PA-800515
Issue 2, July 1978
AT&T Co Provisional

gy VIAC-S

1A MICROPROCESSOR
TRAINING AID

MAC TUTOR
REFERENCE MANUAL

@ Bell Laboratories

NOTICE

Not for use or disclosure outside the Bell
System except under written agreement.

Prepared and published for the
Microprocessor Systems Development Department
by the
Technical Documentation Department
Bell Laborgtories

Printed in U.S. A.

| SSUE NUMBER AND DATE

CONTENTS PAGE | 21
numger | 412
Tl
PAGE INDEX LS N
Y ERE
23 |12
sh |1 12
a5 |1 |2
46 Blhenk
TITLE PAGE, FRONT - 12
TITLE PAGE, REAR - 1]
FOREWORD, FROKT - - |2
FOREWORD, REAR - Blhnk

CONTENTS i H
i1 1|2

CHAPTER 1 TITLE PAGE

FRONT - A
REAR - Blhnk

THE CONTENT OF THIS MATERIAL IS PROPRIETARY AND CONSTITUTES A TRADE SECRET.
IT IS FURNISHED PURSUANT TO WRITTEN AGREEMENTS OR INSTRUCTIONS LIMITING THE

EXTENT OF DISCLOSURE.

ITS FURTHER DISCLOSURE IR ANY FORM WITHOUT THE WRITTEN

PERMESSION OF I TS OWNER, BELL LABORATORIES, INCORPORATED, 3 PROHIBITED.

PAGE INDEX NOTES

SUPPORTING INFORMATION

I. WHEN CHANGES ARE MADE IN THIS
DOCUMENT, ONLY THOSE PAGES AFFECTED
WILL BE REISSUED.

2. THIS PAGE INDEX WILL 8E REISSUED
+ AND BROUGHY UP TO DATE EACH TIME ANY
PAGE OF THE DOCUMENT S REISSUED, OR
4 NEW PAGE §5 ADDED.

3. THE ISSUE NUMBER ASSIGWNED TO A
CHANGED QR NEW PAGE WILL BE THE SAME
| SSUE WUMBER AS THAT OF THE PAGE
INDEX.

4, PAGES THAT ARE NOT CHANGED WiLL
RETAEN THEIR EXISTING 1SSUE NUMBER.

§, THE LAST |3SUE WYMBER OF THE PAGE
INDEX IS RECOGNEZED AS THE LATEST
1SSUE MUMBER GF THE DOCUMEMT AS A
WHOLE.

@ Bell Laboratories

CATEGORY NUMBER
Al&T vo.
MAC TUTOR Provisicnal
REFERENCZ MANUAL PA_800515-61

PAGE [SSUE NUMBER
CONTENTS HUMEER T,
1. SYSTEM OVERVIEW 1-1 112
1-2 1 [2
1-3 112
1-4 Blink
1-5 1l |2
1-6 Blank
1-7 1]2
1-8 Blank
1-9 112
1-10 Blank
CHAPTER 2 TITLE PAGE
FRONT - L |-
REVERSE - Blpank
2. MAC-TUTOR HARDWARE 2=1 1|2
2=2 1 |2
2-3 1 2
24 I
2-5 1 |2
2-6 Blank
2=-7 1|2
2=-8 Blgnk
2-9 1]-
2=10 Blank
2-11 112
2-12 1 }2
2-13 112
2-14 112
2-15 1|2
2-16 1|2
2-17 12
2-18 1|2
2=-19 1]2
2-20 Blgnk

@ Bell Laboratories

MAC-8

ISSUE

PA-800515
-A2

CONTENTS Nﬂﬁggg - [SSUE NUMBER_
CHAPTER 3 1'I''LE PAGE
FRONT - 1
REVERSE - Blank
3. MAC-8 ARCHITECTURE 3-1 112
3-2 142
3-3 i12
3-4 142
3-5 1]z
3-6 1|2
CHAPTER 4 TITLE PAGE
FRONT - 1 -
REVERSE - Blank
4, MAC-TUTOR SOFTWARE -1 1|2
h-2 1|2
4-3 1|2
44 142
Y- 1 |2
h-6 1|2
-7 112
L-8 12
h-g 1 |2
h-10 |1 |2
h-11 |1 |2
h-12 |1 |2
H-13 R
h-14 1 |2
h-15 |1 j2
1-16 1 |2
CHAPTER 5 TITLE PAGE
FRONT - 1 |-
REVERSE - 31gnk
@ Bell Laboratories MAC-8 > o

PA | SSUE NUMBER
CONTENTS el —
5. SOFTWARE 51 124 2
5-2 142
5-3 112
54 1|2
5-5 1]z
5-6 1|2
APPENDIX TITLE PAGE
FRONT - |2
REAR - Bllank
APPENDIX, RESIDENT A-1 -2
EXECUTIVE SOPTWARE A-2 -1 2
A-3 -2
Al -t
A-5 -1 2
A-6 -1 2
A=T -1 2
A-8 -2
A-9 -1 2
A-10 - 2
A-11 -T2
A-12 -1 2
A-13 -1 2
A-14 Y
A-15 -1 2
A-16 -1 2
A-17 -1 2
A-18 -1 2
A-19 I
A-20 -T2
A-21 1772
A-22 -1 2
A-23 -t
a—2h | -1 2
: A-25 o
i ISSUE _8005
@Bell Laboratories MAC_S . ﬁiuaoo,m

CONTENTS

PAGE
NUMBER

| SSUE NUMBER

BTV T T LTI T AF 1

AFPENDIX, Corntl.

A -~
A=Z0

A-27

A-28

A-29

A-30

£-31

A-32

A-33

A-34

|
Pt [froro [ns o

@ Bell Laboratories

MAC-8

iSSUE

FA-8005”15
-A5

PA-800515 Issue 2, July 1979

FOREWORD

MAC-Tutor has been coded by the Weslern Electric Company as the No. 1A Microprocessor
Training Aid (component code 103180717), but will be catled MAC-Tutor throughout this
manual.

e

he following manuals are shipped with the No. 1A Microprocessor Training Aid:

PA-800515 MAC-TUTOR REFERENCE MANUAL
PA-800516 MAC-TUTOR SELF-TRAINING MANUAL
PA-800517 MAC-8 HEXADECIMAL CODING CHART

For questions or comments concerning MAC-Tutor usage, repairs, documentation, and/er to
be placed on distribution for future documentation updates, dial the MAC-Phone on CORNET
233, extension MAC8 (6228).

PA-800515
Issue 2, July 1979

1.

MAC TUTOR REFERENCE MANUAL

CONTENTS

SYSTEM OVERVIEW

1.1 Introduction

1.2 System Features .

MAC TUTOR HARDWARE .

2.1 Functional Description

2.2 Electrical Characteristics .
2.2.1 MAC-8 Microprocessor and Reset Circuitry (See Figure 2-2.)
2.2.2 ROM and RAM (See Figure 2-3.)
2.2.3 1/0 (See Figure 2-4.) .
2.2.4 Keypad (See Figure 2-5.)
2.2.5 PROM Programmer {See Figure 2-6.)
2.2.6 TTY Terminal and Data Set Interface (See Figure 2-7.)
2.2.7 Cassette Tape Interface (See Figure 3-8}
2.2.8 Power Supply Circuitry (See Figure 2-9.)
2.2.9 Timing .

MAC-8 ARCHITECTURE .

3.1 General Registers

3.2 Register Pointer .

3.3 Pushdown Stack .

3.4 Addressing Modes

3.5 Conditions

3.6 Interrupts .

3.7 Traps

3.8 Reset

MAC TUTOR SOFTWARE

4.1 Functional Description

4.2 Operation
4.2.1 Keypad/Display .
4.2.2 Keypad Button Control
4.2.3 TTY Control .
4.2.4 System Utilities .,

4.3 Programming .

Contents

1-1
1-t
1-1
2-1

2-1
2-2
2-2
2-7
2-11
2-12
2-12
2-15
2-16
2-17

3-4
3-4
3-5
3.5
4-1
4-1
4-1
4-1
4-1
4.7
4-11
4-11

PA-B0O0515

Contents 1ssue 2, July 1979
4.4 Available Programs < 0 e e e e e e 412
441 Move Memory - *022F« .+ o« e v e e - e . 412
442 WriteaPROM -*0541 + + + « v o v « + = - . 412
443 VerifyaPROM -*057TB+ « « « & « « « + + + + 413
4.4.4 Dump to Audio Tape - *06C6 « « .+ « . 413
4.4.5 Read from Audio Tape- "05EE 414
4.5 Testingand Diagnosing + « « 4 + + + o« 4 40 o . 416
5. GLOSSARY . . . & v v v v e e e e e e e e e e 54
APPENDIX

Resident Executive Program

-ij -

System Overview
P A-800515
{ssue 2, July 1979

Chapter 1

SYSTEM OVERVIEW

PA-800515 System Overview
Issue 2, July 1979

1. SYSTEM OVERVIEW

1.1 Introduction

The MAC Tutor is a low cost, self-contained, microprocessor-based system developed to famil-
iarize users with microprocessor basics and, in particular, with MAC-8 microprocessor opera-
tion.

1.2 System Features

The MAC Tutor contains an on-board keypad and an 8-digit display whereby MAC-8 programs
can be entered, executed, and debugged. In addition, the necessary interface is available for
various peripheral equipment, such as a teletypewriter (TTY) terminal, a time-sharing com-
puter, or a cassette tape recorder. Figure 1-1 shows the MAC Tutor sections.

MAC Tutor features inciude:
¢ MAC-8 microprocessor
o 2K bytes of random-access memory (RAM)
e 2K read-only memory (ROM) executive program to control hardware features
e Sockets for three 1K-byte programmable read-only memories (PROMs)
¢ Eight 7-segment light-emitting diode (LED) displays
e 28-buiton, calculator-type keypad

o PROM programming socket capable of creating and verifying Intel 2708-type, tK-byte
PROMs

» Audio cassette interface for storing and retrieving data at a rate of 166 baud
s 32 input/output (I/O) lines with a socket to add another 24 lines

e RS232C interface for TTY-compatible terminals capable of running at rates from 0 to
2400 baud

e Data set interface with software-controlled data direction switch

s Address and data buses available on 16-pin conncctors for addition of memory or peri-
pherals

+ Ability 1o single-step program instructions

¢ On-board power supply (110-volt ac, 60-Hz input required)

1-1

System Overview PA-B0ODS15
Issue 2, July 1979

CONNECTORS FOR TWO RS 232C
2KxB-BIT {BYTE! INPUT-OUTPUT LINES CONNECTIONS FOR
RANDOM-ACCESS AND BUS ACCESS TTY TERMINAL OR MODEM

MEMORY (RAM|

SOCKETS FOR THREE
1Kx8-BIT {BYTE)

PROGRAMMARLE POWER
READ-ONLY MEMORIES SUPPLY
{PROMS)

{SUPPLIED BY USER)
CASSETTE
TAPE
INTERFACE

2KxB-BIT [BYTE)

READ-ONLY MEMORY

(ROM}

CONTAINS EXECUTIVE

PROGRAM
KEYPAD AND
DISPLAY

MAC-8 AND CLOCK

ADDRESS DECODING

PROM PROGRAMMI
AND RESET LOGIC © MING SOCKET

Figure 1-1, MAC Tutor Sections

Note: The material in this manual pertains to 1SSUE 4 models (prototype version). ISSUE 4
schematic diagrams are shown in Figures 1-2 and 1-3. ISSUE 3 schematic diagrams, Figures 1-
4 and 1-5, are included for reference only.

PA-B0D051% System Overview
Issue 2, July 1979

N :
[) - il
™ _:E}——“‘ PRAGER - : 7
L] H L] 1] 21 . FULE Fi
3
NI\ 4 i m — 5| Pt o 2 R
e L1 0 e Ly ™ I g nl? h a2 e | 2| b o7 merent 5| T W ———e———
B B = - Al P i b1 a8 il] e T L I - '
58 w———tHhe & e] a mat R " nu 1 i LT
= il G " [T n he nil—1L 1, ! Bl A M) LR [Yy
4 by] w 1 LM L & w2 A I 1 P - o [
NIy i A B g B 1] 3|4 & b b
"y g 1 L] % “ hat] H
- 4 2la nfl ! - 4 [= » = "W-—-—+—-—
" L 'l ::’ = = Es o ' B Y = [B (
¥ H] I st [25 B H EO—1
W [[A [-1
82 hels] . Y T v
- - f—G (=
1 . : il E,:; " na o1 3 lge § - : T
" =| W 5 s - J— | PR
al [= [i e [=i 4 1
w o5} 2 o wj2 |z w7 w. [& Els res
" > > ™y " L uu 'IH“T e r
w25 3% - 4]
L e i A W 1t N 1 .
o] !‘l (—;‘— ‘!%] e i i t -
T8 vl e H T
[t [L]
Ty " | W g 8 :: at i £ rremp— :: iy
i L ws EPROR g L, 5 ™ ad WABLE e
thoy T PR ﬁ w Mg !’5- ! " £an |2 h
uEut n Py o L B !? rel am e 1o3 wine o s H—p-
o] o —i_ u u sf., o wph L] : 1 o (L5 b o Ed i e ’
M ¥
| H—— 7] e . Py o F) EEm _ i ® Py T T T
' —n ¥ B 3 v Dy TR A m « 3 VI
Excan I [e i .ur- =15 ” — = Hu : ::_..:.E.!.'-
B0 {9 b ke B Hlm
o |8 >+t ws . tw . 2 W, L L Ta——S H
o7 n)q—--!z. b 7 ' 4) ™ -) 3 L [E] Tl H - 3] [[$)
n :5>-¢—:: 7 A A < 4 r. H LM "l ; FEA
0 | 17 D -,] » []]] s = s
05 n)—q—:i— lll CTT] A 11 FY"_"_Y"h ;i "] _"ri]
or ‘:;.._J.L’ 1S SN : “ Te . e Lot id B Cl] :: : L X T
ror | 4« >4 M I3 - IR 1l [15 13
s> o » $ 2 iz " 1:) : g ‘52 : vl 5| Lo :'sz' : ! — 3% " - ; WY
o L [T LH W) . L) it wppe o A 2 o o — R - L)
M L] g = { A PV S = AP - Y 3 -~ m [i
d N . Iim pE 0™ 58 B o N :43 b ‘: e A e 3 T : 1 LN
aoe |42] __n‘n L Tl [F— & 111} " 1 _"‘ " 1= e L T FF
gt | 1 op—n Y A Wi Mg UMM U P £) ® :: [T} :‘ It e e : T 7T
i A ® [H u nr—q . .
::i N i ;; o as g 3 u_g":: b1 o7 1] P e h P
N Mooy M N 3 [l 0 ™Y "
o :(L‘ 5 S5 mmc-g) A5 r n ey Gl oo ids i - 7 75
> K ogr M 28 . y ol b i
e 4
e v g - 3% reores 1 i iC T 5 mm |2 iy
lhll ¥).;_...'.'. aLare bt 1] ﬁ-—J—'sC] w 1 WTERNGE : [1] L3N
[E] n I . ot HM oy
L i + a . ? i M by i b
mopy —ar i m - 1w ;]t 7] 5 s T
ap [« e " e jr LI—] P =| e T o
amg | g p—ciii [1 A E] ¥ = [1] - Li T
" [y +4 B " I 2 o o) ot (0
OISR T Atde an [' LN ¥ v 2 Trot !
£aM I.. i 3 - s [1] L b [0 " k2 £ :ui
apty raxa 7) — [H L] » i A5 B = L]
st (1) g:—n B ﬁ :; 0 1 " it = = : 3o
puat I, }) P o EL I o P [i) e BT
\ v) a 52 f———57 M Ll s, A a 154 ¢ 5 T
e :H_*';“ q A n 5 M R I T] I} o n : L1
> b zioa i 7)
+5 15 H— 3 “_M T Lt S——- T i ‘S_ﬂ}_ am - e ::!51 - by ~
;5 ;)—l—;’s A [T G ar - T i : gH m—“——‘—""'rr":: “ M
| B D (LA | L
2 |15 b 82 e | W =% [T] Ll = = R -]
buadl |42 H— paud < LN i
PR S— M
3 rp— o | -
4 H—
wl |5 34— e /
| i— i [H] . _ - g [
fo— — “ = T f ! r
b 4 . " i g 1 P v
? . B S B oy e thl EERERE REEERE
» id-l— +-4 44 Jatl.. -4 4+ e
A AT A A AN Y Y Yo NN o~
S, AT AN T TS - iy DT YA an DY
- - TE srwnram-a rEero~TenerIDECD
‘- - A R e W R R R R A e R om R R

Figure 1-2. MAC Tutor Schematic Diagram
Issue 4, Sheet 1

1-3

PA-800515
Issue 2, July 1979

System Overview

f' " =
. T)
et A A + § '™ -
4“n e 1 +5 L:1) "
L AL WP | S ! 2] 4 oz i LA
F el wl oy g r_"‘; 1 Ly w68
. MUMEmG [}4]
BECY ! 3 ITY I P T BISPLAT [, WA
BMIVER Ay il |msb} 44 . i
Tie 1 12 5 4 s =
1 A ® E‘T—J
Pl M 5 NIVASE sp 1 —
n ! T Lo 1] acs‘u !:ur‘ cu'1
13 H
. " sl L] SV LT P us2 ® M ? 7 Tom e 27 T y
[M 1 T 11 [SO L 1 AW —
£ : AAA—] ' 7 wane 1 2 i o 106 1
s 2ty RE 7 DISPLAT w1 %8
- . [5 5 [H] z
b 1] —e——— oy
A ' o . LiE] qU; (T 5918
1 -3
—— ! 23]] ad nr a3
! g L !
R 7 DT]
~ bl N KEYIOLRD $ u
£ FA Ly
e s . /(Y /(/ A FE
- el t] a4 -]
- . T
PEVEVEVEVEVEV e .
,; Pa1 ¥ o ~ ‘.\-] " o~ 3 3 ;uslrf_mc 3
—o- 1] ISPLAT W]
T TR TX 1
L. o ~— -
/(/(/< /(/(/(,'(rl 1
] 1 1 [l v] 1] Ll 1]
T n 413 3
by) 2) 3
m I HUMERIC j
o 7 NISPLAY W]
H5 & U]
M
M - & 1
— L] 13 Ll_
- L] 1T
T i ot ST 08 A45 £i3
2 —] [1) g 7L T
M ! HUBERIC 1 iy i [=
M 3 f DISPLAT W] 1o CES +1BY 14 H2
T o 4 " 0
" . icm i+]2 NECH
[H] - B e Lgis
o
sl K] T = :_,D r m
i o1 i Y " :) T
NEL : 3 PR " v a
0 NUME R] SUPKT {+5 RER) LL
s T H DISPLAY] * G &
»] I Ter
i - =
P L] ! : -3
! LI (;Illm ; | .
t s Jods b le [tse o8 c‘in
1 +
! NowER |3 ! = =
DiseLAY 14 - = =
i M [[E4])
73 N p
o«
»
1 I P
e ____ 4 i3
: e e Fet [" -4 |
1 2 HAR SO R T -ty mR Hur e
5 w B el T m e }
> T M 0 -4
4 50 “ L]
% ns [P i AU
® " L.
7 ™ [EEEREIT 1]
lrn 7 L] T T
1) L0 R O [T I Wl
7
I 3 %
) [}
g 1
i—-—'—ru + ;: L.} " ﬂ&s 1 (5
K le HM {118 -||»-«om] v
o7 3 o R
< 3 ML] / \ e €
— 1] T i".' my R TS slelgzizlzl=l2ls=iclz=]=l= Bl gjo m\m _—
1 My b [T T e R RN E e A E e e o nes
T, M T I FAT) +s
= T
P TN POy YR 1 I WY " + K
= B 4540

Figure 1-3. MAC Tutor Schematic Diagram
Issue 4, Sheet 2

1-5

PA-800515
System Overview

issue 2, July 1579
1 o143+
s
- . " 2 FACEAN 3 [
® e e § 1% HANLE Iz T
L . 1.' T I T rei o 20 o
. n 2 pold 2 A7 T B B T mierince x| 3% 77) DO S—
" ‘ a :i .'I,lJ ol o I [H LY = :j‘,:: 1] b E P 1
r— < + = ! '_ -
i3 7 . i ut no|n]" z:.l : ':i - b : :’ oz J e : s
fry s 1 3ree MRS iz —— -5 o . t i iy IE I Ly [T
T I T 13 s M 2 | ‘ 1 #21 7
i ¢ s N oo FTI— ' 7
H oy N W ed B 73
| ?
) o o J 1 Dy i 23
l M— P37} " trs —man Ly ':‘: z :':E L 7
a3 33 gl B P i
-3.“ P M Fiji
TR N T
(17 el] L L
o
w0 P — 5 o o2 :?
r” 7 :?] :;; A - o i_:l Pl
= v s Mk
[Az e H S B R
Tk FT] [T} " l = bo T = | "y L]
| " b (W = g FLb
:ﬂ—m-—"u T“l . 5 I |; RCF I
[N el 5 -
1 1%zl T H Al 2 o 'y A3
e — a nn =
b gy on EPROM g ' 1] 3 I - PROGRAM -
" ¢ o &5 ail] LIS LI] o ETTINS 1
mo | 5 yy——r e w2 A1 8 ——— ¢ s <!
ol o, ar wp ar T s Y g .
Ll A ' 15 13 by n u 25 s
el —— i i 1" = # s :
FEpNAL | R e I sl ng ™ L] .i :
16— — LU T .
:7|15)-0—‘? 10 J |’°° : o i
a2 e H— V3 ? ' m y
o3 |53 e : | - - . i N 7 - l i f L2 14
M Rte . 2 =< o - < 5 Y sl
5 J 1= u | =% — =4
2 f1ooe (] 2 | T T N
3 V
o1 | 3 —20 n » ' 12 : % 6
] . L
A f a4 —0 2 vest . £ » ::ﬂ e ;] xﬁ.f___.r—:]m 2 'al; >
+ ; -
R " L bl y LH M| = v [H ? ..‘_L._.._LJNT
i | & H— 1 -'w\j ul M 1] t v w14 3 b G | ;
i J 1l T i o
. . 2ow wlo . AL t TR 52 it T :: ~ Troa J e —— ¥ 3 :
DO {12 : 3 !’m ;‘ 190 i :E-km 1 [::3') 13 ;: o i :; .? o g A fi——qi |£ g
::; :; SEmT A 3 Igz‘ :; i’ ir po M HE % | r— - e :
ik W rE| n : [3 1] : e - fa
o] e o2 R 1l) R —
s 5 H— 5 Gl G T L L) 5w —_—] i)
o [T [e [T gt e e e
::: ; @) I s E‘; 5;_& :? o _) 118 e 39 :: PROCAAN - ;
/ | nAn
A0 fe >4 = resen u b : ¢ i L (G ;
v 12 : m £ . i | ¥ 10 wgreae 2) 2
R e o= e a1 o &\
i s An Ad » M 75 Tl
. [n ne P12 o nlt e ———) v
.gu ; L7 . g o A Wy | prppE— 2 ; '
ol I IC—) iz T 4 ¥ i o0 H
et :‘:; a0 | 4 w [TR P R B4 & = TR I re
AHS |13 b 77 — 1] [v d 2 !
[“—)“n—“) T; :; = : EE 2 i
ot Inx” . 4 I |§ _ 1 3 e ks 2l
oy M AT H o st
e |y —l EPaow T T : 2o £
(1] 3
2 48— L Y] M J T “g L ¢
+5 |16 Sbre— 45 1 [oy : i !
4 X LR ————id CE s . R 5 1 ;g
0 |12 —— 0 t1g 15 v | 2 (LIS W B
o R -
. “' H—s i : e Hom 3 |3
Semnag/) _ [dm e L
dasy |97 >—— puia v LI F— gm |= =,
H— 0
’ up2er (= :
L1 : | i1 $ 13 Lt
F—— [
[STV g
1 o= = |],
e f T LI A S \,
oy e el e P el e BT b el v 0 2 i o
Y ISP g B P ety R R T E S Ed b B e P D ol o o el ol o ot o ot g
0 . 5
247 sbtzirtirixegicad # 117
TES m=orir-: UFITFISCSA8S0008 CecscsoocssTooos
=} STSEIRIT IXIEIZIsuzefedrd fizisfzizieczacsc

Figure 1-4. MAC Tutor Schematic Diagram
Issue 3, Sheet 1

1.7

2 System Overview

7< - —_—
1 5
{ T . | — n“‘!
f + " - " [E
44d] P i ([] [_-] +5] n 02 e i ;lﬂlf
] e ? ' 13 R] 2 SR UTL ni K1y ITY| =
) [S Aas f-‘-.'F'—— 5] i : " TR -i\L‘-"";’\;;r—‘—".;;:v 1 j":
2 il H 2 i ! WLV L) 3 i i? aH
Bity !) o L t‘ . T ¥ iear W] ; L e TARE- 1N
GRivER ? P P i H 1 MST) A+ 5 LLE _]
12z [[T 'y 4 Lomnm—dp 0 LI T x0
rm o, o Lnri—t g s o SN cyvesn wrass 8 g
) n R T AT NI
] 1# n e i — In : '
s j —t 5 LINEPY) L - L 03? n [
B 4 -3 1 + arl N H p—— - _ 1] 1
—_—t i AP I N WUMER C ! ! !
"3 o 2 Pl 1) 'J i 7 (HSALAY C] N
LA 1 n
1 i 1 H 1
| I '_--]-c I L EIR O O A —_—]
e) (y— ! P
-3 S] I' 7
wre !
. i | 143 s
) 1= ot)
L Tl MMERT H na
52 E ? WSFLAY " I .'
XE1ROAAD] = U 1]
VAVEvavaVEs - o
- < [I] (1]) [H -TR
<L Tx] , ‘ g
o P ' £) MUNERLL a8
7 H NISELAY]
AL %x 9% —_ o0
o w1 _}
AL LL (i Ha -
o&[i] 01 o) Rt
L 1] [T3] -]
| ———] 1 5
! v AU R [
] gPLAY ﬁ"
remTe 1
L T e o | !
1K My 1 ? 27
L i \
n_ur——__: o L 'M:hi | J_ ¢ |
1 _ EY] i LIET] +
—m 058 i or : ! e o, Ay t13
—— 7 1] 1 P P el /J_:\ Li—«_—l'._f-'a’\,—-ﬂr T I’
' £ 11 NUMERIC] . Al) . 1" =
F 2 DISPLAY W] 4 LI L Y i
TN > iy 82 . - o
L L oee Loz aest? . R
o i Tl —p— -Locae g
i i |8 = < Ter Tw
% 057) o e ":"_", T
JLE— t 7-£N A W8 .
7y < f P T " WERC | supaLr o5 BEG) ,J °©
] F ! mspLar [T} AL — e T
— T /T‘i,,u i ‘:[‘\135
~ Couute = - = A
.y | 1 F14 " - -5
[Ty [o—— N e o
L. 4 i -4 RER \I/ ce
5 | 0y — T 10
! ! : NUMERIC H ! foae :.[_ l o
QISPLEY 7] - = = =
T [T TR
s 70, PCY R4 . .
7T < 7
L ’1 +5
[rol Hy P 0w
N - ny
44 Haf a
) —AAN—y) L_ I
[t [N |
- oL Ltd.
» .]
IRESET]
L
L
640
1
[Epty ? b4 g M -
t Lt '_HGT_ 15 1m0 F T—AAA——— S
rl 10 AL
= 5 ol WL T
N ' ~ a5 »—1%
s
]
"ok voeer —_— _
R4
A —
4640 : H
B0 Figure 1-5. MAC Tutor Schematic
M i T "
L A i Diagram Issue 3,
Sheet 2

18!

PA-800515 MAC Tutor H
Issue 2, July 1979 utor Hardware

Chapter 2

MAC TUTOR HARDWARE

PA-800515 MAC Tuter Hardware
Issue 2, July 1979

2. MAC TUTOR HARDWARE

2.1 Functional Description

The MAC Tutor contains a MAC-8 microprocessor and the associated control circuitry to per-
form the computing and controlling functions for the entire MAC Tutor. Figure 2-1 is a block
diagram of the MAC Tutor hardware.

The instructions to be executed by the MAC-8 are contained in the ROM and RAM. The
ROM can be mask programmed at the factory or field programmed by inserting a blank PROM
into the PROM programmer. The RAM can be read or written directly with the microproces-
SOr.

The 2K-byte ROM (mask programmed) contains an executive program that includes the rou-
tines required 1o drive the display, read the keypad, and communicate with a terminal.

The 1K-byte RAM is used for MAC-8 registers, stack memory, and a user’s program. Because
this memeory is volatile, it must be recorded into a PROM or cassette tape for retention.

Three sockets are provided for 2708-type PROMSs, each having a capacity of 1K bytes. These
PROMs can be programmed with the on-board programmer, using the separate 24-pin socket.
Programs are erased by exposing the PROMs to ultraviclet light.

Users enter and debug their MAC-8 programs by interfacing with the 28-button keypad and
eight 7-segment LED displays. Commands to the executive program are issued through the
keypad and acknowledged through the display.

Sixty-four 1/0 lines, with a socket to add another 24 lines, are provided. Thirty-two /O lines
are used for internal operation and the remaining lines terminate at the 16-pin periphery sock-
ets. Sixteen of these lines are transistor-transistor logic (TTL) outputs with an 8-mA current
drive. The others that can be programmed as I/O lines are also TTL compatible, but have a
1.6-mA current drive (4 LSTTL Loads).

The computer/TTY data switch allows a remote computer or TTY terminal to communicate
with the MAC Tutor.

A commercial quality cassette tape recorder can be used to store and retrieve files by connect-
ing the microphone input and earphone output to the MAC Tutor.

A conventional 110-volt input connects to the on-board power supply, which generates the
required voltage levels of =5, +12, and +27 volts dc.
2.2 Electrical Characteristics

The electrical sections of the MAC Tutor are: the MAC-8 and reset circuitry, ROM and RAM,
[/0, keypad and display, PROM programmer, TTY terminal and data set interface, cassette tape
interface, power supply circuitry, and timing,

2-1

_ . PA-800515
MAC Tutor Hardware issue 2, July 1979

2.2.1 MAC-8 Microprocessor and Reset Circuitry (See Figure 2-2.)

Conventionally, the reset input to a CPU resets the program counter to zero and a program
begins to execute. However, the MAC-8 CPU also handles the reset input as a nonmaskable
interrupt. That is, the status of the CPU is saved before resetting. As a result, the MAC Tutor
uses the reset input for a power-on reset, single stepping, and nonmaskable interrupt. The
reset button then allows the user to stop the execution of a program and monitor the location
and status at that point. This unique feature requires the reset circuit to clock-in on only one
reset request.

When the reset button is depressed, the first operation code (opcode) fetch generates the reset
and the succeeding opcode fetch disables the reset.

A power-on detect flip-flop (F13-A) serves to distinguish between the reset function and the
nonmaskable interrupt. Multivibrator J15 applies the reset signal 25 us after a low to high sig-
nal transition to provide the single-stepping capability.

The basic controlling signals for remote access or system expansion are available at connectors
11, 32, and J3. These signals include the address and data buses as well as the +12, +5, and -5
volt dc buses. The 1-kilohm resistor (R48) allows the reset pin to be externally driven.

2.2.2 ROM and RAM (See Figure 2-3.)

The MAC Tutor circuitry is capable of driving one 2K by 8 ROM, three 1K by 8 PROMSs, and
four 1K by 4 RAMs. The chip-select lines are decoded from the address space through a 3- to
8-line decoder (J13 138). Table 2-1 lists the address assignments provided through these
decoders.

The AMD 9131 clocked static RAMs do not need refreshing, but require a clock transition to
latch in the address and chip-select signals. The required clock pulse edge is generated by a
monostable multivibrator (J15 221-B, one-half of the 74221). The multivibrator is triggered by
the faliing edge of the clock-out pulse (CKO). Then, after a 400-ms delay, a positive going
ctock pulse (CKOM) is generated. For 2-MHz operation, a faster clock pulse edge is required.

2-2

PA-800515
Issue 2, July 1979

PPT SELECT,

READ 170, [ToR
Yo m FROM RITE 170 DATA OYT TAPE 04T
PEi RO 70 wRITE 170 | PROGRANMABLE wart sTare p AUTETIO 170 PORTS ouT (PAR} 1 CASSETTE £ L)
SELECT . i stueets, READ 0, WRITE 170 | PEAREAS ERERATOR — TAPE :
ST INTERFACES (PAO - PAT) DATA In (PAT) TAPE IN P
EXT OWA RON SELECT (EXEC) waIT | ROV (READY) -}w el (P13) AL AL - } PRO-PAS - INTERFACE <
J1 (DMA ENABLE) ADDRESS - EXEC STATE (PORT ADDRESSES) | pponpauMABLE T KEYBOARD i
RAM SELECTS -
DECODER [FEEEER 0 man RON GENERATOR DATA G5 TPUT PERIPHERAL | (PR0-#81) |oceumn peamgy | TERMIRALUN/MOEW guT !
’ DECOUER / DAIVER tPas} i
EPRON SELECTS ENABLE (CLOCK) OUTPUT 1080 war) - DATA (PAB SERAL DATA IN P
4—"'}TUEPROHs 2KX 8 (zggu_gna‘{ " 00 -7 INTERFACE AND PRON -— | L
DO-DT LATCHES - -— (D24} PORTC PROCRAMMER | yogry tn/verminae cuT | TERMINAL/MODEM | cepin) paraour ! P
— CLOCK, (D TtPE) (pco -per) DATA_(PAS) INTERFACE = T
MO - A5 u%n AO- $11 §00-07 "(s:fé::s)“ READ, | -— -— WODEM DATA IN |
. =EITE 1
42 ADDRESS AUS - 1015 16 TS _ v AUDRESS BUS (A0 -A15) . 8235 -1) SELECT NODEM / TERMUNAL (PCD) (52320 MODEM DATAOUT |
_— oy
3 OATA BUS B0-DT (9 BITS) DATA 84S (09-01) - 3.8 o} 10 pRow PRoCRAMMER
> -— -
! CONTROL BUS {(CLOCK, READ, | WRITE)
> - T - A0 ::g: P8O - PB3 DISPLAY DIEIT SELECTS {;NEP(:-ATTM
i Eare F(PoRT ADORESS) " DECODER /DRIVER 16)
FROM WAIT STATE | ROY LFLOCE L MONG | (CRoM) AW SECNENTS
CENERATOR CLOCK, ') MULTI RAM TUTOR TUTOR FRON REYBOARD STROBE
31 DATA READY READ, BRITE YOTE | MEMORY . 1/0 PORTS 1/0 PORTS SORT } {PAD- PA3) r;:ioftns[; P00 - P0G DISPLAY
! A
' INTERRUPT REQUEST. 2hX 8 |po-o7 PORT & PORT D DRIVER
| INTERRUFY REQUEST N RAM SELECTS 0D PROGRAMMABLE | (one pst) Jc (o8- pan
p— 00- D7 -
| WS ol wacs L% PERIPHERAL | 22 | procRAMNABLE
FROM RESET CPU AFDRRDE‘:-,S INTERFACE | PORTH PERIPHERAL Aol DATA — a0
TINING CIREUIT [RSt ADDRESS BITS DECODER EPROM | A0-AS | DO (024) (Pho—PAT) AL - :g:?s] A0-AS (PBO-PBY,PEL, P52 (PDO-PDT} RST tPY
13 DWA REQUEST AND CLOSK | ag Za1s MEWORY (ponT apbResses) | INTERFACE Y PROM (RESET)
: | REFERENCE F— EPROM SELECTS) (oo cre (000 PORT I - (016} PORTF 1
t WA ACKNOWLEDGE i b oexeT onny) | P1O- 1T 41 (PFO-PFT) | THP SELECT/WRITE ENABLE | PROGRAMMER | ypow | PC3,PC4, PCT
: - (3 socms) prrSELECT, | (SOCKET OMLY) | @ —< PRI SELECT Fron | S/¥E) (pes) AND PORT ¢ RESET
. 1K X B EACK READ 1/0, READ [/O, . STATUS
o1 ST 130-57 Yy | (8295-3) R T B i PROGRAN (PC6) SUCKET | rpow | (s0-s2)_| TIMiNG
TO RESET ‘_T FROM lAirsmscmmun}—-- '!”S‘WJ‘———" try *
TIMING cmcun{ GENERATOR
NOTE

Pin information for connectors J1 through J3
is shown in Table 2-2. MAC Tutor Pincuts.

Figure 2-1. Functional Block Diagram of MAC-Tutor

PA-800515
Issue 2, July 1979

1]
(1]
i
f0L
EXDMAL
0o

1]}
02
03
i1
[H)
06
af
RO
RSTL
TNTL

ADG
&AM
A2
LUK
AD#
AD3
ADE
L1
AN
AQ3
10
AR

A2 Y

AH3
AT4
MG

DMARL
GRD
+12
+3

-5

50

$1

§2
PMARL

-

!
i
|

1

T

170 CIRGYIT

MAC Tutor Hardware

H
]
1
2

iy

1T X
1§
13

1
3

oY

-

nH—a-|
11> g
10—
9

Y

.
L

3

[l
3
E L

.

[

12 i
"oy s
0 HA—iL

At
L

I

L

3=

=

i

i

ey - -
i e ogn e LR - o

|, o

M S
1 —n
9 >——— 4}
1§ —= 15
14—
15—
1 91
15—
17 H"—@
& !

il

H
4
§
§
[
10

J

Fe3. AT ,

Pei

M2
A3
L1L]
A3

STAT
5

16

N ——

.11

-)
o L/ CIRCWT

M7

ol
+5 =
L

b

A
L]

(RESET)

At
ad

1 2

1127 41BP-&

hL)

O AR
5) axm-p,

]

nat
RLLl

Figure 2-2. MAC-8 Microprocessor and Reset

Circuitry Schematic Diagram

2-4

MAC Tutor Hardware

h N

-

Issue 2, July 1979

PA-BOOS1S

; Fal
100
s ~
us._uﬂ___
wigg 8
— m B ~
10 T [z oW
1ie 30 3 WL i
SoN 1 B MR
117 o Med 55 s Ml e 5 “
it i & T PRI I T ——
1] rHE W
z| W BY ¥~¢ 1 W
B g w 0, H W g
@ "] o —_—
0 gl T i
n wlE | e -
N o
0 H/1 M |
208 1
5 . —
. 1]
iy [} h” 1 o ““
N T
- Y 0 R e U Iv
5 o U o " 0o ¥ o,
gl v] 0 oguw 0 ;1B N
wi |_ s T ar 20 £ T
e b i e v le—=s o
1]] 1]
+ 401 H_.leJ\ o .
nps L ¥y: A o
nE P —
- 1)]
VU N O—————— L "a [1]
g0y N - oy o Y Ty
txc.n &Y W h PO " i1l o
XN u" W ¥ w3 m" W
Y ¥ L I m
T8
= =
Wil oHE—] w W
L Wi |E e v o)
- []
e e
¥ .
" LN 18N
19-3m
o
5
rd
JFL S - 0%
o
=
du 7T
s b o
v o
o
LS
Tald)
T
M
0y
R
in 1] v
o 2 vavuangs (o [0V
" FPUUILT LW
b
At a0 W o
]
oy -~

Figure 2-3. ROM and RAM Schematic Diagram

PA-800515 MAC Tutor Hardware
{ssue 2, July 1979 ’

TABLE 2-1. ADDRESS ASSIGNMENTS/MEMORY MAP

Physical Hex
Device Location [A15 Ald A13 A12 All A1D A4 A3 A2 Al AD| Addresses
pasrromt | N1 fo o0 00X i
2708 PROM Kol 6o 0o 0 1 0 0800-OBFF
Y108 PROM G0l o 0 o 0o 1 1 0C00-OFFF
2708 PROM D 0o 0 o 1 0 0 1000-13FF
9131 RAM DOs-Kos5| 0 0 0O 1 0 1 1400-17FF
9131 RAM GOos-NO3| G 0 ¢ 1 1 O 1800-1BFF
8255 YO ; D24 6o 0 o0 t 1 1 ¢ 0 0 1FO0-1F03
8255170 D16 6 o o0 1 1 1 0 01 1F04-1F07
8255110 ! D20 o 0o o0 1 I 1 0 1 0 1F08-1F0B
74LS273 /0 ' cio Jo o o 1 1 1 01 1 0 t]iRD -
74L8273 /O li C13 o 0 0 1 1 1 0 1 1 1 0jIFOE
Table Notes: . X designates cither logical 1 or (. Blank areas

indicate future expansion.

2. Unil comes equipped with one of the two listed ROMs.

Four wire straps connecting points A through D to E through H provide memory assignment
flexibility. By interchanging points A and B with C and D, the address of executive ROM is
interchanged with that of PROM 2 and PROM 3. This allows the user’s PROM to have
immediate control under a power-on or reset condition.

A wire strap between points J and K allows an interrupt to the MAC-8 to cause control of the
program to transfer to the first location in PROM 1.

The memory configuration can be expanded or replaced by connecting external address signals
to the two 16-pin dual in-line package (DIP) connectors, J1 and J2, located at the periphery.
The entire memory can be deactivated by keeping EXDMAL {(J1, pin 7) low.

2.2.3 1/0 (See Figure 2-4.)

The MAC Tutor circuitry is capable of driving three Intel 8255 programmable peripheral inter-
face (PPI) integrated circuits and two 74L8273 octal latches.

Each 8255 PPI has three I/O ports (eight lines per port) that can be programmed as either
inputs or outputs. In the output configuration, they can only drive one medium-power TTL
load. However, the two output poris provided by the 74L58273 latches have a drive fanout of
10 Low Power Schottky TTL (LSTTL) lcads.

MAC Titor Hardware

979

PA-BO0B15
Issue 2, Juiy 1

/

=
=

v]

G | oo o o

r

Y

=
afola

[t o]
= fa| =] X
o lada o

2lzlel=

s
o

|
a

s
o
ol

W3 gy
“» B
__“ m i
¥ 1]
ﬂw N E;
1 MM] 1
e on 31
eh—r |
3 (i
oy)
YT T Wt
ai}
g ol [
b 1+]
LT [
o_.w P 10
i T 50
A0 O vd
L T
oI 7]
£ 0
m,, TSP
5 g s
Vg Zl m
t = =
7 Bl
] Wi
o !
I LY
' "
§ | 50
y 2]
£ |w &
i u
r I H
o il
htr
9
g §sz8
' S [i11]
¢ [v
2 HdIE3d
b Javmn
o -NVH 3044

[T

O o T VR

W2 | vlﬂnl
002 | ¢
802 {) oy
oz | w4
€002 | ¥ tpr
202 | @ >y
Wz | sk g
woz | »
T
it !
Wi g b
sook | ¢ YJE% i
e Evl.g
ook | g
Wy ¥
180k | b~
L Kb ot |
s+ |9 — 5+
oga | v >——n
S ——
o
b ———
L G L
£~
i —
W] vll.:q
834 | W57
§Id | 057 v
Mo | & v
$he | 4 >
TR I B v
bid | 8 N m
o4 | 8 =ty
L | 8 T
i lexs
SHY | 1 R
e :Y—ﬂ;l
tHe | ¥ vlTH._I "
| & — .
ma | 2 7
bl BEGHT)
I R it
10 | 9 >l
s | YJBW.
| E g
e | & >
|0 > 754
(LY TP
034 ~—Y.¢.ILE;
:_L b jﬂr
834 2 J._l
S4d £ >
Mi|r
I
e | o>+
2 [0 >
Bl | S 2
6 | 8>
24 | § >
K Y..lmh
$3¢ | 1 >0
| ﬁ
K o
214 | o ——2
Hd :vl_l_.ml
03¢ | 22y o
VINNVIR08d HOYd) A

—F\
B i

P

o 004 IH
—_———
I Y 2&.5- T

B
IEL T
[T} o
1) 1% 1w £,
u 'Y
INMVA30ud HONd b

LY 7]

e S Wy R Ny

F’

—_ ljwuml_| F1)]
154 I

5
oafo——— o104

WY QN3

- 16-00

114
L10)
Eri L]
LPILET]
EALLL
- N

;

L1} -
19T

AY14810 ¥ quvodL N

7 14

FAN

R [|y e

[N (E17]
HNNYESONY HOUS LB
B TFoaad 7
F9vI B3N
I3 VIO Y WAL ALY
ol 7w
MAINE 2d¥) ILFSSVY
u)
AVIZSI0 ¥ QUWIADY L)

-

1 nod

o t-twd 7

¥ 1N0d

L I

) L

It .|..n.., I

o Om|.ll (]
(L] 8 ol

HYN IR

L.

113 J
o m—

il i

g520
[24
FlELETLL
LERLEDS
ELlLL)]
RLLLEVLE]

7oy
-

1InJu1y 13534
T 9-ovm
ol

2-9

Figure 2-4. 1/0 Port Schematic Diagram

PA-8005615 MAC Tutor Hardware
issue 2, July 1979

Four of the I/Q ports are used mainly to drive the keypad display, and PROM. Additionally,
two 8255 170 ports, or five 8255 170 ports when fully equipped, are available at connectors J5
through J7. The remaining two 74L5273 ports are available at connector J4.

A wait state generator integrated circuit (WE-146D) provides the required decoding and timing
for the [0 devices. Refer to Figure 2-3 for circuit details.

Table 2-2 contains a listing of all the I/O pinouts. (This information is aiso inciuded on Figures
1-2 and 1-3.)

TABLE 2-2. MAC Tutor Pinouts

Pin Number/Connector Connector J8
nooon 13 J4 15 16 17 Pin
A00 AD4 A0S Al2 Al6 A20 A24 No. Designation Pin No.
WRL ADS -5 2DB3 PF7 PHO GRD 1 +5 VOLTS 1
RDL AD9 NC 2DB2 PF6 PHI NC 2 GRD 2
RSTL ADIOD NC 2DB6 PF5 PH2 NC 3 TAPE-IN 3
RDY ADI1 NC 2DB7 PF4 PHI] NC 4 TAPE-QUT-LO 4
CKO AD4 NC iDB3 PE? PGT PIO 5 GRD 5
INTL ADS NC iDB2 PE6 PG6 Pl & TAPE-QUT-HI]
EXDMAL AD6 NC IDB6 PE5 PGS P12 7 CM-RC 7
GRD AD7 GRD 1IDB7T PE4 PG4 PI3 8 GRD 8
D? AD3 +12 IDBS PE3 PG3 P14 2 CM-TR 9
Do AD2 NC IDB4 PE2? PG2 PIS 10 TTY-KB 10
D3 AD! DMARL 1DBL PEP PGI P& 11 GRD 11
D4 ADG DMaaAL 1DB0 PE0C PGO PI7 12 TTY-PR 12
D3 ADIS S0 2DB5 PF3 PH4 NC 13
D2 ADI14 S1 2DB4 PF2Z PHS NC 14
Di ADI13 52 2DB1 PFl PHé NC 15
Do ADI2 +5 2DB0 PFO PH7 +5 16

2.2.4 Keypad (See Figure 2-5.)

The keypad includes a 4 by 7 array of switches that is read with a strobing algorithm. Each row
is strobed with a logical 0 signal and the state of the seven columns is read. Since the column
outputs are converted to logic highs by a set of resistors (R15), a keypad depression in a partic-
ular column will cause a logical 0 reading at that input line. Strobing is repeated for the four
rows so the MAC-8 can determine the state of the keypad.

The display contains eight 7-segment LED displays where digits are multiplexed in time and
driven by common segment drivers. The same lines (PDO through PD&) that are used to read

2-11

MAC Tutor Hardware PA-800515
Issue 2, July 1979

the keypad also drive the segments. Ouiput lines PBO through PB3 are decoded to select the
appropriate digit.

2.2.5 PROM Programmer (See Figure 2-6,)
The programming procedure for 2708 PROMs requires the following:
+ Initiate write enable by applying 12 volts to §/WE_pin.

s Sequence the address space of the 2708 PROM and apply data to be programmed for each
address.

e When the address and data are valid, apply a 27-voit pulse of 1-ms duration to PRO-
GRAM pin throughout the address sequence.

e Repeat address sequence 100 times.

A mix of software and hardware is used 10 implement the preceding procedure. High-level tim-
ing and control are done in software. The hardware has the 12-volt driver for the write enable
signal and the 27-volt driver for the program pulse. This program pulse is generated by the
resistance-capacitance (RC) circuit (R12, R13, C1) to produce a 1-us rise and fall time level.
level.

The PROM address and data lines are driven directly from the 1/O ports so the MAC-8 can
sequence through the address and data, and control the high-vollage drivers. After device pro-
gramming, the MAC-8 is able to read the PROM if a low-level signal is coupled to the CS pin.
This allows the PROM to be verified prior to programming for an erased condition (all 1s) and
after programming for programmed contenss.

2.2.6 TTY Terminal and Data Set Interface (See Figure 2-7.)

When a TTY terminal is connected to the MAC Tuior, afl operations provided from the on-
board keypad/display can be controlled from the TTY terminal. The interface to the TTY ter-
minal is through a serial 1/0 line under direct control of the MAC-8. The MAC Tutor adapts
to the baud rate of the terminal (up to 300 baud automatically and manually to 2400). Dala
can also be accepted from a remote computer through a telephone line when a modem is con-
nected. A built-in, software-controlled data switch allows one of two configurations to be
selected. In one configuration, the TTY terminal is fully connected to the modem with the
MAC Tutor in the listening mode. In the other configuration, the TTY terminal is connected
to the MAC Tutor and the modem is switched out. Both configurations are selected from the
TTY terminal. Table 2-3 lists the TTY terminal and data set interface connections.

2-12

£1-C

{4
140 CIMuHT

L1 \
——VYh— 45 Ra E. I
w40 1] b r: 13 s
Ak 18] a2 . Ll 051 — -
BE) 5 ! NUMERIC 3 1
L/ s PrY AR PR D5 PLAY W]
"lr':zi' z . AAAY 3 1 NS0}
1 5 Ny
L P qP 1 AT 5| 1
| 4 AN 3 4]
PR My AL 0 A T 8 = " 052
e u, |1 " PR —
6 AAA, Wy NERK; 3
Pl 12 e LN DOV LI DSPLAY [y}
g 110 - P [T :
4],c t s o s fs [|o E
! | - -]
4 TR IR
1 A 053
+H— [1
3 WUMERK: i
5¢ 2] DISPLAY '
r 4 kil
11}] ——
T
A
ELH 5 3 1
;1 054
1 m ¥ P _7""—_’
i NUNERIC 3
2 DISFLAY 1]
He ? AT -
L. ——
7 g 1
PD0 i T
FH i 3 L D53
fo2 6]
Pos NUNERK 3
1 5 DISPLAY L |
70 !
PO X
N ol WL T
ﬂw e —E0) -1
b L 084
i :ﬁ 8L L Py L T g a NUMERIL 3
£ W 2 DLSPLAY 14]
1 [14 At 1
'y ~ L]
3 [nzs 15 2 —
5[WeE_ & 14 3ot [oSt
% AT
ra i
3 12 1 » > WUNERIC |3
104 AN £ 9 T 1 DISPL AY 1]
£ [T -
» L L
G = - S
e 2w k| .
E LS L L L - il osd
3 .
. e) ! T ;unpmc 3
3 15 PLAY I
) 10K T (LsDy :1-—
+5— -

Figure 2-5. Keypad and Display Schematic Diagram

BL61 Anr ‘Z enss)

515008-vd

ICMPIE 10I0] JIVIA

MAL Tutor Hardware PA-800515
Issue 2, July 1979

—
- PULL8E L P
1
0 0+
B
® " =
B
170 Cincuit | 2es 1l)] P y PD3
. A L T
] 40 bt poa { 7y 1/0CIRCW
::‘ A2
roo-i P i A T -3
AT g i N
i 2k os| it s
T ar
_-%— 1] gl PO
% 7y

Figure 2-6. PROM Programmer Schematic Diagram

o | TTY

PR

AN

CN-TR

MODEN

o0

CM-RE

Figure 2-7, TTY Terminal and Data Set Interface Schematic Diagram

2-14

PA-800515 MAC Tutor Hardware
Issue 2, July 1979

TABLE 2-3. TTY TERMINAL AND DATA SET INTERFACE CONNECTIONS

MAC Tutor TTY Terminal
Connector Connector

I8 (RS-232C level compatible} | 25-pin imterface conneclor
(RS-232C level compatible)

Pin 10 - Terminal/Keypad Pin 2 - Terminal/Keypad
Pin 12 - Terminal/Printer Pin 3 - Terminal/Printer
Pin 11 - Ground Pin 7 - Ground
MAC TFutor Modem
Connector Connector

J& {RS-232C level compatible) | 25-pin interface connector
(RS-232C level compatible}

Pin 9 - Modem Transmitter Pin 2 - Transmitier i
Pin 7 - Modem Receiver Pin 3 - Receiver
Pin 8 - Ground _ Pin 7 - Ground

Tabie Note: In addition, sorme of the pins on the TTY lerminal connector may be required to be strapped together for
proper operation. Typicatly, pins 4, 5, 6, and 8 should be strapped together.

2.2.7 Cassette Tape Iuterface {See Figure 2-8.)

A cassette tape recorder microphone input and earphone output can be connecled to the MAC
Tutor to read and write data.

P)8
T< ¢ uﬂ
" . ap—< 5 [eRD T;l"]f
| l—'W\f-*"
AN AN ———— (1] 4|10

a 2260

1]
Ak
- ®

.7
%3 [} [~]

5 o514 m |
7 | L] R27 3

ol 10k

TAPE- 1N
GRO

P, T +3

1mcheut 2

Rzt
8 i 2
04K 1
. 9 ,
5 47 WL =

Figure 2-8. Casseite Tape Interface Schematic Diagram

To write data, the MAC Tutor generates a frequency shift keying (FSK) signal that alternates
between 2000 and 4000 Hz. When a logical 0 is written on the tape, 2000 Hz appears for two-
thirds of the bit time and 4000 Hz for one-third of the bit time. When a Jogica! 1 is written,
2000 Hz appears for one-third of the bit time and 4000 Hz for two-thirds of the bit time.

To read data, an LM565 phase-lock loop integrated circuit (IC) with a free-running frequency
of 3000 Hz locks on the input signal. The input voltage to the veltage-controlled oscillator

2-15

MAC Tutor Hardware PA-8005R156
Issue 2, July 1979

(VCO), which is available from the LM565 IC, indicates what frequency is being received.
This signal is then passed through an RC filter to eliminate the carrier frequencies, while retain-
ing the modulating signal. A comparator converts this low-level signal to a TTL signal for
MAC-8 input. The MAC-8 synchronizes to the bit pattern by detecting the negative transition
(from 4000 to 2000 Hz) and determines the state of the bit transmitted by the incoming
waveform duty cycle.

The operating baud rate is 166 bits per second to ensure low error rates and portability of tape
cassettes from one recorder/MAC Tutor to another recorder with a different MAC Tutor. The
cassette tape recorder interface connections are listed in Table 2-4,

TABLE 2-4. CASSETTE TAPE RECORDER INTERFACE CONNECTIONS

MAC Tutor Cassette Tape Recorder
Connector Connector

J3, Pin 6 - TAPE-GUT-HI | MICROPHONE JACK

J8, Pin 5 - GROUND MICROPHONE JACK GROUND
J8, Pin 3 - TAPE IN EARPHONE JACK
J8, Pin 2 - GROUND EARPHONE JACK GROUND

Table Note: An additional pin designated TAPE-OUT-LO {pin 4} is provided for cassetie lape recorders thal require a
low-level input to the microphone jack.

2.2.8 Power Supply Circuitry (See Figure 2-9.)

The 117-volt ac line is stepped down by a 16-volt ac center-tapped transformer and four dc vol-
tage oulputs are generated, as indicated in Table 2-5.

Two voltage doubler circuits are used to generate the +27 and -5 voltage fevels. The +27 vol-
tage doubler circuit operates by charging capacitor CL1 through diode CR4 on the negative
half-cycle. On the positive half-cycle, CR4 becomes reverse-biased and the conducting path is
through C11, CR3, and C12. Therefore, the voltage on C11 gets added to the ac voltage to
effectively double the dc output voltage. Regulator VR1 is a 3-terminal, -15 volt regulator that
uses the 12-volt supply as a reference. By adding this 15-volt supply to the 12-volt supply, the
required 27-volt supply is obtained.

The 5-voit supply uses a full-wave bridge rectifier due to the high current requirement.

2-16

PA-B00515 MAC Tutor Hardware
Issue 2, July 1979

Bl i | By A—D
+ e | HIT REQ
0 i - t
‘&em Lo 2 e O)
- il =
:‘gﬁ, oS +19y I me 2 R ot
o H (e REC} _L _L °
T e & toos
I E T® T%
. =
ToK [W
ruey | O A
SPPLY + w 1l ws |2) +5
1 " os e [T °
T T Te ”f‘“
CoM0n PP = B - =
% Laps bt o sl w2 -
. “I'éu \]'_/m :-sam_ \Lm
o= I e

Figure 2-9. Power Supply Schematic Diagram

TABLE 2-5. POWER SUPPLY VOLTAGE AND CURRENT RATINGS

Voltage | Current Rating

+Vdc 1.5A

-SVdc 120 mA
+12Vde 250 mA
+27Vde | 20 mA

Table Note: The 5-volt supply has 350 mA of spare current available at J8, pin 1 10 drive 1he external logic.

2,29 Timing

Several factors are involved in the execution time {as defined in terms of microprocessor clock
cycles) of an instruction. In one clock cycle a byte can be read from memory, a byte can be
written into memory, or some internal function can be accomplished. To minimize require-
ments on the memory response time, there is a pipeline processor internal to the MAC-8 that
imposes a lower bound on the total execution time of any instruction. A simple no outpulsing
{NOP) instruction requires four cycles for completion and most instructions are mullibyte to
ensure that minimum time is used effectively. Timing detail diagrams inctude the following:

e Fast Memory Accessing, Figure 2-10
e Siow Memory Accessing, Figure 2-11
s A Wait State Generator, Figure 2-12.

2-17

MAC Tutor Hardware PA-B800515
wor Hariw Issue 2, July 1979

1¢yche
I * 300 ns
CLOCK ou'r—_—/——\

APopess BuS X —— vaLo aooRess —-1><

> 1B VLTS
DATA READY

FEAD x
READ
mr‘na;m_o_{ ACCESS
NN N
DATA BUS DATA ASSUMED IN“LN
peo-087 NN \UTARER ALY N

WRITE -—\——/_
WRTE

Tare 1 b= |access

AN omwe BN

{1} TR AND TF ARE 50On3 CORRESPONDING TO BUS CAPACITANCE OF
S0pF. EACH ADDITIONAL pF INCREASES Ta AND TF OY | n3p

(2] DATA VALID WINDOW IS USED TOLATCH DATA INTC THE MAC -8. THE
VOLTAGE PRESENT ON THE DATA PIN AT THE ENO OF THE WINDOW
DETEAMINES THE LATCHED BWARY LEVEL.

FAAY

Figure 2-10. Fast Memory Accessing

AODRESS BUS X x
A~ AlIG

= ~
READ \
READ
CYCLES
wate J
T :]
READ WRITE
CYCLES
WRITE \ /_—_—
g
——= STROBE {11 l STROBE
DATA READY ‘ STROBE
DATA BUS - | |
DBO- DBT
—
DATA LATCHED
DATA VALID ON READ
ON WRITE

1) EXCEPT FOR STROBE TIME, DATA READY LEVEL IS A DON'T CARE.

Figure 2-11. Slow Memory Accessing

2-18

PA-800515
Issue 2, July 1979 MAC Tuter Hardware

) L]
1l A4
X
A |g =
< MAC-8
BORAOW, BHNARY
T493 CBINTER
TPE
kl J Ig |@
p| 7474 CLK
I
DA RDY
ax N/
Ay _

Ala S

§STROBE 4
DATA ntnn*w
iNTERNAL WAIT I
STATE
e
COWMTsG ./ N
BORROW NS

% FOR A SINGLE WAIT STATE GEMERATOR, THE COUNTER CAN BE
ELIMNATED WITH O PEING CONNECTED AS AN INPUT OF
THE 2 INPUT NAND GATE.

Figure 2-12, A Wait State Generator

2-19

PA-800515 MAC-8 Architecture
Issue 2, July 1979

Chapter 3

MAC-8 ARCHITECTURE

PA-BO0515H MAC-
Issue 2, July 1979 B Architecture

3. MAC-8 ARCHITECTURE

The MAC-8 is a byte-oriented, general purpose microprocessor in which the instruction reper-
toire emphasizes Boolean logical and integer arithmetic operations on 8-bit quantities. These
instructions are supplemented by 16-bit operations chosen to facilitate address arithmetic.

Because the MAC-8 is a 2-address microprocessar, typical instructions for dyadic operations
such as addition specify only two operands, the augend and addend. By convention, one of the
operands is also the destination of the result. To distinguish the operands, one is called the
source and the other is the destination, even though both are operand sources for dyadic opera-
tions. For monadic operations such as incrementing, there is only one operand, called the des-
tination, which is also the source.

A set of memoryv-addressing modes is available for accessing up 1o the maximum of 65,536
bytes of storage. These modes, together with a sel of identical general purpose registers, are
used to form a highly symmetrical set of operand combinations for the instructions. The same
memory-addressing modes are used to specify the destinations of control transfer instructions.

A pushdown stack is used as the subroutine call/return mechanism and allows dynamic storage
management. Interrupts allow the processor 1o respond to unusual events in periphery.

3.1 General Registers

There are 16 general registers avatlable to the MAC-8 at any given time that can be accessed in
two different ways:

» As a 16-bit base register (b register) used primarily to hold memory addresses.
* As a low-order, 8-bit accumutator (a register) for arithmetic and logical operations.

When the register is used as an a register, only the low-order byle participates. Some opera-
tions, such as addition, can be performed with either the 8-bit or 16-bit register set. Ceriain
operations, such as negation, can be performed only with an a register.

3.2 Register Pointer

The MAC-8 general purpose registers, unlike those of most computers, are not special
hardware registers locaied in the microprocessor. A 32-byte section of regular memory is used
as the register set. The first two bytes of this section are register (3, the next two are register 1,
etc. The starting address of this section (which must be in writable memory) is contained in a
16-bit, on-chip register called the register pointer {rp). By changing the address in the rp,
under program conirol, the user can locate the general registers anywhere in the memory space.
The rp can be thought of as pointing to a movable 32-byte window in the memory space (a win-
dow through which the MAC-8 "sees" the register set).

The three low-order bits of the rp are always zero. For each instruction that accesses a general
register, the complete effective address of the register is computed from the current value in
the rp and the source or destination qualifier field of the instruction. Also included is a bit sup-
plied by the MAC-8 designated as the HI/LO bit. The HI/LO bit determines whether the high-

3-1

MAC-8 Architecture PA-800615
Issue 2, July 1979

or low-order byte of the 16-bit register is being addressed. The formation of the effective
address is shown in Table 3-1, Notice that the three quantities are aligned as shown and added,
each being treated as an unsigned integer.

TABLE 3-1. EFFECTIVE REGISTER ADDRESS

BIT:
REGISTER POINTER il B ® x x X X % x| X % xfx|0]O}O

Sor DFIELD X x | = x

HI/LO BIT X

EFFECTIVE -
REGISTER ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ Y ¥ Y Y X 3 X
ADDRESS

The bump and debump instructions can be used 1o add or subtract a 1 to bit 3 or 4 of the rp.
The effect is to move the general register window up or down in memory by 8 or 16 bytes,
respectively, corresponding 1o a change of four or eight 16-bit registers. The effect is to intro-
duce a new set of registers that partiatly overlaps the previous set. This makes it possible to
save and restore the contents of the register set without actually moving any data.

3.3 Pushdown Stack

The stack pointer (sp) can be used to implement a last-in, first-out queue or "pushdown stack.”
The sp points to the top of the stack (the last item pushed on or the next item to be popped
off}. Since only the top item and those under it are valid, items above the top of the stack
should not be used. An item is pushed onto the stack by decrementing the sp by 1 or 2,
depending on the length of the item, and storing the item at the new address. Conversely, an
item is popped off the stack by incrementing the sp by | or 2, depending on the length of the
item. The item may or may not be moved somewhere before the sp is incremented.

In purely software terms, it does not matter whether pushing something onto the stack incre-
ments or decrements the sp, as long as pushes and pops are complementary. In the MAC-8, a
push decrements and a pop increments, i.e., the stack grows downward in memory because this
arrangement often facilitates systemwide memory allocation. In any case, the term "top of the
stack" always refers to the /logical top of the stack, whether or not this represents the highest
absoluie address.

The most common use for the pushdown stack is in calling subroutines. Since the dynamic
nature of nested subroutine calls corresponds exactly to the action of a stack, a call is a push
and a return is a pop. The MAC-8 uses the stack to save and restore the program counter (pc)
when subroutines are called and when interrupts are accepted. In the latier case, the condition

3-2

PA-B00515 MAC-8 Architecture
Issue 2, July 1979

register {cr) is also saved on the stack. The depth of nesting of subroutines, plus interrupts, is
limited only by the amount of memory allocaled to the stack. In addition to these automatic
uses of the stack, the executing program can use explicit push and pop instructions to place
subroutine parameters and temporary variables on the stack. This use is facilitated by several
special addressing modes that allow easy access 10 items at or near the top of the stack.

3.4 Addressing Modes

The addressing modes of an insifuciion are ihe differeni ways in which ihe effective addresses
of the operands of the instruction are formed. Some instructions do not address memtory and
therefore have no modes.

Generation of a memory address usually involves one of the b registers. The b register (0
through 15) is specified in a 4-bit field of the instruction, called the s field for the source and d
field for the destination. There are eight modes, with each mode representing a way of deter-
mining a source operand address and a destination operand address. To extend the MAC-8
addressing capability, s and d fields of register 15 often have special interpretations. In addi-
tion, mode 4 (memory-to-memory mode) is presently implemented only for 8-bit operations.

in summary, the three factors thai determine how an operand address is caiculaied are as foi-
lows:

¢ The mode number {0 through 7).
e Whether the operand is the source or the destination.

s Whether or not the specified register ic 15,

Refer to Table 3-2 for a list of addressing modes.

TABLE 3-2. ADDRESSING MODES

Adﬁzzsemg Source Destination
st=13 s==]5 d'=l1s d==15
0 Rs *pc Rd R15
1 Rs *pc *Bd **pc
2 Rs *pe *(Bd+n) | (SP+n) [*pc+ni]
3 Rs *pc *Bd++ *Bis++
4 *(Bs+nl) | *(sp+n!) | *Bd-m2} *(spm?2)
5 “Bs “*pc Rd RIS
6 *(Bsn) *{sp+n) Rd R15
7 *Bs++ *Bl5s++ Rd RIS

Table Key:
B - The conlents of a 16-bit base register
d - The deslination operand gualifier {d field)
n, nl. n2 - An 8-bit signed displacement
pc - The conlents of the program counter
R - A 16-bil b register for 16-bit operations or
an 8-bit a register for &-bit operations
s - The source aperand qualifier (s field}
sp - The cenlents of the siack pointer
++ - Indicates a post increment of the b register
f] - Special interpretation for transfer instructions

3-3

MAC-8 Architecture PA-800515

Issue 2, July 1979

3.5 Conditions

The 16 conditions in the MAC-8 are logical indicators that can be tested by the conditional
instructions. A 4-bit condition field in these instructions selects one of the 16 conditions. Each
instruction uses two opcodes representing, for example, jump on condition true and jump on
condition false. Refer to Table 3-3 for a list of the 16 conditions and description of the 16 con-

dition register bits.

TABLE 3-3. MAC-8 CONDITIONS

BIT CLEARED SET DESCRIPTION REMARKS
0 Ineg neg Sign bit of result

1 Izero zerc Indicates all zero result _

2 tovil ovfl Indicates arithmetic overflow CSSE?T?CL)N

3 ‘carry carry Indicates carry qr borrow ZQNDITION

4 lones ones Indicates result is ail ones BITS

5 lodd odd Lower-order {LSB) of result

8 ‘enabte enabie Interrupts are enabled

7 tfiag flag User-designated flag

8 It It Arithmeticaily less than zero (bit OAbit 2} .

9 liteg lteg Arithmetically less than or equal to zero [{bit 0Oabit 2)|bit 1] DERIVED
10 Hlteg liteg Logicaily less than or equal to zero (bit 3 |bit 1) FROM
11 Thomog homog t.ogically homogeneous {all zeros or all ones}) (bit 4[bit 1) Cncl)zr\(larllsi]‘rié)é%
12 Ishovil shovil Arithmetic left-shift overflow (bit 0Abit 3) BITS 0-7
13 - - {(Unused,Unassignable} (PHYSICALLY
14 —_— — {(Unused,Unassignable) NON EXISTENT)
15 o always Condition always true (set} {unconditional jump, call, return}

I nontrue condition

A bit-by-bit exclusive OR

| bit-by-bitinclusive OR

Conditions 0 through 5 describe the results of the most recent arithmetic or logical instructions
that are implicitly altered by many MAC-8 instructions. Condition 6 determines whether or not
the MAC-8 can be interrupted and condition 7 is available as a user flag. These first eight con-
ditions are known collectively as the cr. They can be explicitly altered by the set conditions and
clear conditions instructions. The cr is automatically pushed onto the stack when an interrupt is
accepted and the saved value is popped back into the c¢r when a return from interrupt instruc-
tion is executed.

The second group of eight conditions, § through F, is comprised of read-only indicators. Most
of them represent useful logical combinations of the first eight. Since these conditions are
derived from the first eight, it is unnecessary to save and restore them (they are effectively
saved and restored whenever the first eight are).

3.6 Interrupts

Exceptional events (such as interrupt, trap, and reset) aiter the course of the program running
in the MAC-8. They have a common association with a fixed memory location {each different)
to which control is transferred when the event occurs.

PA-B00515 MAC-B Architecture
Issue 2, July 1979

An external device requests an interrupt by setting the MAC-8 interrupt request pin. If the
enable condition in the MAC-8 is 0, it will ignore the request because it is in a masked condi-
tion, . If interrupts are enabled and a request is received, the following sequence occurs at the
completion of the instruction being executed:

¢ The cr is pushed into the stack.

e The pc, which contains the address of the instruction that would have been next exe-
cuted, is pushed onto ihe stack.

¢ The enable condition is set to 0.

e The MAC-8 performs a normal read operation, addressing location X{FFFF}. In most
applications, this address will not represent regutar memory, but will serve as an interrupt

acknowledgment to the interrupting device. The data byte read by the MAC-8 is supplied
by the device and is used in the next step,

e The data byte read is right-adjusted with leading zeros placed in the pc. The next instruc-
tion is then taken from that location.

The value placed on the data bus by the interrupting device is effectiveiy a pointer to an
instruction in the first 256 bytes of memory. This should be the first instruction of the routine
to process that particular type of interrupt. Depending on the application, there can be one or
many interrupt handling routines.

It is the responsibility of the interrupt handler to save other registers (if necessary) before pro-
cessing the interrupt. At completion of the routine, saved registers are restored and a return
from interrupt instruction is executed, causing resumption of the program that was executing
when the interrupt was accepted. Except for possible changes made by the interrupt handler,
the state of the microprocessor will be identical to that before the interrupt was accepted.

3.7 Traps

A trap occurs when the MAC-8 controller has no valid transition defined for the present state
and present inputs. This situation can develop when the MAC-8 attempts to execute an invalid
opcode, when electrical transients disrupt the controller, or when a fault develops in the con-
troller. However, not all transients and faults will cause a trap. Also, traps cannot be masked.

When a trap condition is recognized, the sequence occurs as fallows:
The ¢r is pushed onto the stack.
» The pc. which points two bytes beyond an invalid opcode byte, is pushed onto the stack.
« The enable condition is set to 0.
¢ The pc is set to X{0008) and the next instruction is taken from that location.

Location X(0008) should contain the first instruction of a routine to handle traps. The address
of the interrupted instruction (which may have an invalid opcode)} can be calculated from the
saved pc.

3.8 Reset

An external device resets the MAC-8 by setting the reset pin. When this signai (which cannot
be masked) is applied, the sequence occurs as follows:

» The cr is pushed onto the stack.

¢ The pc, which contains the address of the instruction that would have been the next one
executed, is pushed onto the stack.

3-5

MAC-8 Architecture PA-900515
Issue 2, July 1979

+ The enable condition is set to 0,

¢ The MAC-8 performs what appears to be a normal read operation, addressing location
X(FFFF), but the data byte read is ignored. The operation serves only to acknowledge
the reset.

s The pe is set to X(0000) and the next instruction is taken from that location.

Location X(0000) should contain the first instruction of the routine to handle resets. If a reset
occurs immediately after power-up, the values of the sp and rp are unpredictable.

Since the dedicated memory locations are associated with interrupts (traps and resets overlap),
it is possible to simulate traps and resets by appropriate interrupt signals, as well as by direct
jumps or calis from other routines.

3-6

PA-800515 MAC Tutor Software
Issue 2, July 1979

Chapter 4

MAC TUTOR SOFTWARE

PA-800515 MAC Tutor Software
Issue 2, July 1979

4. MAC TUTOR SOFTWARE

4.1 Functional Description

A resident executive program is supplied (see Appendix) to allow the user to access the
hardware components. The primary purpose of this executive program is to enable the user to
store programs in memory and then execute them. In addition, the executive program provides
the following:

¢ Supplies the necessary interface routines to store information permanenily on cassette
tapes or PROMs.

¢ Allows program debugging with single-stepping, breakpoints, or nonmaskable interrupts,

e Allows communication between a TTY terminal and a time-sharing computer.

The executive program ig divided into three maior sections:

» Keypad and Display — Commands and directives are given with the keypad and the results
appear on the LED displays.

s TTY — All of the capabilities of the executive keypad are available through a TTY termi-
nal and communication with a time-sharing computer is possible at the same time.

e Utilities — Programs are available for such functions as writing PROMs, verifying PROMs,
and writing/reading magnetic cassette tape information.

4.2 Operation

4.2.1 Keypad/Display

The keypad consists of a standard calculator-type button-pad with four rows, each containing
seven keys. Each key is marked with two labels, one in blue and the other in yellow. The blue
labels are presently in use and the yellow labels are intended for future system expansion
requirements.

The eight 7-segment LED displays are used mainly to display memory addresses and contents
of memory locations. The standard arrangement uses the left four digits for memory address
and the next two digits show the contents of that memory address plus one. The right two
digits show the contents of that memory location. For example, the number 18001234 indi-
cates that memory location 1800 contains hexadecimal number 34 and location 1801 contains
12. The lefi four digits are the address, the next two digits are the high contents, and the last
two digits are the low contents.

4.2.2 Keypad Button Contrel

There are 16 keypad buttons labeled 0 through F that represent hexadecimal digits 0 through F.
A is the decimal number 10, B is the decimal number 11, and so on through F, which is the
decimal number 15. These keys are used in conjunction with the other function keys to specify
exactly what wil! be done.

MAC Tutor Software PA-800515
Issue 2, July 1979

Initialize — init
The purpose of the init bution is to reinitialize memory to recover from some abnormal condi-
tion. When this button is pressed, operations are performed as follows:

e The execulive registers are set to the last 32 bytes of RAM, locations 1BEO through
1BFF.

» The user program registers are assigned to the preceding 32 byies of RAM, locations
1BCO through 1BDF. These are the registers that are examined with the /a and /b but-
ons.

User register bil is set to the address of the I/0 page, location 1F00. This is done so that
a user program can call subroutines in the executive program without sewting this register
beforehand.

User register bl2 is set to the constant FF02. This enables a user program to easily use
the executive subroutines to display numbers on the LEDs.

The stack is setl to just below the user registers. The stack will then grow down toward
fower addresses.

The return address into the executive program is pushed onto the stack. This is to enable
a user program 1o make a normal return to the executive program on termination.

A zero byle, representing an emply user condition register, is pushed onto the stack.

The default value of the program counter (1800 is the first location of RAM) is pushed
onto the stack.

The address of the user registers is pushed onto the stack and becomes the user register
pointer.

TTY — @

The button with the Bell System logo allows a TTY terminat keyboard to enter commands and
directives.

]

Memory Address —

This button is used to specify a memory address. After the * button is pressed and as each
succeeding button is pressed, the memory address is shifted one place to the left (the fast but-
ton pressed becomes the rightmost digit). For example, if the current memory address is 19AB
and we wish to look at location 03FD, refer to Table 4-1,

Register Pointer — /d

When the /d bution is pressed, the display address is set to that location in memory which con-
tains the register pointer and the right four display digits will indicate the register pointer value.
This enables the following:

s Manual change of register pointer. By pressing the = butlion and changing the two
memory locations containing the register pointer, operating registers can be set to any
memory position.

e Since the register pointer is stored on the stack, the address field will now indicate where
the bottom of the stack is located. This makes it possible to examine what the program
has pushed onto the stack.

4-2

PA-800515 MAC Tutor Software
Issue 2, July 1979

TABLE 4-1. MEMORY ADDRESS EXAMPLE STEPS

Key Pressed | Display Reading

19AB1234*
1300ABCD”
8003FFFF
D03F5498
G3FDAFED

Umw o«

Table Notes:

L Although memary addresses consisi of four digits, the immediacy of the cxecutive program required oniy three
digits 10 be entered. Whatever memory address is displayed, whether by chance or design, the digits to the righ
will display the contents of those two addresses.

2. I is a good idea 1o specify all four digits of a memory address, oiherwise leftover digits from the previous address
could produce unexpecied results.

3. The centeni of noncxistent memory, in this example 8003, is amays FF.

Display a Register — /a

The /a button allows examination of the contents of the sixteen 8-bit registers that have been
assigned for use. After this button is pressed, the display changes to indicate an a register and
not memory. The left two digits of the address and the digits indicating the high contents are
bianked out. The right two digits of the address change to the letter a, indicating that the
display is showing an a register, followed by a digit representing the particular register displayed.
Register al0 is displayed as AA, all is AB, and on through al5, which is AF. By default, the
register a0 is displayed when /a is pressed. The low contents then show what is contained in
the register indicated by the address. Since an a register contains eight bits, only the two digits
of low contents are required (that is why the high contents display is blanked out). Once the
/a is pressed, the displaved register can be specified as follows:

¢ Pressing any of the digit buttons from 0 to F will cause that register {0 to 15) to be
displayed.

¢ The + button will cause the next higher numbered register 1o be displayed. [f the regis-
ter displayed is 15, AF in the address digits, the + button will cause register a0 10 appear.

® The - button will cause the next lower numbered register 1o be displayed. If the register
dispiayed is a0, the - button will cause register al5 to appear.

For example, to assume that registers a9, a8, al5, and al are 10 be displayed in that order, refer
to Table 4-2,

MAC Tutor Software PA-800515
Issue 2, July 1978

TABLE 4-2. REGISTER DISPLAY EXAMPLE STEPS

Key Pressed | Display Reading
1800 ACED

fa Al 16

9 A9 34

- A8 AA

F AF ED

+ AQ 98

+ Al BA

Table Notes:

1. The /a bution causes the display format to change. This allows determination of whether the display refers 1o
Memory Or Tegisiers.

2. The last digit pressed delermines which regisler will be displayed.

3. Digit, ¥+, and - buttons can be mixed a1 will to specify which register (o display.

Display b Register — /b

The /b bution allows examination of the contents of the sixieen 16-bit registers that have been
assigned for use. When this butlon is pressed, the display is changed to a format indicating that
b registers are being shown. The left two digits of the address are blanked out and the right
two digits change to the letter b, followed by a digit that indicates the register being displayed.
The right four digits of the display are then used to show the 16-bit contents of the b register
being examined. The /b button operates in the same fashion as the /a button.

Display Next Location — +

The + button allows examination of successive locations in memory. When this button is
pressed, the current memory address is incremented by one and the contenis of the new
memory locaiions are displayed.

For example, it is possible to step through memory looking at successive locations, one after
another. Refer to Table 4-3.

TABLE 4-3. MEMORY LOCATION EXAMPLE STEPS

Key Pressed | Display Reading

18002211
+ 18013322
+ 18024433

Table Note: The siandard display has the low conients showing whatever is in the memory localion peinied 10 by the
address, and the high conlenls showing whalever is in the following location. This explains why every lime + is

pressed, whatever was showing in high contents is now displayed in iow conlents.

Display Previous Location — -

The - button performs a function similar o the + button, bui in the opposite direction. Every
time the - button is pressed, the address is decremented by one, which makes it possible to go
backward in memory and look at different locations one at a time.

4-4

PA-800515 MAC Tutor Software
Issue 2, July 1979

Change Contents — =

The = button makes it possible to change memory. Normally, any digit button depressed
causes a change in the address. However, after the = button is pressed, any digit button
pressed causes a change to the low contents. The low contents are shifted left by one digit, los-
ing the leftmost digit, and the buiton pressed becomes the rightmost digit. Also, afier every
digit is pressed, the new value of the low contents is stored into the location pointed to by the
address. For example, to assume that the numbers 1, 2, and 3 are stored into the locations
1900, 1902, and 1A00, refer io Table 4-4.

TABLE 4-4. LOW CONTENTS LOCATION EXAMPLE STEPS

Key Pressed Display Reading
1800 00090

* 1800 0000
1 8001 FFFF
9 60019 1324
0 0190ACED
0 Lgoae 2211
= 1900 2211
= 1900 2211
[t 1900 2210
1 1900 2201
+ 1901 3422
+ 1902 Fg1aq
] 1902 FR40
2 1902 F802
¢ 1800 0000
1 8001 FFFF
A 001TAFACE
0 01A0DS%A
0 lAQOEDCUD
= 1AQOEDCUO
4 1A00 EDO0O4
] 1AQ00 ED4D
3 1A00 EDO3

Table Notes:
1. The low contents are the ones affected and only one memory lecation can be changed at a time.
2. Pressing the = button more than once makes no difference (additional button pressing is ignored).

3. To correct an errof, Keep pressing buttons wntii the proper number is obtained.

The a and b registers can be changed in a similar fashion. The only difference to keep in mind
is the operation of b registers. Since the b registers contain 16-bit numbers, all of the rightmost
Jour digits in the display are affected when a b register is changed, instead of the rightmost rwo
digits. For example, to set a8 to 88, a7 to 77, bl4 to 00EE, b15 to 00FF, and b0 to 00, refer to
Table 4-3.

4.5

MAC Tutor Software PA-800515
Issue 2, July 1979

TABLE 4-5. A AND B REGISTER CHANGE EXAMPLE STEPS

Key Pressed | Display Reading

1800FECD
fa A O 14
8 AR 12
= AR 12
8 AR 28
8 AR B8
- AT 67
7 AT 77
/b BO 1234
E BE 3400
= BE 3400
E BE 400E
E BE 0DEE
+ BF 0550
0 BF 5500
F BF 500F
F BF 0OOFF
+ BO 1234
0 BO 2340
0 B0 3400
1] BO 4000
0 BO G0GO0

Table Notes:

1. h is only necessary to key in the number of digits to obtain the required nurmber. Two digits were sufficient for
bi4, whereas all four were necessary for b0.

2. Once the = bulton is pressed, it does not need (o be pressed again if the format of the display remains the same.

3. When the display went from fa format to /b formal, the = was necessary 10 indicate ihat the b registers were (o
be changed. However, when going from a8 10 a7, the executive program remained in a change register mode.

4. When changing registers or memory, the + and - buttons are used (0 go (¢ a new registes or mermory tocation.
Alter examnining a specific register or memary location, the = buiton can be pressed (o make necessary changes.

Program Execution — go

After a program is placed in memory with the = button, the go button is pressed o start the
program running. This is an unconditional start and control will not return to the executive
program uniess one of three things happens:

o The user’s program felinquishes control. (If the program executes a return instruction
with no preceding subroutine call, the program will return to the executive program.)

o lllegal instructions will cause the executive program to regain control. To set a break-
point, just place an illegal instruction (FF is a good choice) where the pregram breakpoint
is desired.

e The reset buiton will also cause the MAC Tutor executive program to take over.

Single Step — sst

The sst button operates in the same manner as the go button, but with one difference. Every
time the sst buiton is pressed and immediately released, one instruction from the user’s pro-
gram is executed. The executive program then takes control and displays the address of the
next instruction that would have been executed. This allows successive execution of one

4-6

PA-BO0515 MAC Tutor Software
Issue 2, July 1979

instruction at a iime from the usei’s program merely by pressing the sst button.

If the sst button is pressed and held down, instructions will be executed at a rate of approxi-
mately two per second. The address display will contain the address of the next instruction to
be executed (used to view the program in operation}.

4.2.3 TTY Control

If a TTY-compatible terminai is available, the MAC Tutor has the capability of using this dev-
ice for the user interface instead of the on-board keypad/display. When the Bell System logo
button is pressed, initialization functions are performed as follows:

¢ If there is no TTY connection or if the TTY is turned off, control will immediately return
to the kevpad/display portion of the MAC Tutor execulive program.

¢ The executive program pauses, waiting for the user to type in a carriage return (cr). This
key is used by the executive program to determine the terminal operating baud rate.

s A header is typed out to indicate what version of the executive program is being used.
Currently the header looks like this: MAC Tutor Exec 1.0.

¢ The executive program displays a 4-digit memory address followed by a space and the 2.
- digit contents of that memory address. The memory address displayed will be the current
value of the program counter, which on initial start-up will be 1800, the first address of
RAM.

Operation from the TTY keyboard is the same as from the executive program keypad/display,
except for the following differences.
Half Duplex — h

Normally the TTY executive program assumes that the terminal is running in full-duplex
mode, therefore the executive program prints out each character as it is typed in. In the half-
duplex mode, characters that are typed in will not be printed out. However, every time the h
key is typed, the executive program switches from either half- or full-duplex to full- or half-
duplex operation.

Initialize — i

The i key causes the memory to be set up and the header message and location 1800 are
displayed.

Terminate TTY — Break Key

Pressing the break key, turning off the terminal. or unplugging the terminal will stop TTY
operation and return control to the keypad/display.

Memory Address — *

Pressing the * key causes the executive program to set up 1o start displaying memory locations,
and the memory address is set to the current value of the program counter.

After typing in the * followed by an optional address, a carriage return causes that memory
address and its contents to be displayed at the terminal. For example, to examine locations
8003, 1900, and 1800 (in that order), refer to Table 4-6.

4.7

MAC Tutor Software

PA-800515
Issue 2, July 1979

TABLE 4-6. MEMORY ADDRESS LOCATION {TTY) EXAMPLE STEPS

User Fype Enput Output
1800 DC

*Yer 3063 FF
*1234123111900°cc’ | 1900 BF
*ert 1800 DC

Table Notes:

1. It is required to only type in as few digils as are necessary 1o generate the proper address. (The digin 3 was
sufficient 1o convert the address 1800 into 8003.)

2, The TTY executive program requires (a1 most} the last four digits 10 be typed. 1l a mistake is made, it can be
correcied sitnply by typing in all the proper digits.

3. An * alone is sufficient to bring back the current vaiue of the program counier.

Register Pointer — r

This key operates in a manner similar to the *. The difference is that the memory address is
set to the boitom of the stack, which is where the register poinier is stored. As soon as the r
key is typed, the address of the bottom of the stack is displayed, along with the contents of that
location, the low byte of the regisier pointer. Refer to Table 4-7.

TABLE 4-7. REGISTER POINTER (TTY) EXAMPLE STEPS

User Type Input Output

1800 DC
r 1BBY CO
‘o' IBBA 1B

Register Disptay — /

This key sets up the executive program to display the contents of one of the operating registers.
After pressing the / key, either the character a or b must be typed, indicating whether examina-
tion of the 8-bit a registers or 16-bit b registers is desired. Next, one of the digits 0 through F
should be typed to indicate which particular register is to be examined. If more than one digit
is typed, the executive program will use the last one to specify which register is desired. After
the type is entered and the proper register is selected, a carriage return will cause that register
to be displayed. For example, to examine registers al0, bl5, a0, and a9, refer 1o Table 4-8.

TABLE 4-8. REGISTER DISPLAY (TTY) EXAMPLE STEPS

User Type Input Output

1800 DC

faA‘er’ AA 0l
/Bfer’ BF 36D4
fer’ AQ0 FD

/A012345678% cr’ A9 90

Display Next Location — Carriage Return

In order to examine a successive location, a carriage return (cr) key typed alone on a line will

4-8

PA-BO0O515 MAC Tutor Software
Issue 2, July 1979

cause either the next higher memory location or register to be displayed. If the current register
number is 15, the cr key will cause register 0 to be displayed. For example, to examine
memory locations 1900 through 1903, registers al5 through a3, and registers b15 and b0, refer
to Table 4-9.

TABLE 4-9. DISPLAY NEXT LOCATION (TTY) EXAMPLE STEPS

User Type Input Cuiput

1800 DC

*1900¢cr” 1990 00
or' 191 11
‘or’ 1902 22
or’ 1903 13
faf*cr AF FF
‘cr’ AD 00
‘or’ Al 11
‘er’ A2 22
‘er’ Al KX)
{/BFer BF OFFF
‘er’ BO 1200

Display Previous Location — Line Feed

[n contrast to the carriage return, the line feed (If) key causes the next lower memory location
or register to be displayed. Otherwise, the If and cr keys operate in the same manner. For
example, to display memory iocations 1800 ihrough 17FE, registers al ihrough al4, and regis-
ters b14 through bl, refer 1o Table 4-10.

TABLE 4-10. DISPLAY PREVIOUS LOCATION (TTY) EXAMPLE STEPS

User Type Inpu¢ Output

2FCD FF

*1800cr I1800 DC
‘ar 17FF FF
‘1 17FE FF
fAlCr Al 11
‘r A0 0
‘r AF 11
/BE‘cr’ BE OEEE
‘or’ BF OFFF
er’ B0 0000
o’ Bl 01

Change Contents

If an input line consists of nothing but hexadecimal digits followed by either a cr or If key, the
digits are collected into one number. Then when the cr or If key is typed, the rightmost two
digits are stored into the currently displayed memory location or a register, or the rightmost
four digits are stored into the currently displayed b register. If fewer digits than necessary to fill
up a memory location or register are typed, the leftrost digits are assumed to be zero. For
example, to store 59, 00, and 18 into memory locations 1800, 1802, and 1804; FF, 0, and 1
into registers al3 to al; and 1, 1000, and FACE into registers b8 through bl0, refer to Table
4-11.

4-9

PA-BDO515
MACT
MAC Tutor Software Issue 2, July 1979

TABLE 4-11, CHANGE CONTENTS (TTY) EXAMPLE STEPS

User Type Input Output
BADD FF
*1800%cr 18300 DC
59 *¢r’ 1801 11
*er’ 1802 22
Oer 1802 33
18*1803cr’ 1803 33
er’ 1304 44
i8cr 1805 55
{AFcr AF FF
‘o’ AD FF
0ter’ Al 1}
Yeor’ A2 2
/B8'ct’ B8 0888
1'et’ B9 0999
1000 cr BA 0AAA
01234FACE'cr’ BB OBHB

Table Notes:
1. Something has to be currently displayed hefore it can be changed.

2. The change does not take effect until the cr or If key is depressed. This gives 1he ability to check Lhe input for
errors before making a change. [f a misiake is made, start typing the desired number from scratch unlil the proper
number is in the rightmosl digil position.

3. If il is not desired to change a displayed value, lype in a cr or If key to skip over that location without affecting it.

Program Execution — ¢

The g key signals that the current memory location is the first address of some executable code.
When the ¢r key is typed, the executive program starts execution at this address. The current
memory location can be specified on the same line as the g command, so that the sequence
*1800gcr would cause the MAC Tutor to start executing the program at location 1800. In order
to avoid trying to execute a register address or other strange problems, it is recommended that
program execution start with *, followed by a 4-digit starting address, followed by g command,
and terminated with cr.

Single Step — s

The s key operates in the same manner as the g key, except that it only executes one instruc-
tion.

The s key also causes one instruction to be executed without waiting for a cr to be typed. After
the instruction is completed, the header message is typed out, followed by the address of the
next instruction to be executed and the contents of that memory location.

Since the address of the next instruction is the current address, a program can be single-stepped
many times by merely using the s key. Since the * key sets the current memory location to the
value of the program counter, it is easy to single-step a program for a while, look at memory
locations or registers, then continue single-stepping or executing the program. Refer to Table
4-12 for an example that will single-step a program through two instructions, look at some
registers and memory locations, and then restart execution at the third instruction of the pro-
gram,

4.10

PA-800515 MAC Tutor Software
Issue 2, July 1979

TABLE 4-12. SINGLE-STEP (TTY) EXAMPLE

User Type Input Output
2000 FF
*1900s MAC Tutor Exec 1.0
1902 7F
$ MAC Tutor Exec 1.0
1903 39
fblfer’ BO 0000
‘1f BF FFFF
fAF'cr’ AF FI
*1904*cr” 1904 00
‘or 1905 18
tggcr-.

Table Note: Although the last memeory location displayed was 1903, the g command caused execulicn 1o resume al
location 1903. Recall that the * key causes the current memory address 10 be sel 10 the current value of the program

counter, which in this example was left a1 1903.

Talk to Host Computer — !

When the ! Key is pressed, the TTY executive program connects a modem interface to allow
communication with a time-sharing computer. If another ! is typed, the connection between
the terminal and modem is broken and the connection is once again made with the MAC
Tutor. (This sequence can be repeaied as many times as desired.}

Load Hex File — |

If access to a time-sharing computer is available, the TTY executive program has the ability to
load programs developed on that computer into the MAC Tutor memory. When the 1 key is
typed, the TTY executive program will load a standard hex. file.

4.2.4 System Utilities

Certain routines have been created that utilize MAC Tutor features. All of these routines are
executed as if they were user programs that were loaded into memory. However, because these
routines are part of the ROM executive, they are always available and unmodifiable. These
routines are invoked by setting certain registers to indicate what is desired, then executed with
the keypad go button or terminal g key. Refer to 4.4 for routine details.

4.3 Programming
There are basically three ways to create programs for the MAC-§:

e Hand Coding. Pencil and paper are used to create each byte of each instruction in the pro-
gram.

e Assembler. Assembly language programs can be created on a UNIX* time-sharing system.
These programs can then be loaded into memory and executed on the MAC Tutor.

o (Compiler. A UNIX system can be used 1o create
programs in the C programming language.

* UNIX is a trademark of Bell Laboratories,

4-11

MAC Tutor Software PA-800515
Issue 2, July 1979

4.4 Available Programs

The following descriptions include the starting address on the titte line, input parameters, cot-
straints, and abnormal conditions.

4.4.1 Move Memory - *022F

This routine moves a copy of a block of memory from one place to another. The input consists
of setting registers b8, b9, and b10 as follows:

e b8 The address of where to move the block of memory.
e b9 The address of the first location to move.
¢ bl10 One more than the last address that is to be moved.

For example, to move a copy of everything in locations 1900 through 19FF to locations 1800
through I8FF, refer to Table 4-13.

TABLE 4-13, MOVE MEMORY EXAMPLE STEPS

[User Type Input Output

1800 DC

{BR'er B3 0888

18060 ¢cr” B9 0999
1900cr’ BA 0AAA

| ADD er BB GBBB
*022Fgcr’ MAC Tutor Exec 1.0 {cr)
1800 00

Table Note: If the "to" address is greater than the "from" address and the btocks overlap, only the locations beiwesn
these two addresses will be moved properiy. All the rest of the destination block wilt consist of repetitions of this small

block.

4.4.2 Write a PROM - *0541

This program writes the contents of any contiguous 1024-byte block of memory into a 2708
PROM. The program that writes the PROM uses register and stack space in the upper 1024-
byte block of RAM (starting address 1800), therefore, it is not possible to successfully program
an entire 2708 PROM unless the lower 1024-byte block of RAM {starting address 1400) is
used to contain the program to be written. This restriction is not too severe, since approximately
the first 950 bytes in the upper 1024-bytes of RAM (starting address 1800) can be written into
the PROM.

The only input required consists of setting register b9 to the starting address of the block of
1024-bytes of RAM to be written into the 2708 PROM. It takes approximately two minutes to
write the PROM.

When the program is complete, it indicates whether or not the PROM is correctly written by
setting registers b13 and b4 to the following vaiues:

b13 If the lower 1024-bytes of RAM (starting address 1400) were used, this register con-
tains 400 if the PROM is written correctly, If incorrectly written, b13 will contain a
number from 0000 to O3FF, indicating the first location in the PROM that is in
error. If the upper 1024-bytes of RAM (starting address 1800) were used, bl3
should ¢ontain at keast 03b9,

4-12

PA-8005156 MAC Tutor Software
Issue 2, July 1979

bl4 If bl3 does nol contain 400, then the left two digits in b14 are what should have
been stored in the PROM at the location specified by bl3. The right two digits in
bl4 show what is actually there.

To write locations 1000 to 1400 into a PROM that has been placed in the PROM programming
socket, refer to Table 4-14.

TABLE 4-14, WRITE PROM LOCATIONS EXAMPLE STEPS

User Type Tnput | Qutpui
]

| 180¢ DC
/8%’ i B9 1234
1000%¢r’ BA 5678

*0541gter’

4.4.3 Verify a PROM - *057B

This program verifies that the contents of the PROM match what is in a block of memory. The
oniy input is to set register b9 to the beginning address of a 1024-byte block of memory.
(Since a blank PROM and nonexisient memory both contain FF, a PROM can be zero verified
by specifying a nonexistent block of memory, such as 2000.)

When complete, the program indicaies t
ters b13 and b14 as follows:
e bl3 If this register contains 400, the 1024 byies in the PROM are the same as the
1024 bytes in memory. If the register does not contain 400, it will contain a
number from 0 to 3FF, indicating the first location in the PROM that did not
match.

f the verificaiion operaiion by setiing regis-

» bl4 If register bl3 does not contain 400, the left two digits of register bl4 indicate
what was stored in the PROM. The right two digits are in memory.

To check whether the contents of locations 1800 to IBFF are the same as what is in the
PROM, refer to Table 4-15.

TABLE 4-15. VERIFY PROM CONTENTS EXAMPLE STEPS

Liser Type Input Output

1800 DC
/Bcr’ B9 1234
1800%cr” BA 5678

*057Bg'cr’

4.4.4 Dump te Audio Tape - *06C6
This routine dumps a block of memory to an audio tape file. The input consists of:

e a8 File ID, a unique number from 1 through FE identifying this fite. 1t is recom-
mended that [Ds O and FF not be used.

b9 The address of the first location to be stored on the tape.

4-13

MAC Tutor Software PA-B00515
Issue 2, Juiy 1979

o bl0 One more than the last address to be written onto the tape.
The sequence of events necessary to write a file out to tape is:
o Set registers a8, b9, and b10.
Start tape recorder and set to record mode.

Wait until tape leader has been skipped.

Execute the tape dump program.

Stop the tape recorder when the program is completed.

Note: While the program is executing, the leftmost digit of the LED display indicates what is
happening. For the first 5 seconds it will show two vertical bars, the right bar being one-half
the height of the left bar (this indicates that the 100 sync characters which begin every file are
being written out). After this is completed, the right two vertical segments should be lighted,
the top horizontal segment should be off, and all other segments should flicker (this indicates
that data is being written out to the tape). If the display indicates a pattern of bars with none
of the segments varying, one of two things has happened:

e All the data to be stored on tape is the same. This situation is possible, but rather
unlikely.

o The data being written out are all Fs. This was probably caused by putting the wrong
starting address in b9 and writing out a nonexistent program.

To store locations 1000 to 13FF on tape using the file [D 10, refer to Table 4-16.

TABLE 4-16. TAPE STORE LOCATION EXAMPLE STEPS

User Type Input Qutpw User Action

1800 DC
/B8'cr’ B§ 1234
00104cr” B9 5678
1009 ¢r BA 9ABC
1400°cr’ BB DEF{

*0eCoger’ MAC Tutar Exec 1.0 | Siart tape recorder.

1800 DC | Skip leader.
Slop tape recorder.

4.4.5 Read from Audio Tape - *0SEE

This routine reads information stored on tape back into MAC Tutor memory. The input con-
sists of:

¢ a8 File ID of data to be read in from tape.

« b Address of the first location to be stored in memory. (This parameter is used only
if the file ID is FF.)

Since special meanings have been assigned to certain file IDs, actions will take place as follows:
o0 The next file on the tape will be read into the address stored as part of the file.

¢ 1-FE The first file with the same ID as this will be read into the address stored as part
of the file.

PA-800515 MAC Tutor Software
Issue 2, July 1979

e FF The next file on the tape will be read into the address specified in register b9.
The following steps are required to read in a file from tape:
o Set register a8 and possibly register b9.
e Start execution of the tape load program.
« Start tape recorder.
* Upon completion of program, stop tape recorder.

As with the dump program, the leftmost digit of the LED display gives some indication of what
the program is doing. If the display is a random pattern that does not change or only changes
very slowly every one or two seconds, the program is waiting for the next data file to appear. If
there are two vertical bars (the right one half the height of the left one), the 100 sync charac-
ters that begin a data file are being read. The data file is actually being loaded when the right
two vertical segments are lighted, the top horizontal segment is off, and all other segments are
flickering too fast to be understood.

The program can detect the following types of errors:

® Vertical parity error. A parity bit is stored with each character in the data file to enable
detection of a change in one bit of the character.

¢ Longitudinal checksum error. The last character of a file, called a checksum, gives the tape
load program one more way of checking that a file is read in properly.

When the tape load program terminates, register bl4 contains the number of vertical parity
errors in the upper two digits. The lower two digits contain the computed checksum for the
file. If register b14 contains all zeros, no errors were detected. If register bl4 has no zeros,
data that was read in should be viewed with suspicion. An error has occurred but there is no
way to determine where it has occurred.

The tape read program will igniore anything on the tape that it does not recognize as a data file,
As a result, a short voice description of a data file can precede that file on the tape without
causing any problems for the load program.

For example, if a data file with file ID 53 has been stored on tape, refer to Table 4-17 to read
that file back. :

TABLE 4-17. TAPE READ EXAMPLE STEPS

Lser Type Input Qutput LUser Action
1800 DC |

fA8er A8 12

5¥er A9 34

*05EEg‘er” i MAC Tutor Exec 1.0 | Start tape recorder.
- 1800 DC
. Stop tape recorder.

/BE‘cr’ BE 0000

Table Note: The tape can be started from the very beginning and the program will skip everything until it comes to the
right file. It is also possible 10 manually position the tape with the fast forward and rewind controls to just before the
desired file. 1f the position of the file is known, either through voice information on the lape or tape recorder counter,

this technique can be used to speed up tape file processing.

4-15

MAC Tutor Software PA-B00515
|ssue 2, July 1978

4.5 Testing and Diagnosing

MAC Tutor testing and diagnosing approaches consist of:
» Self-test program
e Truth table excitation
» Manual logic analyzer

The self-test approach consists of running a program that checks out each portion of the MAC
Tutor. This program requires that a set of straps be plugged into the 1/0 and PROM program-
ming sockets. Then, by feeding the outputs to the inputs of the various elements, the program
verifies the operation. '

The truth table excitation approach makes use of a logic tester to excite the various elements in
the MAC Tutor and to logically compare the appropriate ouiputs. This test requires that the
MAC-8 be removed from the socket and the logic tester be connected to the MAC-8 and I/O
sockets.

The third approach for testing and diagnosing the MAC Tutor is through the use of a logic
analyzer (e.g., Hewlett-Packard Model 1600A or equivalent). The address and data buses are
available for monitoring purposes at connectors J1 and J2. Through the use of the memory
map shown in Table 4-18, the read and write cycles for the various memory devices can be
monitored and verified. Typically, the first items that are checked out involve the integrity of
the control signals to and from the MAC-8. These include the reset, memory read, memory
write, and clock signals. If these signals check out, the ROM, RAM, and [/O foliow in
sequence. These are checked out by determining the integrity of the chip select signal of these
devices and the data bus contents.

TABLE 4-18. ADDRESS ASSIGNMENTS/MEMORY MAP

Physical I ‘ Hex ‘

Device I,ucatianiAIS A4 AL3 AIZ AL AX0 A4 Ad A2 AL .‘\Ii: Addresses

i- P [. e e e i e e e

%3321;‘:;“;2;:1} NOY . 6 0 0 0 v X 0000-07FF

2708 PROM Kol . a0 ¢ 0 ¢ 1 90 0808-0BFF

: 2708 PROM Gal 0 Q 0 0 1 1 éﬂCOO-OFFF :
2708 PROM [eli]] | 0 0 0o v 0 0 1000-13FF
2131 RAM DUS-KOS% 0 0 0 1 0 51400-1?FF
¢ 9131 RAM GOS-NUSE 0 0 0 1 1 0 EISOO-IBFF
. B255 4Oy 324 ; 0 1} 0 I 1 I 0 0n ?IFI]{]-]FOJ
8255 1/0 '; e : 0 0o | | | I VI R | %!F(}4-1F0?
8255 VO : D2 0 0 0 I i I ¢ 1 0 iIFUE-I FOB

7418273 17O | clo .0 6 0 v 1 1 0 L 10| ilFOD |

JHSIINO : B L U NG |

Table Notzs: 1. X desipnates either logical [or 9. Blank areas

indicate Tuture expansion.

T Unit eomes equipped with ane al the 1wo listed ROMs

4-16

PA-800515 Glossary
Issue 2, July 1979

Chapter 5

GLOSSARY

Glossary

5. GLOSSARY
Addend

Addressing Mode

Architecture

Awrobaud

Baud Rare

Bit

Byte

C Compiler

Central Processing
Unit (CPU)

PA-800515

lssue 2, July 1979

A number to be added to another,

A way of forming thé effective memory
address(es) for the operand(s) in an instruc-
tion.

A design or orderly arrangement of a micropro-
Cessor.

A giuniiiy io which an addend is added.

To automatically adjust to a given baud rate.

A measure of data flow. The number of signal
elements per second based on the duration of
the shortest element. When each element car-
ries one bit, the the baud rate is numerically
equal to bits per second (bps).

A binary digit (logical 1 or 0).

A sequence of adjacent binary digits (usually
shorter than a word) operated on as a unit.
Sometimes referred to an 8-bit byte.

A unit that translates C language source pro-
grams into machine language codes.

The heart of any computer system. A basic
CPU consists of an arithmetic and logic unit,
control block register array, and input/output.

5-1

Glossary

Checksum

Clock

Command

" C Program

-~ CPU

Data Bus

Debug

Decrement

DiP Connector

Dump

Dyadic Operation

EPROM

Erasable Programmable
Read-Only Memory (EPROM)

PA-800515
lssue 2, July 1979

The last character of a data file that is used for
error detection purposes.

A pulse generator that controls the timing of
microprocessor switching circuits.

The portion of an instruction that specifies the
operation to be performed.

An organized set of instructions written in the
C programming language.

See Central Processing Unit.

A group of lines each capable of transferring
one bit of data. It is bidirectional and can
transfer data to and from the CPU, memory
storage, and peripheral devices.

To search for and eliminate errors in a comput-
er program.

A programming instruction that decreases the
conients of a storage location.

Dual In-line package connector.

To transfer the contents of memory to an out-
put device.

An operation performed using two operands,
the source and destination.

See Erasable Programmable Read-Only Memory.

Usually consists of a mosaic of undifferentiated
cells that is electrically reprogrammable and
erasable by ultraviolet irradiation.

5-2

PA-800515
Issue 2, July 1979

Fetch

Frequency Shift
Keying (FSK)

FSK

Hardware

Hexadecimal

Increment

Input/Outpur (1/0)

Interface

Interrupt

o

LED

Glossary

To obtain data from a memory location. Read-
ing an instruction from memory and entering it
in the instruction register is often referred to as
an instruction fetch,

A form of frequency modulation in which the
modulating wave shifts the output frequency
between predetermined values (usuaity caiied a
mark and space).

See Frequency Shift Keying.

The electrical, mechanical, electronic, and mag-
netic components of a compuier,

Whole numbers and letters in positional nota-
tion using the decimal number 16 as a base.
The least significant hexadecimal digits read:
0,1,2,3,4,5,6,7,8,9A,B,C,D,E,F.

A programming instruction that increases the
contents of a storage location.

Package pins connect directly to the internal
bus network to interface the microprocessor
with the "outside world."

A common boundary between adjacent com-
ponent circuits or systems enabling the devices
to yield or acquire information from one anoth-
er. {Buffer, handshake, and adapter are used
interchangeably with interface.)

Suspension of the normal programming routine
of a microprocessor in order to handle a sudden
request for service.

See Input/Output.

Light-emitting diode.

5-3

Glossary PA-800515
Issue 2, July 1979

Memory Core, disk, drum, or semiconductor systems
into which information can be inserted and held
for future use. (Memory and storage are inter-
changeable terms.)

Microprocessor A central processing unit fabricated on one or
two chips consisting of arithmetic and logic
unit, control block, and register array. The in-
puts and outputs of the associated sections are
joined to a memory storage system.

Modem An acronym for modulator-demodulator. A
device that converts data to a form that is com-
patible between data preocessing and transmis-
sion equipment,

Monadic Operation An operation performed using only one
operand.
Opcode An acronym for operation code; that pari of the

coded instruction designating the operation to
be performed.

Operand A quantity of data in which an operation is per-
formed; usually one of the instruction fields in
an addressing statement,

Peripheral Auxiliary function (devices not under direct
: computer control).

PPI See Programmable Peripheral Interface.

Program A procedure for solving a problem. Frequently
referred to as software.

Programmable Peripheral An integrated circuit that can be programmed

interface (PPI) to interface with a variety of peripheral equip-
ment.

Programmable Read-Only A programmable mosaic of undifferentiated

Memory (PROM) cells. Program data is stored in the PROM.

5-4

PA-800515
Issue 2, July 1979

PROM

Pushdown Stack

RAM

Random-Access
Memory (RAM)

Read-Only Memory (ROM}

Register

ROM

Routine

Single-Srep

Software

Storage

Glossary

See Programmable Read-Only Memory.

A register array used for storing and retrieving
data on a last-in, first-out basis.

See Random-Access Memory.

Memory in which access to any storage location
is provided immediately by means of vertical
and horizontal coordination. Information can
be "written in" or "read out” in the same rapid
manner.

A storage device in which stored data cannot be
altered by computer instructions (sometimes
called firmware).

A device for temporary storage of one or more
bits involved in arithmetical, logical, or
transferral operations. The number of regisiers
in a microprocessor is considered one of the
most important architecture features.

See Read-Only Memory.

A sequence of instructions for performing a
particular task.

A command that executes only one instruction
at a time.

The internal programs or routines prepared to
simplify computer operations. Software permits
the programmer to use a language such as C or
mathematics to communicate with a computer.

Any device that retains information. The word
storage is used interchangeably with memory.

5-5

Glossary

Subroutine

Teletypewriter (TTY)

Transistor- Transistor
Logic (TTL)

TTL

Ty

Word

PA-800515
lssue 2, July 1979

Part of a master routine that can be used at will
to accomplish a specific task (the object of a
branch or jump command).

The teletypewriter uses electromechanical func-
tions to generate codes (Baudot) in response to
manual inputs from a typewriter keyboard.

A logic-circuit design method that uses inputs
from muitiple emitter transistors. Sometimes
referred to as multiemitter transistor logic.

See Transistor-Transistor Logic.

See Teletypewriter.

A number of bits that are treated as one unit,
where the number depends on the CPU.

5-6

PA-B00515 RESIDENT EXECUTIVE PROGRAM
Issue 2, July 1979

APPENDIX

RESIDENT EXECUTIVE PROGRAM

*¥define
#define
#define
#define
#define
tdefine
¥define

tdefine
#define
#define
#define
#define
tdefine
$#define

#define
tdefine
#¥define
#define
#define

#define

$define
#define

#define
tdefine
#define
*define
#define
$define
tdefine
#define

tdefine

tdefine
tdefine

$#define
¥define
#define
#define
#define

¥define
¥define
#define
#define
¥define

IOPAGE
FCNTRL
QCNTRL
PRIO
PBIO
PCio
PDIO

SETMOD
AINP
EINP
CINP
CLINP
CUINP
DINP

SSTKEY
NOKEY
OFFDIG
ALLDIG
KDOWN

BAUD

NUMDEL
SSTDEL

RAMORG
RAMLEN
SYSREG
USERRG
USERBA1

017400
*(b11+3)
*(R11+7)
*h11
*(b11+1)
*(b1i+2)
*(b11+4)

0200
020
02
011
01
010
410

24

28

15
0177400
2

*015776

3
0x7f

0x 1800
0u000
Ox tbed
0x1bc
1 *0 15726

USERB12Z *0 15730
USERB13 *0 15732

USERB1 *015734
NBIT 50

A 10

B 11
STARTCH “*°
ENDCH “/°
CHECKSUM Ox2a
EOT 004
SYNC 026
BIT1 204<<8 |
BITO 12¢<8 |
CYCLEO 13
CYCLEN1 3
NOISE oun

int JSERE;
int USERB12;

A-1

rE
e
¥
Al

,*

12
12

0x1bds
Ox1bds
Ox1bda
Ox1bde

%" kg

*/
*/
*/
L3

int USERB13;
int USERB1A;

int BAUQ:
_ASSEM "BAUD = 15776";

_ASSEM "PCNTRL = 17403";
_ASSEM “QCNTRL = 17407";
_ASSEM *PAIQ = 17400";

_ASSEM "PRIO = 17401";

_ASSEM *PCIO = 17402";

_ASSEM "PDIO = 17404";
77A TE 30 6D 79 char tfmt[] { 0176, 0060, 055, 0171 }
77€ 233 5B SF 70 { 0063, 0133, ©137, 0160 }
782 7F 73 77 1F { ¢177, 01632, @167, 0037 }
786 0D 3D 4F 47 { 0015, 0075, 0117, Q107 };
7BA 18 14 10 0C char trnuml] { 24, 20, 16, 12}
78E 0D QE OF 19 { 13, 14, 15, 25}
792 15 11 08 09 { 21,17, 8, 9}
796 OA 0B 1A 16 { 10, 11, 28, 22}
79A 12 04 05 06 { 18, 4, 5, 6}
79 07 1B 17 13 { 7. 27, 23, 19}
7A2 00 O1 02 03 { o, 1, 2, 3}

7A6 65 Q1 E2 O1 FO O1 int tinc[] { &numb, &plus, &minus, &star }
TAC D1 1
7AE DE O1 OE 02 A7 01 { &egual, Zexec, 8areqQ, Sbreg }
784 3 01
786 FE 01 15 02 15 02 { &rptr, &sst, &sst, &initd }
7BC 29 o0
TBE 44 02 { &ttty }:
/* Mach Tutor Executive
»
*» Global memory allocation
w
- R —————— +
« 1BFE |-- b1s -— 8aUD rate counter
. e ———————— +
. == b14 - contents of {(bi13)
* brm—————— —————— +
- 1= B13 -—i current address
- fmmm—m e ———— +
L Y e e * on digits flags
- i a2 H exec state flags
- fo e ——— +
* e R | -1 address of 10 page
* frem . ————— +
L]
L
x

A-2

03
0o

OF
BF
BF

BF
oB
03

Fa
FQ

FF
oF

oF
FF

FF
FF
8F
BF

1B
1F
ag
FE
93

Qo 1F
02 FF

Qo

18
18

1BEQ

18DE

1BCO

1400

B B R &R ORERER R R NER R TSN ERR

*
e

maind)

reset:
initd:

init:

i=— bo --i
o - —— +
== b1% -=
D e T bl +
e ——— - +
i-= bo ==
e ittt 4
t=— initd --}
D it +
! cr '
o mmm e +
i=- User pc ==
pmm e +
i-- User rp =~
frmmm— e — - +
e m = a +
¥ 1
L} 1
pmm e —— +

nop():

nop();

nop{);

goto ¥1f;

goto +*0x800;
push{rp);

rp = SYSREG;
b1l = IOPAGE:
QCNTRL = 0213,
PDIO = 0377,
PCHTRL = 0223:
ad = PCIO:

if (!mit{3,a0)} gotc 1f;

nop{j;

goto powon;

b15 = 0;

USERB11 = ICPAGE;
USERB12 = ALLDIG |
rp = SYSREG;

b11 = IQPAGE:

sp = USERRG - 2 - 1
“(dep + 5) = &init;
*(sp + 4) = 0;
*(dsp + 2) =
w(dup + 0) =
PCHTRL = 0220;
PCI0 = 020;

A-3

ﬁ&MGRG;
USERRG;

-

rp

User registers

useyr rp

return address to

sp

Stack

Origin of RAM

KOOWN;

-2 -2

exec

56
BE
80
64
66
6A
6E

74
77
7A
70
a0
a3
86
89

2
8E
a1
94
97
99

9D
AQ
A2
AB
AB
AR

AC
B0
B4
68
1)
BE
co
c2
C4
c?

6
Cc5
co
o1
5
61
79

qB
80
T3
79
8o

40

Q8
s

5S4
90
BO
40
Co
Cco

AD
30
a:}
cs
69
58

82
82
ce
29
A8
34
65
81
a6
98

BF
8Ff
OF

QF
aF
Q0
B3
48
4F

02 b13 = *(dsp + 2);
btd = *dt3;
00 FF man2 : D12 = ALLDIG:
set(zero); /* mac7 hardware error #*/
FE 1B b0 = BAUD;
a4 02 if {!zero} tty{);
00 rdkey();
18 a0 - SSTKEY;
04 if (zero) goto 1f;
02 a12 = KDOWN;
00 1: disp{();
00 radkey();
1C if (a0 == NOKEY) {
06
£D al2 =& D375;
goto 1b;
€D if (bit{1,a12}}) goto 1b;
02 212 = KDOWN;
OF if (a0 <= t5) {
07
B2 = p0;
OF 00 o = 15;
}
OF a0 == 15;
ag =+ 2;
A6 07 b0 =+ &tfnc;
B3 s *di;
*b3();
goto 1b;
}
/% rdhey = read keyboard
[]
*« entry —- entry - none.
»
* uses - a 0,1.3
* b G,1
*
« calls = none.
*
*+ exit - al = number from 0 to 27 indicating
- which key was pressed.
"
./
rdkey({)
03 82 PCNTRL = 0202;
07 98B QCNTRL = 0233;
F9 00 BG = (=7}80377;
EF a3 = 0357;
07 1! al =+ 74
a3 =»>> 1;
if {lneg) return;
PAIGC = a3;
04 a4 = PDIO;
TF ad =& 0177;

A4

a8
48
ocC
28
AB
ca
75

66

7F
82
22
B2
6A
20
co
79
co
79
ca
79
B2
6A
66

ar
80

co
20

07
0E
07
SF
5D
BF
co

07 88
04
¢3 90

a1

3]
¢3 00

o1 OF

T et

E X R 4 K B F R EFE AR EF

*/

ag ="~ \77:

if (zero} goto 1b;
al = flo{ad}:
=—at;

ad =+ ai;

D1 = &tnum;

b1 =+ logical{ad);
af = *bi;

return;

disp ~ display numbers in 7-segment displays
entry = al2(15-8) = bit mask indicating on
digits.

D13 = firgt four digits to display
= last four digits

calls - dspd, delay.

ex{t - 7-segment displays refreshed.

dispi)

{

——

& % & B ¥ E AN

“/

noo(); /* historical al!lignmenrt
QCHTRL = 0213;
POIO = 03
PCNTRL = 0220;
swap(b12)

a2 = O;

£d = bt3;
dand()

BQ = b14;
dspd()i

bS = NUMDEL:
delay(]);

PBIO = QFFDIG;
swap{bt2});
return;

dspd - display 4 gigits
entry — b0 = 16~bit number to display

uses - a none,
b 0

calls = dsp2.

exit = next 4 digits displayed.

dsp4a{)

A-5

*/

107 64 00 swap(bd);
t09 79 12 01 d=p2i(};
10C BA 00 swap{p0);
10E 79 12 O dsp2{);
111 66 return;
}
/* dsp2 - display 2 digits
£y
* entry = a0 = 8-pit number to display
-
* uses - a 0,1,2,3,5
* b 3,%
[]
* calls - delay.
»
* exit - next 2 digits digplayed.
[]
-/
?502{1
112 60 10 al = al;
114 38 1F al =»> 17
116 38 1F at =»> 1;
118 38 1F al =»>>» 1;
114 3B 1F a1l =»>» 1;
11C €0 3F 74 @7 bl = &tfmt;
120 75 31 b3 =+ logical{al};
122 85 33 a3 = =b3;
124 82 BF 01 OF PBIO = OFFDIG;
128 34 C1 812 =«<<< t;
12 40 F5 0OE it {lodd) goto ap21:
120 B2 83 04 PDID = a3:
120 82 B2 01 PRI = aZ:
133 ¢€a 5F 03 00 b5 = NUMDEL;
137 79 50 Q1 delay(};
134 28 20 dp21: ++a2;
13C 98 OF OF ald =& 017;
13F CQ 3F 7A 07 03 = &tfmt;
143 75 30 b3 =+ leogical{agQ);
145 g5 3] aj = #b3;
147 82 BF 01 QF PBIO = OFFDIG;
t48 34 (1 812 =<<< 1;
140 40 F5 D7 if {lodd) goto ap22;
150 82 B3 o4 PDID = a3;
153 82 82 01 PRI = a2;
156 28 20 dp22: ++a2;
158 &6 return;
}
/* bitime, delay - delay specificd time
-
* entry - bS5 = gelay count {picked up from
* BAUD by bitime}
L]
" uses ~ a 5
. S

159
150
15F
164
163

165
168
168
160
16F
171
173
175
177
179
17¢
17E
181
183
186
188

1BA
188
18E
190
193
195
197
199
t98
19D

cs
o3
68
64
58

5F FE 18

02
58
oo
Fa

12
21

3A
Q2
FO

0A
o2

calls - none,

exit — evenfually.

% B & ®

*/
bitime()}
{
pSs = BAUD;
delay: setlzero);
--b5;
if {neg) return;
goto delay:
}
/% numb = process hex numbe
*
+ entry — a2 = number keyed in
[
*# uses - a 0,1,13,14
* n 0.13,14
*
¢+ calls - none.
L
+ @xit - number shifted intoc the current
- address or data field as required.
-
=/
numb ()
{
if (bit(0,a12)) {
if {bit({2,a12)) goto chreg;
214 =<< 1;
ata =<< 1;
ald =<< 1;
atd =<< 1;
alt4 =} az2;
*pi13 = ald;
1} else {
if (bit{2,212)) goto reg2;
b = 013
shiftdl);
b13 = bQ;
a3 =& 0360;
al3 =| a2;
D14 = *d13;
}
return;
chreg: (£ {(bBit{3.,a12}) {
Bo = bl14d;
shiftal);
bi1a = pQ;
} else {
al4q =<< t;
algq =<< 1{;
altg =<< 1;
altg =«<< 1;

A-T

18F 90 E2 a1d =} a2:

141 79 33 04 regad(};
tAd4 €1 CE *dQ = bl4;
tAG 66 return;
}
/* areg - set a register mode
L]
* entry = none.
]
* uses - a 0,2,12,13,14
- b 0,12,13
*
* Calls — none.
*
« exit - display set up for a-regQister dispiay
"
»/
aregl)
{
1A7 DO CF Q4 FF b12 =] ALLDIG}04;
1AB D8 CF F6 33 bi12 =& 031766;
1AF €0 DF AC 09 B13 = A<<4;
1B3 20 20 regl: a2 = 0;
1BS 98 2F OF reg2: az =& 017;
168 98 DF ¥FO alld =& 0360;
188 90 D2 a1d = az2;
1BD 79 33 04 regad({):
tC0 €5 EOQ b1d = «gb;
1C2 &6 return;
}
/* breg - set b register mode
»
* eniry - none.
[]
" uses — a 12,13
- b t2,13
-
* Ccalls - areg.
*®
* exit - display set up for b-register display.
E]
/
bregl)
1C3 DO CF OC FF b12 =] ALLDIG!014;
1C7 D8 CF FE 3F b12 =§ 037776,
18 ¢o DF BO Q0 btd = B<<4:
1CF 5B E2 goto regl;
}
/* star - set address mode
L]
* entry - none,
-
* uses ~ a 12,13,14
. B 12,13,14

A-8

calls = none.

exit - display set up for memory disclay and
all further numbers keyed intco the
address field. Address is st 12
current user pc.

* # A K F # # 8

*/
star()
{
101 98 CF F2 al12 =& 03G62;
104 DO CF 00 FF p12 ={ ALLDIG;
108 6 DF 04 h13 = *={dsp + 4);
108 C5 ED p14 = =d13;
10D &6 return;
}
/* egual — set data mode
*
* entry — none.
*
+ uses - a 12
* o none.,
L
x calls - none.
¥
« exit - ali further numbers keyed in getl
* stored at the current address.
*
./
equal ()
iDE 90 CF 01 alz =} 1
1€1 66 _ return;
}
/ plus - increment the current address

entry - bl13 = currént address

uses - a 2.13,14
B 2,13,14

calls - none.

exit — current address incremented and
address/data mode unchanged.

— 4 4 R R R RN R RN RN
s

T us()
1E2 52 C2 07 if ('bit{2,a12)) goto 1f;
1E5 80 20 a2 = al3;
1E7 28 20 ++a2:
1E9 S8 CA goto regl;
18 68 DO 1: ++bt13;
1ED €S ED bt1d = *di13;

1EF &6 return;

)]
/* wminus - decrement the current address
]
« entry - B13 = current address
3
* Lses = a 2.13,14
* b 2.13,14
]
*+ calis - none,
*
* exit - current address decremented ang
* address/data mode unchanged.
L]
*/
minus()
1FG S2 Cc2 07 if (1bit{2,a12)) goto 1¢;
1F3 8o 2p a2 = alli;
1F5 28 28 -—a2;
1F7 58 BC goto reg2;
1F9 g8 D3 1: -=-bi13;
1FB 5 ED b14 = =d13:
1FD 66 return;
}
/* rptr - display user rp
[]
* entry - none.
L]
« uses — a 12,13,14
» b 12,13,14
[]
* calls - none.
L
* exit - current address set to lgcation
- containing the user rp.
*
./
rpte()
{
1FE 6F DF 00 b13 = &*{sp+0};
201 7D DFf 02 bid =+ 2;
204 (¢S ED rpti: b14 = +dit3;
206 DO CF Q0 FF 12 =! ALLDIG;
20A 98 CF F2 a12 =& 0362;
200 66 return;
}
/* exec - exacute user program
*
* entry = b13 = starting address
-
* uses - a o
- b &
»
* Calls - none.
L

A-10

20
210
213
214

21%
218
218
21D
220
222
225
228
22C
220
22E

22F
231
233

44 00

c2 FO 02
45

67

BO AF 7F
79 DF 00
29 AB

a0 FO F9
a4 00

80 CF 12
c2 FO 02
B2 BF 02 80
7F

45

67

01 02
FO 9A
64 01

x
*

exet - to user program.

A
exec()
{
b0 = pop();
*(dsp+2)} = b13;
rp = pop():
ireturn{);
}
/* sst - singte step user program
L]
» entry - bi3 = current address to execute
L]
uses — none,
L 3
* Calls = nane.
®
» exit - None. Interrupt will automatically
" occure before one uyser instruction
* can ccmptete.
E]
s/
sst()
{
aid = SSTDEL:
1% disp():
~=alg;
if (!'neg) goto 1bj;
5510 B0 = popl);:
a12 = 022;
»[dsp+2) = B13;
PCIC = 0200;
nopd{);
rp = popl):
ireturn();
1
/% move = move block of memory
[3
«+ entry - b8 = fwa of destination
* b% = fwa of source
* Bi0 = lwa+l of source
[]
*» uses -~ a 0,B,9
- b B,8
*x
* Ccaltls = none.
L
« exit - {b9) to {b10-1) moved to DbS8.
[]
./
move(}
{
seti{zero);
b9 - bid:

if {zero) return:

235
237
239

238
230
23F
241
243

7C0
7C6
7CC
702

703
707
708

7DE
7E4
7E6
7EC
TEE

87
83
58

E8
E8
E8
€8
66

40
72
29

68
oD
2F

99
20
S0
22
83

09
80
Fa

oo
0
00
o0

63
20
31

24
oA
69

03
02

03
02

54
a5
2E

67

72

8D
EB

29

75
748
30

73
6C

02
03

oo

74
65
0A

A9
ce
99

6F
63
(1]

02
o3
g2

al =z »b9+4+;
“bB++y = al;
goto move;

M, g

¥ K5 F 4 A B EERE NS
C
2]
L]
1]
]

shiftd4d - shift B0 left by 4

entey = b0 = 16-bit number to be shifted
logically.

catls = none.

exit - b0 shifted left 4.

»

./
?hiftd()

b0 =+ bo;
b0 =+ bO;
B0 =+ bOo;
Do =+ bO:
return;

}

char header[] “McTutor Exec 1.0%\n\r";

char ttty[] { *h', a1, gt 1s')
l\l'". i\nl' I!l' tll}
{ I/il '1‘, .l'" }:
int ttyf[]} { &half, &agdr, &run, &ss5t0 }

{ &retrn, 81inefd, &unix, &lcad }

{ &raddr, &initd, &rpoint };

/* tty - main tejetype controler
L]
* entry - none.
w
* Uses - a 0,7,10,13,14
- b 0,10,13
* calls = baud, prstring, rdity, prtty, ktype
L]
+ exit - none., (it doesn't)
»
*/
tey()

A-12

244 44 00 b0 = pon{):
246 79 Al 04 baudi(]):
249 80 7F a0 a7 = 0100
24C 80 CF 02 a2 = 02;
24F 79 76 04 Tfcr{):
252 C0 OF Co 07 513 = Gheader;
256 79 91t 04 pratringl);
259 (6 OF 02 D13 = #{dsp + 2);
as5C 79 05 04 prioc();
25F 79 Cs5 04 1: rdtty{);
262 98 EF 7F a1d =& 0177
265 49 F1 27 Q0 if {zero} yoto reset;
269 5A C4 04 if (bit(4,a32)) goto 2f;
26C 79 14 0% prity();
26F B0 EF 41 2 atd - 'A';
272 48 F2 QA if (1t} gota 3f;
275 BD EF 5A ala - '2':
278 40 F9 04 if (liteq) gote 3F;
278 90 EF 20 ald =! 040;
27E 79 3F 04 : ktype{);
281 58 OC goto tb;
}
/% raddr - set register moge
*x
+ entry — nona.
*x
* uses - a 12,13
* b none.
®
* calls — none.
[]
+ exit - state bits set up for register
* cperations.
»
*/
racdr()
283 98 CF 12 at2 =& 022;
286 90 CF 68 al2 =) 0150;
289 B0 DF AQ a13 = A<<4;
28 66 return;
}
/+* addr - ‘+' key => Set up to input address
[]
* anptry — none
-
= uses - 2 12
» o 10,3
[
= Calls = none.
L]
+ exit - current address set to origin of ram
L] and ready to be g¢hanged.
-
s/

A-13

280
290
292
295
298

299
29C
29F
242
275
228

Cc6
co
98
a0
66

&F
70
98
79
79
66

AF

CF
CF

DF
of
CF
76
05

04

12
29

o0

12
04
04

249 90 CF 80

2AC

66

agdr ()
{

o
*

* R & 2 RREFE A

+

+/

rpoint ()

Sy —

*
L
L
.
L]
*
>
L]
L]
»
L]

-/
runf()

T

& B 4 * R ¥ B

D10 = «{dsp + 4}
D13 = b10; :
al2 =8 022;

al?2 =} 04ap;
return;

rpoint - set address toe rp
entry = none.

uses - a 12,132

b 13

caltls -~ 1fcr, prioc

exit = current address set to base of

which contains the user rp,

bi13 = &+*(sp + 0);
B13 =+ 2

al2 =& 022:
1focrq}:

prioc{l);

return;

run = set exeécute Dit in status byte
entry — none.

uses ~ a 12

b none.

calls = none.

exit - execute it set so next return

will start execution.

alt2 =) Q200;
return;

prnum = print 8=bit number on tty
entry = a% = number to be printed
uses - none.

calls = prnt,

stack

2AD
2B0O
283

2B4
286
288
2BA
28C
2BE
2C
2C4q
ac7?
2CA
2CD
200

i)
204

75 B4 02
79 B4 o2

13

34
34
34
33
80
a8
80
a8
AB
AB
79
&6

oF
@9
04
o7
30
05

98 EF OF
52 €3 1C

]
L

eéxit = number printed as two hex digits.

*/
proum{ }
proti);
proif);
return;
)
/* pPrnl - print 4-bit numcer as nex digit
»
* entry - a9 = ypper 4 bits is number to be
* printed,
E
* Uses - a 9,14
- B none,
*
* calls - prtty,
L]
¥ exit - gigit printed and a9 shifted left
® by 4,
E 3
./
prnt ()
A9 =<<< 1;
a9 =<<< 1;
a9 =<<< 1;
a9 z<<< 1;
ald = ag;
atd =& Q17;:
ald - g;
PF (1teq)l goto 1F;
: a14 =+ 'A' = Q' - 10;
1: ald =+ '0°;
prity{);
return;
}
S+ tnumb - number input from tty
*
* entry - b10 = current number being built up
* atd = character input
"
* Uuses - a 0,10,12,13,14
> b 0,10,1t3
[]
* Ca!ls - shiftg,
L]
* exit - new digit shifted into the right
" of D10,
*
»/
tnumb()
{
a1d =8 017;

if (1bit(3,a12)) goto 2f:

A-15

207
2DA
200
2EQ
2E2
2ES
2E8
2€E9
2EC
2€EF
2F1
2F2
2F4
2F7
2F9
2FC
2FE
01
304
05
307

308
3cC
30F
Nz
Nns
s
3t
3E
32

52
838
BO
65
90
80
66
52
98
80
66
co
79
co

ag
5A
90
66
co
6&

B2
79
98
BO
40
22
79

66

(o)
CF
EF
a1
CF

Cs
DF
DE

0A
3B

AF
AE
cs
CF

DA

BFf
Cce
EF
EF
Fi
BO
14
76

10
BF
o8

04
B0

o7
FO

02
FO

05
o1

o1

S, bt -

8 B K & ¥ K B E ¥

./

if ('bit{6,a12)) goto 1f;
a12 =& 0277;

alg4 - #1;

if (1zerc) return:

212 =) 04;

a1t3 = Be<4,

return;

if {(!bit(5,at2}) goto 2f;
a1l =& 0360,

ald ={ al4a;

returni

b0 = bl10;

shiftd();

B10 = bO;

al0 =& 0360;

a1l =} al4;

if (bit(5,a12)}) goto 1f;
al2 =) 13

return;

13 = b10;

return;

unix = listen to modem
entry = nane.

uses - a 14.
B none.

calls = rdtty.

exit - when a 1' 18 received from the

unix() -

{

13

St

4 & & B ®F % & & & &

PCIO = 01

rdtty();

atq =& 0177,

alg - "1t

if (!zero) goto 1b;
PCIO = 0;

prity(};

1fer{);

return;

ioad ~ load hex file from modem
entry = none.

uses — a 7,8,9,13,14
D13

calls ~ rdmod, 1fcr, prioc, getbyl.

modem,

exit - next location that would have been

* load is printed. Only »:00' is
* printed from the last line ot the

= hex file if the lvad is successfull.
* Othepwise there was a checksum error
* in the last line listed,

*/
ioad()
{
322 82 BF 02 01 FCio = 01;
326 80 TF 20 a¥i = 040;
329 20 BO ag = 0;:
328 79 0D 05 1: ranod();
32E 98 EF 7F ald =& Q177;
331 BO EF 3a a4 - ':';
334 40 F1 F5 if {lzero) goto 1bD;
337 79 71 03 getbyt():
334 80 BA ag = alo;
33C 40 F1 10 if 1lzero} goto 3F;
33F 22 BO 02 2: PCLD = O;
342 8O 7F 40 a7 = 0100;
345 81 D3 hi13 = af;
347 79 76 04 1for();
344 79 05 D4 pricct);
340 &6 return;
34e 79 71 03 3: getbyt();
351 80 Ua ai3 = aid;
353 79 7t 03 getbyt{):
356 BA DO swap(b13);
358 80 DA al3 = a1Q:
3%A 79 71 03 getbyt();:
350 28 S8 3: -—39;
3SF 48 FO 08 if (neg) goto 4f;
I2 79 71 03 getbyt();
365 83 DA Hi13s+ = a10;
367 S8 F4 goto 3b;
369 79 71 03 q: gethyt(});
36C 48 F1 BOD if (zero) goto 1b;
J6F 58 CE goto 2b;
}
/* Qetbyt - accumulate 8-bit byte from hex file
L
¢ eniry - none.
*
* ugses = a 8,10
* bt none.
L3
+ calls — digit.
[3
* exit - a1l = byte read
* aB = current value of check sum.
L]
o/
getbyt()
{
371 79 B6 03 digit{);

374
376
379
37e
a7p
arF

383
385

386
389
3ec
38F
392
3985
398

399
asc

390
JA0
3A3
3Ab

a0
79
3B
an
a8
a8
20
a8
66

79
98
BO
a8
AR
a8
66

Be8
66

AE

At
At
Al
Al

8a

oD
EF
EF
Fa
EF
EF

CF

33
1F
EF
14

o3

05

39
04
09
oF

10

04
04
0A
05

a0 = a14;
digit();
ald =<< 1;
alld =<< 1
at =<< 1;
altp =<< 1
at0 =] atd;
ag =+ al10:
return;

S,

® B B B 4 B B F F B

entry = none.

uses - a 14
b none.

calls - rdmod,

*/
digtt()

rdmod({);

atd =& 0177

at4 - 'g';

if {1teq) goto 1f:
atd =+ 9;

at4 =8 017
return;

[y
wa

T,

& R & 4 B 3 & B BB R

antry = none.

uses - a 12
b none,

calls = nene.

exit - it set in at2 to
of input.

*
T

hal ()

al2 =" 420;
raturn;

retrn()
regad();
store();

atd = 'yn';
prtty(}:

A-18

digit = read hex digit from hex file

exit -~ at4 = binary value of hex gigit read

half - set half duplex mode

indicate noc echaing

3A9
3AC
3AF
382
384

ane

0T

369
3BC
IBF
3C1

3Cc4q
ace
3Co
3acc
aCF
am

an4
306
o9
306
3DE
3E1

3E3
3E4
3E7
3E9

3EB
3EE
IR
aF4q
JF7
3FA
3FC
3IFE
400
an2
405

04
02
33
03

OF
FO

04
02
04
08
02
02
05

11

04

reto:

T, et

L
L]
=
*
*
Ll
»
.
*
-
L]
1

Inf1:
prloc:

linefd - print previous

*

*

« entry - b13
*

L3

/
linefd()
{

if {'bit(7,a12)) goto 1f;
goto exec;

if ('bit{3,a12)) goto 2f;
ad = al3;

if (bit(5,a12)) goto ret0;
++al;

al =& 017;

alld =& 0360;

a1l =, ad;

crdel{);

ad = al3;

prium(};

prsp(};

regad{}:

b3 = «gd0D;

if (Ibit{2,a12)) goto 1§
swap(ond};

proium(};

swap{bd);

proum({);

prspl);

H1C = 0;

return;

if (bit(5,a12)) goto infl;
++b13;

goto Inf1;

current address

location

a0 = possible value to store in

uses - a 8,9,10,13,14

b 9,10,13

current address.

calls - store, prtty, proum, prsp.

exit = any pending values are stored in

the location if necessary ang

the previous locatian

regad{};
5t0rel);
ald = '\r';
prityl):

iF {1bit{3,a12)) goto 1f;
ao = a3,
--aQ;

goto retd:
-—bB13;
crdet{];

b9 = bl13;

A-19

is displayed.

407 6GA 90 swap(b9);

)
409 79 AD 02 prooum()
400 ©6A 90 swap(b9):
4DE 79 AD 02 proum{);
411 79 11 05 prspl);
414 8BS 9D a9 = =b13;
416 79 AD 02 proum{ };
419 79 11 05 prspi();
a1C 60 AL B10 = 0;
E 66 return;
}
/* store - store value in current location
L3
* entry - b0 = register address if necessary
* p13 = current address
L4 al0 = value to be stored there
*
*+ uses - a 19,12,13
* b 10,13
L J
*+ Ccalis = none.
-
* exit - if necessary, value stored in current
* location and status updated to
» ingicate no value 1o Le stored.
L}
./
store()
{
41F 52 CO OF if ('pit(0,a12}} goto 2f;
422 52 €3 0OA if ('bit{3,a12)) goto 1f;
425 81 0A b0 = a10;
427 52 C2 07 if (!'bit{2,a12)) goto 2¢;
42a C1 OA o0 = DI0,;
42¢ s8 02 goto 2F;
42E 81 DA 1: “Hh12 = at0;
430 €0 AQ 2: 210 = 0;
8432 &6 return;
}
/* regad - calculate user register address
*
= entry ~ at3(0-3) = register number
» +{dsp+d) = user register pointer
L}
+ uses - a 0
* b O
*
*« calls = none.
[]
« e@xit - bD = address of desired register,
L
v/
regad()
433 80 0D ap = alld:

435 pg OF QOF 00 vo =& 017

A-20

439
438
43E

a3f
aa2
445
448
44ac
aar
452
455
458
258
4s5g
ag2
466
459
468
46D
a6F
472
474

as

o1

EE OF 04

66

F5

S

* * K FEERER R KN E RN

+

*/

a0 =<< 1
b0 =+ *(dsp + 4);
return;

ktype - determine key type
entry - ald4 = as¢ii character input

uses - a 0,1,2,14
b 1,2

calls - space, addr, go, retrn, linefd, unix,
toad, tnumb.

exit - to appropriate processing routine.
In the case of 'tnumb’ characters
*a' - f' aps converted into easy
to convert values,

?type()

)

B F 4 4 B 2 ¥ A % B

~/

aid - '0';

if (1t) goto 1f;
ald - ‘g';

if {1teg) goto tnumb;
atld = 'a';

if (1t) goto 1f;
atd - 'f';

if (titeq} goto 1f;
ald =+ 9;

goto tnumb;

bt = Ettty;

b = &ttyf — 23

b2 =+ 2;

A0 = T4+

if (zero) return;
a0 -~ at4;

if (lzero) goto 1b;
b2 = *xd2;

Qoto »b2;

1fer - output linefeed and carriage return
entry - none.

uses - a 0,14
b none.

calls = prtty, bitime

exit - carriage moved to new ling and delay
done tc allow time for this.*

1fcr()

A-21

476 BO EF 0A ald4 = '\n';
478 79 14 05 prity();
47C 80 EF OO prep ! ald = '\p';
47F 79 14 Q5 prity();
482 98 CF 9E crdel: a12 =8 0236
485 80 OF 22 aD = NBIT;
488 79 59 0Ot 1: bitime():
488 28 08 -——a0;
480 40 Fi F9 if (lzero) goto 1b;
490 &6 return;
}
/% prstring -~ print out *\0' terminated string
3
+ entry - B13 = pointer to string.
»
* Uuses - a 13,14
= b 13
L]
« calis =~ prtty, crdel.,
[]
* axit - string printed out on terminal.
*
s/
prstring()
{
481 @7 ED 1: a1d = *b13++;
433 B4 01 if {zero) return;
435 79 14 05 prity(]);
438 80 EF QD atd - '\p':
498 69 F1 82 04 if {zero) croell();
49F 5B8 FO Quto b
}
/* baud - determine pbaud rate of terminal
-
= entry — BAUD = 0 => baud rate unwnown
L
* uses - a 0.5
» e 0
-
* calls = none.
-
« @xit - BAUD contains delay count that enables
* bitime to wait one bit time.
*
./
baud()
{
481 82 BF 03 92 PCNTRL = 0222;
4AS 5 OF FE B bQ = BAUD;
4A9 65 01 iF {!'zaro) return;
4dAB 5B B6 14 if (bit{b,PAID}) goto 3f;
4AE 53 BG FE 13 if ('bit{6,PAID)) goto 1b;
481 7D OF 03 1: Do =+ 3;
484 80 5F 02 as = 2;
487 80 %5 a5 = a5;

A-22

489 28 S8 2: --a5;

4BB 40 FO FC if {Ineg) goto 2b;
4BE SB BG f1 if (hit{6,PAlQ)) goto 1b:
4C1 ¢1 FO FE 1B 3: BAUD = boQ;
4aCs &6 return;
}
/* rditty = read character from tty
»
* entry - none.
L]
* uses - a2 0,1,5,6,14
* b B
*
* calls =~ delay, bitime,.
[]
» exit - al4 = character read
a
*/
rdtty{)
{
4ce 20 10 al = ;
4c8 20 EO rdto: ald - 0;
4CA 86 6B 02 ag = PCID;
4CD 82 B8F (3 92 PCNTRL = 0222:
4p1 82 Be 02 PCID = ab:
aD4 g5 0B 1: afg = PAIOQ;
406 198 07 ab =z§ a7;
4nD8 g8 01 ab =7 ai;
40A 489 F1 FH if {zerc) goto 1b;
400 C5 5F FE 18 D% = BAaul;
4ET 03 08 clearicarryl;
4E3 6A 5C swap(b5):
4E5 3C 5F as =>>% 1;
4E7 B6A SO swapinhy;
4E9 3L SF ag =>»% 1;
4EB 79 5D 01 delay(};
4EE 8¢ 6F 09 ag = 9;
4F1 28 o8 1: ~—af;
4AF3 48 Ft t4 if (z2ro) goto 2F;
4F6 79 59 01 bitwme(}:
4F9 3p EF 214 =>> 1;
4FB8 RS 0B a0 = FALD;
4FD 98 07 ad =8 a7;
4FF ga 01 al =" at;
501 40 F1 EE if {(!zerc) goto 1b;
S04 g0 EF BgO ard =) 0200;
507 58 EB golo 1b;
503 79 59 1 2: Bitime(];
50C 66 return;
}
/ rdmod - read character from modem

uses = a 1.

L]

"

* entry = nona.,
L3

E 4

. G none.

A-23

500 80 17
50F S8 B7
S11 80 EF
S14 @86 68
517 82 BF
SiB 82 B6
51E 21 BO
520 79 S9
523 80 6F
526 80 QOF
529 5A €0
52C 20 @0
52 34 EF
530 &1 BO
532 79 59
535 28 68
537 40 F1
53A 81 BF
530 79 59
540 &6

20
02
03 82
02

o1
2]
20
03

o1

ED
20
o1

& B R

»/

ramod()

{

]

& B 3 & & % X B RN

=/
prepl{)

prity:

Ty
L

* & R & 4 £ & & 4 B

exit - through rdtty.

calls - rdity,

al = a7;
goto rdtd;

uses - a 0,6,14

o none,

callis = bitime,

exit = character written

ald = ' '

ag = PCID;

PCNTRL = 0202;

PClO = ab;

PAID = G

bitime();:

ab = 8;

aQ = 040;

if tbit{0,atd)) goto
a0 = G;

814 =3>» 1

FalQ = a0;
bitimel)

--af:

if (1z2er0) goto 1b;
PAID = 040;
bitime();

return;

prom = write a prom

uses ~ a t,7,12

b none.

calls -~ verify, zapall.

out,

A-24

al4 = character read.

prtty = print character to tty.

entry = ald4 = character to be printed

out to terminal.

2F;

entry - 29 = gtarting address

exit - 1024 bytes starting at b9 are written
then the prom is verified to

. see that everything was written out
* correctly. If everything is OK the
* address digplayed will pe 400.
L]
»/
prom{)}
{
541 82 BF 03 90 PCHTRL = SETMOD ! AINP;
545 Qa2 BF 07 8¢ QCNTRL =« SETMOD;
S49 80 7F 6E a? = 110;
54c 72 BB ¢ 1: Zapaiiti);
54F 29 78 —-—a7;
581 40 F? Fa if (tzero)] goto 1b;
564 79 7B 05 varify();
857 22 BGQ 02 retd: PCIO = 0
554 0D OF BB 1B sp = USERRG - 2 - 1 - 2;
5%E €2 FF 03 35 00 *(dsp + 2) = &init;
563 22 FO 02 *(sp + 2) = 0:
566 €2 FF 00 00 18 *[dsp + 0) = RAMORG;
568 47 pushi{rp);
S6C 4D OF EC 1B rp = SYSREG;
570 ¢5 DF pa 18 b13 = USERB13;
574 5 EF DC 18 b4 = USERB14;
578 59 60 00 goto man2;
}
/* verify - verify information in prom
* entry = al12{4) = zero/data verify
* b3 = starting address for data verify
*
* uses — a 0,1,3,4,9,13,14
] = °.9||3
Y
* calls - none.
F
*+ exit = if no errors then return. If error
* then return one level up and set
* b1l te prom address in error,
* B14(15-8B} to prom data, and
. b14{7-0) to expected data.
®
v/
verify()
578 &0 DO b13 = 0;
570 20 30 al = 0
57F @0 4F 20 agq = 04G;
582 @2 BF £3 90 PCNTREL = 0220
85 B2 BFf 07 98 QCNTRL = Q233;
SBA B2 B4 02 PCIOD = a4;
580 ¢ 5F FF 3F b5 - Ox3fff;
$91 79 5D 01 delioyi);
594 B2 B3 01 1: PBLO = a3;
597 82 84 02 PCIO = ad;
59A 86 EB 04 ald = PpIO;
590 @87 19 al = *h9++;

A-25

S9F
SA
5a4
SA6
SA8
SAA
SAC
SAE
SB1
584
se7
SBA

568
SBO
SBF
S5C1

5C3
5C6
SC9
5CC
5CF
5D2
506
509
50C
S5DF
5E1

5E4
BE7
SEA
SED

80
48
GA
80
58
68
28

AB
80
48
66

co
20
20
87
82
82
82
BB
82
co

a8
g2
28
40
A8
80
48
66

1E

€0
E1
AD
DO
30
F1
af
4F
F8

- al - alq;
07 if (zero) goto 2f;
swapi{bld);
atd = al;
goto retd;
2 ++b13;
++a3;
E4 if {tzero) gato 1b;
02 a4 =+ 02;
28 ad - 050;
3] if (1t) goto 1b;
return;
}
/* zrapall - write all tocations in prom
L
* entry = b3 = starting address to write
E]
*+ uses - a 0,3,4,5,13
. b 5,13
*
* calls = none.
*
+ exit - all locations of the prom hit with a
* t msec., write pulse.
*
*/
zapali{)
13 = bg;
aj = 0;
ad = Q;
1: ald = +b13++;
a1 PBID = a3;
02 PClOD = ad;
04 PDIO = a0;
40 a4 =" 0100;
02 PCID = a4;
1C 00 b5 = 28;
o delayl();
40 aq =" D100,
02 PCIO = a4,
++a3,
DE if ('zero) gote 1b:
02 aq =+ 02:
08 a4 - 010;
05 if (1t) goto 1b;
return;
}
/* loadt - load file from tape
*
« entry - a8 x file ig
. pg = fwa of loag
-
* uses - a 1,3,7,8,9,.12,13,14
. B 13
[]

A-26

+ calls - rdbit, rdchar, rdoyte, rdnib
E]
* exit - file with matching id from tape
* lcaded into ram.
L
s/
joadii}
SEE 82 BF 03 90 PCNTRL = SETMOD | AINP:
5F2 B2 BFf ¢7 B0 QCNTRL = SETMDD:
5F6 (0 D9 B13 = bY;
5F8 98 CF §F a12 =& 037;
5FB 80 98 ag = af;
SFD a¢ FB DA if (thomeog) goto 1F;
600 90 CF 20 al2 =} 040;
603 48 F1 04 if (zero) goto 1F;
606 90 CF 40 a12 =! 0100;
609 82 BC 04 1: POIT = al2:
60C 79 B2 06 sSync = rdbitf):
B6OF 2 1F art =>» 1
611 90 10 at = al;
€613 Bo 1F 186 al = SYNC;
G6i6 40 F1 ¥4 if {lzero) goto sync:
619 B0 3F DA a3l = 10;
61C 79 8B 06 18 rdchar();
61F B8O 1F 16 al — SYNC;
622 40 F1 EB if {1zero) goto sync;
625 zZ8 38 —-——a3;
627 40 F1 F3 if (tzero} goto 1b;
62A 79 BB 06 1: rdchar{);
62D B0 1F 24 al = STARTCH;
63¢ 48 F1 09 if {zero) goto 1f;
633 BO tF 16 al - SYNC;
636 40 F{ D4 if {{zero) goto sync:
639 58 EF goto 1b;
638 €O 8F 2A 00 1! b8 = CHECKSUM; /» initialize check sum character =/
63F 79 72 06 rdbyte(};
642 54 C5 06 if (bif(5.a12)) goto 1F; /* accept anything »/
645 BOo 79 al - a9g;
647 40 F1 €3 if (!'zero) gote sync: /* wrong id =/
B64A 79 72 06 1: rdbyte{):
640 6A 70 swap(b7):
64F 79 72 06 rdbytef);
652 6A 70 swap(b?);
654 54 C6 03 if (bit{6,a12)) goto 1f; /* ignore adde on tape »/
657 o D7 Bb13 = b7;
659 79 8B 06 1: rgchar{);
65C BO 3F 2F al - ENDCH;
65F 48 F1 08 if {zero) goto 1f;
662 79 75 08 rdNiBY)
665 83 D7 *b13++ = a7;
667 68 FO gote ib;
669 79 BB 06 1: rdchar{);
66C C0 EB b14 = bR
GGE 98 EF 7F ald =4 0177;
671 66 return;

A-27

/= rdbyte-- read B-bit byte from tape
L]
s entry ~ none.
[
* uses — a 1,7
* b none.
»
*« calls = prdchar,
*
* exit - a7 = B-bit byte assembled from 2 pseudo
* ascii characters on the tape.
3
*/
rdoyte()
{
672 79 88 06 rdchar{};
675 98 1F OF rdnib: at =& 017;
678 80 1 a7t = atl;
67a 38 T a7 =<< 13
6IC 38 71 a7 =<< 13}
67E 38 Ti a7 =<< 13
680 38 71 a7 =z<< 4
682 79 BB 06 rachar|);
685 98 1F OF al =8 D17
688 90 M1 a7t =! aty
G8A 66 return;
}
/* rdchar = read pseudo ascii{ character from tape
L 3
* entry - none.
»
*« usges - a 1,2,8
» b none.
[]
s calls = prdbit.
[
» exit = al = Character reaag from tape.
»
v/
rdchar()
688 80 2F 0B az = 8;
68E 79 B2 06 11 rABIL{);
691 38 1F al =>> 13
693 90 10 at =} ao;
695 28 28 =-=a2;
697 40 F1 FS if t1zero) goto 1bjy
694 B2 B1 04 FDIO = a1;
890 gaA 81 ag =" at;
69F g0 01 a0 = at:
6A1 98B 1Ff 7F al =& 0177
6a4 O£ 00 a0 = bitsum{ao):
6A6 @88 OF O1 ap =" 1,
GA9 pDg OF Q1 00 oo =& 1;
GAD BA O swap(b0});

A-28

G6AF EB BO bl =+ BJ;

681 66 return;
1
/* rdbit - read a bit from the tape
&
* entery - noneg.
L]
* uses - a 0
* b none,
*
= ¢alls - none,
*
* exit - al(7) = bit read.
L
* npote = the logp at *2' is very time critical
* and dependant upon the way outbit puts
* out bits.
E 3
w/
rdbit{)
{
6B2 20 00 ad = 0; .
€684 53 B7 FE 1: iF (toit{7,PAIQ)) gota 1b;
6B7 28 00 2 +4a0;
689 SB B7 FC if (bit(7,PAIQ)) goto 2b;
E8C BO 0OF 20 ag - MNOISE,
6BF 48 FA F1 if (11teq} goto rdbit;
6C2 98 OF BO ao =& 0200;
6C5 686 return:
}
/* dumpt - dump file to tape
¥
« entry — aB = file id
* B9 = fwa to dump
* D10 = 1wa+l to dump
Ed
* yUses - a 1,4,7,9,10,13
* b 7,13
L]
* calls - outch, outbyte
L
* exit - fwa to Jwa stored on tape
L
*/
dumpt()
6C6 82 BF 03 80 PCHTRL = SETMOD;
6Ca B2 BF 07 80 QCNTRL = SETMOD;
6CE Ca D9 P13 = b3,
60¢ (0 1F &4 16 bi = SYNC<<8 | 100;
6D4 8A 10 13 swap{bi);
606 79 31 07 outch();
609 6A 10 swap{bil);
60B 28 18 -
600 40 F1 FS if [lzero) goto 1b;
GE0 20 20 a9 = ¢;

A-29

BE2
6ES
GEB
GEA
6ED
6EF
6F2
6F4
6F7
G6F9
6FB
B6FE
700
703
705
708
708
700
710
T3
716
719

T1A
71D
720

B0
79
B
79
co
79
6A
72
o1
FO

a7
79

58 |

890
79
80
79
a0
79
19
66

79

21

24
o7

o7
a7

a7

o8
07

2F
a7

07
04
07
07

07

79 2t 07

66

at = STARTCH;
outch();
a7 = af;
outoyte(}:
b? = b13;
outbyte();
swap{bl);
outbyte();

13 set({zero);
D10 - b13;
if {zero} golto 1f;
aT = «b13++4;
outbyte();
gote 1b;

1: at = ENDCH:
outch();
al = a9;
outchar(}:;
al = EOT;
outch{);
outch();
return;

outbyte - output one B-bit byte to tape

T
#*

entry - a7 = byte to be written
uses - none,
calls - outd.

exit - a? written out as two pseudo ascii
characters and contents of a7 unchanged.

8 &R 48 &R E

./
outbyte{)
{

outdi);
outd{);
return;

outd = output 4-bit nibble as pseudo ascii
character.
outch = output ascli character

S, it

+ B & B % % # 3 F B AEERAN

entry = a7 = 4-bit nibble to be written out (outd)
al = ascii character 10 output (outch)

uwsaes — a 0,1,2,4,7,9
b0

calls - outbit.

exit - one ascil character written to tape.

-
e

A-30

™1
723
725
127
729
728
72E
™
733
736
738
738
73E
740
742
745
749
748
74E
752
755
758
758
75D
760

TS
L=

765

766
768
768
760
T&F
N
774
776
779

34
a4
34
34
20
ag
aG
BB
B2
113
L8

34
80
a0
co
34

co
80
79
80
6A
79
28

AR
o

66

30
3F
83
52
58

08
Fi

OF
30

04

o1
01

10

FC

Fo

18

oc

out4()
{

ar =«<<< 1
a7 =<<< 1
a7 =<«<< 1;
a7 =<<< 1{;
a1 £ a?;
al =8 017;
al =} 'D';
outch: a9 =" af;

outchar:PRID atl;
al pitsum{ai);
ag 13
af
a0
at a0;
ad = g9;

1: b} = BITt;
at =>>>» 1;
if [(neg) goto 2F;
50 = BITO;

2: a2 = CYCLEO;
cutbit(});
a2 = CYCLE1:;
swap(bd);
Quthit();

nowonow o
+ o

-y
v
L
—

cutbit - output stream of bits to tape

M et

L N

entry — ab
az

length of each 1 bit

uses — a 0,3,5
b nune.

calls - none.

length is written to the tape.

*

/
outbit{)

{
al = 0;
1 ai =" 020;
PAID = a3;
as = a2;
2: -—as5;
if {'neg) goto 2b;
=-—al;
if {!zero) goto 1b;
return;

A-31

twite the number of 1 bits desired

exit — a square wave of proper frequency and

7F4
7F6
768
7FB

TFC

7FE

%% SYMBOL TABLE ws»

{BFEa
1FQ3a
1Fd7a
1F00a
1FD1a
1F02a
1F0Aa
TYAD
784D
TABD
[+2)
27t
29t
a5t
60t
=1:] 4
ant
ACY
DFT
1077
1127
1341
156t

co

L
L

58
58
FO

00

05

PC
QcC

r
i

P

s

ol

FC

BAUD
NTRL
NTRL
PATO
PRID
pCIO
POILO
tfmt
tnum
tfnc
main
eset
nito
init
man2
0001t
0003
dhey
disp
dspd
dsp2
ap21
dp22

/* powon = delay for power On

[

* entry - none.

*

* uges - a b

* bS5

]

*+ calls - reset.

*

» exit ~ Delay done to enable any transient

* interrupts caused by the noisy

* transformeer to disappear, This

] routine had to be encoded into

* the data section since it is a patch
* that must be at tre very &nd of the
& exeCutive.

./

char powon|]

{ Oxez0, Ox5b }

{ Ox68, 0x58 }

{ 0x40, OxfD, Oxfc }
{ 0x59 }i

int powr &reset;

char unused{]
{ Oxcd, 0x0%5};

A-32

V&
™
/t
/%

bS = D11 +/
1: ==b%; =/

if {Ineg) goto ib;

goto reset;

*/

-/

1597
1507
165T
172t
1BAt
188t
1971
t9Ft
1A7T
1B3t
165t
tCaT
01T
1DET
1E2T
1FQT
1FET
204t
20ET
2157
220t
22FT
2387
7C00
7030
7DED
2447
2837
2BDT
2997
2A9T
2ADT
2B4T
2DtT
JoesT
3227
37T
3867
394971
3907
389t
3EBT
402t
40587
41FT
4337
43FT
47867
47Ct
48271
491T
SALT
4C67
4CBt
5007
5117

Bitime
delay
numb
L...0005
L...0006
chreg
L.-.0007
L...0008B
areg
req
reg?
breg
star
equal
pius
minus
rpte
rpti
exec
sst
sstl
move
shiftg
header
ttty
ttyf
iy
raddr
addr
rpoint
run

P rriam
prnl
tnumb
unix
toad
getbyt
digit
half
retrn
ret
linefa
Infy
prioc
store
regad
ktype
tfer
pree
crdel
prstring
baud
rotty
rdto
rdmod
prsp

A-33

5147 - pritty
54T -~ prom
E57t = retd
S7BT =~ verify
5881 - zapall
SEEY -~ Icadt
s0Ct - 5yNC
6727 - rdoyte
6751 ~ rdnib
6807 - rdchar
6827 - rdbit
GCET = dumpt
71AT = guthyte
nmr - outd
TIT - outch
7337 = gutchar
7667 =~ outbit
7F4AD = powon
T7FCD - pawpr
7FED - unused

A-34

