DIGITAL RESEARCH
Post O0ffice Box 579
Pacific Grove, California 93950

CP/M INTERFACE GUIDE

Copyright (© Digital Research
1975, 1976

TABLE OF CONTENTS

1. INTRODUCTION . . . «. . « « + « .

1.1 cCp/M Organization

1.2 Operation of Transient Programs

1

1.3 Operating System Facilities

2. BASIC I/0 FACILITIES+

2.1 Direct and Buffered 1/0

2.2 A Simple Example

3. DISK I/O FACILITIES . . « - « o
3.1 File System Organization .
3.2 File Control Block Format .
3.3 Disk Access Primitives . .

3.4 Random ACCESS . « « 2+ o o+

4. SYSTEM GENERATION

4.1 TInitializing CP/M from an Existing Diskette

5. CP/M ENTRY POINT SUMMARY

6. ADDRESS ASSIGNMENTS

7. SAMPLE PROGRAMS . . . « . ¢ &+ « « « &

ii

10
12
18

18
19

20

22

23

CP/M INTERFACE GUIDE

1. TINTRODUCTION

This manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
pcripheral and disk I/0 facilities of the system,

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/0 system for serial peripheral control
BDOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-
men entry point and referred to as the FDOS. The CCP is a dis-
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA is an area of memory (i.e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed., User programs also execute in the TPA.
The grganization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
{(which is detailed in later sections), including user defined inter-
rupt locations. The portion between tbase and cbhase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FDOS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command line takes one of the forms:

<command>
<command> <filename>
<command> <filename~” ,<filetype~>

Note:

Figure 1. CP/M Memory Organization

fbase: FDOS
Cbhase: ccep
TPA
tbhase:
System Parameters
boot: EEEEEER

: {;address field of jump is fbase

entry: the principal entry point to FDOS is at locatien 0005
which contains a JMP to fbase. The address field at
location 0006 can be used to determine the size of
available memeory, assuming the CCP is being overlayed.

The exact addresses for boot, tbase, cbhase, fbase,.
and entry vary with the CP/M version (see
Section 6. for version correspondence).

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately:; other-
wise the CCP searches the currently addressed disk for a file

by the name

<command>.COH

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memery (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,

and extending up to address cbhase.

If the <command> is followed by either a <filename> or
<filename>.<filetype>, then the CCP prepares a file control-
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/O facilities
of the FDOS. If the program uses no FDOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accomplished by a direct branch to location "boot” in
memory.

The transient uses the CP/M 1I/0 facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/0 system is accessed by passing
a "function number" and an "information address” to CP/M through
the address marked "entry” in Figure 1. In the case of a disk
read, for example, the transient program sends the number corres-
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
complete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in-
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BICS coperations are listed first:**

* Address "entry" contains a jump to the lowest address in the
FDOS, and thus "entry+1" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-
ponds exactly to Intel's peripheral definition, including 1I/0
port assignment and status byte format (see the Intel manual
which discusses the Imtellec MDS hardware environment).

Read Console Character
Write Console Character
Read Reader Character

Write Punch Character

Write List Device Character
Set I/0 Status

Interrogate Device Status
Print Console Buffer

Read Conscle Buffer
Interrogate Console Status

The exact details of BIOS access are given in Section 2. The BDOS
primitives include the following operations:

Disk System Reset

Drive Select

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Read Record

Write Record

Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/0 FACILITIES

Access to common peripherals is accomplished by passing a
function number and information address to the BIOS. 1In general,
the function number is passed in Register C, while the informa-
tion address is passed in Register pair D,E. Note that this
conforms to the PL/M Conventions for parameter passing, and thus
the following PL/M procedure is sufficient to link to the BIOS
when a value is returned:

DECLARE ENTRY LITERALLY '0C05H'; /* MONITOR ENTRY */
MONZ2: PROCEDURE (FUNC, INFO) BYTE:

DECLARE FUNC BYTE, INFO ADDRESS:

GO TO ENTRY;

END MONZ;

ar

MONl: PROCEDURE (FUNC, INFO};
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY:
END MON1

if no returned value is expected.

2,1 Direct and Buffered 1/0.

The BIOS entry points are given in Table I. In the case of
simple character I/0 teo the conscle, the BIOS reads the console
device, and removes the parity bit. The character is echoed back
to the console, and tab characters {control-I) are expanded to
tab positions starting at column one and separated by eight char-
acter positions. The I/0 status byte takes the form shown in
Table I, and can be programmatically interrogated or changed.

The buffered read operation takes advantage of the CP/M line edit-
ing facilities. That is, the program sends the address of a read
buffer whose first byte is the length of the buffer. The second
byte is initially empty, but is filled-in by CP/M to the number

of characters read from the console after the operation (not
including the terminating carriage-return). The remaining posi-
tions are used to hold the characters read from the console. The
BIOS line editing functions which are performed during this oper-
ation are given below:

break ~ line delete and transmit

rubout - delete last character typed, and echo

control-C system rebowpt

control=U delete entire line

control-E return carriage, but do not transmit

buffer (physical carriage return)

<pr> - transmit buffer

The read routine also detects control character sequences other
than those shown above, and echos them with a preceding "t"
symbol. The print entry point allows an entire string ¢f symbols
to be printed before returning from the BIOS. The string is
terminated by a "$" symbol.

2.2 A Simple Example

As an example, consider the following PL/M procedures and
procedure calls which print a heading, and successively read
the console buffer. Each console buffer is then echoed back in
reverse order:

PRINTCHAR: PROCEDURE (B):
/* SEND THE ASCII CHARACTER B TO THE CONSOLE */
DECLARE B BYTE:
CALL MON1(2,B}:
END PRINTCHAR;

CRLF: PROCEDURE;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (0AH);
END CRLF;

PRINT: PROCEDURE (A);
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS:
CALL MON1{9,3):
END PRINT;

DECLARE FRDBUFF (130) BYTE;

READ: PROCEDURE; -
/* READ CONSOLE CHARACTERS INTO 'RDBUFF' #*/
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MON1 (10, .RDBUFF) ;

END READ;

DECLARE I BYTE:

CALL CRLF; CALL PRINT (.'TYPE INPUT LINES $');
DO WHILE 1; /* INFINITE LOOP~UNTIIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*') /* PROMPT WITH '*' */
CALL READ; I = RDBUFF(l):;
DO WHILE (I:= I =-1) <> 255;
CALI PRINTCHAR (RDBUFF{I+2)}:
END;
END;

The execution of this program might proceed as follows:

TYPE INPUT LINES
*HELLO‘2
QLLEH

*WALT, WALLA WASH)
HSAW ALLAW ALLAW
*MOM WOW}

WOW MOM

*tC (system reboot)

*

BASIC

TABLE T

I/0 OPERATIONS

FUNCTION/ ENTRY RETURNED TYPICAL
NUMBER PARAMETERS VALUE CALL
Read Consocle None ASCII Character I = MON2(1l,0)}

1

Write Console
2

ASCII Character

None

CALL MON1(2,'A')

Read Reader
3

None

ASCII Character

I = MON2(3,0)

9

string termi-
nated by 's$'

Write Punch ASCII Character None CALL MON1l{4,'B’)

4
| Write List ASCII Character None - CALL MONL1({5,'C")

5.

Get I1/0 Status None I/0 Status Byte IOSTAT=MON2(7,0)
7

Set I/0 Status I/0 Status Byte None CALL MON1 (8, IOSTAT)
8

Print Buffer Address of None CALL MON1 (9, .'PRINT

THIS §$°')

TABLE I (continued)

FUNCTION/
NUMBER

ENTRY

PARAMETERS

RETURNED
VALUE

TYPICAL
CALL

Read Buffer
10

Address of
Read Buffer+*

Read buffer is
filled to maxi-

CALL MON1 ({10,
. RDBUFF) ;

mum length with
console charac-

{See Notel) ters

Byte value with I = MON2(11l,0)
least signifi-

cant bit = 1

Interrogate None

Console Ready
11

{true) if con-
scole character
is ready
Notel: _Read buffer is a sequence of memory locations of the form:
m{kjcy|caics Cyr
I_TLcurrent buffer length
Maximum buffer length
Notezz The I/0 status byte is defined as three fields A,B,C, and D
2b 2b 2b 2b
[alBlclip |
MSB LSB
requiring two bits each, listed from most significant to least
significant bit, which define the current device assignment as
follows:
‘o TV 0 TTY
D = 1 CRT cC =}1 FAST READER l FAST PUNCH A =] 1 CRT
Console 2 BATCH Reader \ 2 Punch Listy 2 -
3 - 3 -

3. DISK I/0 FACILITIES

The BDOS section of CP/M provides access to files stored on
diskettes. The discussion which follows gives the overall file
organization, along with file access mechanisms.

3.1 File Organization

CP/M implements a named file structure on each diskette, pro-
viding a logical organization which allows any particular file to
contain any number of records, from completely empty, to the full
capacity of a diskette. Each diskette is logically distinct,
with a complete operating system, disk directory, and file data
area. The disk file names are in two parts: the <filename>
which can be from one to eight alphanumeric characters, and the
“filetype™ which consists of zero through three alphanumeric
characters. The <filetype” names the generic category of a par-
ticular file, while the <filename™ distinguishes a particular
file within the category. The <filetype®s listed below give
some generic categories which have been established, although
they are generally arbitrary:

ASM assembler source file
PRN assembler listing file

HEX assembler or PL/M machine code
in "hex" format

BAS BASIC Source file
INT BASIC Intermediate file

COM Memory image file (i.e., "Commangd"
file for transients, produced by LOAD)

BAK Backup file produced by editor
{see ED manual)

$$% Temporary files created and normally
erased by editor and utilities

Thus, the name
X.ASM

is interpreted as an assembly language source file by the CCP
with <filename> X.

The files in CP/M are organized as a logically contiguous se-
quence of 128 byte records {although the records may not be phys-
ically contiguous on the diskette), which are normally read or
written in sequential order. Random access is allowed under CP/M
however, as described in Section 3.4. No particular format with-
in records is assumed by CP/M, although some transients expect
particular formats:

10

(1) Source files are considered a sequence of
ASCII characters, where each "line" of the
source file is followed by carriage-return-
line-feed characters. Thus, one 128 byte
CP/M record could contain several logical
lines of source text. Machine code "hex"
tapes are also assumed to be in this for-
mat, although the loader does not require
the carriage-return-line-feed characters.
End of text is given by the character con-
trol-z, dr real end-of-file returned by
CP/M.

and

(2) COM files are assumed to be absolute machine
code in memory image form, starting at tbase
in memory. In this case, control-z is not
considered an end of file, but instead is
determined by the actual space allocated
to the file being accessed.

3.2 PFile Control Block Format

Each file being accessed through CP/M has a corresponding
file control block (FCB) which provides name and allocation
information for all file operations. The FCB is a 33~byte area
in the transient program's memory space which is set up for each
file. The FCB format is given in Figure 2. When accessing CP/M
files, it is the programmer's responsibility to fill the lower
16 bytes of the FCB, along with the CR field. Normally, the FN
and FT fields are set to the ASCII <filename> and <filetype~>,
while all other fields are set to zero. Each FCB describes up
to 16K bytes of a particular file (0 to 128 records of 128 bytes
each), and, using automatic mechanisms of CP/M, up to 15 addi-
tional extensions of the file can be addressed. Thus, each FCB
can potentially describe files up to 256K bytes (which is slightly
larger than the diskette capacity).

FCB's are stored in a directory area of the diskette, and are
brought into central memory before file operations (see the OPEN
and MAKE commands) then updated in memory as file operations pro-
ceed, and finally recorded on the diskette at the termination of
the file operation {see the CLOSE command). This organization
makes CP/M file organization highly reliable, since diskette file
integrity can only be disrupted in the unlikely case of hardware
failure during update of a gingle directory entry.

It should be noted that the CCP constructs an FCB for all
transients by scanning the remainder of the line following the
transient name for a <filename® or <filename®.<filetype® com-
bination. Any field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfcbhb (see Section 6),
with an assumed I/0 buffer at tbuff. The transient can use tfch
as an address in subsequent input or output operations on this
file.

10a

In addition to the default fcbh which is set-up at address tfch, the
CCP also constructs a second default fcb at address tfcb+ 16 (i.e., the
disk map field of the fcb at tbase). Thus, if the user types

PROGNAME X.Z0T Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at tfch

is injtialized to the filename X with filetype ZOT. Since the user typed

a second file name, the 16 byte area beginning at tfch + 1615 is also
initialized with the filename Y and filetype ZAP. It is the responsibility
of the program to move this second filename and filetype to ancther area
{usually a separate file control block) before opening the file which
begins at tbase, since the open operation will fill the disk map peortion,
thus everwriting the second name and type.

If no file names were specified in the coriginal command, then the
fields beginning at tfck and tfcb + 16 both contain blanks (20H), If
one file name was specified, then the field at +tfch + 16 contains blanks.
If the filetype is omitted, then the field is assumed to contain blanks.
In all cases, the CCP translates lower case alphabetics to upper case
to be consistent with the CP/M file naming conventions.

As an added programming convenience, the default buffer at tbuff
is initialized to hold the entire command line past the program name.
Address tbuff contains the number of characters, and tbuff+l, tbuff+2,
. «., contain the remaining characters up to, but not including, the
carriage return. Given that the above command has been typed at
the console, the area beginning at tbuff is set up as follows:

tbhuff:
+0 +1 +2 +3 +#4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15
12 ¥ X . Z o T ¥ Y . Z A P ? 7 7

where 12 is the number of valid characters (in binary), and ¥ represents
an ASCII blank. Characters are given in ASCII upper case, with un-
initialized memory following the last valid character.

Again, it is the responsibkbility of the program to extract the infor-
mation from this buffer before any file operations are performed since
the FDOS uses the tbuff area to perform directory functions.

In a standard CP/M system, +he following values are assqmed:

boot: QQCO0H bootstrap load {warm start)
entry: 0005H entry point to FDOS

tfch: Q05CH first default file control bleck
tfch+1l6e OCECH second file name

thuff 0080H default buffer address

thase: 0IQO0H base of transient area

Figure 2.

0 123 456 7 8 910111213141516171819..

11

File Control Block Format

-..2728 29303132

- ~ i

ET FN FT EX
FIELD FCB_POSITIONS

ET 0

FN 1-8

FT 9;11

EX 12

) 13-14

RC 15

DM 16-31
" NR 32

RC DM NR

PURPOSE

Entry type (currently not used,
but assumed zero)

File name, padded with ASCII
blanks

File type, padded with ASCII
blanks .

File extent, normally set to
zZero

Not used, but assumed zero

Record count is current extent
Size {0 to 128 records)

Disk allocation map, filled-in
and used by CP/M

Next record number to read or
write

12

3.3 Disk Access Primitives

Given that a program has properly initialized the FCB's for
cach of its files, there are several operations which can be per-
formed, as shown in Table II. 1In each case, the operation is
applicd to the currently selected disk (see the disk select oper-
ation in Table II), using the file information in a specific FCB.
The following PL/M program segment, for example, copies the con-
tents of the file X.Y to.the (new) file NEW.FIL:

DECLARE RET BYTE:

OPEN: PROCEDURE (A)
DECLARE A ADDRESS;
RET=MON2 {15,3) ;
END OPEN:;

CLOSE: PROCEDURE (A);
DECLARE A ADDRESS:
RET=MONZ (16,A) ;
END;

MAKE : PROCEDURE (A) :
DECLARE A ADDRESS;
RET=MON2 (22,3) ;
END MAKE;

DELETE : PROCEDURE (3) :
DECLARE A ADDRESS:;
/* IGNORE RETURNED VALUE */
CALL MON1(19,A);
END DELETE;

READBF : PROCEDURE (A);
DECLARE A ADDRESS;
RET=MON2 (20,4) ;
END READBF;

WRITEBF: PROCEDURE (A):
DECLARE A ADDRESS:;
RET=MON2(21,3) ;
END WRITEBF:

INIT: PROCEDURE ;
CALL MON1(13,0):

END INIT;

/* SET UP FILE CONTROL BLOCKS */
DECLARE FCBL (33) BYTE
INITIAL (0,'X 'L'y 1,0,0,0,0),
FCB2 (33) BYTE
INITIAL (0, 'NEW ‘', 'FIL',0,0,0,0};

13

CALL INIT;
/* ERASE 'NEW.FIL' IF IT EXISTS */
CALL DELETE ({(.FCB2);:
/* CREATE''NEW.FIL' AND CHECK SUCCESS */
CALL MAKE (.FCB2):
IF RET = 255 THEN CALL PRINT (.*'NO DIRECTORY SPACE $'):
ELSE
DO; /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */
CALL OPEN (.FCB1l):
IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $'}:
ELSE
DO: /* FILE X.Y FOUND AND OPENED, SET
NEXT RECORD TO ZERC FOR BOTH FILES */
FCB1(32), FCB2{(32) = 0:
/% READ FILE X.Y UNTIL EQF OR ERROR */
CALL READBF (.FCBl): /*READ TO 80H*/
DO WHILE RET = 0; ,
CALL WRITERBRF (.FCB2) /*WRITE FROM 80QH*/
IF RET = Q0 THEN /*GET ANOTHER RECORD*/
CALL READBF (.FCBl):; ELSE
CALL PRINT (.'DISK WRITE ERRCR $'):
END:
IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $'):
ELSE
DO; CALL CLOSE (.FCB2);: :
IF RET = 255 THEN CALL PRINT (.’'CLOSE ERRORS$'):
END;
END;
END:
EOF

This program consists of a number of utility procedures for
opening, closing, creating, and deleting files, as well as two
procedures for reading and writing data. These utility procedures
are followed by two FCB's for the input and output files. 1In
both cases, the first 16 bytes are initialized to the <filename>
and ~filetype” of the input and output files. The main program
first initializes the disk system, then deletes any existing
copy of "NEW.FIL" before starting. The next step 1s to create
a new directory entry {(and empty file) for "NEW.FIL". If file
creation is successful, the input file "X.¥Y" is opened. If this
second operation is also successful, then the disk to disk copy
can proceed. The NR fields are set to zero so that the first
record of each file is accessed on subsequent disk I/0 operations.
The first call toc READBF fills the (implied) DMA buffer at 80H
with the first record from X.Y. The loop which follows copies
the record at 80H to "NEW.FIL" and then reports any errors, or
reads another 128 bytes from X.Y. This transfer operation con-
tinues until either all data has been transferred, or an error
condition arises. If an error occurs, it is reported; other-
wise the new file is closed and the program halts.

TABLE II

DISK ACCESS PRIMITIVES

L.

FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAYL CALL
Lift Head None None CALL MONZ2{(12,Q)
12 Head is lifted from
current drive
Initialize BDOS None None CALL MON1({13,0)

and select disk
1] AII

Set DMA address

to 80H

13

Side effect is that
digsk A is"logged-
in" while all others
are considered “off-
line"

Log-in and
select disk
X

14

An integer value cor-
responding to the
disk to log-in:

A=0, B=1, C=2, etc.

None

Disk X is considered
"on-line" and selec-
ted for subsequent
file operations

CALL MON1(14,1)

(Log-in disk "B")

Open file
15

Address of the FCB
for the file to be
accessed

Byte address of the
FCB in the directory,
if found, or 255 if
file not present.

The DM bytes are set
by the BDOS.

-
I}

MON2(15,.FCB)

Close file
16

Address of an FCB
which has been pre-
viously created or
opened

Byte address of the
directory entry cor-
responding to the
FCB, or 255 if not
present

~
i

MON2 (16, .FCB)

14

TABLE II (continued)

FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL
Search for file Address of FCB con- Byte address of first I = 5M042(17,.FCR)
17 taining <filename> FCB in directory that
and <«filetype> to matches input FCB, if
match. ASCII "2" any; otherwise 255
in FCB matches any indicates no match.
character.
Search for next Same as ahove, but Byte address of next I = MON2{l8,.FCB)
Qccurrence called after func-
18 tion 17 (no other

intermediate BDOS
calls allowed)

Delete File Address of FCB con- None I = MON2(19,.pC)
19 taining <«<filename>»
and <«<filetype> of
. file to delete from

diskette
Read Next Record Address of FCB of a 0 = successful read T = MONZ2(20,.FCEBE)
20 successfully OPENed 1l = read past end of
file, with NR set file
to the next record 2 = reading unwritten
to read (see notel) data in random

access

Notelz The I/0 operations transfer data to/from addrets B80H for the next 128 bytes unless
the DMA address has been altered (see function 26). Further, the NR field of the
FCB is automatically incremented after the operation. If the NR field exceeds 128,
the next extent is opened automatically, and the NR field is reset to zero.

15

TABLE II

(continued)

FUNCTION/NUMBER

ENTRY PARAMETERS

RETURNED VALUE

TYPICAL CALL

Write Next Record Same as above, except 0 = successful write I = MON2(21,.FCB)
NR is set to the next 1 = error in extend-
21 record to write ing file
2 = end of disk data
255 = no more dir-
ectory space
(see notez)
Make File Address of FCB with Byte address of dir- I = MON2{22,.FCB)
: <filename> and <file- ectory entry alloca-
22 type> set. Direc- ted to the FCB, or
tory entry is cre- 255 if no directory
ated, the file is space is available
initialized to empty.
Rename FCB Address of FCB with Address of the dir- I = MON2(2 3,.FCB)
old FN and FT in ectory entry which
23 first 16 bytes, and matches the first
new FN and FT in 16 bytes. The
second 16 bytes <filename>and <file-
type> is altered
255 if no match.
Note,: There are normally 64 directory entries available on each diskette (can be

expanded to 255 entries), where one entry is required for the primary file,

and one for each additional extent.

16

TABLE II (continued)

FUNCTION/NUMBER

ENTRY PARAMETERS RETURNED VALUE

TYPICAL CALL

Interrogate log-
in vector

24

None Byte value with "1"
in bit positions of
"on line" disks,
with least signi-
ficant bit corres-
ponding to disk "A"

I = MON2{(24,0)

Set DMA address Address of 128 byte None CALL MON1(26,2000H)
26 DMA buffer Subsequent disk I/0
takes place at spe-
cified address in
memory
Interrogate None Address of the allo- MON3: PROCEDURE(...)
Allocation cation vector for ADDRESS;
27 the current disk
(used by STATUS com- A = MON3(27,0);
mand)
Interrcgate Drive None Disk number of currently I = MON2(25,0);

number
25

logged disk (i.e., the
drive which will be used
for the next disk operation

17

18

3.4 Random Access

Recall that a single FCB describes up to a 16K segment of a
(possibly) larger file. Random access within the first 16K seg-
ment is accomplished by setting the NR field to the record number
of the record to be accessed before the disk 1/0 takes place.
Note, however, that if the 128th record is written, then the
BDOS automatically increments the extent field (EX), and opens
the next extent, if possible. 1In this case, the program must
explicitly decrement the EX field and re-open the previous extent.
If random access outside the first 16K segment is necessary,
then the extent number e be explicitly computed, given an absol-
ute record number r as :

Ir
€= lesJ

SHR(r,7)

or equivalently,

=

this extent number is then placed in the EX field before the seg-
ment is opened. The NR value n is then computed as

n r mod 128

or
n = r AND 7FH.

When the programmer expects considerable cross-segment accesses,
it may save time to create an FCB for each of the 16K segments,

open all segments for access, and compute the relevant FCB from
the absolute record number r.

4. SYSTEM GENERATICN

As mentioned previcusly, every diskette used under CP/M is assumed to
contain the entire system (excluding transient commands) on the first twe
tracks. The operating system need not be present, however, if the diskette
is only used as secondary disk storage on drives B, C, ..., since the CP/M
system is loaded only from drive A.

The CP/M file system is organized so that an IBM-~compatible diskette
from the factory (or from a vendor which claims IBM compatibility) looks
like a diskette with an empty directory. Thus, the user must first copy
a version of the CP/M system from an existing diskette te the first two
tracks of the new diskette, followed by a sequence of copy operations,
using PIP, which transfer the transient command files from the original
diskette to the new diskette.

19

NCTE: before you begin the CP/M copy coperation, read your Licensing
Agreement. It gives your exact legal obligations when making reproductions
of CP/M in whole or in part, and specifically requires that you place the
copyright notice

Copyright (c), 1976
Digital Research

on each diskette which results from the copy operation.
4.1, Initializing CP/M from an Existing Diskette

The first two tracks are placed on a new diskette by running the tran-
sient command SYSGEN, as described in the document "An Introduction to CP/M
Features and Facilities." The SYSGEN operation brings the CP/M system from
an initialized diskette into memory, and then takes the memory image and
places it on the new diskette.

Upon completion of the SYSGEN operation, place the original diskette
on drive A, and the initiazlized diskette on drive B. Reboot the system;
the response should be '

A>

indicating that drive A is active. Log inteo drive B by typing
B:

and CP/M should respond with
B>

indicating that drive B is active. If the diskette in drive B is factory
fresh, it will contain an empty directory. Non-standard diskettes may,
however, appear as full directories to CP/M, which can be emptied by typing

ERA *.*.?

when the diskette to be initialized is active. Do not give the ERA command
if you wish to preserve files on the new diskette since all files will be
erased with this ctmmand.

After examining disk B, rebocot the CP/M system and return to drive A for
further operations.

The transient commands are then copied from drive A to drive B using the
PIP program. The seguence of commands shown below, for example, copy the
principal programs from a standard CP/M diskette to the new diskette:

A>PIP“
*B:STAT.COM=STAT.COM,
*B:PIP.COM=PIP.COM,
*B:LOAD.COM=LOAD. COM'?
*B:ED.COM=ED, CDM‘?

20

*B:ASM. COM=ASM. COM,,
*B:SYSGEN. COM=SYSGEN.COM,
*B :DDT. COM=DDT . COM,

*

P
v

The user shauld then log in disk B, and type the command
* *
DIR *, P

to ensure that the files were transferred to drive B from drive A. The
various programs can then be tested on drive B to check that they were
transferred properly.

Note that the copy operation can be simplified somewhat by creating
a "submit" file which contains the copy commands. The file could be
named GEN.SUB, for example, and might contain

SYSGEN,
PIP B:STAT.COM=STAT.COM,

PIP B:PIP.COM=PIP.CON,

PIP B:LOAD.COM=LOAD.COM,

PIP B:ED.COM=ED.COM,

PIP B:ASM.COM=ASM.COM,

PIP B:SYSGEN.COM=SYSGEN.COM,
PIP B:DDT.COM=DDT.COM,

The generation of a new diskette from the standard diskette is then done
by typing simply

SUBMIT @ﬂb

5. CP/M ENTRY POINT SUMMARY

The functions shown below summarize the functions of the
FDOS. The function number is passed in Register C (first para-
meter in PL/M), and the information is passed in Registers D,E
{second PL/M parameter). Single byte results are returned in
Register A. If a double byte result is returned, then the high-
order byte comes back in Register B (normal PL/M return). The
transient program enters the FDOS through location "entry" (see
Section 7.) as shown in Section 2. for PL/M, or

CALL entry

in assembly language. All registers are altered in the FDOS.

Function

W @~ O e woNn = O

P
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

Number

System Reset
Read Consnle
Wrifte Console
Read Reader
Write Punch
Write List

(not usedqd)

Interrogate I/0 Status

Alter I/0 Status

Print Console Buffer
Read Console Buffer
Check Console Status

Lift Disk Head
Reset Disk System
Select Disk

Open File

Close File

Search First
Search Next
Delete File

Read Record
Write Record
Create File
Rename File
Interrogate Login

Interrogate Disk

Set DMA Address

Interrogate Allocation

Information

ASCII character
ASCII character

ASCII character

I/0 Status Byte
Buffer Address
Buffer Address

Disk number
FCB Address

DMA Address

21

Result

ASCII character

ASCII character

I/0 Status Byte

True if character
Ready

Completicn Code

Login Vector

Selected Disk
Number

Address of Allo-
cation Vector

22

©. ADDRESS ASSIGNMENTS

. The standard distribution version of CP/M is organized for an Intel
MDS microcomputer developmental system with 16K of main memory, and two
diskette drives. Larger systems are available in 16K increments, providing
management of 32K, 48K, and 64K systems (the largest MDS system is 62K
since the RCM monitor provided with the MDS resides in the top 2K of the
memory space). For each additional 16K increment, add 4000H to the values
of chase and fhase.

.The address assignments are

boot = Q0COH warm start operation

tfch = QOQ5CH default file control block lecatien
tbuff= 0080H default buffer location

tbhase= QlCO0OH base of transient program area
cbase= 2900H base of conscle command processor
fhase= 320Q0H base of disk operating system
entry= 0005H entry point to disk system from

user programs

23

7. SAMPLE PROGRAMS

This section contains two sample programs which interface with the CP/M
operating system. The first program is written in assembly language, and
is the source program for the DUMP utility. The second program is the CP/M
LOAD utility, written in PL/M.

The assembly language program begins with a number of "equates" for sys-
tem entry points and program constants. The equate

BDOS EQU 0005H

for example, gives the CP/M entry point for peripheral I/C functions. The
dafualt file contrel block address is also defined (FCB), along with the
default buffer address (BUFF)}. Note that the program is set up to run at
location 100H, which is the base of the transient program area. The stack
is first set-up by saving the entry stack pointer into OLDSP, and resetting
SP to the local stack. The stack pointer upon entry belongs to the console
command processor, and need not be saved unless control is to return to the
CCP upon exit. That is, if the program terminates with a reboot (branch to
location COQOQH) then the entry stack pointer need not be saved.

The program then jumps to MAIN, past a number of subroutines which are
listed below:

BREAK - when called, checks to see if there is a console
character ready. BREAK is used to stop the listing
at the console

PCHAR - print the character which is in register A at the
console.
CRLF - send carriage return and line feed to the console

PMIE - print the hexadecimal value in register A in ASCII-
at the conscle

PHEX -~ print the byte value (two ASCII characters) in
register A at the console

ERR - print errof flag #n at the console, where n is

1 if file cannot be opened
2 if disk read error occurred

GNB - get next byte of data from the input £ile. If the
IBP {input buffer pcinter) exceeds the size of the
input buffer, then another disk record of 128 bytes
is read. Otherwise, the next character in the buffer
is returned. IBP is updated to point to the next
character.

24

The MAIN program then appears, which begins by calling SETUP. The SETUP
subroutine, discussed below, opens the input file and checks for errors.
If the file is opened properly, the GLOOP {get lcup) label gets control.

On each successive pass through the GLOOP label, the next data byte
ig fetched using GNE and save in register B. The line addresses are listed
every sixteen bytes, so there must be a check to see if the least signi-
ficant 4 bits is zero on éach output. If so, the line address is taken
from registers h and 1, and typed at the left of the line. In all cases,
the byte which was previously saved in register B is brought back to
register A, following label NONUM, and printed in the output line. The
cycle through GLOCOP continues until an end of file condition is detected
in DISKR, as described below. Thus, the output lines appear as

G000 bk bb bk bb kb kb bb bk bk bb bb bb bk bb bb bb
0010 bb bb kb bb kb bb bb bk bb bk bb bk bb bb bbh bb

until the end of file.

The label FINIS gets control upon end of file. CRLF is called first
to return the carriage from the last line output. The CCP stack pointer
is then reclaimed from OLDSP, followed by a RET to return to the console
command processor. Note that a JMP O000H could be used following the
FINIS label, which would cause the CP/M system to be brought in again from
the diskette (this operation is necessary only if the CCP has been over-
layed by data areas}.

The file control block format is then listed {(FCBDN ... FCBLN) which
overlays the fcb at location 05CH which is setup by the CCP when the
DUMP program is initiated. That is, if the user types

poMP X.Y

then the CCP sets up a properly formed fcb at location G5CE for the DUMP

(or any other) program when it goes into execution. Thus, the SETUP sub-
routine simply addresses this default fcb, and calls the disk system to

open it. The DISKR (disk read) routine is called whenever GNB needs ancther
buffer full of data. The default buffer at location 80H is used, along

with a pointer (IBP) which counts bytes as they are processed, Normally,

an end of file condition is taken as either an ASCII 1lAH (contxol-z), or

an end of file detection by the DOS. The file dump program, however, stops
only on a DOS end of file.

g1e9
8065
09aF
po14
2002
poel
poes

8a5C
3880

2100
2103
8ld4
8137
n1aa

018D

gler
2111
151

151
154
als56
8159
glsC

15D
2168
gl62
8163
2166
2169

glea
916C
BleF
8171
8174

9175
8177
8179

(U I | BT | I

noH

210e0e
39

220F21
315101
C3C481

E5D5C5°

OEOB
CDOS0&
C1D1El
C9

E5D5C5
PEB2
5F
coesep
C1blEl
C9

3E@BD

Ch5D081 -

3EBA
CD5D41
C9

E64F
FEGA
Dz2814l

4 my, ma

BDOS
OPENF
READF
TYPEF
CONS
BRKF
FCB
BUFF

LT T

IBF:

¥
-

6LDSP:
STACK:
STKTOP

r

-
F

BREAK :

PCHAR:

CRLF:

] we we

NIB:

FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

25
ORG 100H
EQU 0058 ;DOS ENTRY POINT
EQU 15 "+FILE OPEN
EQU 20 :READ FUNCTION
EQU 2 sTYPE FUNCTION
£QU 1 :READ CONSOLE
EQU 11 -BREAK KEY FUNCTION (TRUE IF CHAR READY)
EQU 5CH sFILE CONTROL SLOCK ADDRESS
EQU g0H ;INPUT DISK BUFFER ADDRESS
SET UP STACK
LXI H,9
DAD Sp
SHLD OLDSP
LXI SP,STKTOP
JMPp MAIN
VARIABLES
DE 2 s INPUT BUFFER POINTER
STACK AREA
DS 2
DS 64
EQU S
SUBROUTINES
;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)
PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED
MVI C,BRKF
CALL BDOS
POP 8! POP D! POP H; ENVIRONMENT RESTORED
RET
;PRINT A CHARACTER
PUSH H! PUSH D! PUSH B; SAVED
MV C,TYPEF
MOV E,A
CALL BDOS
BOP B! POP D! POP H; RESTORED
RET
MV A, 0DH
CALL PCHAR
MVI A, 0AH
CALL PCHAR
RET

; PRINT NIBBLE IN REG A

ANT
CprI
JNC

@rd ;LOW 4 BITS
12
Pl

LESS THAN OR EQUAL T0O 9

-~y

817C C634¢ ADI @
a17€ C38381 . JmpP PRN N
: ‘GREATER OR EQUAL TO 1¢
P181 C637 Fli: ADI ‘AT - 18
3183 CDSDBL PRN: CALL PCHAR
2186 C9 RET
PHEX: ;PRINT HEX CHAR IN REG A
9187 FS PUSH PSw
B188 BF RRC
6189 oF RRC ,
318A @F RRC
3183 @F RRC
g18C CD7591 CALL PNIB :PRINT NIBBLE
@18F F1l 20P PSw
pl96 CD7561 CALL PNIS
193 C9 RET
ERK: s P RINT ERROR MESSAGE
2194 CD6AQL CALL CRLF
#197 3E23 MVI a, &7
2199 CD5CEl CALL PCHAR
P1SC 78 MOV A,B
919D Cé3a ADI ‘8"
@19F CDSDEZ1 CALL PCHAR
@1A2 CD6AG] CALL CRLF
#1A5 C3F701 JMP FINIS
GiNB 2 :GET NEXT BYTE
91a8 3agpel LDA iBp
#1AB FERD CPI 80Hd
@1AD C2B4g@1 JNZ GY

READ ANOTHBER BUFFER

- wmE mam

#l86 CCl622 CALL DISKR
8lB3 AF XRA A
G@: sREAD THE BYTE AT BUFF+REG A
#1B4 5F MOV E,A
61B5 1600 . MVI D,®
#187 3C INKR A
f1B8 328041 STA IBP

POINTER IS INCREMENTED
SaVvE THE CURRENT FILE ADDRESS

-~ me

#1BB E5 PUSH B

@1BC 218008 LX1I H,BUFF
p1BF 19 DAD D

81Co 7E MOV A,M

BYTE IS IN THE ACCUMULATOR

. mE R

RESTCRE FILE ADDRESS AND INCREMENT

91Cl E1 POP B
81C2 23 INX H
81C3 C9 RET
MAIN: ; READ AND PRINT SUCCESSIVE BUFFERS

#l1C4 CDFFE1 CALL SETUP ;SET UP INPUT FILE

81C7 3E88 CMVI A,80H

@1C9 320001 3TA IBP sSET BUFFER POINTER TO 80H
#1CC 21FFFF LX1I H,FFFFH :SET TO -1 TO START
GLOOP : 27
B1CF CDASS1 CALL GNB
a1p2 47 MOV B,A
; PRINT HEX VALUES
: CHECK FOR LINE FOLD
81D3 7D MOV AL
61D4 EGOF ANT 0FH ;CHECK LOW 4 BITS
@106 C2EBOL INZ NONUM
: PRINT LINE NUMBER
91C9 CD6AODL CALL CRLE
: CHECK FOR BREAK KEY
g1DC CD51m1 CALL BREAK
91DF QF RRC
01E@ DAF701 Jc FINIS ;DON’T PRINT ANY MORE
plE3 7C MOV a,d
Y1lE4 CD8701 CALL PHEX
gl1E7 7D MOV A, L
@1E8 CD8781 CALL PBEX
NONUM:
Y1EB 3E20 . MVI a,"
B1ED CD5D#1 CALL PCHAR
91F0 78 MOV A,B
P1F1l CD8761 CALL PHEX
g1F4 C3CFgl JMP GLOOP
EPSA: ;END PSA
. END OF INPUT
FINIS:
g1F7 CD6AO1 CALL CRLF
@1FA 2AQFO1 LHLD OLDSP
01FD F9 SPHL
g1FE C9 RET
: FILE CONTROL BLOCK DEFINITIONS
@95C = FCBDN EQU FCB+@& ;DISK NAME
985D = FCBFN EQU FCB+l ;FILE NAME
2065 = FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)
9868 = FCBRL EQU FCB+12 ;FILE’S CURRENT REEL NUMBER
8968 = FCBRC EQU FCB+15 ;FILE"“S RECORD COUNT (@ TO 128)
#07C = FCBCR EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (¢ TO 1
697D = FCBLN EQU FCB+33 ;FCB LENGTH
SETUP: ;SET UP FILE
; OPEN THE FILE FOR INPUT
B1FF 115C34 LXI D,FCB
@202 BEGF MV C,OPENF
2284 CD@SB0 CALL BDOS
; CHECK FOR ERRORS
0287 FEFP CPI 255

6289 C21102 JNZ OPNOK

829aC
929E

6211
P21z
215

0216
2219
p2l1C
@21E
9221
224
9226

8227
- B8229

a22C
B22E

231

peal
CD94p1

AF
327Cu0
€3S

£5D5C5
115CJ0
BEl4
Coo5a0
C1DlEl
FEGD
C8

FEgl
CAF701

2602
CD9401l

-

éPNOK:

-

BAD OPEN

MVI B,1 +OPEN ERROR
CALL ERR

+OPEN IS OK.

XRA A

STA FCBCR

RET

:READ DISK FILE RECORD
PUSH H! PUSH D! PUSH B

LK1 D,FCB

MV C,READF

CALL BDOS

pOP B! POP D! POP B ___
CEI 0 ;CHECK FOR ERRS
RZ

MAY BE EOF

cpI 1

Jz FINIS

MVI B,2 :DISK READ ERKOR
CALL ERK

END

.18

29

The PL/M program which £follows implements the CP/M LOAD utility. The
function is as follows. The user types

LOAD filenameg
If filename.HEX exists on the diskette, then the LOAD utility reads the "hex"
formatted machine code file and produces the file

filename.,COM

where the COM file contains an absolute memory image of the machine code,
ready for leoad and execution in the TPA., If the file does not appear on
the diskette, the LOAD program types

SOURCE IS READER
and reads an Addmaster paper tape reader which contains the hex file.

The LOAD program is set up to lecad and run in the TPA, and, upon com—
pletion, return to the CCP without rebooting the system. Thus, the pro-
gram is constructed as a single procedure called LOADCOM which takes the
form '

QFAH:
LOADCOM: PROCEDURE;
/* LIBRARY PROCEDURES */
MONLl: ...
/* END LIBRARY PROCEDURES */
MOVE: ...
GETCHAR: ...
PRINTNIB:
PRINTHEX: ...
PRINTADDR: ...
RELOC: ...
SETMEM:
READHEX:
READBYTE :
READCS :
MAKEDOUBLE :
DIAGNOSE:
END RELOC;

DECLARE STACK(16) ADDRESS, SE ADDRESS;
SP = STACKPTR; STACKPTR = .STACK(LENGTH(STACK)};

CALIL RELOC;
\\ STACKPTR = £P;
RETURN 0;

END LOADCOM;

EQF

30

The label OFAH at the beginning sets the origin of the compilation to OFAH,
which causes the first & bytes of the compilation to be ignored when loaded
(i.e., the TPA starts at location 100H and thus OFAH,...,JFFH are deleted
from the COM file). In a PL/M compilation, these 6 bytes are used to set up
the stack pointer and branch arcund the subroutines in the program. In this
case, there is only one subroutine, called LCADCOM, which results in the
following machine memory image for LOAD

OPAH: LXY SP,plmstack ;SET SP TO DEFAULT STACK
OFDH: JMP pastsubr s JUME AROUND LOADCOM
100H: beginning of LOADRCCOM procedure

end of LOADCOM procedure

RET

pastsubr:
EI
HLT

Since the machine code between OFAH and OFFH is deleted in the load,
execution actually begins at the top of LOADCOM. Note, however, that

the initialization of the SP to the default stack has also been deleted;
thus, there is a declaration and initialization of an explicit stack and
stack pointer before the call to RELOC at the end of LOADCOM. This is
necessary only if we wish to return to the CCP without a reboot cperation:
otherwise the origin of the program is set to 100H, the declaration of
LOADCOM as a procedure is not necessary, and termination is accomplished
by simply executing a

GO TO Q0QCH;

at the end of the program. Note also that the overhead for a system re-
koot is not great (approximately 2 seconds), but can be bothersome for
system utilities which are used quite often, and do not need the extra
space.

The procedures listed in LOADCOM as "library procedures" are a standard
set of PL/M subroutines which are useful for CP/M interface. The RELOC
procedure contains several nested subroutines for local functions, and
actually performs the lcad coperation when called from LOADCOM. Control
initially starts on line 327 where the stackpointer is saved and re-initialized
tec the local stack. The default file control block name is copied to
another file control block (SFCB) since two files may be open at the same
time. The program then calls SEARCH to see if the HEX file exists; if not,
then the high speed reader is used. If the file does exist, it is opened for
input (if possible). The filetype COM is moved to the default file control
block area, and any existing copies of filename.COM files are removed from
the diskette before creating a new file. The MAKE operation creates a new
file, and, if successful, RELOC is called to read the HEX file and produce
the COM file. At the end of processing by RELOC, the COM file is closed
{line 350). WNote that the HEX file does not need to be closed since it
was opened for input only. The dzta written to a file is not permanently
recorded until the file is successfully closed.

El

Disk input characters are read through the procedure GETCHAR on line
137. Although the DMA facilities of CP/M could be used here, the GETCHAR
procedure instead uses the default buffer at location 8CH and moves each
buffer intec a vector called SBUFF (scurce buffer) as it is read. On exit,
the GETCHAR procedure returns the next input character and updates the
source buffer pointer (SBP).

The SETMEM procedure on line 191 performs the oppesite function from
GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code
in pure binary form which acts as a "window" on the lcaded code. If there
is an attempt by RELOC to write below this window, then the data is ignored.
If the data is within the window, then it is placed inta MBUFF (memory
buffer}. If the data is to be placed above this window, then the window
is moved up to the point where it would include the data address by writing
the memory image successively {(by 128 byte buffers), and moving the base
address of the windew. Using this technigue, the pvogrammer can recover
from checksum errors on the high~speed reader by stopping the reader,
rewinding the tape for séme distance, then restarting LOAD (in this case,
LOADing is resumed by interrupting with a NOP instruction)., Aagain, the
SETMEM procedure uses the default buffer at location SOH to perform the
disk output by moving 128 byte segments to 80H through OFFH before each

write.

aA001
gone2
Weee3
bugid
0o8es
veaBe
goaae7
zeoes
pagv9
pOgleo
Advll
AGB12
Beol13
ESS */
peel4
apels
aedle
/
BeBl7
V90818
panle
00920
90921
wagaz
*/
goaz3
paaz4
ROM THE
03825

S THE MACH
39426 -

*/
00827

khkxk Rk k
000828
40029
00034
60831
60032
69833
90834
B#035
aaa36
38837
16038
00639
0B84
80041
00042
20843
0044
36845
20046
TTLY,
60048
00049
A0B50

BRI DO B b b o e e

B2 BB RO B BS B B B

[\]

2
2

2
=/

BN R NI DO A Ll W R P D W Lo b B L o b o D

L

AFAH: DECLARE BDOS UITERALLY “9B0SH :
/* TRANSIENT COMMAND LOADER PROGRAM

COPYRIGHT (C) DIGITAL RESEARCH
JUNE, 1975
*/

LOADCOrt: PROCEDURE BYTE;
DECLARE FCBA ADDRESS INITIAL(5CH):
DECLARE FC38 BASED FCBA (33) 3YTE;

DECLARE BUFFA ADDRESS INITIAL(8%H), /* I/0 BUFFER ADDR

BUFFER BASED BUFFA (128) BYTE;

DECLARE SFCB{33) BYTE, /*.SOURCE FILE CONTROL ELGCEK =

BSIZE LITERALLY “1024°,

EOFILE LITERALLY “1aH°,

SBUFF (BSIZE) BYTE /* SOURCE FILE BUFFER */
INITIAL(EOFILE),

RFLAG BYTE, /* READER FLAG */

SBP ADDRESS; /* SCURCE FILE BUFFER POINTER

/* LOADCOM LOADS TRANSIENT COMMAND FILES T0 THE DISK ¥
" CURRENTLY DEFINED READER PERIPHERAL, THE LOADER PLACE
CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND

J* **xkxxxxxxxxxxxx [TBRAKY PRCCEDURES FOR DISKIQ ****#xx

MON1: PROCEDURE(F,A):
DECLARE F BYTE,
B ADCRESS;:
GO T0 BDGS:
END MON1;

MON2: PROCEDURE (F,A) BYTE:
DECLARE F BYTE,
A ADDRESS;
GO TO BDOS:
END MON2;

READRDR: PROCEDURE BYTE:
/* READ CURRENT READER DEVICE */
RETURN MON2(3,0);:
END READRDR;

DECLARE
TRUE LITERALLY “1°,
FALSE LITERALLY “8°,
FOREVER LITERALLY “WHILE TRUE,
CR LITERALLY “13°, _

#0851
ANAs2
PEBsS3
a0954
gBB55
pRE56
poB57
2aA58
AoRAsS9
6o069
pav6l
a6z
00863
Bad64
00a65
0B066
60067
00068
00069
2007¢
go@7l
poa72
20973
004974
@ea75
6276
88077
Ae078
6079
Bo@a8o
pea8l
gpas82
20083
2oB84
poa@ss
pod8e
eges’7
20088
PBE8Y
90099
900391
20092
PRB93
p0094
ABe95
porA96
29097
vP098
08099
9g1aa
pglel
20132
po1a3
98104
20185
99126
pole7
p0188
AB109
Pa119

WWWNMNWWWNRNWRLNRNWWWRNNWWWNDDWWWRONNWOLONWWRODOMNWWWWWLWNRRWWWRNWWW NN D

L LITERALLY "18°,
WHAT LITERALLY “637:

PRINTCHAR: PROCEDURE (CHAR) ;
DECLARE CHAR BYTE;
CALL MONI1(2,CHAR):;
END PRINTCHAR;

CRLF: PROCEDURE;
CALL PRINTCHAK{CR);
CALL PRINTCHAR(LF) ;
END CRLF;

PRINT: PROCEDURE({(3d):
DECLARE & ADDRESS:
/* PRINT THE STRING STARTING AT ALLDRESS
NEXT DOLLAR SIGN IS ENCOUNTERED */
CALL CRLF:
CALL MON1{(9,A):
END PRINT:

DECLARE DCNT BYTE;

INITIALIZE: PROCEDURE;
CALL MON1{(13,8);
END INITIALIZE;

SELECT: PRCCEDURE (D) ;
DECLARE D BYTE;
CALL MON1(14,D):
END SELECT;:

OPEN: PROCEDURE (FCB) ;
DECLARE FCB AGDRESS;
DCNT = MON2(15,FCB} ;
END OPEN;

CLOSE: PROCEDURE (FCB)
DECLARE FCB ALDDRESS;
DCNT = MON2(16,FCB)};
END CLOSE;

SEARCH: PROCEDURE(FCB) ;
DECLARE FCB ADDRESS;
DCNT = MON2(17,FCB):
END SEARCH;

SEARCHN: PROCEDURE;
DCNT = MON2(18,0);:
END SEARCHN;

DELETE: PROCEDURE (FCB) ;
DECLARE FCB ADDRESS;
CALL MON1(19,FCB);
END DELETE;

DISKREAD: PROCEDURE(FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN MON2{28,FCB);

END DISKREAD;

33

A& UNTIL THE

ga111 2

Ag112 2 DISKWRITE: PROCEDURE(FCB) BYTE:

#8113 3 DECLARE FCB ADDRESS;

90114 3 RETURN MON2(21,FCB); 24
#a115 3 END DISKWRITE;

pBAl1le 2

ar117 2 MAKE: PROCEDURE (FCB) ;

gB118 3 DECLARE FCB ADDRESS;

galls 3 DCNT = MON2(22,FCB);

#0120 3 END MAKE:

48121 2

pa122 2 RENAME: PROCEDURE (FCB)

#8123 3 DECLARE FCB ADDRESS;

gel124 3 CALL MON1(23;FCB):

pa12s 3 END RENAME;

808126 2

26127 2 /* Frkkxkkkhkkxkkkxkkax END OF LIBRARY PROCEDURES *k*xxkxx”
I 2 2 & 3. */

galzg 2

8129 2 MOVE: PROCEDURE(S,D,N) s

a9138 3 DECLARE (S,D} ADDRESS, N BYTE,

PP131 3 A BASED S BYTE, B BASED D BYTE;

pal132 3 DO WHILE (N:=N=1) <> 255;

#6133 3 B = A; $=S+1; D=D+1;

0134 4 END;

a0135 3 END MOVE;:

48138 2

#8137 2 GETCHAR: PROCEDURE BYTE;

88138 3 /* GET NEXT CHARACTER */

#3139 3 DECLARE I BRYTE:

8148 3 IF RFLAG THEN RETURN READRDR;

g6141 3 IF (SBP := SBP+1) <= LAST(SBUFF) THEN
#e142 3 RETURN SBUFF (SBP) ;

69143 . 3 /% OTHERWISE RFAD ANOTHER BUFFER FULL */
g@144 ~ 3 DO SBP = @ TO LAST(SBUFF) BY 128;

@145 3 IF (I:=DISKREAD(.,SFCB)) = @ THEN

0146 4 CALL MOVE (88H, .SBUFF (SBP) ,80H); ELSE
20147 4 DO; IF I<>1 THEN CALL PRINT{. DISK READ ER
RORS ") ;
- @9148 5 SBUFF (SBP) = EQFILE;

‘Bg149 5 SBP = LAST (SBUFF):

88158 5 END:

#6151 4 END: ‘

g9ls2 3 SBP = @; RETURN SBUFF;

g8153 3 END GETCHAR;

89154 2 DECLARE

pa1ss 2 STACKPOINTER LITERALLY “STACKPTR ;

#8156 2

#8157 2

@0ls58 2 PRINTNIB: PROCEDURE(N) ;

68159 3 DECLARE N BYTE:

p8leg 3 IF N > 9 THEN CALL PRINTCHAR(N+ A -18); ELSE
Belel 3 CALL PRINTCHAR(N+ 97);

8l62 3 END PRINTNIB; -

88163 2

pal64 2 PRINTHEX: PROCEDURE (B) ;

#8165 3 DECLARE B BYTE;

#8166 3 CALL PRINTNIB(SHR(B,4)); CALL PRINTNIB(B AND @FH);
#8167 3 END PRINTHEX;

#8168 2

wol69 2 PRINTADDR: PROCEDURE(A):

pal7e 3 DECLARE A ADDRESS: .

#8171 3 CALL PRINTHEX (HIGH(A}); CALL PRINTHEX{LOW(A));
dalr72 3 END PRINTADDR:

ael73 2 s
aar74 2

aa1?s 2 /* INTEL HEX FORMAT LOADER */

gpl76 2 -

Ag177 2 RELOC: PROCEDURE:

Ag178 3 DECLARE (RL, CS, RT) BYTE;

p0179 3 DECLARE

g8184 3 _ LA ADDRESS . /* LOAD ADDRESS_*/ -
ga181 3 TA ADDRESS, /*¥ TEMP ADDRESS */

20182 3 SA ADDRESS, /* START ADDRESS */

20183 3 FA ADDRESS, /* FINAL ADDRESS */

pg184 3 NB ADDRESS, /* NUMBER OF BYTES LOADED */
AgL85 3 SP ADDRESS, /* STACK POINTER UPON ENTRY TO REL
QC */

Aglse 3

8187 3 MBUFF (256) BYTE,

99188 3 P BYTE,

@189 3 L. ADDRESS;

aaleg 3

a9191 3 SETMEM: PROCEDURE(B);

20192 4 /* SET MBUFF TO B AT LOCATION LA MOD LENGTH(MBUFF)
*/

p@193 4 DECLARE (8B,I) BYTE; -
#0194 4 IF IA < L THEN /* MAY BE A RETRY */ RETURN;
pP195 4 DO WHILE LA > L + LAST(MBUFF); /* WRITE A PARA
GRAPH */ ’

20196 4 DO I = 8 TO 127: /* COPY INTO BUFFER */
A9197 5 BUFFER{I) = MBUFF(LOW(L));: L =L + 1:
aRl98 6 END: _

PP199 5 /* WRITE BUFFER ONTQ DISK */

gga24@ 5 P =P + 1;

p0281 5 IF DISKWRITE (FCBA) <> @ THEN

99202 5 DO: CALL PRINT(, DISK WRITE ERROKRS):
B@az283 6 HALT;

p0284 6 /* RETRY AFTER INTERRUPT KOP */

pa2Bs 6 L =L - 128:

pa2B6 6 END;

a@aze7 5 END:

A0208 4 MBUFF (LOW(LA)) = B;

20209 4 END SETMEM;

g@218 3

4211 3 READHEX: PROCEDURE BYTE;

99212 4 /* READ ONE HEX ChARACTER FROM THE INPUT */
Ga213 4 DECLARE H BYTE; ,
PBa214 4 IF (H := GETCHAR) - 'ﬂ' <= 9 THEN RETURN B - "0°;:
g0215 4 IF H- A" > 5 THEN GO TO CHARERR;

gazle 4 RETURN H - "A° + 10;

@p217 4 END READHEX:

gaz21s 13

88219 3 READBYTE: PROCEDURE BYTE;

ga22d 4 /* READ TWO HEX DIGITS */

08221 4 RETURN SHL{READHEX,4) OR READHEX:

93222 4 END READBYTE;

ag223 3

p8224 3 READCS: PROCEDURE BYTE:;

pB225 4 /* READ BYTE WHILE COMPUTING CHECKSUM */

6226 4 DECLARE B BYTE;

p@227 4 CS = CS + (B := READBYTE):

p@228 4 RETURN B;

pez29 4 END READCS: 26
68236 3

gB231 3 MAKESDOUBLE: PROCEDURE(H,L) ADDRESS: _
88232 4 /* CREATE A BOUBLE BYTE VALUE FROM TwO SINGLE BYTE
S */

P¥233 4 DECLAKE (H,L) BYTE:

P0234 4 KETURN SHL(DOUBLE(H),8) OR L;

00235 4 END MAKESDOUBLE:

gg236 3

en237 3 DIAGNOSE: PKOCEDUKE;

pP238 4

88239 4 DECLARE M BASED TA BYTE;

p0240 4

p0241 4 NEWLINE: PROCEDURE:

99242 5 . CALL CRLF; CALL PRINTADLDK(TA); CALL PRINTCHAK{ :")
@243 5 CALL PRINTCHAR{ ’};

pp244 5 END NEWLINE:

70245 4

#8246 4 /* PRINT DIAGNOSTIC INFORMATION AY THE CCNSGLE */
96247 4 CALL PRINT (., LOAD ADDRESS $°); CALL PRINTADDR(TA):
28248 4 CALL PRINT(. ERROR ADDRESS $°}; CALL PFINTALCDEK(LA):
66249 4

9n258 4 CALL PRINT (. BYTES READ:$7); CALL NEWLINE;

pe2s51 4 DO WHILE TA < La;

aR252 4 IF (LOW(TA) AND OFH) = @ THEN CALL NEWLINE:

46253 5 CALL PRINTHEX (MBUFF (TA-L)): TA=Ta+1:

28254 5 CALL PRINTCHAR(")

28255 5 END:

00256 4 CALL CRLF:

pe257 4 HALT ;

#9258 4 END DIAGNOSE:

86259 3

802608 3

pB261 3 /% INITIALIZE */

86262 3 SA, FA, NB = @

9263 3 SP = STACKPGINTER:

8264 23 P = @; /* PARAGRAPH COUNT */ :

#0265 23 TA,LA,L = 160H: /* BASE ADDRESS OF TRANSIENT ROUUTINES
*/

8266 3 IF FALSE THEN

Ge267 3 CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT 15 ENCOU
NTERED */

pe268 3 DO; /* RESTORE STACKPOINTEK */ STACKPOINTEK = SP;
89269 4 CALL PRINT({. NON-HEXADECIMAL DIGIT ENCOUNTERED $7)
46270 4 CALL DIAGNOSE:

68271 4 END:

66272 3

98273 3 _

@274 3 /* READ RECORDS UNTIL :00%¥XXX IS ENCOUNTERED */

@275 3

88276 3 DO FOREVER:

0277 3 /* SCAN THE : =*/

pg278 3 DO WHILE GETCHAR <> ":7;

88279 4 END;

pB280
90281
TH */
Aa282
29283
p0284
pd285
00286
paz87
00288
06289
20290
20291
pa292
80293
pa294
08295
#9296
60297
0a298
09299
gP300
00301
PB362
09303
a0304
pe385
a03@6
pe3e7
pG328
20389
d0310
gE3l1
AB312
@0313
68314
#a31s
gB316
28317
@a31s
#0319
903249
9@321
pB322
08323
HEX TAP
p0324
p@325
PA326
pa327
#9328
20329
a0338
PP331
R0332
90333
pB334
89335
BB336

- -

/*

S*
DEC
5P

SBP

/* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENG

Cs = @;
/* MAY BE THE END OF TAPE */ 37
If (RL := READCS) = @ THEN

GO TO FIN;

NB = NB + RL:

TA, LA = MAKESDOUBLE (READCS,READCS) ;
IF 3A = B8 THEN SA = LA;

/* READ THE RECORD TYPE (NOT CUKRRENTLY USED) */
RT = READCS;

/* PROCESS EACH BYTE */
DO WHILE (RL := RL - 1) <> 255:
CALL SETMEM(READCS):; LA = LA+]1l;
END;

IF LA > FA THEN FA = LA - 1;

/* NOW READ CHECKSUM AND COMPARE */
IF CS + READBYTE <> 4 THEN
__DO; CALL PRINT(, CHECK SUM ERROR $°1:
CALL DIAGNQOSE:
END:
END:

FIN:
/* EMPTY THE BUFFERS */
TA = LA:
DO WHILE L < TaA;
CALL SETMEM{(@); LA = LA+]1:
END;
/% PRINT FINAL STATISTICS */
CALL PRINT{, FIRST ALDDRESS $°): CALL PRINTADLR(SA):
CALL PRINT(. LAST ADDRESS $°); CALL PRINTADDR(FA):
CALL PRINT{. BYTES READ S')E CALL PRINTACDDR(NB)}:

CALL PRINT (. RECORDS WRITTEN §$ }: CALL PRINTHEX(P):
CALL CRLF;

END RELOC;

ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE™

SET UP STACKPOINTER IN THE LOCAL AREA */
LARE STACK(16) ADDRESS, 5P ADLDRESS;
= STACKPOINTEK: STACKPOINTER = ,STACK(LENGTH{STACK)):;

= LENGTH(SBUFF) ;

/* SET UP THE SOURCE FILE */

CALL MOVE(FCBA,.SFCB,33):

CALL MOVE(,(HEX ,®),.SFCB(9),4):

CALL SEARCH(.SFCB):

IF (RFLAG := DCNT = 255} THEN

CALL PRINT(, SOURCE IS READERS): FLSE
DC; CALL PRINT(, SOURCE IS DISKS):

88337 3 CALL OPEN{.SFCB):

98338 3 IF DCNT = 255 THEN CALL PRINT(, =~CANNOT OPEN SQURC
ES");

08339 3 END; 18
20348 2 CALL CRLF;

80341 2

6@342 2 CALL MOVE(, COM ,FCBA+92,3);

pR343 2

0B344 2 /* REMOVE ANY EXISTING FILE BY THIS NAME */

p@345 2 CALL DELETE(FCBAa);

gB346 2 /* THEN OPEN A, NEW FILE */

0R347 2 CALL MAKE {FCBA) ; FCB(32) = O; /* CREATE AND SET NEXT RECORD */
68348 2 IF DCNT = 255 THEN CALL PRINT{(. NO MORE DIRECTORY SPACES
}; ELSE

#8349 2 DO; CALL RELQC;

e@3s8 3 CALL CLOSE (FCBA);

‘69351 3 IF DCNT = 255 THEN CALL PRINT({. CANNOT CLOSE FILES
pB352 3 END;

88353 2 CALL CRLF;

28354 2

BB355 2 /* RESTORE STACKPOINTER FOR RETURN */

#8356 2 STACKPOINTER = SP;

28357 2 RETURN @;

#0358 2 END LOADCOM;

ee359 1 H

#8360 1 EQF

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	10a
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

