363
363

2561
255y
183y
3873
A32x
123
232
A45:
112¢
®l2x
183
351
1ars
2322

465 1
L13%
118
LT3
atTz;
L1 Y]
13
Jaze
1m
L1245
161y
126y
t1de

ases |
264
EREL]
ATz
azay
LT LE
1521
a3z
(1.1
1421
a2y
AT
137«
d4&e

"BNPF TAPE GENERATOR™
OBJECT CODE. THISIS
LOADED INTQ MEMORY
BEGINNING WITH LOCATION
013 000:

ASSEMBLY OBJECT
CODE (ERRORS
INCLUDED), THIS

IS LOADED INTO .
MEMORY BEGINNING
WITH LOCATION

012: 000:

fFigure 9.4. Loading of “BNPF Tape Generator’’ and Object Code

68

START OF PROGRAM

TO BE EXECUTED
BEGIN: 413: 433:
KEYBOARD INPUT an2s START OF DATA BLOCK

a9d BPRENNNEF
ail BPRNPRNPPPF
2 BROBPUNPEF
23 BENPHNPDRE
304 BHPHPNNPPF
ag5 BIRIPPPPONF
935 BPHRNBONT
a7 ANNPNTNNE
ma BNNPRHIRIPT
aLl BPNMNMNNNF
212 DPNNUPNNPT
ETR BPNNPNABNY
las5 ENNEHHNNNF
347 BENNNHNHNF
358 IENNNNN T
351 BHNNNMRIRINT
%2 prr—— QUTPUT
353 BHNNNHHENF
354 BRNNMNF
355 BNUMENNHNF
156 BHYNNENNNT
357 BANNHNF
59 BNPOINNNNF
361 BHPNHENHNF
k13- BNUHNNNNPLF
363 SENMIRNNNF
asa BNPNNRSIY
345 NN
356 BNNUNNPENT
357 INHNNNNNNF
3712 BYNNNNPREF
371 QENUNHPNNF
72 AHENNRNSF
3713 BUPNNNNNNF
¥4 SHENNENNNF
ITs BNNNNNNRPF
316 BUPHNNHNNT
7 BPPPOPDPRF

Figure 9.5, Output of “BNPF Tape Generator”

10.0 HARDWARE CONFIGURATION DETAILS

The basic wiring required for the assembler is shown in Figure 10-1. This is compatible with the PROM programming
system with two exceptions:

1. The auxilliary interrupt input {J1-1) is not used by the assembler and must be grounded. The PROM Programming
System software utilizes this input to initiate a teletype receive sequence, A switched selection is recommended.

2. The interrupt instruction port can be permanently wired as an RST instruction for the assembler but must be
selectable for the Bootstrap. Loader program. To satisfy both, it is recommended that switches be used to drive
inputs J1-7, 9, 18, 20, 24, 27, 38 and 40 between ground and +5V,

+8Y 10V

3284, B6
2.4
J21,3

AUX. INTERRUPT
INPUT, [Thisisan
exception to tha
1150 :YH,.?,T-. ;:rogrammmg
-8)

J1-30
411 RESTART
6V 119, 20, 24, 27, 38,40 —] 7 INSTRUCTION

{Recommend use
: of switches to
ASSEMBLER seiect these levels)

J- J1-7,18
J2-36
J1-84
J2-44
J2-27
Ji-11
J2.83
Optionat Switch tar J1.1, 218

TAPE
RAEADER
CONTAROL

J1-563

MANUAL
INTERRUPT

||}

PROG. Jn
1283

[11{]

J2-28
J1-86
TTY
PRINTER
| J2-40
J2-37
TTY KEYBOARD
OR TAPE READER

H

1259 SIMB-01

Figure 10.1. SIMB-01 Minimum Configuration Requirement

1.0 ASSEMBLY OF “BNPF TAPE GENERATOR"

The tape "BNPF Tape Generator” (source), tape A0B50, may be used to refocate the “BNPF Tape Generator” object
code. The object code, AUB49, provided has origin 013: 000: and may be changed if desired.

The assembiy process deseribed in Section 9 is applied to the source tape A0850. At Step 3 {Section 9} of the
assemnbly, the origin is changed to the value desired. When Steps 4 and & are completed, an object code for the
relocated tape generator is created. The object tape may then be loaded at the new location using the "LOAD"'
gommand and executed using the “BEGIN" command. (See Step 6 of Section 8.

70

APPENDIX Il. MCS-8 SOFTWARE PACKAGE — ASSEMBLER

A. Assembler Specification
1.0 GENERAL DESCRIPTION
The 8008 Assembler generates object programs from symbolic assembly language instructions. Programs are written in

the assembly language using mnemonic symbols both for 8008 instruction and for special assembler operations. Symbolic
addresses can be used in the source program: however, the assembled program will use absolute addrasses,

The Assembler is designed to operate from a time shared terminal with input by paper tape or directly from the terminal
keyboard. The assembled program is punched out at the terminal in BNPE format paper tape.

This routine is written in FORTRAN IV, It may be procured from Intel on magnetic tape. Alternatively, designers
may contact several nationwide timesharing services for access to the programs.

The program specifications are presented first and are followed by a user’s guide for some of the timesharinglaervices.

1.1 Assembter Use and Operation

Source programs are written in assembly language and edited prior to assembling, using the time sharing EDITOR program,
Edited programs can then be assembled. The Assembier processes the source program in two passes.

The Assembler generates a symbol table from the source statement names in the first pass and checks for errors,

In the second pass the Assembler uses the symbol table and the source program to generate both a program listing and an
absolute binary program. Error conditions are indicated in the program listing.

1.2 Symbol Usage

Symbols can represent specific addresses in memory for data and program words, or can be defined as constants. Symbols
are used as labels for locations in the program or as data storage area fabels or as constants.

Expressions can be formed from a symbol combined by plus or minus operators with other symbols or numbers to
indicate a location other than that named by the symbol. Every symbol appearing as part of an operand must also
appear as a statement label or else it is not defined and will be treated as an error. Symbols that are used as labels for -
two or more staternents are also in error,

1.3 Absolute Addressing

Object programs use all absolute addresses. The starti ng address is specified by a pseudo instruction at the beginning of
the source program. All subroutines referenced by symbol in the main program must be assembled as part of the main
program. Subroutines not assembled with the main program must be referenced by their starting addresses.

1.4 Program Addresses

Consecutive memory addresses are generated by the Assembler program counter and assigned to each source statement.
Two byte source statements are assigned two consecutive addresses and three byte source statements are assigned three
consecutive addresses.

The starting address is set by an ORG pseudo instruction at the beginning of the source program,

1.5 OQutput Options

The Assembler output is stored in files and can be read out in several forms under control of the time sharing EXECUTIVE.
Some of the options available are: :

a. binary paper tape at the terminal ;

b. card output at computer center;

c. program listing at the terminal;’

d. program listing at the computer center:

e. symbol table listing at the terminal;

. symbol table listing at the computer center.

2.0 INSTRUCTION FORMAT

The Intel Assembly program consists of a sequence of symbolic statements. Each source language statement contains a
maximum of four fields in the following order:

location field;

operation field;

operand field;

comiment field.

The format is essentially free field. Fields are delimited by one or more blanks. Blanks are interpreted as field separators
in all cases, except in the comments field or in a literal character string.

"

Each statement is terminated by an end of statement mark. On punched paper tape a carriage return and a line feed punch
terminates a statement,

The maximum length of any statement is B0 characters, not incl uding the end of statement mark. The instruction must
end prior to character 48 but the comments may extend to colurnn BO.

2.1 Symbols .
Symbols are used in the location field and in the operand f ield. A symboi is a sequence of one to six characters repre-

senting a value. The first character of any symbol must be an alphabetic, Symbols are comprised of the characters A
through Z, and zero through nine.

" The value of a symbol is determined by its use. 1n the location field of a machine instruction or a data definition, the vaiue
assigned to the symbol is the current value of the program counter. In the location field of an £QU pseudo instruction,
the value of the operand field is assigned to the symbol.

An asterisk is a special purpose symbol, {t represents the location of the first byte of the current instruction. Thus if
an operand contains ®-1, then the value caiculated by the Assembler is one less than the location of the first byte of the
current instruction.

Examples of legal symbols:
MAT START2
MIKE 2Z148
TED24 RONA3Z
-

2.2 Numeric Constants

Two types of numeric constants are recognized by the Assembler: decimal and octal, A decimal number is represented
by one to five digits {0-9) within the range of 0 to 16383. An octal number contains from one to five digits {0-7) followed
by the letter B, The range of octal numbers is 0 to 377778, :

Numeric constants can be positive or negative, Positive constants are preceded by a plus sigh or no sign. Negative constants
are preceded by a minus sign. There can be no blanks between the sign and the digits. If a minus sign precedes the number,
then the complement of the binary equivalent is used.

2.3 Expressions

Expressions may occur in the operand field. The Assembler evaluates the expression from left to right and produces an
absolute value for the ohject code. There can be symbols and numbers in expressions separated by arithmetic operators +
and — Octal decimal numbers are acceptable. No embedded bianks are allowed within expressions.

Parentheses are not permitted in an expression. Thus terms cannot be grouped as in the expression Z-(4+T). That expres-
sion must be written as Z-4-T to be acceptable to the Assembler.

2.4 Location Field

The location field of a statement contains a symbol when needed as a reference by other statements, If a statement is not
referenced explicityly, then the location field may be blank.

The symbol must start in column 1 of the statement, That is, if a symbol is required it must be punched immediately
following the end of statement mark of the preceding statement. The Assembler therefore assumes that if column 11is
biank, the location field of that statement does not contain a symbol,

Column 1 of the location field can also indicate that the entire line is a comment. |f an asterisk occurs in column 1, then
positions 2 through 80 contain remarks about the program, These remarks have no effect on the assembled program but
do appear in the output listing.

25 Operation Field ‘

The operation field must be present and is represented by a mnemonic code. The code describes a machine operation or
an Assembler operation.

The operation code follows the location field and is separated by one or more blanks from the location field. The opera-
tion field is terminated by a blank or an end of statement mark when there is no operand field and no comment field.

Examples of machine operations:

LAB Load Register A with the contents of Register B

CPM Compare contents of A register with contents of memory tocation m.
Example of Assembler operation;

ORG Set program counter to specified origin

2.6 Operand Field
The contents and significance of the operand field are dictated by the operation code. The operand field can contain the
following:

blank

symbol

numeric

expression

data list

The operand fietd foliows the operation code and is separated from that code by one or more blanks. The operand is
terminated by a blank or an end of staternent mark if no comments follow the operand,

Examples of operands:

DANI MIKE2-MIKE4 + 1
1438 7738 + X2

1869 e |

RON+33B AAAL.22B

{blank)

2.7 Comment Field

The comment field is optional. |t follows the operand field and is separated from that field by at least one blank, 1f
there is no operand field for a given operation code, then the comment field foliows the operation field. Once again at
least one blank separates the operation code and the comments. Comments must terminate on or before the 80th charac-
ter position. If the comment extends beyond that position, it will be truncated on the output listing. Comments up to
the 48th character position are printed along with the source code. If comments are in positions 49 through 80, then
they are printed on the next line, '

3.0 MACHINE OPERATION .

Each instruction in the 8008 repertoire can be represented by a three letter mnemonic in the 8008 assembiy language.
For each source statement in the assembly language {except for some pseudo instructions), the Assembler will generate
one or more bytes of object code. Source language statements use the following notation:

Label - Optional statement label;
Operand — One of the following:
data — A number, symbol or expression used to generate the second byte of an immediate instruction.
address — A number, symbol or expression used to generate the second and third bytes of a call or jump
instruction.
device — A number, symbol or expression used to define input/output instructions to select specific devices.
start — A number, symbol or expression used to define a starting address after a restart instruction.
Comment — Optional comment.
{ } — Information enclosed in brackets is optional.

3.1 Move Statemants - - 1 byte, or 2 bytes when operand is uged,

Move instructions replace the contents of memory or of the A, B, C, D, E, H and L Registers with the contents of one

of the Registers A, B, C, D, E, H or L or with the contents of the memory location specified by H and L or with an
operand from the second byte of the instruction, ln what follows, r, can represent A, B, C, D, E, H, L orM r,can
represent A, B, C, D, E, H, L, Mor |, If r;=M, the contents of memory are replaced by the contents of ry. 1fry =M,

- the contents of r, are replaced by the contents of memory. Ifrp = |, the contents of ry are replaced by the operand from
the second byte of the instruction,

{Label} T Lryr, | data [(Comment)
Moveratory.
Examples:
Label | LEH | T Comment
Move H 10 E.
Label | LAM | [Comment

Load A from memory.

Label | LMB | [Comment

Move B to memory.

73

Label T LCI ["062B [Comment
Load octal 062 into C,

Labei [LMI T 1358 | Comment

Load actal 135 into memory.

The contents of the sending location are unchanged after each move. An operand is required if and only if r=1.

3.2 Arithmetic and Logical Operation Statements - - 1 byte, or 2 bytes when operand is used,

These instructions perform arithmetic or logical operations between the contents of the A Register and the contents
of one of the Registers B, C, D, E, H or L or the contents of a memary location specified by H and L or an operand,
The result is placed in the A Register. In what follows, r may be B, C, D, E, HorL,Morl. Ifr=M, memory location
is specified. If r = |, the operand from the second byte of the instruction is specified.

3.2.1 - {Labe} | ADr T data | {Comment}
Addrto A,
3.2.2 ' © {Label T _ACr T data | (Comment

Add r to A with carry,

3.2.3 (Label) [SUr T data [{Comment)
Subtract r from A.

324 {Labet} [sBr | data | {Comment}
Subtract r from A with borrow.

3.25 ' {Label} I NDr T data [{Comment}
Logical AND r with A,

326 {Label) | XRr | data T (Comment)
Exclusive QR r v_vith A,

327 (Labeh I ORr [data [{Comment)

Inchlusive OR r with A.

3.28 {Label) | CPr | data [(Comment}
Compare r with A.
Examples: '
Label | ADB | | Comment
Add B to A,
Label | SUM 1 | Comment

Subtract the contents of the memory locatlon
specifred by H and L from A.

Label | CPI | 024B | Comment
Compare octal 024 with A
An operand is required if and only ifr =1,
_3.3 Rotate Statements - - 1 byte

3.3.1 {Label} | RLEC T I {Comment)
Rotate A ane hit left. -

74

3.3.2 {Label) | RRC | [{Comment)
Rotate A one bit right,

3.3.3 {Label) | RAL T | {Comment)
Rotate A through the carry one hit left,

3.3.4 {Label) | RAR | [{Comment)
' Rotate A through the carry one bit right,

34 Call Statements - - 3 bytgs

Call instructions are used to enter subroutines. The second and third bytes of call instructions are generated from source
program operands and are used to address the starting locations for the called subroutines. An operand is always required.

3.4.1 {Label) | CAL 1 address [{Comment)

Call subroutine unconditionally.

3.4.2 {Label} | CTC | address | {Comment)

Call subroutine if carry = 1,

+34.3 {Label) | CFC T address |{Comment}

Call subroutine if carry =0

344 (Label) | €TZ | address [(Comment)

Call subroutine if accurmulator =0,

345 {Label} | CFZ | address |[{Comment)

Call subroutine if accumulator 9‘-‘_0.

348 {Label} | CTP T address [{Comment)

Call subroutine if accumulator parity is even.

3.4.7 . {Label) | CFP | address | {Comment}
Call subroutine if accumulator parity is odd.

348) {Labef) | CTS | addressl(Con‘_rment)

Call subrautine if accumulator sign is minus,

3.4.9 {Label) | CFS T address [{Comment)
Call subroutine if accumulator sign is pfus.
At the conclusion of each subroutine, control returns to the address ““Label + 3%,
35 Jumnp Statements - - 3 bytes
Jump instructions are used to alter the normal program sequence. The second and third bytes of jump instructions are

generated from source program operands and are used as the address of the next instruction. An operand is always
required.

35.1 {Label) | JMP T addressT{Comment)
Jump to address unconditionally,

352 {Label} | JTC | address| {Comment)
Jump to address if carry = 1.

353 : {Label) | JFC | address [{Comment)
Jump to address if carry = 0.

5

354 {Label}) 1 JTZ2 [address [{Comment)

Jump to address if accumulator = 0.

355 {Label) | JFZ | address [{Comment)
Jumnp to address if accumulator # 0,

3.6.6 {Label) | JTP [address [{Comment)

Jump to address if accumulator parity is even,

357 {Label} [JFP | address [{Comment}
Jump to address if accumulator parity is odd.

3.5.8 {Label) | JTS [address [{Comment)

Jump to address if accumulator sign is minus,

359 {Label} | JFS [address {{Comment)
Jump to address if accumulator sign is plus.

3.6 Return Statements - - 1 byte

Return instructions are used at the end of subroutines to return control to the address following the call instruction that
entered the subroutine. In what follows, assume a subroutine was called as shown:

MAIN | CAL [SUBRTN | Comment

3.6 {Labetl { RET | I (Comment)
Return unconditionally to “MAIN + 3"

36.2 {Label} | RTC i [{Comment)
Return to “"MAIN + 3" if carry = 1.

3.6.3 {Labely | RFC | i {Comment}
Return to “MAIN + 3” if carry = 0.

36.4 {Labely | RTZ | | {Comment)
Return to “MAIN + 3" if accumulator = 0,

3.656 {Label} | RFZ l | {Comment}
Retwm to “MAIN + 3" if accumulator # 0,

3.6.6 {Labet) | RTP | [{Comment)
Return to “MAIN + 3" if accumulator parity is even.

3.6.7 {Label T RFP | I {Comment
Return to “MALN + 3" if accumulator parity is odd.

3.6.8 {Label) | RTS | | (Comment)

Return to “MASN + 3" if accumulator sign is minus,

368 (Label} T RFS | [{Comment)
Return 1o “MAIN + 3" if aecumulator sign is plius.

76

3.7 Input/Output Statements - - 1 byte
These instructions are used to input or output data, one byte at a time, between the A Register and the external device
salected by the operand. An operand is always required.

3.7.1 {Label} [INP | device | (Comment)
Inputs one byte of data from device to the
A Register,
3.7.2 {Label) | OUT | device | (Comment)
" Outputs one byte of data from the A Register
to device, .

The device operand must have a value between 0 and 7 for input instructions and between 10 and 37 octal for output
instructions.
38 Increment/Decrement Stataments - - 1 byte

These instructions are used to increment by one or decrement by one any of the registers r. In what follows, r can
represent B, C, D, E, H or L. Increment and decrement operations affect the accumulator conditions zero, parity and
sign, but not carry.

3.8.1 {Labely T INr | ! {Comment)
Add1tor.
382 {Labey T DCr | I {Comment}
Subtract 1 from r
Example: . _
Label | INB | I {Comment}
Add 1 10 B.

39 Halt Staternent --1byte
The halt instruction is used to stop the 8008 processor,

{Label) [HLT | I {Comment)

3.10 Restart Statement - - 1 byte -

The restart instruction is used in conjunction with an interrupt signal to start the 8008 after a halt. The program counter
is set to a starting address equal to the operand multiplied by octal 10, A start operand is required which may have a
valug from O to 7,

{Label} [RST | start | {Comment}

n Load Address Statement - - 4 bytes _ :
This instruction is used to load H and L with a memory address and is simply an assembly language convention equivalent
to the two separate instructions LH) and LLIl. An operand is required.

{Label) | SHL | address | {Comment)

4,0 PSEUDO INSTRUCTIONS

The purpose of pseudo instructions is to direct the Assembler, to define constants used by the object code, and define
values required by the Assembler. The following is a list of pseudo operations.

ASB Define paper tape output

ORG Define origin of program

EQU Define symbol value for Assembler
DEF Define constants for object code
DAD Define two byte address

77

4.1 Program Origin

The program origin can be defined by the user by an ORG pseudo operation. 1f no ORG statement is defined, the origin
is assumed to be zero. The origin can be redefined whenever necessary by including an ORG statement prior to the
section of code which starts at a specific program location.

The format of the ORG statement is:

| ORG | n [{Comment)

The operand n can be a number symbaol, or an expression, If a symbaol is used it must be predefined in the code.
Example of the ORG statement:

LAB . {nstruction starts in LOC 0000
LCD

ORG 1000B _
SAM LCD {nstruction stored in LOC 1000

ORG 5000B
SALLY DEF 1,4, 777B, 7000B Data starts in LOC 5000
END

4.2 Equate Symbol

A symbol can be given a value other than the one normally assigned by the program location counter by using the EQU
pseudo operation. The symbol contained in the location field is given the value defined by the operand field,

The EQU staternent does not produce a machine instruction or data word in the object code. |t merely assigns a value to
a symbol used in the source code.

Format of the EQU statement:

Symbol | EQU | operand | (Comment)

The operand may contain a numeric, a symbol, or an expression. Symbols which appear in the operand must be pre-
viously defined in the source code.

All fields are required except for the comment field, which is always optional.
Example of EQU statements:

TELET EQU 4
MAGT2 EQU 2
MAGTG EQU B
SAM EQU 1000B

INP TELET
LAB

CALL SAM
OUT MAGT2

4.3 Define Constant

Constant data values can be defined using the DEF pseudo statement. The data values are placed in sequential words in
the object code. |f a symbol appears in the location field, it is associated with the first data word. That symbol can be
then used to reference the defined data,

Format of the DEF statement:

{Symbol}l DEF | datalist | {Comment)

The data list consists of one or more terms separated by commas, There can be no embedded hlanks in the data list
{except in a literal character string). The:terms can be octal or decimal numerics, literal character strings, symbols or
expressions.

78

A literal character string is enclosed in single quote marks (). It can contain any ASCII characters, including blanks.
The internal BCD 8 bit codes corresponding to the given characters are stored in sequential bytes, one character per
byte. ’

Octal and decimal numbers ate stored one per byte in hinary,
Octal numbers must be in the range 0 to 377B.

Decimal numbers must be in the range 0 to 255,

Two's complements are stored for minus numbers.

The program counter is incremented by one for each numertic term in the data string and by n for each literal string of n
characters.

Examples of data strings:

MESS1 DEF ‘SYMBOL TABLE OVERFLOWED’, Y-2, SUB2

MESS2 DEF ‘LITERAL STRING 1°, ‘LITERAL STRING 2*

MASKS DEF 778, 177B, 130B, LABEL 3, X + 3 Required masks
DEF 24, 133, 37B, 99, 232, ‘ERRCOR’ Required constants

4.4 Define Address

Program addresses, defined by alphabetic symbols, are stored as data by the DAD pseudo operation. The 16 bit address
is stored in sequential bytes; the first byte contains the 8 least significant bits and the second byte contains the 8 most
significant bit of the address.

Format of the DAD statement:

(Symboht | DAD | datalist [{(Comment)

The data list consists of one or more symbols separated by commas. There can be no embedded blanks in the data list,
The program counter is incremented by two for each symbol in'the data list.
Examples of DAD statements: '

LINK - DAD SuUB1, SUBZ, SUB3
ERRSUB DAD ERRORX Print Errots
DAD SOCTAL, SPECM, SYMBOL, SEXPR, SLIT

4.5 End of Source

The end of the source code statements is defined with the END pseudo statement. The END operation code generates
no object code; it merely signals to the Assembler that there is no more source code.

Format of the END statement:

[EnD | [{Comment)

Nate that no symbal is allowed in the location field of the END statement.

46 Assembler Paper Tape Output
The format of the paper tape output is defined by the ASB pseudo output. The operand specifies the format with the
following mnemonic codes.

F1601— 1601 format described in Intel Data Catalog.

FROOB— F8008 Format (This logic is not inciuded in the Assembler but the position of the code is described
in the PAPER Subroutine.)

The entire 80 character statement is written on the paper tape file as the first record. 1t is used to describe the contents
of the paper tape. |f no ASB pseudo operation appears, then format F1601 is assumed and a string of asterisks appear
on. the paper tape file as the first record, '

Examples of ASB statements:

ASB F£16801 Keyboard Code
ASB F1801 Data Transmission Code

50 ERRORS

Various types of errors can be detected by the Assembler. Message is emitted following the statement which contains
the error. Theerror messages and their meanings follow,

$ERRORS ILLEGAL CHARACTER X .
The special character X (such as §, /. , } appears in the statement {not in the comment) or perhaps a required
operand field is missing.

$ERRORS MULTIPLY DEFINED SYMBOL XXXXXX
The symbo!l XXXXXX has been defined more than one time.

SERRORS UNDEFINED SYMBOL XXXXXX
The symbol XXXXXX has been used but never defined.

$ERROR$ ILLEGAL NUMERIC CONTAINS CHARACTER X
An octal number includes an illegal digit {such as 8 or 9} or the numeric contains non numeric characters,

$ERRORS ILLEGAL OPCODE XXX
The operation code XXX is not one of the acceptable mnemaonics.

$ERROR$ MISSING OPERAND FIELD
No operand found for an operation code which requires one,

$ERRORS ILLEGAL VALUE = YYYYYY, MAXIMUM = XXX XXX
The numeric value of an octal or decimal number of an expression has overflowed its limit.

XXKXKX= 377B for 1 byte operands or data word
KAK KK K= 377778 for 2 byte operands

XAXXXX= 37B for output device numbers
XXX XX= 7 for input devicg numbers
YYYYYY= given operand value

$ERRORS ILLEGAL SYMBOL
A location field contains a symbol that has more than six characters or that does not start with an alphabetic.

$ERRORS MISSING LABEL

The label, which is required by the EQU pseudo operatian, is missing,
$ERRORS SYMBOIL TABLE OVERFLOW, MAXIMUM = XXXXXX
Too many symbols in source program to fit into allocated symbol table.

$ERRORS$ LINE OVERFLOW, MAXIMUM = XXXX
Input line exceeds 48 characters; or missing carriage return,

$ERRORS ERRONEOUS LABEL .
Opcodes END and ORG may not have a label,

$ERRORS ILLEGAL ORIGIN XXXXXX is less than XXXXXX
Vaiue of new origin is less than current program count,

$ERRORS$ ILLEGAL OPERAND
DAD opcode requires symbalic operand

6.0 SYSTEM OPERATION

Source programs may be entered directly from the terminal keyboard or through a paper tape reader into a file. The user
can then edit the source program by calling the EDITOR routine, After editing, the user calfs and runs the ASSEMBLER
routine, :

6.1 Output Control _
At the conclusion of the Assembly process, the user can request the following output:

Lacal binary object tape
Remote binary object tape
Local program listing

Remote program listing

Local source statement listing
Remote source statement listing
Local symbaol table listing
Remote symbol table listing
Remote card object deck

6.2 Binary Output
The formatted object code is punched out on request in sequence on 8 level paper tape.

8.3 Program Listing
The printout of the program listing will have the following format:

Columns _
1-5 Location {octal) of first byte of object code
6-7 Blank

8-10 First byte object code word in octal
11 Blank

12-14 Second byte object code word in octal
15 Blank

16-18 Third byte object code word in octal
19 Blank

20-22 Fourth byte object code word in octal
23-24 Blank

256-72 First 48 characters of source statement

B. Tymshare User's Guide for Assembly

This section contains the operating procedure for the Tymshare PDP-10 version of the assembler, Information on
manipulation and editing of files is contained in the TYMEX and EDITOR reference manuals distributed by Tymshare.
The assembly language is described in Section A of this appendix. In addition to the standard features, the Tymshare
PDP-10 version of the assembler permits the use of tabs in place of blanks (outside ASCII string constants), simplifying
formatting of the assembly listings. (*“Tabs’ are set in every eighth column in the PDP-10 systern.}

To use the assembler, the user must create an assembly language source file on the disk. This file may not contain line
numbers, The file name consists of one to five characters with the file name extension “.DAT",

To start the assembly, type:
RUN {UPL) ASM8 .

in either the TYMEX or PDP-10 mode. The assembler will request the input {source) file name, The user replies by
- typing the file name exclusive of the .DAT file name extension. For example, if the source file is named SRC.DAT, the

reply is SRC.).

When the assembly is complete, the assembler will type a stop message and retum 16 the monitor, Output files from the
assembler may then be listed or punched on the user’s terminal,

Three cutput files are produced by the assembler:

LOGOU.DAT contains the assembly listing
LOGBI.DAT contains the 1601/1701 object tape
LOGMI.DAT contains intermediate pass code (this file may be deleted to reduce storage charges)

The output from the assembler is described in Section A of this appendix. Section F contains an example of the assembly
language listing.

C. General Electric User's Guide for Assembly

This section contains the operating procedure for the General Electric version of the assembler. |nformation on manipu-
lation and editing of files is contained in the COMMAND SYSTEM and EDITING COMMANDS reference manuais dis-
tributed by General Electric. The assembly language is described in Section A of this appendix.

To use the assembler, the user must create an assembly language source file on the disk. This file may not contain line
numbers. The file name consists of one to eight characters. Output files for the assembler must already exist or be

created before starting the assembler, The files referenced are LOGOUT, LOGMID, and LOGBIN. Al! of these files are
sequential ASCIl, No password is permitted for any assembler file,

81

To start the assembler, type:
OLD ASMS ¥

When the program prints "READY", type:
RUN ¥

The assembler will request the input file name. The user replies by typing the source file name of the file to be assembled.

When the assembly is complete, the assembler will type a stop message and return to. the monitor. Qutput files from the
assembler may then be listed or punched on the user’s terminal.

Three output files are produced by the assembler:

LOGOUT contains the assembly listing
LOGBIN contains the object tape
LOGMID contains intermediate pass code (this file may be deleted to reduce storage charges}

The output from the assembler is described in Section A of this appendix. Section D contains an example of the
assembly language listing {leading zeroes are suppressed by the Generai Electric version of the assembiler).

D. Sample Program Assembly

1: My PRapd
2t HULD9E 2oe1l
3 MuLARY ARPES
45 uMUL Haazs
51 JMULS pen4d
Gl PP QDB42
T OUNLLFL 22054
a3 arv ELLL T
95 QIV@RH pRET7S
i@ GIveel g@i1d
11t Divig2 eo1 4
12: udIvS p@1da
135 UGy BRL4é
1a: UDIVES @151
151 uDlvel €P173
14: DNEL ez

IS IS R EIETEss IS iEa=ScsriiSciZEsSsryr=Ccaigdl

Lne OBJECT CODE SQURCE STATEMENTS

EEEP LI SIS IS LS Fr LN SC SIS SIITIBLIASC RISy ExIm i

FELEL] + MUL ~ SIGWED INTEGER MULTIPLY

BBRap e CALL! SRGUMENTS JN C 2 D

FIIE] ¢ EXITI HI QRDER PRADUCT [N B

fddee . L] LG ORGER PADDUCT IN C

WY *» REGS) A8, Ci D€y AND FLAGS ALTEREV

LIS # TIHE? 1074 Y0 3493 MICKOSECONDS (BOMY)

28098 250 MUL XRA 1) COUNT ANG NEGATE
PA921 Iap LEA HEGAT [VE &RGUMENTS
gBmez 222 SUC

#2083 167 211 202 JTS nyLBad

B08P6 158 @13 09D Jt HUL 632

ELLISRRFL LCA

W1z W INE

a1z 258 KuL2BE XRa

PRULS 225 Sug

0815 168 825 PR JTS L1

agaze 159 @25 @#pa JTE MuLER1

PRAZ 1IN LO&

BOBZ4 AR INE

veR25 4 MULREYL LAE 25 MOYE COUNT mgD 2
29026 P32 RAR TO CARAY

owaz? 106 B35 fBd . CAL IR 31 CALL *UNS]GMED
BEA):2 142 Z9a 200 CTC OMEG ML TIPLY!, IF CAMRY
B3B38 pE7 RET WEGATE RESULT: ERIT
- L * UKL, = UNSICMED INTEGER MULTIPLY

REPAn * CALL! MRGUMENTS INC &2 D

[:1::R 1] # f£x|T: W] QAQER PRODUCT IN B

[a1 . L0 DRDER PRGODUCT IN C

BoB s » RESSD AsBaBL, AND FLAGS EXCEPT CARRY ALTERED
.ET.EFY « TIME: A9 TO 1134 WICROSECOWDS (ePwd|

NE.)1Y * UMLS ~ MULT[=PREC[SLON MULTIPLY ENTAY
LT-I:RYS . {BRE v C ® D & B)

BOA3L B16 DoE UHLL LB]

Q504D A4s P11 UMULS LEL]

2pd4z 3oz UNULBE LAC 17 ROTATE CARRY INTO
aen4y g3z RAR PROOLCT ~ MULTIPLIER

82

AFR44 328 LE& SHARED REGISTER.

LIERERTEY DCE FORCING NEXT LSH
auads 353 RTE TO CARRY

27047 381 L&B 2y EXIT IF BTH ITERATION
BPES: 189 £54 @OR S UMULBL 3] IF STEP (1) SET CARRY
27253 203 ADO ADD MUL TIFLICARD TO
79954 332 UMULBL RaR PRODUCT

28g55 318 LEA 4) ROTATE MDST SIGNIFICA
2oB56 184 24z PR JMP LM, B8 PRODUCT AND GO TO (34
pRes1 « 01y = SIGWED INTEGER OIVIDE

20A61 = CaLLY W[QROER DIWIOEND IN @

23061 . L0 ORDER DIVIDEND IN C

BadeL . OLVISOR [N O

aeEs1 &« EXIT: QUOTIENT [N C

Ba8g1 - REMAINDER IN B

F0d6l - OWERFLON FLAG IN CARRY (CYs@ahgy)

20061 ¢ FEGS: 2.B.Co0.E, AND FLAGS ARE ALTERED

200s1 * TIMED 922 TO 1416 MICROSECONDS (HERE)

EOE&) 250 [0 KR4 11 COUNT AND MEGATE ' .
eqnse 3ep LEA HEGATIVE ARGUMENTS
deeel 221 N

00cd 168 BTG 242 JTS o vaes

€847 150 BT6 240 JTE u1veod

APZ7Z B4R 1HE

HeRTI 1p6 Zod 308 EaL DNEG

aBa7s 250 DIVEBE ¥R

FBRTT 223 500

BULEG 166 110 @00 JTS 0l ¥8a1

28183 150 118 BE0 JTE Diveal

pe1as 372 L

ne1pY B4B INE .

Y110 384 OIVBAL LAE 2) MOVE CQUNT MDD 2
A8i11 232 RAR TG CARRY

PE112 186 18 BED . CAL uoty I} GALL 'uDly*

POL1S B3 RAR EXIT WITH CMRT

RELILE J4¢ LEA = B [F OVERFLOW

pE117 258 KR A OCCURRED

P12 262 ORE

#0171 B63 RTS

28122 301 LAB

Ba1323 223 U0

Be124 G@3 RFC

29125 g50 . AR A& 4) IF CARRY WAS

PU126 264 . ORE SET IN STEP (23

7127 129 142 020 JF5 oIveo: HEGATE QUOTILENT

poL32 258 ¥RA AND REMAINDER

ap133 222 sUG

BE134 320 LCA

20135 258 XR A

2013 221 sul

Ze13? 3198 LB

FEL4R @D ZOF opveez Lkl 2096 51 SET CARRY AND

ap142 B2E RAL EXIT

PP143 207 RET

anLaa « YOIV = UNSIGNED INTEGER DIVIDE

BAL44 * CALL: H] ORDER DIVIOEMD IM B :
20144 s L0 ORDER OI¥IDEND N € -
a01a4 _ . 01¥ISOR Iy O

[LEEE) = EXIT: QUOTIENT IN €

BEL44 . REMaINDER IM &

20144 . NOTE! OVERFLOW !F B »>= D

0144 * REGSS A.B.CsE; AND FLAGS EXCEPT GARAY ALTERED
LR T « TINE: T84 TO 1298 M| CROSECONDS (80PA}

LLIEY + UDI¥5 - SINGLE PRECISION OIVIDERD ENTHY

Aplas 16 206 UWI¥sS LB! [:

20144 BAS 213 upIv LE!)

20158 36l LAB

28155 318 uplvea LB .

pais2 g2 : LAC 1} ROTATE CARRY IWTD
apLsy B2 RaL DIVIDEND - WUDTIENT
BRL54 379 . LCA SHARED REGISTER,
BE1HS Pal DCE FURCING BEXT M5B
20154 150 173 Opd JT2 uo 1vieL TO CARRY

pe16L 31 LAB 23 ROTATE WEB INTO
aP1e2 222 : Ril HI OHDER OQUQIIEN] . _
Pa163 223 5UD 3) SUBTRACT DIvISORI IF
pled 190 151 2@ JFC up1veR LESS THAN H! DROER QU
an1s7 223 ADD . Go TO (1}

pEL7B 194 151 2o JHF uoIvos ELSE ADD IT BAGK
BE173 822 uplvaL RAL AND GO TO i)

BALTA J4B LEA #) COMPLEMENT QUOTIEWT
dP175 BRE 377 LAl 3778 AND EXIT

28177 252 *RE

eozeR 322 LGA

BAZAL Ja4 LAE b
pp2ez plz” RaR .
20203 997 RET

2eZp4 * DNEG = DOUBLE PREGISION MEGATE

202 84 * CaLL ¢ H] QORDER (N B

AI2E4 . 1O QRDER IN ¢

pa2a+ = EXITt H[URCER IN 8

. Lrd . Lo ORDER IM ©

PRZR 4 ¢ REGS! 4,8,C, AHD FLAGS ARE ALTERED

Bgzg4 * TIME! 76 MICROSECQONDS (RPO5) .
20204 » NOTES =32768 CANNDT BE NEGATED

2dap4 254 DHEG KR& i
gpz@s 2z2 3UC

Hezes 3z2@ LGA

2828 dp6 0pY Lat ['

@p21y 231 seg

aEZ12 310 LBA

8213 BB7 RET.

20214 END

APPENDIX 11l. MCS-8 SOFTWARE PACKAGE — SIMULATOR

A, Introduction
This Appendix describes the use of a FORTRAN IV program called INTERP/8. This programn provides a software simu-
lation of the INTEL 8008 CPU, along with execution monitoring commands to aid program development for the MCS-8,

INTERP/8 accepts machine code produced by the INTEL 8008 Assembler, along with execution commands from & time-
sharing terminal, card reader, or disk file. The execution commands aflow manipulation of the simulated MCS5-8 memory
and the 8008 CPU registers. In addition, operand and instruction breakpoints may be set to stop execution at crucial
points in the program. Tracing features are also available which allow the CPU operation to be monitored. INTERP/8
provides symbolic reference to storage locations as well as numeric reference in various number bases. The command
language is described in the paragraphs which follow.

B. Basic Elements

All input to INTERP/8 is “free form®. Numbers, symbelic names, and spécial characters may be placed anywhere within
the input line (see margin commands in Section D). Comments may be interspersed in the input, but must be enclosed
within the bracketing symbols /* and */,

1. Numbers. Numeric input to INTERP/B can be expressed in binary, octal, decimal or hexadecimal. The letters B, O,
Q, D, and H following the integer number indicates the base, as shown below:

Number Value
110118 11011,
28D 2849
330 33,
330 33g
1CH 1Cq5
28 28.p

A decimal number is assumed if the base is omitted, Note that although O is allowed to indicate octal integers, Q is also
permitted to avoid confusion with the integer 0. Note that the leading digit of a hexadecimal number must be one of
the digits 0, 1, .., , 9. Thus, EF2,5 must be expressed as 0EF2H,

On output, INTERP/8 indicates octal integers with Q and omits the D on decimal values., The base used on output de-
faults to decimal, but may be changed by the user, {See the BASE command in Section C,}

2. Symbolic Names. Symbolic names are strings of contiguous alphabetic and numeric characters not exceeding 32
characters in length. The first character must be alphabetic, Valid symbolic names are:

SYMBOLICNAME

X3

G1G2G3

LONGSTRINGOFCHARACTERS
3. Special Characters. The special characters recognized by INTERP/8are: $=./({)+ ", . All other special charac-
ters are replaced by a blank,

C. INTERP/8 Commands
The commands avaitable in INTERP/B are summarized briefly below. Full details of each command are given in following
paragraphs,

Command Purpose

LOAD Causes symbol tables and code to be loaded into the simulated MCS-8 memory.
GO Starts execution of the loaded 8008 code.

INTER Simulates an 8008 interrupt,

TIME Displays time used in the 8008 simulation.

CYCLE Allows the simulated CPU to be stopped after a given number of cycles.

TRACE Enables tracing feature when particular portions of the program are executed,
REFER Causes the CPU simulation to stop when a particular storage location is referenced,
ALTER Causes the CPU simulation to stop when the contents of a particular memory location is altered,
CONV Displays the values of numbers converted to the various number bases,

DISPLAY Displays memory locations, CPU registers, symbolic locations, and 10 ports,

SET Allows the values of memory locations, CPU registers, and 1O ports to be altered.
BASE Allows the default number base used for output to be changed.

PUNCH Causes output of machine code in BPNF format.

END Terminates execution of an 8008 program,

B4

The commands NOTRACE, NOREFER, and NOALTER.are also defined. These commands negate the effects of TRACE,
REFER, and ALTER, respectively. In all cases, the commands may be abbreviated {but not misspeiled!). These abbre-
viations are indicated with the command description.

Commands are typed anywhere on the input line, with as many commands on a line as desired. The symbol *.” must
follow each command.

‘The end of data for the execution of INTERP/8 is indicated by a “$EOF* starting in column 1 of the last card,

1. Range-Lists. Many of the INTERP/8 commands accept a “range-list” as an operand. Tracing, for example, can be
enabled for a specific range of addresses in the program. The range-list specifies a seqquence of contiguous addresses in
memory, or a range of numeric values to which the command is applied.

In its simplest form, a range-list is a number [binary, octal, decimal, or hexadecimal}, or it may be a pair of numbers
separated by the symbol “TO:" Thus, valid range-lists are:

10 :

630

50 TO 63Q

OFH TO 110011118,

A, range-list, however, can also reference a symbolic location, with or without a numeric displacement from the location.
Suppose, for example, the symbols START and INCR appear at locations 10 and 32 in the source program. Valid range-
lists involving these symbols are:

START (Same as 10)
START+6 {Same as 16)
START-101B (Same as b}
10 TO INCR (Same as 10 TO 32}
START+3 TO

INCR--2 {Same as 13 TO 30}

The range-list may also contain a reference to the current value of the program counter of the simulated 8008 CPU. The

symbal “'*" represents this value. 1f the value of the program counter is 16, for example, the following is a valid range-

list: '
STARTTO * {Same as 10 TO 16}

The exact use of the range-list is illustrated with the individual commands,

2. Notation. The following notation is used to describe the INTERP/8 command structure. Elements enclosed within
braces { and } are optional, while elements enclosed within the brackets [and] are alternatives, where at least one
alternative must be present.

A range-list, for example, can be specified as:
range-element { TO range-eleme_nt}
where a range-element is defined as:

number + number
symbolic-name - number
*

As mentioned previously, command names can always be abbreviated. The required portion of the command is under-
lined in the command description. The symbol “TO" in the range list can be abbreviated as “T." Thus the range
list above can be redefined as:
range-element { TO rang&element} .
Finally, the ellipses . . . " indicate a list of indefinite length.

The commands are given alphabetically in the following paragraphs starting with a prototype statement using the above
notation, A brief description is then given, followed by examples.

3| ALTER range list {, range-list, range-list, . . . , range-list } .

NOALTER
The ALTER command is an operand breakpoint command which causes the execution of the 8008 CPU to stop when-
ever an attempt is made by the CPU to store values into a memory location specified in the range-list. When the break-
point is encountered, INTERFP/8 prints ALTER x, where x is the value of the program counter. Execution can be
started again with the GO, RUN, or INTER commands. Examples of the command are:

ALTERC

ALTEROTO 10

ALTER 10 T INCR.

ALTER START + 2 TO INCR — 0AH

AL 5, START, X2, 7 T 10, INCR—3

BIN
ocT
4. BASE4|DEC
HEX
This command causes the INTERP/8 systern 10 use the number base specified by the second argument when printing
results, This command has no effect on the number bases which are acceptable in the input,

5. CONV range—list{,range-list, range-list, . . ., range-list } .
The conversion command prints the values of the numbers specified in the range-list in binary, octal, decimal, and hexa-
decimal forms, Examples are:

CONV 23

CONV™,

CON 10 TO START + 3

CO 10, 30, 280, 1101B T 33H

6. CYCLE Number
The cycle command causes a breakpoint to occur when the CPU cycle count reaches its current value plus the number
specified in the cycle command (see the GO command, also}.

7. DISPLAY display element { , display-element, . . ., display-element } .

Fhe display command causes the values of memory locations, symbolic names, CPU registers, and 10 ports 1o be printed.
The output form of these values is determined by the current default base {see the BASE command). The width of the
output line determines the output formatting (see the $WIDTH command of Section D}.

In its simplest form, a display-element can be one of the 8008 CPU registers:

CY (carry) D PS {entire program stack)
z (zero) E PSOD
S (sign} H PS 1 {program stack elements)
P {parity) L ...
A HL {(H&L) PS7
B SP (program stack pointer)
C PC {program counter)
in this case, valid DISPLAY commands are:
DISPLAY CY
DISPCY, Z, H, HL.
DP,A,PSO.

A display-element can also be the symbol CPU, in which case all registers are displayed.

The values latched into the 10 perts can be displayed by using a display element of the form:
PORT range-list
The ports specified in the range-list {between 0 and 31) are printed. Examples are:
DASPLAY PORT O
DIPD 3,PO 5, PORTH TO B, PO 10018
The contents of the symbol table can be examined by using a display-element of the form:
SYMBOLS < | symbolic-name
number
The form
DISPLAY SYMBOLS. :
prints the entire symbal table, while the form
DISPLAY SYMBOLS number,
respands with the symbolic name {* a numeric displacement} which is closest to the address specified by the number,
Examples are;
DISP 8Y.
DI SY OFFH, 8Y 32

If the symbol “*** is used in the command, the symbolic location ¢losest to the current program counter is printed.

The values contained in memory locations can also be displayed. In this case, the display-elerment takes the form
CODE
BiN
MEMORY range-list ocT
DEC
HEX

The range of elements printed is specified in the range-list, while the form of the elements in the display is controlled by
the command CODE (decoded instructions) or one of the number bases. |f the form is omitted, the default number base
is used in the display (see the BASE command)}. Valid DISPLAY commands are:

DISPLAY MEMORY 20, '

DISP MEM 20 TO 30H,

DI M START T START+6.

DI MEM 0 TO 30 CODE.

DMOT30D, M40 TO INCR+10 OCT.
The various display-elements may be mixed in a single DISPLAY command,

8. END. .
The END command reinitializes the INTERP/8 system. |f another program is subsequently loaded into memory, all
break and trace points are reset. Otherwise, the currently loaded programy may be rerun with all break and trace
points remaining.

9. GO {[:umber“

The GO command causes the executlon of the loaded program to begin. In the case that a break point was previously

encountered, the execution continues through the breakpoint, If the GO is followed by a *, the breakpoint addresses

are printed as they are encountered, but the 8008 CPU does not halt until completion, If ’che GO is followed by a riumber,

the effect is exactly the same as)
CYCLE number. GO,

10. INTER {number { nurnber { number }} }
The INTER command simulates the 8008 interrupt system. The numbers whlch follow the INTER command correspond
to an instruction and its operands which will be “jammed” into the instruction register. 1f no instructions follow the
INTER command, the instructions from the last interrupt are used. 1f no previous cornmand has been specified, a LAA
{NOP) instruction is used. The INTER command causes the simulated execution to continue. Examples are:

INTER.

INT.

INTER 00010101B (this is an RST 200).

11. LOAD number {number}
The LOAD command reads the symbol table and 8008 machine code into the simulated memory, The form

‘LOAD number. :
reads only the machine code from the file specified by number {see file numbering in Section D} The form

LOAD number number.
reads the symbo! table from the file specified by the first number and the machine code from the second file. The symbol
table is in the form produced by the 8008 assembiler {i.e., the first part of the listing file), and the machine code is in
“BNPF’* format {see PROM programming specifications in the INTEL Data Catalog). This format is also produced by
the INTEL 8008 assembler. The end of the code file is |nd|cated by a “$" appearing in the input, INTERP;’S responds
to this command by printing the number of locations used bv the program. Examples are:

LOAD 1.

LOAD 6 7.

12. | REFER : . .
== range-list 4 , range-list, . . ., range-list ;.
[MFER] oe-st { range rangelst }

This command is similar to the ALTER command except that a breakpoint occurs whenever any reference to the memory
location takes place. Thus, an instruction fetch, an operand fetch, or an operand store all cause a breakpoint when this
command is used. Examples are:

REFER 10,

RE 10 TO 30Q,

REF 5, 7, START TO START + 5, 71Q.

NOREF 0 TO 10.

13. RUN.
The RUN command has exactly the same effect as the command GO * .

14, SET. setelement { set-element, ..., set«element}
The SET ¢command allows memory locatlons CPU registers, and 10 ports to be set to specific values. The reglster names
described under the DISPLAY command can be used in the set-element:

. [number]
register = .

87

Fi_rt

The value of the specified register is set to the number following the or 1o the value of the program counter if ***”
is specified, Thus, valid commands are:
SETZ=0
SEA=3 B=77Q, PS0=0EEH.,
SHL=28.
A set-glement can also be the symbaol ““CPU" in which case all registers are set to zero, including the simulated 8008 timer.
Examples are;
SET CPU,

SCP,PC=25.

The values of 10 ports can also be set by using a set-element of the form
PORT range-list = number{ number number ... nurnber}
In this case, the 10 ports specified in the range-list are set to the list of numbers following the . |f more ports are
spevified than there are numbers in the list, the numbers are reused starting at the beginning. Examples are:
SET PORT & = 10.
SETPOETOB=123
SPO10TO13=7702,
SPO8=108B,P0 12=13H, PO 30Q = 16.
The values contained in memory locations can be altered directly by using a set element of the form
MEMORY range-list = number{ number ... number
As in the case of 10 ports, the memory locations are filled from the list to the right of the equal sign, with numbers
being reused if the list is exhausted. Examples of this command are:
SET MEMORY 0 =0.
SMEMOTOS0=0.
The SET command does not change break or trace points which are in effect

S M START TQO START+5 = 111110008 220 33H.
As in the DISPLAY command, set-elements of each type may be intermixed:
SET CP, CY=0, M5 = 10, PO 6=12, PC = 30.

15. TIME.
The TIME command causes INTERP/8 to print the number of states used by the simulated 8008 CPU since the last
LOAD, END, or SET CPU command.

16. | TRACE

NOTRACE
The TRACE command causes the INTERP/8 systemn to print the CPU register contents and the decoded instruction
whenever an instruction is fetched from the memory region specified in the range-list, The form of the elements in the
trace is defined by the current default base {see BASE command). The trace shows the register contents and operation
code before the instruction is executed. The result of the operation is found in the next line of the trace, or through
the DISPLAY CPU command.

A heading showing the various columns in the trace is printed after each tenth line of the trace. Examples of the TRACE

I

range-list{ , range-list, . . ., range-iist} .

- gommand are: .

TRACE 0 TO 100,

TR START TO START + 111B.

NOTRACE START, INCR, FOUND TO FOUND+3, 7Q.
17. PUNCH range list { number }
The PUNCH command causes the specified region of the simulated memaory to be output in the BPNF format. If the
number is present, the code is written into the corresponding INTERP/8 output file; otherwise the currently defined
file is used. Examples are:

PUNCH 0 TQ OFFH.

PU START TO FINISH,

D. /O Formatting Commands -

INTERP/8 has a generalized /O formatting interface which is somewhat dependent upon the installation. In general,
a number of files are defined by file numbers {not necessarily corresponding externally to FORTRAN unit numbers).
These file numbers correspond to devices as follows:

INPUT TYMSHARE GE
INTERP/8 No. Device PDP-10 Deviee File Name File Name
1 User’s Console TTIYS
2 Card Reader CDR 2
3 Paper Tape PAP 6
4 Magnetic Tape MAG 16
5 Magnetic Tape DECS
6 Disk DISK 20 FOR20.DAT LOGOUT
7 Disk DISK 21 FOR21.DAT LOGBIN
QUTPUT
INTERP/8 No, Device PDP-10) Davice FiJe Name
1 User's Console TTYS
2 Printer PTR 3
3 Paper Tape - PAP 7
4 .Magnetic Tape MAG 17
b Magnetic Tape DEC 1¢
6 Disk DISK 22 FOR22.DAT Disk ¢1.
7 Disk DISK 23 FOR23.DAT Disk ¢2

1/O functions are controlled through *$"" commands which may be interspersed throughout the input.

Aﬁv input line with a “$" in column one, followed by a non-blank character is considered an 1/Q command. The card is
then scanned for an “="' followed by a decimal integer, The character following the “$" and the |nteger value affect the
I/O formatting functions as follows:

Control Meaning _ Initial Value
$COUNT =n Start the output line count at the value n. 1
$DELETE =n Delete all characters after column n of the output 120
$EQF =1 End-of-file on this device 0]
$INPUT =n Read subsequen input from file number n 1
SLEFT=n Ignore character positions 1 through n-1 of the input. 1
$OUTPUT =n Write subsequent output to file number n. 1
$PRINT =n Controls listing of the output. If n =0, input lines are not printed; 0
otherwise input is echoed.
$RIGHT =n ignore all character positions beyond column n of the input, 80
$TERMINAL =n INTERP/8 assumes conversational usage if n = 1; otherwise batch 1
processing is assumed.
SWIDTH=n This command sets the width of the output line, Note that this affects 72

the format of the DISPLAY MEMORY command.
The default values shown above assume conversational use with a teletype or similar device. The defaults can easily be
changed by recompiling the INTERP/8 program.

In the case of controls which take on only 0 or 1 values {e.g., $PRINT, $TERMINAL, and $EOF}, the equal sign and
decimal number may be omitted. The value of the contrel is complemented in this case.

E. Error Messages

E R R 0 R ¥ E 8 S5 & G E §

EXECUTION ERRORS

1 CROGRAM COUNTER STACK OVERF QW

z PRJIGRAM COUNTER STaCK UMDERFLOW

3 PROGRAH COUNTER DUTSIDE SINULATED HCS~B MEMQRY
a HMERORY REFERENCE

COMMAND HMODE ERRORS

REFEREMCE OUTSIOE SIMULATED 4CS-8 HMEMORY

[NSUFFICIENT SPACE REMATNING IN SIMULATED MCS-8 MEMORY
END-OF-FILE ENCOUNTERED BEFORE €XPECTED

1477 FILE MUMBER STACK DVERFLOM {MAX 7 INDIRECT REFERENCES)
UNUSED

W oo LA b

1@ 10 PORMAT COHMAND CRROR {TOGGLE HAS VALUE UTHER THAN @ OR L)
11 UNUSED :
13 IhvAL LD SEARCH PARRMETE®R IN DISPLAY 5YMBOL COMMAND (MUST BE
SY4RALIC WAME, ADDRESS, DR)
14 QISPLAY SYMBOLS COUMMAND INVALID SINCE NO SYMOL TABLE EXISTS
15 LNUSED
16 UNRECOGNJZED COMMAND OR THYALID FORMAT IN COMMAND MODE
17 MISSLMG , OR EXTRA CHARACTERS FOLLOWING COMMAND
18 LOWER BOUND £XCEEDS UPPER BOUND OR 15 LESS THAN ZERD
IN RANGE LIST
19 THE FORMAT DF THE SYMBOL TABLE 15 LNVAL]O (HUST BE &
SEAUENCE OF THE FORM N §Y 4D, WHERE M 1S AN INTEGER,
SY IS THE SYMBOL]C NAME, AND AD 1§ THE ADDRESS (IN OCTAL)?
20 INVALID CHARACTER IN MACHINE CODE FILE.
21 UNUSED

F. Examples

22 UNRERQGNEZED D1SPLAY ELEMENT DR IWVALID DISPLAY FORMAT

23 STYMEOLIC MAME MOT FOUND IN SYMBOL TABLE

24 INVAL1D ADORESS O WO SYHBOL TABLE PRESENT' IN DISPLAY SYMBOL
COMMANT

25 QUTPUT DEVIGCE WIDTH TOO WARRDOW FOR DISPLAY WMEMORY COMMAND
(USE SWIDTH = N {0 FORMAT COMMAND TO INCREASE WIDTH)

26 INVAL 1D RADTX IN MEMIRY QISPLAY COMMAND (MUST BE CODE, BIN,
oCT, OR GELY

27 UNRECOGNIZEND SET ELEMENT IN SET (OMMAND

28 MISSING SET LIST % SET COMMANE

29 IMYRLID SET LIST OR SET YALUE 1IN SET COMMAND

e MISSING QR MISPLACED = [N SET COMMAND

31 MISS[HG PROGRAM STACK ELEMENT WUMEBER 1M SET FS N
COMMAND .

32 TMVALID INTERRUPT CONE SPECIFICATION (EITHER MORL TH#N THREE
BYTES, OF TLEMENT EXLFEDS 255}

Two sample INTERP/8 executions are given in this section which illustrate the commands available with the INTERP/8
system. The first example ilustrates the basic commands. A simple program is constructed in the simulated MCS-8
memory. This program is then executed, showing the use of break and trace points. The second execution shows the

use of symbol tables and 8008 code which is produced by the INTEL 8008 assembler. In each case, the actual commands
which initiate the INTERP/8 system may vary from installation to installation.

R INTH

BEGIK
/% THI5 15 AM EXAMPLE OF THE USE OF THE IRTERPSE EYSTER.

1N THIS EXaAMFPLE, THE HASIC COMMANDS WILY BE DEMCRSTRATEL
OED A SIMFLE PRLGRAM WILL BE CONSTRUCTEL mME EXECUTELD »/
s% THE NUMPER CGNVERSIOL COMMAKL I5 USED FIRST w/
CLEV 1@

Ie50E 12¢ I¢ Ak
COM 1@G.

188880 1B2 8 &K
CGk 3 TO E.

116 3@ 3 3H
1P@E & 4 4H
1¢1B 50 5 35H
LiBE &¢ & &M
118 T@ 7 Th
I1eARE 180 8 6H

/¢ MEXT, THE VAPIOUS DISPLAY ANL SET CDXFAKLS ARE DEPGRSTRATED =7
LISPLAY CPU.

CYISP A E ¢] E H L HL 5P Ps@
‘ﬂﬂﬂﬂiﬂﬂﬁtﬂ!ﬂtﬂfﬂ‘ﬂﬂﬂ-BBG'G@GOUBB'BGGBE'Bﬁﬂtsﬁﬂeﬁ
LISP A.D+HL.

A= B
L=
HL = B
rl5 PORT 4. PS5 @, MEM 5.

Pawd
psg = P
7% REMORY LOCATIOK 5 WaS MCT DISPLAYED SIKCE NU PROGRAM HAS GEEW

LCADED ws
EET H = 5. L=18G.+ RISP GPU~

SET Ok
LYISP A B C il E L L H. SP Pig
Gd0E PRe 2O¢ P3P BST FPAPOSH208wgd| 286 298 DEGDO

/% KOTE THAT THE ELEMERTS WHICh HAVE CHANGEL SIKCE THE LAST LISPLAY

ARE PRECEDED BY AH ASTERIEK v/

SET HL « AEEFH. D15 CP.

SET OK

CYISPF A B c] E H L KL S§P PS5
JENQ RO Q0P D82 PRP GEOSE14»229+6382)3 Acd FARDE
CONY $3823.

118V I8LLILE 73570 3623 EEFH
7+ WOV CHAMGE THE DEFAULT SUMBER BASE TO HENADECIMAL =/

BASE HEX. DISP CPU.

HEX BASE 0K

CYISPF A B ¢] E H L KL 5P Pse
BESS MR OAX PEH DEH AN OEH EFH AEEFH 38K 208PH
s# THEN CHANGE BASE TO OCTAL w»r

BASE OC. DI CP.

0CT BASE OK
CYISP A B G o E H L HL 5P P5G
2908 Debd 98P0 PPOG PARO BOBG A16D 3I5TO 8Y3I5TE ARY #ARDU-

s+ OV PLAGE A SIMPLE PROGRAN INTD MEMORY STARTING AT LOCATIOR l@.
TIIIS PROGRAM WILL ALTER THE VALUE OF KEMCRY CELL 28® BY ADGIKG 3
70 THE CURRERT VAUAUSLUE OF THE GELL. IR SYMBOLIC FORM, TEE Hao-
CRAM IS AS FCLLOWS... LHl B. LLI 298, LBM, 1NB, LMB, HLT.

THE LDAD OFERATION GELOW 15 A 'DUMMY' OPERATICK S0 THAT IERCRY IS
INITIALIZED PROPERLY. *7

LOAD 1.

5

eq LoaAD OK
DISPLAY MEMCAY 1@ TO 28.

PeRIZ0 PETA GOEY POSU E00Q 909G S0AQ 2920 PPBL PADT PRRQ BAER
EBASE DEC.

DEC BASE OK
SET MEM 10 TO 26 » BRIOI$195B @ /» THIS 15 LHI g w/

ePLIRLIBD 238 /% LLI E0Q =/
LI2BLE1VB /= LBM +/ GPORLIQER3 s+ INB o/
11111001D 7% 1MB »/ @ /% HLT »r

SET OK
DI HE 18 TO 20.

AEE10 0456 B3 0534 290 207 SAF 249 SI¢ DAs BPS B£54
ot W 18 T0 28 CODE. :

ml! Lil.08X LLI,CEH LBEM INS LMB HLT LHI,08H LLI
#% WOTE THAT THE *,* SEPARATES EL‘N&NTS VHICH ARE PART OF TLE
SAME INSTRUCTION (THE SECON D ANMD THIRD BYTES ARE IN HEX: =/
CONV 8CEH.

118918080 3180 288 CBH

7% WE Cak NOV EXECUTE TH E PROGRAM BY SETTING THE PRCGRAK LCUMATER
TO LOCATION IR =/

SET PC=18. DI CP.

SET 0K

CYLSP A B € D E H L KL SP Psp
@93 SR NP 209 d40 PPR §14 23V SI53) AAFAIO910

SE EL=8.

SET €KX

GD.

HLT CYCLE Sé
Pl CPU.

CYZ5PF A B C o E H L HL 5P Pz
200 PRA=2P] BOD PRO PPAR+GES#ZOP+202P0 ODDEER] T
D! HEM 280,

apz2pe asl .
F+ PEMORY LOCATION 2@ HAS BEEN INCREMNTED == NOW TURYN CKX THE

TRACE AND EXECUTE THE PROGRAM AGALIN w/

TRACE A TO 180. GO.

TRALE 0K
A683 280 PD| AN 200 OOk 40D 209 S0200 ABA PAJIT
HLT

KLY CYCLE &0
/% CPU MUST FIRST BE INITIALIZED T¢ ZERQ »/ SET CFVU. GO.

SET 0K

f063 SRSMISR 228 G9P BEP POOSRED [0
HLT

MLT CYGLE &

DI CMI.

eyese A4 B C +] E H L HL SFr PSP
SO0 QOF SBE ROP SO0 POP VDS PO BABDD MOY POOED
/¢ FORGOT TQ SET PC = |B, THY AGALN =/ SET (PU, PC=id. GO,

SET OK v

SHED BN WAR PP A5 SCC BDEE PO 0208 ERYADONIN
LRl ®

AR #00 PR 880 N2 290 P89 2P AS2EE AOAAPABLZ
LLI 28¢

SEON S83 P40 OES BED PR SPAZHONCD2PQ DPOwARE] A
1aM

BENS S0O+001 PUD SUD DES EpS 200 P20 NOOEORLY
-]

1
PG EOE+ENY BED SOF G5 #85 200 DI20U SANSNIELG
LM

A82% NO04 S82 Q06 ENP SRA 080 268 AEZON BOP4AA1T

HET

KLT CYCLE AW

4% NOV TRY THE SAME EXECUTION WITH THE TRACE ERADLED QUER ONLY

PART OF THE PROGRAR »/
MOTRACE & TO 1800« TRACE 12 TO J4, 17,

TRACE OK
TRACE 0K
SET cPU, PCa)i. GO

SET 0K
002 PAR+EE2 A0 PAQ 207 AQA=PII=APIVR F@w0QQ12
LLD 200
aafe 9pe e3P PEd AQ2 2P0 PPY=EEE0x@A299 SAA4AGALAG

"

LBM .
«@20Al PAd+00) 23D P00 GOP GG 200 B02A0 PIDXOBG|T
HLT

HLT CYCLE 48 .
7% SWITCH BACK TO FULL TRACE +/ TR & TO 1P2@.

TRACE DX
DISP WEM 200.

opzZoe Be3

% NOW RUN THE CPEU FOR ONLY a4 FEV INSTRUCTIONS AT A TIME.
WAY THE EXECU TIOK CAN BEE MOKITORED EASILY

Go 2.

G0 0x

CyzsP 4 B € D E K L HL 5F PS@
9041 229 DO3 G0¢ VDS DEA P80 207 0IZOR SIS EAAIT
HLT

KLY CYCLE 44

SET CPU, FCwiB. GO 2.

SET OK

GO OK

*BAS0 E0A+EPE QRO PEFD AOP CEE«ZEAYRIANA APEx20D10
LHI @

BEdA DE0 QB O 200 BOC P9 203 POEAE PEPE20Q12
LLl 298

CYCLE AT 14

L1 CPU.

CYzsP 4 B € D E ¥® L HL $P PS@
BO0E B0 DOG O8O 04 AdA PA0v200+00209 EEA+AIdIa
Go 1.)

G0 DX
e9aa 29a A9 P05 QU EPO GBRG 202 Q2200 BIQ eedls
LBA

CYCLE AT 15
DI GPU-

CYISP A B ¢ D E H L HL 5P P50
D208 BA0+003 B8P 220 298 AAP 200 APEZAA GAAANRIIS
GO =,

fadda apg 243 0P #BQ BPQ SAC 209 2O200 VAR SPALS
INB
5088 PAE«d04 B30 080 SO PO 208 FE20P8 AALR2AA16
LMB
@009 DAC fPa POR Q2D CEO OPE 200 AR20D SEA-EOR:7T
HLT

HLT CYCLE 4@
OI CPU.

CYZSP A B < =] E H L HL 5P a1}
0888 222 804 Q0P 242 GO0 AG0 200 PUINE DIP AROIY

L7

Ik THIZ

s« WE CAal SET BREAK PDINTS [N THE GODE S0 THIANTWAT EXECUTION STCPS

WVHEN A PARTICULAR INSTRUCTIOK IS FETCHED. =/

SET CPULPC=1#.+ TA # TO 198+ REFER 12 TC la.

EET OK
TRACE CK
REFER OK
GO.

+0002 J0HABD P20 OFD SO DPO+PIE»AB0RR SAQeB0RID
LHI @ .

€39 900 P20 206 00 Q28 E00 207 PIRPY GAd=DAZIC
LLl 2ee

REFER AT 12

Bl CPU.

CY25F A B c '] E H. L L 3P Psg@
2P9¢ 202 PJQ B0 PO FBP 00@ POD APIOP #8Q PIE)2

/« THE EXECUTION CAN ALSC BE STOPPED WHEN THE PROGPAN REFERS

TO KEMORY LOCATI ON 228 =/

REFER 280. KOTRAGE ® TO j@#+ SIT CPULPC»iB. GO.

REFER OK
TRACE OK
EET 0K
REFER AT 14
bl CPU.

LYzsF A H C I E H L HL 5P L.11:]
S330 PHE SO DOU A0D PPP BAEIRBN d14
DL MEM 14 CODE.

abdl4 LBH
GO I+ D§ CP.

ED OK

CYCLE AT 1%

CYISP A B ¢ L E H L KL &P P54
20a0 NEG«805 EOR O8A PO BOE 200 DE200 POE-EARLS

/% TH15 SHOWS THE VALUE FETCHED FROM LOCATIGN 28#. WE CAN STOP
THE PROGRAM ON A STORE INTO LOCATION 2F9 AS WELL »/

NOREF 208. ALTER 288, 5ET CP, POxId. GO.

REFER OK
ALTER (K
S5ET Ok

ALTER AT 1%
o1 CFU.

CYLSPE A -] G o E H L HL. 5P adl]

»p281 BEA+EOE EHE GO0 PAR GBA 2OD SEZOP PRANEOL) 4
DMI6 CO.

PAE)G LMB
/% THE REGISTER DUMP SHOWS THAT & WILL BE STORED AT LOCATION 200.

EXAMINE LOCATION 2P, RUNM THE MACHIME FCA OME CYCLE, AND EXAMINE

THE CELL AGAIN »s

DI HEM 288+ G0 1+ 1 HMEN Z20R.

ax2Ea E8S
GO K

CYCLE AT 17
se2ee B85

/% NOW GET A CUMPLETE MENCAY DUHP 1IN ELINARY »/
DI MEM € TO 7770 BIN«

TH1S EXAMPLE SHOWS n COMPLETE ASSEMELY AND [KTERP/E EXECUTION

TYPE ASKI.DAT)
SAMPLE MCS-8 PROGRAW (PAGE 47 OF 8088 MANUAL)
START LLI 208

LM &
LOOP LAM

CPl &b

JTZ FOUND

CAL INCR

LaL

CPI 228

JFZ LOGP
FOUND RET
INCR THL

HFZ

M

RET

£ND

- ASME

PLEASE TYPE INPUT FILE RAME
ASMI

BBPE INTEL ASSEMBLER

FEETEEENEEUEESENREEES

CPU TIMEs 3.72 ELAPSED TINE: 9.73
KO EXECUT10# EREORS DETECTED

EXIT
1C

AENAME FORZD.DAT » LOGUU.DAT,
FILES AENAMED:

LOGOW « DAT

LOGB1 .DAT

FOR21 ,CAT = LOGB! JDAT

+TYPE FORZA.DAT

000e8 PAEDESNEE SUPBRADID EDPPIE0RD DEIGROOOB ADY L.].):]
SE056 SOOODEDOD QPOPSSNDD PPRODJRRNE MOSMPOREE PA|D) 1 10R SddBCERER
P92 PEL1B1IBE 110010880 i1801111D ABOQIP0NE 111163 1E BERDECERD

BROIE SO1D110E UFOSUDODE PRI LS| LB NRADINOSE 8E #2
22824 NEIBADSI0D L] aen a8 28 ov
aorea -] #8 1188 aB o8 BE
sp2ea MEACONSE IRERAEEED SRSSPDESD &8]

518 MlBdeRss 0400398

/% AND THEN PUNCK THE CODE BETVEEN LOGATIONS L@ AND 26 (VE WILL USE
TKE COWSOLE AS THE QUTPUT DEVICE > =/
PUNCE 18 T0 28 1.

T
& DNENMERNNY BHNHNNNNNT DNAPNPPPREY BNNNNNKRNF
EMNPPREPNF BPPENFMNNF BPPNNFPPFF BENNMF NNNF
1% BPPPPPNNPF BMNKNWNKEKF BNKPHPPPNF BNNNNNNNNF
BMNPPRPPNF BNNENNHNNF BHNNENMENF DENNNNNNNF .
aana ' LLELS

o
IND -

SECF

CPU TIME1I i2.93 ELAPSED TIME:r 46112.73
NG EXECUTION ERRCRS DETECTED

5YMEOL YALUE
EEEEEEREEEERAR TN RN
L: START Baasd
2y LOOP [.1J.1 R]
3t FOUND BO823
41 1NCR ez
(YT [T R1Y
0
«TYFE DOR Y

TYPE FOA2! +DAT

EEkEREbE

[T EISTER Yt Ly] “

EEE EREE

RRFRRRR N (21 ARAAERARR R R REFAFEEFEANARRRS SRR RN
LI Tl
B BNNPPNPPNF BPPHNPAMWNF BNRPNPPPNF BHEMNNKNNF

BPPHNNPPPF BNKPPPRNNF BNNPHPPPEF BNPF NPNNKF
DNNNPANPPF BNNENNNWNF BNPRNKPPNF BRENPNPNHF

BARNNKNNNF BPPNKNFFHF BRNPPPPNNF BPPNPPPNNF
16 BNPNMPNNRF BHNNNNPRNF BNNEMMKNNF BENKENPPPF

BNNPPHNNNF BHNNNPWPPF BHNPHPNKENF BNNNENPPPF
24 BAKENKENKNF DHNHNKKNNEF BNNENENNKF BHENKNNNNF

BHNENRNNNF BNNNNEENME BNNNNKKNKF BNENKNKRNF
A2 HNNHNNRENF BNNNNEKKNF BHEKYC

THE GODE FILE MUST BE TBRAMINATED BY A 3 IN THE IKPUT -- USE TECO
TECG FOR2 1 .DaT

92

N 32 8%
~OLATES

32 BMNENRNNME BNRENNENKF BNNNNNKRNF BHEMNKNHNNF

w1k
1]
#=EX$4

R IKTR
LOADING

LOADER 19K CGRE
EXECUTION

BEGIN

#¢ THE SYMBOL TABLE AND CODE VILL NOW BE LOADED =/

LOAD & Ta

32 LOAD 0K

DI SYMBOLS.

GR0A00Q GB00 BEODH START
£EBERA0 PAPRA @AGAH LUCP
BABR2IQ 0OALY S13H FOUND
BADGRAQ PPARP WPILH IHCA
Dbl SYMBOL LOOP.

BUBASAC DEOBA BOSRH LOO®

DI SYMBOL EAP.

(B2d27) ERRCMR 23 MNEAR IAP

/% EAROR MESSAGE HAS LINE NUMBER ERROR NUMBER AND ITEM IN ERRCR. 1N

THIS CASE+ THE SYMBOL COULD WOT BE FOUND IM THE TABLE &/

DI 5Y 13M»

FOUND

DI 5Y 12H.

FOUND=]
DI SY &.

LOOP+a4
L1 SY =.

START

/% NOW TAKE A& LOOK AT MEWORY IN HNEXADECIMAL AND IN CODE FORMAT »/

.DI MEW @ TO 19@ HKEX, KEmW @ TQ

Q0082 36H C8H ZEH 89H CTH 3CH 2EH
agf1& 4fH P4AH 2¢H Q7H J0H IBH 28H
80232 24H PPH SoR d¢H AMH DPH é9H

V056
2e2a84a
@16 JFE.4H.00H RET
98932 HLT HLT HLT KLT

82+ é8H Ak 80H PRH

LLI.GER LE1.B0H LaAM CPI.ZER
INL RFZ INK
HLT HLY HLT

@0@%5 HLT HLT HLT HLT HLT

/% THIS PROGRAM SKARCHES FOR A 46

HEMORY «

WE WILL START BY PLACING

LOCATIONS LT

SET MEM 26D TD 210 = 43 46 AG 20K

198 CODE.

GEH 13H PPH 46H 1aH P9L C6H 3CH DCH
@7H 08H 8DH PEFH APH PPH @0H AAH JPH
OPH ORH 9QH @PH ¢PH POK OSPH PALK Q@K

JTZel3H.B8H-CAL, 14H,ARE LAL CPI.DCH
RET HLT KLT HLT HLT KLT HLT HLT KHLT
ELT HLT HLT HLT HLT KLT HLT HLT HLT

STARTING AT LOCATION 228 1IN

A SEQUENCE OF WUMDERS IN THESE

1111@8BB. DI MEK 28@ TO 2iJ.

"RATHER THAM A HLT.

S5ET 0K

20200 P43 946 248 DIZ 129 P43 P46 @48 @32 (2@ 043
#* GET A COMPLETE TRACE OF THE PROGRAM =/ TR & TO 8)9%.

TRACE OK
GO

Cy¢sP A B € r E H L
*000@=0RS+2N0 «0PA2IB*FR S ¥I 2D +2 DD

HL SF
@

Pzl

“LLI 209

Slse ¥OR 980 P00 oo pEe
HI @

SEBD AW BOM 259 08P 099 D90 207 29202 SSA~PODAA
Lag

COA«200vBA28E EdE=BROAZ

280833 dpw
CP1 &%
#1310 64 D09 QP BAR
4T 1%

1512 E43 832 f20 280
CAL 28

QPE PRI 090 009 Z89 CPICE PRM+ARMRS

0fe PED Z2B¢ 9J207 ORA«DEAST
802 308 o0 00240 SoDerpRlE
1818 #42 998 800

1NL
*1811 9§43 AR G50 MOQ a0
RFE

484 Q00 EaP 0P ARZEPAD I +5ID]1 1483020

dde=20 1 w0028 UFI.EEHISiOGG2I

1311 343 060 238 A0 P99 090 281 DB2F)«37 AAQL2
LAL

181]«=231 @2¢ PPP PPP BP& 202 2Q] A22A] P99+Q8F8la
CP1 220 -
CYZSF A -] c | H L HL 5P PsR
IR11 28] 280 P89 P63 220 B20 281 902037 AYI=AE16
OF2 4

1211 201 209 990 P2¢ 02 Aa0 O] AP0 S2d«AFEA4
LaM

101 1+04¢4 D00 DAZF A0G Q@@ 3QA 281 43201 2EA»JA0F5
LP1 a4 ’

#2101 846 P2f 2PA PGP I&E @00 201 AR2PI AXEwAABAT
JTZ 19

A181 pat eed 0P PEP e20 QLD 221 082D1 BFEwERB1Q
RET

EXELUTION ERAOR 2 AT 22
4% THE ERROR QCCURS BECAUSE THE PROGRAM TERMINAYES WITH A RET

FEX TH £ [INSTAUCTION LN MEMOAY »/

Dl MEM 19.

aea19 2a7T
DI MMAEAER 19 COD.

aeet9 RET

SET M 19 = @, D] MEM |9 CO.

SET 0K
eBels HLT
NOTR @ TQ 1@dd. SET CPU. GO.

TRACE 0K

SET 0K

HLT CYCLE 17
DI CPUa

CYtsP A B L p E h L HL, SP PsA
BIR] GAS 630 200 cOF DO GBS 22t QD281 M9 DR
/% THE PROGRAM TEHMINATES CORRECTLY AFYER 107 HAGHINE STATES »/

TIME.

TINE=117
4w SET SELECTIVE BREAK POINTS »/

REF START, INCRels LOOF. SET CPU. GOa

REFER GK
SET OK
REFER AT &
oI 5Y #.

5TART
G-o

REFER AT 4
LI §Y %a GO«

LOGP
REFER AT 21
DI SY =, GD.

IRCR+1
REFER AT 4
D 5Y.

Qe¢aaRe o208 PAREH START
SOREA4U #3904 QRBAN LOOP
289210 PPAI1% 2013 FOUKL
pODA2a0 BE922 @PL4H INCR
NOREF START TOQ INCR#S.

REFER OK

s+ SET SELECTIVE TRACE POINTS (TRACE AND REFER POINTS CAN BE

IN EFFECT

AT THE SAME TIME, [F DESIRED) =/
TR START. LOOP, FOUND. REFLCR FOUND. GO.
TRACE OK

FREFER OX

«IPI1¥2¢) 002 2O PED 2@ G0 2&]1 daz2d)
Lak

#BLBL+346 B0 BEE DS P09 POE 201 DOITL
HLT

REFER AT 1%

CI CPa

CYZ5P A B £ o E H L HL
BId] BAS W0 AAE BOS ¢ OFp 22| 80201
SET CP. GOu

BER+ORRB 4

20828919

sp PS¢
ada ganty

SET OK
*OAE=BGN S8 NEQ U808 PPO OCQePddedR0N SEFCDABIS
LLI 249
£908 gEF B0 P00 PR AUA PIPR-2RI+IB2TS GINeDIIVA

LaH

«1011=20) 999 2@ DS QPP OAT+221+30221 JEQ 2DDR4
LAM

Q1@ 1=Has #30 DAQ B0 POF A4 25} 202l S6E=R0@) D
HLT

REFER AT (%

Gow

QIR #ad POd AP SN0 0OF B9 261 H32D1 ¢ ARNIY
HLT

HLT EYCLE 117

/% THE DHLY REMAINING COMMANDS TO ILLUSTRATE ARE HTHE SET AKD

IDIEPLAY

PURTS COMKANKDS =/

Dl PORT 4.

Pawd
BI PGRT 42 2P0 3. PO T TO JBS.

P4=g

Pi=&

P7=d Ping

PI PG 2% TO 23,

PZA=d P2lei P22m) P2Jwd PRAwd PRS=0
SET PORT 5 » 11#81180B, PO 18H = 550.

SET 0K
DL POM % TG L7.

PEx244 PE&wp P7ad Piwll Poed P1dsd Plt=B PI2eF P13ed Pla=p
Fi&zas P

17=8

END -

SEOQF

PIS=p@

APPENDIX 1V
TELETYPE MODIFICATIONS

The SiM8-01 microcomputer systems and associated software have been designed for interface to a
model ASR 33 teletype wired in accordance with the following description.

The ASR 33 teletype must receive the following internal modifications and external connections:

Internal Modifications

1

. The current source resistor value must be changed to 1450 ohms. This is accomplished by moving a | |

single wire. (See Figures 5 and 6.)

- A full duplex hook-up must be created internally. This is accomplished by moving two wires on a

terminal strip. (See Figures 4 and 6.}

. The receiver current level must be changed from 60mA to 20mA. This is accomplished by moving a

single wire, (See Figures 4 and 6.}

. A relay circuit must be introduced into the paper tape reader drive circuit. The recommended circuit

consists of a relay, a resistor, a capacitor and suitable mounting fixture. An alternate circuit utilizes
a thyractor for suppression of inductive spikes. This change requires the assembly of a small ““vector”
board with the relay circuit on it. It may be mounted in the teletype by using two tapped holes in
the mounting plate shown in Figure 1. The relay circuit may then be added without alteration of

the existing circuit. (See Figures 2, 3, and 6.) That is, wire “A", to be connected to the brown wire
in Figure 2, may be spliced into the brown wire near its connector plug. The “line’” and “local’ wires
must then be connected to the mode switch as shown. Existing reader control circuitry within the
teletype need not be aitered.

External Connections

1.

A two-wire receive loop must be created. This is accomplished by the connection of two wires between
the teletype and the “’SIM” board in accordance with Figure 6,

2. A two-wire send loop similar to the receive loop must be created. (See Figure 6,)

3. A two-wire tape reader loop connecting the reader control relay to the “SIM" board must be

created. {See Figure 6.)

MOUNTING POSITION
FOR GIRCUIT CARD

/7

Figure 1. Relay Circuit {Alternate)

95

Figure 2. Distributor Trip Magnet Figure 3. Mode Switch {Rear View}

i ‘
14508 LEAD

Figure 4. Terminal Block Figure 5. Current Source Resistor

| |
I ‘ |
|]Emgl* '_L 3 :g‘.ﬂ:o—|
1 A sPama
-+ |

|
R
|

WHEELOZE 280l 1 Glag

CUERENT Soupte EES:STag

- - T TEEMIN AL STRIS 15141 SEE Fla. 5
LUTERWATE RELAY CIECLIT SCE . 4
SEE Fig | /‘—_\
@
Vo 20 ma
_gfﬁ:mé-ou 4-0i [8-al [FuLL DuPLex [:>\ T ®< YR ama (-
] -] — e o o e — -
, \ 4 @(BL, @@ SEE TG &
&9 22k [JeBn b — — — A 2 TS BN
3 e
Ti _tmo|J2edol - — — v B,
rer T) FulLL DURLEY,
g @ ol A BRI/ YEL 7:"-:;.@:._
b3 P PR T TEa T e — —— i
g &® Ml = @;‘4-— Q:; HalF TuPLExK(E:'(@
2 4% ciml |aEeEth — — - ___‘__ZEF ______ - T
& : :’:-:1 EEL TEE Fla &
o EC2 - % Bl .
J o /:.\‘ Y s
!:J - -’@{ W T :E./’
Y @ | SIETEIBUTSE
4 ' _// TEI® o BT
: ™ :
! 55 |oz-as|ui-a —_— 5 A
TAFE i CO et g
EEADTE
CoMTEOL |
I RS Ly |
: : ! . bi
== | POTTER € BEUMFIED | = d—-- [
BEL A MO 12NDC | O | :
HOTES GaLZom STHERWISE SFEmFeD @ | HUR-1008 § . bK L |“) (-l | ; |
CUSTOMER EXTLEWAL ©onhEes T oni L see e W - - - ‘ I
1 Mo s W Thbd CALMED LILES CEPFEsimTy - - - =" — -
fUBTOUE R EEou.@ED ST AT D M MODE SwiTCH
(FRONT wikw])
IM 1S INTERNAL MODIFICATION SEC Fida. B
EC IS EXTERNAL CONNECTION :
Figure 6. Schematic
SWITCH Fo f
J KEY BOARZD | TADT
MOUNT | | lesamed
REED ' |]
RELAY | | b—
| PRINTER LNIT o
CAPACITOR ———{) | | {TAPE
| | © leuncy
| |
CURRENT | S -'-—-I o ¢ Lo
SOURCE | 2T BUTOR |
RESISTOR | QID_V}.&G:HL. J
| ASSITMBLY |
POWER i
SUPPLY : SmoToe) |
™ |
TERMINAL) i
-l
STRIP T : |
TOP VIEW

1

TELETYPE MODEL 33TC

Figure 7. Block Diagram
97

APPENDiIX V.

PROGRAMMING EXAMPLES

A. Sample Program to Search A String Of Characters In Memory Locations 200-219 For A Period (.}

MNEMONIC OPERAND

EXPLANATION

BYTES LOCATION

ROM CODE COMMENT

Start: LLY - 200 Load L with 200 2 100 00110110
101 11001000 (200)
LHI 0 Load H with 0 2 102 0010110
103 00000000 {0}
Loop: LAM Fetch Character from 1 104 11000111 ASC 11
Memory
CPI " Compare it with period 2 105 001311100 ASC I
106 0010110 («}
JTZ Found If equal go to return 3 107 01101000
108 01110111 1119)
100 0000000
cAL INCR Call increment H&L K] 110 01000110
subrouting 11 00111100 (80)
112 Q0000000
LAL Load L to A 113 11000110
CPI 220 Compare it with 220 2 114 00111100
115 11011100 {2200
JFZ Loop If unequal go to loap 3 116 ;1001000
117 21101000 (104}
. 118. D00OOCO00
Found:RET Return 1 119 00000111
INGR: INL Increment L 1 &0 00110000
RFZ Return if not zerp 1 61 0000101
INH Increment H 1 62 00101000
RET Return 1 63 Q0000111

11404

eNITIALIZE
R TO

1

10 FETCH CHARACTER
FROM MEMORAY
W & i ADDRESS]

gz

Calb

Hbd

SLIAAOLTINE T2
INCREMENT

RETURN

Subroutine to Search for Period.

o8

B. Teletype and Tape Reader Control Program (A0800)

BEGIN

TAPE

ITY

TTYIN

TIYm
ST

TTYD2

T2

LAl
ourt
xaAa
aur
CAL
MNP
LAL
ouT
CAL
HLT
CAL
HRA
Qut
18P
LCI
XRC
rliyy
LEI
CaL
INP
LCI
XRC
our
RAR
Lag
EAR
LBA
INE
JFZ
LAB
ouT
sl
LBA
cakL
LAl
ouT
RET
LDI
| &)
JFZ
RET
LDl

IND
wFZ
RET
END

caL
caL
INH
INC

JFZ CSTEST

P
DELAY LDI
D1 IND
JFZ
RET
END

DELAY
DELAY

BEGIN
o

D1

t
1

H.H_'I»
C=C +

LOAD 0 TO REC. D
D=1D2+1

D. RAM Test Program {A0802)

BEGIN LAl
auT
ouT

0
10B
11B |

1 SUPPRESS TTY
12B QUTPLT 2
CLEAR AC
138 QUTPUT 3 - TAPE READER CONTROL
TAPE CaLL FOR TAPE REAT:ER CONTe RT-
BECIN .)
L] TAPE READER ENAPLE CODE
138 QUTFUT 3 - ENABLE TAPE READER
TTYD] TAPE RE&UER CONTRIL DELAY
wa1T FOR TTY START PULSE
TTYDZ TTY' CELAY - 44868 MSECe
TAPE READER T'IS&ELE CJDE
i3B GUTPUT 3+ DISABLE TAPE READER
OR INPUT 0» READ START PULSE
255 COMPLEMENT T7Y START PULSE
EXCLUSIVE-OR REG. C
128 OUTPUT 2. OJUTPUT START PULSE
248 TEY CATA SAMPLING COUNTER
ITYDL TTY DELAY = 34017 MSEC.
oB READ TTY DATA INPUT
255 COMPLEMENT TTY D&TA
i2p QUTPUT 2. TTY DATA QUT
STIRE TTY DATA
LOAD TTY DATA TO REC. B
LOAL &C TU REG. B
E=zE +] T
TTYIN JUMP IF ZERY F/F IS NOT SET
LOAD REGs B TQ aC
11B QUTPUT 1, TTY CHARACTER
128 REMOVE PARITY BIT
STORE TTY INPUT LATA
TTYD1
1
128 SUPPRESS TTY
115 9012 MSEC. DELAY
D=1+ 1
5T
186 4.468 MSEC. DELAY
D=1D+ 1
sT2

C. Memory Chip Select Decodes and
OQutput Test Program {A0801)

BEGIN

CSTEST

LAl
ouUT
ouT
ouT
out
aurt
QUT
ouT
T
caL
CAL
CAL
CAL
XRA
ouT
ouT
our
our
ouT

ouT
our
ouT
LCt
LL1
LHY
LaH
gut
LAaL
ouT
XRA
LMa

15
i0B
1iB
128
13B
148
158
18E
178
DELAY
DELAY
DELAY
DELAY

i0B
11B°
188
138
las
158
16B
178
240
252B
0

10B

118

LoaR 1% TO aC

WRITE TD DJUTPUT 0

DELAY 16+«436 MSEC.

CLEAR AC

LGAD 240 TO RECs C

LOAD 25PBCOCTALY TQ RECe C

LOAD 0 TO REC. H
LJAT H T3 AC

LOaD 1. TO a&C

CLEAR AC
¥RITE AC TO MEMORY

OUT 128

OUT 13B

LBl

LCI

LH1

LLt
LMY XRA
LMg LMA

INL

CPL

JFZ LM2

INH

Lal 12

CPH

JFZ LMl

LHI &
REPT4 LAB

oUT tOB
REPT3 LLG

LAC

OUT 138

LAl 255

LMa

cPM

JFZ ERRCR
REPT2 LAR

OUT 108
REPTS XRA

INL

€PL .

JTZ REPTY

LAL

ouUT 1B

KR

CPM

JFZ ERROR

JMP REPTS
REPT1 INH

LAl 12

CPH

JTZ CONT

XRA

CPM

JFZ ERRGR

JMP REPT®
CONT LMB

XRA

INC

¢pc

JFZ REPT3

188

LHB

LAL 12

cPB

JFZ REPT4

JMP BECIN
ERROR LAI 240

ADB

OUT 10B

LAL

ouT 118

LAM

oUT 12B

LAC

QUT 13m

HLT

END

[=Ne Nul.]

LOAD 0 T2 acC

VRITE TO OUTPUT 0
WRITE T3 QUTPUT 1
VRITE TG OUTPUT 2
WRITE 10 OUTPUT 2
LOAD 8 TO REC. B

LOAD O TO REG. C

LOAD & TO REG H

LAl 0 TO REG. L

CLEAR aC

LOAD AC TO MEMORY
L=1L+1

AC - L

JUMP EF AC IS NOT ZERO
H=H+1

Luab 12 TO AC

ac~H

JUMP IF AC IS5 NOT ZEROQ

LOAD REG. B 10 AC

LOAD REC+ C TO L
LOAD RECs C 19D AC

LOAD 255 TQ aC

LOAD AC TQ ¥EMORY
AC=M

JUMF IF AC IS NOT ZERO
LOAD REC. H TO aC

CLEAF, aC
L =1L +1
aCc -~ L

- JUMP IF aCwmD

LOAD REC«. L TO aC
CLE&R AL

AC-M

JUMP IF AC IS NOT ZERO

He=H+ 1

LOAD REGC. B TG W

C=C +1
ac - ¢
B =B +1

LOAD REC. P TO H
AC-p

LOAD 240 TO aC
AC=AC+E

LOAL REC. L TO Al
LOaD MEMORY TO aC

LOAD RECG. C TO AC

E.

Fo AN =

WD D D PR

i5
14
19

20
21
&
24
27
28
30

3t
iz

a3
4
15
36

as
ag
a2

1Le
115

17
LB
119
121
122
123
125
126
128

BS
165
a7

s}
1

a1

an
24
T2
&8
87
RS
kL
10
6%
a4
2%

26
193

26
200
32
Te

193

200

192
192

3n
i

199

200
AT
19%

o84
108
]
1249
g
32
L1

199

a0
a4
104

129
200

&8

Bootstrap Loader Program
{Intel Tape Numbers ADBGD, ADS61, AD8E3, Nov. 16, 1972)

ORE O

2046

154

248

25%

24

5¥

48

aB

ag
10

T

48

3B
144)

a7

11
zal

(Jui]
115

106
100

EE

10
135

RECLY LAI
aur
XRA
QuT

1
e

138

E4DER CONTHOL

HLT

JMP 5TART

*

SUPFRESS TTY
AUTPUT 7

CLEAR al

QUTRUT 2 - TAPE B

+TELETYPE TABE JEARFR & 1/ CIVTRIL
*

TAPE . LAL L
E CODE
0T 128
TAPE READER
TTY HLT
T PiLSE
Ll 134
T
518 1ND
JET 5T2
b0
LE [ODE
oul 138
TAPE READER
our 128
START PULSE
LEI 2ad
CUUNTER
TTY1H CAL TTYLY
SEC.
LNF OB
uT
: xBE 255
TA
aut 128
& oot
RAR
LAR
REG- B
R&R
LEBA
INE
JFE TTYLN
12 WOT SET
Lag
HDY 127
LBA
aTH
CAL TTYDI
LAl 1
ouT LEB
HET
Lad
Lag
LAA
LAA
Lith
*
*TTY DELAY - 8T WSEL.
-
TTYDL LDI 121
5T IND
JFL 5T
RET

*
+BCD IO PIRARY CANVERS1ON

"

BUDBRIH LAM
su1
LBA
LW
LAM
sul
LEA

Bl JIZ

i1
ADER
Lo
DCE
JHR
BE2 DoL
LAM
a3
LEA
BB STZ
LAl
ADB
LBA
PCE
J¥FP
BE4a RET

*
»RINARY TO
)

BINBCD LHI
LLI
BNET Lol
LAH
EBD sUt
JTC
1nC
Pl
RB2 LE1

ADE
LBA
LAl
aDt
LA
LC!
LAB
fedard S0l
JIC

Ll

apz
mn

BEd
1oc

HE3

RCD CONVERSION
i

eal

1]

100
ED2

B
100

48

L0
Bh4

TAPE RE4DEF ENoPL
quTpyl I - EYAELE
wvalT FOR ITY 5TAR

FTY DELAY - 4 M3E

TAPE READER DIS&8
OUTPUT 3r LISAPLE
OUTPUT 2, DUTPUT

TTY DATA SAMPLING
TTY DELAY - B.7 M
READ TTY DATA INP
COMPLEMENT TTY DA
OUTPUT 2, TTY DAT

STORE TTY TMWTA
LOAD TTY DATA TO,

LOAD AC TO HEC- B
E=E+ 1
JmMP 1F ZERQ FAF

LOAD REG. ® TO AC
REMOVE PARITY BIT
STORE TTY INPUT D

SUFPRESS TTY

NDP

M+7 MSEC. DELAY
Tl |

LOAD LSD TO &
ACeAC=&R

LOAD & T0 B
LeL-1

LUAD M TO A
Ama~86

LOAD A TO T
[F a=0 JIMP
AC=LD
AC=AC+E

LABT aC TU REC- B
E=E-1

LaL-1

LOADT ¥ IO A
AmA- 48
LOAD & 10 E

ACw10

AC=AC+E

LoAD AT T0 REG: B
EuF=1

CLEAE REG. C

at=AC-100
JUMP 1F AC=L00
caC+1

LOAD 100 TO REC.

AC=aC+HE

LOAT AC TO REG- B
LLLLE

amprC

LOAD & TO MEMORY
CLEAR REC+ ©

LIAD B TO A
AC=AT-10

JUME 1F AC<l0

100

131
132
135
137
134
13%
14l
142
143
144
Laé
147
I ag
149
152
L&
150
150
158

155
156
159
160
16l
163

L&6&
167
168

169
170
Lra
173
174
175
176

iTe

182
184
185
186
186
186
186

1BE
19l
193
196
197
197
197
197
199
202
203
203
203
203
206

11
214

a15
216
E311
216
216
219
221

224
227
289

238
233

234
235

238
739
23%
239
a39
242
Bad
24%

Ll
esn
252
254

255
258

260
262
283
268
268
2632
27e
27Ta
215

278

16
.21
14
LE9
200
-3

130
48
248
&
1ga
a8
2an

200

26
129
Len

2

T

14
0

70
14
T
70
22
0

4B
2489

16
e

0

185
T2

ab
EL

248
0
kL]

i85

104

185
104

18%
104

1a2a
5+

L1

48

253
55

248
53

141
130

138
150

121
150

186
194
150

12

1RE
193

166

253
12

229

L1
B39
(B]

&sh
2a8

&80
‘A

an
TR

a5
46

2488

187

oo

(==}

ING
JHP BD3
BDa LBl 10
ADR
iBAa
Laf a8
ADC
THL
LMA
LA 4B
ADE
IHL
LMA
RET

L
+TTY GUTFIT AOUTINE

TTYOUT LCI 253
TIYO CAL TTYDL
Ca

14

JFZ TTYO

XAA

ouT Led

LCI 248
TTY1 CAL TTYDL
MEEC.

LaAR

DuUT 128

RAR
RY)

LBA

Larl o

AR

ALB

LBA

186G

JFE TIYE
ZERD

cAaL TTYD1
MSEC.

LAL 1

OuUT 12P

RET

-
+CARRLACE RETURN & LINE FEED

*

LRLF LEL 2158
Ch
cal TIYOUT
LF LE1 2128
cal TTYOUT
RET

L]

*ERROR 5ICNAL
*
EREQR LBI 2778
Al TTYOUT
RET

*
«TYPE B RND 1DENTIFY RAM BANH

-
ADRESH CAL CRLF

LBl ageH
tal TTYOUT
CAL TTY
NPuT
LME
MORY
BET

Gl

E =~ I
ACwAC+E
LOAD AC TO REG B
Acht4R
Amp+C

Lal+1

LoanD A TO M
EELAEL:
A=f+E

LmL+}

LOAD A TO M
RETURY

C=a53
BELAY - 9.01& MSE

CaC+]

TTY START PLSE
REG Caga8
TIY¥ DELAT -~ P:M17

Loap baTa TO AC
OUTPUT DATA
STORF PaTa IV CAR

LOAC & TO F

AC = O

RESTQRE Talp BIT
RESTORE LATA
STIRE

c=Cr+}

JUME IF AC IS NOT

TTY DELAY - 9.01P

Awir]
SUPPRESS TTY

TARRIACE RETURN -

TYPE CR
LIYE FEED - LF
TYPE LF

e
TYPE {22

LOAD (EB)
TYFE {B)
CALL FOR TTIY KB I

EYORE INFUT IH ME

»
+TYPE A4 AND TDENTIFY INITIAL AND FINAL LOCATION

*
aBRESL CAl. CRLF

LEL 301R

CAL TTYOUT
abl CAL CRLF

LGCI 253
AC2 CaL TTY
NFUT

I,

LME
TO M

INC

JFZ AD?
LERO

RET

>

Y
«DATA TYPUT ROUTINE
-
DATAIN CAL TAPE
LAL 1028

JFI DATAIH
{8}
DATAl LHI 11
LL1 255
LaT 248

NTRE
paTaz CAL TAPE
LLI 2859
ATA
LAl 1208

JTZ PLATH
LAT 1i6E

JIZ NDATA
LAl 1028

JTE PATAL
T INSTRCTIION
LAT 1778

LOAD CAY
TYPE {4}

=253
CALL FOE TTY ¥WEB I

Lul+]
LOAD TTY KF LNPUT

C=C+}
Jume IF ©O15 WOT

RERD TAFE

LOAD (B2

SEARCH FDR {(B)
Jume IF 1T 15 NOT

Hell

L2255

DaTA BIT COUNTER
5TORE DaTA BIT CD

READ TAPE
MEMDRY LOC+ FOR D

LO&D (P}

SEARGK FOR (P}

IF (F) STIEE 11
LuAD (N}

SERRCH FOR (N3

IF (&) STORE (0)
LOAT CE]

SEARCH FOR (B}

1f ¢B> DELETE LAS

LOAT TROY

280
281

284

2E7
290

293
294

298
299
200
an
pelels
305

06
o7
aos
209
311
318

313
at4q

N

ago
Az
283

326
Je8
ag9

a32
334
a3s

138

aa)
d44

Jas
346
a6
3ak
And
Ja7
3ag
J4y

351
sz
353
54
55
A5aq
354
158
a59
361
164
364
69
372
ata
TS
a7
380
a5
age
I8
385
k-1
389
a0
gl

a%a
3IF6
I97
39T
97
a9z
a9

A4

a1c
413
415

4l6
are
420

483
424
aes
/27
489
431

432
|33

434
435

i85
ki

m

58
70

T

185
10a

185
104

185
1z
70

L1

192
198
192
192
192
192
122

I
20%
10
49
20

54
248

48
2ay

as
250

3a

90

255 -

98
ag

53

255

255

70
:E]
119
248
127
kT
0
255

160
150
198
150
197
150
186
251

99
2%3

1

203
2j6

j:2-1
Lés

246
ag

62

4K

252

ao

o o a oo

Py

JFZ FMERDR
T

CAL RUBOUT
OUTINE

JMP DATAZ

FMERIA CAL FORVAT
RREQOR ROUTINE

~MF DATAEN
PDRTA LAI 1

i1

WWMF DATAZ
NDaTa
Y

TATAS 255

TER

JFZ InTaz
LERO
FDATA CAL TAPE
Lal losE

JIZ DATAR
15 (F)
ioze

JIZ DATAL
UtTioN IF IT IS (B}

LAl 1778

CFE

WFZ FMEROR

{ROY

CaL RUBOUT
TINE

JUMF DATAZ
DATAA ¥RA

b4
DATAEN RET
*

*HUBOUT ROUTINE
*

*
*FORMAT ERROE ROUTINE
*

FORMAT LEI 2agp
CAL TTYoUT
LEl 306F
CAL TTYQUT
LB] 3ansh
Cal TTYOUT
LISTA (AL CRLF
PRINTA LLI 253
LBEM -
CAL BINBCD
LEL 2523
DCL
DL
FM1 Lan
AD1
LBa
CAL TTYOUT
I8L
INE
JFZ F¥1

188

Lat 1
RET

SEARCH FOR RUBQUT
JIMP IF MOT RUBDU

LALL FOR EUEQUT R

CALL FOR FORMAT E

REPLACE {P) WITH
ROTATE RIGHT

ROTATE LEFT

CLEAR AC AND CARH

ROTATE LEFT

Loap ¥ TD B
INC DATA BIT cOuy

JUMF IF B 15 NOT
CALL FOR TAPE INF

LJAD LF}
SEARCH FOR (F)
STORE DATA [F 1T

LO&AD (B3]
SEARCH FOR ¢B)
PELETE LAST INSTR

LJaR (RO
SERRCH FOR (ROD
JUMP IF T 'S MOT

CALL FOR (RO} ROU

CLEAR AC AND CARR

LOAD (5P}
TY¥FE 5P
Lbap ¢F3
TIYPE (F>
Loap ¢(E»
TYFE (E}

L=gs3

LOAD MEMORY TQ B
BIN Td BCD CINV
E=23%3

Lak-1

Lal-)

LOAT MSD TO acC
ACmAC+LRA

LoaD aC O B
TYPE BGD LOCATION
Lal+]

ExE+|

JUMF IT E 1S NOT

FORMAT ERROR FLAG

* .
*ENTER ADDRESS AND CONVERT THEM INTO BINARY REF.
*

ENTERA LHL L}
LLI 240
ENTERH CAL ADRESH
ENTERL CAL ADRESL
RESS
CAL AD?
55
CAL CHLF
LLY gag
CAL BLDBIN

LCe

DCL

CAl, BCOBIN
ARY

CL

LaM

501 a8

ADI B

LLI 252

LMA

INL
L
E5 IN M

INL
LM

H=11

L=2&0

ENTER BANK 20.
ENTFR INITIAL ADD

ENTER FI1¥AL ADDRE

Le2aé
FINAL ADRES-BINAR

LOAD B TO C
LewLl-t
THITIRL, ADRES-EIN

L=L-1
AC=M

ACwAC2G

ACEATHE

Lu2sa

STORE BANK NO IN

L=L+iw253
STORE INITIAL ADR

LalL*]lagsy
STORE F1lHAL ADRES

436
H37

437

437
439
aa)

242
83
444

445
aag
47
aag
28
aag
aap

552

£53
454
A5S
A58
£59
460
T Ak
asg
462
462
4562
465
AET
ard

413
475
ate
479
451
482
485
487
4BE
4
493

asT
499

503
505
508

312
515
5L5
315
518
518

25]
seR
525
527
528
531

533

603

101

a5
199
49
191
104
215

250

70
70

26
96
T]
215
70
154
24z

T
104

a6
54

196

11
2352

¥
£54

205

1856
170
150

3]

B4

at
B
57

T
kL

94
&0

181

197
205

1al
239

206
250
p4:18

192
208

11
240

203

B
o

Lol -1 20 oo m m

255

oo

- A

=3

Hm

*

RET

*SET ADDRESS TO 1101 BAM
¥

SETMA LHI It

auT 0

LL1

L.bm
IHL
LaM
our

LLA
LHD
RET

25g

108

*
*ADDRESS CHECKINC
*

ACHECH LHI 11

TO AC

CHECH
*

LL1
LaM

254

CHELK

*PROCEAM EEGINS
-

START

HFUT

¥

CaL
LB1
CaL
CaL

Lal
CFB
JTZ
LAl
CFR
JTZ

CPH
JTZ
CAL
JMP

*Liab DATA
-

TAPEIN
PEADIN
OUTINE

Rr

EXECUT

BANKD
BANK]
BANKE
BANHA

COHNTIN

CaL
CAL

RAR
JTC
LLT
LCH
CAL

Lat
our
LMA

CAL
+TZ
WP
LHI
LLl

JTZ
LAL
CPH
JTZ
Lai
CPH
NIZ
CAL
JHE
LEI
LL

IND
LD
L A
XRA
Lma
TNL
LAY
LMa
Mp

CRLF
2508
TTTouT
TTY

1248

TAPEIN
1058

EXECUT
Lazp

READIN
1038

CONTIN
11am

LISTIN
1208

PROGRM
ERROR
START
INFUT TO 1101 RaM

ENTERR
DATALY

START
254

ZETMA

11E

ACHECK
STAET
READIN
3]

240
40008
44008
30008
$4008
ADRESH
CHLF

Af
L

B
BANKD
BANH]
10

BANKE
(%)

BANKZ
ERROR
START
1
252

255

HEADIN

Hell

L=25s

BANK NO TO R
b=+ =253

INIT ADR TD E
WRITE ADDFESS TO

LOAD AC TQ L
T T H = BaW ¥

H=11
LafSa
LOAD FI¥AL ADRES.

L=L-lanrsgy
COMPARETAF-AT
JHME O IF AF-AIed-
LOam Al TO AC
al=Als]

LJIAD AD TO MEMORY

B=8252B
TYFE (¥
CALL FOR TIY KB 1

LOAD <T2 T ac
AC-p

JUME IF AC-B=0
AC=1058: {E)
AC-B

JUME IF an-p=0
ACald2E. (R}
AC-B

JUFP IF AC-Bw(
AC=1038, (D)
&C-B2

JUME IF AC-P=Q
ACEI14Bs (L)
AC-E

JUMP IF AC-Ban
ACe | 208, (F)
AC-B

WJUMP IF AG-Bed
TYPE (22

ENTER ADDRESS
READ TAPE INPUT R

CHECH FOR FE FLAC
JUMP IF CARRY=1
Le=g50

LOAD MEMORY TO C
5ET MEMORY ADDRES

LOAD DaTA T2 MEMO

COMPARRE AF AND Al
JUME 1F Amg

READ INPUT DATA
Hely

L=2ag

BANK 0 LOCATTON
BANH 1 LOCATION
BANH 2 LQCATION
BANK 3 LOCATIOY
ENTER BANK RO

LOAD MEMODRY TOQ AC
ACmAC-84

AC=AC+BE

LOAD AC TQ H

AC=8

AC=RC-H

JUMF IF AC=0

D=let |
BANH=BAN<r |
Le=L#+1

CLEAR AC
INITIAL ADRES=q

FINAL ATRES=2S5

L1
606
B06
506
[1e]-1
610

E13
als
é18

L)
521
524
&85
H5EY
531
634
LX)
637

638
Ba0

441
&42
sah
L TE

&&8
650
453
656
458
&6l
H68
[-1-%]

L1.L)
113
&TL
573
6Th
&1
GR2

1L
L1
HB6
6ET

a8
54
70

(B
rag
Lag

186
£51
ass

1le
1450
150
194

253

248

2.3
1a4

2086
150
149
208
150

189
198

160
150
192
20
251

[X-]

[]

*
#PROM LISTING ROUTINE'

*
LISTIN L1
LLI
caL
14AL ALEa
LISTER CAL
LI L
Lal
LINE
LMA
L1STL CAL
LBI
CAL
LBI
CAL
LLl
Lat
aut
bl
LEL
IT GUNTR
[

702

LISTZ RAL
LLTI
LHA
JTC

¥=1
LBl
GAL
JMF

PRINTP LE1
CaL

LISTa LAM
INE
JFE

LEI
caL
LBl
Cal
CaL
JTZ
LLi
T0 AC
LCH
ING
LMC
JTE

1
240
ENTERL

CRLF
251
258

FRIWTA
2408
ITYOUT
3048
TIYGUT
253

108

248

NP LD

249
PRINTF

ILER
TIIOUT
LIST3
az0e
TTYOUT

LI5T2

068
TTYOUT
2058
TIYOUT
HCHECH
START
25l

LISTER

H=11l
Lw240
ENTER INITIAL & F

L=851
MO« OF INSTR- PER

LOaC AC TD MEMORY
PEINT ADDRESS
Loan C5P2

PRINT (5P]

Loap [H]

FRINT [B]

L=252

LOoaB Al TO AC
QUTFUT AT TO Q0T

READR DELAY/DATA B

REAL INPUT FROM |

LuZa%
SAVE THPUT DaTh
PEINT [P1 IF CARR

LOAD [H]
FRINT [N]

L3AD IP)

FRINT [P1

Loal DaTa TO AT
EaE+l

JIMP IF E 15 NOT

LOJAD LF2
PRINT EF1
LOAD C5P)
PRLET (5F1
AF - Al

LOAD LTYE CONTR-

LoaD MEMORY TO C
C=C+1

JIWP TF LINE CONT

102

&390
583
693
B33
Lk

L3l
698
00
7Ol
133
106

709

kR
TLe

12
715

715

721
722

725
TET

729

720
731
734
736
739
741
743
744
745
Ta6
749
758
758
758
T&1
764

TaT

54
&
48
15
10

175
B3

38
10

a2
78

45

&7

191
10a
14
70

54
207

249
T2
1
0
58

104
&8

€55
253

L&l
150
181

*545

55

206

286
164
150

11
255

194
197
1i3
206
132
ans
185

-]

Re=4
JwPE LISTL

»
*FROM PROCRAVMER
*

PEOCE™ CAL ENTERS
E3S
FC1 LEI 2%5
LAl P53
L¥R
LEI 215B
LRL TTYSUT
PL2 CAL SETMAS
e
LAl 255
THTA
KE®
JUT 1ER

LAL &

QUT 13B
ELE

LEL 187
n MSEC.
PLA cAL TTYM

INE
JFZ PGa

Lar o
QUT 138
ULSE

MESEC
I¥¢ 1B
02
CFPM
JIZ PCS
LEI 2448
CAL TTYOUul
LHLD 11
LLI B85
-8
INE
LME
JFZ PC2
caL EAEQR
CAL LISTA
JMF S5TART
POS CAL ACHECH
JIT START
JMP PO
XT INSTA
EdD

ENTER MEMDRY ALOR
REFPOCRAM COMTE»
Br=253%

LOAE AC TO MFMOZY
CARRTACF RETURY
5ET AELRESS IO 17
COMPLEMENT 1YEUT

LOALC DATA TO AC
WEITE PaTa TO 00T

ACmids TELAY
FEOCRAM PULSE EXA

E=197s PELAY - 58
DELAY - #:.672 M5E

EsE+1
JUMP IF E 15 MNGT

ACnO
DISARLE FROCEAM B

TELAY RPPRI¥1. §

READ DATA FROW 17
COMPARE DATA

Jume 1F COMPARED

Loap [¥)
PRINI®T

1L.04D B TO MEMORY

FRINT [*)
FRINT ADDRESS

CUNTLYUE PRCG. NE

APPENDIX VI

intgllec’'8

Bare Bones 8

- and
Microcomputer
Modules

The widespread usage of low-cost microcomputer systems is made pos-
sible by Intel's development and volume production of MCS-8 micro-
computer sets. To make it easier to use these sets, Intel now offers
complete 8-bit modular microcomputer development systems called
Intellec 8.

The Intellec modular microcomputers provide a flexible, inexpensive,
and simplified method for developing OEM systems. They are self-
contained, expandable systems complete with central processor, mem-
ory, 1/0, crystal clock, power supplies, standard software, and a control
and display console,

The major benefit of the Intellec modular microcomputers is that ran-
dom access memories (RAMs} may be used instead of read-only-mem-
ories {ROMs} for program storage, By using RAMs, program loading
and modification is made much easier. |n addition, the Intellec front
panel control and display console makes it easier to monitor and debug
programs, What this means is faster turn-around time during develop-
ment, enabling you to arrive at that finished system socner,

The Intellec 8 Eight-Bit Microcomputer Development System. The

 Intellec 8§ is a microcomputer development system designed for applica-

tions which require 8-bit bytes of data to perform either binary arith-
metic manipulations or logical operations. The Intellec 8 comes com-
plete with power supplies, display and control panel, and finished cabi-
net. |t can directly address upto 16k 8-bit bytes of memory which can
be any mix of ROMs, PROMs, or RAMs. The Intellec 8 is designed
around the Intel 8008 central processor chip. There are 48 instructions

- including conditional branching, binary arithmetic, logical, register-to-

register, and memory reference operations. 1/0 channels provide eight
8-bit input ports and twenty-four 8-bit output ports — all completely
TTL compatible. The unit has interrupt capability and a two-phase
crystal ctock that operates at 800kHz providing an instruction cycle
time of about 12.5us.

Bare Bones 8. The Bare Bones 8 has the same capability as the Intellec
8 only it does not include the power supplies, front panel, or finished
cabinet. It is designed as a rack-mountable version.

The Intellec 8 system comes with a standard software package which
includes a system monitor, resident assembler, and text editor. The
programmer can prepare his program in mnemonic form, load it into the
Intellec 8, edit and modify it, then assemble it and use the monitor to
load the assembled program. '

Other development tools for the Inteliec 8 include a PL/M compiler,
cross assembler, and simulator designed to operate on large scale general.
purpose computers. PL/M, a new high-level language, has been develop-
ed as an assembly language replacement. A PL/M program can be writ-
ten in less than 10% of the time it takes to write that same program in
assembly language without loss of machine efficiency.

Standard Microcomputer Modules. Microcomputer Modules, standard
cards that can be purchased individually so that the designer can develop
his system with as little or as much as he needs, are also available.

Additional CPU, Memory, Input/Output, PROM Programmer, Universal
Prototype, and other standard modules provide developmental support

"and systems expansion capability.

103

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

intel

- MCS-8 MICROCOMPUTER DEVELOPMENT SYSTEMS

® Intellec B {imm8-80A): Compiete Microcomputer
Development System
Central Processor Module
RAM Memory Moduies {8192 x 8}
Input/Output Medule {TTL compatible}
PROM Memory Module {4k x 8 capacity;
1k Resident System Monitor included}
PROM Programmer Module
Control Console and Display
Power Supplies and Cabinet
B Bare Bones 8: MCS-8 System without power
supplies, cahinet, or control console
® Standard Seftware
Resident Assembler
System Monitor Text Editor

Requires
8k of RAM

The Intellec 8 is a complete microcomputer development
system for MCS-B microcomputer systems. Its modular
design aliows the development of any size MCS-8 system,
and it has built-in features to make this task easier than
it has ever been before.

The basic Intellec 8 {imm8-80A) consists of six microcom-
puter modules {CPU, 2-RAM, PROM, 1/O and PROM pro-
grammer), power supplies, and console and displays in a
small compact package. The heart of the system is the
immB-82 Central Processor Medule. It is built around
Intel’s 8008-1, an B-bit CPU on a chip. It contains all
necessary interface to control up to 16k of memory, eight
8-bit input ports, twenty-four 8-bit output ports, and to
respond to real time interrupts.

The intellec 8 has 9k bytes of memory in its basic con-
figuration and may be expanded up to a maximum of
16,384 bytes of memory. Of the basic 9k bytes of mem-
ory, 8192 bytes are random access read/write memory
located on the immB-28 RAM Memory Modules and are
addressed as the iower 8k of memory. This memory may
be used for both data storage and program storage. The re-
maining 1024 bytes of memory are located on the immB-26
PROM Memory Module and addressed as the upper 1280
bytes of the 16k memory, This portion of memory is a
system menitor in five 1702A PROMs. Eleven additional
sockets are available on the imm®-26 for monitor or pro-
gram expansion. Control for the PROM Programmer
Module {imm&-76) is included with the monitor for system
control.

PROM memory modules and RAM memory modules may
be used in any combination to make up the 16k of direct-
ly addressable memory. Facilities are built into these
modules so that any combination of RAM and ROM or
PROM may be mixed in 256 byte increments,

input and output in the intellec 8 is provided by the
imm8-60 1/Q medule. It contains four 8-bit input ports,
and four 8-bit output ports. In addition it contains a
universal asynchronous transmitter/receiver chip as well
as a teletype driver, receiver, and reader control. Bit serial
communication using only the teletype drivers, receivers,
and the 1/0 port, is also possible with this module.

The universal asynchronous transmitter receiver chip may

104

B Ok bytes of Memory (expandable to 16,384 bytes
— Intellec 8}

B Bk bytes of Memory (expandable to 16,384 bytes —

Bare Bones 8)

Direct Access to Memary and 1/0

Four 8-bit input ports (expandable to eight)

Four 8-bit output ports (expandable to twenty-four)

Universal Asynchronous Transmitter Receiver for

serial communications interface

Real time interrupt capability

Crystal controlled master system clock

operate at either 110 baud for standard teletype inter-
face or 1200 baud for communication with a high speed
CRT terminal. Additional 1/0 modules, imm8-60, and
output modules, imm8-62, can expand the 1/0 capability
of the Intellec 8 to eight input ports and twenty-four
output ports, all TTL compatible.

An interrupt line and an 8-bit interrupt instruction port
is built into the imm8-82 Central Processor Module, When
an interrupt occurs, the processor executes the instruction
which is present at the interrupt instruction port. In the
intellec 8, both the interrupt line and the interrupt instruc-
tion port are connected to the console. The processor
may be interrupted by depressing the switch labeled INT,
and the interrupt instruction is entered in the ADDRESS/
INSTRUCTION/DATA switches.

Additional module locations are available in the Intellec 8
50 the user may develop his own custom interface using
the imm®6-70 Universal Prototype Module. All necessary
control signals, data, and address buses are present at the
connectors of the unused module locations for this ex-
pansion. When memory, 1/0, and custom interfaces are
added to the Intellec 8, care should be taken not to ex-
ceed the built-in power suppty capability.

Every Intellec 8 comes with three basic pieces of software,
the systems monitor, a resident program located in the
upper 1280 bytes of memory, a symbolic assembler and
a text editor. The resident systems monitor allows the
operator to punch and load tapes, display and alter mem-
ory, and execute programs.

With the PROM Programmer Module, 1702A PROMs may
be programmed and verified under control of the system
monitor,

The text editor is a paper tape editor to allow the oper-
ator to edit his source code before assembly. The assen-
bler takes this source tape and translates it into object
code to run on the intellec 8 or any MCS-8 system.

The Intellec 8 microcomputer development system is also
available in a Bare Bones 8 version. {n this version the
power supply, chassis, console, and display are removed
leaving the user a compact rack mountable chassis to
imbed in his own system.

intel_

SYSTEMS BLOCK DIAGRAM

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

DISPLAY
AND CONTROL
SWITCHES

L

. < INTERRUPT INSTRUCTION BUS
cPU FRONT PANEL
immg-82 CONTROL LOGIC
< CONTROL BUS N
DATA FROM MEMORY
[
MEMORY ADDRESS BUS/OUTPUT DATA
11 1
DATA, TD MEMORY
DATA FROM MEMORY
MEMORY
MODULE
RAM OR PROM
immG-28 immé-26
DATA TO MEMORY p:
_L ® ANY COMBINATION TO | -
=l = =i L ® MAX 16k OF MEMORY ==L
T T P
DATA FROM MEMORY
MEMORY
MODULE-
RAM OR PROM
immB28 imm626 | -
DATA TO MEMORY >
DATA INPUT BUS WMEMORY ADDRESS BUS/OUTPUT DATA
: ‘:,g:':l{; | 32 DATA LINES
4 0%:% 32 DATA LINES NPUT/
' QuTPUT QUTPUT (]
MODULE MODULE 64 DATA LINES DOUTPUT
TELETYPE OR : immg-60 immg-62 PORTS
COMMNIEREIONS < SERIAL > < MEMORY ADDRESS BUS/OUTFUT DATA>
INTERFACE
CONTROL BUS
tofte 32 DATA LINES
4 OUTPUT 32 DATA LINES INPUT/
PORTS ouTPUT QUTPUT 8
MODULE MODULE 64 DATA LINES > OUTPUT
TELETYPE OR imma-60 imms &2 PORTS
cOIGH SPEED < SERIAL > < MEMORY ADDRESS BUS/QUTPUT DATA>
INTERFACE '

105

j Intellec 8

INTELLEC 8 CONTROL CONSOLE AND DISPLAY

The Control Console directs and monitors all activities of the ® CYCLE provides continuous display of the processor’s
Intellec 8. Complete processor status, machine cycle condi- machine cycle status.

tions and operational control of all processor activity are 9. FETCH indicates the current machine cycle is fetching an
provided, and additional controls facilitating program de- instruction from memory.

bugging and hardware checkout are included on the control 10. MEM indicates the processor is executing a memory read (PCR)
console. or memory write (PCW) cycle, or, under manual control, a

direct access to memory is in progress.
11.1/0 indicates the processor is executing an 1/O read or write

® STATUS is a display of the operating mode of the pro- cycle (PCC) or, under manual control, a direct access to 1/0 is

cessor, in progress.
1. RUN indicates the processor is running. 12. DA indicates a direct access to memory or 1/0 is in progress.
2. WAIT indicates the processor is waiting for memory or 1/0 to 13. READ/INPUT indicates a memory or input read operation is
be available. in progress.
3. HALT indicates the processor is in a stopped state. 14.WRITE/OUTPUT indicates a memory or output write operation
4. HOLD indicates an 1/0 or memory access is in progress from is in progress.
the Control Console (occurs with WAIT or HALT). 15. INT indicates an interrupt cycle is in progress.
5. SEARCH COMPL indicates the processor has executed instruc- 16. STACK not applicable,
tions until the search address and pass counter settings have ® ADDRESS is a display of memory and 1/0 address.
been reached. (See LOAD PASS 26, and SEARCH-WAIT 33) 17.INDICATORS 14-15 not applicable.
6. ACCESS REQ indicates an |/0 or memory access is pending 18.INDICATORS 0-13 are a display of the address of memory
from the Control Console. being accessed during a Fetch, Read, Write, or during manual
7.INT REQ indicates an interrupt is pending from the Control MEM ACCESS.
Console (see INT 38). 19. INDICATORS 9-13 are a display of the I/O address during an \
8. INT DISABLE not applicable. input, an output, or during a manual 1/0 ACCESS,

DOOO® O @ 0@0@@0@@0@

mcs

STATUS Rios CYCLE
SRCH ACCESS INT INT READ/ WRITE |
RUN ‘WAIT HALT HOLD COMPL REQ REQ DISABLE FETCH MEM /o DA INPUT OUTPUT INT

ADDRESS / DATA ADDRESS / INSTRUCTION / DATA
MEJN: ADDRESS HIGH . ; 1o Anb RESS l SENSE DATA MEM ADDRESS LOw ; INT msr{ DATA / PASS cr
15 4 3 B 7 5 ¥

== —
ADDRESS CONTROL

LOAD /O MEM SRCH-
PASS DECR INCR |OAD SENSE ACCESS

i —
— =-
inlgl corporation

® O @

CONTROL
STEP/ DEP ;
S ACCESS wan WAIT CONT DEP AT HLT INT RESET

. . - .
N EE U
(3

DIDIC) OIDIOIO) (3) (36) (1) (8) () @)

106

Intellec 8

MICRO
COMPUTERS

= |INSTRUCTION/DATA is a display of the instruction

or data.

20.INDICATORS 0-7 are a display of the instruction or data
between the processor and memory or 1/0,

REGISTER/FLAG DATA is the display of the proces-
sor data bus during executions of an instruction (dis-
play is dependent upon instruction being executed).

21.INDICATORS 0-7 are a display of the contents of the CPU data
bus when the instruction is executed. In the case of move
instructions, the contents of the source register is displayed.
Flags C, P, Z, and S are a special case. The flag status appears
in the lower four bits, only when an input instruction is
executed.

ADDRESS/DATA These eight switches provide entry
of address or data for manual or SENSE operation of
the processor (see SENSE 30).

22.MEM ADDRESS HIGH The upper six bits of memory address
for direct access or search operations are entered here.

23.1/0 ADDRESS The five bit I/O address for manual 1/0 ACCESS
is entered here,

24, SENSE DATA Data to be input during a SENSE mode
operation is entered here (see SENSE 30).

intgllec 8

107

ADDRESS/INSTRUCTION DATA These eight

switches provide entry of data, address, and instruc-

tions during manual or interrupt operation of the

pracessor.

25. MEM ADDRESS LOW The lower eight bits of memory address
for direct access or search mode operation are entered here.
INT INST During an interrupt cycle the interrupt instruction is
fetched from here (see INT 38).

DATA Data for deposit to memory or an output port during
manual operation is entered here (see DEP 36 , and DEP AT
HLT 37).

PASS COUNT Data to be loaded into the pass count register is
entered here (see LOAD PASS 26.).

ADDRESS CONTROL These four switches control

addressing of memory and 1/0 and loading of the

search address during manual operation of the proces-

sor.

26. LOAD PASS Loads pass count into pass count register (PASS
COUNT is the number of times the processor will iterate

* through the search address during a search operation before in-

dicating SEARCH COMPLETE (see SEARCH-WAIT 33 and
SEARCH COMPL 5)

27.DECR decrements the loaded address by one (see LOAD 29).

28. INCR increments the loaded address by one (see LOAD 29),

29, LOAD loads contents of address high and low into memory
access register for manual direct access to memory or search
mode operation (see MEM ACCESS 32, and SEARCH-WAIT
331

MODE These five switches select the processor's mode

of operation.

30. SENSE causes the processor to input data from the SENSE
DATA switches during execution of an input instruction instead
of the addressed input port (see SENSE DATA 24).

31.1/0 ACCESS provides access to any input port and control of
any output port when the processor is in a WAIT mode.

32. MEM ACCESS allows access to and control of any location in
memory when the processor is in the WAIT mode.

33.SEARCH-WAIT provides for execution of a program to a
specific location, where the processor enters a wait mode and
displays current system conditions.

34.WAIT causes the processor to go into a manual WAIT mode.

CONTROL These five switches provide operator con-

trol of the processor.

35.STEP/CONT provides single step execution of a program while
the processor is in a WAIT mode or continuation of a program
from the SEARCH COMPLETE condition.

36. DEP deposits an 8-bit word to memory or output during a
memory or | /O access operation (see DATA 25),

37.DEP AT HLT deposits an 8-bit word to a selected memory lo-
cation or output automatically during a programmed HALT
(see DATA 25).

38. INT causes the processor to execute an interrupt cycle, fetching
the interrupt instruction from the INT INST switches (see INT
INST 25).

39, RESET causes processor to begin execution of program at
memory location zero by resetting program counter to zero.
All other registers remain unchanged.

POWER and PROM PROGRAMMING

40. PRGM PROM PWR Power switch for high voltage used
with PROM programmer.

41. POWER Key operated main power switch

42.PRGM PROM Zero insertion force socket for 1602A or
1702A PROM to be programmed

Intellec 8/Bare Bones 8

7 MIsRO
COMPUTERS

intal

SYSTEMS SOFTWARE

The Intellec 8 and Bare Bones 8 Microcomputer Development Systems come with

three pieces of software:
Assembler,
{oaded with the System Monitor.

SYSTEM MONITOR

Loads and punches paper tape

Displays and alters contents of memory
Fills memory with constants

Executes programs in memory

Moves blocks of data in memory
Programs 1602A or 1702A PROMs

The System Monitor is contained in five 1702A PROMs
and is assigned to the upper 1280 words of memory,
leaving the lower 156k of memory for program and data
storage. This executive software allows the operator to
toad and punch BNPF or hexadecimal format tapes, dis-
play and alter memory, load constants to memory, move
blocks of RAM memory, and execute user programs.

The System Monitor is extended by the control software
for the irmm&-76 programmer module, which gives the
monitor the ability to program 1602A to 1702A PROMs
as well as being able to icad memory from already pro-
grammed PROMs for duplication and verify the contents
of PROMs against master tapes.

TEXT EDITOR

¢ Edits symbolic data from paper tape with data from
operator’s terminal

¢ Edited output is available via paper tape

& Appends text to editor input buffer

® Moves pointer to any desired location

® Finds and inserts or substitutes strings

® Deletes lines sefectively

The Text Editer allows the operator to edit his source
code, making corrections and additions. He may append
code, delete code, locate strings, insert strings, substitute
strings and output edited code via paper tape. The text
editor runs on a minimum intellec 8 system with teletype
I/O. (Reguires &8 mintmum of 8k x 8 of RAM)

108

Resident System Monitor, Text Editor and Symbolic
.The Text Editor and Assembler are supplied on paper tape and are

ASSEMBLER

® Standard symbolic assembler
® [nput via prepunched paper tape
¢ Qutput in 8008 object code

The Symbolic Assembler is a multiple pass type. During
Pass 1 the assembler reads the source code from the paper
tape and generates a symbol table for later use. During
Pass 2 the assembler generates the assembly listing, Also
at this time, any detectable errors such as undefined jumps
or missing symbols are indicated by a diagnostic printout
on the teletype. Pass 3 may now be run. It generates

object code, and punches it on paper tape. [Reqguires a
minimum of 8k x 8 of RAM.)

DEVELOPMENT SUPPORT: _
PL/M COMPILER, ASSEMBIL.ER and SIMULATOR

In addition to the standard software available with the
Intellec 8, Intel offers a PL/M compiler, cross assembler,
and simulator written in FORTRAN 1V and designed to
run on any farge scale computer. These routines may be
procured directly from [ntel, or alternatively, designers
may contact a number of nation-wide computer time-
sharing services for access to the programs. The output
from both PL/M and the MCS-8 Assembler may be run

directly on the Intellec 8 Microcomputer Development
System,

PL/M Compiler: PL/M is a high leve! procedure-oriented
systems language for programming the tntel MCS-8 micro-
computer. The language retains many of the features of
a high-level language, without sacrificing the efficiencies
of assembly language. A significant advantage of this
fanguage is that PL./M programs can be compiled for either
the Intel 8008 or future inte! 8-hit processors without
altering the original program.

Assembler: The MCS-8 Assembler generates object codes
from symbolic assembly language instructions. It is de-
signed to operate from a timeshared terminal.

Simulator: The MCS-8 Simulator, called INTERP/8, pro-
vides a software simulation of the Intel 8008 CPL, along
with execution monitoring commands to aid program
development for the MCS-8.

Intellec 8/Bare Bones 8

MICRO
COMPUTERS

intel

' SYSTEMS SPECIFICATIONS

Word Size: Data: 8 bits
Instruction: 8, 16, or 24 bits
Memory Size: 9k bytes Intellec B/5k bytes Bare Bones

. expandable 1o 16k bytes

48, including: conditional branching,
hinary arithmetic, logical, register-to-
register and memory reference

_ Instruction Set:

operations
Machine Cycle Time: 125us
System Clock: Crystal controlled at 800kHz +0.01%
1/0 Channels: 4 expandable to
8 input ports TTL
4 expandable to Compatible
24 output ports
Interrupt: " Single Level

Direct Access to Memory: Standard via control console
Memory Cycle Time: Tus
Operating Temperature: 0°C to 55°C
Voo =58V, lpe = 1247
Vpp = —9V. Ipp = 1.8A"
Vgg = — 12V, Igg = 0.06A
DC Power Requirement: Voo = BVEB%, oo = 11A max_ 6A typ,
© Vpp = —95%, I5p = 1A max,, 0.5A typ.

DC Power Supplies:
{standard Inteliec 8)

Vgg = —12V£5%, Igg = 0.03A max., 0.016A typ,

AC Power Requirement: 80Hz, 115 VAC, 200 Watts

Istandard Intellec 8) *Larger power supplies may be reguired for

expanded systemns,

Intellec 8: 7" x 17 1/8" x 12 1/4"
{tahle top only)
Bare Bones 8: 6 3/4" x 17" x 12"
{suitahie for mounting in standard
RETMA 7 x 19" panel space)

Physical Size:

Weight: 30 Ib,

Standard Software: Systemn Monitor
Resident Assembler
Text Editor

PL/M Compiler
Cross Assembler
Simulator

STANDARD SYSTEMS and OPTIONAL MODLUILES

Intellec 8 {imm&-80A} Standard System includes the following
Modules and Accessories:

*® Central Processor Module

® |nput/Qutput Module

& PROM Memory Maodule

® RAM Memory Madules (Two}

.

.

Support Software: written in

FORTRAN IV

® Control and Display Panel
® Finished Cabinet
® Standard Software:
Systern Monitor
Resident Assembler
Text Editor
. & PROM Programming Module
Bare Bones 8 {immB8-81} Standard System includes the following
Modules:

Chassis with Mother Board
. Power Supplies

Central Processor Module ¢ Standard Software:
Input/Output Module

.
* Systemn Monitor
& PROM Memary Module

.

.

Resident Assembler *
Text Editor *

*Requires a minimum of
Bk of RAM

RAM Memory Madule
Chassis {rack mountable
with Mother Board}

Optional Modules available for the Inteltec 8 and Bare Bones 8:
Additional /0 or Output Modules

Additional RAM Memory Modules

Universal Prototype Module

Module Extender

Rack mounting kit for Intellec 8

BUS INTERFACE
FRONT PANEL CONTROLLER
Ci

-
CUSTOM INTERFACE MAY BE USED _D\/
IN ANY OF THESE LOCATICNS

Inteliec 8 and Bare Bones 8 Module Assignments

The standard Intellec 8 comes with the modules
shown. Expansion capability of both 1/0 and
Memaory ta a full MCS-8 system is provided by
using open locations on the motherboard.

- -— PROM, FROGRAMMER MODULE

intet Microcomputer Modules

imm 8-82 CENTRAL PROCESSOR MODULE

s Complete Central Processor Module with B Directly addresses sight input ports and
system clocks, interface and control for twenty-four output ports
memory, 1/0 ports, and real time interrupt B Subroutine nesting to seven levels
® The heart of this module is Intel’s 8008-1 = Real time interrupt capability
processor on a chip — p-channel silicon gate m Direct memory access capability
mos ® Interface to memory, 1/0 and interrupt ports
& 48 instructions, data oriented through separate TTL buses
® Accumulator and six working registers ® Two phase crystal clock — 800kHz
® Direct addressing of up to 16,384 bytes of ® 12.5us instruction cycle

memory, (PROM, ROM, or RAM)

The imm8-82 Central Processor Module is a compiete 8-bit parallel central processor unit, |t contains complete:
control for interface to memory and t/O. This is the main module in Intel's Intellec™ 8 systems,

The imm8-82 is built around Intei’s 8008-1 CPU on a chip. It executes 48 instructions including conditional
branching, register to register transfers, arithmetic, logical and 1/Q instructions. Six 8-bit registers and an B-bit
accumulator are provided. Subroutines may be nested to seven levels. Real time interrupt capability is provided
and the processor may directly address up to 16,384 bytes of memaory,

The imm8-82 has a fourteen bit TTL compatible memory address bus, an 8-bit data output bus and an 8-bit
memary data input bus. Memory read and write signals and the wait request signal provide interface at TTL
levels to any type of memory {including PROM, ROM, and RAM). Asynchronous interface to stower speed
memories {access > 1us) is provided by the wait request signal. This causes the processor to wait for memory
response to a read or write command.

The Central Processor Module directly addresses up to eight 8-bit input ports and twenty-four 8-bit output ports.
The 5-bit I/Q address is contained in the upper byte of the memory address bus. Addresses O through 7 are
defined as input ports, and 8 through 31 as output ports. Control signais, 1/0 cycle, 1/0 in and /O out, define
the /0 cycle and its function. An 8-bit data output bus and an 8-bit data input bus, both TTL compatible,
provide data channels in and out of the processor module,

Real time interrupt capability and direct memory access capability complete the list of functional features for
the imm8-82. During an interrupt, the Central Processor Module responds to the instruction presented at the
8-bit interrupt instruction port. Unless the main program flow is altered by the interrupt instruction, the exe-
cution will continue where it left off before processing the interrupt. Eight bits of data including sign, carry,
zero and parity flags are latched on a separate bus during the execution portion of most instructions.

The direct memory access capability allows an alternate source to access memory or /O white temporarily sus-
pending processor operation. At the end of this alternative access to memory, the processor may return to nor-
mal program execution.

All system timing is derived from a two phase crystal clock running at 800kHz. This gives a machine cycle time
of 12.5us* 0.01% and provides an accurate timing source for software detay loops and other timing requirements,

TR ET HTETTSEFEETEIY

Central Processor Module

110

ntel

Microcompu_ter Modules

MICRO
COMPUTERS

Central Processor Module Specifications

Word Size:

Central Processor:

Instruction Set:

Memory Addressing:

Instruction: 8, 16, or 24 bits

Data: 8 bits

8008-1 CPU, B bit accumulator, six
8-bit registers, subroutine nesting to
seven levels, interrupt capability,

. asynchronous operation with memory

48 including conditional branching,
binary arithmetic, logical operations,
register-to-register transfers, and 1/0
Any combination of PROM, ROM and

Systern Clock:

Connector:

Board Dimensions:

Crystal controlled, B00kHz + 0.01%

Processor eycle time: 12.5us

Dual 50-pin on 0.125 in, centers,

Connectors in rack must be positioned

on 0.5 in. centers min.

Wirewrap P/N C800100 from SAE
P/N VPBO1C50EDQAT

from CDC
6.181in. x 8.0 in, x 0.062 in. Board 10
be on 0.5 in. centers minimum

RAM up to 16,384 bytes Operating Temp : 0°C 1o +55°C
Memory Interface: Address: 14 bits TTL latching bus DC Power ’
Data: 8bit TTL bus to and from Requirements: Vg =45V 2 5%,
memory log = 2.2A max, 1.0A typical
1/0 Addressing: Input: Eight 8-bit input ports Vpp = -9V £ 5%,
Qutput: twenty-four 8-bit latching Ipp = 0.06A max., 0.O3A typical
outPuT ports Support Sof PL/M Compil
. . upport Software: ompiler i i
1/0 Interface: 8-bit TTL campatible buses to and from Ppo Cross Aser:bler Written in
CPU. 8-bit TTL fatched bus with ! FORTRAN IV
X . X . Simulator
execution data including flags {sign,
parity, zero, and carry information)
L] -
imm8-82 Block Diagram
{INT ACK] TiT -—of
T -—
T3 -—of DATA FROM
CPU = MBI 0.7}
et L] : ol
i
{FALT ACK} STOP -t— 7| PATAMUX [=—pgpr H10-D
{WAIT ACK) WAIT -— INPUT PORT
TSy CEESEQ?L BATA {INO.7)
IPCA} MEM READ CYC —
PROCESSOR | sy o TN CYC
cycLE us | (PO MEM WRITE CVC - - OSC
{PCC} /G CVC -t = SYNC A| CPUCLOCK
{PCIl FETCH CYC ~%— ot - BUS DUT
- -z
CONTROL \ '
LOGIC
WAIT REQ —— | _h_-
cru AOLD REQ —— READY _] B
CcTL INT REQ —— INTERRUPT . MEMORY \map 013)
BUS | HALT INT REQ — _STATE LINE§ 2008 cPU |t 8 BUS .8 | aooress | .« ADDRESS
N JAM ENBL — _ __SYNC -7 ORIVER 7 LATCHES | -
;’.
}—a {CCO!
RAM MOD ENBL ——— | tcmlr
PROM MOD ENBL ——e] BUSETL . +
ADDRESS CONTROL +
CYCLE CODING {CCa, CC1!
B__ DATATO
+ mMEMQRY ‘DB 07}
Iy T |—= 40 (5)
|—- 70 oUT 8 | TA1 (2}
—» DEIN e ——= TdZ {F)
L » DR OUT E’:‘J’:T“RF:IFE REG/FLAG |— T43 (@)
— BUSAUSY SIGNALS LATCH | — T4
— R - TG
—= AOLDACE — Ta6
L= (NT REQLTH - T47

111

MICRO
COMPUTERS

|nte| Microcomputer Modules

®» 4096 B-bit bytes per module
= Static memory, no clocks required

& Interfaces with the imm8-82 8-bit
Central Processor Module

= Single +56V power supply

imm6-28 RAM MEMORY MODULE

® Low power requirements

B For use in expansion of Intellec 8 systems to 16k

bytes of memory

® Built-in decoding of module select for expansion

to 65k bytes of memory

RAM Memory Module

The imm6-28 RAM Memaory Module is a standard 4k x 8 memory module designed for use with the Intellec 8
Microcomputer Development System. This module contains address and data buffers, read/write timing circuits
and is implemented with Intel’s 2102 1k % 1 static RAM. Although the basm memory madule is 4096 x 8, con-
figurations as small as 1024 x 8 are also available.

The immB-28 RAM Memory Module is used with the MCS-8 Micre Processor in configurations of up to 16k bytes
of memory (4 modules). The imm8-82 Central Processor Module directly interfaces with the imm6-28 RAM
Memory Module with all module select decoding done directly on the connector. This allows an imm6-28 to be
moved to any location within the 18k of memory without making any changes in the module,
decoding altows additional expansion of memory by bank switching.

This builtin

112

i MICRE
inter“ | Microcomputer Modules

RAM Memory Module Specifications

Mermory Size: 4k bytes

Word Size: 8 bits

Memory Expansion: To 65k bytes {16 modules)

Cycle Time: 1us

Interface: TTL compatible inputs; open coltlector outbuts {positive true logic)

Capacity: 4096 bytes

Connector: Dual 50-pin on 0.125 in. centers, Connectors in rack must be positioned on 0.5 in. centers min,

Wirewrap P/N C800100 from SAE
) P/N VPBO1CSOEQOA1 from CDC
Board Dimensions: 6.18in, x 8,0 in, x 0,062 in. Board to be on 0.5 in. centers minimum,
Operating Temperature: 0°C to 55°C
DC Power Reguirement: Voe = +BV £ 8%, lcc= 2.6A max., 1.25A typical

imm6-28 Block Diagram

R/W
READ/
BYTE 1 WRITE
CONTROL
BYTE 2 —————————
¥ y
DBy ——————— —— = mDo
[———) e MID1
8 ' MEMOAY AHRAY [
————— e,
D8y INPUT / . /| outeur MD3
FFER 7 - i BUFFER L
DBy ——————em—yd BU 4096 x 9 o4
[R ———— . ————— = MDS5
DBG_‘"—-’ . EE—— L LY
DBy ————————— i) . MDD7
DATATO : : * DATA FROM

MEMORY { | 4 I MEMORY

MAD 12 —————————aiiee|

MAD 12 -————— MODULE SELECT

MAD 13—

MAD 13 w———— - 12

MAD 14 ——————————

MAD 14—y
MODULE
MAD 16 ——————— -] SELECT
LOGIC ADDRESS BUFFER

¥

WMAD 15 -]

¥y

MS 12 —m8M8M8M8M8™=|
MS 13 s
MS 14 —]

MAD & MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 MAD 6 MAD 7 MAD B MAD 9 MAD 10 MAD 11
MS 15 ——————

RAM ’ Iy
WOD ENSL

ADR STB

MEMORY ADDRESS

113

|nte| Microcomputer Modules

imm6-26 PROM MEMORY MODULE

8 Provides sockets for up to sixteen PROMs ®m Accepts Intei 1602A or 1702A PROMs or
{4096 x 8) - 1302 ROMs
® Static memory, no clocks required ® Lagic to allow any mix of PROM in 256 byte

{8-bits) increments with RAM to 16k when used
with the immB8-82 B-bit Central Processor Module

® Built in decoding of module select for expansion
to 65k of memory

® [nterfaces with imm$8-82 8-bit Central
Processor Module

The immB6-26 PROM Memory Module may be used with the imm8-82 8-bit Central Processor Module for non-
volatile program storage. Each PROM Memory Module has sockets for from one to sixteen of Intel's 16024 or
1702A PROMs. In addition, the 1302 mask programmed ROM may be used in place of the PROMs in OEM
applications. .

The PROM Memory Module is used for program storage and look-up-tables with the MCS-8 8-bit Micro Proces-
sor. 1t interfaces directly with the immB-82 Central Processor Module and may be used with the imm6-28 RAM
Memory Module in any combination to 16k bytes. Special control logic on the imm6&-28 module allows any mix
of PROM and RAM in a system in 256 byte increments.

For memories larger than 4k bytes, decoding on the module allows addressing of up to sixteen imm6&-28 modules
for a total of 65k bytes of memory. The decoding is accomplished on the module connector. Any imm6-26
may be plugged in to any memory module connector,

PROM Memory Module

14

ntel.

MICRO
COMPUTERS

- Microcomputer Modules

Memory Size:

Word Length:
Memory Expansion:
Interface:

Capacity:
Connector:

Board Dimensions:

Operating Temperature:
DC Power Requirement:

PROM Memory Module Specifications

4k bytes
B hits
To 65k bytes (16 madules)
TTL compatible inputs; open collector outputs [positive true logic)
256 to 4096 bytes in 256 byte increments
Dual 50-pin on 0,125 in. centers, Connectors in rack must be positioned on 0.5 in. centers min,
Wirewrap P/N CB0Q100 from SAE
P/N VPBO1CSOEQQOAT from CDC \
6.18 in. x 8.0 in, x 0.062 in. Board to be on 0.5 in. centers minimum,
0°C to 55°C
Voo = +BV 5%
Vpp =9V 5%

log = 1.6A max., 1.1A typicalf!)
Iop = 1.6A max., 1.0A typical”

(1) Boerd loaded with all 16 PROM:s,

imm6-26 Block Diagram |

MAD O
MAD) ———m—————
MAD 2 —————— =

4 8
—_— - i

MAD 3 ADCRESS

BUFFER

. MAD 4 —————————]

b= MDD

MAD &

WAD 6

MAD ¥

Lo

l—————— MD1
———————a= MD2

————— D3
MEMORY Fi: DATA

ARRAY 7 BUFFER |——————— D4

MAD 3
MAD 9

MAD 1) ——————

MAD 11

maD 12

¥

[————————— MDS
[MDé&
—————— MDY

CHIP 18 256 x B
SELECT e - 1o
LOGIE 4006 x &

LATA FROM
MEMORY

MAD 12 -

MAD 13

Y

MAD 13 -

MAD 14

MAD 14 =&

MAD 15

MAG TS -———————

MOQDULE SELECT

¥ RAM MOD ENBL

MODULE
SELECT
LaGIc

PROM MDD
ENBL

115

|ntel Microcomputer Modules

imm8-60 INPUT/OUTPUT MODULE

Four 8-bit input ports and four 8-bit latching output ports

TTL compatible

Interfaces directly with imm8-82 Central Processor Module
Teletype asynchronous transmitter/receiver and controls on board
Transmission rates of 110 or 1200 baud

Crystal ciock for asvnchronous transmitter/receiver

Capable of high speed serial communications to 9600 baud

The imm8-60 1/0 Module provides four 8-bit TTL compatible input ports and four 8-bit TTL compatible latch-
ing output ports. |t interfaces directly with the imm8-82 Central Processor Module. Built-in decoding on the
board provides for expansion of 1/0 to the maximum with the addition of one immB8-60 and two imm8-62 Qut-
put Modules {eight input ports and twenty four output ports).

For more efficient use of the imm8-82 Central Processor, an asynchronous transmitter receiver is included in the
module. This frees the processor of time-censuming bit manipulation during bit serial data transmission, The
transmitter receiver operates at either 110 or 1200 baud and by alteration of the basic clock frequency, data
rates to 9600 baud may be obtained. The module contains drivers and receivers for connection 10 a teletype.
These may be used with the asynchronous transmitter receiver or directly with 1/0 ports for bit serial transmis-
sion and reception of teletype data,

The module is configured with all comman control signals bused to the module on the PC connector, while all
|/0 signals are avaiiable at the ribbon connectors on the top of the module.

T,

1/0 Module

116

Microcomputer Modules

el

170 Module Specifications

B bits
Four 8-bit input ports, four &bit output ports

Word Size:
Capacity:

1/Q Interface: Input ports: TTL compatible {complement Data In)
Qutput ports: TTL compatibie {complement Data Qut)
Communications Interface:

Direct: TTL compatible inlet and output

TTY: 20mA TTY interface with discrete transmitter and receiver

TTY RDR Control: Discrete relay interface
Serial Communication Rate; Crystal controlted to 110 or 1200 baud
Connector:

Wirewrap P/N C800100 from SAE

P/N VPBD1CSO0EQDAT from CDC

Ribbon Type P/N 3417 from 3M
Board Dimensions:
0°C to 55°C
Ve = 45V £ 5%, loe = 0.820A max., 0.478A Typical
Vop = —9V £ 5%, Ipp = 0.080A max., 0.050 Typical
Vg = —12V £ 5%, Igg = 0.030A max., 0.016A Typical

Operating Temperature:
DC Pawer Requirement:

6.18in, x 8.0 in, x 0.062 in. Board to be on 0.5 in.lcanters minimum.

Dual 50-pin on 0,125 in, centers. Connectors in rack must be positioned on (1.5 in. centers min,

imm 8-60 Block Diagram

SERIAL SERIAL
FROW TTY _ Y DATAIN CRYSTAL DATAOUT Ty TO TTY
=1 RECEIVER cLOCK | TRANSMITTER
¥
: COMMUNICATIONS
PARALLEL DATA OUT 2 INTERFACE . PARALLEL DATA IN
{RECEIVED DATA) © {TRANSMITTED DATAI
3
RESET - TTY RDR | TC READER
g J CONTROL RELAY
STATUS OUT 45 4
DATA FROM CPU ’ 48 y
Fi _* b
ADDRESS BUS 45 8 PORT O
PORT oty —r
CONTROL BUS | sececT L4 48 PORT 1
- 7 = outrur 7 =— | o
A B PORT 2 T
. LATCHES A PORTS
P2 L PORT 3
k !
PORTL ,8 _ 4B DATA TG CPU
FOUR | 7ORTT g y 4 o
BBIT 7 INPUT
INFUT FORT2 5 MUX
PORTS 7 Ll
FORT3 8
e o~

MICRO '
COMPUTERS

|nteL Microcomputer Modules |

imm8-62 OUTPUT MODULE

Eight 8-bit Latching Output Ports
Interfaces Directly with imm8-82 CPU Module

Decoding for Expansion to Full Qutput Complement
a TTL Compatible

The imm8-62 Output Module provides eight 8-bit latching output ports for direct interface with the imm8-82
CPU Module. Each port is individually addressable, and all outputs are TTL compatible. The module address
includes decoding for expansion to a full complement of 24 output ports. This may be accomptished by using
two imm8-60 /0 Modules and two imm8-62 Output Modules. All output signals are available through a ribbon
connector at the top of the module,

. i ! o “"l: \\‘hl/') "

Output Module

18

ntel’ | Microcomputer Modules -

Output Module Specifications

Word Size: 8-bits

Capacity: Eight 8-bit latching output ports

Interface: TTL compatible {complement Data Out}

Connector: Dual §0-pin an 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min.

Wirewrap FP/N C800100 from SAE
P/N VPBO1C50EQDAT from CDC
Ribbon Type P/MN 3417 from 3M
Board Dimensions: 6.18 in. x B.0 in. x 0.062 in. Board to be on 0,5 in, centers minimum.
Operating Temperature: 0°C 10 65°C
DC Power Requirement: Voo = +8V + 6%, Icc = 0.840A max., 0.420A typical

imm8-62 Block Diagram

. ~ PORTO - |
A - PORT T
DATA FROM CPU A >
AL - PORTZ
A2 » PORT 3 EIGHT
QUTPUT | sEiT
LATCHES L3 FORT4 Egr:;g T
Fi
wa. = FORTS
wa # FORT 6
+2 = PORT7 |
ADDRESS BUS L3 T A
PORT
CONTROL BUS - a] SELECT

119

|nteL Microcomputer Modules

imm6-76 PROM PROGRAMMER MODULE

m High speed programming of Intel's w Direct interface with Intel’s intellec 8
1702A or 1602A PROM Microcomputer Development System

® All necessary timing and level m Complete software necessary for use
shifting included included with Intellec 8 systerm monitor

The imm6-76 PROM Programmer Module provides all necessary hardware and software to add PROM program-
ming capability to the inteliec 8 microcomputer development system.

The module has been designed to slip into the Intellec 8 and provides all connections to the zero insertion force
socket on the frant panel. All required timing and level shifting is accomplished on the module utilizing the high
voltage power supply already located in the Intetlec 8.

Software to control programmer operation is included as part of the Intellec 8 system monitor. This software
is specifically written for the Intellec 8 and allows both programming and verification. of 1602A and 1702A
PROMs. In addition, the contents of any PROM may be listed or unloaded into memaory for duplication.

The imm6-76 may also be used as a stand alone PROM programmer with toggle switches or with another com-
puter providing data address and control signals.

imm6-76 Biock Diagram

s 8 ADDRESS
ADDR (0-7) e =l ouFFERS 8 _
AND 7 = AGR QUT
ADDR CTL - LEVEL {0-71
SHIFTERS Veos

5 , CONTROL BUS
Fd

e
. GND poWER | PRGM
Voo ——————me] SUPRLY b g /GND
CEOB——F—] nam AEGULATOR Voo
PULSE Vpp ————————= BUFFERS F———— Vgp - TO PROM
4 TIMING

CONTROL _| STAT (0-3} waereplo—ro] Vp ————d AND LEVEL [~ Vgog
INTEAFACE SHIFTERS

[——® C§

Vers
ra 8 il
DATA IN (0.7} 7 -
8
DATA OUT (0.7) ra DATA
_ BUFFERS 8
DATA OUT CTL ~a AND - + = DATA {0-7)
- LEVEL -
DATA OUT ENBL SHIFTERS
DATA IN CTL Lot
DATA IN ENBL -

PROM Programmer Module Specifications

System Interface: All inputs and outputs are TTL compatible and available at the ribbon connector at the top of the
module. Control for either “True” or 'False’’ data is provided. Direct interface to Intellec 8,

Cantrol Software: Included in the Inteliec 8 executive monitor.

Connector: Dual 50-pin on 0.125 in. centers, Connectors in rack must be positioned on 0.5 in, centars min,
Wirewrap P/N CB00100 from SAE
P/N VPBO1CB0EDDA 1 from CDC
Ribbon Type P/N 3417 from 3M

Board Dimensions: 6.18 in. x 8.0 in. x 0.062 in. Board to be an 0.5 in. centers min,
Operating Ternperature: 0°C to +55°C

DC Power Requirerments: Vie = 5V 1 5%, loe = 0.8A max., 0.5A typical
Vop = —8V 8%, lpp = 0.1A max., 0.08A typical
Vp =480V, lp = 1.0A max,

120

|nte| Microcomputer Modules

imm6-70 UNIVERSAL PROTOTYPE MODULE

B Provides breadboard capability for developing ® Capacity for 60 16-pin or 14-pin sockets or 24
custom interfaces 24-pin sockets :

® Standard size of all microcomputer modules ® Al power is bused on hoard. Pins on PC

= 3M 40 pin ribbon connector on top of module connector and pins to individual sockets are

provides direct 1/0 connections uncommitted for maximum flexibility

¥ Will accept standard wirewrap sockets with 0.1 in.
x 0.3 in. or 0.1 in, x 0.6 in lead spacing

The imm6-70 Universal Prototype Module is a standard size microcomputer module with power buses which in-
terface with the Intellec 8. It provides a standard format for prototyping both customer interface and system
control. 1/0 interface is provided through ribbon-type connectors on top of the module.

The module will accept dual in-line packaged components having pin center-to-center dimensions of 0,100 inch
by 0.300 inch or 0.100 inch by 0.600 inch. These parts should be mounted in standard wirewrap sockets,

g R N ol S
juall Sl [+ "
E o ¥ = A s
=f=} ; :]
- g o e § e
- [.
o . X
ol ; [
-3
-
| g 3
| : -
] 2 -
- H - - .
- -] o -
8 K A 4 -
R - : A
- : k . k
- 4 :
- :] .
- A K b A i
3 i3 N - & R
-l ; 3
=8 ! -1 =3 i e
== : X i 2 [
k=K . E . -
~k=3 : | = 3
g d -
- = g -
=1= - B
P -
e] sl -
-
- . 3

Universal Prototype Module

Universal Prototype Module Specifications

Capacity: 60 16-pin or 14-pin sockets or 24 24-pin sockets, Standard wirewrap sockets with pins on
0.100 in. by 0,300 in. centers or 0.100 in. by 0.600 in. centers. Board spacing dependent on
components and sockets used,

Connector: Dual 50-pin on 0,125 in, centers.
Wirewrap P/N CBO0100Q from SAE
P/N VPBO1C50E00A1 from CDC
Ribbon Type P/N 3417 from 3M
Board Dimensions: 6.18in. x 8.0in, x 0.062 in. Board to be on 0.5 in. centers minimum.

22

|nteL Microcomputer Modules

imm6-72 MODULE EXTENDER

= Allows any module to be extended for ease of ® Standard dual 50-pin configuration for use with
debugging, testing, and maintenance all microcomputer modules

The imm6-72 Module Extender is designed to be used with the Intellec 8 system. It allows the operator to ex-
tend any module out of the cage for servicing while maintaining all electrical connections.

Module Extender

Module Extender Specifications

Connector: Dual 50-pin on 0.125 in. centers. Connectors in rack must be positioned on 0.5 in. centers min,
Wirewrap P/N CB00100 from SAE :

P/N VPBO1CEOEDDAT from CDC
.Extending connector is mounted on board.

Board Dimensions: 6.18 in, x 8,0in. x 0.062 in. Board to be on 0.5 in. centers minimurm.

122

123

WESTERN

Witliam T. 0°Brien

17291 trvine Blvd., Suite 262 -
714/838-1126, TWX: 910-595-1114
*Tustin, Calfornia 32680

ARIZONA
Sales Engineering, Inc.
7155 E. Thomas Read, No. 6
607/945-5781, TWX; 910-550-1288
Scoitsdala 85252

CALIFORMIA
Intel Cerp.
3065 Bowers Avenue
408/246-7501, TWX: 910-33B-0026
*Sairta Clare 95051
Intal Corp.
17231 tryine Blyd., Swile 262
714/838-1126, TWX: 910-595-1114
*Tustin 92680

Earle Asseciates, ing,

4433 Convay Street, Suite &
F278-5441, TWX: 910-335-1585
San Diego 92111

COLORADO
Intel Corp.
1341 South Lima St.
303/755-1335
*Aurora 2014

CANADA
Muitilex, Inc.
4 Barran Street
B137825-4695
Ditawa, Gatarip K2C 3HZ

*Diract Ints! Dffice

U.S. SALES AND MARKETING OFFICES

U.S. MARKETING HEADQUARTERS

3065 Bowars Avenue
AR/ 246-7501, TWX: 910-338-0026

Telax: 34.8372

*Samta Cfara, California 95051

MID-AMERICA
Mick Carrier

Suile 110

13333 N, Central Exprissway
2144234-1109, TWX: 910-867-4763

RATIONAL
Hank O"Hara
408/248-750

SALES MANAGER

3065 Bowers Avenue

1, TWX: 910-338.0026

Telex: 34-5372

*Santa Clara, Califomia 95031
U.S. REGIONAL SALES MANAGERS' OFFICES

NORTHEAST
James Saxto

*Lexington,

*Datlias, Texas 15231

FLORIDA

Semtroaic Associates, fnc.

P.0. Box 1449

305/771-00t0

Pompant Beach 33061

Semtronic Asseciates, Inc.

585 Chetsea Road

305/831.8233

Longwood 32750
ILLINOIS

Mar-Con Associates, Tne.

A836 Main Streat

312/675-6450

Shokis 60076

MARYLAND
Barnhill and Assoviates
1931 Greenspring Drive
301/252-5610
Timonium 21033 .
Barnhill and Assaciates
P.0. Box 251
301/252-56810
Glen Arm 21057

MASSACHUSETTS

Intel Corp.

2 Militia Drive, Suite 4
617/861-1136, Telpx: 92-3493
*Leaington 02173

Datcom

7A Cypress Driva
617/273-2930

Burtington 01803

U.S. SALES OFFICES
MICHIGAN

Sheridan Associates, Inc.

33708 Grand River Avenue

313/477 3800

Farmington 48024

MINNESOTA
Intel Carp.
800 Southgate Office Plaza
5001 West 78th Streat
612/835-6722
“Blaomington 55437
E.C.R,, Inc.
5280 W_ 74th Street
B12/831-4547. TWX: 910-576-3153
Minneapolis 55435

MISSOURI
Sheridan Associates, Inc,
110 §. Highway 140, Soite 10
314/837-5200
Forissant 53033

NEW JERSEY

Addem

Past Dffice Box 231
516/567-5900
Keasbey 08832

NEW YORK
Ossmann Companents Sales Corp.
795 Cleveland Drive
T16/832-4271
Buffalo 14215
Addem
37 Pigneer Blwd.
516/567-9900
Huntington Station, L.1. 11746

2 Militia Drive, Suite 4
G11/861-1136, Telex: 92-3483

MID-ATLANTIC
n Hank Smith

Massachusetts 02173

NEW YORK (Continued)

Ossmann Components Sales Corp.
280 Metro Park

716/442.3250

Rochester 14623

Qssmann Components Sales Gorp.
1311 Vastal Parkway E.
£07/785-9949

Yaxstal 13850

Ossmann Compenents Sales Corp.
132 Pickard Building
315/454-4477

Syracuse 13211

Ossmann Components Sales Corp.
411 Washington Avenue
914/338-5505

Kingston 12401

HORTH CARDLINA
Barnhil{ and Associates
5030 Bellow Street
919/787-5774
Raleigh 27602

OHID

Sheridan Associates, Ing.
10 Knollcrest Drive -
513/761.5432, TWX: 810-461-2670
Cincinnati 15237
Sheridan Associates, Inc.
7800 Wall Street
216/524-8120
Cleweland 44125
Sheridan Associates. Inc.
Shiloh Bldg., Suite 250
5045 North Main Street
513/277-8911

Dayton 45405

30 South Valley Road
215/647-2615, TWX: 510-668-7768
*Pavii, Pennsylvania 19301

PENNSYLYANIA

Yantage Sales Company

21 Bala Avenue

215/667-0890

Bala Cynwyd 19004

Intel Corp.

30 South Valley Road
215/647-2616, TWX: 51(HEBE-7763
“Paoli, Pennsylvania 13301

Sheridan Assaciates, Inc.
4288 North Pike,

North Pike Payilion
412/373-1070
Manroeville 15146

TENMNESSEE

Barnhill and Associates
206 Chicasaw Drive
&15/928-0184
Johnson City 37601

TEXAS

Evans and McDowel! Associates
13333 H. Central Expressway

Room 150

214/238-7157, TWX: 910.B67-4763
Dallas 75222

VIRGINIA
Barnhill and Associates
P.0. Box 1104
703/846.-4624
Lynchburg 24505

WASHINGTON
S0 A2 Products and Sajes
14040 N E. 3th Straet

206/747-7424, TWX: 910-443-2305
Ballewue 98007

DENMARK
Juhi Johansen
Intel (Hfice

Vester Farimagsgade ?
45-1-11 5644, Telex: 19567
0K 1606 Copenhagen ¥

AUSTRALIA
A1, Farguson (Adeinide) PTY. Ltd,
125 Wright Street
51-6895
Adslaide 5000

AUSTRIA
Eiacher Elektronische Gerate GmbH
Meid!ingar Haupstrasse 78
0222-5301 43, Telex: (G1) 1532
A 1120 Yienna

BELGIUM
Inel¢o Belgium S.A.
Avenue Val Duchesse, 3
{02) 60 00 12, Telex: 25441
B-1160 BruxeHes

EUROPEAN MARKETING OFFICES

FRANCE

Besnard Giroud
Intel Qfice
Cides R-141

94534 Rungis

DEMMARK

- — a

Supply ASS

20, Nannasgade

Telex; 19037

D¥-2200 Copenhagen N
FINLAND

Havulinna Oy

F.0. Box 463

B0.61451, Teles: 12428

SF 00100 Helsinki 10

FRANCE
Tekelpt Airtranic
Cile des Bruyeres
flye Carle Vernet
526-02-35, Telex: 25997
92 Sewes

{1) 677-60-75, Telox: 27475

ENGLAND GERMANY
Kaith Chapple - Erling Holst
Intei Difice fntel Office
Broadfield House Wolfratshauserstrasse 169
4 Hetween Yowns Road 798323, Telex: 5-212870

771431, Telex: 837203

Gowley, Oxford

INTERNATIONAL DISTRIBUTORS

GERMANY

Alfepd Neye Enatachrik GmbH
Schillerstrasse 14

041 06/612-1, Telex: 02-13520
2085 Quickbom-Hamburg

1SRAEL

Telsys Ltd.
54, Jabotinsky Road

25 28 39, Telex: TSEE-IL 333192

Ramat - Gan 52 454

ITALY
Eladra 35
Via Ludevico da Yiadana 9
02} 86-03-07
20122 Mitano

NETHERLANDS
nelco N.Y,
Weerdestein 205
Postbus 7815
0204416 66, Telax: 12534
Amsterdam 1011

NORWAY
Mardisk Efektronik (Narge) A/S
Mustads Yei 1
602530, Telex: 16963
Gslo 2

SOUTH AFRICA
Electrmnic Building Elements
P.D. Box 4609

¥8-9221, Telex: 30181 SA
Prgtotia

ORIENT MARKETING OFFICES

ORIENT MARKETING
HEADQUARTERS

JAPAN
Y. Magami
Inta| Japan Corp.
Kasharz Building
1-8-10 Uchikanda, Chiyoda-Ku
03.295 5441, Telex: 781-28426
Tokyo 101

124

ORIENT DISTRIBUTORS

JAPAN
Pan Elektron Inc.
Na. 1 Higashikata-Machi
045-471-8321, Telex: 781-4773
Midori-Ku, Yokohama 225

D8 Munchen 71

SWEDEN
Nnrfislt Elektronik AB

ag
08-24.83-40, Telex: 10547
5-103 Stockholm 7

SWITZERLAND
ladustrade AG
Gemenstrasse 2
Postchack 80 - 211590
01-60-22-30, Telex: 56788
8021 Zurich

UNITED KINGDOM

Walmore Elsctronics Ltd.
11-15 Betterion Street
Drury Lane

01-836-0201, Telex: 28752
Londen WC2H 985

U.S. DISTRIBUTORS

NORTHEAST

WEST MID-AMERICA SOUTHEAST
ARIZONA ILLINOIS DHIO COMNECTICUT) ALABAMA .
Hamiiton/Awmet Elactronics Cramer/Chicago Cramer/Tri-States, Inc. Hamiiton/Aunet Electronics Cramar/EW Hunleville, Inc.
2615 South 21sk Street 1211 South Susse Read 666 Redna Terrace 543 Danbury Road 2310 Bab Wallace Avenue
602/275-7851 312/593-8230 513/771-6441 203/762-0361 205/539.5722
Phoenix 85034 ML. Prospect 50056 Clneinnati 45215 Gaorgetown 05829 Huntsville 35505

Cramer/Arizona
2816 N. 16th Street
602/263-1112
Phoenix 35008

CALIFORNIA

Hamilton/Pumet Electronics
340 E. Middlefield Road

415/961-7000

Mountain ¥lew 24041

Cramer/San Francisco
720 Palomar Avenbe
408/739-2011
Sunnyvals 94036

Hamilten Electrs Sales
10912 W. Washingtan Blvd,
213/870-7171

Culyer City 90230

Cramer/Los Angeles
17201 Daimler Street
714/979-3000

Irvine 92705

Hamilton/Avnet Electronics
8817 Complex Driva
71472732421

San Diego 92123

Cramer/San Diegn
8975 Complax Drive
714/565-1881

San Diege 92123

COLORADQ

Cramer/Denver

5465 E. Evans Place at Hudson
303/758-2100

Denwer 30222

Hamilon/Avnet Electronics
5921 N. Broadway
303/534-1212

Denver 30216

NEW MEXICO

Cramer/New Mexico
137 Yermont, N.E,
505/265.5767
Albuguarque 87103

Hamilton / Avnet Electronics
2450 Baylor Drive S.E.
505/765-1500
Albuquemue 37117

OREGON

Almac/Stroum Electronics
BRB3 5.W. Canyon Road
503/292.3534

Portland 97225

UTAH

Cramer/Utah

391 W, 2500 South
B01/4R7.16381

Salt Lake City 54115

Hamilten/Awmet Etectranics
627 W. Billinis Road
80172628451

Salt Lake City 84115

WASHINGTON

Hamtltor /Avnet Electronics
13407 Narthrup Way
206/746-8750

Bellewue 98005

Almae/ Stroum Electronics
5311 Sixth Avenue South
206/763-2300

Sesttle 93108
Cramer/Seattle

5602 Sixth Avenue South
206/762-5755

Saeattle 98108

Hamtiton/Awmet Electronics
38061 North 25th Avenue
312/678.631Q

Schiller Park 60176

KANSAS

Hamilton/Avnet Electronics
37 Lenexa Industrial Centar
913/888-8900
Lenexa 6215

MICHIGAR
Sheridar Salgs Ca.
33708 Grand River Avenge
313/477-3800
Farminpton 48204
Cramer/ Detroit
13193 Wayne Road
313/425-7000
Livonia 48150
Hamilton/Avnet Electronics
12870 Farminglon Road
313/522-4700
Livonla 48150

MIMNESOTA
Cramer/Bonn
727% Bush Lakg Road
612/941-1860
Edima 55435
Hamilton/Avmet Electronics
2850 Metra Drive
612/854-4800
Minnzapolis 55420

Industrial Components, Inc.

5280 West 74th Strest

612/831-2666

Minneapolis 55435
MISSOURI

Sheridan Sales Co.

114} Sputh Highway 140, Suite 10

314/837-5200

Flariszant 63033
Hamilton/Avnet Electronics
392 Brookes Drive
314/731-1144

Hazelwood 63042

Hamilton/fAynet Electronics
118 West Park Road
513/433-0610

Dayton 45459

Sheridan Sales Co.
10 Knollerest Drive
513/761.5432
Cincinnati 45237

Cramer/Cleveland
5835 Harper Road
Z216/288-7740
Cleveland 44139

Sheridan Sales Co.
7800 Wall Street
216/524.8120
Cleveland 44125

Sheridan Safes Ca.
Shifah Bldg., Suite 250
5045 Narth Main Street
5137277-8911

Dayton 45405

TEXAS

Cramer Electranics

2970 Blystone
214/350.1355

Dallas 75220
Hamilten/Avnet Elactronics
4445 Sigma Road
214/681.8651

Dallas 75244
Hamilton/Awnef Electronics
1216 West Clay
713/526-4661

Houston 77019

WISCONSIN

Cramer /Wisconsin
430 West Rawson
414/764-1700

Bak Creek 53154

125

Cramer/Connecticut
36 Dodge Avenue
203/239-5641
North Haven 06473

MARYLAND

Cramer/EW Baltimore
922-24 Patapsce Averue
3p1/354-0100
Baltimore 21230

Cramer/EW Washington
16021 industrial Drive
EHIFECERAN]
Gaithershurg 201750

Hamilton/Avnet Electronics
7255 Standard Drive
301/796.5000

Hanoyer 20176

MASSACHUSETTS

Gramer Electronics, fne.
8% Wells Avenue
617/969.7700

Newton 02159

Hamilton/Avnet Electronics
185 Cambridge Street
617/273-2120

Burlington 01203

NEW JERSEY

Hamilten Electro Sales
218 Little Fafls Road
201/335-0800

Cedar Grove 07009
Cramet /New Jarsay
Nao. 1 Barcett Avenue
201/935-5600
Moonachia 07074

Hamiiton/Avnet Electionics
113 Gaither Drive

East Gate lodustrizl Park
609/234.2133

Mt. Lavrel 03057

Cramer/Pennsyhvania, Inc.
7300 Route 130 Ngrth
BU9/BE2.5061
Pennsauken 08110

HNEW YORK

Cramer/Binghamtan
3220 Watson Boulevard
607/ 754-6661

Endwell 13760
Cramer/Rochester

3000 Winton Road Squth
716/275.0300
Rochester 14623
Cramer/ Syracuse

E716 Joy Road
315/437.6671

East Syracuse 13057
Hamilton/Awnet Electronics
6400 Joy Road
315/437-2642

Syracuse 13057
CramerfLong !stand

29 Oser Avenue
516/231-5600
Hauppauge, L.I. 11737
Hamiiton/Avnet Electronics
70 State Street
516/333.5800
Westbury, L.1. 21590

PENNSYLVANIA
Sheridan 3aies Co.
4268 Marth Pike
North Pike Pavilion
412/373-1070
Monroewitte 15146

FLORIDA
Cramer/EW Hollywaod
4035 North 29th Avenue
305/923-8i81
Haollymwood 33020
Hamilton/Avnet Electronics
4020 North 25th Avenue
305/925-5401
Hollywood 33021
Cramer/EW Orlando
345 North Graham Avehue
305/894-1511
Orfande 32814

GEORG{A

Cramer/EW Atlanta

3923 Qakeliff Industrial Court
4£04/448-3050

Atlanta 30340

Hamilten/Aynet Efectranics
G700 Interstate 85 Access Road
404/448-0800

Norerass 30071

NORTH CAROLINA
Cramer Electrenics
938 Brrke Street
915/725-8711
Winston-Salem 27102

CANADA

BRITISH COLUMBIA

~ L.A. VARAH Ltd.
2077 Alberta Street
604/873-3211
Vancouver 10

ONTARIQ
Cramer/Canada
920 Alness Avenue, Unit No. 9
Downsview
416/661-9222
Torenta 392
Hamilton /Avnet Electronics
6291 Darmain Rd., Ne. 13
416/677-7432
Mississauga
Hamilton/Aynet Elsct
320 Lady Ellen Place
613/725-3071
Ottawa

QUEBEC
Hamilton/Awmnet Elactronics
935 Monte De Lissse
a214/735-6393
St. Laurent, Montreal 377

Ordering Information

1. The BOOB [(CPU) is available in ceramic only and should be
ordered as CBDO8 or CBO08-1.

2. SIMB-D1 Prototyping System
This MCS-8 system for program development provides complete
interface between the CPU and ROMs and RAMs. 17024 elec-
trically programmakbile and erasable ROMs may be used for the
program development, Each board contains one BOOS CPU,
1k x 8 RAM, and sockets for up ta sight 1702As (2k x 8 PROM}.
This system should be ardered as SIMB-01 (the number of
PROMs shouid aiso be specified).

3. Memory Expansion
Additional memory for the 8008 may be developed from indivi-
dual memory components, Specify RAM 1101, 1103, 2102;
ROM 1702, 1302,

4. MP7-03 ROM Programmer
This is the programmer board for the 1702A, The 1702A cantrol
ROMs used with the SIMB-01 for an automatic programming
system are specified by pattern numbers AOBE0, AQB61, ADS63.

5. MCES-10 System Interface and Control Module
The MCB8-10 is a camplete chassis which provides the intercon-
nection between the SIM8-01 and MP7-03. 1n addition, the
MCB8-10 pravides the BOVrrms power supply for PROM program-
ming, complete output display, and single step control capability
for program development.

6. Bootstrap Loader
The same contral ROM set used with the PROM programming
system is used for the bootstrap loading of programs into RAM
‘and executian of programs from RAM. Specify 1702A PROM;s
programmed to tapes AO8E0, ADB61, and AOBG3.

Packaging Information

10.

. 5IM8 Hardware Assembler
Eight PROMSs containing the assemily pragram plug into the
51M8-01 prototyping board permitting assembiy of all MCS.8
software. Ta order, specify C17024/840 set.

. PL/M Compiler Software Package
Pragrams for the MCS-8 may now be developed in a high level
language and compiled to 8008 machine code, This program is
written in FORTRAN IV and is available via time sharing service
or directly from Intel.

. MUCS-B Cross Assembler and Simulator Software Package
This sof tware pragram converts a list of instruction mnemonics
inta machine instructions and simulates the execution of instruc-
tions by the 800B. This program is written in FORTRAN 1V
and is available via time sharing service or directly from Intel,

{ntellec 8
The Intellec 8, Bare Bones &, and microcomputer modules must
he specified individually by product code.

imm8-80A Intellec 8 {complete table top system)

imm8-81 Bare Banes 8 {complete rack mountable systam)

imm8-82 Central Processor — includes 8008-1 CPU crystal
clack and interface logic

immé6-26 PROM Memory — includes sockets for sixteen
1702A PROMs

immB-28 RAM Meamary — 4k x B static memory

imm8-60 Enput/{Output — 4 input and 4 output ports

imm&-76 1702A PROM programmer and control software

immB-70 Universal pratotype madule

imm&-72 Module extender

CERAMIC PACKAGE OUTLINE

ALTEANATE PIN =1 IDENT.
{IF NG NOYCH AT EHD OF PKG)

i 1
‘ . [e i 068 ot . s
] 8 Ta TR il aETMaR =

126

MCS-8™ Instruction Set

INDEX REGISTER INSTRUCTIONS
The Ioad instructions do not affect the flag flip-flaps, The increment and decrement instruc tions affect all Hip-Hops encept the carry.

W R THETRUCTION CODE
MHEMONIC STATES O, Dg Dg Dy Og Dz Dy DD DESCRIPTION OF QFERATION
REQUIRED - .
B (5 11 DOD 55 5 |Loadindex register 4 with the content of index reguter ro,
fr4TY] [E3] T 1 DD D T 1 1 |Load index regizier ¢ with 1he content of memory register M.
b M (7 11 111 3 5 5 | Load memory register M with the contenr of index register r.
TR B o0 ooo VO ad index register r with dats B, , B,
L E B E B E B
Lm 1= o0 1 VU0 L oad memory rigister M with data B ., B
8B E B R E B B
M- [E] oo DDD 0 0 O |lncoemant the coment of mdex register r Ir § &)
DCr 15} G0 O DO 00 1 |Deeement the content of ingea register v {r 4 AL
ACCUMULATOR GROUP INSTRUCTIONS
The resubt of the ALY instructions affec‘l alk of the flag flip-flops, The rotate instructions affect only the carry fiip-flop,
[T abe) 9 00 5 5 5) Addihe conient of index register r, memaory ragmier M or dats
ADM T8} 1o 0oo 1.1 1 | 8...Bwthaaccumubait, An overflow [carry) sets the carry
ADI (81 63d 060C 10 0C |fupilop.
E B B EEB B B 8
ACr 15) 10 0o Q1 5 5 S | Addthe content of wdex regester r, memory register M, or data
ALK 18) 10 oo 1 1 1 |8_..B rothe accumulatar with carry, An overflow (s b
ACI 18l L ¢ a 1.0 8 |sers the carey Pipeliop.
;. B B B B E B BB
Sur 154 10 010 S S 5 [Subtract the gonlent of indax register r, memary 1egrster M, oo
SUM 18y 10 o110 1 1 1 |dataB...B Iromthe accumulangr . & urcerflow (borrow)
s 18) a o a1 o 1 0 0 |sesthe carry Hip-flop,
g E BEBEB HE B
Shr E1] 10 o 11 5 3 5
SBM {Bl 10 o1 1 111 Gutatrac 1he cantent ol index regisier r, memocy register M, or dets
5Bl 8l o0 o1 1 1 0 g |datag .., B from the sccumulater with bocrow, An ynderiow
. E B B EE B B B |iborrow! setstne carry Mip-tHop.
MNP 50 10 100 S & §_|Compue the logical AND of the content of indes register r,
NDWM {Bh 10 100 1 1 1 |memory register M, ar data B . . . B with The scctimulator.
NEH [:4) oo 100 100
B E g BB BEBE
XRr 15 19 101 5 5 8§ |Compute the EXCLUSIVE OR of the content of inoex register
XEM {8} 10 101 1 1 1 |r, memory register M or data B, . . B wsith the sccumulainr.
XAl 9 Do 101 100
B B B B B B B E
ORr 5 10 110 5 5 5 [Compute the INCLUSIVE OR of the contant of index register
CQRM (1] 1.0 1140 1 1 1 [r, memory register m, or data B . . . B with tha Becumutater _
ORI i3 LU] 14 100
B R B EER E & B
CPr 15} 10 1.1 1 5 5 5 Compam the content of index ragiseer ¢, mamary registes M,
CFM J1:1] 10 111 1 1 1 jordara & ... B with ihe accumulator, The gontent ol the
(o] [£:1] oo 111 1 0 0 |accumulstor is wnchanged,
BB B B R E B R
ALL s 0o Q00 0 1 0 |Rotwe the content of the acoumulator left,
ARC 15) L] o0 £ 1 0 |foteta the content of the ascurulator right,
RAL {5t L] 010 0 1 0 |Rotate the content af the lelt 1hraugh the carry,
RAR 15} 0 0 011 0 10 |Rotam the content of the acumulator nght through the carry, |
PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS
14 mp 1 01 X% % 1 0 0 |Uneonditionally jume to memary address B3 ... BaBz .., By,
By B2 ByfpRy By BzEn
X X E3 8383 B3ByB3
15t JFe t§or 110 01 0 CeCz 0 O O |4ump to memory address By ., . B4Bp ., . Ba il the condition
B3 Bp Bz ByBp B By By |Hipdlop cis false, Otherwiss, execule the mect insiruction in sequence.
XX B3 B3B3 PBgE3Ez
i 3 or 11} ot 1 C4C3z 0 0 0 |Jump o mermdry acklress B3 .. . BB, ., By if the condition
Bz By By Eg By Bg Bp &7 |flipdlop cis true, Otherwise, &xecute the next instroction in @guence,
XX B;B383 HyEBxBy
caL 11t o X X X 110 |u itionaky calk 1he ine at mamory addresa Ba .,
B2 Bz B2BzB; By Es By (Bafa . .62 Save the currant address {up one lewtl i the stack),
¥ X HyBgB; R3Bgls
LFc 19ar 1) [| 9 CiC3 0 1 O |Coll the subroutine a1 Mmemary address B ., BaBa .. B if the
BzB; BaByBy 82 B2 By [condition Hiptlop ¢ is False, and save 1he corment atklress {up one
XX By B3B3 B3B3 B3 |lewel in the stack.) Cthenaise, txcoute tha naxt instruciion in sequenos,
CTc 2 ar 110 a1 1 Caz 0 1 0 |Calnthe subrouTing at memary address B3, ., BgByp ... B3 if the
Bz Bz By Bp By B By By |condition Mip-100 ¢ 16 trus, and save rhe current address [up one
LIRS B3 By B3y By 83y By |tevel in the stackl. Otharwise, exeruie the nex ingtruction in ssquence,
RET 3] (L] X X X 1 1 1 Junconditionally return {down one level in the stack],
RFe 13 o 58I LA] a4 CqCz 0 1 71 [Rewwn likown one lewed in the stack? if the condition fip-Aop c is
Talee. Othervise, execuls the mext instrucnon in sequence.
BTc 3oc bl [} 1 €4C3 0 1 7 |Rerwrn (down one lewd in the siack} il the condinon flipHop © is
T, Crhirwse, gxecite the mect instruglion o saquence.
RST {51 4 o A A A 7 0 1 [Call the subroutine at memory address ARADDD lup one fevel 1h the sakl,
INPUT/OUTPUT INSTRUCTIONS
INP (1] o1 oao0M M M 1 (Read the canient of the slected inpun port (MMM into the
LT 16 [} R FE M M M 1 Write the content of the accumulator into the stlectad aufput
port (RAMMM, BR 2 D01,

MACHINE INSTRUCTION

[_ HLT | 09 000 00 X [Emerthe STOPPED state and remain there until interrupted, 1
HLT | 4p 11 11 1 111 |Emer the STOPPED viate and remain there unril snterrygied. |

NUTES. _

11} 385 = Source Index Register Thesz registers, ;, are dengnated Alaccurmulator—000), . u

DO = Destinabign Index Register ~ BIO01}, CIO101, DIO11Y, E{1000, H{101). L1110, |n

171 Memory registers are addressed by 1he contents ol reqrirers H & L.

i3 Additional bytes ol i ion BE ch d by .

[LH] = “[Chon'y Care™,

151 F|.-.g thip-tiops are detined by CaC3: eanry (D0-Duertiow of uniertiowd | zero {1 -rasult 15 2eval, sign [10-MSE of result is *1°1,
pmrity (11 parity 15 even) .

intel @ Microcomputers. First from the beginning.

INTEL CORPORATION « 3065 Bowers Avenue, Santa Clara, California 95051 (408) 248-7501

£1974/Printed in U.S.A./MCS-066-0574,25K

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	xBackA
	xBackB

