3.

microsoft

cobol-80 documentation

Microsoft COBOL-80 and associated software
are accompanied by the following documents:

COBOL-80 REFERENCE MANUAIL
provides extensive descriptions of
COBOL-80's statements, syntax and
organization.

COBOL~-80 USER'S MANUAL
describes the COBQOL-80 compiler
commands, file handling and
error messages. ’

MICROSOFT UTILITY SQOFTWARE MANUAL
describes the use of the MACRO-80
Assembler, LINK-80 Linking Loader
and LIB-80 Library Manager with
the COBCOL-80 compiler.

COBOL-80

Overview

Microsoft's COBOL-890, which runs on the 8080/2-80/8085, brings the
world's most widely used computer programming language to the micro-
computer user. COBOL-80 is comparable to COBOL systems found on mini-
computers and large mainframes. Consequently, it gieatly enhances the
usefulness of microcomputers because it gives users access to the
incredibly large number of programs already written in COBOL. Because
C0BOL-80 is a standard, COBOL programs written on other computers may
be run easily on 8080, Z-80 or 8085 systems,

Microsoft's COBOL is based on the 1974 ANSI standard and contains
all Level 1 features and the most useful Level 2 options for the
"Nucleus" and for Sequential, Relative and Indexed file handling
- facilities. Additionally, Level 1 Table Handling, Library and inter-
program Communication facilities are provided. Of the advanced Level
2 features, Microsoft has included the verbs STRING, UNSTRING, COMPUTE,
SEARCH, and PERFORM {varying/until), along with convenient condition
specification by way of condition-names, compound conditions and
abbreviated conditions. Furthermcore, a data format called COMP-3
allows numeric data to be packed two digits to the byte so that mass
storage requirements are reduced. Lastly, a batch-style Debug tech-
nique is implemented to get programs running in a minimum of on-iine
time. '

Microsoft's COBOL system consists of two complete packages: a
compiler for transiating source code into relocatable object code
{which, incidentally, is compatible with the object code of our FORTRAN-
80 compiler and MACRO-80 assembler), and a runtime system-for running
the program by interpreting the object code at execution time.

The Compiler

The compiler is written in carefully designed, machine-independent
pseudo-code rather than 8080 machine language. There is an interpreter
written in 8080 machine language which executes the algorithms speci-
fied by the pseudo-code, Because this pseudo-code has been implemented
successfully on several minicomputers by simply rewriting the inter-
preters, the final product is always more reliable, less costly and
requires less memory than a purely machine-coded version. This tech-
nique simplifies maintenance because the compiler is more compact and
the pseudo-code instructions were specifically chosen with the intent
of writing a COBOL compiler. Speed degredationm is less than 20%
because the time spent to interpret each pseudo-code instruction is
insignificant compared to the time required for its total function.

The size of Hicrosoft's compiler plus interpreter is approximately
25K bytes exclusive of operating system and tabie space. It consists
of five overlays, each one executed in turn, in the same memory space,
The operating system for compilation needs oniy the capability to read
and write sequential files. Because the compiler is "two-pass,' the
source code i1s read while an intermediate file is written; then the
intermediate file is read and the generated object code is written. An
optional file showing source lines and errors may alsc be produced. Of
course, if the COPY function is used, provision must be made for an
alternate source file. Also, an optional table-spill mechanism re-
quires random-access file |/0 so that excess tabie information can be
stored temporarily on disk if needed. Lastly, a sequential input file
which holds the file overlays is read periodicaily at the end of each
major ''phase.'" An operating system to handle all of this, such as CP/M
{along with Microsoft's command scanner), requires about 7K bytes.
Table space for & 500 line program is estimated at 12K bytes. Thus the
full system requires 25K plus 7K pius 12K or a total of 44K bytes.

Runtime System

The cobject code generated by the compiler is also interpreted.
The runtime system handles all algorithmic functions such as arithmetic,
string manipulation and editing in addition to managing sequential,
relative and indexed 1/0. [t also controls program flow as specified
at the source level by cenditions, GOs and PERFORMs. In short, the
runtime system handles, at the machine level, anything that can be
written in Microsoft's COBOL,

As in the compiler, the generated pseudo~code specifies the com-
plete algorithmic logic to be executed, and the runtime interpreter
manifests the algorithms for a given machine. Again, as with the
compiler, the overhead is insignificant when compared to the benefit
of memory space reduction. One can simply think of the pseudo-code
as subroutine calls to accomplish given tasks with given parameters,

Documentation

Microsoft supplies a COBOL Language Reference Manual and COBOL
User's Guide, describing in detail how to write a program, compile it,
load it intc memory and execute it. Because Microsoft's linking loader
is included in the package to load the COBOL object code into memory,
information regarding the loader is supplied in the user's guide. The
loader format for COBOL is identical to that of Microsoft's FORTRAN
compiler and MACRO assemblesr, so programs of all three languages can be
loaded and linked together.

Summary of Features

The following summary specifies the content of Microsaft COBOL with
respect to the ANS-74 Standard.

Module Features Available in Microsoft COBOL
Nucleus All of level 1, plus these features of level 2:
CONDITIONS:

Level 88 conditions with value series or range
Use of logical AND/OR/NOT in conditions

Use of algebraic relational symbols for equality
or inequalities '

Implied subject, or both subject and relation,
in relational conditions

Sign test
Nested IF statements; parentheses in conditiens
YERBS:

ACCEPTance of data from DATE/DAY/TIME
STRING and UNSTRING statements

COMPUTE with multiplie receiving fields
PERFORM VARYING

IDENTIFIERS:
Mnemonic-names for ACCEPT or DISPLAY devices
Procedure-names consisting of digits only
Qualification of Mames (Procedure Division only)

Sequential, All of level 1 plus these fezatures of level 2:
Relative and RESERVE clause
Indexed 1/0 Muttiple operands in OPEN & CLOSE, with individual

options per file
Sequential 1/0 EXTEND mode for OPEN

Relative and DYNAMIC access mode {with READ NEXT)

[ndexed |/0 START (with key relationals EQUAL, GREATER, or
NOT LESS)
Library Level 1

Inter-Program
Communication Level 1

Table Handling All of level 1
Full level 2 formats for SEARCH statement

Debugging Special extensions to ANS-74 Standard providing
convenient trace-style debugging,
Conditional Compilation: lines with
"D in column 7' are bypassed unless
"WITH DEBUGEING MODE™ is given in SOURCE-
COMPUTER paragraph.

Contact

COBOL-80 is available to individuals on a single copy, off-the-
sheif basis. OEM and dealer agreements are available upon request.
For more information, contact:

Ric Weiland

New Products Manager
Microsoft

300 San Mateo, NE, Suite 819
Albuguerque, NM 87108
505-262~1486

Single Copy Pricing

Any purchaser of an off-the-shelf version of COBOL-B0 must sign a
non-disclosure agreement before COBOL-80 will be shipped by Microsoft.
Updates for enhanced versions will be offered for $25 to $100 (depending
upon the extent of the enhancements} to single-copy customers. Back-up
copies of COBOL may be purchased for $25. COBOL-80 documentation is
included with every COBOL-80 system shipped, except back-up copies.

COBOL-80 system (including documentation) $750.00
COBOL-80 documentation only $ 20.00

0EM and dealer agreements are available upon request.

Other Products

Microsoft's complete product line includes FOCAL and BAS!C for the
6502 and 6800, Altair (8080) BASIC, and FORTRAN for the B080 and Z-80.
In addition, Microsoft has development software that runs on the DEC-10
for all these microprocessors,

MICROSOFETT
COBOL=80

reference manueall

Acknowledgment

"any organization interested in reproducing the COBOL report
and specifications in whole or in part, using ideas taken
from this report as the basis for an instruction manual or
for any other purpose is free to do so. However, all such
organizations are requested to reproduce this section as
part of the introduction to the document. Those using a
short passage, as in a book review, are reguested to
mention, 'COBOL' in acknowledgment of the source, but need
not gquote this entire section.

"COBOL is an industry language and is not the property of
any company or group of companies, or of any organization or
group of organizations.,

"No warranty, expressed or implied, 1is made by any
contributor or by the COBOL Committee as to the accuracy and
functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor,
or by the committee, in connection therewith.

"Procedures have been established for the maintenance of
COBOL. Inguiries concerning the procedures for proposing
changes should be directed to the Executive Committee of the
Conference on Data Systems Languages.

"The authors and copyright holders of the copyrighted
material used herein ' :

FLOW-MATIC (Trademark of Sperry Rand Corporation},
Programming for the UNIVAC (R} I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand Corporation;
IBM Commercial Translator, Form No. F28-8013, copyrighted
1959 byIBM; FACT, DSI 27A5260~2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specification in programming
manuals or similar publications.”

--from the ANSI COBOL STANDARD
(X3.23-1974) -

Microsoft
COBOL~-80 Reference Manual

CONTENTS PAGE

Introduction « ¢« +v + o & o & & « &+ & & + 5
CHAPTER 1: Fundamental Concepts of COBOL . . . + + . 7
1.1 Character Set . . o ¢ & o & o o ¢ o = « 7
1.2 Punctuation .+ .+ o « ¢ s + &+ v s s 4 s s s 8
1.3 Word Formation . « « & 4 v o s « 2 « « » « _ 8
1.4 Format Notation .+ « ¢ o o o o o o o o + 9
1.5 Level Numbers and Data-Names . ., +» +» « « - 10
1.6 File=NamesS « + & ¢ s s & s o o o o o « = « 12
1.7 Condition~Names .+ +« « » + = « » s o« » » » 13
1.8 Mnemonic—Names + « « ¢ + o 2 2 o &« « a « = 13
7.9 Literals + « « o« o « = o + a 3 o s s o« « = 13
1.10 Pigurative Constants . . +. ¢ « « « = - » - 15
1.11 Structure of a Program - + « « o« + « o « » 15
1.12 Coding RUIES & ¢« = & & & s s o s s« s« o o« » 18
1.13 Qualification of Names « +« + + « s = « « « 19
1.74 COPY Btatement « « + = ¢ 2 s o s = o « o « 18

CHAPTER 2: Identification and Environment Divisions . 20

2.1 Identification Division . « + + « « &« « « 20
2.2 Environment Division « « ¢+ & « =« & « = » » 21
2.2.1 Configuration Section . . .+ + .« . . 22

2,2.2 Input-Output Section 22
2.2.2.7 File-Control Entry 23

2,2,2.2 I-0 Control Paragraph . . 24

CHAPTER 3: Data DiVISION . + 2 o o 2 o o s« o s = « « 25

25

3-1 Data Items - - » - - » [- - - - - - - - -
3.1.7 Group ItemS . v .+ + ¢ « « « o s+ +« « 25
3.1.2 Elementary Items ., « « « 25
3.17.3 Numeric Items . . . + « « » « « « » 26
3.2 Data Description Entry . + ¢ +¢ ¢« o o« = « « 27
3.3 Formats for Elementary Items . . « + «+ « . 28
3.4 USAGE ClausSe . . + s & + o« o +» s » + & « & 29
3.5 PICTURE ClauSe « « » + » + = + + « 2 =« » o 30
3.6 VALUE ClauSe . . +« ¢ 2 = s o o « « « « + » 36
3.7 REDEFINES ClalS€ « « = « ¢ s s « s « o « « 37
3.8 OCCURS ClausSe .+ 4 =« o o« o o & o » o « o « 38
3.9 SYNCHRONIZED ClauSe « « « 2 & o« o o o« « « 38
3.170 BLANK WHEN ZERO Clause . . « « « « o « « « 40
3.171 JUSTIFIED Cl2USE€ & « = o « a a » » « » + « 40
3.12° SIGN ClBUSE€ &+ 4+ « « » s o = = = a » » » o 40
3.13 File Section, FD Entries :
- (Sequential I-0 Only} .+ o « o ¢ o ¢ » » o« 41

3.14
3.15
3.16

CHAPTER 4:

[A
« % " w @
LELIE S YO N I

o R N L
S e ¥ e v o4 8 »
Wh =20

o
—
.

4.15
4,16
4,17
4,18
4.19
4,20
4,21
4,22
4.23

CHAPTER 5

L unn
Lt =

CHAPTER 6:

3.13.17 LABEL Clause . , .
3.13.2 VALUE OF (Clause |,
3.13.3 DATA RECORDS Clause
3.13.4 BLOCK Clause ., .,
3.13.5 RECORD Clause |,
3.13.6 CODE-~SET Clause
Working-Storage Section
Linkage Section , . . .
Level 88 Condition Names

Procedure Divigion

Statements, Sentences, Procedures-Names
Organization of the Procedure Division

MOVE Statement
INSPECT Statement , ., .
Arithmetic Statements .
4.5.1 SIZE ERRCOR Option
ROUNDED Optiocn .
GIVING Opticn . .
ADD Statement . .
SUBTRACT Statement
MULTIPLY Statement
DIVIDE Statement
COMPUTE Statement
GO T0 Statement .
STO? Statement |,
ACCEPT Statement .,
DISPLAY Statement
PERFORM Statement
EXIT Statement ., ,
ATTER Statement .,
IF Statement , , .
4.13.1 Conditions . .
OPEN Statement (Sequentlal
READ Statement (Sequential
WRITE Statement (Sequential
CLOSE Statement (Sequential

L S A)
oA ow L Lh
O ~J O U Wk

- L]
. -
. .
- -
L] -
L] L]
L] -

LI R T I R T 1
L] * L] L] - L] L] - L] Ll

L] * " ok L] L] L] a

-
-
-
-
-
-
-
-

* & & & ® ¥ = B =
* L] L] L] L] * L] * L]

» L) L] * L] L]

e .

L] L] L] L] * L] L] * L] » L] L] » L[] a - L[] [] L] L]

—

HH""""""."""'
OO-....-....:-.-..:-.

)
I 0)
I-0)

REWRITE Statement (Sequential I-0)

General Note on I/0 Error Handling

ACCEPT DATE/DAY/TIME , , ,
STRING Statement ,
UNSTRING Statement , ., . .
Dynamic Debugging Statement

Inter~-Program Commuriication

USING List Appendage to Procedure Header

CALL Statement , , , ., . .
EXIT PROGRAM Statement | ,

Table Handling by the Indexing Method

S

- - -

-
-
-
-

-

P T T R S R S

L] L] L] L] L[] - - . * - - a L] - * L] » L] » - - L] L] -

*

- - [» - - - - L] - [] [] - - L - - a - - L) L) » - - - - - » -

-

" s & % 4 9§ B 4 B & 4 @& ¥ F = & ¥ 4 4 ®W A B B A& ¥ & + B B ®

L

4+ B 4 s ® * s 4 ¥ & @& & 4 @ ¥ B 4 W ¥ O B B A B B B B 4 ¥ ¥

L L) L L] - - » - L L] . - - * . - - - L) - L] [- - - a - - - L] -

41
41
42
42
43
43
44
44
44

RLICS RS R
[se I Ry 0 6 B

CHAPTER 8

B.1
8.

[y %]

w2}
L]

oooomomo
[« BN R R E IR W

CHAPTER 9

Appendix

| .. Appendix

Appendix
Appendix
Appendix

Appendix

I:

II:.

Index-Names and Index Items
SET Statement . . « « « o
Relative Indexing . .+ « « .
SEARCH Statement - Format 1
SEARCH Statement - Format 2

. 4 & 4 q
LI LI I]
L] * - L] L]
L] * L] . *
. & & & &
L] L] L] L] *

Indexed FileS + « o o o« » s s & »w +-5 =

Definition of Indexed File Organization

Syntax Considerations + + « « « o o o &
7.2.1 RECORD KEY Clause » ¢+ » » « o = &
7.2.2 File Status Reporting . . « « . .
Procedure Divisicn Statements
for Indexed Files .. . + . .

READ Statement . .
WRITE Statement .
REWRITE Statement

DELETE Statement .
START Statement .

a - - L -
= ® & &
= & » 4 w
. L] -~ L] L]
L] L] » L] L]
& L] * L] L] L}
* ® & B & &
* & & w % %
* # a ® a 9
LI T I I I
* - L] L] L) Ll

Relative Files . . . ¢« v v v & o o & & &

Definition of Relative File Organization
Syntax Considerations +« + . .+
8.2.17 RELATIVE KEY Clause , . . + « + =«
Procedure Division Statements

for Relative Files
READ Statement . .
WRITE Statement .
REWRITE Statement
DELETE Statement .
START Statement .

- - -, - L] -
- - L) - L L)
L] L] - L] L] L]
[T T T T |
L - [] L] - L]
. L] - L] » -
- » - » - -
- » [] - - E]
L 3 L] - - L) -,
* v & 8 &
+ v & & 4

DECLARATIVES and the USE Sentence . . .

L] L] L] L] -

* - L] L] L] L]

» L] * » L] -

L[] L] » L] L[] L] L] L] -

* - L] L] L] L]

» » L[] - L] -

Evaluation Rules for Compound Conditions

III: Nesting of IF Statements o

Vi

VI:

ASCII Character Set . & o o o o o =

Reserved Word List . v & « o« s o » =

Table of Permissible MOVE. Operands ..

PERFORM with VARYING and AFTER (Clauses

. = » & @

o * & a2 4 &

79

80
8¢
82

85

85
85
85
86

87
B8
88
89
90
20

g2

a2z
92
93

93
83
94
94
95
95

97

89

102 ...

103
105
106

110

COBOL-80 Reference Manual Page 5

Introduction

Microsoft COBOL is based upon American Naticnal Standard
X3.23-1974, Elements of the CCBOL language are allocated to
twelve different functional processing "modules."

Each module of the COBOL Standard has two non-null "levels"
—— level 1 represents a subset of the full set of
capabilities and features contained in level 2.

In order for a given system to be called COBOL, it must
provide at least level 1 of the Nucleus, Table Handling and
Sequential I-0 Modules.

The following summary specifies the content of Microsoft
COBOL with respect to the Standard.

Module Features Available
Nucleus 211 of level 1, plus these features of
level 2: :
CONDITIONS:
Level 88 conditions with value series or
range

Use of logical AND/OR/NOT in conditieons

Use of algebraic relational symbols for
equality or inequalities

Inplied subject, or both subject and
relation, in relaticonal conditions

Sign test

Nested IF statements; parentheses in
conditions

VERBS:

ACCEPTance of data from DATE/DAY/TIME

STRING and UNSTRING statements

COMPUTE with multiple receiving fields

PERFORM -- all formats from standard
level 2 -

IDENTIFIERS:

Mnemonic-names for ACCEPT or DISPLAY
devices

Procedure—-names consisting of digits
only

Qualification of Wames (Procedure
Division only)

Seguential, All of level 1 plus these features of
Relative and level 2:
Indexed I/0 RESERVE clause

Multiple operands in OPEN and CLOSE, with
individual options per file
Sequential I/0 EXTEND mode for QOPEN

COBOL=80 Reference Manual Page 6

Relative and DYNAMIC access mode (with READ NEXT)

Indexed I/0 START (with key relations EQUAL, GREATER, or
NOT LESS)

Library Level 1

Inter-Program

Communication Level 1

Table Handling All of level 1, plus full level 2 formats
for SEARCH statement

Debugging Special extensions to ANS-74 standard
providing convenient trace-style debugging.
Conditional compilation: lines with "D in
column 7" are bypassed unless WITH
DEBUGGING MODE is given in
SOURCE-COMPUTER paragraph

COBCL-80 Reference Manual Page 7

CHAPTER 1

Fundamental Concepts of COBOL

1.1 Character Set

The COBOL scurce language character set consists of
the following characters:

Letters A through 2
Blank or space

Digits O through 9
Special characters:

+ Plus sign

- Minus sign

* Asterisk

= Equal sign .

> Relational sign (greater than)

< Relational sign (less than)

$ Dollar sign

, Comma

;1 Semicolon

. Periocd or decimal point

" Quotation mark

{ Left parenthesis

) Right parenthesis

' Apostrophe (alternate of quotation mark)
/ Slash _ . .

QOf the previous set, the following characters are
used for words:

0 through 9
A through Z
- {hyphen)

The following characters are used for punctuation:

Left parenthesis
Right parenthesis
Comma

Period

Semicolon

LI T R

The following relation characters are used in
simple conditions:

AV

In the case of non-numeric (quocted) 1literals,
comment entries, and comment lines, the COBOL

COBOL=-80 Reference Manual Page 8
Fundamental Concepts of COBOL

1.3

character set is expanded to include the computer's
entire character set.

Punctuation

The following general rules of punctuation. apply in
writing source programs:

1. As punctuation, a period, semicclon, or comma -
should not be preceded by a space, but must be
followed by a space.

2. At least one space must appear between two
successive words and/or literals., 'Two or more
successive spaces are treated as single space,
except in non-numeric literals.

3. Relation characters should always be preceded
by a space and followed by another space.

4, When the period, commaz, plus, or minus
characters are used in the PICTURE clause, they
are governed solely by rules for report items.

5. A comma may be used as ,a separator between
successive operands of a statement, or between
two subscripts. , '

6. A semicolon or comma may be used to separate a
series of statements or clauses. :

Word Formation

User~-defined and reserved words are composed of a
combination of not more than 30 characters, chosen
from the following set of 37 characters:

¢ through 9 (digits)
A through 2 (letters)
~ ~ (hyphen)

A word must begin with a letter; it may not end
with a hyphen. A word is ended by a space or by
proper punctuation. A word may contain more than
one embedded hyphen; consecutive embedded hyphens
are also permitted. All words are either reserved

words, which have preassigned meanings, or
programmer-supplied names, If a programmer-

supplied name is not unique, there must be a unigue
method of reference to it by use of name

COBCOL~80 Reference Manual Page 9
Fundamental Concepts of COBOL

qualifiers, a.9., TAX-RATE IN STATE-TARBLE.
Primarily, a non-reserved word identifies a data
item or field and 1is called a data-name, Other
cases of non-reserved words are file—=names,

condition-names, mnemonic-names, and procedure-
names. (Procedure-~names may begin with a digit.)
1.4 Format Notation

Throughout this publication, "general formats" are
prescribed for wvarious c¢lauses and statements to
guide the programmer in writing his own statements.
They are presented in 2 uniform system of notation,
explained in the following paragraphs.

1. All words printed entirely in capital letters
are reserved words. These are words that have
preassigned meanings. In all formats, words in
capital letters represent actual occurrences of
those words.

2. All underlined reserved words are required
unless the portion of +the format containing
them is itself opticnal. These are key words.
If any key word is missing or is incorrectly
spelled, it is considered an error in the

program, Reserved words not underlined may be
included or omitted at the option of the
programmer. These words are optional words;

they are used solely for improving readability
of the program.

3. The characters < > = (although not underlined)
are required when such formats are used.

4, All punctuation and other special characters

represant actual gecurrences of those
charxacters. Punctuation is essential where it
is shown. Additional punctuation can be
inserted, according to the rules for
punctuation specified in Section 1.2. In

general, terminal pericds are shown in formats
in the manual because they are required;
semicolons and commas are not usually shown
because they are optional., To be separators,
all commas, semicolons and periocds must be
followed by a space {or blank).

5. Words printed in lower-case letters in formats
represent generic terms (e.g., data-names)} for
which the user must insert a valid entry in the
source program.

COBOL=~80 Reference Manual Page 10
Fundamental Concepts cof COBCL

6.

10.

1.

12,

Any part of a statement or data description’
entry that is enclosed in brackets is optional.
Parts between matching braces ({ }) represent a
choice of mutually exclusive options.

Certain entries in the formats consist of a
capitalized word (s) followed by the word
"Clause" or "Statement." These designate
clauses or statements that are described in
other formats, in appropriate sections of the
text.

In order to facilitate reference to lower-case
words in the explanatory text, some of them are
foliowed by a hyphen and a d&igit or letter.
This modification does not change the

~syntactical definition of the word.

Alternate options may be explained by
separating the mutually exclusive choices by a
vertical stroke, e.g.:

AREA | AREAS is equivalent to[AREA}
AREAS

The ellipsis (o..) indicates ° that the
immediately preceding unit may occur once, or

any number of times in succession. A .unit
means either a single lower—-case word, or a
group of lower—-case words and one oOr more
reserved words enclosed in brackets or braces.
If a2 term is enclosed in brackets or braces,
the entire unit of which it is part must be
repeated when repetition is specified.

Optional elements may be indicated by
parentheses instead of brackets, provided the
lack of formality represents no substantial bar
to clarity.

Comments, restrictions, and clarification on
the use and meaning of every format are
contained in the appropriate. sections of this

‘manual.

1.5 Level Numbers and Data-Names

For purposes of processing, the contents of a £ile
are divided into logical records, with level number

01

initiating a logical record description.

Subordinate data items . that constitute a logical
record are grouped in a heirarchy and identified

COBOL-80 Reference Manual Page 11
Fundamental Concepts of COBOL . :

with 1level numbers 02 to 49, not necessarily
consecutive. Additionally, level number 77
identifies a "stand alone" item in Working Storage
or Linkage Sections; that is, it does net have
subordinate elementary items as does level 01.
Level 88 is used to define condition-names and
associated conditions. A level number less than 10
may be written as a single digit.

Levels allow specification of subdivisions of a
record necessary for referring to data. Once a
subdivision 1is specified, it may be further
subdivided to permit more detailed data reference.
This is illustrated by the following weekly
timecard record, which is divided into four major
items: name, employee-numbexr, date and hours, with
more specific information appearing for name and
date,

e LAST-NAME
NAME FIRST-INIT
MIDDLE-INIT

EMPLOYEE-NUM
TIME-CARD =

MONTH
WEEKS*END*DATEGQEEDAYvNUMBER
YEAR

HOURS-WORKED

Subdivisions of a record that are not themselves
further subdivided are called elementary items.
Data items that contain subdivisions are known as
group items, When a Procedure statement makes
reference to a group item, the reference applies to
the area reserved for the entire group. 2l
elementary items must be described with a PICTURE
or USAGE IS INDEX clause. Consecutive logical
records (01) subordinate to any given file
represent implicit redefiniticons of the same area
whereas in the Working-Storage section, each record
{01) is the definition of its own memory area.

Less inclusive groups are assigned numerically
higher 1level numbers. Level numbers of items
within groups need not be cconsecutive. A group
whose level is k includes all groups and elementary
items described under it until a level number less
than or equal to k is encountered.

Separate entries are written in the source program
for each level. To illustrate level numbers and
group items, the weekly timecard record in the
previous example may be described (in part) by Data
Division entries having the following level

COBOL~-80 Reference Manual Page 12
Fundamental Concepts of COBOL

numbers,.data—names and PICTURE definitions,

01 TIME-CARD.
02 NAME.
03 LAST-NAME PICTURE X({18).
03 FIRST~INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.
02 EMPLOYEE-NUM PICTURE 999989,
02 WEEKS-END-DATE.

05 MONTH PIC 99.
05 DAY-NUMBER PIC 99.
05 YEAR PIC 99.

02 HOURS~-WORKED PICTURE 99V9.

A data-name is a word assigned by the wuser to
identify a data item used in a program. A
data-name always refers to a region of data, not to
a particular value. The item referred to often
assumes a number of different wvalues during the
course of a program.

A data-name must begin with an alphabetic
character. A data-name or the key word FILLER must
be the first word following the level number in
each Record Description entry, as shown in the
following general format: .

level number data-name
FILLER

This data-name is the defining name of the entry
and iz used +0 refer to the asscciated data area
(containing the value of a data item).

If some ¢f the characters in a record are not used
in the processing steps of a program, then the data
description of these characters need not include a
data-name. In this case, FILLER is written in lien
of a data-name after the level number.

1.6 File Names

A file is 2 collection of data records, such as a
printed listing or a region c¢f floppy disk,
containing individual records of a similar class or .
application. A file-name is defined by an FD entry
in the bata Division's File Section. FD is a
reserved word which must be followed by a unique
programmer—-supplied word called the file-name.
Rules for compoesition of the file-name word are
identical to those for data-names (see Section
1.3). References to a file-name appear in
Procedure statements OPEN, CLOSE and READ, as well

COBOL-80 Reference Manual Page 13
Fundamental Concepts of COBOL

as in the Environment Division.

1.7 Condition-Names

A condition~name is defined in level 88 entries
within the Data Division. It is a name assigned to
a specific wvalue, set or range of values, within
the complete set of values that a data item may
assume, Rules for formation of name weords are
specified in Section 1.3. Explanations of
condition-name declarations and procedural
statements employing them are given in the chapters
devoted to Data and Procedure Divisions.

1.8 Mnemonic-Names

A mnemonic-name is assigned in the Environment
Division for reference in ACCEPT or DISPLAY
statements. - It assigns a user-defined word to an
‘implementor-chosen name, such as PRINTER. A
mnemonic-name is composed according to the rules in
Section 1.3.

1.9 Literals
A literal is a constant that is not identified by a
data~name in a program, but is completely defined
by its own identity. -} literal is either

non-numeric or numeric.

Non--Numeric Literals

A non-numeric literal must be bounded by matching
quotation marks or apostrophes and may consist of
any combination of characters in the ASCII set,
except quotation marks or apostrophe, respectively.
Al}l spaces enclosed by the gquotatieon marks are
included as part o©of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:
"ILLEGAL CONTROL CARD"
'CHARACTER-~STRING!'
"DO's & DON'T'S™

Each character of a non-numeric literal (following

the introductory delimiter) may be any character
other than the delimiter. That is, if the literal

COBOL~80 Reference Manual Page 14
Fundamental Concepts of COBOL

is bounded by apostrophes, then guotation ("} marks '
may be within the literal, and vice versa. Length
of a non-numeric literal excludes the delimiters;
minimum length is one.

A succession of two "delimiters" within a literal
is interpreted as a single representation of the
delimiter within the literal. '

Non-numeric literals may be "continued" from one
line to the next. When a non-numeric literal is of
a2 length such that it cannot be contained on one
line of a coding sheet, the following rules apply
to- the next line of coding (continuation line):

1. A hyphen 4is placed in column 7 of the
continuation line.

2, A delimiter is placed in Area B preceding the
continuation of the literal.

3. All spaces at the end of the previous line and
any spaces following the delimiter in the
continuation line &and preceding the final
delimiter of +the literal are considered to be
part of the literal.

4, On any continuation line, Area A should be
blank,

Numeric Literals

A numeric literzl must contain at least one and not
more than 18 digits. A numeric literal may consist
of the characters 0 through ¢ {opticnally preceded
by a sign) and the decimal point. It may contain
only one sign character and only one decimal point.
The sign, 1f present, must appear as the leftmost
character in the numeric literal. If a numeric
literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere within the
numeric literal, except as the rightmost character.
If a numeric literal does not contain a decimal
point, it is considered to be an integer.

The following are examples of numeric literals;
72 +1011 3.1415¢9 -6 -.333 0.5

By use cf the Environment specification
DECIMAL~POQINT IS COMMA, the functions of characters
period and comma are interchanged, putting the
"BEuropean" notation into effect. In this case, the

COBOL-80 Referesnce Manual Page 15
Fundamental Concepts of COBOL

value of "pi" would be 3,1416 when written as a
numeric literal.

1.10 Figurative Constants

A figurative constant is a special type of literal.
It represents a value to which a standard data-name
has been assigned. A figurative constant is not
bounded by quotation marks.

ZERO may be used in many places in a program as a
numeric Jliteral. Other figurative constants are
available to provide non-numeric data; the
reserved words representing various characters are
as follows:

SPACE the blank character represented
by "octal" 40
LOW-VALUE the character whose "octal”

representation is 00

HIGH-VALUE the character whose "octal"
representation is 177

QUOTE the guotation mark, whose "octal®
representation is 42 (7-8 in
punched cards)

ALL literal one or more instances of the
literal string, which must be
non-numeric or a figurative
constant (other than ALL
literal), in which case ALL is
redundant but serves for
readability.

The plural forms of these figurative constants are
acceptable t¢ the compiler but are eguivalent in
effect. A figurative constant represents as many
instances of the associated character as are
required in the context of the statement.

A figurative constant may be used anywhere a
literal 1is called for in a "general format" except
that whenever the literal is restricted to being
numeric, the only figurative constant permitted is
ZERO,

1.11% Structure of a Program

Every COBOL source program is divided into four
divisions. Each division must be placed in its
proper sequence, and each must begin with a
division header.

COBOL-80 Reference Manual Page 16
Fundamental Concepts of COBOL

The four divisions, listed in seguence, and their
functions are:

The

IDENTIFICATION DIVISION, which names the
program,

ENVIRONMENT DIVISION, which indicates the
computer eguipment and features to be used
in the program.

DATA DIVISION, which defines the names and
characteristics cf data to be processed.

PROCEDURE DIVISION, which consists of
statements that direct the processing of
data at execution time.

following skeletal c¢oding defines program

compenent structure and order.

COBOL-~80 Reference Manual Page 17

IDENTIFICATION DIVISION.

PROGRAM-ID, program=name.

[AUTHOR. comment-entry ...]

[INSTALLATION. comment-entry ...]
[DATE~WRITTEN. comment-entry ...)
[DATE-COMPILED. comment—entry ...)
[SECURITY. comment-entry ...]

_ ENVIRONMENT DIVISION,

[CONFIGURATION SECTION,]

[SOURCE*COMPUTER{ entry]

{OBJECT=-COMPUTER. entry]

(SPECIAL-NAMES. entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. entry

[I-0O-CONTROL. entry ...]]

DATA DIVISION.

[FILE SECTION.

[file description entry
record deécription entry ...le..)

[WORKING-STORAGE SECTION.

fdata item description entry ...Jl...]

[LINKAGE SECTION,

[data item description entry ...}...]

PROCEDURE DIVISION [USING identifier-1

ool

[DECLARATIVES.

[Section-namE'SECTION. USE Sentence.

[paragraph~name, [sentence]...]...]...

END DECLARATIVES.]

{[section-name SECTION.]

{paragraph-name, [sentence]...}...}...

COBOL-B0 Reference Manual Page 18
Fundamental Concepts of COBOL

1.12 Coding Rules

Since Microsoft COBOL is a subset of American
National Standards Institute (ANSI) COBOL, programs
may be written on standard COBOL coding sheets, and
the following rules are applicable.

1.

Each line of c¢ode should have a six-digit
seguence number in c¢olumns 1-6, such that the
punched cards are in ascending ozrderx. Blanks
are alsc permitted in columns 1-6.

Reserved words for division, -section, and
paragraph headers must begin in Area A (columns
8-11). Procedure-names must also appear in
Area A (at the point where they are defined}.
Level numbers may appear in Area A. Level
numbers 01, 77 and level indicator "FD" must
begin in Area A.

All other program elements should be confined
to columns 12-72, governed by the other rules
of statement punctuation.

Columns 73-80 are ignored by the compiler,
Frequently, these columns are used to contain
the deck identification.

Explanatory comments may be inserted on any
line within a source program by placing an
asterisk in column 7 of the 1line. The line
will be produced on the source listing but

‘serves no other purpose. If a slash (/)

appears in column 7, the associated carxd is
treated as comments and will be printed at the
top ©f a new page when the compiler lists the
program.

Any program element may be "continued" on the
following line of a source program. The ruies
for continuation of a non-numeric {("guoted"}
literal are explained in Sectien 1.9. Any
other word or literal or other program element
is . continued by placing a hyphen in the cclumn
7 position of the continuation line. The
effect is concatenation of successive word
parts, exclusive of all trailing spaces o¢f the
last predecessor word and all leading spaces of
the first successor word on the continuation
line, On a continuation line, Area A must be
blank. '

COBOL-80 Reference Manual Page 19
Fundamental Concepts of COBOL

1.13 Qualification of Names

When a data-name, conditicon-name or paragraph name
is not unigue, procedural reference thereto may be
accomplished uniquely by use of gqualifier names.
For example, if there were two or more items named
YEAR, the qualified reference '

YEAR OF HIRE-DATE

might differentiate between year fields in
HIRE-DATE and TERMINATION-DATE. '

Qualifiers are preceded by the word OF or IN:
successive data-name or condition-name gualifiers
must designate lesser-level-numbered groups that
contain . all preceding names in the composite
reference, i.e., HIRE-DATE must be a group item (cr
file-name) containing an item called YEAR.
Paragraph-names may be gualified by a section-name.

The maximum numbexr of gualifiers 1is one for a
paragraph-name, five for a data-name or
condition-name. *~ File-names and mnemonic-names must
be unique.

A qualified name may only be written in the
Procedure Division, A reference to a
multiply~defined paragraph-name need not be
qualified when referred to from within the same
section.

1.74 COPY Statement

The statement COPY text-name incorporates into a
source program a body of standard COBOL code
maintained in a "COPY Library" as a distinctly
named (text-name) entity. A COPY statement must be

terminated by a pericd. A COPY statement may
appear anywhere except within the copied entity
itself.

The effect of copying is to augment the source
stream processed by the compiler by insertion of
the copied entity in place of the COPY statement,
and then to resume processing of the primary source
of input at the end of the copied entity.

After the text-name operand of a COPY statement,
the remainder of the source card must be blank
(through column 72).

COBOL=80 Reference Manual Page 20

2.1

CHAPTER 2

Identification and Environment Divisions

Identification Division

Every (COBOL program begins with the header:
IDENTIFICATION DIVISION, This division is divided
into paragraphs having preassigned names:

PROGRAM-ID. Program-name.
AUTHCR. comments.
INSTALLATION, comments.
DATE=-WRITTEN. comments.
DATE-COMPILED. comments.
SECURITY. comments.

Only the PROGRAM-ID paragraph is reguired, and it
must be the first paragraph. Program-name is any
alphanumeric string of characters, the first of

which must be alphabetic. Only the first 6
characters of program-name are retained by the
compiler. The program-name identifies the object

program and is contained in headings on compilation
listings. :

The contents of any other paragraphs are of no
conseguence, serving only as documentary remarks.

COBOL-80 Reference Manual Page 21
Identification and Environment Divisions

2.2 Environment Division

The Environment Division specifies a standard
method of expressing those aspects of a COBOL
program that are dependent upon physical
characteristics of a specific computer. It is
required in every program. :

The general format of the Environment Division is:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SQURCE-COMPUTER. Computer-name [WITH DERUGGING MODE].

OBJECT-COMPUTER. Computer~name
[MEMORY SIZE integer WORDS | CHARACTERS -| MODULES]
[PROGRAM COLLATING SEQUENCE IS ASCII].

SPECIAL-NAMES. {PRINTER IS mnemonic-name] ASCII IS STANDARD-1

NATIVE
[CURRENCY SIGN IS literal]

[DECIMAL-POINT IS COMMA].

—_—

INPUT-0OUTPUT SECTION.

FILE-CONTROL. {file—control—entry}...

E-O0-CONTROL,

[SAME AREA FOR file-~name=-2...]...

COBOL~-80 Reference Manual Page 22
Identification and Environment Divisions

2.2.1 CONFIGURATION SECTION

The CONFIGURATION SECTION, which has three possible
paragraphs, is optional. The three paragraphs are
SOURCE-COMPUTER, COBJECT-COMPUTER, and SPECIAL~
NAMES. The contents of the first two paragraphs
are treated as commentary, except for the clause
WITH DEBUGGING MODE, if present {see Section 4.23).
The third paragraph, SPECIAL-NAMES, relates
implementor names to user-defined names and changes
default editing characters. The PRINTER IS phrase
allows definition of a name to0 be used in the
DISPLAY statement with UPON.

In case the currency symbol is not supposed to be
the Dollar Sign, the user may specify a single
character non-numeric literal in the CURRENCY SIGN
clause, However, the designated character may not
be a quote mark, nor any of the characters defined
for Picture representations, nor digits (0-9).

The "European" convention of separating integer andg
fraction positions of numbers with the comma
character is specified by employment of the clause
DECIMAL-PQOINT IS COMMA,

Note that the reserved word IS is required in
entries for currency sign definition and
decimal=-point convention specification,

The entry ASCII IS NATIVE/STANDARD-1 specifies that
gdata representation adheres to the American

Standard code for information interchange.
However, +this convention is assumed even if the
ASCII-entry is not specifically present. In this

compiler, NATIVE and STANDARD-1 are identiczl, and
refer to the character set representation specified
in Appendix IV,

2.2,2 INPUT-OUTPUT SECTION

The second section of the Environment Division is
mandatory unless the program has no data files; it
begins with the header:

INPUT=-OUTPUT SECTION,

This section has two paragraphs: FILE-CONTROL and
I-0-CONTROL, In this section, the programmer
defines the file assignment ‘parameters, including
specification of buffering.

COBOL-80 Reference Manual : Page 23
Identification and Environment Divisions

2.2.2.1 FILE-CONTROL ENTRY (SELECT ENTRY)

For each file having records described in the Data
Division's File Section, a Sentence-Entry
{beginning with the reserved word SELECT) is
required in the FILE~CONTROL paragraph. The format
of a Select Sentence-Entry for a sequential file
is:

SELECT file-name ASSIGN T0 DISK | PRINTER
[RESERVE integer AREAS | AREA)}
[FILE STATUS IS data-name=1)]

[ACCESS MODE IS SEQUENTIAL] [CRGANIZATION IS

SEQUENTIAL] .

All phrases after "SELECT filename" can be in any
order. Both the ACCESS and ORGANIZATION clauses
are cptional for sequential input-output
processing. For Indexed or Relative files,

alternate formats are available for this section,
and are explained in the chapters on Indexed and
Relative files.

If the RESERVE clause is not present, the compiler
assigns buffer areas. An integer number of buffers
specified by the Reserve clause may. be from 1 to 7,
but any number cver 2 is treated as 2.

In the FILE STATUS entry, data-name-1 must refer to
a two-character Working-Storage or Linkage item of
category alphanumeric into which the run-time data
management facility places status information after
an I-0 statement. The left-hand character of
data-name~-1 assumes the wvalues:

'Q' for successful completion
'1' for End-of-File condition
'2' for Invalid Key {(only
for Indexed and Relative files)
'3' for a non-recoverable (I-0) error
'9' for implementor-related errors
{see User's Guide)

The right-hand character cf data-name-1 is set to
10' if no further status information exists for the
previocus I-O operation. The following combinations
of values are possible:

COBOL-80 Reference Manual Page 24
Identification and Environment Divisions

File Status Left File Status Right Meaning

tot Q! 0=K.
l1l IOI EoF
r3T. to! Permanent error
tat _ tg' - Disk space full

For values of status-right when status~left has a
value of '2', s=ee the chapters on Indexed or
Relative files.

2.2,2,2 I-0-CONTROL PARAGRAPH

The SAME AREAR specification is optional. It
permits the programmer to enumerate files that are
open only at mutually exclusive times, in order
that they may share the same I-0 buffer areas and
consexrve the utilization of memory space.

. The format of the SAME AREA entry (which designates
files that all share a commeon I-0 area) is:

SAME AREA FOR file-name~2 file-name-3,..

Files named in a given SAME AREA clause need not
all have the same organization or access., However,
no file may be listed in moxre than one SAME AREA
clause. '

COBOL-80 Reference Manual ' Page 25

CHAPTER 3

Data Division

The Data Division, which is one of the required divisions in
a program, is subdivided into three secticns: File Section,
Working-Storage Section and Linkage Section. Each - is
discussed in Secticns 3.13-3.15, but first, aspects of data
specification that apply in all sections will be described.

3.1 Data Items

Several types of data items can be described in
'COBOL programs. These data items are described in
the. following paragraphs.

3.1.1 Group Items

A group item is defined as one having further
subdivisions, so that it contains one or more
elementary items. In addition, a group item may
contain other groups. An item is a group item if,
and only if, its level number is 1less than the
level number of the immediately succeeding item.
If an item is not a group item, then it is an
- elementary item. The maximum size of a group item
is 4095 characters. .

3.1.2 Elementary Items

An elementary item is a data item containing no
subordinate items.

Alphanumeric Item: An alphanumeric item consists
ot any combination of characters, wmaking a
"character string" data field. If the associated
picture c¢ontains "editing" characters, it is an
alphanumeric edited item.

Report (Edited) Item: A report item is an edited
"numeric" item containing only digits and/cr
special editing characters. It must not exceed 30
characters in length. L report item can be used
only as a receliving field for numeric data. It is
designed to receive a numeric item but cannot be
used as a numeric item itself.

COBOL-80 Reference Manual | Page 26
Data Division

3.1.3 Numeric Items

Numeric items are elementary items intended +to
contain numeric data only.

External Decimal Item: An external data item is an
item 1in which one computer character (byte) is
employed to represent one digit. 2 maximum number
of 18 digits is permitted; the exact number of
digit positions is defined by writing a specific
nurber of 9~characters in the PICTURE description.
For example, PICTURE 999 defines a 3-digit item.
That is, the maximum decimal wvalue of the item is
nine hundred ninety-nine.

If the PICTURE begins with the letter S, then the
item alsc has the capability of containing an
"operational sign."” An operational sign does not
occupy a separate character (byte), unless the
"SEPARATE" form of SIGN clause is included in the
item's description. Regardless of the form of
representation of an operational sign, its purpose
is to provide a sign that functions in the normal
algebrai¢ manner.

The USAGE of an external decimal item is DISPLAY
(see USAGE clause, Section 3.4}.

Internal Decimal Item: An internal decimal item is
stored in packed decimal format. It is attained by
inclusion of the COMPUTATIONAL-3 USAGE clause.’

A packed decimal item defined by n 9's in its
PICTURE occupies 1/2 of (n + 2) bytes in memory.
All bytes except the rightmost contain a pair of
digits, and each digit is represented by the binary
equivalent of a valid digit value from 0 to 9. The
item's low order digit and the operational sign are
found in the rightmost byte of a packed item. For
this reason, the compiler considers a packed item
to have an arithmetic sign, even 1if the original
PICTURE lacked an S-character.

Binary Item: A binary item uses the base 2 system
to ~represent an integer in the range ~32768 to
32767, It occupies one 16-bit word. The leftmost
bit of the reserved area is the operational sign.
A Dbinary item is specified by USAGE IS
COMPUTATIONAL. '

Index Data~Item: An index-data item has no
PICTURE; USAGE IS5 INDEX. (Refer to Chapter 6,
"Table Handling by the Indexing Method.")

COBOL~80 Reference Manual Page 27
Data Division

3.2 DATA DESCRIPTION ENTRY

A Data Description entry specifies the
characteristics of each field (item) in a data
record. Each item must be described in a separate
entry in the same order in which the items appear
in the record. Each Data Description entry
consists of a level number, a data-name, and a
series of independent clauses followed by a period.

The general format of a Data Description entry is:

data-name
level-number FILLER {REDEFINES-clause) (JUSTIFIED-clause)
(PICTURE~clause) (USAGE-clausge) (SYNCHRONIZED-clause)

{OCCURS~clause) {(BLANK~clause)} (VALUE=clause) (SIGN-clause).

When this format is applied to specific items of
data, it is limited by the nature of the data being
described. The format allowed for the descripticn
of each data type appears below. C(lauses that are
not shown in a format are specifically forbidden in

that format. Clauses that are mandatory in the
description of certain data items are shown without
parentheses, The clauses may appear in any order

except that a REDEFINES~clause, 1if used, should
come first.

Group Item Format

data-name
level-number FILLER (REDEFINES—-clause) {USAGE-clause)

{OCCURS-clause) (SIGN=clause).
Example:
01 GROUP-NAME,
02 FIELD-B PICTURE X.
02 FIELD-C PICTURE X.
NOTE
The USAGE clause may be written at a group

level to avoid repetitious writing of it at
the subordinate element level.

COBOL-~80 Reference Manual Page 28
Data Division

3.3 FORMATS FOR ELEMENTARY ITEMS

ALPHANUMERIC ITEM {also called a character-string item)

| data-name
level~number FILLER (REDEFINES~clause) (OCCURS-clause)

PICTURE IS an~form (USAGE IS DISPLAY) (JUSTIFIED-clause)
(VALUE IS non-numeric-literal) (SYNCHRONIZED-clause).
Examples:
02 MISC-1 PIC X(53).
02 MISC-2 PICTURE BXXXBXXB.

REPORT ITEM (also called a numeric=edited item)

. data-name .
level-number |FILLER {REDEFINES~-clause) (OCCURS~-clause)

PICTURE.IS report-form {BLANK WHEN ZERO) (USAGE IS DISPLAY)
(VALUE IS non-numeric literal) (SYNCHRONIZED-clause).
Example:

02 XTOTAL PICTURE $9%%2,999,59-,

DECIMAI. ITEM

data-name
level-number FILLER (REDEFINES~clause) (OCCURS-clause}

PICTURE IS numeric~form (SIGN-clause)
(USAGE~clause) {(VALUE IS numeric-literal) {SYNCHRONIZED-clause).
Examples:

02 HOURS-WORKED PICTURE 99V9, USAGE IS DISPLAY,
02 HOURS~-SCHEDULED PIC S99V9, SIGN IS TRAILING.

11 TAX~RATE PIC S99V999 VALUE 1,375, COMPUTATIONAL-3.

COBOL-80 Reference Manual Page 29
Data Division

BINARY ITEM

data-name
level~number FILLER (REDEFINES~clause) (QOCCURS~clause}
(PICTURE IS8 numeric-form)

USAGE IS COMPUTATIONAL |COMP [INDEX

(VALUE IS numeric-literal) (SYNCHRONIZED-clause).

NOTE
A PICTURE or VALUE must not be given for
an INDEX Data Item.
Examples:

02 SUBSCRIPT COMP, VALUE ZERO.
02 YEAR-TO-DATE COMPUTATIONAL,

3.4 USAGE CLAUSE

The USAGE clause specifies +the form in which
numeric data is represented.

The USAGE clause may be written at any level. If
USAGE is not specified, the item is assumed to be
in "DISPLAY" mode. The general format of the USAGE
clause is:

COMPUTATIONAL
USAGE IS INDEX

DISPLAY

COMPUTATIONAL-3

INDEX is explained in Chapter 6, Table Eandling.
COMPUTATIONAL, which may be abbreviated COMP, usage
defines an integer binary field. COMPUTATICNAL-3,
which may be abbreviated COMP-3, defines a packed
{internal decimal) field,

If a USAGE clause is given at a group level, it
applies to each elementary item in the group. The
USAGE clause for an elementary item must not
contradict the USAGE clause of a group to which the
item belongs.

COBOL~80 Reference Manual Page 30
Data Division

3.5 PICTURE CLAUSE

The PICTURE clause specifies a detailed description
of an elementary level data item and may include
specification of special report editing. The
reserved word PICTURE may be appreviated PIC.

The general format of the PICTURE clause is:

an-form
PICTURE 18 numeric-form
report-form
There are three possible types of

pictures: An-form, Numeric~form and Report-form.

An-Form Option: This option applies to
a2lphanumeric {character string) items. The PICTURE
of an alphanumeric item is a combinaticon of data
description characters X, & or 9 and, optionally,
editing characters B, 0 and /. An X indicates that
the character position may contain any character
from the computer's ASCII character set. A Picture
‘that contains at least one of the combinations:

{a) A and 9, or
(b) X and 9, or
(c) X and A

in any order is considered as if every 9, A or X
character were X. The characters B, 0 and / may be
used to insert blanks or zeros or slashes in the
item, This is then called an alphanumeric-edited
item.

If the string has only A's and B's, it is
considered alphabetic: if it has only 9's, it is
numeric (see below).

Nunmeric-Form Option: The PICTURE of a numeric item
may c¢ontain a valid combination of the following
characters:

9 The character 9 indicates that the actual
: or conceptual digit position contains a
numeric character. The maximum number cof
9's in a PICTURE is 18,

A% The optional character V indicates the
position of an assumed decimal point.
Since a numeric item cannot contain an
actual decimal point, an assumed decimal
point is used to provide the compiler
with information concerning the scaling

COBOL-80 Reference Manual Page 31
Data Division

alignment of items involved in compu-
tations. Storage is never reserved for
the character V. Only one V is permitted
in any single PICTURE, and is re-

dundant if i1t is the rightmost character.

S The optional character S indicates that
the item has an operational sign. It must
be the first character of the PICTURE.
See also, SIGN clause, Section 3.12.

P The character P indicates an assumed
decimal scaling position. It is used
to specify the location of an assumed
decimal point when the point is not
within the number that appears in the
data item. The scaling position character
P is not counted in the size of the data
item; that is, memory is not reserved
for these positions. However, scaling
positicn characters are counted in
determining the maximum number of digit
positions (18) in numeric edited items
or in items that appear as operands in
arithmetic statements. The scaling
position character P may appear only
to the left or right of the other char-
acters in the string as a continuous
string of P's within a PICTURE
description. The sign character § and
the assumed decimal point V are the
only characters which may appear to
the left of a leftmest string of P's.
Since the scaling position character P
implies an assumed decimal point (to
the left of the P's if the P's are left-~
most PICTURE characters and to the
right of the P's if the P's are
rightmost PICTURE characters), the
assumed decimal point symbol V is re-
dundant as either the leftmost or
rightmost character within such a
PICTURE description.

Report=Form QOpticn: This option describes a data
item sultable as an "edited" receiving field for
presentation of a numeric value. The editing
characters that may be combined to describke a
repert item are as follows:

9V . ZCRDB, $+*BO-P/

The characters 9, P and V have the same meaning as
for a numeric item. The meanings ¢f the other

COBOL=80 Reference Manual

Data Division

allowable editing characters are described
follows:

CR
DB

The decimal point character specifies
that an actual decimal point is to be
inserted in the indicated position and
the socurce item is to be aligned accord-
ingly. Numeric character positions to
the right of an actual decimal point in
a PICTURE must consist of characters of
one- type. The decimal point character
must not be the last character in the
PICTURE character string. Picture
character 'P' may not be used if '.'

is used.

The characters Z and * are called
replacement characters, Each one repre-
sents a digit position. During execu-
tion, leading zeros to be placed in
positions defined by Z or * are
suppressed, becoming blank or *, Zero
suppression terminates upon encountering
the decimal point (. or V) or a non-zero
digit. All digit positions to be modi-
fied must be the same {either Z or *},
and contigucus starting from the left.

Z or * may appear to the right of an
actual decimal point only if all digit
positions are the same, -

CR and DB are called credit and debit
symbcols and may appear only at the right
end of a PICTURE. These symbols occupy
two character positions and indicate
that the specified symbeol is o appear
in the indicated positions if the value
of a source item is negative. If the
value 1s positive or zero, spaces will
appear instead. CR and DB and + and -~
are mutually exclusive.

The comma specifies insertion of a comma
between digits. Eac¢h insertion character
is counted in the size of the data item,
but does not represent a digit position.
The comma may also appear in conjunction
with & floating string, as described be-

Page 32

as

low.

It must not be the last character

in the PICTURE character string.

A floating
continuous

string 1is defined as a leading,
series of one of either $ or + or -, or

a string composed of one such character interrupted

COBOL~80 Reference Manual Page 33
Data Division

by one or more insertion commas and/or decimal
points. For example:

$%,558,95%
++++

F(8) . 4t

$3,585.5%

A fleoating string containing N + 1 occurrences of §
ox + or = defines N digit positions. When moving a
numeric value into a report item, the appropriate
character £floats from left to right, so that the
developed report item has exactly one actual $ cor +
or - immediately to the left of the most
significant nonzero digit, in one of the positions
indicated by $ or + cr - in the PICTURE. BRlanks
are placed in all character positions to the left
of the single developed $ or + or -. If the most
significant digit appears in a position to the
right of positions defined by the floating string,
then the developed item contains $ or + or - in the
rightmost position of the floating string, and
non-significant zeros may follow. The presence of
an actual or implied decimal point in a floating
string is treated as if all digit positions to the
right of the point were indicated by the PICTURE
character 9, In the following examples, b
represents a blank in the developed items.

PICTURE Numeric Value Developed Item
$$$999 14 bbh301i4
——,=——,889 -456 bbbbbb-456
$$55%% _ 14 bbb$14

A floating string need not constitute the entire
PICTURE of a report item, as shown in the preceding

examples. Restrictions on characters that may
follow a fleocating string are given later in the
description. .

When a comma appears to the right of a £floating
string, the string character flecats through the
comma in order to be as close to the leading digit
as possible..

+ The character + or - may appear in a

- PICTURE either singly or in a floating
string. As a fixed sign control
character, the + or - must appear as the
last symbol in the PICTURE. The plus sign
indicates that the sign of the item is
indicated by either a plus or minus

COBOL~80 Reference Manual | Page 34

Data Divisicon

placed in the character position, de-
pending on the algebraic sign cof the
numeric value placed in the report field.
The minus sign indicates that blank or
minus is placed in the character position,
depending on whether the algebraic sign

of the numeric value placed in the report
field is positive or negative, respectively.

Each appearance of B in a Picture repre-
sents a blank in the final edited value.

Each slash in a Picture represents a
slash in the final edited value.

BEach appearance of 0 in a Picture
represents a position in the final edited
value where the digit zero will appear.

Qther rules for a report (edited) item PICTURE are:

1..

2.

The appearance of cone type of floating string
precludes any other “floating string.

There must be at least one digit position
character.

The appearance of a flocating s=sign string or
fixed plus or minus insertion character
precludes the appearance of any other of the
sign control insertion character, namely, +, -,
CR, DB,

The characters to the right of a decimal point
up to the end of a PICTURE, excluding the fixed
insertion characters +, -, CR, DB (if present),
are subject to the fellowing restrictions:

a. Only one type of digit position character
may appear. That is, Z * 9 and
floating-string digit position characters §
4+ - are all 6, mutually exclusive,

b. If one of the numeric character
positions to the right of a decimal point
is represented by 4+ or - or $ or Z, then
all the numeric character positions in the

PICTURE must be represented by the same
character,

The PICTURE character 9 can never appear to the
Jeft of a floating string, or replacement
character.

COBOL~-80 Reference Manual Page 35
Data Division

Additional notes on the PICTURE Clause:

1. A PICTURE clause must only be used at the
elenmentary level,.

2. An integer enclosed in parentheses and
following X 9 $ Z P * B - or + indicates the
number of consecutive occurrences of the
PICTURE character. .

3. Characters V and P are not c¢ounted in the space
allocation of a data item, CR and DB occupy
two character positions.

4. A maximum of 30 character positions is allowed
in a PICTURE character string. For example,
PICTURE X(89) consists of five PICTURE
characters,

5. A PICTURE must congist of at least one of the
characters A Z * X 89 or at least two
consecutive appearances of the <4+ or - or $§
characters.

6. The characters '.' § VCR and DB can appear
"only once in a PICTURE.

7. When DECIMAL-PQINT IS COMMA is specified, the

explanations for period and comma are
understoed teo apply to comma and pericd,
respectively.

The examples below illustrate the use of PICTURE to
edit data. In each example, a movement of data is
implied, as indicated by the column headings.
(bata wvalue shows contents in storage; scale
factor of this source data area 1is given by the
Picture.)

COBOL-80 Reference Manual Page 36
Data Division

3.6

Source Area Receiving Area
PICTURE Data PICTURE Edited Data
Value

9(5) 12345 $$5,$$9.99 $12,345,00
9 (5} 00123 $5%,5$8$9.99 $123.00
2 (5) go000 $$%,$%$9.99 $0.00
9(4)V9 12345 $55,%%$9,99 $1,234.50
Vo (5) 12345 $55,9$%9.99 $0.12
59({5) 00923 = o——emme— .99 . 123.00
S9 (5) ~00001 =mme——— .99 -1.00
S8 (5) 00123 ottt , 00 +123.00
58 (5) 00001 = eemeceo .99 1.00
- 9(5) 00123 Sttt , 09 +123.00
9({5) 00123 —ee————.o .99 123.00
89 (5) - 12345 *EkXkES _QOCR **12345,00
$999v99 02345 ZZ2ZV2Z : 2345

.5999V99 00004 Z22ZVZZ 04

VALUE CLAUSE

The VALUE clause specifies the initial wvalue of
working-storage items. The format of this clause
is:

VALUE IS literal

The VALUE clause must not be written in a Data
Description entry that alsc has an OCCURS or
REDEFINES clause, or in an entry that is
subordinate to an entry containing an OCCURS or
REDEFINES clause. Furthermore, it cannot be used
in the File or Linkage Sections, except in level 88
condition descriptions.

The size of a literal given in a VALUE clause must
be 1less than or egual to the size of the item as
given in the PICTURE clause. . The positioning of
the literal within a data area is the same as would
result from specifying a MOVE of the literal to the
data area, except that editing characters in the
PICTURE have no effect on the initialization, nor
do BLANK WHEN ZERO or JUSTIFIED clauses. The type
of literal written in a VALUE clause depends on the
type of data item, as specified in the data item
formats earlier in this text. For edited items,
values must be specified as non-numeric literals,
and must be presented in edited form. A figurative
constant may be given as the literal.

When an initial wvalue is not specified, no
assumption should be made regarding the initial

COBOL~80 Reference Manual Page 37
Data Division .

contents-of an item in Working-Storage.

The VALUE clause may bhe specified at the group
level, in the form of a correctly sized non-numeric
literal, cor a figurative censtant. In these cases
the VALUE clause cannot be stated at the
subordinate levels with the group. .However, the
value .clause should not be written for a group
containing items with descriptions including
JUSTIFIED, SYNCHRONIZED and USAGE {other than USAGE
IS DISPLAY)., (A form used in level 88 items is
explained in Section 3.16) .

3.7 REDEFINES CLAUSE

The REDEFINES clause specifies that the same area
is to contain different data items, or provides an
alternative grouping or description of +the same
data. The format of the REDEFINES clause is:

REDEFINES data-name-~2

When written, the REDEFINES clause should be the
first clause following the data—~name that defines
the entry. The data description entry for
data-name~2 should not contain a REDEFINES clause,
nor an OCCURS clause.

When an area is redefined, all descriptions of the
area remain in effect, Thus, if B and C are two
separate items that share the same storage area due
to Redefinition, the procedure statements MOVE X TO
B or MOVE Y TO C could be executed at any point in
the program, In the first case, B would assume the
value of X and take the form specified by the
description of B. In the seccond case, the same
physical area would receive Y according to the
description of C,

For purposes of discussion of Redefinition,
data-name-1 1is termed the subject, and data-name-2
is called the object. The levels of the subject
and object are dencted by s and t, respectively.
The following rules must be obeyed in order to
establish a proper redefinition.

1. s must equal t, but must not equal 88.

2. The object must be contained in the same record
(01 group level item), unless s=t=01,

COBOL-80 Reference Manual Page 38
Data Divisicon

3. Prior to definition of the subject and
subsaquent +to definition of the object there
can be no level numbers that are numerically
less than s.

The length of data-name-1, multiplied by the number
of occurrences of data-name-1, may not exceed the
length of data-name-2, unless the level of
data-name~1 is 07 (permitted only outside the File
Section). Entries giving the new description must
not contain any value clauses, except in level 88,
In the File Section, multiple 1level 01 entries
subordinate to any given FD represent implicit
redefinitions of the same area.

3.8 QCCURS CLAUSE

The OCCURS clause is used in defining related - sets
of repeated data, such as tables, lists and arrays.
It specifies the number of +imes that a data item
with the same format is repeated. Data Description
'glauses associated with an item whose description
includes an OCCURS clause apply to each repetition
of the item being described. When the OCCURS
clause is used, the data name that is the defining
name of the entry must be subscripted or . indexed
whenever it appears in the Procedure Division, If
this data-name is the name of a group item, then
all data-names belonging to the group must be
subscripted or indexed whenever they are used.

The OCCURS clause must not be used in any Data
Description entry having a level number 01 or 77,
The OCCURS clause has the following format:

OCCURS integer TIMES [INDEXED BY index-name...]

Subscripting: Subscripting provides the facility
for referring to data items in a table or list that
have not been assigned individual data—-names.
Subscripting is determined by the appearance of an
OCCURS clause in a data description. If an 4item
has an OCCURS clause or belongs to a group having
an OCCURS clause, it must be subscripted or indexed

whenever it is wused. See the chapter on Table
Handling for explanations on Indexing and Index
Usage. (Exception: the table-name in a SEARCH

statement must be referenced without subscripts.)

A subscript is a positive nonzero integer whose
value determines an element to which a reference is
being made within a table or list. The subscript
may be represented either by a literal or a

COBOL-80 Reference Manual Page 39
Data Division

3.9

data~name that has an integer value. Whether the
subscript is represented by a literal or a
data-name, the subscript is enclosed in parentheses
and appears after the terminal space of the name of
the element. A subscript must be a decimal or
binary item. (The latter is strongly recommended,
for the sake of efficiency.) .

At most, three OCCURS clauses may govern any data
item. Consequently, one, two or three subscripts
may be required. When more than one - subscript is
required, they are written in the order of
successivly less inclusive dimensions of +the data
organization. Multiple subscripts are separated by
commas, viz. ITEM (I, J).

Example:

01 ARRAY,
03 ELEMENT, OCCURS 3, PICTURE 9(4)}.

The above example would be allocated storage as
shown below.

—_—— e e o e e e e e e —

ELEMENT (1)

ARRAY, consisting of twelve
ELEMENT (2) characters; each item has 4
digits.

ELEMENT (3)

A data=-name may not be subscripted if it is being
used for:

1. a subscript
2., the defining name of a data descripticn entry
3. data-name-2 in a REDEFINES clause

4. a qualifier

SYNCHRONIZED CLAUSE

The SYNCHRONIZED clause was designed in order to
allocate space for data in an efficient manner,
with respect to the computer central "memory.”
However, in this compiler, the SYNCHRONIZED
specification is treated as commentary only.

The format of this clause is:

SYNC | SYNCHRONIZED [LEFT { RIGHT]

COBOL-80 Reference Manual Page 40
Data Division

3.10 BLANK WHEN ZERO CLAUSE

The BLANK WHEN ZERO clause specifies that a report
(edited) field is to contain nothing except blanks
if the numeric value moved to it has a wvalue of
ZEero. When this ¢lause i1s used with a numeric
picture, the field is considered a report field.

3.11 JUSTIFIED CLAUSE

The JUSTIFIED RIGHT clause is only applicable to
unedited alphanumeric (character string) items. It
signifies that values are stored in a right-to-left
fashion, resulting in space fill on the left when a
short field is moved to a longer Justified field,
or in truncation on the left when a long field is
moved to a shorter JUSTIFIED field., The JUSTIFIED
clause 1is effective only when the associated field
is employed as the "receiving" field in a MOVE
statement.

The word JUST is a permissible abbreviation of
JUSTIFIED.

3.12 SIGN CLAUSE

For an external decimal item, there are four
possible manners of representing an operational
sign; the cheoice is controlled by inclusion of a
particular form of the SIGN clause, whose general
form is:

[SIGN IS] TRAILING | LEADING [SEPARATE CHARACTER]

The following chart summarizes the effect of £four
possible forms of this clause,

SIGN Clause Sign Representation

TRATILING Embedded in rightmost byte
-LEADING Embedded in leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte

When the above forms are written, the PICTURE must
begin with S, If no S appears, the item is not
signed (and is capable of storing only absolute
values}, and the SIGN clause is prohibited. When §
appears at the front of a PICTURE but no SIGN
clause is included in an item's description, the

COROL-80 Reference Manual Page 41
Data Division

"default" case SIGN IS TRAILING is assumed.

The SIGN clause may be written at a group level;
in this case the clause specifies the sign's format
on any signed subordinate external decimal item,
The SEPARATE CHARACTER phrase increases the size of
the data item by 1 character. The entries to¢ which
the SIGN clause apply must be implicitly or
explicitly described as USAGE 1S DISPLAY,

(Note: When the CODE-SET clause is specified for a

file, all signed numeric data for that file must be
described with the SIGN IS SEPARATE c<lause.)

3.13 FILE SECTIQN, FD ENTRIES (SEQUENTIAL I-QO ONLY)

In the FILE SECTICN of the Data Division, an FD

entry (file definition) must appear for every

Selected file. This entry precedes the

descriptions of the file's record structure(s).

The general format of an FD entry is:

FD file name LABEL-clause [VALUE-OF-clause]

[DATA-RECORD (S)=-clause} [BLOCK~clause] [RECORD-clause]
[COPE-SET-clause].

After "FD filename," the order of the clauses 1is

immaterial.

3.13.1 LABEL CLAUSE

The format of this required FD-entry clause is:

LABEL RECORD | RECORDS IS | ARE OMITTED | STANDARD

The OMITTED option specifies that no labels exist
for the file: this must be specified for files
assigned to PRINTER,

The STANDARD option specifies that labels exist for
the file and that the labels conform to system
specifications; this must be specified for files
assigned to DISK.

3.13.2 VALUE OF CLAUSE

The VALUE OF clause appears in any FD entry for a
DISK-assigned file, and contains a filename

COBOL-80 Reference Manual Page 42
Data Division

expressed as a COBOL-type ‘“guoted" literal. The
general form is:

VALUE OF FILE-ID IS "literal"

Examples:

VALUE OF FILE-ID "A:MASTER,ARSM" {CP/M DOS)
VALUE OF FILE-ID IS "DO0:X201a.L" (DTC)
VALUE OF FILE-ID "FO:INVNT.LST" (Altair)

A reminder: if a file is ASSIGNed to PRINTER, it
is unlabeled and +the VALUE clause must not be
included in the associated FD. If a file is
ASSIGNed +to DISK, it is necessary to include both
LABEL RECCRDS STANDARD and VALUE clauses in the
asgsociated FD. See the User's Guide for filename
formats for specific disk operating systems.

3.13.3 DATA RECORD(S) CLAUSE

The optional DATA RECORDS c¢lause identifies the
records in +the file by name. This clause is
documentary only, in this and all COBCL systems,
Its general format is:

DATA

ber——

RECORD IS
data~name~1 [data-name-2...]
RECORDS ARE

The presence ¢f more than one data-name indicates
that the file contains more than one type of data
record. That is, two or more record descriptions
may apply to the same storage area. The order in
which the data-names are listed is not significant.

bata-name-1, data-name-2, etc., are +the names of
data records, and each must be preceded in its
record description entry by the level number 01, in
the appropriate file declaration (FD) in the File
Section.

3.13.4 BLOCK CLAUSE

The BLOCK CONTAINS clause is used to specify
characteristics of physical records in relation to
the concept of logical records. The general format
iss

CHARACTERS
BLOCK CONTAINS integer-2
RECORDS

COBOL-80 Reference Manual Page 43
Data Division

Files assigned to PRINTER must not have a BLOCK
clause in the associated FD entry. Furthermore,
the BLOCK clause has no effect on disk £files 1in
this COBOL system, but it is examined for correct
syntax. It is normally applicable tc tape files,
which are not supported by this COBOL.

When used, the size is usually stated in RECORDS,
except when the records are variable in size or
exceed the size of a physical block:; in these
cases the size should he expressed in CHARACTERS,
- If maltiple record sizes exist, and if blocking is
specified, then the physical block will contain
multiple logical records, each of which is
terminated by a carriage-return line-feed.

When the BLOCK CONTAINS clause is omitted, it 1is
assumed that records are not blocked. When neither
the CHARACTERS nor the RECORDS option is specified,
the CHARACTERS option is assumed. When the RECORDS
option is used, the compiler assumes that the block
gize provides for integer-2 records of maximum size
and then provides additional space for any regquired
control characters.

3.13.5 RECORD CLAUSE

Since the size of each data record is defined fully
by the set of data description entries constituting
the record (level 01) declaration, this clause 1is
always optional and documentary. The format of
this clause is:

RECORD CONTAINS {integer-1 TC] integer-2 CHARACTERS

Integer~2 should be the size of the biggest record
in the file declaration. If the records are
variable in size, Integer=-1 must be specified and
equal the size of the smallest record. The sizes
are given as character positions required to store
the logical records.

3.13.6 CODE-SET CLAUSE

The format of this clause is:
CODE-SET IS5 ASCIT

The CODE-SET clause, which should be specified only
for non-mass—storage files, serves only the
purposes of documentation in this compiler,
reflecting the fact that both internal and external

COBOL-80 Reference Manual Page 44
Data Division

data are represented in ASCII code. However, any
signed numeric data description entries in the
file's record should include the SIGN IS SEPARATE
clause and all data in the file should have DISPLAY
USAGE. '

3.14 WORKING-STORAGE SECTION

The second section of the DATA DIVISION begins with
the header WORKING-STORAGE SECTION., This section
describes records and other data which are not part
of external data files but which are developed and
processed internally.

Data description entries in this section may employ
level numbers 01-49, as in the File section, as
well as 77. Value clauses, prohibited in the File
section (except for level 88), are permitted
throughout the Working-storage section.

3.15 LINKAGE SECTICN

The third section of the Data Division 1is defined
by the header LINKAGE SECTION. In this section,
the user describes data by name and attribute, but
storage space is not allocated, Instead, these
"dummy" descriptions are applied (through the
mechanism of the USING 1list on the Procedure
Division header) to data whose addresses are passed
into a subprogram by a call wupen it from a
separately compiled program, Conseguently, VALUE
clauses are prohibited in the Linkage Section,
except in level 88 condition-name entries. Refer
to Chapter 5, Inter-Program Communication, for
further information.

3.16 LEVEL 88 CONDITION-NAMES

The level 88 condition—-name entry specifies a
value, list ¢f wvalues, or a range of wvalues that an
elementary item may assume, in which case the named
condition is true, otherwise false. The format of
a level BB item’s wvalue clause is

literal-1 [literail-2...]
VALUE IS
literal-1 THRU literal-2

A level 88 entry must be preceded either by another
level 88 entry (in the case of several consecutive
condition-names pertaining to an elementary item)

COBOL-80 Reference Manual Page 45
Data Division '

or by an elementary item {(which may be FILLER).
INDEX data items shculd not be followed by level 88
items.

Every condition-name pertains to an elementary item
in such a way that the condition~name may be
qualified by the name of the elementary item and
the elementary item's qualifiers... A condition-name
is used in the Procedure Division in place of a
simple relational condition. A condition-name may
pertain to an elementary item (a conditional
variable} requiring subscripts, In this case, the
condition-name, when written in the Procedure
Division, must be subscripted according to the same
requirements as the associated elementary item.
The type of literal in a condition-name entry must
be consistent with the data type of the ceonditional
variable. In the following example, PAYROLL-PERIOD
is the conditional variable, The picture
associated with it limits the wvalue of the 88
condition-name to one digit.

02 PAYROLL~PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3,

Using the abhove description, the following
procedural condition-name test may be written:

IF MONTHLY GO TO DO-MONTHLY
An equivalent statement is:

IF PAYROLL~-PERIOD = 3 GO TO DO-MONTHLY.
For an edited elementary item, values in a
condition—-name entry must be expressed in the form

of non-numeric literals.

A VALUE clause may not contain both a series of
literals and a range of literals.

COBOL-80 Reference Manual Page 46

CHAPTER 4

Procedure Division

In this chapter, +the basic concepts of the Procedure
Division are explained. Advanced topics (such as Indexing
of tables, Indexed file accessing, interprogram
communication and Declaratives) are discussed in subseguent
chapters. :

4.1 STATEMENTS, SENTENCES, PROCEDURE-NAMES

The Procedure portion of a source program specifies
those procedures needed to solve a given EDP
problem, These steps (computations, logical
decisions, etc.) are expressed in statements
similar to English, which employ the concept of
verbs to denote actions, and statements and

sentences to describe procedures. The Procedure
portion must begin with the words PROCEDURE
DIVISION.

A statement consists of a verb followed by
appropriate operands (data-names or literals) and
other words that are necessary for the completion
of the statement. The two types of statements are
imperative and conditional.

Imperative Statements

An imperative statement specifies an unconditional
action te¢ be +taken by the object program. An
imperative statement consists of a wverb and its
operands, excluding the IF and SEARCH conditional
statements and any. statement which contains an
INVALID EKEY, AT END, SIZE ERROR, or OVERFLOW
clause, ‘

Conditional Statements

A conditional statement stipulates a condition that
is tested to determine whether an alternate path of
program flow is to be taken, The IF and SEARCH
statements provide this capability. Any 1/0
statement having an INVALID KEY or AT END clause is
alsec considered to be <conditional. When an
arithmetic statement possesses a SIZE ERROR suffix,
the statement is <considered to be conditional
rather than imperative. STRING or UNSTRING
statements having an OVERFLOW clause are also
conditional.

COBOL-80 Reference Manual ' Page 47
Procedure Division

Sentences

A sentence is a single statement or a series of
statements terminated by a period and followed by a
space. If desired, a semi-colon or comma may be

used between statements in a sentence,

Paragraphs

A paragraph is a logical entity consisting of zero,
one or mere sentences, Each paragraph must begin
with a paragraph-name.

Paragraph-names and section-names are procedure-

names. Procedure-names follow the rules for
name-formation. In addition, a procedure-name may
consist only of digits. aAn all-digit
procedure-name may nct consist of more than 18
digits; if it has 1leading zeres, they are all
significant.

Sections

A section is composed of one or more successive
paragraphs, and must begin with a section-header.
A section header c¢onsists of a section-name
conforming to the rules for procedure-name
formation, followed by the word SECTION and a
pericod. A section header must appear on a line by
itself. Each secticn-name must be unigue.

4,2 ORGANIZATICON OF THE PROCEDURE DIVISION

The PROCEDURE part of a program may be subdivided
in three possible ways:

1. The Procedure Division consists 'only of
paragraphs,

2. The Procedure Division consists of a number of
paragraphs focllowed by a number of sections
(each section subdivided into one or more
paragraphs) .,

3. The Procedure Division consists of a
DECLARATIVES portion and a series of sections
{each section subdivided into one or more
paragraphs).

The DECLARATIVES portion of the Procedure Divisien
is optional; it provides a means of designating a
procedure to be invoked in the event of an I1/0
error, If Declaratives are utilized, only

COBOL-80 Reference Manual Page 48
Procedure Division

possibillity 3 may be used. Refer to Chapter 9 for
a complete digcussion.

4.3 MOVE STATEMENT

The MOVE statement is used to move data from one
area of main storage to another and to perform
conversions and/or editing on the data that is
moved. The MOVE statement has the following
format:

MOVE data-name~-1 TO data-name-2 [data~name«3...]
literal :

The data represented by data-name-1 or the
specified literal is moved to the area designated
by data-name-2. Additiconal receiving fields may be
specified (data-name~3 etc.), When a group item is
a receiving field, characters are moved without
regard to the level structure of the group involved
and without editing.

Subscripting or indexing associated with
data-name-2 is evaluated immediately before data is
moved to the receiving field. The same is true for
other receiving fields (data~name-3, etc., if any).
But for the source field, subscripting or indexing
(associated with data-name-1) 1is evaluated only
once, before any data is moved.

To illustrate, consider the statement
MOVE 2 (B) TO0 B, C (B),
which is equivalent to

MOVE A (B) TO temp

MOVE temp TO B

MCVE temp TO C (B)

where temp is an intermediate result field assigned
avtomatically by the compiler.

The ~following considerations pertain to moving
items:

1. Numeric {external or internal decimal, binary,
numeric literal, or ZERO} or alphanumeric to
numeric or report:

a., The items are aligned by decimal points,
with generation of zeros or truncation
on either end, as required, If socurce

COBOL-80 Reference Manual Page 49
Procedure Division

is alphanumeric, it is treated as an
unsigned integer and should not be
longer than 31 characters.

b. When the types of the source field and
receiving field differ, conversion tc
the type of the receiving field takes
place., Alphanumeric source items are
treated as unsigned integers with
Usage Display.

c. The items may have special editing per-
formed on them with suppression of zeros,
insertion of a dollar sign, etc., and
decimal point alignment, as specified
by the receiving area,

d. One should not move an item whose PFICTURE
declares it to be alphabetic or alpha-
numeric edited to a numeric or report
item, nor is it possible to move a numeric
item of any sort to an alphabetic item
though numeric integers and numeric report
items can be meoved to alphanumeric items
with or without editing, but operaticnal
signs are not moved in this case even if
"SIGN IS SEPARATE" has been specified.

Non-numeric. source and destinations:

a. The characters are placed in the receiving
area from left to right, unless JUSTIFIED
RIGHT applies. '

b. If the receiving field is not completely
filled by the data being moved, the re-—
maining positions are filled with spaces,.

c. If the source field is longer than the
receiving field, the move is terminated
as soon as the receiving field is filled.

When overlapping fields are involved, results
are not predictabkle.

Appendix II shows, in tabular form, all
permissible combinations of source and
receiving field types.

An item having USAGE IS8 INDEX cannot appear as
an operand of a MOVE statement. See SET in
Chapter 6, Table Handling.

CORCOL-80 Reference Manual

Procedure Division

Page 50

Examples of Data Movement (b represents blank):'

Spource Field Receiving Field

PICTURE Value PICTURE Value before MOVE Value after MOVE
99vas 1234 S99Vog . | 9876~ 1234+

99vo9 1234 99v9 987 123

s59vo 12~ 99v599 98765 01200+

XXX A2B XXXXX YOX8w AZ2Bbb

o9vog 123 98,98 87.65 01.23

4.4 INSPECT STATEMENT

The INSPECT statement enables the programmer to

examine a character-string item. Options permit
various combinations of the following actions:

1. counting appearances of a specified character
2. replacing a specified character with another

3. limiting the above actions by reguiring the
appearance of other specific characters

The format of the INSPECT statement is:

INPECT data-name-1 [TALLYING-clause]

where TALLYING-clause has the format

. ’ CHARACTERS }
TALLYING data-name-2 FOR ALL | LEADING operand-3

[BEFORE | AFTER INITIAL operand-4]

and REPLACING-clause has the. format

CHARACTERS
ALL | LEADING

REPLACING

[BEFORE | AFTER INITIAL operand-7]

Because data-name-1 is to be treated as a string of
characters by INSPECT, it must not be described by
USAGE IS INDEX, COMP, or COMP-3. Data-name-2 must
be a numeric data item.

In the above formats, operand-n may be a quoted
literal of length one, a figurative constant.
signifying a single character, or a data-name of an

{REPLACING~clause]

{ FIRST cperand—S} BY operand-6

COBOL-80 Reference Manual Page 51
Procedure Division

item whose length is one.

TALLYING-clause and REPLACING-clause may not both
be ocmitted; if both are present, TALLYING-clause
must be first.

TALLYING=-clause causes . character-by-~character
comparison, ~from. left to right, of data-name-1,
incrementing data-name-2 by one each time a match
is found. When an AFTER INITIAL c¢perand-4
subclause is present, the counting process begins
only after detection of a character in data-name-1
matching operand-4. If BEFQRE INITIAL operand-4 is
specified, the counting process terminates upon
encountering a character in data-name-1 which
matches operand-4. Also going from left toc right,
REPLACING-clause causes replacement of characters
under conditions specified by the REPLACING-¢lause.
If BEFORE INITIAL operand-7 is present, replacement
deces net continue after detection of a character in
data-name-1 matching operand-7. If AFTER INITIAL
operand-7 is present, replacement does nct commence
until detection of a character in data-name-1i
matching operand-7.

With bounds on data-name—1 thus determined,
TALLYING and REPLACING 1s done on characters as
specified by the following:

1. "CHARACTERS" implies that every character in
the bounded data-name-1 is to be TALLYed or
REPLACEAd.

2. "all dperand" means that all characters in the
bounded data-name-1 which match the "operand"
character are to participate in
TALLYING/REPLACING.

3. "LEADING operand” specifies that only

characters matching "operand" from the leftmost
porticn of the bounded data-name-1 which are
contiguous (such as leading =zeros) are to
participate in TALLYING or REPLACING.

4, "FIRST operand" specifies that only the
first-encountered character matching "operand"
is to participate in REPLACING. (This option
ig unavailable in TALLYING.)

When both TALLYING and REPLACING clauses are
present, the two clauses behave as i1f two INSPECT
statements were written, the first containing only
a TALLYING~clause and the second containing only a
REPLACING-clause,.

COBOL-B(Q Reference Manual Page 52
Procedure Division -~

il

In developing 'a TALLYING value, the final result in
data-name-2 is egual to the tallied count plus the
initial walue of data-name-2. 1In the first example
below, the item COUNTX is assumed to have been set
to zero initially elsewhere in the program.

INSPECT ITEM TALLYING COUNTX FOR ALL “"L" REPLACING
LEADING "a" BY "E" AFTER INITIAL "L"

Criginal (ITEM): SATAMI ATABAMA

Result (ITEM): SATLENMI ALEBAMA

Final (COUNTX)}: i 1
INSPECT WORK-AREA REPLACING ALL DELIMITER BY
TRANSFORMATION
Original (WORK~AREA): NEW YORK N Y (length 16)
Original (DELIMITER): {space)
Original (TRANSFORMATION): . {(period)
Result {WORK-AREA): NEW.YORK, .N.Y...

NOTE

If any data-name~1 or operand-n is described as
signed numeric, it 1is treated as if it were

unsigned.
4.5 ARITHMETIC STATEMENTS
There are five arithmetic statements: ADD,
SUBTRACT, MULTIPLY, DIVIDE and COMPUTE. A&ny
arithmetic statement may be either imperative or
conditional., When an arithmetic statement includes
an ON SIZE ERROR specification, the entire

statement is termed conditional, because the
sizewerror condition is data-dependent.

An example of a conditional arithmetic statement
is:e)

ADD 1 TO RECORD-COQUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-CQUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it
is apparent that RECORD-COUNT has Picture 99, and
cannot hold a value of 100), both the MOVE and
DISPLAY statements are executed.

The three statement components that may appear in
arithmetic statements (GIVING option, ROUNDED
option, and SIZE ERROR option) are discussed in

COBOL-80 Reference Manual Page 53
Procedure Division .

4.5.1

4,5.2

detail later in this section.

Basic Rules for Arithmetic Statements

1. All data-names used in arithmetic statements
must be elementary numeric data items that are
defined in the Data Division of the progranm,
except that operands of the GIVING opticn may
be report (numeric edited) items. Index—-names
and index-items axe not permissible in these
arithmetic statements (see Chapter 6).

2. Decimal point alignment is supplied
automatically throughout the computations.,

3. Intermediate result fields generated £for the
evaluation of arithmetic expressions assure the
accuracy of the result £field, except where
high-crder truncation is necessary.)

SIZE ERROR OPTION

If, after decimal-point alignment and any low—order
rounding, the value of a calculated result exceeds
the largest value which the receiving field is
capable of holding, a size error condition exists.

The opticnal SIZE ERROR clause is written
immediately after any arithmetic statement, as an
extensiocn of the statement, The format of the SIZE
ERROR option is:

ON SIZE ERROR imperative statement ...

If the SIZE ERROR option is present, and a si:ze
error condition arises, the value of the resultant
data~name 1s unaltered and the series of inmperative
statements specified for the condition is executed.

If the SIZE ERROR option has not been specified and
a gsize error conditicon arises, no assumption should
be made about the final result.

An arithmetic statement, if written with SIZE ERROR
option, is not an imperative statement. Rather, it
is a conditional statement and 1is prohibited in
contexts where only imperative statements are
allowed,

ROUNDED OPTION

If, after decimal-pcint alignment, the number of

COBOL-80 Reference Manual Page 54
Procedure Division

places in the fraction of the result is greater
than the number of places in the fracticnal part of
the data item that is %o be set equal to the
calculated result, ¢truncation occurs unless the
ROUNDED option has been specified.

When the ROUNDED option is specified, the least
significant digit. of the resultant data-name has
its wvalue increased by 1 whenever the most
significant digit of the excess is greater than or
egual to 5.

Rounding of a computed negative result is performed
by rounding the absolute wvalue of the computed
result and then making the f£inal result negative.

The feollowing chart illustrates +the relationship
between a calculated result and the value stored in
an item that is to receive the calculated result,
with and without rounding.

Item to Receive Calculated Result

Calculiated PICTURE Value After Value aAfter

Result Rounding Truncating
~12.36 . 589v9 -12.4 -12.3

8.432 9ve 8.4 8.4

35,6 gov9o 35.6 35.6

65.6 S99V 66 65

.0055 s5Vve99 .006 . 005

Illustration of Rounding

When the low order dinteger positions in a
resultant-identifier are represented by the
character 'p' in its picture, rounding or
truncation occurs relative to.the rightmost integer
position for which storage is allowed,

4.5.3 GIVING OPTION

If the GIVING option is written, the value of the
data-name that follows +the word GIVING is made
equal to the calculated result of the arithmetic
operation. The data-name that follows GIVING is
not used in the computation and may be a report
(numeric edited) item.

COBOL~80 Reference Manual Page 55
Procedure Division

4.5.4 ADD STATEMENT

The ADD statemént adds two or mere numeric values
and stores the resulting sum. The ADD statement
general format is:

numeriCHliteral}
ADD data-name=-1

TO
‘@TVING data-name-n [ROUNDED! [SIZE~ERROR~clausel

When the TO option is used, the values of all the
data-names (including data-name—-n) and literals in
the statements are added, and the resulting sum
replaces the value of data-name-n. At least two
data-names and/or numeric literals must follow the
word ADD when the GIVING option is written.

The following are examples of proper ADD
statements:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY,.

The first statement would result in the sum of
INTEREST, DEPOSIT, and . BALANCE being placed at
BALANCE, while the second would result in the sum
of REGULAR-TIME and OVERTIME earnings being placed
in item GROSS-PAY.

4,5.5 SUBTRACT STATEMENT ' -

The SUBTRACT statement subtracts one or more
numeric data items from a specified item and stores
the difference,

The SUBTRACT statement general format is:

. ’data-name—1 }

SUBTRACT numeric-literal-1)... FROM
data-name-m [GIVING data-name-n]]
numeric literal-m GIVING data-name-n

[ROUNDED] [SIZE~ERROR-clause]

The effect of the SUBTRACT statement is to sum the
values of ali the operands that precede FROM and
subtract that sum from the wvalue of the item
following FROM,

The result (difference) is stored in data-name-n,

COBOL-80 Reference Manual Page 56
Procedure Division

if there is a GIVING option. 'Otherwise, the result
is stored in data-name-m.

4.5.6 MULTIPLY STATEMENT

. The MULTIPLY statement multiplies two numeric data
items and stores the product.

The general format of the MULTIPLY statement is:

MULTIPLY data~name=-1
numeric-literal-1

BY data~name-2 [GIVING data-name=-3]
numeric-literal-2 GIVING data-name-3

[ROUNDED] [SIZE-ERROR-clause]

When the GIVING option is omitted, the second
operand must be a data-name; the product replaces

the value of data-name-~2. For example, a new
BALANCE value is computed by the statement MULTIPLY
1.03 BY BALANCE. {8ince this order might seem

somewhat unnatural, it is recommended that GIVING
always be written,)

4.5.7 DIVIDE STATEMENT

The DIVIDE statement divides twe numeric values and
stores +the guetient. The general format of the
DIVIDE statement is:

DIVIDE data~name-1 BY data-name-2
numeric-literal-1 INTO numeric-literal-2

[{GIVING data-name-~3] [ROUNDED] [SIZE-ERRCR-clause]

The BY-form signifies +that the first operand
{data-name-1 or numeric-literal-1) is the dividend
{numerator}, and the second operand (data-name-2 or
numeric-=literal-2) is the divisor (denominator).

- If GIVING is not written in this case, then the
first operand must be a data-name, in which the
quotient is stored.

The INTO-form signifies that the first operand is
the diviscr and the second operand is the dividend.
If GIVING is not written in this <case, then the
second operand must be a data-name, in which the
quotient is stored.

bDivision by =zero always causes a size-error

COBOL-SOIReferenpe Manual Page 57
Procedure Division .

condition.

4.5.8 COMPUTE STATEMENT

The COMPUTE statement evaluates an arithmetic
expression and then stores the - result in a
designated numeric or report (numeric edited) item.
The general format ¢f the COMPUTE statement is:
COMPUTE data-name-1 [ROUNDED}...=
data-name=2
numeric-literal [SIZE-ERROR~clause]
arithmetic~expression
An example of such a statement is:
CCMPUTE GROSS-PAY ROUNDED = BASE-SALARY *
(1 + 1.5*% (HOURS - 4Q) / 40).

An arithmetic expression is a proper combination of
numeric literals, data-names, arithmetic operators

and parentheses. In general, the data-names in an
arithmetic expression must designate numeric data.
Consecutive data-names ({or literals) must be

separated by an arithmetic operator, and there must
be one or more blanks on either side of the
operator. The cperators are:

4+ for addition

- for subtraction

* for multiplication

/ for division

¥* for exponentiation to an integral power,

When more than one operation is to be executed
using a given variable or term, the oxrder of
precedence is:

1. Unary ({(invclving one variable} plus and minus
2, Exponentiation

3. Multiplication and Division

4, Addition and Subtraction

Parentheses may be used when the normal order of
operaticns is not desired. Expressions within

parentheses are evaluated first; parentheses may
be nested to any lewvel, Consider the following

COBOL-80 Reference Manual Page 58
Procedure Division :

4.6

expression,
A+B/ (C-D*E)

Evaluation of the above expression is performed in
the fellowing ordered sequence:

1. Compute the product D times E, considered as
intermediate result R1,.

2. Compute intermediate result R2 as the
difference C - R1,.

3. Divide B by R2, providing intermediate result
R3.

4, The final result is computed by addition of a
+o R3.

Without parentheses, the expressicn
A+B/C~-D%%*E

is evaluated as:

R1=B/C
R2 = A + R1
R3 =D * E

final result = R2 -~ R3

When parentheses are employed, the following
punctuation rules should be used:

1. A left parenthesis is preceded by cne or more
spaces. -

2. A right parenthesis is followed by one or more
spaces.

The expression A2 - B - C is evaluated as (A -B) =~
C. Unary operators are permitted, e.g.:

COMPUTE A = +C + -4.6§
COMPUTE X = ~Y
COMPUTE A, B{(I) = ~C = D{(3)

GO TO STATEMENT
The GO TO statement transfers control £from one
portion of a program to another. It has the

following general format:

GO TO procedure-name [...DEPENDING ON data-name]

COBOL~80 Reference Manual Page 5%
Procedure Division

The simple form GC TO procedure~name changes the
path of flow to a designated paragraph or section.
If the GO statement is without a procedure-name,
then that GO statement must be the only one in a
paragraph, and must be altered (see 4.12) prior to
its execution,

The more general form designates N procedure-names
as a choice of N paths to transfer to, if the value
of data-name is 1 to N, respectively. Otherwise,
therxe is no transfer of control and execution
proceeds in the normal sequence., Data-name must be
a numeric elementary item and have no positions to
the right of the decimal point.

If a GO (non~DEPENDING) statement appears in a

sequence of imperative statements, it must be the
last statement in that seguence.

4,7 STOP STATEMENT

The STOP statement is used to terminate or delay
execution of the object program.

The format of this statement is:

[RUN]
STOP literal

STOP RUN terminates execution of a program,
returning control to the cperating system. If used
in a sequence of imperative statements, it must be
the last statement in that sequence,.

The form STOP literal displays the specified
literal on the console and suspends execution.
Execution of the program 1is resumed only after-
operator intervention. Presumably, the operator
performs a function suggested by the content of the
literal, prioxr to resuming program execution. For
more informaticn, see the COBOL User's Guide.

4.8 ACCEPT STATEMENT

The ACCEPT statement is used t0 enter data into the
computer on a low volume basis, from operator
key-in at the computer conscle., The format of the
ACCEPT statement is:

ACCEPT data-name

One line 1is read, and as many characters as

COBOL-80 Reference Manual ' Page 60
Procedure Division

necessary {depending on the size of the named data
field) are moved, without change, to the indicated

field. If the input is shorter than the receiving
field, the extra positions are filled with spaces
{(blanks).

When input is to be accepted from the console,
execution 1is suspended. After the operator enters
a response, the program stores the acquired data in
the field designed by data~-name, and normal
execution proceeds, & form of the ACCEPT statement
used to acguire the current date, day or time is
explained in Section 4.20.

4,9 DISPLAY STATEMENT

The DISPLAY statement provides a simple means of
outputting low-volume data without the complexities
of File Definition; the maximum number of
characters to be output per line 1is 132, The
format of the DISPLAY statement is:

DISPLAY dataﬁname] [UPON mnemonic-name]
literal ‘e .

When the UPON suffix is omitted, it is understood
that output 1is destined to be printed on the
console. Use of the suffix UPON mnemonic—name
directs that output to the printer. Mnemonic-name
must be assigned to PRINTER in the SPECIAL-NAMES

paragraph.
Values output are either 1literals, figurative
constants (one character), or data fields. If a

data item operand is packed, it is displayed as a
series of digits followed by a separate trailing
sign. ;

4.10 PERFORM STATEMENT

The PERFORM statement permits the execution of a
separate body of program steps. Two formats of the
PERFORM statement are available:

Option 1

{integer]
PERFORM range data-name TIMES

COBOL-80 Reference Manual Page 61
MProcedure Division

Option 2
index-name
PERFORM range [VARYING |data-name FROM

amount-1 BY amount-2] UNTIL condition.

(A more extensive version of option 2 is awvailable
for varying 2 or 3 items ceoncurrently, as explained
in Appendix VI.)}

In the above syntactical presentation, the
following definitions are assumed:

1. Range is a paragraph-name, a section-name, or
the construct procedure~nama- THRU
procedure-name—2, (THROUGH is synonymous with
THRU.) If only a paragraph-name is specified,
the return is after +the paragraph's last
statement. If only a section-name is
specified, the return is after the last
statement of the last paragraph of the section.
If a range is specified, control is returned
after the appropriate last sentence of a
paragraph or section. These return points are
valid only when a PERFORM has been executed to
set them up; in other cases, contrel will pass
right through.

2, The generic operands amount-1 and amcunt-2 may
be a numeric literal, index-name, or data—-name.
In practice, these amount specifications are
frequently integers, or data-names that contain
integers, and the specified data-name 1is used
as a subscript within the range.

In Option 1, the designated range 1is performed a
fixed number of times, as determined by an integer
or by the value of an integer data-item. If no
"TIMES" phrase 1is given, the range is performed
once. When any PERFORM has finished, execution
proceeds to the next statement following the
PERFORM.

In Option 2, the range 1is performed a variable
nuriber of times, in a step-wise progression,
varying from an initial wvalue of data-name =
amount-1, with increments of amount-2, until a
specified condition is met, at which time execution
proceeds to the next statement after the PERFORM,

The condition in an Option 2 PERFORM is evaluated
prior to each attempted execution of the range.
Consequently, it is possible to not PERFORM the

COBOL~80 Reference Manual Page 62
Procedure Division

range, if the condition 1s met at the outset.
Similarly, in Option 1, if data-name <0, the range
is not performed at all.

At run~time, it is illegal to have concurrently

active PERFORM ranges whose terminus points are the
same.,

4.1 EXIT STATEMENT

The EXIT statement is used where it is necessary to
provide an endpoint for a procedure.

The format for the EXIT statement is:
paragraph-name. EXIT,

EXIT must appear in the source program as a
one-word paragraph preceded by a paragraph-name.
An exit paragraph provides an end-point +to which
preceding statements may transfer control if it is
decided to bypass some part of a section.

4.12 ALTER STATEMENT

The ALTER statement is used to modify a simple GO
TO statement elsewhere in the Procedure Division,
thus changing the sequence of execution of program
statements.

The ALTER statement general format is:
ALTER paragraph TO [PROCEED TO)] procedure-name

Paragraph {(the first operand) must be a COBOL
paragraph that consists o¢of only a simple GO TO
statement; the ALTER statement in effect replaces
the former operand of that GO TO by procedure-name,
Consider the ALTER statement in the context of the
following program segment,

GATE. GO TO MF-0OPEN.
MF~QPEN, OPEN INPUT MASTER-FILE.
ALTER GATE TO PRCCEED TO NORMAL.
NORMAL, READ MASTER-FILE, AT END GO TO
EQF~MASTER.

Examination of the above code reveals the technigue
of "shutting a . gate," providing a one-time
initializing program step.

COBOL-80 Reference Manual Page 63
Procedure Division

4,13 IF STATEMENT

The IF statement permits the programmer to specify
a series of procedural statements to he executed in
the event a stated condition is true. Optionally,
an alternative series of statements may be
specified for execution if the condition is false.
The general format of the IF statement is:

IF condition NEXT SENTENCE] ELSE statement(s)-2
statement{s} -1 ELSE NEXT SENTENCE

The "ELSE NEXT SENTENCE" phrase may be omitted if
it immediately precedes the terminal period of the
-sentence.

Examples of IF statements:
1. IF BALANCE = Q0 GO TO NOT-FQUND.

2, IF T LESS THAN 5 ©NEXT SENTENCE ELSE GO TO
Twi=4.

3. IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD
1 TO SKIP-COUNT ELSE GO TO BYPASS,

The first series of statements is executed only if
the designated ¢ondition is true, The second
series of statements (ELSE part) is executed only
if +the designated condition is false. The second
series (ELSE part) is terminated by a
sentence-ending periced unless it is "ELSE NEXT
SENTENCE", in which case more statements may be
written before the peried. If there is no ELSE
part to an IF statement, then the first series of
statements must be terminated by a sentence-ending
pericd. Refer to Appendix III for discussion of
nested IF statements.

Regardless of whether the conditicn is true or
false, the naxt sentence 15 executed after
execution of the appropriate series of statements,
unless a GO TO is contained in the imperatives that
are executed, or unless the nominal flow of program
steps is superseded because of an active PERFORM
statement.

4,13.1 Conditions

A condition is either a simple conditien or a
compound condition. The four simple conditicns are
the relational, <c¢lass, condition=name, and sign
condition tests. A simple relational condition has

COBOL=-80 Reference Manual Page 64
Procedure Division

the following structure:
operand-1 relation operand-2

where ‘“operand" is a data-name, literal, = or
figurative~constant.

A compound condition may be formed by connecting
two cenditions, of any sort, by the logical
operator AND or OR, €.g., A < B OR C = D, Refer to
Appendix I for further permissible forms involving
parenthesization, NOT, or "abbreviation.,"

The simplest "simple relations" have three basic
forms, expressed by +the relational symbols equal
to, less than, or greater than (i.e., = or < or >).

Another form of simple relation that may be used
involves the reserved word NOT, preceding any of
the three relatiocnal symbols. In summary, the six
simple relations in conditions are:

Relation Meaning
= egual to
< less than
> greater than
NOT = not egual to
NOT < greater than or equal to
NOT > less than or egual to

It is worthwhile to briefly discuss how relation
conditions can be compounded. The reserved woxrds
AND or OR permit the specification of a series of
relational tests, as follows:

1. Individual relations connected by AND specify &
compound condition that is met {true) only if
all the ingividual relationships are met.

2, Individual relations connected by OR specify a
compound condition that is met (true} if any
one of the individual relationships is met.

The following is an example of a compound vyelation
condition containing both BABND and OR connectors,
Refer to Appendix I for formal specification of
evaluation rules.

IF X = Y AND FLAG = 'Z' OR SWITCH = 0 GOTO PROCESSING.

In the above example, execution will be as follows,
depending on various data values.

COBOL~80 Reference Manual Page 65
Procedure Division

Data Value Does Execution Go

X Y FLAG SWITCH to PROCESSING?
10 10 'z 1 Yes

10 11 re 1 Mo

10 11 'z 0 Yesg

10 10 'p! 1 No

6 3 'p! 0 Yes

6 6 e 1 No

Usages ¢f reserved word phrasings EQUAL TO, LESS
THAN, and GREATER THAN are accepted equivalents of
= £ » respectively. Any form of the relation may
he preceded by the word IS, optionally.

Before discussing class~test, sign-test, and_
condition-name-test conditions, methods of
performing comparisons will be discussed.

Numeric Comparisons: The data operands are
compared after alignment of their decimal
positions, The results are as defined
mathematically, with any negative values being less
than zero, which in turn is less than any positive
value. An index-name or index item (see Chapter 6)
may appear in a compariscon. Comparison of any two
numeric operands 1is permitted regardless of the
formats specified in their respective USAGE
clauses, and regardless of length,

Character Ccomparisons: Non-—-egual-length
conmpariscns are permitted, with spaces being
assumed to extend the length of the shorter item,
if necessary. Relationships are defined in the

ASCII code; in particular, the letters A-Z are in
an ascending sequence, and digits are less than

letters, Group items are treated simply as
characters when compared. Refer to aAppendix IV for
all ASCII character representations, If cne

operand is numeric and the cother is not, it must be
an integer and have an implicit or explicit USAGE
IS DISPLAY.

Returning to our discussion of simple conditions,
there are three additional forms of a simple
condition, in addition to the relational form,
namely: class test, condition-name test (88), and
sign test. '

A class test condition has the following
syntactical format:

COBOL=80 Reference Manual . Page 66
Procedure Division

' NUMERIC
data-name IS [NQOT} ALPHABETIC

This condition specifies an examination of the data
item content to determine whether all characters
are proper digit representations regardless of any
operational sign (when the test is for NUMERIC), or
only alphabetic or blank space characters (when the
test is for ALPHABETIC). The NUMERIC test is wvalid
only for a group, decimal, or character item (not
having an alphabetic PICTURE}. The ALPHABETIC test
is wvalid only for a group or character item
{Picture an-form).

A sign test has the following syntactical format:

data~name IS [NOT} NEGATIVE | ZERO | POSITIVE

This test is eguivalent to comparing data-name +to
zero in order to determine the truth of the stated
condition.

In a condition-~name test, a conditional variable is
tested to determine whether its value is equal to
one of the values associated with the
condition~name. A condition-name test is expressed
by the following syntactical format:

condition-name
where condition-name is defined by a level 88 data

division entry.

4,14 QPEN STATEMENT {Seguential I-0)

The OPEN statement must be executed prior to
commencing file processing. The general format of
an OPEN statement is:

INPUT
QPEN I-0 file=name...l...
CuUTPUT

EXTEND

For a sequential INPUT file, opening initiates
reading the file's first records into memory, so
that subsequent READ statements may be executed
without waiting. '

For an .OUTPUT file, opening makes available a
record area for development of one record, which
will be transmitted to the assigned output device
upon the execution of a WRITE statement. An

COBOL-80 Reference Manual | Page 67
Procedure Divisicn

existent file which has the same name will be
superceded by the file created with OPEN OQUTPUT.

An I-~O opening is valid only for a DISK file; it
permits use of the REWRITE statement to modify
records which have been accessed by a READ
statement, The WRITE statement may not be used in
I-O0 mode for files with sequential organization.
The file must exist on disk at OPEN time:; it
cannot be created by QPEN I-0O,

When the EXTEND phrase 1s specified, the OPEN
statement positions the file immediately following

the last logical record of that file. Subsequent
WRITE statements referencing the £ile will add
records to the end of the file. Thus, processing

proceeds as though the file had been opened with
the OUTPUT phrase and positioned at its end.
EXTEND can be used only for sequential files.

Failure to precede {in terms of time sequence} file
reading or writing by the execution of an OPEN
statement is an execution-time error which will
cause abnormal termination of a program run. See
User's Guide. Furthermore, a file cannot be opened
if it has been CLOSEd "WITH LOCK."

Sequential files opened for INPUT or I-0 access

must have been written in the appropriate format
described in the User's Guide for such files.

4.15 READ STATEMENT (Sequential I~O)

The READ statement makes available the next logical
data record of the designated file from the
assigned device, and updates the value of the FILE
STATUS data item, if one was specified,. The
general format of a READ statement is:

READ file-name RECORD {INTQ data-name] [AT END
imperative statement...]

Since at some +time the end-ocf-file will be
encountered, the user should include the AT END
claugse. The reserved word END is followed by any
number of imperative statements, all of which are
executed only if the end-of-file situation arises,
The last statement in the AT END series must be
followed by a period to indicate the end of the
sentence. If end-cf-file occurs but there is no AT
END clause on the READ statement, an applicable
Declarative procedure is performed. If neither AT

COBOL—-80 Reference Manual ' Page 68
Procedure Division

END nor Declarative exists and no FILE STATUS item .
is specified for the file, a run-time I/0 error is
processed.

When a data record to be read exists, successful
execution of the READ statement is immediately
followed by execution of the next sentence.

When more than one Cl1-level item is subordinate to
a file definition, these records share the same
storage area. Therefore, the user must be abkle to
distinguish between the types of records that are
possible, in order to determine exactly which type
is currently available, This is accomplished with
a data comparison, using an IF statement to test a
field . which has a unigue value for each type of
record.

The INTO option permits the user to specify that a
copy of +the data record is to be placed into a
designated data field immediately after the READ
statement. The data-name must not be defined in
the file records description itself.

Alsc, the INTO phrase should not be used when the
file has records of variocus sizes a2s indicated by
their record descriptions. Any subscripting or
indexing of data-name is evaluated after the data
has been read but before it is moved to data-name.
Afterward, the d&ata is available in both the file
record and data-name.

In the case of a blocked input file (such as disk

files), not every READ statement performs a
physical transmission of data £from an external
storage device; instead, READ may simply obtain

the next logical record from an input buffer.

4,16 WRITE STATEMENT {(Seguential I-0)

The general format of a WRITE statement is:

WRITE record-name FROM data-name-1

AFTER ADVANCING operand LINE(S)
BEFORE PAGE

Ignoring the ADVANCING option for the moment, we
proceed to explain the main functions of the WRITE
statement.

In COBOL, file ocutput is achieved by execution of
the WRITE statement. Depending on the device

COBOL-80 Reference Manual Page 69
Procedure Division

assigned, "written" output may take the form of
printed matter or magnetic recording on a floppy
disk storage medium. The user 1is reminded also
that ycu READ file-name, but you WRITE record-name.
The associated f£ile must be open in the QUTPUT mode
at time of execution of a WRITE statement.

Record-name must be one of the level 01 records
defined for an output file, and may be qualified by
the filename. The execution of the WRITE statement
releases the logical record to the file and updates
its FILE STATUS item, if one igs specified.

If the data to he output has been developed in
Working~Storage or in another area (for example, in
an input file's record area), the FROM suffix
permits the user to stipulate that the designated
data (data-name~1} is to be copied into the
record-name area and then output from there.
Record-name and data-name-1 must refer to separate
storage areas.

The ADVANCING coption is restricted to line printer
output files, and permits the programmer to contreol
the line spacing on the paper 1in the printer,
Operand is either an unsigned integer literal or
data-name; values from 0 to 60 are permitted:

Integer Carriage Control Action
0 No spacing
1 Normal single spacing
2 Double spacing
3 Triple spacing

Single spacing ({(i.e., "advancing 1 line") is
assumed if there is no BEFORE or AFTER option in
the WRITE statement.

Use of the key word APFTER implies that the carriage
control action precedes printing a line, whereas
use of BEFORE implies that writing precedes the
carriage control action. If PAGE is specified, the
data is printed BEFCRE or AFTER the device is
repositioned to the next physical page.

When an attempt is made to write beyond the
externally defined boundaries of a sequential file,
a Declarative procedure will be executed {1f
available} and the FILE STATUS (if available) will
indicate a boundary violation. If neither 1is

COBOL-80 Reference Manual Page 70
Procedure Division

available, a runtime error occurs.

4.17 CLOSE STATEMENT (Segquential I=0)

Upon completion of the ©processing of a £file, a
CLOSE statement must be executed, causing the
system to make the proper disposition of the file.
Whenever a file 1is «cleosed, or has never been
opened, READ, REWRITE, or WRITE statements cannhot
be executed properly; a runtime error would occur,
aborting the run.

The general format of the CLOSE statement is:

CLOSE = {file-name [WITH LOCK]} ...
If the LOCK suffix is used, +the file 1is not
re—-openable during the current job. If LOCK is not
specified immediately after a file-name, then that
file may be re-opened later in the program, if the
program logic dictates the necessity.
An attempt to execute a CLOSE statement for a file
that is not currently open iz a runtime error, and
causes execution teo be discontinued.
Examples of CLOSE statements:

CLOSE MASTER-FILE-IN WITH LOCK, WORK-FILE:
CLOSE PRINT-FILE, TAX-RATE-FILE, JOB~PARAMETERS WITH LOCK

4.18 REWRITE STATEMENT (Seguential I-0)

The REWRITE statement replaces a logical record on
a seguential DISK file. The general format is:

REWRITE record-name [FROM data-name]

Record-name is the name of a logical record in the
File Section of the Data Division and may be
gualified, Record-name and data-name must refer to
separate storage areas.

At the time of execution of this statement, the
file +to which record-name belongs must be open in
the I-0 mode (see OPEN, Section 4.14).

If a FROM part is included in this statement, the
effect is as if MOVE data-name TO record-name were
executed just prior to the REWRITE,

Execution of REWRITE replaces the record that was

COBOL-80 Reference Manual Page 71
Procedure Division

accessed by the most recent READ statement; said
prior READ must have been completed successfully,
as indicated by the FILE STATUS indicator.
Otherwise, the FILE STATUS indicator gets a value
of '93'. (The FILE STATUS indicator is updated by
execution of REWRITE.)

4,19 GENERAL NOTE ON I/C ERROR HANDLING

if an I/0 error occurs, the file's FILE STATUS
item, if one exists, 1is set to the appropriate
two-character code, otherwise it assumes the value
I!OOII.

If an I/0 error occurs and is of the type that is
pertinent to an AT END or INVALID KEY clause, then
the imperative statements in such a c¢lause, if
present on the statement that gave rise to the
Brror, are executad. But, if there is not an
appropriate clause (such clauses may not appear on
Open or Close, for exanple, and are opticonal for
other I/0 statements), then the logic of program
flow is as follows:

1. If there is an associated Declaratives ERRCOR
procedure (see Section 9), it is performed
auntomatically; user-written logic must
"determine what action is taken because of the
existence of the errcr., Upon return from the
ERRCR procedure, normal program flow to the
next sentence (following the I/0 statement) is
allowed.

2. If no Declaratives ERROR procedure is
applicable but there 1is an associated FILE
STATUS item, it is presumed that the user may
base actions upon testing the STATUS item, so
normal flow tc the next sentence is allowed.

Only if none of the above (INVALID KEY/AT END
clause, Declaratives ERROR procedure, or testable
FILE STATUS item) exists, then the run~time error
handler receives control; the location o©of the
error (source program line number) is noted, and
the run is terminated "abnormally."

These remarks apply to processing of any file,
whether organization 1is Sequential, Indexed or
Relative,

4,20 ACCEPT DATE/DAY/TIME STATEMENT

The standard date, day or time wvalue may be
acguired at execution time by a special form of the

COBOL-80 Reference Manual Page 72
Procedure Division

ACCEPT statement:

DATE
ACCEPT data-name FROM DAY
TIME

The formats of standard values DATE, DAY and TIME
are:

DATE - a six digit value of the form YYMMDD
(year, month, day).
Example: July 4, 1976 is 760704.

DAY -~ A five digit "Julian date"™ of the
form YYNNN where YY is the two low
order digits of year and NNN is
the day-in-year number between 1
and 366.

TIME = an eight digit value of the
form HHMMSSFF where HH is from 00
to 23, MM is from 0C to 59, 00 is
from 0 to 5%, and FF is from 00 to
99; HH is the hour, MM is the min-
utes, SS is the seconds, and FF
represents hundredths of a second.

The PICTURE of data—-name should be 8¢(6), 9(5} or
9(8), respectively, for DATE, DAY or TIME
acquisition, i.e., all the source values are
integers, If not, the standard rules for a move
govern storage of the source value in the receiving
item (data-name}.

4,21 STRING STATEMENT

The STRING statement allows concatenation of
multiple sending data item wvalues into a single
receiving item. The general format of this
statement is

STRING operand-1... DELIMITED BY
’ SIZE

operand~2}]

INTC identifier-~1 [WITH POINTER identifier-2]
[ON OVERFLOW imperative-statement]

In this " format, the term operand means a
non-numeric literal, one-character figurative
constant, or data-name. "Identifier-1" 1is the
receiving data-item name, which must be

COBOL-80 Reference Manual Page 73
Procedure Division

alphanumeric without editing symbols or the
JUSTIFIED clause. "Identifier-2" is a counter and
must be an elementary numeric integer data item . of
sufficient size (plus 1} to point to positions
within identifier-1.

If no POINTER phrase exists, the defdult value of
the logical peinter 1is one. The logical pointer
value designates the Dbeginning position o©f the
receiving field intoc which data placement begins.
During movement to the receiving field, the
criteria for termination ¢f an individual source
are controlled by the "DELIMITED BY" phrase:

DELIMITED BY SIZE: the entire source field is
moved {unless the receiving £field becomes
full)

DELIMITED BY cperand-2: the character string
specified by operand-2 iz a "Key" which, 1if
found to match a like-numbered succession of
sending characters, terminates the function
for the current sending operand (and causes
automatic switching to the next sending
operand, if any).

If at any peint the logical pointer (which 1is
automatically incremented by one for each character
stored into identifier-1} is 1less than one or
greater than the size of identifier-1, no further
data movement occurs, and the imperative statement
given in the OVERFLOW phrase (if any) is executed.
If there 1s ne OVERFLOW phrase, contrel is
transferred to the next executable statement.

There is no automatic space fill into any position
of identifier-i. That is, unaccessed pesitions are
unchanged upon completicn of the STRING statement.

Upcon completion of the STRING statement, if there
was a POINTER phrase, the resultant value of
identifier-2 equals its original wvalue plus the
number of characters moved during execution of the
STRING statement.

4.22 UNSTRING STATEMENT

The UNSTRING statement causes data 1in a single
sending field to be separated into subfields that
are placed into multiple receiving fields. The
general format of the statement is:

COBOL~-80 Reference Manual Page 74
Procedure Division

UNETRING identifier=1

[DELIMITED BY [ALL] operand-1 [OR [ALL] operand=-2] ...]

INTC {identifier-2 [DELIMITER IN identifier-3]
[COUNT IN identifier-41} ...

[WITH POINTER identifier-5]
[TALLYING IN identifier-6}
[ON OVERFLOW imperative-statement])

Criteria for separation of subfields may be given

in the "DELIMITED BY" phrase. Each time =&
succession of characters matches one of the
non-numeric literals, cne-character figurative

constants, or data-item values named by operand-i,
the current collection o¢f sending characters is
terminated and moved to the next receiving field
specified by the INTO~clause, When the ALL phrase
is specified, more than one contiguous occurrence
of operand-i in identifier-1 is treated as one

occurrence,
When +two or more delimiters exist, an YOR!
condition exists. Each delimiter is compared to

the sending field in the order specified in the
UNSTRING statement.

Identifier~1 must be a group or character string
(alphanumeric) item. When a data-~item is employed
as any operand-i, that operand must also be a group
or character string item.

Receiving fields (identifier-2) may be any o©f the
following types of items:

1. an unedited alphabetic item
2. a character~string (alphanumeric) item

3. a group item

4., an external decimal item {numeric, usage
DISPLAY) whose PICTURE does not contain any P
"character,

When any examination encounters +two contiguous
delimiters, +the current receiving area is either
space or zero filled depending on its type. If
there 1is a "DELIMITED BY" phrase in the UNSTRING
statement, then there may be "DELIMITER IN" phrases
following any receiving item {identifier-2)
mentioned in the INTO clause, In this case, the
character(s) that delimit the data moved into

' COBOL-80 Reference Manual Page 75
Procedure Division

identifier-2 are themselves stored in identifier-3,
which should be an alphanumeric item. Furthermore,
if a "COUNT IN" phrase is present, the number of
characters that were moved into identifier-2 is
moved to identifier-4, which must be an elementary
numeric integer item.

If there is a "POINTER" phrase, then identifier-5
must be an integer numeric item, and its initial
value becomes the initial logical pointer wvalue
{otherwise, a logical pointer’ wvalue of one is
assumed)}. The examination of source characters
begins at the position in identifier-1 specified by
the logical pointer; upoen completion of the
UNSTRING statement, the final logical pointer wvalue
will be copied back into identifier-5.

If at any time the wvalue of the logical pointer is
less than one or exceeds the size of identifier-1,
then overflow is said to occur and control passes
over +to the imperative statements given in the "ON
OVERFLOW" clause, if any.

Overflow alsc occurs when all receiving fields have
been filled prior to exhausting the source field.

puring the course of source field scanning (locking
for matching delimiter sequences), a variable
length character string is developed which, when
completed by recognition of a delimiter oxr by
acquiring as many characters as the size of the
current receiving field can hold, is then moved to
the current receiving field in the standard MOVE
fashion,

If there is a "TALLYING IN" phrase, identifier-6
must be an integer numeric item., The number of
receiving fields acted upon, plus the initial wvalue
of Jidentifier-6, will be produced in identifier-6
upon completion ¢of the UNSTRING statement.

Any subscripting or indexing associated with
identifier-1, 5, or 6 is evaluated only once at the
beginning of the UNSTRING statement. Any
subscripting associated with operands-i or
identifier-2, 3, 4 is evaluated immediately before
access to the data-item.

4,23 DYNAMIC DEBUGGING STATEMENTS

The execution TRACE mode may be set or reset
dynamically. When set, procedure-names are printed
in the order in which they are executed.

COBOL-80 Reference Manual Page 76
Procedure Division.

Execution of the READY TRACE statements sets the
trace mode to cause printing of every section and
paragraph name each time it is entered. The RESET
TRACE statement inhibits such printing. A printed
list of procedure-names in the order of their
execution is invaluable in detection of a program
malfunction; it aids in detection of the point at
which actuzl program flow departed from the
exepected program flow.

aAnother debugging feature may be required in order
to reveal critical data values at specifically
designated points in the procedure. The EXHIBIT
statement provides this facility.

The statement form

: Iliteral }
EXHIBIT NAMED data-name| ...

produces a printout of wvalues of the indicated
literal, or data items in the format data-name =
value.

Statements EXHIBIT, READY TRACE and RESET TRACE are
extensions to ANS-74 standard COBOL designed to
provide a convenient aid to program debugging.

Programming Note: It is often desirable to include
such statements on source lines that contain D in
column 7, so that they are ignored by the compiler
unless WITH DEBUGGING MODE is included in the
SOURCE-COMPUTER paragraph.

COBOL-80 Reference Manual _ Page 77

CHAPTER 5

Inter-Program Communication

Separately compiled COBOL program modules may be combined
into a single . executable program. - Inter-program
communication is made possible through the use of the
LINKAGE Section of the Data Division (which follows the
Working~Storage Section)} and by the CALL statement and the
USING list appendage to the Procedure Division header of a
subprogram module, The Linkage section describes data made
available in memory from another program module. Record
description entries in the LINKAGE section provide
data~names by which data—-areas reserved in memory by other
programs may be referenced. Entries in the LINKAGE section
do not reserve memory areas because the data is assumed to
be present elsewhere in memory, in. a CALLing program.

Any Record Description clause may be used to describe items

in the LINKAGE Section as long as the VALUE clause is not
specified for other than level B8 items.

5.1 USING LIST APPENDAGE TC PROCEDURE HEADER

The Procedure Divisgion header of a CAallLable
subprogram is written as

PROCEDURE DIVISION [USING data-name ...].

Each of the data-name operands is an entry in the
Linkage Section of the subprogram, having level 77
or 0i. Addresses are passed from an external CALL
in one-to-one correspeondence to the operands in the
USING list of the Procedure header so that data in
the calling program may be manipulated in the
subprogram. No data-name may appear more than once
in the USING phrase.

5.2 CALL STATEMENT

The CALIL statement format is
CALL literal USING data-name ...

Literal is a subprogram name defined as the
PROGRAM~ID of a separately compiled program, and is
non-numeric. Data names in the USING list are made
available to the called subprogram by passing
addresses to the subprogram; these addresses are
assigned to the Linkage Section items declared in
the USING list of that subprogram, Therefore the

" COBOL-80 Reference Manual Page 78
Inter-Program Communication

number of data-~names specified in matching CALL and-
Procedure Division USING lists must be identical.

NOTE
Correspondence between caller and callee

lists is by position, not by identical
spelling of names.

5.3 EXIT PROGRAM STATEMENT

The EXIT PROGRAM statement, appearing in a called
subprogram, causes controcl +to be returned to the
next executable statement after CALL in the calling
program. This statement must be a paragraph by
itself.

COBOL-80 Reference Manual Page 79

CHAPTER 6

Table Handling by the Indexing Method

In addition to the capabilities of subscripting described in
Chapter 3, COBOL provides the Indexing method of table
handling.

6.1 INDEX-NAMES AND INDEX ITEMS

An index-name is declared not by the usual methed
of level number, name, and data description
clauses, but implicitly by appearance in the
"INDEXED BY index-name" appendage +to an QCCURS
clause. Thus, an index-name is equivalent to an
index data-item (USAGE IS INDEX), although defined
differently. An index-name must be uniquely named.

An index data item may only be referred to by a SET
or SEARCH statement, a CALL statement's USING list

or a Procedure header USING list; or used 1in a
relation condition or as the variation item in a
PERFORM VARYING statement. In all cases the

process is equivalent to dealing with a binary word
integer subscript. Index-name nust be initialized
to some value befeore use via SET, SEARCH or
PERFORM.

6.2 SET STATEMENT

The SET statement permits the manipulation of
index-names, index items, or binary subscripts for
table~handling purposes. There are two formats.

Format 1:
index-name-1 index-name-2
SET index=item-1{ ... TO - index=item-2
data-name-1 data-name-2
integer-2
Format 2:
index-name-4
index-name-3 UP BY index-item-4
SET index-item-3{ ... | DOWN BY data-name-4
data-name-3 integer—-4

Format 1 is equivalent to moving the "TO" value
{e.g., 1integer-2) to multiple receiving fields
written immediately after the verb SET,.

' COBOL-80 Reference Manual Page B0
Table Handling by the Indexing Method

Format 2 is eguivalent to reduction (DOWN) or
increase (UP) applied to each of the guantities
written immediately after the verb SET: the amount
of the reduction or increase is specified by a name
or value immediately following the word BY,

In any SET statement, data-names are restricted to

-binary items, except that a decimal item may
precede the word TO.

6.3 RELATIVE INDEXING

A user reference to an item in a takle controlled’
by an OCCURS clause 1is expressed with a proper
number of subscripts (or indexes), separated by
commas. The whole is enclosed in matching
parentheses, for example:

TAX~-RATE (BRACKET, DEPENDENTS)
XCODE (I, 2} -

where subscripts are ordinary integer decimal
data-names, or integer constants, or binary integer
(COMPUTATIONAL or INDEX) items, or index-names.
Subscripts may be gualified, but not, themselves,
subscripted. A subscript may be signed, but if so,
it must be positive. The lowest acceptable value
is 1, pointing to the first element of a table.
The highest permissible value is the maximum number
of cccurrences of the item as specified in its
OCCURS clause.

A further capability exists, called relative
indexing. In this case, a "subscript" is expressed
as

name + integer constant
where a space must be on either side of the plus or
minus, and "name"™ may be any proper index-name.
Example:

XCOPE (I + 3, J - 1).

6.4 SEARCH STATEMENT -- Format 1

A linear search of a table may be done using the
SEARCH statement. The general format is:

COBOL-80 Reference Manual Page 81
Table Handling by the Indexing Method

SEARCH table . [VARYING identifier | index-name]

[AT END imperative~statement-1]

WHEN Condition-1 NEXT SENTENCE] ,
imperative-statement-2 oes

"Table” is the name of a data-item having an OCCURS
clause +that includes an INDEXED-BY list; ‘"table"
must be written without subscripts or indexes
because the nature of the SEARCH statement causes
automatic variation of an index-name associated
with a particular table.

There are four possible "varying" cases:

1. NO VARYING phrase mees the first~listed
index—name for the table is varied.

2, VARYING index-name-in-a-~different-table -- the
first-listed index=-name in the table's
definition is varied, implicitly, and the
index-name listed in +{he VARYING phrase is
varied in like manner, simultaneously.

3. VARYING index-name-defined-for table =-- this
specific index-name is the only one varied.

4, VARYING integer-data-item—~name -- both +this
data-item and the first-listed index-name for
table are varied, simultaneously.

The term variation has the following
interpretation:

1. The initial wvalue is assumed to have bheen
established by an earlier statement such as
SET.

2. If +the initial value exceeds the maximum
declared in the applicable OCCURS clause, the
SEARCH operation terminates at once; and if an
AT END phrase exists, the associated imperative

_statement-1 is executed.

3. If the value of the index is within the range
of wvalid indexes (1,2,... up to and including
the maximum number of occurrences)}, then each
WHEN-condition is evaluated until one is true
or all are found to be false. If cne is true,
its associated imperative statement is executed
and the SEARCH operation terminates. If none
is true, the index is incremented by cone and
step (3) is repeated. Note that incrementation

COBOL-80 Reference Manual Page 82
Table Handling by the Indexing Method

of index applies to whatever item and/or index
is selected according to rules 1-4.

If the table is subordinate to another +table, an
index-name must be associated with each dimensicn
of the entire tabkle via INDEXED BY phrases in - all

the OCCURS clauses. Only the index-name of the
- - S8EARCH table is varied {(along with another
"VARYING" index-name or data-item). To search an

entire two- or three-dimensional table, a SEARCH
must be executed several times with the other

. index-names set appropriately each time, probably
with a PERFORM, VARYING statement.

The lcgic of a Format 7 SEARCH is depicted on page
84, - _

6.5 SEARCH STATEMENT -- Format 2

Format 2 SEARCH statements deal with tables of
ordered data. The general format of such a SEARCH
ALL statement is: '

SEARCH ALL table [AT END imperative-statement-1...]

WHEN condition imperative-staﬁement-2...
NEXT SENTENCE

Only one WHEN clause 1is permitted, and the
following rules apply to the conditicn:

1. Only simple relational conditions or
condition-names . may be employed, and the
subject must be properly indexed by the first
index-name associated with table (along with
sufficient other indexes 1if multiple OCCURS
clauses apply) . Furthermore, each subject
data-name {or +the data-name associated with
condition-name) in the condition must be
mentioned in the KEY clause of the table. The
KEY clause is an appendage to the OCCURS clause
having the following format:

'ASCENDING | DESCENDING KEY IS data-name ...

where data-name is the name defined in this
pata Description entry {(following level number)
or one of the subordinate data-names. If more
than one data-name is given, then all of them
must be the names of entries subordinate to
this group item. The KEY phrase indicates that
the repeated data is arranged in ascending or
descending order according to the data-names

COBOL-80 Reference Manual Page 83
Table Handling by the Indexing Method

which are listed (in any given KEY phrase) in
decreasing order of significance. More than
one KEY phrase may be specified.

2, In a simple relational condition, only the
equality test (using relaticon = or IS EQUAL TO)
is permitted. .

3. Any condition-name variable (Level 88 items)
must be defined as having only a single value.

4. The condition may be compounded by use of the
Logical connector AND, but not OR.

5. In a simple relational condition, the object
.{to the right of the equal sign) may be a
literal or an identifier; +the identifier must
NOT be referenced in the KEY clause of the
table or be indexed by the first index-name
associated with the table. {The term
identifier means data-name, including any
qualifiers and/or subscripts or indexes.) '

Failure to conform to these restrictions may vield
unpredictable results, Unpredictable results also
occur i1f the table data is not ordered in
conformance to the declared KEY clauses, or i1if the
keys referenced in the WHEN~condition are not
sufficient to identify a unique table element,

In a Format 2 SEARCH, a nonserial type of search
operation may take place, relying upon the declared
ordering of data. The initial setting of the
index=-name for table is ignored and its setting is
varied automatically during the searching, always
within the bounds o©f +the maximum number of
occurrences, If the condition (WHEN) c¢annot be
satisfied for any wvalid index value, control is
passed to imperative-statement-1, 1f the AT END
clause is present, or to. the next executable
sentence in the case of no AT END clause.

If all the simple conditicns in the single
WHEN=-condition are satisfied, the resultant index
value indicates an c¢ccurrence that allows those
conditicons to be satisfied, and control passes to
imperative-statement-2, Otherwise the final
setting is not predictable,

COBOL~-80 Reference Manual Page 84
Table Handling by the Indexing Method

Logic Diagram for Format 1 SEARCH

r-——-——--=7

frm@rhe nall /

execute

> imperative
Al state- | "~ 2
ment {s}-1

execute. Next
imperative | _ _ _ _ State=
state- ment
ment (s) -2

AV

execute
imperative

7 state- o

ment (s) =3

Increment

index(es)

COBOL-80

7.1

7.2

7.2.1

Reference Manual Page 85

CHAPTER 7

Indexed Files

DEFINITION OF INDEXED FILE ORGANIZATION

An indexed~file organization provides for recording
and accessing records of a "data base" by keeping a
directory (called the contrel index) of pointers
that enable direct location o¢f records having
particular unique key values., An indexed file must
be assigned to DISK in its defining SELECT
sentence.

A file whose organization 1is indexed can be
accessed either segquentially, dynamically or
randomly.

Seguential access provides access to data records
in ascending order of RECORD KEY values.

In the random access mode, the order of access to
records is controlled by the programmer. Each
record desired is accessed by placing the value of
its key in a key data item prior to an access
statement.

In the dynamic access mode, the programmer's Llogic
may change from sequential access to random access,
and viee wversa, at will,

SYNTAX CONSIDERATICNS

In the Environment Division, the SELECT entry must
specify ORGANIZATION IS INDEXED, and the ACCESS
clause format is

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are
identical to those specified in Section 2.2.1 of
this manual.

In the FD entry for an INDEXED file, both LABEL
RECORDS STANDARD and a VALUE OF FILE-ID clause must
appear. The formats of Secticn 3.13 apply, except
that only the DISK-related forms are applicable.

RECORD KEY CLAUSE

The general format of this <¢lause, which is

COBOL-80 Reference Manual Page B6
Indexed Files

required, is:
RECORD KEY IS data-name=1

where data-name-1 is an item defined within the
record descriptions of the associated file
description, and is a grcocup item, an elementary
alphanumeric item or a decimal field. A decimal
key must have no P characters in its PICTURE, and
it may not have a SEPARATE sign. No record key may
be subscripted.

If random access mode is specified, +the value of

. data~name-1 designates the record to be accessed by

the next DELETE, READ, REWRITE or WRITE statement.
Each record must have a unigque record key value.

7.2.2 FILE STATUS REPORTING
If a FILE STATUS clause appears in the Environment
Division for an Indexed organization £file, the
designated two-character data item is set after
every I-0 statement. The following table
summarizes the possible settings.

Status Data Status Data Item RIGHT Character

Item LEFT No Further Seguence {Duplicate |No Record |Disk Space

Character Descripticn Error Key Found Full

(0) {1) (2) {3) {4)

Successful

Completion (0) X

at Eng (1) X

Invalid

Key (2) X X X X

Permanent

Error{3) X

Seguence error arises 1f access mode is segquential
when WRITEs deo not occur in ascending segquence for
an Indexed file, or the key 1is altered prior to
REWRITE or an unsuccessful READ preceded a DELETE
or REWRITE. The other settings are
self-explanatory. The left character may also be
'9' for implementor-defined errors; see the User's
Guide for an explanation of these.

Note that "Disk Space Pull" occurs with Invalid Key

'COBOL~-80 Reference Manual Page 87
Indexed Files

{2} for Indexed and Relative file handling, whereas
it cccurred with "Permanent Error" (3} for
sequential files,

If an error coccurs at executicn time and no AT END
or INVALID KEY statements are given and no
appropriate Declarative ERROR section is supplied
and no FILE STATUS is specified, the error will be
displaved on the Consvole and the program will
terminate. See Section 4.19.

7.3 PROCEDURE DIVISICN STATEMENTS FOR INDEXED FILE
The syntax of the OPEN statement (Section 4.14)
also applies to Indexed organized files, except
EXTEND is inapplicable,.

The following table summarizes the available
statement types and their permissibility in terms
of ACCESS mode and OPEN opticon in effect. Where X
appears, the statement is permissible, otherwise it
is not wvalid under the associated ACCESS mode and
QPEN option,

ACCESS Procedure OPEN Option in Effect
MCDE IS Statement Input Cutput I-0

READ X
-1 WRITE X
SEQUENTTIAL REWRITE
START X
DELETE
- READ X
WRITE X
RANDOM REWRITE
START
DELETE
READ X
WRITE X
DYNAMIC REWRITE
START X
DELETE

] | e

g

In addition +to the above statements, CLOSE 1isg
permissible under all conditions; the same format
shown in Secticn 4.17 is used.

COROL-80 Reference Manual Page 88
Indexed Files

7.4 READ STATEMENT

Format 1 (Sequential Access):
READ file-name [NEXT] RECORD [INTO data-name-1]
[AT END imperative-statement ...]
Format 2 (Random or Dynamic Access):
READ file-name RECORD [INTO data-name-1] [KEY IS data-name-2]
[INVALID KEY imperative-statement...]

Format 1 must be used for all files having
sequential-access mode. FPormat 1 with the NEXT
option is used for sequential reads o¢f a DYNAMIC
access mode file, The AT END clause is executed

" when the logical end-of-£file condition arises. it
this clause is not written in the source statement,
an appropriately assigned Declaratives ERROR
section is given control at end-pf-file time, if
available,

Format 2 is used for files in random-access mode or
for files in dynamic~access mode when records are
to be retrieved randomly.

In format 2, the INVALID KEY clause specifies
action to be taken if the access key value does not
refer to an existent key in the file. If the
clause is not given, the appropriate Declaratives
ERROR section, if supplied, is given control.

The optional "KEY IS" clause must designate the
record ey item declared in the file's SELECT
entry. For non-sequential access, if no "KEY 1IS"
clause is written in a READ statement, then the
prime record key is assumed to be the key of
record. The user must ensure that a valid key
value is in the designated key £field prior to
execution of a random-access READ.

The rules for sequential files regarding the INTO
phrase apply here as well.

7.5 WRITE STATEMENT

The WRITE statement releases a logical record for
an output or input-output file; its general format
is:

COBOL~-80 Reference Manual Page 89
Indexed Files

WRITE record-name [FROM data-name-~1]
[INVALID KEY imperative-statement...]

Just prior to executing the WRITE statement, a
valid (unique} wvalue must be in that portion of the
recgord-name (or data-name-1 if FROM appears in the
statement) which serves as RECORD XEY.

In the event of an improper key vwvalue, the
imperative statements are executed if the INVALID
KEY clause appears in the statement; otherwise an
appropriate Declaratives ERROR section is invecked,
if applicable. The INVALID KEY condition arises
i1f:

1. for sequential access, key values are not
ascending from one WRITE to the next WRITE;

2. the key value is not unique;

3. the allocated disk space is exceeded.

7.6 REWRITE STATEMENT

The REWRITE statement logically replaces an
existing record; the format of the statement is:

REWRITE record-name [FRCM data-namel
[INVALID KEY imperative—statement...)

For a file in sequential~access mode, the last READ
statement must have been successful in order for a
REWRITE statement to be valid, If the value of the
record key in record-name (or corresponding part of
data-name, if FROM appears in the statement) does
not equal the key value of the immediately previous
read, or if that previous read was unsuccessful,
then the invalid key condition exists and the
imperative statements are executed, if present;
otherwise an applicable Declaratives ERROR section
is executed, if available,

For a file in a random or dynamic access mode, the
record to be replaced is specified by the record
key; no previous READ is necessary. The INVALID
KBEY condition exists when the record key's value
does not equal that of any record stored in the
file,

COBOL~-80 Reference Manual Page 90
Indexed Files

7.7 DELETE STATEMENT

The DELETE statement 1logically removes a record
from the Indexed file. The general format of the
statement is: :

DELETE file—-name RECORD [INVALID XEY imperative-statement...]

For a fiie in the sequential access mode, the last
input-output statement executed for file-name would
have been a successful READ statement. The record
that was read is deleted. Consequently, no INVALID
KEY phrase should be specified for
sequential-access mode files.

For a file having random or dynamic - access mode,
the record deleted is the one associated with the
record key; if there is no such matching record, -
the invalid key <condition exists, and control
passes to the imperative statements in the INVALID
KEY clause, or to an applicable Declarative ERROR
section if no INVALID KEY clause exists.

7.8 START STATEMENT

The START statement enables an Indexed organization
file to be positioned for reading at a specified
key value. This is permitted for £files open in
either seguential or dynamic access medes. The
format of this statement is:

GREATER THAN
START file-name |KEY IS {NOT LESS THAN; data-name
EQUAL TO

[INVALID KBEY imperative statement...)

Data-name must be the declared record key and the
value to be matched by a record in the file must be
pre-stored in the data-name. When executing this
statement, the £file must be open in the input or
i-0 mode.

If the KEY phrase is not present, equality between
a record in the file and the record key value is
sought. If key relation GREATER or NOT LESS is
specified, the file is positioned for next access
at the first record greater than, or greater than
or equal to, the indicated key value.

COBOL-Bﬁ Reference Manual Page 91

Indexed Files

If no matching record is found, the imperative
statements in the INVALID KEY clause are executed,
or an aprpropriate Declaratives ERROR section- is

executed,

COBOL-80 Reference Manual Page 92

8.1

8.2

CHAPTER 8

Relative Files

DEFINITION OF RELATIVE FILE QRGANIZATION

Relative organization is restricted to disk-based
files, Records are differentiated on the basis of
& RELATIVE RECORD number which ranges from 1 <+¢o
32,767, or to a lesser maximum for a-smaller file.
Unlike the case of an Indexed file, where the
identifying key field occupies a part of the data
record, relative record numbers are conceptual and
are not embedded in the data records.

A relative-crganized file may be accessed either
seguentially, dynamically or randomly, In
seguential access mode, records are accessed in the
order of ascending record numbers. '

In random access mode, the sequence of record -
access 1is controlled by the program, by placing a
number in a relative key item. In dynamic access
mode, the program may inter-mix randem and
seguential access verb forms at will.,

SYNTAX CONSIDERATIONS

In the Environment Division, the SELECT entry must
specify OQRGANIZATION IS RELATIVE, and the ACCESS
clause format is

ACCESS MODE IS SEQUENTIAL | RANDOM | DYNAMIC.

Assign, Reserve, and File Status clause formats are
identical to those used feor sequentially- or
indexed-organized files. The values of STATUS Key
2 when STATUS Key 1 eguals '2' are:

L for a sequential REWRITE or DELETE
with no previous successful READ

12! for attempt to WRITE a duplicate key

'3 for nonexistent record

4! for disk space full

In the associated FD entry, STANDARD labels must be
declared and a VALUE OF FILE~ID clause must be
included. . _

COBOL-80 Reference Manual Page 93
Relative Files

g.2.1 RELATIVE KEY CLAUSE

In addition to the wusual <¢lauses in the SELECT
entry, a clause of the form

RELATIVE KEY IS data-name-]

is required for random or dynamic access mode. It
is also required for sequential-access mode, if a
START statement exists for such a file.

Data-name—-1 must be described as an unsigned binary
integer item not contained within any record
description of the file itself. Its value must be
positive and nonzero.

8.3 . PROCEDURE DIVISION STATEMENT FOR RELATIVE FILES

Within the Procedure Division, the wverbs OPEN,
CLOSE, READ, WRITE, REWRITE, DELETE and START are
available, just as for files whose ocrganization 1is
indexed. (Therefore +the charts in Sections 7.2.2
and 7.3 also apply to RELATIVE files.) * The
statement formats for OPEN and CLOSE (see Sections
4.14 and 4.17) are applicable to Relative files,
except for the "EXTEND" phrase.

8.4 READ STATEMENT

Format 1:
READ file-name {NEXT] RECORD [INTO data-~name]

[AT END imperative statement...]

Format 2:
READ file-name RECORD [INTO data-name]

(INVALID KEY imperative statement...]

Format 1 must be used for all files in sequential
access mode. The NEXT phrase must be present to
achieve sequential access if the file's declared
mode of access is Dynamic. The AT END clause, if
given, is executed when the logical end-of-file
condition exists, or, if not given, the appropriate
Declaratives ERROR section is given control, if
available.

Format 2 is used +o achieve random access with
declared mode of access either Random or Dynamic.

COBOL-80 Reference Manual Page 94
Relative Files

If a Relative Key is defined (in the file's SELECT

entry), successful execution of a format 1 READ
statement updates the contents of the RELATIVE KEY
item ("data-name-1") so0 as to contain the record

number of the record retrieved.

For a format 2 READ, the record that is retrieved
is the one whose relative record number is
pre-stored in the RELATIVE KEY item. If no such
record exists, however, the INVALID KEY condition
arises, and 1is handled by (a) the imperative
statements given in the INVALID KEY portion of the
READ, or (b) an associated Declaratives section.

The rules for sequential files regarding the INTO
phrase apply here as well,

8.5 WRITE STATEMENT

The format of the WRITE statement is the same for a
Relative file as for an Indexed file:

WRITE record-name [FROM data-name] [INVALID
imperative statement...]

If access mode is sequential, then conpletion of a
WRITE statement causes the relative record number
of the record just output to be placed in the
RELATIVE KEY item.

If access mode is random or dynamic, then the user
must pre-set the value cof the RELATIVE KEY item in
order to assign the record an ordinal (relative)
number. = The INVALID KEY condition arises if there
already exists a record having the specified
ordinal number, or if the disk space is exceeded.

8.6 REWRITE STATEMENT

The format of the REWRITE statement is the same for
a Relative file as for an Indexed file:

REWRITE record-name [FROM data=-name]
[INVALID XEY imperative statement ...]}

For a file in seguential access mode, the
immediately previous action would have been a
successful READ; the record thus previocusly made
available 1is replaced in the file by executing
REWRITE, If the previous READ was unsuccessfiul,
REWRITE will return a FILE STATUS code of '21!',

COBOL~-80 Reference Manual Page 95
Relative Files

However, no INVALID KEY clause is allowed for
sequential access.

For a file with dynamic or random access mode
declared, the record that is replaced by executing
REWRITE is the one whose ordinal number is pre-set
in the RELATIVE KEY item. If ne such item exists,
the INVALID KEY condition arises.

8.7 DELETE STATEMENT

The format of the DELETE statement is the same for
a Relative file as for an Indexed file:

DELETE file-namg RECORD [INVALID KEY
imperative statement...]

For a file in a seguential access mode, the
immediately previous action would have been a

successful READ statement; the record thus
previously made available is logically removed (or
made 1inaccessible). If the previous READ was

unsuccessful, DELETE will return a value of '21'.
However, an INVALID KEY phrase may not be specified
for sequential-access meode files,

For a file with dynamic or random- access mode
declared, the removal action pertains to whatever
record is designated by the value in the RELATIVE
KEY itemn. ITf no such numbered record exists, the
INVALID KEY condition arises, '

8.8 START STATEMENT

The format of the START statement is the same for a
Relative file as for an Indexed file:

GREATER THAN
START file-name |KEY IS { NOT LESS THAN,} data-name-1
EQUAL TO

fINVALID KEY imperative statement...])

Execution of this statement specifies the beginning
poesition for reading operaticns; it is permissible
only for a file whose access mode 1is defined as
sequential or dynamic.

Data-name may only be that o¢f +the previously
declared RELATIVE KEY item, and the number of the
relative record must be stored in it before START
is eXecuted. When executing this statement, the

COBOL-80 Reference Manual ' ~ Page 96

Relative Files

associated file must be currently open'in INPUT or
I-0 mode.

If the XEY phrase is not present, equality between
a record in the file and the record key value is
sought. If kev relation GREATER or NOT LESS is
specified, the file is positiocned for next access

at the first record greater than, or greater than

or egual to, the indicated key value.

If no such relative record is found, the imperative
statements in the INVALID KEY clause are executed,
or an appropriate Declaratives ERROR section is
executed,

COBOL-80 Reference Manual Page 97

CHAPTER 9

DECLARATIVES and the USE SENTENCE

The Declaratives region provides a mnethecd of including
procedures that are executed not as part of the sequential
cading written by the programmer, bhut rather when a
condition that cannot normally be tested by the programmer
occurs.

Although the system auteomatically handles c¢hecking and
creation of standard labels and executes error recovery
routines in the case of input/cutput errors, additional
procedures may be specified by the COROL programmer.

Since these procedures are executed only at the time an
error in reading or writing occurs, they cannot appear in
the regular sequence of procedural statements. They must be
written at the beginning of the Procedure Division in a
subdivision called DECLARATIVES. Related procedures are
preceded by a USE sentence that specifies their function. A
declarative section ends with the occurrence of another
section-name with a USE sentence or with the key words END
DECLARATIVES.

The key words DECLARATIVES and END ODECLARATIVES must each
begin in Area A and be follcowed by a period. HNo other text
may appear on the Declaratives at the front of the Procedure
Division,

PROCEDURE DIVISION.

DECLARATIVES,

{section-name SECTION. USE sentence.

[paragraph-name. {sentence}...} - .o

END DECLARATIVES.

The USE sentence defines the applicability of the associated
section of ceding.

A USE sentence, when present, must immediately follow a
section header 1in the Declarative portion of the Procedure
Division and must be followed by a pericd followed by a

space. The remainder of the section must consist of zero,
one or more procedural paragraphs that define the procedures
to be used. The USE sentence itself 1s never axecuted;

rather, it defines the conditions for the execution o©f the
USE procedure. The general format of the USE sentence is

COBOL-80 Reference Manual Page 98
DECLARATIVES and the USE SENTENCE

USE AFTER STANDARD EXCEPTION | ERROR PROCEDURE

ON {file-name... | INPUT | OUTPUT | I-O | EXTEND }.

The words EXCEPTION and ERROR may be used interchangeably.
The associated declarative section is executed (by the
PERFORM mechanism) after the standard I-0 recovery
procedures for +the files designated, or after the INVALID
KEY or AT END conditicon arises on a statement lacking the
INVALID KEY or AT END clause. A given file-name may not be
associated with more than one declarative section.

Within a declarative section there must be no reference to
any nondeclarative procedure. Conversely, in the
nondeclarative portion there must be no reference to
procedure-names that appear in the declaratives sectioen,
except that PERFORM statements may refer to a USE statement
and its procedures; but 1in a range specification (see
PERFORM, Section 4,10} if one procedure-name 1s 1in a
Declarative Section, then the other must be in the same
Declarative Section.

An exit from a Declarative Section is inserted by the
coempiler following +the last statement in the section. All
logical program paths within the section must lead to the
exit point.

COBOL=-80

Reference Manual . Page 99

APPENDIY I

Advanced Forms of Conditions

Evaluation Rules for Compound Conditions

1.

Evaluation of individual simple conditions
(relation, class, condition-name, and sign
test) is done first.

2. AND-connected simple conditions are evaluated
next as a single result.

3. ©OR and its adjacent conditions (or previously
evaluated results) are then evaluated.

EXAMPLES:

1. A<BORC=DORENOT>F
The evaluation is equivalent to (A<B) OR (C=D)
OR (E<XF) and 4is true 4if any of the three
individual parenth951zed simple conditions 1is
true,

2., WEEKLY AND HOURS NOT = Q *
The evaluation is eguivalent, after expanding
level 88 condition-name WEEKLY, to
(PAY-CODE = 'W'} AND (HOURS 7 0)
and 1is true only if both the simple conditions
are true.

3. A= 1AND B = Z AND G > =3

OR P NOT EQUAT, TC "SPAIN"
is evaluated as
[(A = 1) AND (B = 2) AND (G > =-3)]

OR (P = "SPAIN"}

If P = "SPAIN", the compound condition can only
be true if all three of the following are true:
(c.1) A =1
(c.2) B=2
(C-B} G > _3

COBOL-B80 Reference Manual Page 100

However, if P is not equal to "SPAIN", the
compound condition is true regardless of the
values of A, B and G.

Parenthesized Conditions

Parentheses may be written within a compound
condition or parts thereocf in order to take.
precedence in the evaluation order.

Example:

IF 2 =B AND {(A=5 OR &= 1)
PERFORM PROCEDURE-44,

In this case, PROCEDURE-44 is executed if A = 5 OR
A = 1 while at the same time A = B. In this
manner, conmpound conditions may bhe formed
containing other compound c¢onditions, not Just
simple conditions, via the use of parentheses.

Abbreviated Conditions

For the sake of brevity, the user may omit the
"subjeect" when it is common £o several successive
relational tests. For example, the condition & = 5
OR 2 = 1 may be written A = 5 OR = 1. This may
also be written A = 5 OR 1, where both subject and
relation being implied are the same.
Another example:

IF A =B OR<CORY
is a shortened form of

IF A=B 0OR A< CORACCY

The interpretation applied to. the use of the word
'NOT' in an abbreviated condition is:

1. If the item immediately following ’'NOT' is a

relational operator, then the 'NOT!
participates as part of the relational
operator;

2. otherwise, the beginning of a new, completely
separate condition must follow 'NOT', not to be
considered part of the abbreviated condition.

Caution: Abbreviations in which the subject and
relation are implied are permissible only in
relation tests; the subject of a sign test or

COBOL-80 Reference Manual Page 101
class test cannot be omitted.

NOT, the Logical Negaticn Qperator

In addition to its use as a part of a relation
{e.g., IF A IS NOT = B), "NOT" may precede a
condition. For example, the condition NOT (A = B
OR) is true when (A = B OR A = C) is false. The
word NOT may precede a level B8 condition name,
also.

COBOL-80 Reference Manual page 102

APPENDIX II

Table of Permissible MOVE Operands

Receiving Operand in MOVE Statement

Source Numeric Numeric Numeric { Alphanumeric Alphanumeric Group

Operand Integer Non~integer | Edited Edited
Numeric Integer OK OK OK OK (Aa) oK (A) .OK (B)
Numeric Non-integer OK OK OK OK (B)
Numeric Edited OK oK - 0K (B)
Alphanumeric Edited 0K OK OK (B)
Alphanumeric OK (C) oK (C) OK (C) OK OK OK (B)
Group OX (B) OK (B) OK (B} OK (B) OK (B) OK (B)

KEY:* (A) Source sign, if any, is ignored
(B) If the source operand or the receiving

operand is a Group Item, the move is
considered to be a Group Move. See
Section 4.3 for a discussion of the
effect of a Group Move,

(C) Soﬁrce is treated as an unsigned integer;:
source length may not exceed 31.

NOTE: No distinction is made in the compiler
between alphabetic and alphanumeric; one
should not move numeric items to alphabetic
items and vice versa.

COBOL-80 Reference Manual Page 103

APPENDIX III

Nesting of IF Statements

A "nested IF" exists when, in a single sentence,
more than one IF precedes the first ELSE.

Example:

IF X =Y IF A =B
MOVE "*" TO SWITCE
ELSE MOVE "A" TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented
by a tree structure:

Space —> Switch

F/// ;\\\\\T
™~

A—>Switch * —> Switch

Next :
Sentence /

Ancther useful way of viewing nested IF structures
is based on numbering IF and ELSE verbs to show

their priority.

/

IF1 X=X
IFr2 A=B

]
1
true : true~action : MOVE "*" T0O SWITCH
actionl: | ELSE2 false-~action2 : MOVE "A" TO SWITCH

. |

ELSE1
false~actionl : MOVE SPACE TO SWITCH.

COBOL-80 Reference Manual) Page 104

The above illustration shows clearly the fact that

IF2 is wholly nested within the true-action side of
IF1.

The number of ELSEs in a sentence need not be the
same as the number of IFs; there may be fewer ELSE
branches.

Examples:

IF M =1 IF RK=20
GO TO M1KO ELSE GO TO MNOT1.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO CLOSE-OUT,

In the latter case, IF2 could egually well have
been written as AND.

COBOL-80 Reference Manual Page 105

APPENDIX IV

ASCII Character Set
For ANS-74 COBOL

Character Octal Value _ Character - Oc¢tal Value
A 101 0 60
B 102 1 61
c 103 2 62
D 104 3 63
E 105 4 64
F 106 5 65
G 107 6 66
H 110 7 67
I 117 8 70
J 112 9 71
X 113 (SPACE) 40
L 114 " 42
M 115 $ 44
N 116 ' (non-ANSI) 47
0 117 (.50
P 120 } 51
Q 121 * 52
R 122 + 53
S 123 ' 54
T 124 - 55
u 125 . 56
v 126 / 57
W 127 ; 73
X 130 < 74
b4 131 = 75
z 132 > 76
Plus-zero (zero with embedded positive sign); 173

Minus-zero (zerc with embedded negative sign}); 17%

COBOL-80 Reference Manual Page 106

APPENDIX V
Resgserved Words

* words not used by COBOL-B80
** additional words reguired by COBOL-80

ACCEPT COPY
ACCESS *CORR (ESPONDING}
ADD COUNT
ADVANCING CURRENCY
AFTER DATA
ALL DATE
ALPHABETIC .DATE~-COMPILED
*ALSO DATE-WRITTEN
ATTER DAY '
*ALTERNATE DEBUGGING
AND *DEBUG-CONTENTS
ARE *DEBUG-ITEM
AREA (8) *DEBUG-LINE
ASCENDING *DEBUG-NAME
**ASCIT *DEBUG-SUB-1
ASSIGN *DEBUG-SUB-2
AT *DEBUG-SUB~3
AUTHOR DECIMAL-POINT
DECLARATIVES
**BEEP DELETE
BEFORE PELIMITED
BLANK DELIMITER
BLOCK DEPENDING
*BOTTOM DESCENDING
BY *DESTINATION
*DE (TAIL)
CALL *DISABLE
*CANCEL **DISK
*CD DISPLAY
*CF DIVIDE
*CH DIVISION
CHARACTER({(S) DOWN
*CLOCK~UNITS *DUPLICATES
CLOSE DYNAMIC
*CLOSE
*CODE *EGI
CODE~SET ELSE
COLLATING *EMI
*COLUMN *ENABLE
COMMA END
*COMMUNICATION :END-OF—PAGE
COMP ENTER
COMPUTATIONAL ENVIRONMENT
A *COMPUTATIONAL-3 *EQP
**COMP-3 EQUAL
COMPUTE ERRGCR
CONFIGURATION *EST
**CONSOLE *EVERY
CONTAINS EXCEPTION

*CONTROL (S)

COBQL-80 Reference Manual

**EXHIBIT
EXIT
EXTEND

D

FILE

FILE~CONTROL

**PILE-ID

FILLER
*FINAT,

FIRST
*FOOTING

FOR

FROM

*GENERATE
GIVING
GO
GREATER

*GROUP

*HEADING
BIGH-VALUE {S)

IDENTIFICATION

IF

IN

INDEX

INDEXED

INITIAL
*INITIATE

INPUT

INPUT-0OUTRPUT

INSPECT

INSTALLATION

INTO

INVALID

15

I-0

I-0—-CONTRCL

JUST (IFIED)

KEY

LABEL.
*LAST
LEADING
LEFT
*LENGTH
LESS

Page 107

*LIMIT(S)
*LLINAGE
*LINAGE~COUNTER
LINE (S)
*LINE-COUNTER
LINKAGE
LOCK -
LOW-VALUE (S)

MEMORY
*MERGE
*MESSAGE

MQODE

MODULES

MOVE
*MULTIPLE

MULTIPLY

**NAMED
NATIVE
NEGATIVE
NEXT

*NO
NOT
*NUMBER
NUMERIC

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

oN

OPEN
*QPTTIONAL

OR

ORGANIZATION

OUTPUT

OVERFLOW

PAGE
*PAGE~COUNTER

PERFORM

*pPF

*PH

PIC (TURE}
*PLUS

POINTER

POSITION

POSITIVE
**PRINTER
*PRINTING

COBOL-80

Reference Manual

PROCEDURE (5}
PROCEED
PROGRAM
PROGRAM-ID
**PROMPT

*QUEUE
QUOTE (8)

RANDOM
*RD
. READ
**READY
*RECEIVE
RECORD (S)
REDEFINES
*REEL
*REFERENCES
RELATIVE
*RELEASE
*REMAINDER
*REMOVAL
*RENAMES
REPLACTING
*REPORT (S)
*REPORTING
*RERUN
RESERVE
RESET
*RETURN
*REVERSED
*REWIND
*REWRITE
*RF
*RH
RIGHT
ROUNDED
RUN

SAME
*5D
SEARCH
SECTION
SECURITY
*SEGMENT
*SEGMENT~LIMIT
SELECT
*SEND
SENTENCE
SEPARATE

Page 108

SEQUENCE
SEQUENTIAL

SET

SIGN

SIZE

*SORT
*SORT-MERGE
*SOURCE
SOURCE~COMPUTER
SPACES (S)
SPECIAL-NAMES
STANDARD
STANDARD~1
START

STATUS

STOoP

STRING
*SUB-QUEUE-1,2,3
SUBTRACT
*SUM

*SUPPRESS
*SYMBOLIC

SYNC (HRONIZED)

*TABLE

TALLYING
*TAPE
*TERMINAL
*TERMINATE
*TEXT

THAN

THROUGH

THRU

TIME

TIMES

TO
*TOP

**TRACE

TRAILING
*TYPE

*UNIT
UNSTRING
UNTIL
up
UPON
USAGE
USE
USING

COBOL~-80 Reference Manual Page 109

VALUE (S)
VARYING

WHEN

WITH

WORDS
WORKING-STORAGE
WRITE

ZERO ((E) 8)

VoS # I+

COBOL-80 Reference Manual Page 110

APPENDIX VI

PERFORM with VARYING and AFPTER Clauses

PERFORM range

VARYING identifier-1 FROM amount=-1 BY amount=2
UNTIL condition-1

AFTER identifier-2 FROM amount-3 BY amount-4
UNTIL condition-2
[AFTER identifier-3 FROM amount-5 BY amount-6]
UNTIL condition-3
Identifier here means a data-name or index-name.
Amount-1, -3, and ~5 may be a data-name,

index-~-name, or literal, Amount-2, -4, and -6 may
be a data-name or literal only.

The operation of this complex PERFORM statement is
eguivalent to the feollowing COBOL statements
(example varying three items}:

START~FPERFORM,
MOVE amount-=1 T0O identifier=1 -
MOVE amcunt~3 TO identifier-2
MOVE amount-5 T0O identifier-3.

TEST--CONDITION=~1T.,
IF condition-1 GO TO END-PERFORM.

TEST-CONDITION~2.
IF condition-2 '
MOVE amount~-3 TO identifier-2
ADD amount-2 TO identifier-1
G0 TO TEST-CONDITION-1.

TEST—-CONDITION-3.
IF condition=-3
MOVE amount-5 T0O identifier-3
ADD amount-4 TO identifier-2
GO TQ TEST~CONDITION-Z.

PERFORM range
ADD amount=-6 TO identifier-3
GO TO TEST-CONDITION-3.

END-PERFORM, Next statement.

COBéL—BO Reference Manual Page

NOTE

If any identifier above were an index-name,
the associated MOVE weould instead he a SET
(70 form), and the associated ADD would be
a SET (UP form).

111

COBOL~80 Reference Manual Page 112

Index

ACCEPT statement 13, 59, 71
ACCESS clause + « « « « - 23, 85, 92
ADD statement 55
ADVANCING opticn . + . . 69

ALL phrase . . « & & + . 74
Alphanumeric item 25, 28, 30
Alphanumeric-edited item 30

ALTER statement 62

ANST level 1 . o &« &« & + 5

ANST level 2 ., . . « . + B
Arithmetic expression . . 57
Arithmetic statements . . 52
ASCII-entry . + « « o o« o 22

AT END clause . . - » . » 46, 67, 87-88, 93
AUTHOR 4+ 4« o « « » » « « 20

Binary item « 26, 29
BLANE WHEN ZERO clause . 40
BLOCK clause . « « » « . 42

CALL statement . . « . .« 77
Character comparisons . . 65
Character set . + + « .+ « 7
Class test condition . . 65
CLOSE statement 70
CODE=-SET clause 43
Comments .+ « + « s « « « 18
Compound condition ., . . 64
COMPUTATIONAL . « » « . o+ 26, 29
COMPUTATIONAL-3 26, 29
COMPUTE statement 57
Condition . + « + - + « . 63
Condition~name 9, 13, 44
Condition-name test . . . 66
Conditional statements . 46, 52
Conditions . « « &« o « « 7
CONFIGURATION SECTION . . 22
Continuation line 14, 18
Control index . « - . . . 85
COPY statement 18
COUNT IN phrase 75
CURRENCY SIGN . « + « + « 22
Data description entry . 27, 44
Data Division « . 12, 16
bata item 11, 25
DATA RECORDS clause . . . 42
Data-name « « « . 9=70, 12, 27
DATE~COMPILED . .-+ « « » 20
DATE-WRITTEN v+ v s s s 20

Debugging . . . « . . .
becimal item
Decimal point
DECIMAL-PQINT IS CO

DECLARATIVES « e s+ u
DELETE statement . .
DELIMITED BY phrase .
DISPLAY statement . .
DIVIDE statement . .

- L] L] L] - - - - .
o
~Jd
-
¥s)
-}

Elementary item
E1lipsis . « + & & & @
Environment bDivision .
EXHIBIT statement . . .
EXIT PROGRAM statement
EXIT statement-

11, 25, 28-29
13, 16, 21

» ¥ * » & =& w =
=]
o

EXTEND rhrase . . + + & 67
External decimal item . 26

FD entry . + « » « . » .« 12, 18, 41
Figurative constants . . 15
File . v v+ « o+ o & « » » 10
FPile name . + + +« « + « o 12
¥File Section 12, 41
FILE STATUS clause . . . 23, 86
FILE STATUS data item . . 67
FILE-CONTROL . . . « .. . 22
File-name + + « + 9
FILLER .+ « + + + » o« « « 27
Fleoating string 33
Format notation 9
General Formats 9
GIVING option 54

GO TO statement 58
GrOUP . 4 « + 2 + s « « +« 29

Group item . . 11, 25, 27, 38, 48

HIGH_VALUE - . - - - - . 1 5

I_O - . - - - L] - - '] - - 6?

I-0 error handling . . . 71
I-0-CONTROL paragraph . . 22, 24
Identification Division . 16, 20

IF statement 63
Imperative statements . . 46, 52
Index data—-item 26, 29, 79
IndeX=name . « « + o« « « 19

Indexed I-0 « +« + « « + « 5

Indexed-file organization 85

INPUT file . . « + . . . B6

INPUT-OUTPUT SECTION . . 22

INSPECT statement ., . . . 50

INSTALLATION . . + « « o 20

Inter-Program Communication 6

Internal decimal item . . 26

INTO option 68

INVALID KEY clause ., , . 46, 87-91, 94-96

JUSTIFIED RIGHT clause

KEY clause
KEY IS clause ., . .

LABEL clause
Level 88 . .
Level number
Library . . .
Linkage section
Literals . . .
LOCK suffix . .
LOW-VALUE . . .

LI I]

« & % = ¥ & w @
- - L) - - [] - -

Mnemonic-name . . .
Modules
MOVE statement . .
MULTIPLY statement

Non-numeric literals

Nucleus+ « .
Numeric comparisons
Numeric item . . .
Numeric literals .

OBJECT-COMPUTER . .
OCCURS clause . . .
OMITTED . . & & &+
ON OVERFLOW clause
OPEN statement . .
ORGANIZATION clause
OUTPUT file
OVERFLOW . . . « .

Packed decimal .
Paragraph-name .,
Paragraphs . . .
Parentheses . . .
PERFORM statement
PICTURE =
PICTURE clause .
POINTER phrase .
PRINTER « &+ o« «
Procedure Division

Procedure~name
PROGRAM~-ID -
Punctuation . .

Qualification . e e
QUOTE L] - - - [} L .

Range (PERFORM) . .
READ statement . .

* & = & = ¥ » =

* - L] L] L] L] L] L] L] L] - L] L[]

READY TRACE statement

RECORD CONTAINS clause

RECORD XEY clause .
Records . « o« o +
REDEFINES clause .

= % % 0w

. L] « L] » - L[] L]

- -] L) L) L] L] L] L] - » - - L]

L] L] . & v » [I) . . . v » . L] L] LI] L] LI .

a + 8 a " 9 L] L] . * = = .

< L] L] L[] L] L] -

490

82
88

41
44
10,
6
44
13
70
15

2,
5

48
56

73
13,
16,
9,
20
7-9

19
15

61
67,
76
43
85
10
37

18,

13

41,
- 46
18,

88,

25,

43
47

94

27;

44

Relative I-0
Relative indexing . .
RELATIVE KEY clause .
RELATIVE KEY item . .
Relative organization
REPLACING clause . .
Report item
RESERVE clause . . .
Reserved words . . .
RESET TRACE statement
REWRITE statement . .
ROUNDED option . . .

SAME AREA . . + « o »
SEARCH ALL statement
SEARCH statement .

Section—-name .
Sections . .
SECURITY . .
SELECT entry
Sentences . .
Separator ., .
Seguence number
Sequential I-0O

SET statement .,

SIGN clause . .

Sign test . . .

Simple condition
SIZE ERROR option
SOURCE-COMPUTER .
SPACE . . .+ « + &
SPECIAL-NAMES ., .
STANDARD
START statement .

*
-
-
L]
-
-
L]
L]
-
L]
.

Statements . .
STOP statement
STRING statement
Subscripts . . .
SUBTRACT statement
SYNCHRONIZED clause

* * L] L] L] L] - L]
¥ 8 8 & 8 B % & ¥ & 4 ®w * ¥ a W * & a8 ® 9« 8 =8 =

Table Handling . . .
TALLYING clause . . .
TRACE mode

UNSTRING statement
USAGE clause ., . .
USE sentence . . .
USING list

L T)

VALUE IS5 clause
VALUE OF clause
VARYING . + .«
Verbs . + « +

. 8 a =
L] L] * *

WHEN clause . +. + .« .
Word o+ « o o o o o

L T S e Y

L] - » *

Working—~storage section

WRITE statement . . .

LI T T 1 [R T)

B % & & & & ¥ & 4 B 4 # e =B A € F B 4 & 4 W ¥ 4 ¥ w =

5
80

93

94

92

51

25, 28, 31
23

8-9, 18

76

70, 89, 94
53

24

82

80

47

47

20

23, B5, 92-93
46-47
8

18

5

79

26, 40
66

63

46, 53
22

15

22

41

90, 95
46

59

72

38, 45
55

39

5
51
75

73
29
97
44, 77

36, 44
42
81
46

82
7-8
44
68, 88, 94

MICROSOET
COBOL-80

user’'s manual

Foreword

The current release of COBOL-80 (Version 1.0) runs under the
CP/M operating system as described in Section 4 of the
Microsoft Utility Software Manual. Future releases of

COBOL-80 will run under ISIS-II and other operating systems,
as dictated by user demand.

SECTION 1

11

— b
. =
W b

SECTION 2

[S S8
M I B]
Wby —

Microsoft
COBQL-80 User's Manual

CONTENTS

Compiling COBOL Programs . . « « o o

COBOL=80 Command Scanner . « + « o
1.17.1 Format of Commands .+ « + +
1.7.2 COBOL-80 Compilation Switches
Output Listings and Error Messages .
Files Used by COBOL=80 « » = = « + &

letime Execution 2 e 8 s e 2 . Y
Printer File Handling

Disk File Handling . .
let ime Errors [] [- - -] - - - - -

*
-
L]
]
-
o
L]

. B ow® % B

— A0 WD] =) ~J

12
12
13

COBOL-80 User's Manual Page 7

1.1

Telal

SECTION 1

Compiling COBOL Programs

COBOL-80 Command Scanner

To tell the COBOL compiler what to compile and with
which options, it is necessary to input a "command
string," which is read by the COBOL-80 command
scanner, Those familiar with Microsoft's
FORTRAN=-80 and MACRO-8C¢ will find +the command
format is identical for COBOL~80. However,
different switches (options) are used © with
COBOL-80.

Format of Commands

COBOL-80 is invoked by typing COBOL followed by a
space, followed by an appropriate command string,

~as described below. COBOL-~80 is read from the disk

and then examines the command string. If it is ok,
compilation commences. If not, COBQOL-80 responds
with "?2COMMBND ERROR" followed by an asterisk so
the user can try again. When f£inished, COBOL-80
always exits to the operating system.

The general format of a COBOL-80 compiler command
is:

objprog-dev:filename.ext, list-dev:filename.ext=
source—=dev:£filename.ext

where the various terms mean:

objprog=dev: The device on which the object
program is to be written

list-dev: The device on which the program
listing is to be written

source=dev: The device from which the scurce
program input to COBOL~B80 is taken
NOTE

Whenever a device name is omitted, it
defaults to the currently selected disk,

COBOL-80 User's Manual Page 8

filename.ext
The filenameé and filename extension
of the object program file must be
supplied if the device is a directory
device, Filename extensions may be
omitted, in which case default wvalues
are supplied. See Section 4 of the
Microscft Utility Scftware Manual
for the defaults supplied by CP/M
and other operating systems.

Either +the object £file or the listing file
specification or both may be omitted., If neither a
listing file nor an object file is desired, oplace
only a c¢omma to the left of the equal sign. The
purpose then is only to syntax check for errors
which are displayed on the console. If nothing is
typed to the left of the egual sign, the object:
file is written on the same device with the same
name as the source file, but with the default
extension. If only a listing file specification is
given, the user may still write out the object file

- by typing "/R" after the source name. This too
writes the object file on the same disk with the
same name as the source but with the default
extension for object files, Similarly "/L" may be
used to place the listing file on the same disk
with the same name as the source with the default
extension for listing files.

Examples ({using CP/M default extensions}:

=PAYROLL Compile the source from
’ PAYROLL.COB placing the
object into PAYROLL.REL,

TTY:=PAYROLL Compile the scource from
PAYROLL,COB placing the
listing output on the
terminal. No object is
generated,

PAYOBJ=PAYROLL.COB Compile PAYROLL.COB put-
ting the object into
PAYOBJ.REL.

PAYROLL ,PAYROLL=PAYROLL Compile PAYROLL.COB put-
ting the object into
PAYROLL.REL and listing
into PAYROLL.LST.

=PAYROLL Compile PAYROLL but
produce no object or
listing file. Useful
for error checking.

COBOL=-80 User's Manual Page 9

1.1.2

1.2

Flag
TOQLIT"?

COBOL-80 Compilation Switches

A variety of switches may be given in the command
string that will affect compilation. Each switch
must be preceded by a slash (/).

Switch Action

R Force generation of an objec£
file as described above.

L Force generation of a listing
file as described above.

P ~ Each /P allocates an extra 100
bytes of stack space for use
during compilation, Use /P if
stack overflow errors occur
during compilation. Otherwise
not needed.

Qutput Listings and Error Messages

The listing file output by COBOL-80 is a
line-by-line account of the source file with error
messages, some interspersed throughout the listing,
some generated only at the end., Each source line
listed is preceded by a consecutive 4«digit decimal
number., This is used by the error messages at the

end to refer back to lines in error, and also by
the Runtime system to indicate what statement has
caused a Runtime Error after it occurs.

Two classes of diagnostic error messages may be
produced during compilation.

Low Level flags are displayed directly below source
lines on the listing when simple syntax violations
occur, Remedial action is assumed in each case, as
documented below, and compilation continues.

Reason for Flag Continuvation Action

Faulty quoted literal

1. Zero length Ignore and continue,
2. Improper continua-

tion Assume acceptable.
3. Premature end-of-

file (before ending Assume program end.,

delimiter)

COBOL-80 User's Manual

LENGTH?

CHRCTR?

PUNCT?

BADWORD

SEQ #

NAME?

PIC = X

CoL.7?

AREA A7

Page 10

Quoted literal length
over 120 characters,

or numeric literal over
18 digits, or 'word'

Excessive characters
are ignored.

{identifier, or name)
over 30 characters. .

Illegal character

Ignore and continue,

Improper punctuation

(e.g. comma not fol-

Assumes acceptable,

lowed by a space).

Current word is malformed

such as ending in hyphen,

Ignore and continue.

or multiple decimal peoints
in a numeric literal.

Improper seguence number

{(includes case of out-of-

Accept and continue.

order seguence number).

Name does not begin with

Accept and continue.

a letter (A - 2).

An improper Picture.

An improper character
appears in source line
character

PIC X is assumed.

Assumes a blank
in column 7.
Yeolunn' 7,

where only * - / D are
permissible,

Area A,
not blank in a
continuation line.

columns 8~12, is Ignore contents of
Area A (assumes

blank).

High level diagnostic messages consist of two or
three parts:

1.

2.

3.

The associated scurce line number =~ four

digits, followed by a colon (:).

An English explanation of the error detected by
the compiler. If this text begins with /W/,
then it is only a warning; 4if not, it is an
error sufficiently severe to inhibit assembly,
linkage, and execution of an object program.
(Optional) The program element cited at the
point of error is listed.

Design of the high level diagnostic message text is
such that no list of 'messages and error codes' is

COBOL-80 User's Manual Page 11

necessary. The messages are designed to be
self-explanatory, based upon the assumption that a
COBOL~80 Reference Manual is available.

1.3 Files Used by COBOL-80

In addition to the Source, Listing and Object files
used by COBOL-80, two other files should be noted.

First, there is a file called STEXT.INT which the
compiler always places on the primary d&isk. It is
used to hold intermediate symbolic text between
pass one and pass two of the compiler. It is
created, written, then closed, read, and then
deleted Dbefore the compiler exits. Conseguently,
the user should never run into it unless the
compilation Is aborted.

Another file of concern to the usexr is the file to
be copied due to a COPY verb in the COBOL program.
The user simply gives the name of the source £ile
tc be read in and compiled in place of the COPY
statement. Remember that copied files cannot have
COPY gstatements within them and the rest of the
line after a COPY statement is ignored.

COBOL-80 User's Manual Page 12

SECTION 2

Runtime Execution

2.1 Printer File Handling

Printer files should be viewed simply as a stream
of characters going to the printer. Records should
be defined simply as the fields to appear on the
printer. No extra characters are needed in the
record for carriage control characters. Carriage
return, 1line feed and form feed are sent to the
printer as needed between lines, Note however,
that blank characters = {(spaces) on the end of a
print line are truncated to make printing faster.

No "VALUE OF" clause should be given for a PRINTER
file in the FD, but "LABEL RECORD IS OMITTED" must
be specified. The BLOCK clause must not be used
for printer files.

2.2 Digk File Handling

Disk files must have "LABEL RECORD IS5 STANDARD"
declared and have a "VALUE OF" clause that includes
a File Specification. Block clauses are checked
for syntax but have no effect on any type file at
this time.

The format of sequential files is always that of
variable length strings delimited by a carriage
return/line feed. Records are packed together as
muach as possible to make maximum use of floppy
disks,

The format of relative files 1is always that of
fixed length records of +the size of the largest
record defined for the file. No delimiter is
needed, and therefore none is provided. Deleted
records are filled with hex value 'FF'.

The format of indexed files is too complicated to
include in this document. It is a complex mixture
of keys, data, linear pointers, deletion pointers,
and scramble~function pointers. It is doubtful
that the COBOL programmer would reguire access to
such information.

COBOL~-80 User's Manual

2.3 Runtime Errors

Runtime terminal

Page 13

errors result . in a four-line

synopsis, printed on the console.

** RUN-TIME ERR:
reason {(see list below)

line number
program=id

The possible

reasons for termination, . with

additional explanation, are listed below.

REDUNDANT OPEN

DATA UNAVAILABLE

SUBSCRIPT FAULT

INPUT/QCUTPUT

NON-NUMERIC DATA

Attempt to cpen a file that is
already open.

A file's base register contains

a non-zerc address if, and only
ig, the file is open and
available record areas exist,
Reference to data in a record of
a nen-open file, or one that has
already reached +the "AT END"
condition, is invalid, and is
detected by recognizing zero in
the asscciated base register.

A subscript has an illegal value
(usually, less than 1}. This
applies to an index reference
such as I + 2, the value of
which must not be less than 1.

Unrecoverabhle I/0 error, with no
provision in the user's COBOL
program for acting upon the
situation by way of an AT END
clause, INVALID KEY clause,
DECLARATIVE procedure, etc.

Whenever the contents of a nu-
meric item does not conferm to
the given PICTURE, this
condition may arise,
Corresponds to the harxdware
'data exception’ interrupt -in
some computers. The user should
always check input data, if it
is subject to error (because
"input editing" has not yet been
done} by use of the NUMERIC
test.

COBOL-80 User's Manual

PERFORM OVERLAP

CALL PARAMETERS
ILLEGAL READ

ILLEGAL WRITE

ILLEGAL REWRITE

REWRITE; NO READ

REDUNDANT CLOSE

GO TO. (NOT SET)

FILE LOCKED
READ BEYOND EOF
DELETE; NO READ

ILLEGAL: DELETE

ILLEGAL START

Page 14

An illegal sequence of PERFORM's
as, for example, when paragraph
A is performed, and prior to
exiting from it another PERFORM
A is initiated.

There is a disparity between the
number of parameters in calling
program and called subprogram.

Attempt to READ a file that is
not open in the input or I-0
mode.

Attempt to WRITE to a file that
is not open in the output mode
for sequential access files, or
in the output or I-0 mode for
random or dynamic access files.

Attempt to REWRITE a record in a
file not open in the I/0 mode.

Attempt to REWRITE a record of a
sequential access file when the
last operation was not a
successful READ,

Attempt to close file that is
not open.

Attempt to execute an unini-~
tialized alterable paragraph
containing only a null GO
statement.

Attempt to OPEN after earlier
CLOSE WITH ILOCK.

Attempt to read (next) after
already encountering end-of-
file.

Attempt to DELETE a record of a
sequential access file when the
last operation was not a
successful READ,

Relative file not opened for
I-0,

File not opened for input or
I"'Oo

MICROSOFT

. Mﬁﬁﬂﬁﬂ:y soelftware
manual

Microsoft
Utility Software Manual

CONTENTS
SECTION 1 MACRO-80 ASSEmMBLEL + + o o o o o o o

1.1 Format of MACRO-80 Commands . .
1.17.1 MACRO-80 Command Strings
1.17.2 MACRO~80 Switches « « .«
Format of MACRO-80 Source Files
Assembler Features . . =«
1.3. Names « « « & o+
Constants « « «
Labels « o« « =+ &
Operators « « « .
Address Expressions -
Remarks « « « « .« &

Statement Feorm . .

Expression Evaluation
Opcodes as Operands
o Operations .« « «

i
y B

[FUN 8

- L] L] L] L]

-
-
L d
-
-
-
L]

1.4

02 CO OO0 Q0 Q0 ~F<]l 1Mo Lnin (53

Define Byte + « « .
Define Character .
Define Space . . .
Define Word

J Y
e Y o oo]

—_ =
—_— ok

L] L] L] L] L] & * » L] L] - L] » L] L] L] L] L] L] L[]

L] L] L] . - [3 L] - L] L] L] L] L] L] L]

Program Termination .
Terminated Conditional Assemb
Define Entry Points . .
Define Equivalence . . .
Define External

- Palse Conditional Assembly
True Conditional Assembly
Define Origin +
Page Break .« « o« » o o o
Set 4 4 s 4 s e e v e e e

15 Title o o o & o o o o o

.4.16 Memory Segment Specificati

Notes - - - a - L] L] » * LJ » - . B

Sample Assembly « ¢ o o o o

MACRO=80 EXrrors « s+ s s+ + =

Cross Reference Facility . .

-
- -
L] -
- -
* *
- -
- -
- -
L] -
- -
L] L]
L] L4
L] -
sSse
- L]
L}

LI I A A N W - N R R RN R WAy N

I R I I I I D D T i I D I A L I]
.hum-xo\omqmm.hww_sg\omqmm.h-wm_—s

» L & L] [] L[] L] L L]

n

" 5 = 2
w -~ in
a ¢ 2 5 s s v ¥
LI T S]

—_ bk —k 3

- L
- -
- L]

SECTION 2 LINK~80 Linking Loader + » ¢ « « o

2.1 Format of LINK-80 Commands « + =

2.17.17 LINK-80 Command Strings .

2.1.2 LINK=-80 Switches + «» «
2.2 Sample Link .« « o s s o s » &
2.3 Format of LINK Compatible Object
2.4 LINK~80 Error MessagesS o o « + «
2.5 Program Break Informaticen . . .

« & ITje ¢ 2 n
[N
. 9 H. *® 4 L]

—
—

L] L] » L] [] L] L] L] » L] L] a L] » L] L] * L] L} L] L] L] L] L] L} L] L] - L] » L] L] I’ L] »

» L] L] L] L] » L] L] 4 L] » L] L] » L] L] * L} L] L] L] L] a L] L] L] L] L] L] » L] L] I
L] L] L] L L] * L] L] » L] L} L] L] L] L] L] » L] L] L] * L] L] » L] L] » » L] L[] [] L]

...‘.l...‘....."z....I...l...........

AU U Y U NS G U ST N N ¥
sl Lk WWwWWwR MR DR

L] L] » L]

n
* L] L] L] L] L] L]
L] L L] a L] L} L]
L 3 L] L] L] - L] L]

* &

SECTION 3 LIR-80 Library Manager « . « «

o1 LIB=-80 Commands

3.7T.17T Modules .
2 LIB-80 Switches
3 LIB~-8B0 Listings
4
5

- -
- L]
L] »
- -

-
L]
LJ
LJ

L] L] L] L]
a - L] a

Sample LIB SeSSion « ¢ o o o
Summary of Switches and Syntax

SECTICN 4 Operating Systems .« « « o « =

4.1 CP/M - - - - @ . . L] L] L] L] L] -
4.2 DTC Microfil c = o o o e & &
4.3 Altair DOS . v & « o o ¢ o o »
4.4 ISIS-IT a ® & 5 % & = ®w » = @

LI D D I
L} L] L} L]
L] * * "
o % B
® & % B
* & 0 @
L] L LJ a

L] » L] L}
+ & 8
@ & & »
. & & @
* b & &
» * * L]
L] L] » »

Microsoft Utility Software Page 5

1.1

1.1.1

SECTION 1

MACRO=-80 Assembler

Format of MACRO-80 Commands

MACRO=-80 Command Strings

To run MACRO-80, type M80 followed by a carriage
return. MACRO-80 will return the prompt "*" (with
the DTC . operating system, the prompt is ">"),
indicating it 1is ready to accept commands. The
format of a MACRO-80 command string is:

objprog-~dev:£filename.ext,list-dev:filename.ext=
source—-dev:filename.ext

objprog-dev:
The device on which the object program 1is +to be
written.

list~dev:
The device on which the program listing is written.

source-dev:

The device from which the source-program input to
MACRO~80 is obtained. If a device name is omitted,
it defaults to the currently selected drive.

filename.ext

The filename and filename extension of the object
program file, the listing file, and the source
file. Filename extensions may be . omitted. See
Section 4 for the default extension supplied by
your operating system.,

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:
*=SOURCE.MAC Assemble the program
SOURCE.MAC and place
the object in SOURCE.REL
*,LST:=TEST Assemble the program

TEST.MAC and list on
device LST

Microsoft Utility Software Page 6

*SMALL,TTY :=TEST Assemble the program
TEST.MAC, place the
object in SMALL.REL and
list on TTY

1.1.2 MACRO-80 Switches

A number of different switches may be given in the
MACRO-80 command string that will affect the format
of the listing file. Each switch must be preceded
by a slash (/):

Switch Action
0 Print all listing addresses, etc. in
octal. (Default for Altair DOS)
H Print all listing addresses, etc. in
hexadecimal. '

{Default for non-Altair versions)

R Force generation of an object file.
L Force generation of a listing file,
C Force generation of a cross reference
file.
> .
Examples:
*=TEST/L Compile TEST.MAC with object

file TEST.REL and listing
file TEST.LST

*LAST ,LAST/C=MOD1 Compile MOD1.MAC with object
' file LAST.REL and cross
reference f£ile LAST.CRF for
use with CREF-80
(See Section 1.8)

1.2 Format of MACRO-80 Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters.in length are acceptable,

The assembler outputs a module name to the loader,
This module name consists of the first six
characters of the title if a TITLE statement 1is
included. If no TITLE statement is included, the
module name is created from the source file name.

Microsoft Utility Software Page 7

1.3

1.3.1

1.3.2

Assembler Features

The features of <+the MACRO-80 - assembler are

- described briefly below.

Names

All names are 1«6 characters. The first character
is an alpha character (A-Z) or $. The remaining
characters may be alphanumeric {(a-Z, 0-9) or-. . or
$ or 7 or @, Names followed immediately by two
number signs with no intervening blanks ({(e.qg.
NAME##) . are classified as external. This type of
name 1s an alternative to the program statement

EXT NAME
or
EXTRN NAME

Constants

a. Decimal: - Numbers consisting of decimal
digits and having no leading zero.
The allowable range 1is 65535 to
~65535,

bh. Octal: Numbers consisting of octal digits
and having a leading zero or a.
trailing Q@ or O. The allcowable
range is 0177777 to -0177777.

c. Hex: Numbers consisting of one to four
hexadecimal digits and having the
form x'hhhh', One-digit or three-
digit values are treated as though
zero were to the left (i.e., X'A'
and X'0A' are the same). The
allowable range is X'FFFF' to
-X'FFFF'. Numbers consisting of
from one to four hexadecimal digits
immediately followed by the suffix
H (e.g., hhhhH) are also allowed.

d. Binary: Numbers consisting eof a string of
binary digits (Q's anad 1's)
followed by a B. (e.g., 101011B}

a, Character: One or two ASCII characters
preceded and followed by gquotation
marks (i.e., "a" or "BC" cr 'BC'}.
The delimiters may bhe either single
quotes (') or double gquotes ("},
but the starting and end delimiters

Microsoft Utility Software . Page 8

1.3.3

1.3.4

1.3.5

1.3.7

1.3.8°

must be identical. Whenever one
type of guote is used as a
delimiter, +the other type of guote
is allowed as a character,
Two-character strings are stored in
low order byte/high order byte
seguence. See Section 1.4.4.

Labels

A label is a name that does not contain an imbedded
space and 1is terminated by a colon (:). Labels
alone on a line with no further opcode or pseudo-op
are allowed.

OEeratcrs

An operator consists of an 8080 mnemonic or one of
the pseudo~operations described in Section 1.4.

Address Expressions

An address expression uses the current assigned
address cof a name or the 16=bit value of a constant
to form a 16-bit value which, after the expression
is evaluated, is +truncated to the field size
reguired by the operator.

Remarks

A remark always begins with a semicolon (;)}) and
ends with a carriage return. A remark may be a
line by itself or it may be appended to a line that
contains a statement.

Statement Form

A statement consists of an optional label followed
by an operator, followed by as many address
expressioks as the operator reguires, followed by
an optional remark, and terminated by a carriage
return, It is not necessary that statements begin
in column 1. - Multiple blanks or tabs may be used
to improve readability (except inside character
constants or character strings).

Expression Evaluation

Operator precedence during expression evaluation is

Microsoft Utility Software ' _ Page 9

as follows:

Parenthesized expressions

HIGH, LOW

* /, MOD, SHL, SHR

+, - {(unary and binary)

Relational Operators EQ, LT, LE, GT, GE, NE
Logical NOT

Logical AND

Logical OR, XOR

The Relational, Logical and HIGH/LOW operators must
be separated from their operands by at least one
space.

Byte Isolation Operators

The byte isolation operators are as follows:

HIGH Isolate the high order 8 bits
of a 16=-bit value

LOW Isolate the low order 8 bits
X of a 16—bit value '

Example:
IF HIGH VALUE EQ 0

The above IF pseudo—cop determines whether the high
order byte of VALUE is zero. :

Relational Operators

The relational operators are as follows:

EQ Egqual

NE Not egqual

LT Less than

LE Less than or egual

GT Greater than

GE Greater than or equal

These coperators yeild a true or false result. They
are commonly used in conditional IF pseudo-ops.
They must be separated from their operands by
spaces, Example:

IF LABEL1 EQ LABEL2’

The above pseudo-op tests the wvalues of LABELT and
LABEL2 for equality. If the result of the
comparison is true, the assembly language code
following the IF pseudo-op is assembled, otherwise
the c¢ode is ignored.

Microsoft Utility Software Page 10

1.3.9 Opcodes as Operands

8080 opcodes are valid one=-byte operands, Note
that only the first byte is a valid operand. For

example:
MVI A, (JMP)
ADI (CPI)
MvI B, (RNZ)
CrI (INX H)
ACT (LXI B)
MVI C, (MOV &,B)

Errors will be generated if more than one byte is
included in the operand -- such as (CPI 5), (LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses.

1.4 Pseudo Operations

1.4.1 Define Bvte

DB E1,E2,...,En
or

DB "Character String”
or

DB 'Character String'

Each of the address expressions E1, E2,...En is
evaluated and stored in n successive bytes. One-
and two-character strings c¢an be used in any
expression. A string that is longer than two
characters may only be used as a string.

Either single or double guotes may be used as
character string delimiters, but the starting and
end delimiters must be identical, It is
permissible to use the delimiter guotes as
characters, but the guote marks must appear twice

for every character occurrence desired,. For
example:
DB "I am ""great"" today"

will store _
I am "great" today

Each character in the character string is stored as
one byte with its high~order bhit set to zero,

Microsoft Utility Software " Page 11

1.4.2

1.4.3

T.4.4.

1.4.5

Define Character

DC "Character String"

Only double quotes may be used as character string
delimiters, and double guotes may not be used as
characters.

Each character in the character striné is stored as
one byte with its high-order bit set to zero except
for the last byte which has its high~order bit set
to one.

Define Space

Ds E
The address expression E is evaluated and that many
bytes of space are allocated. All names used in E
nmust be defined prior to the DS statement.

Define Word

DW E1, E2, ..., En

Each address expression is evaluated and stored as
n successive words. Example:

DW 'AR?

Two-byte values are stored in memory in low order
byte/high order byte sequence, The ASCII code
representatlon for character B is stored, then the
character A is stored.

On the object code listing however, the printout
for all two-byte values is in high order byte/low
order byte sequence, for easier reading.

Program Termination

END B

This statement is +the last statement of each
program, The optional address expression E gives
the preogram execution address. If E evaluates to
absolute zero, it 1is equivalent to no execution
address.

Microsoft Utility Software Page 12

1.4‘6

1.4.7

1.4.8

1.4.9

Terminated Conditional Assembly

ENDIF

Terminates conditional assembly initiated by a
previous IFF or IFT.

Define Entry Points

ENTRY N1, N2, ..., Nn
Qr
PUBLIC N1, N2, ..., Nn

The names N1, N2, ..., Nn are entry peints from
external programs and act as names for the program
being assembled, The names must appear in an ENTRY.
or PUBLIC statement prior to their appearance as &
lakel.

Define Eguivalence

Label EQU E

The label of the EQU statement is assigned the
address given by address expression E. The label
is reguired and must not have previously appeared
as a label. All names used in E must be defined
prior to the EQU statement.

Define External

EXT * N1, N2, ..., Nn
Qr
EXTRN N1, N2, <.., Nn

The names N1, N2, ..., Nn are defined to be
external references and may not have been used as a
label. Names may also be defined as external by
using NAME##. See Section 1.3.1,

1.4.10 PFalse Conditional Assembly

IFF E

The address expression E is evaluated and if it is
FPalse (=0), all statements down to the next ENDIF
are assembled. If E is True (not =0), the
statements are not assembled.

Microsoft Utility Software Page 13

1.4.11 True Conditional Assembly

IFT E
or ,
Iir B

The address expression E is evaluated and if it 1is
True (net =0), all statements down to the next
ENDIF are assembled. If E is False ({(=0), the
statements are not assembled. Unlimited nesting of
conditionals is allowed.

1.4.12 Define Origin

ORG E

The address expression E 1is evaluated and the
assembler assigns generated cede starting with that
value, All names used in E must be defined prior
to the ORG statement, and the mode of E must not be
external.,

1.4.13 Page Breazak

PAGE

A page break will occur on the listing, The PAGE
statement will not list and code is not generated.
If a TITLE statement has been included, the title
{(up to 125 characters) will be printed at the top
of the page.

1.4.14 Set
Label SET B

The label of the SET gtatement is assigned the
address given by expression E. The 1label is
reguired and must not have previously appeared as a
label. All names used in E must be defined prior
to the SET statement.

The difference between the SET and EQU statements
is +that SET allows redefiniticn of label values.
Redefinition of a label by an EQU statement will
result in an error.

Microsoft Utility Software Page 14

1.4,15 Title
TITLE ICOMP INTEGER COMPARE ROUTINE

TITLE followed by a title of up to 125 characters
is allowed. This title will appear at the top of
each page. The title must be terminated by a
carriage return. The module name that the
assembler outputs to the loader is taken <from the
first 5ix characters that follow the TITLE
statement. If no TITLE statement is included, the
assembler outputs to the loader a module name that
is taken from the file name.

1.4,16 Memory Segment Specification

It is possible to specify that sections of a
program be loaded in absclute, code relative or
data relative segments of memory. The pseudo-ops
are:

ASEG For loading in an absolute
segment of memory

DSEG For loading in a data relative
: segment of memory

CSEG For loading in a code relative
segment of memory

One of the possible uses of these pseudo—-ops is to
specify RAM and ROM segments of memory. The data
relative segment would be RaM, and the code
relative segment would be ROM.,

After an ASEG, CSEG, or DSEG pseudo-op is
encountered, all following code is loaded in that
area until a subsequent ASEG, CSEG . or DSEG
pseudo-op is encountered.

If none of these three pseudo~ops is specified, the
default condition is to load everything code
relative. ' : _

Additional flexibility in relocating code is
possible through use of the ORG pseude~op, which
sets the value of the appropriate program counter.
For example:

DSEG Sets the data relative program
‘ORG 50 counter to a value of 50

Microsoft Utility Software . Page 15

1.5

NOTE

1. The Intel coperands PAGE and INPAGE will
generate expression errors when used
with CSEG or DSEG pseudo-ops. These
errors are warnings: the assembler
ignores the operands,

2, In version 3.0 . of the MACRO-80

Assembler, references' to a particular
external symbol may not be made in mecre
than one memory segment. Fory example,
an external symbol EXTI might be
referenced in the code relative
segment, external symbols EXT3, EXT4
might be referenced in the data
relative segment, but none could be
referenced in more than one memory
segment. (This restriction will be
removed in a later release of +the
MACRO=-80 Assembler,)

Refer to Section 2, LINK-80 Linking Loader,
to determine how these segments are placed
in specific areas of memory.

A dollar sign ($) indicates the wvalue of the
location counter at the start of the statement.

When the assembler is entered, the origin is
assumed to be Relative-0.

Address expressions used in the conditional
assembly pseudo-operations IFF and IFT must
have all names defined prior to the use in the
expression, and the expression must be
Absolute,

Address expressions whose final mode 1is other
than 2Absolute must generate assembly data that
is stored as two bytes.

The follewing names are defined by the
agsembler to have the indicated Absclute
values.

A=7 B=0 c=1 D=2 E=3
H=4 L=5 M=6 SP=6 PSW=6

Microsoft Utility Software

1.6

aA>MBO

Sample Assembly

*EXMPL1,TTY :=EXMPL

pooo’

0000'
0001
0002°
0003

0004"
Q006"

0007’

0008"'
000%*
pooar

000B’

000C?
COOF"

0010
oo11’
0012
0013
0o14?

CSL3

MAC80 3.0

7E
23
66
6F

06 03
AF

29
17
85
6F

05

C2 0006 !

EB

73
23
72
C9

MACS0 3.0

0000'

_LOOP

PAGE

00100
00200
00300
00400
00450
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
c1800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900

PAGE

0006"

Page 16

1

;C8L3(P1,P2)
1 SHIFT P1 LEFT CIRCULARLY 3 BITS
;s RETURN RESULT IN P2

ENTRY CsL3
;GET VALUE OF FIRST PARAMETER
CSL3:

MOV a,M
INX H
MOV H,M
MOV L,A
; SHIFT COUNT
MVI B,3
LOOP: XRA A
: SHIFT LEFT
DAD H
;ROTATE IN CY BIT
RAL
ADD L
MOV L,A
; DECREMENT COUNT
"DCR B
;ONE MORE TIME
JINZ LOOP
XCHG
; SAVE RESULT IN SECOND PARAMETER
MOV M,E
INX H
MOV M,D
RET
END

Microsoft Utility Software Page 17

1.7

1.8

MACRO-80 Errors

e ONUNCHOZEHMU O

MACRO-80 errors are indicated by a one~character
flag in column one of the listing file. If'a
listing file is not being printed on the terminal,
each erroneocus line is also printed or displayed on
the terminal. Below is a list of the MACRO-80
Error Codes:

Code Meaning

Too many ENDIFs

Bad octal or hex or binary digit
Expression error

No label in EQU

Label or symbol defined more than once
Name too long

Bad operator {opcode)

Illegal field termination

Undefined symbol

Missing second field for opcode

Phase error

Missing or incorrect charactexr string
delimiter

Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80. In order to generate a cross reference
listing, the assembler must output a special
listing file with embedded control characters., The
MACRO~-80- command-—string---tells . the .. assembler _to
output this special listing file. /C is the cross
reference switch. When the /C switch is
encountered in a MACRO-80 command string, the
assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF

*7 U=TEST/C Assemble file TEST.MAC and
create cbject file T.REL
and creoss reference file
U.CRF.

When *the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.

Microsoft Utility Software ~ Page 18

The command string is:

*listing file=source file

The default extension for the source file is L.CRF.
The /L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.
Possible command strings are:

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

*T=TEST Examine file TEST.CRF and
‘ generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary
listing files in that: . '

Te

2,

Each source statement is numbered.

At the end of the listing, variable names

"appear in alphabetic order along with the

numbers of the lines on which they are
referenced or defined.

Microsoft Utility Software - Page 19

SECTION 2

LTNK-80 Linking Loader

2.1 Format gg LINE=-80 Commands

2.1.1 LINK-80 Command Strings

To run LINK-80, type L80 followed by a carriage
return. LINK-80 will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it 1s ready to accept commands. Each
command to LINK-80 consists of a string of
filenames and switches separated by commas: '

objdevil:filename.ext/switchl,objdev2:filename,.ext,...

If the input device for a file is omitted, the
default is the currently logged disk. If the
extension of a file is omitted, the default is
«REL., After each line is typed, LINK will load or
search (see /S below) the specified £files. After
LINK finishes this process, it will 1list all
gymhols that remained undefined followed by an
asterisk.

Example:

*MAIN |

DATA 0100 0200

SUBR1* (SUBR1 is undefined)
DATA 0100 0300

*SUBR1
*/G {Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filenames followed by /G (begin execution). BRefore
execution begins, LINK-80 will always search the
system 1library (FCRLIB.REL or COBLIB.REL) to
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed by
/S to the end of the loader command string.

Microsoft Utility Software ~ Page 20

2.1.2 LINK=80 Switches

A number of switches may be given in the LINK-80
command string to specify actions affecting the

loading process.

slash (/).
Switch

R

E or E:Name

G or G:Name

Each switch must be preceded by a

These switches are:

Action

Reset. Put loader back in its
initial state. Use /R if you
loaded the wrong file by mistake
and want to restart. /R takes
effect as soon as it is encountered
in a command string.

Exit LINK-80 and return to the
Operating System, The system
library will be searched.. on the
current disk to satisfy any
existing undefined globals. The
optional form E:Name (where Name 1is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program, Use /E to load a program
and exit back to the monitor.

Start execution of the program as

soon as the current command line
has been interpreted. The system
library will be searched on the
current disk to satisfy any
existing undefined globals if they
exist. Before execution actually
begins, LINK=-80 prints three
numbers and a BEGIN EXECUTION
message. The three numbers are the
start address, the address of the
next available byte, and the number
of 256-hyte pages used, The
optional form G:Name (where Name is

‘a global symbol previously defined

in one of the modules) uses Name
for - the start address of the
programnm. '

If a <filename>/N is specified, the
program will be saved on d&isk under
the selected .name (with a default
extension of .COM for CP/M) when a
/JE or /G is done. A jump to the
start of the program is inserted if
needed so0 the program can zrun
properly (at 100H for CP/M). '

Microsoft Utility Software - Page 21

P and D

/P and /D allow the origin{(s) to be
set for the next program loaded.
/P and /D take effect when seen
{(not deferred), and they have no
effect on programs already loaded,
The form is /P:<address> or
/D:<address>, where <address> is
the desired origin in' the current

typeoudt radix. (Default radix for
non-MITS versions is hex. /O sets
radix to octal; /H td™ hex.)

LINK-80 does a default /P:<link
origin>+3 (i.e., 103H for CP/M and
4003H for ISI1IS) to leave room for
the jump to the start address.

NOTE: Do not use /P or /D to lecad
programs or data into the locations
of the loader's jump to the start
address (100H to 102H for CPM and
2800H to 2802H for DTC), unless it
is to load the start of the program
there. If programs or data are
loaded into these locations, the
Jump will not be generated.

If no /D is given, data areas are
loaded before program areas for
each module. If a /D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,F00
Data 200 300
* /R

*/P:200 /D:400,FO00
Data 400 480
Program 200 280

List the origin and end of the pro-
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa-
tion is only printed if a /D has
been done. Otherwise, the program
is stored in the data area.

List the origin and end of the pro-
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Microsoft Utility Software Page 22

2.2

2,3

is only printed if a /D has been
done. Otherwise, the program is
stored in the data area.

s Search the filename immediately
: preceding the /S in the command
string to satisfy any undefined
globals.
Examples:

*/M List all globals
*MYPROG, SUBROT ,MYLIB/S
Load MYPROG.REL and SUBROT.REL and
then search MYLIB,REL to satisfy
any remaining undefined globals.

*/G Begin execution of main program

Sample Link

A>LBO0
*EXAMPL,, EXMPL1/G
DATA 3000 30AC

[304F 30aC 49}
[BEGIN EXECUTION]

1792 14336
14336 -16383
~16383 14
' 14 112
112 896

A>

Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the lcocad format of LINK-80
relocatable cbhject files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK=-compatible object £files consist of a bit
stream, Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable cbject
files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

Microsoft Utility Software Page 23

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are lcocaded as an
absclute byte. If the first bit is a 1, the next 2
bits are wused to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative, Load the following 16
bits after adding the current Common
base,

'Special.LINK items consist of the bit . stream 100
followed by: '

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an opticnal B field consisting
of 3 bits that give a symbol
length and up to 8 bhits for
each character of the symbol

A general representation of a special LINK item is:

1 00 xxxx vy 22z + characters of symbol name
A field B field

xxxk Four~bit control field (0-15 below}

Yy Two-hit address type field

ZZZ Three-bit symbol length field

The following special types have a B~field only:

0 Entry symbol (name for search)
1 Select COMMON block

2 Program name

3 . Resexrved for future expansion

Microsoft Utility Software Page 24

4

Reserved for future expansion

The following special LINK items have both an &
field and a B field:

5 Define COMMON size
6 Chain external (A is head of address chain,
B is name of external symbol)
7 Define entry point (A is address, B is name)
B Reserved for future expansion
The following special LINK items have an A field
only:
9 External + offset, The A value will
be added to the two bytes starting
at the current location counter
immediately before execution. -
10 Define size of Data area {A is-size) -
11 Set loading location counter to A
12 Chain address. A is head of chain,
- replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.
13 Define program size (A is size)
14 End program {forces to byte boundary)
The following special Link item has neither an A nor
a B field:
15 End file
2.4 LINK~-80 Error Messages

LINK-80 has the following error messages:

?No Start Address A /G switch was issued,

but no main program
had been loaded.

?Loading Error The last file given for input

was not a properly formatted
LINK-80 object file.

?0ut of Memory Not encugh memory to load
program.

?Command Erroxr Unrecognizable LINK~80
command.

?<£ile> Not Found <file>, as given in the command

string, did not exist.

Microsoft Utility Software © Page 25

$2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change CCMMON block
definitions.

$Mult. Def. Glcbal YYYYYY
More than one definition for
the glebal {internal) symbol
YYYYYY was encountered during
the loading process.

30verlaying [Program] Area
Data
A /D or /P will cause already
loaded data to be destroyed.

?Intersecting [Prograﬁ] Area
Data

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con-
verted to a current wvalue
since it is in the area
intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside lcader
memory {i.e., loader origin
to top of memory). If a
Y <er> is given, LINK-80
will move the area and con-
tinue., If anything else is
given, LINK-80 will exit.
In either case, if a /N was
given, the image will already
have been saved.

?Can't Save Object File
A disk error occurred when
the file was being saved.

Microseft Utility Software _ . Page 26

2.5 Program Break Information

LINK~80 stores the address of the first free
location in a glcbal symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is less
than the program area, the user must be
sure there is enough room +o Xkeep the
progdram from being destroyed. This 4is
particulariy true with the disk driver for
FORTRAN=-80 which wuses $MEMRY te allocate
disk buffers and FCB's.

Mic¢rosoft Utility'SOEtware ' Page 27

SECTION 3

LIB~80 Library Manager
(CP/M Versions Only)

LIB=-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-8¢. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN--80 and
COBOL-80.

3.1 LIB-80 Commands

To run LIB-80, type LIB followed by a carriage
return. LIB=-80 will return the prompt "*" (with
the DTC eperating system, the prompt is ">"),
indicating it is ready to accept commands. Each
command in LIB-80 either lists information about a
library or adds new modules to the library under
construction,

Commands to LIB-80 consists of an cptional
destination filename which sets the name of the
library being created, followed by an egqual sign,
followed by module names separated by commas. The
default destination filename is FORLIB.LIBE.
Examples:

 *NEWLIB=FILE1 <MOD2>», FILE3,TEST
*SIN,COS,TAN,ATAN
Any command specifying a set of modules
concatenates the modules selected onto the end of
the last destination filename given, Therefore,
*FILE1,FILE2 <BIGSUB>», TEST
is equivalent to
*PILE1
*FILEZ <BIGSUB>
*TRST
3.71.1 Modules
A module is typically a FORTRAN or COBOL
subprogram, main program or a MACRO-80 assembly
that contains ENTRY statements.

The primary function of LIB-80 is to concatenate
modules in LREL £files to form a new library. 1In

Microsoft Utility Software Page 28

order to extract modules from previous libraries or .
+REL files, a powerful syntax has been devised to
specify ranges of modules within a .REL file.
The simplest way to specify a module within a file
is simply to use .the name of the module. For
example:

SIN

But a relative guantity plus or minus 255 may also
be used. For example:

'SIN+1
specifies the module after SIN and
SIN-1
specifies the one beforé it.

Ranges of modules may also be specified by using
- two dots: :

-+« SIN means all modules up to and including
SIN.

8IN.. means all modules from SIN to the end
of the file.

SIN..COS means SIN and COS and all the
modules in between.

Ranges of modules and relative ocffsets may alsoc be
used in combination:

SIN+1.,C05~1
To select a given module from a file, use the name
of the file £followed by the module(s) specified
enclosed in angle brackets and separated by commas:
| FORLIB <SIN..COS>
or
MYLIB.REL <TEST>
or
BIGLIB,REL <FIRST,MIDDLE,LAST>

etc.

If no modules are selected from a file, then all

Microsoft Utility Software Page 29

the modules in the file are selected:

TESTLIB.REL

3.2 LIB-80 Switches

A number of switches are used to control LIB-80
operation. These switches are always preceded by a
slash:

/0 Octal - zet Octal typeocut mode for /L
command.

/H Hex - set Hex typecut mode for /L
command (default}.

/U List the symbols which would remain
undefined on a search through the’
file specified.

/L List the modules in the files specified
and symbol definitions they contain.

/C (Create) Throw away the library under
construction and start over.

/B Bxit to CP/M. The library under
construction (.LIB} is revised to ,REL
and any previous copy is deleted.

/R Rename -~ same as /E but does not exit

- ta CP/M on completicon.

3.3 LIB-80 Listings

To list the contents of a file in c¢cross reference
format, use /L:

*FORLIB/L

When building libraries, it is important to order
the modules such that any intermodule references
are "forward." That is, the module containing the
global reference should physically appear ahead of
the module containing the entry point. Otherwise,
LINK-80 may not satisfy all global references on a
single pass through the library.

Use /U to list the symbols which could be undefined
in a single pass through a library. If a module in
the library makes a backward reference to a symbol
in another module, /U will list that symbol.
Example:

Microsoft Utility Software Page 30

*SYSLIB/U

NOTE: Since certain modules in the standard
FORTRAN and COBOL systems are always force-loaded,
they will be listed as undefined by /U but will not
cause a problem when Ilcading FORTRAN or COBOL
programs.,

Listings are currently always sent to the terminal;
use control-P to send the listing to the printer.

3.4 Sample LIB Session
A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG

*EXP '
 *TRANLIB,LIB/U

*PRANLIB.LIB/L

(List of éymbols in TRANLIB.LIB)

L4

* /B
A

3.5 Summary of Switches and Syntax

/0 Octal - set listing radix

/H Hex - set listing radix

/U List undefineds

/L List cross reference

/C Create - start LIB over

/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB t0 .REL

module: :=module name {+ or - number)

module sequence ::= |

module | ..module | module.. | modulel..module2

file specification::=filename {<module seguence> {,<module sequence>}|

command::= {library filename=} {list of file specifications}
{1ist of switches}

Microsoft Utility Software Page 31

SECTION 4

Operating Systems

This section describes the use of MACRO-80 and LINK-80 under
the different disk operating systems. The examples shown in
this section assume that the FORTRAN=-80 compiler is in use.
If you are using the COBOL-80 compiler, substitute "COBOL"
wherever "F80" appears, and substitute the extensien ",COB"
wherever " ,FOR" appears.

4.1 ceM

Create a Source File
Create a source file using the CPM editor.
Filenames arxe up to eight characters long, with
3=character extensions, FORTRAN-80 source
filenames should have the extension FOR, COBOL~-80
source filenames should have the extension CDB, and
" MACRO=-80 source filenames should have the extension
MAC. : :

Compile the Source File

Before attempting to compile the program and
produce c¢bject code £for +the first <time, it is
advisable to do a simple syntax check, Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

A>F80 ,=MAX1

This command compiles the source file MAXT1.FOR
without producing an object or listing file. If
necessary, return to the editer and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

A>F80 MAX1,MAX1=MAX1
Qr
A>F80 =MAX1/L

The compiler will create a REL ({relocatable) £file
called MAX1.REL and a listing file called MaAX1.PRN.

Loading, Executing and Saving the Program (Using
LINK-80)
To lcad the program into memory and execute it,

type

Microsoft Utility Software © Page 32

A>L80 MAX1/G

To exit LINK-80 and save the memorf image (object
code)} , type

A>1.80 MAX1/E,MAX1/N

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256~byte pages used. For example o

[210C 401A 48]

If you wish to use the CPM SAVE command to save a
memory image, the number of pages used is the
argument for SAVE. For example. .

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and 4jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, unless
program execution will actually begin at
100H.

An object code file has now been saved on the disk
under the name specified with /N or SAVE (in this
case MAX1}. To execute the program simply type the
program name

A>MAX1

CPM - Available Devices

A:, B:, C:, D: disk drives

HSR: ' high speed reader
LST: line printer
TTY: Teletype or CRT

CPM Disk Pilename Standard Extensions

FOR FORTRAN-B0 scurce file
COB COBOL~-80 source file
MAC MACRO-80 object file
REL relocatable cobject file
PRN listing file

-COM absolute file

Microsoft Utility Software Page 33

CPM Command Lines

CPM command lines and files are supported; i.e., a
COBOL-80, FORTRAN~80, MACRO-80 or LINK-80 command
line may be placed in the same line with- the CPM
run command, For example, the command

A>F80 =TEST

causes CPM to load and run the FORTRAN-80 compiler,
which then compiles the program TEST.FOR and
creates the file TEST.REL. This is equivalent _to
the following series of commands:

A>F80
*=TEST
*AC

A>

4,2 DTC Microfile

Create a Source File

Create a source file wusing the DTC editor.
Filenames are up to five characters long, with
1=character extensions. COBOL-80, FORTRAN=80 and
MACRO~-80 source filenames should have the extension
T.

Compile the Scurce File

Baefore attempting to compile the program and
produce object code for the first time, it is
advisable toc do a simple syntax check. Removing
syntax errors wilil eliminate the necessity of
recompiling later. To perform the syntax check o

the source file called MAX1, type :

*F80 ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source £file MAX1 and produce an
object and listing file, type

*F80 MAX1,MAX1=MAX1
or
*FP80 =MAX1/L/R

The compiler will create a relocatable file called
MAX1.0 and a listing file called MAX1.L.

Loading, Executing and Saving the Program {Using
LINK=-80)
To load the program into memory and execute it,

"Miérosoft Utility Software . Page 34

type
*LB0 MAX1/G

To save the memory image (object code), type
*L80 MAX1/E

which will exit from LINK-80, return to the DOS
monitor and .print three numbers: the starting
addressfor execution of the program, the end

address of the program, and the number cf 256-byte
rages used. For example

[210C 4012 48]

Use the DTC SAVE command +t¢ save a mIemory image.
For example

*SA MaAX1 2800 4012 2800

28000 (24000Q) is the load address used by the DTC
Operating System. '

NOTE

-If a:/P:<address> or /D:<address> has been
included in the loader command to specify
an origin other than the default (2800H),
make sure the low address in the SAVE
command -is the same as the start address of
the program.

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type . - -

*RUN MAX1

DTC Microfile ~ Available Devices

DO:, D1;, D2:, D3: disk drives

TTY: Teletype or CRT
LIN: communications port

DTC Disk Filename Standard Extensions

T COBOL~-80, FORTRAN-80 or
S MACRO-80 scurce file
0 relocatable object file

L listing file

Microsoft Utility Software - Page 35

DTC Command Lines .
DTC command lines are supported as described in
Section 4.1, CPM Command Lines.,

4.3 Altair DOS

Create a Source File

Create a source file using the Altair DOS editor.
The name of the 'file should have four characters,
and the first character must he a letter. For
example, to create a file called MAX1, initialize
DS and type .

.EDIT MAX1
The editor will respond

CREATING FILE
00100

Enter the program. When you are finished entering
and editing the program, exit the editor.

Compile the Source File ...
Load the compiler by typing

.F80
The compiler will return the prompt character "*",

Before attempting to c¢ompile the program and
produce object code for +the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1, type

* =§MAX1,

{(The editor stored the program as &MAX1) Typing
,=&MAX1, compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type '

*MAX1R, sMAX1=sMAX1. .

The compiler will create a REL (relocatable) file
called MAX1RREL and a listing file called &MAX1LST.
The REL filename must be entered as five characters
instead of four, so0o it is convenient to use the
source filename plus R.

Microsoft Utility Software Page 36

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
computer uses interrupts with +the terminal, type
Control C. If not, actuate the RESET switch on the
‘computer fronﬁ«panel “-BEither - action will return
contrcl. to the monitor.

Using LINK-BD
Load LINK-BO by typlng

.L80

LINK-80 will respond with a "*" prompt. ' Load the
progrém intd memory by entering the name of the
program REL file

*MAXTR .

Executing and Saving the Program

Now you are ready to either execute the program
“that is 1h méhory or save a memory image (object
code) o;u;he“ program on disk. To execute the
program, type ‘

*/G LA

To save the memory image (object code),-pype
”*2E

which will 'exit from LINK-80, return +to the DOS
monitor and. print three numbers: the starting
address for . éxecution of the program, the end
address - of the program, and the number of 256~byte
pages used. For example

[26301 44054 35]

Use the DOS SAVE command to save a méﬁory image.
Type

. SAV .MAX1 0 17100 44054 26301

17100 is the load address used by Altair DOS5 for
the floppy disk. (With the hard disk, use 44000.)

An object code file h[s now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type the program . name

MAX1

Microsoft Utility Software Page 37

Altair DOS - Available Devices

FO;, Fl:, F2:, ... - dlsk drlves
TTY: ' Teletype Qr CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL~80 source file
MAC MACRO=-80 source flle
REIL relocatahle object file
LST listing file

Command Lines i S
Command lines are not supported by Altair DOS.

4.4 ISIS-I1IT

Create a Source File _ _

. Create a Source file using the ISIS-II editor.
Filenames are up to six characters 1long, with
3-character extensions. FORTRAN-80 source
filenames . should - have the éxtension FOR and
COBOL=-80 source filenames should have the extension
COB. MACRO=-80 source filenames. should have the
extension MAC,.

Compile the Source File

Before attempting to compile the program and
produce object code for +the first time, it is
advisable to do a simple syntax check. = Removing
syntax errors will eliminate, 6 the necessity of
recompiling later. To perform tHe syntax check on
the source file called MAX1.FOR, type

-F80 ,=MAX1

This command compiles ‘the” source file MAX1.FOR
without producing an object Qr listing file., If
necessary, return to the editor “*and correct any
syntax errors. -

To compile the source file MAX1.FOR and produce an
object and listing file, type

-F80 MAX1,MAX1=MAX]
or
-F80 =MAX1/L/R

The compiler will create a REL (relocatable} file
called MAX1.REL and a listing file called MAX1.LST.

‘Microsoft Utility Software Page .38

Loadin Savzng and Executlng the Program {(Using .
LINK-§%5 ;

To: 1oad thémprogram lnto 'memory and execute ik,
type

-L80 MAX1/G,
To ‘'save the memory image (object codel, type
-L90”MAX1/E MAXT/N

which wzll EXlt from LINK-BO, return to the ISIS-II
monitor’ -and prlnt "three numbers. the starting
address for executlon -0of the "program, the end

‘address - of:the progtam, and the number of 256-byte ”
pages used. For example

[270C 401A 48]
An object code file has now been saved on the mdisk

under the name - specified with /N (in this case
MAX1). ' ' B

_ISISeliizkhvailablefDEVices'

FO:, F1., Fz., ees . disk drives
TTY:' : Teletype or CRT
LSty .line printer

ESIS#IiﬂDiﬁkﬁFiIEname:SEandardfExtensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-8(: source file
REL relocatable object flle
LST listing file

_ISIS—II Command Llnes
ISIS~IT- command lines ‘are supported as described in
'Sectzon 4.1, !CPM Command Lines.

