MSC-9305 UNIVERSAL DISK CONTROLLER OPERATION AND MAINTENANCE MANUAL

PRELIMINARY

TP74 103928

Copyright 1980
Microcomputer Systems Corporation
Sunnyvale, California 94086
All Rights Reserved

DOCUMENT CONTROL RECORD

Document:	MSC-9305	5 Universal Disk Controller	
REV.	DATE	DESCRIPTION	

TABLE OF CONTENTS

SEC.	TION I -	- GENERAL	_ DESCRIPTION	<u>Page</u>
I.!	Introd	duction		1
1.2	Genei	ral Descrip	tion	I
1.3	Contr	oller Opera	ation	4
1.4	Stand	ard and Op	tional Capability	5
1.5	Relat	ed Docume	nts	7
SEC.	TION 2	- INSTALLA	ATION	
2.1	Genei	ral		8
2.2	Prelin	minary Insp	ection	. 8
2.3	Unpa	cking and Ir	8	
2.4	Controller Requirements			9
	2.4.1	Operating	Environment	9
	2.4.2	Space Red	quirements	10
	2.4.3	Power Re	quirements	10
	2.4.4	Cooling R	equirements	10
2.5	Installation Procedures			12
	2.5.1	Strapping	Procedure	12
		2.5.1.1	Device Address Selection	12
		2.5.1.2	Parallel Poll Bit Selection	15
		2.5.1.3	Sector Szie Strapping	15
	2.5.2	Installatio	on Procedure	15
SECT	TION 3 -	OPERATII	NG THE CONTROLLER	
3.1	Gener	ral		18
3.2	Para L	lel Poll		18

			Page	
3.3	Read-Devi	ce-Specified-Jump-Byte	18	
3.4	Request-Status			
3.5	Universal-Clear			
3.6	Selected-C	Clear	20	
3.7	Interface-	Clear	21	
3.8	Initiate-Se	lf-Test	21	
3.9	Read-Self-	Test-Result	21	
3.10	Address-R	ecord	22	
3.11	Seek		22	
3.12	Read-Addr	ess	22	
3.13	Cold-Load	-Read	23	
3.14	Read		24	
3.15	Write		25	
3.16	Read-Long		25	
3.17	Write-Long	J	26	
3.18	8 Format			
3.19	9 Verify			
3.20	Write-Alte	rnate-Sector	28	
3.21	l Set Interieave			
3.22	2 Loopback			
SECT	10N 4 - MAI	NTENANCE		
4.1	General		30	
4.2				
SECT	ION 5 - THE	ORY OF OPERATION		
5.1	General		32	
5.2	GPIB Proto	ocot Description	32	
			Page	
5.3	Block Diag	ram Description	35	
	5.3.1 G	PIB Interface	35	
	5.3.2 G	PIB Adapter	35	
	5.3.3 80	048 Microprocessor	38	

	5.3.4	Disk I/O Processor	38
	5.3.5	DMA Control	38
	5.3.6	Data Separator	38
	5.3.7	Disk Interface	39
5.4	Contro	oller Schematic Description	39
	5.4.1	MPU 1/0 Ports	39
	5.4.2	MSC-9056 I/O Lines	43
5.5	MPU F	irmware Description	48
	5.5.1	Major Routines	48
	5.5.2	Command Execute Routines	48
	5.5.3	Major Subroutines	48

APPENDIX A MSC-9305 CONTROLLER SCHEMATIC APPENDIX B 8048 FIRMWARE LISTING

LIST OF ILLUSTRATIONS

		Page
Figu	re_	·
-	MSC-9305 Universal Disk Controller	2
2-1	Disk Controller	10
2-2	Controller Straps	13
2-3	Device Address Selection	14
2-4	Interconnection Diagram	16
4-1	Troubleshooting Flow Chart	31
5-1	GPIB Bus Configuration	33
5-2	GPIB 3-Wire Handshake Flow Chart	34
5-3	MSC-9305 Block Diagram	37
5-4	Module Control Timing	41
5-5	DMA Timing	44
5-6	Index Timing	47

LIST OF TABLES

		<u>Page</u>
Table	2	
-	Disk Commands	3
1-2	Controller Capability	4
1-3	Controller Capability (Optional)	6
2-1	Environmental Limits	8
2-2	Interconnection Cables	15

SECTION I

GENERAL DESCRIPTION

I.I INTRODUCTION

The MSC-9305 Universal Disk Controller is a disk controller that interfaces a Shugart Technology ST-506 disk drive to a GPIB universal bus (also known as IEEE-488 and HPIB). Incorporating this GPIB interface standard as the host interface, the controller is universally applicable with a minimum of effort and cost using readily available LSI interface circuits or multi-sourced adaptors for popular computer systems.

At the heart of the MSC-9305 controller is the MSC-9000 module, which applies proven LSI techniques to achieve the task of bringing the cost of the Controller and the cost of the Disk Drive into proper balance. Yet it incorporates all the sophisticated features of much larger, much more complex controllers including automatic error correction and full-sector data buffering.

1,2 GENERAL DESCRIPTION

The MSC-9305 package consists of a controller and data separator PCB that fit within a compact case, and the MSC-9305 Operation and Maintenance Manual. Optionally disk cables, a power cable and disk subsystem diagnostics which run on an HP-85 computer are also available.

The controller is assigned a DIP-switch selectable device address in the GPIB system. During normal operation, the controller provides all signals needed to communicate commands and status information with the host and to perform data transfer with the disk.

The controller also interfaces to the disk drive. It issues disk commands and drives the control lines to the disk that selects the unit, head and cylinder. It monitors lines from the drive that carry disk status and controls the data lines carrying data to and from the drive.

Figure 1-1. MSC-9305 Universal Disk Controller

1.3 CONTROLLER OPERATION

The MSC-9305 performs a set of commands for data transfer, status and diagnostic functions. See Table I-1.

Table I-I Disk Commands

Mnemonic	Command Description
PARPOL	Parallel Poll
RDSJ	Read Device Specified Jump
RQSTS	Request Status
UCLR	Universal Clear
SLCLR	Selected Clear
INCLR	Interface Clear
SLFTST	Self Test
RSLTST	Read Self Test Results
ADRCD	Address Record
SEEK	Seek
RDADR	Read Address
CLRD	Cold Load Read
READ	Read
WRITE	Write
RLONG	Read Long
WLONG	Write Long
FORMAT	Format
VERIFY	Verify
WALT	Write Alternate Sector
STINT	Set Interleave
LPBK	Loopback

1.4 STANDARD AND OPTIONAL CAPABILITY

The standard capability of the MSC-9305 is summarized in Table 1-2. The options that can be specified with the MSC-9305 are summarized in Table 1-3.

Table 1-2 Controller Capability

Table 1-2 Controller Capability

<u>ltem</u>	Description
Disk drive	Shugart Technology ST-506
Data transfer rate	Maximum: 200KB Minimum: host specified
Fault detection	Certain controller and drive fault conditions, are detectable and reported by the controller firmware in the normal course of operation.
Automatic head and cylinder switching	If a multiple-sector transfer occurs between disk and host memory and the end of a track is reached, the controller automatically advances the track. If the end of the track is reached and the track is the last one of the present cylinder, the controller automatically seeks to the next cylinder.
Error sensing, flagging and correction	A data stream being read from a disk is constantly being monitored for errors. If an error is detected, it is indicated to the host and burst errors of up to 11 bits long are automatically corrected by the controller.
Variables	The I/O device code of the controller is selectable with a dip-switch. The controller can be strapped to indicate if the disk is to be organized with 256 or 512 bytes per sector. Also, the selection of the parallel poll bit is switch-selectable.
Sector interleaving	This feature allows logically adjacent sectors on a given track to be mapped onto physical sectors on the track which are not adjacent. This feature might be used for either of two

reasons: (1) to smooth out the data rate in case the host CPU is slow or is overloaded with I/O activity and (2) to allow the host to read in sector 1, perform some process on it, and then read in sector I+I without having to wait for disk latency.

Automatic position to alternate sector

If a sector that has been assigned an alternate sector is accessed, the controller automatically performs the data transfer at the alternate sector.

Data Buffer

The controller contains a full sector data buffer (512 bytes) to allow flexible data transfer rates with the host system without affecting data transfer integrity.

Position Verification

The controller automatically verifies that the heads are positioned (by reading identifier fields) before any data transfer is allowed.

Diagnostics

The controller command set includes a number of commands to thoroughly test the disk subsystem.

Disk Data Encoding

The controller contains a data separator and MFM encoder to receive and send the MFM data to the disk drive.

Sectors per Track

17 for 512 Bytes per Sector. 21 for 256 Bytes per Sector.

Table 1-3 Controller Options

Item

Description

Software Diagnostics A diagnostic package can be provided to run

on an HP-85 computer to test the controller

and disk drive.

Disk Drive Cables A cable set for the disk drive.

Power Connector A power connector for the controller.

I.5 RELATED DOCUMENTS

Refer to the following documents for general description, operation, installation, theory of operation and maintenance of related hardware and software.

Shugart Technology ST-506 manual.

- 2. IEEE-488 Interface Standard (1978).
- 3. HP-85 Operating Manual.
- 4. Texas Instruments TMS-9914 Manual.
- 5. Intel 8048 Manual.
- 6. MSC-9000 Series Product Specification.

SECTION 2

INSTALLATION

2.1 GENERAL

Section 2 contains information on inspecting the MSC-9305 for damage before and during unpacking. It also describes the space, power, and environmental requirements of the controller and procedures for cable interconnection.

2.2 PRELIMINARY INSPECTION

All parts comprising the MSC-9305 are shipped in one container consisting of an inner envelope and an outer cardboard box. Before unpacking the unit from its shipping container, inspect the container for any obvious damage that might have occurred during shipping.

If in-transit damage to the container is obvious, contact the carrier and shipper immediately, and specify the nature and extent of damage. Do not open the container until the carrier's representative has inspected the damage. Inspect any accompanying disk drive containers in the same way.

2.3 UNPACKING AND INSPECTION

CAUTION

Use knives or other tools carefully during unpacking.

To unpack the controller, first open the outer cardboard box and remove the inner envelope. As each item is unpacked, inspect for damage and check against the shipping list. If any part or accessory is missing, notify the shipper of the shortage immediately. (If a claim for damages is filed, keep the original shipping containers.)

NOTE

Refer to the appropriate manual from the list of related documents in section 1.5 for special instructions on the unpacking of any accompanying disk drives.

2.4 CONTROLLER REQUIREMENTS

For proper operation, operating environment and power supply must meet MSC-9305 requirements.

2.4.1 Operating Environment

Table 2-1 shows the minimum and maximum operating and storage limits for temperature, humidity and altitude.

Table 2-1 Environmental Limits

	<u>Operating</u>		<u>Storage</u>	
	<u>Min</u>	<u>Max</u>	<u>Min</u>	<u>Max</u>
Temperature range				
Fahrenheit	32	131	-40	167
Celsius	0	55	-40	75
Relative Humidity	10%	95%	10%	95%
at 40°F max				
wet bulb temperature, no				
condensation				
Altitude range				
Feet	Sea level	10,000	Sea level	15,000
Meters	Sea level	3,048	Sea level	4,572
Mag radiation			.5 gauss	
2.4.2 Space Requirements				

Figure 2-1 shows the physical dimensions of the MSC-9305.

2.4.3 Power Requirements

The controller operates on +5 volts DC. The unit requires approximately 3 amps of +5 volts current.

2.4.4 Cooling Requirements

The controller must be mounted in an area with proper ventilation to dissipate 15 watts.

Figure 2-1. Disk Controller

2.5 INSTALLATION PROCEDURES

The various options must be switch selected or strapped on the controller card. The cables must be interconnected to the disk drive, power supply, and host IEEE-488 Bus.

2.5.1 Strapping Procedure

Three controller variables can be strapped to meet a variety of applications. These consist of the I/O device code address, the selection of the parallel poll bit, and the selection of 256 or 512 bytes per sector. Refer to Figure 2-2 for the locations of the various switches and straps.

2.5.1.1 Device Address Selection

The device address is an octal address selectable for the GPIB bus in the range of 00_8 through 37_8 . To select an address refer to Figure 2-3.

The selection switch shown in the figure illustrates the switches and the corresponding address bit associated with each switch. Set switches where binary ones would appear. The equivalent binary value for 26_8 for example, is $010-110_2$. To select this address, switches 2, 3 and 5 are set. The OPEN position is equivalent to a 0.

The device address is typically set at the factory to 128.

2.5.1.2 Parallel Poll Bit Selection

Any of the 8 bits on the GPIB data bus can be defined as the parallel poll bit. The switch positions 6, 7, and 8 are encoded to represent which parallel poll bit is desired. Switch 6 is the least significant position and an open switch represents a zero. See figure 2-3.

5.5.1.3 Sector Size Strapping

The number of bytes per sector can be strapped for 256 or 512. The strapping block shown in Figure 2-3 illustrates the strapping pins and the corresponding capacity specified when a strap is inserted. For the strapping block location on the controller, see Figure 2-2.

Figure 2-2. Controller Straps

Figure 2-3. Device Address Selection

2.5.2 Installation Procedure

Before installation of the controller or disk drive the power supplies should be checked for proper voltages. all power, including host processor power should then be turned off. All the cables should then be interconnected as shown in Figure 2-6. After checking for proper interconnections and controller strapping (see section 2.5.1) power can then be applied.

Four cables are required to interconnect the Host, controller and disk drive. See Table 2-2. Figure 2-4 shows the interconnections as well as the required connectors.

Table 2-2 Interconnection Cables

Cable	Description
Disk Control Cable	A 34-line cable containing Control signals that connects the disk drive to the controller. Also called the daisy-chain interface cable, it carries control, select and status signals.
Disk Data Cable	A 20-line cable containing data signals that connects controller and disk drive. Also called the radial interface cable, it carries serial read and serial write data as well as the unit selected signal.
Power Cable	A cable from the +5 volt power supply to the controller.
Host Cable	A standard IEEE-488 cable.

Figure 2-4. Interconnection Diagram

SECTION 3 COMMUNICATION PROTOCOL

3.1 General

The MSC-9305 communicates with a host system using the GPIB bus. The communication consists of a control byte from the host which has the disk controllers talk or listen address, followed by one or more bytes to describe the task, followed by a number of bytes to transfer the data and finally an unlisten or untalk command which completes the sequence. The actual communication sequences are described in each command description. Before issuing any disk data transfer commands an address record or seek command must be issued.

Note that the controller has the same talk and listen address.

3.2 Parallel Poll

When at idle, the controller will respond to a parallel poll by asserting the bit specified by switches 6-8 of the controller address DIP switch. Upon receiving a command, the controller stops asserting the bit when polled and re-asserts it upon command completion. The Host must have issued the termination untalk or unlisten for a command before the controller will return to idle and assert parallel poll.

3.3 Read - Device - Specified - Jump - Byte

The DSJ byte provides a quick means of checking the status of the controllers last operation. The sequence is as follows:

ATN (X 1 0 T T T T T) - Controller talk address
(D D D D D D D D) - DSJ byte from controller
ATN (X 1 0 | 1 | | | | | | Untalk

This is the only command which begins with a talk address. All others begin with this controller addressed to listen. The DSJ bytes is encoded as follows:

- 0 The last operation completed without error.
- The last operation completed with error and it is necessary to issue the READ-STATUS command to further define the error.
- The last operation was a successful interface-clear, universalclear, selected-clear or self-test command.

3.4 Request-Status

Returns controller status. The sequence is as follows:

ATN (X 0 ! A A A A A) - Controllers listen address

(X X X 0 0 0 1 1) - Request status command

(X X X X X X X X) - Unused

ATN (X 0 | | | | | |) - Controllers talk address

ATN (X I 0 A A A A A) - Unlisten

(X X X C C C C C) - Controller termination status

(0 0 0 0 0 0 S S) - Zero byte

(S S S S S S S S) - Drive status high

(S S S S S S S S) - Drive status low

ATN (X [0 | | | | 1) - Untalk

Controller termination status is encoded as follows in hexadecimal:

00 - Normal Termination

01 - Illegal command byte

13 - Drive Error. The error is further defined in the drive status bytes.

The drive status bytes are encoded in hexadecimal as follows:

0000 - Normal Termination

8002 - Drive Not Ready

8003 - I Second Seek Timeout

8004 - Invalid track 00 indication from drive

8005 - ali ID fields bad on track

8006 - Sector not found

8007	-	Sector not found and ID ECC error
8008	-	Position error
8009	-	Data transfer start error
800A	-	Write fault error
800B	-	Timeout waiting for index or address mark
800C	-	Invalid disk address
800D	-	Uncorrectable ECC error
801X	-	Correctable ECC Error
8020	-	Write alternate error
8021	-	Alternate sector is defective
8022	-	Alternate already assigned
8023	-	Direct access to alternate sector
8024	-	Defective MSC-9056 Module
8025	-	Defective buffer memory inside module
8026	-	Defective ECC circuitry inside module
8027	-	Defective controller program memory inside module
8028	-	Illegal address mark pulse during diagnostic
8029	-	lllegal interleave table
8080	-	8048 program storage failure
1808	-	8048 data storage failure

X = length of the burst error which can be 1 to B to note if correction span was 1 to 11 bits.

3.5 Universal-Clear

Resets the controller. The sequence is as follows:

ATN (X 0 0 1 0 1 0 0)

The controllers address registers are set to cylinder, head and sector zero and a recalibrate is issued to the drive. On successful completion of the recalibrate, the DSJ byte is set to 2.

3.6 Selected-Clear

Resets the controller. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address
ATN (X 0 0 0 0 | 0 0) - Selected Clear
ATN (X 0 | | | | | 1 | 1 | ) - Unlisten
```

The controllers address registers are set to cylinder, head and sector zero and a recalibrate is issued to the drive. On successful completion of the recalibrate, the DSJ byte is set to 2.

3.7 Interface-Clear

Asserting the interface clear line resets the controller. Its address registers are set to cylinder, head and sector zero. A recalibrate is not issued to the drive as it is with universal and selected clear.

3.8 Initiate-Self-Test

Causes the controller to check itself for proper operation. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address
(0 0 0 | | 0 | | 0 | - Initiate self test command
(0 0 0 0 0 0 0 0) - Zero byte

ATN (X 0 | | | | | | | | - Unlisten
```

If the test completes without error, the DSJ byte is set to 0. If an error is detected the DSJ byte will be set to 1 and the result may be obtained by issuing the Read-Self-Test-Result command sequence.

3.9 Read-Self-Test-Result

Returns the result of the last initiate-self-test command sequence. The sequence is as follows.

ATN (X 0 | A A A A A) - Controller's listen address

```
(0 0 0 1 1 1 0 0) - Read self test result command
(0 0 0 0 0 0 0 0) - Zero byte

ATN (X 0 1 1 1 1 1 1) - Unlisten

ATN (X 1 0 A A A A A) - Controller's talk address
(R R R R R R R R) - Self test result byte

ATN (X 1 0 1 1 1 1 1) - Untalk
```

The self test result byte is encoded the same as the drive status byte.

3.10 Address-Record

Loads the controllers disk address registers. This command (or the SEEK command) must be issued before any data transfer command with the disk. The sequence is as follows:

```
ATN (X 0 ! A A A A A) - Controller's listen address
(X X X 0 | | | 0 0) - Address record command
(0 0 0 0 0 0 0 0) - Zero byte
(C C C C C C C C) - Cylinder high
(C C C C C C C C) - Cylinder low
(H H H H H H H H) - Head
(S S S S S S S S) - Sector
ATN (X 0 | | | | | | | ) - Unlisten
```

3.11 Seek

Loads the controllers disk address registers, seeks to the specified cylinder, selects the specified head and reads an ID from the disk to validate the position. This command (or the address-record command) must be issued before any data transfer command with the disk. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address
(X X X 0 0 0 | 0) - Seek command
(0 0 0 0 0 0 0 0) - Zero byte
(C C C C C C C C) - Cylinder high
(C C C C C C C C) - Cylinder low
```

```
(H H H H H H H H H) - Head
(S S S S S S S) - Sector
ATN (X 0 | | | | | | | | | Unlisten
```

Since all data transfer commands imply a seek to the address in the disk address registers, the seek command is provided only for diagnostic purposes.

3.12 Read-Address

Returns the contents of the controllers disk address registers and the residual count from the most recent read, write, cold-load-read, format or verify command. If the most recent of these commands is completed without error the residual count will not be meaningful. If it is completed with error the count will be the number of sectors not transferred. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controller's listen address
(X X X | 0 | 0 0) - Read-Address command
(0 0 0 0 0 0 0 0) - Zero byte

ATN (X 0 | | | | | | | | ) - Unlisten

ATN (X | 0 A A A A A) - Controller's talk address
(C C C C C C C C) - Cylinder high
(C C C C C C C C) - Cylinder low
(H H H H H H H H H) - Head Returned by MSC-9305
(S S S S S S S S) - Sector
(K K K K K K K K K) - Residual count high
(K K K K K K K K K) - Residual count low

ATN (X | 0 | | | | | | | ) - Untalk
```

3.13 Cold-Load-Read

Seeks to cylinder zero and transfers the specified number of sectors starting with the specified head and sector. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address (X X X 1 | 1 | 1) - Cold load read command
```

TP74 -22-

If no errors or only ECC correctable errors are encountered, the disk address registers are left pointing at the sector following the last sector transferred. If any other error is encountered, the disk address registers are left pointing at the sector in error and the count returned by the read-address commands indicates the number of sectors not transferred. Upon detection of a hard error, the controller returns zero bytes until the expected number of bytes (initial sector count times sector size) have been transferred to the Host. The data transfer may be suspended by untalking the controller and resumed by addressing it to talk again.

3.14 Read

Seeks to the cylinder and selects the head specified by the contents of the disk address registers and reads the specified number of sectors starting with the sector specified in the disk address registers. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controller's listen address
(X X X 0 0 | 0 |) - Read command
(0 0 0 0 0 0 0 0) - Zero byte
(K K K K K K K K K) - Sector count high
(K K K K K K K K K) - Sector count low
ATN (X 0 | | | | | | | | ) - Unlisten
ATN (X | 0 A A A A A) - Controllers talk address
(D D D D D D D D D)
```

- Data

(D D D D D D D D D)
ATN (X | 0 | | | | | | |) - Untalk

If no errors or only ECC correctable errors are encountered, the disk address registers are left pointing at the sector following the last sector transferred. If any other error is encountered, the disk address registers are left pointing at the sector in error and the count returned by the read-address commands indicates the number of sectors not transferred. Upon detection of a hard error, the controller returns zero bytes until the expected number of bytes (initial sector count times sector size) have been transferred to the Host. The data transfer may be suspended by untalking the controller and resumed by addressing it to talk again.

3.15 Write

Seeks to the cylinder and selects the head specified by the contents of the disk address registers and writes the specified number of sectors starting with the sector specified in the disk address register. The sequence is as follows:

ATN (X 0 | A A A A A) - Controllers listen address

(X X X 0 | 0 0 0) - Write command

(0 0 0 0 0 0 0 0) - Zero byte

(KKKKKKK) - Sector count high

(KKKKKKK) - Sector count low

(D D D D D D D D)

- Data

(D D D D D D D D)

ATN (X 0 | | | | | | | | | Unlisten

If no errors are encountered, the disk address registers are left pointing at the sector following the last one written. If an error is encountered, the disk address registers are left pointing at the sector where the error was encountered and the residual count returned by the read-address command is the number of sectors not

written. Upon detection of an error, the controller will continue to accept data from the Host until the expected number of bytes (initial sector count times sector size) have been transferred but the data will not be written to the disk. The data transfer may be suspended by unlistening the controller and resumed by addressing it to listen again.

3.16 Read-Long

Seeks to the cylinder and selects the head specified by the contents of the disk address registers and reads the sector specified in the disk address register. The data is returned followed by the 4 byte ECC field. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address
(0 0 0 0 0 | 1 | 0) - Read long command
(0 0 0 0 0 0 0 0 0) - Zero byte

ATN (X 0 | 1 | 1 | 1 | 1) - Unlisten

ATN (X | 0 A A A A A) - Controllers talk address
(D D D D D D D D)

. . . - 256 or 512 data bytes
(D D D D D D D D D)
(E E E E E E E E E) - ECC byte 0
(E E E E E E E E E) - ECC byte 1
(E E E E E E E E E) - ECC byte 3

ATN (X | 0 | 1 | 1 | 1 | 1) - Untalk
```

On completion of a read-long, the disk address registers are left unchanged.

The ECC bytes is a polynomial derived from the data consisting of $(X^{32} + X^{23} + X^{21} + X^{11} + X^{2} + 1)$.

3.17 Write-Long

Seeks to the cylinder and selects the head specified by the contents of the disk address registers and writes the sector specified in the disk address registers. The

data is written to the disk followed by the 4 byte ECC field. The sequence is as follows:

On completion of a write-long, the disk address registers are left unchanged.

The ECC bytes appended to the data should be a polynomial calculation of $(X^{32} + X^{23} + X^{21} + X^{11} + X^2 + 1)$.

3.18 Format

Recalibrates the drive, then seeks to the cylinder and addresses the head specified in the disk address registers and formats the specified number of tracks. A repeating data pattern of B6DB6D is written in the data field of each sector on the track. The sequence is as follows:

```
ATN (X 0 1 A A A A A) - Controllers listen address
(X X X I I 0 0 0) - Format command
(0 0 0 0 0 0 0 0) - Zero byte
(K K K K K K K K K) - Track count high
(K K K K K K K K K) - Track count low
ATN (X 0 I I I I I I) - Unlisten
```

If an error occurs during the format the disk address registers are left pointing at

the track which was being formatted when the error occured. If no errors occur, the cylinder and head portions of the disk address register are left pointing at the track one past the last one formatted. The sector portion of the disk address registers is unchanged by the format command.

3.19 Verify

Seeks to the cylinder and selects the head specified in the disk address registers and reads the specified number of sectors starting with the sector specified in the disk address registers. the data is checked for valid ECC but is not transferred to the Host. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address (X X X 0 0 | 1 | 1) - Verify command
```

(0 0 0 0 0 0 0 0) - Zero byte

(K K K K K K K K) - Sector count high

(KKKKKKK) - Sector count low

ATN (X 0 | | | | | | | | | Unlisten

If no errors are encountered, the disk address registers will be left pointing at the sector one beyond the last one verified and the residual count will equal zero. If an ECC correctable error is encountered, the command will terminate with the address registers one sector beyond the sector which was correctable and with the residual count equal to the number of sector not verified. If any other error occurs, the command terminates with the address registers pointing at the sector in error and with the corresponding residual count.

3.20 Write-Alternate-Sector

The last sector on each track is reserved as an alternate in case one other sector on the track has a hard defect. The spare may be assigned using this command to replace the defective. The command seeks to the cylinder and selects the head specified in the disk address registers. It then assigns the alternate to replace the sector specified in the disk address register and writes it with the data sent with the command. The sequence is as follows:

TP74 -27-

```
ATN (X 0 | A A A A A) - Controllers listen address
(X X X | | 0 | 0) - Write alternate command
(0 0 0 0 0 0 0 0) - Zero byte
(D D D D D D D D)

. - 256 or 512 data bytes
(D D D D D D D D D)

ATN (X 0 | | | | | | | | | - Unlisten
```

3.21 Set-Interleave

The controller will perform a logical to physical sector mapping as specified by this command. At power on or following an interface-clear, universal-clear or selected-clear, the mapping is reset to logical equals physical. The number of bytes sent with the command must equal the number of sectors per track. (17 with 512 byte sectors and 31 with 256 byte sectors.) Each byte must have a unique value from 16 to 10 or 0 to 30. The contents of byte 0 tells physically where logical sector 0 is located. The contents of byte 1 tells physically where logical sector 1 is located, etc. The sequence is as follows:

```
ATN (X 0 | A A A A A) - Controllers listen address
(X X X | | 0 0 |) - Set interleave command
(0 0 0 0 0 0 0 0 0) - Zero byte
(D D D D D D D D) - Physical location of logical sector 0
.
(D D D D D D D D D) - Physical location of logical sector 16 or 30.
ATN (X 0 | | | | | | | | ) - Unlisten
```

3.22 Loopback

This command is a diagnostic command to test proper communication between the 8048 in the controller and the Host system. A data byte is sent to the controller where it is complemented and returned to the Host. The sequence is as follows:

ATN (X 0 | A A A A A) - Controllers listen address

(X X X I I I 0 I) - Loopback command

(DDDDDDDD) - Data Byte

ATN (X 0 | | | | | |) - Unlisten

ATN $(X \underline{1} \underline{0} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A} \underline{A})$ - Controllers talk address

(D D D D D D D D) - Complemented data byte

ATN (X | 0 | | | | |) - Untalk

TP74

-29-

SECTION 4 MAINTENANCE

4.1 General

The MSC-9305 requires no periodic maintenance. Numberous commands are included within the command set to aid in verifying the operation of the major subassemblies of an MSC-9305 based disk subsystem and the major components within the MSC-9305 itself.

When a fault is suspected within the disk subsystem maintenance should proceed in an organized fashion to ensure rapid fault isolation and repair. The major faulty subassembly should be identified first, then the faulty component within the subassembly should be identified.

4.2 Troubleshooting Guide

Shown in Figure 4-1 is a flow chart to assist troubleshooting a system containing the MSC-9305.

Shown in the flow chart is a "Host Level Disk Diagnostic" - this is optionally provided by Microcomputer Systems Corporation to be used with HP-85 Host computers. If the MSC-9305 is used with another Host computer the diagnostic should be written to exercize and test the disk subsystem by envoking all controller commands and disk functions and testing for proper results.

SECTION 5 THEORY OF OPERATION

5.I General

At the center of the MSC-9305 is the 8048 microprocessor unit (MPU) which controls the TMS-9914 to provide all host communication and activates the MSC-9056 Disk I/O processor to perform disk functions.

5.2 GPIB Protocol Introduction

The GPIB is designed to allow up to 15 devices within a localized area to communicate with each other over a common bus. Each device has a unique address, read from external switches at power-on, to which it responds. Information is transmitted in byte serial bit parallel format and may consist of either device data or interface control information.

Device data may be sent by any one device (the TALKER) and received by a number of other devices (LISTENERS). Instructions such as a select range, select function, or measurement data for processing or printout may be sent in this way.

One of the devices on the bus, designated the Controller in charge (Controller), may send interface control messages. Devices can be assigned to the bus as listeners or talkers by sending their unique talk or listen address, and may be switched between remote and local control.

The bus itself consists of a 24 wire shielded cable. 8 lines carry data; 8 are control lines; 8 are signal and system grounds. A diagram showing the IEEE bus configuration is given in Figure 5-1.

Three of the bus management lines operate as a three line handshake between talker (or controller) and listeners. No new data is sent until each device addressed to listen has received the last byte and is ready for the next. This method of asynchronous communication ensures that the data rate is suited to the slowest active listener, as well as ensuring compatibility over a wide range of devices. A

D107 D106 D105 D104 D103 D102 D101 (LSB	These pins connect transceivers.	to the	IEEE-488	bus	via	non-inverting	
DAV	D 4 ** 4						

DAV	DATA	VALID:	handshake	line	controlled	by	SOURGO	÷-	aL
	accepto	ors when	valid data is	prese	nt on the bu	ıs.	3001CE	10	snow

NDAC	NOT DATA ACCEPTED: handshake line. Acceptor sets this false
	(Lieb) nandsnake line. Acceptor sets this false
	(high) when it has latched the data from the 1/O lines

NRFD NOT READY FOR DATA: handshake line. Sent by acceptindicate readiness for the next byte.	or to
--	-------

ATTENTION: sent by controller in charge. When true (low) interface commands are being sent over the DIO lines. When false (high) these line carry data.
A SHOP THE SETTING TOTAL TOTAL

REN	DEMOTE ENLES
 .	REMOTE ENABLE: sent by system controller to select control
	either from the front panel or from the IEEE bus

IFC

INTERFACE CLEAR:	sent by the system	controller to	sat tha
1110112C 3/31CH HIIO	. U KNOWN dillescent	ぐさつせつ エレュ	system
controller becomes the	controller in charge.	1110	3/3/6//1

SRQ SERVICE REQUEST: for service.	set true (low) by a device to indicate a need
-----------------------------------	---

EOI	END OR IDENTIFY: if ATN is false this indicates the end of a message block. If ATN is true the controller is requesting a parallel poll.
-----	--

FIGURE 5-1 GPIB Bus Configuration

Figure 5-2 GPIB 3-Wire Handshake Flow Chart

5.3 Block Diagram Description

Figure 5-3 illustrates the block diagram of the MSC-9305. The following sections will describe each major block in greater detail.

5.3.1 GPIB Interface

The GPIB input/output pins are connected to the IEEE-488 bus via bus transceivers. The direction of data flow is controlled by the TE and CONTROLLER outputs generated on the TMS 9914. The SN 75160, 75161 and 75162 ar designed specifically for use with a GPIB interface. The TE and CONTROLLER signals are routed within the devices so that the buffers on particular lines are controlled as required by the TMS 9914.

5.3.2 GPIB Adapter

The TMS 9914 is used to enable the 8048 MPU to communicate with an IEEE-488 General Purpose Interface Bus (GPIB). It performs the interface function between the microprocessor and bus and relieves the processor of the task of maintaining the IEEE protocol. By utilizing the interrupt capabilities of the device the bus does not have to be continually polled, and fast responses to changes in the interface configuration are achieved.

Communication between the microprocessor and TMS 9914 is carried out via memory mapped registers. There are 13 registers within the TMS 9914, 6 of which are read and 7 write. They are used both to pass control data to, and get status information from, the device.

The 3 least significant address lines from the MPU are connected to the register selected line RSO, RSI, and RS2 and determine the particular register selected. The high order address lines are decoded by external logic to cause the \overline{CE} input to the TMS 9914 to be pulled low when any one of 8 consecutive addresses are selected. Thus the internal registers appear to be situated at 8 consecutive locations within the MPU address space. Reading or writing to these locations transfers information between the TMS 9914 and the microprocessor. Note that reading and writing to the same location will not access the same register within

the TMS 9914 since they are either read ony or write only registers. For example, a read operations with RS2-RS0 = 011 gives the current status of the GPIB interface control lines, whereas a write to this location loads the auxiliary command register.

Each device on the bus interface is given a 5-bit address enabling it to be addressed as a talker or listener. This address is set on a DIP switch before power-on and is both read by the microprocessor and written into the address register as part of the initialization procedure. The TMS 9914 responds by causing a MA (My Address) interrupt and entering the required addressed state when this address is detected on the GPIB data lines.

Figure 5-3 MSC-9305 Block Diagram

5.3.3 8048 Microprocessor

The microprocessor provides the central intelligence of the MSC-9305 controller to translate commands from the host into a series of control functions for the MSC-9056 Disk I/O processor. The 8048 contains a IKX8 program memory, a 64X8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter.

5.3.4 Disk I/O Processor

The MSC-9056 is a Module which incorporates most of the functions required to interface to the Shugart Technology ST-506 disk drive. The functions incorporated within the MSC-9056 allow high level tasks to be communicated with it, achieving sophisticated control of the disk drive with minimum additional circuitry.

There are twelve separate commands which the Module will execute. Each of these commands requires multiple 8 bit bytes to fully specify the task.

Seek	Read Sector	Write Long	Set Interleave
Recalibrate	Write Sector	Status Request	Write Alt. Sector
Diagnostic	Read Long	Format Track	Write Check

5.3.5 DMA Control

This is a group of circuits which allow the Disk Data to be communicated directly between the MSC-9056 and the TMS 9914, thus achieving maximum data transfer rate without being restricted by the speed of the MPU. The MPU handles all command, control, and status functions and enables the DMA circuits at the proper time for the data transfer.

5.3.6 Data Separtor

This is an individual printed circuit-board to provide conversion between the MFM data format of the disk and the NRZ format of the MSC-9056 module. This block also provides a means for generating and detecting address marks which have a unique encoding to divide a track into a number of fixed sectors.

5.3.7 Disk Interface

This is a group of circuits to provide the electrical interface between the MSC-9056 module and the disk drive.

5.4 Controller Schematic Description

A schematic of the MSC-9305 controller is included in Appendix A. The following sections will detail the function of the controller. The controller function can best be described by the functions of the I/O signals of the MPU and 9056 module.

5.4.1 MPU !/O Ports

The following list describes the functions of each 8048 MPU I/O port.

- P10 Clear signal to the 9914 used to intilialize the GPIB adaptor.
- DBIN signal to the 9914 to define the direction of data transfer.

 During DMA this line is high for data transfer from the MSC-9056 to the host. During transfers between the MPU and the 9914 this line has the opposite interpretation. When the transfer is from the 8048 to the 9914 this signal is low.
- P12 This line enables the LS243 to transfer data from the 9056 to the MPU data bus. The MPU data bus is also routed to the 9914, so this signal will also be high when data is sent from the 9056 to the 9914.
- This signal is connected to the LS257 multiplexer to define when 9056 communication is to be performed with the MPU or the 9914. When P13 is high communication is between the 8048 and the 9056. When P13 is low "DMA" is enabled and the 9056 communicates (Data) directly with the 9914.
- P14 This is an enable signal to activate 9056 and 9914 communication.
- P15 This is the Command (CMD) signal to the 9056. Whenever a task is to be performed by the 9056 this signal gets set (active low) to activate the module to accept a command.
- P16 This is a Clear signal for the 9056 module whenever the MPU needs to reset the module.
- P17 This signal is routed through the LS257 multiplexer to activate a

Strobe (STB) to the module as a handshake signal to note that the MPU has accepted or has available a byte of information. The Strobe is a reponse to Load Data In (CDI) or Data Out (DOUT) from the module. See Figure 5-4.

P24 - This signal gets input to the MPU as the READY (RDY) signal from the 9056. The Ready signal is active whenever the 9056 is transferring data on its data bus with the 9914 or the 8048. See Figure 5-4.

Figure 5-4 Module Control Timing

- P25 This is the TRIGGER (TR) signal out of the 9914 to note when the GET command (Group Execute Trigger) is received over the GPIB interface or the GET command is given by the MPU.
- P26 This is an input to the MPU to note if the controller is set for 256 or 512 bytes per sector. The signal is high for 512, at which time the strap is out.
- P27 This is a Clear signal to the LSI74 address register. It is low whenever the MPU is using memory map data transfers to communicate with the 9056, thus the CE to the 9914 and the LS240 switch receiver will be disabled from driving the data bus.
- INT This the Interrupt signal from the 9914 to the MPU to note whenever the GPIB adapter requires attention.
- These two lines are the clock input to the MPU. The clock frequency is 4MHZ which is derived from dividing 16MHZ by 4 by the two 74S74 Flip-Flops.
- ALE This is the Address Latch enable signal out of the MPU which is active every memory I/O cycle to latch the address off the MPU data bus.
- RESET This is the Reset signal for the MPU derived from the RC power up detect circuit or the Interface Clear (IFC) signal from the GPIB bus.
- This is an input signal to the MPU which is active (low) whenever the 9056 is transferring a byte of information. See Figure 5-4.
- WR This is the Write signal out of the MPU whenever data is output on the MPU data bus. The WR signal enables the LS139 address decoder to activate chip enable (CE) to the 9914, and the WR signal directly enables the Write enable signal to the 9914.
- D0-D7 This is the MPU data bus connected to the address register, 9914, LS243 transceiver to the 9056, and the LS240 switch receiver.
- RD This is the Read signal out of the MPU whenever data is input on the MPU data bus. It is connected to enable the LS139 address decoder to enable the 9914 chip enable or the LS240 switch receiver.
- TØ This is an input to the MPU from the 9056 BUSY signal to denote whenever the 9056 is processing a command.

5.4.2. MSC-9056 I/O Lines

The following list describes the functions of each Module I/O Line which was not previously described.

- D0-D7 This is the bidirectional data bus of the Module which is routed to the MPU bus via the LS243 transceiver and the disk interface via the LS245 transceiver.
- Ready This is a Ready signal out of the module to note whenever the module can transfer data on the data bus with other than the disk interface. See Figure 5-4.
- This is Load Data In signal out of the module to note when the module can input a byte on it's data bus from other than the disk interface. The LDI signal is combined with the RDY signal to enable the LS243 to drive the module data bus. The combined signal is used to generate the XFER signal which is routed to the MPU, the Strobe latch, and the DMA logic via the LS257 multiplexer. The Strobe latch gets reset whenever the LDI signal returns inactive (high), see Figure 5-4. The XFER signal, after being routed through the LS257 is used in conjunction with the Access Request (ACCRQ) of the 9914 to enable a sequencer to generate the Access Granted (ACCGR) function to the 9914. See Figure 5-5.
- DOUT This is the signal out of the Module to denote whenever the module is outputting a byte on its data bus. The DOUT signal is connected to the disk interface circuits via LS32 gates to generate control functions for the disk interface circuits. The DOUT signal is also combined with the RDY signal to generate the XFER signal which is routed to the MPU, the Strobe latch reset, and the DMA circuits. The XFER signal, during a DOUT function, is used in a sequencer to generate Access Granted and Write enable functions to the 9914. See Figure 5-5.

Figure 5-5 DMA Timing

DC0, - These two signals, out of the module, are encoded to define what information is on the module data bus and when a write address mark pulse is to be generated. The signals are decoded by an LS139 decoder, for the following functions:

State 0 - LS174 enable to store disk control functions.

Bit 0 - Head O select

I - Head I select

4 - Step control

5 - Direction control

7 - Reduce current control

State I - Latch Enable to store the drive select and AM Search functions. Note that in this application of the 9056 the drive select is always enabled. And bit 4 is the only bit latched for the AM Search enable function.

State 2 - Generates a Control signal to enable the input of disk status into the module.

Bit 0 - Track 00

I - Write Fault

2 - Seek Complete

3 - Ready

4 - Selected

State 3 - Generates a pulse which is routed to the data separator to generate an address mark.

This is the DC Valid signal out of the module to denote whenever there is a valid state on the DCO and DCI control signals. The DCV signal is used to enable the LS139 Decoder.

Index - This signal is routed into the module from the disk drive via a timing circuit to denote whenever the disk has reached the index point of it rotation. The timing circuit is required to insure an accurate reference point from the leading edge of index. See Figure 5-6.

AMD - This is the Address Mark detect signal into the module from the data separator PCB. The disk is formatted into fixed sectors by writing address marks to delineate the beginning of each sector.

PLO - This is the disk data clock input to the module coming from the data Clock

Separator, it is used to synchronize the Read or Write data.

TP74

Read - This is the NRZ Disk Read data input to the module coming from the data separator.

TP74 -46-

Figure 5-6 Index Timing

Write - This the NRZ Disk Write data out of the module going to the data separator.

Write - This the Disk Write enable signal out of the module going to the data Gate separator.

Read - This is the Disk Read Enable signal out of the module going to the Gate data separator.

5.5 MPU Firmware Description

The firmware in the 8048 MPU is structured into 2 major routines, a number of command execute routines and a number of common subroutines. A listing of the Firmware is provided in Appendix B.

5.5.1 Major Routines

<u>Power on Initialization</u> – This routine initializes the 9914, reads the controllers talk and listen address (both the same), clears the MPU RAM, determines the parallel poll bit (also obtained from the switches) and initializes various control signals.

Idle Routine - This routine waits for activity to be initialized from the host.

5.5.2 Command Execute Routines

These routines perform the unique functions required for each command.

5.5.3 Major Subroutines

Read GPIB Subroutine - This subroutine reads data bytes from the GPIB bus via the 9914.

<u>Write GPIB Subroutines</u> - This subroutine sends bytes to the GPIB bus via the 9914.

<u>Bump Address Subroutine</u> - This subroutine provides the mechanism to enable the 9305 to transfer multiple sectors, automatically changing the head and cylinder address.

<u>Write 9914 Register Subroutine</u> - This subroutine writes the control registers within the 9914.

Read 9914 Registers Subroutine - This subroutine reads the status registers out of the 9914.

<u>Command to Module Subroutine</u> - This subroutine performs the transmission of the command task bytes to the module.

maclib 280

```
多事事中在董事中的事事中的事事中的事事中的事事。
                                  GPIB CONTROLLER ROLLINES
                  sendirectionitypib
                           public
                  1 8291 registers
 #700 ·=
                  gotlai equ
                                    04700m
                                                       ) data in
 F700 =
                  gptido equ
                                    04700h
                                                       : data cut
                 gptico equ 017000
gptisi equ 01701h
gptimi equ 01701h
gptiis2 equ 01702h
gptim2 equ 01702h
gptisps equ 01703h
gptispm equ 01703h
gptiss equ 01704h
gptism equ 01704h
 F701 #
                                                      3 int status 1
 F701 ==
                                                      # int mask 1
F702 =
                                                     - 7 int status 2
 F702 ==
                                                     - f int mæsk 2
 FZ03 =
                                                     3 serial poll status
 F703 ==
                                                     🧦 serial poll mode
 FZ04 =
                                                     💰 address status
 F704 ==
                                                     f address mode
                  gptlen equ 01705h
gptlexm equ 01705h
gptlexm equ 01705h
gptla0 equ 01706h
gptla01 equ 01706h
gptla1 equ 01707h
gptleos equ 01707h
 FZ05 =
                                                     🤌 command pass thru
 FZ05 ==
                                                     ് കാധം സാവിക
 FZ06 =
                                                     3 address 0
 F706 =
                                                     i address 8/1
 F707 =
                                                     : addræss 1
 F7n7 :::
                                                      é (900 g)
                  1 8292 registers
 F708 ==
                  gpodata equ
                                    0f708h
                                                    7 Gata
 F709 ==
                  quese equ
                                    01709h
                                                      f control/status
                  2 option switches
 F710 ==
                  gpswi
                         ectu
                                    04710h
                                                     / switch L
 F711 =
                  дрвы2 еди
                                    0f711h
                                                     # switch 2
                                0f712h
0f713h
 F712 ==
                  дрям3 equ
                                                     🧘 switch 3
 F713 =
                  apio equ
                                                      # apport
                  ? "dma" address
 0066 ≈
                  തൃമത്തര കുന്ന
                                  0 \pm c n
                                                     - î one byte dma address
                  A loport bit significance
 0001 ==
                  icintb equ
                                    01h
                                                     - 0291 int
 0002 ==
                  ictrigh equ
                                   025
                                                      # trigger
                 ioteiñ equ
iospib equ
 0004 =
                                   0.4hb
                                                      9 8292 tei
 0008 ==
                                  08h
                                                     7 8292 spi
 0010 =
                 icobfib equ
                                   3.055
                                                     7 8292 obří
 0020 =
                  ioibfib equ
                                   20h
                                                     † 8292 ibfi
 0040 m
                  iodrego equ
                                  40m
                                                     3 8291 dreq
 9080 =
                  iowtto equ
                                    80h
                                                     3 wait time out
                  :8291 int 1 constants
```

```
0002 =
                                                     8 1000
                    bon
                               \Theta(\{i\})
                                          0.2n
0001 ==
                    100,00
                               @GU
                                          91h
                                                     # 10 i.
0010 =
                                                     à whoi intro
                    est iclinic.
                               \Theta(\{H_i\}
                                          10h
0080 =
                    cot
                               @GU.
                                          80h
                                                     ? cot.
                    ) gpib communcis
                    î
005F =
                    umb
                               \mathbb{C}(\mathbb{C}^{1})
                                          5475
                                                                $ smtalk
003F ==
                    unil
                               \mathcal{O}(0)
                                          3fh
                                                                ? Unlisten
9008 =
                    get.
                                          08h
                                                                ? group execute trigger
                               \bigoplus \bigcup \{i_{j}\}
0004 =
                    soc
                               @GU
                                          04h
                                                                device clear
0018 =
                    $30@
                               ଉପ୍ଲ
                                          18h
                                                                2 serial poll enable
0.039 =
                    spd
                               \Theta \cap \{i,j\}
                                          19h
                                                                # serial poll disable
0009 ==
                    tect.
                               \oplus \oplus \{i,i\}
                                          0.95
                                                                3 take control
                    : 8292 contri values
00A0 ==
                    indab
                                          0 = 0 \text{ n}
                               @GU.
                                                     9 thuri
                    ŝ
                    ? 8292 commands
00F0 =
                                          0 \pm 0 h
                    speni
                               equ
                                                                ? stop counter interrupts
00F1 ==
                    didl
                               \otimes \mathbb{Q} \cup
                                          0f1h
                                                                ; go to idle
00F2 ==
                    r sæt.
                               equ
                                          0f2h
                                                                ? reset
00F3 =
                    rsti
                                          0 f 3h
                               \bigoplus \bigcup \{1,i\}
                                                                ? reset ints
00F4 =
                                          0 f 4h
                    gsec
                               യമ്പ
                                                                # goto standby:count
00F5 =
                    expp
                               equ
                                          015h
                                                                ? execute pp
0066 =
                                                                : goto standby
                    ateb
                               ecu
                                          Offish.
00F7 =
                                                                % set local mode
                    sloc
                               \Theta G(U)
                                          017h
00F8 =
                    等许例的
                                          018h
                                                                2 set remote
                               @CfU
0069 ==
                                                                : abort
                    abort
                                          0 f 9 in
                               \oplus \in U
00FA ==
                    tentr
                               equ
                                          ris 10
                                                                1 take control (recieve control)
OUFC =
                    toesy
                               @¢ju.
                                          Ofah.
                                                                1 take control asymc
0.080 =
                    tesv
                               tage.
                                          0 f ch
                                                                : take control sync
00FE =
                    eroman.
                               \Theta \cap \Box
                                          0feh
                                                                ? start counter inta
                    % 8292 utility commands
                    ŝ
00E1 =
                    WKOUIT.
                                          0e1h
                               @CftJ:
                                                                ? Write to time out register
00E2 =
                                          0 \oplus 2 h
                               ectu
                    99.000
                                                                ? Write to event counter
0.083 ==
                                          0e3h
                    reve
                               \Theta \cap U
                                                                ? read event counter status
00個件 ==
                    rorf
                               @qu
                                          0e4h
                                                                i read error flag register
00E5 =
                    TO SHOW
                               equ
                                          0eSh
                                                                ? read int flag requster
00E6 ₩
                    TOST
                                          0esh
                               \mathfrak{Q}C[U
                                                                Fread controller status req
0.0EZ ==
                    rost
                               equ
                                          0eZh.
                                                                ? resd gpib bus status req
00世9 ==
                    rtout
                                          0e9h
                               @GU.
                                                                F read timeout status register
00EA ==
                    T^* \oplus T^* W
                               \{\{j\}\}_{j=1}^{n}
                                          Owah.
                                                                % read error mask reg
0008 =
                    i.ack.
                               (90)1.1
                                          9.00m
                                                                f int ack
                    4,
6-
                    * 8291 commands
0000 =
                    ipon9i
                               @⊈U-
                                          0
                                                                1 immediate por
0002 =
                    cr91
                               (\mathcal{A}_{i}^{\mathrm{T}})^{\mathrm{tot}}
                                          2
                                                                ? chip reset
```

```
6003 ==
                fh91
                        equ
                                3
                                                 / finish hard shake
0004 ==
                get91
                        \Theta \subset [0,1]
                                4
                                                 a gett
0006 m
                seci91
                        øqu.
                                Ć)
                                                 i send edi mext byte
0040 =
                Lore
                        eau
                                400
                                                 ? listen only mode
0080 =
                tann
                        equ.
                                80h
                                                 F talk only mode
                ? gpib intialise routine
                anitgpibt
0000 BEA0
                        m∀i.
                                agintab.
                                                 ; enable TCI on 8292
0002 0109F7
                        lxi
                                bacpose -
                                                 1 8292 command register
                        ourte:
00054ED79
                        DB:
                                0EDH+AXS+41H
0007 3E60
                        颗豆油.
                                a,060h
0009 0E06
                        mvá.
                                crlow(gptis01)
                        ourtp
                                                 ≬ disable major talker/listener
0008+ED79
                        DE:
                                OEDHVAX8+41H
000D 3EE0
                       m∨ú
                                a,0e0h
                       ourbo-
                                                i disable minor talker/listener
000F*ED79
                       DB
                                0EDH) 0×8+41H
0011 SE80
                       m∨i.
                                syttom
                                                % talk only mode
0013 0E04
                       押い値
                                orlow(dotlam)
                       gurup.
                                                ? set talk only mode
0015+ED79
                                OEDH:AX8+41H
                       DB.
0017 3E28
                       m∨i
                                a / 28h
                                                2 8Mhz clock
0019 0E05
                       m∨i
                                cylow(cotlaxm)
                       ourbo-
                                                ? set clack rate
001B4EDZ9
                       DB:
                                OEDHy AXS+41H
0010 AF
                       STa
001E 0E01
                       mv i
                                c/low(gptlm1)
                       ourtp
                                                ? oir all ints mask t
0020+EDZ9
                       DΒ
                                OEDH, AX8441H
0022 00
                       irer
                       ourto
                                                2 amd mask 2
00234EDZ9
                                HIP-RAKA HOUR
                       DB.
0025 0E05
                       my1
                               cylow(dotlessm)
                       outen.
                                                ? immediate execute pon
0027×ED79
                       DB
                               0EDH+4x8+41H
9929 3A0003
                       Lda
                               moti as
                                                ? celc mtsemla
0020 C620
                       adı
                               20h
002E 320D03
                       sta
                               miller
0031 Ca20
                       adi
                               20h
0033 320E03
                       sta
                               mtæ
0036 0009
                       mvi.
                               c:low(gpese)
                       ilmo.
0038+ED78
                       DB
                               08DH 9 A × 8 + 4 UFF
003A 87
                       01° 8
003B F2AD01
                       jp.
```

imitasmo

🧦 initialise as not controller

```
003E SEFF
                       myi
                               syOffh.
6640 321403
                       51.8
                               ctrlflg
                                             7 set c in c flag
0040 09
                       ret
               send routing
               send:
               ? send a data block addressed by HL of (8) byte long to listener
               : address (D). if E=0 use slow date rate else fast
0044 05
                       pusin
                               15
                                               % save BC
0045 3A0E03
                       1.6a
                               ncta
                                               ? my talk address
0048 CDDF01
                       cell
                               goibeon
                                               $ send dpib command
0048 ZA
                       600 \, \text{V}
                               ខែ១០
                                               # lister address
004C CDDF01
                       call.
                               goibeom
004F SEF6
                       m∨i.
                               argteb
                                               i 8292 goto standby
0051 CDEC01
                       call
                              com92
                                               $ send command to 8292
0054 Ci
                       goog
                               io.
                                              1 resore count
0055 05
                       der
                              - 15
                                              💰 last byte for eoi
0056 78
                       mov
                               89 69
0.057 62
                       or a
                       jr z:
                               send1
0.058+2800
                               2010 SEND1-$-1
                       DB
               : Use fast data rate
               send21
005A CDFA01
                       0311
                               iccortr
                                               # read ioport(and reset to)
905D E640
                               i.odregb
                       emi.
                                               ; test greg
                       JYW.
                               send2
                                               ; wait for Greq
0.05F+28F9
                       DB
                               28H,8EMDZ-$-1
0061 0EF6
                       10 V 3.
                              Crypthia:
                                               * "dme" address
                       outir
                                               ? output data
0063*EDEG
                       DB
                              DEDH / DESH
                       jr.
                              send3
                                               ? output eoi
0045+180D
                      DB.
                              18H, SEND3-4-1
              serail:
               î use slow data rate
0067 CDFA01
                      call
                              soportr
                                               ) read in port
086A E649
                              a cocin weglo
                      SPUL
                                               ? test dreg
                      jrw.
                              sendi.
0060+2809
                      DB:
                              28H/SEND1-4-1
006E 0EF6
                      mvi.
                              crgpdma
                      ourtai.
                                              3 output byte
0.070 velbasi
                      DB
                              0EDH+0A3H
                      JOTEK.
                              sendi
0072*20F3
                      0B
                              20H#SEND1-4-1
```

send3:

```
? check io status and send edi
0074 CDFA61
                       call
                               iopertr
00ZZ E680
                       arti.
                                iowtto
0079 SF
                       mosz
                                (i) y (i)
                                                ? save time out status
               send4:
007A CDFA01
                       call
                               ioportr
0070 8640
                       ærti.
                               iodredb
                       j٣
                               #end4
                                                F west till lest byte sent
0078*1869
                               18H, SENDA-$-1
                       DB:
0081 3E06
                       m⊋i
                               B9800191
                                                } send edi next byte
0083 CS
                       push
                               'n
0.084 0.105FZ
                       1 \times 1
                               begptlexm.
                       ourbo
                                                & ouput command
0087*ED79
                       ÐÐ.
                               UEDH, AX8+41H
0089 CI
                       pape
008A 0EF6
                       m∨ŭ.
                               crgpoma
                       outti
                                               % send last byte
008C+EDA3
                       DB
                               UEDH # 0A3H
008E BEFD
                       mvi.
                               aytesy:
                                               : take control symmeonously
0090 CDEC01
                       call
                               com92
0093 CD0602
                       call
                               waitt
                                               ) wait for task complete
0096 SESF
                       movú.
                               องเทาไ
                                               : Unlisten command
0098 CDDF01
                       call
                               quibeom
009B 7B
                       RiO V
                               890
0090 09
                       ret
               ý
               多重重要非常重要要要的工作。
                    recieve routine
               rocvi
               ; recieve data block from GPIB. Address of block is in Hi
               ? Length is in 8 and address of talker is in D.
               ; If E=0 then use slow data rate else fast.
009D C5
                       pursh
                              <u>()</u>
                                               i save court
009E ZA
                       mosz.
                               ទេ១ជា
009F CDDF01
                       call
                               anibeom.
                                               // talker address
00A2 3A0D03
                       Il cias
                               m 1.83
                                               ? my lister address
00A5 CDDF01
                       call
                               quabeem
00A8 3E40
                       m∨i,
                               as Lon-
                                               % Listen only
00AA 0104F2
                       1 \times i
                               bygotlam
                       ourbo
                                               ? set listen only
00AD+FD79
                       0.63
                               OEIMHAX8+41H
00AF AF
                       医管部
00B0 0E05
                       mV i.
                               cylow(gotlasm)
                       outo
                                               ? immediate por
0082+EDZ9
                       DB:
                               0EDH, Ax8+41H
0084 SEE6
```

m∨i

a rijtsb

∮ goto standby

```
0086 CDEC01
                        call
                                com92
0089 CD0602
                        osil.
                                waatt
                                                 % wait task complete
00BC C1
                                25
                        gog
                                                 ? restore count
0.0BD 7B
                        VO<sub>M</sub>
                                3 2 60
0.0BE, 62
                        Ora
                        jrw.
                                recyl.
00BF+280D
                        DB:
                                28H#RECV1-4-1
                ? Use fast data rate
               recyzt
00C1 CDFA01
                        c as 1.1.
                                iopertr
                                                 ? read io port
0004 6640
                        and.
                                indreqb
                                                 ? test dred
                        jrz
                                r \oplus c \vee \mathbb{Z}
00C6+28F9
                        DG
                                28日東欧色のサビーキー1
                Ą
00CS 0EFA
                        m∨4.
                                cydpdma
                                                 i "dma" address
                        irar
                                                 : imput block
00CA+EDB2
                        DB
                                OEDH, ODZH
                                recv3
                        jπ
00CC+180D
                        DB
                                18H, RECV3-4-1
               \frac{\Delta}{C}
               recvit
                ? Use slow data rate
00CE CDFA01
                        call
                                ioportr
                                                 i read i/o port
00D1 E640
                                iodrego
                        aria.
                                                 ? test dreg
                        Jrz.
                                recvi
0.0D3+28E9
                        DE
                                20H, RECV1-$-1
               į,
0005 0EF6
                        m∀i.
                                cycoma:
                        iri.
                                                 ? input one byte
0007+EDA2
                        DB.
                                OEDH + OAZH
                        Jrosz.
                                recv1
00D9+20F3
                                20H*RECV1-$-1
                        DB
               recy3:
00DB CDFA01
                        call.
                                ioportr
000E E680
                        arci.
                                iowtto
                                                 ) check to status
00E0 5F
                        VOiii
                                @ v &
                                                 ? save it
               ş
OOE1 BEFD
                                artesy
                       m∨i.
                                                 1 take control sync
00E3 CDECOI
                                com92
                       call
00E6 CD0602
                       osl1
                                waitt
                                                 7 wait task complete
00E9 3E80
                       mvi.
                                aston
00EB 0104F7
                        l×i
                                by gotham.
                       outp
                                                 ? set talk only mode
00EE*ED79
                       DB:
                                OCOH+A×8+41H
OOFO BESF
                       m \lor 3.
                                a cont
                                                 % untslk command
00F2 CDDF01
                       call
                                gpibcom
00F5 78
                       mov
                                (3) g (9)
                                                 : get io status
00F6 C9
                       ret
               ŝ
                       get control of GFIB
```

```
GETCIRL:
                  : this routine aquires control of GPIB if needed
00F7 AF
                           sma
00F0 321703
                           sta
                                    freefig
                                                       a set busy
00FB 3A1A03
                           Lda
                                    ctrlflq
                                                       ? check if already c in c
00FE 87
                           one
00FF 00
                           MINK
                                                      # sleesdy in control
                  ? enable pp
0100 BE09
                           m∨i.
                                    8 y 911
                                                       ? parallel poll enable
0102 010562
                           124
                                    begotlaxm.
                                                      : aux mode register
                           ourtine.
0105*ED29
                           DB
                                    HIP-BX8-4III
                  ? now assert SRQ
0107 0103F7
                           Joseph .
                                    brgptlspm.
                                                      ? serial polt mode
01.0A 3E40
                           mvi.
                                    ay 40h
                                                      f rsv bit
                           out p
010C+ED79
                           DD:
                                    OEDHyAX344113
                 ! now wait for take control message
                 geto21
010E 0E01
                          确又注
                                    cylow(gptlist) -
                                                      3 inct 1
                 getol:
                          ing
0110*ED78
                          DB.
                                    0EI0回+A#8+40回
0112 E380
                          ani
                                    cot.
                                                      ? wait for opt
                           jrx
                                    getci
0114+28FA
                          DE:
                                    28H, GETC1-$-1
0116 0E05
                          mvi
                                    cylow(gotlest)
                          á rupi
                                                      * get command
0118*ED78
                          DE
                                    OEDHy AX8+40H
011A FE09
                          opi.
                                    tet
                                                      : check if take control command
                          jrne
                                   deta3
                                                      ; acknowledge and try again
0110+2036
                          DB
                                   20H#GETC3-$-1
011E 0E04
                          0aV±
                                   cylow(qutlas)
                                                      / address status
                          iras
0120±ED78
                          DB:
                                   0EDH)AX8+40H
0122 E602
                          arai.
                                                      ? check if addressed
                                   02h
                          1102
                                   dete3
                                                      ) not my address
0124+282E
                          EMB!
                                   28H, GETC3-$-1
                 ÷
0126 0E03
                          myd.
                                   c.low(gptlspm)
0128 AF
                          ST &
                                   63
                          ourto
                                                      ? reset SRO
0129 FED29
                          DB.
                                   0EDHyAX8平45日
0128 3680
                          m∨i.
                                   ær60h
012D 0E08
                          mvi.
                                   cylow(dotha01)
                                                     f disable talker listener
                          ourbo
012F+ED79
                          DB:
                                   0E0H+A*8+41H
0131 3ES0
                                   ayton
                          m \vee \pi
0133 0E04
                          mvá.
                                   cylow(gptlam)
                          ourbp
                                                      ? set ton mode
0195*EDZ9
                          \mathbb{D}\mathbb{B}
                                   OEDH « AX84-41H
0137 AF
                          海面部
0138 0E01
                          mvi.
                                   cylow(gptlisi)
```

Qurbip.

```
013A+ED79
                       DB
                               0EDHy AXB MAIH
0130 00
                       3.4740
                       outo
                                               ? clear both int masks
0130+ED79
                               OEDH/AX9+41H
                       DB:
013F 0E05
                       lïe∀ å.
                               cylow(qotlaxm)
                       ourto
0141*EDZ9
                       DB
                               OEDHyAX8*41H
0143 3EFA
                       mvi.
                               aytentr.
0145 CDEC01
                       call
                               com 92
                                               % take control
0148 3507
                       myń.
                               ay Offh
                                               : reset holdoff on opt command
014A 0E05
                       mvá.
                               czlow(gptlaxm)
                       ourto.
014C+EDZ9
                       DE
                               OEDH: AX8+41H
014E SEFF
                       m⊎√i.
                               ay Offh
0150 321403
                               ctrifig
                       sta
                                               f set c in c flag
0153 09
                       ret
               geto3:
0154 0605
                       mvi.
                               cylow(gotlasm)
0156 3E0F
                       ľŭ∨ā.
                               as Offia
                                               i reset holdorf
                       curup.
0158*EDZ9
                       DB:
                               OEDH) AXB+41H
                               gote2
                       j٣
                                               ? try sgain
015A+18B2
                       DB.
                               18H, GETC2-$-1
               ? pass control to another terminal if requested
               passetri:
               ? this routine is called from the real time clock interrupt
               ; EI and RETI have already been executed
015C 3A1A03
                       lda
                               ctrlfla
015F BZ
                      ors
0160 C8
                      TO IX
                                               % i dont have control anyway
0161 3A1903
                      Lda
                               freeflo
0164 BZ
                      07^{\circ}3
0145 00
                      PENZ
                                               ? im not free to do this
                check SRQ
0166 05
                      push
                              Ð.
0167 0109F7
                      1 \times 1
                              Droppese
                                               7 8292 status
                      imo
016A+ED78
                      DB
                              0EDH+Ax8+40H
016C E620
                      ans.
                              200n
                                               * check SRU bit
0160 01
                      (grace)
                              io
016F 08
                      72.22
                                              9 SRQ not set - return
              : SRQ set - who was it?
```

```
? first clear SRQ int
03.20 CS
                           與US首
                                    Ö
0171 F608
                          OTE
                                    tion
0173 CDEC01
                          call
                                    сон92
                                                      # IACKI
                  Finitiate paralet poll
0176 3840
                          mvi.
                                    avion
0178 0104F7
                          l×i.
                                    begotlam
                          ourtg
                                                      ? set listen only
01784EDZ9
                          DB
                                    OEDH) AX8 441H
017D AF
                          er a
017E 0E05
                          m∨i
                                    colow(gotlesm)
                          ourts:
                                                      ? reset ton
0180*ED79
                          DB:
                                    OEDH) AXB+41H
0182 SEF5
                          m \vee 3.
                                   arexpo
0184 CDEC01
                          call
                                   com92
                                                      ) execute pp
0187 3680
                          m∨i.
                                   aytor.
0189 0E04
                          mvi.
                                   c.low(qutlam)
                          outp
                                                      ; set ton
018B+EDZ9
                          DE
                                   OEDHyAx8+41H
0180 AF
                          KTB
018E 0E05
                          mvá.
                                   cylow(aptlaxm)
                          ourbp.
                                                      ? reset lon
0190+ED79
                          DB
                                   OEDHyAX8441F
0192 0E00
                          m∨±.
                                   c:low(gptldi)
                          i mo
                                                      ? input op response byte
0194+ED48
                          DB.
                                   0EDHyCx8+40H
0196 AF
                          冠军 數
                 pof2:
                          STET
0197+0B29
                          DB.
                                   OCEH, 28H+C
                          jro
                                   ppoff L
019943803
                          DB.
                                   38H, PPF1-4-1
0198 30
                          i.rm
                                                      ? this bit calculate device addres
                          jπ
                                   ppf2
                                                      ; of responding terminal
0190*18F9
                          DB.
                                   18H*PPF2-$-1
                 ppf1:
019E C640
                          sdi.
                                   40h
                                                     % calc talker address
01A0 CDDF01
                          call
                                   gaibeam
                                                     7 send on GPIR
01A3 3E09
                          m∨i
                                   aytet
                                                     î take control message
01A5 CEOFG
                          call
                                   goibeem.
                                                     * swnd on GPTB
                 å
                 ź
01A8 CDAD01
                          call.
                                   inutasno.
                                                     * initialise as not controller
01AB C1
                          gog
01AC 09
                          ret
                 ĝ
                 initasne:
                 ? initialise as not controller routine
01AD 3E01
                          ₩V.
                                   are I
01AF 0104F7
                          1 \times i
                                   bygotlam.
                          CHILD
01B2+ED79
                          Dis
                                   0EDHyAX8+A114
```

```
% not talker only or nor listener only
OIBA AF
                        \mathcal{M}_{\mathcal{M}} \otimes \mathcal{M}
                                60
01B5 0E05
                        mrvij,
                                Cylow(gptlaxm)
                        outtyp
                                                 ? limegaste por
0187+ED79
                        DB.
                                OEDH&AX8**1H
0189 321A03
                        sta
                                otrifla
                                                 a c in flag clear
0180 3A0003
                        Lda
                                neda:
                                                 ? my device address
018F 0E06
                       m∨i.
                                colow(aptle811)
                       outp
                                                 i my address enabled
01C14EDZ9
                       DB
                                OEDHy AX8+51H
0103 SEA1
                       m V 1
                                s•Oalh
                                                 ? opt enabled
01CS 0E05
                                cylow(gptlaxm)
                       10 \times 3
                        ourtgo
01CZ+ED29
                        DB:
                                0EDHyAx8+41H
0109 SA0003
                        1.de
                                mda
0100 F661
                        or i
                                61h
                                                I form op enable command
                        gurtige.
01CE+ED79
                       DB
                                OEDHyAX8平台1日
                pp enabled
01D0 3EF1
                       mezi.
                                argidl.
                                                3 92 go to idle
01D2 CDEC01
                       call
                                com92
0105 CD0602
                       call
                                waitt
                                                ? Wait for tot true
01D8 C9
                       ret
               freequip:
               ? simply set free flad
01D9 3EFF
                       m∨i.
                                sy Offh
01DB 321903
                                freeflg
                       sta
01DE C9
                       ret
               ŝ
               ý
               utility routines
               多事情中非常非非非常事情中的。
               qpibeom:
               ; send command over gpib
01DF 010067
                       1×i
                               bygptlde.
                       ourto
                                                ? output command
色紅色を振り置め
                       OEEDH y AX8+411-1
01.84 00
                       Line
               geomit:
                       ing
                                                % get int 1 status
01E5*ED78
                       DB
                               0EDH+Ax8+40H
01EZ E602
                       Brd.
                               bom
                       Jrz.
                               Geomit.
                                                ? wait for completion
01E9+28FA
                       Db
                               28HyGCOM1-$-1
01EB 02
                       ræt.
               ě
               2
```

```
2
               @0m6923
               send command to 8292
01EC 0109F7
                       loci.
                              оидровы
                                              # 8292 control register
                       ourt.o
01EF*ED79
                       71
                              BEDH / AX8 + 41H
01F1 0E13
                       商豆主
                              Calow(gpao)
               com921:
                       ino
01F3*ED78
                      DB
                              OLDHYAX8+40H
01F5 E604
                      ani
                              iotemb.
                                              2 tei bit
                       jrrez
                              com921
                                              ? wait for toi false
01F7+20FA
                      DB
                              20HaCOM921-4-1
0159 09
                      ret
               è
               ř
               ioportr:
               ? read ioport and reset time out status
01FA C5
                      push
                              £3
01FB 0113F7
                      loci.
                              begpio
                      1.mg
01FE+ED78
                      DB
                              GEDHy AX9+40H
0200 OE10
                      mvi.
                              c:low(gpsw1)
                      ing
                                              ? reset time out status
0202+ED48
                      DB.
                              OEDHy CX8+40H
0204 Ci
                      pop
0205 C9
                      ret
              weitti
              ? wait for 8292 task complete
0206 0113F7
                      1 > 1
                              propio
              waittl:
                      il nga
0209+ED28
                      DB.
                              0EDH•AX8÷40H
020B E604
                      ert.
                              koteib.
                      jrz
                              waitti
0200+28FA
                      OB:
                              28H, WAITT1-4-1
020F C9
                      ret
              i hard disk controller routines
              RDSJ8:
              ? resd device specified jump byte from drave (A).
0210 C&40
                      aci i.
                             40m
                                             ; form talker sddress
0212 57
                      \text{Im} \odot \nabla
                             ពី១៩
```

```
rdsji:
0213 0601
                         m⊬i.
                                                    ? One byte message
                                  1500
0215 210F03
                                  hystatblk
                         loci.
0218 1800
                         m∀j
                                  65 y Ü
                                                    ? slow data rate
021A CD9D00
                         csll
                                  recv
0210 3A0F03
                                  statbik
                         Lda
0220 09
                         ret
                 ž
                 COMSEN:
                 ? send command to drive (A) \sim command in C.
0221 F5
                         push
                                  DSW
0222 0620
                         acti.
                                  20h
                                                    7 form Listen address
0224 52
                                  G#8
                         mov
0225 79
                         BOV.
                                  88 9 C
                                                    # command
0226 320F03
                         sts
                                  statblk
0229 0602
                         m∨3.
                                                    ? two byte message
                                  b_2 2
022B 210F03
                         1 \times 1
                                  hestatblk.
022E 1E00
                         m∨i.
                                  @ y ()
                                                    ? use slow data rate
0236 CD4400
                         call
                                  send
0233 F1
                                  ព្រម្មាធ
                         QQQQ
0234 0640
                                  得制许
                         adi
0236 57
                         BiO5V
                                  ប់ខេន
                                                    ? leave talker address in D
023Z DE40
                                  40h
                         5001
                                                    ; leave device address in A
0239 09
                         ret.
                 ř
                REDSTAT:
                1 request status from device (A)
023A 0E03
                         m∨i.
                                  ce g 3
                                                    2 request status command
0230 OD2102
                         call
                                  comsen
                                                    7 send command
023F 0604
                         nivă.
                                  b # 4
                                                    # 4 byte reply
0241 210F03
                         Leci
                                  hystatblk
0244 1E00
                         面牙主
                                  ⊕ 2 0
                                                    ? slow data rate
0246 CD9D00
                         call
                                recy
                                                    ? recieve reply
0249 210F03
                         lxi
                                  hystatblk
                                                    & point to reply block
0240 09
                         ret
                ŝ
                é
                INITST:
                initiate self test on disk (A)
024D 0E1B
                         #1∨3.
                                  my 1 bm
                                                    : selftest command
924F CD2102
                         心事让某
                                  comsen
0252 0E1C
                         nvi.
                                  cyloh
                                                    f read result byte command
0254 CD2102
                         call
                                  COMSIGN
0257 210F03
                         1.×a.
                                  hystatbik.
025A 1E00
                         18 W L
                                  eag ()
                                                   ? slow data rate
0250 0601
                         fitMD.
                                 15 x 11
                                                   ) one byte reply
02SE CD9D00
                         call.
                                recv
0261 3A0F03
                         lda
                                 statblk
0264 09
                         ret
                ï
                ŝ
```

```
4.
                ADDREC:
                ) address - record on arive (A) - address info in (ML)
0265 ES
                        រួមបន្ទាំង
                                h
0266 0E0C
                         m∨i.
                                 c⊁0ch
                                                  3 address record command
                        call
0268 CD2102
                                 consen
0268 E1
                       pop
                               'n
                               20b
d•a
b•4
e•0
026C C620
                        adi
026E 57
                       MoV
026F 0604
                       m∨i
                                                 * 4 more bytes to send
0271 1500
                       m⇔i.
                                                 9 slow data rate
0273 CD4400
                        call
                                 sseemed)
0276 C9
                        直 65 化
                #CDAOD:
                ? read address record in (ML) from drive (A)
0277 E5
                        push h
0278 0E14
                               (2 y 1, 4}}}
                        mvi.
                                                  - 7 resd address command
027A CD2102
                        call
                               comesen
027D E1
                               ಗ
ರಾಹ
                        рюр
027E 0606
                       m∨i
                                                # 6 bytes to recieve
0280 1E00
                       m∨i.
                               69 g ()
                                                 📑 use slow data rate
0282 CD9D00
                       call
                                recv
0285 09
                        ret
                å
                ŝ
                ? resd 1 physical sector into (HL) from drive (A)
                ; zero flag set on return if no time out error
9286 E5
                        ប្រយទ្ធក
                                 'n
0287 0E05
                        m∨i
                                 0,5
                                                  i resd command
0289 002102
                        call
                                 consen
028C CDA202
                        call
                                990196C
                                                 🦪 set one sector read
                ; talk address left in D
028F E1
                        gog
                                ከ
0220 1EFF
                                 @yOffh
                        m∨i
                                                ? Use fast data rate
0292 05
                        ប្រមានកា
                                ci
0293 0600
                        m∨i.
                                by O
0295 CD9D00
                        call
                               mecy
                                                 - ? get first 256 bytes
0298 Dt
                        pop
                                C_{\bullet}^{\bullet}
0299 87
                        OFE
                                83
029A CO
                        T^* \Gamma^* \cap \Sigma
0298 0400
                       mvi by0
call recv
029D CD9D00
                                               % next 256 bytes
02A0 BZ
                       ora
                               <del>23</del>
02A1 09
                        rest
```

```
SENSEC:
                ? send sector count
02A2 210100
                        Aben.
                                 my 1
02A5 220F03
                         shld
                                 statbik
02A8 0302
                        m∨i
                                 D & C
                                                  ) two byte sector count
02AA 1E00
                                 (2 y ()
                        mvi.
02AC 0620
                                 200n
                        adí
02AE 57
                        mov dys
call send
02AF CD4400
0282 09
                        ret
                ř
                METTE:
                # write 1 physical sector from (HL) to drive (A)
                Fixero flag set if no time out error
0283 85
                        push h
0284 0E08
                        movii.
                                 C 2 (3)%
                                                  : write command
0286 CD2102
                        call
                                 comsen
0289 CDA202
                        call
                                 sensec
                                                 f send byte count of 1
                writell
02EC 0620
                                 20h
                        adi
                                               ) calc listen address
02BE 57
                        物のジ
                                Civ a
0.2BF E1
                                l'a
                        gog
02C0 1EFF
                                 @yOffh
                        m∨i
                                                 - ) use fast data rate
0202 05
                        push
                                 Ci.
02C3 0600
                        m∨i.
                                0 \cdot e \in
02C5 CD4400
                        call
                                send
                                                3 send first 256 bytes
02C8 D1
                        \wp(o)o
                                Çî
0209 BZ
                        ora
02CA C0
                        TTEE.
02CB 0600
                       m∨á.
                                b \neq 0
02CD CD4400
                        call
                                semet
                                                  % send last 256 bytes
02D0 BZ
                        ore
                                 22
0201 09
                        ret
               FORMAT:
                ? format one track
02D2 0E18
                       myi cyteh
                                                 - } format command
0204 CD2102
                        cell
                                comsen
0207 CDA202
                        csll
                               semmed
                                                  * send track count of i
02DA 09
                        ret
                ž
               VERIFY:
                ? verify one sector
02D8 0E07
                        m∨i
                                -0.27
                                                 - : write command
02DD CD2102
                        call
                                comsen
02E0 CDA202
                        call
                                sensec
                                                 # send sector count of 1
02E3 C9
                        ret
```

```
Ŷ
               WETALT:
               %write alternate sector - same parameters as write
02E4 E5
                      ទូមនាក
02E5 0E1A
                      ms/2.3.
                              cylah
                                             ; write alternate command
02EZ CD2102
                      call
                              comsen
                      .im
                              write1
02EA+18D0
                      1043
                              18H. WRITE1-4-1
               ÷
               SETINT:
               ; set interleave (PML) points to interleave pattern.
02EC E5
                      លប់នៅ។
                            'n
02ED 0E19
                      iii∨1.
                              0719h
                                             # set interleave command
02EF CD2102
                      call
                              comsen
02F2 C620
                      3611
                              20h
0264 52
                      mov
                              ៨១៦
02F5 E1
                      pop
                            h
02F6 0610
                            5 2 1.6
                      ₩Vi
                                             I sixteen bytes to send
02F9 1E00
                             \Theta(s, t)
                      m∨i
02FA CD4400
                      call -
                            send
02FD 69
                      ret
              LOOPEACK:
              } send byte D to drive (A)
              f complement and return in A
OZFE GEND
                      iii∀£.
                             c*1cin
                                             : loopback command
0300 F5
                      push
                             DSW
0301 ZA
                      m \odot \nabla
                             8 # Ci
0302 321003
                      site
                             statblk+1
0305 F1
                      0000
                             DSW
0306 CD2102
                      call
                             COMSON
0309 031302
                      jmp
                             rdsj1
              data section
              0300
              មាជនៈ៖
                     dia.
                             Ť
0300
              mla:
                     Cisi
                             ĬŁ.
030E
              mtai
                     riss.
                             1
930F
              statolki ds
                             1.0
0319
              freeflg: ds
                             1.
031A
              etrific: ds
                             1
0318
                     end
```

