TS e it

|
t

®

i0

DIGITAL RESEARCH

Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.2 ALTERATION GUIDE

Copyright (¢) 1979
DIGITAL RESEARCH

Copyright

Copyright (e} 1979 by Digital Research, Al rights reserved.
No part of this publication may be reproduced, transmitted,
transeribed, stored in a retrieval system, or translated into
any language or computer language, in anv form or by any
means, electronic, mechanieal, magnetie, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacifie Grove,
Catifornia 93950, '

Diselaimer

Digital Research makes no representations or warranties with
respeet to the contents hereof and specifically diselaims anv
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research, MP/M,
MAC, and SID are trademarks of Digital Research,

CP/M 2.2 ALTERATION GUIDE

Copyright {c¢) 1979
Digital Research, Box 579
Pacific Grove, California

Introduc

tion

First Level System Regeneration .

Second Level System Generation

Sample Getsys and Putsys Programs

Diskette Organization .

The BIOS
A Sample
A Sample

Reserved

Disk Parameter Tables

Entry Points

Bios .,

Cold Start Loader

Locations in Page Zero

-

-

*

The DISKDEF Macro Library .

Sector Blocking and Deblocking

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

GEmmoOm

s + w a4 % = a

. L] L] L] . L]

L] * L] - L] L] .

*

L]

Ll L] L] * L] Ll *

L] L] L] L] L} L *

L] L] L] * L] * L]

L] L] L] L] L] L] *

*+ # * = = & »

L] L] * L] L)

L] - L] L] * L] L]

12
14
21
22
23

25

1. INTRODUCTION

The standard CP/M system assumes operation on an Intel MDS~360
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating enviromment. 1In this way, the user can produce a diskette
which operates with any IBM-3741 format compatible drive controller
and other peripheral devices.

Although standard CP/M 2.6 is configured for single density floppy
disks, field-alteration features allow adaptation toc a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard disk" systems, In order to simplify the following adaptation
process, we assume that CP/M 2.0 wiil first be configured for single
density floppy disks where minimal editing and debugging tools are
available, If an earlier version of CP/# 1is available, the
customizing process is eased considerably. In this latter case, vyou
may wish to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems,

In order to achieve device independence, CP/M is separated into
three distinct modules:

BIOS - pasic I1/0 system which is enviromnent dependent

BDOS = pasic disk operating system which is not dependent
upon the hardware configuration

CCP = the console command processor which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular
nardware, That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS which provides a customized 1interface
between the remaining CP/#M modules and the user's own hardware system,.
The purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M,.

If CP/M is being tailored to your computer system for the first

time, the new BIOS requires some relatively simple software
development and testing, The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package, A skeletal

version of the BIJOS 1s 4given in Appendix C which can serve as the
basis for a modified BIOS. 1In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. 1In order to patcn the new BIOS 1into
CP/M, the user must write tne reverse of GETSYS, called PUTSYS, which
vlaces an altered version of CP/M back onto the diskette, PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands, Sample skeletal GEPSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D, In order to make
the CP/iM system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

{All Information Contained Herein is Proprietary to Digital Research.)

1

2, FIRST LEVEL SYSTEM REGENERATION

The procedure to follow to patcn the CP/M system is given below in
several steps, Address references in each step are shown with a
following “H" which denotes the hexadecimal radix, and are given for a
28K CP/M system, For larger C2/M systems, add a "bias" to each
address which 1is shown with a "+b" following it, where b is equal to
the memory size - 28K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = 14404
3ZK: o = 32K - 20K = 12K = 38644
44K b = 48K - 28K = 20K = 50UdH
438K b = 48K - 20K = 2BK = 7080H
506K: b = 56K -~ 20K = 36K = 99068H
6 2K: b = 62K - 20K = 42K = ABdpd
04K: b = 64K - 20K = 44K = BJ4dH

Note: The standard distribution wversion of CP/M 1is set for
operation within a 23K memory system. Therefore, you must first bring
up the 20K CP/#¥ system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review Section 4 and write a GETSYS program which reads the
first two tracks of a diskette into memory,., The data from the diskette
must begin at location 338iH, Code GETSYS so that it starts at
location 1¢¥@Hd (pase of the TPA}, as shown in the first wvart of
Appendix d,

(2) Test tne GETSYS program by reading a blank diskette into
memory, and check to see that the data has been read vroperly, and
that the diskette has not been altered in any way by the GETSYS
program.

{3} Run the GETSYS program using an initialized CP/4 diskette to
see 1f GETSYS 1loads CP/M starting at 3384H (the operating system
actually starts 128 bytes later at 3499H).

(4) Review Section 4 and write the PUTSYS program which writes
memory starting at 3380d back onto the first two tracks of the
diskette. The PUTSYS program should be located at 208H, as shown 1in
the second part of Appendix D,

{(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks; clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, ©, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment, Use
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIQS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(All Information Contained Herein is Proprietary to Digital Researcnhn.)

2

{7) Test CBIGS completely to ensure that it nroperly wvperforms
congsole character I/0 and disk reads and writes. Be especially
careful to ensure that no disk wrike operations occur accidently
during read operations, - and check that the prover track and sectors
are addressed on all reads and writes, Failure to make these checks
may cause destruction of the 1initialized CP/#4 system after it is
patched.

{8} Referring to Figure 1 in Section 5, note that the BI0S is
placed between locations 4A88H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIQOS developed in step
(6) and tested in step (7}, This replacement is done in the memory of
the machine, and will be vlaced on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(16) Use GETSYS to bring the copied memory image from the test
diskette back into memory at 3386H, and check to ensure that it has
loaded back properly (clear memory, if vossible, before the load).
Upon successful load, brancn to the cold start code at location 4AG0H.
The cold start routine will initialize vage zero, then jumo to the CCP
at location 34P@¢H which will call the BDOS, which will call the CBIOS,
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
and if successful, CP/M will type "A>", the gystem prompt,.

When you make it this far, you are almost on the air, If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (18), CP/¥ has vromoted the console
for a command input. Test the disk write operation by typing

SAVE 1 X.COM
(recall that all commands must be followed by a carriage return).
CP/M should respond with another prompt (atter several disk accesses):
A>
If it does not, debug your disk write functions and retry,
(12) Then test the directory command by typing
DIR
CP/M should respond with
A: XK COM
(13) Test the erase command by typing

ERA X.COM

(All Information Contained Herein is Proprietary to Digital Research.)

3

CP/M should respond with the A promot., When you make it this far, vou
should have an operational system which will only reguire a bootstrap
loader to furiction completely.

(14) wWrite a bootstrap loader which is similar to GETSYS, and
vlace it on track #, sector 1 using PUTSYS (again using the test
diskette, not the distrinution diskette), See Sections 5 and 3 for
more information on the bootstrap opeéeration,

(15) Retest the new test diskette with the bootstrap lecader
installed by executing steps (11), (l12), and (13}). Upon completion of
these tests, type a control-C {(control and C keys simultaneously). The
system should then execute a "warm start” which reboots the system,
and types the A prompt,

(1) At this vpoint, you probably have a good version of vyour
customized CP/M system on your test diskette., {se GETSYS to load CP/M
from vyour test diskette, Remove the test diskette, place the
distribution diskette (or a legal copvy) into the drive, and use PUTSY3
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure cof your patch since this
step destroys the system which was sent to you from Digital Research.

{17) Load your modified CP/M system and test it by tyving
BIR
CP/4 should respond with a list of files which are provided on the
initialized diskette, One such file should be the memory image for
the debugger, called DDBT.COM.
NOTE: from now on, it is important that you always reboot tne CP/M
system {ctl-C is sufficient) when the diskette is removed and replaced

by another diskette, unless the new disgskette is to be read only,

(18) Load and test the debugger by tvping

onT
(see the document "CP/M Dynamic Debugging Toeol (DDT)" for operating
procedures, You should take the time to become familiar with DDT, it

will be your best friend in later steps.

(1Y) Before making further CBIOS modifications, practice wusing
the editor (see the ED user's guide}), and assemnbler {see the ASM
user's guide). Then recode and test the GETSYS, PUT3YS5, and CBIOS
programs wusing ED, ASM, and DDIT. Code and test a COPY program which
does a sector-to-sector copy from one diskette to another to obtain
back-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies vyour legal responsipilities when
copying the CP/M system). Place the copyright notice

Copvyright (¢), 1979
Oigital Research

(All Information Contained Herein is Proprietary to 0igital Researcn.)

4

on each copy which is made with your COPY program,

{28}y Modify vyour CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a adaditional disk drives, if desired, You can make
these changes with the GETSYS and PUTSYS vprograms wnich you have
developed, or vyou can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process,

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have develoved belongs to
you, the modified version of CP/M which you have created can be copied
for vyour wuse only {(again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all

other CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-pmroprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3., SECOND LEVEL SYSTEM GENERATION

Now that you have the (CP/M system running, vyou will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "MOVCPM" program (system relocator) and
place this memory image into a named aisk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation wprogram. For further details on the operation of
these programs, see the *“Guide to Cp/M Features and Facilities”
manual,

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and 300T,HEX, which contain the
machine code for CBIOS and 800T in Intel hex format.

To get the memory image of CP/M into the 12A configured for the
desired memory size, give the command:

MOVCPM xx *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K}.
The response will pe:

CONSTRUCTING xxKX CP/M VERS 2.¥
READY FOR "SYSGEN" OR
"SAVE 34 CPMxx.COM"

At this voint, an image of a CP/M 1in the TPA configured for the
requested memory size. The memory image is at location @#96¥H through
227FH, (i.e., The BOOT is at 09deH, the CCP 1is at 9864, the BDOS
starts at 1186H, and the BIOS is at 1lF88H.) Note that the memory
image nhas the standard MDS~-8¢¥ BIOS ana BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:
SAVE 34 CPMxx,COM
The memory image created by the "MOVCPM"” vrogram is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in opreparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx,COM Load DDT, then read the CP
image

DDT should respond with
NEXT PC
2390 0169
- (The DDT prompt)

You c¢an then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 200H and 227FH., Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address, Track 8¢, sector 81 is loaded to location 9d66H (you should
find the cold start loader at Y8@H to 97FK)}, track 8@, sector ¥2 is
loaded into 986H (this is the base of the CCP), and so-forth through
the entire CP/M system load. 1In a 20K system, for example, the CCP
resides at the CP/#M address 34008, but is vlaced into memory at 98@H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 98PH, or n = 989H - 34998H

Assuming two's complement arithmetic, n = D588H, which can be c¢hecked
by

34000 + D580H = 16986H = @Y80H (ignoring high-order
overflow).

Note that for larger systems, n satisfies
(346@H4b) + n = YBYH, or

n 98¥H - {(3409¢H + b), or
n D5S8AH - b,

The value of n for common CP/M systems is given below

memory size bias b negative offset n
28K poged D589H - B90YA = D580H
24K 1avad D58PE - 198gH = C584vH
32K 33090 D580H - 3090H = AS8@H
4BK 508 uH D58YH - 500¥H = 85806H
48K 79084 D580H - 7dd¢YH = 6580H
50K 999 uvH D538YH — 9YUvH = 4589H
6 2% AB@QH DS8WH - ABJUH = 2D80H
64K B OH D580H - BOZIH = 25880

Assume, for example, that you want to locate the address x within the
memory image icaded under DDT in a 20K system., First type

Hx,n Hexadecimal sum and difference
and DDT will respond with the value of x+n (sum} and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found, The input

134900 ,D5849

for example, will produce 38dH as the sum, which is where the CCP 1is
located in the memory image under DDT.

Use the L command to disassemble portions the B8I05 1located at
(4A@dB+b) =-n which, when vyou use the H command, produces an actual
address of 1r89H. The disassembly command would thus be

(a1l Information Contained Herein is Proprietary to Digital Research.)

7

L1F834
It is now necessary to pvatch in your CBOOT and CBIOS routines, The
BOOT resides at location 096#H in the memory image. If the actual
load address is "n", then to calculate the bias (m) use the command:

H906,n Subtract load address from
target address.

The second number tyved in response to the command is the desired bias
{m}. Ffor example, if vour BOOT executes at #98%H, the command:

H9id4d,84d
will reply
Y98 H880 Sum and difference in hex.

Therefore, the bias “m* would be #88#H. To read-in the BOOT, give the
command: '

ICBOOT.HEX Input tile CBOOT.HEX
Then:

Rin Read CBOOT with a bias of
n (=9¢ddd-n)

You may now examine your CBOOT with:
L94gg

We are now ready to replace the CBIOS, Examine the area at 1F8@H
where the original version of the CBIOS resides., Then type

ICBIOS.HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 286K CP/M system, and
thus is origined at location 4A%#9H. 1In order to properly locate the
CB8I0S in the memory image under DDT, we must apply the negative bias n
for a 20K system when loading the hex file, This is accomplished by
typing

RD589 Read the file with bias D580H

Upon completion of the read, re—-examine the area where the CBIOS has
been loadead (use an “L1F86" command), to ensure that is was loaded
properly, When you are satisfied that the c¢hange has been made,
return from DDT using a control-C or "G&" command,

Now use SYSGEN to replace the patched memory image back onto a

diskette (use a test diskette until you are sure of your patch), as
shown in the following interaction

(811 Information Contained Herein is Proprietary to Digital Research,)

8

SYSGEN Start the SYSGEW program
SYGGEN VERSION 2.4¢ Sign—-on message from SYSGEN
aOURCE DRIVE NAME (OR RETURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
: memory.
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Respond with "B" to write the
new system to the diskette in
drive B,

DESTINATION ON 8, THEN TYPE RETURN
Place a scratch diskette in

drive B, then type return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Place the scratch diskette in your drive A, and then vperform a
coldstart to bring up the new CP/M system you have configured,

Test the new CP/M systenm, and place the Digital Research copyright
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
bigital Research

4, SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a <framework for the GETSYS and

- PUTSYS . programs referenced in Section 2. The READSEC and WRITESEC

subroutines must be inserted by . the user to read and write the
specific sectors,

GETSYS PROGRAM - READ TRACKS @ AND 1 TO MEMORY AT 3384¢H

!
; . REGISTER : USE
: A (SCRATCH REGISTER)
; . B TRACK COUNT (8, 1) ..
; . C _ - SECTOR COUNT (1,2,...,26)
; DE (SCRATCH REGISTER PAIR)
: HL - LOAD ADDRESS :
: 5p . SET TO STACK ADDRESS3
START: LXI SP,3386H ;SET STACK POINTER TO SCRATCH AREA
LXI H, 3386¢H ;SET BASE LOAD ADDRESS
MVI B, © ;START WITH TRACK b
RDTRK : ;READ NEXT TRACK (INITIALLY %)
MVl C,1 ; READ STARTING WITH SECTOR 1
RDSEC: ; READ NEXT SECTOR
CALL READSEC ; USER-SUPPLIED SUBROUTINE
LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE
DAD D ;L = HL + 128
INR C ;SECTOR = SECTOR + 1
wov a,C ;CHECK FOR END OF TRACK
CrI 27 :
JC RDSEC ;CARRY GENERATED IF SECTOR < 27
; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK
INR B
MOV A,B ;TEST FOR LAST TRACK
Cpr 2
Jc RDTRK ;CARRY GENERATED IF TRACK < 2

LT TY

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
ALT

USER-SUPPLIED SUBROQUTINE TO READ THE DISK
EADSEC:
ENTER WITH TRACK NUMBER IN REGISTER 8,
SECTOR RUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

L LT T B] I‘;Una -

PUSH B ;SAVE B AND C REGISTERS
2USH H ;SAVE HL REGISTERS

L N N I I N O A I N A BB B I N I R R I O B R R R R R TR I T T R

perform disk read at this point, branch to

label START if an error occcurs

LR B R N L I R N B I B I R R O IR A A L R R B I R I B N I I A

POP B ;RECOVER HL
POP B ;RECOVER B AND C REGISTERS
RET :BACK TO MAIN PROGRAM

END START

(All Information Contained Herein is Proprietary to Digital Research.)

i¢

Hote that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 188H, The hexadecimal
operation codes which are listed on the left may be useful 1if the
program has to pe entered through your machine's front panel switchnes,

The PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write}, and operations upon these registers 4o not change
within the program, The READSEC subroutine is replaced by a WRITESEC
subroutine which verforms the opposite function: data from address HL
is written to the track given by register B and sector given by
register C,. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix. :

(A1l Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKETTE ORGANIZATION

The sector allocation for the standard distribution version of
CP/M 1s given here for reference purposes. The first sector (see
table on the following wpage) contains an optional software boot
section, Disk controllers are often set uo to bring track 4, sector 1
into memory at a specific location (often location $08&H). The
program in this sector, called BOOT, has the responsibility of
bringing the remaining sectors into memory starting at location
34@8ii+n,. If your controller does not have a built-in sector load, yecu
can ignore the program in track 9, sector 1, and begin the load from
track ¥ sector 2 to location 3408H+b,

As an example, the Intel MDS-80¢ hardware cold start loader brings’
track 9, sector 1 into absolute address 3900H, Upon 1loading this
gsector, control transfers to location 3999H, where the bootstrap
operation commences by loading the remainder of tracks 4, and all of
track 1 into memory, starting at 348¥H+b, The user should note that
tnis bootstrap loader is of 1little wuse in a non-MDS environment,
althougnh it is wuseful to examine it since some of the boot actions
will have to be duplicated in your cold start loader,

{211 Information Contained Herein is Proprietary to Digital Research.)

12

Track# Sector# Page# Memory Address CP/M Module name

0 g1 (boot address}) Cold Start Loader
Jo g2 g3 348BH+b CCPp
“ 93 " 34808+b .

N g4 g1 356@d+n "

Y g5 " 358v¥H+b .

v 06 a2 36QB3H+D "

" i7 " 368@H+Db "

" J8 g3 37@¥H+b "

" B9 " 378@d+b "

" 10 g4 380¢H+b "

. 11 " 3888H+b "

. 12 35 393¢H+b "

” 13 » 39868H+b "

" 14 66 3A0QH+D "

" 15 " 3A8@H+b .

" 16 a7 3Bd@H+b .
a4 i7 " 3R80H+b CCp
d3 18 @3 3C48H+b BDOS

. 19 . 3C3@H+b "

. 249 29 3DABH+b "

" 21 " 3D86H+Db "

o 22 19 3EAd@H+D "

" 23 . 3E3AH+b "

" 24 11 3Fd@H+b "

" 25 " 3F8#H+b .

" 26 12 43@3H+b "
g1 61 . 4389H+b .

" 32 13 414@H+b "

" 63 N 418048+b .

" g4 14 42384H+b "

» g5 . 4288H+b "

" d6 15 43044+b "

v g7 " 4389H+b "

. a8 16 44@934+b "

" @9 " 4489H+b "

" 13 17 45¢@H+b "

" 11 . 45894H+b "

" 12 18 4698H+b "

. 13 “ 46804d+b "

. 14 19 4798H+b "

. 15 ! 4780H+b o

" 16 20 4888H+b “

. 17 » 4888H+b .

" 18 21 49@dR+b “

g1l 19 " 498@H+b BDOS

g1 20 22 4A04H+b BIOS

" 21 ” 4A86H+b "

" 23 23 480 @H+b “

" 24 " 4B80H+b "

" 25 24 4CAGH+D "

g1 206 Y 4C8@H+b BIOS

g2=-76 d1-26 (directory and data)

(311 Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

BIOS £
the BI

into the
Entry to
as shown below
sequence of 1
the individua

. The entry points
are detailed below,
located at 4Ad0H+b,
The jump vector is a
program control to

rom the cold start loader and BDOS
08 1is through a “jump vector®
(see Appendices B and C, as well).
7 Jjumv instructions which send
1 BIOS subroutines. The BIOS

subroutines may be empty for certain functions (i.e., they may contain

a single RET operation) during regen
must be present in the jump vector.

The jump vector at 4AUPH+b takes
individual jump addresses are given

eration of CP/M, but the entries

the form shown below, where the

to the left:

4pPpH+b Jmp 8007 ; ARRIVE HERE FROM COLD START LOAD

4A0 3d+b JHUP WBOOT ; ARRIVE HERE FOR WARM START

4Ad6d+b JMp CONST ; CHECK FOR CONSOLE CHAR READY

4AG9H+b JMP CONIH ; READ CONSOLE CHARACTER IN

4ABCH+D JMP CONOUT ; WRITE CONSOLE CHARACTER OUT

4ADFH+D J#P LIST + WRITE LISTING CHARACTER OUT

471 2H+b JMP PUNCH ; WRITE CHARACTER TO PUNCH DEVICE

4A15d+b JMP READER ; READ READER DEVICE

4A1BH+D JMP HOME ; MOVE TO TRACK ¥# ON SELECTED DISK

4A1BdA+b JHP SELDSK ; SELECT DISK DRIVE

4A1Ed+D JMP SETTRK : SET TRACK NUMBER

4A21H+0 JMP SETSEC + SET SECTOR NUMBER

4A24H+b JMP SETDMA ; SET DMA ADDRESS

AA2 TH+b JMP READ s+ READ SELECTED SECTOR

4AZAH+D JMP WRITE : WRITE SELECTED SECTOR

4A2DH+b JMP LISTST ; RETURN LIST STATUS

4A33H+b JMP SECTRAN ; SECTOR TRANSLATE SUBROUTINE

- Bach jump address corresponds to a particular subroutine which

performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on B800T and WBOOT, simple character I/0

pertformed by calls on CONST, CONIN,
LISTST, and diskette I/0 verformed
SETSEC, SETDMA, READ, WRITE, and SEC

All simple character I/0 operati
ASCII, upper and lower case, with hi
An end-of-file condition for an
control-z (lAH). Peripheral devices
devices, and are assigned to

In order to operate, the BDOS ne
CONQUT subroutines (LIST, PUNCH,
not the BDOS). Further, the LISTST
DESPOOL, and thus, the 1initial
subroutines for the remaining ASCII

(All Information Contained Herein is

14

CONOUYT, LIST, PUNCH, READER, and
by calls on HOME, SELDSK, SETTRK,
TRAN.

ons are assumed to be performed in
gh order (parity bit) set to zero.
input device is given by an ASCII
are seen by CP/M as “logical-®

physical devices within the BIOS.

eds only the CONST, CONIN, and
and READER may be used by PIP, but

entry is used currently only by
version of CBIOS may have empty
devices,

Proprietary to Digital Research,)

The characteristics of each device are

CONSOLE The principal interactive «c¢onsole which communicates
- with the operator, accessed through CONST, CONIN, and
CONOUT,. Tyvically, the CONSOLE is a device such as a

CRT or Teletype.

LIST The principal listing device, if it exists on vyour
system, which is usually a hard-copy device, such as a
printer or Teletype,

PUNCH The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletvpe.

READER The principal tape reading device, such as a simple
optical reader or Teletype,

Note that a single peripheral can be assigned as
the LIST, PUNCH, and READER device simultaneocusly. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIQOS created by the user may give
an appropriate error message so that the system does
not “"hang" if the device is accessed by PIP or some
other user wprogram, Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a 1AH (ctl-%Z) in reg A to indicate
immediate end-of-file,

For added flexibility, the wuser <can ovntionally
implement the “IOBYTE" function which allows
reassignment of ©ohysical and 1logical devices, The
IOBYTE function c¢reates a mapping of 1logical to
physical devices which c¢an be altered during CP/#
processing (see the STAT command). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single lecation in memory (currently
iocation ¢@@d34) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at a particular time, The mapping is

"performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
PURNCH, and LIST fields, as shown below:

most significant least significant

——————— A A R A . A L S ——

IOBYTE AT #0863 | LIST | PUNCH | READER | CONSOLE |

L ol L Al AL o el il Ll e e, N i ko Sy} e L S bl el S S il T A

bits 6,7 bits 4,5 bits 2,3 bits 4,1
The value in each field can be in the range §-3,
defining the assigned source or destination of each

logical device, The wvalues which can be assigned to
each field are given below :

(All Information Contained Herein is Proprietary to Digital Researcn.)

15

CONSOLE field (pbits ©,1)

g

1
2

3

console is assigned to the console printer device (TTY:)
console is assigned to the CRT device {CRT:)

batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)

user defined console device,{UCl:} '

READER fleld (bltS 2,3)

wWio b~ &

PUNCH
J

1
2
3

READER 1is the Teletype dev1ce (TTY:)

READER is the nigh-speed reader device (RDR:)
user defined reader # 1 (URl:)

user defined reader # 2 (URZ:)

field (bits 4 5)

PUNCH is the Teletype device (TTY:) .
PUNCH is the high speea punch dev1ce (PUN:)
user defined punch # 1 (UPl:)

user defined vuncn # 2 (UPZ:)

LIST field (bits 6,7)

@
1
2
3

LIST is the Teletype device (lTY }

- LIST is the CRT device (CRT:}
- LIST is the line printer device (LPT:)
- uszr defined list device (ULl:)

Note again that the imvlementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. o CP/M systems use the IOBYTE (although they
tolerate the existence of the I0BYTE at location
dvB3d), except for PIP which allows access to the

physical devices, - and STAT which allows
logical-physical assignments to be rade and/or
displayed (for more information, see the "CP/M Features
and Facilities Guiae»). In any case, the IOBYTE

implementation should be omitted until your basic €BIOS
is fully implemented and tested; then add the IOBYTE to
increase your facilities,

Disk I/0 is always performed through a seguence of
calls on the variocus disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/0 operation, After all these
prarameters have been set up, a call is made to the READ
or WRITE function to perform the actual I/0 operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations, Similarly,
there may be a single call. to gset the DMA address,
followed by several calls which read or write from the
selected DMA address before the DMA address is changed.
The track and sector subroutines are always called
before the READ or WRITE operations are performed.

(31l Information Contained Herein is Proprietary to Digital Research,.)

16

fiote that the READ and WRITE routines should
perform several retries (19 is standard) before
reporting the error condition to the BDOS. If the
- error condition is returned to the BDOS, it will report
the error to the user. The HOME subroutine may or may
not actually perform the track 8¢ seek, depending upon
your controller characteristics; the important point is
that track ¥4 has been selected for the next cperation,
and is often treated in exactly the same manner as
SETTRK with a parameter of 094,

The exact responsibilites of eacn entry point
subroutine are given below:

BOOT The BOOT entry point gets control from the celd start
loader and 1is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version). If the
IOBYTE function is implemented, it must be set at this
point, The various system parameters which are set by
the WBOOT entry point must e initialized, and control
is transferred to the CCP at 340éH+b for further
processing, HNote that reg € must be set to zero to
select drive A,

WwBOOT The WBOOT entry point gets control when a warm start
agccurs., A warm. start 1s periormed whenever a user
program branches to location @090GH, or when the CPU is
reset. from the front panel, The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIQOS (or CBIOS, 1if you have
completed your patch), System parameters must be ini-
tialized as shown below:

location 9,1,2 set to JMP WBOOT for warm starts
(00PpHd: JMP 4Ad3H+Db)

location 3 set initial value of IOBYTE, |if
implemented in vour CBIOS

location 5,6,7 set to JMP 8D0S, which 1is the
primary entry point to CP/M for
transient programs, (96@5H: JMP
3CH6H+Db)

{see Section 9 for complete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 348#H+b to (re)start
the system, Upon entry to the CCP, register C 1is set
to the drive to select after system initialization.

CONST Sample the status of the currently assigned console
device and return @FFH in register A if a character is
ready to read, and ©90H in register A if no console
characters are ready,

CONIN Read the next console character into register A, and

{All Information Contained Herein is Proprietary to Digital Research,)

17

set the parity it (high order bit) to zero. 1If no
console character is ready, wait until a character is
typed pefore returning,

CONQUT Send the character from register C to the console
output device, The character is in ASCII, with high
order parity bit set to zero, You may want to include
a time-out on a line feed or carriage return, if vyour
console device requires some time interval at the end
of the line (such as a TI Silent 76% terminal). You
can, 1if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for examole).

LIST Send the character from register C to the currently
assigned 1listing device, The character is in ASCII
with zero parity.

PUNCH Send the character from register C to the currently
assigned punch device, The character is in ASCII with
zero parity.

READER Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must pe zero), an end of file <condition 1is
reported by returning an ASCII control-z (1AH).

HOME " Return the disk heada of the currently selected disk
(initially disk A) to the track 98 position, It your
controller allows access to the track 6 flag from the
drive, step the head until the track ¥ flag is
detected., If your controller does not support this
feature, vyou can translate the HOME call into a call
on SETTRK with a parameter of 4.

SELDSK Select the disk drive given by register C for further
operations, where register C contains 9 for drive A, 1
for drive B, and so-forth up to 15 for drive P (the
standard CpP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described 1in the Section 18. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment 1included in the sample CBIOS
performs this operation automatically. If there is an
attempt to select a non-existent drive, SELDSK returns
HL=B@PJH as an error indicator, Although SELDSK must
return the header address on each c¢all, it is
advisable to postpone the actual physical disk select
operation until an I/0 function {seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/0, and many
controllers will wunload the head of the current disk

{All Information Contained Herein is Proprietary to Digital Research,)

18

before selecting the new drive, This would c¢ause an
excessive amount of noise and disk wear.

SETTRK Register BC contains the track number for subsedguent
disk accesses on the currently selected drive, You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs, Register BC can take on values in the range
=76 corresvonding to valid track numbers for standard
floppy adisk drives, and d-65535 for non-standard disk
subgystems,

SETSEC Register BC contains the sector number (1 through 26)
for subseguent disk accesses on the currently selected
drive, ¥You can choose to send this infermation to the
controller at this point, or instead delay sector
selection until a read or write operation occurs,

SETDMA Register BC contains the DMA (disk memory access)
address for subseguent read or write operations, For
example, if B = 6PH and C = 80H when SETDMA is called,
then all subseguent read coperations read their data
into 8#¥H through ¢rFH, and all subsequent write
operations get their data from 36H through @FFH, until
the next call to SETDMA occurs., The initial DMA

address is assumed to be B8yH, Note that the
controller need not actually support airect memory
access, If, for example, all data is received and

sent through I/0 vports, the CBIOS which you construct
will use the 128 byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations,

READ Assuming the drive has been selectea, the track has
been set, the sector has been set, and the DMA aqdress
has been specified, the READ subroutine attempts to
read one sector based wupon these parameters, and
returns the following error codes in register A:

] no errors occurred
i non-recoverable error condition occurred

Currently, CP/M responds only to a 2erc oOr non-zero
value as tne return code, That is, if the value in
register A is @ then CP/M assumes that the disk
operation completed properly., If an error occurs,
however, the CBIOS should attempt at least 1§ retries
to see 1if the error is recoverable, When an error is
reported the 8D0S will print the message "BDOS ERR OH
X: BAD SECTOR", The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort,

WRITE Write the data from the currently selected DMA address

to the currently selected drive, track, and sector,
The data should be marked as "non deleted data"™ to

(All Information Contained Herein isg Proprietary to Digital Research.)

19

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned 'in
register A, with error recovery attempts as described
above. ’

LISTST Returnh the ready status of the list device. Used by
the DESPOQL program to improve console response during
its operation, The value @# is returned in A 1f the
list device is not ready to accept a character, pnd
grFd if a character can be sent to the printer. Note
that a 6@ value always suffices,

SECTRAN Performs sector logical to physical sector translation
in order to improve the overall response of CP/M.
Standard CP/M systems are shipped with a “skew factor*
of 6, where six physical sectors are skipped between
each logical read operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector, In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve coverall response, Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6, In general, SECTRAN receives a logical
sector aumber in 8C, and a translate table address in
DE, The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL, For standar¢ systems, the tables and
indexing code is vorovided in the CBIOS and need not be
changed,

(All Information Contained Herein is Proprietary to Digital Research.)

29

7. A SAMPLE BIOS

The program shown in Appendix C can serve as a basis for vyour
first BIOS. The simplest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines, ©Storage is
reserved for user-supplied c¢ode in these regions, The scratch area
reserved in page zero {see Section §) for the BIOS 1is used 1in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and periorm better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled=-out, and the
IOBYTE function can be implemented,

(All Information Contained Herein is Proprietary to Digital Research.)

21

8., A SAMPLE COLD START LOADER

The program shown in Appendix [can serve as a basis for your colad
start lcocader. The disk read function must be supplied by the user,
and the program mwust be loaded somehow starting at location 6684,
Note that space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(track 9, sector 1), and cause your controller to load it into memory
automatically upon system start-uo, Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system, In this case, it will pe necessary to originate the program
at a nigner address, and key-in a Jjump instruction at system start-up
wnicn branches to the loader, Subseguent warm starts will not require
this key-in operation, since the entry point °‘WBOOT' gets contrel,
thus bringing the system in from disk automatically. HNote also that
the skeletal cold start loader has minimal error recovery, which may
pe enhanced on later versions.

{All Information Contained Herein is Proprietary to Digital Research.)

22

9, RESERVED LOCATIOKS IN PAGE ZERQ

Main memory page zero, between locations ¢@Hd and WUFFH, contains
several segments of code and data which are wused during CP/M
processing, The code and data areas are given below for reference
puroeses,

Locations Contents
from to
GoobH - ©vBA2H Contains a jump instruction to the warm start

entry point at location 4AG3H+b. This allows a
simple mrogrammed restart (JMP B6JYH) or manual
restart from the front vanel.

Pao34H

t

0034 Contains the Intel standard IOBYTE, which 1is
optionally included in the user's (BIOS, as
described in Section 6,

@@¥ad @@ o4d Current default drive number (#=A,...,l5=pP),

40950

pga7a Contains a Jjump instruction to the BDOS,and
serves twO pPUrposes: JiP 0@H5H provides the
primary entry point to the BDOS, as described in
the manual “CP/M Interface Guide,"™ and LHLD
gd@deH brings the address field cf the
instruction to the HL register pair, This value
is the 1lowest address in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DDT program will change the address
field to reflect the reduced memory size 1in
debug mode,

d0d8H - 08274 {interrupt locations 1 through 5 not used)

pd3e0 - 99378 (interrupt location 6, not currently used -
reserved)

@3I8H - @G93AH Restart 7 - Contains a jump instruction intec the
DDT or SID program when running 1in debug mode
for programmed breakpoints, but is not otherwise
used by CP/M.

GH3BH - GO3FH (not currently used - reserved)

dd4ed - 904FrQ l6 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/#

BAS58H - YE5BH (not currently used - reserved)

bB5CH - 0@87CH default file control block produced for a
transient program by the Console Command

Progcessor,

ga7pd

pa7rH Optional default random record position

(All Information Contained Herein is Proprietary to Digital Research.)

23

008Yd - BIFFH default 1238 byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this information is set-up for normal operation under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not reguired by the transient.

if, for example, a particular program performs only simple I/0 and
must pegin execution at location ¥, it can be first locaded into the
IPA, wusing normal Cp/M faciiities, with a small memory move program
which gets control when locaded {(the memory move program must get
control from location ©1ldPH, which is the assumed beginning ocf all
transient programs). The move prodram can then proceed £o move the
entire memory image down o location ©, ana pass control to the
starting address of the memory loaa, Note that if <the BIOS is
overwritten, or if location 4 (containing the warm start entry vnoint)
is overwritten, then the programmer must bring the C2/M system back
into memory with a cold start seguence,

{({All Intformation Contained Herein is Proprietary to Digital Research,)

24

19, DISK PARAMETER TABLES,

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M, These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B, The purpose here is to describe the elements of these
tables,

In general, each disk drive has an associated (l6-byte} disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header
| XLT | 0@fde | 0900 | 60980 |DIRBUF| ODPB | CSV | ALV |
i6b 16b 16b l6b leb 1eb l6b l6b

where each element is a word (16-bit) value, The meaning of each Disgk
Parameter Header (DPH) element is

ALT Address of the logical to physical translation vector,
if used for this particular drive, or the value 90BH
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same), Disk drives
with identical sector skew factors share the same
translate tables,

GaoD Scratchpad values for use within the BDOS (initial
value is unimportant},
DIRBUF Address of a 128 byte scratchpad area for directory

operations within BDOS, All DPH's address the same
scratchpad area, .

DPB Address of a disk parameter block for this drive,
Drives with identical disk characteristics address the
same disk parameter block,

csv Address of a scratchpad area used for software check
for changed disks., This address is different for each
DFH,

ALV Address of a scratchpad area used by the BDOS to keep

disk storage allocation information, This address is
different for each DPH,

Given n disk drives, the DPH's are arranged in a table whose first row

of 16 bytes corresponds to drive @, with the last row corresponding to
drive n-1, The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research,)

25

DPBASE:

——— . A M S A R R R A A R S S A S M S Y S A

90 |XLT 06| 0000 | 6006 | @983 |DIRBUF|DBP JdICSV 94 |ALV 64|

—— — —— S T M T Y T Sl TP e W o il = il W Mtk S ol S A ke Sl T vl v S MU Sl S U M ok T AOY M W

g1 |XLT 01| 0000 | 0000 | 0068 |DIRBUFI|DBP @1|Csv d1|ALV B1]

——— T A Y e e M v A e il S S v —— et A S — —— —— T ————— ——— ———— ——

n-1|XLTn-1) #6092 | 69499 | 6906 |DIRBUF|DBPn-1iCSVn-1|ALVn-1)

where the label DPBASE defines_the base address of the DPB table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive, The following sequence of
operations returns the table address, with a @800H returned 1if the
selected drive does not exist,

NDISKS EQU 4 ;NUMBER OF DISK DRIVES
SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0269H ;ERROR CODE
MOV A,C :DRIVE OK?
CPI NDISKS sCY IF SO
RNC sRET IF ERROR
+NO ERROR, CONTINUE
MOV L,C sLOW({DISK)
MOV H,B tHIGH({DISK)
DAD H s k2
DAD H 1%4
DAD H : %8
DAD H ;1 ¥16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH{DISK)
RET

The translation vectors (XLT @8 through XLTn-1} are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1, The Disk
Parameter Block (DPB) for each drive is wmore complex, A particular
DPB, which 1s addressed by one or more DPH's, takes the general form

——— . —— —— N W ol W T v e o il S S Sy S A S — ———————— T T i T S N S ————— —

T — ik — v ik T T ke S SV S S Al S ——— T — —— T ——————————— — —— . ——— % e "

16b 8b 8b 8b l6b l6b 8b 8b 1éb 16b

where each is a byte or word value, as shown by the "8b" or "“lé6b"
indicator below the field,

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

(A1l Information Contained Herein is Proprietary to Digital Research.)

26

EXM is the extent mask, determined by the data Dblock
aliocation size and the number of disk blocks,

DSM determines the total storage capacity of the disk drive

DRM determines the total number of directory entries which
can be stored on this drive ALG,AL1 determine reserved
directory blocks.

CKS is the size of the directory check vector

QOFF is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly}) the data allocaticn
size BLS, which 1is not an entry in the disk parameter block, Given
that the designer has gselected a value for BLS, the values of BSH and
BLM are shown in the table below

BLS BSH BLM
1,624 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

where all values are in decimal, The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/B
2,048 1 @
4,096 3 1
8,192 7 3

5 7

16,384 1

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units, The product BLS times
(DSM+1)} is the total number of bytes held by the drive and, of course,
must be within the capacity of the physical disk, not counting the
reserved operating system tracks,

The DRM entry is the one less than the total number of directory
entries, which can take on & 16-bit value, The values of AL® and ALl,
however, are determined by DRM, The two wvalues AL®# and ALl can
together be considered a string of 16-bits, as shown below,

(All Information Contained Herein is Proprietary to Digital Research.)

27

g9 01 62 63 04 95 96 87 A8 @9 10 11 12 13 14 15

where position 08 corresponds to the high order bit of the byte
labelled ALB, and 15 corresponds to the low order bit of the byte
labelled ALl. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at @6 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS Directory Entries
1,924 32 times # bits
2,048 64 times # bits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # Dbits

Thus, if DRM = 127 (128 directory entries), and BLS = 1824, then there
are 32 directory entries per block, reguiring 4 reserved blocks, In
this case, the 4 high order bits of AL are set, resulting in the
values AL® = OFQH and ALl = 0@H,

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the 1last directory
entry number, If the media is fixed, then set CKS = & (no directory
records are checked in this case). :

Finally, the OFF field determines the number of tracks which are
skipped at the beginning of the physical disk, This wvalue is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections,

To complete the discussicon of the DPB, recall that several DPH's
can address the same DPB if their drive characteristics are identical,
Further, the DPB c¢an be dynamically c¢hanged when a new drive is
addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values C(C8V and ALV remain, Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unigue for each drive, and the size of each area is determined by the
values in the DPB,

The size of the area addressed by C8V is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive, If CKS = (DRM+1}/4, then you must reserve (DRM+l)/4 bytes for
directory check use, If CKS = ¢, then no storage is reserved,

{All Information Contained Herein is Proprietary to Digital Research.,)

28

The size of the area addressed by ALV 1is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+1,

The CBIOS shown in Appendix C demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to

examine this program, and compare the tabular values with the
definitions given above,

(All Information Contained Herein is Proprietary to Digital Research.)

29

11, THE DISKDEF MACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, which
greatly simplifies the table construction process, You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library 1is included with all CP/M 2.8
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
DISKS n
DISKDEF B,...
DISKDEF 1,...
DISKDEF n-l

ENDEF

where the MACLIB statement lcads the DISKDEF.LIB file (on the same
disk as vyour BIOS) into MAC's internal tables, The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16, A series of
DISKDEF macro calls then follow which define the characteristics of
each 1logical disk, @ through n-1 (corresponding to logical drives A
through P), Note that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement, The ENDEF (End of Diskdef) macro denerates the
necessary uninitialized RAM areas which are located in memory above
your BIOS,

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs, (8]

where
dn igs the logical disk number, @ to n-1
fsc is the first physical sector number (8 or 1)
1sc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of “checked" directory entries
ofs is the track cffset to leogical track 44
[8] is an optional 1.4 compatibility flag

The value “dn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital Research.)

38

macro 1invocation, The "fsc" parameter accounts for differing sector
numbering systems, and is usually 6 or 1, The “lsc* is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes., No translation table is c¢reated 1if the
skf parameter is omitted (or egual to @), The “bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the wvalues 1024, 2648, 4696, 8192, or 16384, Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk, Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dks"
specifies the total disk size in "bls" units., That is, if the bls =
2048 and dks = 16##6, then the total disk capacity is 2,048,000 bytes,
If dks is greater than 255, then the block size parameter bls must be
greater than 1824, The wvalue of "dir" is the total number of
directory entries which may exceed 255, 1if desired, The “cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed)., As
stated in the previous section, the value of c¢ks = dir when the media
is easily changed, as is the case with a floppy disk subsystem., If
the disk is permanently mounted, then the value of cks is typically @,
since the probability of changing disks without a restart 1is dguite
low, The *“ofs" value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive, Finally, the [B]
parameter is included when file compatibility is required with
versions of 1,4 which have been modified for higher density disks,
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions, Normally, this
parameter is not included,

For convenience and economy of table space, the special form
DISKDEF i,3
gives disk i the same characteristics as a previously defined drive j.

A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is Proprietary to Digital Research,)

31

DISKS 4
DISKDEF 9,1,26,6,1024,243,64,64,2
DISKDEF 1 :

DISKDEF 2
DISKDEF 3

L B B

ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1824 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The DISKS macro dgenerates n Disk Parameter Headers (DPH's),
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-~for-one to each of the defined drives, In the four

drive standard system, for example, the DISKS macro generates a table
of the form:

DPBASE EQU $

DPE@: DW XLTY,00004,0049H,0860H , DIRBUF ,DPBG,CSVD ,ALVY
DPE1: DW XLT@ ,0000H,0089H,00604,DIRBUF,DPBO,CSV]1,ALV]
DPE2: DW XL.T9 ,0000H,0090H ,00¥¢H ,DIRBUF ,DPBP ,CSV2,ALV2
DPE3: Dy XLTO ,09604,0000H ,P30¢YH ,DIRBUF ,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive @ through 3., “The values
contained within the disk parameter header are described in detail in
the previcus section, The check and allocation vector addresses are

generated by the ENDEF macro in the ram area following the BIOS c¢ode
and tables,

Note that if the "skf" (skew factor) parameter is omitted (or
egual to @), the translation table is omitted, and a @060@H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subseguent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
@9@BH, and simply returns the original logical sector from BC in the
BL register pair., A translate table 1is constructed when the skf
parameter 1is present, and the (non-zero) table address is placed into
the corresponding DPH's., The table shown below, for example, 1is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTd: DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,16,16,22

Following the ENDEF macro call, a number of wuninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory., The gize of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive gystem, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 = BEGDAT EQU $
(Gata areas)
4DB@ = ENDDAT EQU §
@13C = DATSIZ EQU S-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB#BH-1, and occupies @13CH bytes, You must ensure that these
addresses are free for use after the system is loaded,

After modification, you can use the STAT program to check vyour
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A,...,P) and displays
the values shown below:

r: 128 Byte Record Capacity
k: Kilobyte Drive Capacity
d: 32 Byte Directory Entries
¢: Checked Directory Entries
e: Records/ Extent

b: Records/ Block

s: Sectors/ Track

t: Reserved Tracks

Three examples of DISKDEF macro invocations are shown below with
corresponding STAT parameter values (the last produces a full
8-megabyte system).

DISKDEF #,1,58,,2048,256,128,128,2
r=4896, k=512, d=128, c=128, e=256, b=16, s=58, t=2

DISKDEF 9,1,58, ,2048,1824,360,02,2
r=16384, k=2948, 4d=3@80, c=0, e=128, b=16, s=58, t=2

DISKDEF 6,1,58,,16384,512,128,128,2
r=65536, k=8192, 4=128, c=128, e=1024, b=128, s=58, t=2

{All Information Contained Herein is Proprietary to Digital Research.)

33

12, SECTOR BLOCKING AND DEBLOCKING,

Upon each call to the BIOS WRITE entry point, the CP/M BDOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BDOS information to perform the operations automatically,

Upon each call to WRITE, the BDOS provides the following
information in register C:

normal sector write
write to directory sector
write to the first sector
of a new data block

%
1
2

Condition B occurs whenever the next write operation 1is into a
previously written area, such as a random mode record update, when the
write 1is +to other than the first sector of an unallocated block, or
when the write is not into the directory area, Condition 1 occurs
when a write into the directory area is performed, Condition 2 occurs
when the first record (only) o¢of a newly allocated data block is
written., In most cases, application programs read or write multiple
128 byte sectors in seguence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on vyour C(P/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector, Throughout the program, values and variables which relate to
the CP/M sector 1involved in a seek operation are prefixed by “sek,”
while those related to the host disk system are prefixed by “"hst.”
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65, Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point, SECTRAN performs a trivial trivial function of
returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines
118 and 125, respectively, These subroutines take the place of vyour
previous READ and WRITE operations,

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research,)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector

number) , You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms,

This particular algorithm was tested using an 88 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage, When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% improvement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that wuser programs still
maintain the (less memory consuming) 128-byte sectors, This 1is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place,

{1l Information Contained Herein is Proprietary to Digital Research.)

35

APPENDIX A: THE MDS COLD START LOADER

MDS~886 Cold Start Loader for CP/M 2.8

FmA wa wE

Version 2,8 August, 1979

gaga = false eqgu)
ffff = true equ not false
peag = testing equ false
if testing
bias equ #34808h
endif
if not testing
nega = bias egu 68ddh
endif
gaap = cpmb equ bias :base of dos load
Bg8ge = bdos equ 8@6h+tbias rentry to dos for calls
1889 = bdose egu 188@8h+bias :end of dos load
1688 = boot egu l16@@h+bias ;jcold start entry point
leG3 = rboot egu boot+3 swarm start entry point
30049 org 3660h ;loaded here by hardware
1880 = bdosl equ bdose-cpmb : '
0BE2 = ntrks egu 2 ;tracks to read
@ge31 = bdoss eqgu bdosl/128 :# sectors in bdos
0Bl19 = bdos# equ 25 i# on track @
gels = bdosl egu bdoss-bdos# :# on track 1
f800 = mon8 @ equ P£800h ;intel monitor base
ff0f = rmon8@ equ gEfafh ;restart location for mon8@
gg78 = base equ 878h : 'base' used by controller
agi9 = rtype eqgu base+l ;result type
dd7b = rbyte eqgu base+3 ;result byte
ga7f = reset equ baset7 ;:reset controller
ga78 = dstat equ base ;disk status port
gB79 = ilow eqgu base+l ;low iopb address
Gé7a = ihigh equ base+2 ;high iopb address
GBff = bsw egu gfth :boot switch
4093 = recal equ 3h ;recalibrate selected drive
gag4 = readf equ 4h ;disk read function
6166 = stack equ 1é@h suse end of boot for stack
rstart:
3906 316601 1xi sp,stack;in case of call to mon8d
H clear disk status
3083 db79 in rtype
3885 db7b in rbyte
; check if boot gwitch is off
coldstart:
3087 abfft in bsw
30083 &88730 3h3 B3R astarisSwitch on?

36

306e

3010
3612

3415
3816
3918
3919
361b

1019

3922

3824
3026

3928

382b

3B24
302e
3831
3032

3934

3837
383a
383b
383c

383f

a37f

A6@2
214238

74
d379
7¢
d37a
db78

880830

db79

eb03
fed2

az2p030

db7b

17
dc@fff
1f
e6le

c2p639

118768
19
B85
c21538

c3géle

waith:

- wmi

- e ma

clear the controller

out reset 1logic cleared
mvi b,ntrks :number of tracks to read
Ixi h,iopb@

read first/next track into cpmb

mov a,l

out ilow

mov a,h

out ihigh

in dstat

5zt waits

check disk status

in rtype

ani 1lb

cpi 2

if testing

cnc rmon8@ ;g0 to monitor if 11 or 18
endif

if not testing

jnc rstart j;retry the load

endif

in rbyte ;i/0 complete, check status
if not ready, then go to mon8#d

ral

cc rmon8@ ;not ready bit set
rar irestore

ani 111168b :;overrun/addr err/seek/crc
if testing

Cnz rmon8@ ;go to monitor

endif

if not testing

jnz rstart ;retry the load

endif

1xi d,iopbl ;length of iopb

dad d ;addressing next iopb
dcr b ;count down tracks
jnz start

jmp boot, print message, set-up jmps
imp boot

parameter blocks

37

3042 84 iopb#: db : 8oh ;iocw, no update

3943 94 db readf ;read function

344 19 db bdosf ;# sectors to read trk 8
3645 90 db @ s;track @

3046 42 db 2 ;start with sector 2, trk 4
3847 Ppog dw cpmb rstart at base of bdos

goB7 = iopbl equ $—iophf

3949 86 iopbl: &b 8@h

364a 04 db readaf

384b 18 db bdosl 1sectors to read on track 1
3d4c @81 ab 1 strack 1

3044 61 db 1 tsector 1

3R4e 8B9c dw cpmb+bdos@*128 ;base of second rd
38589 end

38

d814

4200
3498
3cB6
1609
Go22c
6002
o4
dese
goda

a8
4a@3
4a66
4a69
dafic

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

Il
W R wE wme e e] we we e e e
m
H
wn

cpwb
bdos
cpml
nsects
offset
cdigk
buff
retry

W W wunwnn

My M Mg A WE M s B ME S Mg WA ME Wk mp Wi M4 My ma WA R WA W My W ws ws

c3ib3da
c3c34a wboote:
c3614b
c3644b
c36aidb

mds-8006 i/o drivers for cp/m 2.0
(four drive single density version)

version 2,8 august, 1979
egu 20 sversion 2.0
copyright (¢} 1979

digital research

box 579, pacific grove
california, 93958

org 4a@d@h ;base of bios in 20k system

egu 3400h :base of cpm ccpo

equ 3cpPéh 1base of bdos in 20k system

equ §-cpmb ;length (in bytes} of cpm system
egu cpml/128;number of sectors to load

egu 2 :snumber of disk tracks used by cp
edqu dBBdh raddress of last logged disk

equ ga8An rdefault buffer address

edqu 1@ :max retries on digk i/o before e

perform following functions
boot cold start
wboot warm start (save i/0 byte)
{(boot and whoot are the same for mds)
const console status
reg-a = 9@ if no character ready
reg-a = ff if character ready
conin console character in (result in reg-a)
conout console character out {char in reg-c)
list list out {char in reg-c)
punch punch out (char in reg-c)
reader paper tape reader in (result to reg-a)
home move to track 0@

(the following calls set-up the io parameter bloc
mds, which is used to perform subseguent reads an
seldsk select disk given by reg-c (6,1,2,..)
settrk set track address (¢,...76) for sub r/w
setsec set gector address (1,....,26)

setdma set subsequent dma address (initially 8dh

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines

jmp boot

jmp wboot
jmp const
jmp conin
jmp conout

39

4a0f
4al2
4al5
4al8
dalb
dale
4a2l
4a2d
daz’7
4aZa
4a2d
4a3d

¢36ddb
c3724b
¢3754b
c3784b
¢37d4b
c3a74b
clacdb
c3bbib
c3cldb
c3caib
c3764b
c3bldb

4a33+=

4a33+824a64
4a374600060
4a33b+6edc?3

dpbase
dpep:

da3jf+ddadee

4ad43+824ad0
4ad7+000000
4adb+6edcT3
4a4f+3c4dld
4a53+824a66
4a57+0060009
4a5b+6edc73
4abf+6bdddc
4a63+824a00
4a67+0606000
4a6b+6edc?3
da6f+9ad4d7b

427 3+=
4a73+1a0d
4a75+43
da76+07
4a77+08
4a78+f200
dala+3fed
dajc+cl
4a78+00
4a7e+lPEd
4a80+0200
4a82+=
4a82+@1
4a83+07
da84+¢d
4a85+13
4a86+1°
4a87+65
4a88+6Gb
4a89+11
4a8a+l?
4aB8b+03

dpel:

dpe2:

dpe3d:

dpbd

xltd

diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
ab
db
db
db
db
db
db

list

punch

reader

home

seldsk

settrk

setsec

setdma

read

write

listst ;list status

sectran

diskdef ;load the disk definition library
4 ;s four disks

$;base of disk parameter blocks
x1td,d8880h rtranslate table
fQOEh,0B608h :scratch area

dirbuf, dpb#d ;dir buff,parm block
cevd,alvi scheck, alloc vectors
xltl,64668h stranslate table
Badeh, 066N ;scratch area

dirbuf, dpbl ;dir buff,parm block

csvl,alvl
Xx1t2,2080h

:check, alloc vectors
stranslate table

d966h,B020h0 sscratch area

dirbuf, dpb2 sdir buff,parm block
¢sv2,alv2 :check, alloc vectors
x1t3,00088h ;translate table
GRGeh,0006BH :scratch area
dirbuf,dpb3 :dir buff,parm block

csv3,alvl

scheck, alloc vectors

6,1,26,6,1024,243,64,64,0ffset

$
26
3
7
f
242
63
192
g
16
2
9
1
7
13
19
25
5
11
17
23
3

48

;disk parm block
;sec per track
:block shift
:block mask
rextnt mask
;disk size-l
;directory max
sallocd

sallocl

scheck size
joffset
stranslate table

4a8ctd9
4a8d+48f
4a8e+l15
4a8f+02
4a9%¢+98
4a9l1+9e
4a92+14
4a93+1a
4a94+96
4a95+8¢
4396+12
4a97+18
4598+04
4a99+0a
4a9%a+10
4a%9b+16

437 34=
GB1lf+=
BR1e+=
4a82+=

4a73+=
gelf+=
gHl1a+=
4a82+=

4a73+=
RpE1f+=
BBlE+=
4a82+=

gafd
fgfc
gaf3
ga7e

wuonn

f800
ffof
£8m3
£806
£8089
f8ac
feof
£812

dpbl
alsl
c¢ssl
x1tl

dpb2
als2
css2
x1t2

dpb3
als3
css3
x1t3

-

W ME WE mE ME WA WE N we

revrt
intc
icon
inte

¥
mong#d
rmon8@
ci

ri

co

po

lo
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
diskdef
egu
equ
eqgu
egu
diskdef
egu
egu
eqgu
egu
diskdetf
egu
equ
equ
egu

endef occurs at

9

15
21

2

8

14
28
26

6

12
18
24

4

16
le6
22
1,0
dpb#d
alsg
cssh
x1td
2,0
dpb#
alsd
cssh
x1t@
3,49
dphd
alsg@
cssl
x1tod

seguivalent parameters

;same allocation vector size
:same checksum vector size
ssame translate table

seguivalent parameters

:same allocation vector size
;same checksum vector size
:same translate table

requivalent parameters

:same allocation vector size
;same checksum vector size
;jsame translate table

end of assembly

end of controller - independent code, the remaini
are tailored to the particular operating environm
be altered for any system which differs from the

the fellowing code assumes the mds monitor exists
and uses the i/o0 subroutines within the monitor

we also assume the mds system has four disk drive

egu
equ
egu
egu

mds
egu
equ
equ
equ
egu
eqgu
eqgu
egu

Bfdh
dfch
df3h

;interrupt revert port
;interrupt mask port
:interrupt control port

$111%1116b;enable rst @ (warm boot),rst 7

@£8@0h
pEfoth
@£8@3h
B£8@6h
B£809h
Bf86ch
@£80fh
g£812h

41

monitor eguates

:mds monitor

s;restart mon89 (boot error)
;console character to reg—-a
;reader in to reg-a

:conscle char from ¢ to console ©
;punch char from ¢ to punch devic
:list from ¢ to list device
;console status #8/ff to register

Bo78
vg78
par9
687b

ae79
gaia

voa4

Boa6
6003
gpo4
gedd
goda

4a9c¢
4a9f
4aal
4aad
dabl

4ab3
4abé
4ab%
dabce
4abd
dach

4ac3

dace
4ac8

4ac9
4acc
dact
4adl
4ad4
4adeo
4ad9
4dadb

4ade
dadf

nmwan

@dgada
3234
6b2043f
322e340
#d0a0g

316061
21%cda
cdd34b
at

32084060
c30f4b

318400

GeBa
ch5

106634
cdbbdb
dedd
cd7d4b
febd
cda74b
dged2
cdacdb

cl
Bg62c

. wp

base
dstat
rtype
rbyte
ilow
ihigh
r
readf
writf -
recal
ioray
cr

1f

:

signon:

- ME ua s LI T
o3
O
o
e s

-

whooth:

™y ma

digk ports and commands

equ 78h ;base of disk command io ports
equ base :disk status (input)
. equ base+l ;result type (input)
egu base+3 ;result byte (input)
equ base+l ;iopb low address (cutput)
equ base+2 ;iopb high address {output)
eqgu 4h ;read function
equ 6h swrite function
eqgu 3h :recalibrate drive
egu 4h 1i/0 finished mask
equ gdh ;carriage return
equ gah :line feed
:signon message: xxk cp/m vers v.y
db . er,lf,1f
db r29’ ;sample memory size
db 'k cp/m vers '’
ab vers/1é+'6",’."' ,vers mod 1g+'6"’
db cr,l£,d

:print signon message and go to ccp
(note: mds boot initialized iobyte at 8863h)

1xi sp,buff+80nh

Ixi h,signon

call prmsg ;pPrint message

Xra a ;clear accumulator

sta cdisk +set initially to disk a
jmp gocpm ;go to cp/m

loader on track 0, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start,

Ixi sp,buff ;using dma - thus 88 thru ff ok £
mvi c,retry ;max retries

push b

;enter here on error retries

Ixi - b,cpmb ;set dma address to start of disk
call setdma

mvi c,d :boot from drive g -

call seldsk

mvi c,d

call settrk ;start with track @

mvi c,2 sstart reading sector 2

call setsec

read sectors, count nsects to zero
pop b ;l@~error count
mvi b,nsects

42

dael
dae?
4aeb
43e8
daeb
daee
daef
4afp
4afl
4dafd
4af’]
4afsg

dafc
4aff
4bG@
4b@1
4bg 4
4bf5
4bé6
4b@7
idbda
4bdb
4bhéc

400 f
4bl@
4bl2
ibl4
4bl5
4bl7
4bl9
4dblb
dblc

4ble
4021

4bh24
4b26
4h29
ib2c
4b2f
4b32
4b35
4b38
4b3b
4b3e

ch
cdcldb
c2494b
Zatecdc
118609
19

44

44
cdbbédb
Jaeébdc
fela
dag54b

3a6adc
3¢
af
cda74b
at
3¢
Af
cdacdb
cl
@5
c2elda

£3
3el?2
d3fd
af
d3fc
3e7e
d3fce
af
d3E3

¥18000
cdbbdb

3ec3

320000
21834a
2201040

320540

21863c
220600
323804
210018
2239494

rdsec:

-y

rdl:

ocpm:

s) we

LI TY

- e

-

:read next sector

rush
call
inz
1hl4d
1xi
dad
mov
mov
call
lda
cpi
ic
muskt be
lda
inr
mov
call
Xra
inr
mov
call
pop
dcr
inz

b

read
booterr
iod
d,128
d

b,h
¢,l
setdma
ios

26

rdl
sector 2
iot

a

c,a
settrk
a

a

C,a
setsec
b

b
rdsec

1Save gsector count

sretry if errors occur
sincrement dma address

;Sector size

sincremented dma address in hl

;ready for call to set dma

;sector number just read
sread last sector?

6, Zzero and go to next track
;get track to register a

;ready for call
s:clear sector number
r1to next sector
rready for call

srecall sector count
rdone?

done with the load, reset default buffer address
; {(enter here from cold start boot}
enable rstd and rst?

di

mvi
out
Xra
out
mvi
ocut
Xra
out

a,l2h
revrt
a

intc
a,inte
intc

a

icon

;initialize command

:cleared
srstd and rst7 bits on

;interrupt control

set default buffer address to 86h

1xi
call

b,buff
setdma

reset monitor entry points

mvi
sta
1xi
shld
sta
1xi
shld
sta
1xi
shld.

a,jmp
@

h,wboote
1

5

h,bdos

6 _
7*8
h,mon8@
T*8+1

leave iobyte set

43

:jmp wboot at location od

+Jmp bdos at location 5
;jmp to mon8@ (may have been chan

previously selected disk was b, send varameter to

-

4b4l 3ad44d 1da cdisk ;last logged disk number
4b44 4af mov c,a ;send to ccp to log it in
4b45 fb el
4b46 c39634 jmp cpmb
: error condition occurred, print message and retry
booterr:
4b49 cl pop b ;recall counts
4b4a Bd dcr C
4b4b cab524b jz booterf
: try again
4bde c¢5 push b
4b4f c3c%4a jmp whootf
booterd:
H otherwise too many retries
4b52 215b4b 1xi h,bootmsg
4b55 c¢dd34b call prmsg
4b58 c30fff jmp rmon8#d ;mds hardware monitor
bootmsg:
4b5b 3f626f4 db '?boot’,d

onst: j;conscle status to reg-a
(exactly the same as mds call)

wg () wr s

4b61 ¢3121£8 jmp csts

;

conin: j;console character to reg-a
4b64 cd@3fs call ci
4b67 eb67f ani 7fh ;remove parity bit
4b69 ¢9 ret

conout: j;console character from ¢ to console out
4bba c309f£8 imp co

list: :list device out

: {exactly the same as mds call)
4b6d c30ff£8 jmp 1o

listst:

jreturn list gtatus

4b780 af Xra a
4b71 c9 ret ;ralways not ready

7

punch: ;punch device out

: (exactly the same as mds call)
4b72 c30cf8 jmp po

reader: ;reader character in to reg-a

; {exactly the same as mds call)
4b75 c306£8 jmp ri

H

home : jmove to home position

44

4b78
4b7a

4b7d
4b8@
481l
4b83

4b8 4
4b86
4h89
4h8a
4b8c
4p8d
4h9y

4b92
4b93
4b9%6
4b97
4p99
4b%a

483k
4b9%e
4b9f
4bad
4bal
dba2
4pas
4pab

4ba’
4baa
dbab

4bac
dbaft
4bbi

4bbl
4bb3
4bb4
4bb5
4bbé

1BB2

fedd
cla74db

210000
79
feBd
dp

eb6f 2
32664c¢
79
e6dl
b7
ca%24b
3e30

47
21684c
e
ebef
bd

77
8200
29

29

29

29
11334a

19
cg

21l6adc
c9

2l6b4dc
71
c9

Baop
eb

B9

Te
326b4c

6
c

-y

treat as track @4 seek

mvi c,B
jmp settrk
!
seldsk: ;select disk given by register ¢
1xi h,0868h ;return 9888 if error
mov a,c
cpi ndisks ;too large?
rnce t:leave hl = G399
!
ani 1db ;80 06 for drive 9,1 and 18 10 fo
sta dbank :t0o select drive bank
mov a,c 98, @1, 14, 11
ani 1b rmds has 8,1 at 78, 2,3 at 88
ora a sresult @66?
jz setdrive
mvi a,falldéaagb 18elects drive 1 in bank
setdrive:
mov b,a ;save the function
1xi h,iof 1io function
mov a,m
ani 11861111b smask out disk number
ora b ;mask in new disk number
mowv m,a ;save it in iopb
Boy %:ﬁ ;hl=disk number
dad h 1 %2
dad h 1%4
dad h 1 %8
dad h ;%16
1xi d,dpbase
dad d ;jhl=disk header table address
ret
H
r
settrk: ;set track address given by c
1xi h,iot
mov m,c
ret
1
setse¢: ;set sector number given by ¢
1xi h,ics
mov m,cC
ret
sectran:
stranslate sector bc using table at de
mvi b,d ;double precision sector number i
xchg ;translate table address to hl
dad b jtranslate(sector) address
mov a,m ;translated sector number to a
sta ios
mg l,a sreturn sector number in 1
r
setdma: ;set dma address given by regs b,c

45

4bbb
4bbc
- 4bbd
dbco

4bcl
4bc3
4bcé
4bc9

dbca
4bcc
4bcf
4bd2

4bd3
4bd4
4bds

4bhdeé
4bd7
4bds
4bdb
4bdc
4bdd

4bed
4be3
4dbed
4bet
4be?

dbeB
dbea
4bed
4ibee
dbef

4bfp

4bf2

4b£f5

4bf8

69
6@
226¢4c
c9

Bedd
cdefidb
cdfiddb
c9

Bed b
cdefdb
cdfdab
c9

Te
b7
c8

eb
af
cdbadb
el
23
¢c3d434b

21684c
e
eb6ff
bl

77

e620
21l6bdc
bé

77

c9

Aelba
caifdce

cddcidc
3Ja6ebdc

-y

read:

rite:

B owe we

T3 = we =

rmsqg:

-

mov 1
mov h
shld i
ret

(o35 TR
O,a 0

;read next disk record (assuming disk/trk/sec/dma

mvi ¢,readf rset to read function

call setfunc

call waitio ;perform read function

ret ;may have error set in reg-a

;disk write function

mvi c,writf

call setfunc ;set to write function
call waitio

ret :may have error set

utility subroutines
:print message at h,1 to @

setfunc: .

¥

- e

-
F

waitio:

rewait:

r

-

mov a,m

ora a 1 z2ero?

rz

more to print

push h

nov c,a

call conout

pop h

inx h

jmp prmsg

set function for next i/o (command in reg-c)

1xi h,iof :io function address

mov a,m ;get it to accumulator for maskin
ani 11111486b ;remove previous command
ora c :set to new command

MoV m,a ;replaced in iopb

the mds~806 controller req's disk bank bit in sec
mask the bit from the current i/o function

ani galog8adb ;mask the disk select bit
ixi h,ios saddress the sector selec
ora m ;select proper disk bank
MOV m,a ;1set disk select bit on/o
ret

mvi c,retry ;max retries before perm error
start the i/o function and wait for completlon
call intype ;in rtype

call inbyte j;clears the controller

lda “dbank ;set bank flags

46

Abfb
dbfe
4bfe
4cip
4c03
4c@d5
4cdio
4cd8

4¢cBb
dcidd
dcde

4cl®
4cl3
4cl5

4cl8

4clb
4cld

4c2B
4c2l

4cld
4¢c27
4c28
4¢2b
dc2c
4cle

4c31

4¢32
4¢35

b7
3e67
B64c
cz2fibdc
d379
78
d37a
c3liac

d3ig9g
8
d38a

cds9%4c
ebfd
calddc

cd3fdc

fe2
ca3zdc

b7
cZ2384c

cddcdc
17
da32dc
1f
ebfe
c2384c

c9

cd4cdc
¢3384c¢

iodrl:

waité:

-~y

LT s ma

-y ww

-y me

;-
wready:

'
werror:

™A WA mg wE wE M4 ws s we w4

DO U LR S
|

ora a ;zero if drive 0,1 and nz
mvi a,iopb and 8ffh ;low address for iovob

mvi b,iopb shr 8 +high address for iopb
jnz iodrl ;drive bank 1?2 -
out ilow ;low address to controlle
mov a,b

out ihigh :high address

Jmp waitd ;to wait for complete

:drive bank 1

out ilow+1l@h :88 for drive bank 18
mov a,b

out ihigh+l6h

call instat swait for completion
ani iordy ;jready?

jz waitd

check io completion ok

call intype :;must be io complete (08)
@9 unlinked i/o complete, ‘@1 linked i/o comple
19 disk status changed 11 (not used)

cpi 16b ;ready status change?

iz wready

must be #@ in the accumulator
ora a
inz werror :some other condition, re

check i/0 error bits

call inbyte

ral .

jc wready ;unit not ready
rar - :

ani 11111116b rany other errors?
jnz werror

read or write is ok, accumulator contains zero
ret

;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount :

sreturn hardware malfunction {(cre¢, track, seek, e
the mds controller has returned 2 bit in each pos
of the accumulator, corresponding to the conditio
- deleted data {(accepted as ok above)

- Crc error

- Seek error

address error (hardware malfunction)

- data over/under flow {(hardware malfunct
- write protect (treated as not ready)

- write error {(hardware malfunction)

- not ready

a7

faccumulater bits are numbered 7 6 5 4 3 2 1 8)

it may be useful to filter out the various condit
but we will get a permanent error message if it i

- (1'\. wh ul Wk N we

recoverable, 1in any case, the not ready conditic
treated as a separate condition for later improve
rycount:
register ¢ contains retry count, decrement ‘til z
4¢38 ¢4 dcr c
4c39 c2£24b jnz rewait ;for another try
: _
: cannot recover from error
4c3c 3edl " mvi a,l sarror code
4c3e ¢9 ret .
: intype, inbyte, instat read drive bank 8¢ or 10
4c3f 3a66dc intype: 1lda dbank _
4c42 b7 ora a
4c43 c2494c jnz intypl ;skip to bank 1@
4cd6 db79 in rtype
4c48 ¢9 ret '
4c49 db89 intypl: in rtype+l@h ;78 for 6,1 88 for 2,3
4c4b c9 ret
4cdc 3a664c inbyte: lda dbank
4c4f b7 ora a
4c5@0 c2564c jnz inbytl
4c¢53 db7b in rbyte
4c55 ¢9 ret
4¢56 4b8b inbytl: in rbyte+lgh
4¢c58 ¢9 ret
4c59 3a664c¢c instat: lda abank
4ch5¢c b7 ora a
4c5d c2634c jinz instal
4c6@ db78 in dstat
4cb62 9 ret
4c63 dbss instal: in dstat+ldh
4c65 cY ret
7
;
; data areas {(must be in ram)
4c66 08 dbank: db @ :disk bank @0 if drive 0,1
F 180 if drive 2,3
iopb: ;10 parameter block
4¢c67 80 dab 80h ;normal i/o operation
4co8 64 iof: db readf :io function, initial read
4c¢69 41 ion: db 1 shumber of sectors to read
4¢cba 62 iot: db offset :track number
4cbb 61 ios: db 1l ;sector number
4co6c 8000 iod: dw buff ;10 address

e wA W

48

define ram areas for bdos operation

dcbet=
4coe+
dcee+
4d0d+
4dla+
4d3c+
4d4c+
446b+
447b+
4d9%a+
4daa+=
A1l3c+=
ddaa

begdat

dirbuf:

alvb:
csvid:
alvl:
csvl:s
alvi:
csv2:
alv3:
csv3s
enddat
datsiz

49

;directory access buffer

APPENDIX C: A SKELETAL CBIOS

skeletal cbhios for first level of cp/m 2.8 altera

!

@g@El4 = msize equ 2@ ;Ccp/m version memory size in kilo
; "bias" is address offset from 340¢h for memory sy
H than 16k (referred to as "b" throughout the text)
!

gepe = bias equ (msize-28)*1§24

3406 = ccp equ 34@0h+bias ;base of ccp

3cB6 = bdos equ ccp+806h :base of bdos

a0 = bios equ cep+l6d6h :base of bios

pgp4 = cdisk eqgu BgB4h scurrent disk number 6=a,...,15=p

agB3 = iobyte equ G843h rintel i/o byte
!

4a09 org bios sorigin of this program

g02c = nsects equ {S—-ccp) /128 ;warm start sector count
!
; jump vector for individual subroutines

4a@B c3%cda jmp boot ;cold start

4203 c3a6da wboote: jmp wboot swarm start

4a06 c3114b Jmp const ;console status

4a@9 c3244b _ jmp conin ;console character in

dac ¢c3374b jmp conout ;console character out

4adf c3494b jmp list ;list character out

4al2 c34d4b jmp punch ;punch character out

4315 c34f4b jmp reader ;reader character out

4al8 c3544b jmp home ;move head to home positi

4alb c35a4b - jmp seldsk :select disk

4ale c37d4b jmp settrk ;set track number

4a2l c3924b jmp setsec ;set sector number

4a24 c3addb jmp setdma ;set dma address

4a27 c¢3c34b jmp read sread disk

4a2a c3de4b jmp write ;jwrite disk

4a2d c34bdb jmp listst ;return list status

4a36 c3a74b jmp sectran ;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk @8

[wRLTRETIE TR)

4a33 734a00

phase: 4w trans, 6000h

4a37 0490640 dw Qdedh,e088h0

4a3b f@4c8d dw dirbf,dpblk

- 4a3f ecdd7 dw chk@@,allap
7 disk parameter header for disk #1

4a43 7342040 - dw trans,@406h

4a47 poopan dw péodh, 006800

4a4b f@4c8d aw dirbf,dpblk

4a4f fc4dst : aw chk@fl,alldl
; disk parameter header for disk #2

4a53 734a0606 . dw trans,990h

4a57 000066 dw g@a6h, 86000

4a5b f04c8d dw dirbf,dpblk

435f Bcdeae aw chk#2,allg2

50

4a63
4a67
dabb
danf

g
4a7b
4a7f
4283
4a87
4a8b

4a3d
4a8f
4a90
42091
4392
4a94
4396
4397
4298
4a%9a

4a9c¢

4394

4daald
4aa3

daab
4aa%
daab
daae

4abl
4ab3
4abs

4ab’7

daba
4abb
4abce
dabd
4abe
dacl

734ab6
goa00ae
fdd4cBd
lcdecd

948408

178369
154298
141a06
121864
1816

lagio
g3 -
@7
ga
£260
3feo
cd
2o
1306
200

af

328300
320400
clefda

318904
Bedd

cdSadb
cd544b

d62c
detd @
1662

210034

c5
4as
e5
4a
cd924b
cl

-
¥

- wma

!
trans:

dpblk:

T = ~e =o =

wboot:

-4

LI T

loadl:

disk parameter header for disk 03

dw trans, 6060h
aw GOAEh, 30660
aw dirbf,dpblk
dw chk@3,alléd3

sector translate vector

4B belsl1717 {ESGEQEE 342:9.8

db 23,3,9,15 ;sectors 9,14,11,12
db 21,2,8,14 ;sectors 13,14,15,16
db 20,26,6,12 ;sectorg 17,18,19,24
db 18,24,4,18 ;sectorsg 21,22,23,24
db 16,22 ;sectors 25,26

;disk parameter block, common to all disks
dw 26 ;sectors per track
db 3 ;block shift factor
db 7 1block mask

db @ inull mask

aw 242 ;disk size-l

aw 63 ;directory max

db 192 ralloc @

db] jalloc 1

dw 16 rcheck size

dw 2 rtrack offset

end of fixed tables

individual subroutines to perform each function
:simplest case is to just perform parameter initi

Xra a :zero in the accum

sta iobvte ;¢lear the iobyte

sta cdisk ;select disk zero

jmp gocpm ;initialize and go to cp/
;simplest case ig to read the disk until all sect
1xi sp,80h suse space below buffer f
mvi c,d :select disk B

call seldsk

call home ;go to track @9

mvi b,nsects :b counts # of sectors to
mvi c,@ 1¢ has the current track
mvi d,2 :d has the next sector to

note that we begin by reading track @, sector 2 s
containsg the cold start loader, which is skipped

1xi h,ccp sbase of c¢p/m (initial lo
s load one more sector

push b ;1 save sector count, current track
push da ;save next sector to read

push h ;save dma address

mov c,d ;1get sector address to register ¢
call setsec ;set sector address from register
pop b srecall dma address to b,c

51

4ac2
4acl

4ace
dach
4ach

dace
acft
4ad2
4ad3
4ad4
4ad5
4ade

4ad9
4ada
dadb
4add

dael
4ae2

4dae3
4aed
4ae5
4aeb
4ae9
4daea
4aeb
daec

4jaef
dafl
4afq
4af’?

4afa
4afd
4bG B

4b@3
4bo6

4bB9
4bla
4bgd
4bbe

ch
cdadé4b

cdc34db
fepd
c2abda

el
1188806
19
dl
cl
35
caefda

14

7a
felb
dabada

ledl
dc

¢5
ds
e5
cd7d4b
el
dl
cl
c3bada

3ec3

320000
21834a
220108

328588
21d63c
220600

418000
cdaddb

fb
3ab49a
4f
c30834

LU 1Y

- ue

W

~~ wa

~a wu

I} we we
o
3
3

-

-

-

push b :replace on stack for later recal
call setdma ;set dma address from b,cC

drive set to #, track set, sector set, dma addres
call read

cpi d8h rany errors?

inz wboot sretry the entire boot if an erro

no error, move to next sector

pop h ;recall dma address

I1xi 4,128 :dma=dma+128

dad a ;new dma address is in h,l

pop d ;recall sector address

pop b srecall number of sectors remaini
dcr b ; sectors=sectors-1

jz gocpm stransfer to cp/m if all have bee

nore sectors remain to load, check for track chan
inr d

mov a,d ;sector=27?, if so, change tracks
cpi 27

jc loadl ;carry generated if sector<27

end of current track, go to next track

mvi 4,1 ;begin with first sector of next
inr c ;track=track+l

save register state, and change tracks
push b

push d

push h

call settrk :;track address set from register
pop h

pop d

pop b

jmp loadl ; for another sector

end of load operation, set parameters and go to c

mvi a,fc3h :¢3 is a jmp instruction

sta @ :for jmp to wboot

1xi h,wboote :whoot entry point

shld 1 ;set address field for jmp at @
sta 5 sfor jmp to bdos

1xi h,bdos ;bdos entry point

shld 6 ;address field of jump at 5 to bd
Ixi b,88h ;default dma address is 88h

call setdma

ei ;renable the interrupt system

1da cdisk ;get current disk number

mov c.,a :send to the ccp

jmp cep ;g0 to cp/m for further processin

52

4pbll
4b21
4b23

4b24
4b34
4b36

4b37
4b38
4b48

4b49
ibda

4b4b
4bdc

4b4d
4bde

4b4f
4b51
4b53

4b54
4b56
4b59

4b5a
4b5d
4b5e
4bs1l

79
c9

¢o

79
c9

3ela
e67f
c9

Bepd
cdid4db
co9

2100906
79
32efdc
felid

™ wA My myp Wy W

c¢onst:

conout:

[=
s
m
or
L1

ot e

istst:

¥
punch:

- g

reader:

[»]
=
[}

L Rl TR TR T I T TR)

seldsk:

simple i/0 handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code '

;console status, return Bffh if character ready,

ds 16h ;space for status subroutine
mvi a,B6h
ret

;console character into register a

ds 1dh ;space for input routine
ani 7fh ;strip parity bit
ret

sconsole character output from register c

nov a,c :get to accumulator
ds 16Gh ;space for output routine
ret

;list character from register ¢

mov a,c ;character to register a

ret :null subroutine

sreturn list status (@ if not ready, 1 if ready)
Xra a ;8 is always ok to return

ret

;punch character from register ¢
mnov a,c ;character to register a
ret :null subroutine

:read character into register a from reader devic

mvi a,lah ;enter end of file for now (repla
ani 7fh :Temember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

tmove to the track @@ position of current drive
translate this call into a settrk call with param

mvi c,d sselect track ¢
call settrk
ret swe will move to #6 on first read

;select disk given by register ¢

1xi h,d8880h :;error return code

mov a,c

sta diskno

cpi 4 smust be between @ and 3

53

4b63
4b64

4béte
4b71
4b72
4b74
4b75
4b76
4b77
4b78
4b7b
4b7c

4b7d
4b7e
4b81
4bh91

4b92
4b93
4b96
4bat

dba7
4ba8
4bag
4baa
4bac

4bad
4bae
4baf
4bb2
idbc2

4bc3
4bd3

4bdé

ae

3Jaefdc
6f
2600
29

29

29

29
11334a
19

c9

79
32e94c
c9

79

32eb4c

c9

eb
g9
6e
2608
cg

69
6@
22ed4c

c9

c3eb4db

rnc :no carry if 4,5,...
disk number is in the proper range

-

ds 18 :space for disk select
: compute proper disk parameter header address
1da diskno
MOV l,a :1=disk number 6,1,2,3
mvi h,@8 . thigh order zero
dad h ;%2 '
dad h s %4
dad h 1 %8
dad h :*16 (size of each header)
1xi d,dpbase
. dad d _shl=.dpbase{diskno*16)
ret

H . '
settrk: j;set track given by register c

mov a,c
sta track

- as 1dh ;space for track select
ret

r

setsec: j;set sector given by register ¢

mov a,c
sta sector
ds 18h 1space for sector select
ret :

;

sectran:

stranslate the sector given by bec using the
;translate table given by de

xchg ;hl=_trans

dad b :hl=_trans(sector)
mov l,m 11 = trans{sector)
mvi h,0 shl= trans{(sector)
ret swith value in hl

setdma: ;set dma address given by registers b and ¢

mov il,c tlow crder address

mov h,b thigh order address

shid dmaad ;save the address

ds 16h ;space for setting the dma addres
ret

;perform read operation (usually this is similar
so we will allow space to set up read command, th
common code in write)

ds 16h :set up read command

Jmp waitio j;to perform the actual i/o

:perform a write operation
ds 16h ;set up write commanu

senter here from read and write to perform the ac

: operation.. return a B6h in register a if the ope
H properly, and 61lh if an error occurs during the r

54

4beb
4cebd
4ce8

4ced
4ceb
4ced
fcef

4cfd
4cfd
4470
448¢f
4dae
4dcd
4dec
ddfc
dedic
4elc

delc
#l3c
4elc

3edl
c9

I

e wE my mé W

LU T T T T

~

track:
sector:
dmaad:
diskno:

begdat
dirbf:
alldg:
allpl:
allg2:
all@g3:
chkdd:
chk@l:
chk@2:
chk@3:

enddat
datsiz

in this

ds
mvi
ret

case, we have saved the disk number in *'d

T the track number in 'track‘ (l 76
‘the sector number in 'sector®' (1l-
the dma address in ‘dmaad’ (§-655

256 " jspace reserved for i/o drivers

“a,l ;error condition

;replaced when filled=-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat"),.

ds
ds
ds
ds

scratch
egu
ds
ds
ds
ds
ds
ds
ds
ds
ds

eqgu
egu
end

;two bytes for expansion
;two bytes for expansion
;direct memory address
;disk number #=-15

ol ST SN N

ram area for bdos use

$;beginning of data area
128 - sscratch directory area
31 : rallocation vector @

31 :allocation vector 1

31 ;allocation vector 2

31 tallocation vector 3

16 :check vector @

16 :check vector 1

16 ;check vector 2

16 ;check vector 3

$;end of data area

S$-begdat;size of data area

55

g10@
6014

a04d
344090
3c00
4ab8

g100
6183
6106

glo8

9lda
glag
gl11o
4111
#1112
8113
2115

118
8119
flla
Bllc

P11f
8128

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

318633
218633
2600
Oedl

cdopo3

- wy

msize

; “"bias"

bias
ccp

bdos
bios

=y b

h wp We w4 WS W Ny

gstart:

rdstrk:

rdS$sec:

118860

19

Ac

79
felb
dafadl

04

78
feg2
daggel

fb

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org 1006h
egu 20 ' : size of cp/m in Kbytes
is the amount to add to addresses for > 28k

(referred to as "b" throughout the text)

equ (msize-20)*1624
equ 34@@h+bias
egu ccp+B860h
equ ccptloedah

getsys programs tracks # and 1 to memory at

3886h + bias

register usage

: (scratch register)
track count (#...76)
sector count (1,..26)
{scratch register pair)

nooaon

e
1 load address
P set to stack address
; start of getsys
1xi sp,ccp-9086h ; convenient plac
1xi h,ccp-8882h : set initial loa
mvi b,d ; start with trac
; read next track
mvi - ¢,l : each track star
call = readSsec ; get the next se
1xi 4,128 ' ; offset by one s
dad d : {(hl=hl+128)
inr C : next sector
mov a,c : fetch sector nu
cpi 27 : and see if la
ic rdsec : <, do one more

: arrive here at end of track, move to next track

e

inr b ; track = track+l
mov a,b 3 check for last
cpi 2 ; track = 2 ?

jc rd$trk : <, do another

arrive here'at.end of load, halt for lack of anything b

ei
hlt

56

02008

0200
0283
8206

0208

@20a
p28d
9210
9211
@212
8213
p215

34218
g4219
d21a
92lc

@21t
0220

@380

8309
8301
p382

P342
0343

3188433
218033
2600

Oedl

cdpoas
118908
19

dc

79
felb
dafad2

a4

78
fe@2
dafsn2

fb
76

ch

el
¢l

- WMy wE

org ($+8106h) and O££f060h
puts$sys:
1xi sp,ccp-8880h
1xi h,ccp-8686h
mvi b,d
wrStrk:
mvi c,1
wr$sec:
call writeSsec
1xi 4,128
dad d
inr ¢
mov a,c
cpi 27
je wr$sec
; arrive here at end of track, move to
inr b
mov a,b
cpi .2
jc wrStrk
; done with putsys, halt for lack
ei
hlt

- WA me

-

™y ME ME WA e WE wg

putsys program, places memory image starting at
388¥h + bias back to tracks ¢ and 1
start this program at the next page boundary

convenient plac
start of dump
start with trac

start with sect

write one secto
length of each
<hl>=<hl> + 128
o> = <¢> + 1
see if

past end of t
no, do another

next track

- e we W

track = track+l
see if

last track
no, do another

of anything bette

; user supplied subroutines for sector read and write

move to next page boundary

org {$+0108h) and Gf£f@6h

read$sec:

read the next sector
track in ,

sector in <¢>
dmaaddr in <hl>

- RME ™ my

push b
push h
7 user defined read operation goes here
ds 64
pop h
pop b

57

p344
0460

0489
P41
8402
- 0442

B443
B444

@445

co

ch
eb5

el

cl
c9

ret
org ($+01908h) and Bff@0h
writeSsec:

; same parameters as read$sec

push b

push h
; user defined write operation goes here
' ' ds 64

pop h

pop b

ret

: end of getsys/putsys program

end

58

:+ another page bo

gooo

0gl4e =

pBod
3449
4208
p309
4a06
19389
p@32

Q800
A603
a8e5

(LI A [N N1 T

010200
1632
210634

—e M MA WA WE ME wE wmp ME we wd wE wd W mE wd wE e

APPENDIX E: A SKELETAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track @@, sector 81 (the first sector on the
diskette), we assume that the controller has loaded
this sector into memory upon system start-up (this pro-
gram can be keyved-in, or can exist in read/only memory
beyond the address space of the ¢p/m version you are
running). the cold start loader brings the cp/m system
into memory at “loadp" (3466h + "bias"™). 1in a 28k
memory system, the value of “bias* is 6060h, with large
values for increased memory sizes {(see section 2), afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
“bios" + “bias." the cold start loader is not used un-
til the system is powered up again, as long as the bios
is not overwritten., the origin is assumed at @608h, an
must be changed if the controller brings the celd start
loader into another area, or if a read/only memory area
is used. :

org @ : base of ram in cp/m
msize equ 20 ; min mem size in kbytes
bias egu (msize-20}*18624 ; offset from 20k system
ccp equ 34@0h+bias ;1 base of the ccp
bios equ ccp+l6d@h : base of the bios
biosl equ d366n : length of the bics
boot egu bios
size egu bios+biosgl=ccp ; size of cp/m system
sects equ size/128 ; # of sectors to load

-~

begin the load operation

cold:
1xi b,2 ; b=8, c=sector 2
mvi d,sects ; d=% sectors to load
1xi h,ccp : base transfer address

lsect: ; load the next sector

-
rF
-
¥
-
!
-
¥
-
r
L)
r
»
'

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,

into the address given by <hl>

branch to location "cold" if a read error occurs

59

aa88
BoBb

¢d6b
Boec

11133
B072

0873
Bo74
Be75
@077

g07a
éajc
@@7d
pasg

c36b0d

15
cafdda

318800
39

@gc

79
felb
dagd8pd

Pedl
g4
c3g8pe

AEEERRAAXARARA AL AT RA AL AR LA AR AR AL d bbbk ARk hokhk
*

* user supplied read overation goes here,,..
*

Ak kbt hkhhkhh bAoA AR IR AT R AT ARk kAT h A h Ak hkhk

LTI TR T T

jmp past$patch : remove this when patche
ds 60h
past$patch:
:{ go to next sector if load is incomplete
dcr d ; sects=sects~1
jz boot ; head for the bios
: more sectorg to load
H
: we aren't using a stack, so use <sp> as scratch registe
: to hold the load address increment
1xi sp, 128 :+ 128 bytes per sector
dad sp s <hl> = <hl> + 128
inr c ;3 sector = sector + 1
mov a,c
cpi .27 : last sector of track?
je lsect : no, go read another
: end of track, increment to next track
mvi c,1 : sector = 1
inr b : track = track + 1
jmp lsect ; for another group
end ; of boot loader

60

APPENDIX F: <{P/M DISK DEFINITION LIBRARY

1: ; CP/M 2,0 disk re~definition library
2: ;
3: ; Copyright (c) 1979
4: Digital Rasearch
5: ; Box 579
6: ; Pacific Grove, CA
7: 3 93958
8: ;
9: ; CP/M logicel disk drives are defined using the
16: macros given below, where the seguence of calls
11: is:
12:
13: ; digks 0
14: ; diskdef parameter~iigt-9
15: ; diskdef parameter-ligt-l
16: ; .
17: diskdef parameter-list—-n
18: ; endef
19: .
20: ; where n is the number of logical disk drives attached
21: ; to the CP/M system, and parameter-list-i defines the
22: characterigtics of the ith drive (i=é,1,...,n-1)
23: g
24: each parameter-list-i takes the form
25: dn,fsc¢,lsc, [skf] ,bls,dks,dir,cks,ofs, [6]
26: 3 where
27: 3 dn is the disk number 4,1,...,n-1
28: ; fsc is tie first sector number (usually € or 1)
29 ; 1sc is tae last gsector number on a track
39: ; sk is optional “skew factor" for sector translate
31: ; bls is tne data block size (1824,2048,...,16384)
32: dks ig tne¢ disk size in bls increments {(word)
33: ; dir is tne number of directory elements {word)
34: ; cks is thc number of dir elements to checksum
35: ; ofs is the number of tracks to skip (word)
36: (2] is an optional @ which forces 1lé6K/directory en
37: ;
38: ; for convenience, the form
39: ; an,dm
49: defines disk dn as having the same characteristics as
41: ; a previously defined disk dm,
42:
43: ; a standard four drive CP/M system is defined by
44 3 disks 4
45: diskdef %,1,26,6,1624,243,04,64,2
46: ; dsk set "]
47: ; rept 3
4B: ; dek set dsk+l
49: ; diskdef %dsk,@
5@: ; endm
51: ender
52: ; '
53: ; the value of "begdat" at the end of assembly defines t

51

beginning of the uninitialize ram area above the bios,

[
551 3 while the valve of "enddat" defines the next location
56: ; following the end of the data area., the size of this
57: ; area is given by the value of “"datsiz" at the end of t
58: ; assembly. note that the allocation vector will be gui
39: ; large if a large disk size is defined with a small blo
6ds: ; sizge.
6l: ;
62: dskhdr nmacro dn
63: 3 define a single disk header list
64: dpe&dn: dw X1lt&adn, 36600 stranslate table
65 dw d086h,v0806h ;scratcn area
66 dw dirbuf,dpb&dn :dir buff,parm block
67: dw ¢svaan,alvedn ;check, alloc vectors
08: endm
69:
16: disks macro nd
71: ;: define nd disks
72: ndisks set nd ; ;for later reference)
73: dpbase equ 8 ;base of disk parameter blocks
714: :: generate the nd elements
75: dsknxt set 5| '
163 rept nd
171 ' dskhdr %dsknxti
78: dsknxt set dsknxc+l
79: endm
86 endm
81:

B2: dpbhdr macro dn

83: dpb&dn equ $;disk parm block
84: endm

85: 3 '

86: ddb macroe - data,comment

87: :: define a db statement

88: db data comment
89: endm

98: 3

81: ddw macro data,comment

92: ;3 define a dw statement

93;: dw data comment
94: endm

95: :

Y6: gcd macro m,n

a97: 53 greatest common divisor of m,n
98: ;; produces value acdn as result
99: ;: (used in sector translate table generation)
18d: gcdm set m ::variable for m
1p1l: gcdn set n ::variable for n
162: gcdr set g - s;variable for r
16G3: rept 65535 :
184: gcdx set gcdm/gcdn
1dé5: gcdr set gcdm - godx¥*gcedn
166: if gcdr = @
167: exitm :

168: endif

62

189:
116
111:
112:
113:
11i4:
115:
ll6:
117:
113:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129
139:
131:
132:
133:
134:
135:
136:
137:
138:
139:
146
l41:
142:
143;:
144-
145:
146;
147:
148:
149:
156
151:
152:
153:
154:
155+
156
157:
158:
156
168:
1el:
162:
163:

gcdm
gcdn

- QJ"-l

iskdef

deb&dn
als&dn
css&dn
x1lt&dn

secmax
sectors
als&dn

als&dn
css&dn

i

blkval
blkshf
blkmsk

blkshft
blkmsk
blkval

HH
plkval
extmsk

N
extmsk
blkval

P
extmsk
H
extmsk

- *
rr

dirrem

set gcdn
set gcdr
endm
endm

Macro dn,fsc,lsc,skf,bls,dks,dir,cks,bfs,klé
generate the set statements for later tables
if nul lsc

current disk dn s=2me as previous fsc

equ dpb&fsc ;zauivalent parameters

equ als&fsc ;same allocation vector size
equ css&fsc ;same checksum vector size
egu xlts&fsc ;same translate table

else

set lsc—-{fsc) ;1sectors @.,.secmax
set secmax+l; ;jnumber of sectors

set (dks) /8 ;;size of allocation vector
if { (dks) mod &) ne 8

set als&dn+l

endif _

set (cks)/4 ;;:;number of checksum elements
generate the block shift value

set bls/128 ;;number of sectors/block
set @ sscounts right #'s in blkval
set g s3rills with 1's from right
rept 16 ;;once for each bit position
if blkval=1

exitm

endif

otherwise, high order 1 not found vet

set blkshf+l

set (blkmsk shl 1) or 1

set blkval/2

endm

generate the extent mask byte

set bls/1624 s ;humber of kilobytes/block
set | ;:f1il from right with 1's
rept 16

if blkval=l

exitm

endif

otherwise more to shift

set {extmsk shl 1) or 1

set blkval/2

endn

may be double byte allocation

if (dks) > 256

set (extmsk shr 1)

endif

may be optional [#] in last position

if not nul k16

set klé

endif _

now generate directory reservation bit vector
set dir ;+# remaining to process

63

164:
165:
l66:
167:
168:
169:
17d:
171:
172:
173:
174:
175:
1761
177:
178:
179:
185
131:
182:
183:
184:
135:
186:
187:
183;:
185:
196:
191
1g2:
193:
124;
195:
196:
157:
198:
159:
2001
2381;:
282:
203:
284;
205:
206:
267:
208:
209;
210:
211:
212:
213:
214:
215:
216:
217:
218

dirbks
dirblk

LY

Ch=e =
=+

irblk
dirrem

dirrem

xlt&dn

..

i
nxtsec

nxthas

ltst

D e = D =~

its

MWD e me Do

nxtsec
nxtsec

nelts

ltsdn

set bls/32 umber of entries per block

0
;:f£111 with 1's on eacn loop

set g

rept 16

if dirrem=§
exitm

endif

not complete, iterate once again
shift right and add i high order bit

set (dirblk shr 1) or 8%46h
if dirrem > dirbks

set dirrem-dirbks

else

set g

endif

endm :
dpbhdr dn ::1g=2nerate equ $
adw $sectors,<;sec per track>
dadb gblkshf,<:blcck shift>
ddb $blkmsk,<;blcck mask>

ddb $extmsk,<;extnt mask>

ddw $(dks}=1,<;aisk size-1>
ddw ${(dir)-1,<j;airectory max>
ddb $dirblk shi 8,<;allock>
ddb $airblk ang @ffh,<:allocl>
ddw $(cks)/4,<;check size>
ddw 30fs,<;o0ffset>

generate the translate table, if requested
it nul skf

equ] ;no xlate taple
else :

if skf = @ _

equ] ;no xlate table
else

generate the transiate table

set 8 ;saext sector to fill
set] ;;mcves by one on overflow
ge¢d $sectors,skf

gcdn = gcd(sectors,skew)

set sectors/gcdn

neltst is number of elements to generate
before we overlap orevious elements

set neltst ;;ccunter

equ $ rtranslate table
rept sectors ;j;once for each sector
if sectors < 256 '

ddb $nxtsec+(fsc)

else

ddw gnxtsec+{fsc)

endif

set nxtsec+(skif)

if nxtsec >= sectors

set nxtsec~-sectors

endif

set nelts-1

if nelts = §

64

219:
228
221:
222:
223:
224:
225:
226
227:
228:
229
236:
231:
232:
233:
234:
235:
236;
237
238:
239:
2401
241:
242
243
244:
245:
246:
247:
248:
249:

nxtbas
nxtsec
nelts

r
defds
lab:

it me

ds

I

endetf
begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz
HH

set
set
set
endif
endm
endif
endif
endm

Racro
ds
endm

- macro

defds
endm

macro

nxtbas+i
nxtbas
neltst

nd of nul fac test
nd of nul bls test

- mi
o @

lab, space
space

lb,dn,val
1b&dn, ¥val&dn

generate the nec32ssary ram data areas

equ
ds
set
rept
las
lds
set
endm
egu
equ

$ -

128 sdirectory access buffer
] _ :
ndisks ;;once for eacn disk
alv,%dsknxt,als
¢sv,%dsknxt,css

dsknxt+1l

$
S$-begdat

db B at this point forces hex record

endm

65

1=..***
2: 3% *
3: 3% Sector Deblocking Algorithms for CP/M 2.0 R
4: g% B *
LY :***
6: :
1: ; utility macro to compute sector mask
B: smask macro hbilk
9: 13 compute log2(hblk}, return @x as result
1d: :: (2 ** @gx = hblk on return)
11: @y set hblk
12: @x set]
13: ;; count right shifts of @y until = 1
14: : rept. 8
15: if gy = 1
16: exitm
17: endif
18: ;; @y is not 1, shift right one position
19: @y set @y shr 1
20: @ex set @x + 1
21: : endm
22: endm
23: ;
24: ?***
25: ;% C ' *
20 :* CP/M to host disk constants i
28: :***t*******
29: blksiz equ 2048 ;CP/M allocation size
30: hstsiz equ 512 shost disk sector size
31: hstspt equ 28 ;host disk sectors/trk
32: hstblk equ hstsiz/128 - ;iCP/M sects/host buff
33: cpmspt equ hstblk * hstspt ;CP/M sectors/track
34: secmsk: equ hstblk-1 - 3sector mask
35; smask hstblk ;compute sector mask
36: gsecshf equ @x 11log2 (hstblk)
37: ;
38: :******************j&****************-******************
39: ;* *
49: ;¥ BDOS constants on entry to write *
41: ;* - *
42: ;***
43: wrall equ 2 ;jwrite to allocated
44: wrdir equ 1 ;jwrite to directory
45: wrual egu 2 L. . ;write to unallocated
46: ;
47: ;***
48; ;* *
49: ;* The BDOS entry points given below show the %
50: ;* code which is relevant to deblocking only. *
51: ;* *
852+ :***
;

53:

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS,.

66

: épbase

« 7
: boot:
: wboot:

: seldsks

7’
: settrk:

¥

setsec:

r
setdma:

:
: sectran:

-y

DISKDEF macro, or hand coded tables go here
equ $:disk param block base

;enter here on system boot to initialize

Xra a 1@ to accumulator

sta hstact +host buffer inactive
sta unacnt ;clear unalloc count
ret

:select disk

mov a,c : sselected disk number
sta sekdsk ;seek disk number
mov 1,a rdisk number to HL
mvi h,o

rept 4 smaultiply by 16

dad h

endm _

1xi d,dpbase :base of parm block
dad d :hl=.dpb (curdsk)

ret

;set track given by registers BC

MoV h,b

mov i,c

shld sektrk : strack to seek
ret

:set sector given by register ¢

mov a,c

sta seksec :sector to seek
ret

;set dma address given by BC

mov h,b

nov 1l,¢

shld dmaadr

ret

stransiate seCtor number BC

mov h,b
mov 1,c
ret

67

164:
1@85:
186:
187:
148:
149:
118:
111:
112:
113:
114:
115;
il6:
117:
118:
119:
126
121:
122:
123:
124:
125:
126:
127:
128:
129:
136:
131:
132:
133:
134:
135:
136:
137:
138:
139:
146:
141:
142:
143:
144:
145:
146:
147:
148:
149:
158:
151:
152:
153;
154:
155
156:
157:
158:

;***

. R *
I]

R The READ entry point takes the place of *
i ¥ the previous BIOS defintion for READ, *
.k *

:***

read:
sread the gselected CP/M sector

*
;***

write:

mvi a,l

sta readop jread operation

sta rsflag ;must read data

mvi a,wrual

sta wr type ;jtreat as unalloc

jmp rwoper :to perform the read
;***
«k *
I
: * The WRITE entry point takes the place of *
;¥ the previous BIOS defintion for WRITE, *
-*
¥

swrite the selected CP/M sector
Xxra a ;1B to accumulator
sta readop :not a read operation
mnov a,c ;write type in ¢
sta wr type
cpi wrual ;write unallocated?
inz chkuna :check for unalloc
: write to unallocated, set parameters
mvi a,blksiz/128 ;next unalloc recs
sta unacnt
lda sekdsk ;disk to seek
sta unadsk sunadsk = sekdsk
1hld sektrk
shld unatrk sunatrk = sectrk
lda seksec
sta unasec :unasec = seksec
chkuna:
:check for write to unallocated sector
lda unacnt sany unalloc remain?
ara a
jz alloc rskip if not
: more uvnallocated records remain
dcr a ;unacnt = unacnt-l
sta unacnt
1da sekdsk ;same disk?
1xi h,unadsk
CRp m 1sekdsk = unadsk?
inz alloc ;skip if not
; disks are the same

68

159: ixi h,unatrk

160: call sektrkemp :sektrk = unatrk?

161: jnz alloc ;skip if not

l162: :

163: : tracks are the same

le4d: 1da seksec ssame sector?

165: ixi h,unasec

166: cmp m 1sekseCc = unasec?

167: inz alloc ;skip if not

168: ; :

169: match, move to next sector for future ref

17@: inr m runasec = unasec+l

171: nov a,m ;end of track?

172: cpi cpmspt ;count CP/M sectors

igz: je noovf :skip if no overflow
I

175: : overflow to next track

176: nvi m,d ;unasec = @

177: 1hld unatrk

178: inx h :

179: shld unatrk sunatrk = unatrk+l

188

181: noovf:

182: smatch found, mark as unnecessary read

183: Xra a :@ to accumulator

184: sta reflag srsflag = @

185: jmp rwoper :1to perform the write

186: ;

187: alloc:

188: ;not an unallocated record, requires pre-read

189: Xra a 19 to accum

19@: sta unacnt sunacnt = @

191: inr a ;1 to accum

152 sta rsflag :rsflag = 1

igi; ;*************************#**-*************************

195;: ;* *

196: ;* Common code for READ and WRITE follows *

197 ;¥ *

198: ;***

199: rwoper:

20%: ;enter here to perform the read/write

201: Xra a rzero Lo accum

282 sta erflag ;no errors (yet)

2€63: 1da seksec ;jcompute host sector

204: rept secsht

285: ora a jcarry = @

266: rar :shift right

287 endm

268: sta sekhst 1host sector to seek

209:

216: ; active host sector?

211: 1xi h,hstact thost active flag

212: mov a,m

213: mvi m,1 ;always becomes 1

69

214:
215:
216:
217:
218:
219:
22@:
221:
222
223:
224
225:
226
227:
228
229:
230:
231:
232:
233:
234:
235:
236
237:
238:
239:
2449
241:
242
243:
244:
245
246:
247:
248
249
250:
251:
252:
253:
254:
255:
256:
257:
258:
259;
266:
261:
262:
263:
264:
265:
266
267:
268

LT

- my

- e

r .
nomatch:

Hh we

ilhst:

match:

LY

ora a ;jwas it already?
jz filhst :£ill host if not

host buffer active, same as seek buffer?
lda sekdsk

1xi h,hstdsk ; same disk?
cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

1xi h,hsttrk
call sektrkcmp :sektrk = hsttrk?
jnz nomatch

same disk, same track, same buffer?
1da sekhst

1xi h,hstsec ssekhst = hstsec?
cmp m
jz match ;skip if match

:proper disk, but not correct sector

lda hstwrt :host written?
ora a
cng writehst :clear host buff

;may have to f£ill the host buffer
1lda sekdsk
sta hstdsk
lhld sektrk
shld hsttrk

lda sekhst

sta hstsec

lda rsflag ;nheed to read?
ora a

cng readhst 1ves, if 1

Xra a ;B to accum

sta hstwrt ;no pending write

rcopy data to or from buffer

1da seksec ;mask buffer number
ani secmsk ~;least signif bits
mov 1l,a ;ready to shift
mvi h,d ;double count

rept 7 ;shift left 7

dad h

endm

hl has relative host buffer address

1xi d,hstbuf

dad d +hl = host address
xchg show in DE

1hlad dmaadr 1get/vut CP/M data
mvi c,128 tlength of move

78

269¢ lda readop ;which way?
2702 ora a

271: inz rwmove ;skip if read

272: ;)

273: ; write operation, mark and switch direction
274 mvi a,l

275: sta hstwrt thestwrt = 1

276: xchg ;source/dest swap

277: ;

278: rwmove:

279: ;C initially 128, DE is source, HL is dest
288 idax d ssource character

281: inx d

282: mnov m,a :to dest

283: inx h

284: dcr C ;ioop 128 times

285: jnz rwmove

286: ;

287: ; data has been moved to/from host buffer

288 lda wrtype ;Wwrite type

289;: cpi wrdir ;to directory?

290 lda erflag :1in case of errors
291: rnz ;no further processing
292: ;

293: clear host buffer for directory write

294: ora a $errors?

295: rnz :skip if so

296: Xra a :+ @ to accum

297: sta hstwrt sbuffer written

2982 call writehst

299 1da erflag

3006: ret '

381: ;

3@2: ;**********'k**
393; ;% ’ *
364: ;* Utility subroutine for 1lé6-bit compare *
385: ;% *

306! ;***
3807: sektrkcmp:

308; tHL = ,unatrk or .hsttrk, compare with sektrk
369: xchyg

316: 1xi h,sektrk

311: ldax d :low byte compare
312: cmp I ;same?

313: rnz sreturn if not
314: ; low bytes equal, test high 1s

315: inx d

316: inx h

317: 1dax a

318: Cmp m ;sets flags

319: _ ret

328: ;

71

321:
322
323:
324;
325:
326
327:
328:
329:
330:
331:
332
333:
334:
335:
336:
337;
338:
339:
348
341:
342:
343:
344:
345:
346:
347
348:
349G:
3506:
351:
352
353:
354:
355:
356:
357;
358:
359:
360:
36l:
362:
363:
364:
365:
366:
367:
368:
369:
376:

:*******************t*********************************

- WRITEHST performs the physical write to *
Hid the host disk, READHST reads the physical *
A disk. *
. % *
;*'k***

writehst:
shstdsk = host disk #, hsttrk = host track #,
shstsec = host sect #. write "hstsiz" bytes
sfrom hstbuf and return error flag in erflag.
sreturn erflag non-zero if error
ret

readhst:
;hstdsk = host disk #, hsttrk = host track #,
shstsec = host sect ¥, read "hstsiz" bytes
:into hstbuf and return error flag in erflag,
ret

AEIA AKX TR EARTETAARARAR T TR AT A R A AN KA A kA Rk kA A kXA FA R
*

Unitialized RAM data areas *

*

I F S EE ESEET RS S EEEELL RS S S EELEREEEESSSEIE S S EELELEE RS LTS

Bk e WME Wi A WS
¥ % % F ¥

sekdsk: ds

1 :seek disk number
sektrk: ds 2 sseek track number
seksec: ds 1 1seek sector number
¥
hstdsk: ds 1 rhost disk number
hsttrk: ds 2 shost track number
hstsec: ds 1l shost sector number
!
sekhst: ds 1 1seek shr secshf
hstact: ds 1 shost active flag
hstwrt: ds 1 thost written flag
unacnt: ds 1 sjunalloc rec cnt
unadsk: ds 1 :tlast unalloc disk
unatrk: ds 2 s1last unalloc track
unasec: ds 1l slast unalloc sector
¥
erflag: ds 1 jerror reporting
rsflag: ds 1 sread sector flag
readop: ds 1 :1 if read operation
wrtype: ds 1 swrite operation type
dmaadr: ds 2 ;last dma address
hsthuf: ds hstsiz rhost buffer

’

12

371: ;********************************t********************
372: ;% *
373: ;% The ENDEF macro invocation goes here *
374: ;* *
375: :***

376: end

73

