MICROBOFT FORTRAN~BO Reference Manual
Version 3.0
Copyright 1977 (&) by Microsoft

MICROSOFT FORTRAN-80
Reference Manual
Contents
Bection
| Introduction
= Fortran Program Form
2.1 Fortran Character Set
2 1.1 Letters
2. 1.2 PRigits
2.1.3 Alphanumerics
2.1.4 Special Characters
FORTRAN Line Format
Statements
& Representation/Storage Format
Data Mames and Types
3. 1.1 HMNames
3. 1.2 Tupes
Constants
VVariables
Arrays and Array Elements
Subscripts
bata Storage Allocation
4 "ORTRAN Exprescions
Arithmetic Expressions
Expression Evaluation
Logical Expressions
4.3.1 FRelational Expressions
4.3.2 Logical Operators
4.4 Hollerith, Litevral, and Hexadetrimal
Constants in Expressions
k=3 Replacement Statements
& Specification Stastements

PRETULLNY WDND
Sy L = oo L] [

LW R =

Specification Statements
ATray Declarators

Type Statements

EXTERNAL Statements
DIMENSION Statements

R
(S I &

A6 COMMON Statements
A, 7 EQUIVALENCE Statements
4.8 DATA Initialization Statement
FORTRAN Control Statements
7.1 6OTO Statements
.11 Unconditional £80TO
7.1.2 Computed SOTD
7.1.3 éAssigned €070
ASHSIEN Statement
IF Statement
7.3.1 Arithmetic IF
7.3. 2 logical IF
DO Statement
CONTINUE SGtatement
5TOF Statement
PAUSE Statement
Call. Statement
RETURN Statement
.10 END Statement
nput/Output
1 Formatted READ/WRITE
8 1.1 Formatted READ
B8 1.2 Formatted WRITE

7.

~
AR

MO

0 2NN NN NN N

8.8 Unformatted READ/WRITE
&. Disk File I/0
8.3.1 Random Disk 1/0
g.3. 2 OPEM Subroutine
8. 4 Auxiliary I/0 Statements
8. % ENCODRESDECDDE
8. & Input/Output List Specifications

8. 6.1 List Item Tupes

H 6 2 SDpecial Motes on List

Specifications

Statements

Field Descriptors

Mumeric Conversions

Hollerith Conversions

Logical Conversion

A Descriptor

P Descriptar

Special Contral Features

of FORMAT SHtatements

.7.1 Hepeat Dpecifications

7.8 Field Separators
FORMAT Control, Lizst Specifications.
and Record Demarcabtion

¢ FORMATY Carriage Control

10 FORMAT Specifications in Arrays

@
~j
o}
o
L
£
>
=

0©00E00E

NDD O NNNNNNN
SN b LY BT e

(£ B

o
NN

9

Functions and Subprograms

9.
g

CERCRCISRCR U
e WO R LAY

0

11

12

FPROGRAM Statement

Statement Functions

Library Funetions

Funchion Subprograms

Congtyruction of Function Subprograms
Referencing a Function Subprogram
Subrovtine Bubprograms

Construction of Gubroutine Bubprograms
Referencing a Suvubrouvtine Subprogram

Return

From Function and Subrouwtine

Subprograms

Processing Arrays in Suvbprograms
. BL.OCK DATA Bubroutine

AFPFENDIX A-
APPENDIX B~
APPENDIX &~
APPENDIX D-
APPENDIX E~

Language Extensions and Restrictions

I/0 Interface

Bubprogram Linkages

ASCIT Character Codes

Referencing FORTRAN-BO Library Subroutines

FORTRAN—-BO Reference Manual Page o6
SECTION 1
INTRODUCT TON .
FORTRAM idis a universal, problem criented programming
language designed to simplify the preparation and check-aut
of computer programs. The name of the language — FORTRAN -~
it an acronym for FORmula TRANslator.
The syntactical rules for wsing the language are rtigorous

and require the programmer to define fully the
characteristics of a preblem in a serigs of precise
statements. These statements, talled the source program

are translated by a sustem program called the FORTRAN
processar into an object program in the machine language of

the computer on which the program is to be executed.
This manual defines the FORTRAN scurce language far -the 8080
and L-—-30 microcomputers, This language incivdes the
Amevican National Btandsard FORTRAN language as described in
ANST document X3 9-1944. approved on March 7, 1964, plus a
number of language extensions and some restrictions. Theee
language extensiens and restrictions are described in the
text of this document and are licted in Appendix A,
NOTE

This FORTRAN differs from the

Standard in that it does not

include the COMPLEY data type.
Examples are included throughout the manval to illustrate
the construction and uvse of the language elements. The
programmer should be familiar with all asspects of the
language Yo take full advantage of its capabilities.
Section & describes the form and components of an 8080
FORTRAN socurce pragram. Sectiong 3 and 4 define data types
and their expressional relastionships. Sections 5 threough <%
describe +the proper construction and wvsage of the various
statement classes,

FORTRAN--80 Reference Manuval Page 7
SECTION 2
FORTRAN PROGRAM FORM
8080 FORTRAN source programs consist of one program unit
called +the Main program and anuy number of program uwnits

taliled subprograms. A discussion of subprogram types and

methods of writing and vsing them is in Section 9 of this
manual.

Programs and program units are censtructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
vsed by the FORTRAN processor during compilation of the
obgject program. Edach statement is written using the FORTRAN
chavracter set and folilowing a2 prescribed line Fformat.

2.1 FORTRAN CHARACTER BET

To simplify reference and explanation, the FUORTRAN
charatcter set is divided into four subsets and a
name is given %o each.

=.01.1 LETTERS
&:8.C.LE,F, G H L LK LM NG P QR 8 T U
Vol X0 Y Lo %
NOTE
No distinction is made between upper and
lower case letters. However, for clarity
and legibility, exclusive use of upper case
_ letters is tecemmended. '
2.1, 2 DIGITS

G 1.2, 04,05 67,89

NOTE
Strings of digits representing numeTic
guantities are normally interpreted as
decimal numbers. However, in certain

statements, the interpretation is in the

FORTRAN-BO Reference Manual Page B

0

c 3

Hexadecimal number system in which case the
letters A, 8B, ¢, B, E, F may alse he used

as Mexadecimal digits. Heradecimal wusage
is defined in the descriptions af
statements in which such noetation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of 211 letters and
all digits.
SPECIAL CHARACTERS

Blank

= Equality Bign

+ PFlus Sign

- Minws Sign

* Asterisk

£ Slash

{ Left Parenthesis

) Right Parenthesis

) Comma

Decimal Point

MNOTES :

1. FORTRAM program lines consist of 8O character
positions opor columns: numbered 1 through BO.
They are divided into four fields.

2. The following special characrters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
pxpressions.

+ Addition or Fositive Value
~ Subtraction or Negative Value
Multiplication
4/ Division
#% Exponentiastion
3. The other special ctharacters have specific

applicatien in +the syntactical expression of
the FORTRAM language and in the construction of
FORTRAN statements.

FORTRAN-B0O Reference Manual Fage 7

4. Any printable character may appear in a
Hollerith or Literal field.
FORTRAMN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) chows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.
i. Gtatement Label {(or hbNumber) {field- Columns 1

through o {See definition of ctatement labels).
2. Continuvation character field-

Colum &
3. Statement field-—

Columns 7 through 72
4, Indentification field—

Columns 73 through BO
The identification field is available Ffor any
purpose the FORTRAM programmer may desire and is
igriored by the FORTRAN processor.
The lines of a FORTRAN statement are placed in
Columns 1 through 72 formakted according to line

tupes. The +four line types, their definitions., and

colomn formats are:

1. Comment line ~— used far source program
annotation at the convenience af the
programmer,

. Column 1 contains the letter C.
2. Columns 2 - 72 are wysed in any desired

format +to express the comment or they may
be left blank.

3. A commen® ling may be followed only by an
initial line, an END 1line, or angther
comment line.

4. Comment lines have no effect on the whject
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the progran.

FORTRANM-B) Reference Manual Page 1%

nJy

EnND

Example:

¢ COMMENT LINEES ARE INDICATED BY THE

C CHARACTER € IN COLUMN 1.

¢ THESE ARE COMMENT LINES

line —— %the last line of a program unit.
Columns 1-9 may contain a statement label,
Column & must contein a zeroc or blank,
Columns 7-72 contain one of the characters
E: N or D in that order, preceded by,
separated by or followed by blank
tharacters.

Each FORTRAN program unit must have an END
line ay its last line to inform the
Processor that it is at the physical end of
the program unik.

An END line may follow any other type line.
Example:

————————— e

END

Imitial Line —— the first or only line of each
statement.

1.

> owp

Columns 1-5 may contain @ statement 1label
to identify the statement.

Column & must contain a zero or blank.
Columns 7-72 contain all or part of the
statement,

An initial line may begin anywhere within
the statement field.

Example:

< OF AN INITIAL LINE
C
A= | S#BART(3-2. =#{)

FORTRAN-80 Reference Manual Page 12
4. Continuation Line —— used when additional lines
of coding are required to complete a statement

originating with an initial line.

1. Columng 1-5 are ignored. unless Column 1
rantains a C.

2. £ Solumn 1 contains 8 C, it is a comment
line.

3. Columm & must contain & character ather

than zero er blank.

4. Columns 7-72 contain the continuation of
the statement.

. There may be as many continvation lines as
needed to complete the statement.
Example:

C AND 2 CONTINUATION LINES

&3 BETALL, 2y =

i ACRAR##7-{BETA(Z, 2} -ATSBAR#30

o +3ART (BETAZ, 1))
A statement label may be placed in calumns 1-5 of &
FORTRAN statement initial lime and is used +for
reference purposes in other statements.
The following ronsiderations govern the uvuse of
statement iabels:
. The label is an integer from 1 to PI999.

=3 The numeric value of the label. leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. & lasbel on & continuation line is dignored by

the FORTRAN Processor,

FORTRAN-B0 Reference Manual . Page 13

.3

Fxample:
¢ EXAMPLES OF STATEMENT LABELS
¢
1
1014
9959y
743
STATEMENTS

Individvual statements deal with specific aspects of
a procedure described in a program unit and are
tlassified as either execvtable or non—-exgcuvitable

Esecutable statements_ghaciFg actions and cavse the

FORTRAN Processor te generate object program

instructions, There are three types of executable
statements:
1. RHeplacement statements.

2. Coantrol statements.
3. Inputs/Output statements.
Mon-executable statements describe to the processor

the nature and arrangement of data and provide
information about dnput/ouvtput formats and data
initialiration to the obpect program during program
loading and execution. There are five types of
non—executabhle statements:

Gpecification ststements.

DATA Initialization siatements.

FORMAT statements.

FUMCTION defining statements.

Subprogram statements.

The proper usage and construction ef the varisus
types of statements are described in Sectiens 5
through %.

AR E

FIIRTRAN-80C Referente Manual Page 14
SECTION 3
DATA REPRESENTATION /7 STORABE FORMAT
The FORTRAN Langusge prescrTibes a definitive method for
identifying data used in FORTRAN programs by name and tupe.

4.1 DATA NAMES AMD TYFRES
16 P | NAMES
1. Constant - An explicitly stated datum
2. Mariable — A symbelically identified datum
3. Array — &n ordered set of data in 1, @ or 3

dimencions.
4. Arvay Element - One member Bf the set of data
of an array.

21,2 TYPES
1. EE?EEET -— Precise representation of integral
numbers {(positive, negative or reroe) having

precision to 5 digits in the range 327468 teo +327467
inclusive {(~2##l5 tp Z2##l3-11,

. Reygl ~— Approximatieons of real numbers {positive,
negative bor tgro) represented in computer storage
in 4-byte. floating—peint form Real data are
precise to 7 significant digits and their
magnitude may lie between the approximate limits of
10w#~38 and 10##38 (2#%-127 and 2%¥127).

3. PDouble Pyecision -~ Approximations of real numbers
(positive. negative ar zerpn) Tepresented in
computer stprape in B~buyte. floating—poaint form.
Double Precision data aTE precise o 16+
significant digits in the same magnitude Tange as
real data.

&, Logival —— One byte representatians pf the truth
values "TRUE" or "FaLSBE" with "FALBE defined o
have an internal vepresentation of zero. The
constant | TRUE. has the walue ~1., however any
nen—zers value will be tdreated as L TRUE in &
l.egical IF stabtement. In addition. Logical types

may be used as one byte signed integers in the

FORTRAN-B0 Reference Manusl Page 13

ke

L]

.

range —128 fo +127, inclusive.

Hollerith — A string of any number of characters
from the computer’s charachter set. All tharacters
including blanks are significant. Hollerith data
require one byte for stovage of each character in
the string.

COMBTANTSG

FORTRAN constants are identified explicitiy by
stating their actual value. The plus (+) character
need neot precede pasitive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN~B0 Reference Manusi

RIzaL

Fage
Table 3-1. CONBTANT FORMATS
FIORMATS ANMD RULES OF USE EXAMPLES
i. 1 to O decimal digits =783
interpreted as & deci- 1
mal number. +00OTR
. A preceding plus (+) or ~327 &8
minuwe () sign is op— +IAHTET
tional.
. Mo decimal point (.} or
comma {,) is allowed.
4, Value range: —-32768
through +327&67 (. i. e .
~28%15% through 2##15-1).
1. A decimal number with 345,
precision to 7 digits —. 345478
and represented in one +345. 478
of the following Fforms: +. B3B3
~T73E4
= + or —. f + or —i. f
b. + ar —i.E+ or -—-e
+ ar - FE+ o1 -—-e
+ or i PE+ or -e

where i, f: and e are
each strings represent-
ing integer. ¥Fraction.
and exponent vrespective—
1y,

2. Plus {+) and minus (-}
tharacters are optional.

3. In the form shown in 1 b

above; if r represents any
af the forms preceding

E+ gr -8 {i.e.. TvE+ o7 —e),
the value of the constant
is interpreted as T times
10#%g, where —38<=e{=38.

If the constant preceding
£+ or —e ctontains more
significant digits than

ik

FORTRAN-BO Reference Manual Page

DOUBLE
FRECISION

LOG ICAL

LITERAL

HEXADEC TMAL

the precision for real
data allows, truncation
ascrurs, and only the

most significant digits
in the range will be rep-—

resented.
A decimal number with +345, &73
precision to 1é& digits. All +.3Db3
formats and rules are identi- =7 A04

tal to theose for REAL con—

stants, except D is used in

place of E, Mote that a real

constant is assumed single pre-

cigion unless i¥ contains a

DY epaponent.

. TRUE. generates a non-zera . TRUE,
bute {(hexadecimal FF) and . FALBE.
.FALSE. generates a byte in

which all bits are Q.

If lopical values are
used as one—-bute integers, the
rules far use are the same as
for tupe INTEGER, except that
the range allowed is 128 te
+127, inclusive.
In the literal form. any
number of characters may be
enciosed by single guotation
marks. The Form is as follows:
TREXZNA. . X!
where each Xi is any charac—
ter other than ‘. Tuo
guotation marks in succession
may be used {to represent the
quoetation mark character
within the string. i.e..
it X2 iz %o he the guotation
mark character, the string
appears as the following:
. T R S N £ 1 B
1. The letter ¥ or X Z12"
followed by a8 single quote,
up te 4 hexadecimal X’'apiF -’

17

FORTRAN-80 Reference Manuval Fage 18

digits (Q-9 and A~F)} and a I'FFFF~
single quote is recognized
a4t & hexadecimal value. XT1F”’

e, A hexadecimal ctonstant is
right Justified in its storage
value.

FORTRAN-B0O Reference Manuval Fage 19
3.0 VAR IABLES

Variahle data are identified in FORTRAMN cstatements
by symbeolic names, The names are unique strings of

from 1 to & alphanumeric characters of which the
first is a letter.
NOTE
System vaTiable names and runtime
subprogram mnames are distinguvished from
other variable names in that they bepgin
with +he dollar sign character (H}). It is
therefore strongly recommended that in
order to avoid conflicts, symbelic names in
FORTRAN spurce programs begin with some
letter other than "%,

Examples:

I3, TBAR, BR3. ARRAY. XFM79. MAX. AL$l

Variable data are classified into four types:

INTEGER, REAL, DDUBLE PRECISION and LOGICAL. The

gpecification of type is accomplished in one of the

Following ways:

1. Implicit typing din which the first lettsr of
the symbolic name specifies Integer or Real
type. Unless explicitly tuped (2. below),
symbolic names beginning with 1. J, K. L, M or
N represent Integer wvariables, and symbolic
names beginning with letters other than 1. J:
K: L: M or N represent Real variasbles.

Integer Variahles

ITEM
Ji

MODE
Ki23

N2

FORTRAM—80 Reference Manual Page 20
Real Variables

BETA
H2
ZAP
AMAT
XID
. Variables may be typed explicitly. That is.
they may be given a particular btuype without
reference tu the first letters of their names.
Variables may be explicitly typed as INTEGER.
REAL, DOUBLE PRECISION ar LOGICAL. The
specific statements used in explicitly typing
data are described in Section &
Variabhle data receive their numeric value assignments during
program execution or, dinitially, in a DATA statement
{(Section &),
Hellerith or Literal data may be assigned to any fuype

variable. Sub-paragraph 3. & contains a discussion of
Haollerith daeta cstorage.
a4 ARRAYSE AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2

or 3 dimensions and is identified and typed by a
symbolic mname in the same manner as a variable
except that an array name must be so declared by an
Yarray declarator.” Complete discussions af the
array declarators appear in Bection & of this
manual. An arrsy declarater also indicates the
dimensionality and size of the array. Al array

element is one member of the data set that makes up

an ar;gg. Reference to an array element in 2
FORTRAN statement is made by appending a subscript
to the array name, The term array element is

synonymous with the term subscripted variable uged
in some FORTRAN texts and reference manuvals,
An initial wvalue may be assigned +to any array
element by a DATA statement or its value may hbe
derived and defined during program execution.

&5 SUBSCRIPTS

A subscript follows an array naeme +to uniguely

FORTRAN-80 Reference Manual FPage 21
identify an errvay element. In vse, a subscript in
a FORTRAN statement takes omn the same
representational meaning 35 a subscript in familiar
algebraic notation.
Hules that govern the wuvse of subscriphts sre as

follows:

1. A subscript contains i, 2 or 3 subscript
gXpressions {see 4 below) gnclosed in
parentheses. _

2 If there are tug or three subscript expressions

within the parentheses. they must be separated
by commsas.

3. The number of subscript eispressions must be the
same &5 the aspecified dimensionality of the
Array Declarator gitept in EQUIVAL ENCE
statements {(Section &).

4, A subscripd expression is written in one of the
fallpwing forms:

Ko Cry V-K
Vo CnV+R CH -
Vil

where C and K are integer constants and V is an
integer wvariable name ({(zee Hection 4 for a
discussion of eipression evaivation).
9. Subseripts themselves mauy not be subscripted
Examples:
X{2# -3, 7) AT, LK) 1200 CL-2) Y{I)
3. & DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of steorage units. A storage unit is the

memory space rtequired to store one real data value

(4 bytes?.
Table 32 defines the word formats of the three
data types.
Hexadecimal data may be associated {(via a DATA
statement) with any type data. Its storage

allocation is the same as the associated datum.
Hollerith or literal dats may be associsted with
any data tupe by uvse of DATA initialirzaton

FORTHAM-80 Reference Manual Fage =22
statements (Section b6).
Up to eight Hollerith characters may be associated
with Double Precision tuype storage, up to four with
RHeal: up %o two with Integer and one with Logical
tupe storage.

FORTRAN-B0 Reference Manual Page 23

LOGICAL

REAL

TABLE 3—-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unid

8 Binary Value

Megatiwve numbers are the 2‘s complement of
positive representations,

1 byte/ 1/4 storage unit

Zero {(false) or non-zere {(Lrue)

A non—zero valued byte indicates true {the
logical constant . TRUE. is represented by
the hexadecimal valve FF). A zerp valued
byte indicates false.

When used as an arithmetic valuve, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytess 1 storage unit

Characteristic 8 Mantissa

Mantissa {continued)

The #first byte isg the characteristic
pipressed in excess 200 {octal) notation:
i.e.s & value of 200 (gctal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
valves greater than 200 correspond to
positive exponents., By definition, it the
characteristic is zero, the entire number is
ZeTn.

The next three bytes cvonstitute the mantissa.
The mantissa is always normaglized such that
the high order bit it one, eliminating the
need to actually save that bit. The high bit
is uwsed instead %o indicate the sign of the
numbher. A one indicates A negative number,
and zero indicates a positive number, The
mantissa is assumed to be a binary fraction
whose binary point ic to the ledft of the
mantissa.

FOURTRAMN--80 Reference Manual Fage 24

DOUBLE
PRECISION

8 bytes/ 2 storage wunits

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN-B() Reference Manuval Page 2D
SECTION 4
FORTRAN EXPRESSIONG
A FORTRAN expression is composed of a single operand or a
string of operands connected by cperators. Two expression
types ——Arithmetic and Logical—-- are provided by FORTRAN
The operands, oaperators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPREZSIONS
The following Tules define all permissible
arithmetic expression forms:
i. A constant, varisble name, array element

reference or FUNCTION rteference (Section 99
standing alone is an expression.
Examples:

S(1) WBNO 217 17. 24 SERT(A+B)
2. I#+ E is an expression whose first character is
not an operator. then +E and ~E are called

signed expressions.
Examples

-5 +JOBNG 217 +17. 25 —SART{A+D)

3. I+ E is an expression: then {(E} means the
quantity resulting when E is evaluated.
Examples:

{~A) ~ £ JOBNG) =~{¥+1) {(A-BERT{A+H))

4, I+ E is an unsigned expression and F is any

gxpression. then: F+E., F-E, F#E, F/E and F##E
are all expressions.
Examples:

1. 7ZE-2%% {X+5.)
—{B{I+3, 3#J+T)+A)

FORTRAN—-80 Reference Manval Page 2é&
v An evaluated expression may be Integer, Real,
Double Precision, er Logical. The +type is
determined by the data types o0f the elements of
the Rxpression. If the elements of the
expression are not 511 of the same type. the
tupe of the expression is determined by the
glement having the highest type. The type
hierarchy f{(highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.
&, Expressions may contain nested parenthesized
glements as in the fellowing:
AT~ ({YHYY/TY Y

where Y+X is the innermost element. {(Y+X3/T is
the next innermost, Z~-{{Y+X)/T) the next, In
such expressions, care shovld be taken to see
that the number of left parentheses snd the
number of vight parentheses are equal.

4.2 EXPRESSTION EVALUATION

Arithmetic expressions are evaluated according to

the following rujies:

1. Parenthesized exprescion elements are evaluated
first. If parenthesized elements are nested.
the innermost elements are evaluated, then the
next dinnermost until the entire expression has
been evaluated.

2. Within parentheses and/or wherever parentheses
do mnoet govern the order or evaluation: the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
h. Expponentistion

c. Mueltiplication and Divicion
. Addition and Subtraction
Example:

The expression
ARCL-~{{Y+R) /T))y #d+VAL
is evaluated in the following sequence:

FORTRAN-B0 Reference Manual Page 27

Y+R = el
{el}/T = el
Z—-g2 = g3
edew) = e4f
A¥ed = pd
ed+Val. = eb
3. The expression XsxY#®i is not allowed. it
should be written ag follows:
{X3euY)ou? or X##E{Y#£Z)
4, Use of an array element reference requires the
evaluation of its subscript. Subscript

gexpressiong are evaluvated under the same rules
as pther expressions,
4.3 LOGICAL EXPRESSIONS

A Logical Exprgssion may ke any of the following:

. A single Logical Constant (i.e.. . TRUE. or
CFALSE. Y, a8 logical wvariasble, Logical Array
Element or Logical FURNCTION reference (see
FUNCTION, Section 9).

2. Twe avithmetic expressions separated by 3
relational pperator {i.e.. a relational

expression).

3. i.ogical aperators acting upon logical
constants, logical wvariables, logical array
elements, logical FUNCTIDNS, relational

expressions or other logical expressions.
The value of a logical expression is always either
. TRUE. or . FALSE.

4.3 1 RELATIONAL EXPRESSIONS
The general form of @ relational expression is as
follows:
el r e2
where el and e are arithmetic expressions and » is
& Telational ppeTator. The sizx relational

agperators are as follows:

FORTRAN-80 Reference Manual

N
CLE.
EQ.
. NE.
. BT.
GE.

Less Than
Less than ar
Equal to
Mot egqueal to
Greater than
Greater than

The value of the relaticnal

i# the

Otherwise.
FExamples:

tondition defined
the value is

Page =28

egual to

or egqual to
gxpression is . TRUE.
by the operator is met.

. FALBE.

{AERJ) . BT, {ZAP#{(RHO2TAU~ALPH})

LOGICAL OPERATORS

Table 4-1 lists the logical sperations, U and V
denote logical expressions.

FORTRAN~BO Reference Manuwal Page 29
Table 4-1. l.Lngical Operations

CMOT. U The value of this expression is the
logical complement of U (i e , i
bits become O and O bits become 1).

U AND V The value of this expression is the

lagical product of U and WV (i e .,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U oR. ¥ The value of this expression is the
iogical sum of U and ¥V (i.e.., there
is a 1 in the resuvlt if the

coarvesponding hit in U oer vV i85 1 oT
it the corresponding bits in both U
and V are 1.

U, XOR. V The value of this expression 1is the
exclusive OR aof U and V {i.e., there
is & onpe in the resuylt if the
correspanding bits in U and V are 1
and O ar O and 1 respectively.

Examples:

I U= 01101100 and V = 11001081 . then

SNOT. U o= 100100118
U. AND. ¥V = Q1001000
V.OR. WV = 11101101
U XDOR.V = 10150101

FORTRAN-80 Reference Manual Page 30
The following are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses. However, & lL.ogical expression to
which the .NOT. operator is applisd must be
enclased in parentheses if it contains two or
more alements, :

In the hierarchy of pperations, parentheses may

be used to specify the ordering of the
pipression evaluvation. Within parentheses., and
where parentheses do not dictate evaluation
order, the order is understood %o be as
follows:

& FUNCTION Reference

b Exponentiation (##)

c Multiplication and Divisioan (# and /2

d Addition and Suvbiraction (+ and =)

£, . NOT,

Ir} . AND.

h JBR., L XOR.

Examples:

The expression
X .AND. Y .0R. B{2 Ry .GT. Z
is evaluated as

el = B{(3,2).GT.Z
ed = X AND. ¥
e3 = ez . OR., el
The expression
X .AND., (Y DR, B(Z. 2 .B8T. Z}
is gvaluated as

el = B{3,) .6&T. Z
el = ¥ | [OR. el
el = X . AND, e2

It is invalid to have two contiguwous 1lngical
vperators except when the second ocperator is

[—

L NOT.

FORTRAN-8(Q Reference Manual Fage 31
That is,
. AND. . NOT.

and
. OR. . NOT.

are permitied.
Example;

A.AND, O NOT. B is permitted

A. AND. . OR. B is not permitted
a4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN

EXPREESIONS

Hollerith, Literal:, and Hexadecimal censtants are
allowed in expressionsg in place of Integer
constants, These special constants slways evaluate
te an Integer value and are therefore limited to a
length of two bytesz. The only exceptions to this

are:

i. il.ong Hollerith or Literal constants may be used
a6 subprogram parameters.

=, Hollerith, Literal, or Hexadecimal constants

may he up to four bytes long in DATA statements
when associated with Real variables, or uvp to
eight bytes long when associated with Double
Precision variables.

FORTRAN-80 Referente Manual Page 32
SECTION o
REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similariy to equations in normal mathematical notation.
They are of the following form:

v o=
where v is any wvariable or array element and & is an
expression.
FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is eguivalent to.
Thus, the object pregram instructions generated bhy &
replacement statement will, when executed, evaluate the
gxprecssiaon on the right of the eguality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.
The following conditions apply to replscement statements:

1. Both v and the equality sign must appear on the

same line. This holds even when the statement is
part of a logical IF statement (section 7).
Example:

¢ IM A REPLACEMENT STATEMENT THE ‘=7

c MUST BE IN THE INITIAL LINE.
A(S,3) =
H B(7,2) + BINIO)

The line containing v= must be the initial line of
the statement unless the statement is part of a
laogical IF statement. In that case the v= must
eccur no later than the end of the first line after
the end of the IF.

2, I# the data types of the wvariable, Vi and the
expression. g, are different, then +the wvalue
determined by the expression will be converted. if
possible. to conform to the typing of the variable.
Table 5—-! shows which type expressions may be

equated to which type of variable, ¥ indicates a
valid replacement and N indicates an invalid
replacement. Footnotes +o Y indicate conversion

considerations.

FORTRAN-80 Reference Manual Page 33
Table 5—1. Replacement By Type
Expression Yypes {(e)
Variable

Types Integer Real Logical Daoubie
Integer Y Ya Yi Ya
Real Yo Y Ye Ye
Logical ¥d Ya Y Ya
Double Y Y Ye Y

a. The Real expression value is ronverted to Integer,
truncated i+ nmnecessary to conform to the range of
Integer data.

b. The sign is extended through the second byte,

€. The wvariable is assigned the Real approximation of
the Integer wvalue of the expression.

d. The wvariable is assigned the truncated value of the
Integer expression {the low—order byte is wused,
regardless of signl.

e. The variable is assigned the rounded valuve of the
Aeal expression.

FORTRAN-BO Reference Manual Page 34
SECTION &
SPECIFICATION STATEMENTS
Specification statements are non-executable, non—generative
statements which define data types of variables and arrays.
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN

ProcCessomr. DATA intialization statements are
noen—executable. put gaenerate object program data and
ectablish initial values for variable dats.

&l SPECIFICATION STATEMENTS

There are six kinds of specitication statements.
They are as follows:

Type, EXTERMAL. and DIMEMSION statements

COMMON statements

EQUIVALENCE statements

DATA initislirzration statements
All specification statements are grovped &% the
beginning of a program unit and must be ordered as
they appear above., Gpecification statements may be
preceded only by a FUNCTION, SUBROUTINE. PROGRAM or
BLEOCK DATA statement, All specification statements
must precede statement functioens and the first
executable statement.

&2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are Lhe
following:

Type statemenis

DIMENSION statements

COMMON statements
¢ these, DIMENSION statements have the declaration
uof arrvays as their sole function. The other tuo
serve dual purposes. These statements are definsd
in subpsragraphs 6.3, 6.9 and & &,
Array declarators are used tg specify the name.
dimenszionality and sizes of arrays. An array may
be declared only once in a program unit.
An array declarator has one of the following forms:

FORTRAN-B80 Reference Manual Page 33

wi (k)

ui (k1. k2)
where vi is the name cof +the array: called the
declaratoer name. and the kR‘s are intepger constants
Array storage allocation is established upon
appearance o0f the array declarater. Such storage
iz allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
firset subscript varying most vapidly and the last
subscript varying least rapidly.
For example, if the array declarator AMAT{I.Z2,2)
APpPRAT S, storage is allocated for the 12 elements
in the following order:
AMATII, 1. 1), AMAT(E, 1, 1), AMAT(3: 1.1, AMAT(1,2.1).
AMAT(Z: 2, 1), AMAT(Z, 2,10, AMAT(1. 1,20, AMAT(Z, 1. 2).
AMAT(3, 1, 2), AMATI(1,2:2), AMAT(Z: 2, 3), AMAT{Z, 2, 2)
TYPE STATEMENTS

Variable, array and FUNCTION names area
avtomatically typed Integer or Real by the
‘predefined’ convention unless they are changed by
Tuype statements. For example. the type is Integer
if the #first letter of an item is X, J, K, L. M or
N, Dtherwise, the type is Real.
Type statements provide for overriding or
confirming the pre-—defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.
Type statements have the following general form:

t ovi.svE, ... vn
where + represents one of the terms INTEGER,
INTEGER*1. INTEGER*2, REAL, REAL#4, REAL#8. DOUBLE
PRECISION, LOGICAL, LOGICAL %1, LOGICAL®2, or RBYTE.
Each v is an array declarator or a variable,. array
or FUNCTION name. The INTEGER#®1, INTEGER®2,
REAL#4, REAL#B, LORICALXL. and LOGICALH®Z types are
allowed for rTeadability and compatibility with
other FORTRANs, BYTE, INTEGER#®Y, LOGICAL#1l, and
EOGICAL. are all equivalent; INTEGER®Z, LOGICAL XD,
and INTEGER are eguivalent: REAL and REAL#4 are
equivalent; DOUBLE PRECISION and REAL #B are
equivalent.

FORTRAN-BO Reference Manual Page 3b&
Example:

REAL AMATI3, 3. 5). BX, IETA, KLPH

NOTE

1. AMAT and BX are redundantly typed.
2. IETA and WKLPH are unconditional ly
decliared Real.
3. AMAT(3, 3, 9) is & constant array
declarator specifying an array of 45
elements.

Example:

INTEGER M1, HT, JMP(13), FL
MOTE
Ml is redundantly typed here. Tuping of HT
antt FL by the pre—defined convention is

overridden by their appearance in the
INTEGER statement. JMP(13) is a constant
array declarator. It redundantly types the

array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.
Example:
LOSICAL L1, TEMP
NOTE
All variables., arrays or FUNCTIONs required
to be +typed Leogical must appear in a

L BGICAL statement. since no starting letter
indicates these types by the default
cenvention,

FORTRAN--B80 Reference Manual Page 37

6. 4

EXTERMAL STATEMENTS

EXTERNAL statements have the following form:

EXTERNAL. uvl.u2,....un
where each wi dis a GUBROUTINE., BLOCK DATA or
FUNCTION name. When the mame of 2 subprogram is
used as an argument in a subprogram Tteference. it

must have appeared in a preceding EXTERNAL
statement. _

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.
For example., if 8UM and AFUNC are subprogram names
to be used as arguments in the subroutine BUBR., the
following statements would appear in the calling
program unit:

EXTERNAL UM, AFUNC

CALL SUBR(SUM, AFUNC, X, VY)
DIMENSION STATEMENTS

A DIMENGION statement has the following form:

DIMENSION w2, ud, u3d.. ..., un
where easch uvi is an array declarstor,
Ezrample

DIMENSION RAT(S.35), BAR(20)
This statement declares two arrays — the 25 element
array RAT and the 20 element array BAR.
COMMON STATEMENTS

COMMON statements are non—-executablie., storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for variocus program units to
share the use nf the same storage ares.

FORTRAN—80 Reference Manual Page 38
COMMON statements are expressed in the following
form:

COMMON Fyl/alsy2/a2/. . fyn/an
uthere each yi is a COMMON block storage name andg

each ai is & sequence of variable names, array
names or constant array declarators, separated by
COmmas. The e&lements in a&i meke up the COMMON

block storage area specified by the name yi. I1f

any yi is omitted leaving two consecutive slash
characters (//), +the block of storasge so indicated
is ¢alled blank COMMON, If the first block name
{yl) ics omitted, the twe slashes may be cmitted.
Example:

COMMON /AREA/A, B, C/BDATA/X, Y. Z,

X FL., ZAP(30)
In this example, two dlocks of COMMON storege are
allocated ~ AREA with space for three wvariables and
BDATA, with space for four variables and the 30
element array. ZAF.
Example:

COMMOM 7 /AL, B1/CDATA/ZZOT(3: 3)

X ST, 23
In this example, Al, Bi, T2 and I3 are assigned to
blank COMMON in that order. The pair of slacshes
preceding Al could have heen omitted.
CDATA names COMMON block storsge $for the nine
eiement array, 207 and thus Z0OT (3,3} is an array
declarator. Za8T must not have been previously

declared. {Bee "Array Declarators." Paragraph

b3

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in mare
than one COMMON statement.

2. A COMMON block name is made uvp of frem 1 to &
alphanumeric characters. the first of which
must be a letter.

3. & COMMOM block name must be different from any
subprogram names used throughout the program.

FORTRAN-B0 Reterence Manual Page 39
4, The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See

"EQUIVALENCE Statements, ® Paragraph & 7.

5. The lengths of COMMOMN blocks of the same name
neegd mnot be identical in &}l program units
whera the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-BO in the User’'s Guidel.
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement {(or
statements! unless expanded by the uzse of
EQUIVALENCE statements.

6.7 EQUIVALENCE STATEMENTS

Use of EQUIVALENCE cstatements permits the sharing
of the same storage unit by twe or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ut), {u2),.... (un)
where each vi represents a sequence of two or more
variables or array elements: separated by commas.
Fach element in the sequence is assigned the same
storage uwnit (or portion of a storage umit) by the
PTOCE@SEOT. The order in which the elements appear
is not significant.
Example:

EQUIVALENCE (A, B, C)

The variasbles A, B and € will share the same
storage unit during ochject program execution.
If an array element is used in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element’'s number
relative to the first element of the array.
Example:

1¢ the dimensionaliity of an array. Z, has been
declared as Z{(3,3) then in an EQUIVALENCE statement
Z{(&) and 243, 2} have the same meaning.

FUORTRAN-B0O Reference Manual Page 40
Additonal Considerations:

1.

2.

3.

The subs¢cripts of array elements must be
integer constants,

An element of a multi-dimensional array may he
referred to by a2 single subscript, if desired.
Variables may be assigned +to & COMMON block
through EQUIVALENCE statements.

Example;

COMMON /X/74.8.C

EQUIVALENCE (A, D}
In this rcase, the variables A and D share the
first storage unit in COMMON block X.
EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the blaock.
Example:

DIMENGION R(2, 2)

COMMON /Z2/W, X, Y

EQUIVALENCE (Y, R({3))
The Tesulting COMMON block will have the
following configuration:

Variable StorTage Unit
W= R{1: 1) Q
X = R{z2:, 1)} i
Y = R(1,2) =
R{Z: 2) 3
The COMMON block established by the COMMON
statement containge 3 storage units. It is

expanded to 4 stoerage units by the EQUIVALENCE
statement.

COMMON block size may be increased only Fram
the last element established by the COMMON
statement foruward; rnot from its first element

backward,
Mote that EQUIVALENCE (X, R(3)) would be invalid
in the example. The COMMON statement

established W a5 the Ffirst element in the
COMMON block and an attempt to make X and RO
eguivalent would bhe an attempt to make R{1) the
first element.

FUORTRAN-80 Reference Manuval Page 41
3. It is invalid to EQUIVALENCE twoe elements of
the same array or two elements belonging to the
same ot different COMMOM blocks.
Example:
DIMENSTION XTABLE {207, D{(3)
COMMON A, B{4)/ZAP/C. X

EGUiVALENCE (XTABLE (&), AL7),
X B{3), XTABLE(13)),
Y {BL3:,. BB

This EQUIVALENCE cstatement bhas the following

BTTOTE!:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(S) and XTABLE(1H).

2. It attempts tn EQUIVALENCE two elements of the
same COMMDNMN block, A(7) and B(3).

2. SHince A is not an arvay. A7) is an illegsal
reference. _

4, Making B(3) equivalent to D{3) extends COMMON
hachwards from its defined starting point.

a8 DATA INITIALIZATION STATEMENT

The DATA initialization statement is &
non—executable statement which provides a means of
compiling datse values into the object program and
assigning these data %o wvariables and arvay
elements referenced by other statements

The statement is of the following form:

DATA listrsul,u2,. . ., un/, list | Juk,uk+l, . uk+n/s
where "list" represents a list of wvariabkle, array
or arvray element names, and the uvi are constants
corresponding in number to the elements in the
Tist, An exception to the gne-for—one
correspondence of 1ist items to constants dis that
an array name {(unsubkscripted) may appear in the

FORTRAN-BO Reference Manuwal ' Page 42
list, and as many constants as necessary to fill
the arrsy may appear in the corresponding position

between slashes. Instesd of ui, it is permissible
to write k#ui in order to declare the came
constant, uvi, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Example:

DIMENSION C{7)

DATA A, B, (1), C{(3)/14. 73,

X -3, 1, @87, 5f
This implies that
A=14.73, B=-8. 1, C{1)=7. 5, Ci3)=7. 5
The type of each constant i must mateh the type of
the corresponding dtem in the list, except that a
Hollerith or Literal coenstant may be paired with an
item of any type,
When a Hollerith or Literal rconstant is wsed. the
number of <characters in its string should be no
greater than four times the number of storage units
required by the corresponding ditem. i. 8 . 1
character for a Laogical variahle. up to P
characters for an Integer variable and 4 pr fpwer
characters for a Real variable.
i# Fewer Hollerith or Literal characters are
specified, trailing blanks are added tc £ill the
remainder of storage.
Hezradecimal data are stored in & similar Fashion.
If fewer Hexadecimal tharacters are used,
sufficient leading zeres are added %o Fill the
remainder of the storage unit.
The examples below illustrate many of the features
of the DATA statement.

FORTRAN-B0 Reference Manual Page 43

DIMENSION MARY (2)
DATA HARY. B/ A4HTHIS, 4H OK,
i » 7.846/7

REAL LITL2)

LOGICAL LT, LF

RIMENSION HA4{2, 2}, PI3(3)

DATA AL BL, KL LT, LF,H4¢1, 1), HA4(2: 1),
1 HA4(1, 2), HA(2. 2), P13/5. 9, 2. 5E~4,
= &4, FALSE. .. TRUE. . 1. 75E-3,

3 0. BBE~1,2475. 0, 1., 2., 3. 14159/,
4 LIT(1)/ 'NOGQ/

FORTRAN-80 Reference Manual Page 44
SECTION 7
FORTRAN CONMTROL STATEMENTS
FORTRAM control statements are executable statements which
affect and guide the logical flow of o FORTRAN program. The
statements in this category are ass follows:
. &0 70 statements:

1. Unconditional &0 7O

2, Computed GO TO

a, Assigned GO TO

2. ASHIEN

a, IF statements:
1. Arithmetic IF
= lLogical IF

4, a

5. CONT INUE

H. STOP

7. PAUSE

3. Call.

Q RETURN

When statement labels of other sztatements are a part of =
contrel statement, szuch statement labels must be associated
with executable statements within the same program unit in
which the conivrol statement appears.

7.1 G0 TO STATEMENTS

7.1.1 UNCONDITIONAL G0 TO

Uneconditional EE ?E statements are vused whenever
control dis to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-BQ Reference Manual : Page 49

L8

.3

The statement is of the following form:
GOTO k
where k is the statement label of an executable
statement in the same program unit.
Example:
60 TO 376
310 A7) = Vi -A{3)

376 AL2) =VECT
G T 3106
In these statements, statement 3746 is shead of
statement 310 in the logical flow of the program of
which they are a part.
COMPUTED &0 TO
Computed GO TO ststements are of the form:
G0 TO (klrkgé.-.an):‘j

where the ki are statement labels, and j is an

-

integer variable, 1 < j < n.

This statement cause; tr;hsFer of contreol to the
statement labeled k). ¢ 3 <1 or 3 > ceconkrol

will be passed to the next statement following the
Computed GOTO.
Example:

U=

éﬂ Ta(Z, 70, 700, 7000, 700000, J

310 J=0
G0 TR 320
When J = 3, the coemputed &0 TO transfers coantrol to
statement 700, Chaenging J to equal 5 changes the

transfer to statement 70000, Making J = 0 or J = &
wowld cause controel te be transferred tp statement
310,

ASSIGNEDR ¢0 TO

éssignedlaa TO statements are of the following

FORTRAN-BQ Reference Manual Page 46

farm:
G0 T3 g, k1, k2., .. kn)

oy

enTod J
where o is an integer variable name, and the ki are
statement labels of esecutable statements. This
statement cavses transfer of control to the
statement whose label is equal to the current value
of L
Qualifications

1. The ABBIGN statement must logically precede an
assigned GO TO.

2. The ABSIGN statement must assign & value to J
which is a3 statement label included in the list
of k’s, 1f the list is specified.

Example:

&0 TO LABEL, (BO.9G, 100)

Bnly the statement labels 8O, 0 or 100 may be

assigned to LABEL.

ASEIGN STATEMENT

This statement is of the following form:

ABBIGN | TO i
where j is a statement label of an executable
statement and 1 is an integer variable.
The statement is wuwsed in cenjunction with each
assigned. G0 TO statement that contains the integer
variahle 1. When the assigned GO TO is execvulved.
coritrol will be $ransferred +to the statement
labeled ;.

FORTRAN-BO Reference Manual Fage 47
Example:

[—

TASSICN 100 TO LABEL

ASTIGN %0 TO LABEL
G0 TO LABEL, 80,90, 100)
7.3 IF STATEMENT
IF statements transfer control to one of & series
af statements depending upon & condition. Tweo
tupes of IF statements are provided:
Arithmetic IF
i.ogical IF
7.3.1 ARITHMETIC IF

The srithmetic IF statement is of the form:

IF{e} mi.md, m3
wheTe @ is an arithmetic expression and mi, m2 and
m3 are statement labels,
Evaluation of expression & determines one of three
treansfer possibilities:

If e is: Transfer to:
<0 mi
= {) ma
a0 i
Examples:
Statement Expression Value Transfer to
IF (A3, 4,5 13 b
IF iN-1)00,73:. % v 73
IF (AMTX{(2, 1, 23)7, 2. % ~20%46 7

7.2 LOGICAL IF
The Logical IF statement is of the form:
IF (u)s
where v is & Logical esxpression and s is any
executable statement except & DO statement {(see
7.4) or another Legical IF statement. The Logical

FORTRAN-80 Reference Manval fage 48
expression u is evalvated as . TRUE. or . FALSE.
Section 4 contains a discussion of l.ogical
expressions,
Contrel Conditions:
I#f v is FALSE. the sitatement s is ignored and
contrel goes to the next statement following the

Logical IF statement. If, however:. the egxgreszsion
is TRUE, then control goes to the statement s, and
subseqguent program control follows normal
conditions. _

1# & is a replacement statement (v = g, Hection 9B,

the wvariable and equality sign (=) must be on the
sameg line. either immediately following IF{u) or on
a separate continuation line with -the line spaces
following IF(u) 1left blank. See example 4 bhelow.
Examples:

1. IFCILGT. 20y o0 TQ 115
2, IF(G AND.R) ARSIGN 10 TO J
3. IFCE) Call DECL{A, B.)
4, IFCA. OR, B LE. PI/2) I=d
= TF{A QR B LE PYI/Z)
X I =4
7.4 DO STATEMENT

Pimaian ———— e ——

The DO statement., as implemented in FORTRAN,
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

1’ Dok 3 = ml,med, @3

or

&) DO & i = mi.m2
where k is a statement label, i1 is an integer or
Iopical wvariable, and ml, m2 and m3 are integer

constants or integey or laogical variables.

If m3 is 1, it may be omitied as in 2) ahove.

The following conditions and restrictions govern
the vse of DI} statements:

FORTRAN~80 Reference Manual Page 49

1

=3

3.

The DO and the first comma must appear on the
initial line.

The statement labeled k: called the terminal
statement, must be an exscutable statement.

The Lterminal statement mwst physically follow
its gsspciated RO, an the executable
statements following the DBl up to and
including the terminal statement:. constitute
the range of the DD statement.

The terminal statement may not be an Arithmetic
IF, G0 TO. RETURN, STOP. PAUSE or another DL
If# the terminal statement is a logicai IF and
its eupression is . FALSE., then the statements
in the DO range are reiterated.

I# the expression is . TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reliterated. The
statement of the logical IF may not be a 0 TO.
Arithmetic IF, RETURN. BTOP or FAUSE,

The controlling integer variable, i, is ¢alled
the index of the DO range. The index must be
positive and may wnot be modified by aNY
statement in the range.

I£ ml, mz. and m3 are Integer#l variables or
constants, the DO lcop will execute faster and
be sharter, but the Tange is limited to 127
iterations, Fopr examplie, the loop overhead for
a DO lcop with & constant limit and an
increment of 1 depends upon the type of the
index variable as follows:

index Varisble Overhead
Tuype Microseconds Bytes

INTEGER*Z 35.9 19

INTEGER®1 24 14
During the first execution of the statements in
the DO range. i is equal to mi; the second
execution. i = mli+m3; the third. i=mi+2eEmd,
ete, . until i is equal to the highest value in

this sequence less than or equal +to md, and
then the DO ies said +to be satisfied. The
statements in <¢the DO range will always be
executed at least once, even if mi < md.

When the DO has been satisfied, control passes
to the statement foliowing the ferminal

FORTRAN-80 Reference Manual Page 30
statement:; oitherwise control transfers back to

the first executable statement following the DO
statement,
Example:

The fallowing examplie computes
100
Sigma Ai where & iz a one~dimensional array

i=1]

ioo DIMENGSION A{100)

8BUM = A1)
DO 31 I = 2,100
31 SUM =8UM + A{I}

END

9. The range of a DO statement may be extended to
inctliude all statements which may logically be
expcuted between the DO and ditw terminal
statemend. Thus, parts of the DO range may be
situvated such that +they ave not physically
between the DI statement and ite terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:

DIMENGION A{500), BL{500)

oo 50 I = 10, 327, 3

IF (V7 ~CxC)r 20, 15, 31
30

50 A(I) = B(¥) + C

20 G =€ - 00
&0 7O 30

31 C=C+ 0125
0 70 30

FORTRAN-80 Reference Manuasl : Page 91

7.

b

10, It is invalid te ftransfer contrel into the
range of a DO statement not itself in the range
or estended range of the same DO statement.

it. Within the range of & DO statement, there may
be other DO statements, in which case the DO’'s
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inmer PO must be entirely included in the range
of the ocuter DO.

The terminal statement of the inner DO may also
he the terminal staetement of the outer DO
For erxample:. given a two dimensional array A of
1% rows and 15 columns, and a 13 element
one—dimensional array B, the following
statements compute the 13 elements of array C
to the formula:

)

Ck =Bigma Ak iBm, k = 1,2:,....13
=1

DIMENSION A{15, 13)., RB{135), LI

DG 80 K =1,105
CKY = 0.0
B0 80 J=1,138
B0 C{K) = CUK)Y +AK,) ¥ B

CONTINUE STATEMENT

CONTIMUIE is classified as an executable statement.

However, its egrxecvtion does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE
CONTIMUE is fregquently wvsed asz the terminal
statement in a D8 statement range when the

statement which would normally be the terminasl
statement is one af Ythose which are not allowed or
ig only execubted conditionally

FOIRTRAM-80 Reference Manual Page 32

b

Fxample:

no oS K= 1,10

IF (C2) B b, &
6 CONTINUE

ca = Cd +, B05
% CONTINUE
STOP STATEMENT

A STOP statement has one of the following Fforms:
STOP

oy

S¥oP ¢
wheve ¢ is any string of one to six characters.
When STOP is encountered during execution of the
wbect progvram. the characters ¢ (if present} are
displagyed on the operator contrel console and
wrecution of the program terminates.
The ST statement, thervefors. constitutes the
logical end of the program.
PAUSE STATEMENT

A FAUSE statement has one of the following forms:
PALSE

ar

PAUSE ¢

where € is any string of up to six charackers.

When FAUSE ie encountered during execution of the
obgject program the characters ¢ (if present) are
displayed on the operator contrel conscle and
execution of the program Ceases.

The decision to continue executiogn of the program
is not under contrel of the program If execution

FORTRAN-80 Reference Manual Page 53

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Lxecution may be terminated by typing & "T" at the
aperator console. Typing any other character will
cauce execution to resume.

Call. STATEMENT

Cal.l. statements control transfers inte SUBROUTINE
swbprograms and provide parameters for use by the
subprograms. The general forms and detsiled
discussion of CALL statements appear in Hection 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, uvse and interpretation of the RETURN
statement ic described in Section 2.
END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
fullowing fovm;
END

The END statement is an executable statement and
may haeve a statement label. It causes a ftransfer
of contral to be made to the system exit rToutine
$EX, which returns control to the operating syshem.

FORTRAN-8O Reference Manual Fage D4
SECTION B
INPUT /7 QUTPUT
FORTRAN provides a series of statements which define the
contrel and conditions of dats transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, iine printer, punched card
processors, keghoard printers, etc.
These statements are grouped as follows:
i. Formatted READ and WRITE statements which cause

formatted information to be transmitted betuween the
compuker and 170 devices.
2, Unformatted READ and WRITE statements which

transmit unformatted binary data in o form similar
to internal storage.
3. Auxiliery /70 statements for positioning and

demarcation of files.
4, ENCODE and DECODE statements faor transferring date

between memoruy locatiens.
. FORMAT statements veed i conjunction with

formatted record tranemission te praevide data
conversion and editing information betuween internal
data Tvepresentation and external character string

forms,
g 1 FORMATTED READ/WRITE STATEMENTS
#g.1.1 FORMATTED READ STATEMENTS

& formatted READ statement is wuwsed to transfer
information from an input device to the computer.
Twp formz of +the statement are availsbhle, as
follows:

READ {u, f, ERR=L.1: END=L2} %

ar

READ (u, #; ERR=L.1, END=L.2}

where:

y — specifies a Physical and Logical Unit Number
and may be either an unsigned dinteger or an

FORTRAMN~B0 Reference Manual Page 59
integer wvariable in the range 1 through 255
If an Integer wvariable is wused. an Integer
value must be assigned to it prior to execution
of the READ statement.
Units 1. 3. 4, and 5 =are preassigned to the
console Teletypewriter, Unit 2 is preassigned

to the Line Printer (if ome exists). Units
4H~-10 are preassigned to Disk Files (see UseT’s
Manual, Section 3). Theee units. as well as
units 11-R2535, misy be re-assigned by the user

isee Appendix M),

f — is the statement label of the FORMAT statement
describing the type of data conversion 1o be
used within the input trancemission or it may be
an array name, in which case the formatting
information may be input to the pragram at the
execubion time. {Bpe Section 8. 7. 10}

Li— is the FORTRAN label on the statement to which
the 1/0 processor will transfer conkraol 1f an
/0 error is encountered.

LeZ— is the FORTRAM lzbel on bthe statement to which
the 1/00 processor will tranmsfer contrel i1+ an
End-of-File is encountered. :

h - is & list of variable names. separated by com—
mas, specifying the input data.

READ {(u, f)k is used to input a number of items,

corresponding to the names in the list k. From the

file on logical wnit v, and using the FORMAT
statement § to specify the external representation
of these items {seg FORMAT statements, 8.7). The

ERR= and END= clauses are oeptional. I¢# not

specified, I/0 errore and End-of-Files cavse Fatal

runtime errors.

The following notes further define the function of

the READ {(u, flk statement:

k. Each time execution of +the READ statement

begins, a new record from the input file is

read.

The number of records to be input by a single

READ statement is determined by the list, k.

and format specifications,

3. The 1list k specifies the number of items to be
read from bthe input file and the lecations into
which they are to be stored.

)

FORTRAN-830 Reference Manusl Fage 5&

4.

3.

&.

Any number of items may appear in & single lisy
and the items may be of different data bypes.

If there are more guantities in an input record
than there are items in the list, only the
number of guantities equal ta the number of

items in the list are transmitted, Remaining
quantities are ignored.
Exact specifications for the 1list k are

described in 8. &,

Examples:

1.

Agesume that four data entries are punched in @
card, with thresa blank ceolumns separating each,
and that the data have Field widths of 3, 4. e
and 5 characters respectively starting in
column 1 of the card. The statements
REAR(D, 20K, L. M N
20 FORMATC(I3E, 3X, 14, 3X, 12, 3%, 1I5)
will Tead the card {assuming the Loegical Unit
Number 3 has been assigned %o the card reader)
and assign the input data te the wvariables K,
f.. M and M. The FUORMAT statement couvld 2lso be
20 FORMATI{IZ, 17,15, 18)
See B 7 Ffor complete description of FORMAT
statements.
Input the gquantities of an array (ARRY):
READ (& 21 YARRY
Only the name of the array needs toe appear in
the list (see 8. 6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FUORMAT
statement labeled 21.

READ{u, k) may be used in corngunction with & FORMAT
statement to Tead H-type alphanumeric data into an
existing H-type field {(see Hollerith Conversions.
R.7.3).

For example. the statements

READULI, 25)

25 FORMAT{1OHABCDEFGHIJ)

FORTRAN-BO Reference Manual Fage 57

cavse the next 10 characters of the file on dinput
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an wsuiput device.
Twey Foarms of the statement are available, 8%
follows:

WRITE(u, f, ERR=L1, END=L2)k

ar

WRITE {(u, £, ERR=L1, END= 2}

where:

u - specifies a Lagical Unit Number,

f — is the statement label of the FORMAT statement
describing the type of data canversion to be
used with the output tranemission.

{_i- specifies an I/0 erTor branch.

L specifies an EOF branch.

kR = is & list of variable names separated by com-
mas, specifying the ovtput data.

WRITE (u,f)h is uvsed to ocutpudt the date specified

in the list k to a3 file on logical unit u using the

FORMAT cstatement £ to epecify the external

Tepresentation of the date (see FORMAT statements,

8.7}, The +following notes further define the
function of the WRITE statement:
1. Beveral records may be ocutput with & single

WRITE statement, with the number determined by
the list and FORMAT specifications. .

a. Buccessive data are output until the datas
specified in the list are exhausted.

3. If output is to a device which specifies fired
tength records and the data specified in the
list do not fill the record, the remainder of
the record is Filled with blanks.

FORTRAN-BO Reference Manual FPage 58
Example:

WRITE(Z: 10)A, 8. C. D
The data assigned to the variables A, D, C and D
are output to loegical Unit Number 2. formatied
according to the FORMAT statement labeled 10,
WRITE(U, #) may bhe used to write aliphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
tase a variable list is not required.
For exampie, to write the characters ‘H CONVEREION-
on unit 1.

WRITE(1, 2&2

24 FORMAT {(12HH CONVERBION)
g 2 UNFORMATTED READ/WRITE

Unformatted I/70 (i . e. without data conversion? is
accamplished using the statements:

READ{u, ERR=1L 1, END=L2} k

WRITE (u, ERR=L.1, END=L2) k

where:

v =~ spesifies @ Logical Unit NMumber.
Li~ specifies an I/0 error branch.
Le— specifies an EOF branch.

k - is a list of variasble names, separated by
commas, specifying the I/70 data.

The fellowing netes defing the functions of
unformatted I/70 statements,

. Unformatted READR/WRITE statements perfarm
memory—image trancsmiscsion of data with no data
conversion or editing.

The amount of data transmitted corresponds to
the number of wvariables in the list k.

1

FORTRAN—-80 Reference Manual Papge 59
3. The total length of the list of variable names
in an unformatted READ must not be langer than

the record length. I#+ +the 1ogical record
length and the length of the list are the same,
the entire record is read. I¥# +the length of

the list ds shorter than the logical rtecord
length the unread items in the record are

skipped.
4, The WRITE{(alk statement writes one logical
Tecord.
5. A logical record may extend acraoss more than
one physical record.
8.3 DISK FILE I/0

A READ or WRITE te & disk Ffile (LUN &-10)
avtomatically OPENs the file for 1/0 The £ile
remains open until closed by an ENDFILE command
{see Section 8.4) ot until mnormal program
termination.
NOTE
Exercise cauvtion when daing sequentisal
output to disk files. I# agutput is done to
an existing file, the existing file will he
deleted and replaced with a new file of the
Same name.
8.2 1 RANDOM DISK 1/0
SEL ALBD SECTIDN 3 OF YOUR MICROSOFT FORTRAN UBSER‘S

FAMUIAL.
Some versions of FORTRAN-80 also provide random
disk 1/48. For random disk access; the record

number isg specified by using the REC=n oaption in
the READ or WRITE statement. For example:

I = 10

WRITE (&, 20, REC=I, ERR=30) X, ¥, 2

This program segment writes rtecord 10 on LUN &, I¢
a previous recoerd 10 exists:, it is written over.
I# no record 10 exists, the File is extended to

FORTRAN~B0D Reference Manual Page &0
create one, Any attempt to read a non-existent
recard results in an 1/0 error.

In random access files, the trecord lengith wvaries
with different versions of FURTRAN. See Section 3
pf your Microsoft FORTRAN User ‘s Manual. It 1is
recommended that any file youw wish %o read randomly
be created via FORTRAN {(or Microsoft BASIC) random
access statements. Files created this way {(using
pither binary or formatted WRITE statements) will
zero—~fill each record to the proper length if the
data does not fill the record.

Any disk file that is OPENed by & READ opr MWRITE
statement is assigned a default filename that is
specific to the operaiting system. See also Section
3 of the FORTRAN User’s Manual.

8. 2.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed wsing the OPEN
suyhroutine. LUNs 1-5 may alsc be assigned Yo disk
files with OPEN. The OPEN subroutine allows the
program e specify & fililename and device % be
associated with a LURN.

An OPEN of a non—existent Ffile creates a null file

of the appropriate mname, an OPEN of an existing
file followed by sequential output deletes the
existing file. An DPEN of an existing file

followed by an input allows access ko the current
contents af the file.
The form of an OPEN ¢a8ll varies wunder different
gperating systems. Bee your Microsoft FORTRAN
User’s Manual., Section 3.

G 4 AUXILIARY I/70 STATEMENTS

Three ausiliiary I/0 statements are provided:

RACKSPACE o

REWIND u

ENDFILE o
The acticns of all three statements depend on the
LA with which +they are used {(see Appendixz B).
When the LUN is for a terminal or line printer., the
three statements are defined as no-ops.
When the LUN is Por & disk drive, the ENDFILE and
REWIND commandes alliow further program contrcl of
disk files. ENDFILE v closes the file asspriated
with LUN U, REWIND ¢ clocses the file associated

FORTRAN-B0 Referente Manual Page &t
with LUM u, then opens it again. BACKEPACE is not

implemented at this time, and therefore causes an
error i€ used.

85 ENCODE /DECODE

ENCODE and DECODE statements transfer data,
atcording to format specifications, +from one
sectieon of memory to ancther. DECODE changes data
fraom ASCII format bo the specified format. ENCODE
thanges data of the specified Fformat into ABCII
format. The two statements are of the Fform:

ENCODE(a, £} k

DECODE (s, £) k
whevre;

a is an array name

f is FORMAT statement number

¥k is an I/0 List
DECODE is analogous to a READ statement, since it
causes conversion froam ASCII to internal format.
ENCODE is analogous to a WRITE statement. causing
conversion from internal formats to ASCIL.

FORTRAN-BO Reference Manual Page &2

8.

at

.8

1

NOTE
Care sheuld be taken that the array A is
alwsys large enouagh to contain all of the
data being processed. There is na check

[——— ———

for overflow. An ENCODE operatfzn which

overflows the array will probably wipe out
impertant data Ffollowing the array. A
DECODE operation which overflows will
attempt Yo process the dats following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered list of data names which identify the data
to ke transmitted. The arder in which the list
items appear must be the same as that in which the
corresponding data exists {Input), or will exist
(Cutputd in the external I/0 medium.
fLists have the following form;

mi, m2,...,@mn
where the mi are list items separated by commas., as
shown.

LIBT ITEM TYPES

A list item may be & single datum identifier or a
multiple data identifier.
1. A single datum identifier item is the name of a
variable or array element,
Examples:

P — e ————— s m bt

C(26, 1), R K, D
B, 1(1G,10),8,F{1,25)
NOTE
Svhklists are not implemented.

FORTRAN-B0 Reference Manual Page &3

a2,

Moltiple data identifier iditems are in +two
forms:
a. An array name appearing in a list without
subscript(s) is considered equivalent to the
listing of egach sviccessive element of the
array.
Example:
I+ B is a two dimensional array, the list item
B is eguivalent to: BOL, 1, B2, 1,83, 1).....,
B, 2, B02:2¥. .. ,8B0), k),
where § and k are the subscript limits of B,
b. PO-implied items are lists of ene or more
single datum identifiers or other DO-implied
items followed by & comma charackter and an
expression of the form:

i =ml.m2.m3 or 1 = ml,m2
and enclosed in parentheses,
The elements i,ml,m2,m3 have the same meaning
as defined for the DO statement. The DO
implication applies to all list items enclosed
in parentheses with the implication.

Examples:

DD—Impligd Lists Equivalent Lists
(X{31): I=1, 42 XE1), X{2), X{(3), X{4)
(GG, RUDY, J=1,2) Q1) RC1), GLE), RL{Z)
(LK), K=1, 7, 3) G(1Y,B{4),647)

(AT, J), I=3,8), J=1, 9, 4) A3, 1), AC4, 1), 405,12
AL 5 ATE, D), AL, D)
A{3: D), A4, 9), AL, R)

(R(M),M=1,2), 1, ZAP(3) R{1),R(2), I, ZAP(3)

(R{32,T(I), 1=1.3) ROBY), T(L),REI), TLED,
R{3), T(3)

Thus: the elements of a matrix, for example,

may be treansmitted in an order different from
the order in which they azppear in storsge. The
array #A{(3,3) occupies stoerage in the grder
A1, 1), A(2,1), A3 12, A1, 20, A2, 2), AC3: 2,
A0, 33, A2, 34403, 3. By specifying the
transmission of the array with the DO-implied
Tist ditem ({ACI,J),u=1,3), I=1,3), the order of
transmission is:

FORTRAN-80 Reference Manual Fage &4

All, 1), AL, 2), AL 30802, 1), ACE, 2),
AlZ: 3,403, 1), A3,), A3, 3)

g 6.2 SPECIAL NOTES ON LIST SPECIFICATIONG

1. The ordering of a 1licgt is from left to right
with repetition of ittems enclosed in
parentheses {(other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

e, ArTays are transmitted by the appearance of the
array name {unsvhscripted) in an input/output
list,

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4, For input lists, the DO-implying elements i,
ml, m2 and @m3 may not appear within the
parentheses as list items.

Fiamplies:

1. READ (1,20} {I.J,A(1),I1=1,J:2) is not allowed

&, READ(L, 2031, J, {ALI), I=1,.2) is allowed

3. WRITE(L, 20 (I, J, ALI),I=1..L2) is allowed

Consider the following examples:

DIMENGION A(23)

A{l) = & 1
A{3) = 2.2
A{D) = 2.3
J =5

the output of this WRITE statement is

i

9,1, 2. 1.3, 8. 2,5, 2.3
Any number of items may appear in & single
list.

FORTRAN-20 Reference Manual Page &5
=. In a formatted transmission {READ (o, #) k.,
WRITECu, #)k) each item must have the correct
type as specified by a FORMAT statement.
a7 FORMAT STATEMENTS

FIRMAT statements avre non—executable, generative
statements wused in conjunction with formatted READ
and WRITE statements, They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media reprecsentation.

FORMAT statements require statement labels for
reference () in the READ{u,#)k or WRITE{u. £}k

statements. :
The general form of s FORMAT statement dis as
follows:

m FORMAT (sl.s2,....sn/817,s2",.....,8n°/...)
where m ic¢ the statement label and esch si is a
field descriptor. The ward FORMAT and the
parentheses must be present as shown. The slash
(7)Y and comma (;) characters are fipld separsters
and are described in a separate subparagraph. The

field is defined as that part of an external record
pcoupied by one transmitied item
8.7.1 FIELD DEGSCRIFPTORS

Field descriptors describe the sizes of data fields
and specify the tuype of conversion to be exercised

upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:
Descriptor Classzification

vFiw. d

riw, d

rEw. d Numeric Conversion

0w d

riw

Tl Logical Conversion

AW

nHhihZ. . . hn Hollerith Conversion

7ii1d. .. In’

nX Spacing Specification
mF Scaling Factor

FORTRAN-B0 Reference Manual Page &&

8 7.2

where:

1. w and n are positive integer constants defining

the field width ({including digits, decimal

points, algebraic signs) in the external data
representation,

d is an integer specifying the number of

tractional digits appearing in the external

data representation.

3. The characters F, &, £, I, I, A and L indicate
the type of conversion to be applied to the
items in an input/ovtpot list.

4, T is an optional, non—-zero integer indicating
that the descriptor will be repeated ™ times.

o, The hi and 1i are chavacters from the FORTRAN
character set.

&, m ig an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIEC CONVERSIONS

P

Input operations with any of the riumeric
conversions will allow the data toe be represented
in & "Free Format'": i.e., tommas may he used to

sgparate the fields in the external representation.
F~type conversion

Form: Fu. d

AReal oy Double Precision type data sare processed
using this conversion, w ¢haracters are processed
of which d are considered fractional.

F-output

Values are converted and ovtput as minus sign (if
negativel), followed by the intepger portion of the
number. a decimal point ond d digits of the
fractional portion of the number. 14 2 value dogs
not fill the field, it is right Justified inn the
field and encugh preceding blanks to f£ill the field
are inserited. iIf &8 walue rteguires more field
positions <+than allowed by w., the first w1l digits
of the value are output, preceded by an asterisk.

FORTRAN-BO Reference Manuval Page &7
F-Output Examples:

FORMAT Internal Cutput

Descripgtor Value {k=blank)

F10. 4 368. 42 bbh368. 4200

E7.1 ~4784. 341 ~-4784. 4

F&. 4 8. 7e-2 bhO, 0870

Fé., 4 A739. 74 ¥, 7600

F7.3 -5. & b-5. 600

PNote the loss of Jeading digits in the 4th line
above,

F~Input

(See the description under E~Input below)
E-type Conversion

Farm: Ew. d
RHeal or Double Precision tupe data are proacessed
using +this conversion. w characters are processed
pf which d are considered fractional.
E~OQutput
Valives are converted. rounded %o d digits, and
sutput as:
8 minus sign {if negativeld.
a zero and a decimal point,
g decimal digits,
the letter E,
the sign of the eiponent {(minwus or blank)l.
. twoe exponent digits,
in that order. The values as described are right
Justified in the field w with preceding blanks to
£1i11 %the field if necessary. The field width w
should satisfy the relationship:

w > d + 7
Otherwise significant characters may be lost. Same
E-Output examples follow:

Al S L

FORTRAN-B80 Reference Manuval Page &8
FUORMAT Internal Output
Descriptor Value {(b=blilank)
Ei2. 5 74, 573 hb. 76E7IELOR
E14. 7 —~32672. 354 ~b. 32&4723DEBOD
E£13. 4 -0, 0012321 bbb, 1232E-02
Ee, 2 76321, 73 h. 76ELOS
E-Input

Bata values which are to be processed under E; F.

or & cenversion can be a3 relatively loose format in

the external input medium. The format is identical

for either conversion and is as follows:

1. Leading spaces {ignored)

£ A+ or - sign (an unsigned input is assumed to

be positive)

A string of digits

A decimal point

A second string of digits

The character E

A+ or =~ sign

A decimal exponent

Each item in the list above iz optional; but the

following conditions must be observed:

1. If FORMAT ditems 3 and % {(abovel are present,
then 4 is required.

. 1¢# FORMAT item 8 is present, then & or 7 or
both are required.

3. All nen—lieading spaces are considered zeros,

Input date cen be any number of digits in length,

and correct magnitudes will be developed, but

precision will be maintained only %o the extent

specified in Section 3 for Real datsa.

BNDPGHRL

FURTRAN-B(O Reference Manual Page &9
E- and F~ and &- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
£10.3 +0. 237I6+4 +237 5. 60
E10. 3 bbbbb175631 +17. 431
28.3 1628711 +1628. 211
Fiz2. 4 bbbb—-6321132 ~&32. 1132

Mote in the above pxamples that if no decimal point
is given among the input characters. the d in the
FURMAT specification establiches the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters.
the d specification is ignored.

The letters E, F. and ¢ are interchangeable in the
input format specifications, The end result is the
same.

B-Type Conversiouans

D~Input and D~Output are identical to E~Input and
E~-Output except the exponent may be specified with
a "D" instead of an “E ¢

G-Type Conversions

Form: Cu. d

Real or Double Precision type data are processed
using this conversion., w characters are processed
of which d are considered significant.

&-Input:

{Bee the description under E-~Inputb)

G-Butput:

The method of oviput caonversiogn is a functien of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be sutpul:

FORTRAN-8BQ Reference Manual FPage 70

Magnitude Equivalent Conversion
I = < Fiw—4), d,4X%
1 <= n { 10 Flw—4q). {(d-—-13, 4X

g~ i1
10 <= op 4010 Flw-4). 1, 4%
d-1 d
10 <= n 4 10 Flw-4). 0, 4X
Btherwise Ew. d
I-Conversions

Form: Iw
Bniy Integer data may be converted by this form of

conversion. w specifies field width.

I-Butput:

Values are converted to Integer constantsg.
Negative values are preceded by a minus sign. If

the value does not £ill the Field, it is right
justified in the field and enough preceding blanks
to £ill the field are inserted, I the wvalue
exceeds the field width, only the least significant
w~1 characters are output preceded by an asterish.

Examples:
FORMAT Internal flutput
Descriptor Value {b=blank?
ié +281 Bbhb281
16 —a3261 23261
I3 126 124
14 —anb —22b
I-Input:
A fField of w charatters is input and converted *to
internal integer format. A minus sign may precede
the integer digits. I¥+ a sign is noet present, the

value is considered positive.
Integer values in the vange ~32768 to 232747 are
accepted. Non-leading spaces are treated as zeros.

FORTRAN-BO Reference Manual Page 71

Fxamples:
Enrmat Input Internal
Descriptor {b=blank) Value
14 blz24 124
ia ~1z24 ~124
17 bhb&7320 &7320
14 1b2b 1020

HOLLERITH CONVEREBIONS

H&—~Type Conversion

The form of the A conversion is as follows:

Aw
This descriptor taVEEs unmodified Hallerith
characters fto be read inte or written from a
specified list item.
The maximum number af actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
af storage units in the correspending list item
{i.e., 1 character for logical items, 2 characters
for Integer items. 4 characters for Real items and
8 characters for Double Precision items).
A-Quiput:
If w is greater than 4n {(where n is the number of
storage units required by the 1ist item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
rTepresentation. I1# w iz less than 4n, the external
putput field will consist of the leftmost w
characters from the internal representation.
Examples:

Format Internal Tupe Output
Descriptor (b=blanks)

Al Al Integer]

AR A8 Integer A

A ABCD Real ABC

Ad ARBCD Real ABCD

A7 ABCD Real bhbEABCD
A-Input:

I# w is greater thap 4n (where n is the number of

FORTRAN-80 Referentce Manuval Page 72
storage units required by the corresponding list
item), the rightmost 4n characters are token from
the external inpuwt field. I# w is less than 4n.
the w characters appear left Justified with w4n
trailing blanks in the internal representation,

Examples:
Format Input Type Internal
Descriptar Characters {b=plank)
Al A Integer Ab
Al ARC Integer AR
Al ARCD Integer AB
Al A Real Abbhb
AT ABRCDEFG Real PEFG

H-Conversion

The forms of H conversion are as Follows:
nHdhihk2, .. hn

‘hih2. . hn’
These descriptors process Hollerith character
strings btetween the descriptor and the external
field:, where sach hi represents any character from
the ABCII character set.
NOTE

Special consideration 1is required if an

apostrophe (7)) is to be used within the

literal string in the second foro. An

apastrophe character within the string is

represented by two successive apostrophes.

Bee the examples helow.

H-Dutput:

The n characters hi, are placed in the external
field. In +the nHbhlhZ. .. bhn form the number of
characters in the string must be exactly ag

specified by n Otherwise, chsracters from other
gescriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN-80 Reference Manual Page 73

Examples:
Format iutput
Descriptor J {b=blank)
THA or ‘A’ A
BHESTRINGD or ‘BETRINGb’ bSTRINGD
11HX(2, 3)=12. 0 or ‘X2, =12 0' X{&,33=12. 0
LIHIBSHOULDN'T or ‘IhSHDULDN' ‘T’ ITbSHOULDN'T
H-Input
The n characters of the string hi are replaced by
the nest n characters from the input record. This

Tesults in 2 new string of characters in the field
descriptor.

FORMAT Input Resultant

Descriptor (=blank) Descriptor
4H1 234 or ‘12347 ABCD 4HABCD or ‘ABCDC
7HEbBFALEBE or ‘bbFALSE* bFALSED 7HBFALSED or ‘bFALSEL ¢
&Hbbbhbb or ‘bbbbbb’ MATRIX HHMATRIX opr "MATRIX’

B.7.4 LOGICAL COMNVERSIONG

The form of the logical conversicon is as follows:

bw

L—Qutput:
I+ the wvalue af an item in an output list
corresponding to this descriptor is O, an F will be
output; otherwise, 3 T will be putput, I w is
greater than 1, w-1 leading blanks precede the
iptters.
Examples:
FORMAT Internal Output
Descriptor Value {th=blank)

|99} =) F

Ll >0 T

LS w0 bbbbT

.7 ={) bbbbbbF
l~Input

The external representation occcupies w positions.
It consgists of optional blanks fellowed by a "T" oar
"F", fellowed by optional charascters.

FORTRAN-80 Reference Manual Page 74
B.7.9 ¥ DESCRIPTOR

The form of X conversion is as follows:

nX
This descriptor causes no conversion te occcur, riar
does it correspend to an item in an input/output
list. When wvsed for cutput, it causes n blanks to
be inserted in the ouvtput Trecord. Under input
circumstances. this descripter causes the mnext n
characters of the input record to be skipped.
Dutput Examples:

FORMAT Statement Output
{b=blanks)

3 FORMAT (1HA, 4X, 2HBC) AabbbbBC

7 FDRMAT (3X. 4HARCH, 1 X2 bbbABCDH

Input Examples:

FORMAT Statement Input Btring Resultant Input

10 FORMAT (F4. 1, 3X,F3. 0 12 5ABCL20 12. 5,120
B FORMAT (7X.1I3) 1234567012 Ciz
8.7.6 P DESCRIPTOR

The P descriptor is used %o specify a scaling
factor for real conversions (F, E, D, &), The form
is nP where n is an integer constant (positive,
negative,. or zerol.

The scaling factor is sutomatically set to zero at
the beginning of each formatted I/0 call {(each READ
or WRITE statement). I+ a P descriptor is
entountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
thanged wntil another P descriptor is encountered
or the 1/0 terminates.

Effects of Scale Factar on Input:

During E. F. pr 6 input +the scale factor takes
effect only if no exponent is gpresent in the
axternal representation. In that casa, the
internal wvalue will be a factor of 10%¥#¥n less than
the gxternal value (the number will be divided by
10##¥n before being stored).

FORTRAN-B0 Reference Manual . Page 75

B. 7.7

87.7.1

Effect of Scale Factor on Output:

E-CQutput, D-Output:
The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
By n (the value remains the samel.

F~Qutput; _

The external value will be 10##n times the internal
value,

-utput:

The scale factor is ignored if the internal value
is sesmall enough to be output using F conversion.
(Otherwise, the effect ic the same as for E ocubtput.
SPECIAL CONTRIL FEATURES OF FORMAT STATEMENTS

Repeat Specifications

1. The E,+ F, I &, I, L and A field descriptors
may be indicated as repetitive descripitors by
using a repeat count r in the ferm rEw. d,
Fw. d, row dy viw, riw, TAw. The foallowing
pairs of FORMAT statements 2re esquivalent:

ab FORMAT (3FB. 3, F%. &)
¢ IS EQUIVALENT TO:
hé FORMAT (F@. 3, F8. 3, F8. 3, F?.2)

14 FORMAT (213, 245, 2ZEI1D. B
e I8 EQUIVALENT TO:

14 FORMAT (13, I3, A0, ADE10. 5, E10. 57

a. Repetition of a group of fiepld descriptors is

grecamplished by enclasing the grougp in
parentheses preceded by & repeat count.
Absence of a repeast ctount indicates a count of
one, Up to tuwo levels of parentheses.
including the parentheses requived by the
FORMAT statement, are permitted.
Mote the following equivalent statements:

FORTRAN-8D Reference Manual Page 7&
22 FDORMAT (Id, 4(F6. 1, 2X))
C I8 EQUIVALENT T4
22 FDRMAT (I3:F&. 1. 2%, F4. 1, 2%, FbH. L, 2%,
i Fé. 1, &%)

3. Repetition of FORMAT descriptors is alsea
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the dinput/output list that have not
been processed. When this orcurs the FORMAT
descriptors are re-used starting at the First
wpening parenthesis in the FORMAT statement. A

repeat count preceding the parenthesized
descriptori{s) to bhe re—vused is also active . in
the re-usa, This type of repetitive use of

FORMAT descriptors terminates processing of the
current record and initiates the processing of
a new tecoerd each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8. 7. 7.2 below.
Input Eiample: -
DIMENSION ACI00)
READ (3.13) A

13 FORMAT (SF7.3)
Im this example, the first 5 quantities from each
of 2O records are input and assigned to the array
elements of the array A,
Qutput Example:

WRITE (4, 12)E.F. K. L, M KK, LL, MM, K3, LE,
i M3

12 FORMAT (2F9.4, (317))
In this examplie, three records are written. Record
1 contains B, F, Ky L oand M Because the
descriptor 317 is revsed twice, Recovrd 2 contains
KiK, LL and MM and Record 3 contains K3, L3 and M3

FORTRAN-80 Reference Manual Page 77
8 7.7.2 Field Separators .

Two adg acent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.

Erample:

SHOK/FS. 3 or 2HOK.F&. 3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted

Tecards.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignared; the remainder of an output
record is filled with blanks. Successive slashes
§//7/7.../7) vause successive records to be ignored on
input and succesesive blank records to be written on
sutput.

Output example:
DIMENSION A{L100), Jiz20)

WRITE (7,8 J, A
g FORMAT (10I7/71017/50F7. A/50F7. 3}
In this example, the data specified by the Iiszt of
the WHITE statement are output to unit 7 according

to the specifications of FORMAT statement B. Four

recards are written as follows:

Record 1 Record 2 Kecord 3 Record 4
Ji1) SO ACL) AlS1?
SEED J12) AC2) A{SZ)
IS JL{R0) AL{SB0) ACLVDD)

Input Example:
DIMENSION BCIO)D

READ (4,17} B
17 FORMATI(FI10, 2/F10. 2///78F10. 2)
In this example, the two array elements Bi{l}) and
B{2) receive their values fFfrom the Ffirst dats

FORTRAN-80C Reference Manual Page 78

8. 7.

fields of suyccessive records (the rTemainders of the
two records are ignoredl. The third and fourth
records are ignored and the Temaining elements of
the array are filled Ffrom the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD

DEMARCATION

The following relationships ard interactions
between FORMAT contreol, input/output lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT contraol.

2. The conversiogn performed on data depends on

information Jointly provided by the elements in

the inpuit/ouvtput list and field descripters in
the FORMAT statement.

If there is ap input/ouvtput list, at least one

descriptor of types E, F. 0, &, I. L or A must

be present in the FORMAT statement.

4. tach execution of a formatted READ statement
tauses a new record to be input.

=3 Each item in an input 1list corresponds e 2
string of characters in the record and to a
descriptor of the types E. F: 6, I, L or A in
the FORMAT statement.

o, H and X descriptors communicate information
directly between the external record and the
field descriptors without rveference o list
items.

7. On input, whenever a slash 15 encountered in
the FORMAT statement or the FORMAT descripiors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any wunprocessed characters in the record
are ignored.

L

b. I+ mere input is mecessary to catisfy
list requirements, the next record is
Tead.

FORTRAN-BO Reference Manusal Fage 79

8.7.10

a. A& READ statement is terminated when all items
in the input list have been satisfied if:
. The next FORMAT descriptor is E, F. & 1.
L or A

b. The FORMAT control has rTeached the last
nuter right parenthesis of the FORMAT
statement.

I+ +the input list has been satisfied, but the
next FORMAT descriptor is H or X. more data are
processed {with the possibility of new records
being input) wuntil one of the above conditions
exists.

9. If FORMAT contraol reaches +the last right
parenthesis of +the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
A in the description of Repeat Specifications,
syb-paragraph B. 7.7 1)

10, When a Formatted WRITE statement is executed,
records are writk¥en each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
vone of the twe methods described foar READ
termination in 8 above. Incomplete records are
filled with blanks to maintain vrecord lengths.

FORMAT CARRIAGE CUONTROL

The first character of every formatted ouvtput

Tecord is uged to convey carriage control
information to the ocutput device, and iz therefores
never printed. The carriage control character

determines what action will be taken befoare the
line is printed. The ospticens are a5 follows;

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

FORMAT GPECIFICATIONS IN ARRAYS

The FORMAT reFer@ncer ET of a formatted READ or
WRITE statement (See 8. 1) may be an array name
instead of a statement lahbhel. If such reference is

FORTRAN-B0 Reference Manuval Page B0
made, at the time of execution of the REAR/WRITE
statement the first part of the information
contained din the array. taken in natural eorder:
must constitute & valid FORMAT specification. The
array may tontain nen-~-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.&. . it begine with a left parenthesis
and ends with 8 Tipht parenthesis).

The FORMAT specification may be inserted in +the
array by use of a DATA initiaslization statement. or
by wse af a READ statement together with an Aw
FORMAT. Example:

Aassume the FORMAT specification

(3F10. 2 41I8)
or a similar iR character specification is to be
stored dinto an array. The array must allow a
minimum of 3 storasge uwnitds,
The FORTRAN coding helow shows the various methods
of establishing the FORMAT specification and then
referencing the array for 2 formatted READ oy
WRITE.

FORTRAN-£80Q Reference Manual Fage 81
C DECLARE A REAL ARRAY
DIMEMSION A(3), B{3). M{4)
0 € INITIALIZE FORMAT WITH DATA STATEMENT
' DATA AZ/{3FL7, ‘0.3, 7, ‘418)°/

¢ READ DATA USING FORMAT SPECIFICATIONS
G IN ARRAY A

READ(&: A} B, M
{ DECLARE AN INTEGER ARRAY

DIMENGION IA{(8), B(3), M{4)

C READ FORMAT SPECIFICATIONS
READ (7.,15) IA
¢ FORMAT FOR INPUT OF FORMAT SPECIFICATIONG
135 FORMAT {(4A2)

READ DATA USBING PREVIOUSLY INFUT
FORMAT GPECIFICATION
READ (7, IA) B, H

el

C

FORTRAN-80 Reference Manual Page 8=
SECTION 7
FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming proceduvres such that the statement
or statements of the procedures need appear Iin a pragram
only ance but may be referenced and browght into the logical
execution sequence of the progrem whenever and a5 often as
needed.
These procedures are as follows:

5. Statement functions.

&, Library functions.

3. FUNCTION subprograms.

4, SUBROUTINE subprograms.
Each of these procedures has ite own unique requirements for

refevence and defining purposes. These reguirements are
discussed in subsequent paragraphs of this section.
Howewver, certain features are common to the whole group or
to twe or more of the procedures. These common features are
as follows:

5. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a3 letter.

&2 The first three are designated as “"functions" and
are alike in that:

Y They are always single valued (i.e.. they

return one value to the program unit from which
they are referenced).

", They are referred to by an eXpression
containing & Function name.

3. They must be typed by tupe specification
shtatements if the data type pf the
gingle-valued result is to be different Ffrom
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
cansidered program units.

FORTRAN-80 Reference Manual Page 83
In the following descriptions of these procedures. the term
calling program means the program unit or procedure in which
a reference to a procedure is made. and the term Ycalled
pragram” means the procedure to which a reference is made.

7.1

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for & main program unit. The
form of the statement is:

PFROGRAM name
1# present, the PROGRAM statement must appear
before any other statement in the praogram unit.
The name consists of 1-4& alphanumeric characters,
the Ffirst of which is a letter, I+ no PROGRAM
statement 1is present in & main pregram the
tompiler assigne a name of $MAIN to that pregram.
STATEMENT FUNCTIONS

Statement functions are defined by & single
arithmetic or logicael assignment statement and are
relevant aenly to the program unit in which +they

appear. The peneral form of a statement function
ig as follpws:

fial, a2,... an) = @

where ¥ is the function name, the ai are dummy
arguments and e ds an arithmetic or lopgical

expression. .
Rules for ordering. structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede 21l executable
statements in the unit and follow 211

specification statements.

2, The at are distinct wvariable names or array
elements, but, being dummy variables. they may
have the same names as variasbles of the same
tupe appearing elsewhere in the program unit.

3. The expression e is constructed according +to
the rules in SECTION 4 and may contain only
references to the d ummy arguments and
non=Literal constants, variabie and array
glement references, utility and mathematical
function referencas and references to

FORTRAN-80 Reference Manual Page 84

9.3

previously defined statement functions.

4. The tupe of any statement Function name o7
argument that differs Ffrom 1its pre-defined
convention type must be defined by a type
specification statement.

8. The rTelationship between f and e must conform
to the replacement tules in Hection D

&. £ statement function is called by i¥s name
followed by & parenthesized list of arguments.
The expression is evaluated using the arguments
specified in +the c¢all. and the reference is
replaced by the result,

7. The ith parameter in every argument list must
agree in type with the dith -dummy in the
statement function.

The example below shows a stotement function and a

statement function call.

C STATEMENT FUMCTION DEFIMNITION

¥

FUNCI (A B, S, D) = {{A+RY#%#0) /D

C GTATEMENT FUNCTION CaALL
C

ALRZ=A1-FUNCIL(X. Y, 27, C7)
LIBRARY FUNCTIONS

iLibrary funclitions are & group of utility and
mathematical functions which are "built-in" %o the
FORTRAN system. Their names are pre~defined to the
Processor and autamabically typed. The functions
are listed in Tables 9~} and 9-2. In the tables,

arguments are dencoted as al.ad:...,an. if more than
one argument iz required; or a&as a if anly one is
reiguired.

A& library function is caslled when its name is used
in an arithmetic expression. Such & reference
takes the following form:

fiasl, gz, ... an)

where £ i4 the name of the function and the ai are
actual arguments. The arguments must agreg in

type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

FORTRANM-BC Reference Manual Page 085
in addition to the functions listed in 9-1 and -2
four additional library subprograms osre provided to
enable direct access to the BOBO {or IBO) hardware
These are:

PEEK, POKE, INP, OUT

PEEFR and INE are Logical functions: POKRE and 0OUT
are subroutines. PEEK and POKE allow direct access
tg any memory location. PEER(a} rtTetyrns the
rontents of the memory location specified by .
Cal.l. POKE(at, a2) rauses the contents of the memory
logcation =specified by &1 to be replaced by the
contents of a2 INF and OUT sllow direct access to
the 150 ports. INF{a) does an input from port a
and returns the 8-bit value input. CALL OUT(al, a2)
sutpute the wvalue of a2 to the port specified by
al.

Examples;

A1 o= BHFLOAT (17D

MAGNI = ABS(KBAR)
PRDIF = BIMIC. I
83 = GIN(TLZ)

ROOT = (-B+BQRT{(B##2—4 #A%(C))/
1 {2, #A)

FORTRAN-80 Reference Manual Page 86
TABLE 9-1
Intrinsic Functions
Furetion Tuypes
Mame Refinition Argument Function
AED tal Real Real
inps Integer Intrger
DARS Daouble Double
ALTMT SGipgn of a times lar- Real Real
INT gest integer <=lal Real Integer
IDINT Douvblie Integer
AMOD ali{mod az) Real Real
MU Integer Integer
AMAKO Max€al:ad....) integer Real
AMAX1 Real Real
MAXO Integer Integer
MaA 1 Real Integer
DMAX L Double Double
AMINO Mintal,a2,...) Integer Real
AMINI Real Real
MING Integer Integer
MInI Real Integer
BMING Double Double
FLOAT Conversion from Integer Real
Integer to Heal
IFIX Conversion from Real Integer
Real to Iinteger
HI1GNM Bign of a2 times Real Real
18516N Integer Integer
DHIGN Double Double
DIiM al - Mintal.a2) Real Real
10TM Integer Integer
GNGL, Dovble Real
DRLE Real Double

FORTRAN-BO Hetference Manual Page 87
TABLE 9-2
Basic External Functions

Number
of Type
Mame Arguments Definition Argument Function
X i pHEa Real Real
DEXP 1 Double Double
aL.O6 1 In (8) Real Real
DL0e 1 Double Double
SLOGLIO 1 logiQial Real Real
DLOGIO 1t Double Double
SIn E| sin {a}l Real Real
DEIN 1 Double Double
Cos i cos {a? Real Real
peos i Double Double
T AN i tanh (a) Real Real
SQRT i {a) ## 1/2 Heal Real
DHEORT 1 Double Dpuble
ATAN 1 arctan {(al} Real Real
DAT AN 1 Double Double
ATANZ 2 arctan {al/az) Raal Real
DATANR 2 Dauble Double
DMOD = alimod az) Bouble Double

FORTRAM-~BO Reference Manual Page 88
7.4

%,

o

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement bkas one of the Ffollowing
fourms:

t FUNCTION f£{al,as2, ...an)

ar

FUNCTIOM f{al,ad, ... ani

where:

1. t iz either INTEGER, REAL, DOUBDLE PRECISION ot
LOGICAL or dis empty as shown in the second
form.

f is the name of the FUNCTION subprogram.

The ai are dummy arguments of which there must
be &t least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

SR

Construction of FUNCTION subprograms must comply

with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram. the FUNCTION
name must zppear at least once on the left side
of the equaliity sign of an assignment statement
or as an item in the input list of an input
statement, This defines the value of the
FUNCTION g0 that it may be returned to the
calling program
Additional wvalues may be returned *o the
calling program through assignment of wvalues fo
dummy srguments.

FORTRAN-BO Reference Manual Page 8%

Example:

TTFUNCTION Z7(A. B, C)

27 = 5. #{A~-B) + BARTIC)

€ REDEFINE ARQUMENT
R=R+77

RETURN

END
The names in the dummy argument list may not appear
in EQUIVALENCE, COMMOM or DATA statements in the
FUNCTION subprogram.
If & dummy arqument is an array name, then an arresy
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.
A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLGOCK DATA
statements, SUBROUTINE sziatements, another FUNCTION
statement or any statement which references either
the FUNCTIOM being defined or another subprogram
that references the FUNCTION being defined.
The logical termination of & FUNCTION subprogram is
a RETURMN ctatement and there must be at least one
of them.
A FUMCTION subpregram must physically terminate
with an END statement.

FORTRAN-B0 Reference Manual Page 90
Example:
“““““ FUNCTION SUM (BARY, I..J)
DIMENSION BARY(10, 20)

UM = 0.0
DO 8 K=1,1
nog M= 1,4
a8 SUM = GUM + BARY{K, M)
RETURN
END
F.é REFERENCING A FUNCTION SUBPRUGRAM

FUNCTION sugprograms are called whenever the
FUNCTION name:, asccompanied by an argument list, is

used &z an opervand in an expression. Such
references take the following form:

flal,a2:,...,an}

where £ is a3 FUNCTION name and the ai are actuoal
arguments, Parentheses must bhe present in the form
shoun. .

The arguments ai must agree in type. order and
riumber with the duvmmy arguments in the FUNCTION
statement of the called FUNCTION suvhprogram. They
may bhe any of the following:

A variable name.

An array element name,

An arrvay name.

AN PXPTESEION.

A SUBROUTINE or FUNCTION subprogram name.

. A Hpllerith or Literal constant.

I# an ai is & subprogram name. that name must have
previously besn distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding demmy arguments in the talled
FUNCTION subprograms must be wsed in subprogram

R AN TR

references.
I# ai is & Hollerith or Literal constant. the
torresponding dummy variable should encompass

enough storage units to correspond exactly +o the
amount of storage needed by the constant,
When a FUNCTION subprogrem is called, programn

FORTRAN-80 Reference Manual Page %1

R

o

control goeoes tao the first executable statement
following the FUNCTION statement.
The following examples show references to FUNCTION
subprograms.

210 = FT1+Z7(D, T3, RHO)

DIMENSION DAT(D, 5)

81 = TOTL + SUM(DAT, S, 5)
SUBROUTINE SUBPRUOGRAMS

A program unit which begins with a SUBRGUTINE
statement is ctalled a SUBRDUTINE subprogram The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s {(s1,a2,...,an?}

(43

SUBROUTINE =

where & is the name of the SUBROUTINE subprogram
and each a8i i a dummy argument which represents a
variahle or array name o7 ancther SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBRDUTINE SUBPRUOGRAMS

The SUBROUTINE =statement must be the first statement
of the subprogram. _

The BUBROUTINE zubprogram name must mnot appesr in
any statement other than the initial SUBROUTINE
statement. '

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subproagram.

I+ & dummy argument is an array name then an array
declarator must appear in the svbprogram with

dimensioning information consistant with that in the
calliing program.

If any of the dummy arguments represent valves <+that
are %o be determined by the SUBROUTINE subprogram
and returned to the calling program:s these dummy

FORTRAN-80 Heference Manual Page 92

14,

arguments must appear within the subprogram on the
left side of the equality sign in & replacement
statement. in the input list of an input statement
or as a parameter within a subprogram reference.
A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTIME statement, a PROGRAM
statement or any statement which references the
SURROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.
A SUBROUTIMNE subprogram may contain any number of
RETURN statements. It must have at least one.
The RETURN statementi(s) is the 1logical! termination
point of the subprogram.

The physieal termination of & SUBROUTIMNE subprogram
is an END statement. :

If an actuval argument transmitted te & SUBROUTINE
subprogram by the calling program is the name of 2
SUBROUTINE or FUNCTION subprogram. the corresponding
dummy argument must be wsed in the called SURRDUTINE
subprogram as & subprogram teference.

Example:

£ SBUBRDUTINE TO COUNT POSITIVE ELEMENTS
c IN AN ARRAY
SUBROUTINE COUNT P{ARRY. I, CNT)
DIMENGION ARRY{(7)
CNT = ©
Do 9 JU=1,1
IF{ARRY{J))9, 5, 5
9 CONTINUE
RETURN
5 CNT = CNT+1. ¢
GO 1O %
END
REFERENCING A SUBRDUTINE SUBFPROGRAM

& SUBROUTINME subproagram may be called by wsing a
CAall statement, A CALL statement has one of the
#ollowing forms:

cat.l. si{al.azd:,....,an)

ar

FORTRAN-BO Reference Manual Page 93

CALLLL s

where 5 is a SUBROUTINE subprogram name and the ai
are the actusl arguments +to be used by the
subprogram. The ai must agree in type. order and

number with +the corresponding dummy arguments in

the subpregram—defining SUBRROUTINE cstatement.

The arguments in a CALL statement must comply with

the following rules:

1. FUNCTION and BUBROUTINE names appearing in the

argument list must have previously appeared in

an EXTERNAL statement.

If the called SUBROUTINE zubprogram contains a

variabhle array decliarator, then the CaALL

statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBRIOUTINE subpragram dummy
argument list is an array., the corresponding
item in the CAlLL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, program

contrel goes to the first executable statement

following the SUBROUTINE statement.

Example:

i

DIMENSION DATAL{IQ)

¢ THE éTﬁTEMENT BELQOW CALLE THE
C SUBROUTINE IN THE PREVIDUS PARAGRAPH
C
CALL COUNTP(DATA, 10, CPOS)
RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMES

The lpgical termination of a FUNCTION or SUBRDUTINE
subprogram dis a RETURN statement which transfers
contrel back to the calling pregram The general
torm of the RETURN statement is simply the word
RETURN

The following rules govern the wse of the RETURN
statement:

FORTRAN-S

.11

O Reference fMsnual Page 94

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

=, RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logicelly follow the CALL
statement. '

4, Upon redturn from a FUNCTION subprogram the
single-valued result of the suvbprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

. Upon return from a SUBRDUTINE suhprogram the

values assigned toe the arguments in the
SUBROUTINE are available for use by the cailing
program.

Example:

Caliing Program Unit

Call BUBR{Z?,B7.R1)

Called Program Unit

SUBROUTINE SUBR{A, B, C)

READ{Z.7) B

A = B#sC

RETURN

7 FORMATLF®. 2)

END
In this example, 29 and B7 are made availakle ¢to
the talling program when the RETURN occurs.
PROCESSING ARRAYSE IN SUAPROCRAMS

—

I# a calling progvam passes an array name o0 &
subprogram, the subpragram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments Tepresent arrays or array

FORTRAN~-BDO Reference Manual Page 99
elements.
For example, & FUNCTION suvbprogram designed to
compute the average of the elements of any ane
dimension array might be the folowing:
Calling Program Unit

DIMENMSIOMN 21(350), Z2(23)

Al AVE(Z1, B0)

Il

Al-AVE L2, 25)

AR

Czlled Pragram Unit

FUNCTION AVE{ARG, I)

DIMENSION ARG(S0)

BUM = Q.0

DO 20 Jm=1, 1

20 8UM = SUM + ARG(J)

AVE = SUM/FLOAT(I)

RETURN

END
Mote that actval arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
pragram and the arrayg names and their actual
dimensions BT E transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTIONM subprogram itself contains & dummy
array and specifies an array declarator.
Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FURTRAN-B0O Reference Manusal Page 9&
Calling Program bUnit

DIMENSION A3, 4, 3)

Cabl, SUBR{A, 3, 4. 3)

END
{alled Program Unit

SUBROUTINE SUBRI{X, I... K)
DIMENSION X{I.J,K)

RETURN
END

I+ is valid to use variable dimensions only when
the array name and all of the variasble dimensions
are dummy arguments., The variable dimensions must
be +type Integer. I+ is invalid %o change the
values of any of the variable dimensions within fthe
alled program.

?.12 BLOCK DATA BUBPROGRAME

A BLDOCK DATA subprogram has as its only purpose the
initislization of data in & COMMON block during
logading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA Esubpragram-name)

and end with an END statement. Such subprograms

may contein only Type, EQUIVALENCE, DATA, COMMON

and DIMENSION statements and are subject te the
following considerations:

i. I# any element in & COMMON block iz to he
initialized, @ll elements of the block must he
listed in the COMMON statement even though they
might net all be initislized.

2. Initiglization of dats in more than one COMMON
Block may be accomplished in one BLOCK DATA
subprogram.

FORTRAN-820 Reference Manual Page 97
3. There may be more than one BLOCK DATA
subprogram loaded at any given time.
4. Any particuvlar COMMON block iftem shouwld anly be
initialized by one program unit,
Example:
BLOCK DATA
LOGICAL Al
COMMON/BETA/B(3, 3) /8AM/C(4)
COMMON/ALPHA/AL, F.E, D
DATA B/1.1,2. 5,3 8,384, 96,
12%0, 52, L. 1/.C/1. 2E0Q, 344, O/
DATA ALS. TRUE. /L E/ D &/

FORTRAN—-80 Feferencte Manual Fage 98

APPENDIX A
lLanguage Extensions and Restrictions

The FORTRAN-80 langusdge includes the feollowing extensions to
ANST Standard FORTRAN {X3. 9-19&64).

a.

7.

If ¢ is ysed in a “8TOF ¢’ or "PAUSE ¢’ statement,
£ may be any six ASCII characters.

Evrroar and End-of-File branches may be specified in
READR and WRITE statements using the ERR= and END=
aptians,

The standard subprograms PEEK, POKE. INP., and QUT
have been added to the FORTRAMN library.

Statement functions may use syubscripted variables,
Hexadecimal constants mau be used wherever Integer
ronstants are normally allowed. _

The literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There idis no rtestriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed.
and conversions are done auvtomatically.

FORTRAN—BO places the following restrictions upon Shandard

FORTRAN.
1.

2,

The COMPLEX data type iz not implemented, It may
be included in a future Telease.

The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTIOM, BLOCK DATA

2. Tuype, EXTERNAL, DIMENSION

3. COMMON

4. EQUIVALENCE

FORTRAN-80 Reference Manuval Page 9%
9. DATA
o, Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Inteoer, Real: Double
Precision, Logical.

4, The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

5. In Input/Output 1list specifications, sublists
enclosed in parentheses are noet allowed.

Descriptions of these language extensions and restrictions

are included at the appropriate points in the text of this
dacument.

FORTRAN-BO Heferencte Manual Page 100
APPENDIX B
I1/0 Interface
Iinput/Output operations are table-dispatched to the driver
roevtine for the proper Lpgical Unit Number, $LUNTE is the

dispatch table. I¥ contains one 2Z~byte driver address for
sach possible LUN. It also haz a one—-byse entry at the
beginning. which contains the maximum LUN plus one. The
initial run—time pachkage provides for 10 LUN’s (1 ~ 10), all
of which correspond to the TTY. Any of these may be
redefined by the user. or more added, simply by changing the
appropriate entries in $LUNTRB and adding more drivers. The

runtime system wses LUN 3 for errdrs and other user
communication. Therefore, LUN 3 should correspond %o the
operator console. The initial structure of SLUNTR is shoun
in the listings following this appendix.
The device drivers alsoc contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:
1) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write
%) Rewind
4} Backspace
7}y Endfile
Each devicte driver contains up *o seven routines. The
starting addresses of each of these seven Toutines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTE then points to this locel
table, and the runtime system indexes inte it %o get the
address of the appropriate rouvtine to handle the requested
I/0) operation.
The +foliowing coenventions apply to the individual 170
routines:
1. Location 4$BF contains the data buffer address For
READs and WRITEs,
2. For a WRITE., the number of bytes to write 1is in
lpcation $BL.
3. For a READ, the number of butes rtead should be
returned in $BL.

FORTRAM-8B0 Reference Manual Page 101
4, All 1/ operations set the condition cpdes before

exit to indicate an errer condition, end—of-~file
condition. or normal returm:

&) C¥=i, ZI=don‘t care - 1/0 error

B) C¥Y=0, I=0 — end-of-file encountered

£y CY¥=Q, I=1 - normal return
The runtime system checks the condition codes after
¢alling the driver. If they indicate a non—normal
condition., control is passed to the label specified
by "ERR=" or "END=" or, 1+ no label is specified, a
fatal error resulis,
$I0ERR is a global routine which prints an “"ILLEGAL
1/8 OPERATIONM" message {(neon—fatal). This routine
may be used 1if there are some operations not
allowed on a particvlar device {(i.e. Binary 170 on
) a TTY).

h

NOTE
The I/70 buvffer has a fized maximum length
of 132 bytes wunless it dis changed at
installation time. I# & driver allows an
input operation to write past the end of
the buéfer, essential runtime variables may
be atfected. The CONSRPQUENCES are
unpredictable.
The listings following this appendix contain an example
driver ¥faor a TTY. REWIND, BACKSPACE, and ENDFILE are
implemented as No-Ops and Binary 1/0 as an error. This is
the TTY driver provided with the runtime package.

FORTRAM-80 Refgrence Manusl Fage 102
APPENDIX C
Subprogram Linkages

This appendixz defines a normal subprogram call as generated
by the FORTRAN compiler. It is dincluded to facilitate
linkages between FORTRAN programs and those written in other
languages, such as BOBO Assembly.

A subprugram reference with ne parameters generates a simple
"CaLL" instruction. The corresponding subprogram should
return via a simple "RET. " (LALL and RET are 80B0 opcodes -
seg the assembly manuval or B80OBO reference manuval for
explanations.)

A gubprogram Teference with parameters results in a somewhat

more complex calling sequence. Parameters are always passed
by reference {i.e. . the thing passed is actually the address
of the Jow byte of the artual argument). Therefore.

parameters always occupy two bhytes each, regardless of type.
The method of passing the parameters depends upon the number
of parameters to pass:
1. I# the number of parameters is less than or equal
to 3, they are passed in the registers, Parameter
1 will be in HL, 2 in DE (if present), and 3 in BHE
(if present).
. 1f the number of parameters is greater than 3. they
are passed as follows:

1. Parameter 1 in HL.

2, Parameter 2 in DE.

d. FParameters 3 throvgh n in a8 contiguous data
block. BC will point to the low byte of this
data block {(i.e., to the low byte of parameter
32,

Mote that, with this scheme, the subprogram wmust know how
mary parameters to eipect in order to find them

Conversely., the calling program is responsible for passing
the correct number of parameters. NMNeither the compiler nor

the rTuntime system checks for +the correct number of

i

parameters.

1# the subprogram eipects more than 3 parameters., and needs
to transfer them +9 a lacal data area, there is a system

FORTRAN-B0 Reference Manual Fage 103
subrovtine which will perform this transfer. This argument
transfer roubtine is named $4T, and is called with HL
pointing to the locel data area, BC pointing to the third
parameter. and A containing the number of arguments to
transfer {(i. e.., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling $AT. For example, if a subprogram
expects 5 pavameters, it should lpok like:

SUBR: SHLD Pt : SAVE PARAMETER 1
XCHE
SHLD Pa : BAVE PARAMETER Z
MVI A3 i MO, OF PARAMETERS LEFT
LL.X1 H.P3 PPOINTER TO LOCAL AREA
Cat.l HAT : TRANSFER THE OTHER 3 PARAMETERS

[Body of subprograml

RET i RETURN TO CALLER
P1: g = i BPACE FOR PARAMETER 1
P] 2 i SPACE FOR PARAMETER 2
P33] & » SPACE FOR PARAMETERS 3-5

When accessing parameters in & subprogram. doen’t forget that
they are pointers to the actual arguments passed.
NOTE
It is entirely wup to the
programmer to see to it that
the arguments in the «calling
program match in number. type,

angd length with the parameters

expected by the subprogram

This applies ta FORTRARMN

subprograms, as well as those

written in assembly language.
FORTRAN Functions {Section %) return their values in
registers or memory depending upon the type. Legical
results are returned in (A, Integere dinn (HL), Reals in
memotTy at $AC, Douvble Precision in memory at $DAC. $AC and
#DAC are the addresses of the lpw bytes of the mantissas.

FORTRAN-80 Reference Manual Fage 104

APPENDIX D
ASCIT CHARACTER GODES

ECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
Jol¥ NUL. 043 + 08 v
001 SOH 044 . og7 W
o0 STX D45 - 088 X
faleke ETX 046 . o089 Y
0oa O 047 / 090 z
005 ENG 0483 0 091 L
006 ACK 049 1 092 \
007 BEL 050 2 093 3
008 BS 051 3 094 ~ a1
009 HT 052 4 095 ___ for
010 ILF 053 5 096 ’
o1t VT 054 & 097 a
01 FE 055 7 098 b
013 CR 056 a 09% c
014 50 057 9 100 d
05 G1 058 : 101 e
0i6 DLE 059 ; 102 £
017 nei 0&0 < 103 a
018 nea 0&1 = 104 h
019 nea b2 > 105 i
020 DC4 063 ? 106 J
021 NAK 044 @ 107 k
ong 5YN 0635 A 108 1
023 ETB 066 B 109 m
o4 CAN 0&7 c 110 n
0o EM 068 D 111 o
026 5UB 069 E 112 p
0o7 ESCAPE Q70 F 113 q
08 FS o7t & 114 r
02y ¢S 072 H 115 s
030 RS 073 T 116 £
031 us 074 J 117 U
Oaz SPACE 075 K 118 v
ettt ! 076 L 119 w
O34 " 077 M 120 x
035 # 078 N 121 y
006 % 079) 122 z
037 % 080 P 123 {
038 % 081 G 124 :
03y ’ o8 R 125

040 ¢ 083 5 126

041) 08 T 127 DEL.
042 # 085 U

LF=tine Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-8(Reference Manual Page 105
APPENDIX E
Referencing FORTRAN-B8O Library Subroautines
The FORTRAN-B0 library contains a number of subroutines that
may be referenced by the user from FORTRAN or sssembly
programs,
1. Referencing arithmetic Rputines

In the following descriptions, $AC refers o the
floating accumulator; BAC is the address of the
low byte of the mantissa. £AC+3 is the address of
the exponent. $DAC refers to the DOUBLE PRECISION
accumulator; $DAL is the address of the low byte
pf the mantissa. $DACH7 is the address of the
POUBLE PRECISION exponent.
All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to
the following calling conventions,
I. Argument 1 is passed in the registers;
Integer in [HL]
Real in $AC
Double in $DAC
Z. Argument 2 is passed either in registers, nr in
memovry depending upon the type:
a. Integers are passed in LHL1, or TDE] if
EHLY contains Argument 1.
b. Real and Double Precision values are
passed in memory pointed to by [HLI,
(LHLI peints to the low byte of the
mantissa.)

FORTRAN-80 Reference Manual

Page 104

The following arithmetitc routines are contained
the Library:

Function

Addition

Division

Exponentiation

Multiplication

Gubtraction

Name

AN
AR
$AQ
AR
LAaU
D7
SDA
HD3
DG
$DR
DU
sES
$EA
$EB
FEQ
$ER
HEU
M7
EMA
sMB
MG
EMR
MU
$5A
%58
$54
$5R
w8U

Argument 1 Type

Real
Real
Double
Double
Double
Integer
Real
Real
PDouble
Pouble
Double
Integer
Real
Real
Dpuble
Double
Double
Integer
Real
Real
Daouble
Dauble
Double
Real
Real
Double
PBouble
Dowble

Argument Z

Integer
Real
Integer
Real
Double
Integer
Integer
Real
Integer
Real
Double
Integer
Integer
Real
Integer
Real
Double
integer
Integer
Real
Iinteger
Real
Bouble
Integer
Real
Integer
Real
Double

FORTRAN~BO Reference Manual Page 107
Additional Library routines are provided for converting
between valve types. Arguments are slways passed toc and
returned by these conversion routines in the appropriate
registers;

L.egical in LAID

Integer in L[HLI

Real in $AC

Double in $DAC

MName Function

®CA Integer to Heal
$CC Integer to Double
HCH Real to Integer
$CJ Real to Logical
FCH Real to Double
wCX Bouble to Integer
LY Douvble to Real
HCZ Double to Logical

2. Referencing Intrinsic Functions

Intrinsic Functions are passed their pasrameters in H.L and
I E. If there are three arguments, B, C contains the third
parameter. If there are mare than three arguments, B, C
contains & pointer tn a bleock in memory that holds the
remaining parameters. Each of these parameters iz a pointer
to an argument, {Spe Appendix B.)
For a MIN or MAX function., the number of arguments is passed
in A
NOTE

Nene of the functions (except

INP and OUT) may take a byte

variable as an argument. Byte

‘variables must first be

converted to the type expected

by the function. Qtherwise,

Teswlts will be unpredictable.
3. Formatted READ and WRITE Routines

A KREAD or WRITE statement calls ene of the following
routines:

FORTRAN-BO Reference Manual FPage 108

W2 {2 parameters) Initialize for an 1/0 transfer
$WE (D parameters) to & device {(WRITE)

BRE (2 paramelters) Initialize for an 1/0 transfer
BRHY {5 parameters) from a device {(READ)

These Toutines adhere to the following calling conventions:

1. M.l points to the LUN
#Z. ILE points to the beginning of the FORMAT statement
3. If the routine has five parameters:. then B.C points
to & bilock of three parameters:
a. the address for an ERR= branch
b. the address for an EQF= branch
c. the address for a REC= valuye
The routines that transfer values intp the I/0 buffer are:
%10 transfers integers
HI1 transfers tTeal nymbers
B2 transfers logicals
$1d transfers douvble precision numbers
Transfer Toutines adhere to the following calling
conventions:
1. H.L points to a location that contains the number

of dimensions for the variables in the list

2. DE points to the #irst value to be transferred

3. B.C points tag the second value to he transferred if
there are exactly two values to be transferred by
this call. If there are more than two values, B.,C
points %o & black that contains pointers to the
second throuvgh nth values.

4. Register A& contains the number of parameters
{including H. L) generated by this call.

The routine $MND terminates the 1/0 process.

FORTRAN-B8O Reference Manual
INDEX

Arithmetic Expression
Arithmetic IF

Arithmetic Operators -

Array

Array Declarsator
Array Element

HSCII Character Cndes-

ASSIGN . . .
Assianed GDTD
BACKGPACE .
BLOCK DATA .
CAlLL .

Character Set
Characteriskic
Comment Line
COMMON . .
Computed GDTD
Constant
Continuaticn
CONTINUE .
Control Statements
DATA .

Data Representat1nn
Data HStorage
RECODE . .
DIMENSION

Disk Files

g . . .

Bo Impllad Lzst
Double precision
Dummy .

ENCODE |

END . . .

END Line .
ENDFILE . .
EQUIVALENCE
Execukable
Expression .
Extended Range .
EXTERMNAL

External Functlnns
Field Descriptors
FORMAT
Formatted READ

Page 109
29~2b, 47
44, 47, 49
8

14, 20, 34~-35, 37-38., 40-41,
56: 79 8‘?""90: 94"‘"95

20

14, 20, 27, 32, 3%
104

44, 4b4

485

&0 |

34, 37, P&, 26

44, B3 92

7

23

7

34, 37: 3‘?"“41: 89.- 1. 96
44-4%

14-15

9 12

44, Bi

44

34, 41, 89, 91, %6
14

21

&1

=0, 34, 37, b

a7

44, AT7-4%

&3

14

193, 95

&1

w3, 8%, P2, 95

11

&0

34, 3941, 489, 91, 956
13, 34, 44

23—-26, 31-32

20

34, 37, 70, 93

87

&5

5557, &5, &% 7i-75, 77-80
54

Formatted WRITE
FUNCTION .

e0Ta |)
Hexadecimal
Hollerith

1/)
I-0 List .

IF .

Index ..
Initial Line .

TP

Integer Coe
Intringic Functions
Lahel o
Library functien
Library Subroutines
Line Farmat

l.ist Item

Literal
Logical

57
24, 37, 82, 88-95
44, 49

8. &1, 21. 42
9, 15: 20-21, 31: 42, pi [=9

7172, %0
4, 100

&

44, 47

44

i1

83

14, 1%, 23
B&, 107

2. 12+ 44-—-435, 48
g32. 84

105

g

o2

2, 20""21: 31: 42: 72: ‘3’0
14, 19, 23, 73

L.ogical
Logical
Logical
l.ogical

Expression .

IF .
fperator
Unit Mumber

LUN

Mantissa .

Nested .o
Mon—-executable .
Nuomeric Conversions
Uperand

Uperator .

our .

FAUSE

FEEK .

FOKE . |

FROGRAM

Hange

READ .

Real e
Helational Expression
Relational Operatar
Replacement Statement
RETURN .

REWIND .

Ecale Factor

Specification Statement

Statement Function |

27, 30, 48
44, 47, 49
=3

54, 88, 100
54, 58, 100
=3

=1

13, 34

&é

=5

23

85

44, 4%, 52
85

85

34, B3, 92
49

56: 54, \5’5‘): 74, 78-80, 107
14, 19, 23
27

27

32, 48

44} 459, 5:3: B‘?; 92_94
&0

74-735
34
34, 8283

STOP .

Storage .
Storage Format
Btorege Unit
Subprogram .
SUBROUTINE .
Subscript

Subgscript Expression .

Type

Tuype Statement .
Unconditional GOTO .
Unformatted I/0
Variable .

WRITE

44, 49, 52

35

14

21, 23, 3%

37, 53, 82, B8-94, 102
34, 37, 53. 82, B?-94
20, =27

21, 27

26

35

44

o8

i4, 1%, 32, 38, 90
2758, A3, 74, 78-8Q. 107

