cP/M°

OPERATING SYSTEM
MANUAL

DIGITAL RESEARCH"
P.O. Box 579
Pacific Grove, California 93950

Norsic?¥

North Slar Computers, Inc.
W44 Cataling St S5an Leandro, CA 4577 USA
(415) 3578500 MH/Telex (DIO) 366-7001

O27NA



COPYRIGHT

Copyright ® 1976, 1977, 1978, 1979, and 1982 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise,
without the prior written permission of Digital Research, Post Office Box 579, Pacific
Grove, California 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publica-
tion and to make changes from time to time in the content hereof without obligation of
Digital Research to notify any petson of such revision or changes.

TRADEMARKS

CPIM is a registered trademark of Digital Research. MP/M, MAC, and SID are trade-
marks of Digital Research. Z-80 is a trademark of Zilog, Inc.

First Printing: July 1982



CONTENTS

CP/M FEATURES AND FACILITIES .....................
1.1 Introduction ............. e e e reenease e e e
1.2 Functional Description -....... .. ... oiiiiiot, Seeaneerenaas
1.2.1 General Command Structure ............. et
1.2.2 File References ....o.viveiiiiiiiriniieniiiaaiiannaaannes
1.3 Switching Disks ............ et e r e e i
1.4 Built-in Commands......coviven ciiiiiiiian. o e .
141 ERA . i i e e
14,2 BIR it i e i e e e eas
143 REN (o i i it rr et e
144 SAVE .........c0vviunus - i rrratisaarsiaataaaiaan
145 TYPE .o ittt earaeraaacns i
146 USER . it iiiiiiiieitertsonisssararaiisasssrans
1.5 Line Editing and Output Control ... . ... ..o
1.6 Transient Commands .. ...ovuneiniiiiniiiriiiiiiiaa e
- S~ . N0 (N
161 ASM ..o e e i s i
163 LOAD (ot ittt isa it iana et raaan
164 PP . ittt as
185 ED o it e e
1.6.6 SYSGEN . ittt iiiririioneearrranriarans
167 SUBMIT t ittt i et iv e iieicrarnraranns
168 DUMP ... it i
169 MOVOPM Lottt iiiii i s enaasarssnnaassnnsaans
1.7 BDXS Error Messages ........ovoeviunnn., v aiar et
1.8 OQOperation of CPIMonthe MDS ... .. ..o,
ED.......... e e e eneaas e
21 Introduction to ED .. ... .o
2.1.1 EDOperation .....ooviiineinnvnirroiorsovsascnannses .
212 Text Transfer Funchions ...........oiivviiiininnnannnas
2.1.3 Memory Buffer Organization ......ooivviiiiiaion..
2.1.4 LineNumbersand EDStart Up ...........ccvveirvninnns
2.1.5 Memory Buffer Operation ...,
2.1.6 Command Strings .....covirvieiarnenrnrraaaaranans cieas
2.1.7 Text Search and Alteration ....... ... il
2.3.8 Sourcelibraries ...... ... i it
2.1.9 Repetitive Command Execution .........................
22 EDError Conditions .....covovvuiniiiriirinriineniininennioennes
2.3  Control Characters and Commands .........oiiiiiiiiiiinnns

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

- BT T e T [ = N N« LY R VU YR P

Kk

33
a3
35
L]

a7
38
39
42
42
43
44



CP/M ASSEMBLER ... 47

3.1 Inbroduchion ..ot e i e 47
3.2 Program Format ............. e e re e e 48
3.3 Formingthe Operand ......... ... i, 49
331 Labels .oou i e - 50
3.3.2 NumericConstants ........coviviieeenvnnnnnnn. R 50
333 Reserved Words ..ol e . 50
334 String Constants ........covviririrnrinrnnenrnn. Cirerenan 51
3.3.5 Arithmetic and Logical Operators ....................... 52
336 Precedence of Operators ...........cooviuiiiinin i, 52
3.4 Assembler DHrectives ..ot e et 53
3.41 The ORG Directive ......vovvvvnnn. et 54
3.4.2 The END Directive ..... e a e ee e 54
343 TheEQU Directive . ..uuoiitrrrii it ieiaannnnnns 55
344 The SET Directive ..covnriinirine i reieinennn, 55
3.4.5 The [F and ENDIF Directives ............ e e 56
3.4.6 The DB Directive ............... et re e ieam e, 57
347 The DIW Directive oo ovvvirr it iit e ot creenanreranranns 57
34.8 The DS Directive ..ot i, 57
3.5 Operation Codes ..o i e, S8
3.51 Jumps, Calls, and Returns .................... s 55
352 [mmediate Operand Instructions ...........c00iiviiiuen. .. 59
3.5.3 Imncrement and Decrement Instructions .....ovnveeneenn.... 60
3.5.4 Data Movement Instructions ................00iiuun.... &0
3.5.5  Arithmetic Logic Unit Operations ....................... 61
356 Control [nstructions «.vvover ot ot e e ierranns 62
3.6 ErrorMessages ... ... i i e reataieaaaaan 62
3.7 A Sample Session ...... ... . ... e, 63
CP/M DYNAMIC DEBUGGINGTOOL ..................... 69
4.1 IRtroduction . .oou ottt e 69
4.2 DDT Commands ...ur ittt e iaanns ereaes 71
421 The A {Assembly) Command ....... e 71
4.2.2 The D (Display) Command ............... . oo, 72
423 TheFFill) Command .....cc.ooiiiiininiann,, 72
424 The G(GoYCommand ... ... .. oo .. 72
4.2.5 The [ (Input) Command ............ et ear s 73
¢.2.6 The L{List) Command ......... e, 74
427 The M (Move) Command ......covuriinenneeninnnnnan... 74
428 TheR{Read)Command ..........cooviiiirrernrinininn. 74
429 TheS{Set) Command ............ccoiueeeniinnns. 75
4210 The T (Trace) Command ......cooevnninennnnn. e 75
4.2.11 The U {Untrace) Command .............. Ceeerrerenn 76
4212 The X {Examine) Command ........oovveveunnnneni.ns, 76
4.3 Implementation Notes ......oiuiieiiii i, 77
44 AnExample ...... e et 76
CP/M 2 SYSTEM INTERFACE .. ................ s 89
51 Introduction ... ... . .. . e, b, 89
5.2 Operating System Call Conventions .......o.veevvernnrnnernavnns. a1
5.3 A Sample File-to-File Copy Program _..................ccvooo.., 110
5.4 A Sample File Dump Utility .. ... .. i, 113
5.5 A Sample Random Access Program ............ccovvvrvninnen.... . 117
5.6 System Function Summary ..........0ooooiiiiiiiriiinan.. Cereaa 124

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH



6 CP/MALTERATION ..., 127

6.1 Introduction ............ci.eieiinn e eraesarreaaaaas R 127
6.2 First Level System Regeneration ... .o.uvviivirvairioniiiarininaais 123
6.3 Second Level System Generation .........ccoivurriininniiaeia. 131
6.4 Sample GETSYS and PUTSYS Program .......coooivveniianennn. 134
6.5 Diskette Organization ...... ... . iiiiiiariririniraariiriiores 136
6.6 The BIOSEntry Points .....viiviviinirnrrinniniinsiciennnenns 137
67 ASample BIOS . e 143
6.8 A Sample Cold Start Loader _........ ...t 142
6.9 Reserved Locations inPage Zera .......oiiiiiiiiiiiieiivainnnns 144
6.10 Disk Parameter Tables ........... e e g, 145
6.11 The DISKDEF Macso Library ... ..o 148
6.12 Sector Blocking and Deblocking ........ ..o i . 152
APPENDIXES
A The MDS Basic O System (BIOS) ..ottt iiiiiivenacnns 153
B A Skeletal CBIOS ..o ittt it iiaiara e aaan 175
C A Skeletal GETSYSIPUTSYS Program  «..oovi v iiiiiiiiiinannns 187
D The MDS5-800 Cold Start Loader for CPIM 2 ...t 191
E A Skeletal Cold Start Loader ... oot oriiiieiiiiirinnvnrannnnns 197
F  CPIM Disk Definition Library ........0oi i iiiiiienan. 201
G Blocking and Deblocking Algorithms ............ N 209
H Glossary ......ooioviiiina, et e e e aany 219
i CPIM MeESSREES +1uuverurnriiinsiiianronsriesornrasacansy R, 235
N D X o veer 245

2.1 Overal ED Operation .....vvviiaieanrriiiianaia i icayaranananas 34
2.2 Memory Buffer Organization ..............o i 34
2.3 Logical Organization of Memory Buffer ................. Chenas i a6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH






CP/M Features and
Facilities

1.1 Introduction

CPIM is a monitor control program for microcomputer system development that uses
floppy disks or Winchester hard disks for backup storage. Using a computer system based
upon Intel’s 8060 microcomputer, CPiM provides a general environment for program
construction, storage, and editing, along with assembly and program check-out facilities.
An important feature of CPIM is that it can be easily altered to execute with any
computer configuration that uses an Intel 8080 {or Zilog Z-80) Central Frocessing Unit
and has at least 20K bytes of main memory with up to 16 diskette drives. A detailed
discussion of the maodifications required for any particular hardware environment is
given in Chapter 6 Although the standard Digital Research version operates on a
single-density Intel MDS 800, several different hardware manufacturers support their
own input-output drivers for CP/M.

The CP{M monitor provides rapid access to programs through a comprehensive file
management package. The file subsystem supports a named file structure, allowing
dynamic allocation of file space as well as sequential and random file access. Using this tile
system, a large number of programs can be stored in both source and machine-
executable form.

CP{M 2 is a high-performance, single-console operating system that uses table-driven
techniques to allow field reconfiguration to match a wide variety of disk capacities. All
fundamental file restrictions are removed, maintaining upward compatibility from pre-
vious versions of release 1, Features of CP/M 2 include field specification of one to sixteen
logical drives, each containing up toeight megabytes. Any particular file can reach the full
drive size with the capability of expanding to thirty-two megabytes in future releases.
The directory size can be field-configured to contain any reasonable number of entries,
and each file is optionally tagged with readfonly and system attributes. Users of CPiM 2
are physically separated by user numbers, with facilities for file copy operations from one
user area to another. Powerful relative-record random access functions are present in
CP{M 2 that provide direct access to any of the 65536 records of an eight-megabyte file.

CPIM also supports a powerful context editor, Intel-compatible assembler, and
debugger subsystems. Optional software includes a powerful Intel-compatible macro
assembler, symbolic debugger, 2long with various high-level languages. When coupled

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 1



with CPIM's Console Command Processor, the resulting facilities equal or excel similar
large computer facilities.
CPIM is logically divided into several distinct parts:

8105 Basic I/O System (hardware-dependent)
BDOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the diskette drives
and to interface standard peripherals {teletype, CRT, paper tape reader/punch, and
user-defined peripherals). They can be tailored by the user for any particular hardware
environment by “patching” this portion of CP{M. The BDOS provides disk management
by controlling one or more disk drives containing independent file directories. The BDOS
implements disk atlocation strategies that provide fully dynamic file construction while
minimizing head movement across the disk during access. The BDOS has entry points
that include the following primitive operations, which can be programmatically accessed:

SEARCH Look for a particular disk file by name.

OPEN Open a file for further operations.

CLOSE Close a file after processing.

RENAME Change the name of a particular file.

READ Read a record from a particular file.

WRITE Write a record to a particular file.

SELECT Select a particular disk drive for further operations.

The CCP provides & symbolic interface between the user’s consoie and the remainder
of the CPiM system. The CCP reads the console device and processes commands, which
include listing the file directory, printing the contents of files, and controlling the
operation of transient programs, such as assemblers, editors, and debuggers. The stand-
ard commands that are available in the CCP are listed in Section 1.2.1.

The last segment of CP/M is the area called the Transient Program Area (TPA). The
TPA holds programs that are loaded from the disk under command of the CCP. During
program editing, for example, the TPA holds the CP/M text editor machine code and data
areas. Similarly, programs created under CP/M can be checked out by loading and
executing these programs in the TPA.

Any or all of the CP/M component subsystems can be “overlaid” by an executing
program. That is, once a user’s program is loaded into the TPA, the CCP, BDOS, and
BIOS areas can be used as the program’s data area. A “bootstrap” loader is programmati-
cally accessible whenever the BIOS portion is not overlaid; thus, the user program need
onty branch to the bootstrap loader at the end of execution and the complete CP/M
monitor is reloaded from disk.

The CPI!M operating system is partitioned into distinct modules, including the BIOS
portion that defines the hardware environment in which CP/M is executing. Thus, the
standard system is easily modified to any nonstandard environment by changing the
peripheral drivers to handle the custom system.

2 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICATAL RESEARCH



1.2 Functional Description

The user interacts with CP/M primarily through the CC?, which reads and interprets
commands entered through the console. In general, the CCP addresses one of several
disks that are on-line {the standard system addresses up to sixteen different disk drives).
These disk drives are labeled A through P. A disk is “logged in™ if the CCP is currently
addressing the disk. To clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name followed by the symbol “>" indicating
that the CCP is ready for another command. Upon initial start-up, the CPIM system is
brought in from disk A, and the CCP displays the message

CP/M VER m.m

where m.m is the CP{M version number. All CP/M systems are initially set to operateina
20K memory space, but can be easily reconfigured to fit any memory size on the host
system (see Section 1.6.9). Following system sign-on, CP/M automatically logs in disk A,
prompts the user with the symbol “A>" (indicating that CP/M is currently addressing
disk “A™), and waits for a command. The commands are implemented at two levels:
built-in commands and transient commands.

1.2.1 General Command Structure

Built-in commands are a part of the CCP program itself. while transient commands
are loaded into the TPA from disk and executed. The built-in commands are

ERA Erase specified files.

DiR List file names in the directory.

REN Rename the specified file.

SAVE S5ave memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Most of the commands reference a particular file or group of files. The form of a file
reference is specified below.

t.2,2 File References

A file reference identifies a particular file or group of files on a particular disk attached
to CP/M. These file references are either “unambiguous” {Lfn) or “ambiguous” {afn}. An
unambiguous file reference uniquely tdentifies 2 single File, while an ambiguous file
reference is satisfied by a number of different files.

File references consist of two parts: the primary filename and the filetype. Although
the filetype is optional, it usually is generic; that is, the Fletype “ASM.” for example, is
used to denote that the file is an assembly language source file, while the primary
filename distinguishes each particular source file. The two names are separated by a™.”,
as shown below:

filename.typ

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH ¥



where filename is the primary filename of eight characters or less, and typ is the filetype
of no more than three characters. As mentioned above, the name

filename

is also allowed and is equivalent to a filetype consisting of three blanks. The characters
used in specifying an unambiguous file reference cannot contain any of the special
characters

<>.,5:=77a%l O 2N
while all alphanumerics and remaining special characters are allowed,

An ambiguous file reference is used for directory search and pattern matching. The
form of an ambiguous file reference is similar to an unambiguous reference, except the
symbol “?* can be interspersed throughout the primary and secondary names. In various
commands throughout CPIM, the “?” symbol matches any character of a file name in the
“?" position. Thus, the ambiguous reference

XPZ.CM

is satisfied by the unambiguous file names

XYZ.COM
and

X3Z.CAM

Note that the ambiguous reference

is equivalent to the ambiguous file reference
??2777922.97?

while
filename.*

and
"typ

are abbreviations for

filename.???

and

respectively. As an example,

A>DIR *.°

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



is interpreted by the CCP as a command to list the names of all disk files in the directory,
while

A*DIR X.Y

searches only for a file by the name X.Y. Similarly, the command
A>DiR X7Y.C™™M

causes a search for all (unambiguous) file names on the disk that satisfy this ambiguous
reference.
The following file names are valid unambiguous file references:

X XyZ GAMMA
XY XYZ.COM GAMMA
As an added convenience, the programmer can generally specify the disk drive name

along with the file name. In this case, the drive name is given as a letter A through P
followed by a colon (;}. The specified drive is then “logged in” before the file operation
occurs. Thus, the following are valid file names with disk name prefixes:

AXY B:XYZ C.GAMMA

PXYZ.COM B:X. ATM C:*. ASM

All alphabetic lower case Jetters in file and drive names are transiated to upper case when
they are processed by the CCP.

1.3 Switching Disks

The operator can switch the currently logged disk by typing the disk drive name (A
through P) followed by a colon {:) when the CCP is waiting for console input. Thus, the
sequence of prompts and commands below can occur after the CP/M system is loaded
from disk A:

CP/M VER 2.2

A>DIR List all files on disk A.
A: SAMPLE ASM SAMPLE PRN

A>B: Switch to disk B.
B>DIR *, ASM List all “/ASM" files on B.
8. DUMP ASM FILES ASM

B>A: Switch back to A.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5



1.4 Built-in Commands

The file and device reference forms described can now be used to fully specify the
structure of the built-in commands. The user should assume the following abbreviations
in the description below:

ufn unambiguous file reference

afn ambiguous file reference

Recall that the CCP always translates lower case characters to upper case characters
internally. Thus, lower case alphabetics are treated as if they are upper case in command
names and file references.

1.4.1 ERA afn

The ERA (erase} command removes files from the currently logged in disk (i.e.. the
disk name currently prompted by CP/M preceding the “>"}. The files that are erased are
those that satisfy the ambiguous file reference afn. The following examples illustrate the
use of ERA:

ERA XY The file named X.Y on the currently logged disk is
removed from the disk directory and the space is
returned.

ERA X.* Al files with primary name X are removed from the
current disk.

ERA *. ASM All files with secondary name ASM are removed
from the current disk.

ERA X?Y.C?M All files on the current disk that satisfy the ambigu-

ous reference X?Y.CYM are deleted.

ERA =" Erase ali files on the current disk {in this case the
CCP prompts the console with the message

ALL FILES (Y/N)?

that requires a Y response before files are actually
removed}.

ERA B:".PRN All files on drive B that satisfy the ambiguous refer-

the currently logged disk.

1.4.2 DIR am

The DIR (directory) command causes the names of all files that satisfy the ambiguous
file name afn to be listed at the console device. As a special case, the command

DIR

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



lists the files on the currently logged disk {the command “DIR” is equivalent to the
command “DIR *.*"}. Valid DIR commands are

DIR X.Y

DIR X?Z.C7M

DIR ?2.Y

Similar to other CCP commands, the afn can be preceded by a drive name. The

following DIR commands cause the selected drive to be addressed before the directory
search takes place.

DIR B:

DIR B:X.Y

DIR B:*. ATM

If no files on the selected diskette satisfy the directory request, the message “NO
FILE” is typed at the console.

1.4.3 REN ufnl=um2

The REN (rename) command aliows the user tochange the names of files on disk. The
file satisfying ufn2 is changed to ufnl. The currently logged disk is assumed to contain
the file to rename (ufn2). The user can also type aleft-directed arrow instead of the equal
sign if the console supports this graphic character. Examples of the REN command are

REN X.Y=0Q.R The file QR is changed to X.Y.
REN XYZ.COM=XYZ XXX The file XYZ.XXX is changed to XYZ.COM.

The operator precedes either ufn? or ufn2 (or both} by an optional drive address. If
ufnl is preceded by a drive name, then ufn2 is assumed to exist on the same drive.
Similarly, if ufn2 is preceded by a2 drive name, then ufnl is assumed to exist on that drive
as well. The same drive must be.specified in both cases if both ufnl and ufn2 are precéeded
by drive names. The REN commands below illustrate this format.

REN ADASM=Y ASM The file Y. ASM is changed to X.ASM on drive
A.

REN B:ZAP.BAS=Z0T.BAS The file ZOT.BAS is changed to ZAP.BAS on
drive B.

REN B:AASM=B:A BAK The file ABAK is renamed to A ASM on drive
B.

If ufnl is already present, the REN command will respond with the error “FILE
EXISTS” and not perform the change. If ufn2 does nat exist on the specified diskette. the
message "NO FILE” is printed at the console. o '

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 7



1.44 SAVE nufm

The SAVE command places n pages (256-byte blocks} onto disk from the TPA and
names this file ufn. In the CP!M distribution system, the TPA starts at 100H (hexadec-
imal) which is the second page of memory. The SAVE command must specify 2 pages of
memory if the user’s program occupies the area from 100H through 2FFH. The machine
code file can be subsequently loaded and executed. Examples are

SAVE 3 X.COM Copies 100H through 3FFH to X.COM.

SAVE 40 Q Copies 100H through 23FFH to Q (note that 28 is
the page count in 28FFH, and that 28H = 2"16+8 =
40 decimal).

SAVE 4 XY Copies 100H through 4FFH to X.Y.

The SAVE command can also specify a disk drive in the ufn portion of the command, as
shown below.

SAVE 10 B:ZOT.COM Copies 10 pages (100H through 0AFFH) to the file
ZOT.COM on drive B.

14.5 TYPE ufn

The TYPE command displays the contents of the ASCIl source file ufn on the
currently logged disk at the console device. Valid TYPE commands are
TYPE XY
TYPE X.PLM
TYPE XXX

The TYPE command expands tabs (clt-I characters), assuming tab positions are set at
every eighth column. The ufn can also reference a drive name.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

14.6 USER n

The USER command allows maintenance of separate files in the same directory and
takes the form ' :

USER n

where 1 is an integer value in the range 0 to 15. On cold start, the operator is automati-
cally “logged” into user area number @, which is compatible with standard CPIM 1
directories. The operator may issue the USER command atany time to move to another
logical area within the same directory. Drives that are logged-in while addressing one
user number are automatically active when the operator moves to another; a user
number is simply a prefix that accesses particular directory entries on the active disks.

The active user number is maintained until changed by asubsequent USER command,
or until a cold start when user 0 is again assumed.

8 ALL INFORMATION PRESENTED HERE (5 PROPRIETARY TO DIGITAL RESEARCH



1.5 Line Editing and Output Control

The CCP allows certain line editing functions while typing command lines,

ctl-C CPIM system reboot when typed at start of line,

atl-E Physical end of line: carriage is returned, but line is not sent unti
the carriage return key is depressed.

cti-H Backspace one character position.

ctli-J Terminate current input (line feed).

ctl-M Terminate current input {carriage return).

cti-R Retype current command line: types a “clean line” following charac-
ter deletion with rubouts.

ctl-u Delete the entire line typed at the console.

cti-X Same as ctl-U.

ci-Z End input from the console (used in PIP and ED).

rub/del Delete and echo the last character typed at the consocle.

The contrel functions ctl-P and ctl-$ affect console output.

cti-P Copy all subsequent console cutput to the currently assigned list
device (see Section 1.6.1). Output is sent to the list device and the
console device untii the next ctl-P is typed.

ctl-5 Stop the console output temporarily. Program execution and out-
put continue when the next character is typed at the console (e.g.,
another ct}-5). This feature stops output on high speed consoles,
such as CRT's, in order to view a segment of output before
continuing.

The ctl-key sequences are obtained by depressing the control and letter keys simul-
taneously. Further, CCP commandlines are generally up to 255 characters in length; they
are not acted upon until the carriage return key is typed.

1.6 Transient Commands

Transient commands are loaded from the currently logged disk and executed in the
TPA. The transient commands for execution under the CCP are below. Additional
functions are easily defined by the user (see Section 1.6.3).

STAT List the number of bytes of storage remaining on the currently
logged disk, provide statistical information about particular files,
and display or alter device assignment.

ASM Load the CP/M assembler and assemble the specified program from
disk.
LOAD Load the Ffile in Inte]l "THEX" machine code format and produce a file

in machine executable form that can be loaded into the TFA (this
loaded program becomes a new command under the CCP).

DDt Load the CP/M debugger into TPA and start execution.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9



PIP Load the Peripheral Interchange Program for subsequent disk file
and peripheral transfer operations.

ED Load and execute the CP/M text editor program.

SYSGEN Create a new CP/M system diskette.

SUBMIT Submit a file of commands for batch processing.

DUMP Dump the contents of a file in hex.

MOVCPM Regenerate the CPIM system for a particular memory size.
Transient commands are specified in the same manner as built-in commands, and addi-
tional commands are easily defined by the user. For convenience, the transient command

can be preceded by a drive name that causes the transient to be loaded from the specified
drive into the TPA for execution. Thus, the command ~

B:STAT

causes CPIM to temporarily “log in” drive B for the source of the STAT transient, and
then return to the original logged disk for subsequent processing.
The basic transient commands are listed in detail below.

1.6.1 STAT

The STAT command provides general statistical information about file storage and
device assignment. It is initiated by typing one of the following forms:

STAT
STAT “command line”

Special forms of the “command line” allow the current device assignment to be examined
and altered. The various command lines that can be specified are shown, with an
explanation of each form to the right.

STAT . [f the usér types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

d. A/W, SPACE: nnnK
or

d: R/O, SPACE: nnnK

for each active drive d:, where R/W indicates the
drive can be read or written, and R{Q indicates the
drive is read only (a drive becomes R/O by explicitly
setting it to read only, as shown below, or by inad-
vertently changing diskettes without performing a
warm start}. The space remaining on the diskettein
drive d: is given in kilobytes by nnn.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



STAT

STAT ain

STAT d:afn

STAT d:=R/O

If a drive name is given, then the drive is selected
before the storage is computed. Thus, the com-
mand “STAT B:" could be issued while logged into
drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The command line can also specify a set of files to be
scanned by STAT. The files that satisfy afn are
listed in alphabetical order, with storage require-
ments for each file under the heading

RECS BYTS EX D:FILENAME.TYP
rrrr bbbK  ee  difilename.typ

where rrrr is the number of 128-byte records allo-
cated to the file, bbb is the number of kilobytes
allocated to the file (bbb=rrrr*128/1024), ee is the
number of 16K extensions (ee=bbb{16), d is the
drive name containing the file (A P), filename is
the (up to} eight-character primary filename, and
typ is the (up to} three-character filetype. After
listing the individual files, the storage usage is
summarized.

The drive name can be given ahead of the afn. The
specified drive is first selected, and the form “STAT
afn” is executed.

This form sets the drive given by d to read only,
rermaining in effect until the next warm or cold
start takes place. When a disk is read only, the
message '

8D0S ERR ON d: READ ONLY

will appear if there is an attempt to write to the
read-only disk d:. CPIM waits until a key is
depressed before performing an automatic warm
start {at which time the disk becomes RfW).

The STAT command allows control over the physical to logical device assignment (see
the IOBYTE function described in Chapters 5 and 6). There are four logical peripheral
devices that are, at any particular instant, each assigned one of several physical peripheral

devices. The four logical devices are

CON:

RDR:
PUN:
LST:

The system console device {used by CCP for communication with
the operator)

The paper tape reader device
The paper tape punch device
The output list device

The actual devices attached to any particular computer system are driven by subrou-
tines in the BIOS portion of CPIM. Thus, the logical RDR: device, for example, could

“ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 11



actually be a high speed reader, teletypereader, or cassette tape. To allow some flexibility
in device naming and assignment, several physical devices are defined below:

TTY: Teletype device {slow speed console)

CRT: Cathode ray tube device (high speed console)

BAT: Batch processing {console is current RDR:, output goes to current
LST: device)

L User-defined console

PTR: Paper tape reader (high speed reader)

UR1: User-defined reader #1

UR2: User-defined reader #2

PTP: Paper tape punch (high speed punch)

uP: User-defined punch #1

upP2: User-defined punch #2

LPT: Line printer

uL1; User-detined lise device #1

It is emphasized that the physical device names may or may not actually correspond to
devices that the names imply. That is, the PTF: device may be implemented as a cassette
write operation if the user wishes. The exact correspondence and driving subroutine is
defined in the BIOS portion of CPIM. In the standard distribution version of CPIM, these
devices correspond to their names on the MDS 800 development system.

The command

STAT VAL:
produces a summary of the available status commands, resulting in the output

Temp R/ Disk d:$R/Q

Set Indicator: filename.typ $R/O $R/W $SYS $DIR

Disk Status: DSK: d:DSK

lobyte Assign:
which gives an instant summary of the possible STAT commands and shows the permiss-
ible logical-to-physical device assignments:

CON: =TTY: CRT: BAT: UC1:

RDR: = TTY: PTR: UR1; UR2:

PUN: = TTY: PTP: UP1: UP2:

LST: = TTY: CRT: LPT: UL1:

The logical device to the left takes any of the four physical assignments shown to the
right. The current logical to physical mapping is displayed by typing the command

STAT DEV:

12 ALL INFORMATION PRESENTED MERE IS PROPRIETARY TO DIGITAL RESEARCH




producing a list of each logical device to the left and the current corresponding physical
device to the right. For example, the list might appear as

CON: = CRT:
ADR: = UR1:
PUN: = PTP;
LST: = TTY:

The current logical to physical device assignment is changed by typing a STAT command
of the form

STAT 11 = pd1, Id2 = pd2, ..., Idn = pdn
where Id1 through ldn are logical device names and pd1 through pdn are compatible
physical device names (i.e., Idi and pdi appear on the same line in the “VAL:" command

shown above). Valid STAT commands that change the current logical to physical device
assigniments are

STAT CON:=CRT:
STAT PUN: = TTY:, LST:=LPT:, RDR:=TTY:

The command form
STAT d:filename.typ $S

where “d:” is an optional drive name and “filename.typ”is an unambiguous or ambiguous
file name, produces the output display format

Size Recs Bytes Ex| Acc
48 48 6k 1 R/O A'ED.COM
55 55 12k 1 R/CQ {APIP.COM)
65536 128 18k 2 R/W AX.DAT

where the $S parameter causes the “Size” field to be displayed. (Without the $3, the Size
field is skipped, but the remaining fields are displayed.} The Size field lists the virtual file
size in records, while the “Recs” field sums the number of virtual records in each extent.
For files constructed sequentially, the Size and Recs fields are identical. The “Bytes” field
lists the actual number of bytes allocated to the corresponding file. The minimum
allocation unit is determined at configuration time; thus, the number of bytes corre-
sponds to the record count plus the remaining unused space in the last allocated block for
sequential files. Random access files are given data areas only when written, so the Bytes
field contains the only accurate allocation figure. In the case of random access, the Size
field gives the logical end-of-file record position and the Recs field counts the Jogical
records of each extent. (Each of these extents, however, may contain unallocated “holes”
even though they are added into the record count.) The “Ext” field counts the number of
physical extents allocated to the file. The Ext count corresponds to the number of
directory entries given to the file. Depending on allocation size, there can be up to 128K
bytes (8 logical extents) directly addressed by a single direcrory entry. (In 2 special case,
there are actually 256K bytes that can be directly addressed by a physical extent.)
The Acc field gives the RIO or RIW file indicator that is changed using the commands
shown. Similarly, the parentheses shown about the PIP.COM filename indicate that it

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13



has the "system” indicator set, so that it will not be listed in DIR commands. The four
command forms

STAT d:filename.typ $R/O
STAT d:filename.typ $R/W
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various permanent file indicators. The RIC indicator places the file {or set of
files) in a read-only status until changed by a subsequent STAT command. The RfO status
is recorded in the directory with the file so that it remains R/O through intervening cold
start operations. The RiW indicator places the file in a permanent readiwrite status. The
SYS indicator attaches the system indicater to the file, while the DIR command removes
the system indicator. The “filename.typ” may be ambiguous or unambiguous, but files
whose attributes are changed are listed at the console when the change occurs. The drive
name dencted by “d:” is optional.

When a file is marked R/O, subsequent attempts to erase or write into the file resultin
a terminal BDOS message

BDOS Err on d: File R/Q

The BDOS waits for a console input before performing a subsequent warm start (a
“return” is sufficient). The command form

STAT d:DSK:

lists the drive characteristics of the disk named by “d:” thatisin therange A:, B:, ..., P:. The
drive characteristics are listed in the format

d: Drive Characteristics
65536: 128 Byte Record Capacity
8192: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
0: Checked Directory Entries
1024. Records/ Extent
128. Records/ Block
58: Sectors/ Track
2: Reserved Tracks
where "d:” is the selected drive, followed by the total record capacity (65536 is an
eight-megabyte drive), followed by the total capacity listed in kilobytes. The directory
size is listed next, followed by the "checked” entries. The number of checked entries is
usually identical to the directory size for removable media, because this mechanism is
used to detect changed media during CP/M operation without an intervening warm start.
For fixed media, the number is usually zero, because the media are not changed without at
least a cold or warm start. The number of records per extent determines the addressing
capacity of each directory entry (1024 times 128 bytes, or 128K in the previous example).
The number of records per block shows the basic allocation size (in the example, 128

records/block times 128 bytes per recocd, or 16K bytes per block). The listing is then
followed by the number of physical sectors per track and the number of reserved tracks.

14 ALL INFORMATION PRESENTED HERE 5 PROPRIETARY TO DIGITAL RESEARCH



For logical drives that share the same physical disk, the number of reserved tracks can be
quite large because this mechanism is used to skip lower-numbered disk areas allocated to
other logical disks. The command form

STAT DSK:

produces a drive characteristics table for all currently active drives. The final STAT
command form is '

STAT USR:

which produces a list of the user numbers that have files en the currently addressed disk.
The display format is

Active User. 0
Active Files: 01 3

where the first line lists the currently addressed user number, as set by the last CCP
USER command, followed by a list of user numbers scanned from the current directory.
In this case, the active user number is 0 {(defauit at cold start}, with three user numbers
that have active files on the current disk. The operator can subsequently examine the
directories of the other user numbers by logging-in with USER 1 or USER 3 commands,
followed by a DIR command at the CCP level.

1.6.2 ASM um

The ASM command loads and executes the CP/M 8080 assembler. The ufn specifies a
source file containing assembly language statements where the filetype is assumed to be
ASM and is not specified. The following ASM commands are valid:

ASM X
ASM GAMMA

The two-pass assembler is automatically executed. Assembly errors that occur during the
second pass are printed at the console.
The assembler produces a file

X.PAN

where X is the primary name specified in the ASM command. The PRN file contains a
listing of the source program {with imbedded tab characters if present in the source
program), along with the machine code generated for each statementand diagnostic error
messages, if any. The PRN file is listed at the console using the TYPE carnmand, or sent to
a peripheral device using PIP {see Section 1.6.4). The user should note that the PRN file
contains the original source program, augmented by miscellaneous assembly information
in the leftmost 16 columns (program addresses and hexadecimal machine code, for
example}. The PRN file serves as a backup for the original source file. If the source file is
accidentally removed or destroyed, the PRN file can be edited (see Chapter 2) by remov-
ing the leftmost 16 characters of each line. This is done by issuing a single editor “macro”
command. The resulting file is identical to the original source file and can be renamed
{REN) from PRN to ASM for subsequent editing and assembly. The file

X.HEX

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15 -



is also produced, which contains 8080 machine language in Intel “"HEX” format suitable
for subsequent loading and execution (see Section 1.6.3). For complete details of CP/M’s
assembly language program, see Chapter 3.

The source file for assembly is taken from an afternate disk by prefixing the assembly
language file name by a disk drive name. The command

ASM B:ALPHA

loads the assembler from the currently logged drive and processes the source program
ALPHA.ASM on drive B. The HEX and PRN files are also placed on drive B in this case.

1.6.3 _ LOAD um

The LOAD command reads the file ufn, which is assumed to contain “"HEX"” format
machine code, and produces a memory image file that can subsequently be executed. The
file name ufn is assumed to be of the form

X.HEX

and only the filename X need be specified in the command. The LOAD command creates a
file named

X.COM

that marks it as containing machine executable code. The file is actually loaded into
memory and executed when the user types the filename X immediately after the prompt-
ing character “>>" printed by the CCP.

Generally the CCP reads the filename X following the prompting character and locks
for a built-in function name. If no function name is found, the CCP searches the system
disk directory for a file by the name

X.COM

If found, the machine code is loaded into the TP A, and the program executes. Thus, the
user need only LOAD a hex file once; it can be subsequently executed any number of
times by typing the primary name. [n this way the user can “invent” new commandsin the
CCP. (Initialized disks contain the transient commands as COM files, which are deleted at
the user’s option.) The operation takes place on an alternate drive if the file name is
prefixed by a drive name. Thus

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and operates
upon drive B after execution begins.

The user should note that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example) that
begin at 100H of the TPA. The addresses in the hex records must be in ascending order;
gaps in unfilled memory regions are filled with zeroes by the LOAD command as the hex
records are read. Thus, LOAD must be used only for creating CP/M standard “COM”
files that operate in the TPA. Programs that occupy regions of memaory other than the
TPA are loaded under DDT.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



1.64 PIP

PIP is the CP/M Peripheral Interchange Program that implements the basic media
conversion operations necessary to load, print, punch, copy, and combine disk files, The
PIP program is initiated by typing one of the following forms:

(N PIP
{2} PIP ‘command line’

In both cases PI¥ is loaded into the TPA and executed. In form (1), PIP reads command
lines directly from the console, prompted with the “*” character, until an empty command
line is typed (i.e., a single carriage return is issued by the operator). Each successive
command line causes some media conversion to take place according to the rules shown
below. Form (2) of the PIP command is equivalent to the first, except that the single
command line given with the PIP command is automatically executed, and PIP terminates
immediately with no further prompting of the console for input command lines. The
form of each command line is

destination = source#1, source#2, ..., sourced#in

where “destination” is the file or peripheral device to receive the data and “source#1, ...,
source#n” is a series of one or more files or devices that are copied from left to right to the

destination.
When multiple files are given in the command line {i.e., n>> 1), the individual files are

assumed to contain ASCIH characters, with an assumed CP/M end-of-file character {ctl-Z)
at the end of each file (see the O parameter to override this assumption). Lower case
ASCH alphabetics are internally translated to upper case to be consistent with CP/M file
and device name canventions. Finally, the total command line length cannot exceed 255
characters {ctl-E can be used to force a physical carriage return for lines that exceed the
console width).

The destination and source elements are unambiguous references to CPIM source
files with or without a preceding disk drive name. That s, any file can be referenced with a
preceding drive name {A: through P:) that defines the particular drive where the file may
be obtained or stored. When the drive name is not included, the currently logged disk is
assumed. The destination file can also appear as one or more of the source files, in which
case the source file is not altered until the entire concatenation is complete. [f it already
exists, the destination file is removed if the command line is properly formed (it is not
removed if an error condition arises). The following command lines (with explanations ta
the right} are valid as input to PIP:

X=Y Copy to file X from file Y, where X
and Y are unambiguous file names;
Y remains unchanged.

X=Y,2 Concatenate files ¥ and Z and copy
to file X, with ¥ and Z unchanged.
X.ASM=Y ASM,Z ASM.FIN. ASM Create the file X.ASM from the

concatenation of the Y, Z, and FIN
files with type ASM.

NEW.ZOT=B:OLD.ZAP Move a copy of OLD.ZAP from
drive B to the currently logged
disk; name the file NEW.ZOT.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DICITAL RESEARCH 17



B:AU = B:8VACWDX Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk; create the file
A.U on drive B.

For convenience, PIP allows abbreviated commands for transferring files between
disk drives. The abbreviated forms are

PP d:=ain

PIP d,:=dj.afn
PIP ufn =g,
PtP d,:ufn = dy:

The first form copies all files from the currently logged disk that satisfy the afn to the
same files ondrived (d= A ... P). The second form is equivalent to the first, where the-
source for the copy isdrived; {d, = A ... P}. The third form is equivalent to the command
“PIP d,:ufn=d;:ufn” that copies the file given by ufn from drive d; to the file ufn on drive d; -
The fourth form is equivalent to the third, where the source disk is explicitly given by dy:.

The source and destination disks must be different in all of these cases. If an afn is
specified, PIP lists each ufn that satisfies the afn as it is being copied. If a file exists by the
same narne as the destination file, it is removed on successful completion of the copy and
replaced by the copied file.

The following PIF commands give examples of valid disk-to-disk copy operations:

B:=*.COM Copy all fites that have the secondary name
"COM"” to drive B from the current drive.
A:=B:ZAP." Copy all files that have the primary name
“ZAP” to drive A from drive B.
ZAP.ASM=B: Equivalent to ZAP.ASM=B:ZAP ASM
B:ZOT.COM=A; Equivalent to B:ZOT.COM=A:ZOT.COM
B:=GAMMA.BAS Same as B.GAMMA BAS=-CAMMA .BAS
B:=A:GAMMA. BAS Same as B.GAMMA.BAS=A:GAMMA.BAS

PIP allows reference to physical and logical devices that are attached to the CP/M
system. The device names are the same as given under the STAT command, along with a
number of specially named devices. The logical devices given in the STAT command are

CON: (console), RDR: (reader). PUN: (punch), and LST: (list)
while the physical devices are

TTY: (console, reader, punch, or list}

CRT: {console, or list), UC1: (console)
PTR: {reader), UR1: {reader), URZ; (reader)
PTP: {(punch), UP1: {(punch), UP2: (punch)
LPT: (list), ULT: (list)

(The “BAT:" physical device is not included. since this assignment is used only toindicate
that the RDR: and LST: devices are used for console inputioutput.}

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY MO DICITAL RESEARCH



The RDR, LST, PUN, and CON devices are all defined within the BIOS portion of
CPiM, and are easily altered for any particular /O system. {The current physical device
mapping is defined by FOBYTE; see Chapter 6 for a discussion of this function). The
destination device must be capable of receiving data (i.e., data cannot be sent to the
punch), and the source devices must be capable of generating data (i.e., the LST: device
cannot be read).

The additional device names that can be used in PIP commands are

MNUL: Send 40 “nulls” (ASCII 0°5) to the device (this can be issued at the
end of punched output).

EOF: Send a CP/M end-of-file (ASCII ctl-Z) to the destination device
(sent automatically at the end of all ASCIl data transfers through
PIP).

INP: Special PIP input source that can be patched into the PIP program:

PIF gets the input data character-by-character by CALLing location
1023H, with data returned in location 109H {parity bit must be zero).

OUT: Special PIP output destination that can be patched into the PIP
program; PIP CALLs location 106H with data in register C for each
character to transmit. The user should note that locations 109H
through 1FFH of the PIP memory image are not used and can be
replaced by special purpose drivers using DDT (see Chapter 4).

PRN: Same as LST: except that tabs are expanded at every eighth charac-
ter position, lines are numbered, and page ejects are inserted every
60 lines with an initial eject (same as using PIP options [t8np]).

File and device names can be interspersed in the PIP commands. In each case, the
specific device is read until end-of-file {ctl-Z for ASCII files, and end-of-data for non-
ASCII disk files). Data from each device or file are concatenated from left to right until
the last data source has been read. The destination device or file is written using the data
from the source files, and an end-of-file character {ctl-Z) is appended to the result for
ASCII files. If the destination is a disk file. a temporary file is created (3$% secondary
name) that is changed to the actual file name only on successful completion of the copy.
Files with the extension "COM" are always assumed to be non-ASCIL.

The copy operation can be aborted at any time by depressing any key on the keyboard
{a return suffices). PIP will respond with the message “ABORTED" to indicate that the
operation has not been completed. If any operation is aborted, or if an error occurs during
processing, PIP removes any pending commands that were set up while using the
SUBMIT command.

PIP performs a special function if the destination is a disk file with type "HEX" (an Intel
hex-formatted machine code file), and the source is an external peripheral device, such as
2 paper tape reader. In this case, the PIP program checks to ensure that the source file
contains a properly formed hex file, with legal hexadecimal values and checksum records.
When an invalid input record is found, PIP reports an error message at the console and
waits for corrective action. It is usually sufficient to open the reader and rerun a section of
the tape (pull the tape back about 20 inches). When the tape is ready for the reread, a
single carriage return is typed at the console, and PIP will attempt another read. If the
tape position cannot be properly read, the user continues the read (by typing a return
following the error message), and enters the record manually with the ED program after
the disk file is constructed. For convenience, PIP allows the end-of-file to be entered from
the console if the source file is an RDR: device. In this case, the PIP program réads the
device and monitors the keyboard. I ctl-Z is typed at the keyboard the read operation is
terminated normally.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1¢



Valid PIP commands are

PIP LST: = X.PRN Copy X.PRN to the LST device and

terminate the PIP program.

PIP Start PIP for a sequence of com-
mands (PIP prompts with 7*”).
*CON:=X.ASM.Y.ASM,Z ASM Concatenate three ASM files and
copy to the CON device.
*X.HEX=CON: Y HEX PTR: Create a HEX file by reading the
CON (until a ctl-Z is typed), fal-
lowed by data from Y.HEX and
PTR until a ¢H-Z is encountered.
(carriage return) Single carriage return stops PIP.
PIP PUN:=NUL; X.ASM,EOF. . NUL: Send 40 rulls to the punch device;

copy the X.ASM file to the punch,
followed by an end-of-file (ctl-Z)
and 40 more nufl characters.

The user can also specify one or more PIP parameters, enclosed in left and right square
brackets, separated by zero or more blanks. Each parameter affects the copy operation,
and the enclosed list of parameters must immediately follow the affected file or device.
Generally, each parameter can be followed by an optional decimal integer value (the S and
Q parameters are exceptions). Valid PIP parameters are

B

Dn

Gn

20

Block mode transfer: data are buffered by PIP until an ASCU x-off
character (ctl-S) is received from the source device. This allows
transfer of data to a disk file from a continuous reading device, such
as a cassette reader. Upon receipt of the x-off, PIP clears the disk
buffers and returns for more input data, The amount of data that
can be buffered depends on the memory size of the host system (PIP
will issue an error message if the buffers overflow).

Delete characters that extend past column n in the transfer of data
to the destination from the character source. This parameter is
generally used to truncate long lines that are sent to a {marrow)
printer or console device.

Echo all transter operations to the console as they are being
performed.

Filter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to insert
new form feeds,

Get File from user number n {n in the range 0-15).

HEX data transfer: all data are checked for proper Intel hex file
format. Nonessential characters between hex records are removed
during the copy operation. The console will be prompted for correc-
tive action in case errgrs occur.

Ignore “:00” records in the transfer of Intel hex format file {the |
parameter automatically sets the H parameter).

Translate upper case alphabetics to lower case.

ALL INFORMATION PRESENTED HERE iS5 PROPRIETARY TO DIGITAL RESEARCH



N Add line numbers to each line transferred to the destination, start-
ing at one and incrementing by 1. Leading zeroes are suppressed,
and the number is followed by a colon. If N2 is specified, leading
zeroes are included and a tab is inserted following the number. The
tab is expanded if T is set.

o] Object file (non-ASCIH) transfer: the normal CPIM end-of-file is
ignored.
Pn Include page ejects at every n lines {with aninitial page eject}. Ifn=1

or is excluded altogether, page gjects occur every 60 lines. [f the F
parameter is used, form feed suppression takes place before the
new page ejects are inserted.

Qstz Quit copying from the source device or file when the string s
{terminated by ctl-Z) is encountered. )

R Read system files.

Ssiz Start copying from the source device when the siring s {terminated

by ctl-Z) is encountered. The 5 and Q parameters can be used to
“abstract” a particular section of a file (such as a subroutine). The
start and_quit strings are always included in the copy operation.

If the user selects Form (2) of the PIP command. the CCP translates
strings following the 5 and Q parameters to upper case. Form {1) of
the PIP invocation does not perform the automatic upper case

translation.
{1) PIP
{2) PIP 'command line’
Tn Expand tabs (ctl-1 characters) to every nth column during the
transfer of characters to the destination from the source.
U Translate lower case alphabetics to upper case during the copy
operation,
v Verify that data have been copied correctly by rereading after the
write operation (the destination must be a disk file).
W Write over RIO files without console interrogation.
2z Zero the parity bit on input for each ASCII character.

Valid PIP commands that specify parameters in the file transfer are

PIP X.ASM=B:[v] Copy X.ASM from drive B to the current
drive and verify that the data were properly
copied.

PIP LPT:=X.ASM[nt8u] Copy X.ASM {0 the LPT: device; number each

line, expand tabs to every eighth column, and
translate lower case alphabetics to upper case.

PP PUN:=X HEX[i],Y.Z20T[h] First copy X.HEX to the PUN: device and
ignore the trailing ”:00” record in X.HEX;
continue the transfer of data by reading
Y.ZOT, which contains HEX records, includ-
ing any “:00” records it contains.

ALL INFORMATION PRESENTED HERE IS PROPRIEVARY TO DIGITAL RESEARCH 21



PIP X.LIB = Y.ASM [ sSUBRI:z qJMP L31z |
Copy from the file Y. ASM into the file X.LIB.
Start the copy when the string "SUBRL" has

been found, and quit copying after the string
“IMP L3" is encountered.

PIP PAN:=X.ASM[p50] Send X.ASM to the LST: device with line
numbers, tabs expanded to every eighth
column, and page ejects at every 50th line.
The assumed parameter list for a PRN file is
nt8pé0; p50 averrides the default value.

Under normal operation, PIP will not overwrite a file that is set to a permanent RIO
status. If an attempt is made to overwrite an R/O file, the prompt

DESTINATION FILE IS R/O, DELETE {Y/N)?

is issued. [f the operator responds with the character “y” the file is overwritten. Other-
wise, the response

" NOT DELETED =

is issued, the file transfer is skipped, and PIP continues with the next operation in
sequence. To avoid the prompt and response in the case of RO file overwrite, the
command line can include the W parameter

PIP A:=B:". COM[W]

which copies all nonsystem files to the A drive from the B drive and overwrites any RfO
files in the pracess. If the operation involves several concatenated files, the W parameter
need only be included with the last file in the list, as in the example

FIF A.DAT = B.DAT F.NEW.DAT.G.OLD.DAT{W]

Files with the system attribute can be included in PIP transfers if the R parameter is
included; otherwise, system files are not recognized. The command line

PIP ED.COM = B:ED.COM{R)

for example, reads the ED.COM file from the B drive, even if it has been marked as an
RIO and system file. The system file attributes are copied, if present.

Downward compatibility with previous versions of CP{M is only maintained if the file
does not exceed one megabyte, no file attributes are set, and the file is created by user 0. 1f
compatibility is required with nonstandard {e.g., “double density”) versions of 1.4, it may
be necessary to select 1.4 compatibility mode when constructing the internal disk

parameter block. {See Chapter 6 and refer to Section 6.10, which describes BIOS
differences.)

Note: To copy files into another user area, PIP.COM must be located in that user area.
Follow the procedure shown below to make a copy of PIP.COM in another user area.

USER 0- Log-in user 0.

DDT PIP.COM (note PIP size s) Load PIP to memory.
GO Return to CCP.
USER 3 Log-in user 3.

SAVE s PIP.COM

22 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH



where s is the integral number of memory “pages” (256-byte segments) occupied by PIP.
The number s can be determined when PIP.COM is loaded under DDT, by referring to
the value under the NEXT display. If, for example, the next available address is 1D00,
then PIP.COM requires 1C hexadecimal pages {or 1 times 16 + 12 = 28 pages), and the
value of s is 28 in the subsequent save. Once PIP is copied in this manner, it can be copied
to another disk belonging to the same user number through normal PIF transfers.

1.6,5 ED ufm

The ED program is the CP/M system context editor that allows creation and alteration
of ASCII files in the CP/M envitonment. Complete details of operation are given in
Chapter 2. ED allows the operator to create and operate upon source files that are
organized as a sequence of ASCII characters, separated by end-of-line characters (a
carriage-return line-feed sequence). There is no practical restriction on line length {no
single line can exceed the size of the working memory) that is defined by the number of
characters typed between carriage returns. The ED program has a number of commands
for character string searching, replacement, and insertion that are useful in creation and
correction of programs or text files under CPiM. Although the CP/M has a limited
memory work space area (approximately 5000 characters in a 20K CPIM system). the file
size that can be edited is not limited, since data are easily “paged” through this work area.

If it does not exist, ED creates the specified source file and opens the file for access. If
the source file does exist {see the A command), the programmer “appends” data for
editing. The appended data can then be displayed, altered, and written from the work area
back to the disk (see the W command). Particular points in the program can be automati-
cally paged and located by context [see the N command), allowing easy access to particular
portians of a large file.

Given that the operator has typed

ED X.ASM
the ED? program creates an intermediate work file with the name

X558

to hold the edited data during the ED run. Upen completion of ED, the X . ASM file
(original file) is renamed to X.BAK, and the edited work file is renamed to X. ASM. Thus,
the X.BAK file contains the original {unedited) file, and the X. ASM file contains the newly
edited file. The operator can always return to the previous version of a file by removing
the most recent version and renaming the previous version. If the current X.ASM tile has
been improperly edited, the sequence of commands below will reclaim the backup file.

DIR X.* Check to see that BAK file is available.
ERA X.ASM Erase most recent version.
REN X ASM=X.BAK Rename the BAK file to ASM.

The aperator can abort the edit at any point (reboot, power failure, ctl-C, or Q command)
without destroying the original file. In this case, the BAK file is not created and the
original file is always intact.

The ED program allows the user to edit the source on one disk and create the backup
file on another disk. This form of the ED command is

ED ufn d:

ALL INFORMATION PRESENTED HERE IS FROPRIETARY TO DIGITAL RESEARCH 13



where ufn is the name of the file to edit on the currently logged disk and d is the name of
an alternate drive. The ED program reads and processes the source file and writes the
new file to drive d using the name ufn. After processing, the original file becomes the
backup file. If the operator is addressing disk A, the following command is valid:

ED X.ASM B:

This edits the file X, ASM on drive A, creating the new file X.$%% on drive B. After a
successful edit, A:X_ASM is renamed to A:X.BAK, and B:X.$%% is renamed to B:X. ASM.
For convenience the currently logged disk becomes drive B at the end of the edit. The user
should note that if a file named B:X.ASM exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution against accidentally destroying a source file. The
operator first erases the existing file and then restarts the edit operation.

Similar to other transient commands, editing can take place on a drive different from
the currently logged disk by preceding the source file name by a drive name. Examples of
valid edit requests are

ED AX.ASM Edit the file X.ASM on drive A, with new file and
backup on drive A.
ED B:X.ASM A: Edit the file X.ASM on drive B to the temporary file

X.$%% on drive A. After editing, change X.ASM on
drive B to X BAK and change X.$%% on drive A to
X.ASM.

1.6.6 SYSGEN

The SYSGEN transient command allows generation of an initialized diskette contain-
ing the CP!M operating system, The SYSGEN program prompts the console for com-
mands by interacting as shown.

SYSGEN cr . Initiate the SYSGEN program.
SYSGEN VERSION m.m SYSGEN sign-on message.
SOURCE DRIVE NAME Respond with the drive name (one
{OR RETURN TO SKIP} of the letters A, B, C, or D) of the

disk containing a CPIM system,
usually A, If a copy of CPIM
already exists in memory due to a
MOVCPM command, type a car-
riage return only, Typing a drive
name d will cause the response:

SOURCE ON d THEN TYPE RETURN Place a diskette containing the
CPiM operating system on drive d
{d is one of A, B, C, or D). Answer
by typing a carriage return when
ready.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



FUNCTION COMPLETE System is copied to memory. SYS-
GEN will then prompt with:

DESTINATION DRIVE NAME If a diskette is being initialized,

{OR RETURN TO REBOOT) place the new disk into a drive and
answer with the drive name, Oth-
erwise, type a cr and the system
will reboot from drive A. Typing
drive name d will cause SYSGEN
to prompt with:

DESTINATION ON d Place new diskette into drive d;

THEN TYPE RETURN type return when ready.

FUNCTION COMPLETE New diskette is initialized in drive
d.

The “DESTINATION” prompt will be repeated until a single carriage return is typed at
the console, so that more than one disk can be initialized.

Lipon completion of a successful system generation, the new diskette contains the
operating system and only the built-in commands are available. A factory-fresh, IBM-
compatible diskette appears to CP/M as a diskette with an empty directory; therefore, the
operator must copy the appropriate COM files from an existing CPIM diskette to the
newly constructed diskette using the PIP transient.

The user can copy all files from an existing diskette by typing the PIP command

PIP B: = A *.*[v]

which copies all files from disk drive A to disk drive B and verifies that each file has been
copied correctly. The name of each file is displayed at the console as the copy operation
proceeds.

The user should note that a SYSGEN does not destroy the files that already exist on a
diskette; it only constructs a new operating system. If a diskette is being used only on
drives B through P and will never be the source of a bootstrap operation on drive A, the
SYSGEN need not take place.

1.6.7 SUBMIT ufn pam#1 ... parm#n

The SUBMIT command allows CP{M commands to be batched for automatic process-
ing. The ufn given in the SUBMIT command must be the file name of a file that exists on
the currently logged disk, with an assumed file type of "SUB.” The SUB file contains
CPIM prototype commands with possible parameter substitution. The actual parameters
parm#l ... parm#n are substituted into the prototype commands, and, if no errors oceur,
the file of substituted commands are processed sequentially by CPIM.

The prototype command file is created using the ED program, with interspersed “$”
parameters of the form

$132%3 .. $n
corresponding to the number of actual parameters that will be included when the file is
submitted for execution. When the SUBMIT transient is executed, the actual parameters

parm#1 ... parm#n are paired with the formal parameters $1 ... $n in the prototype
commands. If the numbers of formal and actual parameters do not correspond, the

ALL INFORMATION PRESENTED HERE I5 PROPRIETARY TO DIGITAL RESEARCH 25



submit function is aborted with an errotr message at the console. The SUBMIT function
creates a file of substituted commands with the name

$38.5UB

on the logged disk. When the system reboots (at the termination of the SUBMIT), this
command file is read by the CCP as a source of input rather than the console. If the
SUBMIT Function is performed on any disk other than drive A, the commands are not
processed until the disk is inserted into drive A and the system reboots. The user can
abort command processing at any time by typing a rubout when the command is read and
echoed. In this case the $$%.5UB file is removed and the subsequent commands come
from the cansole. Command processing is also aborted if the CCP detects an errorin any
of the commands. Programs that execute under CPIM can abort processing of command
files when error conditions occur by erasing any existing $$%.SUB file.

To introduce dollar signs into a SUBMIT file, the user may type a “$3%” which reduces
to a single "$” within the command file. An up-arrow symbol “A” may precede an
alphabetic character x, which produces a single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, allowing chained batch
commands,

Suppose the file ASMBL.SUB exists on disk and contains the prototype commands

ASM $1

DiR $1."

ERA " BAK

PIP $2:=51.PRN
ERA $1.PRN .

and the command
SUBMIT ASMEBL X PRN

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, substituting
“X" for all occurrences of $1 and "PRN" for all occurrences of $2. This results in a
$%%.5UB file containing the commands

ASM X

DIR X.*

ERA ".BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access 2 SUB file on an alternate drive by preceding the file
name by a drive name. Submitted files are only acted upon when they appear on drive A.
Thus it is possible to create a submitted file on drive B that is executed at a later time when
inserted in drive A.

An additional utility program catled XSUB extends the power of the SUBMIT facility
to include line input to programs as well as the conscle command processor. The XSUB
command is included as the Ffirst line of the submit file. When it is executed, XSUB
self-relocates directly below the CCP. All subsequent submit command lines are pro-
cessed by XSUB so that programs that read buffered console input (BDOS Function 10)

26 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH



receive their input directly from the submit file. For example, the file SAVER .SUB can
contain the submit lines

XsuB

oDT

1$1.COM

R

GO

SAVE 1 $2.COM

with a subsequent SUBMIT command
A>SUBMIT SAVER PIP Y

that substitutes X for $1 and Y for $2 in the command stream. The XSUB program loads,

followed by DDT, which is sent to the command lines PIP.COM, R, and GO, thus

returning to the CCP. The final command SAVE 1 Y.COM is processed by the CCP.
The XSUB program remains in memory and prints the message

{xsub active)

on each warm start operation to indicate its presence. Subsequent submit command
streams do not require the XSUB, unless anintervening cold start hasoccurred. The user
should note that XSUB must be loaded after the optional CP{M DESPOQCL utility, if both
are to run simultaneously.

1.6.8 DUMP ufn

The DUMP program types the contents of the disk file {ufn} at the console in
hexadecimal form. The file contents are listed sixteen bytes at a time, with the absolute
byte address listed to the left of each line in hexadecimal. Long typeouts can be aborted by
pushing the rubout key during printout. {The source listing of the DUMP program is
given in Chapter 5 as an example of a program written for the CP/M environment.}

1.6.9 MOVCPM

The MOVCPM program allows the user to reconfigure the CP/M system for any
particular memory size. Two optional parameters can be used to indicate the desired size
of the new system and the disposition of the new system at program termination. If the
first parameter is omitted or an “*” is given, the MOV CPM program will reconfigure the
system to its maximum size, based upon the kilobytes of contiguous RAM in the host
system (starting at 0000H). If the second parameter is omitted, the system is executed,
but not permanently recorded; if “*” is given, the system is left in memory, ready for a
SYSGEN operation. The MOVCPM program relocates a memaory image of CPfM and
places this image in memory in preparation for a system generation operation. The
command forms are

MOVCPM Relocate and execute CPIM for management of the

current memory configuration (memory is exam-
ined for contiguous RAM, starting at 100H). On

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 27



completion of the relocation, the new system is
executed but not permanently recorded on the
diskette. The system that is constructed contains a
BIQOS for the Intel MDS 800.

MOVCPM  n Create a relocated CP/M system for management
of an n kilobyte system (nmust be in the range of 20
to 64), and execute the systemn as described.

MOVCPM " Construct a relocated memory image for the cur-
rent memory configuration, but leave the memory
image in memory in preparation for a SYSGEN
operation.

MOVCPM n" Construct a relocated memory image for an n kilo-
byte memory system, and leave the memory image
in preparation for a SYSGEN operation,

The command
MOVCPM **

for example, constructs a new version of the CP/M system and leaves it in memory, ready
for a SYSGEN operation. The message

READY FOR 'SYSGEN' OR
'SAVE 34 CPMxx.COM’

is printed at the console upon completion, where xx is the current memory size in
kilobytes. The operator can then type

SYSGEN Start the system generation.
SOURCE DRIVE NAME Respond with a carriage return to skip the
(OR RETURN TO SKiP) CP{M read operation since the system is

already in memory as a result of the previous
MOVCPM operation.

DESTINATION DRIVE NAME Respond with B to write new system to the
(OR RETURN TO REBOOT) diskette in drive B. SYSGEN will prompt

with:
DESTINATION ON B, Ready the fresh diskette on drive B and type a
THEN TYPE RETURN return when ready.

[f the user responds with “A” rather than “B” above, the system will be written todrive A
rather than B. SYSGEN will continue to type the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOQT)

until the operator responds with a single carriage return, which stops the SYSGEN
program with a system reboot. '

28 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



The user can then go threugh the reboot process with the old or new diskette. Instead
of performing the SYSGEN operation, the user can type

SAVE 34 CPMxx.COM

at the completion of the MOVCPM function, where “xx” is the value indicated in the
SYSGEN message. The CP/M memory image on the currently logged disk is in a form
that can be "patched.” This is necessary when operating in a nonstandard environment
where the BIOS must be altered for a particular peripheral device configuration, as -
described in Chapter 6.

Valid MOVCPM commands are

MOVCPM 4B Construct a 48K version of CPIM and start
execution.
MOVCPM 48 - Construct a 48K version of CP/M in preparation

for permanent recording; response is

READY FOR 'SYSGEN' OR
‘SAVE 34 CPM48.COM'

MOVCPM Construct a maximum memory version of CP/M
and start execution.

The newly created system is serialized with the number attached to the original
diskette and is subject to the conditions of the Digital Research Software Licensing
Agreement.

1.7 BDOS LError Messages

There are three error situations that the Basic Disk Operating System intercepts
during file processing. When one of these conditions is detected, the BDOS prints the
message:

BDOS ERR ON 4 error
where d is the drive name and “error” is one of the three error messages:

BAD SECTOR
SELECT
READ ONLY

The “BAD SECTOR” message indicates that the disk controller electronics has
detected an error condition in reading or writing the diskette. This condition is generally
caused by a malfunctioning disk cantroller or an extremely worn diskette. If the user
finds that the CP/M reports this error more than once a month, the state of the controller
electronics and the condition of the media should be checked. The user can also encounter
this condition in reading files generated by a controller produced by a different manufac-
turer. Even thaough controllers are claimed to be [IBM-compatible, one often finds small
differences in recording formats. The MDS-80C controller, for example, requires two
bytes of one’s following the data CRC byte, which is not required in the [BM format. As a
result, diskettes generated by the Intel MDS can be read by almast all other IBM-
compatible systems, while disk files generated on other manufacturers’ equipment will
produce the "BAD SECTOR"” message when read by the MDS. Recovery from this
condition is accomplished by typing a cti-C to reboot (the safest course), or a return,

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DICITAL RESEARCH 29



which ignores the bad sector in the file operation. The user should, however, note that
typing a return may destroy diskette integrity if the operation is a directory write. The
user should be sure to have adequate backups in this case.

The “SELECT” error occurs when there is an attempt to address a drive beyond the
range supported by the BIOS. In this case, the value of din the error message gives the
selected drive. The system reboots following any input from the console.

The "READ ONLY” message occurs when there is an attempt to write to adiskette or
file that has been designated as read only in a STAT command or has been set to
read only by the BDOS. The operator should reboot CPiM by using the warm start
procedure (ctl-C) or by performing a cold start whenever the diskettes are changed. If a
changed diskette is to be read but not written, BDOS allows the diskette to be changed
without the warm or cold start, but internally marks the drive as read only. The status of
the drive is subsequently changed to readiwrite if 2 warm or cold start occurs. Onissuing
this message, CP/M waits for input From the console. An automatic warm start takes
place following any input.

1.8 Operation of CP/M on the MDS

This section gives operating procedures for using CPIM on the Intel MDS microcom-
puter development system. Basic knowledge of the MDS hardware and software systems
is assumed.

CPiM is initiated in essentially the same manner as Intel’s SIS operating system. The
disk drives are {abeled 0 through 3 on the MDS, corresponding to CP/Mdrives A through
D, respectively. The CP/M system diskette is inserted into drive @, and the BOQOT and
RESET switches are depressed in sequence. The interrupt 2 light should go on at this
point. The space bar is then depressed on the system console, and the light should go out
(if it does not. the user should chec¢k connections and baud rates). The BOOT switch is
turned off, and the CP/M sign-on message should appear at the selected console device,
followed by the "A>" system prompt. The user can then issue the various resident and
transient commands.

The CPM system can be restarted (warm start) at any time by pushing the INT ¢
switch on the front panel. The built-in Intel ROM monitor can be initiated by pushing the
INT 7 switch (which generates an RST 7}, except when operating under DDT, in which
tase the DDT program gets control instead. .

Diskettes can be removed from the drives at any time, and the system can be shut
down during operation without affecting data integrity. The user must not remove a
diskette and replace it with another without rebooting the system (cold or warm start)
unless the inserted diskette is “read only.”

As a result of hardware hang-ups or malfunctions, CP/M may type the message

BDOS ERR ON d: BAD SECTOR

wheredis thedrive that has a permanent error. This error can occur when drive doors are
opened and closed randomly, followed by disk operations, or ¢an be caused by a diskette,
drive, or controller failure. The user can optionally elect to ignore the error by typing a
single return at the console. The error may produce a bad data record, requiring reinitiali-
zation of up to 128 bytes of data. The operator can reboot the CP/M system and try the
operation again.

Termination of a CP{M session requires no special action, except that itis necessary to
remove the diskettes before turning the power off to avoid random transients that often
make their way to the drive electronics.

30 ALL INFORMATON PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH



Factory-fresh, [BM-compatible diskettes should be used rather than diskettes that
have previously been used with any 1SIS version. In particular, the ISIS “FORMAT"
operation produces nonstandard sector numbering throughout the diskette. This non-
standard numbering seriously degrades the performance of CP/M and will operate
noticeably slower than the distribution version. If it becomes necessary to reformat a
diskette (which should not be the case for standard diskettes}, a program can be written
under CP/M that causes the MDS 800 controller to reformat with sequential sector
numbering {1-26) on each track.

IBM-compatible B-inch diskettes in general do not need to be formatted. However,
51-inch diskettes will need to be formatted.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 31






ED

2.1 Introduction to ED

ED is the context editor for CP/M, and is used to create and alter CP{M source Files.
ED is initiated in CP/M by typing

ED filename

ED filename. typ

In general, ED reads segments of the source file given by filename or filename.typinto the
central memory, where the file is manipulated by the operator and subsequently
written back to disk after alterations. If the source File does not exist before editing, it is
created by ED and initialized to empty. The overall operation of EDis shownin Figure 2.1.

2.1.1 ED Operation

ED operates upon the source file, denoted in Figure 2.1 by x.y, and passes 2!l text
through a memory buffer where the text can be viewed or altered {the number of lines
that can be maintained in the memory buffer varies with the line length, but has a total
capacity of about 5000 characters in a 20K CPIM system}. Text material that has been
edited is written into a temporary work file under command of the operator. Upon
termination of the edit, the memory buffer is written to the temporary file, followed by
any remaining (unread} text in the source file. The name of the original file is changed
from x.y to x.BAK 50 that the most recent previously edited source file can be reclaimed if
necessary (see the CPiM commands ERASE and RENAME}. The temporary file is then
changed from x.5%% to x.y, which becomes the resulting edited file.

The memory buffer is logically between the source file and working Ffile as shown in
Figure 2.2.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH: 33



Figure 2.1 Overall ED Operation

Source
File

filename. txt

1
After
Edic @

Backup

filename. bak

Source

Libranes

Append Write
Al 1 W)

tMemory Buffer

aw

[{ 3]

Insert
th

Type
iT}
File

D = memory buffer
O = disk hle

Figure 2.2 - Memory Buffer Organization

Source File Memory Buffer
1 First Line 1 First Line
z Appended 2 Buffered
3 Lines Text
| I
SPe MR
Unprocessed Next Free Mext
Source Append | Memory Write
Lines Space
|

34

e e e e b

5P = Source Pointer
MP = Memory Painter
TP = Temporary Pointer

Temporary

File

filena

1
AFer g
Ede 1

me 335

(E}

New

Source

Fi

le

filename.txt

Tempoarary File

1 First Lina
2 Processed
Texr
T P
Free File
Space

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH




2.1.2 Text Transfer Functions

Given that nis an integer value in the range 0 through 65535, several single letter ED
commands transfer lines of text from the source file through the memory buffer 1o the
temporary (and eventually final) file. Single letter commands are shown in upper case,
but can be typed in either upper or lower case.

nA Append the next n unprocessed source lines from the source file ai-
SP to the end of the memory buffer at MP. Increment SP and MP by
n. If upper case translation is set (see the U command) and the A
command is typed in upper case, all input lines will automatically be
translated to upper case.

nw Write the first n lines of the memory buffer te the temporary file
free space. Shift the remaining lines n+1 through MP to the top of
the memory buffer. Increment TP by n.

E End the edit. Copy all buffered text to temporary file and copy all
unprocessed source lines to temporary file. Rename files as des-
cribed previously.

H Move to head of new file by performing automatic E command.
Temporary file becomes the new source file, the memory buffer is
emptied, and a new temporary file is created (equivalent to issuing
an E command, foliowed by a reinvocation of ED using x.y as the file
to edit).

O Return to original file. The memory buffer is emptied, the tempor-
ary file is deleted, and the SP is returned to position 1 of the source
file, The effects of the previous editing commands are thus
nullified.

o Quit edit with no file aiterations, return to CP/M.

There are a number of special cases to consider. If the integer nis omitted in any ED com-
mand where an integer is allowed, then 1 is assumed. Thus, the commands A and W
append one line and write one line, respectively. Inaddition, if a pound sign (#) is givenin the
place of n, then the integer 65535 is assumed (the largest value for n that is allowed). Since
most reasonably sized source files can be contained entirely in the memory buffer,
the command #4 is often issued at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer to the temporary file.
Two special forms of the A and W commands are provided as a convenience. The
command 0A fills the current memory buffer at least half full, while 0OW writes lines until
the buffer is at least half empty. An error is issued if the memory buffer size is exceeded.
The operator can then enter any command {such as W) that does not increase memory
requirements. The remainder of any partial line read during the overflow will be brought
into memory on the next successful append.

2.1.3 Memory Buffer Organization

The memory buffer can be considered a sequence of source lines brought in with the A
command from a source file. The memory buffer has an associated (imaginary) character
pointer CP that moves throughout the memory buffer under command of the operator.
The memory buffer appears logically as shown in Figure 2.3 where the dashes represent
characters of the saurce line of indefinite length, terminated by carriage-return (<cr>>)
and line-feed {<(1£>>) characters, and CP represents the imaginary character pointer. The

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35



user should note that the CP is always located ahead of the first character of the first line,
behind the last character of the last line, or between two characters. The current line CL
is the source line that contains the CP.

Figure 2.3 Logical Organization of Memory Buffer
Memory Buffer

lf_lr.'!»t L — A |
ine

______ —_———ler >
current '
P <cr><df>
last
e = ———==== —_—<er> <>

2.1.4 Line Numbers and ED Start-up

ED produces absolute line number prefixes that can be used to reference a line, or
range of lines. The absolute line number is displayed at the beginning of each line when
ED is in “insert mode” (see the [ command in Section 2.1.5), where each line number takes
the form

nnnnn;

where nnnnn is an absolute line number in the range of 1 to 65535. If the memory buffer
is empty or if the current line is at the end of the memory buffer, nnnnn appears as 5
blanks.

The user may reference an absolute line number by preceding any command by a
number followed by a colon, in the same format as the line number display. In this case,
the ED program moves the current line reference to the absolute line number, if the line
exists in the current memory buffer. The line denoted by the absolute line number must
be in the memory buffer (see the A command). Thus, the command

345:T

is interpreted as “move to absolute 345, and type the line.” Absolute line numbers are
produced only during the editing process and are not recorded with the file. In particular,
the line numbers will change following a deleted or expanded section of text.

_ The user may alsc reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute number by a colon. Thus, the
€Oom mand

4007

a6 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH



is interpreted as “type from the current line number through the line whose absolute
number is 400.” Combining the two line reference forms, the command

345::4007

for example, is interpreted as “move to absolute line 345, then type through absolute line
400.” Absolute line references of this sort can precede any of the standard ED commands.
Line numbering is controlled by the “V” (Verify line numbers) command Line num-
bering can be disabled by typing the “-V” command.
If the file to edit does not exist, ED types the message

NEW FILE

rear
1

The user must enter an “i” command so that text can be inserted into the memory buffer
by typing input lines terminated by carriage-returns. A single ctl-Z character returns ED
to command mode.

2.1.5 Memory Buffer Operation

When ED begins, the memory buffer is empty. The operator may either append lines
{A command) from the source file or enter the lines directly from the conscle with the
insert command

ED then accepts any number of input lines, where each line terminates with a <cr>> {the
<If>>is supplied automatically), until a control-z (denoted by 12) is typed by the operator.
The CP is positioned after the last character entered. The sequence

I<<or>>

NOW IS THE<cr>»

TIME FOR<C¢r>

ALL GOOD MEN<cr>

iz
leaves the memory buffer as

NOW IS THE<cr><If>
TIME FOR<cr><If>>
ALL GOOD MEN<cr><If>

Generally, ED accepts command letters in upper ot lower case. If the command is
upper case, all input values assaciated with the command are translated to upper case. In
particular, if the “I” command is typed, all input lines are automatically translated
internally to upper case. The lower case form of the “i” command is most often used to
allow both upper and lower case letters to be entered.

Various commands can be issued that manipulate the CP or display source text in the
vicinity of the CP. The commands shown below with a preceding n indicate that an

ALL INFORMATION PRESENTED HERE I5 PROPRIETARY TO DIGITAL RESEARCH a7



optional unsigned value can be specified. When preceded by %, the command can be
unsigned, or have an optional preceding plus or minus sign. As before, the poundsign (#)
is replaced by 65535, If an integer n is optional, but not supplied, then n = {is assumed.
Finally, if a plus sign is optional, but none is specified, then + is assumed.

18

+tnL

Move CP to beginning of memory buffer if + and to bottom if -,

Move CP by tn characters {moving ahead if +), counting the
<er> <1E> as two distinet characters.

Delete n characters ahead of CP if plus and behind CP if minus.

Kill {i.e., remove) +n lines of source text using CP as the current
reference. [f CP is not at the beginning of the current line when X is
issued, the characters before CP remain if + is specified, while the
characters after CP remain if - is given in the command.

[f n = 0, move CP to the beginning of the current line (if it is not
already there). If n # 0, first move the CP to the beginning of the
current line and then move it to the beginning of the line thatis n
lines down (if +} or up (if -). The CP will stop at the top or bottom of
the memory buffer if too large a value of n is specified.

1f n = 0, type the contents of the current line up to CP. If n = 1, type
the contents of the current line from CP to the end of the line. If
n>>1, type the curreat line along with n - 1lines that follow, if + is
specified. Similarly, if n>>tand - is given. type the previous n lines up
to the CP. Any key can be depressed to abort long type-outs.

Equivalent to £nlT, which moves up or down and types a single
line.

2.1.6 Command Strings

Any number of commands can be typed contiguausly (up to the capacity of the console
buffer) and are executed only after the <cr> is typed. Thus, the operator may use the
CPiM console line editing operation to manipulate the input command line:

ctl-C
ctl-E

cti-H
cti-J

ctl-M
ctl-R

ctl-y
ctl-X
ctl-Z
rub/del

CPIM system reboot when typed at start of line.

Physical end of line: carriage is returned, but line is
not sent until the carriage return key is depressed.

Backspace one character position.
Terminate current input (line feed).
Terminate current input {carriage return).

Retype current command line: types a “clean line”
following character deletion with rubouts.

Delete the entire line typed at the console.
Same as ctl-U.
End input from the console (used in PiP and ED).

Delete and echo the last character typed at the
vonsole.

s ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH



Suppose the memory buffer contains the characters shown in the previous section,
with the CP following the last character of the buffer. The command strings shown
below produce the results shown to the right. Use lower case command letters to avoid
automatic translation of strings to upper case.

Command String
1. B2T<cr>

2, 5C0T<cr>

3. 2L-T<cr>

4. -L#K<er>

8. I<ler>>
TIME TO<cr>»
INSERT<¢r>
1z

6. -2LET<cr>

7. <er>

Effect Resulting Memory Buffer

Move to beginning o NOW 1S THE<¢cr><If>
of buffer and type () TIME FOR<cr> <If>

2 lines; ALL GOOD MEN<er><If>
‘NOW IS THE

TIME FOR’

Move CP 5 NOW | S THE <cr><If>

characters and type
the beginning

of the line

‘NOW I’

Move two lines NOW IS THE< cr><if>
down and type TIME FOR<cr><Il>

previous line ALL GOOD MEN=<cr><If>
‘TIME FOR'
Move up one line, NOW IS THE<cr><If>

delete 65535 lines
that foliow

insert two lines NOW IS THE< cr><If>
of text with auto- TIME TO<gcr> <If>
matic translation INSERT(cr><H>.

to upper case @

Move up two lines NOW IS THE<¢r> <If>
and type 85535 TIME TO<cr><If>
lines ahead of CP/ NINSERT<cr> I
‘NOW IS THE’

Move down one line NOW IS THE<cr> <If>
and type one line  TIME TO<cr><If>>
‘INSERT INSERT<¢r= I

2.1.7 Text Search and Alteration

ED also has a command that locates strings within the memory buffer. The command

takes the form

nFs <cr>

or
nFs 1z

where s represents the string to match, followed by either a <cr>> or ctl-Z, denoted by 1z.
ED starts at the current position of CP and attempts to match the string. The match is
attempted n times, and, if successful, the CP is moved directly after the string. If the n
matches are not successful, the CP is not moved from its initial position. Search strings
can incfude ctl-L, which is replaced by the pair of symbols <cr> <>,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH kL



The following commands illustrate the use of the F command:

Command String Effect Resulting Memory Buffer
1. B#T<ler> Move to begin- NOW IS THE< cr><If>
ning and type TIME FOR<cr><H>>
entire buffer ALL GOOD MEN-<cr><If>
2. FS T<er> Find the end of NOW IS T A HE<Cr><if>
the string 'S T’ .
3. Fl11z0TT Find the next 1’ NOW IS THE<cr><If>

and type to the T o ME FOR<cr><if>
CF; then type the

remainder of the  Al| GOOD MEN<cr> <If>
current line:

*ME FOR’

An abbreviated form of the insert command is also allowed, which is often used in
conjunction with the F command to make simple textual changes. The form is
18tz
or
| s<cr>

where s is the string to insert. If the insertion string is terminated by a 1z, the string is
inserted directly fallowing the CP, and the CP positioned directly after the string. The
action is the same if the command is followed by a <cr>> except that a <cr><H> is
automatically inserted into the text following the string. Consider the following com-
mand sequences as examples of the F and | commands:

Command String Effect Resulting Memory Buffer
1. BITHIS IS 1z<¢r>> [nsert ‘'THIS IS THIS IS ANOW THE <cro> <>
at the beginning @
af the text

TIME FOR<cr><If>
ALL GOOD MEN<¢r><If>

FTIME1z-4DIPLACE1z<cr> Find ‘TIME' and THIS 1S NOW THE< cr><If>

% delete it; then PLACEA, FOR<cr><If>
insert ‘PLACE'
ALL GOOD MEN<cr><IE=
3. 3FQ12-3D5DAN Find third THIS IS NOW THE <cr><If>
CHANGES!z<cE> occurrence of Q' PLACE FOR<cr><if>
(i.e., the second 'O ALL CHANGES A <or><if>
in GOOD), delete ‘
previous 3
characters and the
subsequent 5 charae-
ters; then insert
‘CHANGES’
4. -8CISOURCE<cr> Move back & THIS IS NOW THE<cr> <I(F>
characters and PLACE FOR<cr><If>
insert the line ALL SOURCE<cr><If>

‘SOURCE<er> <If> CHANG ES<Cer><If>

ED also provides a single command that combines the F and I commands to perform
simple string substitutions. The command takes the form

nS sqlzsy <er»
or

nsS sqlzsp !z

40 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



and has exactly the same effect as applying the following tominand string a totai of n
times:
F sq1z-kDisp <cr>
or
F syfz-kDisp 1z

where k is the length of the string. Thatis, ED searches the memory buffer starting at the
current position of CP and successively substitutes the second string forthe first string
until the end of buffer or until the substitution has been performed n times.

As a convenience, a command similar to F is provided by ED, which automatically
appends and writes lines as the search proceeds. The form is

nNs <cr>
or
nNs 1z,

which searches the entire source file for the nth occurrence of the strings (the user should
recall that F fails if the string cannot be found in the current buffer). The operation of the
N command is precisely the same as T except in the case that the string
cannot be found within the current memory buffer. In this case, the entire memory
content is written {i.e., an automatic #W is issued). Input lines are then read until the
buffer is at least half full or the entire source file is exhausted. The search continues in
this manner until the string has been found n times or until the source file has been
completely transferred to the temporary file.
A final line editing function, called the juxtaposition command, takes the form

nJdsqlz spiz sy <cr>
ar

nJsqlzsplzsy 1z

with the following action applied n times to the memory buffer: search from the current
CP for the next accurrence of the string 51.If found, insert the string s5, and move CP to
follow 53 Then delete all characters Following CP up to {but not including) the string s3,
leaving CP directly after s;. [ 53 cannot be found, then no deletion is made. If the current
line is

NOW 1S THE TIME<cr><I[>
the command

JW 1zWHAT 1zt <er>

results in

NOW WHAT <or If>

(The user should recall that il {ctl-L) represents the pair <<¢r>><Uf> in search and
substitute strings.)

The number of characters allowed by ED in the F, 5, N, and ] commands is limited to
100 symbols.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 41



2.1.8 Source Libraries

ED also allows the inclusion of source libraries during the editing process with the R
command. The form of this command is

R filename iz
or
R filename <cr>

where filename is the primary filename of a source file on the disk with an assumed
filetype of 'LIB’. ED reads the specified file, and places the characters into the memory
buffer after CP, in a manner similar to the | command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO.LIB untit the end-of-fite and
automatically inserts the characters into the memory buffer.

ED also includes a “block move” facility implemented through the X (Xfer) command.
The form

nXx
transters the next n lines from the current line to a temporary file called
X$$538¢.L18

which is active only during the editing process. In general, the user can reposition the
current line reference to any portion of the source file and transfer lines to the temporary
file. The transferred lines accumulate one after another in this file and can be retrieved by
simply typing

R

which is the trivial case of the library read comrmand. In this case, the entire transferred
set of lines is read into the memory buffer. The user should note that the X command does

not remove the transferred lines from the memory buffer, although a K command can be
used directly after the X, and the R command does not empty the transferred LIB file.

That is, given that a set of lines has been transferred with the X command, they can be
reread any number of times back into the source file. The command

oX

is provided, however, to empty the transferred line File.

The user should note that upon normal completion of the ED program through Q or
E. the temporary LIB file is removed. If ED is aborted through ctl-C, the L1B file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

2.1.9 Repetitive Command Execution

The macro command M allows the ED user to group ED commands together for
repeated evaluation. The M command takes the form

nM CS <cr>
or
nMCS 1z

[: ¥4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



where CS represents a string of ED commands, not including another M command. ED
executes the command string n times if n>>1. If n=0 or 1, the command string is exe-
cuted repetitively until an error condition is encountered (e.g., the end of the memory
buffer is reached with an F command).

As an example, the following macro changes all occurrences of GAMMA to DELTA
within the current buffer, and types each line that is changed
MFGAMMAIZ-SDIDELTA1ZOTT<cr>

or equivalently

MSGAMMAZDELTAIZOTT<gr>

2.2 ED Error Conditions

On error conditions, ED prints the message “BREAK X AT C” where X is one of the
error indicators shown below:

? Unrecognized command.

> Memory buffer full (use one of the commands D, K, N, S, or W to
remove characters); F, N, or S strings too long.

# Cannot apply command the number of times specified {e.g., in F
command).

) Cannot oper LIB file in R command.

If there is a disk error, CP/M displays the following message:

BBOS ERR on d. BAD SECTOR
The operator can choase to ignore the error by pressing the return key at the console {in
this case, the memeory buffer data should be examined to see if they were incorrectly
read), or the user canreset the system by ¢t}-C and reclaim the backup file if its exists. The
file can be reclaimed by first typing the contenis of the BAK tile to ensure that it contains
the proper information

TYPE x.8AK
where x is the file being edited. Then remove the primary file

ERA x.y
and rename the BAK file

REN x.y=x BAK
The file can then be reedited. starting with the previous version.

ED also takes file attributes into account. If the operator attempts to edit 2 readfonly

file, the message

** FILE IS READ/ONLY ="

ALL INFORMATION PRESENTED HERE {5 PROPRIETARY TO DIGITAL RESEARCH 43



appears at the console. The file can be loaded and examined, but cannot be altered.

Narmally the operator simply ends the edit session and uses STAT to change the file

attribute to RIW. If the edited file has the “system” attribute set, the message
‘SYSTEM’ FILE NOT ACCESSIBLE

is displayed and the edit session is aborted. Again. the STAT program can be used to
change the system attribute, if desired.

2.3 Control Characters and Commands

The following tabulation summarizes the control characters and commands available
in ED:

Control Character Function
ctl-C System reboot
ctl-E Physical <cr> <If> (not actuaily entered in
command)
ctl-H Backspace
ctl-J L.ogical tab (cols 1,9, 16,...)
ctl-L Logical <<er><If>> in search and substitute
strings
ct-R Repeat line
ctl-t Line delete
ct-X Line delete
cil-Z String terminator
rub/del Character delete
Command Function
nA Append lines
B Begin or bottom of buffer
+nC Move character positions
+nD Delete characters
E End edit and close files (narmal end}
nF Find string
H £nd edit, close and reopen files
i Insert characters, use i if both upper and
lower case characters are to be entered
nJ Place strings in juxtaposition
+nkK Kill tines
*nlL Move down/ugp jines
nht Macro definition
nN Find next occurrence with autoscan

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH



O Return to original file

=nP Move and prinl pages

Q Quiit with no file changes

R Read library file

n3 Substitute strings

+nT Type lines

U Translate lower to upper case il U, no trans-
lation if -U

+V Verify line numbers, or show remaining free

character space

ov A special case of the V command, OV, prints
the memory buffer statistics in the form

free/total

where tree is the number of free byles in the
memoty buffer (in decimal) and total is the
size of the memory buffer

nw Write lines
nZ Wait (sleep) for approximately n seconds
xn Move and type (£nlLT).

Because of common typographical errors, ED requires several potentially disastrous
commands to be typed as single letters, rather than in composite commands. The
commands

Elend), H(head), Oloriginal), Qlquit)

must be typed as single letter commands.

The commands I, ], M, N, R;and S should be typed asi.j, m, n, 1, and s if both upper and
lower case characters are used in the operation, otherwise all characters are converted to
upper case. When a command is entered in upper case, ED automatically converts the
associated string to upper case, and vice-versa.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 45






CP/M Assembler

3.1 Introduction

The CPIM assembler reads assembly language source files from the diskette and
produces 8080 machine language in Intel hex format. The CPIM assembler is initiated by

typing

ASM filename
or

ASM filename.parms
In both cases, the assembler assumes there is a file on the diskette with the name
filename ASM

which contains an 8080 assembly language source file. The first and second forms shown
above differ only in that the second form allows parameters to be passed to the assembler
to control source file access and hex and print file destinations.

In either case, the CPIM assembler loads and prints the message

CP/M ASSEMBLER VER n.n

where n.n is the current version number. In the case of the first command, the assembler
reads the source file with assumed file type ASM and creates two output files

filename . HEX
and

filename.PRN

The HEX file contains the machine code corresponding to the original program in Intel
hex format, and the PRN file contains an annotated listing showing generated machine

ALL INFORMATION PRESENTED HERE 1S PROPRIEFARY TO.DIGITAL RESEARCH 47



code, error flags. and source lines. If errors occur during translation, they will be listed in
the PRN File as well as at the console.

The form ASM filename parms can be used to redirect input and output files from
their defaults. In this case, the parms portion of the command is a three-letter group that
specifies the origin of the source file, the destination of the hex file, and the destination of
the print file. The form is

filename.p1p2p3
where pl, p2, and p3 are single letters
P1: AB, ..., P designates the disk name that contains the source file
p2: A,B, .... Pdesignates the disk name that will receive the hex file
Z skips the generation of the hex file
p3. AB, .., Pdesignates the disk name that will receive the print file
X places the listing at the console

Z skips generation of the print file

Thus, the command
ASM X.AAA

indicates that the source file (X.ASM) is to be taken from disk A and that the hex {X HEX)
and print {(X.PRN]} files are also to be created on disk A. This form of the command is
implied if the assembler is run from disk A. That is, given that the operator is currently
addressing disk A, the above command is equivalent to

ASM X
The command

ASM X ABX

indicates that the source file is to be taken from disk A, the hex file is to be placed on disk
B, and the listing file is to be sent to the console. The command

ASM X.BZZ

takes the source file from disk B and skips the generation of the hex and print files (this
command is useful for fast execution of the assembler to check program syntax).

The source program format is compatible with the Intel 8080 assembler (macros are
not implemented in ASM; see the optional MAC macre assembler). There are certain

extensions in the CP/M assembler that make it somewhat easier to use. These extensions
are described below.

3.2 Program Format

An assembly language program acceptable as input to the assembler consists of a
sequence of statements of the form

line# label operation operand ;comment

48 ALL INFORMATICN PRESENTED HERE 45 PROPRIETARY TO DIGITAL RESEARCH



where any or all of the fields may be present in a particular instance. Each assembly
language statement is terminated with a carriage return and line feed {the line feed is
inserted automatically by the ED program), or with the character !, which is treated as an
end-of-line by the assembler {thus, multiple assembly language statements can be writ-
ten on the same physical line if separated by exclamation mark symbols).

The line# is an optional decimal integer value representing the source program line
number, and ASM ignores this field if present.

The label field takes the form

identifiey
ar

identifier:

and is optional, except where noted in particular statement types. The identifier is a
sequence of alphanumeric characters where the first character is alphabetic. ldentifiers
can be freely used by the programmer to label elements such as program steps and
assembler directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded doliar symbol ($), which can be used
to improve readability of the name. Further, all lower case alphabetics are treated as if
they were upper case. The following are all valid instances of labels

X Xy long$name
x yxk longer$named$data;
X1Y2 X1x2 ®234856788901253456;

The operation field cantains either an assembler directive or pseudo-operation, or an
8080 machine operation code. The pseudo-operations and machine operation codes are
described below.

The operand field of the statement, in general, contains an expression formed out of
constants and labels, along with arithmetic and logical operations on these elements.
Again, the complete details of properly formed expressions are given below.,

The comment field contains arbitrary characters following the ; symbol until the next
real or logical end-of-line These characters are read, listed, and otherwise ignored by the
assembler. The CP/M assembleralso treats statements that begin with an * in column ene
as comment statements, which are listed and ignored in the assembly process.

The assembly language program is formulated as a sequence of statements of the
above form, terminated by an optional END statement. All statements following the
END are ignored by the assembler.

3.3 Forming the Operand

To describe the operation codes and pseudo-operations completely, it is necessary first
to present the form of the operand field, since it is used in nearly all statements.
Expressions in the operand field consist of simple operands {iabels, constants, and
reserved words}, combined in properly formed subexpressions by arithmetic and logical
operators. The expression computation is carried out by the assembler as the assembly
proceeds. Each expression must produce a 16-bit value during the assembly. Further, the
number of significant digits in the result must not exceed the intended use. That s, if an
expression is to be used in a byte move immediate instruction, the most significant 8 bits
of the expression must be zera, The restnchon on the expression significance is given
with the individual instructions. '

ALL INFORMATION PRESENTED HERE IS BREPRIETARY TO DIGITAL RESEARCH 49



3.3.1 Labels

As discussed above, a label is an identifier that occurs on a particular statement. In
general, the label is given a value determined by the type of statement that it precedes. If
the label occurs on a statement that generates machine code or reserves memory space
fe.g., a MOV instruction or a D8 pseudo-operation), the label is given the value of the
program address that it labels. Tf the label precedes an EQU or SET. the label is given the
value that results from .valuating the operand field. Except for the SET statement, an
identifier can label only one statement.

When a label appears in the operand field, its value is substituted by the assembler.
This value can then be combined with other operands and operators to form the operand
field for a particular instruction.

3.3.2 Nt_.lmen‘c Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicator. The radix indicators are
binary constant (base 2)
octal constant {base 8)
octal constant {base 8)

decimal constant (base 10}

I o O 0

hexadecimal constant (base 16}

(2} is an alternate radix indicator for octal numbers since the letter O is easily confused
with the digit 0. Any numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range far the radix. That is, binary
constants must be composed of 0 and 1 digits, octal constants can contain digits in the
range 0-7, while decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits as well as hexadecimal digits A (10D}, B(11D), C{12D), D{13D), E (14D},
and F (15D}, The user should note that the leading digit of a hexadecimal constant must be
a decimal digit to avoid confusing a hexadecimal constant with an identifier {a leading 0
will always suffice). A constant composed in this manner must evaluate to a binary
number that can be contained within a 16-bit counter, otherwise it is truncated on the
right by the assembler. Similar to identifiers, imbedded $ signs are allowed within
constants to improve their readability. Finally, the radix indicator is translated to upper
case if a lower case letter is encountered. The following are all valid instances of numeric
constants

1234 1234D 11008 1111$0000$1111$00008
1234H OFFEH 33770  33%77322Q
33770 Ofedh 12344 Oftith

3.3.3 Reserved Words

There are several reserved character sequences that have predefined meanings in the

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



operand field of a statement. The names of 8080 registers are given below. When they are
encountered, they produce the values shown 1o the right.

A 7
B 0
c 1
(¥ 2
E 3
H 4
L 5
M 6
SP 6
PSW &

{Again, lower case names have the same values as their upper case equivalents.) Machine
instructions can also be used in the operand field and evaluate to their internal codes. In
the case of instructions that require operands, where the specific operand becomes a part
of the binary bit pattern of the instruction (e.g., MOV A,B}, the value of the instruction
{in this case MOV is the bit pattern of the instruction with zeroes in the aptional fields
{e.g.. MOV produces 40H). i

When the symbol $ occurs in the operand field (not imbedded within identifiers and
numeric constants), its value becomes the address of the next instruction to generate, not
including the instruction contained withun the current logical line.

3.3.4 String Constants

String constants represent sequences of ASCII characters and are represented by
enclosing the characters within apostrophe symbols (‘). AH strings must be fully con-
tained within the current physical line (thus allowing ! symbols within strings) and must
not exceed 64 characters in length. The apostrophe character itself can be included within
a string by representing it as a double apostrophe (the two keystrokes ™), which becomes a
single apostrophe when read by the assembler. In most cases, the string length is
restricted to either one or twao characters (the DB pseudo-operation is an exception), in
which case the string becomes an 8- or 16-bit value, respectively. Two character strings
become a 16-bit constant, with the second character as the low order byte, and the first
character as the high order byte.

The value of a character is its corresponding ASCll code There is no case translation
within strings, and thus both upper and lower case characters can be represented. The
user should note, however, that only graphic (printing} ASCII characters are allowed
within strings.

Valid strings are which represent
‘ACAB tab' e A AB ab ¢
er Ialii FEFE PFIS a! T ’
"Watla Walla Wash.' Walta Walla Wash.
‘She said “Hello"" to me.’ She said "Hello” to me
‘I said “"Hello” to her’ 1 said "Hello" to her

ALL INFORMATION PRESENTED HERE-IS: PROPRIEEARY TO DIGITAL RESEARCH 51.



3.3.5 Arithmetic and Logical Operators

The operands described above can be combined in normal algebraic notation using any
combination of properly formed operands, operators, and parenthesized expressions.
The operators recognized in the operand field are

ath unsigned arithmetic sum of a and b
a-b unsigned arithmetic difference between a and b
+h unary plus {produces b}
-b unary minus (identical to 0 - b}
a‘'b unsigned magnitude multiplication of a and b
a’b unsigned magnitude division of a by b

aMODb remainder after a { b

NOT b logical inverse of b (all 0s become 1s, 1s become 0s}, where b is
considered a 16-bit value

a AND Db bit-by-bit logicat and of 2 and b

aORbL bit-by-bit logical or of a and b

a XOR b bit-by-bit logical exclusive ar of a and b

aSHL b the value that results from shifting a to the left by an amount b,
with zero fill '

aSHR b the value that results from shifting a to the right by an amount b,
with zero fll.

In each case, a and b represent simple operands (labels, numeric constants, reserved
words, and cne or two character strings) or fully enclosed parenthesized subexpressions
such as

10+20 10h+37Q LI/3 (L2+4) SHR 3
(‘a"and 5fh) +'0' {'B+B) OR (PSW+M)
(1+{2+¢)} shr (A-(B+1}))

Note that all computations are performed at assembly time as 16-bit unsigned operations.
Thus, -1 is computed as 0-1, which results in the value Offtth {i.e., all1s). The resulting
expression must fit the operation code in which it is used. For example, if the expression s
used in an ADI (add immediate) instruction, the high order 8 bits of the expression must
be zero. As aresult, the operation ADI -1 produces an error message (-1 becomes 0ffffh,
which cannot be represented as an 8-bit value), while ADI (-1) AND OFFH is accepted by
the assembler since the AND operation zeroes the high order bits of the expression.

3.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators have a relative
precedence of application that allows the programmer to write expressions without
nested levels of parentheses. The resulting expression has assumed parentheses that are
defined by the relative precedence. The order of application of operators in unparenthe-
sized expressions is listed below. Operators listed first have highest precedence {they are
applied first in an unparenthesized expression), while operators listed last have lowest

52 ALL INFORMATION PRESENTED HER};.;iS PROPRIETARY TO DIGITAL RESEARCH



precedence. Operators listed on the same line have equal precedence, and are applied
from left to right as they are encountered in an expression

* / MOD SHL SHR
-+
NOT
AND
OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler as the
fully parenthesized expressions shown to the right

a‘b+t+g (a"bj+¢
a+b*c a+{b"c)
amMODb*cSHL d {(aMODb) " ¢c)SHL

aORbANDNOT c+dSHLe aOR (b AND (NOT (c +(d SHL e))))

Balanced parenthesized subexpressions can always be used to override the assumed
parentheses; thus, the last expression above could be rewritten to force application of
operators in a different order as

(a OR b) AND (NOT c) +d SHL e
resulting in the assumed parentheses
(a OR b) AND ((NCT ¢) + (d SHL &))

An unparenthesized expression is well-formed only if the expression that results from
inserting the assumed parentheses is well-formed.

3.4 Assembler Directives

Assembler directives are used to set labels to specific values during the assembly,
perform conditional assembly, define storage areas, and specify starting addresses in the
program. Fach assembler directive is denoted by a pseudo-operation that appears in the
operation field of the line. The acceptable pseudo-operations are

ORG set the program or data origin
END end program, optional start address
EQU numeric “equate”

SET numeric “set”

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 53



ow define data words

DS define data storage area

The individual directives are detailed below.

3.4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where “label” is an optional program identifier and expression is a 16-bit expression,
consisting of operands that are defined before the ORG statement. The assembler begins
machine code generation at the location specified in the expression. There can be any
number of ORG statements within a particular program, and there are no checks to
ensure that the programmer is not defining overlapping memory areas. The user should
note that most programs written for the CP!M system begin with an ORG statement of
the form

ORG 100H

which causes machine code generation to begin at the base of the CP/M transient
program area. If a label is specified in the ORG statement, the labelis given the value of
the expression (this label can then be used in the operand field of other statements to
represent this expression).

3.4.2 The END Directive

The END statement is optional in an assembly language program, but if it is present it
must be the last statement (all subsequent statements are ignored in the assembly). The
two forms of the END directive are

label END

label END expression
where the label is again optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expression is
evaluated, and becomes the program starting address (this starting address is included in

the last record of the Inte! formatted machine code hex file, which results from the
assembly). Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient program
areal.

54 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



34.3 The EQU Directive

The EQU (equate) statement is used to set up synonyms for particular numeric values,
The farm is

label EQU expression

where the label must be present and must not label any other statement. The assembler
evaluates the expression, and assigns this value to the identifier given in the label field.
The identifier is vsually a name that describes the value in & more human-oriented
manner. Further, this name is used throughout the program to “parameterize” certain
functions. Suppose data received from a teletype appear on a particular input port and
data are sent to the teletype through the next output port in sequence. The series of
equate statements could be used to define these ports for a particular hardware
environment

TTYBASE  EQU 10+ :BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT  EQU TTYBASE*1 TTY DATA OUT

At a later point in the program, the statements that access the teletype could appear as

IN TTYIN READ TTY DATA TC REG-A

ouT TTYOUT WRITE DATA TO TTY FROM REG-A

making the program more readable than if the absolute I/O ports had been used. Further,
if the hardware environment is redefined to start the teletype communications ports at
7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH :BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements,

3.4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label can occur on other SET statements within the program. The
expression is evaluated and becomes the current value associated with the label. Thus,
the EQU statement defines a label with a single value, while the SET statement defines a
value that is valid from the current SET statement to the point where the label occurs on
the next SET statement. The use of the SET is similar to the EQU statement, but is used
most often in controlling conditional assembly.

ETRE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55



3.4.5 The IF and ENDIF Directives

The [Fand ENDIF statements define a range of assembly language statemenis that are
to be included or excluded during the assembly process. The form is

IF  expression
statementi#i

statement#2

statement#n
ENDIF

Upon encountering the [F statement, the assembler evaluates the expression following
the IF {all operands in the expression must be defined ahead of the IF statement). If the
expression evaluates to a nonzero value, then statement#] through statement#n are
assembled; if the expression evaluates to zero, the statements are listed but not
assembled. Conditional assembly is often used to write a single “generic” program that
includes a number of possible run-time environments, with only a few specific portions of
the program selected for any particular assembly. The following program segments. for
example, might be part of a program that communicates with either a teletype or aCRT
console (but not both) by selecting a particular value for TTY before the assembly begins.

TRUE EQU OFFFFH :DEFINE VALUE QF TRUE
FALSE EQU NOT TRUE  ;DEFINE VALUE OF FALSE
:I'TY EQuU TRUE TRUEIF TTY, FALSEIF CRT
:I'TYBASE EQU 10K :BASE OF TTY I/O PORTS
CRTBASE EQU 20H :BASE OF CRT IO PORTS
IF TTY ;ASSEMBLE RELATIVE TO
;TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TT¥YBASE+1 ;CONSOLE QUTPUT
ENDIF
; IF NOT TTY ;ASSEMBLE RELATIVE TO
;CRTBASE
CONIN ECU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+1 ;CONSOLE OUTPUT
ENDIF
IN CONIN ;READ CONSOLE DATA
GUT CONOUT WRITE CONSOLE DATA

In this case, the program would assemble for an environment where a teletype is
connected, based at port 10H. The statement defining TTY could be changed to

TTY EQu FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

56 ALL INFORMATION PRESENTES-HERE IS PROPRIETARY TO DIGITAL RESEARCH



3.4.6 The DB Directive

The DB directive allows the programmer to define initialized storage areas in single
precision (byte) format. The statement form is

label DB e#t, e#2, ., e#n

where e#1 through e#n are either expressions that evaluate to 8-bit vatues (the high
order bit must be zero} or are ASCIl strings of length no greater than 64 characters.
There is no practical restriction on the number of expressions included on a single
source line. The expressions are evaluated and placed sequentially into the machine code
file following the last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with the last
character. Strings of length greater than two characters cannot be used as operands in
more complicated expressions. The user should note that ASCII characters are always
placed in memory with the parity bit reset (0). Also, there is no translation from lower to
upper case within strings. The optional label can be used to reference the data area
throughout the remainder of the program. Examples of valid DB statements are

data: DB 01,2345
DB data and 0fth,5 377Q,1+2+3+4
sign-on: DB ‘please type your name’.cr.If,0
DB 'AB' SHR 8, 'C’, 'DE’ AND 7FH

3.4.7 The DW Directive

The DW statement is similar to the DB statement except double precision {two byte)
words of storage are initialized. The form is

labe! Dw ef1, eli2, .., etin
where e#1 through e#n are expressions that evaluate to 16-bit results. The user should
note that ASCII strings of one or two characters are allowed, but strings longer than two
characters are disallowed. In afl cases, the data storage is consistent with the 8080
processor: the least significant byte of the expression is stored first in memory, followed

by the most significant byte. Examples are

doub: DwW Offefh,doub+4.signon-§,255+255
Dw ‘a’, 5, 'ab’, 'CD’, 6 shi 8 or ilb.

3.4.8 The DS Directive

The DS statement is used to reserve an area of uninitialized memory. and takes the
form

label DS expressian

ALL INFORMATION PRESENTED HERE |5 PROPRIETARY TO DIGIAL RESEARCH 57



where the label is optional. The assembler begins subsequent code generation after the
area reserved by the DS_ Thus, the DS statement given above has exactly the same effect
as the statement

label: EQU $ LABEL VALUE IS CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

3.5 Operation Codes

Assembly language operation codes form the principal part of assembly language
programs and form the operation field of the instruction. In general, ASM accepts all the
standard mnemonics for the ntel 8080 microcomputer, which are givenin detail in Intel’s
“8080 Assembly Language Programming Manual ” Labels are optional on each input lire.
The individual operators are listed briefly in the following sections for completeness,
although it is understood that the Intel manuals should be referenced for exact operator
details. In the Following tables,

LX) represents a 3-bit value in the range 0-7 which can be one of the
predefined registers A, B, C, D, E, H, L, M, SP", or PSW.

=] represents an 8-bit value in the range 0-255.

16 represents a 16-bit value in the range 0-65535.

These expressions can be formed from an arbitrary combination of operands and opera-
tors. [n some cases, the operands are restricted to particular values within the allowable
range, such as the PUSH instruction. These cases will be noted as they are encountered.

[n the sections that follow, each operation code is listed in its most general form, along
with a specific example, with a short explanation and special restrictions.

3.5.1 Jumps. Calls, and Returns

The Jump, Call, and Return instructions allow several different forms that test the
condition flags set in the 8080 microcomputer CPU. The forms are

JMP el8 JMP L1 Jump unconditionally to label

JNZ elé JNZ L2 jump on nonzero condition to label

$Z etd JZ 100H Jump on zero condition to label

JNC etd JNC L1+4 Jump no carry to label

JC e16 JC L3 Jump on carry to label

JPC el6 JPCO $+8 Jump on parity odd to label

JPE elb JPE L4 Jump on even parity to label

JP el6 JP GAMMA  Jump on positive result to label

JM el6 JM al Jump on minus to label.

CALL e16 _ CALLJ?I Call subroutine unconditionaily

CNZ el16 CNZ 82 Call subroutine on nonzero
condition

58 ALL INFORMATION PRESENTED HEREBTROPRIETARY TO DIGITAL RESEARCH



cZ
CNC
CC
CPO
CPE
ce
CM

RST

RET
RNZ
RZ
BNC
RC
RPO
APE
RP
RM

e16
elb
€16
el6
el
el6
eld

el

CZ 100H
CNC 5144
CC 83

CPQ §+8
CPE S4

CP GAMMA
CM b1$¢2

RST O

Call subroutine on zero condition
Call subroutine if no carry set
Call subroutine if carry set

Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result

Call subroutine if minus flag.

Programmed restart, equivalent to
CALL 8%e3, except one byte call.

Return from subroutine
Return if nonzero fiag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if positive result

Return if minus flag is set.

3.5.2 Immediate Operand Instructions

Several instructions are available that load single or double precision registers or
single precision memory cells with constant values, along with instructions that perform
immediate arithmetic or logical operations on the accumulator (register A).

MVI e3,e8
ADl e8
ACl e8
SUI e8
SBl e
ANI ef
XRt eB

ORI e8

MVI B, 255
ADI1

ACI OFFH
SUIL +3

SBI L AND 11B
ANI $ AND 7FH

XRI 1111%00008

ORL L AND 1+1

R

Move immediate data to register
A, B, C. D EHL orM{memory)

Add immediate operand to A with-
out carry

Add immediate operand to A with
carry

Subtract from A without borrow
(carry}
Subtract from A with borrow
(carry}

Logical "and” A with immediate
data

“Exclusive or” A with immediate

data

Logical “or” A with immediate data

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59



CPl e8

LX! e3,e16

CPl'a’

LXl B,100H

Compare A with immediate data
(same as SUI except register A not
changed).

Load extended immediate to regis-
ter pair {3 must be equivalent to
B,D.H, or 5.

3.5.3 [Increment and Decrement Instructions

The 8080 provides instructions for incrementing or decrementing single and double
precision registers, The instructions are

INR e3

DCR &3

INX 3

DCX el

INR E

DCR A

INX SP

DCX B

Single precision increment register
(e3 produces one of A, B, C, D, E,
H LM

Single precision decrement regis-
ter (e3 produces one of A, B, C, D,
E.H, L, M)

Double precision increment regis-
ter pair (e3 must be equivalent to
B,D.H, or SP)

Double precision decrement regis-
ter pair (€3 must be equivalent to
B.DLH, or SP).

3.5.4 Data Movement Instructions

Instructions that move data from memory to the CPU and from CPU to memory are

given below.

MOV e3.e3

LDAX e3

STAX e3

LHLD e16

SHLD el

LDA e16

MOV AB

LDAX B

STAX D

LHLD L1

SHLD LS+x

Move data to leftmost element
from rightmost element {e3 produ-
ces one of A BCDEHL, or M).
MOV MM is disallowed

Load register A from computed
address {e3 must produce either B

or O

Store register A to computed
address {e3 must produce either B
or D)

Load HL direck from location elé
(double precision lcad to H and L}

Store HL direct to location el6
(double precision store from H and
L to memory)

LDA Gamma Load register A from address elé

Sav, T L
60 ALL INFORMATION PREEN'I‘&) HERE’EIPROPRJHARYTO DIGITAL RESEARCH



STA e16 STA X3-5
POP &3 POP PSW
PUSH ¢3 PUSH B
IN e8 IN O
OUT e8 QUT 255
XTHL

PCHL

SPHL

XCHG

Store register A into memory at
ele

Load register pair from stack, set
SP (e3 must produce one of B, D,
H, or PSW)

Store register pair into stack, set
SP {e¢3 must produce one of B, D,
H. or PSW)

Load register A with data from
port B

Send data from register A to port
es

Exchange data from top of stack
with HL

Fill program counter with data
from HL

Fill stack pointer with data from
HL

Exchange DE pair with HL pair

3.5.5 Arithmetic Logic Unit Operations

Instructions that act upon the single precision accumulator to perform arithmetic and

logic operations are

ADD 3 ADD B
ADC e3 ADC L
SUB e3 ‘ SUBH
SBB e3 SBB 2
ANA 3 ANA 1+1
XRA e3 XHA A
ORA &3 ORA B
CMP €3 CMP H
DAA

CMA

Add register given by 3 to accum-
ulator without carry (e2 must pro-
duceone of A, B,C,D,E, H or L)

Add register to A with carry, e3 as
above

Subtraci reg e3 from A without
carry, €3 is defined as above

Subtract register e3 from A with
carry, e3 defined as above

Logical "and” reg with A, €3 as
above

“Exclusive or” with A, e3 as above

Logical “or"” with A, e3 defined as
above

Compare register with A, e3 as
above

Decimal adjust register A based
upon Jast arithmetic logic unit
operation

Complement the bits in register A

ALL INFORMATION PRESENTED HERE ISILI}OPRIETARYW ENGITAL RESEARCH 61 .



STC
CMmC
RLC

RRC

RAL

DAD e3

Set the carry flag to 1
Complement the carry flag

Rotate bits left, (re)set carry as a
side effect {high order A bit
becomes carry)

Rotate bits right, (relset carry as
side effect (low order A bit
becomes carry)

Rotate carry/A register to left
{carry is involved in the rotate)

Rotate carrylA register to right
(carry is involved in the rotate)

DAD B Double precision add register pair
e3 to HL (e3 must produce B, D, H,
or SP).

3.5.6 Control Instructions

The four remaining instructions categorized as control instructions are

HLT
Dl
El
NOP

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system

No operation.

3.6 Error Messages

When errors occur within the assembly language program, they are listed as single
character flags in the leftmost position of the source listing. The line in error is also
echoed at the cansole so that the source listing need not be examined to determine if
errors are present. The error codes are :

)

E

Data error: element in data statement cannot be placed in the
specified data area.

Expression error: expression is ill-formed and cannot be computed
at assembly time.

Label error: label cannot appear in this context {may be duplicate
label}.

Naot implemented: features that wili appear in future ASM versions
{e.g., macros) are recognized, but flagged in this version.

Overflow: expression is too complicated (i.e., too many pending
operators) to be computed and should be simplified.

Phase error: label does not have the same value on twosubsequent
passes through the program.

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH.



R Register error: the value specified as a register is not compatible

with the operation code.

Syntax error: statement is not properly formed.

v Value error: operand encountered in expression is improperly

formed.

Several error messages are printed that are due to terminal error conditions:

3.7 A Sample Session

NO SOURCE FILE PRESENT
NO DIRECTORY SPACE
SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR
OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

The file specified in the ASM com-
mand does not exist on disk.

The disk directory is full; erase files
that are not needed and retry.

Improperly formed ASM file name
(e.g., it is specified with ? fields).

Source file cannot be read properly
by the assembler; execute 2a TYPE
to determine the point of error.

Qutput files cannot be written
properly; most likely cause is a full
disk; erase and retry.

Qutput file cannot be closed; check
to see if disk is write protected.

The following session shows interaction with the assembler and debugger in the
development of a simple assembly language program. The / arrow represents a carriage

return keystroke.
A>ASM SORT 4 Assemble SORT.ASM
CP/M ASSEMBLER - VER 1.0

015C

003H USE FACTCR

Next free address

END OF ASSEMBLY

A>DIR SORT.¥

SORT
SORT
SORT
SORT

ASTYPE SOHT.PRN‘

ASM Source file

BAK Backup From last edit

Percent of table used 00 to ff (hexadecimal}

PRAN Print file (contains tab characters)

HEX Machine code file

Source,line

r

; SORT PROGRAM IN aP/M ASSEMBLY LANGUAGE

START AT THE BEGINNING OF THE TRANSIENT

PROGRAM AREA

Machine code location

0100

ORG

100H

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 63



Generated machine code

0100 214601#SORT:
0103 3601

0105 214701

0108 3600

010A 7E
010B FEOQg2
010D D215

0110 214801
0113 7EB7C20001

0118 FF
Truncated
0119

5F16002148 CONT:
0121 4E792346

0125 23

0126 965778239E

0128 CA3FO1

012E B2CA3FOT
0132 56702B5E
0136 7128722873

G138 21460134

013F 21470134C3INCI:

0146 00 SwW:
0147 l:

0148 050064001EAV:
DO0A =

COMPL:

LXI H.SW ADDRESS SWITCH TOGGLE

MVE M1 :SET TO 1 FOR FIRST ITERATION
LXlI H,I ;ADDRESS INDEX
MVI M0 1=0

COMPARE | WITH ARRAY SIZE
MOV AM :A REGISTER = |

CPIN-1  :CY SET IF I < (N-1)

JNC CONT :CONTINUE IF | < = (N-2)

END OF ONE PASS THROUGH DATA
LX| H,8W ,CHECK FOR ZERO SWITCHES

. MOV A, M! ORA Al JNZ SORT ;END OF SORT iF SW=0

RST 7 ;GO TO THE DEBUGGER INSTEAD OF REB
CONTINUE THIS PASS
ADDRESSING 1, 5O LOAD AV(l) INTO REGISTERS

MOV E, Al MVI D, 0! LXI H, AV! DAD D! DAD D
MOV C, M MOV A, Cl INX HI MOV B, M
LOW ORDER BYTE IN A AND C, HIGH ORDER BYTEIN B

MOV H AND L TG ADDRESS AV{I+1)
INX H

COMPARE VALUE WITH REGS CONTAINING AV (1)
SUB M! MOV D, ALMOV A B INXHISBBM SUBTRACT

BORROW SET IF AV(I+1) > AV{])
JC INC1 ;SKIP IF IN PROPER ORDER

CHECK FOR EQUAL VALUES

ORA D! JZ INCI ;SKIP IF AV(]} = AV{]+1)

MOV D. M! MOV M, B! DCX H! MOV E. M

MOV M, C! DCX HI MOV M, D! DCX HI MOV M, E

INCREMENT SWITCH COUNT
LXI H.SW! INR M

INCREMENT |
LXi H ) INR Mt UMP COMP

DATA DEFINITION SECTION

bB 0 ;RESERVE SPACE FOR SWITCH COUNT
DS 1 .SPACE FOR INDEX

DW 5, 100, 30, 50, 20, 7, 1000, 300, 100, -32767
JCOMPUTE N INSTEAD QF PRE

N EQU ($-AV)/2
015C \END
A>TYPE SORT:HEX

Equate value

110010000214601360121470136007EFEG9D2190140 3
:100110002146017EB7C20001FF5F 16002148011988
T10012000194E79234623965778239EDAIFO1B2CAAT

Machine code in
HEX format

64 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



:100130003F01567028B5E712B722B732146013421C7
:07014000470134C30A01006E

-10014800050064001 E00320014000700EB032C01BB
:0401580064000180BE

:000000000C

A>DDT SORT.HEXy  Start debug run

Machine code in
HEX format

16K DDT VER 1.0

NEXT PC

015C 0000 Default address (no address on END statement)
-XPy

P=0000 100 Change PC to 100

-UFFFfy Untrace for 65535 steps

' Abort with rubout
COZOMOEQIO A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LX! H.01:l%’0100
-T10y Trace 10+ steps

COZOMOEDIO A=01 B=0000 D=0000 H=0146 S5=0100 P=0100 LXI H, 0145
COZOMOEDIO A=07 B=0000 D=0000 H=0146 S=0100 P=0103 MVI M, 01
COZOMOEQIO A=01 8=0000 D=0000 H=0146 5=0100 P=0105 LX| H, 0147
COZOMOEDIO A=01 B=0000 D=0000 H=0147 S$=0100 P=0108 MVI M, 00
COZOMOEQIO A=01 B=0000 D=0000 H=0147 5=0100 P=010A MOV A M
COZOMOEQI0 A=00 B=0000 D=0000 H=0147 5=0100 P=010B CPl 09
C1ZOMI1EOI0 A=00 B=0000 D=0000 H=0147 S=0100 P=010D JNC 0119
C1ZOM1EDIO A=00 B=0000 D=0000 H=0147 S=0100 P=0110 LXI H, 0146
C1ZOMIEQIO A=00 B=0000 D=0000 H=0146 5=0100 P=0113 MOV A M
C1ZOM1EQI0 A=D1 B=0000 D=0000 H=0148 S5=0100 P=0114 QRA A
CQZOMOEQIO A=01 B=0000 D=0000 H=0146 S=0100 P=0115 JNZ 0100
COZOMOEOIO A=01 B=0000 D=0000 H=0146 S=0100 P=0100 LXI H, 0146
COZOMOEQIO A=01 B=0000 D=0000 H=01468 S=0100 P=0103 MVI M. 01
COZOMOEQIO A=01 B=0000 D=0000 H=0146 S=0100 P=0105 LX| H, 0147
CDZOMOEMO A=01 B=0000 D=0000 H=0147 S=0100 P=0108 MVI M, 00
COZOMOEDIO A=0D% B=0000 D=0000 H=0147 S=0100 P=010A MOV A M 010B
_A10D ' - Stopped at 10BH~”

010D JC 11y Change to a jump on carry
0110y

-XFy
P=0108 100y Reset program counter back to beginning of program

~T10y Trace execution for 10H steps

Altered instruction

COZOMOEQIC A=00 B=0000 D=0000 H=0147 S5=0100 P=0100 LXI| H.0146

COZOMOEQIO A=00 B=D00C D=0000 H=0146 S=0100 P=0103 MVI M.01
COZOMOEQIO A=00 B=0000 D=0000 H=0146 5=0100 P=0105 LXI H,0147
COZOMDEOIO A=00 B=0000 D=0000 H=0147 S=0100 P=0108 MV M.,00
COZOMOEQI0 A=00 B=0000 D=0000 H=0147 S5=0100 P=010A MOV AM
COZOMOEQI0 A=00 B=0000 D=0000 H=0147 S=0100 P=010B CPI 09
C1ZOM1E0IG A=00 B=0000 D=0000 H=0147 S=010¢ P=010D JC 0119
C1Z0M1EQID A=00 B=0000 D=0000 H=0147 S=0100 P=0119 MOV E.A
C1ZOMITEQI0 A=00 B=0000 D=0000 H=0147 S5=0100 P=011A MVI D00

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

65



C1ZOM1EOI) A=00 B=0000 D=0000 H=0147 S$=0100 P=071C LX1 H0148
C1ZOM1EQIC A=00 B=0000 D=0000 H=0148 S=0100 P=011F DAD D
COZOMIEQI0 A=00 B=0000 D=0000 H=0148 5=0100 P=0120 DAD D
COZOM1EQIQ A=0Q0 B=0000 D=0000 H=(148 S$=0100 P=0121 MOV CM
COZOMIEQIC A=00 B=0005 D=0000 H=0148 S=0100 P=0122 MOV AC
COZOM1EQIO0 A=05 B=0005 D=0000 H=0148 S=0100 P=1023 INX H
COZOMTEQID A=05 B=0005 D=0000 H=0149 S=0100 P=0124 MOV B.M/0125
-L100, Automatic breakpoint

0100 LXl H0148
0103 MV M0
G105 LXI H.0147
0108 MVI M.00
010A MOV AM

0108 CFl 09 List some code

0100  JC 0119 From 100H
0110 LXI H.0146

0113 MOV AM

0114 ORA A

0115  JNZ 0100

Ly

0118  RST 07

0119 MOV EA List more

011A MVt D.OO
Q11C LXi H.0148
-Abort list with rubout

-G, 118y Start program from current PC {0125H) and run in real time to 118H

‘0127 Stopped with an external interrupt 7 from front panel (program was
-Tay Laok at looping program in trace mode looping indefinitely)
COZOMOEDRIO A=38 B=0064 D=0006 H=0156 $=0100 P=0127 MOV D.A
COZOMOEOIG A=38 B=0064 D=3806 H=0156 S=0100 P=0128 MOV AB
COZOMOEDIO A=00 B=0064 0=3806 H=0158 S=0100 P=0129 INX H
COZOMOEOIO A=00 B=0064 D=3306 H=0157 S=0100 P=012A SBB M'012B
-D1438

~Data are sorted, but program does not stop.
0148 05 00 07 QO 14 00 1E OO ........
0150 32 00 64 00 64 00 2C U7 E8 03 01 80 Q0 00 00 00 2.0.D.,........

0160 GG 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
-G0 ; Return to CPIM :

A>DDT SORT. HEXy  Reload the memory image
16K DDT VER. 1.0

NEXT PC

015C 0000

-XP

P=0000 100, Set PC to beginning of program

66 AL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



-L10D¢  List bad OPCODE

010D JNC 0119
0110 LXl H,0146
-Abort list with rubout
-A10Dy Assermnble new QPCODE

010D JC 119y
0110y
-L100y List starting section of program

0100 LXI H,0146
0103 MvI M,01
0105 LX1 H,0147
0108 MV MO0
-Abort list with rubout
-A103;  Change switch initialization to Q0

0103 MVI M0,

0105,

"¢ Return to CPIM with ctl-C (G0 works as well)

SAVE 1 SORT.COM, Save 1 page (256 bytes, from 100H to 1ffH)} on disk in case
there is need to reload later

AZ>DDT SORT.COMy Restart DDT with saved memory image

16K DDT VER 1.0

NEXT PC

0200 0100 COM file always starts with address 100H

-Gy Run the program from PC=100H

‘0118 Programmed stop (RST 7) encountered

-D148
/Data properly sorted
0148 05 00 07 14 00 1E OD........
0150 32 64 00 2C Ot EB 03 01 80 00 00 00 00 2DD.........

00

00 64 00
0160 00 00 00 00 Q0 00 00 00 00 00 00 QO Q0 00 00 00................
00 00 00 QO Q0 OO QO QO QO QD DD OO OO ................

-G0 ; Return to CPIM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67 .



AZED SORT.ASM;  Make changes to original program

N0 Z0TT, Find next “,0”

MVI M, 0 A=0
*-4  Up one line in text

LXI H 1 ;ADDRESS INDEX
*-§  Up another line

MY M, 1 SET TO 1 FOR FIRST ITERATION
‘KT Kill line and type next line

LXI H, | ;ADDRESS INDEX
“ty  Insert new line

MV M, 0 :ZERO SW
-

LXI H, 1 :ADDRESS INDEX
*NINC " Z0Ty

JNC™Ty

CONT JCONTINUE IF | <= (N-2)
*-2DIC"ZOLTy

Jc CONT {CONTINUE IF | <= (N-2}
g = Source from disk A

HEX to disk A

AZ>ASM SORT.AAZ;— Skip PRN File
CP/M ASSEMBLER - VER 1.0

015C Next address to assemble
003H USE FACTOR
END OF ASSEMBLY

A>DDT SORT.HEX; Test program changes

16K DDT VER 1.0
NEXT PC

015C (000
-Gy

0118
-D148g;

Data soried
0148 05 00 07 OO0 14 00 YE QO .. .. ....
0150 32 00 64 00 64 00 2C 01 E8 03
0160 00 00 00 00 00 G0 00 00 00 00

=
[ ]
=]

-Abort with rubout

-Gy Return to CP{M—program checks OK.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DMWITAL RESEARCH



CP/M Dynamic
Debugging Tool

4.1 Introduction

The DDT program allows dynamic interactive testing and debugging of programs
generated in the CP/M environment. Invoke the debugger with a command of one of the
following forms:

oDT
DDT filename. HEX
DDT filename. COM

where “filename™ is the name of the program to be loaded and tested. In both cases, the
DDT program is brought into main memory in place of the Console Command Processor
(the user should refer to Chapter 5 for standard memory organization), and resides
directly below the Basic Disk Operating System portion of CPfM. The BDOS starting
address, located in the address field of the JMP instruction at location 5H, is altered to
reflect the reduced Transient Program Area size.

The second and third forms af the DDT command perform the same actions as the
first, except there is a subsequent automatic load of the specified HEX or COM file. The
action is identical to the sequence of commands

DDT
ifilename HEX or Ifilename.COM
R
where the I and R commands set up and read the specified program to test. (The user
should see the explanation of the 1 and R commands below for exact details.)
Upon initiation, DDT prints a sign-on message in the format

DDT VER m.m

where m.m is the revision number.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 69



Following the sign-on message, DDT prompts the operator with the character ”-" and
waits for input commands from the console. The operator can type any of several single
character commands, terminated by a carriage return to execute the command. Each line
of input can be line-edited using the standard CPIM controls

rubout remove the'last character typed
cti-tJ remave the entire line, ready for retyping
cti-C system reboot.

Any command can be up to 32 characters in length (an automatic carriage return is
inserted as the 33rd character), where the first character determines the command type

A enter. assembly language mnemonics with operands
o display memory in hexadecimal and ASCII

F fill memory with constant data

G begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

x ¢ 4 v n z r

examine and optionally atter the CPU state.

The command character, in some cases, is followed by zero, one, two, or three hexade-
cimal values, which are separated by commas or single blank characters. Al DDT numeric
output is in hexadecimal form. The commands are not executed until the carriage return
is typed at the end of the command. )

At any point in the debug run, the operator can stop execution of DDT by using either
a ctl-C or GO {jmp to location 0000H), and save the current memory image by using a
SAVE command of the form

SAVE n filename COM

where n is the number of pages (256 byte blocks) to be saved on disk. The number of blocks
is determined by taking the high order byte of the address in the TPA and converting this
number to decimal. For example, if the highest address in the Transient Program
Area is 1234H. the number of pages is 12H or 18 in decimal. The operator could type a

¢tl-C during the debug run, returning to the Console Command Processor level, followed
by

SAVE 18 X.COM

70 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



The memory image is saved as X.COM on the diskette and can be directly executed by
typing the name X. If further testing is required, the memory image can be recalled by

typing
DDT X.COM

which reloads the previously saved program from location 100H through page 18
{23FFH). The CPU state is not a part of the COM file; thus, the program must be
restarted from the beginning to test it properly.

4.2 DDT Commands

The individual commands are detailed below, In each case, the operator must wait for
the prompt character {-) before entering the command. I control is passed to a program
under test and the program has not reached a breakpoint, controlcan be returned to DDT
by executing a RST 7 from the front panel. In the explanation of each command, the
command letter is shown in some cases with numbers separated by commas, and the
numbers are represented by lower case letters. These numbers are always assumed to be
in 2 hexadecimal radix and from one to four digits in length (longer numbers will be
automatically truncated on the right).

Many of the commands operate upon a “CPU state” that corresponds to the program
under test. The CPU state holds the registers of the program being debugged and irutially
contains zeroes for all registers and flags except for the program counter (P} and stack
pointer (S}, which default to 100H. The program counter is subsequently set to the
starting address given in the last record of a HEX file if a file of this formis loaded (see the
[ and R commands].

4.2.1 The A {Assembly) Command

DDT allows in-line assembly language to be inserted into the current memory image
using the A command, that takes the form

As

where 5 is the hexadecimal starting address for the inline assembly. DDT prompts the
console with the address of the next instruction to fill and reads the console, looking for
assembly language mnemonics (see the Intel 8080 Assembly Language Reference Card
for a list of mnemonics), followed by register references and operands in absolute
hexadecimal form. Each successive load address is printed before reading the console. The
A command terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operater can review the memory
segment using the DDT disassembler (see the L command).

The user should note that the assembler!disassembler portion of DDT can be overlaid
by the transient program being tested, in which case the DDT program responds with an
error condition when the A and L commands are used.

ALl INFORMATION MRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 71



4.2.2 The D (Display) Command

The D command allows the operator to view the contents of memory in hexadecimal
and ASCI[ formats. The forms are
D
Ds
Ds.f

In the First case, memory is displayed from the current display address (initially 100H) and
continues for 16 display lines. Each display line takes the form shown below

aaaa bb bb bb bb bb bt bt bb bb bb bb bb bb bb bb bb ccececcecceceeee

where aaaa is the display address in hexadecimal and bb represents data present in
memory starting at aaza. The ASCl] characters starting at aaaa are to the right (repres-
ented by the sequence of ¢'s), where nongraphic characters are printed as a period(.). The
user should note that both upper and lower case alphabetics are displayed, and will
appear as upper case symbols on a console device that supports only upper case. Each
display line gives the values of 16 bytes of data, with the first line truncated so that the
next line begins at an address that is a multiple of 16.

The second form of the D command is similar to the first, except that the display
address is first set to address s. The third form causes the display to continue from
address s through address . In all cases, the display address is set to the first address not
displayed in this command, so that a continuing display can be accomplished by issuing
successive D commands with no explicit addresses.

Excessively long displays can be aborted by pushing the return key.

4.2.3 The F {Fill) Command

The F command takes the form
Fs.f.c

where s is the starting address, £ is the final address, and ¢ is a hexadecimal byte constant.
DDT stores the constant ¢ at address s, increments the value of s and tests against . If s
exceeds f, the cperation terminates, otherwise the operation is repeated. Thus, the fill
command can be used to set a memory block to a specific constant value.

4.24 The G (Go) Command

A program is executed using the G command, with up to two optional breakpoint
addresses. The G command takes the forms

G

Gs
Gs.b
Gsb.c
G,b
G.bec

72 ALL INFORMATNION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



The first form executes the program at the current value of the program counter in the
current machine state, with no breakpoints set (the only way to regain controlin DDT s
through a RST 7 execution}. The current program counter can be viewed by typing an X
or XP command. The second form is similar to the first except that the program counter
in the current machine state is set to address s before execution begins. The third formis
the same as the second, except that program execution stops when address b is encoun-
tered (b must be in the area of the program under test). The instruction at location bis not
executed when the breakpoint is encountered. The fourth form is identical to the third,
except that two breakpoints are specified, one atband the other at¢. Encountering either
breakpoint causes execution to stop, and both breakpoints are cleared. The last two forms
take the program counter from the current machine state and set one and two break-
points, respectively.

Execution continues from the starting address in real-time to the next breakpoint.
There is no intervention between the starting address and the break address by DDT. If
the program under test does not reach a breakpoint, control cannot return to DDT
without executing a RST 7 instruction. Upon encountering a breakpoint, DDT stops
execution and types

*d

where d is the stop address. The machine state can be examined at this point using the X
{Examine} command. The operator must specify breakpoints that differ from the pro-
gram counter address at the beginning of the G command. Thus, if the current program
counter is 1234H, then the commands

G,1234

and

G400,400

both praduce an immediate breakpoint without executing any instructions.

4.2.5 The | (Input) Command

The | command allows the operator to insert a file name into the default file control
block at SCH (the file conirol block created by CP/M for transient programs is placed at
this location; see Chapter 5). The default FCB can be used by the program under test as if
it had been passed by the CP{M Console Processor. The user should note that this file
name is also used by DDT for reading additional HEX and COM files. The form of the |
command is

liilename
or
ifilename.typ
If the second form is used and the filetype is either HEX or COM, subsequent R

commands can be used to read the pure binary or hex format machine code. (Section 4.2.8
gives further details.)

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 73



4.2.6 The L {List) Command

The L command is used to list assembly language mnemonics in a particular program
region. The forms are

L
Ls
Ls,f

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code. The
last form lists disassembled code from s through address £. In all three cases, the list
address is set to the next unlisted location in preparation for a subsequent L command.
Upon encountering an execution breakpoint, the list address is set to the current value of
the program counter {G and T commands). Again, long typeouts can be aborted using the
return key during the list process.

4.2.7 The M (Move) Command

The M command aliows block movement of program or data areas from one location
to another in memory. The form is

Ms f.d

where s is the start address of the move, [ is the final address, and d is the destination
address. Data are first removed from s to d, and both addresses are incremented. If s
exceeds f, the move operation stops; otherwise, the move operation is repeated.

4.2.8 The R (Read) Command

The R command is used in conjunction with the [ command to read COM and HEX
files from the diskette into the transient program area in preparation for the debug run.
The forms are

R
Rb

where b is an optional bias address that is added to each program or data address as it is
loaded. The Joad operation must not overwrite any of the system parameters from 000H
through OFFH (i.e.. the first page of memory). f b is omitted, then b=0000 is assumed.
The R command requires a previous I command, specifying the name of a HEX or COM
file. The load address for each record is obtained from each individual HEX record, while
an assumed load address of 100H is used for COM files. The user should note that any
number of R commands can be issued following the | command to reread the program
under test, assuming the tested program does not destroy the default area at SCH. Any
file specified with the filetype “COM?" is assumed to contain machine code in pure binary
form (created with the LOAD or SAVE command), and all others are assumed to contain
machine code in Intel hex format {produced, for example, with the ASM command.)

74 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAE RESEARCH



Recall that the command
DDT filename filstype
which initiates the DDT program, is equivalent to the commands

DDT
-lfijename filetype
-A
Whenever the R command is issued, DDT responds with either the error indicator “?”

(file cannot be opened, or achecksum error occurredin a HEX file), or with aload message
taking the form

NEXT PC
nann pppp

where nnnn is the next address following the loaded program and pppp is the assumed
program counter (100H for COM files, or taken from the last record if a HEX file is
specified).

4,29 The S (Set) Command

The S command allows memory locations to be examined and optionally altered. The
form of the command is

Ss

where s is the hexadecimal starting address for examination and alteration of memory.
DDT responds with a numeric prompt, giving the memory location, along with the data
currently held in memory. If the operator types a carriagereturn, the data are not altered.
If a byte value is typed, the value is stored at the prompted address. In either case, DDT
continues to prompt with successive addresses and values until either a period () is typed
by the operator or an invalid input value is detected.

4.2.10 The T {Trace} Command

The T command allows selective tracing of program execution for 1to 65535 program
steps. The forms are

T
Tn

In the first case, the CP'U state is displayed and the next program step is executed. The
program terminates immediately, with the termination address displayed as

“hhhh
where hhhh is the next address to execute. The display address {used in the Dcommand}

is set to the value of Hand L. and the list address {used in the L command) is set to hhhh.
The CPU state at program termination can then be examined using the X command.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75



The second form of the T command is similar to the first, except that execution is
traced for n steps (n is a hexadecimal value) before a program breakpoint occurs. A
breakpoint can be forced in the trace mode by typing a rubout character. The CPU state is
displayed before each program stepis taken in trace mode. The format of the display is the
same as described in the X command.

The user should note that program tracing is discontinued at the CP/M interface and
resumes after ceturn from CP{M to the program under test. Thus, CP/M functions that
access [JO devices, such as the diskette drive, run in real-time, avoiding /O timing
problems. Programs running in trace mode execute approximately 500 times slower than
real-time since DDT gets control after each user instruction is executed. Interrupt
processing routines can be traced, but commands that use the breakpoint facility (G, T,
and U} accomplish the break using an RST 7 instruction, which means that the tested
program cannot use this interrupt location. Further, the trace mode always runs the
tested program with interrupis enabled, which may cause problems if asynchrenous
interrupts are received during tracing.

The operator should use the return key to get control back to DDT during trace,
rather than executing an RST 7, to ensure that the trace for current instruction is
completed before interruption.

4.2.11 The U (Untrace) Command

The Ucemmand s identical to the T command except that intermediate program steps
are not displayed. The untrace mode allows from 1 to 65535 {OFFFFH) steps to be
executed in monitored mode and is used principally to retain control of an executing
program while it reaches steady state conditions. All conditions of the T command apply
to the U command.

4.2.12 The X (Examine) Command

The X command allows selective display and alteration of the current CPU state for
the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

c Carry flag {0/1)
z Zero flag (01}
M Minus flag 0/)
E Even parity flag (0/1)

Interdigit carry {0/1)
Accumulator {0-FF)
BC register pair  (0-FFFF)
DE register pair {0-FFFF)
HL register pair {0-FFFF)
Stack pointer {0-FFFF)
Program counter  (0-FFFF)

T e T O @ »

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



In the first case, the CPU register state is displayed in the format
CIZfMEEfIf A=bb B=dddd D-dddd H=dddd S=gdddd P=dddd inst

where £ is a 0 or 1 flag value, bb is a byte value, and dddd is a double-byte quantity
corresponding to the register pair. The “inst” field contains the disassembled instruction,
which occurs at the lecation addressed by the CPU state’s program counter.

The second form allows display and optional alteration of register values, where ris
one of the registers given above (C, Z, M, E, L A, B, D, H, 5, or P). Ineach case, theflag or
register value is first displayed at the console. The DDT program then accepts input from
the console. If a carriage return is typed, the flag or register valueis not altered. If a vatue
in the proper range is typed, the flag or register value is altered. The user should note that
BC, DE. and HL are displayed as register pairs. Thus, the operator types the entire
register pair when B, C, or the BC pair is altered.

4.3 Implementation Notes

The organization of DDT allows certain nonessential portions to be overlaid to
gain a larger transient program area for debugging large programs. The DDT program
consists of two parts: the DDT nucleus and the assembleridisassembler module. The
DDT nucleus is loaded over the Console Command Processor, and, although loaded with
the DDT nucleus, the assembleridisassembler is overlayable unless used to assemble or
disassemble.

In particular, the BDQOS address at location 6H {address field of the [MPinstruction at
location 5H) is modified by DDT to address the base location of the DDT nucleus, which,
in turn, contains a JMP instruction to the BDOS. Thus, programs that use this address
field to size memory see the logical end of memory at the base of the DDT nucleus rather
than the base of the BDOS.

The assembler/disassembler module resides directly below the DDT nucleus in the
transient program area. If the A, L, T, or X commands are used during the debugging
process, the DDT program again alters the address field at 6H to include this module,
further reducing the logical end of memory. If a program loads beyond the beginning of
the assembler/disassembler module, the A and L commands are lost {their use produces a
“?" in response) and the trace and display (T and X) commands list the “inst” field of the
display in hexadecimal, rather than as a decoded instruction.

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 77



4.4 An Example

The following example shows an edit, assemble, and debug for a simple program that
reads a set of data values and determines the largest value in the set. The largest value is
taken from the vector and stored into “EARGE” at the termination of the program

N

LOOP
LOOP:

NFOUND

VECT:
LEN
LARGE:

I-Z
‘BOPY

LOOP:

NFOUND:

A>ED SCAN.ASM Create source program;
“#7 represents carriage return.

ORG 1-00H START OF TRANSIENT
AREA y

MV B8, LEN LENGTH OF VECTOR TO SCANy

MVI C.0 ‘LARGER_RST VALLUE SO FARy

LX4 H, VECT :BASE OF VECTORY

MOV A M :GET VALUEY

SuUB C LARGER VALUE IN C?y

JNC NFOUND JUMP JF LARGER VALUE NOT
TFOUND ¥

NEW LARGEST VALUE, STOREITTO CY

MOV C A

INX H YO NEXT ELEMENTY

DCR B MORE TO SCAN?y

JNZ LOOP :FOR ANOTHER ¢

END OF SCAN, STORE C

MOV A C ‘GET LARGEST VALUE ¢

STA LARGE

JMP 0 ;HEBOOT,{

TEST DATA

DB 20435615

EQU $-VECT LENGTH

DS 1 LARGEST VALUE ON EXITY

ENDy

ORG 100H :START OF TRANSIENT AREA

MV B.LEN . ;LENGTHOFVECTOR TO SCAN

MVl c.0 LARGEST VALUE SO FAR

LXI H.VECT :BASE OF VECTOR

MOV AM ‘GET VALUE

sSuUB C LARGER VALUE IN C?

JNG NFOUIND JUMP IF LARGER VALUE NOT
FOUND

NEW LARGEST VALUE, STOREITTC C

MOV C.A

INX H ‘TO NEXT ELEMENT

DCR 8 JMQORE TO SCAN?

JNZ LOOP :FOR ANOTHER

END QF SCAN, STORE C

MOV AC ‘GET LARGEST VALUE

STA LARGE

JMP 0 {REBOOT

TEST DATA

78

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



VECT. DB 20435615

LEN EQU $-VECT (LENGTH
LARGE: DS L ;LARGEST VALUE ON EXIT
END

*Ej =—End of edit

AASM SCAN;  Start Assembler

CP/M ASSEMBLER - VER 1.0

0122

002H USE FACTOR

END OF ASSEMBLY Assembly complete; lock at program listing

A>TYPE SCAN.PRN /|
Code address  Source program

0100=" ORG 100H ;START OF TRANSIENT AREA
0100 0608 MVI B.LEN JLENGTHOF VECTOR TO SCAN
0102 OE00 Machine code MVI CO JLARGEST VALUE SO FAR
0104 21190 LXI HVECT. :BASE OF VECTOR
0107 7E LOOP: MOV AM {GET VALUE
o108 N suBC LARGER VALUE IN C?
0108 D20BbN JNC NFOUND JUMP IF LARGER VALUE NOT
FOUND
: NEW LARGEST VALUE, STORE IT TC C
D10C  4F MOV C, A
00D 23 NFOUND:INX H TO NEXT ELEMENT
D10E 05 DCR B MORE TG SCAN?
010F C20701 JNZ LOOP 'FOR ANOTHER
; END OF SCAN, STORE C
0112 79 MOV A, C  GET LARGEST VALUE
0113 322101 STA LARGE
0116 C30000 JMP O :REBOOCT
Code—data listing ;
truncated : TEST DATA
18 0200040305 % VECT: DB 20435615
0008 = Value of LEN EQUS$-VECT LENGTH
o121 equate LARGE: DS 1 LARGEST VALUE ON EXIT
0122 END

A>DDT SCAN.HEXy  Start debugger using hex format machine code

DDT VER 1.0

NEXT PC Next instruction
0121_0000 to execute at
-X¢ \Last load address + 1 PC=0

COZOMOEGIC A=00 B30000 D=0000 H=0000 S=0100 P=0000 QUT 7F
-XPy Examine registers befare debug run
P=0000 100y Change PC to 100

-X¢  Look at registers again

ALL INFORMATION PRESENTED HERE )5 PROPRIETARY TO DIGITAL RESEARCH 79



COZOMOEDI0 A=00 B=0000 D=0000 H=0000 S=0100 P=0100 MV] B.08

-L10o/ PC changed: Next instruction

0100 MVI B.08 W to execute at PC=100
0102 MW c.00
0104 LXi H,0119
g:g; I\Sﬂ'j)g g'M Disassembled machine
0108  JNC 0100 code at 100H
010C MOV C.A r {see source listing
010D  INX H for comparison)
010E DGR B
10F JNZ 0107
0112 MOV AC

L
0113 STA 0121 )
G116 JMP 0000
119 STAX B
O11A  NOP A little more machine
0118 INR B code, Note that pro-
011C  INX B \ gram ends at location
0110 DCR B 116 with a JMP to
O11E MV B.01 0000. Remainder of
0120 DCR B listing is assembly of
0121 LXI D.2200 data.
0124 LXI H,0200

-A116y Enter in-line assembly mode to change the MV to 0000 into a RST 7, which
will cause the program under test to return to DDT if 116H is ever executed.
0116 RST 7

01174  (Single carriage return stops assemble mode)

-L113¢  List code at 113H to check that RST 7 was properly inserted

0113 STA 0121 ’
0t16  RST 07 in place of IMP
0117  NOP

0118 NOP

0119 STAX B

011A NOP

011B  INR B

onc INX B

-X ¢ Look at registers

COZOMOEDIO A=0C B=0000 D=0000 H=0000 S=0100 P=0100 MVI B,08
-T¥

~ Execute Program for one stop. Initial CPU state, before/is executed
COZOMOEQID A=00 B=0000 D=0000 H=0000 S=0100 P=(H00 MVI’B.08'0102
-T# Automatic breakpoint

80 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



Trace one step again (note O8H in B}

COZOMOEOIZ A=00 B=0800 D=0000 H=0000 S=0100 P=0102 MVI C,00"0104
T

! Trace again (Register C is cleared)
COZOMOEOIQ A=00 B=0800 D=0000 H=0000 $=0100 P=0104 LXI H,0119°0107
~T3¢ Trace three steps
COZOMOEOID A=00 B=0800 D=0000 H=0119 S=0100 P=0107 MOV. AM
COZOMOEQI0 A=02 B=0800 D=0000 H=0119 S=0i00 P=0108 SUB C
COZOMOEOI1 A=02 B=0800 D=0000 H=0119 S=0100 P=0109 JNC (100"010D

-D1sy Display memory starting at 119H. Automatic breakpoint at 10DH
011902 00 04 03 05 06 01). Program data Lowercase x .

0120 105/11 G0 22 21 00 02 7€ EB 77 13 23 €EB OB @& B1..." . . w. 4. (¥

0130 C2 27 01 C3 03 29 00 DO 00 OO OG OO0 00 OO0 OD O0.' ...}
0140
0150
0160

00 00 00 00 00 00 00D 00 00 OD QD OO0 00 Q0 QO ...............
00 00 OO0 00 Q0 QO DD OO 00 OO 00 00 Q0 QD QO ... ............

00 00 00 00 00 00 00 00 0D 00 00 0D 00 00 00 Dats are displayed

0180
0180
01A0 00 00 00 00 OO DO 0O 00 DO 00 00 GO 00 00 00 00 ¢haracters
01B0 00 GO 00 00 00 00 DO 00 00 OO Q0D 00 0D 00 QO OO0 ...............
01C0o CO 00 Q0 00 OC OC 00 00 OO 00 00 00 00 00 00 00 ... ... .....

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Pengraphic

Current CPU state

COZOMOEQIT A=02 B=0800 D=0000 H=0119 5=0100 P=010D INX H
-T5

’ Trace 5 steps from current CPU state
COZOMOEDI1 A=02 B=0800 D=0000 H=0119 S&=0100 P=010D INX H
COZOMOEOGI1 A=02 B=0B00 D=0000 H=011A S=3100 P=010E DCR B
COZOMODEOIY A=02 B=0700 D=0000 H=011A S=0100 P=030F JNZ 0107
COZOMDEODIN A=02 B=0700 D=0000 H=(11A S5=0100 FP=0107 MOV AM
COZOMOEOIT A=00 8=0700 D=000C H=011A S=0100 P=0108 SUB C 010%
us

4 Trace without listing intermediate states
COZ1MOE11t A=00 B=0700 D=0000 H=011A 5=0100 P=01089 JNC Q10D0108

Automatic breakpoint

»CPL state at end of Us
COZOMOE11Y A=04 B=0600 D=0000 H=011B S5=0100 P=0108 SU8 C
-Gy  Run program from current PC until completion (in real-time)

0116 breakpoint at 116H, caused by executing RST 7 in machine code.
=Xy

CPUstate at end of program
COZ1MDETIN A=00 B=0000 D=0000 H=(121 $=0100 P=0118 RST 07

-XP,
# ~~Examine and change program counter
P=0116 100y

..)("

COZ1MOE1IT A=00 B=0000 D=000C H=0121 S=0100 P=0100 MVI B,08
-T10g

ALL INFORMATION PRESEMTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 in the position of

00
00
m . - r
0170 00 00 00 00 00 0OC 00 00 00 00 00 00 00 00 00 00 INASCIl witha
00
00

81.



First data element
Current Jargest value
Subtract for comparison, C

Trace 10 thexadecimal) steps

COZ1MOETIT A <0121 $=0100 P=0100 MVI| B,08
COZTMOETIT A 0121 S=0100 P=0102 MV1 C.0
COZ1MOEHIT A 0121 S=0100 P=0104 LXI H,0M9
COZIMOEIIT A 0119 5=0100 P=0107 MOV AM
COZ1MOE1INT A 0119 $=0100 P=0108 SUB C
COZOMOEDI1T A H=0118 S$=0100 P=0109 JNC 010D

COZOMOEDI1 A=02 B=0800 [=0000 H=0118 5=0100
COZOMOEOH A=02 8=0800 D=0000 H=011A S5=0100 P=010E PCR B
COZOMOEQHT A=02 B=0700 D=0000 H=011A $=0100 P=010F JUNZ 0107
COZOMOEOCI1T A=02 B=0700 D=0000 H=011A S=0100 P=0107 MOV AM
COZOMOEQIT A=00 B8=0700 D=0000 H=011A .S=0100 P=0192 SUBC
COZt1MOE1Y A=00 B=0700 D=0000 H=011A 5=0100 09 JNC 010D
COZ1MDE1IT A=00 B=0700 D=0000 HM=011A S5=0100 Ps010D INX H

COZ1MOE1I1 A=00 B=0700 D=0000 H=011B S=0100 010E DCR B
COZOMOE1IT A=00 B=0600 D=0000 H=011B S=0100 £F=010F JNZ 0107
COZOMOE1I1 A=00 B8=0600 D=0000 H=011B S-(M0Y P=0107 MOV A M*0108
-A109 [nsert a “hot patch” into Program should have moved the
the machine code value from A into € since A>C.
0109 JC 10Dy change the’ Since this code was not executed,
INC to JC it appears that the INC should

010Cy have been a JC instruction

-Goy Stop DPDT so that a version of
the patched program can be saved

A>SAVE 1 SCAN.COM JProgram resides on First
page, so save 1 page.

A=DDT SCAN.COM
’\Restart DDT with the save memory

DDT VER 1.0 image to continue testing
NEXT PC

0200 0100

-L100;  List some code

0100 MVi B,08
0102 MV C,00
0104 LXl H,0119
0107 MOV AM
o108 sSuBC
0109 JC 010D Previous patch is present in X.COM
010C MOV CA
010D INX H
010E DCR B
(10F JNZ 0107
0112 MOV AC
-XPy

P=0100y

82 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DICIFAL RESEARCH



-T10/

Trace to see how patched version operates

COZOMOECID
COZOMOECHD
COZOMOEDID
COZOMOEDIQ
COZOMOEQIO

A=00 B=0000
A=00 B=0800
A=00 B=0800
A=Q0 B=0800
A=03 B8-0800

D=0000
D=000Q

H=0000 S=01

=0119 S=0100

Data is moved from A to C
P=0100 MV!I B.0S
P=0102 MV C,00
P=0104 LXI H,0118
P=0107 MOV AM
P=0108 SuB C

COZOMOEOIt
COZOMOEOI
COZOMOEOIT
COZoMOoEOI
COZOMOEON
COZOMOEDIT
COZOMOEQIN
C1ZOMIEQIO
C1Z0M1EQIO
C1ZOMI1EOIO
C1ZOMOE1It
-X ¥

A=02 "g§=0800
02 B3QB00
02 B=

02 B=0802
2 B=0702
2 B=0702
0 B=0702

H=0119 S=0100
H=0119 5=0100
H=0119 3=0100
H=011A S$S=0100
H=011A S=0100
H=011A S=0100
H=011A S5=0100
H=011A $=0100
H=011A $=0100

P=0109 JC 010D
P=010C MOV CA
P=010D INX H
P=010E DCR B
P=010F JNZ 0107
P=0107 MOV AM
P=0108 SUB -C
P=0109 JC 0100
P=0100 INX H
H=0118 S=0100 P=010E DCR B
H=011B $=0100 P=010F JNZ 01070107

Breakpoint after 16 steps

L L T L}
QO

I n ot H

>>)>'?)>))>

C1Z0OMOE111 A=FE B=0602
-G,108y

D=0006 H=011B S=0100 P=0107 MOV AM
Run from current PC and breakpoint at 108H

0108
X 4
Next data item

C1ZOMOE1H1 A=04 B=0802 D=0000 H=011B S$=0100 P=0108 SUB C
T

¢ Single step for a few cycles
C1ZOMOE1I1 A=04 B=0802 D=0000 H=0¥1B S=0100 P=0108 SUB C*0109
-T‘

COZOMODEQI1 A=02 B=0602 D=0000 H=011B $=010C P=010% JC 010D*010C
-X"

COZOMOEOI A=02 B=0602 D=0000 H=011B $=0100 P=010C MOV C.A
-Gy  Run to completion

0116
X ¢

COZ¥MOE1IT A=03 B=0003 D=0000 H=0121 S=0100 P=0116 RST 07

-5121;  Look at the value of "LARGE”
0121 03y  Wrong value!
0122 00
0123 22/
D124 2%

ALL INFORMATION PRESENTED HERE IS MROPRIETARY TO DIGITAL RESEARCH 83



0125 00y

0126 02§

0127 7Es _ End of the § command
-L1 00}

0100 MVI 8,08 )

Qig2 MVI C.,00

0104 LXI H.0119

0107 MOV AM

0108 suB C

0109 JC 0100

010C MOV C.A

010D INX H

010E DCR B

010F JNZ 007

0112 MOV AC

-L } L Review the code

0113 STA 0121

Q16 RST 07

o117 NOP

0118 NOQP

0118 STAX B

011A NOQP

o118 INR B

o11¢C INX B

011D DCR B

011E MY B,0

0120 DCR B )

-XP,

P=0116 100; Reset the PC

Ty

Single step, and watch data values
COZ1MOETI1 A=03 B=0003 D=0000 H=0121 S=0100 P=0100 MVI B,08°0102
Ty

COZIMOETIT A=03 B=0803 D=0000 H=0121 $=0100 P=0102 MVI C,0070104
T

¢ Count set \ /”Largest" set
COZ1MOE111 A=03 B=0800 D=0000 H=0121 S=0100 P=0104 LXI H.0119°01067
-T .

’ /Base address of data set
COZ1MOE1I1 A=03 B=0800 D=0000 H=01t9 S$=0100 P=0107 MCV A M'0108
T
. / First data item brought to A
COZ1MOE1#1 A=02 B=0800 D=0000 H=011% S=0100 P=0108 SuB C*0109
Ty

COZOMOEGI1 A=02 8=0800 D=0000 H=0119 $=0100 P=0109 JC 010D°010C
Ty '

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH



COZOMOEDIN
-T‘

A=02 B=0800 D=0000 H=01189 S=0100 P=010C MOV C A*010D

First data item moved to C correctly

COZOMOEQI1T A=02 B=0802 D=0000 H=0119 $=0100 P=010D iNX H*010E
'Tf

COZOMOEOIT A=02 B=0802 D=0000 H=011A S=0100 P=010E DCR B 010F
-T‘

GOZOMOEOtT A=02 B=0702 D=0000 H=011A S$=0100 P=010F JNZ 01070107
..T’

COZOMOEQIN A=02 B=0702 [D=0000 H=011A S=0100 P=0107 MOV A M*0108
Ty

Second data item brought to A
COZOMOEQIT A=00 B=0702 D=0000 H=011A S=0100 P=0108 SUB C'0109
-T‘
Subtract destroys data value that was loaded!

C1ZOM1EGIO A=FE B=0702 D=0000 H=011A S=0100 P=01Q9 JC 010D 010D
Ty

C1Z0OM1EOID A=FE B=0702 D=0000 H=011A S=0100 P=010D INX H*010E
-L100y

0100 MV B.,08

0102 MVI C.00

0104  LXI H,0119

g: gg g‘L?E\: g'M This should have been 2 CMP so that register A

14 not be destroyed.

0109 JC otoD WOV

010C MOV CA

0100 INX H

010E  DCR B

010F JNZ 0107

0112 MOV A.C

-A108y )
0108 CMP C,  Hot patch at 108H changes SUB to CMP
o9
-GOy  Stop DDT for SAVE

A> SAVE 1 SCAN.COM,
A>DDT SCAN.COM/

DOT VER 1.0

NEXT PC
0200 0100
-XPy
P=0100

-L116,

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Save memory image

Restart DDT

85



0116  RST o7

0 1; :82 Look at code to see if it was properly loaded
o110 STAX g | {ong typeout aborted with rubout)
01tA NOF

-G.116y Run from 100H to completion
0116

-XCy  Look al carry {accidental typo)
Cty

-Xy  Look at CPU state

GC1Z1MOE111 A=06 B=0006 D=0000 H=0121 $=0100 P=0116 RST 07
-81214  Look at “large”—it appears to be correct.

0121 06y

0122 00y

0123 22

-Go0y  Stop DDT

A>ED SCAN.ASMy  Re-edit the source program, and make both changes

"NSUBy
"OLTy¢
ctl-Z SUB C :LARGER VALUE IN C?
‘SSUBIZCMPIZOLT)
CMP G :LARGER VALUE IN C?
JNC NFOUND JUMP IF LARGER VALUE NOT FOUND
*SNCIZCIZOLTy X
JG NFOUND JUMP IF LARGER VALUE NOT FOUND

“E
¢ Re-assemble, selecting source from disk A
A>ASM SCAN AAZ ; ~—Hex to disk A
Print to Z {selects no print file}
CP/M ASSEMBLER VER 1.0

0122

002H USE FACTOR
END OF ASSEMBLY

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



A>DDT SCAN.HEX;  Re-run debugger to check changes

DDT VER 1.0
NEXT PC
0121 0000
-L116 ¢
0116 JMP 0000 Check to ensure end is still at 116H
3119 STAX B
O11A NQP
011B INR B
= {rubout)

-G100,116;  Go from beginning with breakpoint at end

0116 Breakpoint reachea

-D121;  Look at “LARGE”

Correct value computed
0121 QB0 33 21 00 02 7E EB 77 13 23 EB OB 78 BI .. ') . W.H..X.
0130 G227 01 C303 29 00 O0 00 O0 OO OC 00 00 O0 00 .'...)
0140 00 00 00 00 00 CO 0D OO0 00 00 0O 00 00 OO OO0 00

- {rubout) Abarts long type-out

GOy  Stop DDT, debug session complete.

ALL INFORMATION MRESENTED HERE [5 PROPRIETARY TO DIGITAL RESEARCH 87 .



CP/M 2 System Interface

5.1 Introduction

This chapter describes CP{M, release 2, system organization including the structure
of memory and system entry points. The intention is to provide necessary information
required to write programs that operate under CP/Mand that use the peripheral and disk
IO facitities of the system.

CPIM is logically divided into four parts, called the Basic [/ O System (BIOS), the Basic
Disk Operating System (BDOS), the Console Command Processor (CCP), and the
Transient Program Area (TPA). The BIOS is a hardware-dependent module that defines
the exact low level interface with a particular computer system that is necessary for
peripheral device 1O, Although a standard BIOS is supplied by Digital Research, explicit
instructions are provided for field reconfiguration of the BIOS to match nearly any
hardware environment {see Chapter 6). The BIOS and BDOS are logicaily combined into
a single module with a common entry point and referred to as the FDOS. The CCPisa
distinct program that uses the FDOS to provide a human-oriented interface with the
information that is cataloged on the backup storage device. The TPA is an area of memory
{i.e., the portion that is not used by the FDOS and CCP) where various nonresident
operating system commands and user programs are executed. The lower portion of
memory is reserved for system information and is detailed in later sections. Memory
organization of the CP/M system is shown below.

High
Memory FDOS {BDOS+BIOS)
FBASE:

CcCP
CBASE:

TPA
TBASE:

System Parameters

BOOT:

ALL INFORMATION PRESENTED HERE |5 PROPRIETARY TO DIGITAL RESEARCH 89



The exact memory addresses corresponding to BOOT, TBASE, CBASE, and FBASE
vary from version to version and are described fuily in Chapter 6. All standard CPIM
versions, however, assume BOOT = 0000H, which is the base of random access memory.
The machine code fFound at location BOOT performs a system "warm start,” which loads
and initializes the programs and variables necessary to return control to the CCP. Thus,
transient programs need only jump to location BOOT to return control to CPiM at the
command level. Further, the standard versions assume TBASE = BOOT +0100H, which is
normally location 0100H. The principal entry point to the FDOS is at location
BOOT+0005H (normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be used to
determine the size of available memory, assuming that the CCP is being overlayed by a
transient program.

Transient programs are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each prompt. Each
command line takes one of the forms:

command
command filel

command file1 file2

where “command” is either a built-in function such as DIR or TYPE or the name of a
transient command or program. If the command is a built-in function of CPIM, it is
executed immediately. Otherwise, the CCP searches the currently addressed disk for a
file by the name

command.COM

If the file is found., it is assumed to be a memory image of a program that executes in the
TPA and thus implicitly originates at TBASE in memory. The CCP loads the COM file
from the disk into memory starting at TBASE and can extend up to CBASE.

if the command is followed by one or two file specifications, the CCP prepares one or
two file control block {(FCB) names in the system parameter area. These optional FCBs are
in the form necessary to access files through the FDOS and are described in the next
section.

The transient program receives control from the CCP and begins execution, using the
1O facilities of the FDOS. The transient program is “called” from the CCP. Thus, it can
simply return to the CCP upon completion of its processing or can jump to BOOT to pass
control back to CP/M. In the first case, the transient program must not use memory
above UBASE, while in the latter case, memory up through FBASE-1 can be used.

The transient program can use the CPIM WO facilities to communicate with the
operator’s console and peripheral devices, including the disk subsystem. The /O system
is accessed by passing a function number and an information address to CP/M through
the FDXOS entry point at BOOT+0005H. In the case of a disk read, for example, the
transient program sends the number corresponding to a disk read, along with the address
of an FCB to the CPIM FDOS. The FDOS, in turn, performs the operatien and returns
with either a disk read completion indication or an error number indicating that the disk
read was unsuccessful.

90 ALL INFORMATION FRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



5.2 Operating System Call Conventions

This section provides detailed information for performing direct operating system
calls from user programs. Many of the functions listed below, however, are accessed
more simply through the /O macro library provided with the MAC macro assembler and
listed in the Digital Research manual entitled, MAC Macre Assembler: Langnage Manual and
Applications Guide.

CP/M facilities that are available for access by transient programs fallinto two general
categories: simple device I/O and disk file 1/Q. The simple device operations include:

Read a Console Character

Write a Console Character

Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character

Get or Set I/O Status

Print Console Butfer

Read Consote Buffer

Interrogate Console Ready
The FDOS operations that perform disk /O are

Pisk System Reset

Drive Selection

File Creation

File Open

File Close

Directory Search

File Delete

File Rename

Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File indicators.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91



As mentioned above, access to the FDOS functions is accomplished by passing a
function number and information address through the primary point at location
BOOT+0005H. In general, the function number is passed in register C with the informa-
tion address in the double byte pair DE. Single byte values are returned in register A, with
double byte values returned in HL (a zero value is returned when the function numberis
out of range). For reasons of compatibility, register A = L and register B = H upon return
in all cases, The user should note that the register passing conventions of CPiM agree
with those of Intel’s PLIM systems programming language. CP/M functions and their
numbers are listed below.

0 System Reset 19 Delete File

1 Console Input 20 Read Sequential

2 Console Qutput 21  Write Sequential

3 Reader Input 22 Make File '

4 Punch Output 23  Rename File

5 List Output 24 Return Login Vector

6 Direct Console HO 25 Return Current Disk

7 Get [1O Byte 26 Set DMA Address

& Set IO Byte 27  Get Addr(Alloc)

g Print String 28  Write Protect Disk
10  Read Console Buffer 29 Get RIO Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Adde(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14  Select Disk 33 Read Random
15 Open File : 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next 37 Reset Drive

10 Write Random with Zero Fill

(Functions 28 and 32 should be avoided in application programs to maintain upward
compatibility with CP{M.)

Upon entry to a transient program, the CCF leaves the stack pointer set to an
cight-level stack area with the CCP return address pushed onto the stack, leaving seven
levels before overflow occurs. Although this stack is usually not used by a transient
program {i.e., most transients return to the CCP through a jump to location 0000H), it is
sufficiently large to make CPIM system calls since the FDOS switches to a local stack at
system entry. The assembly language program segment below, for example, reads
characters continuously until an asterisk is encountered, at which time controlreturns to
the CCP {assuming a standard CPIM system with BOOT = 0000H).

BDOS EQU 0005H :STANDARD CP/M ENTRY
CONIN EQU 1 :CONSOLE INPUT FUNCTION
ORG 01004 :BASE OF TPA
NEXTC: MV C,CONIN 'READ NEXT CHARACTER
CALL 8D0Ss :RETURN CHARACTER IN <A>
CPI ' :END OF PROCESSING?
JNZ NEXTC ‘LOOP IF NOT
RET :RETURN TO CCP
END

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



CPIM implements a named file structure on each disk, providing ajogical organization
that allows any particular file to contain any number of records from completely empty to
the full capacity of the drive. Each drive is logically distinct with a disk directory and file
data area. The disk file names are in three parts: the drive select code, the filename
consisting of one to eight nonblank characters, and the filetype consisting of zero to three
nonblank characters. The Ffiletype names the generic category of a particular file, while
the filename distinguishes individual files in each category. The filetypes listed below
name a few generic categories that have been established, although they are somewhat
arbitrary.

ASM  Assembler Source PL1  PL/ Source File

PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Scurce
BAS Basic Source File BAK ED Source Backup
INT Intermediate Code SYM  SID Symbol File
COM  Command File $$$  Temporary File

Source files are treated as a sequence of ASCI] characters, where each “line” of the
source file is followed by a carriage-return line-feed sequence (0DH followed by 0 AH).
Thus one 128-byte CP/M record could contain several lines of source text. The end of an
ASCI file is denoted by a control-Z character (1AH) or a real end-of-file returned by the
CPIM read operation. Control-Z characters embedded within machine code files (e.g.,
COM files) are ignored, however, and the end-of-file condition returned by CP/Mis used
to terminate read operations.

Files in CP{M can be thought of asa sequence of up t0 65536 records of 128 bytes each,
numbered from 0 through 65535, thus allowing a maximum of 8 megabytes per file.
However, the user should note that although the records may be considered logically
contiguous, they may not be physically contiguous in the disk data area. Internally, all .
Fles are divided into 16K byte segments called logical extents, 50 that counters are asily
maintained as 8-bit values. The division into extents is discussed in the paragraphs that
follow; however, they are not particularly significant for the programmer, since each
extent is automatically accessed in both sequential and random access modes.

In the file operations starting with Function number 15, DE usually addresses a file
control block (FCB). Transient programs often use the default file control block area
reserved by CPIM at location BOOT+005CH (normally 005CH) for simple file opera-
tions. The basic unit of file information is a 128-byte record used for all file operations;
thus, a default location for disk [fO is provided by CPIM at location BOOT +0080H
{narmaliy 0080H), which is the inivial default DMA address (see function 26). All direc-
tory operations take place in a reserved area that does not affect write buffers as was the
case in release 1, with the exception of Search First and Search Next, where compatibility
is required.

The FCB data area consists of a sequence of 33 bytes for sequential access and a series
of 36 bytes in the case when the file is accessed randomly. The default FCB normally
located at 005CH can be used for random access files, since the three bytes starting at
BOOT+007DH are available for this purpose. The FCB formai is shown with the
following fields:

[ar 16192 T/ A8 (11 Tt2 [t3 [ex [s1 [s2 |rc [dO]/ Adner [0 i1 [r2
00 01 02 ... 08B 09 10 11 12 13 14 15 16 . 31 32 33 34 35

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DICITAL RESEARCH 3.



where

dr drive code {0-16)
0 =2 use default drive for file
1 =2 auto disk select drive A,
2 = auto disk select drive B,

16=>> auto disk select drive P.

.18 contain the file name in ASCIl upper case, with
high bit = 0

t1.12.13 contain the file type in ASCI upper case, with high
bit = 0 tI°, 12, and t3’ denote the bit of these
positions,

tl* = 1 =2 Read/Only File,
t2' = 1 =>> SYS file, no DIR list

ex contains the current extent number, normally set
to 00 by the user, but in range 0-31 during file IfO

81 reserved for internal system use

52 reserved for internal system use, set to zero on call
to QPEN, MAKE, SEARCH

rc record count for extent “ex,” takes on values from
0-127

do...dn filled-in by CPIM, reserved for system use

cr _ current record to read or write in a sequential file

operation, normally set to zero by user

r0,rl,r2 optional random record number in the range 0-
65535, with overflow to r2, 10, rl constitute a 16-
bit value with low byte r0, and high byte r1

Each file being accessed through CP/M must have a cosresponding FCB, which
provides the name and allacation information for all subsequent file operations. When
accessing files, it is the programmer’s responsibility to fill the lower 16 bytes of the FC8
and initialize the cr field. Normally, bytes 1 through 11 are set to the ASCIl character
values for the file name and file type, while all other fields are zero.

FCBs are stored in a directory area of the disk, and are brought into central memory

“before the programmer proceeds with File operations (see the OPEN and MAKE func-
tions). The memory copy of the FCB is updated as file operations take place and later
recorded permanently on disk at the termination of the file operation (see the CLOSE
command).

The CCP constructs the first 16 bytes of two optional FCBs for a transient by
scanning the remainder of the line following the transient name, denoted by filel and
fiteZ in the prototype command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH and can be used as is for
subsequent file operations. The second FCB occupies the 6 ... dn portion of the first FCB
and must be moved to another area of memory before use. [f, for example, the operator
types

PROGNAME B:X.ZOT Y.ZAP

94 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



the file PROGNAME.COM is loaded into the TPA and the default FCBat BOOT+005CH
is initialized to drive code 2, file name X, and file type ZOT. The second drive code takes
the default value 0, which is placed at BOOT +006CH, with the file name Y placed into
location BOOT+006DH and tile type ZAP located 8 bytes later at BOOT+0075H. All
remaining fields through cr are set to zero. The user should note again that it is the
programmet’s responsibility to move this second file name and type to another area,
usually a separate file control block, before opening the file that begins at BOOT+005CH,
because the open operation will overwrite the second name and type. '

If no file names are specified in the original command. the fields beginning at
BOOT+005DH and BOOT+006DH contain blanks. In allcases, the CCP translates lower
case alphabetics to upper case to be consistent with the CPIM file naming conventicns.

As an added convenience, the default buffer area at location BOOT+0080H is initial-
ized to the command line tail Lyped by the operator following the programname. The first
position contains the number of characters, with the characters themselves following the
character count. Given the above cornmand line, the area beginning at BOOT+0080H is
initialized as follows:

BOOT+0080H:;

+00 +01 02 +03 +04 +05 +06 +07 +08 +09 +A +B +C +D +E
E L fBo r:r in J‘! !Zr ror l'l'! [ OY! !.l' uzr tAr JPJ

where the characters are translated to upper case ASCIl with uninitialized memory
following the last valid character. Again, it is the responsibility of the programmer to
extract the information from this buffer before any file operations are performed, unless
the default DMA address is explicitly changed.

Individual functions are described in detail in the pages that follow.

Function 0: System Reset

Entry Parameters:
Register C:  00H

The system reset function returns control to the CP{M operating system at the CCP
level. The CCP reinitializes the disk subsystem by selecting and logging in disk drive A.
This function has exactly the same effect as a jump to location BOOT.

Function 1: Console Input

Entry Parameters:
Register C: 01H

Returned Value:
Register A:  ASCII Character

The console input function reads the next console character to register A. Graphic
characters, along with carriage return, line feed, and back space (ctl-H) are echoed to the

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 25



console. Tab characters {ctl-I} move the cursor to the next tab stop. A check is made for
start/stop scroll {ctl-S} and start/stop printer echo (ctl-P). The FDOS does not return to

the calling program until a character has been typed, thus suspending execution if a
character is not ready.

Function 2: Console Output

Entry Parameters:
Register C:  02H
Register E:  ASCII Character

The ASCIl character from register E is sent to the console device. As in function 1,
tabs are expanded and checks are made for startistop scroll and printer echo.

Function 3: Reader Input

Entry Parameters:
Register C:  03H

Returned Value:
Register A:  ASCH Character

The Reader Input function reads the next character fram the logical reader into
register A (see the IOBYTE definition in Chapter 6). Control does not return until the
character has been read.

Function 4: Punch Output

Entry Parameters:
Register C:  04H
Register E:  ASCIl Character

The Punch Qutput function sends the character from register E to the logical punch
device.

Function 5: List Output

Entry Para neters:
Register C: 0SH
Register E:  ASCIH Character

The List Qutput function sends the ASCIl character in register E to the logical listing
device.

96 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TC DIGITAL RESEARCH



Function 6: Direct Console HO

Entry Parameters:
Register C:  06H
Register E:  OFFH (input) or
char (output)

Returned Value:
Register A: char or status

Direct console /O is supported under CPIM for those specialized applications where
basic console input and output are required. Use of this function should, in general, be
avoided since it bypasses all of CP/M’s normal control character functions (e.g., control-S
and control-P}). Programs that perform direct IO through the BIOS under previous
releases of CP{M, however, should be changed to use direct 1/O under BDOS so that they
can be fully supported under future releases of MPIM and CP/M.

Upon entry to function 6, register E either contains hexadecimal FF, denoting a
conscle input request, or an ASCII character. If the input valueis FF, function 6 returns
A = 00 if no character is ready, otherwise A contains the next console input character.

If the input value in E is not FF, function 6 assumes that E contains a valid ASCII
character that is sent to the console.

Function 6 must not be used in conjunction with other console I/O functions.

Function 7: Get I/O Byte

Entry Parameters:
Register C:  p7H

Returned Value:
Register A:  1/O Byte Value

The Get I/O Byte function returns the current value of IOBYTE in register A. See
Chapter & for IOBYTE definition.

Function 8: Set 1/0O Byte

Entry Parameters:
Register :  08H
Register £: 11O By_te Value

The Set 110 Byte function changes the IOBYTE value to that given inregister E.

ALL INFORMATION PRESENTED HERE IS FROPRIETARY TO DKJITAL RESEARCH 97



Function 9: Print String

Entry Parameters:
Register C: 09H
Registers DE:  String Address

The Print String function sends the character string stored in memory at thelocation
given by DE to the console device, until a § is encountered in the string. Tabs are
expanded as in function 2, and checks are made for stari/stop scroll and printer eche.

Function 10: Read Console Buffer

Entry Parameters:
Register : 0AH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Buffer function reads a line of edited console input into a buffer addressed
by registers DE. Console input is terminated when either input buffer overflows or a
carriage return or line feed is typed. The Read Buffer takes the form:

DE:+0 +1 +2 +3 +4 +5 +6 +7 +8 , ., .+n
fmxine [c1 |c2 |c3 |c4 |e5 |c6 Je7 | ...]2Y]

where mx is the maximum number of characters that the buffer will hold (1 to 255) and nc
is the number of characters read (set by FDXOS upon return), followed by the characters
read frorm the console. If ne < mx, then uninitialized positions fotlow the last character,
denoted by ?7 in the above figure. A number of control functions are recognized during
line editing:

rub/dei removes and echoes the last character
ctl-C reboots when at the beginning of line
cti-E causes physical end of line

cti-H backspaces one character position
ctl-J {line feed) terminates input line

ctl-M {return) terminates input line

ctl-R retypes the current line after new line
cti-U removes current line

cti~X same as ctl-U.

The user should also note that certain functions that return the carriage to the leftmost
position {e.g., ctf-X) do 50 only to the column position where the prompt ended {in earlier

98 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DUGITAL RESEARCH



releases, the carriage returned to the extreme left margin). This convention makes
operator data input and line correction more legible.

Function 11: Get Console Status

Entry Parameters:
Register C: 0BH

Returned Value:
Register A: Console Status

The Console Status function checks to see if acharacter has been typed at the console.
If a character is ready, the value OFFH is returned in register A. Otherwise a00H valueis
returned.

Function 12: Return Version Number

Entry Parameters:
Register C: 0CH

Returned Value:
Registers HL: Version Number

Function 12 provides information that allows version independent programming. A
two-byte value is returned, with H = 00 designating the CPfM release (H = 01 for MPIM),
and L = 00 for all releases previous t0 2.0. CPIM 2 O returns a hexadecimal 20 in register L,
with subsequent version 2 releases in the hexadecimal range 21, 22, through 2F. Using
function 12, for example, the user can write application programs that provide both
sequential and random access functions.

Function 13: Reset Disk System

Entry Parameters:
Register C: 0DH

The Reset Disk Function is used to programmatically restore the file system to a reset
state where all disks are set to read/write (see functions 28 and 29}, only disk drive A is
selected, and the default DMA address is reset to BOOT+0080H. This function can be

used, for example, by an application program that requires a disk change without a
system reboot, '

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99



Function 14: Select Disk

Entry Parameters:
Register C: 0EH
Register E:  Selected Disk

The Select Disk function designates the disk drive named in register E as the default
disk for subsequent file operations, with E =0 for drive A, 1 for drive B, and so on through
15, corresponding to drive P in a full 16 drive system. The drive is placed in an on-line
status, which activates its directory until the next cold start, warm start, or disk system
reset operation. If the disk medium is changed while it is on-line, the drive automatically
goes to a readfonly status in a standard CP/M environment (see function 28). FCBs that
specify drive code zero (dr = 00H) automatically reference the currently selected default
drive. Drive code values between 1 and 16, however, ignore the selected default drive and
directly reference drives A through P.

Function 15: Open File

Entry Parameters:
Register C: oOFH
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

The QOpen File operation is used to activate a file that currently exists in the disk
directory for the currently active user number. The FDOS scans the referenced disk
directory for a match in positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCIl question mark (3FH)} matches any directory
character in any of these positions. Normally, no question marks are included, and bytes
ex and s2 of the FCB are zero. :

If a directory element is matched, the relevant directory information is copied into
bytes d0 through dn of the FCB, thus allowing access to the files through subsequent read
and write operations. The user should note that an existing file must not be accessed until
a successful open operation is completed. Upon return, the open function returns a
directary code with the value 0 through 3 if the open was successtul or OFFH (255
decimal) if the file cannot be found. If question marks occurin the FCB, the first matching
FCB is activated. Note that the current record {cr) must be zeroed by the program if the
file is to be accessed sequentially from the first record.

100 ALL ANFORMATION PRESENTED HERE 1S PROPREETARY TO DHGITAL RESEARCH



Function 16: Close File

Entry Parameters:
Register <. 10H
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

The Close File function performs the inverse of the open file function. Given that the
FCB addressed by DE has been previously activated through an open or make function
{see functions 15 and 22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close is identical to the open
function. The directory code returned for a successful close operationis 0,1, 2, or 3, while
a OFFH (255 decimal) is returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write operations have
accurred, however, the close operation is necessary to record the new directory informa-
tiocn permanently.

Function 17: Search for First

Entry Parameters
Register C: 11H
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

Search First scans the directory for a match with the file given by the FCB addressed
by DE. The value 255 (hexadecimal FF} is returned if the file is not found; otherwise, 0,1,
2. or 3is returnped indicating the file is present. When the file is found, the current DM A
address is filled with the record containing the directory entry, and the relative starting
position is A ¥ 32 (i.e, ratate the A register left 5 bits, or ADD A five times}. Although not
normally required for application programs, the directory information can be extracted
from the buffer at this position.

An ASCII question mark {63 decimal, 3F hexadecimal) in any position from f1 through
ex matches the corresponding field of any directory entry on the default or auto-selected
disk drive. If the dr field contains an ASCIl question mark, the auto disk select functionis
disabled and the default disk is searched, with the search function returning any matched
entry, allocated or free, belonging to any user number. This latter function is not
normally used by application programs, but it allows complete flexibility to scan all
current directory values. If the dr field is not a question mark, the s2 byte is automatically
zeroed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101



Function 18: Search for Next

Entry Parameters:
Register C:  12H

Returned Value:
Register A:  Directory Code

The Search Next function is similar to the Search First function, except that the
directory scan continues from the last matched entry. Similar to function 17, function 18
returns the decimal value 255 in A when no more directory items match.’

Function 19: Delete File

Entry Parameters:
Register (: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Delete File function removes files that match the FCB addressed by DE. The
filename and type may contain ambiguous references {i.e., question marks in various
positions}, but the drive select code cannot be ambiguous, as in the Search and Search
Next functions.

Function 19 returns a decimal 255 if the referenced file or files cannot be found;
otherwise, a value in the range ¢ to 3 is returned.

Function 20: Read Sequential )

Entry Parameters:
Register {: 14H
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function {(numbers 15 and 22), the Read Sequential function reads the next 128-byte
recard from the file into memory at the current DMA address. The record is read from
position cr of the extent, and the cr field is automatically incremented to the next record
position. [f the cr field overflows, the nextlogical extent is automatically opened and the
cr field s reset to zero in preparation for the next read operation. The value 00H is
returned in the A register if the read operation was successful, while a nonzero value is
returned if no data exist at the next record position (e.g., end-of-File occurs}.

102 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DHGITAL RESEARCH



Function 21: Write Sequential

Entry Parameters:
Register C: 15H
Registers DE: F(B Address

Returned Value:
Register A: Directory Code

Given that the FCB addressed by DE has been activated through an open or make
function (numbers 15 and 22), the Write Sequential function writes the 128-byte data
record at the current DMA address to the file named by the FCB. The record is placed at
position cr of the file, and the cr field is automatically incremented to the next record
position. H the cr field overflows, the next logical extent is automatically opened and the
cr field is reset to zero in preparation for the next write operation. Write operations can
take place into an existing file, in which case, newly written records overlay those that
already exist in the file. Register A = 00H upon return from a successful write operation,
while a nonzero value indicates an unsuccessful write caused by a full disk.

Function 22: Make File

Entry Parameters:
Register (C: 16H
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

The Make File operation is similar to the open File operation except that the FCB must
name a file that does not exist in the currently referenced disk directory {i.e., the one
named explicitly by a nonzero dr code or the default disk if dr is zero}. The FDOS creates
the file and initializes both the directory and main memory value to an empty file. The
programmer must ensure that no duplicate file names occur, and a preceding delete
operation is sufficient if there is any possibility of duplication. Upon return, register A= 0,
1, 2, or 3 if the operation was successful and 0FFH (255 decimal}if no more directory space
is available. The make function has the side effect of activating the FCB and thus a
subsequent open is not necessary.

Function 23: Rename File

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Rename function uses the FCB addressed by DE to change all occurrences of the
file named in the first 16 bytes to the file named in the second 16 bytes. The drive code dr

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103



at position 0 is used to select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A is set to a value
between 0 and 3 if the rename was successful and OFFH (255 decimal} if the first file name
could not be found in the directory scan.

Function 24: Return Log-in Vector

Entry Parameters:
Register : 18H

Returned Value:
Registers HL: Log-in Vector

The log-in vector value returned by CPIM is a 16-bit value in HL, where the least
significant bit of L corresponds to the first drive A and the high order bit of Hcorresponds
to the sixteenth drive, labeled P. A 0 bit indicates that the drive is not on-line, while a 1 bit
marks a drive that is actively on-line as a result of an explicit disk drive selection or an
implicit drive select caused by a file operation that specified a nonzero dr field. The user
should note that compatibility is maintained with earlier releases, since registers A and L
contain the same values upon return.

Function 25: Return Current Disk

Entry Parameters:
Register C:  19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected-default disk number in register A. The disk
numbers range from 0 through 15 corresponding to drives A through P.

Funciion 26: Set DMA Address

Entry Parameters:
Register C: 1AH
Registers DE: DMaA Address

DMA is an acronym for Direct Memory Address, which is often used in connection
with disk controllers that directly access the memory of the mainframe computer to
transfer data to and from the disk subsystem. Although many computer systems use
non-DMA access (i.e., the data are transferred through programmed [{O operations), the
DMA address has, in CP/M, come to mean the address at which the 128-byte data record
resides before a disk write and after a disk read. Upon cold start, warm start, oc disk

104 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH .



system Teset, the DMA address is automatically set to BOOT+0080H. The Set DMA
function, however, can be used to change this default value to address another area of
memory where the data records reside. Thus, the DMA address becomes the value
specified by DE until it is changed by a subsequent Set DMA function, cold start, warm
start, or disk system reset.

Function 27: Get ADDR(Alloc)

Entry Parameters:
Register : 1BH

Returned Value:
Registers HL: ALLOC Address

An allocation vector is maintained in main memory for each on-line disk drive.
Various system programs use the information provided by the allocation vector to
determine the amount of remaining storage (see the STAT program). Function 27
returns the base address of the allacation vector for the currently selected disk drive.
However, the allocation information may be invalid if the selected disk has been marked
readfonly. Although this function is not normally used by application programs, addi-
tional details of the allocation vector are found in Chapter 6.

Function 28: Write Protect Disk

Entry Parameters:
Register C: 1CH

The disk write protect function provides temporary write protection for the currently
selected disk. Any attempt to write to the disk before the next cold or warm start
operation produces the message:

BDOS ERR on d: R/O

Function 29; Get Read/Only Vector

Entry Parameters:
Register C: 1DH

Returned Value: |
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL, which indicates drives that have
the temporary read-only bit set. As in function 24, the least significant bit corresponds to
drive A, while the maost significant bit corresponds to drive P. The RjO bit is set either by
an explicit call te function 28 or by the automatic software mechanisms within CP{M that
detect changed disks.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 105 .



Function 30: Set File Attributes

Entry Parameters:
Register C: 1EH
Registers DE:  FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function allows programmatic manipulation of permanent
indicators attached to files. [n particular, the RfO and System attributes (t1’and t2} can
be set or reset. The DE pair addresses an unambiguous file name with the appropriate
attributes set or reset. Function 30 searches for a match and changes the matched
directory entry to contain the selected indicators. Indicators f1' through f4' are not
currently used, but may be useful for applications programs, since they are not invoived
in the matching process during file open and clase operations. Indicators f5’ through f8”
and t3" are reserved for future system expansion.

Function 31: Get ADDR(Disk Parms)

Entry Parameters:
Register C: 1FH

Returned Value:
Registers HL:  DPB Address

The address of the BIOS resident disk parameter block is returned in HL as a result of
this function call. This address can be used for either of two purposes. First, the disk
parameter values can be extracted for display and space computation purposes, or
transient programs can dynamically change the values of current disk parameters when
the disk environment changes, if required. Normally, application programs will not
require this facility.

Function 32: Set/Get User Code

Entry Parameters:
Register C: 20H
Register E:  OFFH (get) or
User Code (ser)

Returned Value:
Register A: Current Code or
(no value)

An application program can change or interrogate the currently active user number
by calling function 32 If register E = OFFH, the value of the current user number is

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



returned in register A, where the value is in the range of 0 to 15. I register Eis not OFFH,
the current user number is changed to the value of E (modulo 16).

Function 33: Read Random

Entry Parameters:
Register C: 21iH
Registers DE:  FCB Address

Returned Value:
Register A: Return Code

The Read Random function is similar to the sequential file read operation of previous
releases, except that the read operation takes place at a particular record number, selected
by the 24-bit value constructed from the 3-byte field following the FCB (byte positions r0
at 33, r1 at 34, and r2 at 35). The user should note that the sequence of 24 bits is stored
with least significant byte first (r0), middle byte next {r1), and high byte last (r2). CP/M
does not reference byte r2, except in computing the size of a file {function 35). Byte r2
must be zero, however, since a nenzero value indicates overflow past the end of file.

Thus, the r0, r1 byte pair is treated as a double-byte, or “word” value, which contains
the record to read. This value ranges from 0 10 65535, providing access to any particular
record of the 8-megabyte file. To process a file using random access, the base extent
{extent 0) must first be opened. Although the base extent may or may not contain any
allocated data, this ensures that the file is properly recorded in the directory and is visible
in DIR requests. The selected record number is then stored in the random record field (r0,
r1), and the BDOS is called to read the record. Upon return from the call, register A either
contains an error code, as listed below, or the value 00, indicating the operation was
successful. In the latter case, the current DMA address contains the randomly accessed
record. The user should note that contrary to the sequential read operation, the record
number is nat advanced. Thus, subsequent random read operations continue to read the
same record.

Upen each random read operation, the logical extent and current record values are
automatically set. Thus, the file can be sequentially read or written, starting from the
current randomly accessed position. However, the user should note that, in this case. the
fast randomly read record will be reread as one switches from random mode to sequential
read and the last record will be rewritten as one switches to a sequential write operation.
The user can, of course, simply advance the random record position following each
random read or write to obtain the effect of a sequential 1O operation.

Error codes returned in register A following a random read are listed below.

01 reading unwritten data

02 {not returned in random mode)
03 cannot close current extent

04 seek to unwritten extent

05 {not returned in read mode}
06 seek past physical end of disk

Error codes 01 and 04 occur when a random read operation accesses a data block that
has not been previously written or an extent that has not been created, which are
equivalent conditions. Error code 03 does not normally occur under proper system

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107



operation. If it does, it can be cleared by simply rereading or reopening extent zero as long
as the disk is not physically write protected. Error code 06 occurs whenever byte r2 is
nonzero under the current 2.0 release. Normally, nonzero return codes can be treated as
missing data, with zero return codes indicating operation complete,

Function 34: Write Random

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Return Code

The Write Random operation is initiated similarly to the Read Random call, except
that data are written to the disk from the current DMA address. Further, if the disk
extent or data block that is the target of the write has not yet been allacated, the allocation
is performed before the write operation continues. Asin the Read Random operation, the
random record number is not changed as a result of the write, The logical extent number
and current record positions of the file control block are set to correspond to the random
record that is being written. Again, sequential read or write operations can begin follow-
ing a random write, with the notation that the currently addressed record is either read or
rewritten again as the sequential operation begins. The user can also simply advance the
random record position following each write to get the effect of a sequential write
operation. The user should note that, in particular, reading ar writing the last record of an
extent in random mode does not cause an automatic extent switch as it does in sequential
maode.

The error codes returned by a random write are identical to the random read opera-
tion with the addition of error code 03, which indicates that a new extent cannot be
created as a result of directory overflow.

Function 35: Compute File Size

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

When computing the size of a file, the DE register pair addresses an FCB in random
mode format (bytes r0, rl, and r2 are present). The FCB contains an unambiguous file
name that is used in the directory scan. Upon return, the random record bytes contain the
“virtual” file size, which is, in effect, the record address of the record following the end of
the file. Following a cali to function 35, if the high record byte r2 is 01, the file contains the
maximum record count 65536. Otherwise, bytes 10 and r1 constitute a 16-bit value (r0 is
the least significant byte, as before), which is the file size.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



Data can be appended to the end of an existing file by simply calling function 35 to set
the random record position ta the end of file and then performing a sequence of random
writes starting at the preset record address.

The virtual size of a file corresponds to the physical size when the file is written
sequentially. If the file was crezted in random mode and “holes” exist in the allocation, the
file may in fact contain fewer records than the size indicates. For example, if only the last
record of an 8-megabyte file is written in random mode (i.e., record number 65535), the
virtual size is 65536 records, although only one block of data is actually allocated.

Function 36: Set Random Record

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function causes the BDOS automatically to produce the
random record position from a file that has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary initially to read and scan a sequential file to extract the
positions of various “key” fields. As each key is encountered, function 36 is called to
compute the random record position for the data corresponding to this key. if the data
unit size is 128 bytes, the resulting record position is placed into a table with the key for
later retrievat. After scanning the entire file and tabulating the keys and their record
numbers, the user can move instantly to a particular keyed record by performing a
random read, using the corresponding random record number that was saved earlier. The
scheme is easily generalized for variable record lengths, since the program need only
store the buffer-relative byte position along with the key and record number to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a sequential read or write
over to random read or write. A file is sequentially accessed to a particular pointin the file,
function 36 is called, which sets the record number, and subsequent random read and
wrilte operations continue from the selected point in the file.

Function 37: Reset Drive

Entry Parameters:
Register C: 25H
Registers DE: Drive Vector

Returned Value:
Register A: O00H

The Reset Drive function allows resetting of specified drives. The passed parameter is
a 16 bit vector of drives to be reset; the least significant bit is drive A:.
To maintain compatibility with MP/M, CPIM returns a zero value.

ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH 109



Function 40: Write Random With Zero Fill

Entry Parameters:
Register C: 28H
Registers DE:  FCB Address

Returned Value:
Register A: Return Code

The Write Random With Zero Fill operation is similar to Function 34, with the
exception that a previously unallocated block is filled with zeros before the data are
written,

5.3 A Sample File-to-File Copy Program

The program shown below provides arelatively simple example of file operations. The
program source file is created as COPY.ASM using the CP/M ED program and then
assembled using ASM or MAC, resulting in a HEX file. The LOAD program is used to
produce a COPY.COM file, which executes directly under the CCP. The program begins
by setting the stack pointer tnalocal area and proceeds to move the second name from the
default area at 006CH to a 33-byte file control block called DFCB. The DFCB is then
prepared for file operations by clearing the current record field. Ar this point, the source
and destination FCBs are ready for processing, since the SFCB at 005CH is properly set
up by the CCP upon entry to the COPY program. Thatis, the first name is placed into the
default FCB, with the proper fields zeroed, including the current record field at 007CH.
The program continues by opening the source file, deleting any existing destination file,
and creating the destination file. If all this is successful, the program loops at the label
COPY until each record has been read from the source file and placed into the destination
file. Upon completion of the data transfer, the destination file is closed and the program
returns to the CCP command level by jumping to BOOT.

. . sample file-to-file copy program
at the ccp level, the command
; copy ax.y buy
copies the file named x.y from drive

a to a file named u.v. on drive b.

Q000 = boot equ 0000 ; system reboot
0005 = bdos equ C005h : bdos entry point
005¢ = fcbl egu 005ch ; first file name
005¢c = sfch egu fcbl ; source fch

Q06c = fcb2 equ 006ch ; second file name
0080 = dhoff equ 00B0h ; defauil buffer
0100 = tpa equ 0100h ; beginning of tpa
0009 = printf equ 9 ; print buffer func#
000f = openf equ 15 ; open file func#
0010 = closaf equ 16 ; close file func#

110 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



0013 =
0014 =
00156 =
0016 =

0100
0100 311b02

0103 Oetl
0105 116¢00
0108 21dat1
010b 1a
010¢ 13
010d 77
010e 23
0101 0g
0110 ¢c20b01

0113 af
0114 32fa01

Q117 115c00
011a cd8901
011d 118701
0120 3¢

0121 ceB1M

0124 11dad
0127 cd7301

012a 11dal
M2d cd8201
0130 119601
0133 3¢

0134 ccB101

0137 115c00
013a cd7801
013d b7

M3e ¢25101

0141 11da0
0144 cd7d01
0147 11291
014a b7

014b c4611

deletef
readf
writet
makef

mich:

equ 19 ; delete file func#
equ 20 ; sequential read
equ 21 ; sequential write
equ 22 ; make file func#
org tpa ; beginning of {pa

ixi sp,stack ; local stack

move second file name to dfch

mvi ¢, 18 ; half an fcb

ixi d.fcb2 ; source of move
IXi hdfcb  ; destination fcb
idax d ; source fcb

inx d ; ready next

mov m,a . dest fcb

inx h : ready next

der ¢ ; count 6.0
jnz  micb : leop 16 times

name has been removed, zero cr
xra a ;a=00h
sta dfcber courrent rec = 0

source and destination fcb's ready

Ixi d,sfcbh ; source file
cali open . error if 255
ha  d,nofile ; ready message
inr a : 255 pecomes 0
cz finis , done if no file

source file oper, prep destination
Ixi d.dtch . destination
call delete ; remove if present

Ixi d.dfcb . destination

call make . create the file

Ixi dnodir ; ready message

inr a ; 255 becomes O

¢z finis : done if no dir space

source file open, dest file open
copy until end of file on source

Ixi dsich ; source

call read . read next record
ora a . end of file?

jnz eofile ; skip write if so

not end of file, write the record
Ixi ddfcb ; destination

call write ; write record
Ixi dspace ;ready message
ora a ;00 if write ok
enz finis ;end if so

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH 111



O14e ¢33701

51 11dad?
0154 cdted
057 21bb01
015a 3¢

015b cc6101

015e 11¢ccOi

0161 0e09
0163 cd0500
0166 c30000

0169 0e0f
016b c30500

MEe 010
0170 c30500

0173 0e13
0175 ¢30500

0178 Oel14
017a c30500

017d Qetd
0171 30500

0182 0el6
(1184 c30500

0187 6e6120f
0196 Ge6209
01a89 6f7574f
01bb 7772695
0t¢e 6361700

O1da

Otfa =

01ib

02tb

eofile;

+
+
T

open:
close:
delete

read:

write:

make: .

nofile:
nodir:
space:
wrprot:

normal:

[

dich:
dfcher

stack:

imp copy . loop until eof

. end of file, close destination
Ixi d.dfch ; destination

call close . 255 if error

Ixi h,wiprot ; ready message
inf a . 255 becomes 00
cz finis ; shouwldn't happen

copy operation camplete, end
Ixi d,normal ; ready message

. write message given by de, reboot

mvi ¢ printf
call bdos . write message
jmp boot . reboot sysiem

system interface subroutines
(all return directly from bdos)

mvi c.openf
imp bdos

myi ¢, closef
jmp bdos

mvi c.detetef
jmp bdos

mvi c,readf
jmp bdos

mvi c,writef
jmp bdos

mvi c,makef
jmp bdos

console messages

db 'no source file$’

db  ‘no directory space§’
db ‘out of data space$’
db ‘wrile protected?$’
db ‘copy complete$’

data areas

ds 33 . destination feb
equ dicb+32 ; current record
ds 32 ; 16 level stack
end

112 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH



The user shou!d note that there are several simplifications in this particular program.
First, there are no checks for invalid file names that could, for example, contain ambigu-
ous references. This situation could be detected by scanning the 32-byte default area
starting at location 005CH for ASCII question marks. A check should also be made to
ensure that the file names have, in fact, been included {check locations 605DH and 006 DH
for nonblank ASCIH characters). Finally, a check should be made to ensure that the soyrce
and destination file names are different. An improvement in speed could be obtained by
buffering more data on each read operation. One could, for example, determine the size’
of memory by fetching FBASE from location 0006H and using the entire remaining
portion of memory for a data buffer. In this case, the programmer simply resets the DMA
address to the next successive 128-byte area before each read Upon writing to the
destination file, the DMA address is reset to the beginning of the buffer and incremented
by 128 bytes to the end as each record is transferred to the destination file.

54 A Sample File Dump Utility

The file dump program shown below is slightly more complex than the simple copy
program given in the previous section. The dump program reads an input file, specified in
the CCP command line, and displays the content of each record in hexadecimal format at
the console. Note that the dump program saves the CCP’s stack upon entry, resets the
stack 10 a local area, and restores the CCP's stack before returning directly to the CCP.
Thus, the dump program deoes not perform and warm start at the end of processing.

; DUMP program reads input file and displays hex

data
0100 org 100h
0005 = bdos equ 0005h = .bdos entry point
0001 = cons equ 1 ;read console
0002 = typefl equ 2 itype function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
J(true if char
000f = openf equ 15 file open
0014 = readf equ 20 :read function
005¢c = fcb equ 5ch ;file control block
.address
0080 = buff equ 80h ;input disk buffer
. ;address
: non graphic characters
000d = cr equ Odh ;carriage return
000a = }f equ Oah Jline feed
; file control block definitions
005¢ = febdn equ fcbh+) ;disk name
005d = fcbin equ fcb+1 file name
0065 = fcbift equ fcb+9 .disk file type (3
_ ;characters)
0068 = fobrl equ feb+12  file's current reel
number
006b = fchre equ fcb+15  file'srecord count{0to
;128)128)
Q07c = fcber’  equ fch+32  current (next} record
snumber (O

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 113



007d =
0100 210000
0103 39

0104 221502

007 315702

010a cdc101
010d feff
010f c2tb01

0112 11£301
0115 cd9cn
0118 ¢3511

011b 3e80
011d 321302

0120 210000
0123 eb
0124 cda201
0127 &1
0138 da510ft
012b 47
012¢ 74
012d eB0f
012f c24401

0132 ¢d7201

0135 ¢d5901

0138 Of
0132 da5101

03¢ 7c
013d cd8f01
0140 7d
0141 cdafol

0144 23

openok:

gloap:

nonum:

equ fcb+33  .fcb length

set up stack

Ixi ho

dad sp

entry stack pointer in hl from the ccp
shid oldsp

set sp to local stack area (restored at
finis)

Ixi sp,stktop

read and print successive buffers
call setup get up input file

cpi 255 1255 if file not present
jnz  openck skip if open is ok

file not there, give error message and
return

Ixi d.opnmsg

call err

jmp finis o return

;open operation ok, set bulfer index to
end

mvi a,80h
sta ibp :set buffer pointer to 80h
hl contains next address to print
- ixi h,0 :start with 0000
pushh :save line position
call gnb
pop h ;recall line position
jc  linis .carry set by gnb if end
sfile
mov b,a

print hex values
check for line fold

mov a,l

ani Oth ;check {ow 4 bits
jaz  nonum

print line number

call crif

check for break key

call break

accum Isb = 1 if character ready

rre into carry

jc finis ;don’t print any more

mov a,h
call phex
mov a,l
call phex

inx h 1o next line number

ALL INFORMATION PRESENTED HERE IS FROPRIETARY TO DIGITAL RESEARCH



0145 3e20
0147 cd6501
D144 78
014b cd8f01
014e ¢32301

0151 ed7201
0154 2a1502
057 19

0158 ¢

0159 e5d5cS

015¢ 0elb
015e £d0500
0161 ctdlel

0164 ¢9

0165 e5d5¢c5
0168 0e02
016a 5
016b cdd500
016e ¢cidlel
71 co

0172 3e0d
0174 ¢d6501
0177 3eba
0179 cdb501
017c c9

017d e60f
017f feDa
0181 d28901

0184 ¢630
0186 ¢38b01

0189 c637

v

pchar:

crif:

pnib;

p1C:

mvi a'"’
calt pchar
mov a,b
call phex
jmp gloop

end of dump, return 10 cco

{note that a jmp to 0000h reboots)
call crlf

Ihid oidsp

sphl

stack pointer contains ccp's stack
location

ret ;to the ccp

subroutines

ichack break key {actualiy any key will
sdo)

push h! pust d! push b; environment
, saved

mvi ¢,brkf

call bdos

pop b! pop d! pop h; environment
restored .

ret

print a character

push h! push d! push b; saved
mvi ¢ typef

mov &,a

call bdos

pop b! pop d! pop h; restored
ret

mvi a,cr
call pchar
mvi alf
call pchar
ret

;print nibble in reg a

ani Gfh Jlow 4 bits
cpi 10

jnc plo

less thian or equal to 9
adi o

jmp prn

grealer or egual to 10
adi 'a'- 10

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO INGITAL RESEARCH 115.



018b cd6501
018e c2

o18f t5

0190 of
0191 Of
0192 Of
0193 of
0194 cd7d01
0187 f1
0198 cd7d01
019b ¢

019¢ 0e09

019e ¢d0500
Otlal c9

D1aZ 3a1302
01a5 fe80
Ot1a7 c2b301

0O1aa cdcelt
01ad b7
Otae cab30il
0tb1 37
01h2 ¢8
01b3 5§
01b4 1600
01b6 3¢

M b7 321302
O1ba 218000
01bd 19
C1be 7e

O1bt b7
chco

Otc1 af

pro:

phex:

go:

setup:

call pchar
rat

;print hex char in reg a
pushpsw

e

frc

e

rrc

call pnib ;print nibble
pap psw

call pnib

ret

;print error message

d,e addresses message ending with "$”

mvi ¢,printf ;print buffer
Afunction

call bdos

ret

;get next byte

lda ibp

cpi 80h

jnz gl

read another buffer

calt diskr

ora a ,Zero vatue if read ok
jz g0 for another byte

end of data, return with carry set for eof
stc

ret

;read the byte at buff+reg a

mov &.a :Is byte of bufter index

mvi d,0 .double precision
vindex 1o de

inr a iindex=index+1

sta ibp ;back to memory

pointer is incremented

save the current fite address

Ixi h,buff

dad d

absolute character address is in hl
mov a,m

byte is in the accumulator

ora a reset carry bit
ret

set up file

open the file for input

Xra a ;2ero to accum

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



01¢2 327c00 sta fcber ;clear current record

01¢5 115¢00 Ixi d.fcb
01¢8 0e0f mvi ¢.openf
Ol1ca cd0500 call bdos
' 255 in accum if open error
Olcd c8 ret
diskr: ;read disk file recard
D1ce e5d5ch push ht push d! push b
01d1 115¢00 Ixi d,fcb
0104 Oetd mvi c.readf
01d6 cd0500 call bdos
01d9 cidtel .. pop B! pop d! pop h
01dc ¢9 ret
; fixed message area
01dd 46484c0 signon: db ‘file dump version 20§
0113 0d0aded opnmsg: db crlf'no input file present on
disk$’
; variable area
0213 ibp: ds 2 ;input buffer pointer
0215 cldsp: ds 2 .entry sp value from ccp
; stack area
0217 ds 64 reserve 32 level stack
stktop:
0257 end

5.5 A Sample Random Access Program

This chapter concludes with an extensive example of random access operation. The
program listed below performs the simple function of reading or writing random records

upon command from the terminal. Given that the program has been created, assembled,
and placed into a file labeled RANDOM.COM, the CCP level command

RANDOM X.DAT
starts the test program. The program looks for a file by the name X.DAT (in this
particular case) and, if found, proceeds to prompt the console for input. If not found, the
file is created before the prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return. The input commands
take the form

nw nR Q
where n is an integer value in the range 0 to £5535, and W, R, and Q are simple command

characters corresponding to random write, random read, and quit processing, respec-
tively. If the W command is issued, the RANDOM program issues the prompt

ALL INFORMATION PRESENTEC HERE IS PROPRIETARY TO DIGITAL RESEARCH 117



type data:.

The operator then responds by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If the R
command is issued, RANDOM reads record number n and displays the string value at the
console, If the Q command is issued, the X.DAT file is closed, and the program returns to
the CCP. In the interest of brevity, the only error message is

error, try again.

The program begins with an initialization section where the input file is opened or
created, tollowed by a continuous loop at the label “ready” where the individual com-
mands are interpreted. The default file control block at 005CH and the default buffer at
0080H are used in all disk operations. The-utility subroutines then follow, which contain
the principal input line processor, called “readc.” This particular program shows the
elements of random access processing, and can be used as the basis for further program
development.

Sample Random Access Program for CP/IM 2.0

0100 org 10Gh :base of tpa
0000 = rehoot  equ 0000h ;system reboot
0005 = bdos equ 00G5h :bdos entry point
0001 = coninp  equ 1 ;console input function
0002 = conoul equ b :console output function
0009 = pstring  equ 9 ;print string until °§
000a = rstring  equ 10 read console buffer
000¢ = version equ 12 return version number
0001 = opent equ 15 Afile open function
0010 = closef equ 16 ;close function
0016 = makaf equ 22 ;make file function
0021 = readr equ 33 ;read random
0022 = writer equ 34 write random
005¢ = fcb equ 005ch ;default fite control
; block
007d = ranrec  equ fcb+33  ;random record position
0071 = ranovf  equ fcb+35  high order {overfiow)
Jbyte
0080 = buff equ 0080h ;bufter address
000d = cr equ Odh .carriage return
000a = If equ Oah dine feed

Load SP, Set-Up File for Random Access

0100 31bcOO Ixi sp,stack
; version 2.0
003 0elc mvi cversion

118 ALL INFORMATION MRESENTEE HERE 15 PROPRIETARY TO DIGITAL RESEARCH



0105 ¢d0S00
0108 fe20
010a d21600

010d 111b00
0110 cddatn
0113 ¢30000

0116 0e0f
0118 115c00
011b ¢cd0500
Ql1te 3¢
0111 c23700

0122 Oel16
0124 115c¢00
0127 cd0500
012a 3¢
012b ¢23700

012e 113a00
0131 cddadg
0134 c3000Q

0137 ¢de500
013a 227d00
013d 217100
0140 3600
0142 feb1
0144 c25600

0147 Del10
0149 115c00
014¢ ¢d0500
014f 3¢
0150 cab800
0153 30000

call’ bdos
cpi 20h version 2.0 or better?
inc versok
; bad version, message and go back
ixi d,badver
call print
jmp ‘reboot
versok:
: correct version for random access
mvi c.opent open default fch
Ixi d,fcb
call bdas
inr a werr 255 becomes zero
inz ready

; cannot open file, so create it

mvi c,makef

Ixi d.fcb

call bdos

inr a .err 255 becomes zero
jnz ready

N cannot create file, directory full

Ixi d,nospace
call print
jmp reboot  back to ccp

Loop Back to Ready After Each Command

ready:

; file is ready for processing
call readcom ;read next command
shid ranrec  ;store input record#
Ixi h,ranovf
mvi m,0 :clear high byte if set
cpi Q ;quit?
jnz notq

; quit processing, close file

mwvi c.closef

Ixi d,fcb

call bdos

inr a serr 255 becomes 0
jz error ,8rror message, retry
jmp reboot  ;back to ccp

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 119



0156 fe57
0158 ¢28900

015b 114400
015¢e cdda00
0161 De?f

0163 218000

Q0166 c5
0167 &b
0168 cdc200
016b et
016¢ ¢t
016d feQd
0186f ca780Q

o172 77
0173 23
0174 0d
0175 c26600

0178 3600

017a 0e22
017¢ 115¢00
0171 cd0500
182 b7
0183 £2b900
0186 ¢33700

0189 fe52
0t8b c2b900

018e Qe21
0190 115¢00
0193 cd0500
0196 b7
0197 c2b800

120

End of Quit Command, Process Write

noty:

rloop:

erloop:

not the quit command, random write?
cpi ‘W
inz notw

this is a random write, fill buffer until ¢r

Ixi d,datmsg

cal print ;data prompt

mvi ¢, 127 up to 127 characters
Ixi h,buff .destination

;read next character to buff

push b save counter

push h ;next destination
call getchr  .character t¢ a

pop h restore counter
pop b ;restore next to fill
cpi cr end of ling?

jz erloop

not end, store character

mov m.a

inx h next ta fill

dcr c :counter goes down
jnz rloop end of buifer?

end of read loop, store 00
mwvi m,0

write the record to selected record number
mvi c.writer

Ix d.fch

call bdos

ora a error code zero?
jnz error :message if not
jrip ready ;for another record

End of Write Command, Process Read

notw:

Il

not a write command, read record?
Cpl ) nRa
inz error ;skip if not

read randem record

mvi c,readr

Ixi d.fcb

call bdos

ara a ;return code 007
jnz error

read was successful, write to console

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY T DIGITAL RESEARCH



{19a cdcfGo
019d 080
019f 218000

01a2 7e
01a3 23
0124 e67t
01aB ca3700

01a9 c5
Qlaa eb
Otab fe20
01ad d4cB800
01b0 el
011 ¢l
01b2 04
01b3 ¢2a200
01b6 ¢33700

01h9 115900
01bc ¢dda0
bf ¢33700

01c2 Gel
01c4 cd0500
01c7 o

01c8 0ed2
O1ca 5t
01cb cd050D
Olce c9

O1ct 3eld
01d1 cdc80D
01d4 3ela
01d6 cdcao
01d9 cd

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

call crlif new line
mvi c.128 imax 128 characters
Ixi h,buff  :next to get
wloop:
mov am ;next character
inx h snext to get
ani Tih ;mask parity
iz ready for another command
;if 00
push b ,save counter
push h :save next to get
cpi v ;graphic?
one putchr  ;skip output if not
pop h
pop b
der c ;count=count-1
jnz wloop
imp ready

End of Read Command, All Errors End Up Here

error:
ixi d.errmsg
call print
imp ready

Utility Subroutines for Console 11O

getchr:
;read next conscle character o a
mvi c.coninp
call bdos
ret

putchr;
;write character from a to console
mvi ¢,conout
mov e.a ;character to send
call bdos ;send character
ret

crit
:send carriage retum line feed
mvi a,cr .carriage return
call putchr
mvi a,lf sline feed
call putchr
ret

121



O1da d5
01db cdcitd
Ol1de di
01d¢ 0e09
O0lel cd0300
D1ed4 c9

01e5 116b00
0168 cddadi
(leb 0ebDa

0ted 117a00
0110 cd0500

0113 210000
0146 117¢00
0119 1a

01fa 13
01fb b7
Otfc c8

Qtfd 4630
01ff feDa
0201 421300

0204 29
0205 44d
0206 44
0207 29
0208 29
0209 09
020a 85
020b &t
020c d2f300
020f 24
0210 ¢3f900

0213 ¢630
0215 te61
0217 d8

0218 eB5f
021a ¢8

print:

readcom:

readc:

andrd:

;print the buffer addressed by de until §

push d

call crif

pop d new line

mvi c.pstring

call bdos .print the string
ret

:read the next command line to the conbuf

Ixi d.prompt

cali print ;command?

mvi c.rstring

Ixi d,conbuf

call bdos .read command line

command line is present, s¢an it
Ixi h,0 ;start with 0000

Ixi d.conlin .command ling

ldax d ;next command
;character

inx d 'to next command
:position

ora a ;cannot be end of
:command

rz
not zero, numeric?

sui o

cpi 10 ;carry if numeric
jnc endrd

add-in next digit

dad h ‘2

mov c,i

mov b,h ibc = value * 2
dad h 4

dad h 8

dad b 2+'8="10
add | +digit

mov ha

jne readc for another char
inr h ;overtiow

imp reade ;for another char

end of read, restore value in a

adi 0 ;command

cpi ‘a’ itranstate case?
rc

lower case, mask lower case bits
ani 10151111b

ret

122 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH



String Data Area for Console Messages

badver:
021b 536179 db ‘sorry, you need cp/m version 2§’
nospace:
023a 4e6129 : db ‘no directory space$’
datmsg: .
024d 547970 db ‘type data: §'
errmsg:
0259 457272 db ‘error, try apain.§’
prompt:
026b 4e6570 db ‘next command? §

Fixed and Variable Data Area

027a 21 conbuf: ab conlen  length of console buffer
027b consiz;.  ds 1 resulting size after read
027¢c conlin:  ds 32 length 32 buffer
0021 = conlen  equ %-consiz
024c ds 32 ;16 level stack

stack:
02bc end

Again, major improvements could be made to this particular program to enhance its
operation. In fact, with some work, this program could evolve into a simple data hase
management system. One could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary Helds within the record. A program, called GETKEY, could be
developed that first reads a sequential file and extracts a specific field defined by the
aperator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES DAT and extract the “LAST-
NAME™ field from each record, starting in position 10 and ending at character 20.
GETKEY builds a table in memory consisting of each particular LASTNAME field, along
with its 16-bit record number location within the file. The GETKEY program then sorts
this list and writes a new file, calied LASTNAME.KEY, which is an alphabetical list of
LASTNAME fields with their corresponding record numbers. (This list is called an inverted
index in information retrieval parlance.}

If the programmer were to rename the program shown above as QUERY and massage
it so that it reads a sorted key file into memory, the command line might appear as

QUERY NAMES DAT LASTNAME.KEY.

Instead of reading a number, the QUERY program reads an alphanumeric string thatis a
particular key to find in the NAMES.DAT data base. Since the LASTNAMEXEY list is
sorted, one can find a particular entry rapidly by performing a “binary search,” similar to
looking up 2 name in the telephone book. That i¢, starting at both ends of the list, one
examines the entry halfway in between and, if not matched, splits either the upper half or

AL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH 123 .



the lower half for the nextsearch. The user will quickly reach the itern he or she is looking
for and find the corresponding record number. The user should fetch and display this
record at the console, just as was done in the program shown above.

With some more work, the user can allow a fixed grouping size that differs from the
128-byte record shown above. This is accomplished by keeping track of the record
number as well as the byte offset within the record. Knowing the group size, one
randomly accesses the record containing the proper group, offset to the beginning of the
group within the record read sequentially until the group size has been exhausted.

Finally, one can improve QUERY considerably by allowing boolean expressions,
which compute the set of records that satisfy several relationships, such as a LASTNAME
between HARDY and LAUREL and an AGE lower than 45. Display all the records that fit
this description. Finally. if the user’s lists are getting too big to fit into memory, he or she
should randomly access key files from the disk as well.

2.6 System Function Summary

FUNCTION FUNCTION INPUT OUTPUT
NUMBER NAME
Decimal Hex
0 0 System Reset C = 00H none
1 1 Console Input C=01H A = ASCII ¢har
2 2 Console Output E = char none
3 3  Reader input A = ASCII char
4 4  Punch Qutput E = char none
5 S List Output & = char none
& 6

Direct Console O C = G6H A = char or status
. E = OFFH (input) or {no value)
QFEH (status) or
char (output)

7 7 Gel l/O Byte none A = /O Byte
Value
8 8§ Setl/O Byte E = 1/Q Byte none
9 9  Print String - DE = Buffer Address none
10 A Read Console Buffer DE = Buffer Console
Characters
. in Bufter
11 B Get Console Status nene A = 00/non zero
12 C Return Version Number none HL: Version
Mumber
13 D Reset Disk System noneg none
14 E Select Disk E =Disk Number none
15 F OpenFile DE = FCB Address FF i not found
16 10 Close File DE = FCB Address FF if not found

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH



17

18

19
20
21
22

23

24

25

26
27

28

30
3N

32

33
34
35
36
37
38
39
40

*Note that A =L, and B = B upon return.

11

12

13
14
15
16

17

“18

19

1A
B

1C
iD

1E
1F

20

21
22
23
24
25
26
27
28

Search For First
Search For Next

Delete File
Read Sequential
Write Sequential
Make File

Rename File
Return Login Vector
Return Current Disk

Set DMA Address
Get ADDR (ALLOC)

Write Protect Disk
Get Read/only Vector

Set File Attributes
Get ADDR {Disk Parms)

Set/Get Usar Code

Read Random

Write Random
Compute File Size

Set Random Record
Reset Drive

Access Drive

Free Drive

Write Random with Fill

DE = FCB Address
none

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address

DE = FCB Address
naone
nane

DE = DMA Address
none

none
none

DE = FCB Address
none

E = OFFH for Get

E = 00 to GFH for Set

DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = FCB Address
DE = Drive Vector
not supported

not supported

DE = FCB

A = Directary
Code

A = Diréctory
Code

A = none

A = Error Code

A = Error Code

A = FF if no DIR
Space

A = FF if nat
found

HIL. = Login
Vector®

A =Current Disk
Number

none

HL = ALLOC
Address’

none

HL = R/O
Vector Value®

A = none

HL = DPB
Address

User Number

A = Error Code
A = Error Code
), 1, r2

o, r1, r2

A=0

A = Error Code

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 125






CP/M 2 Alteration

6.1 Introduction

The standard CP{M system assumes operation on an [ntel MDS5-B00 microcomputer
development system, but is designed so the user can alter a specific set of subroutines that
define the hardware operating environment.

Although standard CPIM 2 is configured for single density floppy disks, field-
alteration features allow adaptation toa wide variety of disk subsystems from single drive
minidisks through high-capacity, “hard disk” systems. To simplify the following adapta-
tion process, it is assumed that CPIM 2 will first be configured for single density floppy
disks where minimal editing and debugging tools are available. If an earlier version of
CP/M is available, the customizing process is eased considerably. In this latter case, the
user may wish to review the system generation process and skip to later sections that
discuss system alteration for nonstandard disk systems.

To achieve device independence, CPtM is separated into three distinct modules:

BIOS basic O system, which is environment dependent

BDOS basic disk operating system, which is not dependent upon the hard-
: ware configuration

cCP the console command processor, which uses the BDOS

Of these modules, only the BIOS is dependent upon the particular hardware. That is,
the user can “patch” the distribution version of CPIM to provide a new BIOS that
provides a customized interface between the remaining CP/M modules and the user’s
own hardware system. This document provides a step-by-step procedure for patching a
new BIOS into CPIM.

All disk-dependent portions of CP{M2 are placed into a BIOS, a resident “disk parameter
block,” which is either hand coded or produced automatically using the disk definition
macro library provided with CPiM 2. The end user need only specify the maxirmum
number of active disks, the starting and ending sector numbers, the data allocation size,
the maximum extent of the logical disk, directory size information, and reserved track
values. The macros use this information to generate the appropriate tables and table
references for use during CPIM 2 operation. Deblocking information is provided, which

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 127



aids in assembly or disassembly of sector sizes that are multiples of the fundamental 128
byte data unit, and the system alteration manual includes general purpose subroutines
that use the deblocking information to take advantage of larger sector sizes. Use of these
subroutines, together with the table-drive dara access algorithms, makes CP/M 2 a
universal data management system.

File expansion is achieved by providing up to 512 logical file extents, where each logical
extent contains 16K bytes of data. CPIM 2 is structured, however, so that as much as
128K bytes of data are addressed by a single physical extent (corresponding to a single
directory entry) maintaining compatibility with previous versions while taking advan-
tage of directory space.

[f CPIM is being tailored to a computer system for the first time, the new BIOS
requires some simple software development and testing. The standard BIOS is listed in
Appendix A and can be used as a model for the customized package. A skeletal version of
the B{OS given in Appendix B can serve as the basis for a modified BLOS. [n addition to
the BIOS, the user must write a simple memory loader, called GETSYS, that brings the
operating system into memory. To patch the new BIOS into CPIM, the user must write
the reverse of GETSYS, called PUTSYS, which places an altered version of CP{M back
onto the diskette. PUTSYS can be derived from GETSYS by changing the disk read
commands into disk write commands. Sample skeletal GETSYS and PUTSYS programs
are described in Section 6.4 and listed in Appendix C. To make the CP!M system load
automatically, the user must afso supply a cold start loader, similar to the one provided
with CP}M{listed in Appendices A and D). A skeletal form of a cold start loader is givenin
Appendix E, which serves as a model for the loader.

6.2 First Level System Regeneration

The procedure to patch the CPIM system is given below. Address references in each
step are shown with “H” denoting the hexadecimal radix, and are given for a 20K CP/M
systemn. For larger CP/M systems, a “bias” is added to each address that is shown with a
“+b” following it, where b is equal to the memory size—20K. Values for b in various
standard memory sizes are

24K: b = 24K - 20K = 4K = 1000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
48K: b = 48K - 20K = 28K = 7000H
S6K: b = 56K - 20K = 36K = 9000H
82K b = 62K - 20K = 42K = A800H
G4K: b = 64K - 20K = 44K = BOQOH

1t should be noted that the standard distribution version of CP/M is set for operation
within a 20K memory system. Therefore, the user must first bring up the 20K CPiM
system, then configure it for actual memory size {the user should see Section 6.3).

The user should:
1. ReadSection 6.4 and write a GETSYS program that reads the first two tracks of a
diskette into memory. The program from the diskette must be loaded starting at

location 3380H. CETSYS is coded to start at location 100H (base of the TPA), as
shown in Appendix C.

128 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH




2. Test the GETSYS program by reading a blank diskette into memory and check to
see that the data have been read properly and that the diskette has not been altered in
any way by the GETSYS program.

3. Run the GETSYS program using an initialized CP{M diskette to see if GETSYS
loads CP{M starting at 3380H (the operating system actually starts 128 bytes later at
3400H).

4. Read Section 6.4 and write the PUTSYS program. This writes memory starting
at 3380H back onto the first two tracks of the diskette. The PUTSYS program should
be located at 200H, as shown in Appendix C.

5. Test the PUTSYS program using a blank, uninitialized diskette by writing a
portion of memory to the first two tracks; clear memory and read it back using
GETSYS. Test PUTSYS completely, since this program will be used to alter CP/M on
disk. :

6. Study Sections 6.5, 6.6, and 6.7 along with the distribution version of the BIOS
given in Appendix A and write a simple version that performs a similar function for
the customized environment. Use the program given in Appendix B as a model. Call
this new BIOS by the name CBIOS (customized BIOS). Implement only the primitive
disk operations on a single drive and simple console inputfoutput functions in this
phase.

7. Test CBIOS completely to ensure that it properly performs console character
I{O and disk reads and writes. Be carefu! to ensure that no disk write operations occur
during read operations and check that the proper track and sectors are addressed on all
reads and writes. Failure to make these checks may cause destruction of the initialized
CPIM system after it is patched.

8. Referring to the table in Section 6.5, note that the BIOS is placed between
locations 4AQOH and 4FFFH. Read the CP/M system using GETSYS and replace the
BIOS segment by the CBIOS developed in step 6 and tested in step 7. This replace-
ment is done in memory.

9. Use PUTSYS to place the patched memory image of CPIM onto the First two
tracks of a blank diskette for testing.

10. Use GETSYS to bring the copied memory image from the test diskette back
into memory at 3380H and check to ensure that it has loaded back properiy {clear
memaory, if possible, before the load}. Upon successful load, branch to the cold start
code at location 4A00H. The cold start routine will initialize page zero, then jump to
the CCP at location 3400H, which will call the BDQS, which will call the CBIOS. The
CBIOS will be asked by the CCI” to read sixteen sectors on track 2, and CP/M will type
“AZ>", the system prompt. '

If difficulties are encountered, use whatever debug facilities are available to trace

and breakpoint the CBIOS.

11. Upon completion of step 10, CP/M has prompted the console for a2 command
input. Test the disk write operation by typing

SAVE 1 X.COM

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 129




{All commands must be followed by a carriage return.) CP/M responds with another
prompt (after several disk accesses)

A
If it does not, debug the disk write functions and retry.
12, Test the directory command by typing
DIR
CPIM responds with
A X COM
13. Test the erase command by typing
ERA X.COM

CPiM responds with the A prompt. This is now an operational system that only
requires a bootstrap loader to function completely.

14. Write a bootstrap loader that is similar to GETSYS and place it on track 0,
sector 1 using PUTSYS {again using the test diskette, not the distribution diskette).
See Sections 6.5 and 6.8 for more information on the bootstrap operation.

15. Retest the new test diskette with the bootstrap loader installed by executing
steps 11, 12, and 13. Upon completion of these tests, type a control-C {control and C
keys simultanegusly). The system executes a “warm start” that reboots the system,
and types the A prompt.

16. At this point, there is probably a good version of the customized CP{M system
on the test diskette. Use GETSYS to load CP/M from the test diskette. Remove the
test diskette, place the distribution diskette (or a legal copy} into the drive, and use
PUTSYS to replace the distribution version with the customized version. The user
should not make this replacement if unsure of the patch because this step destroys the
system that was obtained from Digital Research.

17. Load the modified CPIM system and test it by typing

DiR

.

CPIM responds with a list of files that are provided on the initialized diskette. One file
is the memory image for the debugger

DDT.COM
Note that from now an, it is important always to reboot the CPIM system (ctl-C is
sufficient) when the diskette is removed and replaced by anather diskette, unless the
new diskette is to be read only.
18. Load and test the debugger by tvping
DoT

{See Chapter 4 for operating procedures.)

130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




19. Before making further CBIOS modifications, practice using the editor {see
Chapter 2}, and assembler (see Chapter 3). Recode and test the GETSYS, PUTSYS,
and CBIOS programs using ED, ASM, and DDT. Code and test a COPY program that
does a sector-to-sector copy from one diskette to another to obtain back-up copies of
the original diskette. (Read the CP/M Licensing Agreement specifying legal responsi-
bilities when copying the CP/M system.} Place the copyright notice

Copyright ®, 1979
Digital Research

on each copy that is made with the COPY program.

20. Modify the CBIOS to include the exira functions for punches, readers, and
sign-on messages; and add the facilities for additiona) disk drives, if desired. These
changes can be made with the GETSYS and PUTSYS programs or by referring to the
regeneration process in Section 6.3.

The user should now have a good copy of the customized CPIM system. Although the
CBIOS portion of CP/M belongs to the user, the modified version cannot be legally copied
for anyone else’s use.

It should be noted that the system remains file-compatible with all other CPIM
systems (assuming media compatibility), which allows transfer of nonproprietary soft-
ware between CPIM users.

6.3 Second Level System Generation

Once the system is running, the user will want to configure CPIM for the desired
memmory size. Usually a memory image is first praduced with the "MOVCPM” program
{system relocator) and then placed into a named disk file. The disk file can then be loaded,
examined, patched, and replaced using the debugger and the system generation program.
{The user should refer to Chapter 1.)

The CBIOS and BOOT are modified using ED and assembled using ASM, producing
files called CBIOS. HEX and BOOT. HEX, which contain the code for CBIOS and BOOT
in Intel hex format.

To get the memory image of CP/M into the TPA configured for the desired memory
size, the user should type the command

MOVCPM xx *
where xx is the memory size in decimal K bytes {e.g., 32 for 32K). The response will be

CONSTRUCTING xxK CP/M VERS 2.0

READY FOR "SYSGEN" OR

“SAVE 34 CPMxx.COM”
An image of CP/M in the TPA is configured for the requested memory size. The memory
image is at bocation 0900H through 227FH (i.e., the BOOT is at 0900H, the CCP is at
980H, the BDXOS starts at 1180H, and the BIOS is at 1F80H. The user should note that

the memory image has the standard MDS-800 BIOS and BOOT on it. [tis now necessary

to save the memory image in a file so that the user can patch the CBIOS and CBOOT into
it:

SAVE 34 CPMxx.COM

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 131




The memory image created by the "MOVCPM” program is offset by a negative bias so
that it loads into the free area of the TPA, and thus does not interfere with the operation
of CP{M in higher memery. This memory image can be subsequently loaded under DDT
and examined or changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM Load DDT, then read the CPM image.
DDT should respond with

NEXT PC
2300 0100
{The DDT prompt)

The user can then give the display and disassembly commands to examine portions of the
memory image between 900H and 227FH. The user should note, however, that to find
any particular address within the memory tmage, one must apply the negative bias to the
CP{M address to find the actual address. Track 00, sector 01, is loaded to location 900H
{the user should find the cold start loader at 200H to 97FH); track 00, sector 02, is loaded
into 980H (this is the base of the CCP); and so on through the entire CP{M system load. In
a 20K system, for example, the CCP resides at the CP{M address 3400H, but is placed into
memory at 980H by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H
Assuming that twos complement arithmetic, n = D580H, which can be checked by
3400H + D580H = 109680H = 0980H (ignoring high-order overflow).
Note that for larger systems, n satisfies
(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D58CH -~ b

The value of n for common CPIM systems is given below.

Memory Size Bias b Negative Offset n

20K 00Q0H DSBOH - G000H = D580H
24K 1000H D580H - 1000H = C580H
32K 3000H D580H - 3000H = A580H
40K 5000H D580H - 5000H = 8580H
48K - 7000H DS80H - 7000H = 6580H
56K S000H D580H - 9000H = 4580H
62K AB00H DSB0H - AB00H = 2D80OH
64K BOOOH DSBOH - BOOCH = 2580H

If the user wants to locate the address x within the memory image loaded under DD T in a
20K system, first type

Hx.n Hexadecimal sum and difference

132 ALL INFORMATION PRESENTED MERE IS PROPRIETARY TO DIGITAL RESEARCH




and DDT will respond with the value of x+n {sum)and x-n (difference). The first number
printed by DDT is the actual memory address in the image where the data or code are
located. The DDT command

H3400 D580
for example, will produce 980H as the sum, which is where the CCP is located in the
memory image under DDT.

The user should type the L command to disassemble portions of the BIOS located at

(4 AQ0OH+b)-n, which, when one uses the H command, produces an actual address of
1F80H. The disassembly command would thus be

L1F80
1t is now necessary to patch in the CBOOT and CBIOS routines. The BOOT resides at
location 0900H in the memory image. If the actual load addressis "'n”, then to calculate the
bias {m}, the user types the command

Ho00,n Subtract load address from target address.

The second number typed by DDT in response to the commandis the desired bias (m). For
example, if the BOOT executes at 0080H, the command

H900,80
will produce
0980 0880 Sum and difference in hex.

Therefare, the bias “m” wouldbe 0880H. To read-in the BOOT, the user should give the
command

ICBOOT.HEX Input file CBOOT HEX.
Then

Rm \Read CBOOT with a bias of m (=600H-n).
The user may now examine the CBOOT with

LS00

The user is now ready to replace the CBIOS by examining the area at 1F80H where the
original version of the CBIOS resides and then typing

ICBIOS . HEX Ready the hex file for loading.
The user assumes that the CBIOS is being integrated into a 20K CPrM system and thus
originates at location 4 A00H. To locate the CBIOS properly in the memory image under
DDT, one must apply the negative bias n for a 20K system when loading the hexfile. This
is accomplished by typing

RD520 . Read the file with bias D580H.

ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH 1 _33




Upon completion of the read, the user should reexamine the area where the CBIOS has
been loaded {use an “L1F80” command) to ensure that it was loaded properly. When
satisfied that the change has been made, the user should return from DDT using a
control-C ar, “GO0” command.

SYSGEN is used to replace the patched memory image back onto a diskette (the user
should utilize a test diskette until sure of the patch), as shown in the following interaction:

SYSGEN Start the SYSGEN program

SYSGEN VERSION 2.0 Sign-on message from SYSGEN

SCURCE DRIVE NAME Respond with a carriage return to skip the
{OR RETURN TO SKIP) CP{M read operation since the system is

already in memory

DESTINATION DRIVE NAME Respond with “B” to write the new system to
{OR RETURN TO REBOQOQT) the diskette in drive B

DESTINATION ON B, Place a scratch diskette in drive B, then type
THEN TYPE RETURN return.

FUNCTION COMPLETE
DESTINATION DRIVE NAME
(OR RETURN TO REBOOT)}

The user should place the scratch diskette in drive A and then perform a cold start to
bring up the newly configured CPIM system.

The new CPIM system is then tested and the Digital Research copyright notice is
placed on the diskette, as specified in the Licensing Agreement:

Copyright @, 1979
Digital Research

6.4 Sample GETSYS and PUTSYS Programs

The following program provides a framework for the GETSYS and PUTSYS pro-
grams referenced in Sections 6.1 and 6.2. The READSEC and WRITESEC subroutines
must be inserted by the user to read and write the specific sectors.

GETS3YS PROGRAM — READ TRACKS 0 AND 1 TO MEMORY AT 3380H

REGISTER’ USE
A (SCRATCH REGISTER)
8 - TRACK COUNT (0, 1}
c SEGTOR COUNT (1,2,. . .,28)
DE {SCRATCH REGISTER PAIR)
HL LOAD ADDRESS
sP SET TO STACK ADDRESS
START: LX) SP,3380H “SET STACK POINTER TO SCRATCH
LX H, 3380H ’;QETE%ASE LOAD ADDRESS
MVI B, 0 START WITH TRACK 0

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




A "X‘

RDTRK: JREAD MEXT TRACK ({INITIALLY 0)

vl C1 JREAD STARTING WITH SECTOR 1
RDSEC: ;READ NEXT SECTOR

CALL READSEC ;USER-SUPPLIED SUBROUTINE

Lxt D128 :MOVE LOAD ADDRESS TO NEXT 1/2

;PAGE

DAD D ;HL = HL + 128

INR C :SECTOR = SECTOR + 1

MOV AC ;CHECK FOR END OF TRACK

CcPl 27

JC RDSEC :CARRY GENERATED IF SECTOR < 27

ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

INR B

MOV AB ' TEST FOR LAST TRACK

CPt 2 :

JC RDTRK ;CARRY GENERATED IF TRACK < 2

ARRIVE HERE AT END OF LOAD, HALT FOR NOW
HLT

;. USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:
ENTER WITH TRACK NUMBER IN REGISTER B,
SECTOR NUMBER iIN REGISTER C, AND

ADDRESS TO FILL IN HL

PUSH B ;SAVE B AND C REGISTERS
PUSH H ;SAVE HL REGISTERS

perform disk read at this point, branch to

labe! START if an error ogeurs

POPH JRECOVER HL

POPB ;RECOVER B AND C REGISTERS
RET ;BACK TO MAIN PROGRAM

END START

This program is assembled and listed in Appendix B for reference purposes, with an
assumed origin of 100H. The hexadecimal operation codes that are listed on the left may
be useful if the program has to be entered through the panel switches.

The PUTSYS program can be constructed from GETSYS by changing only a few
operations in the GETSYS program given above, as shown in Appendix C. The register
pair HL becomes the dump address (next address to write), and operations upon these
registers do nat change within the program. The READSEC subroutine is replaced by a
WRITESEC subroutine, which performs the oppoesite function: data from address HL are
written to the track given by register B and sector given by register C. It is often usefulto
combine GETSYS and PUTSYS into a single program during the test and development
phase, as shown in Appendix C.

ALL INFORMATION PRESENTED HERE |5 PROPRIETARY TO DICITAL RESEARCH 135




6.5 Diskette Organization

The sector allocation for the standard distribution version of CPIM is given here for
reference purposes. The First sector (see the table on the following page) contains an
optional software baot section. Disk controllers are often set up tobring track 0, sector 1,
into memory at a specific location {often location O0OOH), The program in this sector,
called BOOT, has the responsibility of bringing the remaining sectors into memory
starting at location 3400H+b, If the user's controller does not have a built-in sector load,
the programin track 0, sector I can beignored. In this case, load the program from track 0,
sector 2, to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings track 0, sector 1,
into absolute address 3000H. Upon loading this sector, contral transfers to location
3000H, where the bootstrap operation commences by loading the remainder of track 0
and all of track 1 into memory, starting at 3400H+b. The user should note that this
bootstrap loader is of little use in a non-MDS environment, although it is useful to
examine it since some of the boot actions will have to be duplicated in the user’s cold start
loader.

Tracks Sector# Page# Memory Address CPIM Module name
00 o1 {boot address) Cold Start Loader
00 02 00 3400H b CCP

’ a3 ’ 3480H+b ’

' 04 01 3500H+b ’

’ 05 ’ 3580H+b ’

’ 06 02 3600H+b ’

' 07 ! 3680H+b '

! 08 03 3700H+b . !

' 09 ! 3780H+b !

' 10 04 3800H+b )

! 11 ! 3880H+b '

! 12 05 3900H+b

’ 13 ' 3980H+b !

! 14 06 3A00H+b !

) 15 ' 3AB0H+b '

! 16 o7 3B0OH+b !
00 17 ' 3880H+tb CcCpP
0o 18 08 3C00H+b BDOS

' 19 ' 3C80H+b !

! 20 09 3000H+b '

T 21 ! 3D80OH+b !

’ 22 10 3EQ0OH+b '

' 23 ' 3EB0H+b

' 24 11 3FO0H+b !

! 25 ! 3F80H+b !

) 26 12 4000H+b )
1)} 01 ! 4080H+b '

: 02 13 4100H+b ¥

’ 03 ! 4180H+b '

' 04 14 4200H+bH !

' Qs ’ 4280H+b ’

: 06 15 4300H+b '

’ a7 v 4380H+b

' 08 16 4400H +b '

) 0% ! 4480H+b '

136 ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DICITAL RESEARCH




1}
07

o1
™

02-76

6.6 The BIOS Entry Points

10
LA
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

01-26

17 4500H+b

' 4580H+b
18 4600H+b
! 4680H+b
19 4700H+b
' 4780H+b
20 4800H+b
! 4880H+b
21 4900H+b !
! 4980H+b BDOS
22 4A00H+b Bi0S
' 4AB0H+h ’
23 4800H+b
) 4B80H+b
24 4C00H+b '
! 4CB0H+b BIOS
25 4D00H +b BIOS

{direclory and data}

The eniry points into the BLOS from the cold start loader and BDOS are detailed
below Entry to the BIOSis through a”“jump vector” located at 4 A00H+b, as shown below
{see Appendices A and B, as well). The jump vector is a sequence of 17 jump instructions
that send program control to the individual BIOS subroutines. The BIOS subtoutines
may be empty for certain functions {i.e., they may contain asingle RET operation) during
reconfiguration of CP/M, but the entries must be present in the jump vector,

The jump vector at 4A00H +b takes the form shown below, where the individual jump
addresses are given to the left:

4A00H+b

4A03H+b
4A08H+D

4A09H+b

4AOCH+b

4A0FH+b
4A12H+b

4A15H+b
4A18H+D

4A1BH+b
4A1EH+b
4A21H+b

JMP BOOT

JMP WBOOT
JMP CONST

JMP CONIN
JMP CONOUT

JMP LIST
JMP PUNCH

JMP READER
JMP HOME

JMP SELDSK
JMP SETTRK
JMP SETSEC

; ARRIVE HERE FROM COLD

START LOAD

: ARRIVE HERE FOR WARM START
: CHECK FOR CONSOLE CHAR

READY

; READ CONSOLE CHARACTER IN
: WRITE CONSOLE CHARACTER

ouT

; WRITE LISTING CHARACTER OUT
: WRITE CHARACTER TO PUNCH

DEVICE

; READ READER DEVICE
: MOVE TO TRACK 00 ON

SELECTED DISK

: SELECT DISK DRIVE
: SET TRACK NUMBER
: SET SECTOR NUMBER

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 137




4A24H+b JMP SETDMA ; SET DMA ADDRESS

4A27H+b JMP READ ; READ SELECTED SECTOR
4AZ2AH+b JMP WRITE : WRITE SELECTED SECTOR
4A2DH+b JMP LISTST : RETURN LIST STATUS
4A30H+b JMP SECTRAN : SECTOR TRANSLATE
SUBROUTINE

Each jump address corresponds to a particular subroutine that performs the specific
function, as outlined below, There are three major divisions in the jump table: the system
{relinitialization, which results from calls on BOOT and WBQOT; simple character IfQ
performed by calls on CONST, CONIN, CONCUT, LIST. PUNCH, READER, and
LISTST: and diskette I{O performed by calls on HOME, SELDSK, SETTRK, SETSEC,
SETDMA, READ, WRITE, and SECTRAN.

All simple character I/ operations are assumed to be performed in ASCII, upper and
lower case, with high order (parity bit) set to zero. An end-of-file condition for an input
device is given by an ASCIH control-z (1AH). Peripheral devices are seen by CPIM as
“logical” devices and are assigned to physical devices within the BIOS.

To operate, the BDOS needs only the CONST, CONIN, and CONOUT subroutines
(LIST, PUNCH, and READER may be used by FPIP, but not the BDOS}). Further, the
LISTST entry is currently used only by DESPOOL, the print spooling utility. Thus, the
initial version of CBIOS may have empty subroutines for the remaining ASCII devices.

The characteristics of each device are

CONSOLE The principal interactive console that communicates with the
operator, accessed through CONST, CONIN, and CONQUT;
typically, the CONSQLE is a device such asa CRT or teletype.

LIST The principal listing device, if it exists on the user’s system, is
usually a hard-copy device, such as a printer or teletype.

PUNCH The principal tape punching device, if it exists, is normally a
high-speed paper tape punch or teletype.

READER The principal tape reading device, such as a simple optical
reader or teletype.

A single peripheral can be assigned as the LIST, PUNCH, and READER device
simultaneously. [f no peripheral device is assigned as the LIST, PUNCH, or READER
device, the CBIQS created by the user may give an appropriate error message so that the
systern does not “hang” if the device is accessed by PIP or some other user program.
Alternately, the PUNCH and LIST routines can just simply return, and the READER
routine can return with a 1AH {ctl-Z) in register A to indicate immediate end-of-file.

For added flexibility, the user can optionally implement the “TOBYTE” function,
which allows reassignment of physical and logical devices. The IOBYTE function creates
a mapping of logical to physical devices that can be altered during CP/M processing (the
user should see the STAT command). The definition of the IOBYTE function corres-
ponds ta the Intel standard as follows: a single location in memory (currently location
Cee3H) is maintained, called FOBYTE, which defines the logical to physical device map-
ping that is in effect at a particular time. The mapping is performed by splitting the

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




IOBYTE into four distinct fields of two bits each, called the CONSOLE, READER,
PUNCH, and LIST fields, as shown below.

most significant least significant
IOBYTE AT 003H LIST PUNCH READER CONSOLE
bits 6, 7 bits ¢, 5 bits 2, 3 bits 0, 1

The value in each field can be in the range 0-3, defining the assigned source or
destination of each legical device. The values that can be assigned to each field are given
below '

CONSOLE field (bits 0,1)

fu] console is assigned to the console printer device (TTY:)

1 console is assigned to the CRT device (CRT:)

2 batch mode: use the READER as the CONSOLE input, and the
LIST device as the CONSOLE output (BAT:}

K user defined console device (UC1:)

READER field (bits 2,3)

0 READER is the teletype device (TTY:)

1 READER is the high speed reader device {PTR:)
2 user defined reader # 1 {UR1:)

3 user defined reader # 2 {UR2:)

PUNCH tield {bits 4,5)

0 PUNCH is the teletype device {TTY:}
? PUNCH is the high speed punch device (PTP:}
2 user defined punch # 1 {UP1)
3 user defined punch # 2 (UPZ:)
LIST field (bits 6,7)
0 LIST is the teletype deviee (TTY:)
1 LIST is the CRT device (CRT:)
2 LIST is the line printer device (LPT:}
3 user defined list device (UL1:)

The implementation of the IOBYTE is optional and affects only the organization of
the CBIOS. No CPIM systems use the IOBYTE (although they {olerate the existence of
the IOBYTE at location 0003H), except for PIP, which allows access to the physical
devices, and STAT, which allows logical-physical assignments to be made or displayed
(for more information, the user should see Chapter 1). In any case the IOBYTE imple-
mentation should be omitted until the basic CBIOS is fully implemented and tested; then
the user should add the [OBYTE to increase the facilities.

Disk IO is always performed through a sequence of calls on the various disk access
subroutines that set up the disk number to access, the track and sector on a particular
disk, and the direct memory access (DMA) address involved in the /O operation. After all
these parameters have been set up, a call is made to the READ or WRITE function to
perform the actual 1O operation. There is often a single call to SELDSK to select a disk
drive, followed by a number of read or write operations to the selected disk before
selecting another drive for subsequent operations. Similarly, there may be a single calito
set the DMA address, followed by several calls that read or write from the selected DMA
address before the DMA address is changed. The track and sector subroutines are always
called before the READ or WRITE operations are performed.

The READ and WRITE routines should perform several retries (10is standard) before
reporting the error condition to the BDOS 1If the error condition is returned to the
BDOS., it will report the error to the user. The HOME subroutine may or may not

ALl INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 139




actually perform the track 00 seek, depending upon controller characteristics; the impor-
tant point is that track 00 has been selected for the next operation and is often treated in
exactly the same manner as SETTRK with a parameter of 00.

The exact responsibilities of each entry point subroutine are given below,

140

BOOT

wBOOT

GCONST

CONIN

The BOOT entry point gets control from the cold start loader
and is responsible for basic system initialization, including
sending a sign-on message {which can be omitted in the first
version). If the IOBYTE function is implemented, it must be
set at this peint. The various system parameters that are set
by the WBOOT entry point must be initialized, and control is
transferred to the CCP at 3400+b for further processing. Note
that register C must be set to zero to select drive A.

The WBOOT entry paint gets contrel when a warm start
occurs. A warm start is performed whenever a user program
branches to location 0000H, or when the CPU is reset from
the front panel. The CPIM system must be loaded from the
first two tracks of drive A up to, but not including, the BIOS
{or CBIOS, if the user has completed the patch). System
parameters must be initialized as shown below:

location 0,1,2 Set to |[MP WBOQOT for warm
starts (00OH: JMP 4A03H+b) '

location 3 Set initial value of [OBYTE, if
implemented in the CBIOS

location 4 High nibble = current user no; low
nibble = current drive

location 5,6,7 Set to JMP BDOS, which is the
primary entry point to CPiM for
transient programs. {0G05H: IMP
3CopsH+b)

(The user should refer to Section 6.9 for complete details of
page zero use.} Upon completion of the initialization, the
WBQOT program must branch to the CCP at 3400H+b to
(relstart the system. Upon entry to the CCP, register Cis set
to the drive to select after system initialization. The WBOOT
routine should read location 4 in memory, verify that it is a
legal drive, and pass it to the CCP in register C.

The user should sample the status of the currently assigned
console device and return OFFH in register A if a character is
ready to read and 0O0H in register A if no console characters are
ready.

The next console character is read into register A, and the
parity bit is set {high order bit} to zero. f no console character
is ready, the user waits until a character is typed before
returning. '

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DAGITAL RESEARCH




CONQUT

LIST
PUNCH

READER

HOME

SELDSK

SETTRK

The user sends the character from register C to the console
output device. The character is in ASCII, with high order
parity bit set to zero. The user may want toinclude a time-out
an a line feed or carriage return, if the console device requires
some time interval at the end of the line (such as a Tl Silent 700
terminal). The user can filter cut control characters that cause
the console device to react in a strange way {a control-2 causes
the Lear Seigler terminal to clear the screen, for example).

The user sends the character from register C to the currently
assigned listing device. The character is in ASCII with zero
parity bit.

The user sends the character from register C to the currently
assigned punch device. The character is in ASCIl with zero

parity.

The user reads the next character fram thecurrently assigned
reader device into register A with zero parity (high arder bit
must be zero}; an end-of -file condition is reported by return-
ing an ASCII control-z2{IAH}

The user moves the disk head of the currently selected disk
(initially disk A} to the track 00 position. If the controller
allows access to the track 0 flag from the drive, the head is
stepped until the track 0 flag is detected. If the contraller does
not support this feature, the HOME callis translated into a call
to SETTRK with a parameter of 0. '

The user selects the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1 fordrive
B, and so on up to 15 for drive P (the standard CP{M distribu-
tion version supports four drives). On each disk select,
SELDSK must return in HL the base address of a 16-bvte area,
called the Disk Parameter Header, described in Section 6.10.
For standard floppy disk drives, the contents of the header and
associated tables do not change; thus, the pragram segment
included in the sample CBIOS performs this operation auto-
matically. If there is an attempt to select a nonexistent drive,
SELDSK returns HL=0000H as an error indicator. Although
SELDSK must return the header address on each call, it is
advisable to postpone the physical disk select operation until
an [fQ function (seek, read, or write} is actually performed,
since disk selects often occur without utimately performing
any disk /O, and many controllers will unload the head of the
current disk before selecting the new drive. This would cause
an excessive amount of noise and disk wear. The least signifi-
cant bit of register E is zero if this is the first occurrence of the
drive select since the last cold or warm start.

Register BC contains the track number for subsequent disk
accesses on the currentiy selected drive. The sector numberin
BC is the same as the number returned from the SECTRAN
entry point. The user can choose to seek the selected track at

ALL INFORMATION PRESENTED HERE IS5 PROPRIETARY TO DIGITAL RESEARCH 141




142

SETSEC

SETDMA

READ

WRITE

LISTST

this time or delay the seek until the next read or write actually

-occurs. Register BC can take on values in the range 0-76

corresponding to valid track numbers for standard floppy disk
drives and 0-65535 for nonstandard disk subsystems.

Register BC contains the sector number (1 through 26) for
subsequent disk accesses on the currently selected drive. The
sector number in BC is the same as the number returned from
the SECTRAN entry point. The user can choose to send this
information to the controller at this point or delay sector
selection until a read or write operation occurs.

Register BC contains the DMA {disk memory access) address
for subsequent read or write operations. For example, if B =
00H and C = 80H when SETDMA is called. all subsequent read
operations read their data into 80H through OFFH and all
subsequent write operations get their data from 80H through
OFFH, until the next call to SETDMA occurs. The initial DMA
address is assumed tobe 80H. The controller need not actually
support direct memory access. If, for example, all data
transfers are through O ports, the CBIOS that is con-
structed will use the 128-byte area starting at the selected
DMA address for the memory buffer during the subsequent
read or write operations.

Assuming the drive has been selected, the track has been set,
the sector has been set, and the DMA address has been speci-
fied, the READ subroutine attempts to read one sector based
upon these parameters and returns the following ercor codes
in register A:

0 no ercors occurred

1 nanrecoverable error condition occurred

Currently, CP/M responds only to a zero or nonzero value as
the return code. That is, if the value in register A s 0, CP/M
assumes that the disk operation was completed properly. Ifan
error occurs, however, the CBIOS should attempt at feast 10
retries to see if the error is recoverable. When an error is
reported the BDOS will print the message "BDOSERR ON x:
BAD SECTOR". The operator then has the option of typing
carriage-return to ignore the ecror, or ctl-C to abort.

The user writes the data from the currently selected DMA
address to the currently selected drive, track, and sector. For
floppy disks, the data should be marked as “nondeleted data”
to maintain compatibility with other CPfM systems. The error
cades given in the READ command are returned in register A,
with error recovery attempts as described abave.

The user returns the ready status of the list device used by the
DESPOOL program to improve console response during its
operation. The value 00 is returned in A if the list device is not
ready to accept a character and OFFH if a character can be sent

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH




to the printer. A 00 value should be returned if LIST status is
not implemented.

SECTRAN The user performs logical to physical sector translation to
improve the overall response of CP/M. Standard CPiM sys-
tems are shipped with a “skew factor” of 6, where six
physical sectors are skipped between each logical read opera-
tion. This skew factor allows enough time between sectors for
most programs to load their buffers without missing the next
sector. In particular computer systems that use fast proces-
sors, memory, and disk subsystems, the skew factor may be
changed to improve overall response. However, the user
should mtaintain a single density IBM-compatible version of
CPJM for information transfer into and out of the computer
system, using a skew factor of 6. In general, SECTRAN
receives a logical sector number relative to zero in BC and a
translate table address in DE. The sector number is used as an
index into the translate table, with the resulting physical
sector number in HL. For standard systems, the table and
indexing code is provided in the CBIOS and need not be
changed.

6.7 A Sample BIOS

The program shown in Appendix B can serve as a basis for a user’s first BIOS. The
simplest functions are assumed in this BIOS, so that the user canenterit through a frong
panel, if absclutely necessary. The user must alter and insert code into the subroutines
for CONST, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is
reserved for user-supplied code in these regions. The scratch area reserved in page zero
(see section 6.9) for the BIOQSisused in this program, so that it could be implemented in
ROM, if desired.

Once operational, this skeletal version can be enhanced to print the initial sign-on
message and perform better error recovery. The subroutines for LIST, PUNCH, and
READER can be filled ovt and the IOBYTE function can be implemented.

6.8 A Sample Cold Start Loader

The program shown in Appendix E can serve as a basis for a cold startloader. The disk
read functicn must be supplied by the user, and the program must be loaded somehow
starting at location 0000, Space is reserved for the patch code so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually, the user will probably
want to get this loader onto the first disk sector (track 0, sector 1Y and cause the controller
to load it into memory automatically upon system start up. Alternatively, the cold start
loader can be placed into ROM, and above the CPIM system. In this case, it will be
necessary to originate the program at a higher address and key in a jump instruction at
system start up that branches to the loader. Subsequent warm starts will not require this
key-in operation, since the entry point WBOOT gets control thus bringing the system in
from disk automatically. The skeletal cold start loader has minimal error recover, which
may be enhanced in later versions.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 143




6.9 Reserved Locations in Page Zero

Main memory page zero, between locations 00H and OFFH, contains several segments
of code and data that are used during CP/M processing. The code and data areas are given
below for reference

144

Locations
from to

C000H-0002H

0003H-0003H

0004H-0004H

0005H-0007H

0008H-0027H
0030H-0037H

0038H-003AH

0038H-003FH

0040H-004FH

0050H-005BH

005CH-007CH

007DH-007FH

00B0OH-00FFH

Contents

Contains a jump instruction to the warm start entry
point at location 4A03H+b. This allows a simple pro-
grammed restart (JMP 0000H) or manual restart from
the front panel.

Contains the Intel standard IOBYTE, which is optionally
included in the user's CBIOS. as described in Section 6.6.

Current default drive number (0=A,...,15=P).

Contains a jump instruction to the BDOS and serves two
purposes: JMP 0005H provides the primary entry point
to the BDOS, as described in Chapter 5, and LHLD
0006H brings the address field of the instruction to the
HL register pair. This value is the lowest address in
memoty used by CP/M (assuming the CCP is being
overlaid). The DDT program will change the address
field to reflect the reduced memory size in debug mode.

(Interrupt locations 1 through 5 not used.)

(Interrupt location 6, not currently used; reserved )
Restart 7; contains a jump instruction into the DDT or
SID program when running in debug mode for pro-
grammed breakpoints, but is not otherwise used by
CPIM.

{(Not currently used; reserved.)

A 16-byte area reserved for scratch by CBIOS, but is not
used for any purpose in the distribution version of
CPiM.

{Not currently used: reserved.)

Default file control block produced for a transient pro-
gram by the Console Command Processor.

Optional default random record position.

Default 128-byte disk buffer (also filled with the com-
mand line when a transient is loaded under the CCP).

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




This information is set up for normal operation under the CPfM system, but can be
overwritten by a transient program if the BDOS facilities are not required by the
transient.

If, for example, a particular program performs only simple /O and must begin
execution at Jocatian 0, it can first be loaded into the TPA, using normal CP/M facilities,
with 2 small memory move program that gets control when loaded (the memory move
program must get control From locatien 0100H, which is the assumed beginning of all
transient programs). The move program can then proceed to move the entire memory,
image down to location 0 and pass control to the starting address of the memory load. If
the BIOS is overwritten or if location 0 (containing the warm start entry point) is
overwritten, the operator must bring the CPIM system back intc memory with a cold
start sequence.

6.10 Disk Parameter Tables

Tables are included in the BIOS that describe the particular characteristics of the disk
subsystem used with CP/M. These tables can be either hand-caded, as shown in the
sample CBIOS in Appendix B. or automatically generated using the DISKDEF macro
library, as shown in Appendix F. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk parameter header that
contains information about the disk drive and provides a scratchpad area for certain
BDOS operations. The format of the disk parameter header for each drive is shown
below.

Drisk Parameter Header
| XLT | 0000 {0000 (0000 | DIRBUF |DPB | CSV | ALV
16b 16b 16b 16b 16b 16b i6h 16b

where each element i5 a word (16-bit) value. The meaning of each Disk Parameter Header
(DPH) element is

XLT Address of the logical to physical translation vector, if used for
this particular drive, or the value 0000H if no sector transla-
tion takes place (i.e., the physical and logical sector numbers
are the same). Disk drives with identical sector skew factors
share the same translate tables.

0000 Scratchpad values for use within the BDOS (initial value is
unimportant.

DIRBUF Address of a 128-byte scratchpad area for directory operations
within BDOS, All DPHs address the same scratchpad area.

DPE " Address of a disk parameter black for this drive. Drives with
identical disk characteristics address the same disk parameter
block.

csv Address of a scratchpad area used for software check for
changed disks. This address is different for each DPH.

ALV Address of a scratchpad area used by the BDOS to keep disk
storage allocation information. This address is different for
each DPH.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 145




Given n disk drives, the DPHs are arranged in a table whose first row of 16 bytes
corresponds to drive 0, with the last row corresponding to drive n-1. The table thus
appears as

DPBASE:
00 | XLT 00 | 0000 | 0000 | 0000 | DIRBUF] DBP 00 CSV 00 ALV 00§
1] XLT 01 | 0000 | 0000 | 0000 | IRBUA DBP 01) CSV 01 ALVO1|
{and so on through) .
n-1 | XLTn-1 | 0000 | 0000 | 0000 | DIRBUF| DBPn-1[ CSVn-1] ALVn-1]

whetre the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base address of the DPH
for the selected drive. The following sequence of operations returns the table address,
with a 0000H returned if the selected drive does not exist.

NDISKS EQu 4 :NUMBER CF DISK DRIVES
SELDSK: SELECT DISK GIVEN BY BC
LXI H.,0000H ,ERRCR CODE
MOV AC \DRIVE OK?
CPI NDISKS CY IF SO
RNC ;RET IF ERROR
'NO ERROR, CONTINUE
MOV LC ;LOW(DISK)
MOV HB ‘HIGH(DISK)
CAD H 2
DAD H 4
DAD H '8
DAD H ;716
LXI D.DPBASE FIRST DPH
DAD D {DPH(DISK)
RET

The translation vectors (XLT 00 through XL Tn-1} are located elsewhere in the BIOS,
and simply correspond one-for-one with the logical secter numbers zero through the
sector count 1. The Disk Parameter Block (DPB} for each drive is more complex. A
particular DI'B, which is addressed by one or more DPHs, takes the general form

| SPT | BSH | BLM | EXM [ DSM | DRM | ALO | AL1 | CKS | OFF |
Téb 8b  8b  8b  16b 16b 8b  B8b  16b  16b

where each is a byte or word value, as shown by the 8b or 16b indicator below the field.

SPT is the total number of sectors per track.

BSH is the data allocation block shift factor, determined by the data block
allocation size.

BLM is the data allocation block mask (2{BSH-11).

EXM is the extent mask, determined by the data block allocation size and

the number of disk blocks.

DSM determines the total storage capacity of the disk drive.

146 ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DAGATAL RESEARCH




DRM determines the total number of directory entries that can be stored
on this drive. (ALO,ALT determine reserved directory blocks.)

CKS is the size of the directory check vector.
OFF is the number of reserved tracks at the beginning of the (logical}
disk. -

The values of BSH and BLM determine {implicitly) the data allocation size BLS, which is
not an entry in the DPB. Given that the designer has selected a value for BLS, the values
of BSH and BLM are shown in the tabulation below.

BLS " BSH BLM
1024 3 7
2048 4 15
4096 5 31
8192 6 63
16384 7 127

where all values are in decimal. The value of EXM depends upon both the BLS and
whether the DSM value is less than 256 or greater than 255. For DSM <256 the value of
EXM is given by:

BLS EXM

1024

2048 1

4096

§192 7
16384 15

For DSM > 255 the value of EXM is given by:

BLS - EXM
1024 NiA
2048 o
4096 1
8192 3
16384 7

The value of DSM is the maximum data block number supported by this particular
drive, measured in BLS units. The product BLS times {D5M+1} is the total number of
bytes held by the drive and, of course, must be within the capacity of the physical disk, not
counting the reserved operating svstem tracks,

The DRM entry is the one less than the total number of directory entries that cantake
on a 16-bit value. The values of ALO and AL1, however, are determined by DRM. The
values ALG and Al'1 can together be considered a string of 16-bits, as shown below.

[ ALD AL1 |

1T 1T ¢ r -+t 1+ 4 F 7 ] |

00 01 02 €3 04 05 06 07 08 09 10 11 12 12 14 15

where position 00 corresponds to the high order bit of the byte labeled ALO and 15
corresponds to the low order bit of the byte labeled ALT. Each bit position reserves adata
block for number of directory entries, thus allowing a total of 16 data blocks to be

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 147




assigned for directory entries {bits are assigned starting at 00 and filled to the right until
position 15). Each directory entry occupies 32 bytes, resulting in the tabulation below.

BLS Directory Entries
1024 32 times # bits
2048 64 times # bits
4096 128 times # bits
8192 256 times # bits
16384 512 times # bits

Thus, if DRM = 127 (128 directary entries) and BLS = 1024, there are 32 directory entries
per block, requiring 4 reserved blocks. In this case, the 4 high order bits of ALO are set,
resulting in the values ALC = OFOH and AL1 = 00H.

The CXS value is determined as follows: if the disk drive media is removable, then
CKS = (DRM+1}{4, where DRM is the last directory entry number. If the media are fixed,
then set CKS = 0 (no directory records are checked in this case).

Finally, the OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. This value is automatically added whenever SETTRK is
called and can be used as a mechanism for skipping reserved operating system tracks or
for partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, several DPHs can address the same DPB it
their drive characteristics are identical. Further, the DPB can be dynamicaily changed
when a new driveis addressed by simply changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is invoked.

Returning back to the DPH for a particular drive, the two address values CSV and
ALV remain. Both addresses reference an area of uninitialized memory following the
BIOQS. The areas must be unique for each drive, and the size of each areais determined by
the values in the DPB.

The size of the area addressed by TS5V is CKS bytes, which is sufficient to hold the
directory check information for this particular drive. If CKS = (DRM+1)/4, one must
reserve {DRM+1)/4 bytes for directory check use. If CKS = 0, no storage is reserved.

The size of the area addressed by ALV is determined by the maximum number of data
blacks allowed for this particular disk and is computed as (DSM{8)+1.

The CBIOS shown in Appendix B demonstrates an instance of these tables for
standard 8-inch single density drives. It may be useful to examine this program and
compare the tabular values with the definitions given above.

6.11 The DISKDEF Macro Library

A macro library is shown in Appendix F, called DISKDEF, which greatly simplifies the
table construction process. One must have access to the MAC macro assembler, of
course, to use the DISKDEF facility, while the macro library is included with all CPfM 2
distribution disks.

A B1OS disk definition consists of the following sequence of macro statements:

MACLIB DISKDEF
DISKS a
DISKDEF 0....
DISKDEF 1.

148 ALY INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




DISKDEF n-1
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same disk as the BIQS)
into MAC’s internal tables. The DISKS macro call follows, which specifies the number of
drives to be configured with the user’s system, where n is an integer in the range 1 to 16-
A series of DISKDEF macro calls then follow that define the characteristics of each logical
disk, 0 through n-1 {corresponding to logical drives A through P). The DISKS and
DISKDEF macros generate the in-line fixed data tables described iri the previous section
and thus must be placed in a nonexecutable portion of the BIOS, typically directly
following the BIOS jump vector.

The remaining portion of the BIOS is defined following the DISKDEF macros, with
the ENDEF macro ¢all immediately preceding the END statement. The ENDEF (End of
Diskdef} macro generates the necessary uninitialized RAM areas, which are located in
memory above the BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc,[skf],bls,dks, dir,cks,ofs,[0)

where
dn is the logical disk number, 0 to n-1. .
fsc is the first physical sector number (0 or 1).
Isc is the last sector number.
ski is the optional sector skew factor.
bls is the data allocation block size.
dks is the number of blocks on the disk.
dir is the number of direclcr); entries.
cks is ihe number of “checked” directory entries.
ofs is the track offset to logical track 00.
{t]] is an optienal 1.4 compatibility flag.

The value dn is the drive number being defined with this DISKDEF macro invocation.
The fsc parameter accounts for differing sector numbering systems and is usually O or 1.
The lsc is the last numbered sector on 2 track. When present, the skf parameter defines
the sector skew factor, which is used to create a sector translation table accodrding to the
skew.

If the number of sectors is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table is created if the skf
parameter is omitted {or equal to 0). The bls parameter specifies the number of bytes
allocated to each data block, and takes on the values 1024, 2048, 4096, 8192, or 16384,
Generally, performance increases with larger data block sizes since there are fewer
directory references and logically connected data records are physically close on the disk.
Further, each directory entry addresses more data and the BIQ5-resident ram space is
reduced.

The dks parameter specifies the total disk size in bls units. That is, if the bls = 2048 and
dks = 1000, the total disk capacity is 2,048,000 bytes. If dks is greater than 255, the block
size parameter bls must be greater than 1024. The value of dir is the total number of
directory entries, which may exceed 255, if desired. The cks parameter determines the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149




number of directory items to check on each directory scan and is used internally to detect
changed disks during system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks the disk read/only
50 that data are not subsequently destroyed).

As stated in the previous section, the value of cks = dir when the medium is easily
changed, as is the case with a floppy disk subsystem. If the disk is permanently mounted,
the value of cks is typically 0, since the probability of changing disks without a restart is
low. The ofs value determines the number of tracks to skip when this particular drive is
addressed, which can be used to reserve additional operating system space or to simulate
several logical drives on a single large capacity physical drive. Finally, the [0] parameter is
included when file compatibility is required with versions of 1.4 that have been modified
for higher density disks. This parameter ensures that only 16K is allacated for each
directory record, as was the case for previous versions. Normally, this parameter is not
included. .

For convenience and economy of table space, the special form

DISKDEF i
gives disk i the same characteristics as a previously defined drive j. A standard four-drive

single density system, which is compatible with version 1.4, is defined using the following
macro invocations:

DISKS 4

DISKDEF 0.1,26,6,1024,243,64 64,2
DISKDEF 1.0

DISKDEF 2,0

DISKDEF 3,0

ENDEF

with all disks having the same parameter values of 26 sectors per track (numbered 1
through 26}, with 6 sectors skipped between each access, 1024 bytes per data block, 243
data blocks for a total of 243K-byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS macro generates n DPHs, starting at the DPH table address DPBASE
generated by the macro. Each disk header block contains sixteen bytes, as described
above, and correspond one-for-one to each of the defined drives. In the four-drive
standard system, for example, the DISKS macro generates a table of the form:

DPBASE EQUS

DPEC: DW XLT0,0000H.0000H,0000H,DIRBUF,DPB0.CSV0,ALVO
OPET: DW XLT0,0000H,0000H,0000H.DIRBUF,DPB0,CSV1,ALV1
DPE2: OwW XLT0,0000H,0000H,0000H, DIRBUF,DPB0O.CSV2 ALVZ
DPE3: DW XLT0,0000H,0000H,0000H. DIREBUF DPBO.CSV3,ALV3

where the DPH labels are included for reference purposes to show the beginning table
addresses for each drive 0 through 3. The values contained within the DPH are described
in detail in the previous section. The check and allocation vector addresses are generated
by the ENDEF macro in the ram area following the BIOS code and tables.

The user should note that if the skf (skew factor) parameter is omitted (or equal to 0),
the translation table is omitted and a 0000H value is inserted in the XLT position of the
DPH for the disk. In a subsequent call to perform the logical to physical translation,
SECTRAN receives a translation table address of DE = 0000H and simply returns the
original logical sector from BC in the HL register pair. A translate table is constructed
when the skf parameter is present, and the {nonzero) table address is placed into the

150 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




corresponding DPHs. The tabulation shown below, for example, is constructed when the
standard skew factar skf = 6 is specified in the DISKDEF macro call:

XLTO: OB 1,7,13,19,256,56,11,17,23,3,9,15.21
DB 2.,8,14,20,26.6,12,18,24,4,10,16,22

Following the ENDEF macro call, 2 number of uninitialized data areas are defined;
These data areas need not be a part of the BIOS thatis loaded upon cold start, but must be
available between the BIOS and the end of memory. The size of the uninittalized RAM
area i1s determined by EQU statements generated by the ENDEF macro. For a standard
four-drive system, the ENDEF macro might produce

4C72 = BEGDATEQU %
{data areas)
4DB0 = ENDDAT EQU %
013C = DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends at 4DBOH-1, and
occupies 013CH bytes. The user must ensure that these addresses are free for use after
the system is loaded.

After modification, the user can utilize the STAT program to check drive characteris-
tics, since STAT uses the disk parameter block to decode the drive information. The
STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d {d=A,...,P) and displays the values shown
below.

128-byte record capacity
kilobyte drive capacity
32-byte directory entries
checked directory entries
recordsiextent
records/block
sectorsjtrack

reserved tracks

trogaanEn

Three examples of DISKDEF macro invocations are shown below with corresponding
STAT parameter values (the last produces a full 8-megabyte system).

DISKDEF 0,1,58,,2048 256,128,128,2

r=4098, k=512, d=128, ¢=128, e=256, b=16, 5=58, 1=2
DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300. c=0. e=128, b=16, 5=58, t=2
: DISKDEF 0,1.58..16384,512,128,128 2
r=65536, k=8192, d=128, ¢=128, e=1024, b=128, =58, 1=2

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DICITAL RESEARCH 151,




6.12 Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP{M BDOS includes information
that allows effective sector blocking and deblocking where the host disk subsystem has a
sector size that is a multiple of the basic 128-byte unit. The purpose here is to present a
general-purpose algorithm that can be included within the BIOS and that uses the BDOS
information to perform the operations automatically.

On each call to WRITE. the BDOS provides the folloewing information in register C:

1] = normal sector write
1 = write to directory sector
2 = write to the first sector

of a new data bloc!c

Condition 0 occurs whenever the next write operation is into a previously written area,
such as a random mode record update, when the write is to other than the first sector of
an unallocated block, or when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs when the first
record (only} of a newly allocated data block is written. [n most cases, application
programs read or write multiple 128-byte sectors in sequence; thus, there is little
overhead involved in either operation when blocking and deblocking records, since
preread operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal form (this flle is
included on your CPtM disk). enerally, the algorithms map all CP{M sector read opera-
tions onto the host disk through an intermediate buffer that is the size of the host disk
sector. Throughout the program, values and variables that relate to the CPIM sector
involved in a seek operation are prefixed by sek, while those related to the host disk
system are prefixed by hst. The equate statements beginning on line 29 of Appendix G
define the mapping between CPIM and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain theinitialization code starting on
line 57, while the SELDSK entry point must be augmented by the code starting on line 65.
The user should note that although the SELDSK entry point computes and retuens the
Disk Parameter Header address, it does not physically select the host disk 2t this point (it
is selected later at READHST or WRITEHST). Further, SETTRK, SETTRK, and
SETDMA simply store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector number,

The principal entry points are READ and WRITE, starting on lines 110 and 125,
respectively. These subroutines take the place of your previous READ and WRITE
operations.

The actual physical read or write takes place at either WRITEHST or READHST,
where all values have been prepared: hstdsk is the host disk number, hsttrk is the host
track number, and hstsec is the host sector number (which may require translation to a
physical sector number). The user must insert code at this point that performs the fufl
host sector read or write into or out of the buffer at hstbuf of length hstsiz. All other
mapping functions are performed by the algorithms.

This particular algorithm was tested using an 80-megabyte hard disk unit that was
originally configured for 128-byte sectors, producing approximately 35 megabytes of
formatted storage. When configured for 512-byte host sectors, usable storage increased
to 57 megabytes, with a corresponding 400% improvement in overall response. In this
situation, there is no apparent overhead involved in deblocking sectors, with the advan-
tage that user programs still maintain 128-byte sectors. This is primarily because of the
information provided by the BDOS, which eliminates the necessity for preread
operations.

152 ALL INFORMATION PRESENTED HERE iS5 PROPRIETARY TO DIGITAL RESEARCH




HOMYISTE LD OL A III3I08Y 51 TYTH TLUNISTE NOLYWEOINI TIY

€53

Appendix A: The MDS Basic /O System (BIOS)

[ P S gy
(=3 - =SBV L N A A R e LR R R

L]
-

RO RN MR
O~ thsWwn

0016

ftff =

vers

true
false
test

bias
bias
patch

cpmb
bdos

mgs-8040 ifo drivers for cp/m 2.2
{four drive single density version)

version 2.2 february, 1980

equ

copyright {c¢) 1980
digital research

box 579, pacific grove
callfornia, 93950

equ
equ
equ

Al

equ
endif
if
equ
endif

equ
o]

aqu
aqu

wersion 2.2
oftfth value of “true”
not true false”
false s true if test bios
test
J3400h \base of ccp in test system
not test
0000h ;generate relocatable cp/m system
1600k
patch
$-patch ;base of cpm console processor

806h+cpmb basic dos {resldent paorlion}



¥SI

HRIVIETH TVLOIT OL ASYENION S| TaH TLNTSIN] NOHYWROINI TTY

1600 =
002c =
0002 =
0004 =
00A0 =
0da =

1600 ¢2b316

cpmli
nsecls
offset
cdisk
buft
retry

equ $-cpmb :lengih {in bytes) of cpm syslem

equ cpmls128  number of sectors to load

agu 2 :number of disk tracks used by cp/m

equ 0004 .address of Jast logged disk on warm start
equ a0a0h wefault buffer address

equ 10 :max retries an disk /o before arror

perform following functions
boot coid start
whboot warm start (save i/o byte)
{Boot and whoot are the same for mda}
const conscle stalus
rag-a = 00 if no character ready
reg-a = f1 if character ready
conin console character in {rasultin reg-a)
conout  conscle character out {char in reg-c)
list list out {char in reg-cl
punch punch out {char in reg-c)
reader paper tape Teader in (result to reg-a)
home mave 1e track 00

{the tollowing calls set-up the i0 parameter block for the

mds, which i used 0 perform subsequent reads and writas)
seldsk select disk given by reg-c {0, 1,2. ..}

seftrk set track addrass {D, . . . 76} for subsequent read/wrile
setsec set sector address (1, . . ., 26) for subsequent read/write
petdma 3¢ subsequent dma address(initially 80h)

{read and writs assume previous calls to set up the io parameters)
read read track/sector to preset dma address
write track/sector from preset dma address

jumnp vector for individial routines
jmp boot



HOUYISTE TVAIC OL A¥VIINICOHd 51 TH QLNISTI NOLYWEOINI TV

5 4

1603 ¢3¢318
1606 36117
1609 ¢Ig417
160¢ c36al?
160f 367
1612 ¢A7217
1615 ¢37517
1618 ¢37as7
161b ¢37d17
1618 c3a717
1621 claci?
1524 ¢3bb17
1627 c3c117
162a ¢ical?
162d c37017
1630 c3b117

1633+=
1633+82160000
1637 +00000000
163b+8e187316
163f+0d18ee18
1643 +82160000
1647 +D00D000Y
164b+8e187316
1641+3¢191d19
1653+82160000
1657 +00000000
1656+6e187316
165(+60194¢19
1663+32160000
1667 +0000000)

wbhoots:

dpbase
dpet:

dpet:

dpe2:

dped:

imp
jmp
imp
jmp
tmp
jmp
jmp
jmp
imp
jmp
jmp
imp
imp
imp
jmp
jmp

maclib
disks
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

whoot

const

conin

conout

list

punch

reader

home

seldsk

settrk

setsec

seldma

read

write

listst st slatus

sectran

diskdet iload the disk definition library
4 four disks

$ :base of disk parameter blocks
XD, 0000h Jtranslate tabie
Q0D0h, DG0h iseratch area

dirbuf, dpb ;dir buff, parm block
csv0, alvl ;check, alloc vectors
xi1, O0Ch itranslate 1able
{000k, 0000h scratch area

dirbut, dpb1 .dir bulf, parm block
csvl, alvl icheck, alloc vectors
xlt2, 0000h translate table
BO0Gh, 0OC0R :scratch area

dirbuf, dpb2 ;dir butf, parm block
csv2, ak? .check, alloc vectors
xIt3, 0000h :translatg 1able
2000h, 0000N ;scratch area



a¢l

HOFYISTd TLTAQ OL AdWLINEICNE $1 THFH TLLNTSTE) NOLYWIOIN TV

96 186b+60187318 dw dirbuf, dpb3 ;check, alloc block

[=12] 166{+9a197619 dw cevd, alvd dir buff, parm veclors
100 diskdef 0, 1. 26, 6, 1024, 243, 64, 64, offset
101 1673+= d4pbG aqu % disk parm block
102 1673+1a00 dw 26 580 per ireck
103 1675+03 db 3 iblack shift
104 16T6+Q7 db 7 Hock mask
105 1677+00 dix Q :extnt mask
106 1678+1200 dw 242 Wdigk size-1
107 167a+3100 dw 63 directory max
108 167ctcl db 192 sallocd
108 1674+00 db o aliget
110 167e+1000 dw 16 check size
111 1680+0200 dw 2 ‘offsst
112 1682+= xHO equ $ Aranslale table
113 1682+01 db 1
114 1683+07 db 7
115 1684+0d ' db 13
116 1685+13 db 19
117 1686+19 db 25
118 1687+05 db 5
119 1658+0h db "

120 1689+11 db 17
121 168a+17 db 23
122 1681+03 db 3
123 168c+09 db 9
124 188d+0f db 15
125 168e+15 db

126 168f+(2 dh

127 1690+08 dh

128 1621 +0e db

130 1693+1a db

21
2
8
14
129 1692+14 db 20
26
13 1694+06 db 6



HIAYISTd WL O XVEIBA8 S1THIH RINISTE] NOLWLYWHOINE TTY

L81

132
133
134
135
136
137
138
139
140
141
142
143
144
145
148
147
148
148
150
151
152
153
154
155
156
157
158
159
180
181
162
163
164
165

1695 +0c
1666+12
1897418
1698+04

- 1693+0a

16%a+10
188b+16

1673+=
Ooi+=
a010+=
16824+

1673+=
O {+=
0010+=
1682+=

1673+=
00tf+=
O 0+=
1682+=

00fc =

db 12

die 18

db 24

db 4

db 10

a6 16

db 22

diskdef 1,0

equ dpbd ;equivalent parametars

equ alsd :same allocation veclor size
equ css0 same checksum vector size
equ wlt0 ;same translate table
diskdel 2,0

enu dpb0 sequivalent parameters

aqu alsD :same allocalion vector size
equ css0 :game checksum vecior size
&qu xHQ ame iranslate table
diskdef 3,0

aqu dpbld ;equivalent pararmeters

Bqu alsD same allocation vector size
equ cssh ;same checksum vector size
equ xN0 ;same translate table

endef cccurs at end of assembly

and of controller—independent code, the remaining subroutines
are tailored to the particuiar operating environment, and must
be aitered for any system which differs from the intei mds.

the following code assumes the rmds monitor exists at 0I300h
and uses the i/0 subroutines within the monitor

we also assume the mds system has four disk drives
equ Qfdh ;interrupt revert pott
equ Ofch sinterrupt mask port



#51

HOAYISTS TYUDIA OL AYWLIRION S IHIH TLNTSIEL NOUYWHOIN| TTY

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
M
182
183
184
185
186
187
68
189
190
™
192
193
184
195
196
197
198
199

00f3 =
0O7E =

1800 =
ffof =

1803 =
1806 =
1808 =
f80¢ =
180f =
812 =

0o7e =
Q075 =
o079 =
0oih =

0479 =
po7a =

0004 =
0006 =
0002 =
Q004 =
000d =
DODa =

189¢ 0ddala

icon
inte

mon&0
rmonsQ
ci

ri

=)

po

=3

csls

base
dstat
rtype

" rbyte

ilow
ihigh

readf
writf
racal
iordy
&of

It

signan:

anu 0f3h sinterrupt control port

aqu  0111$1110b venable rst § {warm boot), rst 7 [monitor}
mds monitar equates

aqu 80K imds monitor

aqu Qit0th westart mond0d (boot error)

equ  0f803h :console character to reg-a

squ  {Of80Sh reader in 1o reg-a

equ  (fRO9h wconscle char from ¢ to console out

equ  Of8Dch ipunch char from c to punch device

agu  Jf801h Jdist from c to list device

equ  Of812h .console status 00/ff to register a

disk ports and commands

equ 78h baze of disk command io poris
equ base disk status (input)

equ base+1 resull type (input)

aqu base+3 ;result byte (input)

agu base+1 ioph low address (output)
equ bagse+2 ;ioph high address [output)
equ  4h wead function

agu &h ywrite function

equ  3h .recalibrate drive

aqu 4h .ifo tinished mask

equ  0dh ;carriage return

aqu Oah Jhine feed

1signon message: xxk ¢p/m vers y.y

db cr, If, i

if test

db ‘3z 32k example bios

endif



HIEWISTH T OL ANV I S1THH TUNISTE NOWYWIOINI TIv

651

200
2
202
203
204
208

207
208
209
210
21
212
213
214
215
216
217
218
219
220
223
222
223
224
225
226
227
228
229
235
2N

202
233

168f 3030

1€a1 6b2042502f
1Bad 322e32
16b0 Dd0aD0

16b3 210001
18b8 219c16
1668 cddd17
16bc af

16bd 320400
16c0 c30117

18¢3 318000

16¢6 0ela
16¢8 ¢5

16c9 010000
16e¢ cdbbt7?
16¢f 0a00
16d1 cd7d17
16¢t4 Qeld
16d6& cda7?17
1649 002
16db cdaat?

boot:

i
whoot:;

whootl:

if not test

db ‘o ;memory gize fllied by relocator
endif

db 'k cp/mvers -

[ 1] vers/104°0r, *,' vers mod 10+'0°

db o, 10

sprint signon message and go W0 cop
[note: mds boot initiatized iobyle at Q003h)
Ixi sp, buff+80h -

Ixi h, signon

call  prmsg ;print message

xra a wchear accumulator
sla cdisk ;set initially to disk &
imp  gocpm .80 to op/m

loader on track 0, sector 1. which will be skipped for warm
tead ¢p/m trom disk—assuming there is 2 128 byte cold start
gtart

I%i sp, buif using dma—-thug 80 thru ff available lor stack

trvi ¢, retry imax retries

push b

ientar here on error ratries

1x) b, cpmb g8t dma address to start of disk system
call setdma

mvi ¢ Q 0ot from drive 0
call seldsk

myvk c, 0

call sertirk ;start with track ¢

myi ¢, 2 \start reading secior 2
call satsec



09I

HIYEWISTE TYLoK] Od AL Odd S THIH JELNIS Tt NORYWHOINI TV

234
235
236
237
238
229
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
265
256
257
258
258
260
261
262
263

264
265

266

16de ¢1
16dt 062¢

16e1 ¢5
1682 cdci17
1665 ¢24917
16e8 2a6c18
16ab 118000
16e8e 19
16Gef 44

1610 4d

1611 cdbbi17
1614 Jabb18
1617 fela
1619 da0517

16fc Jabals
1611 3c

1700 4f

1701 eda?i7
1704 af
1705 2¢
1706 4t
1707 cdact?
170a ¢
170b 05
170c c2e116

rdsec:

rdi:

:_:;ocprn:

read sectors, count nsects to zero
poep b J10-error count
mvi b. nsecis

iregd next sector

push b save sector count

call read

jnz booterr redty if errors ocour
thid  iod increment dma address
12 d, 128 \sector size

dad d Jncrementad dma address in hi
mav b, h .

mov &, | :réady for call {0 set dma
call satdma

Ida 05 ;sector number just read
cpi 26 read last sector?

ic rdi

must be sector 26, zers and go to next track
Ida iot \get track 1o register a
inr a

mov  Cc a ;ready for call

call setirk

nra a .clear sector number

inr a to next sactor

mov  C.oa ;ready for call

call seisac

pop b ;recall secter count

der tr done?

inz rdsec

dene with the load, reset default buffer address
{enter here from cold start boot)
enat:le rst0 and rsi7?



HIRAISTE IYAIDHD QL AYL0Ed S T TLNISTEE NOLIYWHOINI 1T

[L:48

267
268
269
270
2n
272
273
374
275
276
Fer
278
279
280
281
282
283
284
285
286
287
288
289
230
2m
292
293
294
295
296
297
298
292
300

1701 13
1710 23212
1712 d3fd
1714 al
1715 difc
1717 3eTe
1719 d3fe
171h at
171c d3i3

171e 018000
1721 cdbb17

1724 3ec3

1726 320000
1729 210016
172¢ 220100
172 320500
1732 210804
1735 22060G

1738 323800
173b 2100f8
173e 223300

174% Ja0400
1744 4f
1745 th
1746 c30000

di

mvi  a, 1zh JInitiallze command
out rewrl

xra a

oul  inlc \cleared

myi g, inte #5810 and rst? bits on
out  infc

xra a

out icon iinterrupt control

set default bulfer address to 80h
Ixi b, buft
call  setdma

reset monitor entry points

mvi a, jmp

sta o]

Ixi h, wboote

shld 1 Jump whoot at iocation 00
sta 5

i h, bdos

shid & \imp bdoes at location &

if not test

sta 78 imp to mon&0 (may have charged by dat)
Ixi h, mon8d

shid  7'8+1

endif

leave iobyte set
previously selected disk was b, send parameter to cpm

Ida cdisk Jlast logged disk number
moy ¢ a ;send o coplo logitin
at

jmp cpmb



791

HRVISTY TYLDKD OF AYYLINSCOU 5) Ti3H TANISTE NOILYWHOINI TTY

am
302
303

2085
308
307
308
309
310
amn
312
313
na
315
316
nr
318
318
320
a2
azz
322
324
325
326
az7
328
328
330
33
a2
333
33

1749 c1
174a 0d
174b cas??

17de 5
174f ¢3c916

1752 215017
1755 cdd317
1758 ¢30Hf

17Sh 3662616174

1761 cA1248

1764 cdQ3i8
1767 e67f
1789 ¢9

176a c20015

176d c30H8

baotere:

booterly.

v

bootmsg:
const:

conin:

canout:

list:

error condition ocourred, prin message and retry

pop b recall counts
der c

iz boolerQ

try again

push b

imp  whootD

otherwise 160 many retrias

Iz h, bootmsg
call prmsgq
imp mon80 \mds hardware manitor

db “?hoot’, ¢

consale status to reg-a
{exactly the same as mds call)
imp  csts

console character to reg-a

cal «ci
ani Tih remove parity bil
ret

console character from ¢ to console oui
jmp  co

st device out
(exactly the same as mds call}
jmp 11]



HIRWISTH TYAROK] O AdYL1O0U St I¥IH GAUNISTYI NOILYWIOINI T

3:43

335
336
377
338
339
340
a4
342
343
344
345
346
347
348
349
80
351
as2
353
354
355
356
57
58
359
360
381
el
63
364
363
366
67
368

1770 af
1771 c8

1772 c30cfd

1775 c30618

1778 DeD}
177a c3af1?

177d 210000
1760 79
1781 te04
1783 d0

1784 a2
1786 326618
1788 79
1785 o601
178¢ b7
1784 ca9217
1790 3230

1792 47

jistst:

punch:

reader:
home:

aetdsk:

setdrive:

ireturn list status

xra
ret

punch device oul

a

‘always not ready

(exactly the same as mds call)

jmp

po

;readar character in o reg-a
{exactly the same as mds ¢all)

imp

(5]

imeve Lo home posilion
treat as track 00 seek

mvi
imp

c. 0
setirk

.selact disk given by ragister ¢

Ini
Moy
cpi
me

ani
sta
moy
ani
Leig-}
iz
myi

moy

h, 000K sreturn 0000 if error
a, ¢
ndisks oo large?
:leave hl = 0000
10b ;00 00 for drive 0, t and 1010 for drive 2, 3
dbank :to select drive bank
a G 00, 01,10, 11
16 .mds has 0, 1 at 78, 2,3 at 88
a sresull 007
setdrive
a, 00110000b ;selects drive 1t bank
b, a .save ihe function



PoE

HOYWISTY TYUDID Qb ASYIFd O 51 TEIH TUNISTH HOWVARMOIN T

ol 1743 216818 bt n, lof sio funciion

370 1796 Te moy  a, m

kral 1797 eficl ©ani 11001111 ;mask out disk number

arnz 1753 bl ora b :mask in new disk number
73 179a 77 mov M, a save it in iopb

374 179b 69 mov |, ¢

ars 179¢ 2600 mvi h. 0 ;hi=disk number

76 179¢ 29 dad h e

377 1791 29 - dad h 4

azs 17a0 29 dad h '8

374 17al 28 dad h 16

280 17a2 113318 Ixi d, dpbase

381 1785 19 dad d :hi=disk header table address
a8z 17a6 c8 ret

383 ;

384 ;

385 seitrk:  |set rack gddress given by ¢

386 17a7 216at5 ’ Ixi P, ot

as7 17aa 71 mo¥  m &

388 17ab c9 rat

asg :

3p0 setsec:  set sector number given by ©

pe 3] 17ac 216018 Ix} h, 108

a2 17af 71 mo¥y m, G

293 1700 ¢ ret

384 geciran: )

395 stransiate secior be using table at de

306 17b71 0BAD mvi B0 double precision sector number in be
397 17b3 eb xchg Aranslate lable address to ht
598 1764 09 dad b ;transiate (sector) address
399 175 Te mov  am \translated sector number to a
400 17b6 326b18 sta ios

41 17b9 6f mov | a return sector number in |

402 17ba cd ret



HOHYTSTE TYUDNT Gl AXYIIRIOR] S TH TUNISTIS NOWYWHOIN TTY

S9L

403 ;
404 seldma:. ;s&t dma address given by regs b, ¢©

405 17bh 69 mov Lo

406 17bc 80 mov  h b

407 17bd 226218 shid  ipgd

408 17¢0 ¢9 ret

409 '

410 read: iread next disk record {assuming diskfrks sec/dma set)
411 17¢1 Oeld mvl ¢, readf ;361 to read function
412 17c3 cde? calf satfunc

113 17¢6 cdii7 calt  waitio ;perform read function
414 - 17¢0 9 ret .may have error set in reg-a
415 Lo

416 .

417 T wWrile: disk write function

418 17ca Qe mvi ¢, writf

419 7en cde017 cail setfunc set to write function
420 17cf cdi17 call waitio

41 1742 c9 ret :may have etror set
422 ;

423 1

424 ' utility subroutines

425 prmsg. print message at b, { to @

426 17d3 7e mav a4, m

427 17d4 57 ora a zero?

428 17d5 c8 rz

429 H maore to print

430 17d6 eb push  h

4 17d7 H moy  ¢,a

432 17d8 cdBal? call conout

433 17db et pop h

434 i7de 23 inx h

435 17dd c3d317 imp prmsg

436 E



991

HIWYIST TYUDIQ OL AdLIRON S1THIH TJLNISIS] NOUYWROINI 1T

a7
238
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
48D
461
462

454
485
466
487
468
469
470

17e0 216818
17e3 Te
17e4 e6f8
17e86 b1
17e7 17

17e8 ef20
17ag 216b18
17ed bG
170 77
17et ¢

1710 0eda

172 cd3f18
1765 cdacis

1718 226618
17fb b7

17tc 3667
1He 0618
1800 ¢c20618
1803 d379
1805 78
1806 d3va
1808 ¢31018

180b d3ag

setlune:

wailio:

rewait:

v

iodr:

sel [unclion for next ifa (command in reg-c)

ixi
mov
ani
oara
mov

the mds-800 controler requires disk bank bit in sector byte

n, iof

4. m
111110000
C

m, a

2o function address

;get it to accumulator for masking
remove previcls command

5l 1o new command

rreplaced in lopb

mask the bit Irom the current i/o function

ani
Ixi
ora
mov
ret

i

00100000
h, ios

m

m, a

c. reiry

mask the disk selact hit
,address the seciar select byle
.select proper disk bank

.set disk sslecl bit on/off

:max retries belore perm error

start Lhe ifo function and wait for completion

R riype
.clears the controller

1set bank flags
;zerodl drive 0,1 andnz if 2,3

a, iopb and offh  low address for ioph

call intype
call  inbyte
tda dbank
ora a

mvi

i b, ioph shr 8
inz odr
out ilow
mov  a. b

out  ihigh
jmg wailo
;drive bank 1
out itow+10h

:high address for iopb
driva bank 17
low address to controller

;high address
1o wait Tor complete

188 far drive bank 10



291

HOHYISTH 19D OL AWLTBACEG 51 T83H JLUNIS TR NOWYWIOINI TV

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
436
497
493
499
500
501
502
503
504

180d 78
180e d3Ba

1810 cd5918
1813 eb04
1815 ca1018

1818 cd2{18

181D fe2
181d ca3218

1820 b7
1821 c23818

1824 cddc1d
1827 17
1828 da3218
1820 1f
182¢ efle
182e c23B13

1831 c&

1832 cd4c18
1835 c33818

wailo;

wreaty:

Warror!

moe  a b
out ibigih+10h

calt instat .wail for completion
anij jordy ;ready?
iz waito

check io completion ok

call  inlype ,must be io complete {00) unlinked
00 unhnked i/o complete, 01 linked i/0 complete {(not used)
io disk status changed 11 (not used)

cpi 106 ready status change?

iz wready

must be 00 in the accumulator
ora a
inz warror :some other condition, retry

check ifo error bits

call inbyte

ral

i¢ wready unit not ready

rar

ani 111111100 :any other errors? {deleted dala ok)

nz werror

read or write is ok, accumulator contains zerg
ret

ol ready, treat as error for now
call inbyte sclear resull byte
mp trycount

return hardware malfunction {cre, track, seek, etg))



#91

HOEYISTE T OL N0 51 JHIH TANISTN] NOUYWEOINL TTY

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

535
536
537

1838 0d
1839 c2217

183¢ 3el1
1830 ¢9

183f 3a6618
1842 b7
1843 c24918
1846 Jb79
1648 c9
1549 dbs9
1846 ¢

intypt:

the mds controller has refurned 2 bit in ach position
of the accumulator, corresponding to the conditions:
—deleled data {accepted as ok above}

—CrG arror

—seak errar

—address error (hardware malfunclion)
—data over/under flow (hardware makunction}
—write protect (Ireated as not ready}

—write error {hardware malfunclion)

—not ready

accumulator bits are numbered 7654321 0)

[ T TR ]

it may be useful to filter out the various conditions,
But we will get a permanent error message if it is not
recoverable. in any case, the not ready condition is
treated as a separated condition for later improvement

regisler ¢ contains retry count, decrement "t zero
dor ¢ N
inz rewalt sfor ancther try

cannoi recover from error
myi ai etrror code
ret

intypa, inbyta, instat read drive bank 00 or 10
Ida dbank

ara a
jnz intyp1 iskip to bank 10

in rype

ret

in riypet10h ‘7B for0,1 8Afar 2, 3
ret



HOWYISTY TV G ANWLIRAHONS S TAH TINISTR) NOUYWHOINI TTY

691

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

561
562
5623
564

566
567

569
570

184¢ 3a6618
1841 b7
1850 25618
1853 db7h
1855 c9
1856 db8b
1858 ¢9

1859 3ab618
185¢c b7
185d 26318
1680 db78
1862 c%
1863 db2g
1865 c2

1868 00

1867 80
1868 04
1869 01
186a 02
186b 01
186c 8000

:mbyle:

inkbyt1:

instat:

instat:

dbank:

ioph:

iof;
ion:’
ot
ios:
iod:

ida
ora
inz
in

ret
in

ret

Ida
ora
inz

ret
in
ret

dbank
-]
inbyt1
royte

rhyte+10h
dhank

a

instal

dstat

dstat+10h

data areas {must be in ram)

db

1] «disk bank 00 if drive 0, 1
i 10 if drive 2, 3

:io parameter block

db
db
di
db
db
dw

80h .normal i/o operation
readf iio function, initial read

1 umber of sectors to read
offset itrack number

1 sector aumber

budtf Jio addregs

define ram areas lor bgos operation

endel



1723

HIWYTSd TYLUOIA O AFYINRIOY] S TEH TALNASIH NCHLYIWECING 1Tv

571
572
573
574
575
576
577
578
579
580
581
s82
583

als1
als?2
afsd
alv0
alv1
alv2
alv3d
base
bdos
begdat
bias
boot
booter)
tooterr
bootmsg
butf
cotisk

Ci

co

186e+=
186+
18ee+
180d+
181d+
143¢c+
194¢+
1860+
187b+
199a+
19aa+=
013¢+=
192a

D01

001§

0011

18ee
191¢
194¢
197b
007
0806
186¢

18b3
1752
1749
175b
0oso
D004
1803

faog

begdat  equ

dirbuf: ds
alvd ds
cevlr ds
alvl: ds
cavl: ds
alvz; ds
Csva: ds
akvd: ds
vl ds
enddat  equ
datsiz &aqu
end
141%
1468
51k
a7 5736
a1 57T5#
a5 57T#
99 5794
1804 161
294 287
571# 582
194 224
63 207#
305 3104
241 ol
nz A6k
344 209
334 213
1724 a5
174% 330

$
128
3t
16
N
16
It
16
at
16
$
$-tegdat

182 183

221 278
296

directory access buller

185

566

186



HIWYI53 ToliTNa Od AdYLIHdOud S1 383H TLINISIHL NCHLIYWROINI TV

it

conin
concut
const
cpmb
cpml
cr
¢581
css?
cssd
csts
cswil
osvl
cave
cavid
datsiz
dbank
dirbuf
dphld
dpb1
dph?2
gpb3
dpbase
dped
dpel
dpe2
dped
datat
enddal
false
qocpm
home
icon
ihigh

1764
176a
1761
onao
1600
000d
op10
oo
0010
{812

1904
193¢
196b
195a
03¢
1866
1868
1673
1673
1673
1673
1633
1633
1643
1653
18663
ogve
19ae
0000
1701

1778
a0f3

G07a

66
&7
65
284
30
1924
1424
1474
1b24
1774
a7
91

89
5824
361

es
80

98
B3#
Ban
884
924
964
1814
5814
158
214
I
1664#
1864

3244
3208
320#

a
186

322

STdH
o764
3784
580#

459
20
1014
1404
1454
1504
380

550

16
265#
404
275
456

432

30

205

531

143

552

472

226

539
98
145

289

547
5724
150

5584#



Tl

HIYISTE WWLIIN OL AFY LSO 51 T9IH QRLNISIS NOWYWHOINI TT

ilow
inbyt!
inbyte
instal
instal
imc
inlg
intypl
intype
iod
odr1
iof
ion
iopb
iordy
0%
iot

I

list
{istst
1o
mondo
nsecls
offset
palch
po
Rrmsg
punch
rbyte
rdi
rdsec
rgad
reader
readf

0oTe
1856
184¢
1863
1859
00t
oote
1849
=]
186¢
1804
1868
1869
1367
0004
186k
186a
0002
1764
1770
808
800
a02e
0302
1600
80c
17d3
1772
007t
1705
161
17ed
1775

1854
541
457
549
474
16D#
1674
533
456
242
463
369
563#
461
1914
248
252
193

78
1764
170%

Wi

aza

25¢#
1754
21

69
183#
250
238%

76

70
1984

484
5444
490
5524
5478
271
272
536#
479
407
469K
439

462

475
381
386
196
33o#
A36#
34
29
237
100
27
343
313
3414
542
2678
262
240
454
411

470

501

273

5314

5664

GE24

SB0#

400

S6a#
196

564
26

425#

S44

4104

562

5304

447 565#

205



HOYYISTE TWLiOId O) AYYLIICGES S1 THIH TLINZSTRI NOLVWNOIN TTv

tal

recal
retry
revrt
rewait
ri
maonad
Hype
sactran
seldsk
seldma
seldrive
setfunc
Seisac
setirk
signon
test
true
trycount
vers
wallo
wailio
whboot
whoot)
whoote
werror
wready
write
writf
*xIt0
*It1
xit2
xIt3

0003
000a
notd
1742
1808
ot
0079
17bt
177d
17bb
1792
17l
17ac
17a7
169¢
0000
1Ht
1838
0016
1810
110
16c3
1609
15G3
1838
1832
17ca
0006
1682
1682
1662
1602

1904#
58
1644
as44
1734
1714
182#
74
72
5
365
412
74
73
1954
64
44
502
64
467
13

2258
Gai
487
483
77
1804
84

a2

223
269
524
347
34
534
3944
229
227
J6TH
419
233
231
210
18
15
5214
204
474
420
217#

284
495
492
4178
418
1124
1438
1484
153n

453

538

548
247

437
269
255
21
204

476
AS2#

5044
500

143

279
380
as2

197

148

404%

854

200

153

289






HOUYISTY WLITAO OL AYVISRO8 51 TYTH TILNITTES NOUYWHOINI TTY

SL1

-
=007 RN - R I S e

NBI\JI’OI\JMMI\)-!J-‘_A_:_A_.._;_A
-4 N b @h = OWE-~d®n L hd -

0014 =

0000 =
3400 =
3¢06 =
430D =
06004 =
0003 =

4a00
002« =

4al0 c39c4a
4a03 clabda
4306 c3114b
4a08 ¢3244b
4alc ¢3374b
4a0f ¢3484b
4a12 c3dddn
d4a15 c34fdb
4218 c3544b

Appendix B: A Skeletal CBIOS

bias
cop
bdos
bios
cdisk
iobyte

ngects

whoote:

skeletal chios for first lavel of cp/m 2.0 alteration

equ

20 JGpYm version memory size in Kilobytes

“bias” Is address offset from 3400h for mamory systems
than 18k (referrad to as “b” throughout the text)

equ
equ
equ
equ
equ
equ

org
equ

(msize-201"1024
3400h+bias  ;base of ccp
cCp+806h :base of bdos
ccp+1600h  [bage of bios

0004k ;curvant disk number O=a, . .., 15=p
apo3h intel ifo byte
bios ;origin of this program

($-ccp)/128  warm slart sector cound

jump vector for individual subroutines

imp
jmp
jmp
jmp
imp
jmp
jmp
jmp
jmp

bool weold start

whoot warm start

const console siatus
_conin .console character in

conout wconsole character out

list Jlist characier out

punch punch character out

reader sreader characier out

home .move head to home position



Ll

HOEYISTE TYLIDWA OL AW [IMd OB S1 T83H AUNISTEd NOUYWEOINI Ty

BERLERLEBY

dalb ¢35a4h
dale ciTddb
‘4a21 c3924b
4524 c3ad4b
4a27 c3cd4b
da2a c3d6db
4a2d ¢d4bdb
4330 c3a74b

4a33 734a0000
4a37 00000000
4aihb f0dcBdda
4adf ecadi0ad

4243 73420000
4ad7 (0000000
4a4b fMcBdda
dadf fcddBfad

4353 734a0000
4a57 GO000000
4a5b HdcBdaa
4a5f Ocdeasdd

4a63 73420000
4a67 00000000
4abb fd4cBdda
4a6f 1cdecdad

B

Eipbase:

imp  seldsk .select disk
fmp  setirk

jmp  setsec \set sector number
jmp  setdma set dma address
jmp  read rread disk

imp  write swrite disk

imp listst ;return list status

jmp  sectran

fixed data tables for four-drive standard

ibm-compatible 8" disks

disk parameier header far disk 00
dw trans. 0000h

dw 0000k, 0000h

dw dirbf, dpbilk

dw chik090, allod

disk parameter header for disk (1
dw rzns, 000CH

dw QOO 0OBOR

dw  dirbd, dpblk

dw chkd1, alig1

disk parameter header for disk 02
dw trang, 0000K

dw 4000h, DOG0N

dw dirbf, dpblk

dw chk02, allg2

disk parameter headear for disk 03
dw trans, 0000h

dw QOO0N, 0OO0N

dw dirbd, dphik

dw ¢RKO3, alldd

sector Iranslate vector

'set track number

secior franstate



HYISTY T LITHA DL AL S0 S IWIH TALNIET8d NCHLYWHCHNT 1TV

il

&1
62

65

67
68
68
70
n
72
73
74
75
L
T
78
79

8

a3
54
85
85
&7

91
92
93
94

4373 1070013
4a7? 19050611
4a7b 1702000f
4a71 15020808
4aB3 141a060¢c
4aB7 12180402
4aBb 1016

438d 1200
4a8f 03
4a90 07
4291 00
4382 200
4ad4 300
4596 ¢
4387 Q0
4a98 1000
4a%a 0200

4ad¢ af

45%d 320300
4aal 320400
4333 ¢defda

4aab 318000
daa9 0al0

daab cdSadb
daae cdS44b

trans:

dpblk:

Loot

wboot:

L

db 1,712,199  sectors 1, 2,3, 4

db 25,5 11,17 seclors 5, 6,7, 8

db 23,3, 915 :sectors 9, 10, 11, 12
db 21,2, 8, 14 sectors 13, 14, 15, 16
db 20, 26, 6, 12 ;sectors 17, 18, 19, 20
db 18,24, 4,10 sectors 21, 22, 23, 24

db 16, 22 seciors 25, 26
.disk parameter block, common to all disks
dw 26 :sectors per track
di 3 .block shifl factor
db 7 block mask

db ] shull mask

dw 247 .disk size-1

dw 83 :directory max
db 192 ;alloc O

db 0 ;alloc 1

dw 16 .check size

dw 2 ;track olfset

end of fixed tables

individual subroutines to perform sach function
simplest ¢ase is 10 just perform parameter initialization

ra a 128ro in the accum

sla iobyte :clear the iobyte

sta cdisk select disk zero

jmp gocpm .initialize and go to cp/m

simplest case is to read the disk until all sectors loaded

Ixi sp, BOh :use space below bulfer tor stack
tnvi G0 ;select disk O
call  seldsk

call home igo 1o track 00



BL1

HONYIST TYIDKS OL AT S T0EH TANISANE NOLYWIHHNIL Y

85
g6
97

100
10

102
103
1G4
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127

4ab1 DH2C
4ab3 000
dab5 1602

4ab? 210034

4aba cb
4abb d5
dabec e
45hd 4a
d4abe cdi2db
4ac1 ¢l
dac? c5
dacd cdaddb

4ach cde34b
4ac9 fe0)
4ach ¢?afda

dace el
dact 118000
dad2 19
4ad3 d1
4ad4s c1
4ad5 05
4adf casfda

4acd 14

boadi:

myi b, nsects ;b counts # ot sectorsts Ioad
mvi c 0 ;¢ has tha current track number
mvi d, 2 .d has the next seciarto read

note thal we begin by reading track D, sector 2 since sector 1
contains the cotd start loader, which is skipped in a warm start

xi h, cep base of cp/m (initial load point}
:load one more sector

push b ;save sector count. current track
push d :save next sector to read

push h save dma address

mov ¢, d ;get sactor address 1o register ¢
call setsec ;set sector address from ragister ¢
pop b ;recall drma address lo b, ©

push & ;replace on stack for later recalt
call setdma :set dima address from b, ¢

drive set to 0, track set, sector set. dma address set

call read
cpi DOh .any errors?
inz whoot :retry the entire boot if an error occurs

ng errgf, move Lo next sector

pop h recall dma address

Ixi d, 128 dma=dma+128

dad d ;new dma address is in h, |

pop a recall sector address

pop b srecall number of sectors remaining, and current trk
ger b ‘sectors=sectors-1

iz gacpm stransler to cp/m if all have been loaded

mote sectors remain 10 load, check for track change
inr d



&4l

HIHYISTH TwLDH] OL AP LIRS 393H QLINISTH NOUYWHOINI TTY

128
129
jan
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
133
154
155
156
157
158
139
160

dada 7a
dadb feib
4add dabada

4aed 1601
dae? Oc

4ae3 ¢35
daed d5
daes eb
daeb cdTddb
4aed e
4aea d1
daet 1
daec c3bada

4aet Jecd

4af1 320000
4atd 21034a
dat? 220100

4afa 320500
4afd 21063¢
4b00 220600

403 018000
4b0& cdaddb

4b09 b

gocpm:

mov  a d sector=277. if 50, change tracks
cpi 27
jc loadl carry generated #f seclor<2?

end of current track, go to nexl track
myi d 1 :begin with first seclor of next track
inr c track=track+1

save register state, and change tracks

push b

push o

push  h

call settrk frack address set from register ¢
pop  h

pop  d

pop b

jimp  loadi for another sector

end of load operation, set parameters and go to cp/m

mvi a, Gc3h €3 is a jmp instruction

sta 1} for jmp to wboot

Ixi h, whoote  whoot enliy  point

shid 1 ;set address fiald for |mp at0

sta 5 dor jmp 10 bdos

Ixi h, hdos ;bdos entry polnt

shid & ;address field of jump at § to bdos
Ixi b, 80h idefault dma address is 80h

call setdma

e enable the interrupt system



(]

HOWW2ETY TWLIDIA QL ASYLMIOY S| FHIH TUMNISTES NOUVIWHOIN TTV

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
180
1
192
183

4h0a 3a04034
4b0d 41
4ble cI0024

4b11
4621 300
4b23 ¢B

4b24
4b34 eG7I
4b36 @

4p37 79
4p38
4548 c3

4b49 79
4bda 3

4bdby af
dbdc c9

'
canst.

conin:

congut:

list:
lisist:

hunch:

ida cdisk :gel current disk number
mov ¢, a send ta the oop
imp cep ;go to cp/m for further processing

simple i/o handlers {must be filled in by user}
in each case, the entry point is provided, with space reserved
te ingert your own code

wconsale stalus, return Offh if character ready, 00h it not

ds 10h ;space for status subroutine
myi a, 00h
ret

censale character into register a

ds 10h ;space for inpul routine

ani 7ih istrip parity bit

ret

.console character output from register ¢

mov  a.c .get to accumulator
ds 10h ;space for outpul routine
ret

Jlist character from register ¢
moy ac ;character to register a
ret ;null subroutine

sreturn tist status {0 if not ready, 1! ready)
kra a ;0 is always ok to redurn
ret

ipunch character from register ¢



HOWYISTH TYLIDICE QL A¥VLIRE A $1 TIIH JLUNISTEd NOUYWEGINI T

191

194
195

196
-0

198
199

20
202
203

205

207
208
209
<210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

4b4d 79
4pde ¢®

reader:
4bd! 3ela
4051 e67f
4b53 c9

i'lome:
4b54 0600 '
4656 cd7ddb
4659 ¢4

seldsk;

4bba 210000
4b5d 79
4pSe 32efdc
4481 feDd
4663 d0

ab64

dbBe Jaefdc
an71 6t
4b72 2600
ab74 29

mov  a, ¢ character to register a
ret snult subroutine

.read character into register a from reader device

mvi a, 1ah ;enter end of file for now (replace later}
ani Th rremember to strip parity bit

red

i/o drivers for the disk follow

- tor now, we will simply store the parameters away for use

in the read and write subroutines

imove 10 the track 00 position of current drive
iransiale this call into a seftrk call with parameter 00

mivi c.0 ;select track 0
call setirk
ret :wa will move to 00 on first read/write

sefect disk given by ragister ¢

x| h, 000Ch rerror return cade

mov  ac

sla diskno

cpd 4 :must be between0and 3
mg no carry if 4,5, ...

disk number is in the proper range

ds 10 ;space for disk select
compute proper disk parameter header address
Ida giskno

mov | a 1=disk number 0,1,2,3
myi h, O high order zero
dad h "2



8L

HRFISTY TYAIH OL SHYLINAICHE S THIH JLUNISTRE NOLYWICHNI TIV

227

228

209
230
2N

232
233
234
235
236
237
238
239
240
L3

242
243
244
245
248
247
248
249
260
251
262
253
254
255
256
257
258
258

4b75 29
4b76 29
4677 2
4b7E 11334a
4h7Th 19
4b¥c ¢

4b7d 79
4b7e 32840
4581

4h91 9

4092 79
4h93 32abic
4b96

4bab c8

4ba? &b
4baB 09
4bad 6e
4baa 2600
dbac cd

4bad €9
Abae B0
4baf 22eddc
4bb2

seltrk.

i
setsec:

sectran:

setdma.

dad h 4

dad h - -
dad h 16 (size of each header)
ixi d, dpbase

dad O shi=_dpbase(diskno® 16}
(]

;sel track given by register ¢

mov  a,.c
sta track

ds 10K .space {of irack select
ret

set seciar given by register ¢

mov a8, c
sta sector

ds 1Ch space for sector select
ret

‘transtate the secter given by bc using the
\lranslate table given by de

xchg ;hi=¢rans

dad b Jhi= Arans{seclor)
mow 1om i1 = trans(sector)
i h, 0 Al = trans{sector)
ret with value in hi

set dma address given by registers bandc

mov ¢ low order address

mav  h. b :high ¢order address

shid  dmaad save the address

ds 10h \space for setling 1he dma address



HYHVISTE TYAIDIG OL AYYLINORd $1 TUIH TILNISTEd NOWYWHOHN TTV

318

260
261
262
263
264
285
266
267

269
270
2n
272
273
274
275
276
277
278
279
280
201
292
283
284
285
288
287
208
289
290

4abe2 ¢

4b¢3
4bd3 cleddb

abd6

4beG
4¢e6 3e01
dced c9

4ced
4ceb
4ced

Iread:

wrile:

" waitlo:

track:

sector:
dmaad;

ret

sperform read operation {usually this is simllar 1o write
50 we will allow space to set up read command, then use
common cogde in write}

ds 10h ;3et up read command

imp  waitio 1o perform the actual /o

;perform a write operation -
ds toh set up write command

.enter here from read and wrile to perform the actual ivo
operation. return a DOh in register a if the operation completes
propertly, and 01h if an error occurs during the read or write

in this case, we have saved the disk number in “diskno’ {{, 1}
the track number in ‘track’ {D-76)
the sector number in ‘sector’ (1-26)
the dma address In 'drmaad’ {0-65535)

ds 256 :space reserved for ifo drivers
mvi a1 ;error condition
ret ;replaced when filled- in

tha remainder of the cbios s reserved uninithalized
data area, and does not need to ba a part of the
system memory image {the space must be available,
however. between “begdat” and “enddat”).

ds 2 ‘two bytes for expansion
ds 2 Awo byles for expansion
ds 2 ;direct mamory address



el

HIPYISTH VDI OL AYVIIRON 5) 33H TLLNIFTE NOLWYWEOINI TIY

2

293
294
295
298
297
298
299
300
an

303

307

allop
alo
alioz
alind
bdos
begdat
bias
bios
boot
cep
cdisk
chkdQ
chikd1
chkD2
chk(3

dcef

4cfd =
4cf)
4470
4081
ddae
4ded
d4dec
4dfc
delc
4elc

4e2c
Ot3c =
4e2¢

4470
448

4clae
4ded
Ac0b
4¢10

0000
4a00
4a9c
3400
0004
ddec
ddic

delc
4alc

4

;disk number 0-15

scratch ram area for bdos use

diskno:  ds
bagdat  equ
dirbf: ds
alloo: ds
alip1: ds
ato2: ds
allod: ds
chkQQ:  ds
chkd1: ds
chki2:  ds
chki3:  ds
enddat  equ
datsiz equ
end
43 296#
48 297
53 20B#
53 2094
104 154
2944 306
an g
114 15
19 Bai
a# 10
124 &7
43 3004
48 A0t
53 302#
58 302#

§
128
3t
3%
3
R3]
18
16
18
18

§

;beglnning of data area
:scratch directory area
:allocation vector (¢
sallgcation vector 1
;allocation vector 2
.allocation vestor 3
.check vestor O

eheck vector 1

check vector 2

.check vector 3

;end of data area

$-begdat; ;size of data area

1"
161

18 101 163



HOYYISTH TYLUDK] OL AVEiONd SI T TLENFSTiS NOWYWEOINS TV

8l

conin
cornout
gonst
datsiz
dirpt
diskng
dmaad
dpbase
dpblk
enddat
gocpm
heme
iobyte
list
listst
load1
msize
nsects
punch
read
reader

‘sector

sectran
seidsk
setdma
selsec
sattrk
track
trans
waitio
wboot
whoola
wrile

4h24
4037
4b11
013¢
4cfo
dcef
4ced
4223
4add
4elc
daef
4b54
ono3
4149
At b
4abha
o014
00ze
dbdd
4bc3
Abdf
dceb
4ha?
d4b5a
4bad
4092
4dh7d
4ced
4a73
4bet
4aa
4303
4bdb

Fal
3064

217

258
404
42

305%

27
13#
24

102%

34

164
25

26
242
a5
28
A
20
29
238
40
266
20
208
33

1754
180#
170%

a7
223 .
2904
230
47

124
94
86

185#

189#

130

26
1934
113
1984
2894
2464

93
14
107
140
268#

45
2714

150
268#

§2
2914

52

1474
2084

144

2624

2144
158
2404
n

115

57

2344
55

6o#

6%






Appendix C: A Skeletal GETSYS/PUTSYS Program

0100

0014 =

0000 =
3400 =
3¢00 =
4a0) =

0100 318032
0103 218033
0106 0800

msize

, “bias” is

v

bias

. CCP

bdos
bios

rd$trk:

combined getsys and putsys programs from
Sec 6.4
Start the programs at the base of the TPA

org 0100h
egu 20 ; size of cp/m in Kbytes
the amount to add to addresses tor > 20k

{referred to as "b” throughout the text)

equ {msize-20)"1024
equ 340Ch+bias
equ ccp+0BO0h
equ ccp+1800h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register usage

a {scratch register)

b track count {0..76)

c sector count {1...26}
de {scratch register pair)
hl load address

sp - set to track address

; start of getsys
Ixi sp,ccp-0080h ; convenient place
xi  h,cep-0080h set initial load
mvi b0 , start with track

. read next track

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARTH 187



0108 0

010a ¢d0003
Q10d 118000
0110 19
0111 0¢
0112 79
0113 felb
0115 dalal

0118 04
o112 78
011z fe(y2
011¢c da0801

o0t1f fb
012076

0200

0200 318033
(203 218033
0206 0600

0208 0e

0204 cd0004
020d 118000
0210 19
0211 Q¢
0212 79
6213 felb
0215 da0a2

0218 04
0219 78
021a fe2
021¢ dansoz2

ozIf fb
0220 76

188

ra$sec:

mvi ¢l ; each track start

cail read$sec . get the next sector

Ixi d,128 ; offset by one sector
dad d ; (hl=hi+128)

inr ¢ . next sector

mov a.c . fetch sector number
cpy 27 ; and see if last

jc  rdsec ; <, do one more

; arrive here at end of track. move o next track

inr b ; track = track+1
mov a,b ; check for last
cpi 2 ctrack =2 7

jc  rd$trk ; <, do another

; arrive here at end of load, halt for lack of anything

: better

put$sys:

wrtrk;

wr$séc:

ei

hit

pulsys program, places memory image
starting at

3880h + bias back to tracks 0 and 1

start this program atthe next page boundary
org {($+0100h} and Off00h

Ixi  sp,ccp-0080h ; convenient place
Ixi h,cop-0080h ; start of dump
mvi b0 . start with track

mvi ¢, 1 . start with sector

calt write$sec ; write cne sector

Ixi d,128 ; length of each .
dad d s <hlz>=<hi>> + 128
inr c y C = +
mov a,¢ see it

cpi 27 ; past end of track
jc  wrisec . no, do another

; arrive here at end of track, move to next track

inr b : track = track+1
mov a,b ; see if

cpi 2 . last track

jo  wrdtrk . ho, do another

done with putsys, halt for iack of anything
better

ei
hit

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




e,

0300

(300 c5
0301 €5
0302

0342 el
0343 cl
0344 c9

0400

0490 ¢5
0401 e5
0402

0442 el

0443 cl
0444 c9

0445

. user supplied subroulines for sector read and write
; move to next page boundary

org ($+0100h) and DHOCH
read$sec:

: read the next sector

;track in <b>>,

;. sector in <¢>

; dmaaddr in <hl>

pushb
pushh

; user defined read operation goes here
ds &4

pop h
pop b
ret

org {$+0100h} and 0if00h ;another page
sboundary

writedsec:
. same parameters as read$sec

pushb
pushh

; user defined write operation goes here
ds 64

pop h
pop b
ret

; end of getsys/putsys program

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH 189







161

HOUYISTE TYLIDIG OL AYVLIRKCRR 51 383H TIINIST] NOLLYIWECOINT TV

BBMMAJ-A_A_.-.;_._._A_.
Er=0 -0 - BT R O U = R = U R -

R D3 R DO RS RO
O~ R LA S

Appendix D: The MDS-800 Cold Start Loader for CP/M 2

0000
Liiid

0000 =

false
true
testing

bias

bias

cpmb
bdos
bdose
boat
rbaot

bdos!

nirks

hdoss
bdaso
bdost

title

mds cold start loader at 3000h

mds-800 cold start lpader for cp/m 2.0

version 2.0 augusi, 1979

equ
eqgu
equ

if
equ
endif
if
equ
endif
equ
equ
2qu
aqu
equ

org

equ
equ
2qu
equ
equ

o

not falsa

{alze if true, then go 1o mon8D on errors
testing

03400h

not 1esting

0020h

hias \base of dos load

B808h+blas .entry to dos for calls

1880h+bizs :end of dos load

1600h+bias reold starl entry point

booi+32 swarm start eniry point

030000 loaded down from hardware boot at 30004
bdose-cpmb

2 :number of tracks to read
bdosl/128 ‘number of seclors in gos

25 mnumber of bdos sectors on track 0

bdoss-bdosg

.number of sectors on track 1



761

HIAYISTY UG OL AFLITRICH S1 T43H TLNISIH. NOUYWHOINI TTv

1800 =
faf =

0078 =
0479 =
0076 =
Q071 =

Q0078 =
o079 =
007a =
00t =

0003 =
0004 =
¢100 =

3000 310001

3002 db79

3005 db7b

3007 dbft
3009 ef02
300b c20730

300e d371

3010 0602
3012 214230

monB0
rmonB0
base
nype
rbyte
reset

dstat
ilow
shigh
bsw
racal

" readf

stack

rstart;

coldstart

agu of8d0h  intel monitor base

egu offofh srestart iocation for mongQ
aqu  078h hase’ used by controllier
squ  base+1  result type

eqgu base+3  result byte

equ  base+?  reset controlles

equ  base ;disk slatus port
equ  base+1 low iopb address
&qu base+2  high iopb address

equ  offn ;boot switch

equ  3h recatibrale seiecied drive
equ 4h .disk read function

equ 100k wusé end of boot tor stack
Ixi sp.stack: in case of call to mond0
clear disk status

in rtype

In rhyta

check if boot swilch is off

in bew

ani azh switch an?

inz coldstart
clear the controller
out reset Jlogic cieared

mvi b.ntrks  .number of tracks to read
(i h.iopbo



HAVIST TYADK) OL A LI O S| THIH TUNISIHD NOLLYWHOINI TTY

j3-1 8

EBR2CIIIFHANINI3IBTIRRES

a5
ey
89
1)

91
92

95

3015 7d
3016 d379
3018 7c
3019 da7a
3b db78
301d es04
3011 ca1b30

022 db7a
3024 8603
3026 te02

3028 20030

3026 duTh

302d 17
302e dcOfif
3031 1
32 eble

start:_

waito:

rend first/next track into cpmb

mov  al
cub ihow
mov  ah
cut  ihigh
in dstat
ani 4

iz waito

check digk stelus

in rype
ani 1ib
cpi 2

if testing

cne ymongl  go to monitor If 11 or 10
endif

if nat lesling

jnc rstart iretry the load

endif

in rbyte /o complete, chack status

it not ready, then go to mangd
rat
ce rmon80  not ready bit set

rar restore

an| 11910b  overrunsaddr err/seek/cro/axi
if testing

¢nz  rmon8C 9o to menitor

endif

if not testing



ol

HOYYISTd TR OL KV Craa $1 Fa3H MUNTSId NOLLYWHOMN TTY

97

89
100
10t
102
103
104
105
106
107
108
109
LAl
111
12
113
114
115
118

17

118
119
120
121
122

123’

124
125
126

3034 200630

3037 110700
303a 39
303h 05
03¢ ¢21530

303f 30018

3042 80
3043 04
3044 19
3045 0D
3046 02
3047 0000
0007 =

3048 80
304a 04
304b 18
304¢ 01
304d 01
304e 800c

050

iopbo:

iopbl

lopb:

inz
endif

ixi
dad
der
jnz

rstart ;ratry the lpad

diopbl  :length of iopb

d .addressing next iopb
b .count down tracks
start

imp to boot to print initial message, and set up jmps

jmp

baot

parameter biocks

db

end

a0h Jincw, no update

raadl ;read function

bdosc ¥ sectors to read on track O
4] track 0 :

2 \slart with sector 2 on track 0
cpmb slart al base of bdos
$-iopbo

80h

readf

bdost sectors to read ontrack 1

1 ‘track 1

1 sector 1

empb+bdos(® 128 base of second read



HYFYISTH 19Ar0IA QL AYYEHYIOW 91 3HIH TLLNISTRE NOLYWECOINI TIV

111

base
bdos
bdosc
bdost
bdose
bdosl
bdoss
hias
boot
bsw
coldstart
cpmb
dstat
faisg
ihigh
ilow
iopbo
woph
iopbl
monB0
ntrks
rboot
rbyte
readf
recal
reset
rmenBd
rstar
riyge
stack
start
testing
trua
waito

0078
0B0&
0019
0018
1880
1880
0031
0000
1600

OOt

3007
0ong
0078

007a
0079
a2
3049
0007
200
aog2
1603
007
0004
0003
007t
fi0f
3000
0079
100
3015
ao0o
1Fff
).

I
184
284
294
9%
254
274
124
204
414
524
174
384

7#
40#
il

1194
101
N#

218
as#
434
424
364
32
A4
348
a44
o34

ay

a4
70K

34

121
26
27

154
21
53
55
25
0

59
B7
11#

niw
60

50
112

57
80
83
49
47
104
1

T2

a5

113

17

108

116

117

B6
120

89
97
75

36 38 39 4
124

18 19 20
124

94

79 82 93 96






e,

Appendix E: A Skeletal Cold Start Loader

; this is a sample cold start loader, which, when

; modified

; resides on track 00, sector 01 {the first sector on the
; diskette). we assume that the controller has loaded
; this sector into memory upon system start-up {this

; program can be keyed-in, or ¢can exist in read/only
; memory

» beyond the address space of the cp/m version you are
, running). the cold start loader brings the cp/m system
. into memory at "loadp” (3400h + “bias™). in a 20k

, memory system, the value of "bias" is 0000h, with

: large

%, values for increased -memory sizes (see section 2).
; after .
, loading the cp/m system, the cold starl loader
: branches

» 1o the "boot” entry point of the bios, which begins at
; "bios” + “bias.” the cold start loader is not used un-
; til the system is powered up again, as long as the bios
1 18 not overwritten. the origin is assumed at 0000h, an
; must be changed if the controller brings the cold start
; loader into another area, or if a read/only memory

, area
;IS used.
0000 org : base of ram in
s ep/m
0014 = msize equ 20 ; min mem size in
; kbytes

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 197




0000 =
3400 =
4a00 =
0300 =
4300 =
1900 =

oo32 =

0000 010200
0003 1632

0005 210034

0008 ¢36b00

000k

006k 15
006c calCda

006f 318000

0Q72 39

198

bias equ (msize-20}"1024 ; ofset from 20k
; system
ccp equ 3400h+bias _; base of the cep
bios equ ccp+i600h ; base of the bios
biosl equ 0300h ; length of the bios
boot equ bios
size equ biostbiosl-ccp ; size of cp/m
; system
secls equ size/128 ; # of sectorsto load

: bagin the load cperation

cokd: .
Ixi b2 ; b=0, ¢c=sector 2
mvi d,sects . d=# sectors to
: load
Ixi h,ccp . ; base transfer
, address
Isect; ; load the next sector

: insert inline code at this point ta

: read one 128 byte sector from the

: track given in register b, sector

: given in register ¢,

: into the address given by <h!>

; branch to location “cold” if a read error occurs

; user supplied read operation goes

; here...
jmp past$patch . remove this
; when patched
ds  60h
past$patch:
; go to next sector if load is incomplete
der d . sects=sects-1
jz  boot ; head for the bios

; more sectors 10 load

, we aren't using a stack, so use <lsp>> as scratch
; register

; to hold the load address increment

Ixi sp.128 ; 128 bytes per
; sector

dad sp : s <hl> = <hi> +
128

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




0073 Dc
0074 79
Q075 teth

0077 daDEo0

007a 0e01
007¢ 04
007d c30800
0080

inr ¢ , sector =sector +1
mov a,c
cpi 27 ; last sector of
; track?
jc Isect ; no, go read
; another

; end of track, increment to next track

mvi ¢l ; seclor = 1

inf b ; track = track + 1
- jmp Isect ; for another group

end . of boot loager

ALL INFORMATION PRESENTED HERE 15 I’ll(i)PlltE'l’MY TO DICATAL RESEARCH 199







HOWVISTH TWiDK] OL ALIINON STTHIH TIINISTid NOWLYIWSCENI TTV

i

BEADD W

Appendix F: CP/M Disk Definition Library

CP/M 2.0 disk re-delinltion library

Copyright @ 1979
DOigital Research
Box 579

Pacific Grove, CA
934850

CP/M logical disk drives are defined using the

. macros given below, whete the sequence of calls

A

‘" disks n

diskdef parameter-list-0
diskdef parameter-list-1

diskdef parameter-tist-n
endat

where n is the number of logical disk drives attached
to the CP/M systern, and parameter-list-i defines the
characteristics of the ith drive {(i=0,1,....n-1}

sach parameter-list-i takes the form
dn isc Isc.{ski},bis,dks,dir,cks,ols, [ )

where

dn is the disk number 0,1.....n-1

fsc is the first sector number [usually Q or 1)
lzc is the last sector number on a track

skf is optignal “skew factor” tor sector transtate
bls is the dala tlack size [1024,2048,...,16384)



4114

HOWYI5Td TYLIONK] QL AYVIIRIC S THIH JRINTSTH] NOUWYWICHN! Ty

32:,
a3,
M
35: ;
36 ;
arn;
aa: ;
a:;
40: ;
411,
42 ;
43,
4,
45: ;
48: ;
477
48: ;
4%
5
51 ;
=
53 ;
g4:
55 :
54
57 ;
58:;
54 ;
80 .
61 ;
62; dskhdr
B3: ;:
64. dpebdn:

dks 15 the cisk size in bls increments (word)

dir is the number of direclory elements {word)
ks is tha numbar of dir alemenis 1o checksum
ofs is the number of tracks to skip {word)

{0 i5 an optional 0 which dorces 18K /directory end

for convenience, the form

dn,dm
defines disk dn as havirg the same characteristics as
& previously defined disk dm.

a standard four drive CP/M system is delined hy

disks 4

diskdef 0,1,26.6,1024 243.64,.64,2
dsk set o

repl 3
dsk set dsk+1

diskdef %dsk,0

andm

endef

1he value ol "begdat” al the end of assembly definesthe
baginning of the uninitialize ram ares above the bios,
while the value of “enddat” defines the next location
tollowing the end of the data arsa. the size of this
area is given by the value of "datsiz” at the end of the
assembly. note that the allocation vector will be quite
large if a large disk size is defined with a small block
size.

macro  dn
define a single disk header list
dw xIt&an 000N Jranslaie table



HIWIST TYlIDIA QL Afv TR0t 5| THIH TALNI S NOUYWHCIN T

€07

65:
66:
67
&8:
€9 ;
7o
1
72

3

74:
T
6.
77
7B:
75

80

81 ;
f82:
- dpbdidn

85 ;
86:

Iclisks
Ir;disks
dpbase

dsknxt

‘dsknxt

dpbhdr

dolb

87: i

88
8%

a1

: ;jdw

92: .

93
94:
95:
:ged

o7

a8

dw 000G, 00000

dw dirbuf.dpbédn
dw csvhkdnavddn
endm

macro nd

define nd disks

set nd

equ $

generate the nd elements
set a

rept nd
dskhdr  %dsknxi
set dsknxe+1
endm

endm

macro dn

equ $
endm

macrn  dala,comment
define a db statement
db data

endm

macrg  data,commenl
define a dw stalement
dw data

endm

macro m.n

iscratch area
-dir buff, parm block
:check, allog vectors

i for later reterence
:base of disk parameter blocks

«disk parm block

comment

comment

greatest commen divisor of m.n

produces value godn as result



oz

HIEVISTE TYLIONQ QUL AHY L ad0rad $) 393 THNISI N NOWYWROIN TTv

99 5

100:
101;
102
103:

104

105:

107:
108:
109
1Mo:
111
1M

113:

114:

115:,;

116
"7
18:
119:
120

121
122:

123
124,
125:

126:
127.
128:
120:
1300
131

écdm
godn
gedr

godx
gedr

gedm
godn

diskdef

dpb&dn
als8an
css&dn
xit&dn

SECmax
sectors
alsfdn
alsfdn

casfdn

Blkval

{used in sector transiate table generation)

set m " owatiable fer m
set n svatlable for n
set 0 ’ vvariable for r
rept 65535

set gedm/gedn

set gedm-gedx*gogn

if godr = 0

“exitm

endif

set gedn

set gedr

endm

endm

macre  dn.isc.lsc,skf,bls,dks,dir.cks,ofs k16
generate the set stalements for later tables

if © ool Isc
current  disk dn

same as previous fsc

equ dpbéfsc ;equivalent parameters

equ als&fsc ;same allocation vecior size
equ ceslfsc ;same checksum vector size
aqu xlt&fsc Jsame translate table

eise

set tso-{1sc) nsectors 0...secmax

set secmax+l nnumber of sectors

set {dks)/A .:size of allocation vector

if ({dks) mod 8) ne 0 '

sel als&dne1

endif

set (cks)/q wnumber of checksum elements
generate the black shift value

set bls/128 number of sectors/ block



HOYYISTE TeLDIQ OL AFvLardo0dd 51 F7IH QL NISTd NOUYIWEOINI TTV

0T

132
123
134
135:
136
137,

bikshf
blkmsk

138: 5

136
144
141;
142;

blkshf
blkmsk
blkval

143 5

144,
145;
146:;
147:
148:
149

.l'.}lkval
eximsi

150: 5

151,
152;
153:

extmsk
blkval

154: 5

155;
156:
157

extmek

158: .

159,
160
161!

extmsk

162,

163:
i64:
185:
166
167
1658,
168

dirrem
dirbks
dirtlk

Eaa

set a counts righl s in blkval
sat 0 fills with ¥'s from right
repl 18 wonce Jor each bit position
if blkval=1

exitm

endif

otherwise, high order 1 not lound yet

set bikshf+1

set {blkmsk shl I} or |

set Bikval/2

endm

generate the extent mask byte

set bs/ 1024 wnumber of kilobytes/ block
st 1} ;A1 from right with I's
rept 16

if blkval=1

exitm

endii

otherwise maore 10 shift

set {extmsk shi ) or |

set bibsevals2

endm

may be double byte allocalion

if (dks) = 256

set [extmek shr 1)

endif

may be oplipnal [D] in last position

3] not nul kK¥6

set k16

endif

now generate directory reservation bit vector

sat dir .4 remnaining to process
set bls/32 number of antries per block
set 0 ; Jilt with I's on esch loop
repl 15

if dirrem=0

exitm

endit



20T

HOWSISTE WLUNG 0L ANYLINEIOHS S) THIH TINISIAD NOLYWSON TTV

170
171
172
173:
174:
175
176
177
178:
174
180
181
182
18%
184:
185:
186:
187;
188:
189;
190: 5
191
182
183:
194
195
196:
197
198:
199:
200:
201
202:
203,

dirbtk
dirrem

diream

xIt&dn

xt&an

nxtsec
nxtbas

neltst

not complete, iterate once again
shift right and add 1 high order bit

set {dirblk shr 1) or BOOGH
if dirrem > dirbks

set dirream-dirbks

alse

sat V]

endif

endm

dpbhdr  dn igenerate equ §
dow Yhsectors, < ;sac per track>

ddb %blkahf < block shift>

ddb %ikmsk, < block mask>

ddb %extmsk < extnt mask>>

ddw %{dks)-1,<;disk size-12

dotw { dir)-1,< directory max®
ddb © %dirblk shr 8.<alloc0>>

ddb Sdirbik and 0fth,<alloct>
ddw %bicks)/d < check size>

ddw %ofs < offset>

generate the translale table, if requested
if nul skf

equ a :no xlate table
else

if skf =0

equ Q nd xlate table
else

generate the translate table

set o] next sectar to fill
sat 0 Lmoves by one on overflow
gcd Ysectars,ski

gedn = ged(sectiors, skew)

sot sactors/gedn

neltst is number of elements to generate



HIBYISTH TWADIG OL ANVLIMIOU §1 TYTH TLNISTH NOLYINICING 1TV

LT

204 :
208
: xlt&dn
207:
208:
209:
210:
211;
212
212
214:
215:
116
217,
218:
218:
220:
221:
222;
223
224:
225
224:

nelts

nxtsec
nxtsec
nelts

nxtbas

nxtsac
nelts

227

228:
229:
230:

defds
lab:

231: ;

232.
233
234:
235:
236.
237

before we overlap previous elements

zet
equ
rept
if
ddb
else
ddw
endil
set

if

set
endif
set

if

set
set
set
endif
endm
endif
endif
endm

macro
ds
andmn

macro
defds
andm

macro

nellst : Leounter

$ stranslate table
seclars wonce for each sector
sectors < 256

Ynxtsec+({lsc)

Yanxisect+ifsc)

nxtsec+{ski)
nxisec >= seclars
nxtsec-sectors

nelis-1
nelts =
nxtbhas+1
nxtbas
nelist

cend of nul fac 1est
;end of nul bls test

|ab,space
space

Ib,<dn vzl
Ib& dn. %validn

generate the necessary ram data areas



807

HOYYISTY ™D O AdY1IMJO¥d S THIH TRNIS Y NOWYWHOINI TIY

238: begdat
239: dirbul:
240; dsknxt
241.

242:

243;

244 dsknxi
245:

248: snddat
247: datsiz
248 ;

249:

equ $

ds 128 directory access buffer
sat o

rept ndisks ;:once for each disk
Ids alv,%dsknxt.als

Ids csv,%dsknxt,ccs

set dsknxi+1

endm

equ §

equ $-begdat
db O at this point forces hex racord
endm



s
[ <o B RN B 6 B L

L O I I I R R I T T T
mmggomuaw#mmuowmwmmhww—n

Appendix G: Blocking and Deblocking

@y
@x

0800 =  blksiz
0200 = hstsiz
0014 =  hsispt
0004 =  hstblk

0050 = cpmspt

Algorithms

sector deblocking algorithms for cp/m 2.0

utility macro to compute seclor mask
macro  hbik

compute log2{hblk}, return @x as result
{2 *" @x = hblk on return)

set hblk

set ]

-count right shitts of @y until = 1
repl 8

it @y =1

exitm

endif

@y is not 1, shift righl one position
set @y shr1

set @x+1

endm

endm

cp/m to host disk constants

equ 2048 .cp/m allocation size
equ 512 ;host disk sector size
equ 20 host disk sectors/trk
equ hstsiz/128 ;cp/m sects/host buff

equ hstblk * hstspt ;ep/m sectors/track

ALL INFORMATION PRESENTED HERE (5 PROPRIETARY TO DIGITAL RESEARCH 209




210

0003 =  secmsk
0002 =  secshf
0000 =  wrali
Qo001 = wrdir
0002 = wrual
Q000 = dpbase

boot:

whoot:
0000 af

0001 326a01
0004 326¢01
0007 c8

home:

home:
0008 3a6b01
000b b7
000¢ c21200
000f 326a01
homed:
0012 ¢9

seldsk:

0013 79
0014 326101
0017 6f
0018 2600

001a+29
001b+29
001¢+29
001d+29
001e 110000

equ hstblk-1 ;sector mask
smask hstblk ;compute sector mask
equ @x Jlog2{hstblk)

bdos constants on entry to write

equ 0 .write to aliacated
equ 1 write to directory
equ 2 ;write to unallocated

the bdos entry points given betow show the
code which is relavant to deblocking only.

diskdef macro, or hand coded tables go here
equ $ ;disk param block base

enter here on system boot to initialize

xra a ;0 to accumulator
sta hstact ;host buffer inactive
sta unacnat clear unalloc count
ret

‘home the selected disk

tda hstwrt ;check far pending write
ora a -

jnz homed

sta hstact :clear host active flag
red

;select disk

mov a.c ;selected disk number
sta sekdsk ;seek disk number
mov la ;disk number to hi
mvi h,0

rept 4 ;muitiply by 16

dad h

endm

dad h

dad h

dad h

dad h

Ixi d.dpbase ;base of parm block

ALL INFORMATION PRESENTED HERE (S PROPRIETARY TO DIGITAL RESEARCH




-

o

8g
20
1
92
93

95
96
97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
126
126
127
128
129
130
1
132
133
134
135
1386
137
138
139
140
414
142
143

0021 18
0022 c9

settrk;

0023 60
0024 69
0025 226201
0028 c@

seisec:

0029 79
002a 326401
002d c9

setdma:

002e 60
002f 69
0030 227503
0033 c9

sectran:

0034 60
0035 69
0036 ¢9

read:

0037 at
0038 328c01
003k 3e0
003d 327301
0040 327201
0043 3e02
0045 327401
0048 c3b600

004 b af

dad d
ret

;hi=.dpb{curdsk)

:sel track given by registers be

mov h,b

mov l,c

shid sekirk track to seek
ret

;set sector given by register ¢

mov a,c
sta seksec .sector 10 seek
ret

;set dma address given by be

mov h.b
mov l.c

shid dmaadr
ret

translate sector number be

mov h,b
mov .o
ret

the read entry point takes the place of
the previous bios definition for read.

read the selected ¢p/m sector

xra a

sta unacnt

mvi a.l

sia readop ,read operation

sta rsflag ;must read data

mvi a,wrual

sta wriype treat as unallog
jmp rwoper :to perform the read

the write entry point takes the place of
the previous bios definition for write.

:wrile the selectled cp/m sector
XTAa a {0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

211




181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197

199

212

004¢ 327301
004 79
0050 327401
0053 feQ2

0055 ¢26100

0058 et

005a 326¢01
003d 3a6101
0080 326401
0063 2a6201
0066 226e01
0069 3aB401
006¢ 327001

'chkuna:

006t 3a6c01
0072 b7
0073 caael0

0076 3d
0077 326¢01
007a 3a6101
007d 216401
0080 be
0081 c2ael0

0084 216601
0087 cd5301
008a c2ael0

008d 326401
0090 217001
0093 be

0094 c2ae00

0097 34
0098 7e
0099 feb0
009b daa700

0039e 3600
00a0 2a6e01
00a3 23
00ad 226eM

noovt:

a7 af

sta readop :pot a read operation
mov ac write typein ¢

sta wrtype

cpt wrual write unallocated?
inz chkuna :check for unatloc

write to unallocated, set parameters

mvi a,blksiz/128 ;next unalloc recs
sta unacnt

Ida sekdsk disk to seek

sta unadsk ;unadsk = sekdsk
Inid sekirk

shid unatrk ‘unatrk = sectrk
Ida seksec

sta unasec ;unasec = seksec

:check for write to unallocated sector

Ida unacnt ;any unalloc remain?
ora a
jz alioc ;skip if not

more unallocated records remain

der a ;unacnt = unacni-1
sta unacnt

Ida sekdsk ;same disk?

Ixi h,unadsk

cmp m ;sekdsk = unadsk?
jnz alloc ;skip if not

disks are the same

Ixi h,unatrk

call sekirkcmp sektrk = unatrk?
jnz alloc ;skip if not

tracks are the same

Ida seksec .same sector?

Ixi h,unasec

cmp m ;seksec = unasec?
jnz atloc skip if not

maich, move to next sector for future ref

inr m :unasec = unasect+i
mov am end of track?
cpi comspt ;count cp/m sectors

jc noovf skip it no overflow

overflow to next track

mvi m,0 unasec = o

Ihid unatrk

inx h

shid unatrk :unatrk = unatrk+1

;match found, mark as unnecessary read
xra a 0 to accumulator

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TOQ RIGITAL RESEARCH




200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
25
252
253
254

00ab 327201
00ab ¢3b600

alloc:

00ae af
00af 32601
00b2 3¢
00b3 327201

rwoper:

00bb af
DDb7 327101
00ba 3a6401

00bd+b7
00be+1t
00bf+b?
00cO+1f
00¢1 326901

Q0c4 216a01
00c7 7e
00c8 3601
00ca b7
00cb ¢af200

1

00ce 3a6101
00d1 216501
00d4 be

00d5 c2eb00

0048 216601
00db cd5301
00de c2ebl0C

00e1 3a6901
00ed 216801
00e7 be

00e8 calfin

namatch;

sta rsfiag
imp rnwoper

asflag = 0
;o perform the write

;not an unallocated record, requires pre-read

xra a 10 10 accum
sta unacnt unacnt = 0
inf a 1 to accum
sta rsflag =1 ;rsflag = 1

common code for read and write follows

.enter here to perform the read/write

xfa a 1Zero to accum

sta erflag ;no errors (yet)

Ida seksec ;compute hosi sector
rept sacshf

ora a carry = 0

rar ;shift right

endm

ora & ;carry =0

rar shift right

ora a icarry =0

rar ;shift right

sta sekhst ;host sector to seek

active host sector?

ixi h.hstact :host active flag
mov am

mvi m,1 ;always becomes 1
ora a wwas it already?

iz filhst il host if not
host buffer active, same as seek buffer?

Ida sekdsk

IXi h,hetdsk :same disk?

cmp m ;sekdsk = hstdsk?
jnz nomatch

same disk, same track?

I%i h hsttrk
call sektrkcmp sekirk = hsttrk?
nz nomatch

same disk, same track, same buffer?

Ida sekhst

Ixi h,hsisec ;sekhst = hstsec?
cmp m

T4 match ;skip if match

AL INFORMATION PRESENTED HERE IS PROPRIETARY TO DKGITAL RESEARCH 213




255
288
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291

292
293

204

295
286
297
268
259
300
3m
302
303
304
305
306
07
308
309

214

00eb 3a6b1
00ee b7
Q0ef c45f01

filhst:

00f2 3a6101
0015 326501
0013 2a6201
00fb 226601
00fe 3a6901
101 326801
0104 3a7201
0197 b7

0108 c46001
010b af

010c¢ 326b0t

match:

01Cf 3a6401
0112 o603
0114 64
0115 2600

0117+29
0118+29
0119+29
011a+29
011b+29
011¢+29
Mid+29

M1e 1177019
32119
0122 &b
0123 2a7501
0128 080
0128 3a7301
012b b7
012¢ ¢23501

0121 3e01
0131 326b01
0134 eb

r'wmove:

0135 1a
013613
0137 77

;proper disk, but not correct sectar

Ilda hstwrt ‘host written?
ora a
cnz writehst ;clear host buff

;may have to fill the host buffer

ida sekdsk

sta hstdsk

Ihid saektrk

shid hstirk

Ida sekhst

sta hstsec

Ida rsflag :need to read?
ora a

cnz readhst yes, if 1

Ara a ;0 1o accum
sta hstwrt \no pending write

+

;capy data to or from buffer

lda seksec :mask buffer number
ani sacmsk :least signif bits
mov lLa ;ready to shift
mvi h.Q ;double count
rept 7 ;shift left 7

dad h

endm

dad h

dad h

dad h

dad h

dad h

dad h

dad h

hi has relative hast buffer address

Ixi d hstbuf

dad d ;hl = host address
xchg ;now in de

ihid dmaadr ;get/put cp/m data
mvi ¢ 128 tength of move
ida readop iwhich way?

ora a

jnz rwmove :skip if read

write operation, mark and switch direction

mvi a,i

sta hstwrt Jhatwrt = 1

xchg \source/dest swap

¢ initially 128, de is source, hl is dest

Idax d :source character
inx d
mov m,a to dest

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH




310
311
2
33
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
328
330
331
33z
333
334
335
336
337
338
339
340
© 341
342
342
344
345
346
347
348
349
350
351
352
- 363
354
355
356
357
358
359
360

362

(0138 23 inx h
0139 od der c ;loop 128 times
013a ¢c23501 jnz rwmove

: ~ data has been moved to/from host buffer
013d 3av401 Ida wriype write type

0140 fel cpi wrdir ;to directory?
0142 3a7101 ida erflag ;in case of errors
0145 c0 - ™z : ;no further processing

; clear host buffer for directory write

0146 b7 ora a Jerrors?

0147 c0 mz skip if s0
0148 af xra a :0 to accum
0149 326601 sta hstwrt ‘buffer written
M4c¢ cd5i01 call writehst

014f 3a7101 lda erflag

0152 ¢9 ret

: utility subroutine for 16-bit compare

sekirkcmp:
“hi = .unatrk or .hstirk, compare with sektrk

0153 eb xchg
0154 21621 Ixi h,sektrk
0157 1a Idax d ;low byte compare
0158 be cmp m ;same?
0159 c0 Nz return if not

: low bytes egual, test high 1s
015a 13 inx d
015b 23 inx h
015c 1a Idax d
015d be cmp m ;sets flags
015e ¢co ret

; writehst performs the physical write to

: the host disk, readhst reads the physical

; disk.

writehst:

:hstdsk = host disk #, hsttrk = host track #,
hstsec = host sect &, write "hstsiz” bytes
;from hstbuf and return error flag in erflag.
;réturn erflag non-zero if error
015f cB ret
readhst;

:hstdsk = host disk #, hsttrk = host track #,
;hsisec = host sect #. read "hstsiz” bytes

ALL INFORMATION PRESENTED MERE IS PROPRIETARY TO DIGITAL RESEARCH 215




365
366
367
368
369
370
3an

a7z
373
374
375
376
377
378
379
380
381

ag2
383
384
385
388
387
388
389
390
o

ag2
393
394
395
398
397
398
399
400
401
402
403

z16

0160 cB

0161
0162
0164

0165
0166
0168

0169
016a
016b

016¢
016d
016e
0170

0171
0t72
0173
0174
0175
0177

0377

sekdsk:
sakirk;

seksec:

hstdsk:
hstirk:
hstsec:

sekhst
hstact:
hstwrt;

unacnt:
unadsk:

unatrk:

unasec:

erflag:
rsflag:

readop:
wrtype:
dmaadr:

hstbuf:

;inte hstbuf and return error flag in erflag.

ret

uninitialized ram data areas

ds
ds
ds

ds
ds
ds

ds
ds
ds

ds
ds
ds
ds

ds
ds
ds
ds
ds
ds

N =

R X,y

:seek disk number
.seek track number
;seek sector number

;host disk number
:host track number
:host sector number

seak shr secshf
‘host active flag
;host writien flag

:unalloc re¢ ¢nt
JHast unalioc disk
;last unalloc track
Jlast unalloc sector

.error reporting
.read sector flag

.1 if read operation
write operation type
last dma address
:host buffer

the endef macro invocation goas here

end

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




alloc
blksiz
boot
chkuna
cpmspt
dmaadr
dpbase
erflag
fithst
home
homed
hstact
hstblk
hstbut
hstdsk
hstsec
hstsiz
hstspt
hsttrk

" hstwrt
match
nomatch
noovf
read
readhst
readop
rsflag
rwmove
rwaper
secmsk
secshf
sectran
sekdsk
sekhst
seksec
sekirk
sekirkcmp
seldsk
setdma
setsec
setirk
unacnt
ynadsk
unasec
unatrk
wboot
wrall
wrdir
write
writehst
wriype
wrual

00ae
0800

008f
0050
0175

ot
0012
0008
0012
016a

0177
0165
0168
0200
004
0166
016b
o1of

00eb
00a?
0037
0160
0173
0172
0135
0D0bs
0003
0002
0034
D161

0169
0164
0162
0153
0013
002e
0029
0023
016c
Q18d
0170
016e
0000
0000
0001

Q04b
015f

0174
0002

164
2a#
574

148
33%

109
554

218

235
54
70
61
324

291

239

250
304
314

244
66

252

241

189
1244
270
129

130

298

133
34

112#
78

228

102

75#
105#
o0
92#
e2
154
158
156
584
434#
444
1414
258
132
45#

176

172
151

160#
188
204

317

280#
67#
T24#
71

3964
263
267

265
256
274#
246
1974#

3624
144
200
3054
201
277
220

153
249
157

245

127
170
181
175

316
325

146
131

77

3954

326

2N

3784#
3804
396

3794
272

2544

208
3z
215#

169
266
180
264
334#

132
387#
3god
193

3554
315
147

183

301#

38348
36

302

3934
268

238
3824
219
337

162

195

304%

2034%

324 3844

3924

262 3744

276 3764

3754

168 206 3864
3884

ALL INFORMATION PRESENTED HERE 5 PROPRIETARY TO DIGITAL RESEARCH 217







e

Appendix H: Glossaty

address: Number representing the location of a byte in memory. Within CP{M there are
two kinds of addresses: logical and physical. A physical address refers to an absolute and
unique location within the computer's memory space. A logical address refers to the
offset or displacement of abyte in relation to a base location. A standard CP{M program s
loaded at address 0100H, the base value; the first instruction of a program has a physical
address of 0100H and a relative address or offset of OH.

allocation vector (ALV): An allocation vector is maintained in the BIOS for ¢ach logged
in disk drive. A vector consists of a string of bits, one for each block on the drive. The bit
corresponding to a particular block is set to one when the block has been allocated and to
zero otherwise. The first two bytes of this vector are initialized with the bytes ALO and
ALl on, thus allocating the directory blocks. CPfM Function 27 returns the allocation
vector address,

ALD, ALY Two bytes in the disk parameter block that reserve data blocks for the
directory. These two bytes aré copied into the first two bytes of the allocation vector
when a drive is logged in. {See allocation vector.)

ALV: See allocalion vector.

ambiguous filename: Filename that contains either of the CP/M wildcard characters, ?
or *, in the primary filename or the filetype, or both. When you replace characters in a
filename with these wildcard characters, you create an ambiguous filename and can easily
reference more than one CPM file in a single command line,

American Standard Code for information Interchange: See ASCII.

applications program: Program designed to solve a specific problem. Typical applications
programs are business accounting packages, word processing {editing) programs and
mailing list programs.

archive attribute: File attribute controlled by the high-order bit of the t3 byte (FCB+11)
in a directory element. This attribute is set if the file has been archived.

argument: Symbol, usually a letter, indicating a2 place into which you can substitute a
number, letter or name to give an appropriate meaning to the formula in question.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 219




ASCI American Standard Code for Information Interchange. ASCIl is a standard set of
seven-bit numeric character codes used to represent characters in memory. Each charac-
ter requires one byte of memory with the high-order bit usually set to zero. Characters
can be numbers, letters, and symbols. An ASCII file can be intelligibly displayed an the
video screen or printed on paper.

assembler: Program that translates assembly language into the binary machine code.
Assembly language is simply a set of mnemonics used to designate the instruction set of
the CPU. {See ASM in Section 3 of this manual.)

back-up: Copy of a disk or file made for safekeeping, or the creation of the duplicate
disk or file. "

Basic Disk Operating System:See BDOS.

BDOS: BasicDisk Operating System. The BDOS module of the CP/M operating system
provides an interface for a user program to the operating system. This interface is in the
form of a set of function calls which may be made to the BDOS through calls to location
0005H in page zero. The user program specifies the number of the desired function in
register C, User programs running under CPIM should use BDOS functions for all 1O
operations to remain compatible with other CP/M systems and future releases. The
BDOS normally resides in high memory directly below the BIOS.

bias: Address value which when added to the origin address of ycur BIOS module
produces 1F80H, the address of the BIOS module in the MOVCPM image. Thereisalsoa
bias value that when added to the BOOT module origin produces 0900H, the address of
the BOOT module in the MOVCPM image. You must use these bias values with the R
command under DDT or SID when you patch a CP/M system. If you do not, the patched
system may fail to function.

binary: Base 2 numbering system. A binary digit can have one of two values: 0 or 1.
Binary numbers are used in computers because the hardware can most easily exhibit two
states: off and on. Generally, a bit in memory represents one binary digit.

Basic Input/Qutput System:See BIOS.

BIOS: Basic Input/Output System. The BIOS is the only hardware-dependent module of
the CP/M system. It provides the BDQOS with a set of primitive [{Q operations. The BIOS
is an assembly language module usually written by the user, hardware manufacturer or
independent software vendor, and is the key to CPIM’s portability. The BIOS interfaces
- the CP/M system to its hardware environment through a standardizéed jump table at the
front of the BIOS routine and through a set of disk parameter tables which define the disk

environment. Thus, the BIOS provides CPIM with a completely table-driven [}C system. .

BICS base: Lowest address of the BIOS module in memory, that by definition must be
the first entry point in the BIOS jump table.

bit: Switch in memory thatcan be set to on (1) or of F(0). Bits are grouped into bytes, eight
bits to a byte, whichis the smallest directly addressable unit in an Intel 8080 or Zilog Z-80.
By commoen convention, the bits in a byte are numbered from right {0 for the low order
bit) to left {7 for the high order bit). Bit values are often represented in hexadecimal
notation by grouping the bits from the low order bit in groups of four. Each group of four
bits can have a value from 0 to 15 and thus can easily be represented by one hexadecimal
digit.

220 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




BLM: See block mask.

block: Basic unit of disk space allocation. Each disk drive has a fixed black size (BLS)
defined in its disk parameter block in the BIOS. A block can consist of 1K, 2K, 4K, 8K or
16K consecutive bytes. Blocks are numbered relative to zero so that each block is unique
and has a byte displacement in a file equal to the block number times the black size.

block mask (BLM): Byte value in the disk parameter block at DPB + 3. The block mask is
always one less than the number of 128 byte sectors that are in one block. Note: BLM = {2
** BSH) - 1.

block shift (BSH): Byte parameter in the disk parameter block at DPB + 2. Values for the
block shift and block mask (BLM) are determined by the block size (BLS). Note: BLM = {2
** BSH) - 1. i

blocking & deblocking algorithm: In some disk subsystems the disk sector size is larger
than 128 bytes, usually 256, 512, 1024 or 2048 bytes. When the host sector size is larger
than 128 bytes, host sectors must be buffered in memory and the 126 byte CP/M sectors
must be blocked and deblocked by adding an additional module, the blocking and deblock-
ing algorithm, between the BIOS disk 11O routines and the actual disk IfO. The host
sector size must be an even multiple of 128 bytes for the algorithm to work correctly. The
blocking and deblocking algorithm allows the BDOS and BIOS to function exactly as if
the entire disk consisted only of 128 byte sectors, as in the standard CP{M installation.

BLS: Block size in bytes. See block.

boot: Process of loading an operating system into memory. A boot program is a small
piece of code that is automatically executed when you power-up or reset your computer.
The boot program loads the rest of the operating system into memory in a manner similar
to a person pulling himself up by his own bootstraps. This process is sometimes called 2
“cold boot” or “coid start.” Bootstrap procedures vary from system to system. The boot
program must be customized for the memory size and hardware environment that the
operating system manages. Typically, the boot resides on the first sector of the system
tracks an your system diskette. When executed, the boot loads the remaining sectors of
the system tracks inta high memory at the location for which the CP{M system has been
configured. Finally, the boot transfers execution to the boot entry point in the BIOS jump
table 5o that the system can initialize itself. In this case, the boot program should be placed
at 900H in the SYSGEN image. Alternatively, the boot program may be located in ROM.

bootstrap: See boot.

BSH: See block shift.

BTREE: General purpose file access method that has become the standard organization
for indexes in large data base systems. BTREE provides near optimum performance over
the full range of file operations, such as insertion, deletion, search, and search next.

buffer: Area of memory that temporarily stores data during the transfer of information.

built-in commands: Commands that permanently reside in memory. They respond
quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits. A byte canrepresent abinary

number between 0 and 255, and is the smallest unit of memory that can be addressed
directly in 8 bit CPUs such as the Intel 8080 or Zilog Z-80.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221




CCP: Consale Command Processor. The CCP is a module of the CP/M operating system.
It is loaded directly below the BDOS module and interprets and executes commands
typed by the console user. Usually these commands are programs that the CCT loads and
calls. Upon completion, a command program may return control to the CCP if it has not
overwritten it. If it has, the program can reload the CCP into memory by a warm boot
operation initiated by either a jump to zero. BDOS system reset(function 0), or a cold
boot. Except for its location in high memory, the CCP works like any other standard
CP/M program; that is, it makes only BDOS function calls for its /O operations.

CCP base; Lowest address of the CCP module in memory. This term sometimes refers to
the base of the CPfM system in memory, as the CCPis normally the lowest CPfM module
in high mermiory.

checksum vector (CSV). Contiguous data acea in the BIOS. with one byte for each
directory sector to be checked, i.e.,, CKSbytes. {See CKS.) A checksum vector is initialized
and maintained for each logged in drive. Each directory access by the system resultsina
checksum calculation that is compared with the one in the checksum vector. If thereisa
discrepancy, the drive is set to read-only status. This feature prevents the user from
inadvertently switching disks without logging in the new disk. If the new disk is not
logged in, it is treated the same as the old one, and data onit may be destroyed if writing is
done.

CKS: Number of directory records to be checked summed on directory accesses. Thisisa
parameter in the disk parameter block located in the BIOS, If the value of CKS is zero,
then no directory records are checked. CKS is also a parameter in the diskdef macro
library, where it is the actual number of directory elements to bechecked rather than the
number of directory records.

cold boot. See boot. Cold boot also may refer to a jump to the boot entry point in the
BIOS jump table,

COM: Filetype for a CPIM command file. See command file.

command: CP/M command line. In general, a CPIM command line has three parts: the
command keyword, command tail, and a carriage return. To execute a command, enter a
CPIM command line directly after the CP/M prompt at the console and press the carriage
return or enter key.

command file: Executable program file of filetype COM. A command file is 2 machine
language object module ready tobeloaded and executed at the absolute address of 0100H.
To execute a command file, enter its primary filename as the command keyword in 2
CP!M command line.

command keyword: Name that identifies a CPIM command, usually the primary file-
name of a file of type COM, or a built-in command. The command keyword precedes the
command tail and the carriage return in the command line.

command syntax: Statement that defines the correct way to enter a command. The
correct structure generally includes the command keyword, the command tail, and 2
carriage return. A syntax line usually contains symbols that you should replace with
actual values when you enter the command.

. command tail: Part of a command that follows the command keyword in the command

line. The command tail can include a drive specification, a filename andjor filetype, and
options or parameters. Some commands do not require a command tail.

222 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH




P

it

CON: Mnemonic that represents the CP{M console device (see console). For example, the
CP/M command “PIP CON:=TEST.SUB" displays the file TEST.SUB on the console
device. The explanation of the STAT command tells how to assign the logical device
CON: to various physical devices.

concatenate: Name of the PIP operaticn that copies two or more separate files into one
new file in the specified sequence. )

concurrency: Execution of two processes or operétions simultaneously.
CONIN; BIOS entry point to a routine that reads a character from the console device.
CONOQUT: BIOS entry point to a routine that sends a character to the console device,

console: Primary inputfoutput device. The console consists of a listing device, such as a
screen or teletype, and a keyboard through which the user communicates with the
operating system or applications program.

Console Command Processor: See CCP,
CONST: BIOS entry point to a routine that returns the status of the console device.

control character: Nonprinting character combination. CP/M interprets some control
characters as simple commands such as line editing functions. To enter a control charac-
ter, hold down the CONTROL key and strike the specified character key.

Controt Program for Microcomputers: See CP/M.

CP/M:Control Program for Microcomputers.An operating system that manages compu-
ter resources and provides a standard systems interface to software written for a large
variety of microprocessor-based computer systems,

CP/M 1.4 compatibility; For a CP/M 2 system to be able to read correctly single density
dicskettes produced under a CPfM 1.4 system, the extent mask must be zero and the block
size 1K. This is because under CP/M 2 an FCB may contain more than one extent. The
number of extents that may be contained by an FCB is EXM+1. The issue of CPIM 1.4
compatibility also concerns random file 1O. To perform random file 1O under CP/M 1.4,
you must maintain an FCB for each extent of the file. This scheme is upward compatible
with CPIM 2 for files not exceeding 512K bytes, the largest file size supported under
CPIM 1.4. If you wish to implement random I/O for files larger than 512K bytes under
CPIM 2, you must use therandom read and random write functions (BDOS functions 33,
34 and 36). In this case, only one FCB is used, and if CP/M 1.4 compatibility is required,
the program must use the return version number function (BDOS function 12) to
determine which method to employ.

CP/M prompt. Characters that indicate that CP/M is ready to execute your next
command. The CP/M prompt consists of an upper-case tetter (A-P) followed by a ="
character; for example, A>. The letter designates which driveis currently logged in as the
default drive. CPIM will search this drive for the command file specified, unless the
command is a built-in command or prefaced by a select drive command; for example,

B:STAT.

CP/NET: Digital Research network operating system enabling microcomputers to obtain
access to common resources via a network. CPINET consists of MPiM masters and CPiM
slaves with a network interface between them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223




CSV: See checksum vector.

cursor, One-character symbol that can appear anywhere on the console screen, The
cursor indicates the position where the next keystroke at the console will have an effect.

data file: File containing information that will be processed by a program.
deblocking: See blocking & deblocking algofithm.

default Currently selected disk drive and user number. Any command that dees nat
specify a disk drive or a user number references the defauit disk drive and user number.
When CPiM is first invoked, the default disk drive is drive A, and the default user number
is Q.

default buffer: Default 128-byte buffer maintained at 0080H in page zero. When the
CCP loads a COM file, this buffer is initialized to the command tail; thatis, any characters
typed after the COM file name are loaded into the buffer. The first byte at 0080H
contains the length of the command tail, while the command tail itself begins at 0081H.
The command tail is terminated by a byte containing a binary zero value. The Lcommand
under DDT and SID initializes this buffer in the same way as the CCP.

default FCB: Two default FCBs are maintained by the CCP at 005CH and 006CH in page
zero. The first default FCB is initialized from the first delimited field in the command tail,
and the second default FCB is initialized frem the next field in the command tail.

defimiter: Special characters that separate different items in a command line; for exam-
ple, a colon separates the drive specification from the filename. The CCP recognizes the
following characters as delimiters: . : = ; < > _, blank, and carriage return. Several
CPIM commands also treat the following as delimiter characters: ,{]() % . Itis advisable to
avoid the use of delimiter characters and lower-case characters in CP’/M file names.

DIR: Parameter in the diskdef macro library that specifies the number of directory
elements on the drive.

DIR attribute: File attribute. A file with the DIR attribute can be displayed by a DIR
command. The file can be accessed from the default user number and drive only.

DIRBLUF: 128-byte scratchpad area for directory operations, usually Jocated at the end of
the BIOS. DIRBUF is used by the BDOS during its directory operations. DIRBUF also
refers to the two-byte address of this scratchpad buffer in the disk parameter header at
DPbase + 8 bytes.

directary: Portion of a disk that contains entries for each file on the disk. In response to
the DIR command, CP/M displays the filenames stored in the directory. The directory
also contains the locations of the blocks allocated to the files. Each file directory element is
in the form of a 32-byte FCB, although one file may have severalelements, depending on
its size. The maximum number of directory elements supported is specified by the drive’s
disk parameter block value for DRM.

directory element: Data structure. Each file on a disk has one or more 32-byte directory
elements associated with it. There are four directory elements per directory sector.

Directory elements may also be referred to as directory FCBs.

directory entry: File entry displayed by the DIR command. Sometimes this term may
refer to a physical directory element.

224 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DAGITAL RESEARCH




LY

disk, diskette: Magnetic media used for mass storage in a computer system. Programs
and data are recorded on the disk in the same way music can be recorded on cassette tape.
The CPiM operating system must be initially loaded from disk when the computer is
turned on. Diskette refers to smaller capacity removable floppy diskettes, while disk may
refer to either a diskette, removable cartridge disk or fixed hard disk. Hard disk capacities
range from five to several hundred megabytes of storage.

diskdel macro library: Library of code that when used with MAC (the Digital Research:
macro assembler) creates disk definition tables such as the DPB and DPH automatically.

disk drive: Peripheral device that reads and writes information on disk or diskettes.
CPM assigns a letter to each drive under its cantrol. For example, CPIM may refer to the
drives in a four-drive system as A, B, C, and D.

disk parameter block (DPB). Data structure referenced by one or more disk parameter
headers, The disk parameter block defines disk characteristics in the fields listed below:

SPT  The total number of sectors per track

BSH The data allocation block shift factor

BIM  The data allocation block mask

EXM The extent mask determined by BLS and DSM
DSM  The maximum data block number

DRM Maximum number of directory entries—1

ALD  Reserves directory blocks

AL1  Reserves diectory blocks

CKS5 The number of directory sectors check summed
OFF  The number of reserved system tracks

The address of the disk parameter block is located in the disk parameter header at DPbase
+0AH. CP™M Function 31 refurns the DPB address. Drives with the same characteristics
may use the same disk parameter header, and thus the same DPB. However, drives with
different characteristics must each have their own disk parameter header and disk
parameter blocks. When the BDQOS calls the SELDSK entry point in the BIOS, SELDSK
must return the address of the drive’s disk parameter header in registers HL.

disk parameter header {DPH): Data structure that containg information about the disk
drive and provides a scratchpad area for certain BDOS operations. The disk parameter
header contains six bytes of scratchpad area for the BDOS, and the following five
two-byte parameters:

XLT The sector translation table address
DIRBUF Directory bufter address

DPB Disk parameter block address

Ccsv Checksum vector address

ALY Allocation vector address

Given n disk drives, the disk parameter headers are arranged in a table whose first row of
16 bytes corresponds to drive 0, with the last row corresponding to drive n-1.

DKS: Parameter in the diskdef macro library specifying the number of data blocks on the
drive.

DMA: Direct memory access. DMA is a method of transferring data from the disk into

memory directly. In a CP/M system, the BDQOS calls the BIOS entry point READ toread a
sector from the disk into the currently selected DMA address. The DM A address must be

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225




the address of a 128-byte buffer in memaory, either the default buffer at 0080H in pape
zero, or a user-assigned buffer in the TPA. Similarly, the BDOS calls the BIOS entry
point WRITE to write the record at the current DMA address to the disk.

DN: Parameter in the diskdef macro library specifying the logical drive number.
DPB: See disk parameter block.
DPH: See disk parameter header,

'DRM: 2-byte parameter in the disk parameter block at DPB + 7. DRM is one less than the
total number of directory entries allowed for the drive. This valueis related to DPB bytes
ALO and AL1, which allocate up to 16 blocks for directory entries.

DSM: 2-byte parameter of the disk parameter block at DPB + 5. DSM is the maximum
data block number supported by the drive. The product BLS times (DSM+1) is the total
number of bytes held by the drive. This must not exceed the capacity of the physical disk
less the reserved system tracks.

editor. Utiliky program that creates and modifies text files. An editor can be used for
creation of documents or, creation of code for computer programs. The CP/M editor is
invoked by typing the command ED next to the system prompt on the console.

EX: Extent number field in an FCB. See extent.

executable: Ready to be run by the computer. Executable code is a series of instructions
that can be carried out by the computer. For example, the computer cannot execute
names and addresses, but it can execute a program that prints all those names and
addresses an mailing labels.

execute a program: Start the processing of executable code.

EXM: See extent mask.

extent: 16K consecutive bytes in a file. Extents are numbered from ¢ to 31. One extent
may contain 1, 2, 4, 8 or 16 blocks. EX is the extent number Field of an FCB and is a one
byte field at FCB + 12, where FCB labels the first byte in the FCB. Depending on the block
size {BLS) and the maximum data block number {DSM), an FCB may contain 1, 2,4, 8 or
16 extents. The EX field is normally set to O by the user but contains the current extent
number during file [/O. The term FCB falding describes FCBs containing more than one
extent. In CP{M version 1.4, each FCB centained only one extent. Users attempting to
perform random record IO and maintain CPIM 1.4 compatibility should be aware of the
implications of this difference. See CP/M 1.4 compatibility.

extent mask (EXM): A byte parameter in the disk parameter block located at DPB + 3, The
value of EXM is determined by the block size {BL$S) and whether the maximum data block
number (DSM) exceeds 255 There are EXM + 1 extents per directory FCB.

FCB: See file control block.

fite: Collection of characters, instructions, er'data that can be referenced by a unique
identifier. Files are usually stored on various types of media, such as disks, diskettes, or
magnetic tape. A CPIM file is identified by a file specification and resides on disk as a
collection of from zero to 65,536 records. Each record is 128 bytes and can contain either
binary or ASCIE data. Binary files contain bytes of data that can vary in value from 0H to

226 ALL INFORMATION PRESENTED HERE iS5 PROPRIETARY TO DIGITAL RESEARCH




OFFH. ASCII files contain sequences of character codes delineated by a carriage return-
line feed combination; normally byte values range from 0H to 7FH. The directory maps
the file as a series of physical blocks. Although files are defined as a sequence of
consecutive logical records, these records may not reside in consecutive sectors on the
disk. (see also block, directary, extent, record, sector).

file control block (FCB): Structure used for accessing files on disk. Contains the drive,
filename, filetype, and other information describing a file to be accessed or created on the
disk. A File control block consists of 36 consecutive bytes specified by the user for file 1}O
functions. FCB can also refer to a directory element in the directory portion of the
allocated disk space. These contain the same first 32 bytes of the FCB, but lack the current
record and random record number bytes.

filename: Name assigned to a file. A filename can include a primary filename of 1-8

characters and a filetype of 0-2 characters. A period separates the primary filename from
the filetype.

file specification; Unique file identifier. A complete CP/M file specification includes a
disk drive specification followed by a colon (d:}, a primary filename of 1 to 8 characters, a

period and a filetype of 0 to 3 characters. For example, b:example.tex is a complete CP/M
file specification.

filetype: Extension to a filename. A filetype can be from 0 to 3 characters and must be
separated from the primary filename by a period. A filetype can tell something about the
file. Some programs require that files to be processed have specific filetypes.

floppy disk: Flexible magnetic disk used to store infarmation. Floppy disks come in 514-
and 8-inch diameters.

FSG: Parameter in the diskdef macro library specifying the first physical sector number.
This parameter is used to determine SPT and build XLT.

hard disk: Rigid, platter-like, magnetic disk sealed in acontainer. Ahard disk stores more
information than a floppy disk.

hardware: Physical components of a computer.

hexadecimal notation: Notation for base 16 values using the decimal digits and letters A,
B, C, D, E & F to represent the 16 digits. Hexadecimal notation is often used to refer to
binary numbers. A binary number can be easily expressed as a hexadecimal value by
taking the bits in groups of 4 starting with the least significant bit, and expressing each
group as a hexadecimal digit, (0-F}). Thus the bit value 1011 becomes 0BH and 10110101
becomes OBSH.

hex file: ASCll-printable representation of a command (machine language) file.
hex tile format: Absolute output of ASM and MAC for the Intel 8080 is 2 hex format file,
containing a sequence of absolute records that give a load address and byte values to be

stored, starting at the load address.

HOME: BIOS entry point which sets the disk head of the currently selected drive to the
track zero position.

host: Physical characteristics of a hard disk drive in a system using the blocking and
deblocking algorithm. The term “host” helps distinguish physical hardware characteris-

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 227




tics from CP/M’s logical characteristics. For example, CP/M sectors are always 128 bytes,
although the host sector size may be a multiple of 128 bytes.

input: Data going into the computer, usually from an operator typing at the terminal or
by a program reading from the disk. :

input/output: See 1/0.

interface: Object that allows two independent systems to communicate with each other,
as an inferface between hardware and software in a microcomputer.

1/0: Abbreviation for inputioutput. Usually refers to input/output operations or rou-
tines handling the input and output of data in the computer system.

IOBYTE: A one byte field in page zero, currently at location 0003H, that can supporta
logical-to-physical device mapping for /0. However, its implementation in your BIOS is
purely optional and may or may not be supported ina given CP/Msystem. The [OBYTE s
easily set using the command:

STAT <logical device> = <physical device>

The CP/M logical devices are CON:, RDR:, PUN:, AND LST:; each of these can be
assigned to one of four physical devices. The IOBYTE may be initialized by the BOOT
entry point of the BIOS and interpreted by the BIOS /O entry points CONST, CONIN,
CONOUT, LIST, PUNCH, and READER. Depending on the setting of the 1OBYTE,
different /O drivers may be selected by the BIOS. For example, setting LST:=TTY: might
cause LIST output to be directed to a serial port, while setting LST:=LPT: causes LIST
output to be directed to a paralle] port.

K: Abbreviation for kilobyte. See kilobyte.
keyword: See command keyword.

kilobyte (K} 1024 bytes or 0400H bytes of memory. This is a standard unit of memory.
For example, the Intel 8080 supports up to 64K of memory address space or 65,536 bytes.
1024 kilobytes equal one megabyte, or over one million bytes. :

tinker: Utility program used ta combine relocatable object modules into an absolute file
ready for execution. For example, LINK-80 creates either a COM or PRL file from
relocatable REL files, such as those produced by PLII-80.

LIST: A BIOS entry point to a routine that sends a character to the list device, usually a
printer.

list device: Device such as a printer onto which data can be listed or printed.

LISTST: BIOS entry point to a routine that returns the ready status of the list device

loader: Utility program that brings an absolute program image into memory ready for
execution under the operating system, or a utility used to make such an image. For
example, LOAD prepares an absolute COM file from the assembler hex file output which
is ready to be executed under CPIM.

logged in: Made known to the operating system, in reference to drives. A driveislogged
in when it is selected by the user or an executing process. It remains selected or logged in
until you change disks in a floppy disk drive or enter ¢tl-C at the commandlevel, or untila
BDOS Function 0 is executed.

2238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




logical: Representation of something that may or may not be the same in its actual
physical form. For example, a hard disk can occupy one physical drive, yet you can divide
the available storage on it to appear to the user as if it were in several different drives.
These apparent drives are the logical drives.

logical sector; See sector.
togical to physical sector transiation table: See XLT.
LSC: Diskdef macro library parameter specifying the last physical sector number.

LST: Logical CP/M list device {usually a printer). The CP/M list device is an output-only
device referenced through the LIST and LISTST entry points of the BIOS. The STAT
command allows assignment of LST: to one of the physical devices: TTY:, CRT:,LPT:,or
UL1:, provided these devices and the IOBYTE are implemented in the LIST and LISTST
entry points of your CPfM BIOS5 module. The CPINET command NETWORK allows
assignment of LST: to a list device on a network master. An example of how LST:is used
in a command: PIP L§T:=TEST.SUB prints the file TEST.SUB on the list device.

macre assembler:  Assembler code translator providing macro processing facilities.
Macro definitions allow groups of instructions to be stored and substituted in the source .
program as the macro names are encountered. Definitions and invocations may be nested
and macro parameters can be formed to pass arbitrary strings of text to a specific macro
for substitution during expansion.

megabyte: Over one million bytes; 1024 kilobytes. See byte, kilobyte.

microprocessor: Silicon chip that is the central processing unit {CPU) of the microcom-
puter. The intel 8080 and the Zilog Z-80 are microprocessors commonly used in CPfM
systems.

MOVCPM image: Memory image of the CP/M system created by MOVCPM. This image
may be saved as a disk file using the SAVE command or placed on the system tracks using
the SYSGEN command without specifying a source drive. This image varies, depending
on the presence of a one-sector or twao-sectar boat. If the boot is less than 128 bytes (one
sector), the boot begins at 0900H, the CPIM system at 0280H, and the BIQS at 1F30H.
Otherwise, the boot is at 0900H, the CP{M system at 1000H, and the BIOS at 2000H. Ina
CPiM 1.4 system with a one-sector boot, the addresses are the same as for the CP/M 2
system-—except that the BIOS begins at 1E80H instead of 1F80H.

MP/M: Multi-Programming Monitor control program. A microcemputer operating sys-
tem supporting multi-terminal access with multi-programming at each terminal.

multi-programming: The capability of initiating and executing more than one program
at a time. These programs, usually called processes, are rime-shared, each receiving a slice
of CPU time on a “round-robin” basis. See concurrency.

nibble: One half of a byte, usually the high order or low order 4 bits in a byte.

OFF: Two byte parameter in the disk parameter block at DPB + 13 bytes. This value
specifies the number of reserved system tracks. The disk directory begins in the first

sector of track OFF,

OF S: Diskdef macre library parameter specifying the number of reserved system tracks.
See OFF.

ALL BNFORMATION PRESENTED HERE (S PROPRIETARY TO DICITAL RESEARCH 229




operating system: Collection of programs that supervises the execution of other pro-
grams and the management of computer resources. An operating system provides an
orderly inputfoutput environment between the computer and its peripheral devices. It
enables user-written programs to execute safely. An operating system standardizes the
use of computer resources for the programs running under it.

option: One of many parameters that can be part of a command tail. Use options to
specify additional conditions for a command’s execution.

output: Data that is sent to the console, disk, or printer.

page: 256 consecutive bytes in memory beginning on a page boundary, whose base
address is a multiple of 256 (100H) bytes. In hex notation, pages always begin at an
address with a least significant byte of zero.

page relocatable program: See PRL.

page zero: Memory region between 0000H and 0100H used to hold critical system
parameters. Page zero functions primarily as an interface region between user programs
and the CP/M BDOS module. Note: in non-standard systems this region is the base page
of the system and represents the first 256 bytes of memory used by the CP/M system and
user programs running under it.

parameter: Value in the command tail that provides additional information for the
_command. Technically, a parameter is a required element of a command.

peripheral devices: Devices external to the CPU. For exarmple, terminals, printers, and
disk drives are common peripheral devices that are not part of the processor but are used
in conjunction with it.

physical: Characteristic of computer components, generally hardware, that actually
exist. In programs, physical components can be represented by logical components.

primary filename: First 8 characters of a filename. The primary filename is a unique
name that helps the user identify the file contents. A primary filename contains 1 to 3
characters and can include any letter or number and some special characters. The primary
filename tollows the optional drive specification and precedes the optional filetype.

PRL: Page relocatable program. A page relocatable program is stored on diskette as a file
of type PRL. Page relocatable programs are easily relocated to any page boundary and
thus are suitable for execution in a non-banked MP{M system.

program: Series of coded instructions that performs specific tasks when executed by a
computer. A program can be written in a processor-specific language or a high-level
language that can be implemented on a number of different processors.

prompt: Any characters displayed on the video screen to help the user decide what the
next appropriate action is. A system prompt is a special prompt displayed by the operating
systemn. See CP/M prompt, The alphabetic character indicates the default drive. Some
applications programs have their own special prompts.

PUN: Logical CPIM punch device. The punch device is an output-only device accessed
through the PUNCH entry point of the BIOS, In certain implementations, PUN: canbe a

serial device such as a modem.

PUNCH: BIOS entry point to a routine that sends a character to the punch device.

230 ALL INFORMATION PRESENTED HERE iS5 PROPRIETARY TO DIGITAL RESEARCH




Fcas

RDR: Logical CP/M reader device. The reader device is an input-only device accessed
through the READER entry point in the BIOS. See PUN..

READ: Entry point in the BIOS to a routine that reads 128 bytes from the currently
selected drive, track, and sector into the current DMA address.

READER: Entry paint to a routine in the BIOS that reads the next character from the
currently assigned reader device.

read-only (R O ): Attribute that can be assigned to a disk file or a disk drive. When
assigned to a file, the read-only attribute allows you to read from that file but not write to
it. When assigned to a drive] the read-only attribute allows you to read any file on the disk,
but prevents you from adding a new file, erasing or changing a file, renaming a file, or
writing on the disk. The STAT command can set a file or a drive to read-only. Every file
and drive is either read-only or read-write. The default setting for drives and files is
read-write, but an error in resetting the disk or changing media automatically sets the
drive to read-only until the error is corrected. See also ROM.

read-write (R W ): Attribute that can be assigned to a disk file or a disk drive. The
read-write attribute allows you to read from and write to a specific read-write file or to
any file on a disk that is in a drive set to read-write, A file or drive can be set to either
read-only or read-write.

record: Group of bytes in a file. A physical record consists of 128 bytes and is the basic
unit of data transfer between the operating system and the application program. A logical
record may vary in length and is used to represent a unit of information. Two 64 byte
“employee” records can be stored in one 128-byte physical record. Records are grouped
together to form a file.

recursive procedure: Code that may call itself during execution.

reentrant procedure; Code that can be called by one process while another is already
executing it. Thus, reentrant code may be shared between different users. Reentrant
procedures must not be self-modifying; that is, they must be pure code and not contain
data. The data for reentrant procedures can be kept in a separate data area or placed on
the stack.

restart (RST): One-byte call instruction usually used during interrupt sequences and for
debugger break pointing. There are eight restart locations, RST 0 through RST 7, whose
addresses are given by the product of 8 times the restart number.

RO: See read-only.

ROM: Read-only memory. This memory can be read but not written and so is suitable for
code and preinitialized data areas only.

RST: See restart.
RW: See read-write.

sector: Ina CPIM system, a sectoris always 128 consecutive bytes. A sector is the basic
unit of data read and written on the disk by the BIOS. A sector can be one 128-byte record
in a file or a sector of the directory. The BDOS always requests a logical sector number
between 0 and (SPT-1). This is typically translated into a physical sector by the BIOS
entry point SECTRAN. In some disk subsystems, the disk sector size is larger than 128
bytes, usually a power of two such as 256, 512, 1024 or 2048 bytes. These disk sectors are

ALL INFORMATION: PRESENTED HERE I3 PROPRIETARY TO DIGITAL RESEARCH M




always referred to as host sectors in CPIM documentation and should not be confused
with other references to sectors, in which cases the CP/M 128 byte sectors should be
assumed. When the host sector size is larger than 128 bytes, host sectors must be
buffered in memory and the 128 byte CPfM sectors must be blocked and deblocked from
them. This may be done by adding an additional module, the blocking and deblocking
algorithm, between the BIOS disk IfQ routines and the actual disk [JO.

sectors per track (SPT): A two byte parameter in the disk parameter block at DPB + 0.
The BDOS makes calls to the BIOS entry point SECTRAN with lagical sector numbers
ranging between 0 and (SPT - 1} in register BC.

SECTRAN: Entry point to a routine in the BIOS that performs logical to physical sector
translation for the BDOS., '

SELDSK: Entry point to a routine in the BIOS that sets the currently selected drive.

SETDMA: Entry point to a routine in the BIOS that sets the currently selected DMA
address. The DMA address is the address of a 128-byte buffer region in memaory that is
used to transfer data to and from the disk in subsequent reads and writes.

SETSEC: Entry point to a routine in the BIOS that sets the currently selected sector.
SETTRK: Entry point to a routine in the BIOS that sets the currently selected irack.

skew factor: Factor that defines the logical to physical sector number translation in XLT.
Logical sector numbers are used by the BDOS and range between 0and (SPT-1). Datais
written in consecutive logical 128-byte sectors grouped in data blocks. The number of
sectors per block is given by BLS/128. Physical sectors on the disk media are also
numbered consecutively. Tf the physical sector size is also 128 bytes, a one-to-one
relationship exists between logical and physical sectors. The logical to physical translation
table {XLT) maps this relationship, and a skew factor is typically used in generating the
table entries. For instance, if the skew factor is 6, XLT will be:

Logical: 0 1 2 3 4 5 6 ... 25
Physical: 1 7 13 19 25 5 11 ... 22

The skew factor allows time for program processing without missing the next sector.
Otherwise, the system must wait for an entire disk revolution before reading the next
logical sector. The skew factor can be varied, depending on hardware speed and applica-
tion processing overhead. Note that no sector translation is done when the physical
sectors are larger than 128 bytes, as sector deblocking is done in this case. (See also sector,
SKF and XLT)

SKF: A diskdef macro library parameter specifying the skew factor to be usedin building
XLT. If SKF is zero, no translation table is generated and the XLT byte in the DPH will be
0000H.

software: Programs that contain machine-readable instructions, as opposed to hardware,
which is the actual physical components of a computer.

source file: ASCI text File usually created with an editor, which is an input file ta a
system program such as a language translator or text formatter.

SP: Stack pointer. See stack.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




e

spooling: Process of accumulating printer output in a file while the printer is busy. The
file is printed when the printer becomes free; a program does not have to wait for the slow
printing process.

SPT: See sectors per track.

stack: Reserved area of memory where the processor saves the return address when a
call instruction is received, When a return instruction is encountered, the processor
restores the current address on the stack to the program counter. Data such as the
contents of the registers can also be saved on the stack. The push instruction places data
on the stack and the pop instruction remaoves it. An item is pushed onto the stack by
decrementing the stack pointer (SP) by 2 and writing the item at the SP address. In other
words, the stack grows downward in memory.

syntax: Format for entering a given command.
SYS: See system attribute.

SYSGEN image: Memory image of the CP{M system created by SYSGEN when a
destination drive is not specified. This is the same as the MOVCPM image, which can be
read by SYSGEN if a source drive is not specified. See MOVCPM image.

system attribute {(SYS}: File attribute. You can give a file the system attribute by using
the S¥YS option in the STAT command or by using the set file attributes function (BDOS
function 12}. A file with the SY S attribute is not displayed in response to a DIR command.
1€ you give a file with user number 0 the SYS attribute, you can read and execute that file
from any user number on the same drive. Use this feature to make your commonly used
programs available under any user number.

system prompt: Symbol displayed by the operating system indicating that the system is
ready to receive input. See prompt, CP/M prompt.

system tracks: Tracks reserved on the disk for the CP/M system. The number of system
tracks is specified by the parameter OFF in the disk parameter block {(DPB). The system
tracks for a drive always precede its data tracks. The command SYSGEN copies the CPIM
system from the system tracks to memory, and vice versa. The standard S5YSGEN utility
copies 26 sectors from track 0 and 26 sectors from track 1. When the system tracks
contain additional sectors or tracks to be copied, a customized SYSGEN must be used.

terminal; See console.

TPA: Transient program area. Area in memory where user programs run and store data.
This area is a region of memory beginning at 0100H and extending to the base of the
CPIM system in high memory. The first module of the CP/M system is the CCP, which
may be overwritten by a user program. If so, the TPA is extended to the base of the CPIM
BDOS module. If the CCP is overwritten, the user program must terminate with gither a
system reset (function 0) call or a jump to location zero in page zero. The address of the
base of the CP{M BDOS is stored in location 0006H in page zero, least significant byte
first.

track: Data on the disk media is accessed by combination of track and sector numbers.
Tracks form concentric rings on the disk; the standard IBM single-density diskettes
have 77 tracks. Each track consists of a fixed number of numbered sectors. Tracks are
numbered from O to one less than the number of tracks on the disk.

transient program area: See TPA.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 233




upward compatible: Term meaning that a program created for the previously released
operating system (or compiler, etc.) runs under the newly released version of the same
operating system.

USER: Term used in CP/M and MPIM systems to distinguish distinct regions of the
directory.

user number: Number assigned to files in the disk directory so that different users need
only deal with their own files and have their “own” directories, even though they are all
working from the same disk. In CPIM, files can be divided into 16 user groups.

utility: “Tool.” Program that enables the user to perform certain operations, such as
copying files, erasing files, and editing files. The utilities are created for the convenience
of programmers and users.

vector: Location in memory. An entry peint into the operating system used For making
system calls or interrupt handling.

warm start: Program termination by: aiump to the warm start vector at location 0000H, a
system reset (BDOS function 0), or a cti-C typed at the keyboard. A warm start
reinitializes the disk subsystem and returns control to the CP/M operating system at the
CCP level. The warm start vector is simply a jump to the WBOOT entry point in the
BIOS.

WEBOOT: Entry point to a routine in the BIOS used when a warm start occurs. A warm
start is performed when a user program branches to location 0000H, when the CPU is
reset from the front panel, or when the user types ctl-C. The CCP and BDOS are reloaded
from the system tracks of drive A.

wildcard characters: Special characters that match certain specified items. In CP/M
there are two wildcard characters: ? and *. The 7 can be substituted for any single
character in a filename, and the * can be substituted for the primary filename or the
filetype, or bath. By placing wildcard characters in filenames, the user creates an ambigu-
ous filename and can quickly reference one or more files,

word. 16-bit or two-byte value, such as an address value. Although the Intel 80B0isan
8-bit CPU, addresses occupy two bytes and are called word values.

WRITE: Entry point to a routine in the BIOS that writes the record at the currently
selected DMA address to the currently selected drive, track, and sector.

XLT: Legical to physical sector translation table located in the BIOS. SECTRAN uses
XLT to perform logical to physical sector number translation. XLT also refers to the
two-byte address in the disk parameter header at DPBASE + 0. If this parameter is zero,
no sector translation takes place. Otherwise this parameter is the address of the transla-
tion table.

ZERO PAGE: See page zero.

234 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIJITAL RESEARCH




Appendix [: CP/M Messages

Messages come from several different sources. CPIM displays error messages when
there are errors in calls to the Basic Disk Operating System (BDOS). CP/M also displays
messages when there are errors in command lines. Each utility supplied with CP/M has its
own set of messages. The tollowing lists CPiM messages and utility messages. One might
see messages other than those listed here if one is running an application program. Check
the application program’s documentation for explanations of those messages.

Message Meaning
l’

DDT. This message has four possible meanings:
1) DDT dees not understand the assembly language instruction.
2} The file cannot be opened.
3} A checksum error occurred in a HEX file,
- 4) The assembler/disassembler was overlayed.

ABORTED
PIP. You stopped a PII® operation by pressing a key.

ASM Error Messages

D Data error: data statement element cannot be placed in
specified data area. '

E Expression error: expression cannot be evaluated during

assembly. ’

Label errotr: label cannot appear in this context (might be

duplicate label).

Not implemented: unimplemented features, such as macros,

are trapped.

Owverflow: expression is too complex to evaluate.

Phase error: label value changes on two passes through

assembly. '

Register error: the value specified as a register is incompatible

with the code.

-

2 WO Z

ALL INFORMATION PRESENTED HERE IS PROPRIEFARY TO DIGITAL RESEARCH 235



BAD DELIMITER

Bad Load

Bdos Err.On d;

Syntax error: improperly formed expression.

Undefined label: label used does not exist.

Value ercor: improperly formed operand encountered in an
expression.

<Cw

STAT. Check command line for typing errors.

CCP error message, or SAVE error message.

Basic Disk Operating System Error on the designated drive: CP/M
replaces d: with the drive specification of the drive where the error
occurred. This message is followed by one of the four phrases in the
situations described below.

Bdos Err On d: Bad Sector

Bdos Err On d: File

This message appears when CP/M Ffinds no disk in the drive, when
the disk is improperly formatted, when the drive latch is open, or
when power to the drive is off. Check for one of these situations
and try again. This could also indicate a hardware problem or a
worn or improperly formatted disk. Press tC to terminate the
program and return to CP/M, or press the return key to ignore the
error. :

R/O

You tried to erase, rename, or set file attributes on a Read-Only file.
The file should first be set to Read-Write (RW) with the command:
“STAT filespec $RIW.”

Bdos Err On d: R/O

Drive has been assigned Read Qnly status with a STAT command,
or the disk in the drive has been changed without being initialized
with a 1C. CP/M terminates the current program as soon as you
press any key.

Bdos Err on d; Select

Break "x" at ¢

CPIM received a command line specifying a nonexistent drive.
CPM terminates the current program as soon as you press any key.
Press return key or CTRL-C to recover.

ED. “x” is one of the symbols described below and ¢ is the command
letter being executed when the error occurred.

¥  Search failure. ED cannot find the string specified inan F, 5, or
N command.

?  Unrecognized command letter c. ED) does not recognize the
indicated command letter, or an E, H, Q, or O command is not
alone on its command line,

236 ALL INFORMATION PRESENTED HERE I$ PROPRIETARY T DRWTAL RESEARCH




O The file specified in an R command cannot be found.

>  Buffer full. ED cannot put any more characters in the memory
buffer, or the string specified in an F, N, or § command is toc
long.

E Command aborted. A keystroke at the console aborted
command execution.

F  Disk or directory full. This error is followed by either the disk
or directory full message. Refer to the recovery procedures
listed under these messages.

CANNQOT CLOSE DESTINATION FILE— {filespec)

Cannot close, R/O

PIP. An output file cannot be closed. You should take appropriate
action afier checking to see if the correct disk isin the drive and that
the disk is not write-protected.

CANNOT CLOSE FILES

CANNOT READ

CANNOT WRITE

Checksum error

CPIM cannot write to the file. This usually oecurs because the disk
is write-protected.

ASM. An output file cannat be closed. This is a fatal error that
terminates ASM execution. Check to see that the disk is in the
drive, and that the disk is not write-protected.

DDT. The disk file written by a W command cannot be closed. This
is a fatal error that terminates DDT execution. Check if the correct
disk is in the drive and that the disk is not write-protected.

SUBMIT. This error can occur during SUBMIT file processing.
Check if the correct system disk is in the A drive and that the disk is
not write-protected. The SUBMIT job can be restarted after
rebooting CPIM.

PIP. PIP cannot read the specified source. Reader may not be
implemented.

PIP. The destination specified in the PIP command is illegal. You
probably specified an input device as a destination.

PIP. A hex record checksum error was encountered. The hex record
that produced the error must be corrected, probably by recreating
the hex file.

CHECKSUM ERROR
LOAD ADDRESS hhhh
ERROR ADDRESS hhhh

BYTES READ:
hhhh:

LOAD. File contains incorrect data. Regenerate hex file from the
SOLrCe, ’

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICATAL RESEARCH 237




Command Buffer Overflow

SUBMIT. The SUBMIT buffer allows up to 2048 characters in the
input file.

Command too long

SUBMIT. A command in the SUBMIT file cannot exceed 125
characters.

CORRECT ERROR, TYPE RETURN OR CTL-Z

PIP. A hex record checksum was encountered during the transfer of
ahex file. The hex file with the checksum error should be corrected,
probably by recreating the hex file.

DESTINATION IS R/Q, DELETE {Y/N)?

PIP. The destination file specified in a PIP command already exists
and it is Read Only. If you type Y, the destination Ffile is deleted
before the file copy is done.

Directory full

ED. There is netenough directory space for the file being written to
the destination disk. You can use the OXfilespec command to erase
any unnecessary files on the disk without leaving the editor.

SUBMIT. There is not enough directory space to write the
$5%%.SUB file used for processing SUBMITs. Erase some Ffiles or
select a new disk and retry.

Disk full

ED. There is not enough disk space for the output file. This error
can occur on the W, E, H, or X commands. If it occurs with X
command, you can repeat the command prefixing the filename with
a different drive. : :

DISK READ ERROR— (filespec)

PIP. The input disk file specified in a PIP command cannot be read
properly. This is usually the result of an unexpected end-of-file.
Correct the problem in your file.

DISK WRITE ERROR— {filespec}

DDT. A disk write operation cannot be successfully performed
during a W command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space.

PIP. A disk write operation cannot be successfully performed dur-
ing a PIP command, probably due to a full disk. You should either
erase some unnecessary files or get another disk with more space
and execute PIP again.

SUBMIT. The SUBMIT program cannot write the $$%.SUB file to
the disk. Erase some files, or select a new disk and try again.

ERAOR: BAD PARAMETER

PIP. You entered an illegal parameter in aPIP command. Retype the
entry correctly.

238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH




ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

ERROR:

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Displayed if LOAD cannot find the specified file or if no
filename is specified.

CANNOT CLOSE FiLE, LOAD ADDRESS hhhh

LOAD. Caused by an error code returned by a BDOS function call.
Disk may be write-protected.

CANNOT OPEN SOURCE, LOAD ADDRESS hhhh
LOAD. Cannot find source file. Check disk directory.

DISK READ, LOAD ADDRESS hhhh
LOAD. Caused by an error code returned by a BDOS function call.

DISK WRITE, LOAD ADDRESS hhhh
LOAD. Destination Disk is full.

INVERTED LOAD ADDRESS, LOAD ADDRESS hhhh

LOAD. The address of a record was too far from the address of the
previously-processed record. This is an internal limitation of
LOAD, but it can be circumvented. Use DDT to read the hexfile
into mernory, then use a SAVE command to store the memory
image file on disk.

NO MORE DIRECTORY SPACE, LOAD ADDRESS hhhh
LOAD. Disk directory is full.

Error on tine nnn message

SUBMIT. The SUBMIT program displays its messages in the for-
mat shown above, where nnn represents the line number of the
SUBMIT file. Refer to the message following the line number.

FILE ERROR
ED. Disk or directory is full, and ED cannot write anything more on
the disk. This is a fatal error, so make sure there is enough space on
the disk to hold a second copy of the file before invoking ED.
"FILE EXISTS

You have asked CPIM to create or rename a file using a file specifi-
cation that is already assigned to another file. Either delete the
existing file or use another file specification.

REN. The new name specified is the name of a file that already
exists. You cannot rename a file with the name of an existing file. If
you want to replace an existing file with a newer version of the
same file, either rename or erase the existing file, or use the PIP
utility.

File exists, erase it

ED. The destination filename already exists when you are placing
the destination File on a different disk than the source. it should be
erased or another disk selected to receive the output file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239




** FILE S READ/ONLY **

ED. The file specified in the command to invoke ED has the Read
Only attribute. ED can read the file so that the user can examine it,
but ED cannot change a Read Only file.

File Not Found

CPIM cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

ED. ED cannot find the specified file. Check that you have entered
the correct drive specification or that you have the correct disk in
the drive.

STAT. STAT cannot find the sl:;écified file. The message might
appear if you omit the drive specification. Check to see if the correct
disk is in the drive.

FILE NOT FOUND— [fitespec}

PIP. An input file that you have specified does not exist.

Filename required

ED. You typed the ED command without a filename. Reenter the
EDcommand followed by the name of the file you want to edit or
create.

hhhh?%=dd

DDT. The ?7 indicates DDT does not know how to represent the
hexadecimal value dd encountered at address hhhh in 8080 assem-
bly language. dd is not an 8080 machine instruction opcode.

Insufficient memory

DDT. There is not enough memory to load the file specified in an R
or E command.

Invalid Assignment

STAT. You specified an invalid drive or file assignment, or miss-
pelled a device name. This error message might be followed by a list
of the valid file assignments that can follow a filename. If an invalid
drive assignment was attempted the message “Use: d:=RO” is dis-
played, showing the proper syntax for drive assignments.

Invalid control character

SUBMIT. The only valid control characters in the SUBMIT fites of
type SUB are A through Z. Note that in a SUBMIT file the
contrel character is represented by typing the circumflex, ", not
by pressing the control key.

INVALID DIGIT— [filesped]

PIP. Aninvalid hex digit has been encountered while reading a hex
file. The hex file with the invalid hex digit should be corrected,
probably by recreating the hex file.

240 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH .




Invalid Disk Assignment
STAT. Might appear if you follow the drive specification with
anything except =R/Q.

INVALID DISK SELECT

CPIM received a command line specifying a nonexistent drive, or
the disk in the drive is improperly formatted. CP/M terminates the
CUCFent program as s0ON as you press any key.

INVALID DRIVE NAME (Use A, B, C, or D}
SYSGEN. SYSGEN recognizes only drives A, B, C and D as valid
destinations for system generaticn.

Invalid File indicator
STAT. Appears if you do not specify RO, RW, DIR, or SYS.

INVALID FORMAT
PIP. The format of your PIP command is itlegal. See the description
of the PIP command.

INVALID HEX DIGIT
LOAD ADDRESS hhhh
ERRORA ADDRESS hhhh
BYTES READ:

hhhh

LOAD. File contains incorrect hex digit.

INVALID MEMORY SIZE

MOVCPM. Specify a value less than 64K or your computer’s actual
memory size.

INVALID SEPARATOR

PIP. You have placed an invalid character for a separator between
two input filenames. ’

INVALID USER NUMBER

PIP. You have specified a user number greater than 15. User
numbers are in the range 0 to 15.

n?

USER. You specified a number greater than fifteen for a user area
number. For example, if you type USER 18<(cr>>, the screen displays
187,

NO DIRECTORY SPACE

ASM. The disk directory is full. Erase some files to make room for
PRN and HEX files. The directory can usually hold only 64 file-
names.

ALL INFORMATION PRESENTED HERE 15 PROPRIETARY TO DIGITAL RESEARCH 241




NQ DIRECTORY SPACE— {filespec}

PIP. There is not enough directory space for the output file. You
should either erase some unnecessary files or get another disk with
more directory space and execute PIP again.

NO FILE— [filespecl

DIR, ERA, REN, PIP. CP/M cannot find the specified file, or no
files exist.

ASM. The indicated source or include file cannot be found on the
indicated drive.

DDT. The file specified in an R or E command cannot be found on
the disk.

NO INPUT FILE PRESENT ON DISK
DUMP. The file you requested does not exist.

No memary

There is not enough (buffer?) memory available for kading the
program specified.

NO SOURCE FILE ON DISK

SYSGEN. SYSGEN cannot find CPIM either in CPM)« €om form
or on the system tracks of the source disk.

NG SOURCE FILE PRESENT

ASM. The assembler cannot find the file you specified. Either you
mistyped the filespecification in your command line, or the file is
not type ASM.

NG SPACE

SAVE. Too many files are already on the disk, or no room is left on
the disk to save the information.

No SUB file present

SUBMIT. For SUBMIT to operate properly, vou must create a file
with filetype of SUB. The SUB file contains usual CP/M commands.
Use one command per line.

NOT A CHARACTER SOURCE

PIP. The source specified in your PIP command is illegal. You have
probably specified an output device as a source.

“* MOT DELETED *~

PIP. PIP did not delete the file, which may have had the R/Q
attribute.

NOT FOUND
PIP. PIP cannot find the specified File.

242 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




OUTPUT FILE WRITE ERROR

ASM. You specified a write-protected diskette as the destination
for the PRN and HEX files, or the diskette has no space left. Correct
the problem before assembling your program.

Parameter error

SUBMIT. Within the SUBMIT file of type sub, valid parameters are
%0 through $¢.

PARAMETER ERAOR, TYPE RETURN TO IGNORE

SYSGEN. If you press return, SYSGEN proceeds without process-
ing the invalid parameter.

QUIT NOT FOUND

PIP. The string argument to a Q parameter was not found in your
input file.

Read error

TYPE. An error occurred when reading the file specified in the type
command. Check the disk and try again. The STAT filespec com-
mand can diagnose trouble.

READER STOPPING

PIP. Reader operation interrupted.

Record Too Long
‘ PIP. PIP cannot process a record longer than 128 bytes.
Requires CP/M 2.0 or later
XSUB. X5UB requires the facilities of CP{M 2.0 or newer version.

Requires CP/M 2.0 or newer for operation

PIP. This version of PIP requires the facilities of CP/M 2.0 or newer
version.

START NOT FOUND

PIP. The string argument to an S parameter cannot be found in the
source file,

SOURCE FILE INCOMPLETE
SYSGEN. SYSGEN cannat use your CP/M source file.

SOURCE FILE NAME ERROR

ASM. When you assemble a file, you cannot use the wildcard
characters * and 7 in the filename. Only one file can be assembled at
a time.

SOURCE FILE READ ERRCR

ASM. The assembler cannot understand the information in the file

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 243 -




containing the assembly language program. Portions of another file
might have been written over your assembly language file, or
information was not properly saved on the diskette. Use the TYPE
command to locate the error. Assembly language files contain the
letters, symbols, and numbers that appear on your keyboard. If
your screen displays unrecognizable output or behaves strangely,
you have found where computer instructions have crept into your

file.

SYNCHRONIZATION ERROR

MOVCPM. The MOVCPM utility is being used with the wrong
CPiM system.

“SYSTEM” FILE NOT ACCESSIBLE

You tried to access a file set to Y5 with the STAT command.

“* TOO MANY FILES "

STAT. There is not enough memory for STAT to sort the files
specified, or more than 512 files were specified.

UNEXPECTED END OF HEX FILE—[filespec}

PIP. An end-of-file was encountered prior to a termination hex
record. The hex file without a termination record should be cor-
rected, probably by recreating the hex file.

Unrecognized Destination

PIP. Check command line for valid destination.

Use: STAT d:=RO

STAT. Aninvalid STAT drive command was given. The only valid
drive assignment in STAT is STAT d:=RQ.

VERIFY ERROR:—{filespec}

PIP. When copying with the V option, PIP found a difference when
rereading the data just written and comparing it to the data in its
memory buffer. Usually this indicates a failure of either the destina-
tion disk or drive.

WRONG CP/M VERSION (REQUIRES 2.0)

Xs5uUB ACTIVE
SUBMIT. XSUB has been invoked.

XSUB ALREADY PRESENT
SUBMIT. XSUB is already active in memory.

Your input?

If CP/M cannot find the command you specified, it returns the
command name you entered followed by a question mark. Check
that you have typed the command line correctly, or that the com-
mand you requested exists as a .COM file on the default or specified
disk.

244 ALL INFORMATION PRESENTED HERE (5 PROPRIETARY TO DICITAL RESEARCH




INDEX

Absolute line number, 36

Access mode, 13

afn {ambiguous file reference), 3, 4, 6
Allocation vector, 105

Ambiguous file reference (afn), 3. 4, 6
ASM, 15, 47

Assembler, 15, 47

Assembler!disassembler moadule (DDT), ¢7
Assembly errors, 62

Assembly language mnemonics in DDT, 71, 74
Assembly language program, 42

Assembly language statement, 49
Automatic command processing, 25

Base, 50

Basic Disk Operating System (BDOS), 2, 89, 127
Basic /O System (BIOS), 2, 89, 127 .
BDOIS (Basic Disk Operating System), 2, 89, 127
Binary constants, 50

BIQS (Basic WO System), 2, 89, 127

BIOS disk definition, 143

BiQ5 subroutines, 137

Block move command, 74

bls parameter, 149

BOOT, 90. 136, 140

BOOT entry point, 140

Breakpoint, 1, 73

Buitt-in commands, 3

Case translation, 5, 6, 20, 21, 27, 39, 44, 45, 51. 95
CCP (Console Command Processor), 2, 69. 89, 127
CCP Stack. 92

Character painter, 35

CKS parameter, 149

Clase File function, 101

Code and data areas, 144

Cold start loader, 136, 140, 142

Combine files, 17

Command, 3

Command line, 90

Comment field, 49

Compute File Size function, 108

Condition flags, 58, 77

Conditional assembly, 56

CONIN, 140

CONOUT, 141

CONSOLE. 128

Consele Command Processor {CCP), 2,69, 89, 127
Console Input function, 95

Console Qutput function, 98

CONST. 140 '

Constant, 50

Control characters, 44

Control functions, 9

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

245



Control-Z character, 93

Copy files, 17

CPU state, 71

cr learriage return), 39

Create files, 23

Create system disk, 24

Creating COM liles, 14

Currently logged disk, 3, 5, 10, 17, 25

Data allocation size, 147
Data block number, 147
DB statement, 57

DOT commands, 70, 133
DT nucleus, 77

DOT prompt, 70
"DDT sign-on message, 69
Decimal constant, 50
Default FCB, 73

Delete File function, 102
DESPOOL, 138

Device assignment, 11
DIR, 6

DIR attribute, 14

dir parameter, 14%

Direct console IfQ function, 97
Direct Memory Address, 104
Directory, &

Directory code, 100, 101, 102, 123
Disassembler, 71, 77

Disk attributes, 11

Disk drive name, 5

Disk 1O functions, 99-110
Disk parameter block, 146
Disk parameter header, 145
Disk parameter table, 145
Disk statistics, 10
Disk-to-disk copy. 18
‘DISKDEF macro, 149
Diskette format, 31
DISKS macre, 150, 186
Display file contents, 8
dks parameter, 149

DMA, 104

DMA address, 93

dn parameter, 149
DFBASE. 146

Drive characteristics, 14
Drive select code, 94

Drive specification, 5

DS statement, 57

DUMP, 27, 113

DW statement, 57

ED. 23, 33-45, 131

EDC commands, 38, 44
ED arrors, 43

Edit command line, 9
8080 CPU registars, 76
808D registers, 51
end-of -file, 19, 93 -
END statement, 49, 54
ENDEF macro, 150
ENDIF statement, 56
EQU statement, 55

246 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH




ERA, 6

Erase files, &

Error messages, 29, 43, 62, 153
Expression, 4%

Extents, 13

FBASE, 89

FCB. 93, 94

FCB format, 93, 94
FDHOS (operations), 89, 91
File attributes, 14

File compatibility, 23

File vontrol block (FCB), 93, 94
File expansion, 128

File exient, 93

File indicators, 14

File names, 3

Fiel reference. 3

File statistics, 10, 13
Filetype. 93

Find command, 3¢

fsc parameter, 149

Get ADDR (Alloc) function, 105

Get ADDR (Disk Parms) Function, 106
Cet Console Status, 99

Get /O Byte function, 97

Get ReadfOnly Vector function, 105
GETSYS, 128, 134

Hexadecimal constant, 50
Hex Files, 16, 19, 20, 47
HOME subroutine, 139, 141

Identifier. 49, 50

1F statermnent, 56

Initialized storage areas, 57
In-line assembly language, 71
[nsert mode, 37

[nsert string, 40

IOBYTE function, 135,139

Jump vector, 137
Juxtaposition command, 41

Key fields, 109

Label field, 29

Labels, 48, 49, 58

Library read command, 42

Line-editing control characters, 33, 70, 98
Line-editing Functions, 9

Line nuinbers, 36

LIST, 135, 141

List Crutput function, 96

LISTST. 142

LOAD, 16

Logged in, 3

Logica! devices, 11, 18, 138

Logical extents, 23

Logical-physical assignments, 12, 139
Logical to physical device mapping, 138
Logical to physical sector translaticn, 143, 149
lsc parameter, 142

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 247




Machine executable code, 16
Macro command, 42

Make File function, 103

Memory buffer, 33, 34, 15, 37
Memory image, 71, 131, 132
Memory image file, 16

temory size, 27, 118, 132
MOVCPM, 27, 131, 132
Multiple command processing, 25

Negative bias, 132

(o] parameter, 149
Qctal constant, 50

ofs parameter, 150
On-line status, 100
Open File function, 100
Operand field, 49-31
Operation feld, 49-58
COperators. 52, 53, 58
ORG directive. 54

Page zero, 144

Patching the CPIM system, 128
Peripheral devices, 138
Physical devices, 12, 18, 139
FPhysical file size, 109

Physical to logical device 2ssignment, 12, 139
PIP. 17

PIP devices, 19

PIP parameters, 20

Frint String function, 98

PRN file, 47

Program counter, 71, 73, 76
Program tracing, 75

Prompt, 3

Pseudo-operation, 53

PUNMCH, 138, 141

Punch Qutput Function. 96
PUTSYS, 129, 135

Radix indicators, 50

Fandom access, 107, 108, 117
Random access files, 93

Random record number, 108
READ, 142

Read Console Buffer Function, 98
Read only, 14

Eeadionly starus, 14

Read random error codes, 107
Read Random Function, 107

READ routine, 139

Read Sequential function, 102
Readiwrite, 14

READER, 138, 141

Reader Input function, 96

REN, 7

Rename file function, 104

Reset Disk function, 99

Reset Drrive Fanction, 109

Reset state, 99

Return Current Disk Function, 104
Retura Log-in Vector function, 104
Return Version Number function, 99
RIO. 14

248 ALE INFORMATION PRESENTED HERE {5 PRODPRIETARY TO DIGITAL RESEARCH




RIO attribute, 106
RO bit, 105
RiW, 14

SAVE, 7

SAVE command, 70

Search For First function, 101
Search for Next function, 102
Search strings, 39

Secior allocation, 136
SECTRAN, 143

SFLDSK, 139, 141, 145

Select Disk Function, 100

Sequential access, 93

Set DMA address function, 104
Set File Attributes function, 106
Set!/Get User Code Function, 106
Set 1{O Byte function, 97

Set Randomn Record function, 109
SET statement, 55

SETDMA, 142

SETSEC, 142

SETTRK, 141

Simple character HO, 138

Size in records, 13

skf parameter, 149, 150

Source files, 93

Stack pointer, 92

STAT, 10, 139, 151

Stop console output, 9

String substitutions, 40
SUBMIT, 25

8Y§ attribute, 14

SYSGEN. 24. 14

System attribute, 44, 106
System parameters, 140

System (relinitialization, 138
System Reset function, 95

Testing and debugging of programs, &9
Text transfer commands, 35 .
TP4 (Transient Program Area), 2, 89
Trace mode, 76

Transient commands, 3, ¢

Transient Program Area (TPA), 2, 8%
Translate table, 150

Translation vectors, 146

TYPE, 8

ufn, 3, 6

Unambiguous file reference, 3, ¢
LIninitialized memory, 57
Untrace mode, 76

UISER, 8

USER. numbers, 8, 15, 106

Verify line numbers command, 37, 45
Version independent programming, 99
Virtual file size, 108

Warm start, 0, 140

WBOOT entry point, 140
WRITE, 142

Write Protect Disk function, 105
Write random error codes, 108

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

249



Write Random function, 106

Write Random with Zero Fill function, 110
WRITE routine, 142

Write Sequential function, 103

XSOB, 26

250 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DACITAL RESEARCH










