USERS MANUAL
Dual Density Controller
Model 1170

3/18/80

FILE MANAGEMENT FIRMWARE IMPROVEMENTS FOR THE MODEL 1170 CONTROLLER

Effective March, 1980, the firmware installed in the Model 1170 Controller has
five new TEST commands and several protocol changes. Firmware EPROMS having
these new commands are marked 1A, 3A, or 7A to differentiate them from the prior
firmware EPROMS marked V1, V3, or V7. (A11 EPROMS also bear a socket indication
designation.) The new TEST commands are: *

TS/disk N: This command will cause the drive R/W heads to be positioned to Track
N, where N is a decimal number on the range zero to 76. It is not necessary
for a diskette to be loaded unless the drive is a PerSci Model 70.

TC/disk: This command is an enhancement of the TI command. 1t also will cause
every address and data field of every track to be read and verified, but rather
than terminating the test at the last sector of Track 76, it will cycle the test
back to Track zero, repeating until terminated by diskette ejection, controller
reset, or a hard error condition. Verification initiated by the TC command will
start at the track-sector following that last addressed, unless the heads have
unloaded (i.e., the controller time delay has expired) or the disk selection

is changed. :

TP: This command initiates a hash check of the controller EPROM code. The con-
troller will reply ACK EQT if the test is successful or NAK XXXX EQT if not where
XXXX is the hash check (hex) found.

TM 7800 Either of these two commands initiates a write/read test on a 1K block

TM 7900 of the controller 2K RAM. The controller will reply ACK EQOT if the test
is successful and NAK YYYY EOT if not where YYYY is the address (hex) of the first
location failing the test.

RAM Chips/Address Space
u7/22 7800H > 78FFH
ug/23 7900H > 79FFH

CHANGE TO POWER UP/RESET PROTOCOL

Immediately following power up or a reset the controller will test the status of

the serial port. If the optional components are installed and the DSR line (J2

Pin 11) is high, the controller will operate in the serial mode only; otherwise,

the controller will default to parallel I/0 operation only. NOTE THAT THIS IS A
SIGNIFICANT CHANGE TO THE PREVIQUS PROTOCOL DESCRIBED IN SECTION 5.4 CF THE MANUAL.
The sign on message will be sent to the port selected. Two wire (TXD AND RXD)
operation with serial ASCII terminals is still feasible if Pin 11 of U15 is jumpered
to ground to cause DSR to appear always true. (Remove U43 to operate parallel.)

CHANGE TO COPY COMMAND PROTOCOL

Prior firmware caused all of the allocated space of File Sets to be read and re-
written in response to a COPY command even if no data was present. The new firmware
limits this process to actual data only, (File Allocation space remains the same)
offering a speed improvement in some cases.

PerSc1, Inc.

MODEL 1170 DUAL-DENSITY CONTROLLER
USER’S MANUAL

June 1979

PREFACE

This manual is intended to provide the user of the Model 1170 Dual Density
Controller with sufficient information for system integration of the con-
troller and operation with any of the possible diskette drive combinations.

Key to the controller operation is the File Management Firmware (FMF) which
this manual describes in detail. It is the policy of PerSci not to dis-
tribute program source listings or other details of this firmware, but
PerSci will make corrections for flaws found by users and will issue updated
versions as required.

Any new versions of the FMF will be made available to users who may:
e Purchase a new set of EPROMS
e Send in existing EPROMS for reprogramming for a fee

e Send in a diskette which will be returned with the Firware Object
Code.

PerSci will also consider firmware modification or expansion to provide

functional enhancements for the general user where feasible, but radical

firmware changes and/or special disk-resident software for use with the
controller "XECUTE" command require special charges.

PERSCI CONTROLLER SELECTION GUIDE

Following is a summary of pertinent questions for use in selection of a
PerSci 1070 or 1170 Controller.

Question: Q1 Is double density data storage desired?
(i.e., 505,856 data bytes 1 side; 1,011,712 data bytes/diskette)

Q2 - Is IBM diskette 2D compatibility needed?

Q3 - Is dual density capability required?
(i.e., format, read, and write single (FM) or double (MFM)

density)
Q4 - Will controller drive only Model 299B drives?
Q5 - Must system diskettes be interchangeable with diskettes

from other controller and/or drive types?

Q6 - Are 128 data bytes/sectors required for host computer
software?

Q1___NO SELECT 1070

Q2__ _YES_ Q4__NO,_ SELECT 1170-007/017 DISKETTE FORMATS IBM 1 and 2D

?L N\ QJ w
Q3 Q5 NO - SELECT 1170-027/037

Q6_ YES , 04__NO SELECT 1170-001/011 DISKETTE FORMATS P1D1 and P2DI
| (ﬂ &

~

Q5__NO _ SELECT 1170-021/031

Q4___NQ‘,”SELECT 1170-003/013 DISKETTE FORMATS P1D1 and P2D2

4

Q5__NO . SELECT 1170-023/033

NOTE: Actual double density only formats used by DASH 0X1, and OX3 versions
are identical but controller firmware used on -0X1 makes 256 byte
sectors appear to host as 2 separate 128 byte sectors.

ii

AN

—
o

N

o O~NOYOT A~ WN —

PPN NN
. e s+ e e o = e
o oO~NOYOTPAWN -

gUoOorToOToOTO1 orTOoTOn o E-JE g g el S) L) WWwwww w

o ~NoOor s wh — o oo wWwnN —~

CoONOGOTPLWN —

TABLE OF CONTENTS

PAGE
GENERAL v tvttt it eteieeeenneeneesenaaenseneeesenenaeanennens 1-1
| Lo (7 Lo o o ¢ O 1-1
Dumb versus Intelligent Controllersccviviinnn. 1-3
The Mediacovviiiiiinennnnns ettt et e e 1-3
Recording Schemecouiniiiiiiiiiin it iiiineeenneneasns 1-4
Single/Double-Density Codesc.oviiiieiinineninnnnnnnns 1-4
Soft-Sectored Formats et ettt e 1-5
Diskette Initialization and Usecccvviiiininnennnnns 1-5
IBM Compatibility .ovviiiniiiii ittt ittt ennennnnens 1-5
THE 1170 CONTROLLER tiv ittt it i ittt iiteeennennanneanens 2-1
General 1170 Descriptioncviiiriiinnininnerneranenns L. 2-]
Interfaceso ettt et e PR 2-1
Double-Density Write Precompensation 2-2
Firmware Options ...ttt it it intennannnnnnnns 2-2
Versions of the 1170 Controller et reaeeaans 2-3
00T B o e 2-3
Data Error Detection and Control et 2-3
Future Developmentscoivieiennnneennnn e eeereeen 2-4
CONTROLLER FIRMWARE i iiiiiiiiiiieiiereneeneenoeneanennnans 3-1
Series 2 File Management Firmwareciviiiuina.n. 3-1
Series F-2 and Two-Sided Diskettesccciiiiinnan.. 3-2
Data Storage Organizationcoiiiiiiiiiinnnnnnnnns 3-2
Data/File Access Methodscviviiiiiiiiiiiiiinieennnnnnns 3-4
File REfOreNCeS tiviiii it iiiiiienerenennoeeeeeennsosanenns 3-5
Controller Commandseeiieereneerennceneenanneannnans 3-6
INSTALLATIONcvvvnnns Y 13
Physical Descriptionc.cveeviverrvrvenerarerarsoneserany 4=1
Controller Configuration ...evevvereevervencrnrevoneenceess 4&=1
Diskette Drive Configurationcciiiiiiiiieninaennns 4-2
INStallation ..ovitiiinieeereeenennssoossennsscsennnnnans 4-3
Phase-Locked Loop (PLL) Adjustmentcovvnnnnn. 4-4
The 1170 Controller and the 299B Driveccvcvvievvnnnn. 4-5
Serial I/0 Baud RatesS ...iivviiinneeeeeeronnossoaneanneenns 4-7
SYSTEM CONSIDERATIONS ettt teneea e, 5-1
Parallel Port FUNCEion ...cvieieininineneenenrnonosasonanns 5-1
Parallel Handshakecceiiiineiininneernenanneassoannnnss 5-1
Serial Data Port ..vviiii ittt ittt i ittt 5-2
Power Up/Reset Conditionscciveiiiiiieiiennnnnnnnn, 5-2
Interface ProtoColiiiiitiiriienereenononarasnnsnanasns 5-3
Error Diagnostic MesSageseveveieeneeecnionennennennnns 5-3
Sample Drive Programciiieiieiiiiiiireenennannnnns 5-5
Controller Timing ...iuietininerenrenenrnenecncneanennnenas 5-5

iii

LIST OF ILLUSTRATIONS

FIGURE TITLE

1.1 FM, and MFM Encoding Comparedcivirininenenn.
1.2 PerSci Diskette Formatsccoiiiiiiiiiiinnnnennns
2.0 1170 Controller Configurationc.oiiiiiiiinennnnn
2.1 Block Diagramovnieiniiininiienienenenensncaanncnens
3.0 Index File Formatoiiuiiineniieininrneennnenenenenn
3.1 File Management Firmware Diskette Organization

5.0 Read Timing and Write Timingcooiiiiiiiieninennnn

APPENDICES

APPENDIX A: Sample Driver Program Flowchart
Sample 8080 or Z80 Driver Program

APPENDIX B: Optional Sector Interleave Sequence
Sector Details

SCHEMATICS: Sheets 1 and 2

iiii

ooooooooooo

1.1

1.0 GENERAL

Introduction

The Model 1170 is the second intelligent controller developed by
PerSci and can operate in either single density (FM) or double
density (MFM) modes. It continues the concept pioneered by the
Model 1070 of providing an advanced disk operating system resi-
dent in the controller firmware, resulting in a minimum software
burden to the host computer.

The controller Z80A-CPU, 2 to 9K bytes of RAM, 8K bytes of EPROMs,
and other support circuitry are mounted on two S100 printed cir-
cuit boards. Connections and space are provided for an optional
RS232 serial asynchronous interface along with an eight-bit parallel
interface which is designed to exchange data via the S100 bus I/0
ports. '

A1l signal and data pins are compatible with the S100 bus as are
the connections for +8 volts and +16 volts DC power.

The controller program resides in ROM on the controller board and
performs the file management functions normally associated with a
microcomputer ‘disk operating system. These include: diskette
format initialization; maintaining and searching an index of files
on each diskette; allocation and de-allocation of diskette space;
blocking and unblocking of both fixed and variable length records;
error detection and retry; creating, deleting, renaming, copying
of files; and even performing diagnostic testing of the diskette
drives. These file management functions are specified by means of
a high-level controller command language which requires only mini-
mal unique routines in the host computer software (for example,
168 bytes in a typical 8080-based minicomputer). This program is
so interdependent with the logic design of the controller that it
is best referred to as "firmware," and the entire set of programs
written for PerSci controllers will be referred to as the File
Management Firmware. Firmware commands for the 1170 are an ex-
tension of the set used by the PerSci Model 1070 controller.

The 1170 is initially available with three versions of File Man-
agement Firmware, the standard (F2-7) version offering operation
with the IBM 3740 (single density) or Diskette 2D (double density)
formats. Two alternate firmware versions are designed for double
density only operation. All three will work with PerSci drives

in the diskette select mode supporting four Model 70, two Model
277, or two Model 299 drives.

Future firmware versions will be available which take advantage
of the address decoding ability of the Model 299 drives so that

1-1

the 1170 can operate up to 8 drives (32 diskette sides) with a
capabity of over 16 Megabytes of storage. Al1l three work with the
PerSci Model 299 to automatically adjust for insertion of single-
or double-sided diskettes.

The development of the microprocessor has created new uses for,
and demands on, the floppy disk drives invented early in this
decade. Rapid design evolution has answered many of the demands,
but with little, if any, widely accepted drive or media standards.
Therefore, the following paragraphs present a brief summary of key
aspects of diskette technology and usage.

The basic floppy disk drive is comprised of a motor rotating an
8-inch diameter diskette kept in its protective envelope at 360 RPM
with a single gap head used for both writing and reading. Two sepa-
rate gaps offset to either side of the read/write gap are used to
erase or "trim" the head track when writing. The diskettes are
interchangeable between drives and when loaded into the drive, the
plane of the diskette is penetrated slightly by the read/write head
which has a pad opposite the head to ensure the media remains in
contact. This pad can be lifted usually to "unload" the head even
if the diskette remains in the drive. The read/write head is
stepped incrementally to one of 77 tracks, usually by a stepper
motor subject to mechanical wear, and offering no "feedback" sensor
to indicate track location. Just enough logic circuitry is pro-
vided to control the stepper motor and the read/write head.signals.

The PerSci Model 70, 270, 272, and 277 drive designs have imp}oved
this basic and useful concept by:

a. Making the read/write Head Positioner into a true servo system
powered by a linear DC motor which operates with a track sensor
to provide fast, accurate placement of the read/write head.

b. Providing an automatic diskette loading system which does not
deform diskettes.

c. Designing an intergrated and efficient package that can accom-
modate two diskettes in the same volume previous units re-
quired to handle one diskette.

d. Providing advanced electronics for the detection of data.

The PerSci Model 299A/B and 288 designs have maintained these

features, while adding the capability of working with two inserted

two-sided diskettes doubling the storage surface available.

However, even PerSci designs require a controller serving to inter-
connect one or more drives to a host computer.

1-2

1.2

1.3

Dumb versus Intelligent Controllers

The minimum capability for a "dumb" controller serving one or more
drives requires that the design:

a. Control the read/write head positioner generating step pulses
at the required rate along with a direction signal.

b. Accept data bytes from the host and convert these to serial
encoded timed pulses which when sent to the drive cause the
write head current to reverse.

c. Accept encoded pulses from the drive and convert these to data
bytes for transfer to the host.

d. Synchronize these data transfers of the preceding three re-
quirements between the host and the diskette timing.

These requirements are satisfied by several LSI chips now avail-
able such as the Western Digital FD1771/91 Series, but still needed
are rather complex real-time programs for the host which consume
considerable CPU time just "waiting" for data transfer synchroni-
zation.

The 1170 Controller eliminates this requirement, allowing the host
to perform major diskette functions such as initialization, disk-
ette copying, and self tests, such as verification by issue of a
single command, leaving the host then free for other uses. The
addition of the optional serial option enables the 1170 to be used -
alone with a CRT display, keyboard, or teletype, as a file storage
and retrieval unit.

The Media

The floppy diskette is a flexible, oxide-coated 7.88-inch diameter
plastic disk kept in an 8-inch square protective envelope or cover.
The diskette (and cover) have a hole for the drive spindle hub,

and an aperture for the read/write heads to run in contact with

the diskette. A small set of holes are offset in the envelope so
that an index hole in the diskette may be detected.

Diskettes having one index hole are intended for use as "soft"
sectored formats such as used with the 1170. Other diskettes have
more than one index hole and are not usable with the 1170. The
exact location of the diskette cover index hole is used as a means
of indicating if the diskette is intended for single- or two-sided
use. The result is that the PerSci Model 299 drives can work with
single- or two-sided diskettes, but the Model 70 and 277 drives
can accept single-sided ones only.

Diskettes are available from a number of vendors, pretested in a
variety of formats.

1-3

1.4

1.5

Recording Scheme

A read/write head is writing to the diskette when it is being driven
to magnetic saturation. Receipt of a "WRITE" pulse will then cause
the head to reverse saturation. These flux reversals or transitions
are then detected by the same head (with write drive current removed)
and a read amplifier to generate pulses which are returned to the
controller as read data. (The read amplifier output may or may not
be processed by a data separator between amplifier output and con-
troller. The 1170 requires a separate data separator for single
density, but not for double density.)

Single/Double-Density Codes

Serial data is exchanged between controller and drives as pulses.
Pulses from the drive to controller are generated by a read ampli-
fier detecting reversals of magnetic field in the diskette surface,
while pulses from controller to drive are the output of the con-
troller encoder conversion of NRZ data. If the drive and diskette
media were ideal, then the drive output data pulses would have the
same timing and frequency of the controller output. They are not,
so the controller must encode data subject to the limitations of
the media and diskette drive.

The 1070/1170 single-density code is double frequency (or FM) where
a magnetic flux transition occurs for every clock and every data
bit, which results in packing densities very near the media limit

at the inner tracks. Unfortunately, this code is only 50% efficient
because one-half the available space is used for clocks required for
synchronization during reading.

MFM code is a more efficient code which packs twice as many bytes
per track inch by recording clocks only when data is not present.
(See Figure 1.1.) The resultant diskette media has no more flux-
transitions/inch than the single density one, but the read amplifier/
controller combination must detect data subject to the same order
of media distortion as single density with one-half the critical
tolerances. Two approaches to the problem are possible — greatly
improve the Drive Amplifier, which has been done with the PerSci
299B and 288, and/or Write Precompensation in the controller. The
latter approach involves a systematic predistortion of the encoded
pulses to the drive, so that peak shift distortion is compensated.

The 1170 Controller is capable of encoding data for recording with
or without write compensation dependent upon the Encoded EPROM
used. Thus, it may be used with the 299B either way as required
for interchangeability with other system diskette drives. However,
the write precompensation encoder should be used with the PerSci
70, 270, 272, 277, or 299A drives.

1-4

1.6

1.7

1.8

Soft-Sectored Formats

Most drives now available are designed to use the floppy diskette
as a single-sided media having 77 tracks. With the advent to two-
sided media and drives, diskettes are now often considered a media
having 77 cylinders to point up the increased capacity without
having to move the read/write heads. Each track has a continuous
or unformatted capacity in excess of 5,200 bytes (FM) or 10,400
(MFM) if the diskette index hole is used as a start reference for
data storage. For practical applications, the tracks are divided
into arc sections (or sectors) which are used to store and retrieve
fixed length blocks of data. Diskettes are available with addi-
tional (usually 32) holes around the drive spindle hole to estab-
lish sectors. These are known as hard-sectored diskettes. Soft-
sectored diskettes use special address fields written during an
initialization to divide the track into sectors. In addition,

most formats specify a special index sector which is not used for
data storage. A diskette (soft sectored) format then may be speci-
fied by:

e The number of tracks or cylinders.
e Number of data and special sectors per track.
e The recording code used.

e Definition of special bytes used for sector identification
and error checks.

Figure 1.2 is a summary of the 1170 Controller diskette formats in
these terms. The data sectors are divided into two subsectors:

The Address Field and the Data Field. Each of these fields has a
unique "Mark" which serves to enable the read logic to achieve byte
synchronization when reading. The Data Field is completely re-
written any time a sector is written to, but the Address Field

is only written during the initialization.

Diskette Initialization and Use

Before the 1170 can use a diskette, it must be initialized into an
acceptable format. Many vendors provide such diskettes to which
the 1170 can read or write data using its INPUT, OUTPUT, and TEST
commands. To make full use of the File Management Firmware, however,
a volume name and other parameters must be present in the data field
of the first sector of Track Zero (i.e., Outer Track) which are
written by the FMF KILL command.

IBM Compatibility
The PerSci 1070 and 1170 with FMF2-7 will generate on single-sided

diskettes formats meeting all requirements of IBM Product Refer-
ence Literature GA21-9190-1, with the exception of data field

1-5

contents. Address fields, and the Data Mark at the start of data
fields are identical and the CRC bytes added at the end of the
field are compatible. It is this format that is generally referred
to as the IBM 3740 type. Diskettes of this type generated on IBM
machines have been read on PerSci drives using the 1070 and the
1170 INPUT, OUTPUT, and TEST commands.

The 1170 with FMF2-7 will generate on two-sided diskettes formats
meeting all requirements of IBM Product Reference Literature GAZ21-
9257-1, with the exception of data field contents. Address fields
and the Data Marks at the start of the data fields are identical
and the CRC bytes added are compatible. It is this format that is
known as the 2D (IBM Part No. 1766872). Diskettes of this type
procured from IBM have been read on PerSci 299 drives using the
1170 INPUT, OUTPUT, and TEST commands.

NOTE

IBM Diskette 2D (P/N 1766872) are best read on the
PerSci 299B which has a read amplifier which can be
set for MFM encoded diskettes not using write
precompensation.

NOTE

IBM Diskette 2D (P/N 1669045) diskettes with 1024
byte sectors are not compatible with FMF2-7.

1-6

(SINGLE DENSITY)
|

l
0olololol 1]

BrTcELs [1 o |1 | | 11olo
NI TN

TIME(ﬁAgzgc)!olllIllllml |Il|||/)l32|llllll
|

-\
\

MFM rﬂ____JL__JL_H_J[___H%JL_ﬂ_
M2 FM l_ﬂ O N0 B

BIT CELLS oj1j0j0jojofrjijy1fojo
[

(DOUBLE DENSITY)

Figure 1.1 FM, and MFM Encoding Compared

FM Code

FM Code has a pulse for every clock and data bit which at a data rate of
250K bits/secs results in flux transition densities ranging from 3250 ppi
at the outer track to 6500 ppi at the inner track.

MFM Code

MFM Code is a more efficient code having one pulse per data bit and clock
pulses only between adjacent data zeros.

DISKETTE FORMATS TRACK/CYLINDERS SECTOR TYPE
DISKETTE CYLINDER CYLINDER GENERATING
NAME ZERO 1-=76 CONTROLLERS
SIDE SIDE SIDE SIDE
PERSCI ~ IBM IBM P/N SIDES 0 1 0 1
P1 1 2305830 1 FM -- FM -- 1070/1170-007
P1D1 - -- 1 MFM -- MFM -- 1170-0X1, 0X3
P1D2 - -- 1 FM -- MFM -- 1170-0X7
P2S0 - -- 2 FM FM FM M 1070 ONLY
p2s1 - -- 2 M FM FM FM 1170-0X7
P2D1 - -- 2 MFM MFM MFM MFM | 1170-0X1, 0X3
P2D2 2D 1766872 2 FM MFM MFM MFM]170-QX7
X = 0+6

DISKETTE DESCRIPTION

1. Each diskette has 77 tracks per side with twenty-six data sectors,
an index sector, and pre-index gap as shown.

2. A1l sectors of a track use the same code (i.e., FM or MFM).

3. A1l data tracks/cylinders (i.e., 1-76) of a diskette use sectors of
the same code.

4. Pre-index gap, index, address fields, and post data bytes are written
only when initializing diskette using "KILL" command. Byte value shown
for data is written during initialization.

Figure 1.2 PERSCI DISKETTE FORMATS

1-8

SECTOR DETAILS

ADDRESS FIELD COMTENTS

0}

DATA FIELD CONTENTS

FM (SINGLE DENSITY) BYTES

FM (SINGLE DEMSITY) BYTES

NO. HEX VALUE

6 00 PREAMBLE

1 FB DATA MARK™
128 E5 DATA
2 XX CRC BYTES
1 FF
26 FF POST DATA

MFM (DOUBLE DENSITY) BYTES

NO. HEX VALUE

12 00 PREAMBLE
3 Al DATA MARKS
1 Fe(1)

256 40 DATA
2 XX CRC BYTES
1 4E

53 4E POST DATA

(1) THIS BYTE IS F8 FOR SIDE ONE,
CYLINDER ZERO

NO.

80
12

50

NO. HEX VALUE
6 00 PREAMBLE
1 FE ADDRESS MARK
1 0-=4C TRACK NUMBER
1 0-01 SIDE NUMBER
1 0l-=1A SECTOR NUMBER
1 00
2 XX CRC BYTES
1 FF POST ADDRESS
MFM_(DOUBLE DENSITY) BYTES
NO. HEX VALUE
12 00 PREAIBLE
3 Al ADDRESS MARKS
1 FE
1 0-4C CYLINDER NUMBER
1 0--01 SIDE NUMBER
1 0l-1A SECTOR NUMBER
1 01
2 XX CRC BYTES
22 4€ POST ADDRESS
INDEX SECTOR CONTENTS
FM (SINGLE DENSITY) BYTES
NO. HEX VALUE
40 FF
6 00 N
1 FC INDEX MARK
26 FF

MFM (DOUBLE DENSITY) BYTES

HEX VALUE

4t
00
c2
FC
4E

IHDEX MARKS™

PRE INDEX GAP

FM (SINGLE DENSITY) BYTES

NO. HEX VALUE
247 FF
MFM (DOUBLE DENSITY) BYTES

NO. HEX VALUE
598 4E

*INDEX, ADDRESS, AND DATA MARK CODES HAVE ONE OR MORE CLOCK PULSES

DELETED

Figure 1.2 PERSCI DISKETTE FORMATS (Continued)

1-9

2.1

2.2

2.2.1

2.0 THE 1170 CONTROLLER

2

The 1170 Controller is basically a dedicated microprocessor oper-
ating with its own RAM/EPROM via address and data lines not acces-
sible to its host. Communication with the host by means of one of
two ports (parallel or optional serial) on the Processor Logic PCB
and with the diskette drives by means of special logic on the Disk
Port PCB. (See block diagram of Figure 2.1.)

The Processor Logic PCB has a Z80A-CPU with provision for up to
8K bytes of EPROM (2716) and up to 9K bytes of RAM (2114). This
PCB also carries the two interface ports and a crystal oscillator
(8 MHz) with Frequency Divider which provides the basic 4 MHz clock
used with the CPU and the clocks used by the Encoder Logic in
writing to the diskette drives. :

This board was designed to accommodate three types of EPROMS (2708,
Single Voltage 2716, and Three Voltage 2716), but the single power
(INTEL) type 2716 has been adopted as standard.

The Disk Port PCB has the special logic for selecting a diskette
drive, controlling the position of the read/write head, and encoding
or decoding diskette serial data pulses in either single. (FM) or
double (MFM) density modes. A socket is provided on this board for
the 2708 in the Encoder which controls write encoding and precom-
pensation.

Interfaces

Two alternative interfaces are provided by the controller design.
The first is a parallel 8-bit wide port with the necessary hardware
components included as standard while the second is an optional
serial-by-bit operating at one of sixteen switch-selectable baud
rates.

$100 Parallel Ports (8-Bit Bytes)

The parallel port is designed to meet the requirements for data
transfer using 8080 or Z80 type microprocessor IN and OUT in-
structions. A status/control port is provided so that the S100
host microprocessor program can test or "pol11" the controller to
ensure it is ready for data transfer via the data port and to
enable selected bytes to be used as control rather than data.

The data port uses a Z80A-PIOwhich interrupts the controller CPU

whenever a data exchange occurs. It is this feature of the design
that requires that no host IN or OUT instruction should be made to
the data port unless the status port is ready. (See Section 5.0.)

2-1

2.2.2

2.3

2.4

Serial (RS232C) Interface

The serial interface is an option identical to that offered by the
1070 controller. It is installed when the necessary baud rate
oscillator and other logic are installed on the PCB and if the
proper firmware is used. It offers the ability to use the 1170
with almost any CRT terminal as a "stand-alone" device. It is
designed primarily for communication using the ASCII character

set as eight bits (no parity) and one stop bit for all transmission
speeds.

Double-Density Write Precompensation

Model 70, 277, and 299A Series Floppy Disk Drives perform best with
double-density recording using a technique called "write precompen-
sation." This is anempirically derived procedure of distorting

the signal at the time of writing so that the signal read back is
corrected for inherent media distortion. The newer read ampli-
fiers, such as that of the PerSci 299B, however, perform better
without this "write precompensation." The 1170 Controller may be
converted to either mode of operation by insertion of the proper
EPROM at U27 of the Data Port Board.

Firmware Options
The 1170 firmware has three functions. These are: .
e Host/Controller Data Exchange

The firmware must coordinate data transfer between controller
and the host via one of two ports. The firmware code for the
serial port is quite similar to that for the 1070, but the
code for the parallel data port makes full use of the Z80A-PIO
interrupt facilities.

e Controller/Diskette Drive Data Exchange

Read and write data exchange between controller ram and diskette
is quite firmware dependent. It is this portion of the firmware
that controls diskette format.

e File Management Function

This part of the firmware offers an expansion of the Command
Set first used in the PerSci 1070 extended to new drives and
more efficient diskette formats. Changes in one or more of
these functions results in changed controller operation. The
parameters of the first firmware (Series FMF2.X) offered are
defined in the next section.

2-2

2.7

2.7.1

2.7.2

Versions of the 1170 Controller

As the previous sections have indicated, the first offering of the
1170 Controller has an optional serial port, data encoding with or
without write precompensation, and three initial versions (with

more to follow) of File Management Firmware. These variations

alone result in 12 different operational versions of the controllers.
Alternate versions of firmware and/or RAM capacity are contemplated
which add to the permutations. PerSci differentiates between these
variations of the controller by assigning each a dash number.

Figure 2-0 is a summary of the 1170 dash numbers and should be used
in inquiries to PerSci.

Operation

The 1170 operates in one of two modes: Diskette Operations or Data
1/0 Operations. In the first mode, the controller CPU is fully
occupied with diskette read/write operations and will turn off the
host data port. In the second mode, the data port is enabled. This
means that the controller will exchange data with the host up to one
sector in length and will then wait for a period before resuming the
exchange. The waiting period is primarily a function of the disk-
ette access time (i.e., time required for the diskette sector

sought to come to the R/W head), which can be as high as 166 milli-
sec (at 360 RPM) with an average of 83 millisec. This access time
is the limiting restriction on overall data rates and can be reduced
by a careful choice of interleave sequences for the diskette format.
(See Appendix B.)

Data Error Detection and Control

The 1170 provides several important safeguards for data storage and
retrieval. These include the following.

Write Protect

The 1170 will not permit data writes to write-protected diskettes
(i.e., notched) in drives having the optional detector.

CRC Checks

When formatting or writing data fields to diskettes, the 1170
appends two CRC (Cyclic Redundancy Check) characters as the last
two bytes. These two bytes are then used in any read operation
(address or data field) as a check that all bits were read cor-
rectly. The polynomial used is:

6(x) = x84+ x12 + x5 41

The polynomial and method are identical to that used for the IBM
3740 and 2D diskettes.

2-3

2.7.3

2.7.4

2.8

Verify Checks

A11 read operations of address or data fields are also checked to
see that the proper bytes of the-address and/or data marks were
found. (For example, the first four of the 264 bytes read back in
a MFM data field must be: Al, Al, Al, FB.)

Data Lost Check

Any read or write operation starts with a search for the proper
address field. If no address or data mark is found for one complete
revolution of the diskette, this is taken as an indication that all
data for the track is lost. A "lost" return usually means that the
diskette will have to be reformatted and/or the read circuitry of
the controller has failed.

Future Developments

The Model 1170 with Series FMF2 firmware is designed to operate with
a 2K RAM which provides the required memory for five open files and
other data. The Processor Logic PCB is designed to accommodate up
to eighteen 2114 RAM chips resulting in a RAM capacity of 9216 bytes.
This would enable the complete reading of 26 sectors of one track
(6656 bytes) in one diskette revolution with a consequent increase
in data average storage and retrieval rates. The additional RAM
could also be used to increase the number of open files. These

and other features will be included in the Series FMF3 firmware

to be issued.

2-4

379v3ISN 1ON = NN

Q3NDISSY

¥3GWNN HSYQ ON = YN

(SNOILdO 8662 "9'3) SINN

(162002 A18WISSY)

4 318nQQ

ALISN3A 319NIS SI ¥OLYYvd3S vivd (<)

$S340aVY 40 9NIG0230 A
S3AIMA 662 IYINDIY 8’2 ANV
ONISSINAAQY JAING LI313S XSIG HLIM SIAING

HYNIS ONISN
‘97 ‘vz ind ()
341N03Y

22 ANV ‘S'2 ‘1I'2 3N4 HLIM S¥3T1T0YLNOD (1)
| 318v3ISN _ LON 23 siA | 1 200-| €00- 650~ _ |
! v s8) | €0 |
s3A_[10191/10152 -»i |]] v | st T aso
ON wN T < S9 3€0
. S VN b -)
ON N < St v<0
oN [10091/10052 3 s¢ i)
ON [10091/10062 < - i 250
: - s — - - e et
NOILJO 2€2 S¥ 4O NOILIGQY HLim | ON 10091/10052 1 s | s { 1£0
SLINN X20- OL GNOJS3¥HOI SLINN XSO- S3A 0 - 200-| €00~ 0£0~
ON Z00-| voo~ 620~
S3A WN] [2 8 \ 820
s3ax_ | 1091/ 10152 Tt N v L 120
ON N € 9 _ 920
S3A wN I - v | - 620
JIVSNIdWOITdd 3LI¥M | ON wN I 5 v | v20
oW $300 8300083 73| ON _llog@i/toose] ‘ B < < i €20
. ¥3GO0IN3 40 NOILdIOXI HLIM | ON _]I0091/10052 - i} 1 T e — 1 Bt i 220
SLINN X0O- OL ONOJSI¥¥0I SLINTX20- | ON 110091/10052 R L e [Ty [woosf 120
378v3isn__ LON 23 ON Q - 200-- | 000~ 020~
o3 S3X 100-| coo-| 6l0-
S3IA WN NN an_ | N |} | e | ose | 1 810
[S3IX_|20191/20152[¥10/100 2v0/£10/200 | B L v_| St . to
ON N nN oN] AN i < s9 | | 90
| S3A wN -1 | v | - I S0
ON wN nN nN NN] < | se | | b0
ON |2009y20052] €10 | o0 T UL L = | st €10]
NOILDO 252 SY 40 NOILIAAY HLIM ON |20091/200%2 I O O O az| £ | -] 2o
S11NN X0O- OL QNOJSIUHO0I SLINN XI10-| ON 2009y20062| €10 “vvd | | e | S 1 L 1o
0/1 WI¥3IS HUM NOILYHNOIINOD WNWINIK S3A - o) - 100-| €00— 010 -
B . D D - oN | t | 100~ | 00~ 600~
S3IAING 662 8OL | ONIAIYA LO0 SV IWVS S3A W[ooN } ON nN 1 o .4 8 b 1} 200
| _'0'S ¥0 S3LLxsia @@ W8l ¥04 GYvaNVLS | S3IK 20191/20152 £10/100 €10/200/800 | L10 N A L A L00
| s3aug 662 8aLl ONIAIMG SO0 SYINVS | QN N NN oN | ON | I O O - 900
SHOud3I WNVIE [S3A N) 1 v - 00
$3IAINQ 662 9 OL 1 ONIAIYG 100 SV INVS | ON N N NN NN) € v vQ0
¥O173S 3148962 - AINO ALISNIQ 318n00 [ON [2003/20052] €10 e < < €00
SWOBa3 (QIWNVH90ddNNINYTIE | ON [2008/20052] €10 yvQ az| € | - | v | 2o
1935 31A8 821 -AINOALISNIG 3718000 | ON. 2009/20052] <10 (320 IR O I 2 I L. LN S ! | #00- 100
SNOBd3 ON) NOLLY¥NOIINGD WNNININ I3 ON - 0 - 100-| 000- 00Q -
’NOILdO| 3dX "ON N N
xomwuéuw 8662 v662 uz oL Sh_%u ¢ NM% uam uo m&o A mmw mmw
SRIVAIY | (g) viva 13aow AZInd S1S1T TVIN3LYW m%%_wmw,wou
8)d A18NISSY
S3AING 3191LV4N0D NOUVINII3NOD 43I T1081INOD

1170 Controller Configuration

Figure 2-0.

2-5

Rsisztc LINES , DATA/fe———— FM [=—SEPCLOCK
| DECODER fe— SEP DATA
SERIAL I/0 e I A&T::S { |
PORT OPTION fa— | T
' DET. el PLO
| T
CHIP SELECT / fe—w | - MFM |
READ DATA
PORT SELECT | -1 l——— DECODER |
CLOCK / |
WRITE TIMING WRITE = WRITE PULSE
| READ/WRITE ENCODER [—" WRITE GATE
CONTROL [
l
280A-CPU | | |
i - DATA /BUFFER
l) siiEr CRC LOGIC
. REGISTER]_E,RROR
EPROM 8K |e—d | t T " la—SEEK COMPLETE
FILE MANAGEMENT | > > > — TWO SIDED
FIRMWARE I—_— | CONTROLLERL PATA BUS y Le— TRACK ZERD
SN > ngus |+ HRITE PROTECT
READY
, conTROL
RAM > | DISKETTE
2K -] — * SELECT |-4
= SIDE SELECT
| _ | — EJECT
| > RESTORE
PARALLEL PORT ja—sl o s HEAD LOAD
I/0 > l | Lo [—- e—y— | NDEX
| U ﬁ | LOST DATA
_ | . LOGIC
$100 BUS]
- T HEAD | STEP
| POSITION o
PROCE SSOR L0OGIC BOARD «—= DISC PORT BOARD coNTROL [— DIRECTION

SIGURE 2. BLOCK DIAGRAM

2-6

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.0 CONTROLLER FIRMWARE

Series 2 File Management Firmware

First firmware for the 1170 is specified as Series FMF2.X, and is
an extension of the Series FMF1, used with the 1070. To date,
this series has four versions, all resulting in different diskette
formats and/or different aspects to the host. However, each re-
sponds to the same commands with minor variations and each may be
used on an 1170 with any of the allowable drive combinations.

Version 1 (F-2.1)

This version is designed to enable conversion of existing host
operating systems based on 128 byte sectors to double-density
operation. While each data field of a track sector is actually
256 bytes in length, the controller causes it to logically appear
to the user as two 128-byte sectors. This feature results in
slightly slower operation, but does not reduce storage capacity.
(It is necessary to read a 256-byte sector before a 128-byte
sector can be written.)

If additional RAM (2K) is added to the controller, optional pro-
grams are available to enable the conversion of PerSci 1070 for-
matted single-density to double-density diskettes or vice versa.

Version 3 (F-2.3)

This version operates with diskette formats identical to V1, but
the user "sees" sectors 256 bytes in length. This version does
not have the operational speed penalty of the Version 1.

Version 5 (F-2.5)

This version was intended to operate with IBM 2D diskette formats,
but was found flawed after issue and is no longer issued. (Track
zero on the second side is single density.) It has been replaced
by Version 7, to which it is identical in every other respect.

Version 7 (F-2.7)

Version 7 is the only version to operate with either the IBM 3740
or IBM 2D diskette formats (single density or double density) and
is the standard issued by PerSci with the 1170 unless otherwise
specified.

Controllers with F-2.7 will operate interchangeably with single-
or double-density diskettes and can be easily used to convert

3-1

diskettes of one density to another with the copy command. The
controller will perform all commands automatically adjusting itself
to the diskette format and code. Diskettes with 1070-generated
formats may also be used. The 1170 will automatically convert
index track content to match that used by the Version 7 Firmware
and will reconvert to 1070-compatible content (V command) and eject
the diskette (if the drive has the eject option).

3.2 Series F-2 and Two-Sided Diskettes

The 1170 Controller will automatically work with single- or two-
sided diskettes inserted in PerSci 299 Drives.* The controller
will cause two-sided diskettes to appear to the host as an extended
diskette having twice as many sectors per track (or cylinder).

This scheme minimizes head positioner change for long files and
keeps the drive address of the Controller Commands consistent. It
does restrict this series (F-2) to maximum of two 299 drives.

3.3 Data Storage Organization

Controllers with Series FMF2 store or retrieve diskette data by
blocks one sector in length using the INPUT and OUTPUT commands.
Higher level operation with the controller treats data as files
where the user assigns a file name at time of first recording
(SAVE command) or reserves file space in advance with the ALLOCATE
command. The space allocation for each file is recorded in the
index (i.e., Track 0) track of the diskette, leaving the remaining
76 tracks available for file storage.

Each file allocation is made up of contiguous sectors with a mimi-
mum of one physical sector per file to a maximum of all sectors
available on a diskette. (See Figure 3.0.) First file on a newly
initialized diskette starts at Track 1, Sector 1. With subsequent
files, space is allocated immediately after previous allocations.
The controller will not permit allocations in excess of available
diskette space. Files can be deleted (DELETE command) when desired
but the file space will not be available for new files until a GAP
command is executed to compress remaining allocations. Note that
one GAP command will do all necessary compression following a
number of DELETE commands. Each diskette thus serves as an inde-
pendent storage entity which can be transferred from drive to drive
without need for the host to keep track of file location.

*A two-sided diskette inserted in a 70 or 277 drive will result in a NOT
READY indication. ‘

3-2

The 0 track of each disk is reserved by the controller for holding an
index identifying the volume and all files held on that volume.

The first 128 bytes of Sector 1 are reserved as a volume header formatted

as follows:

BYTES
BYTES
BYTE
* BYTES
* BYTES
* BYTES
BYTE

BYTES
BYTES
BYTE

1-8

9-11
12
13-14
15-16
17-18
19

20-25
26-31
32

VOLUME NAME

VERSION

TYPE

1ST DATA SECTOR ON DISK

LAST AVAILABLE SECTOR ON DISK
FIRST FREE SECTOR ON DISK

FF IF FM DATA FIELDS TRACKS 1-76
00 IF MFM DATA FIELDS TRACKS 1-76
DATE CREATION

SPARE

INTERLEAVE SEQUENCE

The remainder of the 0 track is divided into 32 byte slots formatted as

follows:

BYTES
BYTES
BYTE
* BYTES
BYTES
* BYTES

BYTE
BYTES
BYTES
BYTE

1-8
9-11
12
13-14
"15-16
17-18

19
20-25
26-31
32

FILE NAME

VERSION

TYPE

START OF ALLOCATION

EXTENT LENGTH (128 BYTE SECTORS)
END OF DATA SECTOR '
(RELATIVE TO START OF FILE)

END OF DATA OFFSET

DATE CREATION

DATE LAST UPDATE

SPARE

*A11 jtems marked thus are held as 128 byte sector offsets from the start

of disk.

Figure 3.0.

Index File Format

3-3

A11 PerSci File Management Firmware reserve the outer zero track/
cylinder for use an an index (i.e., table of contents) file to the
data files stored on the remaining cylinders. The first 128 bytes
of the first sector are used as a volume header, while the remaining
track capacity is divided into slots 32 bytes in length. Each slot
contains the pertinent data on the diskette files, and the number
of slots limits the possible files on a diskette.

3.4 Data/File Access Methods

The controller provides four methods for diskette data storage and
retrieval. These are as follows.

3.4.1 Direct Access

Any data field of any sector of any track may be written or read
directly bypassing the file management features of the firmware.
This is the only method of direct access to the index tracks of
the diskettes.

The remaining three methods are features of the File Management
Firmware.

3.4.2 Stream Access

The stream access method permits an entire file to be read or
written as a continuous stream of data bytes (as if the diskette
file were a very high-speed paper tape). Stream access is the
simplest access method to use, requiring only a single controller
command to read (load) or write (save) an entire file. It is
ideally suited to the storage and retrieval of executable programs
or any other use in which paper tape or cassette tape is conven-
tionally used. Stream access is performed using the "LOAD" and
"SAVE" controller commands.

3.4.3 Punctuated Access

The punctuated access method treats an open file as a sequence of
variable-length records separated by punctuation marks (the con-
troller uses the ASCII record separator character "RS" for this).
A punctuated file may be positioned at its beginning or end, and
variable-length records may be read or written in sequence, one

at a time. Records may span sector boundaries on the diskette,
but this is made transparent by the controller. Punctuated access
is most appropriate for the storage of text files (e.g., source
programs or word processing files) or for any application in which
sequential access to variable-length records is desirable. Because
of its dependency on a unique punctuation character ("RS") to
delimit records, punctuated access is not well suited to the stor-
age of arbitrary binary information.

3-4

3.4.4

3.5

Relative Access

The relative access method treats an open file as a byte-addressable
memory. A relative file may be positioned at its beginning, end,

or to any desired byte position within the file. Any number of
bytes may then be read or written. Relative read and write oper-
ations may span sector boundaries, but this is made transparent

by the controller. Relative access is ideal for data-base oriented
applications in which random access is required.

Punctuated and relative access methods require that a file name has
been assigned and space allocated using the ALLOCATE command and
that the target file has been opened with the FILE command. Data
storage and retrieval then proceeds using the READ and WRITE
commands .

Punctuated and relative access can be done with files created using
the SAVE command.

When a file is opened, the controller automatically brings the
target data sectors of the file from diskette to its RAM so that
READ and WRITE operations can proceed without delay for any number
of bytes so long as a sector boundary is not crossed. The con-
troller will continue in this mode until a file is CLOSED when it
will write the RAM data to diskette. Thus, a QUERY command will not
reflect the true status of open files for the diskette.

The number of file allocations possible for each diskette is a func-
tion of its recording (single or double density) the index track,
and if it is single or double sided. (See Figure 3-1.) For all
FMF2 versions, a maximum of five files across all diskettes can be
OPEN at any one time, and all files must be closed before a COPY or
GAP command can be performed. (Each OPEN file requires 256 bytes

of RAM of the available 2K. COPY and GAP require all available RAM
as a buffer memory.)

File References

A file reference identifies a particular file or group of files.
File references may be either unique or ambiguous: a unique file
reference identifies one file uniquely, while an ambiguous file
reference may be satisfied by several different files.

File references consist of four components: a name of up to eight
characters (NNNNNNNN), a version consisting of a period followed
by up to three characters (.VVV), a type consisting of a colon
followed by a single character (:T), and a disk number consisting
of a slant followed by a digit between 0 and 3 (/D). The version,
type, and drive components are optional and are set off from the

3-5

name by means of. their unique leading punctuation characters
(NNNNNNNN.VVV:T/D). A missing name, version, or type is assumed
to be blank, and a missing disk number is assumed to refer to the
current default drive.

The following are examples of valid unambiguous file references:

MONITOR MASTER/2 STARTREK.BAS/1
MONITOR.SRC MASTER:$ STARTREK. XQT
MONITOR.OBJ:A MASTER.ONE STARTREK:Z/0

The special characters "?" and "*" may be used to make a file
reference ambiguous so that it may match a number of different
files. The "?" is used as a "wild-card" character which matches
any character in the corresponding position in a file reference.
Thus, the ambiguous file reference: '

matches all of the following unambiguous file references:
PERFECT.BAL PERSCI.BAS PERQ.BAX

The character "*" is used to denote that all character positions

to the right are wild-cards unless otherwise specified. The fol-

lowing examples illustrate the flexibility which this facility

provides:

Reference Equivalent to Ambiguous Reference Matches

MONITOR.* MONITOR.???:? all files with name MONITOR
* _BAS 7722?2277 .BAS:? all files with version .BAS
* 2227227222.222:? all files starting with Z
* : 22227222.222:2 all files on the diskette
3.6 Controller Commands
Controller commands consist of a single command letter followed (in
most cases) by one or more command parameters. Parameters must not
contain embedded spaces, must be set off from one another by spaces,
and may optionally be set off from the command letter by spaces.
CONTROLLER COMMAND SUMMARY
Command . Command Syntax ‘Command Function Summary
Allocate A file sectors o Allocates an empty file
"file" of "sectors" sectors.
Copy C filel file2 sectors Copies files matching

"filel" to same or different
diskette, optionally re-
naming according to "file2"
and reallocating according
to "sectors."

3-6

Command

Command Syntax

Command Function Summary

Delete

Eject
File

Gap

Header
Input
Kill

Load

Mode

Name

Output

Position

Query

KK

KK

file

/disk

unit file

unit

/disk

volume/disk
track sector /disk

volume/disk seq
volume/disk
file

date:density : options/disk

filel file2

track sector /drive

unit sector byte
unit

file

3-7

Deletes all files matching
"“file."

Ejects diskette.
Opens "file" and associated

with "unit."

Closes the open file associ-
ated with "unit."

Closes all open files.

Compresses allocations on
"drive" to eliminate gaps.

Rename diskette.
Reads specified sector.

Initializes d1skette w1th
interleave "seq."

Deletes all f11es on disk-
ette without initializing.

Reads entire file "file" as
a stream.

Sets current date, 1/0
options, density and/or
default drive.

Renames file "filel" in
accordance with "file2."

Writes specified sector.

Positions the open file
associated with "unit."

Reports current position of
file associated with "unit."

Reports index information
for files matching "file."

Command Command Syntax Command Function Summary

Read R unit bytes " Relative read of file
associated with "unit."
R wunit . Punctuated read of file
associated with "unit."
Save S file Creates new file "file" by
writing as a stream.
Test T option/disk Executes a diagnostic test
on drive "drive."
Vale V /disk Convert diskette header to
1070 compatible and eject.
Write W unit bytes Relative write to file
associated with "unit."
W unit ' Punctuated write to file
associated with "unit."
Xecute - X file option Loads "file "file" into con-
troller RAM and executes it.
Yourstatus Y /disk Read drive status.
Zap - Z unit Writes end-of-data mark at

present position of file
associated with "unit."

NOTE

Numeric command parameters (byte, bytes, sector, sectors,
seq, track) may be either decimal or hexadecimal. Hexa-
decimal parameters must be prefixed by a letter (such as
"H" or "X;" for example, the commands:

A FNAME 32
A FNAME X20

will both allocate a file whose length is 32 (decimal)
sectors.

NOTE

H, V, and Y commands and ".D" parameter for mode command
do not exist in 1070 firmware.

3-8

3.6.1

3.6.2

3.6.3

Allocate Command (A File/Disk Sectors)

The ALLOCATE command creates a new, empty file with the specified
allocation (decimal or hex number of sectors).

Example:
A BIGFILE 1000
Copy Command (C filel file2 sectors)

The COPY command copies one or a collection of files from a disk-
ette volume to the same or a different diskette volume. The
copied files may have the same or different names as the original
files, and may have the same or different allocations. The COPY
command cannot be used if there are any open files.

Examples:

ALPHA BETA

ALPHA/Q */1

ALPHA/0 BETA/1 100
*/O */1

A*/0 B*/1

OOOO0O

The first example makes a duplicate of the file ALPHA on the_ same
diskette (default drive), calling the duplicate BETA. The second
example copies the file ALPHA from drive O to drive 1, leaving the
name and allocation unchanged. The third example also copies ALPHA
from drive 0 to drive 1, but changes the name to BETA and gives the
new file an allocation of 100 sectors (which may be larger or
smaller than ALPHA). The fourth example copies all files from
drive 0 to drive 1, preserving all file names and allocations. The
last example copies only files with names starting with "A" from
drive 0 to drive 1, changing the first character of each file name
from "A" to "B."

Delete Command (D file/disk)

The DELETE command deletes a file or a collection of files from a
diskette.

Examples:
D GEORGE

D *.0BJ/1
D XZ??/2

3-9

3.6.4

3.6.5

3.6.6

3.6.7

The first example deletes a single file GEORGE from the default
drive. The second example deletes all files on drive 1 which have
version .0BJ. The last example deletes all files on drive 2 which
have two to four character names starting with "XZ".

Eject Command (E/disk)

The EJECT command causes the diskette to be ejected from the speci-
fied drive. Note that this command is effective only if the disk-
ette drive is equipped with the Remote Eject feature.

Examples:

E /2
E

File Command (F unit file/disk)

The FILE command opens and closes diskette files. A file must be
open before punctuated or relative access is permitted by the con-
troller. An open file is associated with a logical unit number

between 1 and 5 (a maximum of five files may be open at one time).

Examples:

F 2 MASTER/1
F 2
F

The first example opens the file MASTER on drive 1 and associates
it with logical unit 2. The second example closes the open file
associated with logical unit 2. The third example closes all open
files. ‘

Gap Command (G /disk)

The GAP command compresses the allocations on a diskette volume
to eliminate any gaps in the allocations caused by prior file
deletions. The GAP command cannot be used if there are any open
files.

Examples:

G /3
G

Input Command (I track sector /drive)

The INPUT command reads a single specified sector of a diskette
volume. The sector is specified by decimal track number (0-76),
the sector number may be as high as 52 for 2.7 and 104
for 2.1 firmware.

3-10

decimal sector number (1-26), and drive number. (The track and
sector number may also be hexadecimal.)

Examples:

I 43 10 /1
I 1 1

3.6.8 Kill Command (KK volume/disk seq)

The KILL Cammand rewrites the Volume Header (TK-0 sec.l) renaming the
diskette and deletes all other index file data. Optionally, the
command also initializes (formats) the entire diskette, erasing

all previously recorded information thereon and writing new sector
headers on each track. The diskette may be initialized with any

one of thirteen sector interleave sequences to enhance read/write

performance.

Examples:
KK SCRATCH/3
KK BACKUP 1
KK MASTER 9

The first example deletes all files on drive 3, labels the volume
SCRATCH, but does not initialize each track. The second example
initializes the diskette on the default drive without interleave.
The last example initializes with interleave sequence 9.

3.6.9 Load Command (L file/disk)
the LOAD command reads a diskette file in its entirety as a stream.

Examples:

L BASIC
L EDITOR/3

3.6.10 Mode Command (M date.density*:options/disk)

The MODE command may be used to set the current date, the default
diskette, and/or various controller options. The current date is
entered as a six-character value (the format YYMMDD is suggested,
but not required by the controller). The default diskette is

*Density only for Version F-2.7.

3-11

3.6.11

entered as the character "/" followed by a drive number (0-3); this
becomes the drive which is used for all subsequent file references
and commands which do not include an explicit drive number. The
options are entered as the character ":" followed by a single hexa-
decimal digit (0 through F) whose bits are microcoded as follows:

Option Meaning
:8 Suppress nonfatal error message
:4 Simultaneous head load NOT available
:2 Keep heads loaded continuously
11 Model 70 drives in use

NOTE

At initial power up, the controller assumes an
option code of zero by default, that drives with
the simultaneous head load feature are in use, and
that diskette initialization mode is double
density.

Single- or double-density mode may be set (F-2.7 only) as follows:

.S Initialize Diskette Single Density (FM)
.D Initialize Diskette Double Density (MFM).

Examples:

M 770819.D
M /1
M :8.S

The first example sets a date and double density mode, while the
last example informs the controller that the controller and/or
drive do not support simultaneous head load, that nonfatal error
messages are to be suppressed, and sets single-density mode for
diskette initialization.

Name Command (N filel file2)

The NAME command modifies the name, version, and/or type of a
file. The wild-card characters "?" and "*" are used to indicate
that selected portions of the file reference are to be left
unchanged, as illustrated in the examples. The file reference
may be ambiguous if all files satisfying the reference are to be
renamed. The 1170 will reply with all renamed files followed by
ACK EOT.

3-12

e

Examples:

N ALPHA BETA
N BACKUP.2 *.3
N XRATED R*

The first example changes the file ALPHA to BETA. The second
example changes BACKUP.2 to BACKUP.3, while the third changes
XRATED to RRATED.

3.6.12 Output Command (0 track sector /disk)

The QUTPUT command writes a single-specified sector of a diskette
volume. Its parameters are identical to those for the INPUT
command. Controller will output data in compatible code and
length to diskette format.

Examples:

0 43 10 /1
011

3.6.13 Position Command (P unit sector byte)
The POSITION command permits open files to be positioned at the

beginning, end, or at any specified byte position. The command
may also be used to report the current position of an open file.

Examples:
P 2 213 88
P 2 213
P 20
P 2 65535
P 2

The first example positions the open file associated with logical
unit 2 to byte 88 in sector 213 of the file. The second example
positions the file to byte 0 of sector 213. The third example
positions the file at its beginning, and the fourth example po-
sitions the file at its end-of-data (note that the controller does
not permit a file to be positioned beyond its end-of-data).
Finally, the last example simply reports the current position of
the file. :

3.6.14 Query Command (Q file/disk)

The QUERY command lists the following index information for one,
some, or all files on a diskette volume:

3-13

3.6.15

Name, version, and type

Start of allocation (decimal track and sector)
Length of allocation (decimal number of sectors)
End of data (decimal sector and byte offset)
Date of creation

Date of last update.

This information is preceded by a heading which 1ists the volume
name, next available track and sector, volume interleave, density,
and date initialized.

CAUTION

Index information will not be current for OPEN
files.
Examples:
Q ALPHA/2
Q *.SRC
Q *

Sample QUERY listing:
DEMO.DSK 06-07 09 D 770215

FMF11.0BJ:3 01-01 0032 0031 082 770430
TEXTED 02-07 0025 0024 000 770503
DOCUMENT. TXT 03-06 0079 0078 001 770503 770618

Read Command (R unit bytes)

The READ command reads an open file by means of either the relative

or punctuated access method (i.e., fixed-length or variable-length
records).

Examples:

R 2 80
R 2

The first example reads a fixed-length record of 80 bytes from the
current position of the open file associated with logical unit 2.
The second example reads a variable-length record delimited by a
record separator character ("RS").

NOTE

The maximum length of a fixed-length read is 65535
bytes (HFFFF).

3-14

N

3.6.16

3.6.17

3.6.18

Save Command (S file/disk)

The SAVE command creates a new file by writing a stream of data
onto the diskette. The resulting file receives an allocation of
the minimum number of sectors needed to accommodate the length of
the stream.

Examples:

S BASIC
S EDITOR/3

Test Command (T option/drive)

The TEST command performs one of several diagnostic tests on the
specified drive. Available tests are: V (random seek-verify
testg, R (random seek-read test), and I (incremental seek-read
test).

Test V is a high-speed random-seek test. It performs a sequence
of seeks to a randomly-selected track, reads the first encountered
sector header on that track, and verifies that the correct track
has been reached.

Test R is a random-seek-read test. It performs a seek to a
randomly selected track, then reads a particular randomly selected
sector on that track, and verifies that both the sector header and
sector data are correct (using the CRC in each case).

Test I is an incremental-read test. It reads and verifies both
the sector header and sector data of each sector on the diskette,
starting at track O sector 1 and proceeding incrementally through
track 76 sector 26. This test may be used to verify diskette
format.)

Once initiated, tests V and R run indefinitely until the controller
is reset or until a hard disk error is encountered which persists
for nine successive retries. Test I makes a single pass over the
diskette, reading each sector once, and then terminates.

Examples:
T V/1
T R/0
T 1
Write Command (W unit bytes)
The WRITE command writes an open file by means of either the rela-

tive or punctuated access method (i.e., fixed-length or variable-
length records). If data is written beyond the end-of-data of the

3-15

file, the end-of-data is moved accordingly. The controller will
not permit data to be written beyond the last sector allocated
to the file.

Examples:

The first example writes a fixed-length record of 80 bytes to the
open file associated with logical unit 2, starting at the current
position of the file. The second example writes a variable-length
record to the file, followed by a record separator character ("RS").

NOTE

The maximum length of a fixed-length write is 65535
bytes (HFFFF hex).

3.6.19 Xecute Command (X file option)

The XECUTE command loads an executable diskette file into controller
RAM and executes it. This permits diskette-resident routines to
extend the effective command repertoire of the controller. The
option is a decimal or hex parameter which is passed to the routine.

Note that the XECUTE command is not required for normal use of the
controller, but was included to facilitate special applications of
the controller. For further details, contact PerSci.

Examples:

X DRIVTEST 1
X CONVERT -

3.6.20 Zap Command (Z unit)
The ZAP command truncates an open file by establishing the end-of-
data at the current position of the file. Note that this command
does not affect the allocation of the file, only its end-of-data
position. Zapping a file so that only desired data is preserved
will increase WRITE command operation speed.

Example:

3-16

3.6.21 Vale Camand (V/disk) - F-2.7 Only

The Vale command converts the volume label (track 0, Sector 1) of

a single-sided, single-density diskette to be compatible with that
used by the PerSci 1070 controller. It will also cause the disk-

ette to be ejected if the drive has that option.

3.6.22 Yourstatus Caommand (Y/disk)

The status for the addressed disk as defined following is read,
converted to hex equivilent, and returned to the host. The bit
meaning for status byte read is

(MSB) Bit 7 true for data "lost" error
True for data "CRC" error
False for write protect (drive must have option)
False if R/W head is at track zero
False if diskette is two sided
False if index hole is being detected at instant
of reading status
False if R/W head positioning servo has campleted
seek
0 TFalse if disk is ready for data exchange

N W UTOY

4

3.6.23 Header Camand (H volume/disk)

The HEADER cammand will rename the diskette without disturbing the
existing index file data. This camand enables relabeling of
diskettes with no other consequences.

NOTE

a1l F2.7 commands will determine data code (FM or MFM) by reference
+o Volume Header (Byte 19 of Track zero, Sector 1).

If Byte 19 = 00, then MFM code is assumed.

If Byte 19 = FF, then FM code is assumed.

If Byte 19 = E5, then FM code is assumed with a 1070 format (see Section
3.1.4)

Any other value will result in a Format Error response to cammands
other that INPUT, OUTPUT, and the TEST options. For these commands,

if Byte 19 is ambiguous, the controller will attempt opperation in
the code set by the MODE Cammand.

3-17

DISKETTE ORGANIZATION ADDRESSABLE BY HOST
MAX

FMF DISKETTE | DATA SECTORS BYTES MAX NO. OPEN DATA BYTES/
SERIES TYPE TRACK TRACK SECTOR FILES FILES PER DISKETTE
2.1/2 P1D1 1=76 52 128 204 5 505,856
2.1/2 P2D1 176 104 128 412 5 1,011,712
2.3/4 P1D1 176 26 256 200 5 505,356 -
2.3/4 p2D1 1-»76 52 256 408 5 1,011,712
2.7/8 P1 1+76 26 128 100 5 252,928
2.7/8 P1D2 176 26 256 200 5 505,856
2.7/8 P2S 1-»76 52 128 200 5 505,856
2.7/8 p2D2 1-=76 52 256 200 5 1,011,712 B

Figure 3.1 FILE MANAGEMENT FIRMWARE DISKETTE ORGANIZATION

3-18

4.1

4.2

4.2.1

4.2.2

4.2.3

4.0 INSTALLATION

Physical Description

The controller consists of two printed circuit boards designed for
installation next to each other in a standard S100 bus mainframe.
Each board has its own voltage regulators for the S100 power dis-
tribution system. Two ribbon cables, captive to one board, are
used to make necessary signal interconnections between the boards.
The processor logic PCB also has an edge connector for use with a
twenty-six pin ribbon cable connector for use with E.I.A. RS232
Data Terminal Equipment. The Disk Port PCB has a fifty-pin edge
connector for the Drive Ribbon Cable.

Controller Configuration

Various options are provided for the 1170 controller which may be
selected by connecting jumpers on the processor PCB. These are:

Reset Connections (Points L,M, N)

The controller PB Reset may be connected to a host reset at Pin 75
(Jumper L-M) or at Pin 54 (Jumper L-N). Either of these will also
require a jumper or diode-at CR2. The diode should be used if

it is desired to isolate the controller PB reset from also resetting
the host. For best results, a Germanium diode should be used.

The host reset should drive Pin 54 or 75 to ground for at least 10
milliseconds.

EPROM Type Selection

The 1170 is designed to use three types of EPROMS, (2708s, INTEL
2716s, or TI 2716s). Jumper Points A, B, C, D, E, F, H, W, X, Y,
and Z are provided to enable this feature which will be set at
PerSci. (For details, see PerSci Drawing No. 200648.)

Serial Port Jumpers

Jumper J-K. This jumper is factory installed to enable the 1170
to operate with RS232 serial two wire devices by grounding the
CLEAR-TO-SEND input of the 8251. It should be removed for oper-
ation with devices which use this signal.

T1, T2, T3, T4, TS5, T6. The six connections of the RS232 interface

are etched at the connector so that the traces may be cut and the
connections reversed if desired.

4-1

4.3

Diskette Drive Configuration

The 1170 controller using FMF2-1, 3, 5, and 7 will accommodate two
Model 277 drives, four Model 70s, or two Model 299 drives with
minimum changes to the controller.

Address logic for the Model 70, 277, and 299A drives is set by
jumpers on a select module on the biggest PCB of the drives. The

select logic of the Model 299 is controlled by jumpers on the PCB
itself.

Following are necessary jumpers to set drive addresses.

CAUTION

When two or more drives are "daisy chained," only the
drive at the end of the ribbon cable should have the
resistor pack termination module installed.

Drives will normally be delivered following checkout
at PerSci set as Drive 1 and with termination module

installed.
Model 277 Select Module Jumpers (U11)
Drive 1 (Side 0 and 1) 2 to 13, 4 to 11
Drive 2 (Side 2 and 3) 1to 14, 6 to 9

In addition, the connection at Pin 6 of the Model 277 drive PCB
edge connector for the 50-pin cable should be cut to prevent it
from being grounded by the drive.

Model 70 Select Module Jumpers (U5)
Drive 1 (Side 0) 7 to 8, 3 to 12
Drive 2 (Side 1) 7 to 8, 4 to 11
Drive 3 (Side 2) 7 to 8, 5 to 10
Drive 4 (Side 3) 7 to 8, 6 to 9

Connection of Model 70 drives as Drive 3 or 4 can only be done with
controllers hav1ng A or later revision PCBs. Also required with
Drive 3 is a jumper from Point A to B of the Disk Port PCB.

Drive 4 requires a jumper from Point | C to Point D.

Model 299A Select Modu]e Jumpers (U1)
Drive 1 (Disks 0 and 1) 1 to 14, 2 to 13
Drive 2 (Disks 2 and 3) 4 to 11, 3 to 12

U2, U3, and U5 should not have any chips installed. A 7432
shou]d be 1nsta11ed at U6.

4-2

Model 299B PCB Jumpers™*

Drive 1 (Disks 0 and 1) Factory standard (trace link C11-C12)
Drive 2 (Disks 2 and 3) Cut trace C11-C12, Jumper C1-C2

With the Model 299 drives, reference is made to disks rather than
sides because the controller treats a two-sided diskette as a
"super" diskette having twice the number of sectors per track as
a single-sided one. Note that it is possible to mix the model
types handled by the controller so long as no redundant sides/
disks exist. The 1170 controller will accommodate three to eight
Model 299 drives with FMF2-4, 6, and 8.

4.4 Installation
a. Turn off S100 bus power.

b. Insert the two PCBs in adjacent connectors of the S100 bus.
Preferred position of the Disk Port PCB is in front (i.e.,
on component side) of the Processor Logic PCB.

c. Connect 50-conductor ribbon cable from drive to controller
Disk Port PCB.

CAUTION

"~ Ensure that conductors of cable are in proper
order so that controller output Pin 50 goes
to drive Pin 50.

d. Connect ribbon cable to Serial I/0 Port of Processor Logic PCB
(if serial I/0 is desired and optional components are installed).

e. Turn on power.
4.4.1 S100 Port Addresses

The controller Data Port address should be set to one of the possible
128 left where the least significant bit of the address must be

zero. The Status/Control Port address will then be the next higher
number. The selection is made by putting jumpers at Points Al thru
A7 on the Processor Logic PCB. Each point is associated with an
address line of the S100 bus and should be connected if the bit of
the desired address is high. For example, if the desired Data Port
address is 8E (with resultant Status/Control Port at 8F), then
jumpers should be installed at Points A7, A3, A2, and Al.

*Factory standard links C3-C4, C5-C6, C7-CS, and C9-C10 should
also be present.

4-3

CAUTION

Controllers will usually be delivered with jumpers
at A7 and A6 setting the Data, Status/Control Ports
to CO, C1, but this is subject to change without
notice.

4.5 Phase-Locked Loop (PLL) Adjustment

The Phase-Locked Loop circuitry of the Disk Port PCB is primarily

~ designed for use in reading double-density data, but is also is
used in conjunction with a PerSci single-density data separator in
a drive to read single-density data. It is preset at checkout at
PerSci and should not need readjustment unless some component has
been replaced.

The PLL output is a 1 MHz frequency signal (the sawtooth waveform
at TP7) which is twice the clock signal of the signal read back
from the diskette with MFM data. The PLL is also designed so that
its output will follow minor variations of frequency and phase of
the recovered signal, thus compensating for diskette speed vari-
ations and media distortion.

In the following paragraphs, a simple four-step procedure is given
for adjustment of the PLL, which requires an oscilloscope having
two traces, one of which can be used to synchronize the display.
Oscilloscope bandwidth should be 25 MHz or better.

The procedure steps should be followed in sequence as each adjust-
ment is influenced by the previous steps.

4.5.1 Initial Set Up

a. Connect A probe to TP7 of the Disk Port PCB. Set A trace sensi-
tivity to 5V/DIV.

b. Connect B probe to TP (base of Q4 for X1, X2, and X3 PCBs).
Set B trace sensitivity to 5V/DIV.

c. Probe ground leads should be connected to ground TP8 on PCB.

d. Set scope sweep to 1/10 usec/DIV.
4.5.2 Coarse Phase Adjustment

a. Using A trace, adjust pot R32 so that sawtooth at TP7 is 1.0
microsecond (rate equals 1.0 MHz).

b. Execute TI command, and using B trace only, adjust pot R19 so
that sawtooth waveform at TP12 is balanced about ground. (That
is, ma§imum positive and negative voltage excursions are about
equal.

4-4

4.5.3

4.5.4

4.5.5

4.6

Coarse Frequency Adjustment
a. Disconnect B probe.

b. Execute TI command, and using A trace adjust pot R32 so that
PLL output at TP7 will Tlock ?i.e., synchronize) to read data.

Frequency Range Test and Final Adjustment

a. Move B probe to TP10. Set B trace sensitivity to 1V/DIV.

b. Verify that pot R32 may be used to adjust voltage at TP10 over
the range of plus (+) 400 millivolts to minus (-) 400 milli-
volts while PLL is locked to data.

c. Adjust R32 to that TP10 voltage is balanced about zero volts.

Final Phase Adjustment

a. Move B probe to TPl. Set B trace sensitivity 5V/DIV.

b. Adjust pot R19 so that positive-going trailing edge of Read
Data (TP1) is centered on the positive-going ramp of the PLL
output (TP7).

The 1170 Controller and the 299B Drive

The 1170 Write Encbder is designed so that the write precompen-

sation for MFM code is selectable by change of the 2708 EPROM at

U27 on the Disk Port PCB. Double-density (MFM) operation with the

Model 70, 299A, and 270 series drives requires write precompen-

sation and EPROMs marked EII should be used.

The read detection circuitry of the Model 299B drive may be oper-
ated in one of two modes: with or without Read Compensation.

The 299B with Read Compensation should be used with diskettes
formatted and written without precompensated MFM codes, and with
controllers that do not precompensate their output write pulses.
Either mode may be used with single-density (FM) codes.

If the system diskettes are to be:

a. Read by PerSci Model 70, 299A, or 270 Series Drives as well
as a 299B, or

b. Read by other drives not having Read Compensation
then the 299B should be set for no Read Compensation and the con-

troller should use precompensation. Following is a tabular summary
of compatible drives and controllers.

4-5

SYSTEM DISKETTE/COMPONENT COMPATIBILITY

Diskette 1170 Controller
Formatted/ Encoder EPROM
Mode Written Drives* Disk Port (U27)
z MFM 299B with Read E#
Compensation
II Precompensated 70/270 Series/299A EII
MFM 299B without Read
Compensation
*NOTE

Drives must have been manufactured and/or qualified
as double-density (MFM) units.

Users upgrading to 299B only operation can probably convert their
existing diskette library to Mode # formats by using a Mode #
system to copy diskettes.

The new diskettes will be formatted/written pure MFM, and it is
probable that the 299B will be able to successfully read the older
diskettes. (The controller will make up to 9 retries on any
errors and will effectively "filter" the precompensated formats.)

2998 READ AMPLIFIER CONFIGURATION

2998 Cut/Jumper
With Read Compensation Cut H3-H4/Jumper H1-H2*
Without Read Compensation Cut H1-H2/Jumper H3-H4

*
Factory standard.

4-6

4.7 Serial I/0 Baud Rates

- The RS232 Serial Interfaéé Option inc]udes\an on-board speed
selection switch with the following settings:

Switch Transmission Switch Transmission
Setting Speed (BPS) Setting Speed (BPS)
0 50 8 1,800
1 75 9 2,000
2 110 A 2,400
3 134.5 B 3,600
4 150 C 4,800
5 300 D 7,200
6 600 E 9,600
7 1,200 F 19,200

NOTE

The controller outputs serial characters with
one start bit, eight data bits (no parity), and
one stop bit for all transmission speeds.

4-7

5.0 SYSTEM CONSIDERATIONS

5.1 Parallel Port Function

The 1170 parallel Data Port is designed for data transfer using the
IN and OUT instructions of an 8080 or Z80 CPU. It provides fast
coordinated data exchange independent of data content with a mini-
mum burden to the host software. Further, there is no requirement
to cause the host CPU to hang in "wait" status to synchronize its
operation with the controller for data exchange.

5.2 Parallel Handshake

The Status/Control Port is provided to coordinate data exchange via
the Data Port/IN instruction to the Status Port will read a byte,
three bits of which are of significance. :

5.2.1 Status Byte Bits

Bit 7 (MSB) — If high, the controller data port holds a
byte which is an ASCII control character.

Bit 6 — If high, the controller data port holds a
byte for the host. If bit 7 is low, then
this byte is not a control character.

Bit 1 "~ — If high, then the controller is ready to
accept a byte from the host. The byte may
be either a control character or data byte.
(gote)that this is a change from the PerSci
1070.

Bits 5, 4, 3, 2, 0 — These lines are not driven by the controller
and may be ambiguous.

NOTE

o Reading the Status Port will not affect either
port.

o If Bit 7 is high, then Bit 6 should be high.
Bit 6 and 1 can be high at the same time.

e If Bit 6 is high, then the controller Data Port
should be read before the host attempts an OUT
instruction to it.

e An IN (Read) instruction to the Data Port

will cause Status Port Bit 6 (and Bit 7 if
byte is a control character) to go low.

5-1.

5.3

5.4

| NOTE (CONTINUED)

e An OUT (Write) instruction to the Data or Con-
trol Ports will cause Status Port Bit 1 to go low.

¢ An OUT (Write) instruction to the Control Port
does not have to be repeated to the Data Port
as required by the 1070.

CAUTION

No IN instruction should be performed to the Data
Port unless Bit 6 is high.

No OUT instruction should be performed to the
Data Port unless Bit 1 is high. .

Serial Data Port

The Serial Data Port is an option which if installed provides the
controller with a serial-by-bit data exchange capability meeting
the voltage Tevels of RS232C. This port is considerably slower
than the parallel and is limited in that it should be used only
with ASCII encoded data. (See Section 4 for possible baud rates.)
The controller will output serial characters with one start bit,

eight data bits (no parity), and one stop bit for all transmission
speeds.

" Power Up/Reset Conditions

" The Controller Firmware (FMF2 versions) will operate with either

the parallel or serial ports, but not both after initialization.
When it is "powered up" or reset it will output a message as
follows:

PerSci 1170 v F2-Xx CR LF EOT
where X will identify the FMF version.

A parallel bus host must read the first byte (ASCII "P") within

30 seconds or the controller will default to Serial I/0 Mode
only.

CAUTION

Default to Serial I/0 Mode only may occur even with
controllers which do not have the necessary optional
hardware installed!

Note that this first ASCII "P" will be read by the
parallel host even if default has occurred and that
default must be deduced if the Status Port fa11c to
indicate succeeding outputs.

5-2

v

5.5

5.6

Interface Protocol

The interface protocol between the microcomputer and the controller
consists of sequences of ASCII characters and makes use of standard
ASCII communications controls. The protocol for the simplest con-
troller commands (ALLOCATE, EJECT, FILE, KILL, MODE, NAME, TEST,
XECUTE, ZAP) is the following:

Microcomputer sends: command-text [EOT]
Controller sends: ACK EOT

The protocol for controller commands which return informational
text (COPY, DELETE, GAP, POSITION, QUERY) is the following:

Microcomputer sends: command-text [EOT]
Controller sends: informational-text CR LF ACK EOT

The protocol for controller commands which read data from diskette
(INPUT, LOAD, READ) is the following:

Microcomputer sends: command-text [EOT] A

Controller sends: SOH diskette-data ACK EOT
The protocol for controller commands which write data to diskette
(OUTPUT, SAVE, WRITE) is the following: : '

Microcomputer sends: command-text [EOT]
Controller sends: ENQ EOT
Microcomputer sends: diskette-date [EOT]
Controller sends: ACK EOT

Finally, the controller may terminate any command at any time with
a fatal error diagnostic message, using the following protocol:

Controller sends: NAK fatal-error-msg CR LF EOT
Note that no ACK will be transmitted by the controller in this case.

Underlined characters are "flagged" as control by Status Port. []
indicates characters written to the Control Port.

Error Diagnostic Messages

The controller issues two classes of error diagnostic messages:
fatal and nonfatal. Fatal error diagnostic messages are always
preceded by a NAK and followed by an EOT. They indicate the pre-
mature and unsuccessful termination of a controller command. The
various fatal error diagnostic messages are listed below:

5-3

e COMMAND ERROR ON DRIVE #n

Indicates that the controller received an invalid command or
command parameter.

e DUP FILE ERROR ON DRIVE #n

Indicates that an attempt was made to create a new file with
the same name as an existing file on the same diskette.

e HARD DISK ERROR ON DRIVE #n

Indicates that a seek, read, or write error occurred which
could not be successfully resolved in nine retries.

e NOT FOUND ERROR ON DRIVE #n

Indicates that the specified file could not be found in the
index of the specified diskette.

e OUT OF SPACE ERROR ON DRIVE #n

Indicates that an attempt was made to exceed the capacity of
a diskette, an index track, or a file allocation.

e READY ERROR ON DRIVE #n

Indicates that an attempt was made to access a diskette drive
which is not in ready status.

e UNIT ERROR

Indicates that an attempt was made to read, write, or position
a logical unit number with which no open file is associated,
or that an attempt was made to use the COPY or GAP commands
with one or more files open.

e FORMAT ERROR
Indicates diskette format is not suitable for command.

The clause "ON DRIVE #n" is omitted in the case of errors not
associated with a particular drive.

Note that each fatal message begins with a unique letter, so that

an interfacing program need only analyze the first character fol-
lowing a NAK to determine the type of fatal error.

5-4

5.7

5.8
5.8.1

5.8.2
5.8.3

Nonfatal error diagnostic messages are issued for soft disk errors.
They are not preceded by a NAK, and they contain the following
information:

o Type of disk operation (seek, read, or write)

o Error retry number (1 to 9)

e Track and sector at which error occurred

e Type of error (protect, verify, CRC, or lost)

Multiple error-type indications may be received on a single non-
fatal error message, and their meanings are as follows:

e Protect: a write was attempted on a write-protected disk

o Verify: the desired sector header could not be found

e CRC: the sector header and/or data failed the CRC test
e Lost: controller could not detect address or data marks

for one complete diskette revolution.

During the transmission of diskette data (LOAD, SAVE, READ, WRITE,
INPUT, and OUTPUT commands), nonfatal error messages are suppressed.

They may also be suppressed under all circumstances by means of the
MODE command.

Sample Drive Program

For further guidance in the system integration of the 1170, a sug-
gested flow chart for a host driver program is provided as
Appendix A of this manual along with the assembly listing coded
for an 8080-based host. The flowchart is, and the program almost,
jdentical to that used in the PerSci 1070 Users Manual.

Controller Timing

Parallel Port data exchanges must meet the requirements shown by
Figure 5-0, where all timing references are specified at the mid-
point of the rising or falling edge of the signals. Rise and fall
times should not exceed 50 nanoseconds.

RESET* should be driven to ground for a minimum of 10 milliseconds.

The controller will exchange blocks of data (256 bytes double
density/128 bytes single density) at the maximum baud rate of 19,200
bps for the serial port and up to 40,000 bytes/sec for the parallel
port. It will then pause for short intervals to read or write

data to the diskette drive and other housekeeping tasks. The time
consumed for these pauses is a function of the diskette format

~ interleave, head position, etc., and is very application sensitive.

5-5

5.8.4

5.8.5

5.8.6

The lack of a "handshake" protocol for the serial port requires the
user to ensure that data sent at higher baud rates to the controller
is not lost. This is best done by the user inserting pauses of

1/3 second or more between blocks of transmitted data.

Diskette Interleave

The controller provides 13 different sequences for sector addresses
when initializing a diskette with the KILL command. (See Appen-
dix B.) Selection of interleave sequence can greatly affect oper-
ational speed when storing or retrieveing files two or more sectors
in length. The optimum sequence will greatly depend upon the host
CPU speed, the driver program, file access method used, etc., and
experimentation is recommended.

First users of the 1170 report data exchange rates of 2 to 12 times
the rate possible with the PerSci 1070 for similar applications.
The 1170 is faster because:

e It writes/reads twice as much data per diskette revolution
(in double density 256 bytes/sector mode).

e It exchanges data with the S100 bus via a Z80A-P10 using the
powerful interrupt system provided.

o The controller CPU is a Z80A operating at 4.0 MHz doubling the
rate for housekeeping task processing.

e The index format for the diskette was redesigned to minimize
calculations to locate file sectors.

5-6

P

AO-A7

PDBIN

SINP
DATA

A0-A7
PWR

SOUT

DATA

READ TIMING

X

N
-~

Tp >0
THR § 30 nS
WRITE TIMING
!
[
1
1 X
!
I
N\
!
/ |
|
T T T y T
I
-
«— T
ACC — ™ T 2 100 nS
T ACC
ra— W e Ty—— Ty > 0
| Ty € 30 nS

Figure 5.0 READ TIMING AND WRITE TIMING

5-7

PerSci Model 1170 Intelligent Diskette Controller
Appendix A - Sample Driver Programs

APPENDIX A

Sample Driver Program Flowchart
Sample 8080 or Z80 Driver Program

YES

(:V DRIVE :>

INITIAZIZE
STACK

CONTROLLER

TALKING

INPLN

INPUT COMMAND
LINE FROM
CONSOLE

l

DLINE
SEND COMMAND
LINE TO
CONTROLLER

DOUTC

SEND CTRL"EOT"
TO CONTROLLER

DINP

INPUT A BYTE
FROM
CONTROLLER

OUTCH

OUTPUT BYTE
.| TO CONSOLE

SAMPLE DRIVE PROGRAM FLOWCHART

<:, DREAD j)

HL<4— RAM 1

y
OUTHX
DISPLAY HL IN
HEX ON
CONSOLE

DINP

INPUT A BYTE
FROM
CONTROLLER

(HL) ¢+—BYTE
HLe¢—HL + 1

<: DWRIT <:>
I

_____DINP ____
INPUT A BYTE

(EOT) FROM
CONTROLLER

v

HL€—RAM 1

s

OUTHX

DISPLAY HL LN
HEX ON
CONSOLE

v

DE<4—RAM 2

!

OUTHX

DISPLAY DE IN
HEX ON
CONSOLE

GET BYTE<¢—(HL)

v

DOUT

OUTPUT DATA
BYTE TO
CONTROLLER

’

HL€—HL - 1
RAM 24— HL

.

OUTHX

DISPLAY HL IN
HEX ON

CONSOLE

‘
(:‘ DCTRL 44:)

DCMP

COMPARE HL
WITH DE

NO

HL —HL + 1

SAMPLE DRIVE PROGRAM FLOWCHART

YES

DEOT

N

TDL 280 CP/M DISK ASSEMBLER YERSION 2.21

PAGE 2

SAMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER
SECTION 1 — CONTROLLER INTERFACE ROUTINES

0060
8083
0005
0007
000A
7158
0010
0912
0015
0018
091B
901E
voz1
2822
eazé
- 0028
0ezB
9020
00z0

31 0195
DBC1
E6CO
c2 8015
CD ©eA8
CD ee72
JEO4
CD ©esD
CD gerC
DA 0021
CD ©@14A
C3 8015
FEOG4

Ch 9000 -

FEO1
CA 0033
FEBS
CA 0050
C3 0015

2A BoA4
CD o183

i
i
H
i
B
Y
]
]
J
3

THIS IS THE BASIC DRIVER ROUTINE WHICH SENDS CONSOLE
COMMANDS TO THE CONTROLLER, CONTROLLER MESSAGES TO
THE CONSOLE, AND CONTROLS THE TRANSMISSION OF FILES
AND RECORDS BETWEEN THE CONTROLLER AND HOST COMPUTER

THIS ROUTINE IS VIRTUALLY IDENTICAL TO THE DRIVER
FOR THE MODEL 1878 CONTROLLER. THE DIFFERENCES
ARE INDICATED.

DRIVE: LXI SP, STACK ; INITIALIZE STACK
IN DSTAT ; GET 1178 STATUS
ANI eCoH ; 1S 11706 TALKING?
JINZ DGET ; YES, CLEAN UP
cAaLL INPLN ; INPUT CONSOLE LINE
cALL DLINE ; SEND LINE TO 1170
DEOT: MVI A, EOT ; SEND °*EOT*® TO 1170
caLL bouTC ; AS CONTROL BYTE
DGET: cALL DINP ; INPUT BYTE FROM 1170
Jc DCTRL ; CONTROL OR DATA BYTE?
cALL OUTCH ; DATA, SEND TO CONSOLE
JMP DGET ; NEXT BYTE
DCTRL: CPI EOT s WHICH CONTROL CHAR?
Jz DRIVE ; EOT?, COMMAND IS DONE
CP1 SOH
JZ DREAD ; 'SOH’, READ 1170
CPI ENQ ;
JZz DWRIT ; 'ENQ@?, WRITE TO 1170
JMP DGET ; ELSE IGNORE <ERROR)

c&- e W W

READ:

THIS ROUTINE CONTROLS A DISK READ INTO RAM.

LHLD
cALL

RAM1
OUTHX

; GET RAM STARTING ADOR
; DISPLAY ON CONSOLE

TOL 286 CP/M DISK ASSEMBLER VERSION 2. 21
SAMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER

SECTION 1 - CONTROLLER INTERFACE ROUTINES

0039
003C
0a83F
8840
0041
8044
0045
8046
0049
004C
004D

0050
0853
8aS6e
va59
9esC
0250
121177
0063
0a64
0065
8868
oe6B
996k
006F

1% 1% s
0a7vS

co
DA
7
23
c3
FS
2B
22
cD
F1

c3

CcD

2A
cD
EB
2A
CcD

EB-

7E
CoD
CcD
D2
23
c3

cD
08

8e7’C
0844

0029
%1%

0103

oez1

ea7’C
8059
80A4
8102

%1% 10 1
81683

eo8?
213A
0910

064

o124

DREAL: CALL
JC
MOV
INX
JMP

DREAX: PUSH
DCX
SHLD
CALL
POP
JMP

e Wwe W e

DWRIT: CALL
JNC
LHLD
CALL
XCHG
LHLD
CALL
XCHG
DWRIL: MOV
CALL
cAaLL
JNC
INX
JMP

osc e e e

LINE: CALL
RC

DINP
DREAX
M, A

H
DREAL
PSW

H
RAM2
OUTHX
PSW
DCTRL

THIS ROUTINE CONTROLS

DINP
DWRIT
RAM1
OUTHX

RAM2
OUTHX

A M

- DOUT

DCHMP
DEOT
H
DWRIL

GETCH

PAGE 3

; INPUT BYTE FROM 1170
; CONTROL OR DATA BYTE?
; DATA, STORE IN RAM

; INCREMENT RAM ADDR

i NEXT BYTE

; CONTROL, SAVE BVYTE

; DECREMENT RAM ADDR

s SAVE RAM ENDING ADOR
; DISPLAY ON CONSOLE

; GET CONTROL BYTE

i ANALYZE IT

A DISK WRITE FROM RAM.

; INPUT BYTE FROM 1170
; SHOULD BE AN °EOT’

; GET RAM STARTING ADDR
; DISPLAY ON CONSOLE

; GET RAM ENDING ADDR

1 DISPLAY ON CONSOLE

; START IN HL. END IN DE
; GET BYTE FROM RAM

; SEND DATA TO 1170

; COMPARE ADDR TO END

; AT END. SEND °’EOT?

; ELSE INCREMENT RAM ADDR
; DO NEXT BYTE)

THIS ROUTINE SENDS A COMMAND TO THE CONTROLLER.

; GET CHAR FROM BUFFER
; EXHAUSTED, ALL DONE

~

N

SAMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER
SECTION 1 - CONTROLLER INTERFACE ROUTINES

TOL 288 CP/M DISK ASSEMBLER VERSION 2.21 : PAGE 4

0076 CD 0887 ' : cAaLL DOUT ; SEND CHAR TO 1170
0a79 C3 eo7v2 JMP DLINE 5 CONTINUE

THIS ROUTINE INPUTS A BYTE FROM THE 1178 AND
SETS CARRY IF IT IS A CONTROL BYTE.

e We W W e

@e7C DBC1 DINP: IN DSTAT ;GET 117@ STATUS BYTE
@O7E E6CO ANI @CeH ;RECEIVE DATA AVAILABLE?
@080 CA @07C Jz DINP ;WAIT FOR IT
0083 17 RAL s SET CARRY IF CONTROL
@084 DBCB IN DDATA ; FETCH DATA BYTE
@e86 C9 ~ RET ; DONE
; THIS ROUTINE OUTPUTS A DATA BYTE TO THE 117@.

@887 CD 06093 DOUT: CALL DOUTW ;WAIT UNTIL READY
o08A D2CO ' ouT DDATA ;SEND TO 1170
e@sc CS RET ; DONE

| ; THIS ROUTINE OUTPUTS A CONTROL BYTE TO THE 1178,
998D CD 093 DOUTC: CALL DOUTW ;WAIT UNTIL READY

00950 D3C1 ouT DSTAT ;WRITE 1178 STATUS BYTE
3 Aololololclooliololiolololok DELETED "OUT DDATA"™ INSTRUCTION
3 Aelololololoplolookiolololosk FROM 1670 VERSION

0052 Cco RET ; DONE

THIS ROUTINE WAITS FOR THE 1178 TRANSMIT BUFFER TO
BE EMPTY AND READY FOR ANOTHER BYTE. IT ALSO
ARBITRATES IF THE 1170 AND HOST TRY TO TRANSMIT TO
ONE ANOTHER AT THE SAME TIME.

e e % e W e

TDL 288 CP/M DISK ASSEMBLER VERSION 2.21
SAMPLE DRIVER PROGRAM FOR PERSCI 1170 CONTROLLER

SECTION 1 - CONTROLLER INTERFACE ROUTINES

8933
00394
8896
8098
8898
88390

BO9F

88A2
BoA3

PaCo
6eC1
0004
2172} |
08085

00A4
%1% 13

F5S

DBC1
EéCo

C2 oon2
bBC1
E602

CA 0894

F1
Ccs

%1% 157
0000

PAGE 5
DOUTW: PUSH PSW s SAVE BYTE TO SEND
IN DSTAT ;GET 117@ STATUS BYTE
ANT @CeH ;IS 1170 TRANSMITTING?
INZ DOUTX ;YES, BREAK THE TIE
IN DSTAT ;GET 1178 STATUS AGAIN
ANT @2H ; 1S XMIT BUFFER EMPTY?
5 Aotttk THAT MASK DIFFERS FROM 1870 VERSION.
Jz DOUTW+1 3 NO, WAIT UNTIL IT IS
5 HottkcRckRokatl THAT JUMP DIFFERS ALSO.
DOUTA: POP PSM ; RESTORE BYTE TO SEND
RET ; ALL DONE

SYMBOLIC EQUIVALEMNCES

e W W e

DDATA = QCOH ; CONTROLLER DATA PORT
DSTAT = BC1H ; CONTROLLER STATUS PORT
EOT = 04H ; ASCII °EOT?
SOH = @1H ;ASCI1 °SOH°’

= @SH ;ASCII ’ENQ’

ENG
;

; RAM WORKING STORAGE

i

RAM1: .WORD © ; SAVE/LOAD START ADDR
RAM2: .WORD © » SAVE/LOAD END ADDR

INTO A RAM BUFFER, AND PROCESSES BACKSPACE AND

5
i
; THIS ROUTINE INPUTS A LINE FROM THE CONSOLE DEVICE
i
5 LINE-DELETE FUNCTIONS.

\

N\

TOL 288 CP/M DISK ASSEMBLER VERSION 2,21
SAMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER
SECTION 2 - COMMON SUBROUTINES

00A8
08AB
06AD
o8Bo
1217 =X
%1% =13
ooB8
ooBB
0eBD
8eBF
gacz
=1%o
vacs
vacCe
8ecs
08ChH
vecB
eecC
00CF
eeD2
vaD4
0eD?
%1% 80
eenC
06DE
80E1
0oE2
BBES
O0ES
@eES
. BOEA
©eEB
BOEE
BOEF

CD ©OoFs
2E3E

CD ©@14A
21 8156
22 8176
BE0O

CD ©140
E67F
FE20

DA @eld2
7

JE20

B9

CA ©oBS
7E

23

ec

CD 014A
C3 ooBs
FEGS

CA BOES
FE1B

CA @6F3
FE®D

C2 ooBs
79

32 0178
CD ooFs
cs

2B

oD

F2 @ecc
23

ecC

INPLN:

INPLI:

INPLE:
INPLC:

INPLB:

CALL CRLF

MVI A, *>?
cAaLL OUTCH
LXI H, IBUFF
SHLD IBUFP
MVI c.e
cALL INPCH
ANI 7FH
CPI1 '’
JC INPLC
MOV M. A
MVI f, 32
cMP c

Jz INPLI
MoV A M
INX H

INR c
CALL OUTCH
JMP INPLI
CPI a8H
JZ INPLB
CP1 1BH
Jz INPLK
CPI o0H
JINZ INPLI
MOV A, C
STA IBUFC
caLL CRLF
RET

DCX H

OCR c

JP INPLE
INX H

INR c

PAGE €

i CR/LF TO CONSOLE

; GET COMMAND PROMPT

; SEND TO CONSOLE

; GET BUFFER ADDRESS

3 INITIALIZE POINTER

5 INITIALIZE COUNT

; GET CHAR FROM CONSOLE
; STRIP PARITY BIT

; TEST IF CONTROL CHAR
; YES, GO PROCESS

; ELSE STORE IN BUFFER
; GET BUFFER SIZE

; TEST IF FULL

; YES, LOOP FOR CONTROL CHAR
;s RECALL CHAR

; INCR POINTER

; INCR COUNT

; ECHO CHARACTER

; GET NEXT CHAR

; TEST IF BACKSPACE

i YES, KILL CHAR

; TEST IF ESCAPE

iYES, KILL LINE

; TEST IF RETURN

s NO, IGNORE

3 GET COUNT

3 SAVE IT

; SEND CR/LF TO CONSOLE
3 DONE

; DECREMENT POINTER

;s DECREMENT COUNT

; IF NOT EMPTY, ECHO CHAR

; IF EMPTY, UNDO DECR
i

TOL 288 CP/M DISK ASSEMBLER VERSION 2.21

" SAMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER
SECTION 2 - COMMON SUBROUTINES

¢eFo
BOF3
0BF4
QoF7?

BOF8
OOFA
0eFD
BOFF
g102

13 JE20
8105
2108
@189
81oC
8180
B18E
B10F
2110
Q111
8112
o115
2116
a118
B11A
e11c

C3 ooeBs
AF
22 8178
Cco

ZEBGD

CD 914aA
JEBA

CD @14A
(93

OUTHX:
CD ©014A
7C
CD @18D
7D
FS
1F
1F
iF
1F

CD o116

Fi

EGOF
Cceze
FE3A
DA 014A

INPLK:

0‘- we Wwe ‘e

RLF:

e W % W e

MVI

OUTH1:

OUTH:

JMP
%RA
STA
RET

MVI
CALL
MV1
cALL
RET

4

A, ?

CALL
MOV
CcALL
MOV
PUSH
RAR
RAR
RAR
RAR
CALL
POP
ANI
ADI

-CP1

JC

INPLI
IBUFC

A, B8DH
OUTCH
A, BAH
QUTCH

PAGE 7

i GET NEXT CHARACTER
;KILL LINE BY SETTING..
;. .COUNT TO ZERO

; DONE

THIS ROUTINE SENDS A CR LF SEQUENCE TO THE CONSOLE

JGET A CR

; DISPLAY IT
;GET A LF

; DISPLAY

; DONE

THIS ROUTINE OUTPUTS THE CONTENTS OF THE H-L REGISTE
AS A FOUR-DIGIT HEXADECIMAL NUMBER ON THE CONSOLE.

’ ; OUTPUT A SPACE

OUTCH
A, H
OUTH1
A L
PSW

OUTH
PSH
OFH
'Q°
9941
OUTCH

;GET TOP HALF OF WORD .
; DISPLAY IN HEX o

; SAME WITH BOTTOM HALF
; SAVE LOW-ORDER DIGIT

s SHIFT HIGH-ORDER DIGIT

; ADD BIAS AND DISLAY
; GET OTHER DIGIT

;s EXTRACT DIGIT
;ADD ASCII Z0ONE BITS
; TEST IF ALPHA CHAR
i NO, DISPLAY AS-IS

TOL 288 CP/M DISK ASSEMBLER VERSION 2,21 PAGE 8
c4AMPLE DRIVER PROGRAM FOR PERSCI 1178 CONTROLLER
.CTION 2 - COMMON SUBROUTINES

O11F cear ADI 'Ar-?90-] ; ELSE ADD BIAS FOR A-F
o121 C2 214aA JMP OUTCH ; NOW DISPLAY IT

THIS ROUTINE OBTAINS A CHARACTER FROM THE RAM BUFFER
AND SETS THE CARRY FLAG IF EXHAUSTED.

e e ‘we’ W

0124 ES - GETCH: PUSH H ; SAVE REGS

8125 2h 9176 LHLD IBUFP 3 GET POINTER

o128 3A 8178 LDA IBUFC 5 GET COUNT

o1zB Deo1 sul 1 5 DECREMENT WITH CARRY
2120 DA 0138 Jc GETCX ; BUFFER EMPTY

0130 32 6178 STA IBUFC i REPLACE COUNT

0132 7E MOV A M 5 GET CHARACTER

0134 23 INX H ; INCREMENT POINTER
8135 22 8176 SHLD IBUFP s SAVE POINTER

o138 El GETCX: POP H s RESTORE H-L

8139 C9 RET ; DONE (CARRY IF NO CHAR)

THIS ROUTINE COMPARES D-E WITH H-L.

UN\-V&-

013A 7c , CHMP: MoV A, H ; GET MOST SIGNIF
8128 BA ‘ CMP D ; COMPARE MSBYTE
913C Co RNZ 5 NON-ZERO., DONE
70 MOV AL ; ELSE COMPARE LSBYTE
B13E BB ' cMP E 3 ‘

@13F €9 RET 3 DONE

3

THESE ROUTINES PERFORM 1/0 VIA THE SYSTEM CONSOLE
DEVICE, PASSING THE CHARACTER IN THE A REGISTER. THEY
MUST BE CODED TO WORK WITH THE PARTICULAR CONSOLE
1/0 INTERFACE ARRANGEMENT OF EACH MICROCOMPUTER. THE
TWO ROUTINES MUST NOT MODIFY ANY REGISTERS OTHER THAN

Ve W We W e %o

TOL 288 CP/M DISK ASSEMBLER VERSION 2.21
SAMPLE DRIVER PROGRAM FOR PERSCI 11790 CONTROLLER

SECTION 2 - COMMON SUBROUTINES

8140
2142
8144
8147
2149

814A
2148
814D
014F
8152
8153
8155

8156
0176
2178
9179
0199

DBoo
E6OG1

C2 o140
DBo1

co

FS

DBoo
E680

C2 9148
F1

D31

co

; THE A REGISTER.

3
INPCH: IN
ANI
JNZ
IN
RET
i
OUTCH: PUSH
IN
ANI
JINZ
POP
ouT
RET

3
i
]

b

IBUFF: ,BLKB
IBUFP: .BLKB
IBUFC: .BLKB
.BLKB
© - STACK =,
;
b
. END

00
B1H
INPCH
21

PSW

00

86H
OUTCH+1
PSW

o1

RAM WORKING STORAGE

N

=N

N

i GET CONSOLE STATUS

; TEST DATA WAITING

s NO, WAIT FOR IT

; GET CONSOLE CHARACTER
; ALL DONE

; SAVE OUTGOING CHAR

; TEST TRANSMIT BUFFER EMPTY
;

; WAIT FOR EMPTY

s GET SAVED CHAR

3 SEND TO CONSOLE

5 ALL DONE

; INPUT TEXT BUFFER
5 INPUT POINTER

; INPUT COUNTER

s STACK AREA

s TOP OF STACK

; END OF ASSEMBLY

TOL 286 CP/M DISK ASSEMBLER VERSION 2,21 PAGE 10
 SAMPLE DRIVER PROGRAM FOR PERSCI 1170 CONTROLLER
+++++ SYMBOL TABLE +++++

- CRLF ©OF8 DCMP 913A DCTRL 0621 DDATA ©OCo
DEOT ©9le DGET 0015 DINP ©907C . DLINE 0072
- DOUT ees7 DOUTC ©esDd DOUTH 0893 DOUTX ©@eA2
DREAD ©0832 DREAL @839 DREAX 0044 DRIVE 0000
DSTAT @8ecC1 DWRIL 0064 DWRIT ©e5Se ENQ 8065
EOT 0004 GETCH 0124 GETCX 0128 IBUFC 0178
IBUFF 0156 : IBUFP 0176 INPCH ©140 INPLB ©0BE9S
INPLC ©eD2 INPLE @8cCC INPLI o0B8 INPLK 0OF3
INPLN ©0A8 OUTCH 0144 OUTH 0116 OUTH1 @©1eD

OUTHX @183 RAM1 80A4 RAM2 @BA6 SOH 801
STACK 8199 '

PerSci Model 1170 Intelligent Diskette Controller
Appendix B - Sector Interleave and Details

APPENDIX B

Optional Sector Interleave Sequence
Sector Details

Sector Interleave

OPTIONAL SECTOR INTERLEAVE SEQUENCE

DISK RECORD SEQUENCES
BLANK 01 02 03 04 05 06 07 08 09 10 11 12 13

1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9 10 11 12 13 14
3 3 5 7 9 11 13 15 17 19 21 23 25 2
4 4 7 10 13 16 19 22 25 2 2 2 2 15
5 5 9 13 17 21 25 2 2 11 12 13 14 3
6 6 11 16 21 26 2 9 10 20 22 24 26 16
7 7 13 19 25 2 8 16 18 3 3 3 .3 4
8 8 15 22 2 7 14 23 26 12 13 14 15 17
9 9 17 25 6 12 20 3 3 21 23 25 4 5
10 10 19 2 10 17 26 10 1 4 4 4 16 18
11 121 5 14 22 3 17 19 13 14 15 5 6
12 12 23 8 18 3 9 24 4 22 24 26 17 19
13 13 25 11 22 8 15 4 12 5 5 5 6 7
14 14 2 14 26 13 21 11 20 14 15 16 18 20
15 15 17 .3 18 4 18 5 23 25 6 7 8
16 16 6 20 7 23 10 25 13 6 6 17 19 2]
17 17 8 23 1 4 16 5 21 15 16 7 8 9
18 18 10 26 15 9 22 12 6 24 26 18 20 22
19 19 12 3 19 14 5 19 14 7 7 8 9 10
20 20 14 6 23 19 11 26 22 16 17 19 21 23
21 21 16 9 4 24 17 6 7 25 8 9 10 1
22 22 18 12 8 5 23 13 15 8 18 20 22 24
23 23 20 15 12 10 6 20 23 17 9 10 11 12
24 24 22 18 16 15 12 7 8 26 19 21 23 25
25 25 24 21 20 20 18 14 16 9 10 11 12 13

26 26 26 20 24 25 24 21 24 18 20 22 24 26 -

Numbers at column top are interleave sequences specified by kill command.
Columns show sector sequence for specified interleave.

N.B. "Blank" sequence changes index track only.

Sector Details

SECTOR DETAILS

- 1/6 SEC (1 REVOLUTION) -
7.904 mSEC
2.336 mSEC g — Y -
9.568 mSEC
el — ~E
INDEX SECTOR SECTOR SECTOR SECTOR PRE INDEX
SECTOR 1 3 5 26 GAP SECTOR
DISKETTE TRACK FORMAT (FM OR MFM)
INTERLEAVE SEQUENCE OF 02 SHOWN
“FOR 26 SECTORS
ADDRESS DATA - 164 BYTES FM
FIELD FIELD 328 BYTES MFM
FM —ame| . 768 mSEC
et——————- 5,248 mSEC -
MFM —gmid . 704 mSEC

FM
MFM

+5v ca i) o Jbari] aweoves
J3 oY 8 Fa
A o B & | gl cleco s
a0 lie 3 us [T = [>34] oRecTION
A2 i8¢ 21740517 2 ' . =
A3 |20¢ » 36 st
74069 13400 a0 WRITE
' v GATE
= 7206
v L ras R47 VR2
" 0 1.9 100 IN747 18| owa
A | 76 9“
= Jl%‘o' » 26| Os1
! _I B3>z ros P v 5 L
AS | 1 ¢ ()30
As | 3¢ us 7406 3N, 4 e 18] Ds3 »
A7 | 8¢ 2iMLs138)15 ' v c !
» | 2¢ @ 2@’4 S 7306 % >3] 0w _ H" -
28111 ¢ iﬁ]ﬂ'! Lsoo 7906 5P~08 27 0ss +5v gl > 51 [Jonres
1
GNoj12.¢ =S ‘ N2 7406 ,16| HEAD cn Lools Lol
LUl LOAD 01) T
=l 8 ¢ 7406 5[\ 6 b1a| egECT
00=| 8 ¢ L°u1
'D"z 7406 >12|RESTORE (62 s 2 [vev
utt +5v by 1 Hav 12 UNREG
a 7408 u2 k4 ANLQLP?Rg C:d__l:CP::* 124t g
uy v vz 0 20/330 _h 49| [GND. SHIELD %3 1 -
7404 74LS00 . 74,5164 124 8] 6]] 4[12[13{10{ 9 I - = | e N N s
i ! S -
)
12 af u7 T 20| INDE X sv H Sl
R2 = us g 3{3:»5 TWO SIDE)
e | LS00 2804 ba2| TRO arlcel ys2 |16V
1] 4o)e— vaal wame peor 'R sl 3
e T,
>s0l sep- b 50
»50| SEP-CLOCK —
74800 Lﬁ'. READ DATA TP8 & T GND
WAIT |15 ¢ 4 L [j
ik Caney| s & 3 O3] ¥ev, tv = 1] =T 9 o4
ER | 7404 1al 13) 1 1| ol o al 1] sl 9 o]] e[iK 1 sl 3
‘ W4 37 o Re u3? u38 40
RD |10 hmqd 715136 7415136 74113136
32 3 HERDEBGE
J2 L | TOTE[] T T CLES _l_s]z
HER ﬂal I
02|10 4 45y
03| 3¢ —{ U39
HEp 2] L4 7405000 7415164 I
— 1S Tu T o 53 T 5
|§ X 12 | U6 = 7404 nN)
LS| +5V (@)
1 il s
£ oGl e || o)
o 0 741510 o) P
! s 2 AL502 »
4 C
3 6./ Uz“{ 1 3 o \ an
8 q u2e
= B 74LS10 . '6)u34 ‘ nus)
= 4 5
@‘ 4 10 7aLs02
7aL502 - \
u20 1} u20
aLSM s M
73
741510 ,
1" -
Juse +H2V +12V +12v
74L500 R223R43 R23
100 2100 10K
(]
v
+3v
RS +5v
K N
"<040(o
74L5136
Lvos 4y
V=
7415136 CR8
IN3064
il DISC_PORT (PCB ASSY 200647)
12 T 'av’ -
—1 = :
" D e I B [| et tcorporated
74500 [* BN, -
e 7454 + mn e SCHEMATIC, PCB, COMPOSITE.
S DUAL DENSITY CONTROLLER
4 (votes CONTINUED ON sré;ozzmws gl —
2 ALL CAPACITORS IN MI .
1.ALL RESISTORS IN OHMS. 59, LA W, — |E] 200648 |C
NOTES: UNLESS SPECIFIED: 200644 /200647 | s oo T]

M6 | +8v “'::’ <17|re RESET
+lca fumses| +Lcs lce Llcz 1cs Lco Llciolen Lcig Leis Lear 4C22 1cay k< 18 [WATY
T ! T To Tor To Toi Tor Tor T.o Toi T.o0 T.00 T.ol]
B e R EaEE N |
{ 62 | v 8.0MHZ |
+ + U
i Lcia Lo ©) o |
12
' 1 i g o0 9{)%‘, :ﬁ 5 Ly | Ghoex
H . . T ¢
——) A 2404
| : +lcis 4c201*dcie cir |
| 1 .
| I T = = *)) DOF
e e e e e e e e T T T a2 330 330
28
l RTN.
150 b2 Bamz)
| Ha0s ¥
10 L 10| D
4 Lelm
l 481 ¢ |I5HG
+sv |
I WAl 2 {_—4—«1 GND
[7aL5244 +ov asv |
| R; +Sv rA_o MZI € |
wosma S X u29 |
BT -vBE o =u n mmﬁ- |
' o2 10 0] 2 ' |
02f2 1] 1 ! 13 0 2
\ 13 4 L] 1l 3 |
| = =
|
. v20 | u21 | va2 | uzs | uae fuas | uas | u2z |uze O 3 e
| , lea[mlmla|la|o|a|e Fefc 20
. r S18_1c 18] a2
| uss | us% |us? | use | 3 ;},%_: z’q ::
g|o|eflao 2 2 L 41| as
I l; M2 k 3| As
3 6] US| U6 | ur | ve | u9 | uio lé;]l lE;]Z lg | (_g: A7
214 | 214
| 280A- 7415244 w r JOR O Of O Lo
cpu“m{%g; 4200 .
| — 7|0
I a2 ’%‘ T—‘LT’__O"_—O"—_O' 6 o o 2 I' 10|02 N
‘ 3 s|os
I i 74LS5244 T \ 4 0" 1 yu‘ elos O
9) 1 \ Ez 53 1 3los o
06 10] L} s|0s
I Py ()] 7 Al ' lor o
+izv=o £ '| L L rN
l (7) f S— 2= 12| H3Y 4V A
A= | = gz l = o 6 & & & & ¢ PR -l P 106 —
I +5v 18] 20] 18] 20| 18 18 13des . oo 3 axo o
' Bo o Wy Mo W Wy Wy Ho | (Y wo nf Ui haLrs 1}osk ——
Aol ' ! wo40 .O-T;’,O 0 27] ¢ O Te o|crs
I anp g : 2-'"'-"3 ‘IJ” 8 ¢ 1 }f.uo
" ol (= Eus
u3 = T2
4) S| T™@0
I L] 5] ™5 o - \&3 [re 12|orr
RFSH 28 7 \L] 7| RTS
| e me B =
i 7708 TNTEL 2716 AL 7) JmPER EPROM B) =5
L A T0 C P rocC R 70 C SOCKETS FOR '
oy F 100 €ETOF D70 F TYPES INDICATED +3v ule
W 70 G u3s,] TO M 17] ¥ m
16 oL | TR 7. C yre l
V) 0 TO W uslr?/20T0Y U3s/is TO w +8v +5v v n 18| A 3
I — u3 ;g [uis/0T02 . U L :o: %2 ; " 12 '
7 Fm [—— .
2 % 3 D L) () 1 Rl 13 7 "
"’F’ peps — — — u? 45V 7404 10K M us o
asld al B s 74510 RI2 = 23] 24 ad3ls 1 6l s 3 sl o |
' oK ' 16 CE mnsoso-usoiguzoo DL X4 A8 (o)
a2 0 ;P 260410 2ol '
I 81828 2A3 M AS AS AT ! =
T 2 30 120 3] of 7] 1 ’& |
e = ' = 1
|| L =P e D il . |
Ed — ual r o
= T] 19 TaLS 244 ——
| = T Y B)CUT AMPER AS DESIVED T REVEASE 5232 SGNALS.
. Sre 3 uss T | @ ameen s o w ws232 Device Does ot omwe cLEan m spok |
L < 3, SEE TABLE.
| [0]0} b >680 YL 74LS20 I 8 JUMPER A1 TO A7 IF 4330CIATED BIT OF PORT ADDRESS 15 TRUE MGH),
L 118 y ulr I JUMPER L TOW OR'M TO CONNECT TO MOST RESET AS DESIRED.
L \— PORT ADORESS JUMPE +5v |2 4,810 JuPER CRZ CONNECTS RESET T8 HOST MESLY BUT PREVE 4TS
LA J b x4 L2 2 v L2 FAEB A BRI v 3 3 }Jp| (B)FOR VARIABLE COMPONENTS AND JUMPER LOCATIONS SEE
7854 196 3 2028283 77 Tasas 9594414291 2B 43 % BBEOHNNO0 [igoo) , TA8RLTED YA, osed
- -3 a - ~ o ~
E REEF] 133, 8 i3 23323333 82333383 — PROCESSQR LOGIC (ASSY 20 :
T 1 —
$100 BUS MASTER ADDRESS oo waTER DA g| 200648
T CONTROL SIGNALS [wesews sy 2 o

PeErScI, INC.

12210 Nebraska Ave
W Los Angeles
CA 90025

