L&

BASIC-80
Reference
Manual

This manual is a reference for Microscft's BASIC-80
language, relesase 5.0 and later.

Thare are asignificant differences between the 5.0
rmlaase of BASIC-80 and the pravious releases
(release 4.51 and earlier). If you have programs
written under a previous release of BASIC-80,
chack Appendix A for new features in 3.0 that may
affect axecution.

INTRODUCTION

CHAPTER 1
CHAPTER 2
CHAPTER 3

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
AFPPENDIX
AFPPENDIX
APPENDIX
APPENDIX

- J - T T SR~ N S + N - T - N ~ B & T B

BASIC~80 Refersnce Manual

CONTENTS

Ganeral Information About BASIC-8(
PASIC=30 Commands and Statements

BASIC-80 Functions

New Features in BASIC-80, Relaase 5.0
BASIC-80 Disk I/0

Asaembly Language Subroutines

BASIC=-80 with the CP/M Operating System
BPASIC-80 with the ISIS=II Qperating System
BASIC-80 with the TERDOS Operating System
BASIC=-80 with the Intal SBC and MDS Systems
Standalona Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Mesaages
Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

Introduction

BASIC-80 is +the most extensive implementatioen of BASIC
available for the 8080 and %80 microprocesscors. 1In its
fifth major release {Releage 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
PSEX3.60-1978. Each release of BASIC~80 consistas of three
upward compatible versionsa: 8K, Extendad and Disk . Thias
manual is a raferenca for all thrse versions of BASIC-80,
relaase 5.0 and later. This manual is alsc a refarence fox
Microsoft BASIC=86 and the Microsoft BASIC Compilar.
BASIC-86 is currently available 1in Extended and Disk
Standalone varsicns, which are comparablae to the BASIC-80
Extendad and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the pravious releases (releass 4.51 and
earliar). If you have programs written under a previous
release of BASIC-80, check Appendix A for new featuras in
5.0 that may affect execution.

mha manual is divided into three large chapters plus a
number of appendices. Chapter 1 covers a variety of teopics,
largely pertaining to information reprasentaticn when using
BASIC-20. Chapter 2 contains the syntax and semantica of
avery <command and statement in BASIC-80, ordered
alphabatically. Chapter 3 describes all of BHASIC-80'a
intrinsie functions, also orderad alphabetically. The
appendices contain information pertaining ¢to individual
operating systems; plus lists of aerror messages, ASCII
codes, and math functions: and halpful information on
assembly language subroutines and disk I/C.

©

CHAPTER 1
GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC~83. Check the appropriate appendix
at the back of this manual to dJdetermine how BASIC-80 is.
initialized with your operating system. T e

1.2 MODES OF OPERATION

¥hen BASIC-80 is initialized, it types <the prompt rok".
"Ok" means BASIC=80 is at command level, that is, it is
ready to accept commands., At this point, BASIC-80 may be
used in either of two modes: *he direct mode or the
indirect mode. :

In the direct mode, BASIC commands apd statements are not
preceded by line numbers, They are executad as they are
entared. Resulta of arithmetic and logical operations may
be displayed Iimmediately and stored for later usa, but the
instructions themselves are lost after execution., Thia mode
is useful for debugging and for using BASIC as a
"caleulator®™ for qulck computations that do not raguire a
complate program,

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is execnted by
antering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
{square brackets indicate opticnal):

nnnan BASIC statement(:BASIC statement...] <carriage return>

GENEAAL LALURSALLWH ASULU. BASewT 0w T T

At the programmer's option, more than one BASIC dgtatement
may be placed on a line, but each statement on a line muat
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 charactsrs in 8K BASIC-80
255 characters in Extsnded and Disk BASIC-80.

In Extendad and Disk versicons, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line fqged> lets you continue
typing a logical line on the next physical line without

entering a <carriage return>. (In the 8K version, <«line

fsed> has no effect.

1.3.1 Line Numbers

Every BASIC program line begins with a line number. ILine. —~ '~~~

numbers indicats the order in which the program lines are
stored in memory and .are also used as referencaas when
branching and editing. Line numbers must be in the range @
to %529, In the Extended and Disk versions, a period (.}
may be used in EDIT, LIST, AUTO and DELETE commands to rafar
to the current line.

GENERAL INFORMATION ABQUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The BASIC~80 charactar set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lowar case letters of the alphabeat.

The numeric characters in BASIC=-80 are the digits 0 through
9.

The following apecial characters and terminal keys are
racoqnized by BASIC-80:

Character Name

Blank

Semicolon

Equal sign or assignment symbol
Plus sign

Minus sign

Astarisk or multiplication symbol
Slash or divisicn symbel

Up arrow or expenentiation symbel
Left parenthesia

Right parsnthesis

Percent
Number (or pound) sign
Dollar sign

Exclamation point

Left brackaet

Right bracket

Comma

Pericd or decimal point -
Singla quotation mark (apost:cpha] I
Colecn

Anpersand

Question mark

Less than

Greater than

Backslash or integer divisicn symbel

B VARRI N =t n st i~~~] 0™

At-sign
Underscore
<rubout> Daletes last character typed.
<eacape> Escapes Edit Mode subcommands.
See Section 2.16.
<tab> Moves print pesition to next tab stop.

. fTab stops are every eight columns.
<line faed> Movaes to next physical line.
<carriaga

return> Terminates input of a line.

GENERAL INFORMATION ABQUT BASIC-80 Page i1-~¢

1.4.1 Control

The following
Control=-3

Control-C

Control=G
Control-E
Control-1

Contrel-0

Control=R

Control=5
Control=-0Q

Control=-0

Characters
control characters are in BASIC-80:
Enters Edit Mode on the line being typed.

Interrupts program execution and returns to
BASIC=-80 command level.

Rings the bell at the terminal,
Backspaca. Deletes the last character typed.

Tab, Tab stops are every esight columns,.

Halts program output whila axacution
continuas. A second Control-0 restarts
output. -

Retypes the line that iz currently being ..
typed. . . -

Suspends program execution. LT

Resumes program execution after a Cont;QL@é%lif TT?I.;

Deletes the line that is currently being
typed. .

1.5 CONSTANTS

Constants are
There are two

the actual values BASIC uses during execution.
types of constants: sgtring and numeric.. '

A string constant is a sequence of up to 255 alphanumeric
charactera enclosed in double quotation marks. Examples of
string constants:

"EELLO"
*$25,000.

a0"

"Number of Employees®

Numeric constants are positive or nagative numbers. Rumeric

constantz in

BASIC cannot contain commas, There are five

types of numeric constants:

1. Integer constants Whole numbers betwean =-32768 and

+32767. Integer constants do net
have decimal points.

2. Fixed Point Positive or nagative real numbera,

constants

i.e., numbers that contain decimal
points,

GENERAL INFORMATION ABCUT BASIC-80 Page 1-5

3, Pleating Point Poaitive or negative numbers repre—
C constants gentad in exponential form (similar
te scientific notaticn). A

flecating point constant conaists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer {the
axponent). The allowable range for
floating point constants is

10738 o 10™%2. Examples:
235.988E-7 = ,0000235988

2359E6 = 2359000000

(Double precision £leating point
constants use the latter D-inatead
of E. See Section 1.5.1.)

4., Hex constanis Hexadecimal numbers with the prefix
&H. Examplas:
&H76
&H32F
L,, 5, Qectal censtants Octal pumbers with thewprefii ié;ér—"—"
&%. Examples:
80347
81234

1.5.1 8ingle And Double Prescision Form For Numeric Constants

In the 5K versicn of BASIC-80, all numeric constants are
single praecisicn numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, howaver, numeric
constants may ba either single precision or double pracision
aumbers. With double precision, the nurmbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABQUT BASIC-8(Page 1-6&
A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or

2. exponential form using E, or

3., a trailing exclamaticn point {!)

A double precision constant is any numeric constant that
hasa:

1. weaight or more digits, or -
2. exponentlial form using D, or —

3. a trailing number sign (#) —

Examples:
Single Precision Constants pDouble Precision Constants
46.8 345692811
=7.09E=-06 =1.09432p=06
3489.0 3489.0%
22.51 7654321.1234

1.6 VARIABLES S

Variables are names used to represent values that are used -
in a BASIC program, The value of a variable may be.assigned
sxplicitly by the programmer, or it may ba assigned as the
rasult of calculations in the program, Before a variable is.
assigned z value, its value is assumed to be zero.

1.8.1 vVariable Names And Declaraticn Characters

BASIC-80 variable names may be any length, however, in the
8% version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
gignificant. The characters allowed in a variable name are
letters and numbers, and the dacimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -~ gee below,

A variable name may not be a resazrved word. The Extendsd
and Disk versions allow embedded reserved words; the 8K
versicn does not. If a2 variable beging with FN, it is
assumed +to be a call tc a user-defined functicn, Reserved
words ilnelude all BASIC~B0 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1=7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a gtring.

In the Extended and Disk wversiocns, nummeric variable names

may daclare integer, single or double pracision values,
(All numeric values in 8K are single precision.) The ¢type
geglaration characters for these variable names are as
ollows:

% Integer variable

! Single precision variable
Double precision variable

The dafault type for a numeric variable name is aingle
precision.

Examples of BASIC-80 variable names follow.
In Extended and Disk ?ersions:'

PI# daclares a double precision value
MINIMUM! declares a single precision valua
LIMITS declares an integer value

In 8K, Extendad and Disk versions:

N$ declares a string value
ABC represents a single preciaicon value

In the Extanded and Disk versions of BASIC-80, +there is a
sacond method by which variakle types may be declarad. The
BASIC-80 gtatements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
incleded in a program to declare the types for certain
variakle names. These atatements axe described in detail in
Saction 2.12.

1.6.2 Array Variables

An array is a group oI table of values refersnced by the
same variabls name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subscripts as there are dimensicns in the array. Por
example V(10) would rafarence a value in 2 one-dimensicnal
array, T(1,4) would refarence a value in a two-dimensional
array, and So on. The maximum number of dimensions for an

array is 285. The maximum number of elements per dimension
I ANTET

GENERAL INFCRMATION ABOUT BASIC-80 Page 1-8

1.7 TYPE CONVERSION

When necsssary, BASIC will convert a numeric constant from

one type

to another. The following rules and examples

should be kept in mind.

1.

If a numeric constant of one type is sat squal t0 a
numeric variable of a differsnt type, the number
will be stored asz the type declared in the wvariable
name. (If a string variable is set egual o a
numeric valus or vice varsa, a "Type mnismatch”
arror ogours,)

Example:

10 A% = 23.42
20 PRINT A%
b2ia)]

23

During axpression avaluation, all of the operands
in an arithmetic or ralational operation azxe
convartad to the same degree of pracision, 1i.e.,
that of +he most prescise gperand. Alsc, the rasult
of an arithmetic operation i3 rebturned %o this
degree of p:ecisicn.

Examples:

10 D# = 64/7 The arithmatic was parformed
20 PRINT D# in double precisicn and the
RUN result was returned in D#
.8571428571428571 as a double precision value.

10 D = &4/7 The arithmetic wag performed
20 PRINT D in double pracision and the
RUN rasult was returned to D (aingle
.857743 pracision variabla), rounded and
printad as a singlae precision
valus.

Logical operators (see Section 1.8.3) convert their
eperands to integers and return an integer result.
Operands must be in the range =32768 to 32767 or an
*Overflow"® arror gocurs.

When a floating peoint wvalue 1s converted Lo an
integer, the fractional porticnm is rounded.
Example:

10 C% = 55,88
20 PRINT <%
RUN

56

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

5. If a double precision variable is assigned a single
precision value, only the f£irst seven digits,
roundad, of the converted number will be valid.
Thizs is because only seven digits of accuracy were
suppliied with the single precision value. The
absclute value of the difference between the
printed double pracision number and the original
gsingle precision value will be less than 6,3E=8
times the original single preciasion value.

Example:

10 A = 2,04
20 B¢ = A
30 PRINT A;B#

RUN
2,04 2.039999961853027

1,8 EXPRESSIONS AND QOPERATORS
An expresasion may be simply a string or numeric conatant, or

a variable, or it may combine constants and variables with
operators to preduce a single valua.

Operators perform mathematical or logical operations on
valuas, The operators provided by BASIC-80 may be divided
inte four catagories:

1. Arithmetic

2. Relaticnal

3. Logical

4. Functional

1.,8.1 Arithmetlic Cperators

The arithmetic operators, in arder of precedence, are:

Oparator Operation Sample Expression
A Exponentiaticn XAY
- Negaticn -X
*,/ Multiplication, Floating X*Y
Point Division X/Y

- Addition, Subtraction X+Y

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

To change the order in which the operations are performed,
use parenthases. Operations within parentheses are
performed f£irst. Inside parentheses, the usual order of
operations is maintained.

Hara are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression BASIC Expression

X+2Y X+¥#*2
X X=Y/Z
;‘—Y- XY/) - -
X_;Y (X+¥) /2 L
x%)¥ (XA2) AY S
v%
X XA (YAZ)
X{=¥) X*({=¥) Two consecutive --"

cperators must
be separated by
parentheses.

1,8,1.1 Integer Division And Modulus Arithmetic - T
Two additicnal operators are available In Extended and Disk
versions of BASIC=-80: Intager division and medulus
arithmetic, - .

Integer division is denoted by the baskslash (N). The
operands are rounded to integers (must be in the range
=32768 to 32767) before the division is performed, and the
quotient is truncated to an integer. For example:

10N\4 = 2
25,68N\6.99 = 3

The precedence of integer division is just after
multiplication and fleoating peint division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer

division. PFor axampla:

10.4 MOD 4 = 2 {10/4=2 with a remainder 2}
25.68 MOD 6,99 = 5 (26/7m3 with a remainder S)

The pracedence of modulus azithmetic is just after integer
division.

GENERAL INFORMATION RBOUT BASIC-80 Page 1=11

1.8.1.2 gQverflow And Division By Zaro =

1£, during the evaluation of an expression, a division by
zere is encountered, the "Division by zero” error message is
displayed, machine infinity with the sign of the numerator
iz supplied as the zesult of the division, and execution
continues. If the evaluation of an exponentiation raesults
in =zero being raised to a negative power, the “pivision by
zero" error message is displayed, pesitive machine infinity
is supplied as the result of the expcnentiaticn, and
axecuticon continues.

If overflow occurs, the "Overflow" errxor massage is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operatoers

Relational operators are used to compare two values. The
rasult of - the compariscn is either "true® {=1) or "falsa"
(0). This rasult may then used to make a decision regarding
program flow. (See IF, Section 2.26.) o

Operator Relation Tested Expression
- Equality A=Y i
<> Inequality XY
< Less than . <Y
> Greater than DY
L Lasg than cor equal to X<=Y
= Greatar than or equal to X>=¥

{(The equal sign is also used to agsign a value to a
variable., See LET, Section 2,30.)

when arithmetic and relational operators are combined in one
expressien, the arithmetic is always performed first. For
example, the expressiocn

X+Y < (T=1)/2

is true if the value of X plus Y is less than the value of
T=1 divided by 2. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> 0 THEN KeE+1

GENERAL INFORMATION ABOQUT BASIC-80 Page 1-12

1.8,3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Beolean ogperations. The logical operator
returns a bitwise result which is either "true” (not zero)
or "false” (zern). In an expression, logical operations are
parformed after arithmetic and relational operations. The
cutceme of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence. .

NOT
NOT X

[= -
o

QO 2N
[~y -y
H
aoaag
o
v

QR

F
o
[

(== Q.
O aa O H
= R]

XOR
X XOR Y

[=X=T)
£ wh D - b
[= JEE R =)

(=N =
O =0 g

BQV

OO i P
[= N =
_loou-lg

Just as +the relational operators can be used to make
decizlions regarding pregram flow, logical operators can
connect two or more relations and return a true or false
value to be used in a de¢ision (see IF, Section 2.26). For

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

example:

IF D<200 AND F<4 THEN 80
IF I>10 OR EK<0 THEN 30
IF NOT P THEN 100

logical cperators work by converting their operands to
sixteen bit, signed, twe's complement integers in the range
=32768 to +32767. (If the operands are not in this range,
an error results.! If both cperands are supplied as 0 or ~1,
logical cperators return 0 or ~-1. The given oparation Ls
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is poasible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator maybe used to "mask" all but cna of the bits of a

gtatus byte at a machine I/0 port. The QR operator may Le
used to "merge” twe bytes +to create a particular binary
value. The following examples will help demonstrate how the
logical operators work. — T

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
g0 15 AND 14 = 14 (binary 1110}

=1 AND 8=3 =1 = bipary 1111111111111111 and
8 = hinary 1000, so -1 AND 8 = 8

4 OR 2=5 4 = binary 100 and 2 = binary 10,
g0 4 OR 2 = & (binary 110}

10 OR 10=10 10 = binary 1010, so 1010 QR 1010 =
101¢ ¢10)

-1 OR =2==1 -1 = binarzry 1111111111111117 and

=2 = bhinary 1111111111111110,

go -1 OR -2 = =1, The bhit

complement of sixteen zercs is
sixteen ones, which is the i
two's complement representaticn of -1.

NOT X=— (X+1) The two's complement of any integer
ig the bit complement plus one,

GENERAL INFORMATION ABOUT BASIC-80 Page 1«14

1.8.4 Functional Operaters

A function is used in an expression to c¢a2ll a predetermined
opesration that is to be performed on an cperand, BASIC-80
has "intrinsic" functions that reside in the system, such as
SQR (square roct) or SIN (sine). all of BASIC-80's
intrinsic functions are described in Chapter 3.

BASTC=80 alse allows "user defined" functicns that are
written by the programmer. See DEF FN, Section 2.1,

1.8.,5 String Qperations
Strings may be concatenated using +#, For example:

10 A$="FILE" : BS="NAME"
20 PRINT A$ + BS

30 PRINT "NEW " + AS + B3
m PR
PILENAME T

HEW FILENAME S
Strings may be compared using the same relational cperators-

that are used with numbers: _
- <> < > <= D

String comparisons are made by taking one character at - a
time from each string and comparing the ASCII codes. If all
the ASCII codes ara the same, the strings aze equal, If the
ASCTIT codes differ, the lower code npumber precedes the
higher. 1If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

HAA® £ PABY

*FILENAME" = "FILENAME"

“XE"* > "Xi"

eL, P on RO

*SMYTR" < "SMYTHE"

D% < “g/12/78" whaere BS = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in guotation marks.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-15

1.9 INPUT EDITING

1f an incorrect character is entersd as a line is being
typed, it can be deleted with the RUBOUT key or with
Control=H. Rubout surrounds the deleted character(s) with
backslashas, and Control-B has the effect of backspacing
ovar a character and erasing it. Once a character{s) has
baen deleted, simply continue typing the line as desired.

To dalete a line that is in the process of being typed, type
Control-U. L carriage return 4is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
remory, simply retype the line using the same line number,
AASTIC=80 will automatically replace the old line with the
new line,

Mere sophisticated editing capabilities are provided—in—the —
Extsnded and Disk versions of BASIC-80. See EDIT, Section
2.16. .

To dalete the entire program that is currently reaiding in
memory, enter the NEW command. (See Section 2.41.) MNEW is
usually used to clear memoxy prior to entering a new
pragram. :

m——— e A t—

1.1¢ ERROR MESSAGES

If BASIC=80 detecta ap error that causes program exacution
to terminate, an error message is printed. In the 8K
version, only the error code is printed. In +he Extended
and Disk versions, the entire error massage is printed, For
a complete list of BASIC~80 error codes and error mes3ages,
ses Appendix J.

CHAPTER 2
BASIC~80 COMMANDS AND STATEMENTS

All of the BASIC-850 commands and statements ars described in
this chapter. Each deacription is formatted as follows:

Format:

Varsions:

Purpose:

Ramarks:

Example:

Shows the correct format for the inatruction.
See balow for format notaticm. :

Lists the versions of BASIC-80C
in which the instructicn is availabla.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program sagments
that demonstrate the use of the instruction.

Format Notation

Aaraver

e format for a statement or command is given, the

following rules apply:

6.

Items in capital lettsrs must be input as shown.

Ttems in lower case letters enclosed in angle
brackets (< ») are to be supplied by the user.

Items in square brackets ([]) are opticnal.

All punctuation except angle hrackets and square
brackets (i.e., commas, parentheses, samicolons,
hyphens, egqual signa) must be included where shown.

Ttems follewed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

Ttems separated by a vertical bar (|) are mutually
exclusive; choose ona.

BASIC=-B0 COMMANDS AND STATEMENTS Page 2-2

2.1 AUTO

Format:
Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]
Extendad, Disk

To generate a line number automatically after
avery carriage returm.

AUTC begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is fallowed by a comma but
<increment> is not specified, the last increment .
apecified in an AUTO command is assumed.

If ADTO generates a line number that is alfeééfg;i;.'

peing used, an asterisk is printed after the

number to warn the user that any input will ~

raplace the existing line. However, typing a

carriage return immediately after the aatsrisk;'ri

will save the line and generata the next Iline_
nunmber. P

AUTO is terminated by typing Control-C. The

line in which Control-C is typed iz not saved.
After Control-C iz +typed, BASIC returns. to
command level, - T

AUTO 100,50 Generates line numbers 100,
150, 200 ...
AUTO Generates line numbers 10,

20, 30, 40 ... -

CIL SR K]

4

PASIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2 AL

Format:

Version:
Purpose:
Remarks:

Examplea:

CALL <variable name>[(<argument 1list>)]
Extended, Disk
Te call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an assembly language aubroutine.
{See also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name, <argument 1ist> containa the arguments
that are passed to the assembly language
subroutine.

The CALL statement generates the same calling
sequence used by Microsoft's FPORTRAN, COBOL and
BASIC compllers. - - -

110 MYROUT=&HDOOO
120 CALL M¥ROUT({%},J,K)

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN
Format:

Verzion:

Purpose:

Remarks:

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL] [,DELETE<range>])

Disk

To call a program and pass variazbles to it from
the current program.

<filename> is the name of the program that is
called., Example:

CEAIN"PROG1"
<line numbar exp> i3 a line number or' an

axpression that evaluates to a line number -in
the called program., It is the starting peint

for execution of the called program. If it is '~

omitted, execution begins at the first Iine.
Example:

CHAIN"PROG1", 1000 ol

<line number exp> is not affected by a RENUM‘

command. .

wWith the ALL option, every variable in the

current program is passed to the called program.
If tha ALL option 1s omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Secticn 2.7.
Examples

CEAIN"PROG1", 1000, ALL

1f the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
ags an overlay. That i3, a MERGE operation is
parformad with the current program and tha
called program. The called program must bhe an
ASCITI file if it is to he MERGEd. Example:

CHAIN MERGE"OVRLAY",1000
After an cverlay ls brought in, it is usually
degirable to dalate it so that a new overlay may

be brought in. ™o do +thia, use the DELETE
option, Example:

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

J

“

BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

The Microsoft BASIC compiler does not suppert
the ALL, MERGE, and DELETE cpticns to CHAIN. If
you wish +to maintain compatibility with the
BASIC compiler, it is racommended that COMMON be

used to pass variables and that overlays not be
used.

If the MERGE coption iz omitted, CHAIN dces not
prasarve variable types (3 uger-defined
functions for use by the chained program. . That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statement contajining shared variables must be
vastatad in the chained program.

BASIC-~80 COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Pormat:
Vargions:

Purpose:

Remazks:

NOTE:

Examples:

CLEAR([, (<expressioni>] [,<expression2>]]
9K, Extended, Disk

To set all numaric variables to zerc and all
string variables +to null; and, opticnally, to
set the end of mamory and the ameount of stack
space,

<axpressioni> ia a memory location which, if
specified, saets <the highest location avallable
for use by BASIC-80.)

<axpression2> sets aside stack space for BASTC.
The dafault is 256 bytsa or one-alghth of the
available msmory, whichever is smaller.

In previocus versions of BASIC-80, <exprassibi3$

set the amount of string space and <exprsssicn>
sat the end of memsry. BASIC-80, ralease -.S5.0.
and later, allocates string space dynamically.

AR "Out of string spaca" arror occurs only - if

there is no free memory left for BASIC to use.

CLEAR
CLEAR ,32768 e

CLEAR, ,2000

CLEAR,32768,2000

BASIC~80 COMMANDS AND STATEMENTS Page 2~7
2,5 CLOAD

Formats: CLORD <£filename>
CLOAD? <filename:>
CLOAD* <array name>
Versions: 8K (cassette), Extended {cassette)

Purpose: To load a program or an arrxay from cassatie tape
into memory.

Remarks: CLOAD executes a NEW command before it loads the
program from cassette tape. <filename> is the
atring expression or the first character of the
string expresaion that was specified when the
program was CSAVEd. :

CLOAD? verifies tapes by comparing the program -
currently in memory with the fila on tape that
has the same filename, If they are the same, o
BASIC-80 prints Ck. If not, BASIC-8C prints NO
GOOD -) :

CLOAD* loads a numeric arrxay that has been savad
on tape. The data on tape is loaded into the
array called <array name> spacified when <he
array wag CSAVE*ed.

CLOAD and CLOAD? are always entered at cemmand
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statemant. Make gure +the array has been
DTMensioned before it is loaded, BASIC=-80
always returns tc command lavel after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sura the cassette recorder is
properly coennected and in the Play mode, and the
tape is possitioned correctly.

See alsc CSAVE, Section 2.9.

NOTE : CLOAD and CSAVE are not included in all
implementations of BASIC-80.

Example: CLOAD ™Max2"

Loads file "M" into memory.

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:
Version:
Pyrpose:

Remarks:

Example:

CLOSE[[#] <file numbexr>[, [#]<file number...>]]
Disk
To conclude I/0 to a disk Zile.

<file number> is the number undar which the file
was OPENed. A CLOSE with no arquments closas
all cpen files.

The asascciaticn between a particular file and
file number terminates upon exacution of a
CLOSE., The file may then be reOPENed using the
same or a different file number; likewisa, that
file number may now be reused to COPEN any file. .

A CLCSE for a sequential output file writes_ the -
£final buffer of cutput. .

The END statement and the NEW c¢ommand aiéays
CLOSE all disk files automatically. (STOP does
not close disk files.) i

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:z:

Version:
Purposa:
Ramarks:

Example:

COMMON <list of wvariakles>
Disk
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement, COMMON statements may
appear anywhere in a program, though it is
racommended that they appear at the beginning,
The same variable cannot appear in more than one
COMMON statemant. Array variables are specifiad
by appending "{(}" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D{) G¥
110 CHAIN "PROG3",10

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

2.8 CONT

Format:
Varsions:

Purpose:

Remarks:

Example:

CONT
BK, Extended, Disk

Te continue program execution after a Control-C
has been typed, or a STOP or END statement has
been axecuted.

Execution resumes at the point where the Dbreak
cceurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string}.

CONT is usually used in conjunction with STOPR
for debugging. wWhen execution is stopped,
intermadiate values may be examined and changed
using direct mode statements. Execution may be
reasumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk veraions, CONT may be
used to continue execution after an exrror.

CONT is invalid if the program has been adited
during the break. In 8K BASIC=-80, execution
eannot be CONTinued if a direct mode exror has
oceurred during the break.

See example Saection 2.61, STOP.

Y

BASTC-80 COMMANDS AND STATEMENTS Page 2-11

2.9 CSAVE
Formats:

Versions:

Purpose:

Remarks:

NCTE:

Example:

CSAVE <string expression>
CSAVE* <array variable name>
8K {(cassettas), Extended {cassette)

To save the program or an Aarray currently in
mencry on cassette tape,

Each program or array saved on ‘tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and wurses <the £first character in <atring
axpression> as the filanama. <string
expression> may be more than one character, but
only the first character ia uded for the
fileaname.

Whan the command CSAVE* <array variable name)> is
aexecuted, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elemeants of a multidimensional array are saved
with the leftmost subscript changing fasteat.

CSAVE may be used as a program statement or as a
direct mode command.

Bafore a CSAVE or CSAVE* is executed, make sure
the cassette reccrder is properly connectad and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included in all
implementations of BASIC-80.

CSAVE "TIMER"

Savaes the program currently in memeory on
cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.0 DATA

Format.:
Varsions:

Purpose:

Remarks:

Example:

DATA <list of constanta>
8K, Extended, Dbisk

To store the numeric and string constants that
are accessed by the program's READ statement(s}.
{See READ, Section 2.54)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
gtatement may contain as many constants as will
fit on a line (separated by commas), and any
number of DATA statements may be used in a

program. The READ stataments access the DATA -

atatements in order {by line numbezx) and the

data c¢ontained therein may be thought of as one-

continvous list of items, regardless of how many -
. . aAre -

placed in the program. R

itema are on a line or where the lines-

<list of «constants> may <cortain numeric
conatants in any format, i.e,, fixed peint,
floating point or integer, {(No numeric
expressions are allowed in the list.) String
constants in DATA stataments must be surrounded
by double gquotatien marks only if they centain
commas, colons or significant laading or
trailing spaces. Otherwise, guotation marks are
not needed,

The variable type {numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement {Section 2.%7).

See examples in Section 2.54, READ.

e

BASIC=-20 COMMANDS AND STATEMENTS Page 2=13

2,11 LEF FN

Format: DEF FN<pame>[(<parameter list>)]=<function dafinition>

Versions: 8K, Extended, Disk

Purposa: To define and name a function that is written by
theusar.
Remarks: <pame> must be a legal variable name. This

name, preceded by FN, becomes the name of the
function, <parameter list> is comprised of
those variable names in the funetion definition
that are to be replaced when the function is
called. The items in the list are separated by
commas, <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they deo not affect progzam

variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the valus of the paramster is supplied when the
function is called. Otharwisa, the current
value of the variable is used.

. The variables in the paramster list reprasent,
or a one-to-one basis, the argument variablas or
values that will be given in the function call.
(Remember, in the 8K versicn only cne argument
is allowed in a function call, therefore the DEF
PN statement will contain enly one variable.)

In Extended and Disk BASIC-80, usar-defined .
functions may be numeric or string; in 8K,
user-defined string functicns are not allowed.
If a type is specified in the function name, the
valus of the expression is forced to that type
bafore it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch® error ogcurs.

A DEF FN statement must be executed before the
functien it defines may be called. If a
functicn is called beferme it has been defined,
an "Undefined user function®" error cccurs. DEF
FN is illegal in the direct mode.

BASIC-80 COMMANDS AND STATEMENTS

Page 2-14
Exanple: .
410 DEF FNAB (X,Y}=XA3/¥A2
420 T=FNAB({I,J}
Line 410 defines +the function FNAB. The

function is called in line 424,

BASIC-80 COMMANDS AND STATEMENTS Page 2=-15

2.12 DEFINT/SNG/DBL/STR

Format:

Versions:

Purpose:

Remarks:

Examples:

DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Diak

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable

names beginning with the letter(a) specified

will be that type variable. However, 2 type
declaration character always takas precedence

over a DEPtype statement in the typing of a

variabla.

If no type declaration statements are

encountered, BASIC-80 assumas all variablas

without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with .
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
t+he letter A will be string
variables,

10 DEFINT I=N,W=Z :
All variables beginning with
tha letters I, J, K, L, M,

N, W, X, ¥, 2 will be integer
variablas.

EASIC=-80 COMMANDS AND STATEMENTS Page 2-16

2,13 D

Format:
Versions:

Purposes

Remarks:

Exampla:

ug

DEF USR([<digit>]=<integer expresalon>
Extanded, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit frem 0 to %, The digit
corresponds to the number of the USR routine
whosa address is being specified. If <digit> is
omitted, DEF USR0O is assumed. The value of
<integer axpression> is the starting address of
the USR routine. See Appendix ¢, Assembly
tanquage Subroutines. . i

Any number of DEF USR statementa may appear in z

PrOgram to redafine subroutine starting

addressas, thus allowing accesz to ag "many -
subroutines as necessary. -

200 DEF USRO=24000
210 X=0OSRO (YA2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.14 DELETE

Format:
Versicns:
Purpose:
Remarks:

Examples:

DELETE(<line number>] [=<line number>]

Extended, Disk

Tc delete program lines.

BASIC-B0 always returns to command level after a
DELETE is executed, If <line number> does not
exist, an "Illegal function call® error cccurs.
DELETE 40 Deletes line 40

DELETE 40~100 Delates lines 40 through
100, inclusive

DELETE~40 Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Paga 2-14

2.1% DIM

Format:
Versions:

Purpcse:

Remarks :

Exanple:

DIM <list of subscripted variables>
8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript (s)
is assumed to be 10, If a subscript iz used
that iz greater than the maximum specified, a
*suhscript out of range® exror occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTICN BASE
statement (see Section 2.46). L

The DIM statement sets all the elements oﬁilihq
specified arrays to an initial value of zaro,

10 DIM A(20)
20 FOR I=0 TO 20

30 READ A (D) S

40 NEXT I

1Y

BASIC-80 COMMANDS AND STATEMENTS Page 2-19
2.16 EDIT

Format: EDIT <line npumber>

Versions: Extended, Disk

Purpose: To enter Edit Mode at the specified line.

Remarks: In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upen
entaring Rdit Mode, BASIC-80 types the line
nupber of the line to be editad, then it types a
space and waits for ap Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
curser or to insert, delete, replace, or search
for text within a2 line. The subcommands are not
achoed. Most of the Edit Mode subcommands may
ba preceded by an integer which causes the .
command to be executed that number of times,

When a preceding integer is not specified, it is- -

asgsumed to be 1.

Edit Mode subcommands wmay be categorized
according to the following functions:

1. Moving the cursor

2, Inserting text

3, Delating text

4. PFinding text

5. FRaplacing text

§. Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
rapresents a string of characters of
arbitrary length, [i] represents an
opticnal integer (the default is 1), and
$ represants the Escape (or Altmode)
kay.

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

1. Moving the Cursor

Space Use the space bar to move the cursor to the \.
right. [i]Space moves the cursor i spaces to
the. right, Characters are printed as you space
over them.

Rubout In Bdit Mode, [i]Rubout moves the cursor 1
spaces to the left (backspaces). Characters are
printed as you backspace over them,

2. Inserting Text

I I<text>$ inserts <taxt> at the current cursor
position, The inserted characters are printed
on the terminal. To terminate insertion, type
Egcape. If Carriage Return is typed during an
Insert command, the affact is the aames as typing =~
Escape and then Carriage Return. During an
Insert command, the Rubout or Delate key on the
terminal may be used to delate characters to the
laft of the curser. If an attempt 1is made to
insert a character +that will make the line. ..
longsr than 2535 characters, a bell (Contrel-GJ- .
is typed and the charactar ls not printed. T

X The X subcommand is usaed to extend the line. X \‘
moves the cursor to the end of the line, goes

into insert mode, and allows inserticn of text

as if an Insert command had been given. When

you are finished extending the line, type Escape

or Carriage Return.

3. Deleting Text

o) {1]D deletes i characters to the right of the
Cursor. The delatad characters are echoed
betwean backslashes, and the cursor is
positicned to the right of the last character
delsted, If there are fawer than 1 characters
te the right of the curseor, 1D deletes the
remainder of the line.

H H daletes all characters to the right of the
cursor and then automatically enters insert
mode., H is useful for replacing statements at
the end of a line.

4, PFinding Text

s The subcommand [i]S<ch> searches for the ith
occurrence of <ch> and positions the c¢ursor \‘
bhefore it., The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

6.

the line. All characters passed over during the
search are printed.

The subcommand [1]K<ch> is similar to [ilS<ch>,
except all the characters passed cver in the
search ars deletad. The cursor ls pesitioned
befors <ch>, and the deleted characters are
enclosed in backslashes.

Replacing Text

o

The gubcommand C<ch> changes the next character
te <ch>. If you wish +to change the next i
charactars, use the subcommané iC, followed by i
characters. After the ith new charackter is
typed, change mode is exited and you will return
to Edit Mode.

Ending and Restarting Edit Mode

<or>

Typing Carriage Raturn prints the remainder of
the line, savas the changes ycu made and exits
Edit Mode.

The E subcommand has the same effect as Carriage
Return, eoxcept the remainder of the line is net
printed.

Tha Q subcommand returns to BASIC-80 command
lavel, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lista the remainder of the line
(saving any changes made so0 far} and repositions
the cursar at the beginning of the Line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A gubcommand lets you begin editing a line
over again. Tt restores the original line and
repositions the cursor at the heginning.

NOTE

1f BASIC~80 receives an unrecognizable
command or 1iilegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character ls igneored.

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC~80 autematlcally
enters Edit Mgde at the line that caused the
error. For example:

10 K = 2(4)

RUN

?8yntax exror in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand), BASIC-B80
reinserts the line, which causas all variable
values to be lost. To preserve the variable
values for examination, first exit Edit ° Mode
with the Q subcommand. BASIC-8¢ will return %o -
command level, and all variable values will be
praserved. -

Contzol=A B
To enter Edit Mode on the line you are cur¥ently - -
typing, type Control~A. BASIC-80 rasponds with -
a carriage return, an exclamation pojnt (!) and
a space. The cursezr will be positioned at the
first character in the line, Proceed by typing _
an Edit Mode subcommand. -

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the ourrent line., (The line number

1 *." always refers to the curreant
1.'].1130}

BASIC-80 COMMANDS AND STATEMENTS Page 2-23
2.17 END

Pormat: END
Varaions: 8K, Extended, Disk

Purpcse: To terminate program execution, close all files
and raturn to ccommand level.

Remarks: END statements may be placed anywhere in the
program to terminate exaecution. Unlike the STOP
statement, END does not cause a BREARK message to
be printed. An END statement at the end of a
program is opticnal. BASIC-80 always returns to
command level after an END is exscuted.

Example: 520 IF K>1000 THEN END ELSE GOTC 20

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.18 ERASE

Format: ERASE <list of array variables>
Versions: Extended, Disk
Purpose: To eliminate arrays from a program.

Remarks: Arrays may be redimensioned after they are
ERASEd, or the previcusly allocated array space
in memory may be used for other purpoaes. If an
attempt is made to redimension an array without
first ERASEing iz, a "Redimensioned array" error

ocgours.
NOTE: The Microscft BASIC compilar dJdces not -suppoft- :
ERASE. ’ LT
Exampla: .

450 ERASE A,B o
460 DIM B(99) -

BASIC=80 COMMANDS AND STATEMENTS Page 2-25
2.19 ERR AND ERL VARIABLES

When an error handling subroutine 1is entered,
the variable ERR contains the error code for the
error, and the variable ERL containa the line
number of the line in which the error was
detected, The ERR and ERL variables are usually
used in IF...THEN statements to direct program
flow in the error trap routina.

If +he statement that caused the error was a
dirmct mode statement, ERL will contain 653535,
Te test if an error occurred in a direct
statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR = error code THEN ...
IF ERL = line number THEN ,..

If the line number is not on the right side _of
the relational operator, it cannot be renumbered
by RENUM, BDPecause ERL and ERR are regerved
variables, neither may appear to the laft of the
aqual sign in a LET (asgignment) statement.
BEASIC=80"s error codea are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.) :

BASIC-80 COMMANDS AND STATEMENTS Page 2-26
2.20 ERROR

Format: ERROR <integer expression> "‘
Versions: Extended, Disk

Purposa: 1) To simulate the occurrence of a BASIC-80
error: or 2) *o allow error codes to be
defined by the user.

Remarks: The valve of <integer expression> must be
greater <+han 0 and less than 255, If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.} .

7y define your own error code, use a value that

is greater than any usded by BASIC-80's error
codes. (It is prefarable to use the highest
available values, s0 compatibility may be. .
maintainad when more error codes are added to. .-)
BASIC-80,) This user-defined erzror code may then .

be conveniently handied in an error trap
routine, (See Example 2.) ~‘

If an ERROR statement specifies a code for which
ne arror message has been defined, BASIC=-80-
reaponds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
te be printed and execution to halt. -

Example 1: LIST
10 &€ = 10
20T = 5
30 ERROR § + T
40 END
Ok

RUN
String too long in line 30

Or, in diract mode:

ok

ERROR 13 (you +ype this line)
String too leng (BASIC-80 types this line)
ok

s

BASIC-80 COMMANDS AND STATEMENTS Page 2-27
Example 2:

110 ON ERROR GOTO 400
120 INPUT "WEAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

BASIC-80 COMMANDSAND STATEMENTS Page 2~-28

2.21 FIELD)
Format: FIELD[#]<file number>,<field width> AS <string variable>...
Version: Disk
Purpose: To allocate space for variables in a random file

buffer,

Remarks: To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the fils
was OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 as ID$, 40 AS ADDS

allocates tHe first 20 positions (bytas) in the
random file buffar +o the string variable N§, :
the naxt 10 positions to ID§, and the next 40 o
positions to ADDS. FIELD does ROT plage any :
data in the random files buffer. (See LSET/RSET |
and GET.) J

The total number of bytes allocated in a FIELD .
statement must not exceed the record length that

was - specified when the file waa OPENed. ' N
Otherwise, a P"Fleld overflow" error occurs. .
(The default record length is 128,)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect 2t +he same
time.

Example: See Appendix B.

NOTE: Do not use a FIELDed variable name in an INPUT
or LET sgtatement. Once a variable nake 13
FIELDed, 1t points to the correct place in the
random £ile buffer. If a subsequent INPUT or
LET statement with that variable name is
axecuted, the variable's pointer is moved to
string space.

BASIC-B0 COMMANDS RND STATEMENTS Page 2-23

2,22 FCR...NEXT

Format:

Versions:

Purpose:

Remarks:

FOR <variable>=x TO y [STEP z}

*

NEXT [<variable>][,<variable>...]
where %, v and z are numeric expressions.
8K, Extanded, Disk

To allow a series of instructions to be
performed in a locp a given number of times.

<vyariable> is used as a counter. The f£first
numeric expression (x)} is the initial value af .
the counter. The second numeric expression (¥)
is the final value of the counter. The program
iines following the FOR statement are executed
until the NEXT statement ls encountered. Then
the counter is incrementad by the amount-

specified by STEP. A check is performed to gee - -

if thavalue of the counter is now greater thanm

the £final value (y}. If it is not greater,
BASIC-80 branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is -
a FOR...KEXT lcop. If STEP is not specified,
the inerement is assumed to be one. If STEP 1s
negative, the final value of the counter iz set
s be less than the initial value. The counter
is decremanted each time through the loop, and
the loop is executed until the counter is less
than the final valua.

The body of the loop is skipped if the initial
value of the loop ¢times the sign of the step
exceeds the fipal value times the sign of the
stap.

Nested Loops

v NE ocps may be nested, that is, a
FOR. ..NEXT loop may be placed within the context
of another FOR...NEXT lcop. When loops are
nested, each loep must have a unique variable
name as its counter. The NEXT statement for the
ingside loop must appear befors that for the
cutside loop. If nested loops have the same and
peint, a single NEXT statement may he used for
all of them.

The varlable(s} in the NEXT statement may be

BASIC-80 COMMANDS AND STATEMENTS Page 2-30

omitted, in which case the NEXT statement will
match the most recent FOR statement., If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR* error message is issued and executiocn is
terminated.

Example 1: 10 EK=10
20 FOR I=1 70 K STEP 2

30 PRINT I;

40 K=E+10

50 PRINT K

60 NEXT

RUN
1 20
3 30
5 40 |
7 50 -
9 &0

Ck

Example 2: 10 J=0 : T
20 FOR I=1 TO J T
30 PRINT I -
40 NEXT I -

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value., '

Example 3: 10 I=S
20 FOR I=1 TO I+5

30 PRINT I; .
40 KEZXT -
RUN

1 2 3 4 5 6 7 8 3% 10 -
Ok

In this example, the loop exscutes ten times.
The final valua for the loop variable is always
set bafore the initial wvalue 1is set. {Note:
Previous versions of BASIC-80 set the initial
valus of the loop variable before setting the
final value; i.e., the above loop would have
axecuted six times.)

BASIC~480 COMMANDS AND STATEMENTS Page 2-31

2.23 GET

Format:
Version:

Purpose:

Remarks:

Example:

GET {#l1<file number>[,<record numbexr>]
bisk

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file

was OPENed. If <record number> is cmitted, tha
next record (after the last GET) is read into
zhe bugfer. The largest possible record numbaer
g 32767,

Sea Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.24 GOSUB,..RETURN

Format:

Versions:
Purpose:
Remarka:

Example:

GOSUB «<line number>

RETUERN
8K, Extended, Disk
To branch to and return from a subroutine.

<line number> 1s the £irst line of the
subroutina.

A subroutine may be called any number of times
in a program, and a subroutine may be called-

from within another subroutine. Such nesting of .

subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause

BASIC=80 to branch back to the statement

following the most regent . GOSYE atatement.. A
subroutine may contain more than one RETORN
statement, should logic dictate a return at
diffarent points in the subroutine. Subroutines
may appear anywhere in the program, but it ia
recommended that the subroutine be readily

distinguishable from the main program. ‘To

prevent inadvertant entry inte the subroutine,
it may be preceded by a STOP, END, or GOTO
gstatement that directs program contrel arfound
the subroutine. o .

10 GOSUR 40

20 PRINT "BACK FROM SUBROUTINE"
30 ENWD

40 PRINT “SUBROUTINE";:
50 PRINT " IN":

€0 PRINT " PROGRESS”
70 RETURN

RUR

SUBROUTINE IN PROGRESS
BACK FROM SUBRQUTINE
Ok

BASIC~B80 COMMANDS AND STATEMENTS Page 2-33

2.25 G0TO

Format:

Versions:

Purpose:

Remarks:

Ezample:

GOTO <line number>
8K, Extended, Disk

Ta Branch unconditionally out of the normal
program seguence t0 a specified line number.

If <line number> is an executable statemant,
that statement and those following are executed,
If it i3 a nonexecutable statement, execution
praoceeds at the first executable gatatement
encountered after <line numbar>.

LIST

10 READ R

20 PRINT "R =";R,
30 A = 3,.14%RAZ

40 PRINT "AREA =":A

50 coTo 10

60 DATA 5,7,12

ok

RON

R=75 AREA = 78.5
Re=7 AREA = 153,36
R = 12 AREA = 452.18

0ut of data in 10
ok

BASIC-80 COMMANDS AND STATEMENTS Page 2=-34

2,26 IF...THEN[,..BLSE] AND IF,..GOTO _ »

4

Pormat: IF <expression> THEN <statement(s}> | <line number>
[ELSE <statement(s)> ! <line number>]

Format: IF <expression> GOTO <line number>
[ELSE <statement(s)}> | <line number>]

Versions: 8K, Extended, Disk

NOTE: The ELSE clause is allowed only in Extended and
Pisk versions. -

Purpose: To make a decision regarding program flow based"
on the result returned by an expression.

Remarks: If the result of <expreasion> is not zero,. the
THEN or GOTO clause is axecuted. THEN may be
followed by either a line number for branching: Lo
or one or more statementa to be executed. .GOTO - ...
is always followed by a line number. If- the . -
result of <exprassion> is zero, the THEN or:-GOQTO. . .
clause is ignored and the ELSE clause, if- -
prasent, is executed. Execution continues with \l
the next executable statement. (ELSE ias allowed
only in Extended and Disk varsions.) Extended -
and Disk versions allow a comma before THEN.

Negting of IF Statements

In +he Extended and Disk versions,
IP...THEN...ELSE statemsants may be nested. - __-
Nesting is limited only by the length af - the -
line, Por example .

IF XY TEEN PRINT "GREATER" ELSE IF I>X
TEEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the sgame number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF aA~B THEN IF B»C THEN PRINT "A=C"
ELSE PRINT "A<C"

will not print "A<>C" when A<DH.

If an IF,..THEN statement is followed by a line J
number in the direct mede, an "Undefined line"

error results unlass a statement with the
specifiead line number had previcusly been
enterad in the indirect mode.

-

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

NOTE:

Example 1:

Example 2:

Example 3:

When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representaticn of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1,0E-6 THEN ...

This test returns true if the value of R is 1.0
with a relative error of less than 1.0E-é6.

200 TF I THEN GET#1,I

This statement GETs record number I if I is ot
zZaro.

10¢ IF{I<20)*(I>10) THEN DB=1%79-1:GOT0 300
110 PRINT "“OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20, If I is in
this range, DB is calculated and exacution
branches to line 300. If I is not in this
range, execution continues with line 110,

310 IF IOFLAG THEN PRINT A% ELSE LPRINT A$

This statement causes printed output to go
aither to +the terminal or the line printer,
depanding on the value of a variable (IOFLAG).
T# TOFLAG is zero, output goea to the line
printer, otherwise cutput goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

2.27 INPUT

Pormat:
Versions:

Purpose:

Remarks:

INPUT(;] [<"prompt string">;]<list of variables>
8K, Extended, Disk

To allow input from the terminal during program
executiocn,

When an INPUT statement is encountered, program
axecution pauses and a gquestion mark is printed
to indicate the program is waiting for data., If
<"prompt string"> ia included, the string is
printed befaore the question mark. The required
data is then entered at the terminal, S
If INPUT is immediately followed by a semicolon,:
then the carriage return typed by the user to
input data does not echo a carriage return/line
£faad seguenca.

The data that is entered is assigned to the
variable(s) given in <variable list>. The
numbar of data items supplied must be the same
as the number of variables in the list. Data.
items are separated by commas. :

The varisble names in the list may be numeric or
gtring variable names (including subscripted
variables). The type of each data item that is
input muat agree with the type specified by the
variable name. (Strings input +to an INPUT
statement need not be surrounded by quotation
marks. }

Responding to INPUT with too many or too few
itams, or with the wrong type of value {numeric
instead of string, etc.,) causes the mesasage
*2Redo from start® to be printed. No assignment
of input values is made until an acceptable
response is given.

In the 8K version, INPUT is illegal in the
direct mode.,

BASIC-830 COMMANDS AND STATEMENTS Page 2-37

- Examples: 10 INPUT X

. 20 PRINT X "SQUARED IS" XA2
30 END
RON
? 5 (The 5 was typed in by the user

in response to the gquestion mark.)
5 SQUARED 15 25
Ok

LIST

10 PI=3,14

20 INBUT "WHAT IS THE RADIUS";R

30 A=PI*RAZ

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

ck

RUN

WHAT IS TEE RADIUS? 7.4 (User types 7.4)
THE AREA OF THEE CIRCLE IS5 171.946

WHAT IS THE RADIUS?
etao.

BASIC-80 COMMANDE AND STATEMENTS Page 2-318

2,28 INPUT#

Format:
Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable liat>
Disk

To read data items from a sequential disk file
and assign them to program variables.

<file numbar> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in <tha file. {The variable type must
match the type specified by the variable name.)
Wwith INPUT#, nc question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would 1f data were being typed in response -

to an INPUT statement. With numeric valuas,

leading spaces, czrriage returns and line faeds
ars ignored. The £irst character encountared - -

that 18 not a space, carriage raturn or line
fand 13 assumed to be the start of a number.
The number terminates on a space, carriage
return, line faad or comma.

If BASIC=80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are alsc ignored. The
£iprast character encountersd that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first

character is a quotation mark ("), the string -

itam will consist of all characters read betwesn

the first quotation mark and the second. Thus,

a quoted string may not contain a guotation -mark
as a character, If the first character of the
string is not a gquotation mark, the string ig an
unquoted string, and will taerminate on a comma,
carriage or line feed (or aftsr 255 characters
have been read), If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

1

BASIC-80 COMMANDS AND STATEMENTS Page 2~39

2.29 KILL

format:

Varsion:

Purpose:

Remarks:

Example:

KILL <filename>

Disk

To delete a file from disk.

If a EILL statement ig given for a file that is
currently OPEN, a "File already open" errcr
oogcurs.

KILL is used for all types of disk files:
program files, random data files and saquential
data files.

200 RILL “DATA1"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2~40

2,30 LET

Format:
Versions:

Purposes

Remarks:

Example:

{LET] <variable>=<expression>
8K, Extended, Disk

To assign the wvalue of an expression €o a
variable.

Notice the word LET is opticnal, i.a., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET Dw12

120 LET E=12A2

130 LET F=12A4 B
140 LET SUMmDHE+F

-
or

110 D=12

120 E=12A2
130 P=12A4
140 SUMm=D+E+F

)

BASIC-80 COMMANDS AND STATEMENTS Page 2-41
2.31 LINE INPDT

Format: LINE INPUT(;][<"prompt string">;]<string variable>

Vaersions: Extanded, Disk

Purpcse: To input an entire line {up to 234 characters)
to a string variable, without the wuse of
delimiters.

Remarks: The prompt string is a string literal that is

printed at the terminal befere ipput is
accapted. A guastion mark is not printed unless
it is part of the prompt stzing. RAll input from
the end of the prompt to the carriage return is
assigned to <string variable>.

If LINE INPUT is immediately followed by a
semicelon, then the carriage return typed by the.
user to end the input 1line dJdoes not acho 2
carriage return/line faad sequsnce at the
terminal. -

A LINE INPUT may ke escaped by typing Control-C.
BASTIC=-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

Example: See Example, Section 2.32, LINE INPUT#H.

BASIC-80 COMMANDS AND STATEMENTS Page 2=-42

2.32 LINE INPUTH#

Format:
Version:

Purpose:

Remarks:

Example:

LINE INPUT#<file number>,<string variable>
Disk

To read an entire line (up to 254 characters),
without delimiters, from a seguential disk data
file to a string variabia. .

<file number> is the number under which the file
was OPENed. <atring variable> 1ls the varlable
name to which the line will be assigned. LINE
INPUT# raads all characters in the sequential
file up to a carriage return. It +then skips
over the carriage return/line feed sequance, -and
the naxt LINE INPUT$# reads all characters up *to_
the next carriage return. (If a line

1

fead/carriage return sequence is encountared, it -

is preserved.) -

LINE INPUT# is especially useful if each liﬁé;ﬁﬁigz -

a data file has been broken into fields, or if a
BASIC-B0 program saved in ASCII- mode is being
rmad as data by ancthar program.

10 OPEN "OQ",1,"LIST®

20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C%

40 CLOSE 1

5¢ OPEN "I",1,“LIST"

60 LIME INPUT #1, C3$

70 PRINT C%

80 CLOSE 1

RON

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS

LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.33 LIST

Format 1:
Versions:
Format 2:
Versicns:

Purpose:

Remarks:

LIST [<line number>]

8K, Extended, Disk

LIST [<line number>{=[<line number>1]]
Extended, Disk

Te list all or part of the program currently in
memery at the terminal.

BASIC-80 always returns to command level after a
LIST 13 executed.

Format 1: If <line number> is . omitted, the

program is listed beginning at the lowest line

number. (Listing is terminated elither by the
end of the program or by typing Control=C.) If
<line number> is included, the 8% version will
1ist the preogram beginning at that line; and
the Extended and Disk versions will list only
the specified line.

Format 2: This format allows the following
optionsa:

1. If only the first number is specified, that
line and all higher-numbered lines are
ligted,

2. If only the second number is specified, all
lines £rom +the beginning of the program
through that line are listed,

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

Examples: Format 1:

LIST

LIST S00Q

Format 2;

LIST 150~
LIST =-1000

LIST 150=-1000

Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.

In Extended and Disk,
lists line 500.

Lists all lines from 150
te thae end.

Ligsts all lines from the
lowest number through 1000.

tists lines 150 through

1000, inclusive, . . LT

BASIC=-80 COMMANDS AND STATEMENTS Page 2=45

2,34 LLIBST

Format:

Yarsions:

Purgose:

Remarks:

ROTE :

Example:

LLIST [<line number>[-[<line number>]]]
Extended, Disk

Te list all or part of the program currently in
memory at the line printer,

LLIST assumes a 132-character wide printer.
BASTIC-80 always raturns to command lavel after
an LLIST is executed. The cptions for LLIST are
the sama as for LIST, Format 2.

LLIST and LPRINT are not included in all
implementaticns of BASIC~80. T

See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-48&

2.35 LDAD

Format: LOAD <filename>{,R]

Version: Disk

Purposa: To lecad a file from disk into memory.

Remarks: <filaname> is the name that was used when the

file was SAVEd. (With ¢?/M, the default
extension .BAS is supplied.)

LOAD clogses all open filss and delates all
variables and program lines currently residing
in memory before it lcads the designated
program. Howaver, if the "R" option is uged
with LOAD, the program is ROUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R” option may be used to
chain several progranms {(or segments of the a3sane
program). Information may be passed betwasn the!
programs using their disk data £iles.)

Example: LOAD "STRIRK",R L o

BASIC~-80 COMMANDS AND STATEMENTS Page 2=47

2,36 LPRINT AND LPRINT USING

Pormat:

Varaionsg:

Purpcse:
Ramarks:

NOTE:

LPRINT [<list of expressions>]

LERINT USING <string exp>:<list of expressions>
Extended, Disk

To print data at the line printer.

Game as PRINT and PRINT USING, excapt output
goes +to the line printer. See Section 2.49% and
Saction 2.50.

LERINT assumas a 132=-character-wide printsz.

LPRINT and LLIST are not included in all
implementaticns of BASIC-80.

BASIC-80 COMMANDS AND STATEMENTS page 2~48

2.37 LSET AND RSET

Format:

Versicn:

Purpose:

Remarks:

Examplas:

HOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random f£ile buffer
(in preparatiocn for a PUT statement).

If <string expression> requires fewer bytes than
ware FIEFLDed Lo <gtring variable>», LSET
lef+=justifies the string in the field, and RSET
right-justifies the string. (Spaces are uaed to
pad the extra pcsitions.) If the string is too
long for the field, characters arxe dropped from
the right. HNumeric values must be converted <£o
strings before they are LSET or RSET. See the
MKI$, MKS$, MED$ functions, Section 3.25.

150 LSET A$=MKS$ (AMT}
160 LSET D$=DESC($)

See alse Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left=justify or right~justify
a string in a given <£ield. For aexample, the
program lines

110 A$=SPRCES (20)
120 RSET A$=N$

right-justify the string N§ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-492

2,38 MERGE

Format:

Yersion:

Purpose:

Ramarks:

Example:

MERGE <filename>
Disk

Te merge a specified disk f£ile into the program
currently in memory.

<filename> is the name used when the £ile was
SAVEd. (With C¢P/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" aerror
occura.) '

1f any lines in the disk file have the aame line

qumbers as lines in the program in memory, the ~

lines from the file on disk will replace the
correspending lines in memory. - {(MERGEing may Le
thought of as "inserting" the program linas on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC=-80 COMMANDS AND STATEMENTS Page 2-50
2.39 MIDS

Format: MIDS$ (<atring expi>,nl,m])=<string exp>
where n and m are integer expressions and
<string expl> and <string exp2> are string
expressions.

Versions: Extanded, Disk

Purpese: To replace a portion of one string with ancther
str ing -
Remarks: The characters in <string expl>, beginning at

position n, are replaced by the characters in
<atring axp2>. The optional m refers to the
number of characters from <string exp2> that .
will be used in the replacement. If m is --
emitted, all of <string exp2> is used. However,
regardless of whather m is omitted or ineluded,
the replacemant of characters never goes beyond
the original length of <string expi>. :

Example: 10 A$="EANSAS CITY, MO" S e
20 MIDS$ (A§,14)="R5"

RUN ,
RANSAS CITY, KS ST

MID$ may also be used as a function that returns.
a substring of a given string. See Section
3.24,

30 PRINT A$ - - : d

BASIC-80 COMMANDS AND STATEMENTS P&ge 2=51

2.40 NAME

Format: NAME <old filename> AS <new filename>

Version: Disk

Purpose: To change the name of a disk file.

Ramarks : <ald filename> must exist and <new filename>

must not exist; otherwise an error will result.
Aftar a NAME command, the file exists on the
same disk, in the same area of disk space, with
the newnane.

Example: Ok -
NAME "ACCTS" AS "LEDGER" - .-
Ok) f
In thiz axample, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-80 COMMANDS AND STATEMENTS

2.41 NEW

Format:
Versions:

Purpose:

Remarks:

Page 2-52

NEW
8K, Extended, Disk
in memory and

To delete the program currently
clear all variables.

NEW is entered at command level to cleaar memory
before entering a new program. BASIC-80 always
returns to command level after a NEW is
axecuted.

BASIC-80 COMMANDS AND STATEMENTS Page 2=53

2.42 BULL

Format:
Versions:

Purpose:

Ramarksa:

Example:

NULL <integer expression>
8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For 10-character-per-second tape punches,
<integer eaxpressiocn> should be >=3, When tapes
are not being punched, <integer expression>
should be 0 or 1 for Taletypes and
Teletypa-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printersa.
The default value is 0.

ok

NULL 2

Ck

100 INPUT X

200 IF X<50 GOTO 8Q0

Two null characters will be printed after each
line.

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2,43 QN ERROR GOTO

Format:
VYersions:

Purpcse;

Remarks:

NOTE:

Example:

ON ERROR GOTC <line number>
Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
gpecified error handling subroutine., If <line
number> does not exist, an "“Undefined Lline”
frror results, To digable error trapping,
axecute an ON ERRCR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears inm an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It 13 recommended that
all ervor trapping subroutines execute an ON
ERROR GOTO 0 if an error is sncountered for
which there is no recovery action.

If an error occcurs during execution ¢f an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine,

10 ON ERROR GOTQ 10Q0

-

BASIC=-80 COMMANDS AND STATEMENTS Page 2-53

2.44 ON...GOSUB AND ON...GOTO

Format:

Varsions:

Purposa:

Ramarks:

Example:

ON <exprasssion> GOTO <list of line numbaers>
ON <expression> GOSUB <list of lipne numbers>
8K, Extended, Diak

To branch %o ona of sqgveral specified line
aumbers, depending on the value raturned when an
exprassion is evaluated.

The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is thrae, the

7ine number in the liat will be the destination
of the branch. {If the value i3 a non-integer,
the fractional portion is rounded.)

In the ON...GOSUR statament, aach line number in
the list must be the first line number of a
subroutine.

1£f the value of <axpression> is zero or greater
than the number of items in the list (but less
than or egual ta 255), BASIC continues with the
next axecutable statament. If the value of
<axpreasion> is negative or grasatar +than 255, an
*1llegal functicn call" error oCcurs.

100 oN L~1 GOTG 150,300,32¢,3%0

BASIC~B0 COMMANDS AND STATEMENTS Page 2-56

2.45 OPEN
Format: OPEN <mode>, [#]<file number>,<filaname>, [<reclen>]
Versicn: Disk

Purposa: To allow 170 to a disk file.

Remarks: A disk file must be OPENed before any disk 1/
cperation can be performed on that file. OPEN
allocates a buffer for I/0 to the file and
determines the mode of access that will be uged
with the buffer.

aode> ism a string expression whose first
character is one of the following:

o specifies sequential output mode
I spacifies sequential input mode
R specifies random input/output mode

<file number> is an dinteger expreasion whose
value is betweean one and fifteen. The number is
then assocliated with the file for as long as it
is OPEN and ia used to refar cther disk I/0
stataments to the file.

<filename> is a string expreasion containing a
name that conforms to your operating system's
rules for disk filenames,

<reclen> is an Ainteger aexpression which, if
included, sets the record length for random
filem. The default record length is 128 Dbytes.
See alaso page A-3.

NOTE: A file can be OPENed for saquential input or
randem acceas on more than one file number at a

time., A file may ba OPENed for ocutput, however,
on only one file number at a time.

Example: 10 OPEN "I",2,"INVEN"

Ses alsc Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-57
2.468 OPTION BASE
Format: OPTICN BASE n

where n is 1T or 0

Veraionsa: 8K, Extended, Disk

Purposa: Ta daclare the mwminimum value for array
subscripts.

Remarks: The default base is 0. If the statement
QPTION BASE 1

is executed, the lowest value an array subscript
may have is one. S

BASTC-850 COMMANDS AND STATEMENTS Page 2-58
2.47 OUT

Format: QuUT X, J
where. I and J are integer expressions in the
range 0 to 255.

YVersions: 8K, Extended, Disk

Purpose: To send a byte to a machine output port.

Remarks: The integer exprassicn I 1s the port number, and
the integer expression J is the data .to be
trangmitted.

Example: 100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2,48 PBOKE
Format:

Versions:
Purpose:
Remarks:

Example:

PORE I,J
where I and J are integer expressions

8K, Extended, Disk
To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POREd. The Iinteger
expression J is the data to be POEKEd. J must be
in the range 0 +to 255. In the 8K version, I
mpst be lesa than 32768. In the Extended and
gisks varsions, I must be in the range O to -
5536. o

Wwith the 8K version, data may be POKEd into
memory locations above 32768 by supplying a
negative number <for I. The value of I |is

computed by subtracting 65536 from the desired. . . -
addrass. ¥or example, to PORE data . into __

location 45000, I = 45000-65536, or ~20536.

The complementary function to POKE is PEEK.- The
argument to PEEK is an address frem which a hyte
is to be read. See Section 3.27. Lo

POKE and PEERK are useful for efficient data

storage, loading assembly language subroutines,
and passing arguments and results . to and from
agsembly language subroutines.

10 POKE &HS5A0Q,&4HFF

BASIC~80 COMMANDS AND STATEMENTS Page 2-60

Z.49 PRINT

Format:
Yarsions:
Durpose:

Remarks:

PRINT (<list of expressicns>]
8K, Extended, Disk
To cutput data at the terminal.

If <list of expressions> is omitted, a blank
line 1is printed. If <list of expressions> is
ineluded, the values of the expressions are
printed at the terminal, The expressions in the
1ist may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list, BASIC~80 divides the line into print
zones of 14 aspacea each. in the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. &
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effact as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT astatement begins
printing on the same line, spacing accordingly.
If the list of expresaions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer tham the terminal width, BASIC-80
goas to the next physical line and continues
printing.

Printed numbers are always followed by a sapace.
Positive numbers are preceded by a space,
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format ne
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(=6) i1s output as
.000001 and 10A{~-7) is output as 1E=7. Double
precision numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are cutput using the unscaled
format, For example, 1D=-16 ig output as
.0000000000G00007 and 1b-17 iz output as
1p=-17.

I\

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

Example 1:

Example 2:

Example 3:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT X+5, X-5, X*(-5), XAS
30 END
RUN
10 0 -25 3125
ok

In +this example, the commas in the PRINT
statemant cause each value to be printed at the
beginning of the next print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS" XA2 "AND";
30 PRINT X "CUBED IS" XA3
40 PRINT
5¢ GOoTO 10
ok
RUN
7?9
3 SQUARED IS 81 AND % CUBED IS 729

? A
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this exampla, the semicolon at the and af
line 20 causas both PRINT statements +to be
printed on the same line, and line 40 causes a
blank line to be printed hefore the next prompt.

10 FOR X = 1 TC 5
20 JmJ+5
30 K=g+10
40 ?0;:K;
50 NEXT X
ok
RUN
5 10 10 20 15 30 20 40 25 350
ck

In this example, the semicolons in the PRINT
statement cause aach value t¢o be printed
immediately after the preceding value. {Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.}
In line 48, a guestion mark is used instead of
the word PRINT.

BASIC-80 COMMANDS® AND STATEMENTS Page 2-62

2.50 PRINT

Format:
Versions:

Purpcse:

Remarks
and
Examples;

"\n spaces\"

USING

PRINT USING <string exp>;<list of expressions>
Extended, Disk

To print strings or numbers using a specliflied
format.

<list of expressicns> is comprised of the string
expressicns or numeric expressions that are to
be printed, separated by semicolons. <string
exp> is a string literal {or variable) that is
comprised of special formatting characters.
Thage formatting charxacters {see below}
determine the field and the format of the
printaed strings or numbers.

String Fields

Whenn PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

Specifies that only the first character in the
given string is to be printed.

Spacifies that 2+n characters from the string
ares to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with o©ne spaca, three characters will be
printed, and so on. If the string is longer
than tha fiald, +the extra characters are
ignored. If the field is longer than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK" : 33="QUT"

30 PRINT USING "1";A$;B$

40 PRINT USING "\ \":A$:BS

50 PRINT USING *\ \":;A3;B$:" 11"
RUN

Lo

LCOROUT

LOOK QUT 1!

BASIC=-80 COMMANDS AND STATEMENTS Page 2-63

Ilsll

Specifies a variable length string field. When
the fileld is specified with "§*, the string is
cutput exactly as input. Example:

10 A$="LOOK":B$="0UT"
20 PRINT USING "!";A%;
30 PRINT USING "&";BS$
RUN
Lougr

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used €o
format the numeric field: .

A number sign is used to represent each digit
position. Digit positions are always filled.
If the pnumber to be printsd has fewar digits
than positions specified, the number will be
right-justified (preceded by spaces} in -the.
field. s

A decimal point may be inserted at any position
in the £field. If the format string specifies
that a digit is to precedea the decimal point,
the digit will always be printed (as 0-if
necassary). Numbers are rounded as necessary.

PRINT USING *#4.%4";.78
0.78

PRINT USING "#48#.#9%7;987.654
987,65

PRINT USING "##.¥¢ ":10.2,5.2,66.789,.234
10.20 5.3¢ 66.79 0.23

In the last example, thres spaces were inserted
at +the snd of the format string to separate the
printed values on the line,

A plus sign at the beginning or end of <the
format string will cause the sign of the number
{plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

R

$$

*is

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+#%.#4# ®,-68.95,2.4,55.6,~.9
-58,95 +2.40 +53.60 -3.90

PRINT USING "##.#4- ";~68.95,22.449,-7.01
68.95=~ 22,435 7.0%=

A double astarisk at the beginning of the flormat

atring causes leading spaces in the numeric -

fimld tc be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**§_# *:12,.39,-0.9,765.1
w“12.4 *.0.9 765.1 LT
A double dollar sign causas a dollar sign to be
printed to the immediate left of the formattad
nupber. The %5 specifies two more digit
positions, one of which i{s the dollar sign. The
exponential format cannot be usad with $§.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$3#44.44";456.78
$456,.78

The **$ at the baginning of a feormat string
combines the effects of the abovae twe symbcls.
Leading spaces will be asteriask-filled and a
dellar sign will be printed before the number.
**$ gpacifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$a#.$4";2.34
wheg2, 34

A comma that is to the laft of the decimal point
in a formatting string causes a comma to ba
printed to the left of every third digit to the
left of +he dacimal peint. A comma that is at
the end of the format string is printed as part
of +the string. A comma specifies another digit
positicon. The comma has no affect if used with
+he exponential (AAAA) format.

PRINT USING "###4,.43%;1234.5
1,234.50

PRINT USING "##4%.9%,";1234.5
1234.50,

SN

BASIC-80 COMMANDS AND STATEMENTS Page 2-~635

AARA

Four carats (or up-arrows) may he placed after
the digit pesition characters to specily
exponential format, The four carats allow space
for E+xx to be printed. Any decimal point
position may be apecified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
+the left of the decimal point teo print a apace
or a minus sign.

PRINT USING "##.#8AAAA"7234.56
2,35E+02

PRINT USING ".Ré34AAAA-";888888
+BBE9E+QE .

PRINT USING "+.##AAAA";123
+,12E+03

An underscore in the format string causss the
next character to be output as a literal
character., -

PRINT USING "_t##.##_1"712.34
112,341

The literal character itaself may bhe an
underscore by placing ™__" in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front ¢f the number. If rounding
causas the number to exceed the field, a percent
sign will be printed in f£ront of the rounded
number.

PRINT USING "#%.847;111.22
2111,22

PRINT USING ".¥4";.999
%1.00

If the number of digits specified exceeds 24, an
*Illegal function call" error will result.

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

2.51 PRINTS# AND PRINT# USING

Format: PRINT#<filenumber>, [USING< string exp>;]<list of exps>
Version: Disk
Purpose: To write data to a sequential disk file.

Remarks: <filenumber> is the number used when the file
wags OPENed for output. <string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expreasions> are the numeric and/or
string expressions that will be writtan to the
file. .

PRINT# does not compress data on the disk..--An
image of the data is written to the disk, just

as it would be displayed on the terminal with. a .
PRINT statemant. For this reascn, care should .-
be taken to delimit the data on the disk, g0 -
that it will be input correctly frem the disk, ..-.

In the liast of expressions, numeric expraasiééé{" -
should be delimited by semicolons. For example,- -_--

PRINT#1,A:8;CX:Y;32 g :_;iff

LY

e He

{If commas are used as delimiters, the extia o
blanks that ara insertad betwsen print fialds =~
will alaso be writter to disk.) f‘_.._f'

String expressions must be geparated. by

iy

semicolons in the list. To format the strinq_it;.i;

axprassions correctly on the disk, use explicit -
delimiters in the list of expressions.

Por example, lat A$="CAMERA" and- B$="93604-1",
Tha statament

PRINT#1,A$;B$

would write CAMERA93604=1 to the disk. Because
there are no delimiters, this could not be input
a3 two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINTH1,A$;",":D8

The image written to disk is

CAMERR,93604=1

BASIC=-B0 COMMANDS AND STATEMENTS Page 2-67

which c¢an be read back into two string
variables.
If +the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them +o disk
surzounded by explicit quotation marks,
CHRS (34} .

For example, let AS$="CAMERA, AUTOMATIC" and
Bi=" 93604=1". The statement

PRINT#1,A$;B%

would write the following image to disk:

CAMEFRA, AUTOMATIC 93604~1

and the statsment

INPUT#1,48,5%

would input *CAMERA" to A$ and
"AUTOMATIC 93604~1" to B§, To separate these
strings properly on the digk, write double
guotes to the disk image using CHR$(34). The
statement

PRINT#1,CHRS (34) ;A$;CHRS {34) ;CHR$ (34) ; BS;CHRS (34)
writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604=-1"

and the statement

INPUT#1,A$,BS

would input “CAMERA, AUTOMATIC" to A% and
- 93604=1" to BS.

The PRINT# statement may also be used with the
USING option to control the format of the disk
fila. For example:
PRINT#1,USING"$$#4#.4%,"T:K;L

For more examples using PRINTH#, see Appendix B.

Sas also WRITE#, Section 2.6%.

BASIC~80 COMMANDS AND STATEMENTS Page 2-68

2.52 PUT

Format: PUT [#]<file number>[,<record number>]

Versaion: Disk

Purpose: To write a record from a random buffer to a

random disk £file.

Remarks: <file numbar>» is the number under which the file
was OPENed. If <record number> is cmitted, the
record will have the next available record
numbar (after #he lagt PUT). The largest
possible record number is 32767,

Examples Sea Appendix B. -

N

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.%53 RANDOMIZE

Format:
Veraions:
Purpose:
Remarks:

Example:

NQTE:

RANDOMIZE [<expressicn>]
Extended, Disk
To reseed the randem number generator,

If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by
printing

Random Number Seed {0-65329)?
bafors esxecuting RANDOMIZE.

If the random number generator is not reseedad,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers evecy time
the program is RUN, place a RANDOMIZE statemant -
at the beginning of the program and change th
argument with each RUN.

10 RANDCMIZE
20 FOR I=1 TQ 5
30 PRINT RND;
40 NEXT L
RUN .
Random Number Seed (0-65329}7? 3 (user types 3)
.98598 .484668 .586329 ,119426 ,709225
ok
RUN
Random Number Seed {0-£5529)? 4 (user types 4
for naw sequence)
LB03%06 162462 .929364 .292443 ,3229
Ok

RUN
Random Number Sesd (0=6552%)7? 3 (aame seguence

aa first RUNW)}
.88598 ,484688 .536328 .119426 .709225

ok

With the BASIC Compiler, the prompt given by
RANDOMIZE ia:

Randem Number Seed (-32768 to 32767}7

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2,54 RERD

Format:
Versions:

Purpose:

Remarks:

Example 1:

READ <list of variables>
3K, Extended, Disk

Te read values from a DATA statement and aasign
them to variables. (See DATR, Section 2.10.)

A FREAD gstatament must always. bhe used in
conjunetion with a DATA statement. = READ
gt=atements assign variables ¢o DATA statemant
valusg on a4 cone-tc=cne basis, READ statement

variahles may be numeric or string, and the

values read must agree with the variable typea
specified. If they do not agree, a "Syntax

error” will result. : - oo

A single READ statement may access one or more
DATA statements (they will be accessed . in
order), or several READ statements may access
+the same DATR statment. If +he number of
variables in <list of variablss> exceeds the
number of elements in the DATA statement({s}, an
QUT OF DATA message is printed. If the number
of variables specified isg fawer than the number
of elements in the DATA statemant(s), subsaquent
READ statements will bagin reading data at the
first unreaad element. if thers are no
subsequent READ statements, the axtra datsa is
ignored. -
To rersad DATA statements f£rom the start, use
the RESTORE s:tatement (see RESTORE, Saction
2.57)

80 FOR I=1 TQ 10

30 READ A(I)

100 NEXT 1

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.5%,4.00,3.16,3.37

This program segment READs the values from the
DATA gtatements inte the arxray A. After
execution, the value of A({1) will be 3.08, and
g0 On.

Y

@

J

BASIC~80 COMMANDS AND STATEMENTS Page 2=71

Example 2:; LIST
b 10 PRINT "CITY", "STATE", ™ ZIBP"
20 READ C%,8%,2
30 DATA "DENVER,", COLORADO, BO211
40 PRINT C$,5%,2

Ck

RUN

CITY STATE Z1IP
DENVER, COLORADO 80211
ok

This program READs string and numeric data from
the DATA statement in line 30.

BASIC-80 COMMANDS AND STATEMENTS Page 2-72

2,55 REM

Format: REM <remark>

Versions: 8K, Extended, Disk

Purpose: To allow sxplanatory remarks to be Llnserted in a
program. :

Remarks: REM statements are not executad but are output
exactly as entered when the program is liated.
REM statements may be branched intec (from a GOTO
or GCOSUB statement), and execution will ¢ontinue
with the first executable statement after the
REM statement. e _
In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single guotation mark instead af
=m. —— i . PR

Exampla: . Il _._'.‘; A

[T
Ll

120 REM CALCULATE AVERAGE VELOCITY }
130 FOR I=1 TQ 20 : ;-
130 SUMSUM + V(I) T

Cror
i
'

*

or, with Extended and Disk versions:

120 FOR I=1 TO 20 ICALCULATE AVERAGE VELOCITY
130 SUM=SUM+V (I}
140 NEXT I

i

BASIC-80 COMMRNDS AND STATEMENTS Page 2=73
2,56 RENUM

Format : RENUM {[<new number>] [, [<old number>][,<increment>]}]
Varsions: Extended, Disk
Purpose: Te rehumberlprogram lines.

Remarks: <ew number> is the first line number to be used
in the new sequence. The default is 10, <old
number> is the line in the current program where
renumbering is +to begin. The default is the
first line of the program. <increment> is the
increment +toc be used in the new sequence, The
default is 10, Sl

REENUM alsc changes all line number references.
following GOTO, GOSUB, THEN, ONa .o GOTO, -
OK...GOSUB and ERL statements %o reflect the new.
line numbers. If a nonexistant line number

appears aftar one of these statements, the errzor .

ressage "Undefined line xxXxX in yyyyy". is" . .

printed. The incorraect 1line number refarancs
{(xxxxx) is not changed by RENUM, but line number
yYyyy may be changed. - .

NOTE: RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30}
or to create line numbers greater than 65528.
An "Illegal function call™ error will result.

Examplas: RENUM Renumbers the entire program.
The first new line numbexr
will be 10. Lines will
inorament by 10.

RENUM 300,,50 Repnumbears the entirs pro=-
gram, The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,%00,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC-80 COMMANDS AND STATEMENTS
2.57 RESTCRE

Format: RESTORE [<line number>]
Varsions: 8K, Extended, Disk

Purposa: To allow DATA statements to be
specified point.

Page 2-74

reresad f£from a

Remarks: After a RESTORE statement is executad, +the next
READ statement accesses the first item in the
fir=t DATA statement in the program. If <«line
number> is specified, the next READ statement
accesses thae first item in the specified DATA

statement.

Exampla: 10 READ A,B,C
20 RESTORE
30 RBAD D,E,P
40 DATA 57, 68, 79

—

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2,58 RESUME

Formats:

Yersiona:

Purpose:

Remarks:

Example:

RESUME

RESUME 0

HESUME NEXT

RESUME <line number>
Extended, Disk

To centinue program execution after an erzor
recovery procedure has been performed.

Any cne of the four formats shown above may be
used, depending upon where executicon iz to
resuma:

RESUME Execution resumes at the
or statement which caused the

RESUME 0 error,

RESUME MEXT Executlicn resumss at the

atatement immediately fol=-
lowing the one which
caused the error,

RESUME <line number> Execution resumes at
<line number>,

A RESUME statement that is not in an error trap
rogtine =auses a "RESUME without error” message
to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230)AND (ERL=30) THEN PRINT "TRY
AGAIN® :RESUME 80

BASIC~80 COMMANDS AND STATEMENTS

2,59 RUN
Format 1:

Vearsions:
Purpose:
Remarks:

Exampla:

Pormat 2

-

Versaion:
Purpcsa:
Remarks:

Example:

RN [<line numberz>]

8K Extendad, Disk

To axacuta the program currently in memory.

Fage 2-76

1f <line numbar> is specified, axacution Lhegins

orn that Iline.
the lowast line number.

RUN

RUN <filename>[,R]
Disk

oOtherwise, execution begins at

BASIC=890 always returns
to command level after a RUN is executed.

To load a file from disk into meﬁbry and run it.

<filename> is the name used when the £ile ‘was

SAVEA.

{(Wieh C<P/M and ISIS~II,

axtansion .BAS is supplied.)

ROK closes all open files and deletes the

curzent contents of memory before loading the

designated program.

Ecowaver,

with the

option, all data files remain OPEN.

ROUN "NEWFIL",R

See alsc Appendix B.

-ﬂRﬂ

kY

the defaxult = -

J

BASIC-B0 COMMANDS AND STATEMENTS ‘Page 2-77

2.60 EAVE

Format:
Version:
Purpose:

Remarks:

Examples:

SAVE <filename>[,A LPI
pisk
To gsave a program file on disk.

<filepame> iz a quoted string that conforma to
your operating gystem's reguirementsa for
filenames., (With CP/M, the default axtansion
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCIT
format. Qtherwise, BASIC saves the file in a
comprassed binary format. ASCII format takes
mora space on the disk, but some disk access
requires that files be in ASCII format. For-
instance, the MERGE command requires an ASCII
format fila, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format., When a
protected file is later RUN {or LOADed), any
attempt to list or edit it will fail. -

SAVE"COM2" ,A
SAVE"PROG",P

See alsc Appendix B.

BASIC~B0 COMMANDS AND STATEMENTS Paga 2-78

2.61 §8STOP

Format:
Veraions:

Purpose:

Remarks:

Example:

STCP
8K, Extended, Disk

To terminate program execution and return to
commsand leval,

STOF atatements may be used anywhere iﬁ a
program to terminate executien., When a STOP is
encountared, the following message is printed:

Braak in line nnnnn

A

Unlike the END statement, the: . STCP. statement -...:_
does not clcse £files, T .tar

BASIC~B80 always returns to command level after a
STOP is exacutad. Execution is resumed by-
issuing a CONT command {see Section 2.9},

10 INPUT A,B,C

20 R=RA2"5,3:L=BA3/.26 LIl

30 STOP LT
40 MmC*K+1003PRINT M)
KON : ..

? 1,2,3 caimamar -

BREAK IN 30
Qk.
PRINT L
30,7692 - Lo
Ok
CONT
115.9
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2=-79
2.62 SWAP

Format: SWAP <variable>,<variable>
Varsions: Extended, Disk
Purpose: To exchange the values of two variables.

Raemarks: Any type variable may be SWAPped {integer,
aingle precision, double precigion, string), but
the two variables must be of the same type or 2
"rvpe mismatch™ error results.

Example: LIST
10 A$=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ B$)
30 SWAP AS§, B§
40 PRINT A$ C$ BS
RUN
Ok
ONE FOR ALL
ALL FOR ONE
ok

BASIC~80 COMMANDS AND STATEMENTS

2,63

Format:

Varaions:

Purpose:

Remarks:

Example:

TRCH/TROFF

TRON
TROFF
Extendad, Disk

Page 2-80

(“9N

Ta trace the exacution of program statements.

As an ald in debugging,

+he TRON

statament

{executed in either the direct or indirect moda)

enables a trace flag that prints
of the program as it is executed.
numbars appear encloged in square brackets,
is disabled with the TROPF atatsment -

number

trace flag

each

{or when a NEW command is executed).

TRON

ok

LIST

10 E=10

20 FOR J=1 TO 2

30 1=K + 10

40 PRINTJ:K:;L

50 EK=E+10

60 NEXT

70 END

Ok

RUN

[t101(20]{30)[40] 1 140
[50]f601130]1(40] 2 2¢
[50]{60][70]

ok

TROFF

Ok

20
30

- line
The
Tha

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2,64 WAIT
Format:

Yarsionst

Purpose:

Remarks:

CADOTION:

Example:

WAIT <port number>, I(,J]
where I and J are integer expressions

89K, Extended, Disk

To suspend program execution while monitoring
+ha status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
rmsult 1is zerc, BASIC-80 loopz back and raads
the data at tha port again. If the result ‘18
nonzaro, execution continues with the next
statemant. If J is cmitted, it is assumed to be
Zero. :

It is possible to enter an infinite loop with . .

the WAIT gtatemant, in which case it will be
necessary to mannally rsstart the machine. .

100 WAIT 32,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-82

2,65 WHILE...WEND

Format: WHILE <expression> \‘

[<locp statements>]

WEND
Versions: Extended, Disk

Purpose: To execute a sariss of statements in a loop as
long as a given conditien £{s5 true.

Remarks: If <exprassion> is not zerc (i.e., true), <loop
statements> are executed until the WEND
statament is encountered. BASIC then returns to
the WHILE statement and checks <expression>», If
it is still true, the process is repeated. i 4
it is net true, execution regumes with the
statament following the WEND statement.

WHILE/WEND lcops may be nestad to aﬁy laval,
Each WEND will match +the most recent WHILE.

A

An unmatched WHILE statsment causesa a "WHILE Q‘

without WEND" erzreor, and an unmatched WEND
statement causes a "WEND without WHILE" error.

Example: 90 'BUBBLE SORT ARRAY A%
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS

115 FLIPS=Q
120 FCOR I=1 TO J=1
130 IF AS(I}>AS$(I+1) THEN
SWAP AS({I),A$(I+1):FLIPS=1
149 NEXT I
150 WEND

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2,66 WIDTH

Format:
Versions:

Purpose:

Remarks:

WIDTE [LPRINT] <integer exprassion>
Extended, Disk

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT optiocn is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a valua in the
range 15 to 255, The default width is 72
charactears. T

If <integar expression> is 255, the line wideh
is "infinite," that 4is, BASIC never inserts 2
carriage return. However, the position of the
cursor or the print head, as given by the PCS or .
ngs functien, returns to zero after position -
2 L]

BASIC-80 COMMANDS AND STATEMENTS Page 2-84

2.67 WRITE

Format:

Version:
Purpose:
Remarks:

Exampcle:

A"

WRITE [<list of expressions>] \’
Disk
To output data at the terminal.

If <list of expreasiong> is amitted, a blank
line is output. If <list of expressicns> is
included, the values of the expressions are
output at the terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, —each Iitem
will be separated from the last by a comma.
Printed strings will be delimited _by gquotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line __ . ..
faed. o T

WRITE outputs numeric values ;ﬁéiﬁé the féiméfi T
format as the PRINT statement, Sectlion 2.4%9._ '~ :

10 Am80:Bw90:C$=THAT'S ALL \j
20 WRITE A,B,C$. .

RUN
89, 9%0,"THAT'S ALL" T
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.68 WRITE#

Format:
Version:
Purpese:

Remarks:

Example:

WRITE#<file number>,<list of expressions>
Disk
To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "O" mcde. The expressions in the
list are string or numeric expressicns, and they
must be separated by cormas.

The difference hetween WHRITE# and PRINT# is that
WRITE$# inserts commas between the items asa
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to Pput explicit
delimiters in the list., A carriage return/line
fesd sequence is inserted after the last jtem in

. the list is written to disk.

Let A$="CAMERA" and B$=7"93604-1". 'The
statemant: :

WRITE#1,A%,B% _

writes the following image to disﬁ:
"CAMERA","93604-1"

A subseéuant.INPUT# atatement, such as:
INPUT#1,A$,B$

would input "CAMERA" to A$ and "93604-1" to BS.

@

CHAPTER 3

BASIC=-80 FUNCTIONS

The intrinsic functiona provided by BASIC-B0 are presented
in this chapter. The functions may be called from.any..
program without further definition.

Arguments to functions are always encloged in parentheses.
In the formats given for the functions in this chaptar, .the
arguments hava been abbreviated as follows: L

X anéd ¥ Represent any numeric exprassicns ST
I and J Represent integer expressions
X3 énd ¥$ Represent string expressions

If a floating point value ls supplied where an integer is
required, BASIC-80 will round the fracticnal portion and use
the resulting integer.

NOTE

With the BASIC-80 and BASIC-86 interpreters,
only integer and single preciszion results
ars returned by functionsa, Double precision

functions are supported only by the BASIC
compiler.

BASIC-80 FUNCTIONS Page 3=2

3.1 ABS

Format: ABS (X}

Varsions: BK, Extended, Disk

Action: Returns the absolute value of the expression X.
Example: PRINT ABS(7*(-5))
35
Ck
3,2 ASC s
Format: ASC {X$) C

Versionss 8K, Extended, Diak oTIIL

Actions Returns a numerical value that is the ASCIL code- . -
of +the first character of the string X$. (Sees
Appendix L for ASCII codes.) If X$ is null, an
*Illagal function call® errcr iz returned.

Example: 10 X$ = "TEST* e
20 PRINT ASC(X$) R
RUN
84
ok

See the CHR$ function for ASCIT=to-string
conversion.

Y

BASIC=80 PUNCTIONS Page 3«3

3.3 ATN

Format:
Versionsa:

Action:

Example:

3.4 CDBL

Format:
Versicns:
Action:

Exampla:

ATN (X)
8K, Extended, Disk

Returns the arctangent of X in radians. Result
is in the range =-pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RON
?3
1.24905
ak

CDBL (X) R
Extended, Disk
Converts X to a double precision numbex.

10 A = 454.67
20 PRINT A;CDBL(A)

RUN
454.67 454.6700134277344
ok

BASIC-80 FUNCTIONS Page 3-4

3.5 CHR$

Format: CHR$ (I)

Versions: 8K, Extended, Disk

Action: Returns a string whose one element has ASCII

code I. (ASCII codes ars listed in Appendix L.)
CHR$ is commonly used to send a spacial
character to the terminal, For instance, the
BEL character could be sent (CHR$(7)) as a
preface to an error message, or a form feed
could be sent (CHAR$(12)} tc claar a CRT screen
and return the cursor to the home pogitieon.

Exampla: PRINT CHRF (66}

B
ok
See the ASC functicon for _ASCII=to=-numeric
conversion.)
3,6 CINT -
Format: CINT (X) S o

Versions: Extended, Disk sLal T e

Actioen: Converts X to an integer by -rounding -:the-.
fracticnal portion. If X is not in the range- -_

-32768 to 32767, an "Ovarflow®" error occurs.: .. -

Example: PRINT CINT (45.67) ')
486 Lol .

Ok - -)

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

"

BASIC-80 FUNCTIONS Page 3=5

3.7 cos

Pormat:
Versions:

Action:

Example:

3.8 CSNG

Format:
Versiona:
Action:

Examplae:

cos (X}
8K, Extended, Disk

Returns the cosine of X in radians, The
calculation of CO8(X) 1s pezformed in single
precision.

10 X = 2*C0OS (.4)
20 PRINT X

RUN
1.84212
Ok

CSNG (X)
Extendad, Disk
Converts X to a single precision number.

10 R4 = 975.3421%
20 PRINT A#; CSNG(A#)

RN
975.3421 975.342
Ok

See the CINT and CDBL functiecns for converting
numbers to the integer and double precision data

typeas.

BASIC-80 FUNCTIONS Fage 3=6

3,9 cvi, Cvs, CVD

———

Format: CVI (<2-byte string>)
CVS (<4=hyte string>)
CVD (<8=byte string>)

Versicn: Disk

Action: Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2=-byte string te
an integer, CVS converts a ¢~byte string to a
single precision number. CVD converts an 8-byte

string to a double precision number. :

Example: . o E e

70 FIELD #1,4 AS N$, 12 AS BS, ...
30 GET #1
90 Y=CVS (NS)

: o g

See also MKI$, MRSS, MKD$, Section 3.25 and

Appendix B. _
3.10 ECF B
Format: EOF (<file number>) o B -
Varsion: Disk
Action: Returns =1 (true} if the end of a sequential

file has bheen reached. Use EOF to test for
end-of-£file while INPUTting, to avoid ™"Input
past end" arrors.

Exampla: 10 OPEN "“I",1,"DATA™
20 C=0
30 IF EOF(1) THEN 1800
£0 INPUT #1,M{(C)
50 C=C+1:GO0TC 30

Ay

BASIC=80 FUNRCTIONS Page 3I-7

3,11 EXP

Format:
Versicns:

Action:

Example:

3,12 PIX

Format:
Yersions:

Action:

Examples:

EXP (X)
BK, Extended, Disgk

Returns e to the power of X, X must be
<=87,3365, If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues,

1 X =5
20 PRINT EXP (X-1)
RON
54,5982
ok

PIX(X)
Extanded, Disk

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FPIX(58.75)
58
ok

PRINT FIX(-58.753)
~58
Ok

BaASIC-80 FUNCTIONS Page 3-8

3.13 FRE

Format:

Versions:

Action:

Example:

3.14 HEX$

Format:
Varsions:

Acticn:

Example:

FRE (0}
FRE (X3)

BR, Extended, Disk

Arguments tc FRE are dummy argquments. FRE returns
the number of bytes in memory that are not being
used by BASIC-80.

FRE(""} forces a garbage cocllection before re-
turning the number of free bytes. BE PATIENT:
garbage collactien may take 1 to 1-1/2 minutes.
BASTC will mot initiate garbage collection wuntil

all free memory has been used up. Therafcocre usa- -

ing FRE("") periodically will result in shorter
delays for each garbage collection.

PRINT FRE (0} -
14542
Ok

EEX$ (X)
Extendad, Disk

Returns a string which represents the
hexadecimal value of the decimal argument. X is
rounded o an integer bafore EEXS$ (X) is
avaluated.

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL®
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

3

BASIC-80 FUNCTIONE Page 3=-9

3.15 INP

Format:
Versions:

Action:

Example:

3.16 INPUTS

Pormat:
Version:

Actions

Example 1:

Example 2:

INP(I)
BK, Extended, Disk

Returns the byta read from port I. I must be in
the range 0 to 255. INP is the complementary
functicn to the OUT statement, Saction 2.47.

100 A=TINP (255}

INPUTS$ (X1, [#1¥D)
Disk —

Returna a string of X characters, read from the
terminal or from file number Y, If the terminal
is used for input, no characters will be achoed
and all control characters are passed through
axcept Control-C, which is used to interrupt the
execution of the INPUTS function.

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL :

10 OPEN"I",?,"DATA"

20 IF EOF(1} THEN 50

30 PRINT EEXS$(ASC(INPUTS${1,%1))):

40 GOTO 20

50 PRINT

60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUTS (1)

120 IF X$="B" THEN 50¢

130 IF X$="S" THEN 700 ELSE 100

BASIC=-80 FUNCTIONS

3.17

Format:
Versions:

Action:

Exanple:

3.18 INT

Format:
Varsions:
Acetlion:

Examples:

INSTR

INSTR([I,

1X%,Y5)

Extended, Disk

Searches for the first occurrence of

in X% and returns

match is
poalition
therange
null or
If ¥% is
may be

found,

Optional offset I

for starting the search. I
If I>LEN(X$) or if X$ is
if ¥$ cannot ba found, INSTR returns 0.
bull, INSTR returns I or 1.
string wvariables, string expressions or
string literals.

0 to 255,

10 X% = “"ARCDEB*
20 ¥$ = "B”
30 PRINT INSTR(XS$,Y$)rINSTR{4, XS t$)

RON
2 6
Ck

INT (X)

8K, Extanded, Disk

Returns the largest integar <sX.

PRINT INT(9%.89)

99
Ok

PRINT INT(-12.11}

-13
ok

Page 3-10

string Y$

the position at which the

satas the
must be in

X$ and Y$

Sea the FIX and CINT functions which also return
intager values,

A

n

BASIC~80 FUNCTIONS Page 3=11

3.1% LEFTS

Format:
Versions:

Actiont

Example:

3.20 LEN

Format:
Versions:

Action:

Exanple:

LEFTS (X$,1)
8K, Extended, Disk

Returns a string comprised of the leftmost I
characters of X$. I must be in the range 0 to
255, If I is greater than LEN(X$), the entire
string (X$) will be returned. If I=0, the null
string (length zeroc) is returned.

10 A$ = "BASIC-80"
20 B$ = LEFTS (A¥,5)
30 PRINT B$

BASIC

Ck

Alsc see the MID$ and RIGHT$ functions.

LEM (X$)
8X, Extended, Disk o

Returns the number of characters in Xx$.
Non-printing characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN (X%)

16
ck

BASIC-80 FUNCTIONS

3.21 LoC

Format:
Versiont

Action:

Exampla:

3.22 LOG

Format:
Versions:

Action:

Exanple:

Page 3=12

LOC(<file number>)
Disk

With random disk filas, LOC returns the next
racord number to ba used if a GET or PUT
{without a record number) is executed. With
segquential files, LOC returns tha numbexr of
sactors (128 byte blocks} read from or written
te the file since it was OPENed.

200 IF 10C(1)>»50 THEN STOP

LOG(X)
B¥, Extended, Disk

Returns the natural logarithm of X. X must be

greater than zero. . . D

PRINT LOG(45/7) - e

1.86075 .
ok -

{

BASIC-80 FUNCTIONS

3,23 LPOS

Format:
Versicna:

Action:

Example:

3,24 MIDS

Format:
Varasiona:

Action:

Example:

Page 3=13

LPOS (X}
Extended, Disk

Returns the current position of the line printez
print head within the line printer buffer. Does
net necessarily give the physical position of
tha print head. X is a dummy argument.

100 IF LPOS(X)>60 THEN LPRINT CHRS$ (13)

MIDS (X$,I1.J1)
8K, Extended, Disk

Raturns a string of length I characters from X$
beginning with the Ith character. I and J must.
be in the range 0 to 255. If J is omitted or if
there are fewer tham J characters toc the right
of the Ith character, all rightmost characters
baginning with the Ith character are returned.
If IDLEMN(X$)}, MID$ returns a null string.

LIST

10 AS="GOOD "

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MIDS(B%,2,7)

ok

RUN

GOCD EVENING

ok

Also see the LEFT$ and RIGHTS functions.

BASIC=80 FUNCTIONS Page 3=-14

3,25 MKIS,

MRSS, MEDS

Format:

Version:

Actian:

Example:

3.26 OCTS

Format:
Varsionsa:

Action:

Example:

MEI$ {<integer expression>)
MKS$ (<single precision expression>)
MKD$ (<double pracision expression>)

Disgk

Convert numeric values to string values, Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integex
to a 2-byte string. MXS% converts a single
precision number to a 4-byte string., MKDS -
converts a double precision number to an 8-bytas
string.

90 AMT= (K+T)

100 FIELD #1, 8 AS D§, 20 AS N$
110 LSET D$ = MESS$ (AMT)

120 LSET N% = A$

130 PUT M1

» L

See algo CVI, CVS, VD, Section 3.9 and Appendix
B. N -)

0CT$ (X) _ c-
Extended, Disk N

Returns a string which represents +the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.

PRINT OCT% (24)
30
Qk

See the HEX$ function for hexadecimal
conversion.

hY

BASIC-80 FUNCTIONS Page 3=15
3.27 PEEK

Format: PEEK (I)
Versions:s BRK, Extended, Disk

Action: Returns the byte (decimal integer in the range 0
to 255) read from memory location I. With the
8K varsion of BASIC-80, I must be less than
32768. To PEER at a memory locaticn above
32768, aubtract 65536 from the desired address.
With Extended and Disk BASIC-80, I must be in
the range 0 to 65536. PEEK is the complementary
function to the POKE statement, Section 2.48.

Example: A=PEEX (&HSA00)
3.28 PBQS
Format: POS (1) _

Versions: 8K, Extended, Disk

Action: Returns the current cursor position. The
laftmoat pesition 1s 1. X is a dummy argument.

Exampla: IF POS(X)}>60 THEM PRINT CHR$(11)

Also sea the LPOS function.

BASIC~80 FPUNCTIONS Page 3=16

3,29 RIGHTS

Forma+: RIGHTS (X$,I}
Versions: 8K, Extended, Disk

Action: Returns the rightmost I characters of string X§.
If I=LEN(X$), returns X$. If I=0, the null
string (length zero) ig returned.

Example: 10 A$="DISK BASIC~80"
20 PRINT RIGHTS (A$,8)
RUK
BASIC-80
ok e

Also see the MIDS$ and LEFT$% functiona.

3,30 RHD

Pormat: RND[(X)}] B : -
Versions: 8K, Extended, Disk i oz '___\‘
Action: Returns a random number between 0 and 1.- The ...

same sequence of random numberxs is genarated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE, -.- -~
Section 2.53). However, X<0 always restarts the .

same sequence for any given X. : : -

0 or X omitted generates the next random
number in the ssquence. X=0 repeats the last
number generated. C

Example: 10 FOR I=1 TO 5
20 PRINT INT(RND*100);

30 WEXT

RUN

24 30 31 S1 5
ok

BASIC-80 FUNCTIONS Page 3-17
3,317 SGN

Format: SGN (X}
Veraicns: 8K, Extended, Disk
Action: If X0, SGN(X) returns 1,
If ¥=Q, SGN(X) returns 0.
If X<0, SGN(X) returns ~1.
Example: OoN SGN(X}+2 GOTO 100,200,300 branches to 100 1if

¥ is negative, 200 if X is 0 and 300 if X is
positive.

3,32 SIN

Format: SIN(X)
Yersions: 8K, Extended, Disk

Action: Returns the sine of X in radians;_ SIN(X): ia
calculated in single precisicn.
COS (X)=SIN(X+3.14159/2). :

Example: PRINT SIN(1.5) o
.997495
Ok

BASIC-80 FUNCTIONS Page 3-18
3.33 SPACES

Format: SPACES (X)
Versions: Extended, Disk

Acticn: Returns a string of spaces of length X. The
expreasion X is rounded to an integer and must
be in the range 0 to 255.

Example: 10 FOR I = 1 TO 5
20 X$ = SPACES$ (I}
30 PRINT ¥5:1
40 NEXT 1
RON
1
2
3
4
-] p=d To:
ok PR

Also see the SPC funetion.

3.34 SPC

Format: SPC(I)

Varaions: 8K, Extended, Diak

Action: Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255.

Exampla: PRINT "OVER™ SPC(15) "THERE"
OVER THERE
ok

Alsc see the 3PACEF functicn.

Y

BASIC=-80 FUNCTIONS Page 3-19
3,35 SQR

Format: SQR(X)

Versions: 8%, Extended, Disk

Acticn: Returnd the square root of X. ¥ must he >=0.
Exampla: 10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN.
10 3.16228
15 3.87298
20 4,47214
25 5
Ck
3.36 STRS "““
Format: STRS (X}

Varsions: 8K, Extended, Disk

Action: Returns a string representation of the value of
x.

Example: 5§ REM ARITHMETIC FOR KIDS

10 INPUT "TYPE A NUMBER";N .
20 ON LEN (STRS$ (N)) GOSUB 30,100,200,300,400,500

Alsc see the VAL function.,

BASIC~B0 FUNCTIONS Page 3-20

3.37 STRINGS

Formats:
Versions:

Action:

Examples:

3,38 TaB

Format:
Varsions:

Action:

Example:

STRINGS (I,J)
STRINGS (I,X3)

Extended, Disk

Returna a string of length I whose characters
all have ASCIT code J or the first character of
xs.

10 X$ = STRINGS (10,45)

20 PRINT X$ "MONTHLY REPORT" X¥
RUN

mumm e eMONTHLY REPORT====————=—
Ok

TAB(I)
9K, Extended, Disk

. Spaces to position I on the terminal. If the
‘current print position is already beyond space

I, TAB gces +to that positicon on the next line.
Spaca 1 is the lsftmost position, and the right-
most position is the width minus one, I must be
in the rangas 7 to 255, TAB may only be used in
PRINT and LPRINT statements.

10 DRINT "NAME®" TAB(25) "RMOUNT® : PRINT
20 READ A$,B$

30 PRINT A$ TAB(25) BS$

40 DATA "G. T. JONES","$25.00"

RUN

NAME AMOUNT
G. T. JONES $25.00
Ok .

[N

BASIC-80 FUNCTIONS Page 3-21

3.39 TAN

Format:
Versions:

Action:

Example:

3.40 USR

Format:
Yersions:

Actions:

Example:

TAN {X}
BK, Extended, Disk

Returns the tangent of X in radians. TAN(X) is
calculated in single precision. If TAN
overflows, the m"Overflow" error message is
displayed, machine infinity with the appropriate
sign ls supplied as the raesult, and execution
continues.

10 Y = QTAN(X)/2

usr{<digit>] (X)

8K, Extended, Disk

calls the user's assembly language subroutine.
with +the argument X. <digit> is allowed in the
Extsnded and Disk versions only. <digit> i=s in
the range { %o 9 and correspends to the digit
supplied with the DEF USR statement for that
routine. 1f <digit> is omitted, USRO is
assumed., See Appendix C.

40 B = T*SIN(Y)
50 ¢ = USR{B/2)
60 D = USR(B/3)

BASIC-80 FUMCTIONS Page 3-22
3.41 VAL

Format: VAL (X$)
Versions: 8K, Extended, Disk

Action: Returns the numerical value of string X$. If
+the first character of X$ is not +, -, &, Or a
digit, VAL{X$)=0.

Example: 10 READ NAMES,CITY$,STATES,ZIPS$
20 IPF VAL(ZIP$)<90000 OR VAL(IIP$)>96639 THEN
PRINT NAMES TAB({25) "QUT OF STATE"
30 IF VAL{ZIP$)>=90801 AND VAL(ZIP$)<=30815 THEN
PRINT NAMES TAB{25) "LONG BEACH" o :

See the STR$ function for numeric o’ -string - -
conversicn. . L e

BASIC-80 FUNCTICNS Page 3-23

3.42 VARPTR

Format 1:
Versions:
Format 2:
Version:

Action:

NOTE:

Exampla:

VARPTR (<variable name>)
Extended, Disk

VARPTR (#<file number>)
Disk

Format 1; Returns the address of the first byte
of data identified with <variable name>, a
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call® error results. Any type variable
nams may be used (numeriec, string, array), and
+the address returned will be an integer in ‘the
range 32767 to -32768, If a negative addrass is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the -sddress of
a wvariable or array so it may be passed to an
assembly language subroutine. A funetion . .call
of the form VARPTR(A(0)) is usually specified
when pasaing =an array, 80 that the
lowast—addressed alament of the array is
returned. . -

All simple variables should be assigned before
calling VARPTR for an array, bhecause the

addresses of the arrays change whenever a new .

simple variable is assigned.

Format 2: -Returns the starting address of the
disk I/0 buffer assigned %o <file number>.

In Standalone Disk BASIC, VARPTR(#<file number>)
returns the first byte of the file block. See
Appendix H.

10Q X=USR (VARPTR(Y})

&y .

L e

APPENDIX A

New Features in BASIC=-80, Ralease 5.0

The axecution of BASIC programs written under Microsoft

BASIC,

ralease 4.31 and earlier may be affected by some of

the new features in release 5.0. Baefore attempting to run
such programs, check for the following: -

1.

2.

Naw ressrved words: CALL, CHAIN, COMMON, WHILE,
WEND, WRITE, OFTION BASE, RANDOMIZE,

Convaraion from floating peint ¢o integer values
results in rounding, as opposed to trumcation.
This affects not only assignment statsments (e:g.,
T3=2,5 rasults in I3=3), but also affacts function
and atatement avaluations (e.g., TAB(4.5) goes %o .
the 5th position, A(1.5) yeilds a(2}, and X=11.5
MCD 4 yields 0 for X).

The body of a FOR...NEXT loop is= skipped if the
initial wvalue of ¢the loop times the sign of the
stap exceeds the final value times the sign of the
gtep. See Section 2.22. _

pDivision by zero and overflow no lenger produc
fatal errors. See Secticn 1.8.1.2. -

The RND functicn has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function genarates the same
saquence of random numbers with each RUM, unless
RANDOMIZE is usaed. See Sactions 2.53 apd 3,30,

The rules for PRINTing single precision and doukle
pracision numbers have heen changed. See Section
2.49.,

String space is allocated dynamically, and the
first arqumant in a two-argument CLEAR statement
sats the end of memory. The seccnd argument sets
tha amount of stack space. See Section 2.4,

10.

1.

12.

13.

Page A=2

Responding te INPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, ete.), or with a carriage return causes the
message "?Rede from start" to ke printed., No
assignment of input values is made until an
acceptable response ls given.

Thers are two new field formatting characters for
ugse with PRINT USING. An ampersand is used for
variable langth string fields, and an underacore
signifies a literal character in a2 format string.

If the expression supplied with the WIDTH statement
is 255, BASIC usaes an "infinite" line width, that
i3, it does net insert carriage returna, WIDTH
LPRINT may be used to set the line width at the
line printer., Ses Section 2.66.

The at-sign and underscore are ne longer used as
editing characters. e LT

variable namea are significant up to 40 characters
and czn contain embedded resarved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earliex varsions of
BASIC, spacas will be automatically inserted
batwesn adjoining reserved words and variable
namas. TWARNING: This insertion of spaces may
causa the end of a lins to be truncated if the lins
length is close to 255 characters.

BASIC programs may be saved in a protectad” “binary. .

S

format, See SAVE, Section 2.60.

@

h

PO B §

Page A-3

CP/M and ISIS-II BASIC-80

In CP/M and 18I5-II BASIC-80, release 5.0, a number of addi~
tions have been made to disk I/C capabilicy:

1.

2.

Aftar a GET statement, INPUT4 and LINE INPUT# may be done
to read characters from the random file buffer. PRINTS,
PRINT# USING, and WRITE# may alsc be used to put characters
in the randeom file buffer hefore a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer with spaces
up to the carriage return. Any attempt to read or write
past the end of the buffer causes a "Pield overflow" error.

/S:i<max record size> may be added at the end of the command
line to set the maximum recozd size for use with random’~
filas. The default recozd size is 128 bytes.

A new feature has bean added to tha INPUT statement, A comma’
may ke used instead of a semicolon after the prompt atring to
supprass the qusstion mark. For exampla, the statement -

INPUT "ENTER BIRTHDATE®,B$ will print the prompt with no

quastion mark.

ey

- C e e

APPENDIX B

BASIC-80 Disk I/0Q

Disk 1/0 procedures for the baginning BASIC=830 wuser are
axamined in this appendix. If you are new to BASIC-80 or if
you're gatting disk related erxzors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filenamea is ragquired in a disk command or
gtatament, wuse a nams that conforma to your operating
system's requirsments for filenames. The CP/M operating
gystem will append a default extensicn .BAS to thea filename

given in a SAVE, RUN, MERGE or LOAD command. i} o

B.1 PROGRAM FILE COMMANDS

Here is a review of the commwands and statements used in
program file manipulation.

SAVE "filename"[,Al Writes to disk the program that is

currently rasiding in MEMOLY
Optignzal A writes the program as 2
sarias of ASCII charactears.

(Otherwise, BASIC uges a compressed
binary format.)

LOAD "filenama"{,R] Loada the program fzom disk into
MemOTY . Opticnal R runs the program
immediataly. LOAD always deletes the
currsnt contents of mamory and closes
all files hefore LOADing. If R is
included, howevar, open data files are
kept open. Thus programs can he
chained or loaded in secticns and
access the same data files.

RUN "filename®([,R]’

MERGE "filename"

RILL*filaname"

B.2 PROTECTED PILES

If you wish to save a
use +the "Protect®

exampla:

SAVE "MYPROG",P

Page B-2

RUN *"filename" loads the program from
disk intc memory and runs it. RON
deletes the current contents of memory
and closes all files befors loading
the program. If the R option ias
inecluded, however, all open data files
are kept open. .

Loads the program from disk into
memory but does not dealete the current
contents of memory., The program line
aumbers on disk are merged with the
line numbers in memory. If two lines
have the same number, cocnly the line
from tha disk program is saved. After
a MERGE command, the "merged" program

rasidea in memory, and BASIC returns-

to command level.

Delatas the file frgmiilthﬁl &i&k;:_ .-
nfilenama” may be a program file, ox.a: -

gaquential or random access data. file.

Te change the name of a disk file,
axacuta the NAME statement, NAME
"aldfile” AS "newfile”, NAME may be
used with program files, randem files,
or sequantial filas.

progzam in an encoded binary format,
option with the SAVE command. For

A program saved this way cannct be ligted or edited.

NN

PO A

Page B-3

B.3 DISK DATA FILES = SEQUENTIAL AND RANDOM I/0

There are two types of disk data files that may he created
and accessad by a BASIC-80 program: sequential files and
random access files.

B.3.1 Segquantial Files

Sequential files are easier to create than randem files Dbut
are limited in flexibility and speed when it comes to
accessing the data. The data that s written to a
sequential £ila is stored, one item aftar another
(sequentially), in the order it is sent and is read back in
the game way. . .

The atatements and functions that are used withi_éequenﬁial;:f
filaes arxe:

OPEN PRINT# INPUTH WRITE$ - . _ . -
PRINT# USING LINE INPUT# - N

CLOSE EOF LOC RGO S R

The following program steps are requirédﬁztb'.c;;hte a
sequential file and access the data in the file:

1. OPEN the file in "0O" mode. QPEN "O",%1,"DATA"

2. Write data to the file PRINT#1,A$;B$:C$
using the PRINT# statement,
(WRITE# maybe used instead.)

3. To accass the-data in the CLOSE#1
file, you must CLOSE the file QPEN "I",%1,"DATA"
and reQPEN it in "I" mode.

4, Use the INPUT# statament to INPUTH#1,XS,Y5,28
read data from the sequential
file inte the program.

Program B=1 is a short program that cJreatas a sequential
fila, "DATA", from information you input at the terminal.

Page B-4

(49N

10
20
25
o
40
50
&0
RUN

OPEN "Q",#1,"DATA"

INPUT "NAME":N$

IF N$="DONE" THEN END.
INPUT “DEPARTMENT":DS
INPUT "DATE HIRED";E$
PRINT#1,H%;",";D8;",":ES
PRINT:GOTO 2¢

" MAME? MICRKEY MOUSE
DEPARTMENT? AUDIC/VISUAL AIDS
DATE RIRED? 01/12/72

NAME? SEERLOCEK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EPENEEZER SCROOQGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE EIRED? 08/16/78

NAME? atc.

PROGRAM B=-1 - CREATE A SEQUENTIAL

DATA FILE

Page B-S

Now look at Program B-2. It accesses the file "DATA"™ that

was created in Program B=1 and displays the name aof everyone
hired in 1974.

10 OPEN *I",#1,"DATA"

20 INPUT#1,N$,D$%,ES

30 IF RIGHTS (H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MANN

Input past end in 20

ok

PROGRAM B~2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every Litem in the file,
When all the data has been read, line 20 causes an "Input
past end" error, To avoid getting this errer, ingert lina
15 which uses the EOF functicn to test for end-=of-file:

1§ IF EOF (1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also ‘write
formatted data to the disk with the PRINT# USING statement.
For axample, the statement

PRINT#1,USING"#844.%%,%:A,8,C,D

could be used to write numeric data to disk without explicit
dalimiters. The comma at +he end of the format string
sarvas to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
+he number of sectors that have besn written to or read from
the file since it was OPENed. A saector is a 128-byte block
of data.

B.3,1.1 Adding Data To A Sequential Flle -

If you have a sequential file residing on disk and later
want te add more data to the end of it, you cannot simply
open the file in "O" mode and start writing data. As soon
as you open a sequential file in "o mede, you destroy its
current contents, The following procedure can be used Yo
add data to an existing file called "NAMES",

1.
2.
3.
4.
5.
6.
7.

Page B=§

QPEN "NAMES™ in "I" mode.

OPEN a second file called "COPY" in "O" mode,

Read in the data in "NAMES" and write it to "COPY",
CLOSE "NAMES" and KILL it.

Write the new information to "COPY".

Rename "COPY" as "NAMES" and CLOSE.

Now there is a file on disk called "NAMES" <that

includes all the previous data plus the new data
yoeu just added. -

Program B=3 illustrates this tachnique. It can be used to
create or add onto a file called NAMES., This program also
illustrates the usa of LINE INPUTH to _read _strings with

embedded

3

commas from the disk file. Remember, LINE INPUT#

will read in characters from the disk until Tit sees a-.-

carriage
until it has read 355 characters. : -~ I

return (it dces not stop at gquotes of .commas)

=} -4

Page B-7

10 ON ERROR GOTQ 2000

20 OBPEN "I",%1,"NMAMES"

30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "Q",#2,"COPY"

50 IF EOF(1) THEN 90

60 LINE INPUT#1,A$

70 PRINT#Z,A$

80 GOTO 50

90 CLOSE #1

100 KILL "NAMES"

110 REM ADD MEW ENTRIES TO FILE

120 INPUT "NAME":N$

130 IP N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";A$

150 LINE INPUT "BIRTHDAY? ";B$%

160 PRINT#2,N$

3170 PRINT#2,a8

130 PRINT#2,BS - - I

190 PRINT:GOTC 120

20¢ CLOSE

205 REM CHANGE PILENAME BACK TO "NAMES" :

210 NAME “COPY"™ AS "NAMES® Lol
2000 IF ERE=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GQTO 0 . - _

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

|
oy

The error trapping routine im line 2000 traps a "File dcas
not exist" error in line 20, I this happens, the
statements that cepy the file are skipped, and "COPY™ is
creatad as if it were a new fila.

B8.3.2 Randem Files

Creating and accessing random filas requiras more progran
staps than sequential files, but there are advantages to
using randem files. One advantage is that random £files
require less rocom on the digk, beacause BASIC stores them in
a packed binary format. (3 sequential file iy stored as a
saries of ASCII characters.)

The higgest advantage tc random files is that data can bhe
accassed randemly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential £iles. This is possible becauae the informaticn
ig stored and accessed in distinct units called records and

each record is numbered.

The statements and functions that ars usad with random filas
are:

Page B=8

OPEN FIELD LSET/RSET GET
PUT CLOSE LoC

MEI$ CcvI
MESS cvs
MED$ cvD

B.3.2.1 Creating A Random File =

The fcllowing program steps are required to create a random
£fila.

1. OPEN the file for random OPEN "R",#1,"PILE",32 -
acceas ("R" meode). This example - - - Too T e
specifies a racord length of 32 T
bytes.If the record length is
omitted, the default is 128

bytas. T
2. Use the FIELD statement to FIELD %1 20 AS N$,
allocate space in the random 4 AS A%, 3 AS P$

buffar for the variables that
will be written te the random

fila.

3. Use LSET to move the data LSET N$=X3§
inte the random buffer. LSET A$=MXSS (AMT}
Humeric values must be made LSET P$=TELS

into strings when placsd in

the buffer. To do this, use the
"make®” functions: MRI$ to

make an integer value into =2
string, MEKS$ for a single
precision value, and MED$ for

a double precision vaiue.

4, Writs the data from PUT #1,CODE%
the buffer to the disk
ugsing the PUT statement.

Lock at Program B=4., It takes infiormation that is input at
the terminal and writes it to a random file. =Each time the
PUT statement is executad, a racord ig written to the file.
The two-digit code that is input in iine 30 hecomes the
record number.

B

© NOTE

Do not use a FIELDed string
variable in an INPUT or LET
statement. This causes the
pointer for that variable to

point into string space
instead of the random file
buffer.

Page B-9

10 OPEN "R"#1,"FPILE" e s e e

20 PIELD #1,20 AS N$, 4 AS AS$, 9 AS P¥
30 INPUT "2-DIGIT CODE";CODE% -

40 INPUT "NAME";X$

50 INPUT "AMOUNT®;AMT

§0 INPUT "PHONE";TEL$:PRINT

70 LSET N$=X$

80 LSET A$=MES$ (AMT) R
90° LSET P$=TELS$ _ -l
100 PUT #1,CODES

110 GOTO 30

PROGRAM B-4 ~ CREATE A RANDOM FILE

8.3.2.2 Accass A Random File =

Tha following program steps are required to access a random

fila:

1. OPEN the file in "R" mode. OPEN "R",#1,"PILE",32

2. Use the FIELD statement to FIELD #71 20 AS N$,
allocate space in the random 4 AS AS, B AS P%

buffer for the variables that
will be read from the file.

NQTE:

In a program that performs both
input and output on the same random
file, you can often usa just cne
OPEN statement and one FIELD
statement.

Page B-10

3. Use the GET statement to move GET #1,CODE%
the desired rececrd into the
random huffer.

4, The data in the buffer may PRINT N%
now be acessad by the program. PRINT CVS{AS)
Numeric values must be converted
back to numbers using the
"convert® functiong: CVI for
intagers, CVS for single - T T
precision values, and CVD
for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program Be-d. By inputting the threa-digit code at the
tarminal, the information assoclatad with that code is read
from the file and displayed.

10 QPEN *R",§1,"FILE" L)
20 PIELD #7, 20 AS N$, 4 AS A$, 8 AS P% o
30 INPUT "2-DIGIT CODE";CODEY - | :

40 GET #1, CODE® e

50 PRINT N%¥
60 PRINT USING "$$4#i.84";CVS(AS) ce ez
70 PRINT P$:PRINT ”
80 GOTO 30

PROGRAM B~5 ~ ACCESS A RANDOM FILE

The LOC function, with random filas, returns the “current
racord numbars,” The current record number is cne plus the

last record number that was used in a GET or PUT astatement.
For example, the statemant :

IF LOC(1)>50 THER END N
ends program execution if the curzent racord number in
file#1 iz higher than 50.

Program B-§ is an inventory program that illustrates randem
file access. In this program, the record number is usaed as
the part number, and it is assumed the inventory will
contain no moere than 100 different part numbers. Linas
900=980 initialize the data file by writing CHR$(255) as the
£irat character of each record. This 1s used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

(5N

120
125

135
140
150
160
170
180
220
225
239
240
250
260
270
2890
290
300
310
320
330
340
350
36¢
370
(A0
-390
400
410
420
430
440
450
460
470
480
4940
500
514
520
530
540
350
S0
570
580
590
6500
5§10
120
. ¢
640
650
660

Page B-11
PROGRAM B-6 ~ INVENTORY

OPEN "R",#1,"INVEN.DAT",39

FIELD#1,? AS F$,30 AS D$, 2 AS Q8,2 AS R$,4 AS P§

PRINT:PRINT "FUNCTIONS:":PRINT .
PRINT 1,"INITIALIZE FILE" .
PRINT2, "CREATE A NEW ENTRY" '
PRINT 3,"DISPLAY INVENTORY FOR ONE PART"

PRINT 4,"ADD TQ STOCK"

PRINT 5,"SUBTRACT FROM STCCK"

PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"

PRINT :PRINT: INPUT"FUNCTION"™ ; FUNCTION

IF (FUNCTION<?)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":GOTO 13
ON FUNCTION GOSUR 500,250,390,480,560,680

GOTO 220

REM BUILD NEW ENTRY

GOSUB 840

IF ASC(FS$)<>255 THEN INPUT"OVERWRITE";A$:IF AS<>"Y" THEN RETURN

LSET P3$=CHRS (0) _

INPUT "DESCRIPTION";DESCS :

LSET D$=DESCS

INPUT "QUANTITY IN STOCK";Q%

LSET Q$=MEI3 (Q%) .
INPUT "REORDER LEVEL";R% : : S
LSET R$=MEIS (R%) L. ’
INPUT "UNIT PRICE":P ' :
LESET PS=MRSS (P)
PUT#1,PARTS e m————— ———
RETURN

REM DISPLAY ENTRY

CoSUB 340 e e
TIF ASC(P$)=255 THEN PRINT "NULL ENTRY" :RETURN

PRINT USING "FPART NUMBER ###4";PART®

PRINT D%

DRINT USING "QUANTITY ON HAND $###%":CVI(Q$)

PRINT USING "RECRDER LEVEL ##¥#4";CVI(R$)

PRINT USING "UNIT PRICE $$#4.4%";CVS(P§)

RETURN

REM ADD TO STOCK

GOSUB840

I¥ ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN e e

PRINT D$:INPUT "QUANTITY TO ADD ;A%

Q¥mCVI{QF)+A%

LSET Q$=MKI$ (Q%)

PUTH#1,PARTS

RETURN

REM REMOVE FROM STOCK

GOSUB 94¢

IP ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

PRINT D%

INPUT "QUANTITY TQ SUBTRACT";S%

Qa=CVI (Q$5)

IF {(Q&=35%)<0 THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600

Q=03 =5%

TF Q%=<CVI(R$) THEN PRINT “QUANTITY NOW";Q%;" REORDER LEVEL";CVI(RS)
LSET Q$=MKIS (Q%)

PUT#1,PARTS

6§70
680
6940
710
720

730
740
840
£50

8990
500
9190
920
93¢
940
930
960

Page B-12

RETURN

REM DISPLAY ITEMS BELOW REORDER LEVEL

FOR I=1 TG 100

GET#1,I

IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";CVI(QS$) TAB{50)
"RECRDER LEVEL";CVI (R$}

NEAT I

RETURN

INPUT "PART NUMBER":PART%

IF (FART®<1) CR (PART#>100} THEN PRINT "BAD PART NUMSER" :GOTO 840
ELSE GET#1,PARTS :RETURN

END

REM INITIALIZE

INPUT "ARE YOU SUREY;B$:IF B§<>"Y" TEEN RETURN

LSET F$=CHR$ (255)

POR I=1 TO 100 <
FUT#1,I) T
NEXT I

RETURN

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-80 have provisions £or interfacing
with assembly language subroutines. The USR Function allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

NOTE

The addreases cof the DEINT,
GIVARFE, MAKINT and FRCINT) -
routines are storad in loca=- L '
tions that must be supplied
individvally for different im=. . :
plementations of BASIC. . -

C.1 MEMORY ALLOCATION

Memory gpace must be set aside for an assembly language
subroutine befare it can be loaded. During initializatiocn,
entar the highest memory location minus the amount of memoxy
neaded for the agsembly languagae subroutine(s), BRASIC uses
all memory available from its starting location up, s¢ only
the topmost locaticrs in memory can be sat agside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for 8 levels (16 bytes) of stack storage.
tf more stack space is needed, BASIC'’s stack can bae saved
and a new atack set up for use by the assembly language
aubroutine. BASIC's stack must be restored, however, bafore
returning from the subroutine.

Page C-2

The assembly language subroutine may be lcaded jinto memory
by means of the system monitor, or the BASIC PORE statement,
or (if the user has the MACRO-80 or FORTRAN-B0 package)
routines may be assembled with MACRO-80 and loaded using
LINK-80,

C.2 USR FUNCTICON CALLS - 8K BASIC

The starting address of the assembly language subroutine
must he stored im USRLOC, a two=byte location in memory that
is supplied individually with different implementations of
BASIC-80,. With B8X BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byta.

Thea #function USR will call the routine whose address - is in
USRLOC. Initially USRLOC contains the addreas of ILLFUN,
the reutine that gives the "Illegal functicn call" errer.
Therafora, Lf USR is callad without changing the address in
USRLOC, an "Illegal function call" error rasults,.

Tha format of a USR function call is - ce e

USR{argument) : LTI

whers the argument is a numeric expression. To cbtain- the
argument, the assembly language subroutine must ¢all the-
routins DEINT. DEINT places the argument into the D,E
regigter pair as a 2-byte, 2's complement integer, (If the
nt is not in the range -32768 to 32767, an “Illegal
function call" arror oceurs.) . ;
Te pass the rzasult hack from an assembly language
subroutine, load the value in register pair [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returna
X. To return to BASIC, the assembly language subroutine
st exscuta a RET instruction. . -

For example, here is an assembly languaée subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT ;put arg in D,E
XCHG smeve arg to H,L
DAD H sH,lL=H,L+d,L
MOV A,H :move result to AL,B
MOV B,L
JMP GIVABF ;pass rasult back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -16394<ax<n16383,. The single
ingtruction JMP GIVABF has the asame effect as:

[N

Page -3

CALL GIVABF
RET

To return additional values to the program, load them into
memory and read them with the PEER function.

There are several methods by which a program may call more
than one USR routina. FPFor example, khe starting addresa of
sach routine may ke PORKEQ into USRLOC pricr to each USR
call, or the argument to USR could he an index into a table
of USR routines.

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the "USR

function is
UsR[<digit>] (argument) T . B

wheras <digit> is from ¢ to 9 and the argument is any numeric
cr string expression. <digit> specifies which USR routine
iz being called, and corresponds with the digit supplied in
the DEF USR statement for that routine, If <digit> is
cmitted, USRO is assumed. The address given in the DEF USSR
gtatament detsrminas the starting address of the subroutine.

When the USR function call is made, ragister A conrtains a

value that sapecifies the type of argument that was given.
The value in A may be one of the following:

Value in A Type of Argument

2 Two=byte integar (two's complement)

3 String

4 Single precision floating point number
g Doukle prscision fleating point number

If the argument is a number, the {E,L] register pair peints
to +the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
PAC-Z containa the upper § bits of the argument.

If the argument is a single precision floating peoint number :

FAC-3 contains the lowest 8 bits of mantissa and

Page C-4

FAC=2 contains the middle 8 bits of mantissa and
FAC=-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the asign of the numbaer (0=positive, l=negative).
FAC is the exponent minus 128, and the binary
point is te the left of the most significant

bit of the mantissa.

If the arqument is a double precision floating point number:

FAC=7 through FAC-4 contain four more bytas
of mantissa (FAC=7 containg the lowest 8 bits}.

Tf the arqument is a string, the [D,E] register pair points
to 3 bytes called the "string deacriptor.” Byte 0 of the
string descriptor contains the length of the string (0 to
255). Bytes 1! and 2, respectively, are the lower and upper
8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
litmral in the program. Exampla:

A$ = "BASIC-8Q"+""

Thig will copy the string literal into string space and will
pravent alteraticn of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integar, string, single precision or double preecision)
as the argument that was passed tc it. However, calling the
MARINT routine returns the integer in [H,L] as the value of
the functicn, foreing the value returned by the function %o
be integer. Te executs MAKINT, use the following sequencs
to return frem the subroutine:

PUSH H saave value to be raturned
LALD =% sget address of MAKINT routine
XTHL ;save return on stack and

rgat back [H,L]
RET ;return

Also, the argument of the function, regardless of its type,
may be forced tc an integer by calling the FRCINT routine to
get the integer value of the argument in {4,L]. Execute the
following routine:

L¥I H jget address of subroutine
;continuation

PUSH g rplace on stack

LHLD XX jget address of FRCINT

PCHL

SUBT:

-

Page (=3

¢.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling seguence used is
the same as that in Microsoft's FORTRAN, COBQOL and BASIC
compilers.

A CALL statement with no arguments generates a simple *CALL"
instruction. The corresponding subroutine should return via
s simple "RET." {(CALL and RET are 8080 opcodes - see an 3080
refarence manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex <calling sequencs. Por aach argument in the CALL
argument ligt, a parameter is passed to the subroutine.
That parameter is the addrass of the low byte of the
argument. Therefore, parameters always occupy ¢two hytes
each,regardless of type.

The mathcd of passing the parameters depends upon the number
of parameters to pass:

1, If the number of parameters is less than or egqual-
+o 3, they are passed in the registers. Parametar
1 will be in HL, 2 in DE (if present), and 3 ip BC
(if present}.

2. If the number of parameters is greater than 3, they
ars passed as follows:

1, Parameter 1 in HL. [T, . S,

2. Parameter 2 in DE.

3, Parameters 3 through n in a contigucus data
block. BC will peint to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversaly, the calling program is responsikle for passing
tha corract number of parametars. There are ro checks for
corract number or type of parameters.

If the subroutine expects meore than 3 parameters, and neads
to +transfer tham %o a local data area, there is a gystem
subroutine which will perform this transfer, This argument
transfar routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing ko the
local data araea, BC pointing to the third parameter, and A
sentaining the number of arguments to transfar (i.e., the
total number of arguments minus 2}, The subroutine is

Page C-§

responsible for saving the first two parameters before
calling $AT. For example, if a subroutine expects 5

parameters, it should lock like:

SUBR:

o g g
[T) N

" "

A listing of the argumsnt transfer routine AT$ follows. :

00100
00200
goaoo
004430
003040
00604
Qo700
00800
Q0900
01000
01100
01200
01340
01400
01500
316490
017400
01800
01909
02004
g021a¢
02200
02340

LTI TR TR Y

{8,
EH
(Al

$AT:

AT1:

SHLD P1 ; SAVE PARAMETER 1

ACHG

SHLD r2 1 SAVE PARAMETER 2

MVI A,3 :NO. OF PARAMETERS LEFT

LXI H,P3 ;POINTER TO LOCAL AREA

CALL $AT $+ TRANSFER THE OTHER 3 PARAMETERS

fBody of subroutine}

RET $+RETURN TC CALLER

DS 2 ;SPACE POR PARAMETER 1 o

DS 2 ; SPACE FOR PARAMETER 2 S
Ds -] ;SPACE FOR PARAMETERS 3-5 P

ARGUMENT TRANSFER

hY

] POINTS TC 3RD PARAM, = 1o . \‘
L] POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE # OF PARAMS TO XFER(TOTAL-2). .- .. :
ENTRY $aT .o T
icae :SAVE [H,L] IN [D,E]
MOV B,B
MoV L,C :{H,L] = PTR TO PARAMS
MOV c,M
INX 4
Mov B,M
INX H ;[B,C] = Pnnan ADR
XCHG : [E,L] POINTS 7TQ LOCAL STORAGE
MOV M,C
INX B
MOV M,B
INX B :STORE PARAM IN LOCAL AREA
KCHG ;SINCE GOING BACK TO AT1
DCR A ; TRANSFERRED ALL PARAMS?
JINZ AT1 1NQ, COPY MORE
RET. ;YES, RETURN

AN

Page C-7

When accessing parametars in a subroutine, don't forget that
they are pdinters to the actual arguments passed.

NOTE

I£ is entirely up to the
programmer to see to it that
the arguments in the calling
program match in pumber, type,
and Length with the parameters
expectea y the subroutine.
This applies to BASIC
subroutinas, as well as those
written in assembly language.

¢.5 INTERRUPTS

Assembly language subroutines can ke written to “handle
interrupts, All intarzupt handling routines should save .the:.

stack, register A-L and the PSW, Interrupts should- always: .

be re—ecnabled bafore returning from the subroutine, . since
an intertupt automatically disables all further “interrupts.
once 1t is zeceived. The user should he. aware of which
interrupt vectors are free in the particular version ~of
BASTC that has been supplied. Note to CP/M users: in CP

BASIC, all interrupt vectors are free.l N

hY

APPENDIX D

BASIC-80 with the CP/M Operating System

The CP/M version of BASIC-80 (MBASIC) is supplied con a
standard gize 3740 single density diskette. The name of the
£ile is MBASIC.COM. (A 28K or larger CP/M system is
racommendad.,)

To run MBASIC, bring up CP/M and type the following:
ASMBASIC <carriage return>
The system will reply:
xxxx Bytes Frme
BASIC=-80 Version 5.0
(CP/M Varsion!
Copyright 1978 (C) by Microsoft
Craated: dd-mmm=-yy
ok

MBASIC is the same as Disk BASIC=-80 as described in this
manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialog has bean replaced hy a set of
opticns which are placed after the MBASIC command to CP/M.
The format of the command line is:

ASMBASIC [<filename>] [/F:<number of files>][/M:<highest memory locaticenl

If <filaname> is bpresent, MBASIC proceeds as 1f a RUN
<filename> command wezra +typed after initialization is
complete. A default extension of .BAS iz used if none 1is
supplied and the filename is less than 9 charactars long.
This allows BASIC programs to be exscuted in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the
batch stream to execute.

Page D=2

If /F:<number of files> is present, it sets the number of
disk data files that may be cpen at any one time during the -
execution of a BASIC program. Each f£ile data block \‘
allocatad in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highaest memery location> cption sets the highest
memory lacation that will be used by MBASIC. In scme cases
it is desirable to set the amount of memory well below the
CP/M's FDOS to raeserve space Zfor assembly language
aubreutines. In all cases, <highest memory location> ghould
be below the satart of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to tha start of FDOS is used.

NOTE -

Both <number of filas> and = = 7
<highest memory location> are

numbers that may be either

decimal, octal (precedad by --. el e -
80) or hexadecimal (preceded = e
by &HJ. P

Examplas: R ST, ;\'

ASMBASIC PAYROLL.BAS Use all memory and 2 files, T, .
load and axecute pngxpp;.sas.“@ﬂ;j ol

ASMBASIC INVENT/F:6 Use all memory and 6 files,
load and execute IN?E&R.BAS.

A>MBASIC /M:32768 Use first 32K of memory and e -
3 files. . L

A>MBASIC DATACK/F:2/M:&89000 .
Usa Eirst 316K of memory, 2
films, and exscuts DATACK.BAS,

D.2 DISK PILES

Disk. filenames follow the normal CF/M naming conventions.

All filenames may includa A: or B: ag the firat two
characters to specify a disk drive, otherwise the currently
gsalected drive is assumed., A& default extension of ,BAS is

used on LOAD, SAVE, MERGE and RUN <filename> commands £f no

“." appears in the filepame and the filename is less than 9 K'
charactars long.

Page D=1
0.3 PILES COMMAND

Format: FPILES [<filename>]

Purpose: Po print the names of £files residing on the
curzent disk.

Remarks: If <filaname> is omitted, all the files on the
currently Selectad drive will be listed.
<filaname> is a string formula which may contain
gquesticn marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

Examplsa: FILES

. PILES "*,Bas"
FILES "B:¥ *"
PILES "TEST?.BAS"

D.4 HESET COMMAND

Format: RESET

Purpose: To close all disk filas and write £ha dirmetory
information to a diskette before it iz removed
frem a diask drive. .

Remarks: Always axecute a RESET command before removing a
diskette from a disk drive, Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open £iles on all drives and
writes the directory track to every diskette
with open £iles.

D.5 LOF

Format:

Action:

Example:

D.6 EQF

Page D-4

FUNCTION
LOF {<file number>)
Raturns the number of records present in the
last axtent read or written. If the file does
not axceed one axtent (128 records), then LOF
raturns the true length of the file.
110 IF NUMA>LOF (1) THEN PRINT "INVALID ENTRY"

With CP/M, the EOF function may be used with random £filaes.
If a GET is dona past the end of f£ile, EOF will return =1.

This may

bs usad to find the siza of a file uasing a binaxy

seazrch or other algorithm.

D.7 MISCELLANECUS

1.
2'

3-

CSAVE and CLOAD are not implemented.

To return +to CP/M, use the SYSTEM c<ommand or
statement. SYSTEM closes all f£filas and then
performs a CP/M warm start. Control-C always
raturns to MBASIC, not to CP/M.

FRCINT is at 703 hex and MAKINT is at 105 hex.
(add 1000 hex for ADDS versions, 4000 for SBEC CP/M
versions.)

“9N

L

APPENDIX E

BASIC-80 with the ISIS-II Operating System

With ISIS-II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.7 INITIALIZATION ’ ' Co-

The initialization dialog has been replaced by a’ sat of " ----
opticns which are placed after the MBASIC command to
ISIS=II. The format of the command line is: - : -.

-MBASTIC [<filenama>] {/F:<number of files>]([/Mi<highest memory location>]

Tf <filename> is present, BASIC proceeds as Lf a- RUN
<filename> command were typed after initializatidn is
complete. A daefault extension of .BAS is used if- none i3
supplied.

If /F:<number of files> is praesent, it sats -tha number of

disk data files that may be open at any one-time during the S
execution of a BASIC program. The maximum is six and the
dafault is thyee. Tha /M:<highest memory location> option

sats the highest memozry location that will be used by BASIC.

Use this option te reserve memory locations above BASIC for
assambly language subroutines, .

At initialization, the system will reply:

xXxxx Bytes Freze

BASIC=80 Varsion X.x

{ISI5-1T Version)

Copyright 1978 (C) by Microsoit

Page E=2

E.2 LINE BPRINTER I/0

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "O",N,":LP:"

120 PRINT #¥,A,B,C

Since BASIC buffers disk I/Q, you may want to force buffers
out by CLOSEing the printer channal.

To LIST a program on the line printer, use:

SAVE":LP:",A

E.3 ATTRIE STATEMENT

In ISIS-II BASIC-80, the ATTRIE statemant sets file
attributes. Tha format of the statement ig:

ATTRIE <filename string>,<attribute string>

The attribute string consists of F, W, S or I for the
ateribute, fcllowad by a 1 to set the attribute or a J to
resast.

Examples:
ATTRIB "INFO.DAT","W1"
ATTHRIB "GHOST.RAS","I1"

ATTRIB ":F1:SYSFIL","WiP1S1I1"
ATTRIE A$,BS

E.4 MISCELLANEOUS
Note these other diffarences for ISIS5-II BASIC:

1. MAKINT is located at xxxxx hex, and GIVINT Iis
located at xotxxx heX.

2. There is no FILES command in ISIS-II BASIC.
Pilenames dJdo not default to .BAS on SAVEs, LOADs,
and MERGES.

APPENDIX F

BASIC~80 with the TEXDOS Oparating System

The operation of BASIC-80 with the TEKDOS operating system
is +the same as described in this manual with the following
axceptiona:

10

3.

4.

At imitialization, BASIC asks MEMORY SI2E? If you
reapond with a carriage return, BASIC will use all
available memory. If you respond- with''a pemory
location (in decimal), BASIC will use memory only
up to that location. This lets you reservae space
at the top of mnmemory for assembly language
subroutines.

The number of disk files that may be open at one
time defaults to 5. P :

LPRINT and LLIST are not implemented. Instead,
open- a file %o the printar.) :

TERDOS does not support randem disk I/0. The
corrasponding BASIC-84 stataments {pUT, GET,
OFPEN*R®, aetc.) ars inoperable under TEXDOS. ’

Control=-C works only once due to a bug. iIn TERDOS.
If you interrupt a running program or & LIST
commend with Contrel=C, BASIC appaars to be. in
"single statemant"” mode. To clear this condition,
axit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTC conmand ,
gince it requires a Control-C to return to BASIC
command level. :

A

APPENDIX G

BASIC=80 with the INTEL SEC and MDS Systems

G.1 INITIALIZATICN

The paper tape of BASIC=-80 supplied for SBC.and MDS . .asystams
is in Intal-compatible hex format. Use the 2 E
command te ioad the kape, then execute the G command to
start BASIC-80., The command is: .

-G4000
BASIC will respond: : R
Memory size? ' '
If you want Bas:d o ude all available RAM, just +type a
carriage return, If you want to reserve space at the top of

memory for machine language subroutines, enter the highest
mamory address (in decimal) that BASIC may use.

Terminal Width?
(8K versions only) Respend with the number of charactars for

the output line width in PRINT statements. ‘The default is
72 characters. {Extended versions use WIDTE command.)

Want SIN=-COS-TAN-ATN?

Type Y to retain these functions, type N to dalate them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT ls located
at 0042 hex and GIVABF ig located at Q045 hex. USRLOC is at
xxxx hex. In the Extended vexsion, FRCINT is locatad at
xxx% hex, and MAKINT is located at xxxx hex.

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

Page

-

k]

e

-

APPENDIX H

Standalone Disk BASIC

Standalone Disk BASIC is an eagily implemanted,
salf-contained version of BASIC-80 that runs con almost any
8080 or Z80 basad disk hardware without an opexrating system.
Standalone Disk BASIC incorporates several unique disk I/0
methods that make fastar and more efficient use of dis
accass and storage. -

Random access with Standalone BASIC i1s faster than other
disk operating systems becausa the file allocation rahle is
keapt in memory and updated periodically on_ the disketts.
Thersfcre, there is no need for index blocks for random

files, and thersa is no need to distinguish betwean- random_

and saquential files. Sacausa there ars no index.blocks, .

there is no large per-file-cverhead either in mamory or on
disk. Binary SAVEs and LOADs are also faster because thay
ars optimized by cluster, i.s., an entire cluster is read or
wrikten a# one time, instead of a zingle sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the adystem. In one— or two—drive
systems, BASIC asks 1f there ars two drives. In systems
with more +than two drivea, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number frem 0
o 15, or, for a default of 1 file per drive, just enter a
carriage return. -

The cperation of Standalone Digk BASIC is the same as Disk
BASTIC-80 as described in this manual, with the following
exceptions:

H.1 PILENAMES

Disk filenames are six characters with an opticonal
thrsa-character extansion that is preceded by a decimal
point., If a decimal point appears in a filename after fewar
‘han six characters, the name 4is blank-filled to six
charactars and the next three charactsrs are the extension.

Page H=2

If the filename is six or fewer characters with nc decimal
point, there is no extension., I1f the filename is more than
gix characters, BASIC inserts a decimal point after the
gixth character and uses the next three characters as an
axtensicn., {(Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on
a diask. The format is: [L]FILES[<drive number:>)

LFILES outputs to the line printer. In addition to the
fileaname, the size of each file, in clusters, is cutput. A
clustar is “he minjmom unit of allocation for a file == it

is one-half of a track. PFilaenames of files created with -

OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenamesa of binary filas created with
binary SAVE are listad with a decimal peint between the name

[

and extension. The protectaed file option with SAVE is.not.'_:

supported in Standalone Disk BASIC.

H.3 FPOS ST o
The FPOS function:) LT LT

FPOS (<£ila number>} - o

is the sams as BASIC=-80's LCC functicn excaept i¥ returns the -

number of the physical sector whare <filenumber> is located.

{BASIC-80's LOC functien and CP/M BASIC-80's LOF functiom -

are alsc implemented.)

g.4 DSKI$/DSEKQS
The DSROS statement:

DSROs<driva>,<track>,<sector>,<string expressiocn>
writes the string on the specified sector, The maxinmum
length for the string is 128 characters. A string of fewar
than 128 characters is zerc=filled at the end to 128
characters.

DSKI$ is the complementary function to the DSKOS statament.
DSKI$ returns the contents of a sector to a string variable
name, The format is:

DSKI$ (<drive>,<track>,<sector’>}

Example: A$=DSRI${0,I,J}

Page H~=3

H.5 MOUNT COMMAND

Sefore a diskette can be used for file cperaticns {i.e., a2ny
disk I/C besides DSKI§, DSKC$, or IBM or USR modes), it muat
be MOUNTed. The format of the command is:

MOUNT [<drive>[,<driver...]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocaticn Table (see
Section H.11.2) from the diskette into memory and checks it
for errors. If there are no errcrs, the disk ia mountad.
If an error is found, BASIC reada ore or both of the back-up
allocation tables from the diskette in an attempt to mount
the disk; and a warning message, "x coples of allocation
bad on drive y", is issued. x is 1 or 2 and ¥y i

number. When a warning occurs, it is a good. idea to make a - --

new copy of the diskette., If all copies of the allogation.
rabla are bad or if a free entry is encountered in the file
chain, a fatal error-="Bad allocation tabla®--is given and
the diskette will not be mounted.

While a diak is mounted, BASIC occasicnally writes the
allocation table to the directory track, but it doeg.not
chack for errors unless the rsad after write attribute is
set for that drive (see SET statement). -

HE.6 REMOVE COMMRND) _
REMOVE is the complement of MOUNT., Bafore a_diskette can be’
takean out of the drive, a REMOVE command must be exacuted.
Tha format of the command is: L

REMOVE [<drive>[,<drive>...]]

REMOVE writas three copies of the current allocation tabls
o disk and fellows the same error-check procedure as MOUNT.

MOUNT and REMOVE replace the RESET command that is. in -

BASIC=-84.

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checkad
allacation table, and the data
on the next diskette inserted
will he destroyed when the
wrong allocaticon table is
written to the directery
track.

Page H-4

H.7 SET STATEMENT

The SET statement determines the attributes of the currently
mounted disk drivae, a currently open file, or a file that
need not be open. The format of the SET statement is:

SET<drive> | $<file> <£ilepamed> ,<attribute string>
<attribute string> is a string of charactsrs that determines

what attributes are set. Any characters other than the
following are ignored:

R Read after write
P Write protect
E BEECDIC conversion (if available}

J

Attributes ara assigned in the following oxder:
1. MOUNT command o

When a MOUNT is done for a particular arive, “the

first bhyte of the information sector on the
diskette (track 35, sactor 20 for floppy; track
18, sector 13 for miniflopg?T—'tontainﬁ——tha
attributes for the diak. (cctal wvalues: -Rp1007_
Pw2(, Ew=4]) Torie o

2, SET<drived>,<attribute string> Statement -

This statement sets the current attributes fcr -the
© Qisk, in memery, while it is mounted. . The
attributes are not permanently recorded and apply
only while the disk is mcuntad. -

1., When a file is created, tha permanent file._
attributes racorded on the disk will be the same- as

+he current drive attributes.

4, SET<filename>,<attributa string> Statement oo
This gtatament changes the permanent file

actributes that are stored in the diractory entry

for that £ile. I+ dces not affect the drive
attributes. .

5., When an existing file ias OPENed, the attrihbutes of
the file number ars those of the directory entry.

6. SET4<file number>,<attribute atring> Statement
This statement changes the attributes for that file
aumber but doss not change the directory entry.
Examples:

SET 1,"R" Force read after write checking on all
output to drive 1

SET #1,"R" Farce read after write for all output to

J

Page H-5

£ile 1 while it is cpen

SET #1,"P" Give write protect errcer Lif any output is
attempted to file 1

SET "TEST".,"P" Protect TEST from deletion and
modlfication

SET t1,"" Turn off all attributes for drive 1

E.2 ATTRS FUNCTIONW

ATTRS returns a string of the ourrant attributes for a
drive, currantly open £ile, or file that nmed nct be open. -
The format of ATTRS is: A

ATTRS (<drive> #<file number:> <filenama>}
For example: o .
SET 1,"R":A$=ATTRS (1) :PRINT A$.

R :
ok :

H.9 OPEN STATEMENT

The format for the OPEN statement in Standalone BASIC is:
OPEN <filename> [FOR <mode>] AS {#l<file ﬁumher>

where <mode> is cne of the following: -

INPUT
QUTPUT
APPEND
IBM
UsSR

The mode determines only the initial poaitioning within the
fila and the actions to be taken if the file does not axist.
The actiocn taken in each mode is:

INPUT The initial position is at the start of tha fila.
An error is returned if the file is not found.

OUTEUT The initial position is at the start of the file.
A new fila is always created,

APPEND The initial position is at the end of the file.
An error is returned if the file is not found.

Page H-6

IBM The initial position iz after the last DSKI§ or
DSKO$. The file is then set up to write
contiguous., No file search is deone. {The same

affect may be achieved in many cases by altering
the FORMAT program. See Section H.11.2,1.)

SR - Same as 1IBM mode except, instead of write
contiguous, USRO0 is called and returns the next
track/sactor numbar. The USRO routine should read
the current track/sactor frem B,C and return the
next location in 8,C. When USRO 1s firat called,
B,C contains the track and sector number of the
previous DSKI$ or DSKO$.

1f tha FOR <mode> clause is omitted, the initial position is

at the start of the file, If the file is not found, it is

created.

Note that variable langth records are not™ supported in -
Stapdalone Disk BASIC, ALl records are 128 bytes in length. -

USR mode is especially useful for creating diskettes that

raquire sector mapping. This is the case if the diskette iz _
intended for usa on ancther aystem, for examplas, a cP/M T

system. Instead of opening the file for write contiguous

(IEM mode), the USRO routine may be used to map the sectors -

logically, as required by the other system, - -- o

Wnen a fila is OPENed FOR APPEND, the file modé 1s 'set "to
APPEND and the record number is set to the last record “of
the fila. The program may subdequently executa disk I/0
gtatements that mcve the pointer elsewhers in the file.
When the last racord is read, the file mode is reset to FILE
and the pointer is left at the end of the file. -Then,—if-
you wish to append another record, exscute:. _

GET#n,LOF {n)

This positions the peinter at the end of the £ila in
praparation for appending. i

At any one time, it is possible to have a particular
filename .OPEN under more than one file number, This allows
different attributea to be ugsed for different purposes. Or,
for program <¢larity, you may wish to use different file
numbers for different methods of access. Each file number
has & diffsrent huffer, so changes mada under one file are
not accessible to (or affected by] the other numbers until
that record is written (e.g., GET#R,I10CH@)}.

Bl oA

Page H=7

B.10 DISK /0

A GET or PUT {i.e., random access] cannot be done on a file
+that is OPEN FOR IBEM or OPEN FOR USR. COtherwise, GET/PUT
may be executed along with PRINT#/INPUT# on the same file,
which makes midfile updating possikle. The statement
formaks for GET, PUT, PRINT#, and INPUT%# are the same as
those in BaSIC-80. The action of each statement in
Standalone BASIC i= as follows:

GET If the "buffer changed" flag is set, write the
buffer to disk. Than execute the GET (read the
record into the buffer), and resset the positicen
for sequential I/O0 to the beginning of the buffex.

POT Execute the FUT (write the buffer to the specified
record number), and set the "sequential I/0 is
illegal® flag until a GET is done. -

INPUTH If the buffer is empty, write it if the “Buffer
changed” flag i3 set, then read the next buffer.

PRINT# Set the "buffar changed” flag. If tha bufifar is
full, write it to disk, Then, if end of file has
not been reached, read the next bhuffer.

g.10,1 Pile Format

Por a single density floppy, each file requires 137 bytes:
9 bytea plus the 128-byte buffer. Because the File
Allocation Table keeps random access information f£or all
files, random and sequential f£iles are identical on the
disk. The only distinction is that sequential files have a
contrel-z (32 octal] as the laat charactar of the last
gector. When this sector is read, it is scanned <from the
and for a nom-zerc byte. TIf this byte is Contral~Z, the
siza of the buffer is set ao that a FRINT overwrites this
hyta, If the byte is not Control-Z, the size is set SO the
last null seen is overwrlttan,

Any sequential file can be copied in random moda and remain
identical. If a file is written to disk in random node
(i.e.,, with PUP? instead of PRINT! and then raad in
sequential mode, it will still have proper end of file
detaction,

E.11 DISK ALLOCATION INFORMATION

Page E-8

Rith Standalone Disk BASIC, storage space on the diskette is

allocated beginning with the cluster closest to the current
position of +the head. {This method is optimized {for

wrilting.

Disk allocation information is placed in memery when the
periodically written back to the

disk is
disk.
menory ,

mounted and is
Because this allocation information i3
there is nc need for index blocks for random files,
and there is no need +o distinguish Dbetween

Custon versions can be optimized for

sagquential filas.

H.11.1

Directory Format
On +he diskette, each sactor of the diresctory track;édﬁﬁaihS'

reading,)

kept in

random and

[N

eight f£file entries. Each file entry is 16 bytes long and
formatted as follows: T

Bytas Daage
0=8 FPilaname, 1 to % characters, The
first charactar may not be O or 255.
2 Attribute:
Octal
200 Binary file
100 Porce read after write check
40 EBCDIC £ila
20 Write protected file
Excluding 200, these bits are the same
for the disk attributa byte which is the
first byte of tha information sector.
10 Pointer into File Allocation Table
to the first clustar of the file's
¢luster chain.
11=15 Raservad for future axpansion.

1f the first byta of a filename is zere, that £
free, If the firat byta i= 255, that slot is the

slot is

last occupied slot in the dizectory, i.e., this
end of the directory.

H.11.2 Drive Information

For each disk drive that is MOUNTed, the
information is kept in memory:

ile entry
flags <tha

following

J

I
-

Page H-3

Attributas

Drive attributes are read from the informaticon
sactor when the drive is mounted and may be changed
with the SET statemant. Current attributes may be
examined with the ATTR$ functien.

Track Number

This is +he current track while the digk 1is
mounted., Otherwise, track number gontains 255 aa a
£lag that the disk is not mounted.

Modification Counter
This counter is incremented whenever an entry in

the File Allocation Table is changed. After a

given nymber of changes has been made, the File
Allocation Table is written to diak.

Nunber cof Frea Clustars

This is calculated when the drive is mounted,. and
updated whenever a file is deleted or a cluster is
allocated. T - -

File Allccation Table T - i=

The File Allocation Table has a one-byte entry for
every clustar allocated on tha diak. If the
cluster is fres, this entry is 255. If the cluster
is raservaed, this entry is 254, If the clustar is
the laat clustaer 4f the file, this entry ia 300

(octal) plus the npumber of sectors from *his

clustar that were used. Otherwise, the entry is a
pointsr to the next cluster of the f£ile. The Fila
Allocation Table is read into memory when the drive

is mounted, and updated: .

{. When a file is deletad

2., When a file is closed

3. When modificaticns to the table total twice the
number of sectors in a cluster (this can be
changed in custem versions)

4, When modifications to the table have been made

and the disk head is on (or passes) the
diractory track.

Page H-10

H.11.2.1 FORMAT Program - Bafore mounting a

drive with =& new diskette, run BASIC's FORMAT program to
initialize the directory (set all bytes te 255), set the
information sgector to 0, and set all the Plle Allocation
Table entries (extapt the directory track entry (254)) to
“"frae" (253).

The FORMAT program 1s:

10 CLEAR 1500

20 A$=STRINGS (128,2535)

30 BS$=STRINGS (35%2,255)+STRINGS (2,254) +STRINGS{56,255)
40 FOR S=! TO 19:DSKC$ 1,35,5,A$:NEXT

50 FOR S=21 TO 25 STEP 2:DSK0$ 1,35,5,8%

60 DSKO$ 1,35,5+1,A31NEXT

70 DSRO$ 1,39,20,CHR${0)

Aftar runnipg FORMAT and MOUNTing the drive, files will be
allocatad as usual, 4i.e., on either aide of the directory
track.

Tha FORMAT program may be altered to pre-allocate selacted
£ilas, For instance, you may wish ¢0 use the FORMAT program
to pre-allocate filas contiguously (as they would bae
allocated in IBM mode). Then IBEM and BASIC files may both
axigt on the diskatts. The altsred FORMAT program must also
write the name of the file(s) to tha directery track (i.e.,
files1=-8 in sector 1, files 9=-16 in sector 2, ete.), 30
BASIC knows whers the filas start.

H.11.3 File Block

Each file on the disk has a file bleck that contains the
following information:

1. File Mode (byts Q)
This is the firat byets (byte 0) of the file block,
and ita location may be read with
VARPTR ($filenumber),. The location of any other
byte in the file bloek is relative to the file mode
byte. The file mode byte is one of the following:

{cctal)

1 Input cnly

2 Qutput only

4 Pile mede

10 Append mode

20 Delete £ile

40 IEM mode
108 Special format (USR)

200 Binary save

3y

fage
NOTE

It is not recommended that the user attempt
tc modify the next four bytes of the File
Allccation Table. Many unforesaen
complications may result.

d=i i

2., ©Pointer to the Fila Allocation Table entry for the

first clu

ster allocated to the file (+1)

3. Pointer to the File Allocation Table entry for the
last clustar accessed (+2)

4., Last sector accessed (+3}

§. Disk numb

ar of file {(+4)

§. The size of the last buffer read (+5)., This is 128
unless +the last sector of the file is net
(i.e., Control=Z}.

7. fThe current position in the buffer (+6). This
the offset within the buffer for the next print or

input.

8, File flag
Cctal
140
40

20
10
4
2

9. Terminal

(+7), is cne of the follewing:

Read after write check
Read/Write EBCDIC, not ASCII
(Not available in all versions.)
Pila writs protacted

Buffar changed by PRINT

PUT has baen done. PRINT/INPUT are
arrors until a GET i= done.

(See Section H.,10.)

Flags buffer is empty.

position for TAB function and comma

PRINT statements (+8)

10. Beginning of sector buffer {+9), 128 bytes

length

E.12 ADVANCED USES QF FILE BUFFERS

fall
is

in

in

1. Information may be passed from one program to
by FIELDing it te an unopened file number

another
{not #0).

Tha FPIELD buffer is not cleared as

as the file is not CPENed.

long

2.

4.

Page H-12

The FIELDed buffer for an uncpened file can also be
used to format gtrings. For axample, an
80-character atring could be placed into a FIELDed
buffer with LSET. The strings could then bhe
accessed as four 20=-character strings using their
FIELDed variable names. For example:

100 FIELD®1, 80 AS A3

200 FIELD#1, 20 AS A1$, 20 AS A2$, 20 AS A3$, 20 AS A4S

300 LINE INPUT "CUSTOMER INFOBMATION: ";B3%
400 LSET A$=BS$
500 PRINT "NAME ";A1$,"SSN: ":A23

PIELD#0 may be used as a temporary huffar, but note

that +this buffer is cleared after_. each.of the

following commands: FILES, LOAD, SAVE, MERGE, RUN,
DSKO$, MOUNT, OPEN, - S
The effact of PRINT{USING]H into a string may be
achisved by printing to a PIZLDed huffer and then
accaasing it without recpaning the file. To assure
that this temperary buffer is not written to the
disk, return tha pointer to the -begipning - of -the
?uffar and rmset the "buffer changed™ flag as
ollows: Tt Li.omo s T

10 OPEN "D" POR IEM AS 1:REM THIS DOESN'T USE SPACE
20 PRINT USING#] ...

Y

30 P=PEEE (6+VARPTR(#1))}:REM OPTIONAL, TC GET LENGTH OF BRIN

USING
40 PIELD#! ... AS ...
50 Y=7+VARPTR(#1}

60 POKE T, PEER (Y AND &360) :REM RESET BIFFER CHANGED FLAG

76 POKE 6+VARPTR,(01REM CLEAR POSITION IN BUFFER

s

Page H=13

B.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow

51 Internal error

52 Bad file numbar

S3 File not found

54 File already open

55 Disk not mounted

56 pisk I/0 exror

57 File already exists

59 Disk already mcunted

61 Input past end

62 Bad f£file name

63 pirect statement in file

64 Bad allocaticon table

85 Bad drive number

56 Bad track/sector

67 Pile write protected

63 Disk offline -
69 Caleted racord

70 Rename across disks

71 Saquantial after PUT

72 Sequential I/0 only : -
73 File not OPEN el L

#.14 DOUBLE DENSITY, DOUSLE SIDED DISKETTES

For diskettes with 256-byte sectors, DSKI$ and DSKO§ are
modified.

The DSKI$ function returns as its value the first 255 bytes

of the sactor read. .

The DSKO§ statement does not use the <string axpression>
field. The format is:

DSEOS <drive>,<track>,<sactor>

In order to specify the data to write with DSXOS and to
retrieve all 256 bytas of the data vead by DSKIS, the uger
must FIELD twe or more variables (for a total of 256 bytes)
to the file#(buffer. The FIELDed variables will be iden-
tiecal to the data read with DSKI§ and written with DSKO$.
For example:

FPIELD#0, 128 AS A$,128 AS BS

For double-sided diskettes, the formats of DSKI$ and DSKOS$
must alse include the surface number:

DSEI$ {<driver ,<surface>,<track>,<sector>)

DSKO$ <drive>,¢surface’,<track>,<sactor>
or
NE¥NE »rAwiwas _ canrfaceas . <tracky>,<sector>,<string exp>

[N

-

APPENDIX I

Converting Programs to BASIC-80

If you have programs written in a BASIC othar +than BASIC-80, some
minor adjustments may be necessary before running them with BASIC-80.
Herea ara some specific things o lock for when converting BASIC

programs.,

I.1 STRING DIMENSIONS

pDelete all statements that are used to declare the length of atrings.
A statement such as DIM A$(I,J), which dimensions a string array for J
alements of length I, should be converted to tha BASIC-80 - statement’ -

DIM AS(T).

Some BASICS use a comma or ampersand for string concatenatiom. Each
of these must be changed to a plus sign, which is the cperator for
BASIC-80 string concatenation. .

in BASIC-80, the MID$, RIGHTS, and LEFT$ functions are ugsed teo " take
subgtrings of strings. Forms such as A$(I) to access the Ith
charactar in A$, or A$(I,J) to takes a gubstring of AS$ from positicn "I
o position J, must be changed as follows: _

Other BASIC BASIC-480
X$=a3% (I) X$3=MIDS (AS,I,1)
X$=a3 (1,0} X$=MIDS$ (88,I,I=I+1)

If the substring rafarence is on the left side of an assignment and X$
i3 used to replace characters in A$, convert as follows:

Other BASIC 8K BASIC-30
A${I)=X$ AS=LEFTS (A$,I~1) +X5+MID3 (A3, I+1)
AS(I,J)=X% AS=LEFTS (AS,I=1) ;X% ;MID$ (25,T+1)

Ext. and Disk BASIC-840 . -

A% (I)=x$ MIDS(AS,1,1) =3
AS(I,J)=X$ MIDS (AS,I,J=1+1)=X5

Page I-2

1.2 MULTIPLE ASSIGNMENTS P
Some BASICs allow statements of the form: ;‘
10 LET B=C=(
to set B and C egual to zero, BASIC-80 would interpret the second
equal gign a3 a logical operator and set 3B equal to =1 if C equaled 0.
Instaad, convert this statament to two assignment statements:
10 C=Q:B=0

I.3 MULTIPLE STATEMENTS ——

Some BASICs use a backslash (\} to separate multiple statements on i@;

line. With BASIC-80, be sure all statements on a line are separatad.
by a colon (:). L -

I.4 MAT FUNCTIONS S
Programs using the MAT functicns available in some BASICa mist be
rewritten using FOR...NEXT loops to execute properly. . . .___&1

LS

oD

FC

Number

APPENDIX J

Summary of Error Codes and Error Messages

Messaga

NEXT without FOR

A variable in a NEXT statement dJdoes not
correspond to any previcusly executed,
unmatched POR statement varxiabla.

Syntax srror : .
A line 1is encountersd that contains some
incorrect saquence of characters (such as
unmatchad parenthesis, misspelled command or . -
statasment, incorrect punctuation, etc.). L

Raturn without GOSUB - .

A RETORN statament i3 ancountered for which
thare is no pravioua, unmatched GOSUB
statement.

Qut of data - .

A READ statement is executed when there are
no DATA gtatements with unread data remaining
in the program.

Illegal function call

A parametar that is out of range is pagsed to
a math or string function. Aan PC error may
also occur aa tha result of:

1. a negative or unreascnably large
guhscript

2. a nagative or zero argument with LOG
3. a negative argument ta SQR

4, a negative mantissa with a non-integec
exponent

oM

BS

DD

/0

ID

10

11

12

13

Page J=2
5. & call to a USR functien for which the
gtarting address has not yet been given

6. an improper argument +to MID$, LEFTS,
RIGHT$, INP, QUT, WAIT, PEEK, POKE, TAB,

8PC, STRINGS, SEACES, INSTR, ar
ON...GOTO,.
Overflow

The result of a calculation is tooe large to
be represented in BASIC=-80's number format.
1f underflow occurs, the result is zero and
execution continues without an error.

out of memory

A program i3 toe large, has toc many FOR
loops or GOSUBs, +too many variables, or
expressicns that are too complicated.

Undefined line

A line rafarsnce in a GOTO, GOSUB,
1?...TEEN...ELSE or DELETE is to a
nonexistent line.

Subseript out of ranga

An array element is referenced either with a
subscript that 15 outside the dimensions of
the array, or with the wrong number of
aubscripts.

Redimensioned array

™o DIM statements are given for the same
azzay, or a DIM gtatement is given for an
array aftar the dafault dimension of 10 has
been established for that array.

Division by zera

A divisien by zero is encountered in an
expression, or the operation of involuticn
results in zero being raised to a negative
powar. Machine infinity with the sign of the
numerater is supplied as tha result of the
divizion, or positive mnmachine infinity is
supplied as the result of the involuticn, and
execution gontinues.

Illegal direct
A statement that is illegal in direct mode is
enterad as a dirsct mode command.

Type mismatch
A string variable name 13 assigned a numeric
value or vice versa; a function that axpects
a numeric argument is given a string argument
or vice versa.

A

cs

ST

14

15

16

17

18

19

20

21

22

23

Page J=3

out of string space
String variablaes cause BASIC to exceed the
amcunt of free memory remaining, BASIC will
allocate string space dynamically, until it
runs out of memory,.

String foc long
An attampt is made to create & s3tring more
than 255 characters long.

String formula tocc complex

A string expression is +too long or too
complex, The expression should be brokan
into smaller expreasions.

Can't continue
An attempt is made to continue a program
that:

1. has halted due to an errcr,

2. has been modified uring a break -ip
axecution, or T

3. does not exist.
Undafined user function

A USR function is called bafore the function
dafinition (DEP statement) is given.

Extended and Disk Versions Only

No RESUME o
An error trapping routine is - entered but
contains no RESUME statement.

RESUME without error
A RESUME statement is encountered before an
arror trapping routine iz entered.

Unprintable error

An error message is not avallable for the
arzor condition which exists. This is
usually caused by an ERROR with an undefined
arror ccda.

Misasing operand
An expression coentains an operator with neo
cperand follewing it.

Line buffer overflow
An attempt is made to input a line that has
too many characters,

28

29

3¢

S0

51

52

33

54

55

37

58

Page J-4

FOR without NEXT
A FOR was encountered without a wmatching
MEXT.

WHILE without WEND
A WHILE statement does not have a matching
WEND.

WEND without WHILE
A WEND was encountered without a matching
WHILE.

Disk Errors

Fiald overilow

A FIELD statement is attampting to allocate
more bytes than were specified for the reacord
length of a random file.

Internal error

An intermal malfunction has occurrad in Disk
BASTIC-90. Raeport to Microsoft the conditions
under which the measage appeared.

Bad £ile number
A statement or command references a file with
a2 file number that is not OPEN or is out of
+he rapge of £ile numbers specified at
initialization.

File not found
A LOAD, KILL or CPEN statement references a
file that does not exist on the current disk.

Bad file mode

An attampt ia made to use PUT, GET, or LCP
with a sequential file, to LOAD a randem flle
or to execute ap OPEN with a £ile mode other
than I, O, or R.

File already open

A secuential output mode OPEN is issued for a
£file that is already open; or a KILL is
given for a file that is open.

Disk I/Q error

An I/0 error occurrsd on a disk 1/0
opération. I+ is a fatal error, i.e., the
operating gystem cannot recover from the
error.,

File already exists

The filename specifiad in a NAME statement is
identical to a filename already in use on the
disk.

Al

_ 61
62
63
64
§6
(_ 67

Page J-S

pisk full
All disk storage space is in use.

Input past end

An INPUT statement is exeucted after all the
data in tha file has been INPUT, or for a
nuil {empty) f£ile, To aveid this error, use
the EOF function to detect the end of filae.

Bad rececrd number -—— Ce—

In a DUT or GET statement, the recerd numbezr
is either greater than tha maximum allowed
{32767} or equal to zero.

Bad f£ile name

An illegal form is used for the filename with

LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many charactars). '

Direct statement in file

A direct statement is encountered while °
LOADing anm ASCII-format £ile. The LOAD is

+arminated.

Too many f£files

An attempt is made to create a new file
{using SAVE or OPEN) when all 2535 diractery
entries are full.

[N

Derived Functions

APPENDIX K

Mathematical Functions

Punctions that are not intrinsic to BASIC=80 may be calculated

as follows:
Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE CQSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
EYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
EYPERBOLIC SECANT
EYPERBOLIC COSECANT
EYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINZ

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPEREOLIC
SECANT

INVERSE EYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

BASIC-80 Equivalent

SEC (X)=1/C0S (%)
CSC(X)=1/5IN(X)
COT (X)="1/TAN (X}
ARCSIN (X)=ATN (X/SQR(~X*X+1)}
ARCCOS (X) #=ATN (X/SQR{=X*X+1)}+1.5708
ARCSEC{X)=ATN (X/SOR (X*X=1))
+SGN (SEN {X)=1)*1,5708
ARCCSC (X) =aTH (X/SQR(X*¥~1}))
+(SEN{X)~=1)*1.5708
ARCCOT (X} =ATN (X)+1.5708
SINE (X} ={EXP (X} -EXP {-X))/2
COSE (X)) = {EXP (X} +EXP {-X)) /2
TANH (X) =EXP (~X) /EXP (X) +EXE (~X)) *2+1
SECH (X) =2/ {EXP (X)+EXP (=X})
CSCH (X)) =2/ (EXP (X)-EXP (=X))
COTE (X) wEXP (=X) / {(EXP {X) =EXP (X)) *2+1

ARCSINH (X) =LOG (X+5QR (X*X+1})
ARCCOSH (X) =LOG {X+5QR (X*X~1)

ARCTANE (X)=LOG({1+X} /(1=X}) /2
ARCSECH{X)=LOG{ (SQR{=X*X+1}+1)/X}
ARCCSCH (X) =LOG ({SGN (X) *SQR (X*X+1)+1) /X

ARCCOTH {X) =LOG{ (X+1) /(X=1}1/2

e S—

Y

APPENDIX L

Microsoft BASIC Compiler

The Micrescft BASIC Compiler package contains the £ollowing
software: BASIC Compiler, MACRO-30 assembler, and LINK=30
loader. The following manuals are also supplied: BASIC=-8(
Reference Manual, BASIC Compiler User's Manual, Utility
Software Manual. The Utility Scftware Manual is the -
reference manual for MACRC~-80 and LINK-80. The BASIC __
Compiler Usar's Manual describes the usa of the ceompller,
its command format, compilation switches and error messages. :
The BASIC language that is used with the Microscft BASIC
Compller is the same as decribed in this manual for Disk - - - !
BASIC-80 with the following excaptions: s

L.1 OPERATIONAL DIFFERENCES) T

The Compiler interacts with the console only ¢toc read. o
compiler commands. These specify what files are to be o
compiled. There ia no "direct mode," as with the BASIC-80 !
interpreter. Commands that are usually issued in the dirac¢t !
mode Wwith the BASIC-80 interpreter are not implemented on ,
the Compiler.

The following statements and commands arze not implemeanted
and will generate an error message:

ADTO CLEAR CLOAD CSAVE CONT DELETE :
EDIT LIsT LLIST RENUM RUN SAVE E
LOAD MERGE NEW CHATIN COMMON RESET

FILES

Because there is no direct mode for typing in programs or
edit mode for aditing programs, use Microsoft's EDIT-80 Text
Editor or BASIC-80 interpreter for creating and eaditing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) opticn.

The compiler cannct accept a physical line that is more than
127 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to

Page L~2

start a new physical line within a logical statement.

To reduce the size of the compiled program, there are no
program line numbers included in the cbject code generatad
by the compiler unless the /D, /%X, or /E switch 1is set in
the compiler command., Error messages, therefore, contain
the address whers the error occurred, instead of a line
numbker. The compiler 1listing and the map generated by
$LINR-80 are used to identify the line that has the arror.
It i3 always a good idea to debug programs uging the
BASIC=80 interpreter hafore attempting to compila them. See
the BASIC Compiler User's Manual for more information,

L.2 LANGUAGE DIFFERENCES

Most programs that run on the Microsoft BASIC-80 interpretar
will run on the BASIC Ccmpiler with little or nc change.
Howaver, it is necessary to note differences in the use of
the #felleowing program statements:

1. CALL
The <variable name> field in the CALL statsment
must contaln an External symbel, i.e., one that is
racognized by LINK-8)0 as a global symbol. This
routine must be supplied by the user as an assembly
language subroutine or a routine frem the
PORTRAN=80 library.

2., CEAIN and COMMON
Tha CHAIN and COMMON statements are not implemented
on the compiler. They will generate a fatal error.

The CHAIN and COMMON atatements will be implamented
in a future release of +he BASIC compiler.
Howaver, their implamentation will be different
fyom the BASIC-~80 interpreter's versicn. The
COMMOK statement will be aimilar to FORTRAN's
COMMON atatement.

3. DEFINT/SNG/DBL/STR

The compiler does not "exacute” DEFXxx statements;
it reacts to the static occurrence of thesae
statements, regardless of the order in which
program lines are asxecuted. A DEFxxXX statement
takes effect as scon as its line is encounterad,
Once the type has besen defined for a given
yariable, it remains in effact until the end of the
program or until a different DEFxxX statement with
that variable takes effect.

4. USRn Functions
USRn Ffunctions are significantly different from the
interpreter versions. The argument to the USRn

N

9.

Page L-3

function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

DIM and ERASE

The DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed., That is, DIM takes effect when its line
is encountered., If the default dimension (1Q) has
already been sstablished for an array variable and
that variable is later encountered in a PIM
gtatesment, a "Redimensioned array" error results.

Thare is no ERASE statement in the compiler, 3o
arrays cannct be erased and radimensioned. BAn
FRASE statement will produce a fatal arror.

Alic ncte that the valuas of the subscripts in a
DIM statement must be integer constants; they may
not ba variablea, arithmetic - expeasions, or
flcating pocint values. For example, .

pDIM A1(I) T
DIM Al (3+4)

are both illegal.

END

During execution of a compiled program, an END
statemant closes files and returns control to the
operating aystem. Tha compiler assumes an END
statement at the end of the program, so "running
off the end" produces proper program termination.

ON ERROR GOTO/RESUME <line number>

If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must ha usad, I# +the RESUME NEXT, RESUME, or
RESUME 0 form is usad, the /X switch muat also be
includad. See the BASIC Compiler User's Manual for
an explanation of these switches.

REM

REM statements or remarks starting with a single
gquotation mark de not take up time or space during
exacution, and so may be used as freely as desirad.

STOP

The STOP statement is identical +to the END
statement. Cpen files are closed and control
returna to the operating system.

Paga L-4

10. TRON/TROFF
In order to use TRON/TROFF, the /D compilation
switch must be used, Otherwise, TRON and TROFF are
ignored and a warning message is generated.

17. FOR/NEXT and WHILE/WEND
FOR/NEXT and WBILE/WEND lcops must be statically
nested.

12. Doublae Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double
precision results if given a double precision
argument., Exponentiation with double precision
operands will return a double precision result.

L.3 EXPRESSION EVALUDATION

During expression evaluaticn, the cperands of each opearator
are wconverted %o the same type, that of the most precise
sperand. For example,

QR=JTS+A1+04

cazmes J% to be converted to single praecisicn and addad to
Al. Thig rasult is converted to double pracision and added
to QF.

The Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter the following program

Te=20000
J¥=20004
Kiw=30000
MEmT3+TE-K%

yields 10000 for M%. That ig, it adds I% to J% and, because
the number is *too large, it converts the result into a
floating point number. K3 ig then coverted ¢to fleoating
point and subtracted. The result of 10000 is found, and is
converted back te integer and saved as M.

The compiler, however, muat make type conversion decisions
during compilation, It cannckt defer until the actual values
are known. Thus, +he compiler would generate code +O
perform the entire operation in integer mode, If the /D
awitch were ger, the error would be detected, Otherwise, an
incorrect answer would be produced.

In order to produce optimum efficiency in the compilad
program, the compiler may perform any number of valid
algebraic transformations before generating the c<ode, For

(N

\C

Page IL-5

example, the program

I=20000
J3=—18000
Ke=20000
MEIwI%+JE+E%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
ovarflow scccurs., However, Lf the compiler performs I%+K%
first and +then adds J%, an overflow will occur. The
ccmpller follows the rules for operator precedence and
parenthetic modification of such precadence, but no other
guarantee of evaluation order can be made.

L.4 INTEGER VARIABLES

In ordar to produce the fastest and most compact object code’
poasible, make maximum usge of intager variables. For
example, this program . .

FOR I=1 TO 10
A(I)=0
HEXT I

can axecute approximately 30 timas faster -by —simply
substituting "I%" for "I". It is especially advantageous to
use intesger variables o computs array suhscripts. The
generated code is significantly fastar and more compact.

1Y

. @

APPENDIX M

ASCII Character Codes

ASCII ASCII ASCII

Code Character Code Character Code Character
000 NUL 043 + E: 1 v
001 S0B 044 ' 087 W
fo2 sTX 045 - 088 X
o3 ETX (46 . 089 X
004 EOT 047 / 290 b4
005 ENG 043 b a91 [
006 ACK 049 1 452 \
007 BEL 050 2 093 1
Q08 RS 051 3 094 A
Q09 HT 052 4 095 <
010 LF® 053 g 096 -t
011 vr 054 & 087 a
012 FP 055 7 098 _.b
013 CR 056 | 0%9 <
0914 350 457 9 100 d
015 s8I Q58 : 101 e
018 DLE 059 : 102 £
017 DC1 066G < 103 g
018 Dc2 161 - 104 h .
019 olok] 062 > 10S i
020 ncd 063 ? 106 3
021 NAR Q8¢ 2 107 k
022 SYN 065 A 108 1l
423 ETB 066 B 109 m
024 CAN 067 c 110 n
02s EM 068 D 111 o
§26 SUB 069 E 112 B-
927 ESCAPE 070 F 113 g
028 Fs 071 G 114 r
02s GS 072 B 115 g’
030 R3S 073 I 118 £
031 us 074 J 117 u
932 SPACE Q75 K 118 v
033 I 076 L 119 W
034 " 077 M 120 X
035 # 078 N 121 v
036 -1 079 o 122 z
037 % 080 P 123 {
038 & as1 Q 124 |
a3e ' 082 R 125 H
040 { 083 5 126 =
041) 084 T 127 DEL
042 * 0B5 u '

ASCII codes are in decimal
LP=Line Feed, FPoForm Feed, CRaCarriage Return, DEL=Rubout

A

INDEX

ABS - L -

Addition « o ¢ o 0+ = 4 o+ & =
m - - L] - - L] L] - L - - - -
Arctangent . « +« « » = + s ¢+
Array variables . . . «+ « +
BEFAYS o 4 « = o o « %+ o ¢ = =
Asc - - - L] L] - - > - - - L] -
ASCIT codea P L I
ASCII format . « « & « « = = =«
Assembly lanquage subroutines

ATN - .

ATTR e s e s m % w8 s om o
aTTRIB - - - L] - - - - - - - -
AUTD v o o o = s 2 o a & + o =
Boolean operators .+ « « . o
m L] - - L] L L3 L - - - »- - -
Carriage return . " e e e .
Cassette LapP8 . 4 - ¢ o+ 2 » =
mBL + - - L - - - - - - » - -
CHAIN & o o = o o s o = s ¢ =
Character Set .+ « + » + +v = »
ms - L] L] L] - - - + - - - - -
cmT L] - - - - - - L] - - »> - -
CLEBR &« « o « & 6 3 = = + » =
CLOAD 4+ o = s o o @« » % » & =
cmAD* - - - - - - - - - - -, L]
CLOAD? - - - - - L) - - - - - L]
CLOSE « v o o = 3 3 s 2 « + =
Command level . « + o & ¢ = =
COMON - - L] » - - L - - > L] -
Concatenation . + + « « o «
Conatants . + +« = « ¢ « + « =
CONT - - - - - - - L] L] L] - » »
Control charactars . . .+ « + =
Control=32 .+ ¢ o o = o = a o =
ccs - > - - - - - L] - - L L] -
CP /M » - = . LI - . - -
CESAVE o o o s & o + & = v 4 «
CSAVE® |, , & ¢ « o 2 s & = 2 »
CSHG 4 v « = a o » & & = = + @
CVD 4 e v o o o o & a = s ¢ &
CVI - - - L] - - - L - - > - -
CVS v s v v o 5 o % s & & & =
DATA , . & o =« s ¢ o = . -

32

1=-10

2-4, 2=5%

i-2 '

1-7, 2-%, 2-18, L-4
1=7,2=-7, 2=-11, 2-24
3-2

3=2, 3=4, M=-1

2-4, 2=-49, 2-77, L]
2~-3, 2=18, 2=-59, 3~-21,
3=23, C=-1, L-2

3-3 r L"3

B=-5

E-2 : :
1=-2, 2-2 : S

=12

2-3, C=5, L2~ B
1-3, 2-36, 2-41 to 2=-42, _
2=-83 to 2-85 o
2-7, 2=11 :
3=3

2=4, 2-9, L-2

1=3

3-4

-4

2-6, A-1

2-7

2=7

2=7

2-8, B-3, B-8

1=1

2~-4, 2-9, L-2

1=14

1-4

2-10, 2=41

1-4

2-22

35, L-3

2-46, 2~49, 2«76 to 2-77,
3-1' D-1 ¥ H-Z

2=11

2-11

3=5

3-5, B-8

3-6, B-8

3-6, B-~8

2-12, 2-74

DEF EN . 2=13

DEF USR = s o = o = = s+ » » « 2=16, 3=21

DEFDBL « o « » o o v o = & o « 1=7,2=15, L=2

DEFINT s ® & ® ® = 4+ 3 = & ¥ ¥ 1‘7; 2-15!' L"Z

DEFSNG + « v o = = ¢ = o« o » » 1=7, 2=15, L=2

DEFSTR « o » = « o ¢ s o « o » 1=7, 2=15, L-2

DEINT o+ « s = » o ¢ = « = + o« C=1, G=1

DELETE o o o v = « 2 a o« s « » 1=2, 2~4, 2=17

Dm - - L] . - - - - - - . - - 2-18, L-Z

Diract mode . « = &« o » = & o« =1, 2=34, 2=54, L=1

Bivigion + + « o = ¢ ¢ = s o « 1=10

Double precision . « . « « & - 1=5, 2-15, 2=60, 3-3, A=1, L-3

DSEIS « « o o = ¢ = = w o » = B=2

D5K0$ 4 ® % & ® ou" B ® w w4 & = H-z

EDIT 4 o o o & = 5 u s 2 3+ = 1"‘2; 2"19

Edit mode P T I T I) 1-4; 2-19, L=-1

END v o o o o s « o 5 o o « o 2-8, 2=10, 2-23, 2=32, L-3

EOF 4 4 % ® # & ® # * =2 & = @ 3‘-6’ B-3, B"S, D-é

ERASE « « o o w o = = s = +» o 2=24, L=2

ERL « « o s o s ¢ = s = s » = 2=25

ERR . o s = o 2 ¢« ¢ « « s o » 2=25

ERROR a w & & & ® ®B & & & & & 2-26

Exrror code st e e 4 s s e s 1=15, 2=25 to 2=26, J=1

Error messages . « « » « » » =« 1=13,; J=1, L=2

Brror trapping - « « » « o + « 2=25 tO 2=26, 2=54, 2=73,
B=7, L-3

ESCAPE . « + o ¢ 5 o o o » o » 1=3, 2=19

EXP 4 # = w B ™ % & 8w % ¥ = 3-7; L=-3

EXDORONEiation . + « » « + + « 1=10 to 1=11, 3-7, L-3

EXPraSSions . « « + ¢ = ¢ s = 1-%

PIELD A % = F = & # = = 8 = @ 2-28' 5*3, 3-11

FILES . * # & ®w & 3 = ® = = 0.3' H"’z

FIX s % % @& & ®* & ® % % ¢ & % 3"7

FOR...NEXT * % ® = W & = & 8 & 2"29' A"‘1' L—3

FORMAT PIOGQZAM o o = o ¢ « ¢ = H=10

FPOS o v s o = o o = « o + & o B=2

PRCINT . ¢« « s 3 5 & + & ¢ » c"1; C-‘i, D‘-4’ G=1

FRE - - . = = - s * . - - » - 3-'3

FUNCELONE « « = o « « o « o o 1=14, 2=13, 3=1, K=1

GET v v o o o s o s« o = » » a 2=28, 2-31, B-8, De=4, A=3
He7?

GIVABF . « « =« o o = « « o« » o C=1 to C=2, G=1

GIVINT & E = & B 0w = 4 W *® 3 = E"'z

GOSUB 4 = & ® W ¥ & = = & 2 w 2-32

GOTO v o o & o o a4 & & = & v =® 2-32 to 2-33

ms s = W & ® & W w = @ . = » 3-8

Haxadecimal . 4 o o o o « = o 1=5, 3-8

IF..aGOTO v o o » + =« » = » » 2=34

TE,..THEN . v 4 o « s + = o o 2=25, 2-34

IF...THEN,..ELSE . + « &« « » » 2-34

Indirect moede .+ o + v + » « = 1=1

INF o v « o o o = v 2 =« = o = 3=9

INPUT P . I T) 2-10r 2-23; 2"36; A-zp A-3; B=9

INPUTS o « = o o &
INPUTE o o = = + =

INSTR & =« « + »

INT - - - L L] - L]
integer .+ « + +
Integer division .
INTEL +« « + = o =
Interrupts . . -
ISIS=II . « « » =

RKILL v o » = ¢ & =

LEFTS

LEN o + o =« s » =
IaET L] - > - - L] L]
LEILES . & + = = =
Line fead . . . »
LINE INPUT « 4.
LIRE INPUT# . e .
Line numbers . . .
Line printer . . .
mn‘s - L] - » - -
LIST @« v o = = v «
LLIST .+ v = =« » =
LOAD - - - - - - -
LOC « v = & = & »
LOF - - L - - - .
LOG - - - - - - -
Logical operators

LOOPE - =« + o o =
LPOS & o s = + + =
LPRINT . « = » « »
LPRINT USING . . «
LEET o o = = + »
MBRINT . ¢ « o« o «
MBASIC « « o+ « » »
MDS . + = o » v @
MERGE .« & = +« + =
MIDS L] - - - L - -
MEDS . « o « +« » =«
MxI s - - L] - - - -
MS $ - - L2 L] - - -
MOD operator . .+
Modulus arithmetic
MOUNT . « = + s« »
Multiplication . .
NAME . o+ « = & »
Negation . + + =
NEW .« +» o « & = =

NULL . +

. » P T 4 & o= ¥ W F o

L T T I I N B L R

P I)

L] LI B I 4 % B & ® &

PR T T T B T R R

P T R L I I A I T)

P Y

@ kR & ¥ K % 3 B ¥ % R BB w & » & 8 “ & B % » ® =

a % W OB B ¥ % % ¥ ¥ N

. = & %

. 8 8 &

% 4 4 & % E & % & 4 3 2

» % & % 4 4 % = 8 3 4 @

. PR] PO S T

I T T TR N R T R B T B

[L. I N T R]

L] - % 8§ ¥ - CE T T T R)

P I S R T Y T T

PO T T R T R

L IR

3-9
2=-38, A=3, B-3, H-7

3-10

3-7, 3=10

-4, 3=7, 3-10
1-10

G-1

c-7

2=76, E=1

2-19, B-2

3-11
3=-11
2-28,
H=2
1=2, 2=36, 2«41 to 2—42,—
2-84 to 2=85, L-1

2~41 B
2-42, A-3, B-3

2-40, B-3

1-1 to 1-2, 2-2, 2273, L-2
2-45, 2-47, 2-83, 3=13,.
A=2, E=2

1w1, L1

1=2, 2=43

2-45, F=1, G=2

2-46, 2=77, B=1

3-12, B-3, B-5, B-3, 3-2
D=4, H-2 _
3=12, L-3

1-12
2-29,
2-93,
2-47,
2=47
2=48,

2-82
3-13
2-93, F-1, G=2

B=8

¢c-1, C-4, D-4, E-2, G-1
D=1

G-1

2~4, 2-49, B-2
2-50, 3=13, I-1
3-14, B=3

3-14, B=8

3-14, B-8

1=10

1=-10

H=3

110

2-51
1-19
=8,
2=33

2=52

Numeric con

stants .

Numeric variables .

OCTS & v v o« o = o
Octal . « & v = &
ONM ERROR GOTO . .
ON...GOSUB . & « + =
ON,..GOTCQ & & = o »
CPEN + v « = & s & =
Qparators . s+ s« = »
QPTICON BASE .+ « « «
QUT . ¢ &« 4 = = + a
Overflow . » +» = +
Overlay . . » « » «
Paper tape . . « » »
PEEK . & &+ 4 a s & =
POKE - - - L} - » - L]
PCS .+ & ¢ o = o o &«
an » - L] L] - L] L]
PRINT USING .+ + « -«
PRINT # - - L] - L - ‘ -
PRINT# USING
Protacted filas . .

BUT . . .

. " 2 w

Random files ., . «

Random numb

RANDOMIZE

READ , . .
Ralational
REM - - -,
REMOVE . .
RENUM . .
RESET . .
RESTCRE .
RESUME . .
RETURN . .
RIGETS . .
RND . . .
RSET . . .
Rubgut . .
RUN . . .
SAVE . . .
SBC . .« .
Sequential

ers . .+ .

" = & 4 m

* & o+ = @

operators
» - - - -
- - L - -
L] - - - -
- - - L] -
- Ll - - L[]
- - L] L »
- L L - L
L - - - -
- - - - -
- - - - -
a v e o= 0=
- L - - -

« & & & &

%iia; -

A & ¥ w L T T RN

s B & ¥ B 4 ¥ 4 & & 8 & & & w5 4

L T T T T |

. n o Ll

" 8 % & 4 & &

& &% & B 4 % = 4 ¥ & 8 . @ ¥ 2 =

2 a 3 & * ¥ 8 =

. s % 0w R T T)

5 B 8 % N s B P & % ¥ o4 8 & & &

1=4
1-7

3-14
1-5,
2-54,
=55
2=55
2-8, 2-28, 2-56, B=3,
B-8, H-S

1=9, 1=11 to 1=14,
2=57

2-53

1=11, 3-7, 3=-21, A-1, L-4
2-4

3=14
-3

L-4

2-53

2-5%, 3=15

2=-5%, 3=-15

2=-33, 3-15

2=60, A=t

2=-62, A=2

2-66, A=3, B-3, H=7
2-66, A=3, B=5, B-5
2-77, A=2, B=2

2-28, 2~-68, 8=-8, H~7

2=28, 2-31, 2-39, 2-48,

2-56, 2-68, 3=12, 3-14, Aa-3

B"T’ D"‘4

2-63, 3-16
2~89, 3-16, A-1
2=-70, 2-74

1=11

2=-72, L-3

B-3

2=4, 2-25, 2-73
D=3

274

2-75, L=3

2=-32

3-16

2-6%, 3-16, A=1
2~48, B=%

1=3, 1-15, 220

2-76 to 2-77, B=2

2=46, 2-76 to 2-77, B-1
G~1

2.38 tc 2-39, 2-42, 2-36,
2-66, 2-85, 3-§, 3-12,
8-3

H-4

A

SGN « « 4 s s 3-17

Sm & % 4 & 8 ®N ow ¥ = a2 & = 4 3"17; L-3

Single precisien - 1=5, 2-15, 2-60, 3-5, A-1

SPACES + + « ¢ + 2 « =« & » + » 3=78

SPC w 4 & & ® ¥ ¥ =& & & 4 & = 3"18

SOR v « o « = ¢ o a s o« v & « 3=18, L=3

$tandalone Disk BASIC E-1

STOP o o v + » « & s & » & s » 2-10' 2-23; 2-32; 2=-78, L=-3

STRs a8 =2 & B 8 8 = = & B ¥ 3-~18

String constants . . + + o+ » . 1=4

string functions . . .« + « . + 3=6, 3=10 to 3=-11, 3-13,
i=16, 3-19, 3=22, I-1

String Operators . . « « « + « =14

String SpACE . . » 4 & s » - « 2=6, 3=8, A=1, B-9

String variables ., . . + « » . 1=7, 2=15, 2-41 to 2-42

STRmGs . = % & W = & & = = 3-20

subroutines s ® % & 8 = v 8 % 2-‘3, 2-32' 2"'55; C-T

Subgcripts « + « « 4 4 - ¢ o & 1=7, 2=18, 2=57, L-3

Subtraction P T T T I) 1=140

SWAP . o o » » & o 2 % « = s &« 2“79

SYSTEM . + ¢« = # & = = = » 3 = D-4; F=1

TBB 4 ® ® % &+ ¥ % ®m =& ® = & = 3-2{}

Tab a # 4 ® = & & =2 & 8 = 8 * 1"3 to 1=4 B

TAN P T L R s s e 3-21’ L-3

TERDOS « « o o » o o o « s o o F=1

TROFT P T T T SO T R z‘aor -3 i T

TRON o« + ¢ + ¢ = o & & & n & » 2-80, L=3

USR - F B % = & ¥-F = & & B W 2"16; 3-21' C=1

Usmc L S N . * = * =& C-z, G'-‘1

VAL R L T T I O 3-22

va:iableg - & ¥ ® w ¥ w & ¥ 1=6, L=4

VARPTR . . » e e » w s v = « 3723, E=10

WAIT v o o « ¢ o = « o = = » « 2=81

WEND & 4« « o o o o » v o # = = 2=02, L-3

WHILE s w & B = & ¥ & = * » ¥ 2"82' L-3

WIDTE « « o » ¢+ 2+ s o » » = « 2-83, &-2

WIDTH LPRINT B 8 8 *® & = ® F » 2-83’ A—Z

WRITE O L T T T N B S 2-84

WRITE* PR TR T T R L N D I 2-85' A“3, B-3

