

Mes-4-

FOUR-BIT PARALLEL MICRO COMPUTER SET

Features

Microprogrammable
General Purpose Computer
Set

4-Bit Parallel CPU With 45
Instructions

Instruction Set Includes
Conditional Branching,
Jump to Subroutine and
Indirect Fetching

Binary and Decimal
Arithmetic Modes

Addition of Two 8-Digit
Numbers in 850
Microseconds

® 2-Phase Dynamic Operation

® 10.8 Microsecond
Instruction Cycle

m CPU Directly Compatible
With MCS-4 ROMs and
RAMs

B Easy Expansion—One CPU
can Directly Drive up to
32,768 Bits of ROM and up
to 5120 Bits of RAM

® Unlimited Number of
Output Lines

B Packaged in 16-Pin Dual
In-Line Configuration

MCS-4 CAPABILITIES ARE EXPANDED BY THE
ADDITION OF THE 4008/4009, THE STANDARD
MEMORY AND I/0 INTERFACE SET.

Expanded Features

Directly Compatible With

4004 CPU

Interface 17702A PROMs Directly
to 4004 CPU -- Completely
Eliminates TTL Interface

Permits Program Storage in
Alterable Memory

Execute MCS-4 Programs from
any Mix of Standard Intel PROMs,
ROMs and RAMSs

Expanded 1/0 Po.* Capability

8 Each Port May be Both Input and
Output --Up to 16 4-bit Input
Ports and 16 4-bit Output Ports

® Number of /0 Ports is
Independent of the Size of
the Program Memory

8)/O Ports and Control Lines
are TTL Compatible

® New Instruction WPM (Write
Program Memory) is Used for
Loading Alterable Program
Storage (RAM)

Vi
vil,

VIl

X

X,

XHL.

Miv.
XV.

XVL

CONTENTS

InrodUEtiOn L e e e e e e 1
A. General Discussion T e e e e e e e e e e 1
B. Applications for the MCS-4 Micro Computer Set . ., it 2
C. Featuresof the MCS-4 i i it ei il 3
MCS-4 Systemn Deseription. ., L e e e, 4
A, Geperal Description e e e e 4
B. Basic System Operation e e et 5
C. MCS-4 Logic Definitions e e e]
D, Basic Systern Timing e e e e e e 3]
4 Bit Cantral Processor Unit (CPUY — 8004c. uiiuuin.. 7
F O B T T T 7
B. CPU Instruction Set Format, |ndex Register Organization and -
Operation of the Address Register and Command Lines ittt ninernnn.n 10
1. Instruction Set Format o e e e e e e e 10
2. lndex Register Orgamization e e e et e e 12
3. Operation of the Address Fegister it e r et tr et e 12
4. Operation of the Command Lines and the SRC Command 13
C. Basic Instruction Set e e e e 16
4001-266 x B8 Mask Programmable ROMand 4 Bit 1/OPoct 18
4002320 Bit BAM and 4 Bit Qutput Port e patl
4003-10 Bit Serial in/Porallel-Out, Serial Out Shift Register L., 23
Datailed Instruction Repertoire of the MCS-4 24
AL IRSTIUCHON FOMmMat . . 1o it it i e e e it ot et e e e e e e e e e 24
B. Symbols and Abbreviaions L e LS
C. Format for Describing Each Instruction et 25
D. One-word Maching Instructions ittt e e e e 25
E. Two-word Machine Instructions e e e 27
F. Input/Output and RAM INStructions ittt ittt it e i e i n e 29
G, Accumulator Group INSIFUCHIONS i i ittt e e e e e 30
An ntroduction to Programmingthe MCS-4 33
Programming Examplas . . L L. e e e 43
A. MC5-4 Program Routine Format Notes .,, it 43
B. 16-Digit Decimal Addition Routine. e 44
C.BCD to Binary Conversionttt ennaca, e 46
D. A-D Converter Using DAC with MCS-4 48
E. MCS-4 Software and Firmware Libraryo i e e 50
Interface Design for the MCS-d System i e i e 61
A General DisCUSSIONttt i it e e e e e 51
B. Keyboards it i e e e et e e e e 51
G oDisplay e e e f e 53
D, Tealetypa Interdace e 54
SIM4-01/SIMA-02 Prototyping SYSIBIM i e e e 56
A. General System Description e e e e e &6
B. SIMA-0T/SIMA-0Z Specificationso i o vt ittt it it et e e 81
C. MCS-4 Standard Memory and interface Set (400874009}0 ooa. B1
D. SiMA-01 Prototype System e e 64
E. SIMA-02 Prototype SYstemttt e e i . .70
Sample Sixtesn Digit Decimal Addition Program
{Intal ROM Program Number ADTDD) ittt 77
MCS-4 PROM Programming System e e e e e a2
A, General System Description and Qperating Instructions i a o 82
B, MP7-03 Programming System e e e a9
MC5-4 Evaluation Kit Using the 40010009 _ _ oo 98
Appendicss . L L e e e e 102
A, Electrical Characteristics of tha MCS-4 it 102
B. Systern Applications of the 400878009, 109
C. MCS4 Custom AOM Order Form ot et e et e et e 113
0. Teletype Modifications for SIMA-01/SIMA-02 i i c e 117
E. Systemn Interface and Control Modules - MCB4-10/MCB420 -.... 121
F. 5IM4 Hardware Assernbler for SIMA-01 or SIM4-02 o i 129
G.SIMA Hardware Simulatonot e i s 141
H. MCS-4 Fortran Assembler/Simulator Software Package 153
I. MCS-4 Programming Examples ey 165
Ordering InFormation o . . . i e e e e e 172
B ales O ICESt ie e ae e 172
B, DistriButOrs . .o ottt e e e e e e e e 173
C. Ordering \nformation/Packaging Information 174

NOTICE: The circuits contained herein are suggasted applications only. Intel Corporation makes no warranties whatsoever with res-
pect 10 the complataness, accuracy, patent or copyright status, or applicabllity of the circuits to a user’s requiremants, The user is
cautioned to check these circuits far applicability 1o his specific situation prior 1o use, The user is further cautioned that in the event
a patent or copyright claim s made against him as a result of the use of these dreuits, Incat shall have no liability o user with respect
10 any such clalm.

4004 Photomicrograph With Pin Designations

. INTRODUCTION — THE ALTERNATIVE TO RANDOM LOGIC SYSTEMS
A. General Discussion

Since its inception, digital computer applications have evolved from
calculation through data processing and into control. The develop-
ment of the minicomputer has vastly increased the scope of computer
usage. In particular, the use of minicomputers in dedicated appli-
cations has had a profound effect on systems design,

Many engineers have found having a minicomputer.at the heart of a
system offers significant advantages. Minicomputer systems are

more flexible, can be easily personalized for a particular customer’s
requirements, and can be more easily changed or updated than fixed-
logic design systems. For most designers, the programming of a mini-
computer is a much easier and more straightforward procedure than
designing a contrepller with random logic. :

Unfortunately, the size and cost of even the smallest minicomputer has
limited its use to relatively large and costly systems. This has
r§sulted in many smaller systems being implemented with complicated
random logic. INTEL NOW OFFERS ANOTHER ALTERNATIVE. . . THE MCS-4
MICRO COMPUTER SET.

This new concept in LSI technclogy makes the power of a general pur-
pose computer available to almost every logic designer and represents
a strong attack on the dependency of systems manufacturers on compli-
cated random logic systems. This component computer from ‘Intel can
provide the same arithmetic, control and computing functigns of a
minicomputer in as few as two 16 pin DIP's and costs neatly 2 orders
of magnitude less, :

The set 1is not designed to compete with the minicomputer, but rather
to extend the power of the concept into new ranges of applications.
For example, many systems now built of SSI and MSI TIL can now be
implemented with a totally self-contained system bullt around this
set of devices.

Heart of each system is a single chip central processor unit (CPU)
which performs all control and data processing functions. Auxiliary
to the CPU are ROM's which store microprograms and data tables; RAM's
which store data and instructions, and Shift Registers which can
expand the I/0 capacity of the system. The MCS-4 system communicates
with circuits and devices outside the family through "ports" provided
on each RAM and ROM.

A system using thls set of devices will usually consist of ome CPU,
from one to 16 ROM'’s, up to 16 RAM's and an arbitrary number of SR's.
A minimum system could be designed with just one CPU and ene ROM.

With these components, you can bulld distributed computers, dedicated
computers, or personalized computers and utilize the almost infinite
combinations of microprogramming. The designer buys standard devices,
and with microprogramming of the ROM fulfills his own unique circuit
requirements.

The three wmajor advantages of Intel microcomputers:

Great system flexibility, with easy program changes, ability
to expand or shrink the system, and small size and low power.

Expediency of design, because ROM programming is easier than
random circuit design, system checkout is easier using electri-
cally programmable and erasable ROM's, and ability to insert
new microprograms helps prevent system obsolescence.

Manufacturing economies come from simple DIP package design,
automatic insertion, lower labor costs, lower inventory of
parts and boards. -

When designing with random logic (logic gates, flip flops, etc.),
the designer will usually start with a description of the desired
function and attempt to wire counters, gates, etc, to achieve this
function. Switches, displays, etc. are also connected to the logic.
To correct errors or make changes in a design usually requires sig-
nificant changes in wiring, often requiring that circuit boards be
scrapped and replaced by new ones.

Te do the same design with the MCS-4 Micro Computer Set, the designer
again starts with the functional description. However, he implements
these functions by encoding suitable sequences of instructions in ROM.
The MCS-4 instruction set is quite complete and allows a wide variety
of functions to be performed: decimal or binary arithmetic, counting,
decigions, table-lockup, ete. Switches, displays, etc. are connected
to the system via the input and output ports.

As a result of this organization, almost the entire logic, the entire
"personality" of the machine is determined by the instructions in ROM.
Very significant modifications of machine characteristics can be made
by changing or adding ROM's without making any changes in wiring or
circuyit boards.

Thus the set offers tremendous flexibility of design and allows the
user to have many of the desirable features of a custom MOS LSI design—
small package count, a set of components which is uniquely his own

(for each user's program routines are his proprietary property)--

and yet have none of the disadvantages of long development cycle, high
development costs, etc. The short design cycle and flexibility asso-
clated with ROM programming allows much more rapid response to market
demands than is possible with custom LSI and thus provides insurance
against obsclescence.

B. Applications for the MCS-4 Micro Computer Set

Heart of the MCS5-4 micro computer set is the 4004 CPU. This device

has a powerful and versatile instruction set which allows the system

to perform a wide variety of arithmetic, control and decision functions.
The microprograms stored in the ROM devices give the designer the

power of designing custom computers with standard components. You can

use the MCS-4 almost anywhere. Here are a few examples:

Control Functions - Because of low initial cost and flexibility
of programming, the MCS-4 can be used in place of random -logic
in systems such as those in process control, numeric controls,
elevator controls, highway and rail traffic controls. By chang-—
ing ROM microprograms the whole system can easily be modified

and updated. -

" Computer Peripherals - The system can be conveniently used in
peripheral equipment to control displays, kevboards, printers,
readers, plotters and to give intelligence to terminals.

Computing Systems — The MCS-4 system is ideally suited for such
devices as billing machines, cash registers, point of sale ter-
minals and accounting machines., For example, the adding of two
8-digit numbers can be done in 850 microseconds. In addition,

the MCS5-4 can be efficiently used to decentralize central com-

puter functions.

Other Applications — The elements of the MCS-4 have many applica-
tions within transportation, automotive, medical electronics and
test systems, where inexpensive dedicated computers can improve
system performance.

C. . Features of the MCS-4

® 4-bit parallel CPU with 45 instructions

. Decimal and binary arithmetic modes

L] 10.8 us instruction ecycle

. Addition of Two 8-digit numbers in 850 psec.

. Sixteen 4-bit general purpose registers

e Nesting of subroutines up to 3 levels :

. Instruction Set includes conditional branching, jump to subroutlne,

and indirect fetching

. 2-phase dynamic operation

. Synchronous operation with memories

. Direct compatibility with 4001, 4002 and 4003

¢ No interface circuitry to memory and I/0 required

. Directly drives up to: 4K by 8 ROM (16 4001's)
1280 by 4 RAM (16 4002's)
128 1/0 lines (without 4003)
Unlimjited I/0 (with 4003's)

* lMemory capacity expandable through bank switching

® 16-pin DIP package

® P-channel Silicon Gate MOS

¢ Minimum system: CPU and one ROM

MCS4 SYSTEM DESCRIPTION

A, General Description

Each MCS~4 circuit constitues a basic standard building block which
allows the design of many different types of systems which can be
fabricated using the same parts. The only custom part is the ROM
chip which will store a microprogram defined by the user and requires
a metal mask option for each new program.

The MCS—-4 micro computer set consists of the following 4 chips, each
packaged in a 16 pin DIP package:

(1) A Central Processor Unit Chip —-CPU - 4004
(2) A Read Only Memory Chip - ROM - 4001

(3) A Random Access Memory Chip - RAM ~ 4002
(4) A Shift Register Chip - SR - 4003

The CPU contains the control unit and the arithmetic unit of a general
purpose microprogrammable computer. The ROM stores microprograms and
data tables, the RAM stores data and instructions, and the Shift Regis-—
ter is used in conjunction with I/0 devices to effectively increase

the number of I/0 lines.

The MC8-4 set has been designed for optimum interfaceability; the
CPU communlcates with the RAM's and ROM's by means of a 4-line data
bus (D This single data bus is used for all infor-
matlon flow be e the chips except for control signals which are
sent to RAM and ROM over 5 additional lines. One.CPU controls up
to 16 ROM's (4K x 8 words), 16 RAM's (1280 x 4 words), and 128 I/0
lines without requiring any interface circuit. With the addition
of few gates up to 48 ROMS & RAMS combined and 192 I/0 lines can be
controlled by one CPU,

The I/0 function, although different from the ROM and RAM functions,
is physically located in the ROM and RAM chips. Each 4001 and 4002
has 4 I/0 lines for communication with I/0 devices.

4001-ROM -~ The 4001 is a 2048 Bit metal mask programmable ROM providing

custom microprogramming capability for the MCS5-4 micro
computer set. Each chip is organized as 256 x 8 bit words
which can be used for storing programs or data tables. Each
chip also has a 4 bit input-cutput (I/0) port which is used
to route information to and from the data bus lines in and
out of the system,

4002-RAM -~ The 4002 performs two functions. As a RAM it stores 320

bits arranged as 4 repisters of twenty 4-bit characters each.
As a vehicle of communication with peripheral devices, it

is provided with 4 output lines and associated control logic
to perform output operatioms.

4003-5R - The 4003 is a 10 bit Serial-in/parallel-out, serial-out

shift register. Its function is to increase the number of
cutput lines to interface with I/0 devices such as keyboards,
displays, printers, teletypewriters, switches, readers, A-D
converters, etc.

4004-CPU - The 4004 is a central processor unit designed to work in
conjunction with the other members of the MCS-4 micro
computer set to form a completely self-contained system,

The CPU communicates with the other members of the set
through a four line data bus and with the peripheral devices

through the RAM, ROM or SR 1/0 ports.

The CPU chip con-

tains 5 command control lines, four of which are used to
control the RAM chips (each line can control up to 4 RAM
chips for a total system capacity of 16 RAM's) and one
which is used to control a bank of up to 16 ROM's.

110

1o

_ ———— Voo GND ¢, ¢y
— SYNC
8004 L+— RESET l l] l
CM-ROM ICM'RAMO
ouT von OUT out ouT
Po | 40021 P— 40021 [*— Pgo| apozz p*=— | soo2z e SYNC
40;): <] -0 Pl _ 1 fe- =L _ 2 Je— pol =3 Je—REsET
= Ll
y——
P e 7
Do,
SYNCRESET Po [20021 Pes T[a0021 Ju— %o d0022 Ju V% 40022 |- SYNC
| __-l_: S e -— L 2 J=— & 23 {|=-RESET
4001 1125 T H v]
, L— CM-RAM,
1 ? C CM-RAM,
SYNG RESET
! e ML M v AL M,
' —={ ap02-1 o —=1 40021 | T -~ 40022 __I"_ —={ ao022
I RESET™ =0 — _—— 1 Py — #2 = _— #3 Pa
I
|
—1 SYNC P Vop ? Voo
4001 = 40021 0 =™ 4qo0z1 |_T —"| so0z22 a == 40022 | T
=15 m—- +0 -j__— — 1 Po —* =2 '—j_— — #3 Py
- T = 0T 0T - T
cp SYNC RESET DgDD20: cM.RAMg cP '
DATA IN 4003 | SERIAL OUT DATAIN a3 B0 4003 SERIAL
ENABLE l l 1 E’NABLE[_' T
e T =TT
0y @ O a; @y Qg Cip Qy1 Qua

B.

Figure 1. MCS-4 System Interconnection

Basic System Operation

The MCS-4 uses a 10.8 usec instruction cycle,
‘a synchronizing signal (SYNC), indicating the start of an instructiom
cycle, and sends it to the ROM's (4001) and RAM's (4002).

The CPU (4004) generates

Basic instruction execution requires 8 or 16 cycles of a 750 kHz
clock. In a typical sequence, the CPU gsends 12 bits of address (in
three 4 bit bytes on the data bus) to the ROM's in the first three
cycles (A,, . This address selects 1 out of 16 chips and 1

out of 25% 8—§1t words in that chip. The selected ROM chip sends

back 8 bits of instruction (OPR, OPA) to the CPU in the next two
cycles (M., This instruction is sent over the 4 line data bus in
two 4 bitlbytes The instruction is then interpreted and executed

in the final three cycles (Xl, Xz, XB)' {See Figure 2)

When an I/0 instruction is. received from the ROM, data is transferred
to or from the CPU accumulator on the four ROM I/0 lines during X2
time.

A set of four RAM's is controlled by one of four command control

lines from the CPU. The address of a RAM chip, reglster and character
is stored in two index registers in the CPU and is transferred to the
RAM during XZ’ ¥, time when a RAM instruction is executed. When the
RAM output iastriiction is received by the CPU, the content of the CPU
accumulator is transferred to the four RAM output lines,

The CPU, RAM's and ROM's can be controlled by an external RESET line.
While RESET is activated the contents of the registers and flip-flops
are cleared. After RESET, the CPU will start from address O and CM-
RAM0 is selected.

The interconnection of the MCS-4 system is shown in Figure 1. An
expanded configureation is shown. The minimum system configuration
consists of one CPU (4004) and one ROM (4001).

C. MCS-4 Lagic Definitions

The MCS-4 devices operate with negative Logic. Logic "1" is defined
as the low voltage (negative voltage) Level and Logic "0" is defined
as the high voltage Level (Vgg). This definitioh will be used
throughout the manual.

D. Basic System Timing

For the correct operation of the system two non-overlapping clock
phases - 01, 02 - must be externally supplied to the 4001, 4002 and
4004. (1) The” 4004 will generate a SYNC signal every 8 clock periods
and will send it to the 4001's and 4002's. The SYNC signal marks the
beginning of each instruction cycle. The 4001's and 4002's will then
generate internal timing using SYNC and Gl, 02.

(1) The 4003 is a static shift register and does not use these two clocks
for its operatiom.

INSTRUCTION CYCLE
Instruction Sent 1n
lt———— Address Sent (10 POM Frem CPU ———mfee——— — oyl — -——— Exgrution of Instruction ——
CFU From ROM - >
Data is Dperated an in the CPU, Or
b 135 05— Bata or Address s Sent totrom the CPU
T A T T T T T Y
' A W
SYNC - j_ j_
Memory : T o T ’
Subeyeies ' Ay Ae Ay M, M, Xy Xg Xy
IHIDA™ The
The Selected 4061 Is Enzbled The CPU The CFU
The CPU s Enabled ot e - Selecred 4001
Device Is Enahied Or 4002 Are Is Enabled
Contralling Enabled, Other-
Data Bus . | wise The CPU
Qutput is Engbleg
. - . . Data or Address
Data Lawer 4.bit Middle 4-bil Highet 4t =—— Insiruction 1o CPU——— OPA Du 10 RAM's and Address to
Bus . Address to Address to Address to " ROM's I 10! RAMs I
Contents | ROM's ROM': ROM'3 {Chip OPA ta CPU SRCI2
) N 174
Seleet Codel OPR ta CPU and ROM's {Not Used) Or SRC
and RAM's i Data 10 CPU
1F10 If IDR'"*

{1F 10 instructions conbral the flow of information belween accumulatar in CAL, 170 [imes in ROM's and AAM's and RAM storage. I0R stinds for 10 Read. In the
case the CPU will receive dats fram FAAM storage ecations or 100 input lines of 4001°s.

121 The SRC mstruction designates the chip number and address Tor a Tollowing 10 mnstruction.

Figure 2. MCS-4 Basic Instruction Cycle

Figure 2 shows how a basic instruction cycle is subdivided and what
the activity is on the data bus during each clock period. Each data
bus output buffer has three possible states: "1", "0" and floating.

At a given time, only 1 output buffer is allowed to drive a data

line, therefore all the other buffers must be in a floating condition.
However, more than 1 input buffer per data line can receive data at
the same time.

1l 4 BIT CENTRAL PROCESSOR UNIT (CPU) — 4004
~ A, Desgcription

The 4004 block diagram shown in Figure 3 contains the following
functional blocks:

(1) Address register (program counter and stack organizaed as 4
words of 12 bits each) and address incrementer.

(2) 1Index register (64 bits organized as 16 words of 4 bits each.

(3) 4-bit adder. '

(4) Instruction register (8 bits wide), decoder and control.

(5) Peripheral circuitry.

The functional blocks communicate internally through a 4~line bus
and are shown in Figure 3. The function and composition of each
block is as follows:

Address Register (Program counter & Stack) & Address Incrementer

The address register is a dynamic RAM cell array of 4 x 12 bits.
It contains one level used to store the instruction address
(program counter) and 3 levels used as a stack for subroutine
calls. The stack address is provided by the effective address
counter and by the refresh counter, and it is multiplexed to the
decoder.

The address when read is stored in an address buffer and is
demultiplexed to the internal bus during A., Az, and A, in three 4-
bit slices (see Figure 2 for basic instruc%ion cycle).” The address
is incremented by a 4-bit carry look-ahead circuit (address incre-
menter) after each 4-bit slice is sent out on the data bus. The
incremented address is transferred back to the address buffer and
finally written back into the address register.

) : sYNC TEST RESET
W HQQ26e 7 i A ey
’ oars MO 2 L] Tt I Pe—
ng COMTRAL
o o] 3 1A ehAAN| TUTPITS
Voo Voo nwm, RAM n?u RAS L SYNC e M Sl
1 ? 3 } DUTPUT
INTERNAL LT Iy [171 me’ —t6¥
BUFFER RESET - = © MEMORY
‘r E/F iy l}ou s 1] rwrow {.‘;"u':'l.'??'
l ,,f},?{ﬂ“: 1 wllmr
nu’rwi]’““ o] 8 [peser
v EmraM
OUTPUT BUFFERS TIMING
- ADDRESS
I i _. > INCREMENTER
ROM | cM.ACM COMMAND DOUBLE conpimon| ¢
O——] QUTPUT | CONTROL |- CYCLE | LOGIC |
BUFFER REGISTER FIF & FIF #| AMPLIL. & MULTIPLEXER |-tin]
!]
i
; I ConTROL ADDRESS
IN-OUT FOR
purren | — SPECIAL - | | THE REGISTER
CONTROL ROM: ADDRESS OECODER {PROGRAM
REGISTER |, | DRIVER COUNTER
Dy IN-OUT & mﬁx & STACK}
ACCUMULATOR INDEX 4x 12 BIT
O] BUFFER | I~ anb canny k/F [~ oPA oPR REGISTER DYNAMIC
DECODER DECODER RAM
D ADDER
1 .2 MUX & T
O—m & SHIFTER |™ acc. [] [~
CONTROL
REFRESH BUFFER
o) ms'muc'imu DECODER || couurga | REGISTER
o] #3 ADDER i | EFFECTIVE t
INSTRUCTION REGISTER L | ADDRESS
oy ora | OPR COUnTER AMPLY,
ADB REGISTER REGISTER M & wux
O—ewl M BUFFER REG. [)
} f 4 i
DECODER INDEX
REFRESH DRIVER | | REGISTER
COUNTER & 15 x 4 BIT
MLIX, DYNAMIC RAM
INTERNAL DATA BUS

Figure 3. 4004 CPU Block Diagram

8

Index Register

The index register is a dynamic RAM cell array of 16 x 4 bits
and has two modes of operation. In one mode of operation the
index register provides 16 directly addressable storage loca-
tions for intermediate computation and control., In the second
mode, the index register provides 8 pairs of addressable stor-
age locations for addressing RAM and ROM as well as for storing
data fetched from ROM.

The index register address is provided by the intermal bus
and by the refresh counter and is multiplexed to the index
register decoder,

The content of the index register is transferred to the internal
bus through a multiplexer. Writing into the register is accom-
plished by transferring the content of the internal bus into a
temporary register and then to the index register.

4—-Bit Adder

The &4-bit adder is of the ripple-through carry type. One term of
the addition comes from the "ADB" register which communicates
with the internal bus on one side and can transfer data or data
to the adder. The other term of the addition comes from the
accumulator and carry flip-flop. Both data and data can be
transferred. The output of the adder is transferred to the
accumulator and carry FF. The accumulator is provided with a
shifter to ilmplement rotate right and rotate left imstructions.
The accumulator also communicates with the command control
register, special ROM's, the condition flip-flop and the intermal
bus. The command control register holds a 3-bit code used for
CM-RAM line switching. The special ROM's perform a code conver-
sion for DAA (decimal adjust accumulator) and KBP (Keyboard
Process) instructions. The special ROM's also communicate with
the internal bus. The condition logic senses ADD = 0 and

ACC = 0 conditions, the state of the carry FF, and the state of
an external signal (TEST) to implement JCN {(jump on condition)
and ISZ (increment index register gkip if zero) instructions.

Instruction Register Decoder and Control

The instruction register {consisting of the OPR Register and

OPA Reglster each 4 bits wide) is loaded with the contents of

the internal bus (at M. and time in the instruction cycle)
through a multiplexer and holds the instruction fetched from

ROM. The instructions are decoded in the instruction decoder

and appropriately gated with timing signals to provide the con-
trol signals for the various functional blocks. A double cycle

FF is set from any one of 5 double-length instructions. Double-
length instructions are instructions whose OP-code is 16 bits wide
(instead of 8 bits)and that require two system cycles (16 clock
cycles) for their execution. Double length instructions are stored
in two successive locations in ROM. A condition FF controls JCN
and ISZ instructions and is set by the condition logic. The state
of an external pin '"test" can control one of the conditions in the
JCN instruction.

Peripheral Circuitry

This includes:

a. The data bus input-output buffers communicating between
data pads and internal bus.

b. Timing and SYNC generator.

c. 1 ROM command comtrol (CM-ROM) and the 4 RAM command conttol
(CM—RAMi) output buffers.

d. Reset flip-flop.

During reset {(Reset pin low), all RAM's and static FF's are cleared,

and the data bus is set to "0". After reset, program control will

start from "0" step and CM-RAM_ 1is selected. To completely clear

all registers and RAM location® in the CPU the reset signal must be applied
for at least 8 full instruction cycles (64 clock cycles) to allow the

index register refresh counter to scan all locations in memory.

(256 clock cycles for the 4002 RAM),

Instruction Repertoire

Fhe instruction repertoire of the 4004 consists of:

a. 16 machine instructions (5 of which are double length)
b. 14 accumulator group instructions

c. 15 input/output and RAM instructions

The instruction set and its format will be briefly described in
the next section. Section VII will then describe each instruction
in detail.

CPU Instruction Set Format, Index Register Organization,

and Operation of the Address Register and Command Lines

1. Iastruction Set Format

a. Machine Instructions

¢ l-word instructions - 8 bits wide and requiring
8 clock periods (1 instruction cycle)

e Z-word instructions -16 bits wide and requiring
16 clock periods (2 instruction cycles) for
execution

A l-word imstruction occupies one location in ROM
(each location can hold one 8-bit word) and a

2-word instruction occupies two successive loca-
tions in ROM. Each instruction word is divided into
twe 4-bit fields. The upper 4 bits is called the
OPR and contains the operation code. The lower 4
bits is called the OPA and contains the modifier.
For a single word machine instruction the operation
code (OPR) contains the code of the operation that
is to be performed (add, subtract, load, etec.). The
modifier (OPA) contains one of 4 things:

(1) A register address

(2) A register pair address

(3) 4 bits of data

(4) An instruction modifier
10

For a 2-word machine instruction the lst word is similar
to a l-word imstruction, however, the modifier (OPA)
contains one of 4 things:

(1) A register address

(2) A register pair address

(3) The upper portion of another ROM address
(4) A condition for jumping

ONE WORD INSTRUCT{ONS

TWO WORD INSTRUCTIONS

fst INSTRUCTION CYCLE Znd INSTRUCTION CYCLE
Dy D Dy Dy D3 D3 Dy Dy Dy D Dy Dy Dy Dy Dy O, Dy D Dy Dy Dy Dy Dy Dy
x x x x x X X X X x X X x x x X X X X x X X X x
OPR oPra OPR QFa 0OPA OPA
aP CODE MODIFIER OF COCE MODIFIER : CP CODE MODIFIER
INOEX REGISTER UPPER ADDRESS MIDDLE ADDRESS LOWER ADDRESS
x| x| x|x M%DRESS R x| x[x Az Ay Az Ay Ay Ap Ax Ay Ay Ry A A
CR GR
INDEX REGISTER PAIR CONDITION MIDDLE ADDRESS LOWER ADDRESS
Xl x| x| x AD;?HES% X x I Qx| x €, € €3 g Az Ay Ap Ap | AL Ay Ay Ay
OR OR
DATA (NDEX REGISTER MIDDLE ADDRESS LOWER ADDRESS
XXX Xlp b 5 o xxxix AODRESS Ap A, Ay Ay | A A A A,
oR
INDEX REGISTER PAIR LPPER DATA LOWER DATA
o Bl ARDRESS D; D Dy D, Dy Dy Dy DOy
Table | - Machine Instruction Format
The 2nd word contains either the middle portion (in OPR} and
lower portion (in OPA) of another ROM address or 8 bits of
data (the upper 4 bits in OPR and the lower 4 bits in OPA).
The upper 4 bits of instruction (OPR) will always be fetched
before the lower 4 bits of instruction (OPA) during Ml and
My times respectively. Table I illustrates the conteiits of
each 4~bit field in the machine instructions.
b. Input/Output & RAM Instructions and Accumulator Group

Instructions

In these instructions (which are all single word) the OPR
contains a 4-bit code which identifies either the I/f0
instruction or the accumulator group instruction and the OPA
contains a 4-bit code which identifies the operation to be
performed.Table II 11lustrates the contents of each 4-bit field.

INFUTOUTPUT &
RAM INSTRAUCTIONS

ACCUMULATOR GROUP
INSTRUCTIONS

O3 D, Dy 0 Dy D; D Dy

X x X X X X X X

OPR _ OPA

1 1 1 1 X X X X

WHERE X = EITHER A “0" OR A “1°.

Table H - 1/O and Accumulator Group Instruction Formats

1

Index Register Organization

The index register can be addressed in two modes

a. By specifying 1 out of 16 possible lecations with an OPA
code of the form RRRR(1) (See Table III).

b. By specifying 1 out of 8 pairs with an OPA code of the
form RRRX(2) (See Table III).

Wnen the index register is used as a pair register, the even
number register (RRRO) is used as the locatfion of the middle
address or the upper data fetched from the ROM, the odd number
register (RRR1) is used as the location of the lower address
or the lower data fetched from the ROM.

REGISTER
NUMBER

SINGLE REGISTER ADDRESSING REGISTEA PAIR ADDRESSING

|
14 15 ?
I
. |
Ly 3 e
I
—» 10 1 5
|
|
9 9 4
|
|

6 7 R — REGISTER

i NUMBER

4 5 2
]
¥
2 3 1
}
' !
] 1 0
]

Table 111 - Index Register Organization

Operation of the Address Register (Program Counter and Stack)

The address register contains four 12-bit registersj one register
is used as the program counter and stores the instruction address.
the other 3 registers make up the push down stack.

Initially any one of the 4 registers can be used as the program
counter to store the 1instruction address. In a typical sequence
the program counter is incremented by 1 after the last address

ig sent out. This new address then becomes the effective address.
If a2 IMS (Jump to Subroutine) Instruction is received by the CPU,
the program control is transferred to-the address called out in
JMS instruction. This address is stered in the register just
above the old program counter which now saves the address of

the next instruction to be executed following the last Jms. (3)
This return address becomes the effective address following

the BBL({Branch back and lcad) instruction at the end of the
subroutine.

(1) In this case the instruction is executed on the 4-~bit content addressed

by RRRR.

(2) 1In this case the instruction is executed on the 8-bit content addressed
by RRRX, where X is specified for each instructionm.

(3) Since the JMS instruction is a 2-word instruction the old effective
address is incremented by 2 to correctly give the address of the next
instruction to be executed after the return from JMS.

12

ADDRESS REGISTER ADDRESS REGISTER
NO IMS . 3
RECEIVED ™ - RECEVWED ™ PROGRAM COUNTER [|w—— i;';‘ncggf
BrrECT N — | procRam counter |- RETURN ADDRESS #1
PROGRAM COUNTER PUSHED UP ONE LEVEL
JMS %2 JMS #3
LA PROGRAM COUNTER .. RETUAN ADDRESS #3
RETURN ADDRESS #2 ’ RETURN ADDRESS #2
RETURN ADDRESS #1 RETURN ADDRESS #1
PROGRAM COUNTER
RETURN ADDRESS #3 RETURN ADDRESS #3
JMS #4 BBL
A B RETURN ADDRESS #2 B RETURN ADDRESS #2
PROGAAM COUNTER
AETUAN ADDRESS #4 PROGRAM COUNTER
THE DEEPESY REYURN ADDRESS IS LOST PROGHAM COUNTER PUSHED DOWN ONE LEVEL

Table 1V - Operation of the Address Register on a Jump to Subroutine Instruction

In summary, then, a JMS instruction pushes the program counter
up one level and a BBL instruction pushes the program counter
down one level. 8Since there are 3 registers in the push down
stack, 3 return addresses may be saved. If a fourth JMS occurs,
the deepest return address (the first one stored) is lost.

Table IV shows the operation of the address stack.

4. Operation of The Command Lines and the SRC Command

The CPU command lines (CM-ROM, CM-RAM;} are used to control the
ROM's and RAM's by indicating to them how to interpret the data
bus content at any given time.

The command lines allow the implementation of RAM bank, chip,
register and character addressing, ROM chip addressing, as well
as activating the instruction control in each ROM and RAM chip
at the time the CPU receives an I/0 and RAM group instruction.

In a typical system configuration the CM-ROM line can control
up to sixteen 4001's and each CM-RAM; line can control up to
four 4002's.

Each CM-RAM; line can be selected by the execution of the DCL
{(Designate Command Line) instruction. The CM-ROM line, however,
is always enabled. (1)

(1) 1If the number of ROM's in the system needs to be more than 16, external
circuitry can be used to route CM-ROM to two ROM banks. The same comment
applies to the CM~-RAMj lines if more than 16 RAM's need to be used.

13

For the execution of an I/0 and RAM group instruction the follow-
ing steps are necessary:

(1) The appropriate command line must be selected (by DCL)
(2) The ROM chip and RAM chip, register and character must

be selected using the SRC (Send Register Control) instructiom.
(3) An I/O and RAM instruction must be fetched (WRM, RDM, WRR,

o« 0. W) :

|X3!A1|ﬂ2|A3|M1|Mz|X1|X2|X3|A1fﬁ2|ﬂs|M1|Mz|X1|lex3|A1|A2|A3|M1|M2|x1|xz[x3|A1|A2|A3|M||M2|

sync Y] v
DCL | 1 . SRC 1/Q0 AND RAM
FETCHED [| \ | I) ’ | FETCHED * ™ INSTRUCTIGN FETCHED
CM-RAM, CODE IS TRANSFERRED TO
THE COMMAND CONTROL REGISTER

CM-ROM e | . | . | Y s WY d

CM-RAM, | -

Igi CM-AAM, IS DEACTIVATED

CMRAT] L/ I W f

CM-RAM, 15 ACTIVATED

r

e ‘ Wt 77
\.ﬂ_.l
THE 8-BIT ADDRESS THE MODIFIER (QPA}
BENT BY THE CPU OF THE)0 AND RAM
IS RECEIVED BY INSTRUCTION 1S RECEIVED
ROM's AND RAM's BY ROM's AND RAM's

Figure 4. Operation of the Command Control Lines
Following is a detalled explanation of each step.

(1) Prior to execution of the DCL instruction the desired
CM-RAM; code must be stored in the accumulator (for example
through an LDM instruction).

(2) During DCL the CM-RAM{ code is transferred from the accumu-
lator to the command control register in the CPU. One
CM-RAMy line 1s then activated (selecting one RAM bank)
during the next instruction which would be an SRC.

The CM~RAM; code remains in the command control register until
a4 new DCL instruction is received. Each time a new SRC
instruction is executed it will operate on the same RAM bank.
This allows all RAM and I/0 instructions to be executed
within the same RAM bank without the necessity of executing
another DCL instruction each time. DCL does not affect
CM-ROM. Only the RAM on the designated command line will latch the SRC.

If up to 4 RAM chips are used in a system, it is convenient
to arrange them in a bank controlled by CM-RAM_. This 1s
because CM-RAM, is automatically selected after the appli-
cation of at least one RESET (usually at start-up time.} In
this case DCL is unnecessary and Step 1 & 2 are onitted).

14

(3) The SRC instruction specified an index register pair in
the CPU, whose content is an 8-bit address (this 8-bit
address has previously been stored in the register pair)
used to select a RAM chip, register and character and a ROM
chip. This address is sent to the data bus during X2 and
X3 time of the SRC imstruction cycle., At X2 time the
CM~ROM line and the selected CM~-RAMj line are in a logic
true state to indicate which bank of RAMs and ROMs are to
respond to the 8-bit address that is now on the data bus.
The 8-bit address is interpreted in the following way:

~a) The first 4-bits (X2 time) select
one chip out of 16; a flip-flop 1s

by the ROM's 9 set in the selected chip.
b) The second 4-bits (X3 time) are
- ignored.

a) The first four bits sent out at X2 time
select one out of four chips and ome out
of four registers. The two higher order
bits (D3, D2) select the chip and the two
lower order bits (Dj, Dg) select the
register.

[AY

by the RAM's
b) The second 4-bits (X3 time) select one
4-bit character out of 16; The address
is stored in the address register of
\L__ the selected chip.

(See Section V for a detailed description
of the RAM chip)

(4) At this time one ROM chip and one RAM chip, register and
character,have been selected. If the CPU fetches an I/O
and RAM instruction, it will cause the CM-ROM and the
selected CM-RAMj line to be logical true at My time, This
allows the previously selected ROM's and RAM's to receive
the modifier of the instruction. The selected ROM and
RAM will decode the instruction (as well as the CPU) and
appropriately execute it during the execution time cof the
same instruction cycle, '

It should be added that the CM-ROM and the selected CM-RAM;
lines are always in a logical true state at Aj time of any
instruction cycle. '

CM-ROM equals "1" at A3 time indicates to ROM's that the
code at A3 time is the chip number of a ROM within their
bank. This feature allows the user to expand the system
to more than 16 ROM chips.

CM-RAM; equals "1'" at A3 time has no meaning for the RAM
chips, however, it could be meaningful if ROM's and RAM's
were controlled by a CM-RAM3 line.

Figure 4 summarizes the operation of the comnand lines in
the various instruction cycles.

15

[Those instructions preceded by an asterisk {*) are 2 word instructions that occupy 2 successive locations in ROM]

C.

Basic Instruction Set

Table V shows the basic instruction set of the 4004 (CPU).
Section VII will describe each instruction in detail.

MACHINE INSTRUCTIONS (Logic 1 = Low Voltage = Negative Voltage; Logic 0 = High Voltage = Ground)

OPR OPA
MNEMONIC D30,0,0, D3 D; Dy Dy DESCRIPTION OF OPERATION
NOP o0 ao 0000 No operatlon,
. Jump to ROM address Ap A Ag Ag, A1 Aq Ay Aq (within the same
Jecn 0001 C162C3Cy ROM that contains this JCN instruction) if condition Cy Cog Cy C4{1"'
Ag Az Ag Ag A Ay A Ay is trug, otherwise skip {00 to the next instruction in sequence).
*FIM 0010 R RRO Fetch immediate (direct) from ROM Data Do, Dq to index register pair
Dy Dy B, Dy Dy Dy D, Dy tocation RAR. (2}
SRC 0010 R R R 1 Send register control. Send the address {contents of index register pair RRR)
to AOM and RAM ar Xg and X3 time in the Instruction Cycle,
FIN 0011 RERERID Fetch indirect from ROM, Send contents of index register pair locatjon Q
out as an address. Data ferched is placed into register pair focation RRR.
JIN 001 1 AR R 1 Jump indirect. Send contents of register pair RRR out as an address
at Aq and A9 time in the Instruction Cycle.
' A An An A
* LN o100 3"3anans | .
A, Ay Ay Ay Ay A] A A, Jump unconditional to ROM address Az, Ag, Aq
MBS 0101 Az AgAg Ag Jump to subroutine ROM address Az, Ao, A, save old address. (Up 1 level
A2 A2 A2 Az Aﬂl A1 A1 A1 in stack,)
INC 0110 RRRR Increment contents of register RRAA, (3)
152 01 1 1 RRRR increment cantents of register HRAA. Go to QM address Az, Ay
A A A Ay Ay Al A twithin the same ROM that contains this ISZ instruction} if result *0,
2A2A2 Ay 1711 ™M atherwise skip (go to the next instruction in sequence),
ADD 19000 RRRR Add contents of register RRRR to accumulator with carry.
suB i 001 RRRR Subtract contents of register RRRR to accumulator with borrow,
LD 1010 R RRR Load contents of register RRRA to accumulatar,
XCH 1011 R RRA Exchange contents of index register RRRR and accumulator,
BBL 1100 DODDD Branch back {down 1 ievel in stack} and load data DDDD to accumulator.
LDM 11 01 DDDUD Load data DDDD to accumulator,

Table V - Basic CPU Instruction Set

16

INPUT/OUTPUT AND RAM INSTRUCTIONS

{The RAM's and ROM's operated on in the 1/0O and RAM instructions have been previously selected by the Jast SAC instruction exacuted.}

OPR OPA
. DESCRIPTION OF OPERATION
MNEMONIC g 0, Dy Oy DaD; 040y
— Write the contents of the accumulator into the previously selected
WRM t1 10 0000 RAM main memory character,
Write the contents of the accumulator into the previously selected
wiP 1Vv10 coo RAM output port. {Qutput Lines}
_ Write the contents of the accurnulatar into the previously selected
WRR t1 10 o110 ROM output port. (1/0 Lines}
111 @ 00 11 Write the contents of the accumulator into the previously selected
WPM half byte of read/write program memory {for use with 4008/4008 only)
Write the contents of the accumulator into the previously selected
WR¢ s r1 10 010090 RAM status character 0.
Write the contents of the accumulatar into the previously selected
wr1 ! 1110 ® 1t 01 RAM status character 1.
Write the contents of the accumulator inta the previously selected
wr24) 1110 0t 14 AAM status character 2.
Write the contents of the accumulator into the previously selected
Wﬂsmi 1110 0111 RAM status character 3. .
Subtract the previousy selected RAM main memory character from
SBM 1110 1000 accurmulator with borrow.
. Read the previousty selected RAM main memory character
RDM 11 1o 1001 into the accumulator, -
Read the contents of the previously selacted ROM input port
ROR 1110 1010 into the accumulator. [1/0 Lines)
Add the previously selected RAM main memory character 1o
ADM 1T110 1011 accurmwlator with carry.
ROD¢ i4) 1110 11 00 Read the previously selected RAM status character O into accumutator.
RD1 (4} 111 40 11 01 Read the previously selected RAM status character 1 into acoumulator,
RD?“' 1110 1110 Read the previously selected RAM status character 2 into accumulator.
HDS{‘“ 1 1140 11 11 Read the previousty selected RAM status character 3 into accumulator,

ACCUMULATOR GROUP INSTRUCTIONS

CLB 11 11 0000 Clear both, [Accumulator and carry}

CLC 11 11 0001 Clear carry,

1AC 11 11 0010 Increrment accumulatar,

CMC 11 1 1 0 ao1t Complement carry,

CMA 1111 a1 00 Complement accumulator.

RAL : 1111 o1 0t Ratate left, {Accumulator and carry}

RAR 11 1 1 0110 Rotate right. {Accumulator and carry}

TCC Tt 1 11 a1 11 Tranzsmit carry 1o accumulator and clear carry,
DAC 11 1 1 Tt 000 Decrement accumulator.

TGS 1111 100 1 Transfer carry subtract end clear carry.

STC 1111 1010 Set carry.

DAA 11 11 101 1 Decimal adjust accumulator.

KBP 1111 : 1100 ;(::mrgfﬁngfrezzdiogu:r;? nt::: c:on‘;ee.ms of the accumulator from a
BCL 11 11 T 1 01 Designate command line.

NOTES: {lhrhe condition code ¢ assigned as follaws:

Cy =1 Invert jump condition Cy =1 Jump if accumulator is zero Cgq=1 Jump if test signal js a O
C| =0 Not Invert jump candition CS =1 Jump if careyfiink s a 1

'mﬂﬂﬁ is the address of 1 of B index ragister pairs in the CPU,
mlﬂﬂﬂﬁ is the address of 1 of 16 Index registers in the CPL.

(4}Eau_:h RAM chip has 4 registers, each with twenty 4-bit characters subdivided Into 16 main memory characters and 4 status characters,
Chip number, RAM register and main memory character are addressed by an SRC instructlon, For the selected chip and register, however,
ttatus character locations are selected by the instruction code {OPA},

Table V - Basic CPU Instruction Set {Continued}
17

IV. 4001 - 2566 x 8 MASK PROGRAMMABLE ROM AND 4 BIT I/0 PORT

(1

The 4001 performs two basic and distinct functions: As a ROM it stores

256 x 8 words of program or data tables; as a vehicle of communication

with peripheral devices it is provided with 4 I/0 pins and associated control
logic to perform input and output operatioms. (The block diagram is shown

in Figure 5.)

In the ROM mode of operation the 4001 will receive an 8-bit address during
Al and A time (see Figure 2) and a chip number, together with CM-ROM
during A3 time. When CM-ROM is present, only the chip whose metal option
code matches the chip number code sent during A3 (CSE = "1") is allowed
to send data out during the following two cycles: My and M. The activity
of the 4001 in the ROM mode ends at M. Before going into the I/0 mode

of operation we must first review two basic instructions used in conjunc-—
tion with it.

1. SRC Instruction (Send address to ROM and RAM)

When the CPU executes an SRC instruction it will send out 8 bits of
data during Xy and X3 and will activate the CM-ROM and one cM-ram{L
line at X3, Data at Xp, with simultaneous presence of (M~ROM, is in-
terpreted by the 4001 as the chip number of the unit that should later
perform an I/0 operation. Data at X3 1s ignored. In the case of the
4002, data at Xp will designate the chip number (one out of 4 chips)

and the register number (one out of 4 registers); data at Xq will desig-
nate the 4-bit character (one out of 16) to be operated upon. After
SRC only one 4001 and one 4002 will be ready to execute a following

I/0 instruction. :

2. 1/0 and RAM Instructions

I/0 and RAM instructions allow the CPU to communicate with the I/0 ports
of the 4001's and 4002's. When the CPU receives an I/0 instruction it
will activate the CM-ROM and one CM—RAM line during M2, in time for
4001's and 4002's to receive the second part (OPA) of the I/0
instruction. The OPA portion of the I/O instruction is a code
specifying which I/0 operation should be performed. There are

15 different operations possible. The only ones affecting the

4001 operation are RDR -~ read ROM port, and WRR - write ROM port.

In the I/0 mode of operation, the selected 4001 (by SRC) after recelving
RDR will transfer the information present at its I/O pins to the data
bus at Xp. If the instruction received was WRR, the data present on

the data bus at Xp.p will be latched on the output flip-flops associated
with the I/0 lines.

Only one out of four CM-RAM lines 1s allowed to be activated at any given
time, CM-RAM line selection (RAM bank switching) is accomplished by the
CPU when a '"designate command line" (DCL) instruction is executed. If no
DCL is executed prior to SRC, the CM-RAM, will automatically be activated
at X2 provided that RESET was applied at least once to the System (most
likely at the start-up time). See detailed definition of system instruc-
tion in Section VII.

18

Figure 5 shows the block organization of the 4001. The ROM array has a
dynamlc mode of operation and is divided into twe blocks of 16 x 64
cells each. Multiplexing is needed for both address to address register
and data to data bus output buffer operations.

The MTC flip-flop controls the outputting of data. It is set at A,,

(see Figure 2), if CM-ROM and CSE (chip select) are "1". CSE is a single
4-input AND gate of the 4 data bus lines, using Di or Di according to

the chip number that the user wants to assign to the chip. This

is accomplished by metal mask option.

The SRC flip-flop is set by CM-ROM and CSE at X,, (see Figure 2), and
presets the I/0 logic for a following ifiput or ocutput operation.

TIMING generates all internal timing signals for the ROM and I/0
control using S¥YNC, @1 and @p. A RESET 1) signal will clear all static
flip-flops and will inhibit data out.

The output flip-flops associated with I/0 pins can also be cleared
using an external CL pin.

(1) RESET is used for the start-up of the system.

RESET Vpp GND

T 9%

11ty | LIWES
9] —] (A 1oy
63— ROM TIMING LI M. Vo U8V
SYNC —=—] i O o Eﬁg‘
riiet)e, O £ Fhaia Lwees
e Lgvwe RESET
i 3 PRECHARGE & READ
INFUT PARTIAL ADDRESS X .
surrers [T pecoper ["X || recister T]oecoper]™] 16 x 64 ROM 1 CONTROL
) #2 TIMING
SYNC —|
=] SENSING & Y DECODE l """"" - l l
MULTIPLEXING DATA
: BUS
w-t SENSING & ¥ DECODE 4 LINES)
x|l ouwu-:ﬁaurfens
X NH
i ECODER 16 x 64 AOM 1 7
PRECHARGE & READ 1/0 CONTROL INHIBIT
LOGIC LOGIC
Y) |
»| cse weuT OUTPUT I SRAC MTC
PORT PORT FF FF
t . t¢] }

Dy
; c . 0 © o] ?u
L a0 CL RESET CM 2
" (4 LINES) D3

Figure 5, 4001 ROM Block Diagrarn/

19

ROM Options and Ordering the ROM
Each 1/O pin on each ROM can be uniquely oo wox | e Ly e oo,
chosen to be either an input or output line BUFFER {PIN 1}
by metal option. Also each input or output)
can either be inverted or direct, When the]
pin is chosen as an input it may have an on- : ser | oureur
chip resistor connected to either VDD or VSS, Logic FiE
Figure 6 shows the available options for each 2 2
1/O pin. 3|‘!’) |4
When ordering a 4001 the following informa- { i o oy
tion must be specified: 5 TTﬁnu 16)
1. Chip number . ° e od
2. All the metal options for each I/O pin = l | -
3. ROM pattern to be stored in each of the |,
256 locations. o o be
A blank customer truth table is available upon 8 B v
request from Intel. A copy of this table is . T
shown in the appendix. 10y, 10y, AND i/0, 7 I
FOLLOW THE SAME FORMAT. "= v =GND 19

Figure 6. 4001 Available Metal Options for Each 1/O Pin

V. 4002 - 320 BIT RAM AND 4 BIT OUTPUT PORT

The 4002 performs two distinct functions. As a RAM it stores 320 bits
arranged 1n 4 registers of twenty 4-bit characters each (16 main memory
characters and 4 status characters). As a vehicle of communication

with peripheral devices, it is provided with 4 output lines and associated
control logic to perform ocutput operations. {(The block diagram is

shown in Figure 7).

In the RAM mode, the operation is as follows: When the CPU receives

an SRC instruction 1t will send out the content of the designated index
register pair during Xy and X3 and will activate one CM-RAM line at X9 for
the previously (1} selected RAM bank.

The data at Xy and X4 is interpreted as shown below:

X2 X3
D3z D2 D4 Dg Dz Dz D1 Dy
Chip No., Register No, Main Memory Character Na,
{0 thraugh 3}) {0 through 3) {0 through 15)

The status character location (0 through 3) as well as the operation to be
performed on it are selected by the OPA portion of the I/0 and RAM instructions.

(1) Bank switching is accomplished by the CPU after receiving a "DCL"
(designate command line) instruction. Prior to execution of the
DCL instruction the desired CM-RAM code has been stored in the ac-
cumulator (for example through an LDM instruction.) During DCL
the CM-RAM code is transferred from the accumulator to the CM-RAM
register. The RAM bank is then selected starting with the next
instruction.

20

For chip selection, the 4002 is available in two metal optiomns, 4002-1
and 4002-2. An externmal pin, Py, is also available for chip selection.
The chip number is assigned as follows:

Chip No. ; 4002 Option | Po | D3D2@Xz
o] 4002-1 GND 00
1 4002-1 VDD a1
2 4002-2 GND 10
3 4002-2 ! VoD 11
* I PRECHARGE _
- . ' STATUS CHARACTER MEMORY
_ STATU! 4x4x4CELLS
",‘rfm':: X-ADDRESS CHARACTER —
*1 'REGISTER DECODER | o
o k4]
E >
f 4 - ; g
b z MAIN MEMORY
4% 16 x 4 CELLS
MAIN
MAIN | mﬁuﬁf’ § MEMORY g
TIMING contror |51 REFRESH DECODER | F
. COUNTER
o -
SYNC
1 —0 f REFHESH AMPLIFIERS
#20—— -
- 10 MULTIPLEXER
Y
oM o— Y-REGISTER i) s hhy 444 ISy
ro T 1 TYYY TYYY YYYY VUV
o~ R BT
INH.IN _
¥ Dof OATA BUSS 9V
.lu.i: 5 o] 4INES 1/ BUFFERS OUTPUT FLIP/FLOPS [a—rey RESET
d - —C GND
INH. OUT
[M [} 0o
LTI oy] 12 3 -t 1‘ l l i © RESET i i i i
LOCK MEWRY
Pt Lol L] o CONTRGL Dy Dy Dy Dy 0Og Oy [+ Oy
Fralige w-hwmmﬁ
fyne " NPT
weyr ;FYNELY B RESET

Figure 7. 4002 RAM Block Diagram

Presence of CM-RAM during'XZ tells 4002"s that an SRC instruction was
received, For a given combination of data at Xy on Dy, D3, only the

chip with the proper metal option and P0 state will be ready for the

I/0 or RAM operation that follows.

The twenty 4-bit characters for each 4002 register are arranged as
follows:

1. 16 characters addressable bj an SRC instructicen: Four 16-
character registers constitute the "main' memory.

2. 4 characters addressable by the OPA of an I/0 instruction:

Four 4-character registers constitute the "status character"
memory. '

21

Two separate X decoders switch between main and status character
memories.

When an I/0 or RAM instruction is received by the CPU, the CPU
will activate one CM-RAM line during My , in time for the 4002's
to receive the OPA (2nd part of the instruction), which will
specify the I/0 or RAM operation to be performed. Shown below
is a list of the 15 possible I/0Q and RAM operatlons.

The I/0 and RAM operations are divided into Read operations (IOR)
and Write operations (IOW)., The state of D, will determine if
the operation is a read or a write. Dq = 17for IOR, D3 = 0 for
I0W (see Basic Instruction Set, shown in Section IIlc),

For each I/0 instruction the action is as shown in the following

table:
Instr. | 4001 4002 4002 4001 Data Bus Output | 4002 Data Bus Output | 4004 Data Bus Output
Mnem. | 1/O Opaer. O Oper. RAM Op. Buffer Enabled Buffer Enabled Buffer Enabled
WRM " x
. WMP X %
AR . . . e]
WR1 X *
WR2 X ; X
WR3 x X
RDOM : X X
HDR a * P
ADM x ' ' x
RDY x T x
RD1 x b3
RD2 T .x. X
'RD3 | x x

In the I/0 mode of operation, the selected 4002 chip (by SRC), after
receiving the OPA of an I/0 instruction (CM~RAM activated at My},
will decode the instruction.

If the instruction is WMP, the data present om the data bus during .
X2.92 will set the output flip-flops associated with the I/0
pins. That information will be available until next WMP for
peripheral devices control,

An external signal - RESET - when applied to the chip, will
cause a clear of all output and control static flip-flops and
will clear the RAM array. To completely clear the memory, RESET
must be applied for at least 32 instruction cycles (256 clock
periods) to allow the internal refresh counter to scan the mem-
ory. During RESET the data bus ocutput buffers are inhibited
{floating condition).

Figure 7 shows the block organization of the 4002. The RAM
array uses a dynamic cell, therefore it must be periodically
refreshed. A refresh counter scans the memory array and the
memory content is refreshed during an idle portion of the sys-—
tem cycle (M; and My}. An address multiplexer allows loading
the content of either the refresh counter or the address regis—
ter into the decoder.

The RAM control is composed of an SRC flip-flop, chip selection
logic, an instruction register, instruction decoder and I/0 con-
trol logic. This block controls the loading of the address
register, the status and main memory decoder switching, the gen-
eration of memory timing, the enable of the data bus input-output
buffers, the RAM read/write operations, and the loading of the
output flip-flops.

VI, 4003 t10-BIT SERIAL-INIPARALLEL-OUT, SERIAL-OUT SHIFT REGISTER

The 4003 is a 10-bit serial-in, parallel-out, serial-out shift
register with enable logic. The 4003 is used to expand the number
of ROM and RAM I/0 ports to communicate with peripheral devices
such as keyboards, printers, displays, readers, teletypewriters,
etc.

Data is loaded serially and is available in parallel on 10 output

lines which are accessed through enable logic. When enabled (E = low),
the shift register contents is read out; when not enabled (E = high),
the parallel-out lines are at Vgg. The serial-out line is not af-
fected by the enable logic.

Data is alsc available serially permitting an indefinite number
of similar devices to be cascaded together to provide shift register
length multiples of 10,

The data shifting is controlled by the CP signal. An internal
power-on-clear circuit will clear the shift register (Qi = Vgg)
between the application of the supply voltage and the first CP sig-
nal.

The 4003 output buffers are push-pull ratio type, useful for mul-

tiple key depression rejection when a 4003 is used in conjunction

with a keyboard. In this mode if wup to three output lines are connected
together, the state of the output is high (Logic "0") if at least one

Jire is high.

The 4003 is a single phase static shift register; however, the

clock pulse (CP) maximum width is limited to 10 msec. Data-in

and CP can be simultaneous . To avoid race conditions, CP is

internally delayed. :

Fig. 8 shows the block organization of the 4003.

Vpp GND

[

CI;OI'?EER A - ml*ﬁ‘#ﬁﬂ er 1 16 JE emasLE mPUT
LEA
N ; . ; ; | ; . } ; . } . } } r + 55(;_::"- uate m[}2 18 [sesusL our
D;:ITA m: l Irllli'.' éIT SlHIF'!r REIGIS’!I'ER: l ,",u“{ﬂn s 5] . T
HDELAY . ouTHITY
> I { (STATIC CELL) | | : LAY [o+ ufle
—] |
Cl CP, | | 1 | | | GND Vg [12,
AN s o o wcfe e
c?)llNJS?EYR i et N 10f e,
* | e (jm

—»| DELAY

cr ‘

¥ ¥ ¥ ¥ ¥ ¥

! I | b I M S | |

E_-' | | I 1 |
(ENABLE) | 10 BIT PARALLEL |

| : OUTPUT BUFFER | :

| 1 I Il

I R R

Ty Oy O Q3 Q4 Q5 Qg 0Oy Qg Oy

Figure 8. 4003 Shift Register Block Diagram
23

VH. DETAILED INSTRUCTION REPERTOIRE OF THE MCS-4

A. Instruction Format

As previously discussed, the MCS5-4 micro computer set has two types
of instruction.

a) 1 word instruction with an 8-bit code and an execution time of
10.8 usec.

b) 2 word instruction with a 16-bit code and an execution time of
21.6 psec.

Due to the time multiplexed operation of the system, the B8-bit in-
struction is fetched 4-bits at a time on two successive clock periods.
The first 4-bit code is called OPR, the second 4-bit code is called
OPA.

The instruction formats were illustrated in Tables I and II

B. Symbols and Abbreviations

The fellowing Symbols and abbreviations will be used thorughout the
next few sections:

() the content of

—_—— is transferred to

ACC Accumulator (4-bit)

CY Carry/link Flip-Flop

ACEBR Accumulator Buffer Register {(4-bit)

RRRR Index register address

RRR Index register pair address

P, Low order program counter Field (4-bit)
Py Middle order program counter Field (4-bit)
Py High order program counter Field (4-bit)
ai . Order i content of the accumulator

My Order i content of the command register

M RAM main character location

M RAM status character i

DB (T) Pata bus content at time T

Stack The 3 registers in the address regilster other than

the program counter.

Throughout the text '"page' means a block of 256 instructions whose ad-
dress differs only on the most significant 4 bits. (all of the instruc-—
tions on one page are all stored in one ROM).

Example: page 7 means all lecations having addresses between
0111 0000 0000 and 0111 1111 1111

24

Format for Describing Each Instruction

Each instruction will be described as follows:

(1} Mnemonic symbol and meaning
(2} OPR and OFA code
(3} S8ymbolic representation of the instruction

(4) Description of the instruction {1f necessary)

(5) Example and/or exceptions (if necessary)
D. One Word Machine Instructions

Mnemonic: NOP (No Operation)

QPR OPA: Qoa0 oooo

Symbolic: Not applicable

Description: No operation performed

Mnemonic: LDM (Load Data to Accumlator)

OPR OPA: 1101 DDDD

Symbolic: DDDD .—» ACC

Description: The 4 bits of data, DDDD stored in the OPA field of
instruction word are lecaded into the accumulator. The
previous contents of the accumlator are lest. The
carry/link bit Is unaffected.

Mnemonic: LD {Load index register to Accumulator)

OPR OPA: 1010 RRRR

Symbolic: {RRRR)—=A(C

Description: The 4 bit content of the designated index register (RRRR)
1s loaded into the accumulator. The previous contents
of the accumulator are lost. The 4 bit content of the
index register and the carry/link bit are unaffected.

Mnemonic: XCH (Exchange index register and accumlator)

OPR OPA: 1011 ERRR

Symbolic: (ACC)—=~ ACBR, {RRRR)—= ACC, (ACBR)=*> RRRR

Description: The 4 bit content of the designated index register is
loaded Into the accumulator. The prior content of the
accumulator is loaded into the designated register. * The
carry/link bit is unaffected.

Mnemonic: ADD (add index register to accumulator with carry)

OFR OPA: 1000 RRRR

Symbholic: (RRRR} + {ACC) + (CY) —> aCC, CY

Description: The 4 bit content of the designated index register is
added to the content of the accumulator with carry.
The result is stored in the accumlator. The carry/link
ig set to 1 if a sum greater than 15,5 was generated to
indicate a carry out; otherwise, the carry/link 1s set
to 0. The 4 bit content of the index register is un-
affected.

Example: Augend Addend
(ACC) (cy) (RRRR)

y |

a3 a2 &1 ag ’
<0

+} T3 r2 r]p g €

CARRY ——= ¢4 g4 82 8] sg <— SUH

{CY) {ACC)

25

Mnemonic: SUB (Subtract index register from accumulator with

horrow)
OPR OPA: 1001 RRRR (o)
Symbolic: (acc) + (RRRR) + (CT) — acc, Cv

Description: The 4 bit content of the designated index register is
complemented {ones complement} and added to content of
the accumulator with borrow and the result ie stored in
the accumalator. If a borrow is generated, the carry
bit is set to 0; otherwise, it is set to 1. The & bit
content of the index register is unaffected.

Example: Minuend Subtrahend
(ACC) (CY) (RRRE)
a3 ag aj ag [
P
]

+) T3 Ty T T0 ¢

Borrow —» €4 By 8y 8] 55— Result
R 72 I i

(cY) (ace)
Mnemonic: INC (Increment index register)
CPR QPA: 0110 RRER
Symbolic: (RRRR) +1 —» RRRR

Description: The 4 bit content of the desipnated index reglster is
incremented by 1. The index register iz set to zero
in case of overflow. The carry/link is unaffected.

Mnemonic: BBL (Branch back and load data to the accumulstor)
OFR 0PA: 11¢0 DDDD . .
Symbolic: (Stack}—3 Pp, By, PH; DDDD —> ACC

Description: The program counter{address stack)is pushed down one
level. Preogram comtrol transfers to the next instruction
following the last jump to subroutine (JMS) imstruction.

The 4 bhits of data DDDD stored in the OPA portion
of the instruction are Ioaded to the accumulator.

BBL is used to return from subroutine to main program.

Mnemonic: JIN G (Jump indirect)
OFR (QFPA: 0011 XRR1
Symbolic: (RRRO} — Py

(RRR1} —» Pr; Py unchanged

Description: The 8 bit content of the designated index register pair
is loaded into the low order & positions of the program
counter. Program control is transferred to the instruc-
tion st that address on the same page (same ROM) where the JIN
instruction is located. The 8 bit content of the lndex
register is unaffected.

EXCEPTIONS: When JIN is located at the address (Py) 1111 111! pro-
gram control is transferred to the next page in sequence
and not to the same page where the JIN instruction is
lecated. That is, the next address is (Py + 1) (RRRD)
(RRR1) and mot {Py) (RRRO) (RRR1}

Mnemonic: SRC (Send register contrel)
OPR OQFA: 0010 RERR1
Symbolic: (RRR0O)-— DB (X2)

(RRR1)—>- DB (X3)

Description: The 8 bit content of the designated index register pairx
is sent to the RAM address register at X2 and X3. A
subsequent read, write, or If0 operation of the RAM will
utilize this address. ' Specifically, the first 2 bits of
the address designate a RAM chip; the second 2 bits desig-
nate 1 out of 4 reglsters within the chip; the last 4 bits
designate 1 out of 16 4«bit main memory charmcters within
the reglster. This command is also used to designate a
ROM for a subsequent ROM I/0 port operation. The first
4 bits designate the ROM chip number to be selected. The
address in ROM or RAM 1is not cleared until the next SEC
instruction 18 executed. The 8 bit content of the index
registar 1s unaffected. .

26

Moemenic:
OPR. OPA:
Symbolic:

Description:

EXCEPTIONS:

FIN (Fetchk indirect from ROM)

0011 RRRO

(Pp} (000Q) (0001) — ROM address

(OPR) — RRR)

{OPA} —> RRR]

The B bit content of the 0 index register pair (0000)
{0001} is sent out as an address in the same page

where the FIN instructicn is located. The 8 bit word

at that locaticn is loaded into the designated index
register pair. The program counter is unaffected: after
FIN has been executed the next instruction in sequence
will be addressed. The content of the 0 index repister
palr is unaltered unless index register O was designated.

a) Although FIN is a l-word instruction, its execution
requires two memory cycles (21.6 psac).
b} When FIN is located ar address {Pg) 1111 1111 data

will be fetched from the next page(ROM)} in sequence and
not from the same page (HOM) where the FIN instruction is
located. That ls, next address is (PH + 1) (0000)
(0001} and not (Pg) (000D) (CO01).

E. Two Word Machine Instruction

Mnemonic:

lst word OPR QPA:
2nd word OPR OFPA:

JUN {Jump unconditional)
0100 A3 Az A3 A
Az A Ay A2 A il A1 Ay

Symbolic: A1 A1 Al A] —>P1,, A2 A2 A2 Ap —PM, A3 A3 A3 A3 —» Py

Description: Pregram control is unconditionally tramsferred to the
instruction locater at the address A3 A3 A3 A3, Ay A2 A; A7,
Al A Ay Al

Mnemonic: JMS (Jump to Subroutine)

lst word OPR QPA:
2nd word OPR OPA:

0101 A3 A3 A3z A3
A2 A2 A2 Ap Al AL Al

Symbolic: (P, PM, PL + 2)})—>»Stack
Al Al &1 Ay —>PL, A2 A2 Ap A2 —> P,
A3 A3 Aq A3 —> Py _
Description: The address of the next instruction in sequence following
JMS {return address)} is.saved in the push down stack.
Program contrel is transferred to the instruction located
at the 12 bit address (A3A3A3A3A2ﬁ2AzAzAlﬁlﬁlAl). Execu-
tion of a return instructicon (BEL} will cause the saved
address to be pulled out of the stack, therefore, program
contrel i1s transferred to the next sequential instruction
after the last JMS.
The push down stack has 4 registers. One of them is used
as the program counter, therefore nesting of JMS can occur
up to 3 levels.
EXAMPLE: Stack . Stack
Ko JMS JMs #1
received ~? teceived -
Program Counter
Program Counter Return address #1
Stack Stack
Program Counter
_, s 42 Program Counter = MS #3 Return address {3
recelved received 7 >
o Return address #2 Return address #2
Return address #1 Return address #1
Stack
Return address #4 Program Counter
JMS #4 Return address #3 BBL . Return Address #3
- received —> received —¥
Return address #2 Return Address #2
FProgram Counter

The deepest return address is lost

27

Mnemonic: JCN (Jump conditional)
1st word OPR OPA: 0001 C]1C2C3Cs
2nd word OPR OPA: A2A2A2A7 AJAJAJA]
Symbolic: If C1C2C3C4 1is true, ApA2A247 —PM
AldA4 _’PL . PH unchanged
if C1C€2C3C4 is false,
(Pp) —»Pus (P} — Py, (PL + 2)—3> Py
Description: If the designated conditdon code is true, program control
is transferred to the instruction located at the 8 bit
address ApAjAsAn, AjA[AjA; on the same page (ROM) where JCN is
located.
If the condition is not true the next instruction in
sequence after JCN is executed.
The condition bits are assigned as follows:

€1 = 0 Do not invert jump condition

Cl = 1 1Invert jump condition

C2 =1 Jump if the accumulator content 1s zero

€1 =1 Jump if the carry/link content is 1

C4 =1 Jump if test signal (pin 10 on 4004) is zero.
Example: OFR OFA

0001 0110 Jump if accumulator is zero or carry = 1

Several conditions can be tested simutanecusly.

The logic equation describing the conrdition for a
jump is give helow:

JUMP = 1 . ((ACC = 0) . Gz + (CY = 1) . C3 + TEST . C4) +

€1 . ((ACC = 0) . C2 + (CY = 1) . C3 + TEST . Ca)

EXCEPTIONS: 1f JCN is ldcated on words 254 and 255 of a ROM page,
when JCN is executed and the condition is true, program
contecl is transferred to the B8-bit address on the next
page where JCN is located,

Monemonic: ISZ (Increment index register skip if zero)
lst word QPR OPA: 0111 RRRR
2nd wo?d OPR OPA: AEAZA%AZ AlAlAiAl

Symbolic: (RRRR) + 1 —»RRRK, if result = 0

(Fg}) — Pr , (PM)} —» Py, (PL + 2} — Py:
if result # 0 (Pg)— Pg,
A2A282A7 »PM, AlA1AlAL -5 PL

Description: The content of the designated index register is incremented
by 1. The accumulator and carry/link are unaffected.
If the result is zero, the next instruction after ISZ is
executed. If the result is different from 0, program control
is transferred to the instruction located at the & bit
address ApAAZA7, A1A1A1A1 on the same page (ROM) where
the I3Z instruction 1s located.

EXCEPTIONS: If ISZ is located on words 254 and 255 of a ROM page, when
ISZ {s executed and the result is not zero, program contrel
is transferred to the B-bit address loecated on the next
page in sequence and not on the same page where ISZ is
located.

Mnemondc: FIM (Fetched immediate from ROM)
lst word OPR OPA: 0010 RRRO '
2nd word OPR OQPA: DpD2D2D2 D1D1D1D1
Symbolic: D2D2D2D2 5 RRRO
D1D1D1D] — RRRI
Degcription: The 2nd word represents 8-bits of data which are loaded
into the designated index register pair.

Input/Output and RAM Instructions

(The RAM's and ROM's operated on in the I/0 and RAM instructions have
been previously selected by the last SRC instruction executed,)

Mnemonic: RDM (Read RAM character)

OPR OFA: 1110 1001

Symbolic: (M) — ACC

Description: The content of the previcusly selected RAM main memory

: character is transferred to the accumlator, The carry/link

is unaffected, The 4~bit data in menory Is unaffected.

Mnemonic: RDO (Read RAM status character 0}

OBR OPA: 1110 1100

Symbolic: (HSD) —3 ACC

Description: The 4-bits of status character 0 for the previcusly selected
RAM register are transferred to the avcumuiator, The
carry/link and the status character are unaffected.

Mnemonic: RD1 (Read BAM status character 1)

OFR DPA: 1116 1101

Symbolic: Mgy} — AcCC

Mnemonic: RD2 (Read RAM status characer 2}

OPR OPA: 1110 1110

Symbolic: (Mg} --> ACC

Mnemonic: RD3 {Read RAM status character 3)

QPR DPA: 1110 1111

Symbeolic: (M53) —s ACC

Mnemanic: RDR (Read ROM port)

OPR QFA: 1110 1610

Symbolic: (ROM input iines} —— ACC

Description: The data present at the input lines of the previously
selected ROM chip is tramsferred to the accumulator, The
carry/link is maffected.
If the I/0 option has both inputs and outputs within the same
4 1/0 lines, the user can choose to have either "0" or
"1" transferred to the accumulator for those I/0 pins
coded as ocutputs, when an RDR instruction is executed.

EXAMPLE: Given a 4001 with I/0 coded with 2 inputs and 2 outputs,
when BDR is executed the transfer is as shown below:
I3 0z 01 Ig (Acc)
1 X X 0 % 1l (ox0) (Loro 0
% A K N
Input Data User can chooge

Mnemonic: WRM (Write accumulator into RAM character)

OPR OPA: 1110 QOo0

Symbolic: (4CCYy — M)

Description: The accumulator content is writkem into the previcusly
selected RAM main memory charactir location. The accu-
wulator and carry/liok are unaffected.

Mnemonic: WRO (Write accumulator into RAM status character 0}

OFR OPA: 1110 0100

Symholic: (ACC) — Mgo

Description: The content of the accumulator is written into the RAM
status character 0 of the previously selected RAM register.
The accumulator and the carry/link are unaffected.

Mnemonic: WR1 (Write accumulater into RAM status character 1)

OFR 0QPA: 1110 0101

Symbolic: (ACC) —» Mgy

Mnemonic: WR2 (Write accumulator into RAM status character 2)

OPR OPA: 1113 0110

Symbolic: (ACC) —» Mgy

Mpemonic: WR3 (Write accumulator into RAM status character 3)

OPR OPA: 1i10 0111

Symbolic: (ACCY — Mgs

Mnemonic: WRR (Write ROM port)

OPR 0OPA: il10 9010

Symbolic: (ACC) -——» ROM output lines

Description: The content of the aceumulator is tramsferred to the ROM
output port of the previously selected ROM chip. The data
is available cn the output pins until a new WER is executed
on the same chip. The ACC content and carry/link are um-
affected. {(The LSB bit of the accumulator appears on L/0p,
pin 16, of the 4001). WNo operation is performed on I/0
lines coded as inputs.

Mnemonic: WMP- (Write memory port)

QPR OPA: 1119 G001

Symbolic: (ACC) —» RAM output register

Description: The content of the accumulator is transferred to the RAM
output port of the previously selected RAM chip. The data
is availsble on the output pins until a new WMP is executed
on the ssme RAM chip. The content of the ACC and the
carry/link are unaffected. (The LSB bit of the accumulter
appears on Og, Pin 16, of the 4002.)

Mnemonic: ADM (Add from memory with carry)

OPR OPA: 1110 1011

Symbolic: (M) + (ACC) + (CY) > ACC, CY

Description: The content of the previously selected RAM main memory
character is added to the accumilator with carry. The
EAM character is unaffected.

‘Mnemonic: S5BM (Subtract from memory with borrow)

OFR QOPA: 1110 1000 o

Symbolic: (M) + (ACC) + (CY¥) —» ACC, CY

Description: The content of the previcusly selected RAM character is
subtracted from the accumulator with berrow. The RAM
character is unaffected,

G. Accumuiator Group Instructions

Mremonic: CLB (Clear both)

OPR. OPA; 1111 Q00C

Symbalic: 0 — ACC, 0 — CY

Description: Set sccumulator and carry/link to 0.

Mnemonic: CLC (Clear carry)

OPE OPA: 1111 0001

Symbelic: 00— CY

Description: Set carry/link to 0

Mnemonic: CMC (Complement carry)

OPR OP4: 1111 001l

Symbolic: {cY) — C¥

Descriptien: The carry/link content is complemented

Muemonic: STC (Set carry)

OPR OPA: 1111 1010

Symbolic: 1 CY

Description: BSet carry/link to a l

Mnemonie: CMA {(Complement Accumulator)

OPR OPA: 1111 0100

Symbolic: azazalap —» ACC

Description: The content of the accumulator is complemented. The

carry/link is unaffected,

Monemonic: IAC (Increment accumulator)
OPR OPA: 1111 0010
Symbolic: (ACC) + 1 —» ACC
Description: The content of the accumulator is incremented by 1. No
overflew sets the carry/link to 0; overflow sets the
carry/link to a 1.
Moemonic: DAC (decrement accumulator)
OPE QOPA: 1111 1000
Symbolic: (ACC) - 1 —» ACC
Description: The content of the accumulator is decremented by 1. A
borrow sets the carry/link to 0; no borrow sets the
carryflink to a 1.
EXAMPLE: {ACC)
a3 a7 &1 &g
+1 1 1 1
C4 S3 Sz Sl SO
A e
ACC
Mnemonic: RAL (Rotate left)
OPR OPA: 1111 0101 .
Symbolic: Co —ags 8y —> 844 1, 43— cY
Description: The content of the accumulator and carry/link are rotated
left.
Mnemenic: RAR ({Rotate right)
OPR. OPA: 1111 0110
Symbolic: ag —CY, aj —» aj.1, Cp—>» ay
Description: The content of the accumulater and carry/link are rotated
right.
Mpemonic: TCC (Transmit carry and clear)
OFR 0OPA: 1111 0111
Symbolic: 0 —»ACC, (LYY — a0, 00— CY
Description: The accumulator iIs cleared. The least significant posi~
tion of the accumulator is set to the value of the
carry/link. The carry/liuk is set to 0.
Mnemonic: DAA (Decimal adjust accumulator)
OPR 0OPA: 1111 1011
Symbolic: (ACC) + 0000 5 ACC
or
0110
Description: The accumulator is incremented by 6 if either the carry/link
is 1 or if the accumulator content 1s greater than 9. The
carry/link is set to a 1 if the result generates a carry,
otherwise it is unaffected.
Mnemonic: TCS (Transfer carry subtract)
OPR OFPA: 1111 1001
Symbolie: 1001 —» ACC 1if {CY) =0
1010 —» ACC if {CY) = 1
0 — OY
Description: The accumulator is set to 9 1f the carry/link is 0.

The accumulator is set te 10 if the carry/link 1s a 1.
The carry/link 1s set to 0.

K]

Mnemonic: KBP (Keyboard process)

OPR 0OFPA: 1111 1100

Symbolie: (ACC) —» KBP ROM —» ACC

Description: A code conversion is performed on the accumulator content,
from 1 out of n to binary code. If the accumulator con-
tent has mere than ome bit on, the acommulator will be
set to 15 {to indicate error). The carzy/link is unaffected.
The conversiom table is shown below

{ACC) before KEP (ACC) after KBP

00040 — 0000
0001 —_— 0001
0010 —_— 0oc1leo0
01090 —_— 0011
1000 _— 0104
0011 _— 1111
0101 _— 1111
0110 —_— i1111
0111 —r 1111
1001 ———— ey 11111
1610 —————— 1111
1011 _— 1111
1100 —_— 1111
1101 —, 1111
1110 _— 1111
1111 —_— 1111

Mnemonic: DCL (Dezsignate command line)

OPR OPA: 1111 1101 ’

Symbolic: ag —r My, a) —» CMy, a; —» CMp

Description: The content of the three least significant accumulator
bits is tramnsferred to the comand control register within
the CPU.
This instruction provides RAM bank selection when multiple
RAM banks are msed.(If no DCL instruction is sent out,
RAM Bank number zero is automatically selected after appli-
cation of at lease one RESET).DCL remalns latched until it is changed.,

The selection is made according to the following truth

table.
{ACC) CM - RAM; Enabled Bank No.
X000 CM - RaMg Bank O
X001 CM - RAMy Bank 1
X010 CM - RAM» ' Bank 2 _
X100 CM - RAM3 Bank 3
X011 CM - RAMq, CM - RAM3 Bank 4
X101 CM - RAM4,CM - RAM3 Bank &
X110 CM - RAMo, CM - RAM3 Bank 6
X111 CM - RAMq, CM - RAMo, CM - RAM3 Bank 7

A 3205 (3 of & decoder) or low power TTL equivalent may be tied to the CM-RAMy,
CM-RAMg, and CM-RAM3 lines to expand the number of RAM banks to 8. Note that
the command lines must be buffered for MOS compatibility. See below.

cMRAMG RAM BANK
Ty R B
. A
i5 |SMRAML Aol Py Il > RAM BANK
CM-BAM, p 0
L o9 RAM2 1 I, |
: A Q
: '3 3 A2, i 1= !
1004 3205 40|23 > [
cPU DECODER _, Oy . |
= P
0,4
14}—= I
Qg
15 .__D_ RAM BANK 7

ViIl. AN INTRODUCTION TO PROGRAMMING THE MCS-4

A,

Introduction .

Writing sequences of instructions for a computer is known as programm-
ing. To be able to program a computer effectively, the programmer

must understand the action of each of the machine instructions. (The
instruction set of the MCS-4 is described in detail in the last section.)

Each machine instruction manipulates data in some way. The data may
be the contents of the program counter which indicates where the next
instruction is to be found, the contents of one of the CPU registers,
accumulator, or carry flip-flop, the contents of RAM or ROM, or the
signals at a port.

Programming is probably most easily learned by use of examples. In the
pages that follow, a number of sample program segments are described.
In general, the examples are shown in order of increasing complexity.
These examples have been chosen to illustrate the use of the I/0 ports,
basic program loops, multiple precision arithmetic, and the use of
subroutines.

EXAMPLE #1

Consider the case where 1t is desired to test the status of a single
switch connected to the CPU (4004 chip) on the test input {pin 10).

A jump on condition instruction (JCN) can be used to perform this test.
Suppose the JCN instruction: JCN TEST, 16 (2 word instruction) is stored
at ROM memory locations 2 and 3. The instruction would look as fellows:

OPR QPA
C102C3C4
Location #2 0001 0001
(JCN) (Jump if test signal = Logic "0')
Location #3 0001 0000

(Jump to ROM memory Location # 16)

When this instruction is executed , if the switch connects a logic "“0"
(ground) to the test pin of the CPU, the program counter in the address
register in the CPU will jump to 16. (That is, the next instruction to
be executed would be fetched from ROM Memory location 16). If the switch
had been connected to a logic "1" (negative voltage) the program counter
would not jump but would be incremented by 1 and hence the instruction

in ROM memory location 4 would be executed next. Thus the switch status
can be tested simply with one instruction. Furthermore, 1f it were
desired to jump if a test signal equalled a logic ™"1", the JCN instruction

. could be coded

OPR OPA
C1C203C4
Location #2 0001 1001 Inverted jump condition
o N
Location #3 0001 0000

In this case the invert condition bit C] is used to indicate a jump
is to be made on a logic "1" on the test signal.

If more switches are required a ROM port may be used as shown in the
next example.

EXAMPLE #2

Consider the case where it is desired to test the status of a switch
connected to the port of ROM #2. To make access to the port, it is
necessary to execute and SRC instruction. The SRC instruction utilizes
the contents of a pair of registers, which must contain the proper num—
bers to select the desired port. Register pairs may be most easily
loaded using the FIM instruction.

Thus the sequence

Mnemonic Description
FIM 0 /Fetch immediate {(direct) from ROM data (0010, 0000),
2,0 to index regiser pair 0.
SRC 0O /Send the contents of index register pair 0 to select

a ROM. The first 4 bits of data sent out at Xo time
(0010) select ROM #2.

RDR /Read to contents of the previously selected ROM (ROM #2)
input port into the accumulator

has the effect of loading the accumulator with the values appearing at
ROM port #2. Individual bits may be tested by shifting them into the
carry flip-flop and using a jump on condition instruction. In this
manner up to 4 switches can be interrogated from one set of ROM input
ports (4 of them).

EXAMPLE #3

Suppose a serles of 10 clock pulses must be generated, perhaps to drive
the clock line of a 4003 port expander., Let us assume that RAM #3 is
to be used. The high order 2 bits of data sent out at Xy time during
an SRC instruction selects the RAM chip. Hence 1100 (binary equivalent
of 12) is required at X7 to select RAM #3.

Since we must select the port on RAM #3 we will require

FIM 0
12, ©
SRC 0

This pair of instructions sets up the desired port for use. To generate
the clock pulses, we must alternately write 2 1 and an O into the appro-
priate port bit. Let us assume that we will only use the high order bit
of the port on RAM #3 and that it 1s initially set at zero (so that the
program does not have to reset it). Furthermore, let us assume that we
do not care about the other three bits of the port.

34 : L

First let us set the accumulator to 0
IDM 0 /Set accumulator to O

We may then complement the high order bit of the accumulator by the
sequence

RAL /Rotate left (accumulator and carry)
CMC /Complement carry
RAR /Rotate right (accumulator and carry)

which achieves the operation by shifting the bit into the carry flip-flop,
complementing it, and shifting it back.

An alternate way to complement the high order bit is to add 8 (binary
1000) to the accumulator. We may set the contents of one register,
say register 15, to 8 by the sequence:

ILDM § fLoad data DDDD (1000) to the accumulator.
XCH 15 /Exchange contents of index register 13 and accumulator
IbM 0 /Load {0000) to accumulator

The first instruction loads the binary number 1000 into the accumulator

and the second places the contents of the accumulator into register 15.

Since the prior contents of register 15 are also placed in the accumula-
tor, an LDM instruction is then executed to clear the accumulator.

Now the operation ADD 15 will add the binary value 1000 to the accumula-
tor, because Register 15 contains the value 8.

Note the difference in how the LDM and the XCH and ADD instructions
utilize the second half of the instruction. The LDM loads the accumu-
lator with the value carried by the instruction i.e. in binary code

LDM 8 appears as 1101 1000 and loads the accumulator with 1000. How-—
ever, the ADD and XCH select a register, and the contents of the regis-
ter are used as data. That is, ADD 8 would add the contents of register
8 to the accumulator, not the value 8.

To generate the sequence of 10 clock pulses, one could repeat the

following 4 instructions 10 times, '

ADD 15 /Add contents of register 15 (1000 |
previously stored in the register)
to accumulator

WMP /Write the contents of the accumu-
lator into the previously selected
RAM output port

L one clock pulse
generated

ADD 15

However, this would take some 40 instructions. The indexing operation
available with the I5Z instruction allows a program loop to be repeated
10 times.

The IS5Z instruction increments a selected register. If the register
initially contained any value other than the value 15 {(binary 1111)
the instruction performs a JUMP to an address specified by the in-
struction. This address must be on the same page (within the same
ROM) as the instruction immediately following the ISZ.

If however, the register originally contained 15, the CPU will proceed
to execute the next imstruction in sequence.

By loading a register, say register 14, with the value 6, on the 10th
execution of an ISZ, the processor will proceed to the next instruction
in sequence rather than jump.

Execution of the I8Z does not affect the accumulator, so that the
accumulator does not have to be "gaved" prior to its execution.

The program sequence which performs the desired action is then

Address
Instruction # Name Mnemonic OPA Description
(1L LDM 8 /Load 1000 teo accumulator
(2)) XCH 15 /Exchange contents of index register 15
and accumulator
(3) LDM 6 /Load 0110 to accumulator
(4) XCH 14 /Exchange contents of index register 14
and accumulator
{5) FIM 0 /Fetch immediate from ROM, Data (1100 0000)
12, 0 to index register pair location 0
(6) SRC 0 /Send address (contents of index register
pair 0) to RAM
(7) LDM 0 /Set accumulator to O
(8) —> LOOP ADD 15 fAdd contents of register 15 to accumu-
lator
(9) WMP /Write contents of accumulator into RAM
output ports
(10) ADD 15 /Add contents of Register 15 to accumu~
lator
(11) WMP /Write contents of accumulator into RAM
output ports
(12) ISz 14 /Increment contents of register 14. Go
LOOP to ROM address Az, Ay (called Loop) if

result #0, otherwise skip.

Explanation of Program

(a) Imnstruction #1 and #2

|

(b} Instruction #3 and #4

(c) TInstruction # 5

{(d) Instruction #6 -

(e) Instruction #7

(f) Instructiom #8, 9, 10,
and 11 -

Loads the number 8 (1000) into index regis-
ter number 15 (1111)

Loads the number 6 (0110) into index regis-
ter number 14 (1110)

Fetches the address of the desired RAM and
stores 1t in an index register pair

Sends the stored address to the RAM bank
and selects the desired RaM

Initializes the accumulator to 000Q.

Generates one clock pulse as follows:

Complement of highest order bit of accumulator and
Send back to RAM output port (Instruction #8 and 9)

7

Initial state of RAM
output port

(g) Instruction #12 -

Example #4

T

Highest order bit of accumulator
is complemented again and sent
back to the RAM output port (In-—
structions 10 and 11)

The contents of Register 14 is incremented
by 1 (0001}. The number 7 (0111) is now
stored in register 14. Since this result

is not equal to zero, program control jumps
to the address specified in the 2nd word

of this instruction. In this case the
address gtored in the 2nd word is the address
of instruction #8, The program then exe-
cutes the next 4 instructions in sequence
and generates a 2nd clock pulse. This
sequence is repeated a total of 10 times,
thus generating 10 clock pulses. On the 10th
time when the contents of register 14 is
incremented it goes to the value 0000 and

the program skips to the next instruction

in sequence and gets out of the loop.

Clock pulse streams of the type derived above are often used to drive

groups of 4003 shift registers. It may often be desirable to transfer
the contents of a RAM register to a group of 4 shift registers via two
output ports. Fig. 9 shows the connection used. :

To operate this system, it is necessary to fetch a character from RAM
and present it at port #2, then issue the clock pulse at port #1. This
sequence requires three SRC commands, one for the RAM selection, one
for port #1 selection, and one for port # 2 selection.

37

In addition, the location in RAM must be incremented each time to pro-
vide selection of the next character,

7 SEGMENT DISPLAY
4003 S—
CLOCK 20y 1 I
4003 | k Do .
RAMPORT 14 O Do l l_
—0
—0 Qg 0, 4003
4003 ' Lo
| oo
Qp Q4
4003
DATA, I_T o
— g bc_
RAM PORT 2 2003
- 4003 Qy Oy
—0 T Po
| o OF {NGT USED)
Figure 9. RAM Output Ports Driving Groups of Shift Figure 10. Shift Registers Driving Seven Segment LED
Registers Displays

Loop,

The main loop is then as follows:

« BRC

RDM
SRC
WMP

SRC
LDM

ADD
WMP
ADD
WMP

15

INC
ISZ

14 Loop

/S8end address to selected RAM
/Read selected RAM character into accumulator
/Send address to RAM #2

/Write contents of accumulator (previously slected RAM
character) into Port #2

/8end address to RAM #1
/8et accumulator to 0"

Generate 1 clock pulse

/Increment by 1 the contents of the register pair holding
the selected RAM address

/Increment contents of register 1110.
otherwise skip.

Jump if result # 0,

The loop above uses 3 palrs of registers for RAM and port selection,

and two registers for temporary storage and indexing.

The initiali-

zation must provide for leoading each of these registers.
Example #5

The example above might be extended if for example, the 4003's were

driving seven segment LED displays:
verter could be used for each display device driven.

A 4 line to 7 segment code con-
However, the

ROM table lookup capability of the 4004 can be utilized to advantage

to save these converters.

Suppose the LED displays are wired as

shown in Fig.1l0 with each LED using two adjacent locations in each of
the 4003's.

The instruction FIN allows a ROM table to be accessed based on the

contents of registers 0 and 1.
data may be loaded over the table addresses.

To save register space, the fetched
The table address may

be intialized by an FIM or by the sequence

LDM
XCcH

where the data in the LDM represents the high-order 4-bits of the
table address.

The low order 4 bilits will be derived from the data
character itself.

The main locp now becomes as follows:

FIM 0 /initial table address

SRC /fetch. data character

RDM /Read into ACC

XCH 1 /store at register 1

FIN 0 /fetch from ROM table

SRC /select output port

XCH 0 /fetch lst half of 7 segments
WMP /transfer to output port
SRC /select clock port

LDM 0 /8et accumulator to "O"

ADD 15 L

WMP

ADD 15 | /generate one clock pulse
WMP

SRC /select output port

XCH 1 /transfer 2nd half of display
WMP /transfer to output port
SRC /select clock port

LDM 0 /Set accumulator to "0
ADD 15 |

WMp)

ADD 15 /generate one clock pulse
WMp

INC /set next RAM character

18z 14 /test for no. of characters

Note that two data characters (8 bits) are transferred for each digit
to be displayed.

This loop must be initialized by setting the registers to their initial
conditions, The following sequence of 4 instructions is sufflcient:

FIM /select RAM register for display

FIM [initialize clock port selector

FIM /initialize output port selector

FIM /initialize no. of digits and set reg. = 8

Example #6 - Subroutines

Proceeding with the example outlined above, suppose that the user finds
it necesgary to display the contents of a number of different RAM
registers, at different places in the program. The sequence of instruc-
tions could be used whenever this was necessary. However, by making

the entire sequence a ''subroutine, the user can call out the sequence
each time it's needed with only a JMS instructiom.

The JMS utilizes the address push down stack. When a JMS8 is executed,
the program counter is pushed up one level and is reloaded with the
address to which the jump to take place, and execution will proceed

from this new location. However, before the program counter is reloaded,
the o0ld value is saved in the "stack". This stack operates as follows:*

1. Each time a JM8 is executed, all addresses saved in the stack are
pushed down 1 level. The last value of the program counter is
loaded into the top of the stack, the program counter value corres-—
ponds to the instruction immediately following the JMS.

2, The BBL instruction raises every entry in the stack one level, with
the top value in the stack entering the program counter.

In the example shown, if the RAM register to be transferred to the dis-
play is different in different parts of the program, the FIM which
selects the RAM regilster should not be made part of the subroutine.

The subroutine would then include the three FIM instructions followed
by the main loop and terminated by the BBL.

To display any register from any point in the program, the programmer
need use only 4 bytes of ROM:

FIM
JMS

The FIM selects the register and the JMS calls the subroutine.

Example #7: Storing and Fetching a floating point decimal number in
the 4002 RAM (How to use the Status and Main Memory Char-
acters in the 4002 RAM)

The 4002 RAM has 4 registers, each with twenty 4-bit characters sub-
divided into 16 main memory characters and 4 status characters. (320
bits total). Each register is capable of storing a 20 digit, unsigned,
fixed point, binary-coded decimal (BCD) number. A more practical usage
for the register 1s the storage of a signed, floating point, BCD number
having a 16-digit mantissa (fraction) and a 2-digit exponent.

Consider the number

+ .1372994157387406, x 1075
LV
Mantissa (16 digits) Exponent (2 digits)

Storage is required for both the sign of the mantissa (in this case
positive) and the sign of the exponent (in this case negative), 16
digits of mantissa and 2 digits of exponent. The 4 status characters
of the register can be used to hold the signs (in this case a "1" re-
presents minus - this definition 1s completely arbitrary and is com-
pletely ub to the user) and the 2 digit exponent. The 16 main memory
characters are used to hold the 16 digit mantissa.

* This description of the operation of the address stack is equivalent to the
description in Section ITIB (3). It just looks at it from a different view-
point.

For example let's store the previously shown number in Bank #2,
It would be stored in the 4002 as

Chip number #3, register #1.

follows:

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Exponent Value

59

digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
digit
digit

digit

Exponent Sign - Negative

Mantissa Sign - Positive

The following instructions would be

and exponent value?

a1

Register #1

o |1 |1
0 {0 |0
0| 1 |o
0o |1 |1
110 1{0
0 | 0 |1
0o | 1 |1
o1 |o
00 |0
0! 1 1]o
10 1]o0
i|l0}o
oo |1
o1 |1
oo |1
o | o |o
1|0 0
0 1 |0
0 i 0 10
o] 0 |0

8
9
10
ll.
12
13

14

b

7 » Main Memory

Character #

Status Character

#

used to fetch éharacter #6, the signs,

Moemonie Hachine Language

org arg

LoM 2 11 Qoo
Selecl bank 42 oL it 1101
FIM &, 5010 1060
13, & I}}”gl, ong

¢4 d1un
T4 I2aeTday
W
1320FARYT LaoUuIW VIER

Select
Chip ¥3, Megisrer #1 <
Characcer fé&

| FC - w10 101

Feteh the Mantissa sign peik] 111n 111l
Fram skatus Charvactar #1 o
co Regicscer K10 in the
CRU wm L [LONS i

I

fetch the exponent sigm ROZ 110 1110
Frnn status character §2 XH 1L 1411 okl
ca legfarer ¥11 in the

<SPl

EOL 1110 1101
XCH 17 101% LITHE
RON 1110 Lot
XCH 13 1411 1101

Ferch the expenent Erom
status Character Fl oand
M g Regiscer #17 and
¥13 reapectively

Fatch the previcusly DH 1110 1ol
selected main memory
character #6 (whien
atored the decimal digic 7
te the accumulator

= e

Example 8 - Interpretive Mode

Interpretive mode programming may be used to reduce the amount
of ROM required to implement a particular system function. In
this mode, data words fetched from ROM or RAM are treated as
instructions of a computer which might be quite different than
the MCS-4. The MCS—4 program "interprets' the data, using it to
call appropriate subroutines which simulate the instructions of
the different computer. In effect another computer architecture
is simulated.

In the interpretive mode, the instructions of the simulated com-
puter (pseudeo instructions) may be derived from RAM or ROM. The
instructions are fetched from RAM via the normal RAM operations
(SRC, RDM), using a simulated program counter to maintain the
address. The JIN instruction is often useful for interpreting
the fetched instruction. {Address for the JIN is computed from
the fetched pseudo instruction. ZEach address value is the loca-
tion of a JMP, or JMS to an appropriate routine, or the routine
itself.)

When fetching pseudo Instructions from ROM, the FIN is used. As
the FIN instruction must be located on the same ROM chip as the
fetched data, one cannot use all 256 8-bit bytes of a ROM for
pseudo instructions. It is sufficient to allow an FIN followed
by a BBL on the ROM chip. Thus up to 254 bytes of each ROM chip
can be used for pseudo instructicns., The simulated program
counter must correspond to this address structure. If the FIN
and BBL instructions are located in the first two locations of
the ROM chip, the 254 step program address counter can be 1lmple-
mented by initializing the chip address to location 2 rather than
location 0. If the interpretive mode program exceeds 254 bytes,
the program control routine must determine the proper chip to
find the next pseudo instruction. The instruction is then fetched
by a JMS to address 0 of the appropriate chip.

42

IX. PROGRAMMING EXAMPLES

A. MCS-4 Program Routine Format Notes

Routines A, B, and C Assume the Form Shown Below.
Routine D uses Decimal Values for Column 1 and 2.

Exggple
Column # 1 2 3 4 5 6 7
0001 | 0040
0002 | 0000 | ADDITN, | FiM |d<; | ¢ / | 1R(8-1)=¢
Where:

The first column represents the octal address of this byte.
The second column represents the octal byte value of the instruction word.
The third column is the address label field and can be blank.

The fourth column is the mneumonic field, terminated by a space or a
semicolon ().

The fifth column 1s the OPA field for the lst byte terminated by a semi-
colon (;) or space or slash (/) or carriage return.

The sixth column 1s the second byte specification field (for a 2-word
instruction).

The last column is the comment field preceded by a slash (/).

SPECIAL NOTES:

e Each complete line followed by a carriage return is considered
a symbolic record. ' '

s All source data following a slash will be considered comment data
by the assembler (ignored).
e Any operand followed by a less-than sign (<) will he truncated
at three (3) bits and used as an octal numeral.
e The (<) will only work with those instructions which manipulate
register palrs in the 4004,
e The semicolon (;) is used to indicate the end of argument for the
first byte of a two (2)-byte instruction. Arguments for the second
_byte must immediately follow the semicolon.

B.

16 - Digit Decimal Addition Routine

This program performs the addition of two 16-digit decimal
numbers. These numbers are stored in RAM chip @, register @
and 3. The least significant digit of each of these numbers

is located in the character @ of each RAM register and the
most significant digits are in character 15 respectively. The
contents in the corresponding characters of the registers are
added. 1If there is a carry it will be added to the next char-
acter. The subtotal is stored back into RAM register @#. Index
register 6 is used as a 4-bit binary digit counter. Every time
the corresponding digits in the registers are added IR(6) is
incremented by one. As the 1l6th digits are added IR(6) is
reset back to zero. Then the program proceeds to check for
overflow; i.e., to check whether the carry is "1". If the
carry is "1" the program will print out 16 x's, clear RAM
register @, and jump to location NEXT of the main program that
calls for the ADD routine. Otherwise, the program will jump
directly to location "NEXT." The following flow chart further
clarifies the sequence of the program,

SPECIFY, RAM i, j, k):

) i = RAM CHIP #
S AND 3 i= RAM REG. SET #
ao k = RAM CHARACTER #

[

SET DIGIT COUNTER TO ¢:

IR{E} = ¢ (4-BIT BINARY CONTR) IR - INDEX REGISTER

| x=namis, o k) + RAM (6, 2,10 |

) | stoRErmRAM i o0 |

J
[we=~me sy k=ker]

PRINT X...X
[INDICATION
OF OVERFLOW)
AND CLEAR
RA iy, ¢ k]

[JUMP TO ROM ADDRESS "NEXT* }‘

Figure 11, Flow Chart for 16 Digit Decimal Routine

44

0000
2801
2002
2003
@004
AR5
2006
2207
2010
2011
0812
8013
@014
2815
9016

@017
2p20

a1

2a22

0023
8624
9025
8026
6027
2030
2931
2082
2833
0034
2835
@036
0037
2048
0341
00 42

B2 a0
poda
Aeaa
2v6v
9320
P266
B361
BB45
B35t
204t
@353
8373
B348
2141
2145
21s6
a7

o922
Bezs
2100
v3i1e
B3z2a
Bpare
2P A2
A330
122
A536
172
ga27
0B44
paad
0129
B454
2108
0310

ADDI TN,

ADl,

OVERFL »

AXXK»

QWUFL 1»

16~DIGIT DECIMAL ADDITION ROUTINE

FIm

FIm
LD
XCH
CLC
SRC
RDM
SRC
ADM
DAA
WRM
INC
INC

I5Z

JCN

JUN

LDM

XCH

Fltd

JMS

152

Fim

JMS

JUN

P<30
<

‘2<s 48

H
5

63 AD1

CN3 XXX
INEXT

2

10

1<; 216
3PRINT
1030VFL Y
2«30

3 CLRRAM

INEXT

/ DUMMY ARGUMENTS
CLRRAM=Q320
NEXT=02069
PRINT=350

2 1

A . S T N T N

{2 NEXT.,
ASSEMBLY
NEXT CAN BE THE

PRINT

T T S N S T T U, T W ~

~

NN

45

IR(@A-1)=0

IRCA4)Y=33IR(5)=0

LOAD ® TQ AC

EXCHANGE CC(AC) AND IR(&)
CLEAR CARRY REG»

DEFINE RAM ADDRESS (1
READ RAM TO AC

DEFINE RAM ADDRESS

ADD C(RAM) TO AC, CARRY ENABLED
DECIMAL ADDRESS ACC
WRITE AC TQO RAM
INCREMENT IRC1)D
INCREMENT IR(S)

IRC6I=1IR{EI+13 SKIP IF C(IR&=9

TEST CARRY3: JUMP IF 1
SEE NOTE S(2

LOAD AC WITH ©
EXCHANGE IRC18) AND AC

IR(13¥=831IR(2)=13 LX]

IRC19)=IRC1B)+135KIP IF IRC1©0)8
SET IR(4=5)=D
CLEAR RAM DATA

SEE NOTE $(2

$(1 RAM ADDRESSING DEFINE AS TO STANDARDS IN
SPEC SHEET.
BITS NUMBERED FROM LEFT TO RIGHT MSB TO LS5B
2345617
BITS @-1 SELECT
BITS 2-3 SELECT
BITS 4-7 SELECT

RAM CHIF 1 OF 4
RAM REGISTER 1 OF 4
REGISTER CHARACTER i OF 16

AND CLRRAM ARE ADDRESS TAGS USED FOR

RETURN POINT OF THIS ROUTINE
CLRRAM AND PRINT ARE ROUTINES CALLED BY THIS PROGRAM

C. BCD to Binary Conversion

The following program converts BCD numbers (§ - 255) to its binary
equivalent, In this program it is assumed that a 3 - digit BCD number
is previocusly stored in character #, 1, and 2 of register §# in RAM chip
@ by the main program. Then this program proceeds as follows:
First it sets index registers @, 1, 2, 3, and 4 to zero (0000), index
register 5 to 10 (1010), and index register 6 to 14 (1110). Then the
conversion begins by transfering the least significant digit (which is
the content of character @ in the RAM) into index register 3, IR (3).
No conversion is made on this digit since it has the same bit pattern as
its binary representation. Now recall that each unit value of the second
digit of the BCD number (which is the content of character 1 in the RAM)
has a value of 10. Hence the program continues as follows: Transfer
the seccnd digit to the accumulator (AC) and examine whether the digit
is zero. If the digit is not zero the content of the AC is decreased by
one {i.e. the value of the second digit is decreased by one), and the
result is stored back into the same location in the RAM. Then the content
of index register 3 is transfered to AC and the content of index register
5 (which is 10) is added to AC. The result is then stored back into index
register 3, Next the content of index register 2, IR (2) is transfered to
AC and the content of index register 4 (which is zero)} is added to AC; and
the result is stored back into index register 2. The process of checking
the second digit is repeated until it is down count to zero. Then the
program proceeds to set IR (4) to 6 and IR (5) to 4, examines the last
BCD digit (which is the content of character 2 in the RAM) and repeats the
process in the same manner except, in this case, the content of IR (5) is
added to index register 3 and the contents of IR(4) is added to index
register 2. This is equivalent to adding 100 (in binary form) to am 8 -~ bit
binary number. The binary number obtained is stored in IR (2) and IR (3).
IR (3) contains the lower order & bits and IR (2) contains the higher order
4 bits. Index register 6, IR (6), is used as a digit counter to verify that
all the 3 BCD digits has been checked.

The following flow chart further explains the details of the program.

ECD TO BINARY CONVERSION ROUTINE

AR w4

AAMY BRPW BCUHIN: FIN m<ji AOLRGY=10=0

GREs BHaz

GAB3 voos FIMo =i Ao FRER-T=1

Wi a hJaa

ey 9915 Frm fzepie Ao lRCadeREIROSY= 1R

NHs 0336 L 14 Aoednls Al wITH ta

ARAT NELAO ACH 4O FACHANGE ITr{ar &Y AL
a0l 304 LU e ZOUEFINE KoM APDaESG
Ml 3351 <1 £omkaly R BAYTA 1D AL
L2 A2&d AGH 3 £ ERCHANGE AC w1 T4 IRC3D
dU1 3 4t HDEN. InC 1 FOlHCE = TROYI=T

daLa g8al b7 R SO BEFINE rAd ALDRELE
A315 M3s1 Bl HLHS S REALD Harm LATA 10 AL
G314 MRZa

SP17 BD33 J0W AL HRHE A oJUwr TR AL-k

Bobad B3ty Lt SORC=AL-]

nazl G342 G /OoWALTE AL 1D AW

dGE2 A36I1 .8 S OCLERAR UARRY RECG

N2 @243 L3 £oLdAal AC wils COlnd 3
AuZa daus - AGL 5B SOAUL Trisr 1 au

wads Hzéd ACH 3 s EACHANGE 1HE3r AND AC
duze ngnas Li: 2 £ LAl sn WL TRO2)
WaEd widy aLl 4 soapn 1RCaY T3 ac

W3 HEAZ KCw 2 SomalHANGE Al wlTH 1mrE2Y
wH3Y BlEE

HEIE BElS JLA LR SoJdumP LNCORTITTIANAL
B33 wead

2P Ea Blaa BEZs FIM 22103 A THtaAl=hiIkiRhlI=4

ARIL wibs

SN36 annld 154 £5nDhkn O THUAITESCEI+LESKIP [F IRUEY=H
P33T B3 BEL | F RETURN 10 CALLING RIUTINE A=

-

SET INDEX REGS:
1R{s) = ¢, IR} = ¢
IR{ZI = ¢, JRIB = ¢
IRi4) = ¢, JR(S) = 15

[
$ET DIGIT CONTR: IR{€) = 14

A

READ THE LS DIGIT
TO AC AND THEN
TRANSFER THE CONTENT
OF AC TGO IR{3)

l IRI6} = IR(E) « 1]

O

READ NEXT DIGIT
FROM RAM—-AC

ves |seT
1A{4) = 6,1RIS] = 4
NO
| ac=ac— | | e -trier+ 1]

TRANSFER CONTENT
QF AC TO RAM 0,
REG 0, CHARACTER 1

CLEAR CARRY. .-

Figure 12, Flow Chart for BCD to Binary Conversion

47

D. A-D CONVERTER USING DAC With-MCS-4

One application using the Intel MCS-4 single-chip computer family is to determine the value of an analog
voltage. While it was possible to use the conventional approach of interfacing an analog to digital converter
to the microprocessor, a cost saving is achieved by having a microprocessor execute a program which enables
a digital to analog converter and a comparator to perform the analog digital converter function. The first
figure shows how the conversion is achieved. The MCS-4 uses a “’port”’ for input/output communication.

A four-wire port is associated with each read-only memory or read-write memory chip. Two of these output
ports have been used to drive the inputs of a digital to analog converter {DAC). The DAC is wired to a
comparator which allows the output of the DAC to be compared with the analog input signal. The output
of the comparator is in turn wired to the test input of the 4004 central processor. This test input line is
interrogated when the central processor executes a certain conditional jump instruction. Whereas the normal
instruction execution flow within the MCS-4 system is sequential through program memory, when the con-
ditional jump is executed, the processor jumps to a new location in memory, starting a new instruction
sequence. :

The second figure lists the program for the analog to digital convertor in MCS-4 assembly language. The
program implements a successive approximation conversion technique. Starting with the highest order bit,
each bit in turn is turned on and the output of the comparator tested. |f turning on the bit results in a
signal from the DAC that is larger than the analog input, the bit is turned off and the next bit in turn
tested. However, if turning on a bit leaves the output of the digital-to analog converter still smaller than
the analog input signal, then that bit will be left turned on. The coding for the program consists of testing
each of the lines of one port in turn using in-line coding, then repeating the sequence for the next set of
port lines by looping back. Setting a bit is accomplished by loading the accumulator with a load immediate
instruction {LDM) and then writing the contents of the accumulator to the output port. The output port
is selected at the beginning of the program by the combination of fetch immediate (FIM) and send register
control {SRC) instructions. Register #4 (R4) is used to contain the current estimate of the value for the
4-bits being tested. A bit under test is retained or cleared by updating or not updating the contents of
register 4. At the end of the basic 4-line test sequence of instructions, the contents of register 4 are saved
in an alternate location by a series of exchange {XCH) instructions and the instruction increment and skip
on zero (ISZ) is used to perform the function of counting the number of passes through the loop and jump-
ing back to the loop start. The loop selects the next port in turn by the increment (INC) instruction

which modified registers RO so that when the next SRC instruction is executed, it will select the next

port in sequence. This basic program can be easily modified to handle 12 bit binary or 2 or 3 digit decimal
conversions. Execution of the sequence of instructions takes less than one millisecond and as can be seen
from the listing, occupies some 29 words of read-only memory,

A multiplexer for multiple analog inputs can be added quite easily by providing a separate comparator for
each analog input and performing digital multiplexing at the input to the test terminal of the 4004 central
processor. An alternate use of the structure shown in the first figure permits determining which, if any, of the
several signals is above or below some predetermined analog threshold value. The analog threshold value

is deposited at the output ports driving the DAC and the outputs of the comparators are then read into

the MCS-4 system at an input port or at the test terminal of the CPL,

4002
RAM
[4003] _TEST
cPu_ | Py ey N
’ '_'._ DIGITAL MULTIPLEXER
k1T
4001 s 1
ROM PN !
Aoy —pd
]
e
'
4001 ANALOG ANALCG
ROM IN:’UT INEUT

Block Diagram of A-D Cbnverter using DAC and MCS-4

{SET UP FOR SELECTION OF ROM OUTPUT PORT (RO, RI=PO},
USING Ri /AS A LOOP COUNTER -- VALUES IN BINARY
0000 00032 F¥M PO 000011118
00015
/CLEAR REGISTERS R4, R5. (THESE TWO REGISTERS ARE
/DESIGNATED PAIR 2 OR P2 BY THE FIM INSTRUCTION).
R4 AND R5 /WILL BE USED TO RECEIVE THE RESULT OF THE

CONVERSION
0062 00036 FIMPZOQ
00000
{START OF MAIN LOOP
00604 00033 ADLP, SRCPO fSELECT PORT USING CONTENTS OF RO, RI
0005 00240 CLB JCLEAR ACCUMULATOR AND CARRY FLIP-FLGP
0006 00216 LDM 8 JLOAD ACCUMULATOR WITH 1000
/LLDM 8 SETS THE HIGH ORDER BIT OF THE ACCLMULATOR
0007 00226 WRR MWRITE ACCUMULATOR TG ROM OUTPUT PORT
0008 00025 JCN T1 *+3 JJUMP PAST SCH IF RESULT TOO BIG
00011
0010 00180 XCH R4 /SAVE RESULT IF NOT TOO BIG
/NOW REPEAT FOR 2ND HIGHEST BIT
0011 00212 LDM 4 fLOAD ACCUMULATOR WITH 0100
0012 00132 ADD R4 fADD RESULT OF PREVIOUS TEST
0013 00226 WRR MRITE TO ROM GUTPUT PORT
0014 00025 JCN T1 *+3 1JUMP PAST XCH IF RESULT TOO BIG
00017
0016 00180 XCH R4 {SAVE CURRENT RESULT IF NOT TOQ BIG
/REPEAT PROCEDURE FOR LAST TWO BITS OF THIS FORT
0017 11240 LDM 2 {LOAD ACCUMULATOR WITH 0010
0018 00132 ADD R4
0019 00226 WRR
0020 00025 JCN TI *+3
00023
0022 00180 XCH R4
0023 00209 LDM 1 /LOAD ACCUMULATOR WITH 0001
0024 00132 ADD R4
0025 00226 WRR
0026 00025 JCN T *+3
00029
0028 00180 XCH R4
{NOW WRITE FINAL RESULT TO ROM FORT
0029 00164 LD R4 /LOAD FINAL RESULT TO ACCUMULATOR
0030 00226 WRR MWRITE TO ROM GUTPUT PORT

{NEXT MOVE THESE 4 8ITS TO RS AND CLEAR R4 AND CLEAR R4 FOR NEXT PASS
{NOTE RS INITIALLY CONTAINED ZEROQ

0031 00181 XCH RS JACCUMULATOR TQ RS, RS TO ACCUMULATOR
0032 00180 XCH R4 /CLEARS R4 tF AT END OF FIRST PASS
0033 00096 INC RO /PREPARE FOR SELECTION OF NEXT ROM PORT
0034 00113 ISZ RI ADLP /RETURN FOR SECOND PASS AFTER PASS 1

- 00004

/AFTER PASS 2, PROGRAM CONTINUES PAST THIS POINT, HIGH ORDER
/BITS OF RESULT WILL BE IN R4, LOW ORDER BITS EN R5.

Program for A-D Converter Using DAC and MCS-4

> E. MCS-4 SOFTWARE AND FIRMWARE LIBRARY

MCS5-4 Assembler and Simulator Software Package
Intel now offers an assembler and simulator software package to help develop programs for micro computer systems built from
Intel’s MCS5-4 set of integrated computer circuits. '

The software is written in general Fortran 1V for the PDP-10 computer, and may be adapted for most other computers by
minor modifications. The package consists of a simulating routine, which enables the camputer to simulate the operation of
an MCS-4 micro computer, and an assembly routine, used primarily as an aid to programming the simulated micro comptiter,
See Appendix H for complete details.

The routines may be procured from Intel on paper tape or punched cards. Alternatively, designers may contract three nation-
wide computer time-sharing services — AL/COM, G.E., and Tymshare — for access to the programs.

SIM4 Hardware Assemblar .
The SIM4 hardware assembler is a pragram which translates a symbalic assembly language into bit patterns suitable for MCS-4
control storage prograrnming. [t operates on the SIM4-01 or the SIM4-02 micro computer system with an ASR-33 teletype.

The assembler accepts input source text from the teletype keyboard or paper tape reader on each of two required passes. A
name table and source listing are created on the first pass. On the second pass, the source text is re-read and a programming
paper tape and associated listing are generated. The pragramming tape is suitable for programming of the 1702 PROM using
the MP7-03 programmer system. The same tape may be used for programming the 4001 metal mask ROM, See Appendix F.

SIM4 Hardware Simulator .
The SIM4-02 Hardware Simulator is a program written for the MCS-4. This program will provide interactive control over the
debugging of other MCS-4 programs, See Appendix G.

The minimum configuration required is a SIM4-02 prototype card with three 4002 RAMs and a Teletype. When fully stuffed
with 16 RAMs, test programs up to 512 bytes {locations) in length may be accomodated. The hardware simulation pragram
itself occupies nine full ROMs,

The Hardware Simulation Program has two basic functions:
1. To simulate the execution of a test program, tracing its progress, and apprehending gross errors.
2, To allow the user to dynamically interact with and/or modify his test program, in arder to facilitate the debugging process,

These two functions are implemented by means of a set of directives or commands which the user types in at the telety'pe
keyboard, Some of the directives call for typeouts by the simulatar program, some of the directives signal the input of data
or pragram maodifications, and some of the directives involve both typeouts and input response or data.

4. MCS-4 Program Library

& Text editor, assembler and loader for the MCS-4 ® Teletype Keyboard Input Routine
that runs on the PDP-8, ® PROM Programming Software Package for the SIM4-01/
& Subroutine for driving a Seiko printer. MP7-03 and SIM4-02/MP7-03 PROM Pragramming
® Program which enables a computer to sample liquid Systern. (A0540, AQ541, A0543)[”
levels in bottles. ® A.D Converter using DAC and MCS-4,
® RAM test program for the SIM4-01/SIM4-02, ® SIMA4 Hardware Assembler, Four PROMs (A0740, AD741,
® Program to control the tape motion of an IBM tape drive. AD742, AD743) (] plug into either SIM4 prototype board
#® Hex programmer for the SIM4-01/MP7-03 enabling assembly of programs on the micro computer
PROM programmer itseff.
® MCS-4 logic subroutines AND, XOR, IOR, LOGIC ® SIM4 Hardware Simulator. Nine PROMs (A0750-A0758)!1)
® Sixteen Digit Decimal Addition Routine (AO?OO}“] plug into the SIM4-02 providing capability for program
® Exerciser Program {4001-0009)[2] debugging.
® Chebychev polynominal approximation subroutines for ® PROM Duplication and Verification Program. (A0544—11]
addition, subtraction, multiplication, division, sine, cosine, see Appendix E)
arctangent, exponential, and natural logs. . & BCD to Binary Conversion Routine

These program listings are available to all Intel micro computer users. We encourage all users to submit all non-proprietary
programs to Intel to add to the program library so that we may make them available to other users.

NOTES:

1. These are the program numbers that should be used when orderi ng the programs in PROMs,
2. This is the nurnber that should be used when ordering this program. The program is contained in a standard 4001 ROM.

50

X. INTERFACE DESIGN FOR THE MCS-4 SYSTEM

A.

General Discussion

MCS~4 computer systems are often used to replace random logic
controllers in a wide variety of systems. In each of these sys-
tems a number of peripheral devices, such as keyboards, switches,
indicator lamps, numeral displays, printer mechanisms, relays,
solenoids, ete¢,, may have to be interrogated or controlled. The
engineer who wishes to utilize an MCS-4 system must include, as
part of his designu, suitable interface circuits and programs.

Devices to be operated or interrogated by an MCS$-4 computer are
attached to the system via the input and output data ports as-
sociated with the 4001 ROM and 4002 ROM. The design of an inter-
face consists of the following steps:

1. Assign peripheral device connections to port connections.
If the number of available output ports is insufficient,
4003 output port expanders may be used. When the number
of input lines is insufficient, multiplexers must be added.
These multiplexers must be controlled by output ports.

2. Develop the necessary level conditioning circuits for each
signal. Port inputs and outputs are at MOS levels (logic
= OV with a series output resistance of typically 1504,
logic 1 = ~7v with a series resistance of typically 2k
for outputs. Inputs use the same levels, and appear as a
capacitive load of approximately 5Pf). These levels must
be converted to the levels necessary to drive solenoids,
nixies, etc. For TTL compatibility refer to Appendix A.

3. Write the programs necessary to interpret inputs and gen-
erate the output levels necessary for proper operation of
the peripherals.

Any interface design requires all three of these steps. Each
design will typically invelve decisions concerning the inter-—
action of the three areas. For example, techniques which reduce
the number of output lines may result in more ccomplicated pro-
grams.

The following sections describe typical interfaces for a number
of common peripheral devices.

Keyboards

The MCS-4 can be programmed to scan and debounce a keyboard or
can interface tec a keyboard which presents precoded (such as
ASCII) data. The output lines from a keyboard with precoded
data are read at one or more input ports. An input port line
or the test line of the 4004 CPU may be interrogated to deter-
mine if a key has been pressed.

51

Scanning and debouncing a keyboard takes a more elaborate pro-
gram. The keyboard is usually arranged as an n x m {n columns,
m rows) matrix of key switches. This type of keyboard is con-
nected as if it had n inputs and m outputs - that is, it requires
n output lines from the MCS-4 and m input lines. Under program
control, each output is activated in turn. The input ports con-—
nected to the keyboard are read and tested to see if a key has
been pressed. This testing may utilize the KBP instruction.

After reading (into the ACC) 4 bits corresponding to key status
information for one column of the keyboard arrays, execution of
the KBP rearranges the data as follows:

1. If no key is pressed (ACC=0000), the ACC remains at 0000.
2. 1If more than one key is pressed, ACC is set to 1111.

3. If one key is pressed, the ACC indicates the bit position
of the key, as shown below.

ACC before ACC after

0001 0001
0010 KBP 0010
0100 ~————3> 0011
1000 0100

Scanning of a keyboard is implemented by moving a single "@#" in

a field of "1"s across the lines driving the keyboard inputs.

The 4003 shift register is useful for genmerating the scans. In
addition, the 4003 has the characteristic that if two outputs are
connected, with one at a logic "1" (-6v) and the other at a logic
"@", the result will be equivalent to a logic "@". By scanning a
keyboard with a moving "@", multiple key presses in a row can be
resolved. Furthermore, if the 4003 is disabled, all outputs go to
logic "@" and all keys can be sampled simutaneously to determine
if a scan is required..

Figure 13 shows the keyboard interface. The ROM inputs are complemented.

Debouncing of the keyboard inputs, etc., is accomplished by testing
for the same "press"” condition on several successive scans.

3
ouTPUT cP 4003
PORT DATA IN

100k

$

INPUT
PORT IO/ o—s l—o/

R
E

Lrrragg
RINART

Figure 13. Keyboard Interface - {Scanned Array)

52

Display

Display devices such as NIXIE tubes and LED arrays are easily
interfaced to the MCS-4 system. These displays may be DC
driven or multiplexed. (In the multiplexed mode, a number of
display devices are activated one at a time In rapid sequence.
For sufficiently rapid scanning, the eye accepts the data as

a continuous display.) To use the multiplexed mode, the dis-
play device usually requires some form of coincident selection
technique, For example, NIXIE tubes are activated only when
the anode supply is present at the same time that the appropri-
ate cathode is grounded (through the proper resistance). In

a multiplexed NIXIE array, one set of (10 or 11) cathode
drivers is used in combination with one anode driver for each
NIXIE tube. Under program control, the array is scanned. One
tube is selected; the cathode driver corresponding to the
numeral for that position is activated, and then the anode
driver for that position is activated for a period. The same
steps are executed for the next position in turn.

To avoid flicker, a scan rate of approximately 100 complete
scans per second (or higher) should be maintained. This. figure
allows a scanning program to have up to 60 instruction execu-
tions per displayed digit, giving a lé6-digit display.

Multiplexed displays typically require high peak driving cur-
rents to maintain reasonable average brightness. The drivers
used must be capable of supplying the peak currents,

Although the technique described above specifically mentioned
NIXIE tubes, the same technique can be applied to 7 segment
LED numeral displays.

In systems which combine a numeric display and a keyboard,
considerable savings in program memory space and external hard-
ware can be achieved by combining the. display scan and keyboard
scan, The same loop control and output port logic can be used
for keyboard column selection and numeral digit position selec-
tion.

83

D. Teletype Interface

The MCS-4 system is designed to interface with all types
of terminal devices. Interface with teletype is a typical
example. The interface consists of three simple transistor
circuits which is shown in Fig. 15 One tramsistor is used for
receiving serial data from the teletype, one for transmitting
data back into the teletype, and the third one for tape reader

control.

It requires approximately 100 msec for the teletype to
transmit or receive serially 8 data plus 3 control bits. The
first and the last bits are idling bits. . The second bit is a
gtart bit. The following eight bits are data. Each bit stays
on for about 9.09 msec. The MCS—4 system 1s ideal for this timing
control. TFollowing is a simple program which is written for
this purpose. This program not only controls the teletype
timing but also stores the data temporarily in the index regis-
ter 2 and 3 in 4004 CPU chip and prints out the character. The
flow chart further explains the details of the program.

i

I SUPPRESS TTY |

3

CHECK
PRESENCE OF
START BIT

[DELAY FOR = 5.5 msc I

!

INITIATE TTY,
SET DATA COUNTER = ¢

—

I DELAY FOR =276 msec I

t

I READ DATA BIT I

'

SEND DATA BIT
BACK iNTC TTY

|

I DELAY FOR ~55 mc J

¥

DATA COUNTER

STORE B BITS DATA
IN INDEX REGS. #2 & 3

|

Ty
TRANSMITTER

+5

DATA FROM
MCS-4 {4001
OR 4002}

-10

TTY
+5 RECEIVER

TTY

TAPE
READER CONTROL

+5

DATA FROM
MCS-4 14001
CR 4002}

N Ty

—10 —-19

DATA TC
4001

Figure 14, Flow Chart for Teletype Interface

54

Figure 15, MC5-4 & Teletype Interface Circuits

KEYBOARD INPUT ROUTINE

HAAY A337 BEGINs LDM 1S AEILENGE TTY
B3Iy BALR
ANPE DARA FIM D<@ /S BY SETUINT BIT 3 OF @70 3 19 1
BRA3 Bdal SRC A / DEFINE RAM ADDRESS
Bdd4a Biagl W 2 7/ WRITE DATA TI RaY PORT
Bites 8261 cLC
ANBs B2
PEIT BZ0e ST, JCN TéssT 7 WAL FURk DATA INFUT SIGNAL
Dl wiew
A1 BIes J¥Ss AR /4 5.00Ms TIME U7
@212 @d4d
AUL3 ol o FIM G<313 SOl REMI=EIIRCLI=1S
IRla B1s1
BA1S BB1a TEST, 1SZ 13TEST 4 CIMPLETE TIMMING FOR BIT SAMPLE
A6 B4l SRC W< 7 DEFINE RIM PORT ADDRESS
au1Y P35 RO 7 READ ROM INPUT T2 AC
PA2D B384 oMa
Ba21l Y343 P / COMPLFMENT DATA AND ECH)D
23228 @120
23 Bwig S5 SBR2 /D3 FINAL TIME OU1 300 mS
HASA DRl
RS Bdue Flis Beii s OIRCKH=13=0
AP2E B3RY .14 9
Au2Y @2e2 XCH 2 s/ IR(2)=0
@ndE A3y LI ®
BU31 w2l KCH 3 s OIRC3Y=ph
WH32 330 LiM 3
WA33 B2e4 ACH 4 s IRCLY=8
BH3a B2
DUW3S Wdes ST11, JMS 3 8BRI
W36 @361 LLe
AE37T Blal 550 Je
ABan @342 RO= 7 OREAD DATA INrPul
29al W3sa cMA
ddaz G341 Wi P
DR43 Paké RAR / S1uxE DATA IN CARRY
V44 1242 L 2 Z LIAD AC=1R(2)
2045 Bl66 RAR s TRANSFER BIT
BM4E BRe2 KCH 2 / RESIJRKE NEW DATA WIRD
AGeT p243 L3
FUSY V366 RAK
“dR5l A263) ACH 3 £ EXTEND REGISTEA 1) MAKE & BITS
3gse »12m
PASI NOT4 JIME 3 sk
IS4 Blb4a
Ha55 BB34 152 4 571
A%56 W3I3T Lids 195
PRST DBag
BALE ARAA Flm #<id
Al REal ARE A
WG hE 34l P
P63 11Ng
Fd b wid A Jiw T A ORETLUMN T3 INPLT
rd
s
I
/OSUBHIUTINES:
Fd

P65 BPan
UMUAHG EEY SBKHIs K19 bi<ii S/ LiRtE-1=8
F34T s TIME)

BUeT Blsw
VT WBET Lla I5£ Wil
BTl wisl
aare ANeT Fhe 1311
HET3 B30 [SIET
s
/s
W Ta A4l
HRTs WH1E SBR2. FlM #=<in FOlREHIS e TR Y=Y
ATa A143
AATT BATHE 2. Lh5d 4Rl /2,75 4% TIsME DUT
Al H1al
AYA1 AT Foe 1L
ALEE 1Ak 5323
rd
4

55

X,

S$IM4-01/81M4-02 PROTOTYPING SYSTEM

A,

General System Description

During the development phase of the eguipment using the MCS-4 micro-
computer set, the designer will often find it helpful to have a means
for testing out his program. An interface circuit in which 1701 or
1702 electrically programmable and erasable read only memories simu-
late the 4001 mask programmable read only memories will help serve
this purpose. Using this interface, it is possible for the system
designer to program the 1701's or 1702's, plug them into the system,
check out the programs and make corrections as necessary. In this
way, the development check-out cycle can be typically reduced to one
hour or less. With mask programmable ROM's, this cycle is usually four
to six weeks. Intel has developed two microcomputer prototyping kits,
SIM4-01 and SIM4-02, which use the electrically programmable and
erasable ROM.

The maximum directly addressable system configuration is available with

the SIM4-02. The 4004 CPU directly controls up to sixteen 1701's or 1702's
and up to sixteen RAMs. Eight ROM output ports and eight ROM input ports
are provided. These ports are associated with the first eight ROM in

the system. Of course, the user must be aware that individual lines of

a ROM port can be used for input or output but not both. The input-
output option is of course fixed at the time that the 4001 is mask-
programmed. Sixteen RAM output ports are also provided. In addition,

all data, timing, and memory controls signals are brought to the comnector
to permit future memory expansion.

The SIM4-01 is designed for small systems. This board contains provision
for up to four 1701's or 1702's and four 4002's. It provides up to four
RAM output ports {each port contains 4-bits), four ROM output ports and
four ROM input ports.

Both systems come complete with the 4004 CPU and four 4002 RAMs. Addi-
tional RAMs and ROMs may be added as required. Sockets are provided on
the boards for all MCS-4 components and for all ROMs. Note that all Programs
written for the SIM4-01 may be used without alterations on the SIM4-02.

IMPORTANT

It should be noted that the 1701 and 1702's are described in the data
sheet with respect to "positive logic" (high level = p-logic 1). On
the other hand the MCS-4 system is defined in terms of "megative logic"
(low level = n-logic 1). As a result, when 1701 or 1702 ROM's are be-
ing programmed to simulate the 4001, characters should be defined as
P = high level = n-logic 0 or an N = low level = n~-logic 1. For instance,
consider the instruction code for ADM (one of the 45 instructions for the
MCS-4) .

11161011

When preparing the program tape it should be typed,
BNNNPNPNNF

This is the code that will be put into the 4001 when the final system is
defined. It will correctly simulate the 4001 operation when the 1701 or
1702 is used with the SIM4-01 or SIM4-02 system.

56

The schematics and block diagrams for both prototyping systems are shown
on the following pages. The 4004 and the 4002's are used as they would
be in a conventional system. Additional circuitry is used to simulate
the 4001 ROM's. The two phase clocks are generated by the 9602 single
shot multivibrator using discrete clock drivers.

=
C

L]
[.

tpdz
400ns | 400m ! 400m !
T ———— W —-
L]
= _10% - 150m

Prototype System Clock Drivers

The 9316 counter together with the 3205 - one of eight decoder - serve
to decode the cycle timing for the system, thus simulating one of the
functions implemented on the 4001 chips. The output of the 3205 decoder’
indicates which cycle the unit is executing; i.e., the Aj, the Ay, the
A3, the M, etc. The discrete transistors serve to convert data bus
levels to TTL levels and vice versa. Two 3404 hex latches are wired as
the equivalent of three quad latch units. These latches act as address
registers for the 1701 or 1702 memory array. The quad latch units are
loaded on the Ay, A7, and A3 cycles respectively. Those address bits
loaded during A; and A2 drive the 1701 or 1702 address line directly,
while a 3205 deceoder is used to generate the chip select signals for

the 1701 or 1702 memory array from the four bits loaded durling A3. Two
such decoders would be used if a full array of sixteen 1701's or 1702's
were to be utilized. The output of the 1701 or 1702 array is one byte
or 8 bits wide. A multiplexer is used to gate four bits at a time onto
the four bit wide data bus. The first four bits are selected on the M1
cycle, the second four bits on the M2 cycle. The signals at the output
of the multiplexer are at TTL levels. These levels are converted to the
MOS levels on the 4004 data bus by means of a set of four discrete level
shifter circuits. The pull down resistors for these circuits are connected
via dicde disconnects to a pull down resistor activator circuit. This
circuit is activated during the M; and My cyeles via the two input NAND
gate driver. This driver receives two of its three inputs from the M)
and M2 decoder.

The balance of the circuitry shown in the schematic is used to implement
the input/output port functions associated with the 4001 read only mem-
ories. The execution of an SRC instruction (which is used to activate

a port) is indicated to the port control circuitry by the presence of
the command signal at X2 time. This condition is decoded and used to
load a two latch port selection register. The contents of this register

57

are in turn decoded by means of four two-input NAND gates. Execution of
a port control instruction is indicated by the presence of the command
signal (CM) during My time combined with the appropriate code on the data
bus. Fer instance the READ ROM INPUT condition is detected by a seven-
input NAND gate. When this instruction is detected a flip-flop consisting
of two-input NAND gates is set. (The presence of a "1" in the port read-
control flip-flop is used to enable the inputs from cne of two multi-
plexers onto the data bus during Xy time.) Data is then transferred into
the 4004 from an input port at X2 time. The port read-control flip-flop
is reset at X3 time so thgt it will not influence operations on the
instruction.

In general, the number of ocutput ports provided by the array of 4002s
is adequate. However, to fully duplicate the effects of the 4001s,

it may be necessary to implement ROM output ports as well as input ports.
Although the two latch port selection register and decoder need not be
duplicated, another seven-input NAND gate together with a flip-flop is
provided to detect the condition for a WRITE ROM OUTPUT port. A four
bit latch is provided for each output port to be implemented. During
the subsequent X, cycle, the data on the data bus 1s loaded into the
selected port lafches. These latches then retain the data. The flip-
flop controlling this operation should aiso be reset at X, time. The
ROM outputs invert the output data and are TTL compatible. RAM outputs
are MOS compatible. Refer to the schematics and pin configurations for
both the SIM4-01 and SIM4-02,

Discrete interface circuits are provided on the cards to communicate with
a teletype. Data can be entered through the simulated ROM input ports
either from the keyboard or the paper tape reader of the teletype. The
receiving and transmitting of data are in serial form. Other terminal
devices such as typical commercial keyhoards, printers, LED's, CRTs and
cassettes can readily communicate with the system with proper single
interface.

These systems may be reset to zerc by using a RESET switch as indicated
on the board pin connector list. Debouncing for the switch is provided
on the board. '

The TEST signal may be transmitted directly to the TEST pin of the 4004
or through a dehouncer and one-shot multivibrator. When the TEST signal
comes from the one-shot, the program executed by the CPU should be
looping through a JCN instruction waiting for TEST signal.

Teletype Interface

The MCS-4 is designed to operate with all types of terminal devices. A
typical example of peripheral interface is the teletype (ASR-33). The
SIM4 contains three simple transistor TTY interface circuits. Refer

58

5IM4-01 S5IMa-02

1

5
QIOOIO|8|B |0 |00

 FULL DUPLEX @

RECEWE 69 ~
" w

SEND 53 -
49 m

FULL DUPLEX

Jz-14 RECEIVE
=10V

Jz2.82 SEND
+5Yy

L

Teletype Terminal Strip
{See Appendix D for details)

to the appropriate SIM4 schematics for the actual circuit diagrams. One
transistor is used for receiving serial data from the teletype, one for
transmitting data back to the teletype, and the third for tape reader
control,

The teletype must be operating in the full duplex mode. Refer to your
teletype operating manual for making connections within the TTY itself.
S8ince all teletypes are not identiecal, it is impossible to present a
general interconnection scheme with either of the SIM4 boards. Many
models include a nine terminal barriex strip in the rear of the machine.
It 1s at this point where the connections are made for full duplex oper-~
ation. The interconnections to the SIM4 for transmit and receive are made
at this same point.

To use the teletype reader with the SIM4, the machine must contain a
reader power pack. The contacts of a 10V de relay must be connected in
series with the TTY automatic reader {refer to TTY manual) and the coil
is connected to the SIM4 tape reader control as shown. This relay must
be supplied by the user.

Note that the SIM4 clock generator must remaln set at 750 kHz,

In order to sense the start character, data in is also sensed at the TEST
input. It requires approximately 110ms for the teletype to tramsmit or
receive eight serial data bits plus three control bits. The first and
last bits are idling bits, the second is the start bit, and the following
eight bits are data, Each bit stays 2.09ms. While waiting for data to

be transmitted, the 4004 is executing a JCN based on the TEST input. When
the start character is received, the processor jumps to the TTY processing
routine. Under software control, the processor can determine the duration
of each bit and strobe the character at the proper time.

A listing of a teletype control program is shown in Section X, Part D.

59

CAUTION:

In one mode of operation, these prototype systems do not truly simulate the activity of the 4001. After the system is reset and
the program counter in the CPU is returned to address zero, a two word instruction in the first two steps of the prograim may be
improperly executed. (This is characteristic of the prototype boards, not of the MCS-4 components.) This is the result of an asyn-
chronous reset pulse applied to the "simulated” 4001 ROM memory.

To insure proper operation of the prototype systems one of the following technigues must be implemented.:

1. Lse a NOP in the first jocation of progrem memory (ADDRESS 0). Any other single word instruction may also be used,
2 Use the SYNC pulse to synchronize the reset signal to the system. Then the prototype system will truly simulate the program
memory in the 4001,

B. SIM4-01/SIM4-02 Specifications

FEATURES:

e Complete Micro Computer System for Prototyping andfor Production ® Reprogrammable ROMs
Simulate 4001s ® TTY Interface on Clock ® Two Phase Clock Generator on Card ® Test and
Reset Signal Generator an Card

S1M4-01 SPECYFICATIONS 51M4-02 SPECIFICATIONS
Card Dimensions:) Card Dimensions:
8.4 inches high 11.5 inches high
5.7 inches deep 9.5 inches deep
MCS-4 Components included on Beard: MCS-4 Components included on Board:
fsockets included for memary expansian) fsackets included for memory expansion)
cne 4004 one 4004
four 40023 . four 40025
Maximurm Memory Configuration: Maximum Memory Canfiguration:
four 4002 RAMs — 320 x 4 sixteen 4002 RAMs — 1280 x 4
four 1702 ROMs$ — 1024 x 8 sixteen 1702 ROMs — 4096 x B
Operating Speed: Operating Speed:
1.35us clock period 1.35 us clock period
10.8 us instruction cycle 10.8 us instruction cycle
DC Power Reguirament: DC Power Requirement:
Valtage— Voltage--
VCC = Vss =KY +B% Vcc = VSS =hY +h%
TTL GND = 0V TTL GNDR =0V -
VDD =10V 5% VDD =10V 5%
Current— Current—
No load pperation No laad operation
lee =1.5amp lee = 1.8 amp
Igp = 0.6 amp Inp = 0.95 amp
Worst case loading (16 TTL inputs and outputs) Worst case loading {32 TTL inputs and outputs)
Igg = 1.6 amp loc =2.75 amps
Ipp = 1.5 amp Ipp = 1.85 amp
Connector: Connector
a. Salder jug type/Amphenol Wire Wrap type/Amphenol
72 pin connector 86 pin connector
P/N 225-23621-101 P/N 261-10043-2

b, Wire Wrap type/Amphenol
72 pin connector
P/N 261-16636-2
c. Wire Wrap type/CDC
72 pin connector
P/N VPBOIE36300A1

SIM4.01 Prototyping Board SIM4-02 Prototyping Board

60

C. MCS-4 STANDARD MEMORY AND INTERFACE SET (4008/4009)

Both prototype systems, the SIM4-01 and SIM4-02 are designed to permit the use of 1702A PROMs instead
of metal masked 4001 ROMs. The TTL used in the prototype systems to simulate the control logic of the
4001 is now embodied in two special interface devices. These new devices, the 4008 and 4009, provide
direct interface to standard program memory, either ROM or RAM, and to TTL 1/0 ports.

The 4008 is used as the address latching unit, accepting twelve bits of address in each of three time periods
Al, A2, A3. The address is available to the program memory during M1 and M2 when the CPU accepts
instructions and data. The program memory may contain up to sixteen 256 byte pages. The 4008 also
stores the 1/0 port selection code so the appropriate input or output port can be selected during the execu-
tion times X2 and X3. Demultiplexing of the eight-bit instruction word from program memory and trans-
mission to the data bus is carried out by the 4009 at M1 and M2 time. By way of a four-bit 1/0 bus which
can communicate with up to sixteen input and output ports, data is transmitted to and from the accumulator
of the CPU via the 4009,

These silicon gate p-channel MOS devices packaged in 24-pin ddal-in-line packages can replace more than
twelve packages of standard TTL logic in systems similar to either the SIM4-01 or SIM4-02. Appendix B
provides the complete specification for the 4008 and 4009 along with examples of various system con-
figurations, '

FEATURES

Directly Compatible With 4004 CPU
Interface 1702A PROMs Directly to 4004 CPU — Completely Efiminates TTL Interface
Permits Program Storage in Alterable Memory

Easily Combine PROMs (1702A), Metal Mask ROMs (1301}, and RAMs (1101, 2102)
for Program Storage

® Expanded (/O Port Capability

* Each Port May be Both Input and Output — Up to 16 4-bit Input Ports and 16 4-bit
Qutput Ports

Number of 1/0 Ports is Independent of the Size of the Program Memory
1/0 Ports and Control Lines are TTL Compatible
Execute MCS-4 Programs from any Mix of Standard Intel ROMs and RAMs

New Instruction WPM (Write Program Memory) is Used for Loading Alterable Program
Storage (RAM)

oUTPUT oUTPUT
1
4004 4002 RAM | 118 RAMS MAXIMUMI | s pam | —
) REGISTERS REGISTERS | - @ -
" ¢ * 116 INPUT PORTS
1 - + AND 16 GUTPUT

(4 BIT DATA BUS) + PORTS MAXIMUNM]

4003 — 4000 _"—E_’_
ADDRESS = =] 1301 AOM = i1

LATCH | DEVICE
aeraM | T 4 ... &

IMAXIMUM 4k x 8} -

L4

1O PORTS
SELECT GATING

Basic MCS-4 System Using 4008 and 4009
61

1 22
g Sl
PR - W
T
;":-,c" oy -
- A 9{ p - S E
™ r”f‘é_:q
744 P o | 7490
a3 3o
na.".z‘ I>n: |>c"’ do dy 2 T4 04 D
] 3 4F 1
Taos 7404 Fireae I LDn_‘
o, b2% [>ua I I>cm i 1 * 2 T4DAH
H 1
o 74048 Meaa e, v I 5 : .
oz - |>c" I|>c'l a1 =
h 1800 34o0a
404 404 -j:o"" rape —_———
Dy ‘IZK]D & 3 A3z T d :_
[4 © 2 o el -
404 E7e-TY | ' 2 -k
43 al aons & rsi pLL
AL da , 3 o a | Ly
e 0r O3 = - o " w dn Qu_
To 40o4 facol ’ 5) Y 400 3003
uz 2] 1404 slF—n.e H———4
T40 4 5o L] dt' B
I
e T |
-+— ay !
3 I I y
- 15
o [
b—— r———=
s — 1] do EP_‘_
—J 1 wios r§
THOw : IR by % 11-'—}’“z di » af
[} L £ LA 4 I)_i
Wiz 254333y mina ’ "
an 1] 119 5 d.o ‘50‘!‘—'0“_ ! I
i ' z R R i TS sl Js el
rq! i |, !Q:)-il‘———- ’
i 1 L] i
4 br]
rz ln. . N E:_,‘ [d;l o) 1
- —1 18
; 2 A=t S ” e H LT |
i L] -5 [
3503 a i sqoa o r———
L2200 jolelels seos || | lael iy,
L : t—! 1roe fi701 Bi%4 DR IR 3 | O
. ! 1 - *] | I
- I b 2 B 1. 5 It EY
S i i A A ol fy
1 T 200 P - 7 B 1 | I
gp 20 - 15
Bood :T i i 9 o il |5 el
41 95 i ’ i
da lip 1 : . B
-t r — _: * & ‘F — .] - - = B
1 ! j }’ (0 fiTe
+5 ! asee A Hes : :::-4 ‘—‘-‘J_/b = :
i | , - 3 i
fm -
| | B o0 P
o b 1 e & |
43332323239) 1 SO
n:‘»'I-‘>1':'-‘5“" b | e dI
35 i 1 ! k
e f' ' ! "4 !
7 e t) i 4oL I
2 5 I | .y 2 kld dz) |s
1Y 5 4p— | } —4_13 5 I i
N z »p— ! s o] - | .
a5 n i l I —]1r T |
E1] (Y i3 | | p—— 0 s ds f |
R T-1-F 2 | l F—1» |
2 | —1a ,:. 1 ! v
: 2 ! ! -— 17 n 1 3 L]
| | —qe 3404
| 1404 2 f 17w
&
1 - | | Ao mb aH-
& I s 1 sH— N HERWISE SPECIFIED
| reml L1, NOTES: UNLESS OT |
by ®
} | a5’ | Y ol I. ALL DIODES ARE IN9I4
l l ¢ : [9 2. ALL TRANSISTOR ARE EN2907
| il
| l' g S R RESISTOR VALUES ARE IN OHMS 1/aw, 5%.
b ' s¥
| 34541 Tagsn + ? T+ 2:_‘ *
|] 2 e — -l
3 tl—— P
szt — 9 fus
[y I Figure 16. Detait Drawing — 4001 ROM Simulator
——
I I N Using 1701/1702 as Used on Both the SIM4-01
™
and StM4-02 Boards.
i S
B
. 63
62 :

-
L)

~
-

5

-

BUFFERS
AND
MPXERS

BUFFERS

L t—— ROM
[INPUT
4 PORTS

[YYYY

1702 ROM
ARRAY

Iy

ADDR REG
IIYYY
& —| ROM
> ourpur
FORT
REGISTERS

MCS-4 System Using 1707 PROM

TIMING AND PORT

S

RLSET

92

et XLTE S V£ R
[TAPE AEADER CoOnT
[TRANAMITTER

TELIT 4 RESET
SENRL CENERATOR

rry
INTER FACE

D. SIM4-01 Prototype System
4004
cPU B
—
COMMAND LINES
TO RAM
CM
RAMg
RAM —1 4002 =t
OUTPUT] RAM
PORT —
? 3
RAM —
ouTPUT —] ;T:
PORT —
-
RAM -
OUTPUT R'UADI:
FORT
$ |cm
ROM
RAM — M
OUTPUT AAM +
PORT — SYNC |
DATA
‘,Tt. lfl. TEsr
LLorA
CENTRATOR
A

SEE DETAIL SCHEMATIC PAGE 53

Figure 17. SIM4-01 System Block Diagram

e

Two PHASE
cLoCx ﬁ
FENERATOR

TEST all RESET
SIGhAL
GEMNERLTOR

B}

+5
IO
@ TYr
1
TV ArELH
e b2k

THY™ KERDER

-

TTY RECEIVER

idon

TO 4037 Ko
CHIP[_
SUTAUT O

TTY N

X FACTORY S&ceersp

-G

1

-

I ELTE
'1 TEST]
| it}
476 A
Few
-1
L za07?
RESET El
41
Lw
5
TE 400t EaM
LZK INZFOT cpie o
CUTPLT &
AFean
%ssl
ingla & % tavd
A

TAPE READER CGWTROL

Py iV
3 e 2¥
toam P E 100 Pf
|—||-| r{k — > O 40%4 T
[5 %] Fhrt 22 .n
4 o) $— = TO4DDZ ZAM CHIP O
"®%o? o2
]
" . AR A3 2o B TO 400Z RAN CHIP |
+5 L ._“ i
+5 R
som [TO 4002 EAM CHIP 2
- L » To 4007 RAM P =
+5 +%
4 h
Ze In 213k ix
200?{1 F: 'm"‘j 4 3 . o5
[_" ! ———- TO 4004 P
3 & 1a] Fard 22 .
5 2 | —— To D02 ZAM CHIP O
i> "ot suo2 TAO A |
* " p2rigae § e TO 4601 RAM CHIF |
A -
T ’ v L, 294
= +5 £ P TS 4002 RAM LHIP 2
SorF 1 907 [
1
‘ 4 47a N e ro 2002 2am cHim =
R
R

L2

ATTY

+5

NiTa?

TTY TEAMSMITTERZ

J

v

MOS-% AND TELETH Fo
INTERFACE CIRCUITS

Figure 18. SIM3-01 Clock Generator, Test Signal, Reset Generator and Teletype Interface Detail Drawings

65

o 1o

A}

Ly ML

—_—
—_ [1s
— -
fl’ —l . RO (A-U}
—
71 —
-
P s o5 ¥
o BT Fe
7)
a7, PR __——l o—| 4
X385 gak Poad] AT, e | A2
23 A s ‘ ¢
d PP I{Sg i '
< % 4
$33%3 ot i_‘
. e
—_ aze) 0 1A-0}
- AL? L
E] 0 {A-1}
D,
—_— a7 Ly +
—_— s & o~ —
se 02 o Pl o mal 01A2}
s 07 | |
L A —
1 5 ' ” 0(A3)
L= __
12 : LT 3l —
A2E | I A E]
ar PR —j—-j 32 0 (B-0}
’ can P2 ! -
il 4003 e P e o(8-1
L] 4
81| 7#ne 2! r! —
AL + 3o 0 {B-2}
L1s |
v o . i
L (AT ¢ < 1 22 0 {B-3}
w¥i AN IT I l !
i 2 Ly ol - A o E ot
a4 :z 7 P 2 -
PR 2 e il oim 52 L 6 0 (C0)
o # P 2 o 4o
£ bl T Y] L)) oy 58 | |
M g W cardan - §3 ey LA bt wsy YTeX]]
z) i e Y s ALE 3404 | |
: e A iy e 5n
21m ! —p] r? ¥L T I 20 0i{Cc-2
= s : ; 1] |
4 #] A]2 ar——
L —=x ! EHape 06D
r
2 o [l o e S
Ay aaf] aF L J 3
z ato. - 54 i r——1
LA 1T] Ty
. + MoywFe LA b 4 0{D0}
s P ot g rewo !
i 4 —
z Wy Lldbtles 0 (D-1)
. i -Ly | | -
L=F ‘171 £ LTA L :
| 1701/ . 13- 2] 0 (D-2
ot T _
£ 0 {D-3)
auT L L1l sufo, == 48
] B hd 3 /4 o, A
g0 ¥ 1 Moma
A £ *] TR
1.1 a s PErSY
% M Al
s o Aoz
T -2
o]
wuE T rescr d
AP
fra) |1. i
L] Ed ot Fr
bt 7 Hd =i P
g | et |
nt a 7| o 30 R Ae]a
X * H
': &] %’“ £ -1 -l
Ld AR
o[£ tooz e
| z g
o T reser
Ly NOTES: 1. Pin numbers are shown for wirewrap connector,
—— s 2. All 1/O pins are designated with respect to negative logic.

*Resistor Factory Selected.
3. Ve (+5V) —pin 5, vpp (—10V) —pin 1
GMD —pin 3

Figure 19, SIM4-01 Complete Schematic
{PC 114-C}

67

N

SIFIS, ~ = ~ e
o+
Al A2 A3 A4
AG
] '._._ =
AIO Al A2 Al3
l9] F v) [) o
e - = '
2 oDi5] e AlS AT Alg A9 AZ0y
%]] - — !
|
ﬁ % Az A23) A2 —
[e <
| @2
@ @20023 B rcilor, Py || O’% Az5] A2H A7
O cam @B g

Sokier Connector PN 226-23621.10% A F N WML K J HFEDTESSEGzZ v X WY UTSAFNML
Wirrwrap Connector BN 26116632 71 60 B7 BGS B 61 SO 57 S5 53 51 49 47 45 41 41 39 N7 IS 13 M X MW 25 I XA 17 18 13 11 9 7 § 3

E 4 H F E D C B A

Warawrap Connacion P VPBETE ISEORA T T2 M) BB 65 B4 82 B) S8 54 54 57 50 48 48 44 42 40 XK 36 M 32 0 X8 28 4 2z 20 VB 6 4 12 1008 & 4 2 coc

Figure 20. Component Side of $IM4-01 Board

Soldet Connacice PIH 2252321 101 1567!!l(lll12|:ll-l‘|5\8‘71!IQNI‘!ZQB”KNZ}HRN3I33BJ¢3”(

Winswrsp Connctar P/W 381 158387 2 4 & B 1017 WM 1E ' 20027 M OM2F I 3T 3 IE M AG A 44 45 40 5 52 54 55 SO GO G2 B4 &R 88 M 77

Wirkwrap Connctor PN VPBIMEIGETRAT 1 3 5 7 9 1t {3 15 (7 18 21 23 26 T 20 3t 33 36 37 W 41 41 45 47 40 31 A3 S5 57 59 B1 B3 65 8T &9 71 CDO

Figura 21. Pin Definition — Reverse Side of SIM4-01 Board

{Pin numbers are shown for wirewrap connector —
All tnputs and outputs are deslgnated with respect to negative loglc)

PIN

vo, | svnmoL DESCRIPTION

1 - 1% -10¥DC POWER SUEPLY = Vpp

3 oND ov - TTL GROUND

5 A +5VDC POWER SUPPLY - Ver ABD Vg

37 5 TEST SWITCH CONTROL(NORMALLY OFEN)

45 TR TEST S4ITCH CONTRUL (NORMALLY CLOSED)

4l RS RESET SWLTCH CONTROL (NORMALLY OFZN)

43 RS2 RESET SWITCH CONTROL (NORMATLY CLOSED)

49 TTV{R1} TELETYPE KXVROAKL or TAPE READKR CONNBUTIUN 1

53 TTY(R2) TELETYPE KEVBOARD or TAPE READER CONNECTION 2

55 TTY{TLY TELETYPE TAPL READZR GONIROL

69 TTY{X1) TELETYPE PRINTER CONNECTION 1

71 TTYX2) TRLETYPE PRINTER CONNECTION 2

51 37 PHASE L CLOCK

47 P PHASE 2 CLOCK

57 Ly DATA BUS O

o DATA BUS 1 MOS COMPATIBLE OUT
64 g DATA BUS 2

53 Iy DATA BUS 3

66 SVNG MACHINE CVCLE SYCHRONTZATION SIGMAL

61 CM~RAM) RAM BANK 1 COMMAND LINE

59 MRy RAM BANE 2 COMMAND LINE

57 CM-RAM S RAM BANK 3 COMMAND LINE]
68 TEST TEST SIGNAL USED IN CONJUNGTION WITH JCN INSTR.
72 RESET RESET SLGNAL USEL TO CLEAR THE SYSTEM

] 1 ta-G) ROM INFUT PORT, ROM O |

17 1 {a-1) ROM INFUT PORT, R0M U

13 1 {a-2) ROM INPUT PORT, ROM O

9 I [A=3} ROM LRPLT BORT, R O

15 1 (B0} ROM INFUT PORT, R0M i

=2 1 (B-1) ROM INFUT PORT, ROM 1

11 1 (8-2) ROM IHMPUT PORT, ROM 1

7 I (8-3 ROM INPUT FORT, ROM 1

a5 1 (c-0) ROM INPUT PORT, ROM 2 | TTL COMPATIBLE IN
29 1 ie-1 RO INFUT PORT, ROM 2

27 1{e-1) RUM INPUT PORT, ROM 2

21 I (-3 ROM INPUT FORT, ROM 2

33 I {0-0) ROM INPUT FORT, ROM 3

31 1 (D-1) ROM INPUT PORT, ROM 3

25 1 (D-2) ROM INPUT PORT, ROM 3

23 I (-3 ROM INPUT PORT, ROM 3 _J

R T (A-D) ROM OUTPLT BORT, %0M 0

24 0 (a=1} RCM UTPUT PORT, BOM O

10 & (A-13 ROM QUTPUT PORT, 20M U

12 T (AD ROM OUTPUT PORT, ROM O

52 o (B=0y ROM DUTPUT PORT, 0M L

28 31y ROM OUTPUT PORT, ROM 1

3 (0 RCM QUTBUT PORZ, ROM 1

22 o (E=3) ROM OUTPUT PORT, 0¥ L = TTL COMPATIBLE OUT
16 ED ROM OUTPUT PORT, ROM 2

18 F (e-1) RGM OUTPUT FORT, ROM 2

20 o iC-2) RCM QUTPUT PORT, R0M 2

14 s ROM OUTPUT PORT, ROM 2

4 T (D-0) ROM OUTPLT PORT, R0M 3

o % {D=1}) RCM OUTFUT PORT, ROM 20

B ¥ {D-23 ROM OUTPUT FORZ, ROM 3

H T (n=3) ROM OUTPUT BORT, R0M 1 _ |

™ RO(A—G) RAM OUTPUT Pogz, RaM 0 — TRANSISTOR BUFFER OUT
62 RO(A-1) RaM OUTPUT PORT, RAM O]

59 RO(A-2) RAM UUTPUT PORT, Ran 0 [=— MOS COMPATIBLE OUT
54 RO{a-3) RAM SUTPUT PORT. AAM O _]

56 RUCE-0Y RAM GUTPUT FORT, RaH 1 —— TRANSISTOR BUFFER QUT
54 RO(2-1} RAM OUTPUT PCAT, RaM 1]

52 RO(B-2} R4M OUTPUT POAT, RAM 1

5¢ RO(B-2} RAM OUTPUT PORT, RAM 1

48 RO(C-0) KAM OUTPUT POHT, RAM 2

46 RO(C-1} RAM OUTPUT BORT, RAM 2

54 RO(G-2} RAM GUTPUT FGRT, RaM 2 [— MOS COMPATIBLE OUT
42 HO(C- 2} RAM QUTPUT PORT, RAN 2

40 RO (L0} RAM GUTPUT PORT, RAM 3

38 RO(D-1} RAM QUTPUT POIT, RAM 3

36 RO(D-23 RAM OUTPUT PORY, RAM 3

k1 RO(3-3} RAM QUTPUT PORT, RAM 3

69

3 - E)
o B vy

LI
Terr wnun

31
I
KL
ai
HE
eHIF & CHrP > LHIF B
by 6 o~ Mo R — i T S TP P pp— vas—{y . -—
o e I e L 3 i Da o o § — p— =
-1 £ i1l-o ot 1 3 o, o R - e p—F
e g ¥ oo vz —a M sy e — B Y Da oo RO 5 g e
lu:_r-—-, =0y A Y makT—{q o ArAUdLATSE - e— 13
[N - - i - o FPEELYYY - -
w3l e : el 81 vt L s =
g 11—:' P a sl *
§ e 3 : S #0 °
L
2wt EHIP 1
, |
| |
vat— G EL Y ——1 | Al |
@ —Ju 7 th=bo |
= i ,_:. | |
Syme =& a— b
Seacr g 2 a—ay -) 4
R N 1)
— gy o 1
1YY N 1
8 130, | !
2 | l
- £ 7 Al cutans — vas—lg ey 1 !
i L M L 1 |
i + 4 g et e Y 1 I
" o B My e & PR -
o LI [T Py w1 31 Z | !
1 W T re el o4 smae —{a W — | !
M 7y e ~ O it [] -
g g 4oy I | !
H L o] vpe {1t gy 1 |
H [!
Cuik § aui s cuiry hd | i
Pl ok L L T p— . R [TE)
¥ f—pe o I T b p—In
FEE » 4 P vss—{s v
o AP " Wy o e =~ aco| gaw Lo M
Py ~ 4o a —|~ % BMLLATER _—
L™ —4di N PP B la 3 TR S —Cw
™ vou—a | ; Brue M =2
- - B EEAET—| & o By = :
a :‘_.°‘ Y B A= o —ee 1B a "—""s_i
3 o (] T n-es vnp_”'ﬁ" =7 .
oG
+
-
3 F 3
i3s3 B
N
. aaT EEwrT [E HH i Vop w - iy
L3
t ' " -To l Fso = w5r
GEﬁlE.l:il;o : TEST & RESET TFY
R . SIGNAL GENERATOR
INTERFACE
! 1
1 I |
+5 -F I I +5 +5
raom o 40ET &AM &b 4 Toacol Eam £82
A g (D enie 1 INZRD CHIF O
E 1 e msawn & HuTAUT O GQUTRUT &
2t.n | V- aiF
AP AF N 3 [R LIk} En¥
Qe [iadd aL
noig Jt anl i
ST 7604
5T
. {5 I #i _—‘-—m T grof TTY W ;'}L
. L
”:T TR ITY N " Sk,
° (Agz.up) e uACIA BT
tus g NS4 ¥ ESOTAR Y SELEETED
i’ rei
24, T i@
Z
+
P edova O e TaPE IEADERE CoMTROL 1TY TRAMAWITTER
L] A At TTY EmcevER
4 2t o — kg 2 ¥z
A v g
Jz
\—E! eRseT

JZ
LT_]O:L

5 4100 [3713

iy
T 2t A -
- -1o

70 71

[P B]
o Lo . ”)
I ‘..‘-._'_._._ l@’ 1 - [
T rre ¢-+.rgp'-:..1n
I — r 1 p i ey
&El 2z] | haEaet R0Y
||I>n I| 2T
a3T | i
- e o ar <o L el 11,
Ega I L !
o ' = 0
254 2 | Loy WA e B)
S | e, =ikt o ggs
4 1. Wl - —;@"‘ F = T]
P N S Y 5 g bt ! | boeaan
F Y. 4iine sto¥ L afmpel o
P LI T a NE Taen Il | i
. a1 Aites I s X L e I Y
4 :’;x .“-\.m: . - | _4‘ J
! b e Sihee M] | #
Tan Lo 4 s :
—— T :
ol — i el 2 i ﬂ
. 3oan T
b I el | B . |. "L pomi
— -TE o - W = Hars P
12— Cofee —l TR
+8 v
I e N 40D im -
E_) = lpprt el |
— o [H ¥ L L] 444 ' ST
< E * E') Sl _1_&‘“ = g - .,“.,; ", T * z- -
— | - — »—[:P—
E A1 L ovd * : d LT 2 e I [
™ 430 +-J oy -
M el i
o | yean I : s
ud T —— 1 s e
™ T 2T
rov e [| R —— 5 el
I —— ; r) ’
— PR i
2k jp— o rifr
= xim - [} |
wrLb ——— m T
LK T
[an—— R =¥, } 1]
_— LT B <1
From=s
J _ 1
A—E' i
o 1
T .
L
A g [-
& h 2 r
=
[ol— Lz :
b i
:': | EEBET 1| i Fhindud
. [A : "1}wl E
To Pl A S geax f r 1 I 5
ad Ter =¥ | e by [LA .
r .. 8 Lj;r_J iy
Fm £ui = - T e
o— v £ rE—Y [l o LI LT o] @ T
Ty n e . 7 Y Py T
M Hit 4 i w T o
21 1B o i ek o P TR] rm T darmhss {0
Livy 4 ped e : o’ A 5 = e] 1 L eeme
i >] A% o AN B Fommy
[y ! A 1] SINEINNN Yy 3= T i
0 TR ot] i AN T i S =
S] o I 2
i ane ¥ "t ¥ At ez : L1 _a
v} -y Es e L] ae bl ! '
e/ ol T =7 o of of o Sxit 2 i uinpy Calli7 g
m " el 1 HEIEIR I — L 2 Ll LF N —
Tam L] H B |; Ll odl i E 1t ! [}+2> it ;
Staome anf e | oo - ¥ | X 13 44 r Y iy H 2wk
e e | 2 asl hrt ':- aEry :f e i s 1 e 1 ! kot
n e wi & 7| it arEpel oy
Ty — y i hd T 1 ;jr}}_
il . N ,,'_E HE il | . s Pl ' H
2 = ; » j] | il |,
. " . d . ! L |
o i 2 | resed ! |.'I':|1|| |]
§ G 5 bl I PRI 4 =
N . LEhpnt, s 1y | i
3 Ll 1 15 i 1 [N
EL Fhr fadi g h —
1 L8 b | | —t
HIl L 1(liaw I Pt by —]
- e l«d11} i Thy ;
'< e LGEY | R i’ | [
s | pe X e "E.II|: I LT a0
n a
™ i P— e |=l‘r|;||| l ||||||||!: {s2]
2 Anry oA o Iy etz —
4 . il |1 EETITENE
nal s IH||II | ol
L= & il L pi 1 | L--
— (AR
e [22 Frts b |
N ‘
. | 23 .ol
Ead P
(i I e LY
o | avt o
. | | | e
]) e .
< [as el ‘5.m‘. ™ a3 b
m ar Sa o e T
o [= R —
é 1+ w| ! ; - At ’
I = T AL =
X S m— ag n— +
az x| ZE LM R an
L= 5| p > a1 | ”
LIt o| [;nn. + el Ty
] ; _| “Aa: i e T e
il .'_-{ - - M v
) bl ¥ SE R
— 1 2 [b [T
EL —‘—,El | b 5 Y3 , NOTES: UNLESS OTHERWISE SPICIFIED A
] S T i — L—
[4] = 'Iuma'lJ A i R el v I ALL DiDEw Ane NSI4. =
m e ¥ B HHE R A 2. ALL TAANSISTOR &<E Lh29O7. P
) a H | I':“ll " af ul | w 7 h — T] . L % ——
m et 7 I EXRRERE 3. REBISTOR YALUES ARE IN QWM& 1fa , 19% o1
40 - L &1
- o - 4 CAPAC TUHD VALUES ARE IN MICROFARADS,
: s man . ~y
[rap o p—— TETe R [0 CRE ARE OPTIONAL
cam e, 8 rarors seises.
‘atus e — ECATIVE DA
ALl SANALE TEFENENTED TD M P
TS 7 42— kY, RIZ- AT L, 22,78 4MRE TiED T v
o
L (a[a e[o[T2] -
$sii588i

72

Figure 24. SIM4-02 Complete Schematic

73

As

]
AE] 432 W Y] AWT
R T ®

. 1

s oo
CRIT

TIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII“[“[RREE R T

alnuiluﬂnaau--n-.auun-u a = w
NOTES: Unless otherwlse specified.
All diodes are TNGt4,
All transistors are EN2907
Reslstor values ars [n ohms 1/4 W, 10%
Capacitor values are In microfarads
. A29 and A30 was 3015
R1-R8 optian for additional memory only
*Factory Selected

4O d M XM NG M NN WE WY NRA UM

Amphenol Connector
PN 261-10043-2

Do a LN

Figure 25. Component Side of SIM4-02 Board

CNN O

Figure 26. Pin Definition — Reverse Side of SIM4-02 Board

74

S$1M4-02 Board Pin Dascription

{Inputs and outputs deslgnated with respect ta negative logic)

o |commeror | swmor DESCETPTION X CONWECTOR| SYBOL DESCRTPTION

648 J2 +5Y +5YDC Power Supply 67 I 0 (-0} ROM GUTPUT PORT, ROM 3 |

10 & 12 12 -10¥ -10VD¢ Power Supply 72 n 0 (D-13 ROM OUTPUT PORT, ROM 3

2&4 52 GND Grovnd 70 Il i (-2 ROM QUTPUT PORT, ROM 23

254 Ji SPARE Hot Used 74 a o (D-3} ROM OUTPUT FORT, ROM 3

1 31 I (a-0} ROM INPUT FORT, ROM ¢ | 57 n 0 (E-0Y RCM OUTFUT PCRT, ROM 5

5 1 I {A-1) ROM INPUT PORT, ROM ¢ A 11 0 (E-1) EOM OUTPUT PORT, ROM 5

13 J1 I {A-2) ROM INPUT PORT, ROM 68 I 0 (E-0) ROM OUTPUT PORT, ROM 5

3 n I (A~3) ROM INPUT PORT, ROM 4 63 i a (E-3) ROM OUTPUT PORT, ROM 5 E

17 i I (B0 ROM INPUT BORT, ROM 1 . n 5 E0) ROM OUTPUT PORT, BOM & 5

3 J1 T (B-1) BCM INPLT FORT, ROM 1 60 Il =) REOM OUTPUT FPORT, ROM & [— %

13 JL 1 (B-2} RGM INPUT TPORT, ROM 1 5g 71 0 F-3) ROM OUTPUT PORT, ROM 4 8

7 J1 1 (3-3) ROM INPUT FPORT, ROM 1 57 It EER ROM OUTPUT PORT, ROM & E

20 k3 1 {C-0) ROM INPGT PORT, ROM 2 54 n 7 {60y ROM OLTPUT PORT, ROM §

21 J I ¢c-1) ROM INPUT PORT, ROM 2 61 11 0 (-1 RO¥ OUTPUT 2O0RT, ROM &

27 J1 1 {C-2) ROM INPUT PORT, ROM 2 66 I 5_((_.72; ROM OUTPUT FPORT, ROM 6

22 11 I (C-3) ROM INPUT PORT, ROM 2 65 I CRTREY) ROM OCUTEUT PORT, ROM &

23 J1 I (D-0} ROM INPUT PORT, ROM 3 g a0 It 0 (d4-0) ROM CUTPUT PORT, ROM 7

18 J1 I {D-1) RoOM INPUT PORT, ROM 3 % 73 n & (A-1} ROM QUTPUT PORT, ROM 7 5

25 il I (D-2) ROM INPUT PORT, ROM 3 w 73 1 D ROM OUTPUT PORT, ROM T o

18 J1 L (0-3 ROM INPUT PORT, ROM 3 é‘ 15 31 T oM OUTPDT PORT, ROM 7) ﬁ

29 J1 T (E-Q) ROM [INFUT PORT, ROM 4 _E 14 12 EO fA-07 RAM OUTPUT PORT BANK 0, RAM O — %
AND TTY TRAKSMITIER

26 n I (E-1) ROM INPUT PORT, ROM 4 g 20 Iz RO (A-1) Rak OUTBUT PORT BANK 0, RaM 07

33 J1 I (E-2) ROM INPUT PORT, ROM & 3 13 g2 RO (A~2) RAM ODTPUT PORT, EANK O, RAM O (6;

30 J1 I (E-3) ROM INPUT PORT, ROM 4 t 18 32 B0 (A-3) AN QUTZUT PORT, BANK 0, RAM O

31 Ji I (F-0} ROM INPUT PORT, ROM 5 45 72 R RAM OUTPUT PORT, BANK O, RaM 1—- 5
AND TAFE REZADER (=]

24 J1 I (F-1} ROM INPOT PORT, ROM 5 27 17 RO (4-3) RAM QUIPUT PORT, E4NK O, RAM 1—‘ E

35 J1 1 {F-2) ROM INFUT PORT, ROM 3 25 12 A0 fA-6) R&M QUTPUT FCRT, BANK O, RAM 1 LI.LL

2B J1 1 (F=2} ROM INPUT FORI, ROM 5 28 12 B3 tA-T) RAM QUTPUL PORF, BANK O, RAM 1 nj-_‘

37 a1 L (G-0) ROM I¥PUT PORT, ROM 6 3 12 D (A-8) RAM OUTRUT PORT, BAKK 0, RAM 2

34 a1 t &b ROM INPUT PORT, ROM 6 35 Jz RO (A~ R&M OUTPUT PORT, PANY 0, RAM 2

42 L I te-2) ROM INEUT FPORT, ROM 6 33 Iz RO (4-101) RAM OUTPUT PORT, BANK 4, RaM 2

40 I L e _ROM INPUT PORT, ROM 6 34 J2 RO (A-11) RAM QUTPUT PORT, BANK O, RAM 2

% I LR ROM INPUT PORT, ROM 7 44 a2 RO (A-12) RAM QUTPUT PORT, BAMK O, RaM 3

2 a1 1D ROM INPUT PORT, ROM 7 41 a2 RO (a-1%) RAM OUTEUT PORT, BANK 0, RAM 3

41 b IR ROM INPUT PORT, ROM 7 41 32 RO {A-14} RAM OUTPUT PORT, BANE O, RaM 3

» o T -3 ROM INEUT FORT, ROM 7 - 42 32 RO {A-13} RAM QUTPUT FORT, BANK O, RAM 3 | MW

82 12 TTY (R) TELETYPE RECEIVER CONNECTION 51 " R1 (A0 RAH OUTEUT PORT, BANK 1, RA 0 ?é'

4 Jz Y (XY TELETYPE TRANSMITTER COMNEGTION o . AL 1) RAM OUTPUT PORT, BANK 1, RA 0 E

a3 2 TTY (1) TAPE READZR CONTROL 52 Jz Rl (a~2) RAM OUTPUT PORT, BANK i, RAM O g

48 i 0 (a0 ROM OUTFUT PORT. ot 9 51 2 R1 (A-3} IuM QUIPUT BORT, BANK 1, RaM O E

47 1 J (a-D ROM OUTPUT PORT, ROM § 5 12 RL (ack) R4 OUTPUT PORT, BANK 1, RaM 1 | B

% 3 b (D) ROM OUIPUT PORT, ROl B4 J2 RL (A-5) RAM OUTPUT PORT, BANK 1, RAM 1

st 1 G Ta-3 oM OUZFUT PORT, ROM 9 Y 52 J2 Rl (A=6} FAM OUTPUT PORT, RANK 1, RAM 1

46 n o (0} ROM OQUTEUT PORT, ROM 1 :'—_3 . " R (AT RAM DHTPLUT PORT. BARK 1, BAM 1

43 n b D ROM OUIFUT PORT, ROM 1 | § % Iz Rl (A-8) RAM OUTPUT PORT, BANK 1, RAM 2

4 n 0@ ROM OUTFUT PORT, ROM 1 8 73 Iz BL {A-9) RAM OUTPUT PORT, BANK 1, RAM 2

43 I o @3 ROM OUTPUT PORT, ROM 1 ﬁ 1 12 Rl {A-10) RAM DUTPUT PORT, HANK 1, RAM 2

42 1 ¢ ey ROM QUEPUT PORT, ROM 2 = 59 1z Bl [A-11} R&M OUTPUT PORT, BANK 1, RaM 2

50 I o ROM OUTPUT BORT, ROM 2 78 El Rl (a-12) RAM QUIPLT PORT, BANK 1, RAM 3

32 I G ROM OVTFUT PORT, ROM 2 77 12 Rl (A-1D) RAM OUTFUT BORT, BANK 1, RAM 3

56 JL ECE] ROM OUTPUT PORT, ROM 2 _ | 20 12 RL (4-14) R&M OUTPUT PORT, BAMK 1, RAM 3_|

75

;;N CONNECTOR SYMBOL DESCRIPTTON :éﬂ CONNECTOR SYMROL DESCRIPTION
) 32 RL (a-15} RAH OUTPUT PORT, BANK 1, RAK 3 32 12 R3 (A-11) RAM OUTPUT PORT, BANK 3, RAM 2]
47 12 RZ (A-0O) RAM OUEFUT PORT, BANK 2, BAM O 38 J2 R3 (4-12) RAM OUTFUT FORT, BANK 3, HAM 3 ﬂ
a8 Jz RZ (A-1} RAM OUTPUT PORT, BANK 2, RAM O 7 J2 B3 (A-13) EAM OUTPUT PORT, BANE 3, RAM 3 E
50 J2 RZ (-2} RaM GUTPUT PORT, BANK 2, RaM O 3 Jz R3 {A-14) RAM OUTPUT PORT, BANE 3, RAM 3 z
49 32 82 (A-3) RAM (WITPUT PORT, BANE 2, RAM O 40 12 R3 (A-15) RAM OUTPUT PORT, BARK 3, RAM 3 -§
56 a2 B2 {A-4) RAM OUTPUT POET, BANK 2, RAM 1 86 J1 CH-RAM, RAM BANK 1 COMMANT LINE §
55 ” RZ (A-5) | RAM OUTBUT POKT, BANK 2, RAM L 8 n EH-RaM, RAM BANK 2 COMMAND LINE
58 52 B2 (a-6} | Ray ouTewr PoRT, mawk 2z, RAM 1 16 a2 CH-RaM, RAM BANK 3 COMMAMD LIKE .
60 52 R2 (A-T) RAM OUTPUT PORT, BANK 2, RAM 1 84 7 SYNCUTTLY | WACHINE CICLE SYNGHRONIZATION SIG.
&6 32 RZ (A-8) | RaM OUTPUT PORT, BANK 2, AN 2 s = CH-ROM H0S (EXPANSION)
63 32 R? (a9 RAM OUIPYY PORT, BANE 2, RAM 2 | wj 81 J2 5, TEST SWITCH CONTROL (NORMALLY GPEN)
65 Jz RZ (A-10) RAM QUTPUT PORT, BANK 2, mAM 2 :'_n‘ 85 J2 T2 TEST SWITCH CONTROL (MOEMALLY CLOSED)
67 2 B2 (A-11) | RAK OUTPUT PORT, BANK 2, RaM 2 E a1 1z 51 RESET SWITCH CONTROL {NOBMALLY OFEN)
74 32 B2 €A-12) | RAM OUTRUT PORT, BANK 2, RaM 3 | = 8 Iz RSz RESET SWITCH CONTROL (NORMALLY CLOSED)
8
72 12 R2 (A-1D) RAM DUTPUT PORT, BANK 2, RAM 3 8 5 12 1L Hog PHASE 1 CLOCK
70 12 R2 (4-14) BAM DUTPUT PORT, BAMK 2, RAM 3 | 7 12 L PHASE 2 CLOCK
o4 12 R2 (A-15) | RAM OUTEUT FORT, BANK Z, RAM 3 E] a2 RESET RESET SIGNAL FOR 4004 (EXPANSION)
1 Ji B3 (A-D} RAM OUTEUT EORT, BAFK 3, RAM O t 1 TEST TEST SIGNAL FOR 4004 (EXPANSION)
13 12 R1 (A-1) RAM QUTBUT PORT, BANK 3, RAM 0 38 J SRI ROM INPUT PORT STROBE (EXPANSION)
15 32‘ B3 {A-2) EAM OUTPUT PORT, BANK 3, RAM O 33 n §RO ROM OUTPUT FORT STROBE (EXPANSIDN)
17 Iz RY (A=3) RAM QUTPUT PORT, BANE 2, RAH O 16 J1 RDy ROM DATA OUTPUT O (EXPANSION)
2z J2 RI {A-4) RAM OUTPUT PORT, RANK 3, RaM 1 14 1 RDy ROM DATA OUTPUT 1 (EXPANSION)
21 J2 RI (A-5) RAM GUTPUT PORT, BAMK 3, RAM 1 12 g1 RD2 ROH DATA OUTPUT 2 (EXPANSION)
23 12 BRI (A-6) RAM QUTPUT PORT, BANK 3, RAM 1 o n Ry ROM DATA OUTPHT 3 (EXPANSLOM)
2 32 R (A-7) RAM OUTBUT PORT, BANK 3, RAM 1 8 7] FOM DATA OUTFUT & (EXPANSION)
" 12 B3 (A-8) RAH OUTPUT PORT, BANK 3, RAM 2 3 n R ROM DATA OUTPUT 5 (EXPANSION)
7 1 B3 (A-9) RAM OUTFUT BORT, BANK 3, RaM 2 4 Ji RDg KOM DATA OUTFUT & (EXPANSION}
3 J2 R3 (A-10) RAM OUTFUT PORT, BANK 3, RAM 2 _] 2 J1 An7 ROM DATA OUTEUT 7 (EXPANSION)
73 n Az 9; ROM MIDDLE ADDRESS SELECT EXPANSION
82 n a1 92 ROM LOWER ADDRESS SELECT EXPANSION
BL 5 43 G ROM UPPER ADDRESS SELECT EXPANSION
85 J 4 DATA BUS O (TIL COMPATIBLE}
76 5 9 DATA BUS 1 {TTL COMPATIRLE)
71 Il 4, DATA BUS 2 {TTL COMPATIBLE}
77 a1 4, DATA BUS 3 (TTL COMPATIALE)

76

XIl. SAMPLE SIXTEEN DIGIT DECIMAL ADDITION PROGRAM WITH TTY KEYBOARD
and PRINTER INTERFACE (intel ROM Program Number A0700)

An MCS-4 program has been developed to demonstrate both the control
and arithmetic features of this micrccomputer system. This program
adds a sixteen digit Integer to the content of the accumulator and
prints the new content of the accumulator. The programmed ROM may

be used with either the SIM4-01 or SIM4-02 prototyping system.

Input foutput capability is provided by an ASR 33 teletype. The
prototyping system and the teletype should be connected as shown

in Section XIII. The TTY, keyboard interrogation, arithmetic operatiom,
and TIY Printer output are all controlled by the CPU (4004) using

this special decimal addition program.

To use this program:

1) Insert the ROM in ROM position zero in the prototype
system and reset the system, including the accumulator,
to zero.

2) Enter from one to sixteen integers from the TTY keyboard.

3) TIf fewer than sixteen digits are entered, depress the(:)
key.

4) The number entered is added to the content of the accumu-
lator.

5) This procedure may be repeated until the content of the
sixteen digit accumulator overflows (X's will be printed).
This overflow will automatically reset the system.

6) To reset the system at any other time, use the reset switch.

This program uses both the keyboard process routine and decimal
addition routine explained earlier in this manual. In addition,
the TTY printing subroutine is used.

Example of Addition Program

Printout On Teletype
Reset System

1234 (:) Enter number and add command
1234 Printed result

22 (:) Enter number and add command
1256 Printed result '
1311111113%1111%11 Enter sixteen digits
1111111111112367 Printed result
9999999%99999999 Enter sixteen digits

P80 860'684:5.6.60.6.0.4 : Resulting overflow

System automatically reset

The listing of tape A0700 follows.

77

»

PABA
2031
aaaz
ennsd
Bav4
0285
@304
Pan7
BAIA
oAl
omz
A3
Grla
AALS
2ALG
At 7
Baza
anz2i
a2z
GPE3
B2 4
aBzs
oAzé
hagy

a3
By
ng3e
Pppas

B23a,

Aans
AAds
aa3T
B ag
Bhal
a0 az
B 43
Qnaa
dRas
auas
Anay
oAse
“ns]
aase
Be53
P54
aes55
ase6
|asT
ABan
AR L
Aoe2
ANa3
aana
065
pasEs
2N6T
aaTa
e 7]
aere

anT3

P74
L)
BBTe
et
LR X0k

SIXTEEN DIGIT INTEGER ADDITION MICROPROGRAM WITH TTY
KEYBOARD AND PRINTER INTERFACE

Bp337
34
ja3eln]
Ad 4l
@341
a3z
Bdaa
anaa
P46
aa 2
@04
Alap
“wl1aa
AAT
ea12
A320
2275
BRa4a
Il diad
g12v
#z2en
p12oe
367
N3k

ad21
2930
B12a
az27i
R ad
Adis
g161
Qu36
Aral
@asz
Ya64
B#aal
alep
g3
voap
ANpe
A32a
pree
Az20
4263
A330
2264
0126
P27l
B361
N al
aas2
R34
N3ai
B366
A2a42
RI6E
ageaz
a2a3
4R TS
a2483
gtz
alap
Blé&a
aAse
pa37

Z PRIPERTY QF INTEL CIRP S5ANTA CLARA CALIFIRNIA
’
/ PRIGRAM APE-CS828-a 14034 16-DIGIT ADDING-
7/ MACHINE W/ TTvY-KBD DRI VER
s
’
PRIGRAMMER PHIL Tal ;aPPLICATIONS ENGINEERING
/ DATE OQCTOBER 27,1971 @ WBE39
/ PALL~1Y ASSEMBLER
/
*A230
DEC1maAL
BEGINS LM 1% ¢ SET RAM (B) P2IRT T 11118
FIMm P<; @
SRC @<
WP
L.DM @
FIM 2<30 fIRCA-5)=0
FlM 3=<318 ZIRLEI=QITRITI=1D
REPa 5RC o<
WRR
INC 4
152 73 REP
NEXT, LDM @ /7 SET DIGIT CNTR
ACH 13 £ IRCLOY=3
FlmM 2<; 48 SOlIRCAI=3FLRISI=D
JMS 3 CLRRAM / CLEAR RAM
JMS GCRLF / FOS!ITION CARRLAGE
cLC

/

Y TEST TTY/KBD INPUTS

I

5T

TEST.»

5T,

JON TEZIST
J45: S0RI
FIM Per 3 4

ISZ 1:TEST
SRC B+«

RDR

cma

WP

JMS; SBR2

FIM <) /
LDM @&
KCH 2 s
LDM @
XCH 1 /
LDM 8
ACH 4 s,

JMS 3 5B8R1

cLC

SRC @<

RDR /
Cma
Wi e
RAR
LB 2
RAK
XCR 2
LD 3
RAR
ACH 3 4

T L N

JMS 3 SBR2

ISZ a:s$7T1
LM 15

78

IR(PI=05IRCLI=13

IR(D=-1)=0
IR{2)cd
IRCII=zD

1RC4)-§

READ DATA INPUT

STIRE DATA LN CARRY
LOAD AC=IR(2)
TRANSFERE BIT

RESTORE NEW DATA WIRD

EXTEND REGISTER TO MAKE B BITS

2101 Ad«0

a102 29ne FlM p<3id
Ba1es daal SRC @+
214 8341 WP
8185 9333 CIMADD, LDM 11
B17& A223 SUB 3
P1@7 MN361 CLC
ay1a aa2a
111 Bi54 JCH ALPADDITN s IF AC=903 JumpP
4
@112 8859
D113 BiDY WRITE. FIM 4a<; 64 S ITR(BY= 43 [R(?)=8
Q11a B2a3 LD 3
Blt: Bp5] SRE ax
Blle @342 WHR
Bti7 a15a INC B
V120 v2az LD 2
121 v¥O51 SRC 4=
preEg 3342 WRR
s
9123 PAAR
@124 OB STIRE. FlImM B<1i /s IRCBY=@IIRC1I=
B125 POaa
0126 DBTT Fim 2<363 / IRCAYE33IR(S5)=15
2127 A4S
2130 NBTa FiM 3<362 / IR{6)=3;1IR(TY=14
2131 AD4aT REP1. S5RC 3«
B132 A351] RO™
B133 BRas SRC 2=«
B13a A343 WRM
A135 B2as L 5
AY36 B3ITY DAC
9137 B265 ACH 5
2140 #3613 cLC
BL4al B247 LD 7
@ia2 Bite PAC
Blad B2sT ACH 7
Plaa B361 cLe
P14 Blél
B1as @13} ISZ 13REPI
Blat @242 LD 3
2156 2045 SR g«
P15 w340 WRM
B15e2 G175
B153 BO3IO I8Z 13357
Is
LS4 91292
B15S5 B3sT ADDITN, JMS SCRLF / POSITION CARRIAGE
2156 Bvaw
2157 DORO FltM B<;0 s/ IR(@-12=89
Bred BBa4
Ai&l V@62 FIm 2<; 48 / IRU&Y=331IR(5)=8
Bi62 G829 LD® @
P163 B2686 . XCH &
Alsa B3a6l cLC
2165 0245 ADL. SRC 2+«
@166 B35 REM
BE6ET BR4I SRC #=
@178 @353 ADM
A171 B373 DAA
2172 0340 WR
P13 B141 INC 1
BIT4 Al1ad INC 5
B175 01646
176 @185 15 arADl
' /
2177 gvzz
A200 PN2a2 IVERFL, JCON CN3 XXX 7/ TEST FJR CARRY
B2B1 B@54
2282 2017 FIM 6<3)5 /4 1RC12Y-Q1IRCIZI=ID
pand B3z LDM @ -
BeRA Q272 XCH 12
B2A5 ARa4q
0206 BVLO Fim g<10
agzatr a3zl LD 1
p212 R4S SRC B«
B2l #8344 WR@
Az1Le BA4AS AD2. SRC 2<
A213 90354 RD@
B214 B384 RAR
215 @85% SRC 6«
@216 BALI RDM

79

AE1L7
az2e
B221]
. pgee
Baea
azea
azes
p224
pzer
@239
2231
azae
(2233
A234
2235
a236
@237
a2 40
Az at
@z 42
p243
B2 a4
Bz 45
P2 48
o247
p25g
2251
|25z
@253
@254
@ess
#8256
peEsT
peek
261
w2462
Q263
A264
pees
B2é66
neeT
peie

Ba7l
az27e

82173
RE74
@275
az276
pa27TT

2300
B321
azne
23p3a
2324
Q365
@386

a3e7
a31e@
231l

azie
a3
B3l1a
2315
B2ts
0317
a3ze
8321

A3ze
8323
8324
@325
o328
a3azy

epla
nz23
paee
B2a3
Neh3
0333
B2z
B32a
a@as
B3a4q
4126
A3N7
0255
931¢
R27s
Bp172
Bpz12
B3ne
BOL7
23292
nET2
B4z
B33
elLze
Bany
2172
BE244
avaa
G329
2128
B2Z60
#1o02
pp17?
Baey
6261
a3z
Q45
B3 ap
B145
n161
B2n2
@300

0B 4n
aepp

Alap
B273
oLsl
B273
Y3ea

248
o108
1560
B30z
v161
piaz
Ba3po

40
Qagze
@alxa7
241
Plap
Al14]
224&2
Qe al
Q348
alat
ABs2
PR 4]
@340
aasn
ARG
o3 az
BIEe

SKFP1.

SKIPs

AXK

OVFL1.,»

CLRRAM .

CLEAR>

Y

5BR1.

Lits

S5HR2,

L2a

FRINT

TN N My

PRINT,

JCM AN SKFEL

JCN CN3 SKIP
XCH 3

LDM 11

XCH 2

LOMm @

SRC 2«

WR2

JMS 3 PRINT
LD 13

DAC

XCH 13

152 1831AD2
JUNM FNEXT
LOM @

ACH 18

FIM 1<32164
JMS PPRINT
18 10:0VFL1L
FIM 2«0
JMS 3 CLRRAM
JUN SNEXT
LDM B

XCH 1

Lo @

SRC 2«

Wi

INC 5

ISZ 1:CLEAR
BEL

SUBROUTINE

FIM B<3@

152 Bil1

ISZ2 1:L1
BBL

FIM @<38
152 BsLe

152 isL2
BBL '

ROUTINE

FIM B<316
LDt 7
SRC @<
WR™
INC 1§
KCH 3
SRC @«
WF
INC 1
XCH 2
SRC i<
WM

FIM a<3 18

FIM 1«<32@8

80

/ TEST FQR AC.NE.@

7 TEST FOk CA=l

/A IRGII=E3IR(2)=13 (X)

/ 1R(@-1)=a
#5471

7/ IR(BI=2,IR(13>=8

7 275

s IR(@¥=151RC1}=0

/ IR(B)=131IR(9)I=0Q

/ IR(2)=13,1R(3)=0

2300 0244

B321 d2814 ST7. FivM 2<312 /s IRt4Y=8,IR(5)=12
P332 28%1 SRC 4«
8333 22351 " RDM
B334 B34l STE, WM P
9335 964 XCH a / SAVE CCACY IN INDEX REG 4
B336 @120
@337 2271 JMS3 SBRY / DELAY ROUTINE #i
A348 @)z@
B34l 2328 JM5; SBR2 / DELAY ROUTINE #2
P342 A2k A XCH- 4 / RESTORE SAVED CtaC)
9343 @165
9342 H360 152 515719 / NUMBER OF RITATIONS
2345 M151 INC 9 / NUMBER OF DIGITS
@346 AREHO NDP
2347 QR MOP
23150 9daa NDP
B351 dgde NOP
g3s2 a8 NOP
B3sS3 di1e2
Bas54 @330 182 238577 / NUMBER OF 4-BIT WORDS
@355 Baaz LDM 15
BAISE @34l wiP
@357 @300 HEL
A360 BQak
ax&l 214 5T9, FIM 3«<312 7 IRCEY=OIIRC(TI=E2
pirez2 @167
A383 PI6E 5T12, 182 7isTi2
Q364 B366 RAR
@345 A189
Q3466 DI34 JuN B3 5TB
/
/ CRZLF ROUTINES
’
8367 BOAaZ
@370 #21% CRLF. FIM 1<3 tai / 1IR(21=83IR(3>=13 (CR}
3371 M128
gave v387 JMS: PRINT
2373 9042
A3T4 3212 LF., Flv 1<3138 s IR(2)=831R(22=1@ {LF}
Ba?s gi12@
8376 D37 JMS IPRINT
@377 @300 BBL
/
s
OCTAL
/

ADDRESS LABELS USED IN PROGRAM

ADDITN P154 ADI 165 ADE a2y BEGIN €850
CLEAR 0242 CLRRAM @2&@ COMADD D185 CRLF 2367
LF a3ra L3 9273 L2 d3a2 NEXT 2317
OVERFL 2177 OVFLY B2a4a4 PRINT @23@7 REP pal1z
REP1 213l S5BR1 -~ @821 SBRZ el 1) SKI1P B233
EKFP) naa3 5T 2833 S5I0RE @123 57} Das5s
5T12 pl62 5717 @330 578 2334 5T9 B368
TEST 9836 WRITE ®B112 j.9 9.4 g242

81

XIll. MCS-4 PROM PROGRAMMING SYSTEM

A. General System Description and Operating Instructions

Intel has developed a low-cost micro computer programming system for its electrically programmable
ROMs. Using Intel’s eight bit micro computer system and a standard ASR 33 teletype (TTY), a
complete low cost and easy to use ROM programming system may be assembled. The system features
the following functions:

1) Memory loading

2} Format checking

3) ROM programming

4) Error checking

5) Program listing

For specifications of the intel PROMs, refer to the Intel Data Catalog.

CONTROL PROGRAM
L

"] 3

HEERERY

L]
/ IM4-01 OR SIM4-02 MP7.03

-~]
ROM SOCKETS I PROM SCCKET

543 v

ROM PROGRAMMING BOARD

AQG40

!

TTY
ASR 33

Figure 27, MCS-4 PROM Programming System

~ This programming system has four basic parts:
1) The micro computer (SIM4-01 or SIM4-02)

This is the MCS-4 prototype board, a complete micro computer which uses 1702A
PROMs for the microprogram control. The total system is controlled by the 4004 CPU,

2) The control program {A0540, A0541, A0543}
These control ROMs contain the microprograms which control the bootstrap loading, pro-
gramming, format and error checking, and listing functions. For high speed programming
of Intel’s new 1702A PROM (three minutes) use control PROM A0543 in place of A0B42.
3} The programmer {MP7-03)

This is the programmer board which contains all of the timing and {evel shifting required to
program the Intel ROMs. This is the successor of the MP7-02.

4} ASR 33 {Automatic Send Receive) Teletype
This provides both the keyboard and paper tape 1/0 devices for the programmming system.

In addition, a short-wave ultraviolet light is required if the erasable and reprogrammable 1702s
are used. :

This system has two modes of operation:

1} Automatic — A paper tape is used in conjunction with the tape reader on the teletype.
The tape contains the program for the ROM.

2} Manual — The keyboard of the TTY is used to enter the data content of the word to
be programmed.

PROGRAMMING THE 1602A/1702A

Information is introduced by selectively programming “1”’s {output high) and “0"'s {output low} into the
proper bit locations. Note that these ROMs are defined in terms of positive logic.

Word address selection is done by the same decoding circuitry used in the READ made. The eight
output terminals are used as data inputs to determine the information pattern in the eight bits of
each word. A low data input level {ground — P on tape) will ieave a 1" and a high data input level
{(+48V — N on tape) will allow programming of “Q". All eight bits of one word are programmed
simultaneously by setting the desired bit information patterns on the data input terminals.

TAPE FORMAT

The tape reader used with a model 33 ASR teletype accepts 1’° wide paper tape using 7 or 8 bit
ASCI| code. For a tape to correctly program a 1602A/1702A, it must follow exactly the format
rules below:

Start Characterl Stop Character Oata Field MSB {(Pin 11} LSB (Fin 4}
Leader: BPPPNNNNNFBNNNNNNPPF...BENPNPPPNNF Trailer:
Rubaut for at . r . N Rubout for at
least 25 frames. T i L T least 25 frames
Ward Field 0 Word Field 1 Word Field 255

The format requirements are as follows:

1} There must be exactly 256 word fields in consecutive sequence, starting with word field 0
(all address lines low) to program an entire ROM, If a short tape is needed to program only
a portion of the ROM, the same format requirements apply.

2) Each word field must consist of ten consecutive characters, the first of which must be the
start character B. Following that start character, there must be exactly eight data characters
{P’s or N’'s} and ending with the stop character F, NO OTHER CHARACTERS ARE
ALLOWED ANYWHERE IN A WORD FIELD. If an error is made while preparing a tape
and the stop character ‘“F’* has not been typed, a typed “B" will eliminate the previous
characters entered. This is a feature not available on Intel’'s 7600 programmer; the format
shown in the Intel Data Catalog must be used when preparing tapes for other programming
systems. An example of this error correcting feature is shown below:

TYPED ON TTY PROGRAMMED IN ROM
one letter removed

BNPPNN/PNPN//NNF > NPPNPNNN
last two letters removed

BNNPPNPBNPPPNPNPF » NPPPNPNP
data word

eliminated

If any character other than P or N is entered, a format error is indicated. If the stop

" character is entered before the error is noticed, the entire word field, including the B
and F, must be rubbed out. Within the word field, a P results in a high level output,
and N results in a low level output. The first data character corresponds to the desired
output for data bit 8 (pin 11}, the second for data bit 7 {pin 10}, etc.

3) Preceding the first word field and following the last word field, there must be a leader/
trailer length of at least 25 characters. This should consist of rubout punches.

a3

4)

Between word fields, comments not PROM PIN CONFIGURATION
containing B's or F's may be inserted. e T Voo
It is important that a carriage return a2
and line feed characters be inserted K
{as a “"comment”’} just before each DATAONT 1o 4
word field or at least between every *DATA OUT 2 5 WA
B
T
|
9

2y

Ri-dy
LEBY 2 Ay
four word fields. When these carriage oATA ST 3 s
returns are inserted, the tape may be
easily listed on the teletype for
purposes of error checking. It may woars 001 7 1o kv,
also be helpful to insert the word woat 0wt 1 +1 e
number (as a “comment’’) at least veed 1z w} rrocram
every four word fields. - HIS PIN IS THE DATA INPLT L £ AD FOR THE

GO21I02 DURING PROGRAMMING

FOATEDUT 4 - A

*OATA OUT 5 - M oA,
~DAT4 QUT €~ 18 g

1l Ea

IMPORTANT

It should be noted that the PROM's are described in the

data sheet with respect to '"positive logic" (high level =
p-logic 1). On the other hand the MCS~4 system is defined

in terms of '"negative logic” (low level = n~logic 1), As

a result, when 1602/1702 ROM's are being

programued to simulate the 4001, characters should be defined
as P=high level = n-logic 0 or an N = low level =

n~logic 1. For instance, consider the instruction .code

for ADM (one of the 45 instructions for the MCS~4),

111010311

When entering this code to the programmer it should be
typed,

BNNNPNPNNF

This is the code that will be put into the 4001 when t:he
final system is defined.

OPERATING THE PROGRAMMER

The S5IM4 is used as the micro computer controller for the programming.
It presents data and addresses to the PROM to be programmed and controls
the programming pulse. The following steps must be followed when program-

ming a PROM:

. Place control ROMs (A0540, A0541, A0543) in SIM4 board,

. Turn on system power.

. Turn on TTY to “line” position.

. Reset system,

. Insert PROM into MP7-03,

. Load data from TTY and program PROM.

- Remove PROM from MP7-03, To prevent programming of unwanted
bits, never turn power on or off while the PROM is in the MP7-03,

=1 N O b Lo b

84

OQPERATING THE PROGRAMMER

PROGRAMMING
Two different modes of operation are available*

1) A complete program tape consisting of 256 data words in sequential
order may be used.

a) To program the completée ROM place the ROM to be programmed into
the socket on the MP7-02 board, and then type,

5 (start command)

rlrle) . (initial address
—address ¢# of the ROM)

255 : (final address
~address 255 of the ROM)

Start the tape (data words may also be entered in sequence manually).
The ROM will be programmed in all 256 locatiomns.,

b) To skip a section of the ROM (skipping the same number of data words
on the tape) and then program a section of the ROM while still
keeping the addresses In sequential forxrm on the complete tape, type,

5 (start command)
AXK (initial address)_
YYY (final address)

Start the tape, The ROM will only be programmed in the specified
locations.

*Operate the TTY in the '"line' position. Depress the RETURN key @ after
each manual data word entry, When using the tape reader to enter the
program data, switch the reader to "start" after the final address is
entered,

EXAMFLE 1:

Typed

User

Listing

5

g@5
| 610

gog
@g1
@g2
333
| §B4
#@5
#g6
237
@@8
g@9
@1p

start command

initial address

4}4} &

final address

BENPNPNPNNF

BPPPPPPFPF
BPPPPPPPFF
BPPNPPPNPF

BPPPPPPPRFE_|
BNNPNNPPPF#

BNPNNPNPPF
BPNPNPPPPF
BNPNPPNPPF
ENNNNPPFPNF
BPPNFPPPNF

Foo¢

‘—__data words skipped on

programming tape

¢—— programming begins

programming completed

In this example the first five data words on the tape are skipped
and the next six data words are programmed in the ROM locations
The "*" indicates the first instruction programmed,
and the "F'" at end of the listing indicates the completion of the

¢

P
2)

#5 to @1¢.

rogramming,

To program any portion of the ROM without skipping a section of the

tape, use a short tape (data words in sequence) and type

YYY

{program command)
(initial address)

(final address)

Start the tape (data words may also be entered manually).

EXAMPLE 2;

Typed

User

by

P

program command

+
114

initlal address

final address

| #16 o=

Listing
of
tape
by
TTY

(911
912

g3

P14
#15

2}6

BNNNNFNPPF
ENNNPPPPRF
BNNNNPNNPF
BNFNPPPNPF
BNNNNPNNPF
BNPNNPPNPF

F ¢

86

programming completed

This example shows that the first six instruction words in sequence
on a tape are read and directly programmed into ROM locations @11
through #16 without skipping.

FORMAT CHECKING

When the programmer detects the first format error (data words enter either
on tape or manually), it will stop programming the ROM, and it will print

out the address where the format error occurred. 1If a tape 1s belng used,
the programming system will continue to list the content of the tape and will
print out the address of each subsequent format error.

EXAMPLE 3:
Typed P
by — 920

User 1824

#2¢ BNPNPNPNPF
@21 BPPPPNNNNF
$22 BNNNNPPPPN

Listing FE (@22 & format error indicated at
of address #@22 (too many char-
Tape by — acters in data field),
TTY #23 BNPNPNPNPF
@24 BPNM

FE @24 4———— format error indicated at
address #024 (illegal char-
acter in data field).

F 4 sequence completed

If data words are being entered manually and a format error is encountered,
programming may be continued by entering the PROGRAM command, “P”,
the address of the error, and the final address, The error may be corrected
and programming compieted.

ERROR CHECKING

After each location in ROM is programmed, the content of the location is
read and compared against the programming data, In the event that the
programming is not correct, the ROM location will be programmed again., The
MCS~4 programming system allows each location of the ROM to be reprogrammed
up to four times. A "$" will be printed for each reprogramming, 1If a loca-
tion in ROM will not accept a data word after the fourth time, the system

- will stop programming and a "?" will be printed, This feature of the system
guarantees that the programmed ROM will be correct, and incompletely

erased or defective ROM's will be identified,

87

EXAMPLE 4:

Typed P
by gge
User a9
{ 1st programming
[2nd’ programming
Listed l 3rd programming
by ‘
System @#@#6 BNNNPNPNPFSS 74— failure to program
F ¢ . programming stopped

If a location in the ROM will not program, a new ROM must be inserted in the
programmer, The system must be reset before continuing. (If erasable ROMs
are being used, the "faulty” ROM should be erased and reprogrammed),

PROGRAM LISTING

After the programming is complete, the complete content of the ROM, or any
poxtion may be listed on the teletype, A duplicated programming tape may
also be made using the teletype tape punch, To list the ROM, type

L {list command)
XXX {(initial address)
YYY (final address)
EXAMPLE 5;
Typed T
by —| dgd
User | g1¢

Listed $Q¢ BPPPPPPPPF; @¢1 BPPPPPPPPF; @¢2 BPPPPPPPPF; (@3 BPPPPPPPPF;
by — #34 BPPPPPPPPF; (@5 BNNPNNPPPF; @6 BNPNNPNPPF; (@7 BFNPNPPPPF;

System @38 BNPNPPNPPF; @@9 BNNNNPPPNF; (1§ BPPNPPPPNF;

[F 4 listing complete

Note that this is a listing of the ROM programmed in Example 1, The
listing feature may also be used to verify that a 1701 or 1702 is completely
erased, If the PROM is completely erased, "P!'s" will be listed in every
location.

1701, 1702 ERASING PROCEDURE

The 1701 and 1702 may be erased by exposure to high intensity short-wave ultraviolet light at a
wavelength of 2537 R. The recommended integrated dose {i.e., UV intensity x exposure time} is
BW-sec/crm?. Example of uitraviclet sources which can erase the 1702A in 10 to 20 minutes

is the Model $-62 and Model UV5.-64 short-wave ultraviolet lamps manufactured by Ultra-Violet
Products, Inc. (San Gabriel, California). The lamps should be used without short-wave filters, and
the 1702A to be erased should he placed about one inch away from the lamp tubes,

MP7-03 Programming System

The MP7-03 is the PROM programming board which easily interfaces with the MCS-4. All

address and data lines are completely TTL compatible. The MP7-03 requires +5VDC @ 0.8 amps,
—10VDC @ 0.1 amps, and 50 Vrms @ 1 amp. Two Stancor P8180 (or equivalent) filament transformers
{25.2 Vrms @ 1 amp) with their secondaries connected in series provide the 50 Vrms.

This programmer board is the successor of the MP7-02. The MP7-03 enables programming of Intel’s
new 1702A, a pin-for-pin replacement for the 1702,

When the MP7-03 is used under SIM4-01 or SIM4-02 control with control ROM A0b42 replaced by
A0543, the 1702A may be programmed five times faster than the 1702 in less than five minutes.

IMPORTANT:
Only use the A0543 control PROM when programming the new 1702A. Never use it when programming
the 1702, The programming duty cycle is too high for the 1702 and it may be permanently damaged.

The MP7-03 features three data control options:

1Y Data-in switch {Normal-Complement), If this switch is in the complement position, data
into the PROM is complemented.

2} Data-out switch {Normal-Complement}. |f this switch is in the complement position, data
read from the PROM is complemented.

3} Data-out switch (Enable-Disable}. 1f this switch is in the enable position, data may be read
from the PROM. In the disable position, the output line may float up to a high level
{logic "*1''). As a result, the input ports on the prototype system may be used for other
functions without removing the MP7-03 card.

MP7-03 Programmer Board Specifications

Features: Connector:

#®High speed programming of Intel’s new a. Soldgr lug type/Amphenol
1702A {three minutes) 72 pin connectar

¢ Inputs and outputs TTL P/N 225-23621-101
compatible b. ere_wrap type - Amphenol

e Board sold compiete with trans- ' 72 pin connector
formers, capacitor and connector F’;‘_N 261-15636

® Directly interfaces with SIM4-01 : ¢. Wire wrap type - CDC
or SIM4-02 Boards 72 pin connector

P/N VPBO1E3GEQOA
Dimensions:
8.4 inches high
9.5 inches deep

Power Requirement:

VCC =+65 @ 0.8 amps *This board may be used with a{—10\.l"
_ because a pair of diodes {i.e, TN914
TTL GRD = 0V supply

* _ or equivalent} are located on the board in
Vpp =—10V @ 0.1 amps series with the supply. Select the appropriate
Ve =B0Vrms @ 1 amp pin for either =9V or —10V operatian,

A micro computer bulletin which describes the modification of the MP7-02 for programming the
1602A/1702A is available on request, These modifications include complete failsafe circuitry (now
on MP7-03} to protect the PROMs and the 50V power supply.

89

MCB4-10 SYSTEM INTERCONNECT
and CONTROL MODULE

This module provides the complete
interconnection between the SIM4-01
and the MP7-03. In addition to the
connectors for both boards, there are
LED data displays of each microcom-
puter output port, control switches,
the 50Vrms transformers, and a socket
for the PROM being programmed. Plug-
in connectors for each input and out-
put port are provided. The SIM4-01
when used alone with the MCB4-10 is
a complete microcomputer (except for
power supplies). See Appendix E for a
complete description of the MCB4-10,

MCB4-20 SYSTEM INTERCONNECT
and CONTROL MODULE

This module provides the complete
interconnection between the SIM4-02
and the MP7-03. This total package
may be used for both a PROM pro-
grammer and a microcomputer develop-
mental system. The MCB4-20 has the
same basic features as the MCB4-10,
and in addition, it provides a socket
which can be used for duplication. The
MCB4-20 is also fully described in
Appendix E.

+6Y GND 10V

the MP7-03 and the SIM4-01. The

ROM ENABLE 15
1 5 OUTPUT As] 1375 19.21 28 I a—d
™ 45 47 a3 DATA OUT
2 - - Al DIsaBLE®]
TEST H . A2 43 -
— M_ 37 A3 14 j—*{zv
12 o= 41
Ad
ne |9 32 - - a5 &
RESET = . =ss s
b A
- T&.ﬂ 30 - - g 51
2 o - Lxd PN 3
1 - D1l NORMAL +5
—_o)_-!
18 - D2 MP7.03 7 DATA IN
I 1 simaq 20 - - 0317 rom COMPLEMENT
D4},,PROGRAMMER
Ty 14 29 NORMAL DATA OUT
TAPE z, a -] PP spb—o"""_
READER . i oaf,. COMPLEMENT
[D7
5 8 - 52 5
2 - L P
n ROM _ 29
a5 INPUT D1 52 =
Nren | 2 153 2.P-8780 STANCOR
PRINTER | 2 29 - 14 9 ™ .
| z - + =§I%
&2 2 - rH =D_5l 38
- |
B - T : : : :D_ﬁ 40 "savams
N -t - '_'_Jfﬁ 42 104
- 1
Y | R 2% = ‘“‘12__1_
KEVBOARD OR \ 7 - tHHHHE . T2 1 AMPS
TAPE READER | o t1702) i “ﬁ - 2.P-2180 SLOBLO
53 52 P, 17 —-|3000uf STANCOR
17024) 75.10¢ VOC
s LELILIll fo
RV
FEEEETT, +5Lv
- NOTES: R
1. SIM&-1 and MP7-03 Connectors: L _D_H A
a. Solder lug typa/Amphenal I I I I I I VWA
72 pin connector, P/N 225.23621-10%, FILLL
b. Wie wrep type/Amphenol (shown above) | ! | I I — —D—H A
72 pin connoctor, PN 261-15636-2.
2. 1f the usa of tha 24 pin socket on the MP7.03 1111 L
is not desired, the pin connections for external —_ —D—H——(
socket are as follows. | | l |
EXTERNAL SOCKET PROGRAMMING [[_D_.lq AAA
1] :
. MP7.03 MP7-03
FUNCTION PIN FUNGTION pIN [== —D—H AAh
A, “OUT" DEVICE UNDER TEST 56 s &3 I
By, B8 Dg 61 | L_____D_H AAN
Ay &0 D, 59 i
Bg 62 Dy 57 — _D_H AAA
Ay 84 CHIF SELECTOUT 72 LeD 25051
Ag 66 PROGRAM OUT 2 SN740TN pune YW
Ag 63 Ve OUT 24 T MmonNsanNTO
Ay 70 Vgg QUT 2
0, “OUT" DEVICE UNDER TEST 717 Vgg OUT 24
D, 69 Vpp OUT 20
D 67 @902 OUT 2 This is a simple module that can be built in the laboratory to interconnect
D, €5 tion b

complate intar the

$IMA-01 and the MP7-03 is provided by the MCB4-10 system intarface and

control module.

Figure 28, MP7-03/SIM4.01 PROM Programming System

91

+Y GND —10V

|

ROM ENABLE D
210,12 42 2 0 puteur agp] 1315 1921 28
o 2Es 24 884s - - 47 a3 DATA OUT
47 - - A s DISABLE®]
A2 =
TESY J1-54 - - 43
— t.NL 281 A3 " +BY
J1-B1 41 :
14298 1148 - d 3 s
AB
1143 53 3
AESET
= Ino b ee J144 - 28161 |
AT 3
J145 . - 49
J148 1] P NORMAL +5
1150 - 02] % w—o" | DATA IN
J245 n - - 2] P n::g:s COMPLEMENT
SlMa-02 Dé —
v 4158 - - - 2oPROGRAMMER [nomaL o~ | paTa ouT
TAPE Z, 1457 48 36
COMPLEMENT
READER | I 72] P8
-1ov nE 221 P 5 :l
e
J174 - 54 .
1—*— 214 ROM _ 38
n-2oHNEVT <L P =
il T—
P -§180 STANCOR
TTY PRINTER | 23 nn - v i[f " ~ 2-F-8180 it .
. N2 - ' { {03 @ #%.2V RM5 ®
—10v -'v\~—| b4
w na s
na - T L PP
S " 6.2v Ams
n1a - 42 LOA
TFTIT T I
e nas 0 10,12
KEYELTIRD OR 114 - HHHHHHE a6 _-|: 2
TITETTTT, - 2P.8180 SLO BLD
TAPE READER 1702 'NEEEEE I‘% | STANCOR
Jz-ﬁ T rrrrTorT a ‘? [If
+BY 3008
1227 - e e 76 100 VDC
3900 ——— 17924 |IIIIIII€w|_
NOTES: FJLENLE 5y
1. §imd.-02 Connactor: I I I I l I
Wirs weap type/Smphanol | I—D—H—‘\M~—<
86 pin cormector P/N 261-10043-2. I ‘ I | I | I
2. MP7-03 Cannectors: C
2. Solder lug typel/ Amphenal (NN b
72 pin connactor P/N 225-23821-101, | | | | | |
b, Wire wrap type/Amphenal {Shown abovel — _D—k_w\'_4
72 pin connactor PN 261-16636-2. | I I I I
3. M tha use of the 24 pin sacket an thi MP7-03 iz not desired, 11 I_
tiw pin connections for extornal sacket ara es Tollows, | I | | — —D—N—M—
— — !
EXTEANAL SOCKET PROGRA G : : :
MP7.03 MP7-03
FUNCTION PIN FUNCTION PIN L — — —-I > A—
A, “DUT" DEVICE UNDER TEST 56 Ds 63 I
Ay 59 Dg 81 | *——— —D—N——'\M—<
By £0 0y 59 |
Az 82 Dy 57 —_— e — _I HI‘—-_M_
Ay a4 CHIP SELECT QUT 72 221
Ag 6 PROGRAM OUT 22 5"’:‘" N n:'\.E!gus %W
Ag & Vee OUT 24 m MONSANTO
Ay 70 Vg DUT %
D, “DUT" DEVICE UNDER TEST 7 Vgg OUT 24
o, 69 Vpp OUT 30
D; &7 #1. 2 OUT 2
D, 85

This iz a simple module that can be built in the laboratory to interconnect
the MP703 and the $IM4-02. The complete interconnection between the
SIM4-02 and the MP7-03 is provided by tha MCB4-20 system interface and
control module,)

Figure 29. MP7-03/SIM4-02 PROM Programming System
92

TN
o W
Ha -2
G-U""-". 2:_6
S

Wy
21' -\.
Y
GHEe)
@n -
'?
: o ra%ﬁg ? P %9 P 29 O EE IO
- el : IES i —, ea| ey ! | o —|
E‘T E A 5_@[&' E? 5 A5 EI 3 _Slﬁlﬁ %'g’ é % ;fi § |ﬁ ez
5 hEST E E3hdobbbd &3 D e]
o rEE0
¥ g OBl O
|‘E @14 @1 [i
& RIS MEBO ~Bed}O)
S Ew K

L]

™
]

e

a
~
W

e1c

9lole
®
DD,

®
®
OO
®

“ila

™~
)
&

(2
-
7]

¥

R&p

) I RSO ‘3 dan

O O A O N O O i e
a%m@ @gﬁmgjgﬂ E@_:@EE@ ﬁ@gﬁg e]
Ahd & RRE 56 b bb8d b6bd b oEo

Ne——
IIIIIIIIIIIIIIIIIIIIIIIIII'I'II'IIIIIII

K 1 H F E C 8 A Z ¥ X W VWV UT S RPNMILEKSUJIHTEETDCECHBA
!hmml

Salder Comngeior PN 225-20621-101 A L
B3 51 S 57 55 52 51 49 47 4% 43 41 30 37 FB 33 M M 2T 6) XM 18 1F 5 13 11 8 7 OB 3 1

i

‘Wirewrap Connactor P/N 241, 15638 2 71 83 &7 @

Wenwtap Conasctor P/ VPBITEISEDDAN 72 70 B8 65 64 62 60 S0 56 54 52 50 40 46 44 42 4D 38 36 34 122 30 28 26 24 22 20 13 16 14 12 W0 3 & 4 2 COC

Component Side of MP7-03 Card

W oI 12 13 4 6 16 47 B 19 20 02 27 3231 24 026 28 27 20 23 M 31 32 3% 34 ¥ 38

Sakder Conmector PN 226-23621 101 2 3 45 8 7 8 o8
amphenct

Mrmrncoﬂno(mwnlzﬁ'llf;ﬁsﬁ-? ? 4 6 B W12 4 16 B N I2-M X6 M 20 3P M 38 X a0 47 44 49 4 GD 57 54 56 5B &0 87 B4 98 98 T0 ?2‘

Wirewrap Conractor P/IN WPBOTEREENDAT 1 3 5 7 9 11 13 16 17 19 1 23 26 27 2 M 33 36 37 ¥ 41 43 45 47 4D Bi K1 B &7 BD &7 B3 65 A7 8 11 DO

Pin Definition — Reverse Side of MP7-03 Card

93

R4

g Vo OUT
+5 4
POWER SUPPLY REGULATOR SN748E SNT403 B0
1
— 1 DATAIN 1 = w 2 o8 e
B3 27K CR3 '
Y 1NG14 DATAIN |::| 5
v [10] FILTER_CAP h A8 10, W 23] CanTRaL N SNTags SN7488N
+BDY 1 10 2
VA4 p ouT. DATA OUT =
1N52584 3 e : ENABLE ADDRESS
> - CONTROL E— =
= = & SN 74860
12 RT2
1"
SN7485 &NTH03 y i [+11]
5 & 5 X0
Dy
:Iccs." ZQUT shrane SNT4B6
. . s o
DUt s[5 5
INSZ58A % 3300 DATA N
n
1N4753A 011) PN 14 EnssLe [F—
ENZOO? [’ DUT. —
[5 -
A18 @ SN7486N
SENT485 .] R4
1K R&2 RS3 12 SN7ana ! ' @_ B
i LT % 1K (27— 1 12 0 Q30
4 PIN 16 13 | Jic 10 3] e 9 pm 330
DT
= = Voo r
v E SN7a03 13 SN7486 -
(i 1 5 y 13
L S &1 28y i st
FIN 15 ; 2 3 Be7
DATA OUT |::|_ 631
ouT. conTRoL |2 I) R0
28] INM T = 2 Sh7426 SN7403 SN7436N
. v 3 2 4 2 " Reb
30
CR12 L FIN 24 SN7403
IN4DOZ : DT 1 SNT4EE
3 1 =
L e G -
: N7
)
PROGRAM PULSE TiMING ::) L a1e
I 1 1 330
SN7486 =
a
a ;
20K 13,2508 Az [ee— :),u D B L 1§ sraon
- 5 20K {3.0ms} +80V E T3 a7
EN7a03 MN37
5 .8 R26 10 10 DT
+5 L]
s B2 Rig : DORESS DRIVER
c5 1K 27K A 36
O1F
18| 1 14 NC IC 11
|14=- ® 'ﬁl . z i SN7A8E
9602 SNT406 5N7403
4 5
) 15 12 5 ¢ [so}— Q‘ D“ i
&% | &
:: zﬁ?ﬂ SN7403
4
AB4 10 8 > 4
Ton . |>|| .— 6 |5] @? A2 1 24 Voo
SN7405 CRS a1 z 23—
-9 cE e 1 1NE1d ! an 3 22— ¥z
4700pF R20| | & R18 —
ROE < i -FE 14 - 276 [& 4ok DATA QUT 1 4 [L88) H A3
16K 3 18 13 g 12 2 5 20— 24
9602 Ll L 12 SNTABE SNT403 ; 3 [1B—— a5
SN7405 = 1 12 W
B "
BNTE0E & o 16 W
23 11 # L= 13 7 10 15 VS:
470 ._ ks 12 11 .
3] 9 L] [+ capllz DATAQUT & 11 M58} 14 =
L] . Voo 12 13 PROGAAM
5 SN7405
— Ic 11
l = DEVICE TO BE PAOGRAMMED
R22
47K 3
7] 15 1
— e |
13 +5 EN7405 NOTES: Unless other wise specified —
5 I L L 1 c 1
15 . : 1. RESISTORS ARE RATED IN 5is %W, 10%.
7 E“n; ':."”F ‘i‘:F 2. TRANSISTORS ARE SEBOZ1, or ZN3658 or ZNIT22.
10V) 3. PIN NUMBERS ARE SPECIFIED FOR AMPHENOL : = me
GND |18 = = = WIRE WRAF CONNECTORS, Fagure 32. MP7-03 PROM Programmer
E1l | Board Schematic
T
N DATA DRIVER
94

a5

XIV. MCS-4 EVALUATION KIT USING THE 4001-0009

This kit provides both a convenlent way of evaluating the MCS-4 parts
and an educational vehicle to better understand the MCS-4 operation.

The 4001-009 stores a microprogram that exercises the 4004 and 4002's
and executes all of the 45 instructions in the MCS-4 instruction set.

Fig. 33 shows the hardware that should be used. The circuit for single pass/
continuous can be omitted 1f only continuous operation is sought. In this
case 0, (RAM #0) should be connected directly to TEST.

The RESET signal can be provided by either a one-shot circuit or by a pulse
generator in the "single pulse” mode. The width of the RESET signal must

be at least 32 x 8 clock periods (a2 350 psec) to fully clear the RAM storage.
If the system is operated In the continuous mode, RESET needs to be applied
only at power on. If the system works in the single pass mode, when END of
SEQUENCE (Pin 03) is "1", the 4004 will "hang" on a loop where the address
to Jump to on a jump on TEST = 1 condition is the address of the same jump
on condition. To get out of the loop RESET must be applied.

To monitor the program operation a scope should be used in the "B delayed
by A" mode. By using the delay time multiplier the program execution can
be easily seen. The synchronization signals for the B and A traces are
pin 13 of 4002-1 #0 and SYNC, pin 8 of the 4004, respectively.

The 4001-0009 has been coded with the internal chip select circuit always
activated, therefore any address at A, time will cause the 4001 to be
selected. This is different from the normal operation of the 4001 where
only one code {out of 16) at A3 time selects the 4001. The reason for doing
g0 is that we can show the execution of JMS and JUN instructions to any chip
number (the A3 time code) and still use only 1 ROM chip.

The I/0 pins of the 4001-0009 are all conmected as inverting inputs with no
resistors connected.

The two phase clocks, (1 and @,) must be supplied externally according to
the MCS5-4 data sheet specs.

' The program execution is 110 msec, using a clock period of 1.3 usec.
Although the CM—RAMi lines are not used in this configuration, they are
being pulsed.. If a"scope is hooked up to these lines the waveforms may be

observed.

Both 4002-1's must be used in order to fully execute the program stored
in the ROM.

Attached is the program flow (with comments) and the truth table.

Fr cae- XM -
Fl P » - AAp
] ¥ 3 (- A g
s 4004 % s Lwm 5
4
s " & - Rt
—17
- Frar
-
Yoo
.+ o -
i 4 -
Hd I -
m 1
»
¢ 4001
17
s 0009 o1y
4
.
7 e
. £ (i
4 # 2l
] 1|
¥ . (27
£ ’
L 40021
gul Vi Vas
F LI | 1.3
14
A
ENTrOh
ZINELE Pns g
s Op
¢ " o0
ol 2 Lo nTikvous
) ” o
“ 22 Yoo
5 #
<-4002-1 £vo of Sta.
_—
— #0 "-—1
S e ENIP0Y
LT
[¥ 1
[T1
5y .
b3 Brarr ’Vno
2 e
Ge. “v\ ,J

¢ : [ke

Figure 33, MCS-4 Evaluation Kit Using the 40010009

TIME Ik MILLVSECTINDS

o 5 a6 05 23 2 30 W 4o 45 53 35 & g3 0 75 B0 83 %M m e WS

Q
AOGZ -.';l-O

it _ L

e] L]

.0; 1] . I_f

4oozo?mc_'_'_|J _ L

4cog'-|w I N

—I=

— —_ - . —

O Ao] " e
H-RAN, WV

Ot -RaM, [RANARAARA

T — A RERER

Figure 34. Timing Diagram for the MCS-4 Evaluation Kit Using the 4001-0009

97

4001-0009 MCS-4 EXERCISER PROGRAM

ROM
ADDRESS MNEMONIC
4 1
Times 0 WRR
1 1 BBL, 15
3 2 FIM, 5
I 3 4, 1
from 4 JHS
214, 221 5 (LD MK)
6 JMS
7 (CK IDX)
1
3 s FIN ©
9 254
B 1 10 JMS
P 11 {CK FIN)
12 v
13 (CK IDX)
L4 JM5
15 (CK FIN)
16 JMS
17 {CK IDX)
18 FIM, 5
19 4, 2
20 JMS 15
21 255_13
Ly 22 JM5 7 255 WOP
23 26 2
24 JUN B 3
25 36 4
26 JMS 15
27 255
- 28 JHs 3
129 32
¥ 30 JUN 12
31 24
— 12 JMS 15
33 255 ——
— 34 JUN 15
35 2554
——— 16 FIM 1
37 12, 11
38 CLB
39 SRC 5
40 WP
A4l SRC O
. 42 WRM
43 IAC
16 tigep . Isz 1
45 41
46 WR$
47 T4C
4 times| 48 WEL
49 IAC
50 WR2
51 14G
52 WR3
53 INC O
54 157 2
- 55 41
56 STC

COMMENTS

Check accumulator and carry
Check stack content
Loan pointer &4002-1 #1

Jump to LD MK subroutine. This sub-
routine is used to mark the progress
of the program by sending cut a
pattern on the output lines of 4002-1
#1.

Jump to CK IDX subroutine
(Checks the conteat of all index
register locations)

Load FIN address

Jump to CKE FIN subroutine.
{Loads all index register locations
wich the data stored in location 254)

Loads all index register locatlons
with the data stored in location
255.

Restore pointer 4002-1 #1

Location 255 contains NOF, program
counter Is incremented to @; 0; O

This portion of the program is used
L to check JMS and JUN instructions
and load rhe stack with a checkerboard.

|~ Reset marker outputs om 4007-1 #1

Send pointer to 4002-1 #0

Go to next character

This porticn of the program is
|~ used to load a checkerboard into
4002-1 #0.

Go o next register

ROM
ADDBRESS MNEMONIC COMMENTS

57 JHS €K DCL subyoutine is used to check
58 {CK DCL) CM-RAM lines switching.

5 times

182 3
57 ———
SRC 2 Pointer to 4002-1 #0
STC

JCN Cy=1 . This zecticn ia used to check the
B0 jump on condition instructionm.
JCN - A=D The numbers refer to the sequence
B2 7 to which the jumps eccur.

10
63
FIM 6 &—4 Load address for following JIN

Reetore 4002-1 #Q pointer

Check add

Load markers

117

Load markers

SRC
SUB
SUB
WRM
Chack SUB imstructicon
152
104
I52
104
CLB
SRC

Clear Markers

JIN
STC
INC

XcH — Check INC, LD, XCH, DAA instructions

7
]
0
]
0
4
5
&
5
MK}
0
(LD MK)
0
4
5
4
5
5
7
P.——
)
g
9
9
WRR
DAL

ISZ &
117
CLE
DAC

1

KBP |— Check DAC, KBP instructions
WRM
ISZ 4
129
CLE

||

WBRM — Checlk DaA, IAC instructions
IAC

ISZ 4
136 C

ROHM

219
| 220
221

ADDRESS MWEMONIC
141 L1OM 15
142 WRM
143 TCC
144 WRM
145 JCN A # 0
146 141
147 CLB
148 SRC 5
149 WME
150 LDM 15
151 TCS
152 WRM
153 8TC
154 TCS
155 WRH

3156 CMC
157 RAR
158 WM
159 182 4

160 156
161 FIM 2
162 12 0

> 163 SRC ¢
164 RDM
165 152 1

— 166 163
167 RD¢
168 RD1
169 RD2
170 &D3
171 mMe 0
172 82 4

e 173 163
134 FIM 0
175 2 0
176 FIM 1
177 3]
178 SRC 0
179 SBM
180 INC 1
181 SRC 1
182 SEM
183 WRM
184 152 3
185 178
186 FIM O
187 v} (]
188 FIM 0O
189 1 v}
190 CLE
191 SRC 5
192 WMP

) 193 SRC O
194 ADM
195 NG 1
196 SRC 1
197 ADM
198 WRM
199 sz 3

L. 200 193
201 SRC 5
202 RIN}
203 JoN 4=0
204 215
205 iDM 8
206 SRC 0
207 wMp
208 CLB
209 SRC 5
210 WRA
211 JCH T=1
212 211
213 Jm o

— 214 2

3, 215 TAG
216 WRY
217 DM 2
218 SRC 0O

WHP
JUR o
pa

| L 1]

=

/1

100

COMMENTS

— Check TCC instruction

— Clear wmarkers

— Check TCS instruction

— Check TCC, CMC, RAR instructions

-~ Read content of all memory

locations

Check SBM instruction

[Check ADM instructiom

_This portion controls the cycle.

Status character @ stores the cycle
nuwber. At the end of the 2nd

cycle, 1if pin 13 of the 4002-1

#0 is connected to test of the 4004,
the program will stop, To start
again RESET signal must be applied

to the system (single pass operation).
If pin 13 is not cennected to TEST
the program will be in continuous
mode.

LD MK

C¥ IDX

CK FIN

CK BCL

SUBROUTINES

Data_—————ut:

10

222
223
224
225
226
227
228

229
230
231
232
233
234
235
236
237

238
239
240
241
242
243
244
245
246

247
248
249
250
251
252

253
254
255

SRC 5
Lp 11
CLC

RAL
XCH 11
BBL, O

SRC
SRC
SRC
SRC
SRC
SRC
SRC
SRC
BBL,

=N A N el =]

FIN

FTd
FIN
FIN
FIN
FIN
FIN
BBL,

[RENN- T R N

LD 4

DCL
XCH

F

[=]

BEL,

NOP
1111 1111
0000 0000 (NOP)

XV. APPENDICES

APPENDIX A. Electrical Characteristics of the MCS-4

The following pages provide the electrical characteristics for
the MCS-4 system. For TTL compatibility, a resistor should be
added between the output and Vpp. All outputs are push—pull
M0OS outputs.

______ _._.1 ———— e
— | §12Kn ' g 5.BKQ
— : — |
—— | :
4001/4002] > OU 4003 - OUT
ouTpPut PORT T ! == our outpur T | o
e I |
_— | |
_______ —-—d ————e— 4~ J
Vgg = Vog = *6V Vgs = Voo =5V

Figure 38. MCS-4 Output Configuration for TTL Compatibility

The Input options for the 4001 are shown with the detailed des-
cription of the 4001 I/0 ports. All other inputs are high impedance
MOS inverters. Inputs to the 400! and 4003 are TTL compatible (the
4001 non-inverting option is an exception).

Voo
______ - — 1
|
— I
]
|
ouT
l |
|
..._l I
|
_____ .

Figure 39. Typical MCS-4 Input and Qutput Circuitry

102

Absolute Maximum Ratings*

a°¢ 1w +70°C
—E5°C o +150°C I

Ambient Temperature Under Bias “COMMENT

Siresses abowve those listed under "Absolute Maximum Rarings”

may cause permanent damage to the device. This is a stress rating

0.5 16 —20V onty and lungtlonal oparalion of the device at these or any other

— ' : condition abave those indlcated in the ocperational sections of this
10w | spacification is not implied.

D. C. and Operat'i'ng Characteristics - 4001, 4002, 4003, 4004

Ta =0°Cta +70°C; Voo = — 15V £8%, Vgg = GND, topw = 1pD1 = 400 nsec, tépz = 160 nsec, unless otherwise specificd
Logic *0" is defined as the more positive voltage {V,, VOH]' Logic *1" is defined as the more negative voltage (Vg , Vo !

Storage Temperature

Input Voltages and Supply Voitage
With Respect w VSS

Power Dissipation

SUPPLY CURAENT

LT
PRODUCT SYMBOL PARAMETER MmN, TYR!T MAX, uNIT TEST CONDITIONS
" 4001 Y AVERAGE SUPPLY CURRENT 15 o mA T = 259C
4002 Ipo2 AVERAGE SUPPLY CURRENT] 17 33 ma Ta - 250C
4003 Ioo3 AVERAGE SUPPLY CURRENT 5.0 85 ™a twl T WwH - Basec, Ty - 259C
4004 10D AVERAGE SUPPLY CURRENT 30 40 ma Ty = 250C
INPUT CHARACTERISTICS [ALL INPUTS EXCEPT H/Q INPUT PINS)
<
4001/2/4 1 INFUT LEAKAGE CURRENT 10, A YL - Vop
001 124 Vg INFUT HIGH VOLTAGE Veu-1.5 Vgg+0.3 v
{EXCEFT CLOCKS!
4007244 ViL INPUT LOW WOLTAGE Vpop Vgg—55 v
{EXCEPT CLOCKS)
4001214 YL CLOCK INPUT LOW VOLTAGE Vppo Veg-134 | v
40011214 YiHe CLOCK INPUT HIGH VOLTAGE Vgs-15 vgg+0.3 v
OUTPUT CHARACTERISTICS [ALL QUTPUTS EXCEPT HO OUTPUT PINS}
a001/2id Lo DATA BUS DUTPUT LEAKAGE 10 7 VT = — 129, Chip disabied
GURRENT
ACDH 1214 VoH QUTPUT HIGH VOLTAGE Vg5 V5505 ¥ Driving 4000 Series loads only
A001/2i4 oL DATA LINES SINKING 10 18 ma Vour = oV
CURRENT 1" LEVEL
4004 ‘\aus CMROM SINKING CURRENT 8.5 12 ™A Vout - OV
1 LEVEL
a004 loLe CM-RAM LINES SINKING 25 a ma Yoyt - OV
CURRENT 1" LEVEL X
40011204 Vous DATA LINES, Cht LINES, Vgg—12 Wgg—10 Vgg- 65| V lppLy = 50044
SYNC QUTPUT LOW VOLTAGE
4001/2/4 RoH1 QUTPUT RESISTANCE 150 250 2 Vot = -05V
DATA LINES "0 LEVEL
4004 Rohs CY-ROM GUTPUT 20 800 2 VauT 05
RESISTANGE 0" LEVEL :
4004 ROHS CM-RAM LINES OUTFUT 1 1.8 KSl VouT = —05Y
RESISTANCE "0 LEVEL P
+0 INPUT CHARACTERISTICS
an01/3 Iy INPUT LEAKAGE CURRENT 0 [y ¥~ Vpp
ano /3 Vin INPUT HIGH VOLTAGE "Vgg 15 vgg+0.3
4001/3 v 02 INPUT LOW VOLTAGE Voo Vgg—14.2 v
4001 Ay 140 PINS INPUT RESISTANCE 10 18 25 w2 Interngt input resistor is aptional
1/0 QUTPUT CHARACTERISTICS
4001/2 g2 1O OUTPUT LINES SINKING 25 5 mA VLT =0V, For T2L compstibility o
CURRENT, 1" LEVEL P 12K 0 [£10%) resistor between out-
put and Vo should be added! 3)
4003 ‘aLa PARALLEL QUT PING 0.8 1.0 ma, VouT = 0V Far T2L compatibitity 2
SINKING CURRENT, 1" LEVEL 56K (T [X10%) rasistor between out-
put and Vp should be addad(3!
4003 loLa SERIAL QUT SINKING 1.0 FE mé, VT T 0V
CURRAENT, "1 LEVEL
400112 Vg 1/Q DUTPUT LINES Vgg- 12 Vgg-7.6 Vgg-68 | W Yo o - BOUA
DUTPUT LOW VOLTAGE
4003 YoLa OUTPUT LOW WOLTAGE Vvgg—11 Vgg—7.5 Vgs-hS tqLg~ 10HA
200177 Rowmz OUTPUT RESISTANCE o 12 18 Kkfl Vgur - DBV
1/Q LINES "0 LEVEL "
4003 ACHa PARALLEL-OUT PINS OUTPLT 100 750 0 Vour T -0av
SESISTANCE "'0" LEVEL
4003 Reyhg SERIAL OLT QUTPUT 650 1200 £ Vaur = 08V
FESISTANCE “0" LEVEL

11} Typcal walues are for T - 25°C and Nommal Supoly Voltages.
{2Y 1t non inverling inpur optien s used, ¥y, -

-B.5 Vaolis masimum. vop T - 10%

+ 8% Wgg - +EV 1 5%

103

{3 For T?L campatibility on the b0 lines the su.pply wollages should he

Typical D. C. Characteristics

POWER SUPPLY CURRENT {mA) lggey

POWER SUPPLY CURRENT tmA) - Igp;

OUTPUT CURRENT (mA} - o

POWER SUPPLY CURRENT
VE. TEMPERATURE

{4001}
|
topw T tipt = 400 newec
\ .z = 150 nsec
e
Voo~ - 15.76V
\ \

/

—15.0V

/!

a 20 40 6

0 B0
AMBIENT TEMPERATURE {"C}

POWER SUPPLY CURRENT
VS, TEMPERATURE
{4003)

typ = tyy = 8 usec

Vpp = ~15.75

—15.0
—14 26y

o 20 a0 60 50

AMBIENT TEMPERATURE {“C}

QUTPUT CURRENT VS.
OUTPUT VOLTAGE
(4001, 4002}

I Vop= —15.0v
Lipw = tp1 = 400 nsec]
1,pz = 150 nsec

QUTPUT VOLTAGE (V)

104

POWER SUPPLY CURRENT imA) - Typg POWER SUPPLY CURRENT imA) - I

OUTPUT CURRENT (ma} - Ig 5

POWER SUPPLY CURRENT
VS. TEMPERATURE

21

(4002)
|

Ly - tapy - 400 nsec
T.pz - 150 msec

Vpp = —16.75V

AN
"~

.
|~

3z

28

24

20

s
— 14 25y
]
0 20 0 0 80
AMBIENT TEMPERATURE §'C)
POWER SUPPLY CURRENT
VS, TEMPERATURE
{4004}
tapw = tapr © 400 nsec
tapz = 150 asec
Y
—~]
Vop = — 15.75V
\\‘\‘-H— i 15-0"' ‘\\-
"'\.\,_\
T ~14,25V ™~
"""\.‘___\‘\\
‘\‘
0 20 40 60 80

AMBIENT TEMPERATURE [“C)

OUTPUT CURRENT VS.
OUTPUT VOLTAGE

(4003}
Vpg= ~15.0¢
twi = tywn= Busec |
\\\
\ L. Ta=0°C
k-\,* ,+;5"c

%g, 0%

6 -1 2z -3 -4 -5 -8 -7
OUTFUT VOLTAGE (V)

4001, 4002, 4004 A.C. Characteristics

Ta = 00 10 +70PC: Vg = — 16V 5%, Vg = GND

LiMIT
PRODUCT SYMBOL TEST MIN. MAN. UNIT CONDITICGNS
4001{2/4 toy CLOCK PERIGD 1.5 2]
] CLOCK RISE AND 50 L
“SF FALL TIMES
t CLOCK WIDTH |0 480 naee
| —oPW
tenn CLOCK DELAY a0] nswe
FROM ¢4 TO g3
ta0e CLOCK DELAY 150 nssc
FROM 42 TO ¢
tw DATA-IN WRITE - 50 ngec
TIME
tH CATA-IN HOLD 40 nsec
TIME
tpgitt SET TIME FOR a nsec Cour = S00pF for data linas
DATA OUT, SYNC, 500pF lar SYNC
cM-ROM, 2Icm. 160pF tor CM.ROM
RAM.[2 LINES BOpF for CM-RAM
10H HOLD TIME FOR 5D nec | Cour - 20pF
DATA OUT, 5YNC.
CMLAOM, CM-RAM,
LINES
tatp RISE AND FALL B00 ngac Cour = 50CGpF lor data lines
TIMES FOA DATA BOCpF for 5YNC
OUT,5YNC, CM-ROM, 160pF for CM.ADM
CM-AAM, LINES BOpf tor CM-AAM
40012 L) 1/3 QUTPUT LINES B00 nso Cour = 20pF
DELAY
W CM WRITE TIME 380 nec
tHC CM HOLD TIME 0 c
4001 g 1O INPUT LINES 50 nec
SET TIME
fiH VG INPUT LINES 100 s
HOLD TIME
1d® 10 OUTPUT LINES 200 | nmc | Cour - 20pF
DELAY OM CLEAR

4001, 4002, 4004 Timing Diagram

Qutputs with loading conditions specified on A C, Characteristics table.

notes Moua &ut, EYNC, CMAOM, and CM-RAM; |Inds #e docked out wh
(e ng #cign ot the do clock.
Tha AOM and the sacred TM.AAM; Ly ara Blwdly | actwstid
during A el They 2re 83 serivered during W time if an HO end
FAM ingliucticn was betchind by cha CPU, and during Xg 1lme o ar
msnc instruct ian wist letchad by 1 L.
Pin Gy on 4001 ip waid 1o apy nchrentuly char 1hE autpll Thp-tom
axwrciated with the 110 lines,

DATA BLUE LINES
ibg. Dy, Dg. Dyl

4302 QUTPUT

LINES, 4001 1410 QUTPUT LINES

o5 P~ tou=] P
DATA OUT {L

CM LINES
_ D01 14O INPUT LINES
gl [

4007 CLEAR LINE (T,)

40H 1D DUTPUT LINES

105

4003 A.C. Characteristics

T, = 0°C 1o +70°C; Vg, = —15 £ 5%, Vg - GND

LIMIT
SYMBOL TEST MIN, MAX, UNIT CONDITIONS
an CP LW WIOTH [10.000 b ser
e CF HIGH WIDTH & M 111 TP
oo CLOCK-OM TO DATA-OFF TIME 3 et
B CPTO OATASETDELAY Mote £23 250 e l
i
[CP 7O DATA OUT DELAY 780 1,750 ner 7
[ENABLE TO DATA DUT DELAY L350 [Coyr - 20pF 4
ya CF TO SERIAL OUT DELAY 300 150 nsec Coyt - PPk
NOTES: 11 ‘th can be iy Lime greate: 1han 6 daer, i
{2hats can orcur prios 10 CP b -—?.-'
- - »
4003 Timing Diagram
ot 1y ——]) H
\- @y
cP @ -5V - 'Wh -
f—'co
DATA IN & 5y
—=thg
S — I
B 1w
. DATA QUT [
Q)
-—tm—’-l yz —= 142 I-q—
E
NABLE P_—
v TEl !
SERIAL OUT \
—wl gy b
-
Capacitance
f=1MHz; V), =0V; Ty=25°C ; Unmeasured Pins Grounded.
LIMIT ipF LiMIT (nF]
PRODUCT | SYMBOL TEST TYP. [MAX. PRODUCT | SYMBOL TEST ¥y | max,
4001120304 | €, InpyTIY & Ll 400204 Cpny DATA BUS 65 g
CAPACITANCE /0 LINES
CAPALITANCE
40012 Cp1.Cga | CLOCK INFUT 8 15
CAPACITANCE EL] Loy DATA BUS 8.8 15
" 1700 LINES
4004 Cyr-Cay | CLOCK INPUT 14 o) CAPACHTANCE
CAPACITAMCE .
MOTE: it Haefers to all inpyt pins except date bus 1/Q and @1 and 0-2.
- .- aw
Typical Load Characteristics
SET TIME VS, OUTPUT CAPACITANCE
(DATA LINES FOR 4003, 4002, 4004 SET TIME VS, OUTPUT CAPACITANCE
& SYNC FOR 4004} {CM-ROM 4D04)
mn T T T a0 i [f
g - 3RO nsac :
. 1y - 900 maee _ T C 380 nuc
Lope - 150 s 600 Uy T A0 s
T =gt 40uec V.py 150 naec
, e Vgp - 15.0v " L Tl AR
g ¥ 500 Vo = -180W
g o St i N |
£ [£
¥ RN g \\\ |
3 Py z
- 'y P =
E 200 \"“r/ [~ & a0 \ T, et T
1. e o \..._‘ \ [~y
1 i B 700 T
o V70 © e HC
o ‘ na
100 o I) ElEr] SO0 [101] Mo E0Q o o0 200 300 403 B0 1]

QUTPUT CARACITANCE IpFi

106

DUTPUT CAPACITANCE 4pF)

Absolute Maximum Ratings*

Ambient Temperature Under Bias

Storage Temperature

Input Voltages and Supply Voltage
With Respect to VSS
Power Dissipation

09C to +70°C
—589C to +150°C

+0.5 to —20V
10W

- *COMMENT

Stresses above those Ilisted uwnder “Absolute Maximum Ratings™
may cause permanent damage to the device, This is & stress rating
only and functional aperation of the dewvice at these or any other
condition above thase Indicated in the aperational sections of this
specification 1s not implied,

4008, 4009
D. C. and Operating Characteristics

Ta = DOC to 709C, Vgg—Vpp 1 = 15V £ 5%, tepw = 14p1 = 400ns, 1yp2 = 160ns unless otherwise specified.

Symbol Parameter Product Min. Typl2) Max. Unit Test Conditions -
Iy Input Leakage Current 4008/9 10 uA Vi, = Vgg —16V, Pins 1-8 {4008)
Pins 1-8, 11, 13-15 {4009)
lno Average Supply Current 4008 10 20 mA T, = 25°C Unloaded
4009 13 30 mA
Viu Input High Voltage 4008/9 VSS. Vgg \'i
-1.5 +0.3
ViLe Clock Input Low Voltage 4008/9 | Vpp Vgg v
-12.5
(Except 1/0} -5.5 20-23 (4009)
VyLo 1/0 Input Low Vohiage 4009 | Vpp Vgs V | Pins 18, 16-19
—-4.2
Voo Cutput Low Voltage 4008/9 | Vgg Vag Vgg v Capacitive Load Only
-12 -10 —6.5
loLy!3 | Address Line Sinking 4008 8 12 mA Vour =Ves
Current
foLo Chip Select and 4008 9 13 mA) Vo "Veg
. F/L Sinking Current 1.6 2.5 mA Vot =Vgg —4.85V
lg s 1 | W Output Sinking Current 4008 2.5 5.0 mA Vour =Ves
locs Data Bus Sinking Current 4009 9 - 15 mA Vot =Veg 1 Pins 20-23
loLs £/0 and Strobe Qutput 4009 5 12 mA | Vgur =Vss
Sinking Current 16" 4 mA | Vau =Vgg —4.85V
RoH1 Output on Resistance 4008 0.6 1.2 kf2 Vout =Vss —0.5V
RoH2 Data Bus Output On 4009 130 250 Q Vour =Vsg —2V, Pins 20-23
Resistance
RoHa /0 and Strobe Qutput 4009 250 1000 LY Vour =Veg —2V, Pins 8,10,16-19
on Resistance
lce Output Clamp Current - 4008/9 16 mA Vour =Vsg —6V. All outputs on
4008. Pins 9,10,16-19 (4009)
NOTES:

1. For TTL compatibility an the 1/O lines, the supply voitages should be Vgg = +5V £ 5%, Vop = —10V 5%,

2. Typical values are for Ta = 252C and nominal supply voltages,

3. The address lines wili drive a TTL load if a resistor of 470 ohms is connected in series between the address output and the TTL input.
4. A B.8kohm resistar rust be connected between Pin W and Vo for TTL capability.

107

4008, 4009 A.C. Characteristics

Ta = 09C to 709C, Vggs—Vpp = 15V + 5%. All clock, sync, CM ROM, data bus, and /O timing specifications are identical

with the 4001 and 4004,

L

Symbal Parameter Product - Limit Unit Test Conditions
Min. Max.
toy Clock Period 4008/4009 | 1.35 2.0 Hs
tyr.tgr | Clock Rise and Fall Time 4008/4009 50 ns
topw Clock Width 4008/4009 | 380 | 480 ns
tsD1 Clock Delay from ¢, to ¢, 4008/4049 400 500 ns
ton2 Clock Delay from ¢4 to ¢4 4008/4009 150 ns
ty Address to Qutput Delay at Aq,Az, X, 4008 1 HS C| =350pF
tes Chip Select OQutput Delay at A4 4008 300 ns C, =50pF
two W Qutput Delay 4008 600 ns C, = 100pF
tep F/L Output Delay 4008 01 1 ls C_ = 100pF
tw Data In Write Time 4009 600 ° ns C|_ = 200pF on data bus
tp I/0 Output Delay 4009 1.0 s C_ = 300pF
g4 IN Strobe Delay 4009 450 ns C_ =50pF
tos OUT Strobe Delay 4009 1.0 Hs C,=50pF
Timing Diagram
i | A, | ay { &g i L | ™ ! % | P %y } % |
S — U Ty LS L | 1 |/ T
I | W |V ug o
SVNC (4008 f .!:] \ f_——-
M ROM 14004} f— \ w7 E \:."T-s;-'_f
By - M]umar X : SRC R[‘Gls'l'(R LOW & BITS
s]
Ay Ay (4008)< SAC REGISTER HIGH 4 BITS
—] Ty =] ‘ql-.-
Cp » O3 (ADDE] X SRC REGISTER HIGH 4 BITS {eacep WPW)
“PROGRAM MEMORY ACCESS ——nd) b1,] /"
{FROM ROM I;; ;ADNI!‘l x FROGRAM INSTRLK TION
DATA BUS m:;:osn;: ﬁ R
WodD0g e T r_fﬂl:_ ‘:D__- J |
FiL 14008 ‘_ -HTG-H-F—DRTR;V;; HN-F‘_;RECO_NBFM -T
‘ip—w }-— ""'D""]L tag I-l—
160 DUTPUT (atof) FLOATIN w .
T
VN STROSE 14D} N iF row nﬂ_‘ /L7 IF WAR \'L
hLons I ol /1,-,—" INSTR H
DUT STROBE (40091 > \ — ff)
T VA) =S A
/ A S— _
YO INPUT (450} DON'T CARE I DON'T CaRE

*PRCHGAAM MEMORY ACCESS TWME {CHIP SELECT TO DATA OUT) MUST BE LESS THAN Stns.

Capacitance - 1muz, vy = vgs, Ta = 255,

[

\

¢
/,.Q\

Limit {pF) ——— Limit {pF)
Symbol Parameter Product Typ. Max. Symbaol Parameter Product Tye. Max.
Cin Input Capacitance 4008 5 10 Cyo Data Bus and 1/0 4008/9 B 10
4009 8 15 - Capacitance
Cout Output Capacitance | 4008/9 8 10 Cy Clack Capacitance 4008/9 12 20

108

APPLICATION OF THE 4008/4009 IN AN MCS-4 SYS_TEM

The standard memory and /O interface set {4008/4009}
provides the complete control functions performed by
the 4001 in MCS-4 systems. The 4008/4009 are com-
pletely compatible with other members of the MCS-4
family, All activity is still under control of the 4004
CPU. One set of 4008/4009 and several TTL decoders
is sufficient to interface to 4k words of program mem-
ory, sixteen four-bit input ports and sixteen four-bit
output ports.

It should be noted that in any MCS5-4 systermn the pro-
gram memory is distinct from the read/write data storage
{4002 RAM), Using the 4008/4009, programs can now
be stored and executed from RAM memory, but this
RAM memory is distinct from the 4002 read/write data
storage. RAM program memory will be organized in eight
bit words and 256 word pages, just like the memory array
inside the 4001. Any combination of PROM, ROM, and
RAM will be referred to as program memaory,

The accompanying diagrams show the internal crganiza-
tion of both the 4008 and 4009.

The 4008 is the address latch chip which interfaces
the 4004 1o standard PROMs, ROMs and RAMSs used
for program memory, The 4008 latches the eight bit
program address sent out by the CPU during A1 and
A2 time. During A3 time it latches the ROM chip num-
ber from the 4004, The eight bit program address is
then presented at pins AQ through A7 and the four bit
chip number {also referred to as page number) is present-
ed at pins CO through C3. These four bits must be de-
coded externally and one page of program memory is
selected.

The 4009 then transfers the eight bit instruction frem
program memaory to the 4004 four bits at a time at M1
and M2, The command signal sent by the CPU activates
the 4009 and initiates this transfer.

When the CPU executes an SRC {Send Register Control)
instruction, the 4008 responds by storing the 1/0 address
in its eight bit SRC register. The content of this SRC
register is always transferred to the address lines {AQ
through A7) and the chip select lines (CO through C3)
at X1 time. The appropriate /O port is then selected
by decoding the chip select lines. The IN and OUT lines
of the 4009 indicate whether an input or output opera-
tion will occur.

The 4009 is primarily an instruction and 1/O transfer de-
vice. When the CPU executes an RDR {Read ROM Port}

instruction, the 4009 will send an input strobe {pin 9)

to enable the selected input port. It also enables 1/0
input buffers to transfer the input data from the 1/0 bus
to the data bus. When the 4009 interprets a WRR

(Write ROM Port) instruction, it transfers output data.
from the CPU to the 1/0 bus and sends an output strobe
{pin 10} to enable the selected output port.

A tormerly undefined instruction is now used in conjunction with the 4008/4009 to write data into the RAM praogram memory,
This new instruction is called WPM {Write Program Memory — 1110 0011). When an instruction is to be stored in RAM
program memory, it is written in two four-bit segments. The F/L signal from the 4008 keeps track of which half is being
written. When the CPU executes a WPM instruction, the chip select lines of the 4008 are jammed with *“1111”, In the system
design this should be designated as the RAM channel. The W line on the 4008 is also activated by the WPM instruction.
The previously selected SRC address on line AO through A7 of the 4008 becomes the address of the RAM word being

written. By appropriately decoding the chip select lines, the W line, and F/L, the write strobes can be generated for the memory,
The F/L line is initially high when power comes on. [t then pulses low when every second WPM is executed. A high on the

F/L line means that the first four bits are being written, and a low means that the last four bits are being written. The 4009
transfers the segment of the instruction to the I/O bus at X2 of the WPM instruction. The SRC address sent to RAM is only

8 bits. When more than one page of RAM (256 bytes) is being written, an output port must be used to supply additlonal
address lines for higher order addresses.

Definition of Write Program Memory instruction

Mnemonic: WPM Description: The chip select lines of the 4008 are forced to 1111

OPR OPA: 1110 0011 at X1 time and the content of the accumulator is available on the

Symbolic: 4009 1/0 bus at X2, RAM program memory can he loaded four
1111-» C3C2C4Cp of 4008 bits at a time. The previous SRC address is sent out on lines AD
ACC /O3t 03 1/041/0g of 4009 through A7 of 4008.

SRC Address — A, — A5 of 4008
System lllustrations Using the 4008 and 4009

Four systems are shown where the MCS-4 components are used with standard Intel memory elements as the program memaory.
Notice that several different approaches to chip select, port decoding, and the /0 elements are shown.

Example 1. Four 17024 PROMs and Four 1/0 Ports.

This configuration is equivalent to the SIM4-01 system. Four 1702As are used for program storage and four four-bit 1/0O ports
are used. In this case D-type output latches are used and a one of eight decaoder {32058} is used to decode hoth the input and
output strobes. Note that the 1/0 bus is buffered from the outputs. Buffers are needed only when the current sinking require-
ment on the bus exceeds 1.6mA. In small systems low power TTL could be used and buffers could be avoided.

Example 2: Read/MWrite Memory for Program Storage.

This example shows only the RAM portion of a system when RAM is used for program memory. Note that the chip selects
are tied together in groups of four. The chip selects are gated with the F/L control line for writing only four bits at a time
when executing a WPM instruction, They are also gated with the decoding of the chip selects from the 4008 for normal program
execution. The 1101 {256 words x 1 bit) is shown. A similar system using the 2102 {1k words x 1 bit] could be developed.
Example 3: Seven 1702A PROMs, one RAM block, and seven 1/0 Ports.

This example uses a single page of RAM program memory shown in Example 2 in a complete system. In this case the input
ports are 8:1 multiplexes which are buffered from the 1/0 bus by a quad three state buffer. The input port selection is then
the function of the multiplexers. The output ports are [ntet 3404 tatches and the port selection is done using an Intel

3205 decoder.

Example 4: Eight 17024 PROMSs, eight RAM Blocks, and eight 1/0 Ports.

Program memory organized with 2k bytes in ROM and 2k bytes in RAM. Each basic RAM block can be organized as in Example
2. When more than one block of RAM is used, the write chip select {WCS) for each RAM block is generated by properly
gating chip select 15 with special decoding for page selection. Output port eight is dedicated to this sefection function. This is
anly necessary when the RAM program memory is being written, In this example standard TTL logic elements are used for
1/O port selection rather than decoders as shown in previous examples. |n this case all input ports are three state buffers.

IMPORTANT:

The follow/ng differences exist between an MCS-4 system using 4001 program memory and a system using 4C08/4009 program memory.

1. For normal operation, 4001 ROMs cannot be used in the same system with 4008/4009.

2, Memory address, memaiy data, 1/0 bus, and control lines from both 4008 and 4009 are defined with respect to positive logic. The MCS-4 data
and contral lines from the 4004 are defined with respect to negative logic, As a result, in program memory used with the 4009, programs should
be coded with logic 1" = high level and logic 0" = low level {i.e., NOP = 000D 0000 = NNNN NNNMI. Mote that programs are defined faor
the 4001 in terms of negative logic such that NOP = 0000 0000 = PPPP PPPP. Carefully check all tapes submitted for metal mask ROMs to be
sure that the correct logic definitions are used.

3. Input and cutput data from the 4009 /0 bus is defined in terms of positive logic. |f these interface devices are used for prototyping a 4001
program memory, care shouid be taken to be sure that the 1/0 ports for the 4001s are defined consistent with the 4008/4009 system,

4, An 1/Q port associated with the 4009 can have lines with both input and cutput capability. On the 4001 each 1/O line may have only a single
function, either input or cutput,

5. The RAM program memoty cannot be used as a substitute for the 4002 read/write data starage. They perform distinetly different functions.

6. CM-ROM and CM-RAM;, cannot be used 1¢ control 4002s when CM-ROM is used for 4008/4008 and the WPM instruction is being used. The
reason is that the WPM instruction is interpreted as a Write Memary (WRM) by 40025 connected to the same CM line as 4008/4009.
CM-RAMg in absence of a DCL behaves exactly like CM-ROM,

110

Ram RAM
CM Ram ¢ FORT & PORT 3
4008 S¥YNC 1 " n
o An02 0032
Op Dy O 0, |ROM rnmu e [—" RAM 3 *—I
DATA BUS })
4008 7024
ROM © 4009
Cg €1 Cy €3 = =
fia]
i17024
ROM 3
[
i
THREE
L d staTE
BUFFER
b Oy i R
Ay 2] :
—143 O i M eaBT |—=
8 o =0 TYPE LATCH—=
13208 —
L]
Og |+ .
Oz b—
o_, .Jl LF 2BIT
D TYPE LATCH

]

THREE STATE [a—em—

BUFFER

l .

THREE STATE

BUFFER

OQUTFUT
PORT O

CQUTPUT
PORT 3

INPLIT

PORT O

INPUT
PORT 3

Example 1. Four 1702As and Four 1/O Ports {$IM4-01 Equivalent}

— PCS {CHIP SELECT

DECOCED FROM #08)

ADDRESS BITS FOR WRITING A 2102 MEMORY. HANDLE IN THE SAME MANNER A%
A MULTIPLE PAGE 1101 SYSTEM.

o~ WCE - . Wt
F"L_"__D"__L-/ WECE. WRITE CHIP SELECT ACTIVE LOW
w o {DERIVED FROM ALL 400B CHIP SELECTS “HIGH™)
2‘01:1'[50" RCS: READ CHIP SELECT ACTIVE LOW
FROM 4008) 6.8k L
- »
Voo
ADDRESS
FROM
4308 T 4 T T T T]
1T LY 1T 1L 4 1Y 1T, 13
111 [111 [111 111111 [111 111 111 1111
AW R R
. :)) : L "
| L N I P I P N LY g MO L e
1 L. o
f————-
—+ |10
4009
d vy
| FROM
*NOTE THAT A SIMILAR MEMORY MODULE CAN BE OEVELOPED LSING INTEL'S Tmus
2102 tk STATIC RAM. AN QUTPUT PORT MUST BE USED TO SUPPLY HIGHER ORDER ’

Example 2. Read/Write Memory for Program Storage

1M1

M RAM | . au
HO0E .
o a0z = ouTeuT
Da 40,1, [CM AD [POnT
I 1
" :?)zn e or—i THREE
STATE
& w BUFFER
¥
BOT
aa —
Lany wad 13 INPUT
M2 PORT 6, ——
ai !
[—IS;_
By — s fe gl ip
13205 T . veann E
A1 . BUFFERA I"%Wi’l . ! g';:...._.
Ay DECODER | [. ' e -
— — =] &y
W = | 4y 3205 -
ze) -
B [
e
—
] iaa0a ouUTFUT
— | o POAT O
—] —
L —] —
RAM®
] 3404 CUTPUT
| 1 PORT 1
3 !" T! -
§ . —] iza0d OUTPUT
= | 15 A% 1 6 PORT & INRUT
: PORTE ——

=R detaslad AAM mimory NHrCONIMCTION 1 thown In ah soompavying Tigure

Example 3. Program Memory with Seven Pages of PROM and Cne Page of RAM

RAM O OUT RAM 3 OUT
: CMRAM (111
SYNC b0z w002
1404 Ramag " RAM 3
™
AGM I
)
! § cm o} 1
— A, —
—-"'_ 2008 nreza . >
F}I. '[" 12009
ey cyccd—tl] b] r
FOT
- sy
A - 1 BUFFER |
I | [: r0za [H | peiven |
Az Ay Ay 18z Ay Bg M ,.,” J‘_\
L e, C: B i
AN 13205 ol _:D p—| THREE fe— .
1] STATE [2= J N0
TTTTT TTTTT Ay 1— " euerer :}
- L > —
w| |en T LB [? o [} : i‘zq,zi\ 1 13404 }OUTO
1 - : T Wil | THREE [
& L oy '—L_/ . (] state _-:}””
N | eurrer B—
e =]) .
; ERN ' — 3]
! RES @ AAM* " . | 3404 }UUH A]
WEE 8 a8 T r i
|
T —t H ‘o THREE [+—
prym— [0 state B iiNe
RCS 9 AAM y —| GUFFER [*—
WCs & #9
- { i2a04 }Du‘l 7
—— T i patamweor | /Y
i, — TO ALL RAMs
RSCIs_| nam

o i1
- . Ll
| ' pJ
] ouT B

*RAM mamary o uwed For program siorage. An accompamying LAM momory {rgune shows the memory
mierconnect in dewil, H [niel's 2102 AAM 5 visd, four AAM memary wotion o bt reduod to one.

E
2

Example 4, Program Memory with Eight Pages of PROM and Eight Pages of RAM
112

APPENDIX C
MCS-4 CUSTOM ROM ORDER FORM

4001 Metal Masked ROM |

All custom ROM orders must be submitted on forms provided by Intel, Programming information should be sent
in the form of cormputer punched cards or punched paper tape, In either case, a print-out of the truth tahle
must accompany the order, Refer 1o Intel’s Data Catalog for completa pattern specifications, Alternatively, the
accompanying truth table may be used. Additional forms are available from 1ntel.

For Intel use only
CUSTOMER S# PPPP —
STD 22 —_
P.0. NUMBER
APP . DD —
DATE : DATE F{o] .

INTEL STANDARD MARKING

Inwel Pattern

| ———
The marking as shown at right must contain the Intel logo, | p3001 PPPP Number
the product type {P4001}, the four digit Intel pattern num- I
ber (PPPP), a date code (XXXX), and the two digit chip (XXXX, 2Z chip Nomber or
number (DD). An optional customer identification number o TC o Customer Numbir
may be substituted for the chip number {Z2). ; ate Code
Optional Customer Number [Maximum B characters or spaces)
MASK OPTION SPECIFICATIONS
A. CHIP NUMBER {Must be specified — any number from 0 through 15 — DD}

B. 1/O OPTION — Specify the connection numbers for each 170 pin [next page). Examples of some of the possibl'e 1/0
options aré shown helow:

EXAMPLES — DESIRED OPTION/CONNECTIONS REQUIRED
Nan-inverting output — 1 and 3 are connectad,
. Inverting output — 1 and 4 are connected,
Man-inverting input (ne input resistor) — only 5 is connected.
Inverting input {input resistor to Vgg) — 2,6, 7, and 9 are connected,
Non-inverting input {input resistar 1o Voot — 2, 7, B, and 10 are connected,
If inputs and butputs are mixed on the same port, the pins used as the outputs must have the internal resistar connected to aither
Vpp or Vgg (8 and 9 or 8 and 10 must be connected}. This is necassary for testing purposes, For exarmple, if there are 1 wo in-
verting inputs {with no input resistor} and 2 non-inverting outputs the connection would be made as follows:
Inputs — 2 and 6 are connected
Cutputs — 1, 3, 8 and 9 are connected or
1, 3, 8 and 10 are connectad
If the pins on a port are 2ll inputs or all outputs the inteérnal resistors do not hava to be connected.

C. 4001 CUSTOM ROM PATTERN — Programming information should be sent in the form of computer pur iched
cards or punched paper tape. In either case, a print-out of the truth table must accompany the order. Refer to Intel's. Data
Catalog for complete pattern specifications. Afternatively, the accompanying truth table may be used. Based on thuz par-
ticular customer pattern, the characters should be written as a P for a high level output = n-togic “0** (negative logic "0’°)
or an “'N” for a low level output = n-logic *'1"" {negative logic “1").

Note that NOP = BPPPP PPPPF = 0000 0000

113

PopwN o

4001 1/0 Options

Ly DATA
ROM BUS
— M] 2
I PATYERN ux QUTPUT m[;" "
BUFFER

—
—

SET OUTPUT
LOGIC FiF -~

LY
oo

1N 18}
— O
— O {.‘ . O-J
: 3 R
— O 3
F) .

Ir
R D

170, (PIN 16)
CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the 1/Q lines the supply valtages should be
Vpp = —10W 5%, Vgg = +5V 5%

DATA
ROM BUS
] MUX e o]
PATTERN oUTPUT)
BUFFER
SET OuUTRUT
woee {1 FF
. 1] a
2] s
. ?—i—o Vo,
. 5| s
o o=
b QJ
3 2
. |1
0 O

L
>Ry

ki_o_j._—o"—'—

170, (PIN 15)
CONNECTIQNS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2 coempatibility on the 1/0 lines the supply weltages should be
Vpp =—10V £5%, Vgg = +5V 6%

Vi

170, (PIN 14)

CONNECTIONS DESIRED (LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a. For T2L compatibility on the 170 lines the supply voltages should be
Ypp = - 10V £5%, Vgg = +5V 6%

b, I non-inverting input option is used, VL = —6.5 Volts maximum {nat TTL),

b If non-inverting input option is used, W = —6.5 Volts maximum {not TTLH b. If non-inverting input option is used, ¥, = —6.5 Volts maximum {not TTL1,
L -

. DATA DATA

ROM BUS ROM Bus
eaTrenn [] M 1 ourpur omzfm ratrEnN [Y%] outrur ?F:'J‘]

BUFEER BUFFER

SET outeuT SET ouTPUT

aie ™. & wosie [e
[+] [+] 1
o g e
' s T e
i) o L) 1)
. © £ OJ
[5 2
K I
o o 3 { o o 9
v ¥
8 o oo 8 A 7
:] s]
i L) T ”w

Ve

1705 (PIN13)
CONNECTIONS DESIRED {LIST NUMBERS & CIRCLE
CONNECTIONS ON SCHEMATIC)

a For T2L compatibility on the 170 lines the supply voltages should be
Wop = 10V £8% Wog = 4BV £B%
b. If non-inverting input option isused, ¥ = —6.5 Volts maximum (not TTL).

114

4001 CUSTOM ROM TRUTH TABLE

Chip No.
Date

Customer

P.C. No.

The customer truth pattern should be placed in the blue screen area, The white section above the screen area
will be used by Intel to verify the customer pattern,

Based on the particular customer pattern, the characters should be written as a “P” for a high level output =
n-logic “*0” (negative logic “0”) or an "N for a low level output = n-logic 1" (negative logic *'1™).

Word :)h:‘SRTFIUCT‘;CF‘.:ﬁ Word gNIPSRTRUCT(I)(gx Word :)NPSJRUCTé;?BE Word ahLSTFIUCTION
Number [o.noq, 040,004 Number lopnp, 00,008, MNumber fongn nnn%n,o_ Number nnop, ngonpg,
¢ SELE T wEreTEEM O MENEAER R gRT
! : B amEriiel 77 uswgt

2 ¥ ST % %
: 0 meeEIER. e
. 4 % : 68 100 m@gs&« Wa«&d*'f
° I is o N o
¢ ® o rpElastee 2
7 % pplis m%. " u»:--m;;;mg
8 72
9. 73
10 74
" -
12 06
13 77
" 5 %ﬁ@ﬁ*’ﬁm o
® N 'ﬁ%&agmz ”
16 &80
17 81
%8 82
19 a3
20 84
.21 | 856
22 86
21.3 a7
u o
il ”w ag
S o
N
___92_
83
o
95

INTEL CORP.

127

o BN e

3085 Bowers Avenue, Santa Clara, California 85051 « (408 246- 7501

1156

4001 CUSTOM ROM TRUTH TABLE

Custorner
P.O. No.
Chip No. ____

Bate

The customer truth pattern should be placed in the hlue screen area. The wihite section above the $CFreEn area
will be used by Intel to verify the customer pattern.

Based on the particular customer pattern, the characters should be written as a “P"" for a High level gutput =
n-logic "0 {negative logic "0} or an “N" for a low level output = n-logic *'17 {negative logic 17},

116

word | B | worw | BTN | wora | BROUR | wew | BRI
Number ,0,0,0, bym,00 Number logog egun| Number b popgl Number G uToT oo
128 132 L 224 *‘i%l& _t
129 193) W gy e
130 1% LT LI
131 185 227 : 'i‘L
132 196 228
133 197 229
134 198 230
135 199 231
. 136 200 232
7 2o ALY
18 20 A § PR S 5T
13s i B5 e bl
e 20 SN AEY L 3 SN
141 205 237
i
142 206 238
142 207 239
144 208 240
145 209 241
138 210 242
jaid e Wt 2 Bl e 243
148 180 212 244
149 181 P i 213 245
151 183 215 247
152 184 _ 216 248
153 185 l E 217 249
154 186 L 218 250 e
156 187 219 21 EASNE
e e 220 S AN P
157 189 = N I ATTY
158 R = SR RES T A1
159 ARSI R U S E T L X PR Nl S Y Tt
INTEL CORP. 3065 Powers Avenue, Santa Clara, California 95051 » {408) 246-7501

APPENDIX D
TELETYPE MODIFICATIONS FOR SIM4-01/S1M4-02

The SIM4-01 and SIM4-02 micro computer systems and associated software have been designed for
interface to a model ASR 33 teletype wired in accordance with the following description,

The ASR 33 teletype must receive the following internal modifications and external connections:

Internal Modifications

1. The current source resistor value must be changed to 1450 ohrns, This is accomplished by moving a
single wire. (See Figures b and 6.)

2. A full duplex hook-up must be created internally. This is accomplished by moving two wireson a
terminal strip. (See Figures 4 and 6.)

3. The receiver current level must be changed from 60mA to 20mA. This is accomplished by moving a
single wire. (See Figures 4 and 6.)

4. A relay circuit must be introduced into the paper tape reader drive circuit. The recommended circuit
consists of a relay, a resistor, a capacitor and suitable mounting fixture. An alternate cireuit utilizes
a thyractor for suppression of inductive spikes. This change requires the assembly of a small “‘vector”
board with the relay circuit on it. 1t may be mounted in the teletype by using two tapped holes in
the mounting plate shown in Figure 1. The relay circuit may then be added without alteration of
the existing circuit. {See Figures 2, 3, and 6.} That is, wire A", to be connected to the brown wire
in Figure 2, may be spliced into the brown wire near its connector plug. The “line’’ and “local” wires
must then be connected to the mode switch as shown. Existing reader control circuitry within the
teletype need not be altered. '

External Connections

1. A two-wire receive loop must be created. This is accomplished by the connection of two wires between
the teletype and the “SIM” board in accordance with Figure 6,

2. A two-wire send loop similar 1o the receive loop must be created. (See Figure 6.)

3. A two-wire tape reader loop connecting the reader control relay to the “SIM* board must be
created, {See Figure 6.}

¥ MOUNTING POSITION
Bl FOR CIRCUIT CARD

Figure 1. Relay Circuit {Alternate)
17

Figure 3. Mode Switch (Rear View)
118

Figure 5. Current Source Resistor
119

]
' 1o 1! 9 | -
\] CLZPEMT SOUPLE CESISTSE

| I . - t TEEMIirAL STRIF 15141 SEE Sl 5
ALY @WATE EELAY C1RCOIT SEE Fra &
SEE F18 0 /.r-————h\
@
Ve 20 a,
i}
WAoo 14707 (800 [FuiL pupeEX - YRR [EY-N N (3’@—
il T]-—"""—-"—_—_— Y — — — —_
&’ B @ SERE i &
9 J-t | - Bpp— — — — — - @(WHT/ B
RECE WVE S;t?r{;iz:‘d
T Sima{Jl-40p — — — — 4 _& W .
AT RS
o o T By Full, DUPLEY
::’, . @x B2/ vEL “{j:—,@_
§ B s dimtp — —— + Qetr = —mamm T - @
: e - e o [0
2 4% SE- 25 — — — — e
& ST REDS HEE Fian &
e
¢ o '& Bl
E! . et A Y
- T
&} W T
51 > @ DT BUToE
g \\‘---_-—-/ TRIF mMadanET
____________ LES o T
2
e as |uz-as|az-ra :_ _-I: - = - 18 A
TarE X ! 1@ | e
- EEMCER | Iq ‘% Vs l . I o
CoMTE DL D) -—? ENET.
1 Ji-1t | s2-28 : I~ T
@ | 1
| POTTER & BRUMFIED

J“-JE-IDQS N AT

2eLay (WO |2VD¢}

HOTES" Well O STaL@ewisE SPOcfico
EuDTOMERZ ELTERMAL CoumEeTidnml

SEE Fia | iSw
L ==
MER S wWTdisd Casirs LINES Eeo@r=fwTs
CUETOME B ELow @00 Mcblr'lck‘ﬂopq&, MOOE u‘le‘rCH
)
IM 1S INTERNAL MODIFICATION Seetm
EC IS EXTERNAL CONNECTION
/ Figure 6. Schematic

SWITCH | |
: [KEY BOARD : TARE
MOUNT | REATED
REED ——] | |
RELAY | |
! PRINTER UNIT lj
CAPACITOR — ——-@ ; | |maeE
| PUNCH
|

CURRENT

- _ |
sSOURCE — 1. ?‘; g ;: } CIsTR esm_cca, |
RESISTOR T | ';ng;jgu;r |

= [
POWER | : |
SUPPLY | O “uoTor) i
! .

| i
TERMINAL | |
STRIP _"q:' | l

TOP VIEW

TELETYPE MODEL 33TC

Figure 7. Block Diagram
120

APPENDIX E
SYSTEM INTERFACE AND CONTROL MODULES

N
MCB4-10 :

The MCBA4-10 is a completely assembled interconnect, display and contral switch module which eliminates all hand wiring
associated with an MP7-03/SIM4-01 setup. With the additions noted below, it becomes a self-contained system featuring the
following:

1. Automatic PROM Programming (with SIM4-01, PROM set AQ540, AD541, AD543, MP7-03 power supplies, TTY}.

2. General Purpose Micro Processor with 1/0 and Display (with SIM4-01, power supplies).

3. Test System for checkout of PROMs (with SIM4-01, power supplies).

The MCB4-10 includes the following:

1. All intercannect circuitry necessary to implement the programming system described in section X1 of the “MCS-4
Users Manual’’. :

2. Connectors for the SIM4-01 and MP7-03 boards,

3. A zero insertion force 24-pin socket for PROMs to be programmed. Appropriate connections to the MP7-02 connector
are provided.

4, Teletype receive conditioning circuit, transmit source circuit, punch and reader control interface circuits. Access to these
signals is provided by a 16 pin socket.

5. Control switches (2] and logic necessary for complementation of programmer input or output data.

. Breakout and buffering of computer signals to open sockets for ease of access, This includes 18 ROM outputs, 16 ROM

inputs, and 16 RAM outputs.

. SIM4-01 ROM and RAM 1/0 port binary display using light emitting diodes. This includes 32 bits of display.

. Data enable contral switch which enables the MP7-03 output buffer.

A PROM selector switch which facilitates addition of a select function on the MP7-03 board for future use.

Two momentary pushbutton switches which drive the “test”” and “reset’” input lines on the 5IM4-01 board.

Two transformers, 115Vrms, capacitors, fuse holder and AC input jack wired to develop a raw supply and filtering for

development of the programming voltage.

12. A control switch for disabling the programming voltage.

13. Input jacks for applying externally supplied +5V DC and —10V DC to the assembly, (Note: Internal supplies are not

included.}

The setup for the PROM programming application requires an MP7-03 {rear} and a SIM4-01 board installed in the MCB4-10.
Also shown are flat cables interfaced via two 16-pin DIP sockets to the system.

=2

S

—

MCB4-10/MP7-03/5I1M4-01 System

121

1. Micro Processor System

When the MCB4-10 is used as a micro processor, its features, such as the display for the cutput ports and input ports, may be
utilized at the discretion of the user, As an example, consider the testing of $IM4-01 boards loaded with a PROM {1702} con-

taining the foliowing program: read ROM port 0 and ROM port 1, add the two values and store the result at RAM ports 0 and 1.

The test could be implemented by connecting 8 switches to the “ROM input” socket. The actual switch circuit would consist
of a single pole double throw switch wired with one pole to ground and the wiper wired to the appropriate socket connector
pin in accordance with the MCB4-10 schematic {A3-1, A3-16. .. A3-13). The SIM4-01 is then inserted into the “'SIM4-01"

connector and a bench supply connected to the +5V DC and — 10V DC input jacks. The actual test may now be performed. The
reset button is depressed, clearing the system’s memories and registers and the program executes, The result appears at the LED

display and may be verified for correctness. The display lights of interest are identified on the system'’s printed circuit board as
“OUTPUT PORTS", “RAM 0”, “RAM 1, "BITS" 0, 1, 2, and 3.

2. Programming Systern

Consider the actual programming (in the hardware sense) of the 1702A PROM in the example above. The system can perform
this function with the addition of an MP7-03 board inserted into the “PROGRAMMER BOARD" connector, An automatic
programming system which allows data entry from a keyboard or papertape, automatic verification, listing of ROM contents,
and hands-off programming is provided by the further addition of a $IM4-01 board with three pre-programmed PROMs A0540,
A0541, A0543 and a modified teletype. The switches added in the manual set-up are deleted. The teletype modification con-
sists of the addition of simple relay network described by MCS-4 Users Manual. The procedure for programming a 1602A/
1702A PROM, then, is as follows:
1. Insert MP7-03 and 5I1M4-01 boards {S1M4-01 loaded with PROM A0540, AD541, ADS43).
2. Connect teletype to “TTY" socket.
3. Connect +5V DC, —10V DC and 115 Vrms.
4. Depress “RESET™,
5. Set “PROG.AC" to “ON".
6. Set “DATA ENABLE” to "DATA ENABLE".
7. Set "PROM SELECTOR” to “1601A/1701A",
8. Place teletype in “ON-LINE” mode.
9. Depress "RESET”.

10, Insert PROM.

11. Place paper tape in TTY reader and set reader to “START".

12. Type in program command P and beginning and ending address.

Refer to section X{1{ far a complete description of the MCS-4 micro computer coritrolled programming system. The PROM is
then automatically programmed and checked for correct content.

—

/' ., PROGRAMMER BOARD

i
SRV ESGDARRRCADIEDODRROROROSO0Y .I.
AL ARl T 1]]) Li1 1] -l LLll) s
! e
a1
(1=

CUTFYT

NOTE: 1, All signals are defined with respect
to negetive logic at the dual-in-line
t/O socket {i.e., True [n-logic 1] =
GNB, False [n-logic 0} = +5V),
2. 1TTL Load/Drive = 1.6mA & 4V,

1 /17ci @) PORT LOGIC COMPATIBILITY
ROM input Port True TTL In
a .2 ROM Output Port Failse TTL Out
RAM Output Port False TTL Qut
EMABLE
-
M
OFF
Micro ComPuTER ConNeECTor Boarp st FESET FROG Ac

MCB4-10. Interconnect and Control Module Printed Circuit Board
- h 122

.\.

Y

3

oM ool r csiw mir
2 e
1 e & 1 arr T
o~ r 3 7 L A7
Lsn—a— ... ey 2uza 2err
A LhAL Lo oy
]_w\,_ﬂ_p. + I_”_‘, O
" 1 ¥ 4,43 L sy, Lo s
=4 | E——— K1 DT SN
2 = T . 54 o—or
resr ! A ¢ omemiemiir
o3 F7] 7 1T SLar 2 ¢ gt
]—'wv—il—- At a—p
Hoam
-~ 7 [3
L Lo | I £ o
FEHT 2 7 - 2.0 p{
1 Lova—m—t | S
= i 5,8 37 ~FF
| VYIS S . B
&E e +
L ¥ 7 >
I_W\,_H_. L._4 Pl | ” ar A
20 = n 2150 s~
| SEUYFYIFTILS Sucii SR o]
H
| [SUVYVILE L SR . trf——— v
. gar N
‘—‘V’-’b—ﬂ;- ® I—..u-z
¢ 7 E-EN ¥ "Iy
| EPPPIrTILE | | I s 7K
F Az a7
Lovwwmt] © L—ins
Ty oy ¥ 2 T T .
cur &T | INPPPNPILE | s
¢ o M b4 E_ty]l o o g [=
7 7 AN 7 2y 7 1 he "o » n
AFr
, & Az [t 27 1 e, 27 . ‘
434
» 3 AP H ’ 1 a8, o . 8 s
x 7
AF-ir ﬁ
’ a Ay iy 33 7 2 48,00 P
L
¢ PR B ” ” r y 1L, 00 :: vsoae
L
/ FR I F T "ar e T
| S—— #?
7 X A ? 21 7 r e i, a — [J
L.,
StMa-01 v cur o MP7-03
v P
orr—3 » i Pt sacHEr
Ao +
i 2V —S .t 7 ! o) 1 e
i p e } . Aot . zoar
il
J l_—w; e - ‘oA
E "E}‘-" v —it - 27 A3
—vw-] L. o .
. A2-s2 o i L ar
AAINTER EMCT DL o LHer g
. ! " ar
Arss » e %—* “
£ AA
A S B e %
: L v
E
& ——hry ! » ’7 a7
{u i [
TS #1 1 [" ¥ L
xraz 2 L i At
Az ——] 8 | VR Y . pr £ a2
‘] g} ey a2 é or
- —-W\-T | I
|) & Py
" #2 4 ar
-] i'ﬁ_._f
»5F AFRx I |] .«4‘ eyl ' T Dé
n “ 2ot Ar—i— ” 1 &?
2 M
—~M—] o I__ Apse 47 v 28
" M i A—
'—'VW-I h‘ I._._4,-.. AL At SaiEer
or “ T 0t ‘-"‘v‘ 5 2 ‘T s ren
z]' 2 e
A »
= % ver
gwim g
ar "o iy ‘%' A —} i vm
Ay] 4500 /3 '
Lozl 230 r
" P A —ot 2 o Voo
"""V"'J L £ 23 gy
o ™ -f'r‘/-\. 8 AvA— |
'—"M—I L ir-a e
- P 3 —rre——i
l—uw-l L
- Ay-P
AR
i M DMNE ALE & B FEOAIT RS MArLATED. ol =
& KL AFSarars A‘Mf(ﬂ’r“ DS RATED
MCB4-10 Schematic

CAUTION:
Permanent damage may resuft to MP7-03 board and PROM to be programmed if the DC POWER is turned OFF
BEFORE the PRGM AC is turned off. The SIM4-01 and MP7-03 should never be inserted into their respective

sockets with either the DC or AC power applied.
APPLY DC POWER BEFORE AC POWER AND REMOVE AC POWER BEFORE DC POWER.

123

M CB4-20

T'he MCB4-20 is a completely assembled interconnect, display and control switch assembly which eliminates all hand wiring
as sociated with an MP7.03/8IM4-02 setup. With the additions noted below, it becomes a self-cantained system featuring the
fellowing:

1.
2.
3.
4,

Automatic PROM Programming {with SIM4-02, PROM set A0540, A0541, A0G43, MP7-03, power supplies, TTY).
Automatic PROM Duplicating/Comparing {with SIM4-02, MP7-03, A0544 PROM Program, power supplies).
General Purpose Micro Processor With 1/C and Display {with SIM4-02, power supplies).

Test System for chackout of PROM Programs {with SIM4-02, power supplies}.

T he MCB4-20 includes the following:

1.

2.
3.

9
10,
11.

12.
13.

All interconnect circuitry necessary to implement the programming system described in paragraph XI11 of the MCS-4
Users Manual,

Connectors for the SIM4-02 and MP7-03 boards.
Two zero insertion force 24-pin sockets for PROMs, One socket for the “PROM to be programmed”, one socket for a
“Duplicating REF PROM”, and appropriate connections to the MP7-03 connector,

. Teletype receive conditioning circuit, transmit source circuit, punch and reader control interface circuits {on the S1M4-02)

and a TTY connect/disconnect switch. Access 1o thase signals is provided by a 16 pin dip socket labeled “TTY* socket {J4}.
Flat cable is provided for the connector to TTY.)

. Two control switches for complementing programmer input or output data,
. Eleven 16 pin DIP sockets provide easy access to SIM4-02 input, output and miscellaneous control signals. This includes

32 ROM inputs {8 ports x 4 bits), 32 ROM ocutputs (8 ports x 4 bits), and 64 RAM outputs {16 ports x 4 bits).

$IM4-02 ROM and RAM output port binary display using light emitting diodes. This includes 32 bits of ROM output
display and 32 bits of RAM output display. The additional 32 bits of RAM output are not displayed but brought out to
16 pin sockets J6 and J7. '

. Data out control switch enables or disables the data from the MP7-03 to the SIM4-02 input ports or provides CPU software

control of data out when in the duplicating position.

. A DC power control switch which connects the external +5V and —10V power supplies to the SIM4-02 and MP7-03.

Two momentary pushbutton switches which drive the "test” and “reset” input lines on the SIM4-02 board.

Two transformers, a switch for 116V AC/220V AC, capacitor, fuse holder and AC input jack wired to develop the unregu-
lated 80V BC which in turn is regulated on MP7-03 to 47V DC programming voltage.

A PRGM AC switch which controls the programming AC voltage.

Input jacks for applying externally supplied +5V DC and —10V DC to the assembly. {Note: Internal supplies are not in-
cluded, BV @ 4A and —10V @ 2A supplies required [worst case].)

T 'he setup for the PROM Programming application is shown below. The MP7-03 {rear} and the SIM4-02 board are installed in
thie MCB4-20.

MCB4-20/MF7-03/SIM4-02 System

124

1. Micro Processor System

When the MCB4-20 is used as a micro processor, its features, such as the output ports {with displays} and input ports, may be
utilized at the discretion of the user. As an example, consider the testing of 5iM4-02 boards loaded with a PROM centaining
the following program: read ROM port 0 and ROM port 1, add the two values and store the result at RAM ports 0 and 1. The
test could be implemented by connecting eight switches to the “ROM input” socket. The actual switch circuit would consist
of a single pole double throw switch wired with one pole to ground and the wiper wired to the appropriate socket connector
pin in accordance with the MCB4-20 schematic (GND on input port equals a logic 1}. The $IM4-02 is then inserted into the
“SIM4-02*" connector and a bench supply connected to the +bV DC and —10V DC input jacks. The actual test may now be
performed. The DC power switch is turned on and the reset button is depressed, clearing the system’s memories and registers.
The program begins to execute. The result appears at the LED display and may be verified for correctness., The LED displays
of interest are identified on the system’s printed circuit board as “QUTPUT PORTS™, “RAM Q”, “RAM 17, "BITS" 0, 1, 2,
and 3.

2. Programming Systam

Consider the actual programming {in the hardware sense) of the 1702A PROM in the example above. The system can perform
this function with the addition of an MP7-03 board inserted into the “MP7-03" connector. An automatic programming sys-
tem which allows data entry from a keyboard or papertape, automatic verification, listing of ROM contents, and hands-off
programming is provided by the further addition of a SIM4-02 board with three pre-programmed PROMs A0540, A0B41,
AQ543, and a modified teletype. The teletype modification consists of the addition of simply relay network described by
MCS-4 Users Manual or TTY application note. The procedure for programming a PROM, then, is as follows:
1. lnsert MP7-03 and SIM4-02 boards {SIM4-02 loaded with PROM A0540, A0541, ADB43),
2. Connect teletype to “TTY" socket using the flat cable provided.,
3. Connect +5V DC, —10V DC and 115V AC/220V AC.
4. Set “DC Power™ switch to ""ON" {See Caution below).
6. Depress "RESET",
6. Set “PRGM AC" to “"ON".
7. Set Data Qut to “Enable”.
8. Set *Data In” and “‘Data Qut”, “True/Compl”, to desired position.
9. Set TTY switch to “TTY Connect”,
10. Place teletype in ““ON-LINE" mode.
11. Depress “RESET".
12. Insert an erased 1702A PROM into the “PROM to be Programmed’ 24 pln zero force socket,
13. Place paper tape in TTY reader and set reader to "START",
14. Type in program comman “P* and beginning and ending addresses.

The steps above are fully described in section XI1I uf the MCS-4 Users Manual. The PROM is then automatically programmed
and checked for correct content.

CAUTION:

Permanent damage may resuft to MP7-03 board and PROM to be programmed if the DC POWER s turned OFF
BEFORE the PRGM AC is turned off. The SIM4-02 and MP7-03 should never be inserted into their respective
sockets with either the DC or AC power applied.

APPLY DC POWER BEFORE AC POWER AND REMOVE AC POWER BEFORE DC POWER.

3. Automatic PROM Duplicating/Comparing

The MCB4-20 may be used to duplicate or compare 1702/1702A PROMs by the use of the SiIM4-02, MP7-03, external
power supplies and A0544 PROM. The following procedure should be followed for duplicating or comparing 1702,’1702A
PROMs,

1. Insert SIM4-02 into the MCB4-20.

. Install AD544 PROM in S1M4-02 PROM socket 0.

. Insert MP7-03 into the MCB4-20.

. Connect external power supplies and AC power cord.

. Turn “DC Power’* switch on {See Caution note).

. Press "'Rest’” button,

AWM

125

7. Provide a ground potential to ’'ROM Input (0-3)}* sacket J9; pin number in accordance with desired operation:
a. Duplicate 1702A PROMs: GND J9-5
b. Duplicate 1702 PROMs: GND J2-6
c. Compare 1702/1702A PROMs: GND J9-7
8. Set “Data Out" control switch to “ROM Buplicate” (for duplicate and compare).
9. Set both “Data In” and *‘Data Out” switches to either “True” {for exact duplicate) or “Complement’’ (far complement
duplicate}. For compare, always set the switches to “True”,

10. Set TTY switch to “TTY Disconnect’.

11. Press “Reset’ button.

12, Turn “PRGM AC" switch "’On"* {for duplicating ONLY).

13. Insert REF PROM into “Duplicating REF PROM’ socket and other PROM in “PROM to be Programmed* socket.

14. Press “Test” button. BANK 0, RAM 0, Bit 1 will light indicating “Start”.

15. a. If an error occurs during duplicating or comparing, BANK 0 RAM 0. Bit 2 will light. To continue, press ““Test”, other-
wise press Reset” and remove “PROM to be Programmed”. During duplicating or comparing, four passes are made
before claiming an error, DURING DUPLICATE, PROMs ARE AUTOMATICALLY COMPARED AFTER EACH
LOCATION IS PROGRAMMED,

b. If the program finishes, Bank 0, RAM 0, Bit 3 will light. Remove "PROM to be Programmed™’,

16. Remove REF PROM from socket.

17, Turn “"PRGM AC” switch Off.

18. Turn “DC Power” switch Off.

. . . . tﬂ(‘igtﬂif
%——ﬁ eoeco .
.) 0
== >~ . °

....lmt::: 2

® { ®
Vasp,
E e RAM OyT
- BaNY 2
- .
s ~3 .
s\ 3 2= »
- w [om 4 J
: = eyt B : - PREM
- = 403 - - AL
- ., . - PRGM
23 2 = AC
a OFF
ug a4 -

41
LIEER -]

i

e

L=

UPLICATING
REF PROM

RAM DYT
BANK G

COMPLEMENT

TTY
COMWECT

TTY

DISCOMMNEC T

oM
DUPLICATE

ERARLE

DISABLE

DATA
T

SAEARES HUNSOOEE SEGES [T
@ s z=s2s 3232 =3 2
PROM T BE [] ¢
PROGR 2MFT s eS8 meess Bow -
» - = B B - v - - - . -
In 61 ' s °. Y 1, @ sz, ° ' 0 rest RESET
- a2 WCE 42G I— ROW OUTPUT PORTE RAM QUTRUr PORTYL —-J
. . SYGTEM INTERFACE ARD COMIROL MODULE .

NOTE: 1. All signals are defined with respect 1o negative lagic at the dual-in-ine 1/0Q socket (i.e., True [n-logic 1] = GND, False [n-logic 0] = +5V],

2, 1 TTL Load/Drive = 1.6 mA @ 4V,

PORT LOGIC COMPATIBILITY
ROM Input Port 0-7 Frue TTL In
ROM Output Port 0-7 False TFL Qut
RAM Cutput Port 0-3, Bank 0-1 : False TTL Out
RAM Output Port 0-3, Bank 2-3 True TTL Qut

126

anewayss 0Z-F8OW

Qe eew o Oz EER LmTUR BouvEER 1

CMETETHORT M o SEnTen W oMaTs TR

vos may wal v

EE R RIVRUT N R IR

i & 5 a

wed S tkwrm 0 OFammem <73

A RS GE TR LEATEL BEUSWEE T

BAEEDDEOOER!

a
i

]|

RS

T

—

BEaEnDeGEH|

5

[EIEINEY

L

OlwnRar FEAATLE FAARn LILEN

1]

IEIESEIEIE

i
FRFRE B RN

L

w

3

EINIES]

i

= R &[_HT L CONRE
:]Al EIBEE]
2l

2

I

\
3
3
A,

"IT]"FI':T'_'H"T'"I?l"l?i"i?l T i

j

i

)
-

GBI ET

NENENE,

&
-

-
T

B

T EI G ELE G T

T{ELET|

I

Il
L

AN NINEN
|

E|
f_T_!If%-I

84 \f
L&

L]

o
n

%,

B

i
B

I EI SN N ETN F)

I LTI R Y I

1 {3

e
e-=§

=

[
)

]
1

Tl

e

RENONE!

j:
H I T 3 I P E 1

'J_IEZ'ITl"ITI']?Z

EI M E!

E

it
T (e,
é..

I 3 IR T

Lﬁ

b
L

-]
§

@

)

el
T

&
ju

2

[

L BV Nl
2 O N B O E

L

“
bl
5

.

]

!
i

ﬁ

B NENENIOR-EN

PEEEEEE]

__'u__tIg]

[

’.
:

=

M
<
H
H
3

Gz

£

1
ja
IMEIE

o

BiEIR

4] |1

[

{3

49
Fg

7]

&

i

\
4|
'

Al
i
TR I ET

3

e}

5
M
]

;

3

hilat]

3

a
u

3

£

B
"

I
e

v
It

L}

x
i
J

T
L)

]

¥4

G AR YR (B] T

Ly Ly

!

H+YHFHEEFREE

B}

AR GG G T T I =1 T

2

L R

o
. L
.

L&

-

P .ﬂ iﬂr

LT]

%Wl Lae.
amden woz

127

| HeR uaa
o o

L # saca sand
Lan. von

v wamy
e L Lam

The following table tists the indicators used in the A0544 PROM Du plicator/
Comparator Program to provide pertinent status, control, address, data in
and data out information:

Bank ¢4, RAM &, Bit 1: *Start"

Bank ¥, RAM %, Bit 2: "Error" Status
Bank &, RAM @, Bit 3: “Finish*

Bank (&, RAM 1, Bit 1: 17024 R/W Control

Bank 4, RAM 1, Bit 2: 1702 R/W Control Control

Bank &, RAM 1, Bit 3: . Prom DE/REF ROM CS

Bank @, RAM 2, Bit @&: - Dl

Bank ¢, RAM 2, Bit 1: D2

Bank ¢4, RAM 2, Bit 2: D3

Bank ¢, RAM 2, Bit 3: D4 PROM to be PRGM
Bank ¢/, RAM 3, BIt - L3 Data Cut

Bank ¥, RAM 3, BIt 1: D6

Bank ¢f, RAM 3, Bit 2: D7

Bank ¢, RAM 13, Bit 3: Da

ROM ¢, Rit ¢¥: A
ROM &, Bit 1: Al
ROM &, Bit 2: A2
ROM &, Bit 3: Al PROM to be
RCM 1, Bit ¢ A4 > PRGM/REF ROM
ROM 1, Bit 1: As Address

ROM 1, Bit 2: 1
ROM 1, Bit 3: A7

-
ROM 2, Bit ¢: D1 7
ROM 2, Bit 1: D2
ROM 2, Bit 2: D3 PROM to be PRGM
ROM 2, Bit 3: D4 Data in/{REF ROM
ROM 3, Bit & D§ Data Out}
ROM 3, Bit1: D
ROM 3, Bit 2: D7
ROM 3, Bit 3: D8 J

The complete program is shown in Appendix H.

128

APPENDIX F

SIM4 HARDWARE ASSEMBLER for SIM4-01 or SIM4-02

INTRODUCTION

The S1M4 Hardware assembler is a program stored in Intel PROMs AQ0740, A0741, A0742 and AD743 which translates a
symbolic.assembly language into bit patterns suitable far MCS-4 control storage programming. |t operates on the SIM4-01
or the SIM4-02 micro computer system with at least 3 RAMs and an ASR-33 teletype. A block diagram is given in figure 1.1.

The assembler accepts input source text from the teletype keyboard or paper tape reader on each of two required passes.

A name table and source listing are created on the first pass. On the second pass, the source text is reread and a programming
paper tape and associated listing are generated. The programming tape is suitable for programming of the Intel 1702A
erasable PROM {using the MP7-03 programmer system) ot for the intel 4001 metal mask ROM,

ASSEMBLER ROMs
1
I]
0 1 2 3
< MANUAL
g b g 9 CONTROL
P~ = - =
(=] =] [=] (=]
L < Lo <
‘ POWER
UPPLY
CHIF 0 1 2 s
(v
BANK 0 §
51M4-01 4 ’ TELETYPE
or §1M4.02 ASR 33
RAM MEMORY (Minimum}
Figure 1.1. Assembler Hardware Bliock Diagram
DESCRIPTION

Assembly Passes

During pass 1, the assembler constructs a name table from the source text and generates a listing. The source text entries
are prompted by an address location printed on each line of the listing. Paper tape reader on/off controls are issued by the
assembler during the prompting,

Diagnostics are performed during pass 1. Errors such as dugplicated labels, name table overflows, and unrecognized
instruction mnemonics are flagged. Qperator intervention of the reader operation and subsequent keyboard entries can be
used to edit an erroneous source entry.

A programming tape and a listing of its contents are created during pass 2. Entry of the source tape and any editing
during pass 1 must be repeated. The assembler decodes the instruction mnemaonics, searches the name table for addresses,
and forms binary representations of the machine instructions. Simultaneously, it controls the read operation, punches and
lists the object tape and executes further diagnostics, The diagnostics will flag errors such as unrecognized instruction
mnemonics, undefined names and off page references.

Operating Procedures

Two normal modes of operation are possible with the assembler, A source tape may be prepared in advance, off-line,
using the perforator backspace and rubout character to correct minor errors. This tape may be fed, with the reader,

to the assembler twice, with the perforator turned off during pass 1, and on during pass 2 {if a ROM programmer tape is
desired).

Alternatively, a good teletypist may type the source program directly in on-line, with the perforator turned on, using the
punched tape to feed the source back in on pass 2. This tape may also be edited manually off-line for purposes of updating
the program for re-assembly. Most minor errors in typing may be corrected by cancelling the line {control-X or escape)
and restarting, or by modification of the partially typed line.

129

A combination of the two methods is also possible, reading the tape from an earlier edition in on pass 1 with the perforator
turned on, making corrections manually by stopping the reader, pulling portions to be deleted through, and keying in
portions to be added. The repunched tape is used as text input on pass 2.

Samples of the listing generated during pass 1 and pass 2 are given in Figures 2.1 and 2.2, Another example with a step-by-
step procedure is given in Appendix B.

B:/ TYPICAL ASSEMBLY FOR A VERY SMALL SAMPLE PROGRAM.

B:pPsS =10 ASS5IGN VALUE 10 TO NAME PS5
a: t 15

15¢ NOP

I6tLABA, CLB

172 FIM P5 89 /NOTE COMMENT
19% 5RC PS

20:LAB2., RDR

21: JIN LAB2

23: JMS TR23

25: JUN LABA

27:TR3, LDM 8

281 ADD t1

29: XCH S

38: BBL 7

31:%

Figure 2.1. Pass 1 Listing

P: @t @1 15:BPPPPPPPPF

162 ENNNNPPPPF L 7: BPPNPNPNPF BPNPNNPPNF 19: BPPNPNPNNF
20t BNNNPNPNPF 211 BPPPNNPPNF BPPPNPNPPF 23: BPNPNFPPPF
BPPPNNPNNF 251 BPNPPPPPPF BPPPNPPPPF 271 BNNPNNPPPF

2E8BNPPPNPNNF 29 : BNPNNPNPNF. 32t BNNPPPNNNF Az .

F

Figure 2.2. Pass 2 Listing

Assembly Language

The assembler operates with the 64-character subset of ASCII generated by the ASR-33 teletype, along with the control
characters: carriage return, linefeed, escape, start of heading, start of text, and delete or rubout. The 31 character subset
containing the lower case letters are ignored by the assembler, and are treated the same as the delete character.

Source instruction mnemonic statements include all of those specified in the MCS-4 Users Manual. This set is augmented
by extended mnemonics for conditional jurmps and a pseudo operand used for equating labels to values or maodification of
the assembly address.

Symbalic addressing is provided for by definition of labels consisting of one or more characters,

The use of comment fields and transparent headers is also provided for by the assembler.

CONTROL CHARACTERS

In the discussion to follow, the following generic terms will be used freely:
Control: Any of the first 32 codes in the full ASCII set, obtained on the teletype by one of the special keys,
linefeed, return, or ESC; or by holding down the “CTRL" key while typing a letter Key. '
Separator: Any of the first 48 codes in the full ASCI| set, including the control, space, comma, plus, minus, slash,
etc. Any number of separators may be linked together wherever a separator is to be used, but the other separators
should normally be used singly.
Digit: Any of the ten digits, 0-9.
Letter: Any of the 26 capital letters of the alphabet,

Special significance is attached to the following characters by the assembler:

LINEFEED: Source text lines are initiated by linefeed characters, which are recognized by the assembler to condition
the prefixing of the address value of the current location to be assembled,

SOH {Start of Heading — Control A): If the first character after a linefeed is an SOH, all characters following it until
the next STX are ignored by the assambler and not printed an pass 1 of the assembly.
F

130

STX (Start of Text — Control B): Heading information initiated by an SOH is terminated by a STX. Another SOH may
follow the ST X, with more heading information, which is in turn followed by another STX, and so on, as desired. The
assembler delimits the address counter typeout with an SOH-STX pair, so that its presence on the tape will not interfere
with the subsequent use of the tape as source text input.

ESC (Escape): An erroneous line of input source text may be cancelled by an escape character or a cancel (Control-X} if
it is typed in before the terminal separator of the mnemonic or any required operands. The assembler responds to an
escape or a cancel by typing the up arrow { ¢ } then ringing the bell. The line will be restarted after the next linefeed.

1f the up-arrow and bell response is not fortheoming, the cancel has been ignored, because either it is too late in the line
{i.e.. the terminal delimiter has already been accepted} or the line has been identified by the assembler as a comment line.

RUBOUT {Delete}: This character is ignored by the assembler, and may occur anywhere in the input text except in front
of an SOH. The preparation of tapes of source text is facilitated by the fact that erroneous characters accidentally
punched into the tape may be effectively removed by backing the tape up in the perforator and repunching the frames
with rubouts.

$: A dollar sign as the first character following the linefeed or STX signals the end of the source text to the assembler,
and conditions the punching of the leader or trailer in the object tape.

+ —: A plus or minus sign serves simultaneously as an operational sign in the computation of an operand value, and as
the terminal delimiter for the term immediately preceeding it.

* : The asterisk is recognized by the assembler in an operand field to have a value equal to the address of the
{first byte of the) current instruction.

NUMBER SYSTEM

All numeric values in the source code are recognized by the assembler as decimal, and all numeric values generated by the
assembler are in decimal, Since the internal representation of the numeric values is 12-bit binary, the largest value that
may be accommodated is 4095 (212 — 1}, Decimal numbers in the source text must not exceed 4095 for correct
operation of the assembler, although there is no such restriction on the computation of values, except that the value

will truncate modulo 4096 at each step. Negative numbers may be calculated, and are handled in two’s complement
notation, e.g., —N = 4096 —N.

FORMAT

The assembler is a line-statement, free-format assembler in the following sense: each line of the source text (except for
comment lines} assembles into one machine instruction or one byte of data; each field of the source code line is defined
by its context and not by its fixed position in the line.

The typical line of source code begins with a kinefeed. The next character determines the interpretation of the line.

If it is a dollar sign, $, the previous line is considered as the end of the source text and the assembler proceeds to the
next pass. If it is a control A {ASCII start of header, SOH) header information terminated by a Control B {ASCII start
of text, STX} is anticipated. If it is an aiphabetic character, it is interpreted as the first character of a label, A space

is interpreted as the terminator for a null label field. The assembler then expects a mnemonic or

a pseudo operand, fa ' [”, ~]", "@", "/, "y ", or *=="', is entered, a fatal error results. If the first character is

any other than those mentioned above, the remainder of the line is treated as comment.

131

LINE NUMBER AND COLON

PRINTED BY ASSEMBLER POSSIBLE OPERANDS COMMENT

7:
LABEL SEPARATOR PSEUDO-0OP OR SEPARATORS TERMINATOR
INSTRUCTION MNEMONIC

Figure 5.1, Statement

The division of a statement by fields is exemplified in Figure 5.1. The following sections describe the various efements
in detail. Statements accordingly may assume several configurations.

Names

Eight entries in the name table are accomodated by each 4032 RAM chip. Maximums of 31 and 127 names are provided
for the SIM4-01 and SIM4-02 boards respectively. A name consists of one or more characters, the first of which is a letter,
The rest of the Characters_may be letters, digits, or any of the following special characters: i, "7, <™, =" e
e, o, L, L T, R, Y=, No imbedded separators are allowed.

x

To assure consistent operation, distinct names should be unique through the first three characters, although in some cases
this may not be essential {the sum of the binary representations of all characters after the third, modulo 4, is used to
distinguish names which are identical in the first three characters). The following are some examples of valid names:
CLB
cZ
POLO
A
G=3A
XYz
XYZW
Note that the first three are valid names, and have no pre-assigned values. The following are examples of invalid names:
35A {does not begin with a letter)
C/D {contains an imbedded separator)

Labels

The label field of the line of source text begins immediately after the linefeed (or STX) and ends with the first separator.
If the label field is null {i.e., no label in the line) the first separator must be a space to avoid making the whole line a
comment line, All fabels must conform to the yules for the orthography of names. Every name used in an operand field
in the program to be assembled must occur exactly once in a label field, and the numeric value of the name is equal to
the address of the instruction or datum on the line with the lable, or the value assighed to the label by the “=" pseudo-op.
If the name occurs in more than one label field, an error is indicated, and the most recent value applies. If the name does
not occur in a label field an error is indigated, and the value zero (0} is used.

132

Instruction Mnemonics

All of the instruction mnemonics defined in the MCS-4 Users Manual are recognized by the assembler. In addition, the
following extended mnemonics are recognized as particular cases of the conditional jump:

JTZ Jump on test zero

JTN Jump on test not zero

JTO Jump on test one .

JcZ Jump on carry/line zero

JNC Jump on no carry {i.e. = 0)

JCO Jump on carry/link one

JOC Jump on carry

JAZ Jump on accumulator zero

JNZ Jump on accumulator not zero

JAN Jump on accumulator not zero

Adl of the memory and accumulator group instructions, and the NOP instruction require no operand field; the 152, FIM
and JCN instructions require two operand fields; all other instructions, including the extended mnemonics for the conditional
jump instruction, require one operand field,

Pseudo-Operators

The assembler is provided with one pseudo-operator having two functions, It serves to equate labels to values other than
instruction addresses, and it enables assembly to begin at some address ather than 0. The pseudo-op consists of one of
the following characters in the mnemonic field of a source text line:

ELLL Y ST T LT TN T Frodiger
Vi< PR SN

This special character is followed by a single operand field, which, when evaluated, becomes the value of the pseudo-op.
If the label field of the pseudo-op line is nuil, the value of the operand field becomes the address of the next instruction
to be assembied. If the label field contains a name it is assigned the value of the operand. [t should be noted that the
excessive use of this pseudo-op to define the address of the next instruction, other than at the beginning of individual
ROM pages, will lead to discontinuities in the object code which are not recognized by the 1701 programmer, and the
practice should be avo i@ Note also that when using the pseudo-op to define the address of the next instruction
to be assembled, the operand field may not contain {as yet) undefined names, since this will result in ambiguities which
will not be flagged as erroneous. The following are some examples of the proper use of the pseudo-op:

CZ=10

POLL=6

: 0 {This is unnecessary at the beginning of a program, since the assembler always begins at zero anyway).

NEXT: 512
?Next (Start at the beginning of ROM page 2)

Operand Fields

An operand field begins after the space(s} which terminates the mnemonic field, or after the separator which terminates the
previous operand field. It consists of one or more terms separated by operational signs {+ or —} and is terminated by a
separator other than an operational sign (such as a space, comma, or carriage return}, with no imbedded separators other
than the operations signs. Each term in the operand field may be a decimal number, a register pair designation, a register
designation, a name, or the special symbo! “**’, which has a value equal to the address of the first byte of the current instruc-
tion. The value of the operand is equal to the two's complement algebraic sumn of the terms, modulo 4096. If the

operand is larger than the receiving field in the instruction, it is truncated on the left (i.e., the most significant bits are
removed as necessary) to fit, with no error indication, except for off-page references in the address field of the 1SZ and
conditional jump instructions. Some examples of valid operand fields:

ABC

5,

B+6

*—1 {The address of the byte immediately preceding the current instruction}
A—B+13=Q

3P Register Pair 3, value 6
{Null operand, value zero})
It should be noted that null operand fields must be terminated by a parenthesis, asterisk, period, comma, or slash, Some
invalid operand fields:
Q/F {Imbedded Separator) _
=3A {Invalid term may not begin with =} -
$ {Separator is ignored, and search continues for operand)

133

Register Designators

Instructions which operate on register pairs must be coded with the even-numbered register number, or an equivalent
expression, in the operand field. Thus “SRC 2" refers to registers 2 and 3, not pair 2 in the sense of registers 4 and 5. |f
it is desired to code register pair numbers, the same instruction may be coded “SRC 1P, Any register pair {or in fact
any even numbered register} may be so defined by a single digit followed by a letter or other non-digit, non-separator.
It is essential that the register operand field evaluate to an even number for those instructions which operate an register
pairs, since if the operand evaluates to an odd number the instruction op code will be atered, with no indication of
error. The following are some examples of valid register pair operands:

&P

-3
PO11 (assuming PO11 has been equated to an even number)
513-7 ({truncated to 10}

Conditional Jumps

The first operand field in the JCN instruction is evaluated in a strictly numeric fashion, just as all other aperand fields,
Thus to effect a jump on the condition of zero carry, the numeric value of the first operand field of the JCN must be 10.
If it is desired to use mnemonic condition names such as CZ or AN, etc., these names must be equated to their numeric
equivalents:

CZ=10

AN=12

JCN CZ Label -
To avoid using up valuable name table space on cendition names, the extended mnemonics may be used for the conventional
conditional jumps. The following three instructions will assemble to the same object code, provided CZ has been
equated to 10:

JCN CZ LABEL

JCN 10 LABEL

JCZ LABEL

Data Constants -

It is desirable to define numeric or address constants 1o be assembled into the ROM image independent of any instructions
{such as might be accessed by a FIN instruction). This is possible by using a null mnemenic field. The assembler will
then expect one operand field, the first term of which must be a positive number, |n all other respects, the operand field
is evaluated the same as any other operand field, and it is assembled into one byte of object code, truncating to eight
bits if necessary with no error indication. The following are some examples of valid data constants:

0 , .

4095 {truncated to 265)

D0+ABC {equal to the address ABC}
The foliowing are some examples of invalid constant data fields:

ABC {does not begin with a number)

-18 (number is not positive)

134

ERROR FLAGS

Five errors are recognized by the assembler, and each one is indicated by a single character typeout foltowed by a bell.
Some of the errors are detected in pass 1, and some of them are not detected until pass 2. The typeout for errors
detected in pass 2 occurs between the colon typed with the location address, and the “B* which begins the cbject code
for that instruction, Corrective action is indicated where it is possible.

FLAG PASS DESCRIPTION

" 1 Duplicate label. The value assigned on this line supercedes the previous value for all subsequent
references. If typing in source text manually, recovery may be effected by equating this label to
its former value, then selecting a new name to restart the line, For example:

25: ABCSRC2 Original Label.

43: ABCD " =25 Old Value Reassigned
43: ABCD1 ADM New Line Restarted

% 1 Name table overflow. May occur on pass 2 if the source text differs from that used in pass 1, a procedure
not recommended. The label so flagged has not been added to the name table, and any reference to it
will be flagged as undefined on pass 2. No remedy is possible except to add more 4002 RAM {up to the
limit of 16 RAMS), or to remake the source program with fewer labels,

1or?2 Unrecognized instruction mnemeonic. One byte, with an op code of zero and a four-bit operand is
assembled. The line may be cancelled before the terminal delimiter of the operand, and re-typed
with the corrected mnemonic.

? 2 Undefined name in an operand field. The entire operand is assembled as a zero value to facilitate
correction of a PROM (any remaining terms are not examined, and may be incorporated
into a second operand field). Since this flag is issued only on pass 2, reference must be made
to the corresponding line of the pass 1 listing to determine (by conjecture) the offending
name. Unless the error is patchable, re-assembly is normally required.

& 2 Off page reference by JCN or ISZ instruction operand. Normally, no recovery is possible, and
the source program must be rearranged and re-assembled to correct the error.

OUTPUT TAPE

The assembler generates a ROM programming tape in the “BNPF’" format required by the MP7-02 programmer system,
when connected to the SIM4 system. It may also be used as mask development on the 4001 ROM. The output tape is
preceeded and followed by 12 inches of nulls, and has an average of four locations per line. Each instruction is identified
with the address in decimal, followed by a colon, for correlation with the pass 1 listing.

Extensive use of pseudo-ops {which generate no object cade, but which punch an address anyway} and cancelled lines
will cause the listing of the abject code to pile up on the right margin, but this will not adversely affect the operation
of the ROM programming.

PROGRAMMING SUGGESTIONS

Users of the Fortran program, ASM4, will find it convenient to limit their programming habits in some of the following ways
to enhance compatibility between the two assemblers:

1. Names should not exceed five characters in length, and should be constructed only of letters and digits,

2. Standard condition names and register identifier names should not be used for any other purpose.

3. Instruction mnemonics should not be used as names.

4, Labels should be terminated by a comma-space.

5. Operand fields should be delimited by spaces.

6. All pumeric values should be in decimal.

7. All conditional jumps should be coded with the JCN mnemonic and the appropriate condition name,

8. Comments on source text lines should be preceded by slashes, and comment lines must have a slash in column 1
{i.e., the first character after the linefeed).

9. Pseudo-ops should be avoided, except to assign values to condition names at the beginning or end of the program

tape {where they are easily removed}.

135

LIST OF OPERATING INSTRUCTIONS

[Those instructions preceded by an asterisk (*} are 2 word instructions that occupy 2 successive locations in ROM]

MACHINE INSTRUCTIONS {Logic 1 = Low Voltage = Negative Voltage; Logic 0 = High Voltage = Ground).

OPR OPA
MNEMONIC D3 D504 Dy 0,0, D; Oy DESCRIPTION OF DPERATION
NOP a0 00 g0aQao0 No aperation,
- Jump to ROM address Ag Ao A Ag, Ay Aq Ay Ay iwithin the same
CN 0001 C1C2C3C4 ROM that contains this JCN instruction) if condition G C2 C3 (24“"
AgAg Ag g Aq A Ag Ay is true, otherwise skip (go to the next instruction in sequence),
“FIM 0010 RRAO Foich immediate {direct) from ROM Data Dy, D1 to index register pair
Dy Dy Dy Dy D, D4 Dy Dy location RRR.{2
SRC ad1tr o R R R Send register control. Send the address (contents of index register pair RRR)
to ROM and AAM at X3 and X3 time in the Instruction Cycle.
FIN 0011 RRRDO Ferch indirect fram ROM, Send contents of index register pair location 0
out as an address, Data fetched is placed into register pair locatfon RRR.
JIN oot 1 RRR 1 Jump indirect, Send contents of register pair ARR out as an address
at Aq and A3 time in the Instruction Cycle.
Ao An Aq A
*JUN 0100 3737373 J ditional to ROM address Az, Aj, A1,
Ay Ay Ay A, Ay Ap Ay A ump unconditional to e5s Ag, A, Aq
*IMS : ; : ; ::3 :3 :3 :3 Ju;lp t:l}subroutine ROM address Az, Ag, A1, save old address, {Up 1 level
2727272 1311 ™ in stack. .
INC 0110 R R RR Ancrement cantents of register RRRR, 13
"sz 0t 1 1 R R R R increment contents of register RRRR, Go 1o ROM addvess Az, Ay
Ao A A A A {within the same ROM that contalns this ISZ instruction} if result #0,
28z A0 Ag Aq Ag Aq A otherwise skip (go to the next instruction in sequencel.
ADD 1 000 R RRR Add contents of register RRRA to accumnulator with carry,
SUB 1006 1 R RRR Subtract contents of reglster RRAA 10 accumulator with borrow,
LD 101 0 R RRBRAR Load contents of register RRRR to accumulator.
XCH Tt 0t 1 R ARRR Exchange contents of Index register RRRR and accumulator.
BBL 1100 oDoDD Branch back {down 1 level in stack} and load datz DDDD to accumulator.
LDM 11 01 DDDGO Load data DDDD to accumulator.
Tz 0001 0001 Jump if test zero {B)
AgAgAghg AqAgAqAy
TN o0 01 10 0 1 Jump if test not zera (5}
AgAgfz A AqAqAgA,
IO 000 10 01 Jump if test one {h)
Jcz g 0 a1 0o 10 Jump if carryflink zero (5)
AsAsAsAg Aq AgAg Ay
00 01 1010 J if
JNC ump i na carry (5}
AzAzAzAp AgAgAqA,
0o 0 0 01 0010 Jump if on carry/link one (5}
AzAgAzAz A1A1 A1 Ay
Joc 00 01 0010 Jump on carry (5}
AzAzAzA, AqAqAq A,
0001 0100 ! i
JAZ uwmp if accurnulator equalt to 0 {5}
AgAgAgAn ApALAL A ¢
JNZ 0 0 01 1100 Jurmnp if accumulater nan zero {5}
AzAzAzA; A AqgAq A
JAN 0D O ¢t 1100 Jump it accurnulatar non zero (5)
A2A2A2A2 Aq Ay A1 A1

136

INPUT/QUTPUT AND RAM INSTRUCTIONS

[The RAM's and ROM's cperated on in the 1/ and RAM instructions have been previcusly selected by the last SRC instructjon executed.)

MMNEMONIC oy [;.:g‘ Dg by D(:F;;;;""k,l Dy DESCRIPTION OF OPERATION
WRM 1110 D OO O Eﬂﬁ :::i zon::-::r ;)L I:::a?:(t:z:].mmator intoe the previously selected
WP 111 0 o0 0 1 \FTRR: ;ILet ;3:1;22;5 ?(f) ltjr:;ualcil.: rr::;ator into the previousty setected
W T 0 | 0010 | s i o e ey sleced
weniS |11 o |00 1 | e e e e o saraons oniy]
WRO 4] 1110 6100 Eﬂﬁ 15:1:(3:;2::’?: roefr t(l)'l‘e accumulator into the previcusly selected
wrid 1110 010 1 m:\: :?;S?:L:::gr‘rf accurnulator into the previously selected
whz!% 1110 0110 :!RR: :It-n:tjgr;:lear:;sc ;{r tg'e acoumulator into the previously selected
wr34) 1110 g1 1 1 :v:;: ;r:t::r;:;r;;igrt;‘e accumulator into the previously selected
SEM 1110 10600 35:::3:;12? upvri?;‘i?;:lr\; ::Iected RAM main memory character from
RDM t 110 1001 :i‘(:gc:;:eagz\;:zﬁu:lt\érs.elemed RAM main memory character
D110 | 1010 | Read e o of R e FOM et R
ADM 1110 101 1 :ccg r::fl :‘[:)efuisil: ;I-,[r:a srerls.cted RAM main memory character to
RD¢ (4) 1110 T 1 00 Read the previously selected RAM status character O into accumulator.
ro1t4t 11 1 0Q 11 01 Read the previously selected RAM status charactier 1 into accumulator,
ro2t4 11 10 11710 Read the previously selected RAM status character 2 into acoummulator.
RDBMI 111 0 11 11 Read the previously selected RAM status character 3 into accurnulatar.

ACCUMULATOR GROUP INSTRUCTIONS

CLB 11t 1 8 ao0o00 Clear both. [Accumulator and carry!

CLC 11 11 aoc o Clear carry,

AL 11 11 c o1 o increment accumulater.,

cMC 11 11 a0 11 Complement carry,

CMA 11 11 100 Complement accumulator,

RAL 11 11 0101 Rotate left. {Accumulator and carry)

RAR 11 1 1 0110 Aotate right. (Accumulator and carry)

TCC 1+ 11 o1 11 Transmit carry 1o accumulatar and clear carry.

DAC 11 11 1 004 Decrement accumulator,

TCS 11 11 10 01 Transfer carry subtract and clear carry.

STC 1T 1 1 % 1T 0 1 0Q Set carry,

DAA 1T 1 %1 1 0 1 1 Decimal adjust accumulator.,

KBP . 111 1 1100 oK::gz:rgfpfronrE:z dt‘:.;f.rtré.\.r:rl':}si r::nrevr c:onc::.ms af the accumutator from 8

DCL 111 1100 Designate command line.

NOTES: ‘1 The condition code is assigned as follows:

01 =1 invert jump condition =1 Jump if accumulator is zero Ca=1 Jump if test signal fsa0
Cy =0 Not fnvert jump candition Cy=1 Jumpif carry/link is 3 1

(2]9 RR is the address of 1 of 8 index register pairs in the CPU,
(3rRRR is the address of 1 of 16 index registers in the CPU,

{4)Each RAM chip has 4 registers, each with twenty 4-bit characters subdivided inte 18 main memory characters and 4 status characters,
Chip number, RAM register and main memory character are addressed by an SRC instruction, For the selected chip and register, however,
status character locations are selected by the instruction code (QPA).

{B}E xtanded Mnemonic

IB’The SIM4 Hardware Assembler is currently being modified to acgept the WPM instruction asscciated with the 4008/4009.

137

SAMPLE ASSEMBLY with a STEP-by-STEP PROCEDURE

As an example, assume that one wishes to perform a logical “‘and” function on the data at two 4 bit ROM input ports and

display the result at a RAM output port.
The first step of course, is to write the program using the MCS-4 instruction set. The result may be as shown in Figure B-1,

/ FOUR BIT *"AND" ROUTINE
START., FIM 4P 8 7/ LOAD ROM PORT O ADDRESS
SRC 4P /7 SEND ROM PORT ADDRESS
RDR /7 READ INPUT A
XCH @ / A TO REGISTER @
INC B / L0OAD ROM PORT t ADDRESS
SRC 4P / SEND ROM PORT ADDRESS
RDR /7 READ INPUT B
XCH 1 / B TO REGISTER 1
JMS AND / EXECUTE *“AND*™
KCH 2 / LOAD RESULT C
WMpP /7 STORE AT MEMORY PORT @
JUN START / RESTART
NOP
=184
/ "AND" SUBROUTINE
AND» CLEBE 7/ CLEAR ACCUMULATOR AND CARRY
XCH 2 / CLEAR REGISTER 2
LDM 4 /4 LOAD LOOP COUNT (LC)
XCH @ / LOAD As» LC TO REGISTER P
RAR 7/ ROTATE LEAST SIGNIFICANT BIT TO CARRY
XCH @ / RETURN ROTATED A TO REG @, LC TO ACC.
JCN CZ ROTRI1 / JUMP TO ROTR} IF CARRY ZERO
XCH 1 7/ LOADP Bs LC TO ACCUMULATOR
RAR /7 ROTATE LEAST SIGNIFICANT BIT TO CARRY
XCH 1. / RETURN ROTATED B TO REG«}s, LC TO ACC.
ROTR2, XCH 2 /7 LOAD PARTIAL RESULT C» LC TO REGISTER 2
RAR / ROTATE CARRY INTO PARTIAL RESULT MSB
XCH 2 /7 LOAD LC» RETURN C TQ REGISTER 2
DAC /7 DECREMENT THE ACCUMULATOR (LC)
JCN ANZ AND+3 / LOOP IF LC NON ZERO
BBL 9 /7 RETURN
ROTR1» XCH 1 /7 LOAP Bs LC TO REGISTER 1
RAR / ROTATE B
KCH 1 / RETURN ROTATED B TO REG. 1, LC TQ ACC.
cLc 7 CLEAR CARRY
JUN ROTRZ /7 RETURN TO LOOP
cz =30
ANZ =)2
$

Figure 1. Source Listing

Figure B-1 was transcribed from a handwritten copy to a teletype print out and punched paper tape to facilitate loading
during actual assembly. To accomplish this, an ASR 33 teletype was used and the follérving steps were taken:

1. The TTY was placed in the “offline’” mode.
2, The paper tape punch control was placed in an “on’’ condition.
3. Handwritten data was keyed into the teletype keyboard.

Some typographical errors were edited by using the TTY's backspace pu nch control and rubout character, The rubout
is an all **1""s character which effectively deletes any character over which it is superimposed. The procedure is as follows:

1. Determine the number of backspaces required to return the punch to the erroneous character.

2. Depress the paper tape punch backspace control until the errongous character is reached.

3. Enter a "rubout” from the keyboard. If a new character must be inserted, the previous character and the remaining
line or lines must be deleted with rubouts.

4, Enter the desired character and remaining lines.

138

The assembler’s editing features may also be used to simplify the task of correcting errors. As an example, assume the 18th
instruction of the listing “RAR", were incorrectly entered as "RBR” (it would be unrecognized when

assembled), A control-X (control characters are entered by simultanecusly depressing the control key and character) could
be entered after the error. The assembler would detect this and respond by requesting the line again. The correct line is then
entered. The assembler maintains control of the tape reader during these operations hut when editing directly from the
paper tape it is advisable to manually advance the reader. This may be accomplished by using the reader’s manual start/

stop contral switch. {Do not attempt to advance the tape directly).

Some comments regarding the format of the listing are present below.

1. Each line must be preceded by a carriage return and a linefeed.

2. Lines which are entirely comment must hegin with any separator other than a space.

3. All unlabeled lines must begin with a space.

4. All condition mnemonics must be defined by decimal constants. For example, the 20th line of the listing contains a C2
which is later defined as a “10° on line 35.

5. The pseudo operator i$ used to adjust the assembly address. Line 13 consists of a space, equal sign, and the number 104.
The assermbler will interpret this as a command to define the next line as line 104, The subroutine, “and”, will
thereby be located, at address 104.

8. The pseudo operator is also used in the last two lines of the listing to define constants. If the equal sign is preceeded
by a label the assembler will assign the subsequent value to the label.

7. The dollar sign is an assembly terminator.

Pass 1 of the assembly procedure may now be completed, The corrected paper tape will be read line by line by the
assernbler. During this operation a name table is generated and a listing {figure B-2). Preceding each line will be an

At/ FOQUR BIT "AND"™ ROUTINE
@: START, FIM 4P 2 /7 LOAD ROM PORT 8 ADDRESS
23 SRC 4P /7 SEND ROM PORT ADDRESS
3: RDR 7/ READ INPUT A ’
4t XCH @ / A TQ0 REGISTER #
5t INC B / LOAD ROM PORT 1 ADDRESS
6t SRC 4P /7 SEND ROM PORT ADDRESS
78 RDR / READ INFUT B
8t XCH 1 / B TO REGISTER 1
9t JMS AND /7 EXECUTE *'AND"™
11 XCH 2 7/ LOAD RESWLT C
12t WMP / STORE AT MEMOQRY PORT 9
133 JUN START / RESTART
158 NOP
16 =184
104:/ “AND" SUBROUTINE
184:AND. CLB / CLEAR ACCUMULATOR AND CARRY
1B53 XCH & / CLEAR REGISTER 2
106z LDM 4 7/ LOAD LOOP COUNT (LC)
187s XCH @ / LOAD A» LC TO REGISTER 9
188: RAR /7 ROTATE LEAST SIGNIFICANT BIT TO CARRY
1893 XCH 8 / RETURN ROTATED A TO REG &+ LC TO ACC.
114 JCN CZ ROTRI / JUMP TQ ROTRY IF CARRY ZERO
1t2s XCH 1 /7 LOAD Br LC TQO ACCUMULATOR
1133 RAR /7 ROTATE LEAST SIGNIFICANT BIT TO CARRY
1143 XCH 1 / RETURN ROTATED B TO REG-1, LC TQ ACC.
115:ROTR2s XCH 2 7 LIAD PARTIAL RESULT C» LC TO REGISTER 2
1161 RAR 7/ ROTATE CARRY INTO PARTIAL RESULT MSB
1172 ACH 2 /7 LOAD LCs RETURN C TO REGISTER 2
118t DAC /7 DECREMENT THE ACCUMULATOR (LC)
1191 JCN ANZ AND+3 / LOOP IF LC NON ZERQ '
1213 BBL @ /7 RETURN
122:ROTRl» XCH 1 / LOAD Bs LC TO REGISTER 1
1231 RAR /7 ROTATE B
1243 XCH i / RETURN ROTATED B TO REG. 1» LC TO ACC.
125: CLC 7 CLEAR CARRY
1263 JUN ROTRZ2 7/ RETURN T3 LOOP
128:CZ =18
12831ANZ =12
1281 %

Figure 2. Pass 1 Listing
139

address and a colon printed by the assemhler. The line itself is read by the assembier and echoed back to the printer.
The listing thereby acts as a rough check on the serial link between the TTY and SIM4 hardware. The procedure is
as follows:

1. Assemble the appropriate hardware consting of the following
a. SIM4-01 or 5IM4-02 board with a minimum of 3 RAMSs (1nte! 4002}, and the 4 assembler ROMs AD740, A0741,
AQ742 and AD743.
b. An ASR 33 {with reader, punch, and ASCI| keyboard} teletype wived with a reader an/foff control relay and
serial data link described in the MCS-4 Users Manual.
c. SIM4 Power Supplies. Ref. MCS-4 Users Manual.
d. Customer supplied interconnect wiring. Ref. MCS-4 Users Manual.

. Connect the hardware as shown in block diagram of figure 1.1,

. Place the TTY punch in an “off'” mode.

. Place the TTY reader in a ““free” or “off’’ condition and position the tape on the leader.
. Reset the SIM4 board. A customer-supplied reset switch is assumed.

. Start the TTY reader.

. If an error oceurs {flagged by a bell and a special character} stop the reader and take corrective action with the keyboard
if possible, Tape position must be carefully controlled during editing to avoid further erroneous input.

~ ;M AW N

8. The tape will be read until the dollar sign $ is reached. At this point pass 1 of the assembly is complete and the assernbler E
is awaiting the second entry of the tape for pass 2,

9, Turn the punch “on”.
10. Place the tape reader in the “"free” or “off’” condition and pasition the tape on the leader.
11. The assembler will punch approximately 12 inches of leader and wait for reader input.
12. Place the reader in the "start” mode.

The assembler will read the tape, ignore comments, and output line addresses and “"BNPF" formatted instruction codes.
With the punch on a programming tape is created and a listing of the tape such as that shown in figure B-3 is generated,
Any editing performed during pass 1 must be repeated during pass 2.

a: #:BPPNPNPPPF BPPPPPPPNF 231 BPPNPNPPNF 31 BNNNPNPNPF
4: BNPNNPPPPF S5t BPNNPNPPPF 6t BPPNPNPPNF T1 BNNNPNPNPF
B8 1 BNPNNPPPNF 9t BPNPNPPPPF BPNNPNPPPF 11:BNPNNPPNPF
123 BNNNPPPPNF 13: BPNPPPPPPF BPPPPPPFPF t St BPPPPPPPPF
16: 104: 1241BNNNNPPPPF 105:BNPNNPPNPF 106:BNNPNPNPPF 127t BNPNNPPPP
1 PEB:BNNNNPNNFEF 189t BNPNNPPPPF L 1Ot BPPPNNPNPF BPNNNNPNPF
112:BNPNNPPPNF 113t BNNNNPNNPF 114 BNPNNPPPNF 1151 BNPNNFPNPF
11 6:BNNNNPNNPF 11 Tt BNPNNPPNPF 1181 BNNNNNPPPF 119: BPPPNNNPPF
BPNNPNPNNF 12131 BNNPPPPPPF 122: BNPNNPPPNF 123 BNNNNPNNPF
1241 BNPNNPPPNF 125: BNNNNPPPNF 126 :BPNPPPPPPF BPNNNPPNNF
FIEBS 1283 128:

Figure 3. Programming Tape Listing

Completion of pass 2 is signalled by the printing of an *F* and the punching of a 12 inch trailer.
At this point the assembly is complete and PROM or ROM programming may proceed.

140

APPENDIX G
SIM4 HARDWARE SIMULATOR

INTRODUCTION

The $IM4-02 Hardware Simulator is a program written for the MCS-4™ series Micro Computer System. This program
will provide interactive control over the debugging of other MCS-4 ™ programs.

The minimum configuration required is a SIM4-02 prototype card with three 4002 RAMs and a Teletype. When fully stuffed
with 16 RAMs, test programs up to 512 bytes {locations} in length may be accomodated. The hardware simulation program
itself occupies nine full ROMs.

The Hardware Simulation Program has two basic functions:
1. To simulate the execution of a test program, tracing its progress, and apprehending gross errors,

2. To allow the user to dynamically interact with and/or modity his test program, in order to facilitate the debugging
Process.

These two functions are implemented by means of a set of directives or commands which the user types in at the teletype
keyboard. Some of the directives call for typeouts by the simulator program, some of the directives signal the input of data
or pragram modifications, and some of the directives involve both typeouts and input response or data.

A directive is identified by a single letter of the alphabet {except the arithmetic conversion directives = and “}. If the
directive is associated with output only, the typing {or punching} will commence immediately, I input is allowed or re-
. quired with the directive, the simulation program will enable the paper tape reader control, and wait for valid input data.

NUMBER SYSTEMS

Two number radices are standard with the hardware simulation program: binary and decimal. Index register values, pro-
gram counter and instruction location values, chip numbers, and some pointers are handled in decimal for convenience.
ROM instructions, the accumulator value, and one-bit indicators are handled in binary, Any input number may be entered
in either radix by prefixing it with a suitable indentifier ("D’ for decimal, “B" for binary}, regardless of the expectations of
the program. Unless so identified, however, all input should be in the radix used in the corresponding typecut.

To facilitate working with program tapes in the “BNPF* format, the hardware simulation program will accept binary num-
bers coded either as strings of ones and zeroes, or as strings of “P''s and ““N''s, where the letter P is interpreted as a zero, and
the letter N is interpreted as a one. '

All input numbers are right-justified into the receiving register or field. 1 the number is smaller than the receiving field,
leading zeroes are implied as necessary. T the number is larger than the receiving field, the excess bits are lost from the most-
significant end of the number. Thus, if it is attempted to load an index register with the value 20, the resuit will be 4 in the
register, This may be used to advantage in the event of an inadvertant error typein, by typing in as many zeroes as there are
bits in the receiving fiefd, then re-typing the number, all as one string of digits. A number typed in may end with a carriage
return, a comma, a space, or the letter *'F”, or in the case of the = directive, with plus or minus sign. Any other characters
will give unpredictable results, and should be avoided. Rubouts are the-gnly non “numeric” characters which may be imbed-
ded within the input number strings with no adverse effects. Rubouts are ignored in all cases.

DESCRIPTION

The hardware simulation program allocates a user-selected Bock of RAM main memory locations to hold the ROM instruc-
tions to be simulated, assigning two RAM locations for each simulated ROM location, Thus, to simulate 512 locations of
ROM, all 16 RAMs must be used. Any RAM locations npt allocated for program storage may be accessed in the normal way
by the test program. In addition, the hardware simulation program uses the status characters in twelve consecutive RAM
registers {equivalent to three RAM chips) to hold simulation parameters. RAM is assumed to be arganized as four consecu-
tive banks {with wraparound) of sixteen registers each, so that if less than 16 RAMSs are used, those allocated to program and
parameter storage must be in one block of contiguous banks and registers within banks. ' '

The program to be tested may have an address anywhere in the 4096 locations of addressable ROM, since the hardware
simulator program adds a bias value to all addresses which reference the simulated ROM. I the program attempts to jump or
increment to outside the range of the simulated ROM, an error interrupt occurs.

Another error interrupt oceurs in the event of an illegal instruction op code during simulated execution. The op codes which
cause this interrupt are: 11111110, 11111111, 11100011, and all instructions with OPR = 0000 except for 00000000 {NOP},

14

A breakpoint register is associated with the simulated execution mode of operation, allowing the user to pre-set a location
which will cause an interrupt before execution, The BREAK key on the teletype may also be used to interrupt execution ang
some other types of output.

During simulated execution, a count is kept of the number of simulated machine cycles (i.e., sync pulsesk used by the test
program, to assist in checking out programs with critical timing problems,

Ors.e

Pn,m

Mn,i

Dr,n

DIRECTIVES

Binary conversion
This directive accepts a single {decimal}l number, and typas out its equivalent in binary, A maximum of 12 bits {(num-
bers to 4085} may be accomodated at once.

Decimal adder

This directive accepts a string of (decimal) numbers separated by plus and minus signs, and types out the algabraic
sum, modulo 4096, H the algebraic sum is negative, 4095 is logically added 1o it to give a positive result. This directive
may be used to perform binary to decimal conversion thus: =Bnnnn

RAM/ROM chip assignment

This directive must be entered before any other letter directive. If the first character after the Q is a space or comma,
the current values are typed out. Then, or immediately after the Q, three parameters separated by commas or spaces
are required. If any of the three parameters is omitted, or if a RETURN is typed instead of the first parameter, the
current values will be unchanged. r is the {decimal) RAM register number {0-63) which is used as the lowest in the
black allocated to ROM. The simulation program has no way of preventing the test program from accessing RAM loca-
tions allocated to simulated ROM, so the user must use care in selecting a value for this parameter which will reduce
the likelihood of improper access, |f r is greater than 63, the previous value is used. s is the starting address of the
ROM segment to be simulated. Any attempt to execute an instruction with an address less than this number will result
in an out-of-bounds interrupt. e is the {decimal) ending address of the ROM segment to be simulated. Any program
access to ROM locations greater than this address will result in an out-of-bounds interrupt. This directive clears the
option word to zeroes,

Zero
This directive simulates the hardware reset function, and clears to zero all simulated registers, counters, and alt RAMs
not allocated to program, The Q directive executes a Z each time the parameters are changed.

Input .

This directive accepts a sequence of (binary) numbers and stores them in consecutive simulated ROM locations, begin-
ning with location n. Spaces, commas, returns, and FHnefeeds may occur with any frequency or pattern between the
individual numbers. Input is terminated by a free-standing letter F in the sequence. An ASCH SOH {control A} may be
used to introduce a {decimal} number which, like n, becomes the new starting address for subsequent instruction bytes,
The program counter in the current stack level is altered by this directive.

Punch

This directive will punch out, in “BNPF*" format with location numbers, the contents of the simulated ROM beginning
at location n {decimal), and ending with lacation m, The currently selected program counter, and the breakpoint regis-
ter are altered by this directive. Four inches of leader and trailer are punched on the tape, with an “'F*’ after the last
location. If the BREAK key on the teletype is depressed between locations, the typeout will be aborted, with no trailer.
Both the breakpoint register and the program counter in the current stack level are altered by this directive.

Memoty input

This directive accepts a sequence of {decimal} numbers {0-15) and stores them sequentially in consecutive RAM loca-
tions, beginning in register n {decimal, 0-63) and location i (decimal, 0-18). If the starting location is in main memory
{i less than 16), only main memory locations are filled. The next number after the one which goes into register r, digit
15, goes into register r + 1, digit 0. If the starting location is a status character (i greater than 15}, only status characters
are filled. The sequence ends with a carriage return following the terminal delimiter of the last number.

Dump RAM
This directive types out in decimal the contents of eac_h RAM location {both main memory and status) of n registers,
beginning with register r. The typeout may be ended prematurely by depressing the BREAK key.

142

xn

Accumulator

This directive may be used to display and/or alter the contents of the simulated accumulator. A space or comma follow-
ing the A will display in binary, the contents of the simulated accumulator, This or the A may be followed either by a
new value to be entered, or by a carriage return to end the directive.

Carry/Link
This directive may be used to display and/or alter the contents of the simutated Carry/Link bit. The use of this direct
ive is the same as for A,

Index

This directive may be used to display and/or alter the contents of any one or pair of the simulated index registers. If
a space or comma follows the X, all 16 index registers are displayed (in decimal). Otherwise, if the {decimal} number
n is folowed by a space, index register n may be displayed and/or altered as in A. If the number n is followed by a
comma, slash, or period, index pair number n may be displayed (in decimal) and/or altered as a unit, {Index registers
2n and 2n + 1 are handled together as a single 8-bit number.}

Stack pointer

This directive may be used to display and/or alter the contents of the subroutine stack pointer. The current loca-
tion counter is the ane pointed to by this pointer. This pointer is incremented by JMS instructions and decremented
by BBL instructions,

Location Counter
This directive may be used to display and/or alter the contents of the current focation counter. Note that altering
the value of the stack pointer will cause a different register to be current location counter.

Examine Everything
This directive combines the display functions of the C, A, 5, L, R, and X directives, All four prograrm counters in the
stack are displayed. No modification is possible.

RAM/ROM selection

This directive may be used to display and/or modify the simulated memory chip/location selection. A space or comma
after the R typas out an 11-bit binary number, of which the most-significant 3 bits represent the command line
selection effected by the last DCL instruction, and the least-significant 8 bits represent the contents of the index pair
as last used by an SRC instruction.

Breakpoint .
This directive may be used to display and/or modify the contents of the breakpoint register. The simulated execution
will always be interrupted before processing the instruction pointed to by the breakpoint. If the breakpoint points to

the second byte of a two-byte instruction, no breakpoint action will occur during instruction simulation.

When
This directive may be used to display and/or alter the contents of the simulated sync cycle counter. This is a 12-bit
{decimal} counter used to tally the number of instruction cycles used during instruction simulation.

Trace
This directive causes the simulation program to begin simulated execution of the test program, beginning at the address
in the current location counter. 1f instruction execution simulation s interrupted by a breakpoint, the keyboard
BREAK key, or an illegal instruction, the T directive wilt cause the program to resume where it left off, just as if the
prograr was never interrupted, except insofar as program parameters or registers were modified while interrupted. The
basic format of the trace listing is

pppp:iiiiiiii c aaaa rr
where pppp is the decimal location counter; iiiiifii is the binary representation of the {first byte of the} instruction
being simulated; ¢ is the resultant carry/link bit; aaaa is the resultant accumulator value; and rr is the resultant {decimal)
index or index pair used in the instruction, {value, not index number} Any or all of the last three numbers may be
omitted on instructions which do not reference their respective registers,

Non-trace
This directive is identical to the T directive, except that execution proceeds withaut tracing.

Options
This directive may be used to display and/or alter the current option status bits, This is a 4-bit binary number with the
following significance:
1 Input, Output, and CPU test instructions are executed directly when this bit is on, instead of typing out
on the teletype the port number and then typing or accepting the data.
10 No interrupt for subroutine stack overflow or underflow will occur when this bit is on.
1000 Unconditional jumps and subroutine jumps to ROM page 0 {chip 0) are executed directly instread of
interpretively, permitting direct byte /O during checkout.

143

ERROR MESSAGES

Most of the errors which can be detected by the simulation program are identified by a single character typeout, followed
by ringing the bell once. Six different types of errors are identified this way:

CODE SIGNIFICANCE

? This is not a valid directive. Any printed graphic normally generated by the ASR33, which is not a valid directive,
evokes this response, A guestion mark-bell combination also calls attention to a simulated input request.

Break condition recognized. This occurs normally, either when the location counter reaches the value in the break
register in execution simulation, or when the BREAK key is depressed in simulation or ROM or RAM dumping.

> Location counter out of range. This error oceurs in simulation or ROM punching, if an attempt is made to access an
address out of the range specified in the most recent Q directive.

t Invalid op code. This error occurs and is recognized during execution simulation, after the instruction byte is
typed out, but before the location counter is incremented, so that if it occurs under the control of the N directive,
the T directive may be entered to examine the error by trying to execute it again.

% Location counter stack overflow or underflow. This error is unique in that the interruption occurs after the instruc-
tion has been executed in simulation. A T or an N directive will resume execution with the next instruction {jumped
or returned to).

+ Cancel. This is the program response to a Cancel {Control X" or ESCAPE) typein, during data input. Except for
I, M, T, and N directives, it cancels the entire directive. 1f used in the | or M directives, only the current datum is
canceled, and the directive is terminated at that point. Previous values, if any, have already been stored in memory.
If used while the simulation program is requesting input data from a simulated ROM port of the simulated CPU

" Test line, it is equivalent to a break at the beginning of the instruction. 1n each case the simulation program returns
_ to accept another directive. :

OPERATING INSTRUCTIONS

1. Assemble Program

First assemble the test program on the Hardware Assembler (A0740 to A0743). /mportant: the Hardware Simulation
Program will not accept ROM program tapes created by the FORTRAN assembler, ASM4, as these tapes have bit patterns
and addresses together, with no identifier for the addresses. It is not necessary to assemble the program in one contiguous
block of ROM locations, since the | directive in the simulation program is able to recognize the address fields {by the
Control “A”, SOH preceding them), and place the instruction patterns into the proper simulated ROM locations.

2. Prepare 5IM4-02 Hardware

Remove ROM chips AD740 through A07432 and plug in the Hardware Simulation Program chips, A0750-A0758. Press
RESET. The teletype should type out a carriage return-linefeed, and an asterisk to show that the simulation program is
ready to accept a directive.

Determine how much simulated ROM is needed to test the program, and which RAMs are least likely to be accessed by the
test program, using if necessary the = and ** directives. Then type in the Q directive for this program. From now until the
testing of this program has been completed and the amended program tape has been punched out, DO NOT touch the
RESET button. If the RESET button is pressed, the simulation parameters and any program in the simulated ROM will be
destroyed.

3. Load Program

Place the object tape in the teletype reader, and type in |. The simulation program will read both the addresses and the
instructions from the tape and store them in the proper locations, Reading will be terminated by any error or by the
terminal F punched by the assembler. Note that any instructions or data which fall outside the limits defined in the Q
directive wilt be ignored. Note also that if the Q directive defines the ROM limits to be more than 512 bytes, wraparound
overlap is possible, Thus, location 100 would be overwritten by instructions going into location 612. When the program is
loaded, a simulated RESET may be effected by the 2 directive. If siarting at other than location zero, or with registers pre-
loaded with data, the appropriate directives may be used 10 set these up. A breakpoint may be set if desired, and RAM may
be loaded up with data if desired. If a subroutine or a part of a subroutine is being tested, the stack may be loaded with a

144

return address using the L directive. Thatmay then be pushed down with the S directive, so that the starting address may
be loaded into the first subroutine level, or the process may be repeated up to three times. If it is desired to force an inter-
rupt at the first occurrence of a JMS instruction, the stack pointer may be set to 3 initially, so that the first JMS instruction
causes a stack overflow. If it is desired to achieve more than one breakpoint, illegal instructions may be assembled or in-
serted into the program at the desired points. When the simulation attempts execution of one of these locations, an inter-
rupt occurs, and the instruction may be replaced, or the program counter incremented around it to proceed.

4. Execute Program Simulation

To start the execution simulation, type a T {for Trace mode)} or an N {for non-Trace mode). If at any time it is desired 1o
stop execution simulation, whether because of program errors, to examine register contents, or to make corrections, the
BREAK key may be depressed, and the simulation will be interrupted at the completion of the current instruction. Execu-
tion will resume as if uninterrupted, if the T or N directive is typed in after a break,

5. Edit Program

_To make corrections to the program, the | directive is used, giving an address, and the value(s) to be entered. The | directive
alters the contents of the current location counter. Thus, it should either be noted and restored, or the stack pointer may
be incremented first and decremented afterwards — (unless of course, the simulation is interrupted at subroutine nest level 3).

6. Punch New “BNPF* Tape

After the program works correctly, an amended ROM tape may be punched in the “BNPF* format using the P directive,
Four inches of leader and trailer are punched by this directive, |f more is needed, rubouts or nulls {shift-control-P} may be
punched while the simulation program is waiting for a directive. This will not in any way interfere with normal operation
of the program. The user should remember to turn an the paper tape punch after typing in the second address in the P
directive if a tape is to be made. f it is desired only to examine the contents of a simulated ROM location, this is not
necessary.

7. Simulation of Segmented Programs

I a program is not very large, but is scattered over a wide range of addresses, it may be possible to agcomodate the program
in segments. Suppose the program occupies the first 32 locations in each of four ROMs, 128 locations must be reserved
by the Q directive to hold all of this. Suppose further that the program accesses only hank zero in RAM, The Q directive
would be something like this:

Q16,0, 127
Then the first 32 locations of the program tape are read in using the | directive. The entire tape may be read with no
deleterious effects, if that is convenient, or an F may be typed in manually at the end of the first 32 locations” worth of
data. Then the Q directive is used again, to re-assign the same locations to the next block of addresses:

Q99, 224, 355
MNote that the address limits have been offset by 32, to prevent the obliteration of the first 32 locations. The object tape
may be read in again, or at least that part of it which includes the next block of data or instructions. Then the area is
reassigned again: : '

(199, 448, 575 .
The process is repeated until the whole program is loaded, To execute, the Q directive for the starting block of code is
typed in again. |f the segments are placed correctly, each time a jump is made to another segment, an out-of-range interrupt
occurs. The Q directive for the segment jumped to is entered, and the program may proceed. This technique may also be
used to relocate a program in ROM: for example, the following sequence of commands witl effectively move (shift) a
program up one position in ROM:

Qo, 0, 255

10 {program)

Qo, 1, 268

P1, 256

JUMPS TO PAGE O

Becsuse of the nuisance of doing serial-to parallel conversion, and properly timing the bit frames in teletype input and output,
the simulation program is provided with an aption to perform subroutine calls and unconditional jumps to ROM page 0
directly, returning to simulation mode upon return. ROM page 0 contains subroutines to perform teletype reader and
keyboard input, 7 bits wide (the parity bit is ignored}, teletype output 8 bits wide, binary to decimal conversion and output,

145

the typing of some specialized sequences of characters, partial decimal to binary conversion on input, and 6-bit teletype char-
acter input with control character checking. A test program may use these subroutines to facilitate checkout of complex
programs, or the ROM may be included in the final program if teletype interface and the same ancillary routines are needed.

The following is a surnrmary of the subroutines and their calling parameters:
NAME ADDRESS {X) FUNCTION

KEY 120 {11-18)} This routine inputs one 7-bit character from the teletype keyboard, and returns it, left-justified,
in index registers 14 and 15. Index registers 12 and 13 are cleared to zero, The least significant bit of
register 11 determines whether the character is echoed back (0 = ves, 1 = no}. The carry is set if the
character typed in is printable.

TTH 117 {11-18)} This routine inputs one 7-bit character from the teletype paper tape reader or keyboard {the
reader control is enabled), and is otherwise exactly the same as KEY.

TXX 234 (10, 11, 14, 15} This routine examines the carry bit set by KEY or TTI as well as the accumulator value
and the character in registaers 14 and 15 to determine if one of the following conditions obtains:

1. The character is some printable graphic between 8" and ““s-"". If 50, the character is biased to a six-
bit value, centered in the bhyte. The carry is turned on if it is a letter. A normal return is taken, acc=0.

2. The character is a control character between null and ETB {control-Y) or a printable graphic between
space and slash. An indirect jump to the address in ROM page 1 contained in index registers 10 and 11
is taken,

3. The character is a control between CAN {Control-X) and US (Shift-Control-0). An unconditional jump
to location 256 is taken. '

4. The character is one of those not generated by a KSR33 teletype, or a rubout. A normal return is taken,
with the accumulator non-zero.)

T6R 205 {10-18) This routine combines TTI| and TXX such that normal return occurs only on characters 0"
through *“e-"". Characters in group (4) above are ignored, and the alternate exits are taken for control
characters and delimiters. Note that if the address to which the delimiter return is to be made is odd,
no echo occurs, On normal return, the charaeter is right-justified in registers 14 and 15, and the carry
is set if the character is a letter or higher.

TeL 220 {10-15) This routine is the same as TGR, except that on normal return the carry is always zero, and the
character is left-justified in registers 14 and 15, leaving the lower two bits zero. Both T6R and T6L
contain subroutine calls nested three deep, and may only be called from the main program, except
during simulation,

D10 183 (4-7,10-15) This subroutine multiplies the 12-bit binary number in registers 5-7 times ten, and adds the
number in register 15 to the product, then goes te T6R to input another digit. This routine may be
called repeatedly to input and convert to binary a decimal number, A terminal delimiter takes the
alternate exit in registers 10 and 11. Register 4 is used for scratch.

247 6 {4-7} This routine clears registers 4 through 7 to binary zero in preparation for D10.

PUN 80 (11-15) This routine prints or punches the character in registers 14 and 15 out on the teletype. Registers
11 through 15 are cleared to zero on return,

IPR . 70 {11-15) This routine does the same as PUN, except that if register 11 is initially even {echo mode on input),
a 15 ms delay occurs to allow the teletype printer to settle.

RETN 107 (11-15) This routine types out a carriage return, a.nuli, and a linefeed. It may only be called from the
main routine,

MSG 66 {11-15) This routine types out the character in registers 14 and 15, then follows it with a bell.
SPACE 63 ({11-15) This routine types one space, '

DIGIT 53 {10-1B} This routine types an ASCII digit corresponding to the BCD number in the accumulator. If it is
zerq, and the register 10 contains 15, a space is typed instead. Unless a space is typed, register 10 is

incremented.
PDN 40 (4-7, 10-15) This routine will print, with zero suppression, the four-digit decimal number in registers
4 through 7.
BCD 11 {1-7, 10-15) This routine converts the 12-bit hinary number in registers 1-3 into decimal, and prints the

four digits with zero suppression,

146

RAM USAGE

The simulation program, to facilitate full usage of the RAM, has organized it into a nominal block of 64 registers, each
containing 16 main memory locations and four status locations. Directives which reference RAM as such {i.e., Q, M, and D},
always address it by a register number, and sometimes by a character position within the register, The following chart
illustrates this addressing scheme:

REGISTER DIGIT {selected by odd index in SRC instr.}
{selected by
aven index
in SRC instr.} . [Status]
0 1 2 3| 4 5 =] 718 9 10 |11 712 (13]14 | 15 16 |17 118] 19
0
Bank 1
RAM O
{Part O} 2
3
4
Bank 5
RAM 1 [
7
8
g9
16
Bank 1 17
RAM O 18
{Port 4)
19
pid]
44
Bank 2 45
RAM 3 46
{Part 11)
47
48
Bank 4 49
RAMIO 50
{Port 12) 51
62
60
Bank 4 61
RAM 3
{Port 15) 62
63

147

The bank number in the chart above is the value of the accumulator during a DCL instruction, needed to address that bank
of RAMs. The port number given corresponds to the number typed out during simulation of the WMP instruction. Register
positions 16-19 {i.e., the status locations} are normally addressed in the program by the RDO/WRO, RD1/WR1, etc.,
instructions, respectively.

The Q directive is used to define and set aside some part of RAM for use by the simulation program as simulated ROM and
other registers and parameters. Whole RAM registers are taken by the Q directive, beginning with the register identified in
the first parameter. The status locations from exactly 12 registers are used by the simulator. The number of main memory
jocations used is determined by the difference between the second and third parameters of the Q directive, Wheres and @
represent the values in the second and third parameters of the Q directive, the number of registers used is determined by the
formula: n={s+e})/8+1

This value may be more or less than 12, the number of registers whose status locations are used, with no ill effects,

RAM main memory locations reserved by the Q directive are used solely for program storage. The instruction with an
address equal to the second parameter of the Q instruction is loaded into digits @ and 1 of the register designated by the

first parameter of the Q directive; subsequent instructions are loaded into the following digit pairs, according to the
addresses.

The RAM status locations reserved by the simulation program are allocated 1o the following functions:

Relative .

REGISTER LOC'N, FUNCTIONS

r+0 0 Simulated Accumulator

)] 1-3 Low ROM address limit

1 0 Option word

1 1-3 High ROM address limit

2 0 Execution parameters

2 1-3 Breakpoint address

3 0 Simulated Carry

3 1-3 Simulation Cycle counter

4 0 Simulated Stack pointer

47 1-3 ~ Simulated Stack

5 0 Simulated Command line selection

6,7 0 Simulated ROM or RAM chip selection

a1 03 Simulated index registers
EXAMPLES

Figures 1, 2, and 3 are annotated listings generated during actual simulation. Figure 1 is a simulation of the “AND**
program described in figures 4 and 5, Figures 2 and 3 represent the simulator’s response to various directives entered
viaa TTY keyboard.

148

INITIALIZE \
MEMORY BLOCK
IS ASSIGNED /
INPUT COMMAND
SPECIFIES ORIGIN
SIMULATOR ASSIGNS ADDRESS
IN ACCORDANCE WITH DATA
DELIMITED BY "CONTROL A™

CHARACTERS (HARDWARE
ASSEMBLER)

ASTERISK 1S SIMULATOR QUTPUT
READY INDICATION
T

L

ALY ¥ 18K
*1lu
40 WIBPPNPAPPPF BPFPPPPPNF 21 BPPAFIPRNF J1ENNNFNFNPF
41 BAPNAFFPPPF S1BPANFAPPPF G:BPPNPAPPAF TIBNNNPNPNPF
B1BAPINPPPNF WiBPJIPNPPPFF BPNNPNPPPF 11 EBAPNNFFNPF
12:iBNNAPPPPNF 13t2PNFPFPPPPF BPFPFPPFFRF 15:BFFPPFPPPF
161 1341 184ipNINIPPPPF 12%1BNFNAPFNFF L BEeBNNPNPNPPF 18 TEBAPNNPRPP
LAB1 BNNANPNARF 1A BAPNGPFFRF 1 1Bt OPFPANPNPF GRPNANSPAPF

1121 BNPANNEFFPAF
I S HANNNENNFF

11 3 ENNNNPANPF
11 73BAPNNPENEF

114 ENFNNPRPPHF
1 1E VENNNANPPRF

Li51BNPNNPPNPTF
I Y 71 BEPPNANFPF

TRACE MODE IS INITIATED
AFTER PROGRAM COUNTERS
HAVE BEEN 5ET

EPWNFNENNF 121 tBWNPPFPPPF L 22EBNPNNPPPNF 1231 984NNPNIPF
124EANPNNEEPAF L 25 BNANNPAPSF 1261 BPIPPPPPPF BPNNNPPNAF
1245 1283 l28s

F

LT

=52 2 L PRE-PUNCHED

wg
-

e TAPE INPUT

A107121000
2rdei01ad1
3511181218

A ¢ 1At

LOCATION COUNTER
HAS ADVANCED TO

RDA INSTRUCTION IS arl@1iaeda a 128. RESET TO 0
131101889 &
EXECUTED. BEQUEST stovinlags STACK IS RESET TO 0
FOR DATA IS REPLIED 7e11181610 :
TOWITH "0111” ENTRY R 74110
Erlollevel 2
FROM KEYBOARD S121212000 BREAKPOINT IS LEFT AT 0
13a:51119988 O
185119L1@28 13 & [
lasi1iaiain o ae 2 CONTENTS OF PAIR 4 {DECIMAL)
185 11E1B118 1 PaI1
13931311082¢ 1 Qlead 3
10186011212 1 D100 ACCUMULATOR (BINARY)
tE2: 12110381 1 1118 4
313s5111@LE0@ & 1411
1iaci@ilp@ddl A ALdd 15
115119112818 @ eddd L
116111118119 28098
11Ti1]181ledld & 8188 @ CARHY
118111111888 | 681]
119189241104 1 AdL)
107110110008 & 8211 3
1BE1IL110118 | 1881
(AL IAL1R009 § BRIl 9 CONTENTS OF REGISTER
11218831101& 1 AL}
118: 10518980 1 (131 3 OPERATED ON (DECIMAL)
113:3111P911@ 1 id1
11a51011608) 1 8611 15
INSTRUCTION 115:10118€19 | @888 3
ADDRESS - 1163511118118 9 1080
D s THACE MODE 117118112214 @ @411 B
118611111888 | 6210
119130@81119@ 1 @814
FIRST BYTE 13711911803 § 1281 2
198111018118 1 1leg
OF INSTRUCTION TEST 1811000 | #01a 12
118:20011413 1 0218
112510110881 1 11k1 %
1E351111011@ 1 1111
Li4: 2118281 1 d@1e 15
11510118810 | 1888 2
LIt le e e D 12 TO STOP TRACE MQDE AT A
116111111088 1 o8BI POINT OTHER THAN THE BREAK-
119106011100 | odu) POINT, DEPRESS BREAK KEY
196211110110 @ 1110 NEAR COMPLETION OF A LINE.
109118112040 @ 2881 14
110108811610 @ 2081
ize21ld1leadl B 1111 L
123111138118 L 21l4
1Zarl@lL1ded] | 228! 7
12511119921 @ Adadl
126121087990
115113110012 @ 1lae I
Lléa1111@8112 @ 8113
117512110842 @ BABL 6
OUTPL,TTO J1BtlLkY1@en 1 Aded
MEMORY PORT 1193028211102 1 D@Bd
\ 121611088983
11932110818 1 @i 2

12r111923e}

™~ M2 81310

i3teleenaes BREAKPOINT AT

NEXT LOCATION

wl a
g(::]TT?:TCEDMODE \ w? . TERMINATES TRACE
iy
. A3 ralLl
NON-TRACE MODE — f L T1lie
MpAa ale #
»

Figure 1. Trace and Nontrace Modes.

149

w | 1O =
m|l~|Z]|2]Q
. . . v -
g0 «
w | w | w (W]
oIl || | >
w =
w w W
z i £
= 7]
ol o <
HSHEARE: ale|2|n) b 3
=13 w gld|lo|o| @ a
dlnl B |1 E wiw || w = m.ﬂ.
%E w Sl 2 - |alen|x|zie|xz| & v - o
W = W 2 lala 2 o <
g _M =l W W w 3] T O
clal € |2 > (=i =} oo
o|lzl o |@ = i |w|w T = - =
=y a %] < - - | - o © 0] s 0
2|z % ju| = ¥ |vly|~|v]|eo|-| = €z
5le <« |2 @ o |[g|0lalulilal o [o <
STl w |9 © a {4 |« |P|C8 91T w < U w
) v | red > o = i |W W W W) wm - or
g|lgd| @ |[©] o w w|lw|lcle|c|(x; 2 %] g e
-
w
- o z8
= m = Mw Q m = m
G w w | W 0 o
z|E2|, [5|55 (5|2 o
1|3 %z |Eelzglele|c |l
AR RHEEELE
w
25| 5&|S|ER|d8|0|0|a|c|x|x
B i .ﬂﬁ..&,&“.lxaaaaﬁaua
. maﬂ LSRR R TR
" Moscesees
=q L Al AR
Hm .W wﬂeaaaaaaaaﬂnoeaeﬂes
a =2
== o AR L E L L L L L L L Ll L
I
Wm FORADIELTISOCRINDHT D

DDA ESEE RN TR D OD
-

CTEIAPEASTIFTISSLSN~HSED

SJV
LOCATION 3
1110 1010

NUMBER OF LINE

VARSI SRR~ =N OsRE

- -

ARSI RSADEYY RO

e TANSYRSLEN N~ AR
—— -
ﬂn‘ﬂﬂsﬂehaﬂaﬂaﬂz.‘vﬂﬂsm
A ERAY SRS TS
-

g

FIRST LINE

P L L LR L L L LR LR R R

CRE AN R RN N R R R

89 1¢ 11 12 13 1a 15

wmiB 1 1 2345678 918 11 12 13 14 15

0 29

,ﬂoaeeuaﬂﬂﬂaaeﬁaeoeaﬂ_!

L]

B.SBQGOBBBGOBB-S&EBBB%S

-

=
P T L L L L L L AR R
-

*Ma 5

ﬂ-
zmglaﬂﬂaﬂgﬂﬂﬂﬂﬂﬁvlﬁaﬁslﬁ
- " - - -

ERRONEOUS ENTRY CANCELED

WITH CONTROL X"
RESULT OF MEMORY INPUT

MEMORY INPUT TO
LINES 4 AND 18

LN
eoeoﬂﬂe)lﬂﬂ

BreasRSHEERSEEE

anaaeaaoaeayae

ﬂaﬂusuaeﬂanaeozaeesa
- - ~— -
EEE TR LT LT T -l
- ~ -
9090333959&35@8855”6
- -
NBYDASEEEEY NS~ N TRAENS
Saaﬂleaﬂaﬂaeﬂﬂalﬂeuﬂ
-
CIEP OO RGO E =D SR
- g -
P Y L L L Rl
YT TR R LN RO Rl
j— P
Beﬂenraﬂnﬂeuasﬂsﬁvaa?e
-
e Y Y L L L L L L B R L
- -
AONESNELRSN SRR T~ AVE
Y LY L L L L L L Ll
-
T T LTI ELE L L R R R
FVNEEDCER SO R~VNORND
-

FEL L LA LR L L

HAEELRSTREAEREN RS RE
- -

Figure 2. Memory Dump/input.

150

102101088

2:@0t01ad)

Jcjildlele
R 2 #8111

4t 1@l 2408

2 914 18011 @

ATBEFPNFNPPPF
AtBNFHNPPPPF
E1ENPHNNPPPPF
L 21 BPFPPPPFPF

1 + BFPFPPFPPNF
S1BPNNPNEPPF
9t BPPPPFPPPF
1 31 BFFFPPPPPF

a4 a;,

6 8 & 9 la 1@

21BPPNENPPNF
S1BPPNPNFPNF
t 81 BPPPPPPPPF
L 41 BEPPPPPFPF

55 i
FIRST 3 BITS ARE f_msug‘r OF OCLs
Nﬁm S'Bﬁaahﬁﬁ smv oF safq :

3t BNHNPRPNPF
TEBNNNPNPNPF
111BFPPPFPPPPF
155 BPPPPFPPPF

Figure 3. Miscellanecus Directives.

151

A/ FOUR BIT "AND" ROUTINE

B:START, FIM aP 2 7/ LOAD ROM PORT @ ADDRESS

2: SRC 4P / SEND ROM PORT ADDRESS

3t RDR / READ INPUT A :

4: XCH 2 / A TO REGISTER @

51 INC 8 7/ LOAD ROM PORT) ADDRESS

6t SRC 4P / SEND ROM PORT ADDRESS

7: RDR ' / READ INPUT B

8: XCH 1 / B TO REGISTER 1

9t JMS AND 7/ EXECUTE "AND™

11 XCH 2 /7 LOAD RESUWLT C

12t WMP / STORE AT MEMORY PORT @

13t JUN START 7 RESTART '

15 NOP

163 =104
1042/ “AND" SUBROUTINE
1941AND. CLB /7 CLEAR ACCUMULATOR AND CARRY
195 XCH 2 7/ CLEAR REGISTER 2 '
1862 LDM a /7 LOAD LOOP COUNT (LC?
197t XCH @ / LOAD As LC TO REGISTER @
108: RAR /7 ROTATE LEAST SIGNIFICANT B1T TO CARRY
1093 ACH @ / RETURN ROTATED A TO REG @+ LC TO ACC.
118: JCN CZ ROTRY 7 JUMP TQ ROTRY IF CARRY ZERD
1123 XCH 1 7 LOAD B» LC TO ACCUMULATOR
1132 RAR / ROTATE LEAST SIGNIFICANT BIT TO CARRY
J1az XCH 1 7 RETURN ROTATED B TO REGs1, LC TO ACC.
1152ROTR2, XCH 2 /s LOAD PARTIAL RESULT Cs» LC TO REGISTER 2
116 RAR /7 ROTATE CARRY INTO PARTIAL RESULT MSB
1172 XCH 2 / LDAD LC, RETURN C TO. REGISTER 2
1183 DAC . / DECREMENT THE ACCUMULATOR (LC)
1193 JCN ANZ AND+ / LOOP IF LC NON ZERD
121: BBL @ /7 RETURN
L22:ROTRI» XCH 1 /7 LJAD B, LC TO REGISTER 1
1231 RAR /7 ROTATE B .
1242 XCH 1 7 RETURN ROTATED B TO REG. 1. LC TO ACC.
1253 CLC / CLEAR CARRY
126: JUN ROTR2 7 RETURN TJ LOOP

128:C2 =10
12BtANZ =12

128: %
Figure 4. Pass 1 Listing.
U @: BPPNPNPPRF BPPPPPPPNF 2:3PPNPNPPNF 31 BNNNPNPNPF
43 BNPNNPPPPF St BPNNPNPPPF 6t BPPNPNPPNF T: BNNNPNPNPF

8t BNPNNPPPNF 91 BPNPNPPPPF BPNNPNPPPF 11t BNPNNPPNPF
12 BNNNPPPPNF 13:BPNPPPPPPF BPPPPPPPPF 15t BPPPPPPPPF
162 104t 1B4:1BNNNNPPPPF 1085:BNPNNPPNPF 196: BNNPNPNPPF 1071 BNPNNPPPP
1051 BNNNNPNNFF 187:BNPNNPPPPF 1181 BPPPNNPNPF BPNNNNPNPF
112:BNPNNPPPNF 1131 BNNNNPNNPF 1148 BNPNNPPPNF 1152 BNPNNPPNPF
1163 BNNNNPNNPF 11 7sBNPNNPPNPF 1181 BNNNNNPPPF 119: BPPPNNNPPF
BPNNPNPNNF 1213 BNNPPPPPPF 122: BNPNNPPPNF 1231 BNNNNPNNPF
1241 BNPNNPPPNF 125:BNNNNPPPNF 126: BPNPPPPPPF BPNNNPPNNF
128: 128: 128:
F

Figure 5. Programming Tape Listing.

152

APPENDIX H
MCS-4TM ASSEMBLER/SIMULATOR
SOFTWARE PACKAGE

This appendix describes the use and operation of the assembler and
simulator software package for the MCS-4 micro computer set,

This assembler-simulator package is offered through Tymshare, Inc.,
G.E. Timeshare, and AL/COM, nationwide computer timesharing services.
The software package allows the user to: (1) prepare and edit his
program; (2) assemble these programs into MCS-4 compatible binary
code; (3) simulate the MCS-4 system's execution of this code; and
(4) generate tapes in a format suitable for programming 1602A or
1702A field programmable and erasable read-only memories. The
output tapes so generated can also be delivered to Intel for
preparation of masks for the 4001 mask-programmed read-only memory.

The assembler performs a number of error diagnostics, checking
for code overlapping, invalid mnemonics, illegal off-page refer-
ences and several other common errors.

The simulator allows one to operate in a trace mode or to intro-

duce a break point in a program and to interrogate the contents
of registers when the program arrives at the break point.

The MCS-4 Assembly Language

Table 1 lists the instructions associated with the MCS-4 computer
set. Listed for each instruction is the standard mnemonic code
used to describe that instruction to the assembler and its binary
equivalent. The number of bytes (one or two) occupied by the
instruction and the types of modifiers which must accompany the
instruction are also indicated in Table 1, The types of modifiers
required may be none, as in the case of NOP, CLB, CLC, etc.; a
register designator indicating one of the sixteen registers on

the central processor chip as in the case of Add, Load, Exchange,
etc.; a 4-bit data item as in the case of the BBL or LDM instruc-
tion, an 8-bit data item as in the case of the FIM instruction;

a register pair designator as in the case of the SRC or JIN instruc-
tion; an 8-bit address as in the case of the ISZ, or a 12-bit
address as in the case of the JUN instruction. In general, such
addresses will be expressed symbolically by use of labels.

The JCN, FIM and ISZ instructions require two modifiers. The

JCN must include a condition code in addition to the address code.
The ISZ instruction must include a single register designator

as well as address code, while the FIM requires a register pair
designation and an 8-bit data item. In each case, the modifiers
must occur in the sequence shown with address or data items
following condition codes, register or register pair designations.

For use by the assembler, numeric data may be entered in binary,
decimal or octal format, See below under "Pseudo Operators".

163

NOTE: The MCS-4 Asserbler is currently being modified to accept the WPM instruction associated with the 4008/4009,

TABLE 1.

154

INSTRUCTION MNEMONIC BINARY EQUIVALENT MODIFIERS
1st byte 2nd byte

No Operation NOP ¢oaa0039 - none
Jump Conditional JCN gdd1ccce AAAAAAAA condition, address
Fetch Immediate FIM FELPIRRRA DDDDDDLD register pair, data
Send Register Control SRC @#G1IRRR1 - register pair
Fetch Indirect ' FIN @F11RRRE - register pair
Jump Indirect JIN @@11RRR1 - register pair
Jump Unconditional JUN BLEGAAAA AAAANAAA address
Jump to Subroutine JMS #1@1AAA4 AAAAAAAA address
Increment INC @PL1@RRRR - register
Increment and Skip N £:¥/ @111RRRR AAAAAAAA register, address
Add ADD 10¢@RRRR - register
Subtract SUB 1#81RRRR - register
Load LD 1@ 1JRRRR - register
Exchange XCH 1#11RRRR - register
Branch Back and Load BBL 11p34DDDD - data
Load Immediate LDM 1141DDDD - data
Write Main Memory WRM 11106909 - none
WRite RAM Port WMP 11199991 - none
Write ROM Port WRR 11139010 - none
Write Status Char @ WR¢ 11149146 - none

“Write Status Char 1 WR1 11194191 - none
Write Status Char 2 WR2 11194114 - none
Write Status Char 3 WR3 11149111 - none
Subtract Main Memory SBM 11131909 - none
Read Main Memory RDM 11191¢81 - none
Read ROM Port RDR 11101¢1p - none
Add Main Memory ADM 11191911 - none
Read Status Char @ RDY 111¢119@ - none
Read Status Char 1 RD1 11141101 - none
Read Status Char 2 RD2 11142119 - none
Read Status Char 3 RD3 11191111 - none
Clear Both CLB 11119009 - none
Clear Carry CLC 11114901 - none
Increment Accumulator IAC 1111¢@d1p - none
Complement Carry CMC 11114011 ~ none

" Complement CMA 111101089 - none

Rotate Left RAL 1111¢1¢1 - nene

Rotate Right RAR 11118110 - none
Transfer Carry and Clear TCC 11118111 - none
Decrement Accumulator DAC 11111009 - none
Transfer Carry Subtract TCS 111119¢1 - none
Set Carry . STC 11111019 - none

Decimal Adjust Accumulator DAA 11111911 - none
Keyboard Process KBP 11111109 - none
Designate Command Line DCL 1111111 - none

A register pair may be designated by including the numeric
value corresponding to the even numbered register of the pair,
by a P followed immediately by the number (f through 7) of the
register pair in decimals, or by a P followed immediately by a
3-bit binary code. Examples of acceptable forms are: g, 2,
PPgl, P1l, P7. A register may be designated by including the
register number or by the form Rf through R15.

A condition code may be satisfied by the inclusion of a numeric
value corresponding to the desired condition code, or by using
one of the condition codes shown in Table 2. Note that Table 2
does not include all possible condition codes for the JCN
instruction.

A label is a tag attached to a particular line of code. The
label will take on value corresponding to the address assigned
to that line of code by the assembler. To associate a tag with
a line of code, the tag or label is made the first item of the
line and is followed by a comma. Figure 1 below shows examples
of labelled and unlabelled instructions. Addresses, as used
with the JUN, ISZ or JCN instructions and data, as used with the
FIM instruction, can refer to these labels. Labels attached to
double word instructions always refer to the address of the
first word.

Acceptable forms for use as addresses in this assembler are a
numeric value, a label, or a label plus or minus a numeric

value. However, when the form label plus or minus a numeric value
is used, the numeric value corresponds to the number of bytes
displaced from the label, not the number of instructions. Thus,
one must remember which instructions occupy one byte and which
occupy two bytes when using this displaced form. The form *

plus or minus a numeric value refers to a displacement equal

to the numeric value from the current address.

For more detailed descriptions of the functions of each of the

instructions of the MCS-4 instruction set, the user is referred
to the MCS-4 Micro Computer Set User's Manual.

Pseudo Operators

A number of pseudo operations are available in the MCS5-4 assembler
system. For example, the number system used with the MCS5-4 assem-
bler is initially decimal. However, the user may change the
number system to be used by inserting one of the three pseudo
operators: .B for binary, .0 (letter 0O) for octal, .D for decimal.
For example, the pseudo operator, .B, will signal the assembler

to interpret any number {not otherwise indicated as being in
another number system) as a binary number.

At any point in the program, the current number system can be
~overridden by following the typed number with the letter B, D,

155

TABLE 2

Condition Codes for JCN Instruction

Condition (Jump If:) Mnemonic* Binary Equivalent
no condition NC 0000
test equals zero TZ, T@ 0001
test equals one ™, T1 1001
carry equals one CN, Cl 0010
carry equals zero CzZ, cg 1010
accumulator equals zero AZ, Ag 0100
accumulator non zero ‘ AZ, NZA 1100

*When more than one mnemonic is shown, any one of the forms
is acceptable,

a.)
Ll, CLB
DCL
b.)
JCN TZ *
c.)
TAG, JMS L1+1

Figure 1., Examples of labelled and unlabelled lines

a.) Ll is a label, but the second line is unlabelled.

b.) The line is unlabelled, but the * implies that the
jump occurs back to this instruction as long as
the CPU test line is at a logic zero.

€.} TAG is a label, and the Jump to subroutine will
enter the routine at L1+l (ie., the DCL instruction
of Figure 1la,)

156

or O in the position immediately following the last digit of the
number. This input will not alter the number system used for
numbers not so labelled.

Numbers designating register pairs or registers of the form
RO-R15 PP@P-P11l, PP-P7 are not subject to this number system
input convention,

If the assembler comes across a number which will not fit
within the number system chosen, it will indicate an error.

To set the starting address for a group of instructions, the
group may be preceded by a define origin pseudo operator. This
pseudo operator takes the form of an asterisk (*) followed by
the numeric value of the desired address. This numeric value
follows the number sytem conventions described above.

Figure 2 shows how number systems, pseudo-operators, and comments
are used with the assembler.

Any statements following a slash (/) are interpreted as comments
They do not alter or affect the other instructions in the system.
A comment line may stand alone or a comment may be appended at
the end of a line.

No end statement is necessary. The end of the file signifies
the end of the progran.

D
*1024 /DECIMAL 1024
STRT, LDM 1101B | /BINARY 1101 = DECIMAL 13
FIM Plgg 100 /REGISTERS 8,9 DATA=100 DECIMAL
/THE NEXT PSEUDO OPERATOR CLANGES THE NUMBER SYSTEM
/TO BINARY
.B
LD 1100 /REGISTER 12
XCH 4D /REGISTER 4

Figure 2. Example of Pseudo Opc£gtors and Comments

157

Running the Assembly

Once the source file with the MCS-4 assembly language code has
been prepared, it may be assembled into MCS-4 binary code by
running the assembler. To perform this operation, the user should
make sure he is in PDP-10 monitor mode. He then types RUN (*)
| ASFAQ . The system will then indicate that the assembler program
ds being loaded. Once execution of the assembly begins, the
program will type the following:

SOURCE NAME FILE =
The user should then type the name of the file containing his
symbolic code followed by a carriage return. As all valid names
are of the form: name.DAT, only the portion left of the period
is typed. The assembler will then request whether or not the
user desires a listing of his program as it is assembled by
typing the statement: LIST?(Y¥,N): If you wish to have a listing
generated, type Y. If the user desires to have a listing gener-
ated, the assembler program will then request which output device,
the disk, teletype or line printer, the output is to be generated
on. The user should then type the three letter code corresponding
to the desired output device (DSK, TTY, LPT) followed by a
carriage return.

If the disk has been chosen as the output device, the program
will then request a name for the output file, The system will
also request which number system is to be used for the address

and data portion of the output assembly. Binary, octal or
decimal may be chosen by typing B, O, or D respectively. Note
that this option has no affect on the number system options within
the assembly code.

Error Messages

If, in the course of an assembly, the error diagnostic routines
discover errors within the user's source program; error messages
will be typed, followed by the erroneous line of code. The
error message will include the line number on which the error
occurred and the address where the error occurred. In some cases,
the line number or address may be off by one or two positions.
After typing the error message and the offending line of code,
the program prints a star. After the star appears, the user may
type in a corrected line of code if he wishes. This corrected
line will be used by the assembler when generating the output
listing. .

Error messages in most cases appear before the listing is
generated.,

The most common types of errors are invalid characters within
the input record, invalid mnemonics or modifiers (such as pair
designators, condition codes, etc.), the use of incorrect or
undefined labels or illegal off-page references, or the use of
numbers which are invalid in the number system chosen.

Once the assembler has completed its assembly and generated
a listing, the assembler will type a message requesting whether
oxr not a symbol or label table is required. The user should

158

type a Y or an N immediately following the message and then

the carriage return. If a symbol table has been chosen, it

will be output on the user teletype. The numeric value assigned
to each label is also output with the symbol table. The number

system to be used for this numeric output is requested prior to

typing the symbol table.

After the symbol table has been typed, the assembler will type
the message: 1601 OUTPUT? Y,N: This message requests whether

the user wishes to generate tapes of a form compatible with pro-
gramming 1601, 1602, 1701 or 1702 field programmable and field
erasable read-only memories. If the user wishes to generate such
tapes at this time, he types Y. The program will then request
what output device he wishes the tapes to be generated on. The
choices are: the paper tape punch located at the computer center,
the user's teletypewriter, or the disk. If the disk is selected,
the program will reguest an output file name.

Following the request for an output file name, if any, the pro-
gram will type: PAGE NO., T OR C =. The user may then type the
number of the page (ROM chip) for which he wishes to generate
the programming tape. Page 0 corresponds to addresses § through
255, page 1 to addresses 256 through 511, etc., so the user
must type a 1 or 2 digit decimal number in the range @-15. This
must be followed by a comma or a space, followed in turn by the
letter T or C, indicating whether the page is to be output in
true (1=P, P=N) or complemented (l=N, @=P) form. For example, .
tapes for use with the SIM4-01 and SIM4-02 boards should be
prepared in complemented form. After each tape has been gen-
erated, the program will request another page number. 1In the
case where output is to disk, another file name will be requested
prior to the page number. '

If no more tapes are desired, typing any character other than

a valid page number will cause the program to exit. Upon exiting,
the program will print the amount of central processor time and
the amount of terminal time used for the assembly.

Figure 3 shows an example of the TTY output for a very small
sample program. Only the first 36 words of 1601 tape are shown,

159

SQURCE FILE NAME=TST4

LIST?(Y,N):Y

OUTPUT TO? (DSK,TTY,LPT) :TTY

NUMBER SYSTEM? (B,0,D) :B

ASSEMBLY OF TST4 .DAT ON 17-MAY-72 AT 13:17

.D
*16
000000010000
000000010001

000000010011
0060000010100
000000010101

000000010111
000000011001

000000011011
000000011100
000000011101
000000011110
SYMBOL TABLE

NUMBER SYSTEM? (B,0,D) :D

LAB2

000020

11110000
00101010
01011001
00101011
11101010
00011001
00010100
01010000
00011011
01000000
00010000
11011000
10001011
10110101
11000111
(Y,N)?Y

1601 OUTPUT? (Y,N) : Y

'LABA,

CLB
FIM

Jin

- o

SRC
RDR
JCN

LABZ2,

JIMS
JUN

TR3, LDM
ADD
XCH

BBL

LABA 000016

QUTPUT TO? (PTP,TTY,DSK) :TTY

PAGE NO.,T OR C=0,T

P5 89 /NOTE COMMENT

P5
Tl LAB2
TR3

LABA

TR3

BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BPPPPNNNNF
BPPPNPNPNF
ENNNPPNPFF
BPNNNPNPPF
BNNNNNNNNF

BNNNNNNKWNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNPNPNPNF
BNNNPPNNPF
BNPNNNNNNF
BPNPPNPNPF
BNNNNNNNNF

ENNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNNNNNNNNF
BNPNPPNNPF
BNNNPNPNNF
BNNNPNNNNF
BPPNNNPPPF
BNNNNNNNNF

BNNNNNNNNF
BNNNNNNNNF
ENNNNNNNNF
BNNNNNNNNF
BNNPNPNPPF
BNPNPNNNNF
BPPNPPNNNF
BNNNNNNNNF
BNNNNNNNNKF

Figure 3.

160

000027

Operation of SIM (MC5-4 Simulator)

The MCS-4 simulator program SIM allows the user to simulate exe-
cution of programs which have been assembled by the assembler
ASF4. ASF4 generates a file ROMAR.DAT containing a packed image
of the read-only memory contents. ROMAR.DAT is read by SIM as
an input.

Other files in the same format may be read prior to ROMAR.DAT.
Each successive file overlays the data of preceeding files,
except where zeroes (NOP's) occur in the new file. See below.

To run the simulator, after having assembled a program, type
RUN (*) SIM4Q ., After typing a header message, the simulator
types: .

FOR INSTRUCTION LIST, TYPE Q:
If the user types the letter Q followed by a carriage return,
the program responds by typing a list of recognized commands.
The simulator indicates it is ready for input commands by
typing an asterisk (*) at the left side of the teletype page.

A command to the simulator consists of a letter or a letter
followed by a 1 to 5 digit number. The letter must be the first
character typed. Each letter corresponds to a different command.
Commands allow setting a starting address or a break point,
initializing a trace mode, or interrogating registers. The
following commands are recognized by SIM4:

An Set the program counter of the simulated MCS-4 to n and
then return to command mode.

Bn Set the break point at n and return to command mode.

Cn Call a subroutine starting at ROM address n. Continue exe-
cution until the subroutine exits with a BBL or until the
instruction limit counter overflows. :

D Dump read/write memory.

En Examine RAM word n. (n must be between 0 and 63. Words
0-15 are in bank @, words 16-31 are in bank 2, etc.)
When printed, main character #15 will be printed first,
followed by the remaining main characters of the word in
descending order., A space follwed by status characters
g#-31 in ascending order is printed after the main characters.
Output is in hexadecimal with A-F corresponding to 1@-15.

Fn If n=1, read only memory input port data is read from a
file rather than from the teletype. Data in the file must
consist of a single numeric value per record, with the
numeric value lying between # and 15 (decimal). If n#l,
the input port data will be requested from the teletype-
writer.

H Prints a two-line leader record corresponding to the data
printed during trace mode or printed. upon reaching break
points, BBL exits, or overflowing the instruction limit
counter. :

In Re-initializes the program counter to 0 and clears read/
write memory. If n#@, the instruction limit counter is

181

Jn

Ln

On

Tn

Un

Wn

X

set to n. If n=ff, the instruction limit counter is left
unchanged. (The initial value for the instruction limit
counter is 10,000.)

Jump to and begin execution at ROM address n, Stop either
when the break point is reached or the instruction limit
counter overflows.

Operate trace mode with output to the line printer rather
than TTY (not available on time-shared versions).

Input to RAM word n. (n must be between @ and 63). The
terminal will respond by requesting 20 characters. Exactly
20 must be typed, in the same sequence as used for the

"E" command above. However, no space is allowed between
main characters and status characters. The inputs allowed
are #-9, A-F and -. @-F correspond to hexadecimal inputs
of @# through 15, while a typed - leaves the corresponding
character position unchanged.

If n=1, a shorter form of input and output will be used
for ROM input port requests, etc. If n#l, the long form
will be used.

Examine CPU registers.
Examine stack and stack pointers.

Operate trace mode for the next n instructions, starting
at the current program counter value. Break points will
terminate the sequence, but the instruction limit counter
is disabled. .

Execute n instructions, then stop and print the status in-
formation for the last instruction. Break points will
terminate the sequence, but the instruction limit counter
is disabled.

Write into ROM werd n. (n must fall between @ and 4095).
The terminal will reguest a numeric value (in decimal) be-
tween ¢ and 255 which will be written into the selected
ROM word.

Exit from the program.

(All commands are followedby a typed carriage return. In each
case, n represents a 1l-5 digit decimal number.)

For example, to run trace mode for 50 instructions starting at
address 100 (decimal), the user may type:

Al00D
T504

or he might type:

Blooh
JoR
TS50

in each case, waiting for a * before typing the next command

line.

In the second case, the instructions between § and 100

are executed where, in the first case, they are not.

162

At a break or in trace mode, the contents of CPU registers
are displayed. The following sequence is used for long form
output:

Program counter 4 digit decimal
Instruction and 3 character symbolic OP code
Modifiers 2 characacter modifier
4 character address or data
CY FF 1 digit (0,1)
Accumulator 2 digit decimal (@-15)
Registers 16 hexadecimal characters in
order Rf to R15
RAM Bank No. 1 digit decimal
RAM Register No. 2 digit decimal
RAM Main Char. No. 2 digit decimal
Cycle counter 5 digit decimal

short form output omits the modifier and RAM data.

When an RDR instruction (read ROM port) is executed, the simu-
lator types:

INPUT REQUESTED FROM ROM PORT #N (IN DEC)
* :

" The usér types a one or two digit decimal value corresponding
to the 4 lines of the input port. When short form messages
are used, the request message is:

ROMPT INPUT #N°?
*

163

Note on use of input files

The simulator program will request an input file name with the
message:
INPUT FILE NAME=,

To input the standard data file ROMAR.DAT, merely type a carriage
return,

However, it is possible to break a program into segments and
load several of the segments into the simulator one at a time.
As each segment is assembled, the assembler will produce

the assembled code in the file ROMAR.DAT. To save the segment,
so that it will not be destroyed by the next assembly, the user
must rename the ROMAR.DAT file with some other name with the
extension .DAT.

The last segment assembled is left in the ROMAR.DAT file.

When the simulator requests the input file name, each segment
can be loaded by typing the file name. For example, a file
SEGLl.DAT is loaded by typing SEGl when the file name is
requested. After each such named data file is loaded, the pro-
gram will request another file. The last file, ROMAR.DAT, is
loaded by typing just the carriage return.

Each file so loaded overlays all previously loaded data, except
where the newly loaded file contains zerces (NOP's)., If any
previously non zero locations are changed by the loading of

the file, the addresses of the first and last changed locations
are typed.

When assembling a program in segments, care must be used to
provide sufficient label information for each segment. Because
NOP's do not cancel previously loaded data, dummy labels may be
used as in the following example:

Suppose a program must call a subroutine LBl at address
1100 decimal, which has been assembled in a previous
segment. The proper linkage can be established in the
current segment by including the pair of statements:

*1100D
LBl, NOP

or the pair

*1100D
LBl, @

164

APPENDIX 1.

BIPD MA20Y START, LOM 1/ SUPRRESS TTY

291 poR3Z FI% PB €
apang .

QB3 @M 33 SRC PO

DAL APz2T WMP / SEND TO Pa# PORT

Aags A8 STAl: JMS CRLF /POSITI0M POINTER
fE226

2227 degag JHE ST/ RECIELVE INPUT OaTa
ap24a

22m5 0aaln FiM P3 EQ ZIRLGY 25, [RCTI=d, (P)
Adpda

PBIl 9pgal JM5 COMRR
aga 33

aEis emmaa JEN 4N LISTN
Aogg iz

an15 a3z Fim P3 32 ZIRIBYI2, 1RI1)=d
2paze

e017 daz2ae LOM 1

PP18 ABN3I3 SAE PR

paLY Ap23a WR2

AA2E APRS4 JUN 5Ta2
fpa 42

Pez2 ggp3e NEXT, FIM F3 83 FIR{EInE, |RITIE3, (SI
23083

2974 Bop8L JHS COMPR
o033

enzs Roaze JON A2 STA2
Banas

2028 anpep JMS ERFOR
ap135

PH3R AAnsd JUN STAL
2203%

R332 Pop3s LISTN: FIM £3 Ta FIRt6IEA, 1RETI=12, (L}
den7e

PB4 AAPBY JME COMPR
app33

eazs 09928 JON WM NEXT
RERz2

Q218 @z 20 LoKM 32

2039 By 9L XCH 15/ IR(15)15

240 pad 3z “FiM PR 32 /IRC@I=zZ, IR{11:Q
2a032

2@47 PR20% LOM 1

Ba43 App33 SRC PR

APas dpg29 NR Y

@45 200 AR sTaz, JME CRLF
28726

2247 danz22 LOM 14 7 ENTER ADORESS

EP48 Da1 36 ©XCH 1@/ IR{19) =14

2R4% pezay ADRS2, DM 13

pAs? P@1ab ACH &/ R{%)=1E

2p51 Jdemap ADRS1. yMS Y
paz a0

9852 ageao JHE STORE
P40

BESS AQ121 ISE ¢ ADRS1
23851

BES? @poRp JMS CRLF
ay2z6

oE5S PA122 182 19 ADRS2

. LT EL]

.1LYS-T- 1.1 JMS LF
LEFR

sz BpRaY JMS LF
20230

20465 BANBY JME ADRTH
ApE4s .

2057 PPA32 Fin PR 8
dgaae

Bpse peatp JME DEIN AFINAL ADDRESS
27105

@71 2163 Lo 3

@72 fez3e WRZ £ CeBY R{BI,CHE21,LORD #-BITS

FA7I Aglez Lo 2

0874 3251 WR3 ¢ CL@Y,RIDY.CH{3).HTORD 4=BTTS

2975 0332 FIM PR3 ZIR(B)I=d, [R{1}aZ
fag&

677 JB08R JMS DB JINITIAL ADDRESS
2H1 0%

PA7S dorald LD 3

0082 dgzza WRS £ Cr@yREM),CHOQ), LORD 4-B1T7S

@Al Fors? LD 2

BBA2 @@22¢% WR1 A QOB R{B),CHIL) HIORD 4«B[T5

2083 A6 PRGHML. FIM P2 /IRt 4=5)md
dapda

BORS B2RIZ FIM F@ B / ADDRESS 17B1 READ TO WRITE
LT

2887 J@AI3 SRC FD

PRES AR ROA

g2a7 Apazs WRH

paee Wa1ep INC 4

2291 AN23? AD1

#a%2 pOB3T SAC P2

8393 2@22é WRR

#d%4 2@p 3z FIN PR 32 FIR{3N =2, [RIL):=2
20032

095 *E@33 SAC F@

pRe7 dazay RO4

BesE Fea4s RAR

B9 BANLE JCN W NEXT1
#0123

9101 A0PES JUN REPT /4 TALL FOR |NPUT DATA
Bdears

2183 EMpas NENTL, JUM {[STR FCBLL LISTING ROUTINE
22187 :

Z BCN TO BINARY CORVERSION ROUTINE

01E5 22aT4 OB[N, FIM P1 3 FIR{ZIup, tR[3)=0
rEpen

B1R7 AFA3E FIH P2 12 ZIRt4)zB, 1R{5)=1B

MCS-4 PROGRAMMING EXAMPLE —

Intel tapes A0540, ADB41, ADS43 — Listings are provided for reference only and

165

P19
2118
a111
a112
a113
8114
Bl11%
2114
117

aL19
Q128
81
@122
2123
a1z4
2125
2124
127
128

213m
0132
2134
s

s
o1 1=

2137

21 3¢
£
4
£
d1ap

a4z
3144

@14b
B147
Bl48
9149
8150
@151
B152
#1553
2154
ai5s
E158
#2157
@158

a1 5@
2141
2142
B143

e e

Bic4
a1 84
A1e3

g17R
4

d171
P173
B175

a7
I

178

flen
Blal
L8z
183
2184
p1as
P1lge
@187
g1Bs
BLa%
21498
B191

e1pd
B155
a1w?

0198
2199

CONTROL PROGRAM FOR PROM PROGRAMMING

may be used as examples when developing your own programs,

Aqpig
pa2z2 LOM 14
Ag182 ACH &
2eall3 SAC PP
ap223 ROH
20179 XCH 3
ama9r 300N, INC 1
EELR R SRC PE
Anz3i3 BB1, RLM
depzd JEW AZ §B2
LR
aA248 nat
2@224 HRY
LEEE] tLe
LIRS Lo 3
4133 ADD 5
aa179 XCH 3
01 62 LD 2
@132 ahh 4
2pt 78 XCH 2
LLLLY) JUN BEZ
ISR]
LEEREY E32, TIM P2 128 AlRC4Ix6, {R(S)=4
22108
A2115 IS2 & BUBN
A1 14
9192 saL @
LEERD] €IRNR, FI1M P1 191 AIRLZ2h=11, (RUZI=1E, 1)
a1 N
LELEE] JMS PRINT
@178
no1 %2 BEL @
eps3z STORE, FIM P2 11 FIR(BI=@, JRI1Y=11
LB ¥
o834 Fi4 P2 53 IR 4)=3, |RI53=5
262853
Apaze FIM P3 52 STECEY 2T, 1R(7)1z4
FLLET]
42239 REP1, SREC PI
2233 RAE
Aas3t SRC P2
@224 HRM
LEMGL] LC 5
23248 Dac
2a1 8L XCH &
Apzal cLe
LEAEE Lo 7
2p248 DAC
Ap1a3 ¥CH 7
BRz 41 Lo e
g:13 IS 1 REPL
aA145
apL sl e 3
LET SRC P2
A2 24 MR M
ELAL-H BEL B
TIMING SUBRDUTIMES
3ap32 SER1. FIM PR P /4 [Rt@=1)ag
EELELL:
agy12 Ll 52 0 L1 /547 MEMORY CYCLES
naLss
2113 182 1 L1
2166
2a192 gHL 2
B@R32 SOR2. FIM PR 8 / TRIBI=B. 1RIL)28
2qapa
anli2 L2, 152 & L2 £ 2T
2173
am 1 152 1 L2
PAa173
apLe2 BEL 2
PRINT RGUTINE
fpal2 PRINT, FlW F@ 186 ZIR(BI=), 1R(13=zP
11BN
23215 LDN 7
2333 SRC P3
dazz4 WR M
LELLE INC 1
aa: 7% XCH 3
2gp33 SRC PR
dazz4 HRH
20397 INC 1
An178 XCH 2
22333 SRC PR
agz2+ WRH .
Aep4n FLM P& 1§ Z1Ri8Yz1. IR{91x@
agaie
2pp3s Fiu £1 2PE 4 IR(2)313, [RLJ) =B
asren
Fop 36 5T Fim P2 12 £ IR(43=P, TR{5)242
ApaLe
@pay SRE P4
AT RDH
2gazs £Ta, WMP

a235
a2 36

oz 38
e23e
g2 4an

@242

. BRad
AZ4%
02 46
pzar

gzag

251
#2527
REs3
8254
B2%5

8257

ges9
dzaf
6261

azal
#4244
92465
B2ah
Q267
R268
@269
ez27e
2271
P27z
B273
#274
az27%

9277
@279

Az 81
f2az
ezp3
@264
B2B5
@286
gzar
Rz ag

e T T T T

TELET*PE

a@16m
Faasg
L FR-T
@ m 8a
Ba171
dn117
egzie
pd1L25
Apaan
e e
agaaa
AgAge
deapd
dp114
Bp1 3%
apgaae
Zgz25
w192
ApR2e
0@a183
agiée
IR
ap221
a2 46
Apaka
apL 99

CRALF

Agalda
Bat41
Agpaa
Ap178
apals
e 3a
204
23178
pat92

AF229
Apa 3z
ABas4
2pa3l
Anpas
a7
PRZAA
epa32
2pB &4
LR
Apzan
43z 2%
Appsad
aat?
afa3iz
fpeafa
Apa 3l
Apz234
29244
ap225
ARASE
AdL 64
AMR34
FARAG
4216
Ami RE
apese
amnn
ag241
2@a 33
PRzla
Az 44
Ap225
Aaz 46
dg162 »
BAz 46
da178
82163
dazas
Jp17Y
Agega
A@L6d
B@11s”
Apaas
L-ELLE]
Adzed
razge
nE22s
CHALY
3245
20241
202 46
ge17a
a3 92

XCH
JHE

JHE
188

tHC
HQ P
Hoe
NOP
woe
RQP
152

LOM
LS
BRL
sTe, LOM
XCH
xCH
5712, 152

FAR
JUN

ROUT INE

CRLF . FIM
JMS
LF, Fim
JHS

BEL

~

INPUT HANDLER

TTY, LOH
FiIM

SRE
WHP
5T, YO

FIM

SRE
LO™
WMP
JME

FiI#

SRC
RO®
CHA
WM P
JM5

Flm

LOM
¥GH
5T1, JMS

e
SRC
ROR
CHa
WMP
RAR

4 /4 SAVE Ctac) IN INDEX REC 4

SeR1 / DELAY ROUTINE ol
SERZ F DELAY ROUTINE 2
5 ETH / NUMBER DF ROTaTIONS

L) / NUMBER OF DIGITS

2 517 / NUMBER OF 4-81T WORDS
1

[

12 s {rac)=12

7 St

4 / RESTORE SavED CtaC)
7 8Te2

578

P1 141 FiRi2i=8, IRIINZ1I, (CRD
PRINT
F1 138 FIAt2) =8, TRIJIr=14, (L%}
PRINT

REUTINES FOR COMPARE PROGRAM

1
PR A4
PR,
TE 5T ¢wa[T FOR START BIT
PR od / SET AAM 1 ADDRESS
FE ¢ SEND RaM 4DORESS
i
/ STOP R{ADER
SBR?Z
Pe B
]
SER 1 STIRE GUT START BIT
F1 B / RESET DATA LOCATION
8
4
$BR2 FB,6 HSEC, DELAY
¢ 1T TREATS REG, PAIR 1 (2.3}
PR/ AS IF IT WERE 1 B BIT SHIFT
/ REGISTER, TO [NPUT DATA
/ COMPLEMEMT DATA TO TRUE STATE

Lo 2 4 AND LINX INTO REG 2 HIORO WORD

RAR
XCH

2

LD 3 / THEN LI[MK REG 2 QVERFLOW TO

RAR
XCH
JME
182
JHs

LOM
WMP

3 4 LORD WORD TO COMPLETE SHIFT
SBR1

4 571 /B DaTa BITS ACCEPTED?

S5BR1

/ RE~SUPPRESS TELETYPE

LD 2 £ INFUT COMPLETE MOW

R&L
CLC
RAR
XCH
BEL

COMPARE ROUTINE. ACCEPTS
AND PaTR 1 MWILL QUTPUT &
FAILS,

/ ELIMINATE PARITY 81T
2

n A EXIT WITH DATe INT FAIR 1 (2-3)

INFLUT 1N PAIR 3
f17 IF COMPARE

aazey
BR2183
a@147
agn2a
AAg 45
Aaz41
Bp182
aatas
29741
aanz2e
aap4s
rayde
0193

Me3z
€ asea
appls
aap4a
faz218
AR18E
Apz4ay
B2 37
28231
App33
4235
@251
2az224
aang?
flalal
29118
J2a53
Apig2

apzpe
*n177
pazes
peed?
apz24
dpipl
o113
Bpa st
@192

fpala
2epsé
appsd
22235
d9@81
Eap3l
dpp2a
agpry
2peis
ag185
208080
B35
[
Bpase
opal
ARazs
@ po 2@
BR111
2¢aza
aapre
adasl
oga33
#aaze
P11t
2paze
[3:1:F.1.3
agesl
P2233
apaze
Bagsal
gap3s
28127
dae8l
aAE33

pag28

23158
220 65
Ag144
QFalz
2pa1s
F I)
AQ163
#3245
dpz3?
28245
apz22e
Bz 36
B@245
dez22n
#a12t
apeal
#Qas@
gz 35
agaia
agara
1151
paadl
a9 2@
agy 89
gonls
22d 65

COMPR,

NEG.

ADDTN,

AD1,

CLRAM,

CLEAR,

REPT,

REPTB,

naATAL,

CONT .

FINAL.

(= FDATH COMPARE ROUTINE
KCH
s
JCN

RN

N NEG FTEST FOR a2 IS NOT @

LLC

xcH &

sug 2

ELc

JON AN NEG

REL @
BEL 1

FIH PR P FIR181=3, IRt1)=@
FlM P2 48 FlR(4T=3, IR(5I=0

Lom 10
XCH &
cLC

BRE P2
RIOM

SAC PA
ADM
Ca A
WR M
INC
INC
334 A1
BAL

LOH
XCH
Lok
SRC
WRH
ING
IS% 1 CLEAR

- - LRV N

W
)

BEL @

Fin F3 68 IRt &Y z4, [RE{FI=E, (4)

JMS TTY 4 CALL [NPUT ROUTINE

JME COMER . FCALL FDR COMPARE ROUTINE
JCW AN REPT FTEST FOR NONEERD aC
LOM & FACCEPT B DATa BITS
XCH @

JMS TTY ¢ LOQOK FOR & DATA WORD

Fim PI 0@ FIR(BY x5, IRI7)3@, (PF)
JHE COWRR

JCN A COMT FTEST FOR & MATCH

FIM P3 78 YRt &6Y=4, IRITIzL4, (N}
JHS COMPR

JoM AE CONT FTF AC=B PRINT

FIM P3 6é& FTRLGY =4, TR(TIs2, (@)

JHE COHPR

JCN AF FEFTB

FIH P3 127 FTR(6Y T, [R(7I25, (R@)
JMS COMPR

JCH AN FORMT

JUM RBAUT

FIMm PR 14 /4 DRTA STARAGE

SRC PR

e 3

RAL

RNl / CHIP By REG. 1. HaR 1

RAL

WR1 / LEAST STIGNTFICANT BIT. DATA
RO / CHIP €.REG, 1, CHaAR @

RAL

HRA ¢/ MOST SIGNIFICANT BIT,DATA

ISZ 9 NIaTAy

JMS TTY / GET HEXT CHAR

Fik P3 78 /IRU6)sd, [R{T126, (F}

JMS COHPR

JON 42 CONa skCeB, 1F NOT RESTART INPUT
FIM P3 56 FIR(E) 24, IRE7)22, (B}

p3I92
392
8354
[-k-10]
2398
p4ag

402
a4al
2484
a4ps
Q408
2497
gegd
8499
LR
g411
g412

pats
B418
2418
paze

2422
4423
paz4
425

/

a4z27
q428
p429

2431
a432
paz3
2434
2435
2435

434
o439
ed 49
2441
P4 42

2444
)
B4 45

2447
pa4g
2445
pa5p
Be51
2452
B453
B4 4

Ba5s
2457
a458
2459

.LY-M

B53
B4ed
L33
gese
2467
2468
pasy
pare
P47
472
473
FTED

Ba7s
R4
FPEY
g4az

paB4
2435
(1113
0457

2480

2451
2452
493
Bd od
@495
P4 85
8497

deal
22033
aoaze
Beasy
appls
@127
[-J-L-E-}
age 33
agg2n
92158
foa3z
2ap1s
goe 3
ap2ls
Baz4s
#gazh
LLEMY
eazes
ag229
2aLes
Q48
ppLBS
22265
02583
faae@
2226
eaeaz
agy 74
aepay
8171
2pp42
.10 H
aazay
Doa4l
grz2s
dpoes
ap1a%

a@z21
29184
BpR42
2agss
fapas
22233
2179
aazi9
2p178
[-L.LE
L7a
aaL7e
Ba2 45
Ap187
Aanal
2@z 24
d@175
2oy 92

ame 32
92015
2ep33
Aqzar
AR244
Arz2s
26236
apzad
Bazzs
aoa 32
Bgpya
LR
35238
Bp24é
#9218
epg4a?
daa 32
apaae
20233
EAZ36
et 83
enz3?
29182
2aa9sé
fed 3l
?A238
e
2az3s
naLTe
apanL
aana3
BppZs
aAQz4%
EERRES
ppi124d
g pd
feo17a
2aazy
oga iz
#azea9
2833
2az3a
anp3e
dagda
25936
RAELG
Aarald3
2az33
Baz 42
29037
Apz3a
2nz2a3
.l V]

RBOUT,

FORMT.

PRINL,

PRINA,

FORML,

CONA »

JHE COMPR

JCN 42 REPTE

Fi¥ PI 127 ZIRC6I2Y, [RI7)=15, (ROy
JME COMPR

JCN AN FORMT JCHECK FOR FORMAT CRROR
FIM PB 146

SRC PO
RDA
RAR
HR@
RO1
RAR
WR1

Lo 9
DaC
XCH §
JUN DATAY

JMS CRLF FPOSTITION CARRIAGE
JHS FHMER

J¥5 PRING

FIM F5 32 FIR(1B1=2, IR(11}=@

LDM 1

SRC PE

(L3 £ CMIP B,REG. 2,CHAR B
JUuk 5TB

LOM 13 /PRINT FMERROR ADDRESS
XLH 12 FIRIL2 =213
FIm P5 53 ZIR(18)=3, IR{11)25

SRC P/ PRINT [UT ADDRESS

FIWa P@ 15
SRC P2

FIM PR 32 AIRCEIZ, JRely=@, (NIT ADR
SRC PR

WHOCN CN O CONTZ
Fie P3 2 /IRIBYa®, IR(Ll}=8, ADR COMP

SRC PE
RCD
XcH 7
ALl
XCH &
ING @
SRC PR
RO2
¥CH 3
RD3
¥CH 7
JHS CIMPR

JCK AN SECH
FIH P1 172 SIRE21=1 3, [RE31=13, L #)
JMS RRINT

F'WM P8 32 sIR(BIEZ, [R{i1cP

LOM 1 /A SET INTT ADR FLAG
SRC PR

WR2

FIH P2 2 / IR{A-1)=p

Fl4 P2 16 FYR{AY=1, LRIS)I=A

SRC PB
ROZ
TG
BRLC P2
kR2
LOm &
ALH 2

167

438
pd93
BEAA
2541
asp2
=1 R

e5a5

BS BT
@528
[L3u0
a51@
as11
@512
2513
@514
@515
@516

BSLA

o522
o521
@522
2523

a5zh
asz7
asz9

8531
2332
Q533
ps34
a5 s
2536
Bs37
e538
o539
254p
a541
akaz

@5 aa
@5 a5
a5 da

AG47
pS44
g5 49

B551
a553
a5 5%
pS57
AsEe
5 &1
a3

2565
aba4
AsET

B8589
a57]

2573
P57
2575
asts
@577
2574
B5 19
a5 s
-1 B
HE /2
pESl
AG8q
85 85
584
a5ez
p588
#8589
2590
8591
P59z
[k
8594
A5 55
A5 96

2598
esed
262

AE04
ases

gea3l
o239
fa13@
2pa37
apzds
anass
e@Eeas
BAR32
aepi1s
2233
2n238
apz 42
Bpzla
2gzaa
Zp178
2ez239
Fa130
gezn
agpss
el
aanlz
eap 32
Apna3
Bpa3e
ap2as
aem2h
22315
2aass
raaga
apasz
2pai1s
apa3s
2p922
7ensd
- Fa b
AAR3?
2@226
2A2 3l
BA236
“A180
aRAI7
2pr 26
eazza
@184
Angan
AAAsHa
nan 39
fnaen
3BT

nazi@
A7 25
POATA
paden
apnap
Eaail
ApLis
Agrat
BrE1l7
FAf 4L
fe12n
AaFal
Aanga
Q14
Aandd
#3171
:1:E 33 |
22041
NYz2 08
Anz2s
omals
@28
2 CE-L)
22164
42082
164
AAATS
2298
Amad3
[d:ER)
02337
wazan
BALAS
¥a212
rA132
gL ep
22896
aAppls
an2lq
aapd?
dpz 25
23182
agzas
Aa174
AAm33
A2 36
AgL7a
2237
an: Fg
fRgal
22233
epm2e
EELET
3111
Ap1d2
apa3z
20pe2
ApE3l
4pris

CONTZ,
SRCH,

COKT1.

NOFE .

BRGAM.

DELY1,

READ,

ADCHX,

SRC
RO3
400
SRC
WR3
JUN

Fiv

BAC
Linkd
TAC
WR2
_OM
XCH
RDE
00
WR3
Jun

FTH

SRC
RO
RAR
JCHW

JLK
Fix
FIm

SRC
a1
SRE
WR#
SRC
Bial
[4C
SREC
WRR
Ow
ACH
Fm

SRC
HEP
MOP

LOH
WK P
Fin

FiM
152
152
188
JME
NLE
IS¢

LoM
WM P
FIM

JME
JME

INC
NG
SREC
ROR
SRC
h4F
XCH
Lom
ang
XCH
INC
SR
ROA
SR3c
nMP
XCH
LOM
XCH
ERZ
Ro#
XCH
RO1
XCH
J¥s

JEK
JUN
FiM

SRC
RO@

PR

2
P2

CONT
PR 1
PR

2
2
2

REFT

1
L] ATRIB)=1, 1RK1):=8

A IHC INTT aDCRESS BY ONE (L)

PO I2 AIR{E =2, FR{11:D

L

4 CHEZK FOR4YAT EitRoR EXIST

CE NOFE

Al CHY

PE 1A FIREDI=1. IRILIsE

P2 32 FIRt4Ya2, [RU5):=R

i
P2
PE

4
P2

12
19
F3 &

[

2

F2 @
Fa 1
4 DE
5Nt
8 OF
5BR1
SAR?
7 DE
2

FZ 1
SRR1

SBRL

3
COMP

f WRITE [ATa To 1701

F LS 4-pITS, DATA

4 M5 d-p[TS5, DATA

4 JTRiIAB}=4, [RI{TI1=@

APULSING FOR 517 MBEC,
FIR{4)=P. [RIG)=8
1 FIR{B =@, TRI9I=1L
LY1i
LY1

L¥1

LY1

28 FIRt4r=8, TRISI=0

/ RE AD DELAY (5.6 M5}

/ READ CELAY

A L5 4-BITS, 1731 OUTPUT DaTa

4 M5 45,0731 OUTRUT DAT:

/ M5 4-BITS., INPUT DATS

4 L3 4-B[TS, INPUT DaTa
R

AZ ADCHE

RPRGM

FE 2

FR

Bsdd
pe@?
8538
psAe
asie
#6111
8512
B&13

0815
pe17
ab1y
9621
szl

aszs
2626
as2?
628
a62%
L1)

#4637
0634
B636
#5358
p&4n

.LEF
Bad3
LA}
g6as

Bsaz
&6 49

#o51
pa52
RES3
F&54
8655
A655
657
P558
as59

o561

2643
B&E4
2565
1L
8547
LY}
L LY.3
as7@
8671
672

Bo74
2676
2578
BagA
a6n2
as5a4

Bgep
11
edaz

eaR4
11

.l
adee
01@
@11
12
13
a4
15

8617
a1y

88179
2e237
29176
84238
qd103
88239
#9142
20881
gea3ld
20028
ao1p4
20r 80
an226
paads
20078
2pe8e
ap178
aea3z
£ae3?
e8A33
pR298
D62 28
29229
28230
#0036
segee
2p081
#a8 64
BAB64
oopns
eoass
nopae
CETER
Ana6s
ean3z
2003
nea3y

Ap2as

#ezza
apapl
1" E 1]
#ea3z
app R
A6 38
#gp48
pozie
an162
Aaald
#0233
aga3?
Apzzd
a2a97
2¢1@y
29118
ap141
BAa 32
rgpaa
2233
Agzae
Apz42
Ldurdy]
aAzea
faL17s
43237
Ap3e
anz22y
Apasd
HaFES
opize
Pd166
LELE.
an13%
065
A1 62
2034
D1 64
2Fnée
2178
ApYse
éopn3a

agaoa
oppde
2aaL7
dang2
adade
Ad192
pEN3z
aonan
ape33
eaz2ie
oez2s
apasa
2933
apzid
Ap19L
Bag44
paagen
2pe 32
2saan
Pon 33

%XCH 3 o586 PAA3A FHNER, FIM P1 :98 IRt2y912, I1At131s6, IF)
RDL LI
XCH ¥ BERE A0 AR JHS PRINT
Ap2 L ra
XCH 7 P6o0 PR3 FIK P1 197 FIRC2) =12, [R{3125, (E)
RO3 23197 .
ACH 6 0592 QpdBe JMS PRINY
JMS COMPR aa17e .
2694 fanle FIM P1 160 JIR(2)=3@, 1R{3Vep, (5P
JCN &N INADR af16e
P65 @960 JHS PRINT
ste, JHS CRLF 20178
2s98 Bp192 peL @
FIM P1 70 FIRCZ 24, JR{3}x5, (F} ’
!
JHS PRINT 2597 PaABL LISTR: JKS PRINA
#8171
- FIM P& 32 8701 #0734 FIM Pl 182 JIR(ZY=lR, IR{ZIwB. (GPI
LR
SRC PR 8703 opasn JMS PRINT
LoM @ 24178
WR @ 2705 Apn3s FIM PL to4 JIR(2y=12, IRI3)=2, (A)
WR1 2194
WR2 B787 Appag JMS PRINT
Fim F2 @ BR178
p7 M Apz2z LDM 14
JHE CLRAM B7im A¢186 XCH 1@ /SET BIT COUNTER
B711 ApR44 Fim P& 48 ZIR{123=3, IRCASI=D
JUN S5TAL I EY]
711 @ H M
INADR, FIM P2 @ #ADDRESS 1NCREMENT :?ia agfgg Feon. :EH ée
B715 BAA4S SRC P
JHS CLAAM B716 22234 ROR
. 717 @@245 ROTAT. Ra
FIM F8 & FlR{@Y=p, IRI1)=3 g?ila 3:395 IC:{ 14
8719 BoRZs JCN CE PRHTH
SRC FR apz1s
LOM 1 a721 BAR34 FlM P1 228 FIRC2)=13, IR(Erad, (P}
WRM BM2AB
JME ADBTH 8723 Aapae JHS PRINT
a1 78
FIM PR D 2725 @amss JUN NEXT2
o219
FIM P2 48 /IRt 4123, TR(5)=Q A7Z7 BRA Y4 PRNTH, FIK P1 225 FIREZ2Yel2, IR{II3L4. (N)
- LEEELS
LOK 17 A72% Maeaw M5 FRINT
XEH & PAL7A -
§TORL, SAC PR 2731 dg19A NEXT2, XCH 1%
ROM A737 P@118 ISE & FOTAT
SRC PE LEET LY
WR# p734 PALT2 LD 12
::g é B735 Q@z48 e
¢735 AB1B8 XCH 12
1SZ 6 STORY #737 @gie? 152 18 SECON
23281
FIN PH @ 2739 Aaa34 Fim PL 198 /IR(2Y=12, 1R(3134, (F)
29198 -
SRC PO @741 Ppaag JMS PRINT
RO AE178
The B743 AgAl4 Fie P1 187 FIRi2)w1l, IRCIN=11, (SC}
WRD apL187
LOM @ 2745 BaReA JHS PRINT
XCH 2 0174
Aol @747 dp127? 1S 1% AINC
anD 2 29245
WR1 2749 mpz20 LOM 12
JUN PRGHML . #758 9p191 xX0H 15
¥751 2a7p JMS CRLF
RPRGH: [SZ 1P PRGMA app26
2753 CapmR JHS LF
JMS ERROR pazia
0755 PORLS JUN AQCHK
JUN PRINL LELLT)
2757 DAB34 AINC, FTH P1 142 / SPACE
PRGMA FIM P1 1484 AIRCZ =L@, [A(I)=za, (0%) ARL1&8
8759 Bpasn JHE PRINT
JHE PRATNT 2e178
761 BpRl4 FIM P1 158 / BRACE
JUN PRGRH PaLsR
@753 AGARA JHS PRINT
PpL7R
2755 fapss JUN AOCHK
apRop
PROM and ROM Duptication and Verification Program {A0544}
Refer to the MCB4-20 description {Appendix E) for a description of this program’s use.
NOF 8822 26173 LD 13 7/ LOAD ROM DR L - Al
NGP gB2L o228 WR R /4 WRITE ROM ADR L (GP @)
START, JCN T2 STaRT / WALT FOR TEST FEZZ daa%s NG @ 7/ SET SRC - ROM 4 (ROM ADR W)
2923 60033 SRC PO 7/ SEND ROM 1 {0OF 1)
Fi1M P? 152 /5ET PASS CTR = 4 Bez4 daLre D 12 / LOAD RDM ADR H = A
Be25 2392 26 WRA / WRITE ROM ADR M (0P 1)
FTM P2 5 SET SRC = Ram 2 pBZs PaR32 FIMN PR &4 S S5ET SRC - RAM 1 (ROM CS5)
200464
SRC PO / SEND RAM @ /
LOM 2 £ LOAD STARTLAMP BIT P26 Raw 3 SR P / SEND RAM)
WHP / START LAMP ON (BR1) 0929 29216 LOH B / LOAD ROM CSBILT
INC B / SET SRC - ROM % /
SRL PR 7/ SEND ROM ([F11 2838 dap25 uHP ¢/ ENABLE ROM €S (9133
RDR / READ MODE SELECT (1f1) B3 doagR M5 DLYTD /REOM READ DELAY (1R M5)
XCH 15 ZSTORE MODE SELECT (R1S) ao190
FIM Fé6 B JCLEAR ROM 4DR REG Pa33 dpa32 FIM PO 32 / SET SRE - ROM 2 (ROM DATA L}
BEpl2
ROMAD. FIH PR 2 7/ SET SRC - RUM @ {ROM ADR L B35 PAAA3 SRE PO /7 SEND HOM 2 (IP 2)
2038 AP234 ROR / READ ROM DATA L (1P 23
SRC PR # SEND ROM G {OP @) 2937 09244 LY / COMPLEMENT DATA

158

2038 BeL8? KCH 11 / STORE ROW DATA | (R11} Bl4R 2@L78 Lo 1@ / LOAD ROM OATA H - - AC
39 20996 INC B / SET SRC - ROM 3 (ROM GATA H) #i¢0 P@152 SuB 8 / SUB PROM AT4 OUT L
2048 2pa3) SAC Pe 7 SEND ROM 3 (TP 33 8158 @a241 tLe / CLEAR CY
4241 daz34 ROR 7 READ ROM DATA H (IP 3) 2151 2928 JCN AN NOCHP / JUMP |F QATA H NO COMP
pR42 dazed CHa 4 COMPLEMENT OATA aa1 55
2843 Pe1Bé XCH 3 / STORE ROM DATA H (R LO) 0157 Ape e JUN INADR 7 JUMP - INAOR IF DATA COMP
P44 Apa3e FiW P8 64 # SET SRC - RiM 1 (ROM CS) Pt 6d
B oA 64 2155 22124 NOCMP, 1SZ 14 MODOE # INC PASS CTR, JUMP-MODE IF NOT
po4s Fpasy SRe PR /7 SEND Ra¥ 1 4TH
BR47 BRzdR CLE / CLEAR ROM CS BIT EE T
FA48 BR22% WM P / D1SBABLE 70M £S (a1 %) P157 d2A34 ERROR, FIM P1 2 £ SET SRC - R&M B/L;-RRDR L AMP)
Pday ApZep MODE. CLB / CLEAR AL, CY [kl .
ees@ @21 7S Lo 15 LORD MODE SELECT - aC B159 2an35 SRC F1 / SENC Ram 2 -7
Pa51 Ap24s RAR / CHECK 17024 MDOE B150 Pa2i14 LOM & £ LOAD ERROR LAMP ON BIT
A052 9a915 JEN GL QUR £ JUMP [F CY=1 - gQup @1nl BF225 W4 B / ERROR LAMP ON (EPZ2).
paars B1e2 F@B3LT WaIT, JOW TE MWAIT / CONTINUE |F TEST PRESSED
Ba54 da24d RALR / CHEER 1702 MODE BE1 AT
EESS AUA1B JEM ¢t DuP /4 JUMF 1F o¥si - DLP 0144 Am21n L4 2 / LUAD ESRIR LAMP oFF A1t
aan7a M85 Raz25 WM P 4 ERROR LAMP OFF {@32)
DAS? BR246 RaR JCHECK COMPARE MOOE Bleb Fpa2d Lov 12 f RESET Fus55 CTR = 4
gese PERds JCN CP STOF /7 JUMP IF CY = @ - STOP 167 2150 XOH 14 /4 LO&D PaSS CTR
BaaTL 2/
ag6p PAR32 FiM Pg 32 ¢/ SET SRC = RAOM .2 (Q0M DATA L) £
Bpa32 7
a2s2 2a033 SRC P@ / SEND ROM 2 (1P 2) /
P63 B@171 Lo 11 Q148 BALTA IMaDR, LD 13 /10AD ROM ADR L - af
eps4 pp2ds WRHR / MRITE ROM DATS L @149 Paz4L cLE s CLEAR CARRY
#9465 ABR9S INC @ / SET SRC - ROM 3 (R0M DATA M} 8173 dagaz 1aC / INC ROM apR |
edss BPR 3 SRE PR 4 SEND ROM 3 (TP %) P171 de189 XCH 13 / STORE NEW HOM ACR L
PBST BaLve LD 18 B172 #9018 JEROCL TRAH 2 JJMP - INC ROM ADR H IF DVFL
P68 AA226 WRR Z WRITE 9nM DATA L op178
0@59 Aepsd JUN COMP f174 gRAA4 JUN ROMEQD 4 JUMP - RCM OADR DATA
paLa2 fpai?
e@7t @p@32 SToP, FiW P2 8 / SET SRLC « Ram @ @176 Pe173 IReH. LD 12 £ LCAD ROM ADR H - AC
fpaea D177 Ep242 tag F IKT ROM aD® H
pa73 Ap@d 3l SAC PR 4 SEND RaM @ 2178 2@isd XCH 12 ¢ STORE NEW R0M 4DR |
2874 gz CLB / CLEAR AL. CY) A179 B2@A18 JCN CL1 FIM
875 PR22% WMP /O START LAM P OFF (AR1) 49181
#0756 EOALA JUN START / JUMP T START F181 P@a&4 JUR RoMan
Bpa9: geal?
ap78 pRalz OUR, FIM PB 32 / SET SRC = ROM 2 (PROM OATA IN L} 2183 20834 FlN, FI4 P1L B
fap3z . Aeadp
epéa PRpdl SRC PR s SEND ROM 2 (0P 23 Pi8% dapl% SRC P1
2861 de1 71 Lo 11 . /£ LOAD RODH DATA | - &AC plas R@a21é LOoM & 4 LDAD FIWNISH LaMP g1t
opa2 da22é WRR 4 WRITE PROM DATA IN L (DP 21 #1387 afzz2s WMP / FINISH LaMP ON
@PB3 deRsé INC 8 ASET SRC - ROW 3 {FROM DATA IN H!? 01086 Apdsd JUN START
gas4 PR3} SRC PR #/ SEND ROM 3 (OF 3) vanaz
dBE5 BH17E Lo 1@ £ OLOAD ROM DATA H - AC /
BEBs 22226 WRR / WRITE PROM GATA IN H QP 3} s
Be&E? 2ppae JeS ODLYTO / DATA SETTLE DELAY (1@ MS: FRUBRNUTINES
Aa190 /
BAES PE24R fLB / CLEAR AC, CY /
ges¢e Ap175 LD 15 4 LOAD MODE SELECT - &C BLYF BAR3IA OLYTO, FIM P3 2 4 DELAY TIYE OUT = 9, BEMS
BAFL PR245 RAR £ CHECK 17024 MDOE agagd
fB52 2dpin JCN Ci PGMA £OJUMA TF CY31l - RGHA P192 FQAAR TLT, NG
22399 P193 2a11¥ 152 7 T, T
BAGs A2 46 RaR £ GHECK 1702 MODE a1z
P2%5 pagll JCN C1 PGM@2 / JUMP 1F CYal - PROGRAM 1702 g195 AAaga NOP
2aii@ . #1956 @@pdn W3R
2997 Badsd JUN STOF £ JUMP - STOP [FNCT PGM MOOE 2197 Bp@118 1S & TLT
PA3TL P19
0899 BAAIZ PGMA, FIM PR 64 4 SET SRC - RamM 1 8199 pA192 BEL @
Bapse - a208 Apad4 OLye, FIM PL R / DELAY & = S1TMS
pilgl Jegls SGC PR / SEND Ram 1 20080
1oz PAzi@ LON 2 4/ LOAD R/WA BIT 2282 07236 Fim P2 11
2183 Bep25 WMP / EMABLE 17924 PGH {811} Ponil
9194 P@pRa NS DLYA F PGM TIME (1517 M5, BZd4 22118 TLA. 152 2 Toa
apzoe Apzp4
2186 Pa2QBp LDH B F CLEWR Rs/Wa BIT P25 BA115 IS8 3 TLA
ey 0pz2s KMP 4 QISABLE 17824 PGM (311 Apsed
A18P ApBs4 JUN COMP / JUMP -~ COMP AZps Ap116 ISE 4 TLa
Ag122 ANz P4
118 Agal2 PGM2Z, FIM PR &4 /4 SET SRL - RaM 1 A219 BdARRY dMS DLYTO
20064 ArL9a
P112 Aaa3l SRC PR £ BEND RaM 1 #4212 aa1:i7 152 5 TLA
?113 fp212 LOM 4 F LOAQ R/W 02 BIT oazp4
2114 9g22% WMP / ENABLE 1702 PGM (312} : B214 2A152 REL &
E115 BOABR JHS DLyB2 / FROGRAM TIME (5.8 SEC) 821% 22932 0LvB2, FIM PR + £ DELAY F¥ = 5,88FC
ae215 229 A4 :
0117 Bp288 LOM B / CLEAR R/W 02 BIT @217 #2113 TLZ, 152 1 & FOtL00P SLT = 411
0118 Bp232 FIM FB 54 apsza .
aaas4 8219 2192 BAEL @~
2128 Poa3d SRC PE B22¢ APAAA &, JME DL
@1zl 8p225 WHF / DISABLE 1782 PGHM (BLl2) Pa2aa
B122 90p3@ COMP, UMS OLYTO / DATA SETTLE TIME (1DMS) a222 Pansd QUK TLEZ
2E190 apa17
@124 npp32 FIH P8 32 / SET SAC =~ ROM 2 (PROM DaTa OUT L} |,
apa32
P16 @34 F1M P1 128/ SET SRC - RAM 2 (DATA OSPLY} ;
P12
2128 #9533 SRC P / SEND ROM 2 (IR2)
2129 00234 RO / READ PROM DATA DUT L (IF2) SYMENL T4PLE:
2138 Aap3s SRG Pl / szme n;: 2 rpsrwn DATA GUT DSPLY L "
3111 dp223 HH F £ WRITE OM DaTa OUT DSPLY L (@2} N a
0132 pg181 XCH 9 7 STORE PROM DaTA OUT L {R9) CoNF woiaz (NAGR gbies aLian poadl
8133 app9s 1INC 2 4 SET SRC - ROM 3 {PROY DATA OUT M1 oLYa? AQz1B TRAH RPLTE sTtoP ReEe?i
@13+ pa21? LDM 4 4 LGAD *84' BIT FOR RiM J SRC OLYA @@zeg MODE @Pd49 L2 paz17
8135 29132 Ach 2 ¢ SET SRC - RaM 3 - A.YTO 92498 NOCHP 22155 TLa @BZ@d
0136 BP179 ACH 2 / LOAD SRC K nue alaze PGMEZ @PLLE wr @192
B137 2aA33 SRC #@ 4 SEMD ROM 3 (13} ERROA #0157 PGMA PRADOT WAIT Q@162
9138 a2l ROR / READ PROW QATA Q0T H {1P3}
L3¢ 2m 3% SRC P1 F SEND RAM 3 (PROM paTa QUT DSPLY HI
2142 @p225 WM 4 WRITE PROM DATA OUT OSPLY H tB83)
2141 29184 XCH 8 # STORE PRCH DATA OUT H (R8}
2147 AP244 cLe ¢/ CLEAR CY
8143 17y LD 11 F L0AD ROM OATA L - AC
Bl44 BA153 SUB % 4 SU8 PROM DaTa OUT L
8145 pap23 JCN AN NOCHP /F JUMP IF DATA L NO COMP
29155
2147 fopz241 Lo / CLEAR CY

169

INTEL MICRO COMPUTERS

POINT-OF-SALE
TERMINALS

Staid, Inc. of Casselberry, Florida is using Intel
micro computers to build advanced peint-of-
sale terminals for a large chain of cafeterias in
the Southeast. Operated by the cashier, the ter-
minal automatically enters item prices, totals
jiterns, adds taxes, prints a sales slip, dispenses
change, adjusts the inventory of each item as it
is sold, and transmits all this information to cor-
porate headquarters. It can handle 100 separate
items and is expandable to accommodate 200.

Staid says the Intel micro computer on only two
PC cards does the work of about a dozen cards
of random logic, and increases estimated relia-
bility by an order of magnitude. Cost reduction,
compared to random logic, is estimated to
range from 20% to 30%.

Since the micro computers are programmed by
intel PROMSs, Staid can produce point-of-sale
terminals for the other types of businesses that
have different requirements without redesign,
They simply change the PROMs to make the
terminal perform according to the new cus-
tomer's requirements, Obviously, this saves a
lot of money and enables them to deliver sys-
tems soon after receipt of order.

170

DATA
COMMUNICATIONS
PROCESSING

Action Communication Systems of Dallas used
Intel micro computers as front-end processors
in this high-speed dial-up communications con-
trolfer built for The Bekins Company.

Action adopted Intel micro computers in order
to save both development time and system cost.
The Bekins system was fully developed and de-
livered only 90 days after Action decided to use
Intel micro computers. And Action estimates
they saved about $10,000 in over-all cost.

The Bekins controller, located in Glendals;
California, is the heart of a nationwide multi-
terminal system that carries administrative mes-
sages, financial data, shipping nctices and cus-
tomer inquiries. A micro computer on each of
fives lines puts messages in a binary synchro-
nous format, checks for errors, and signals for
re-transmission when an error is detected.

Action used Intel’s standard SIM4-02 micro
computer beards in the system, and did the
final programming with Intel's electrically-pro-
grammed PROMSs. Intei's Micro Computer Sys-
tems Group worked very closely with Action in
both the design and debugging phases of the
project.

COMPACT
BUSINESS
MACHINES

carril

2TUD

This general-purpose data processing machine
for smal businesses is built by Omni Electron-
ics using an Intel micro computer as the heart
of the system. Suitably programmed, this ma-
chine will tabulate accounts, type invoices,
write checks, and even produce personalized
form letters,

Omni says they saved about $3,000 by using an
Intel micro computer in place of a mini. More-
over, the micro computer enabled them to re-
duce the whole system to typewriter size.

They say the micro computer has even more
speed than they need, and offers the extraordi-
nary retiability they require in this application.

In addition to the Intel integrated CPU, which
dees all central processing, the machine uses
Intel's electrically-programmed PROMs for
bootstrap programming and Intel’s 2102 N-
channel 1024-bit MOS RAMs as the central
memory, a memory which stores up to 16K 8-bit
bytes. Peripheral memory is supplied by one to
eight Omni tape decks, which store 15,000,000
bits per cartridge.

171

An Intel micro computer does all the thinking for
this automatic bottfe-loading machine. The
micre computer, built by Comstar Corporation
of Edina, Minnesota, for Conveyor Specialities,
tells the machine how fe load bottles of different
sizes and when to perform each step in the

- loading process.

The little computer in a 6 x 6” x 12" space
replaces several racks of counters, timers and
relays that would otherwise be required. Ac-
cording to Comstar, the computer's flexible pro-
gramming is a major advantage. Programs on
PROMSs can be changed in half an hour.

Comstar estimates that the micro computer
halved the cost of the control portion of this
system, and reduced the time required to build
it by a factor of two or three, The company is
now building other types of systems with Intel
micro computers, including an automatic meat
weighing and packaging machine.

SALES OFFICES

NATIONAL
SALES MANAGER

CALIFORNIA

Hank O'Hara

065 Bowers A e

408/246-7501 TWX: 910-3380026
Telx: M-6372

Santa Clars 35053

ARIZOGNA

Enginearing Sale:

7155 E. Thoemat Aoad, No. &
602/945.5781

Scattsdste 85252

CALIFORNIA

Jess Huffrman

2065 Bovers Avenue
408/246-7501
*Spnta Clerw 35051
Jerry Plymire

065 Boawers Avenue
ADB/248-7501
*Santa Clara 95087

John Alfoldy

17401 Irvine Blvd,, Suit K
714/238.1126, TWX: 9108951114
*Tustin 92680

Jim Saxton
17401 Irvine Blvd., Surta K

CALIFORNIA

William T, O'Brien

17401 frvine Bivd,, Sure K
71478381126, TWX: B10-596-1114
*T ustin S2680

FLORIDA

Semtronic Associares

5100 DuPont Blvd,, Suita BE
DuPant Towers

305/782-1596

Ft. Lauderdale 33310
Semtromic Asrocietes

100 Maitlend Avenue, Suite 216
058316851

Altwmonte Springs 32701

1LLINGIS

Mas-Con Agsociates, Inc.
4836 Muoin Seraer
IT2ETE-6450

Skokie 60076

MARYLAND

Barnhill gnd Associates
1531 Greenywing Drive

LL.S. REGIONAL SALES OFFICES

MASSACHUSETTS

Myles Franklin

594 Marrert Road, Suie 27
G17/B61.1136, Telex 92-3493
"Lexingtan 12173

L, 8. SALES OFFICES
WICHIGAN

Sheridan Assoc., Inc.
33708 Grand Rrver Avenus
M 344773800

Farmington 48024

MINNESOTA

Carl Branger

80D Souithgare Dffice Plaze
5001 West 78th Strent
612{835-6722
*Bloomington 55437

E.CH. Inc

4004 W, 78th Street

B12/927-4547, TWX; $10-576-3153
Minrwapolis 55435

MISSOURI

Sharidan Assac., Ing,
110 &, Highway 140, Suite 10
314/B37-5200

MINNESOTA

Mick Carrier

B00 Sauthgate Office Plaza
5001 Wast 78th Swreer
B12/B35-6722
*Bloomington 55437

NEW YORK [Contirusd|

Ossmann Companents Sales Corp.
280 Merro Park

T16/847-3200

Aachester 14623

Clsamann Components Sales Corp,
1911 Vestal Parhway E_

507/ 7859949

Vastal 13850

Desmann Componants Sales Corp,
132 Pickerd Building
315/454-4477

Byracuss 13211

Ossmann Companents Saleg Corp.
411 Washington Avenue
9143385505

Kimgston 12401

NORTH CAROLINA

Barnhill prd Assoristos
GO0 Bellpw Street

PENNSY LVANIA
Wantege Sales Company
21 Bala S.venue
215/667 0090
Haln Cynvwyd 19004
John Kitzrow
21 Bala Avenue
215/664-66 26
Bats Cynwyd 19004
Sheridan Anoc , e
A268 North Pika,
Morth Fike Pawilion
412{273-1070
Manrosyile 15148
TENNESSEE
Barnhill snd Assaciates
206 Chicarhaw Drive
T03/BA6- 4624
Johnaon City 37601
TEXAS
Evans and McDowsl Aswoc.

714/B38.1126, TWX: 910-595.1114 20172525610 Florimant 83033 703/848-4624 13333 N_ Cantral Exprasoway
*Tustin 92680 Timonium 21093 NEW JERSEY Rukeigh 27602 Room 180 214/238.7167
Dave Naubauar Barnhill and dtociates Addemn QHIO Dhalles 75222
17401 brvine Blvd,, Suire K P.O.Box 251 . £ d McD. I A
- : - Posi Offize Box 231 Sheridan Assoc., Inc vang a cDowell Azsoc.
3_}:&?912;% TWX: 910:595-1114 301 2525610 16/567.5000 10 Knotlerass Drive BA14 Trlols Lane 713/777-1262
hon Arm 21067 Kesshey 08832 §13/761.5432, TWX: B1D-451.2670 Hauston 77036
Eprle Ascocistes, Inc. Clncinnsti 15237 VIRGINIA
4433 Convoy Swest, Suite A MASSACHUSETTS NEW YORK Sherigan Assac,, Ine. Barnhill and Associates
714/278-5447 Bill D'Eramo Desmann Componen s Seles Corp, 7BO0 Wall Streat P.0.Box 1104
San Diego 92111 E04 Marcett Roed, Suite 27 395 Cleveland Drive 216/5248120 TFO3/846-4624
COLORADO G17/861-1138, Telex; 922493 716/8:32-4271 Clavaland 44125 Lynahbury 24505
Waugaran Asiociares, Ine, Lu.nngwn p2173 Buffalo 14215 Sharidan Assoc., Inc. WASHINGTON
4643 Wadworth, Sulte Dateom Addem Shiloh Bidy,, Surts 250 50.R? Products and Sair
04231020, TWX: 9109380750 TA Cypress Drive 37 Pioneer Bhwd, 5045 Narth Main Stregt 14040 N E. Bth Sirest
Wehaatridge 80033 61742732990 E16/567-6900 513/2778911 206/747 9424
Direct Intel Selas OFfice Burlingion 1803 Huntington Statien, LY. 11746 Dayton 45405 Beltovus 98007
EUROPEAN MARKETING EUROPEAN DISTRIBUTORS
HEADQUARTERS
BElflL:ﬂ Isan AUSTRIA FRANCE NETHERLANDS SWITZERLAND
ne Faul
Ttel Offios Bacher Electronische Garsts GmbH Takelec Airtronicy INELCD NV tndusirade AG
216 Avenoe Louise 022793 01 43, Teex: 101) 1532 626-02-35, Telex: 25987 020 44 16 66, Telex: 12634 01-§0-22.30, Telex: 56788
432007, Tetwx: B46-21080 Vienna Paria Amsrerdam Zurich
*Bruxelies 1050 BELGIUM GEAMANY NORWAY UNITED KINGDOM
PEAN MARKETING SA Infloo NV, Ing. Erich Sommar Matdisk Elektronik (Narge) Walmore Elactramcs Ld.,
EURO OFFICES 02/60.00.12, Telex; 25441 Eiektronik GmbH B02590, Telex: 16353 01-836-0201, Teex: 26752
FRANCE Bruxslieg 0611660288, Tetax: 414065 gl London
in1e1 Office DENMARK Franicturt SOUTH AFRICA
Cidax R-141 Seandinpvian Semiconducror Supply SRAEL Electronic Building Elements {PTY] Lid.
84-534 Aungis Asgir 5080, Telex: 19037 Telys Ltd. Engineering Co. P.O. Box 4609
(1} 677-60.75 Capenhagen . 25 28 39, Telex: TSEE-IL 333192 Pretoria
“France FINLAND TatAviv SWEDEN .
ENGLAND :
Invet Corporation Havulinna Dy ITALY Nordisk Elektranik AB
Brosdfield House 90-51451, Telex: 12426 Elsdea 38, 08.24.83-40, Telex: 10547
2 Barwcan Towns Road Hetalink) 102) 860307 Stockhoim
72897 Milang
Caviey, Oxtord

ORIENT MARKETING HEADOQUARTERS

JAFAN

¥, Magami

Intal, Japan

Han-E| 2nd Bidg.

1-1, Shinjuku, Shinjuku-Ku
034034747, Telex: 781-26428
*Tokyo 160

ORIENT DISTRIBUTORS

JAPAN

Pan Electron Ine.,
0454718321, Talax: 7814773
Yohohams

172

DISTRIBUTORS

U. 8. DISTRIBUTQORS

WEST MID-AMERICA NORTHEAST SOUTHEAST
ARIZONA ILLINOIS OHIO CONNECTICUT ALABAMA,
Hamilton/Awnet Elsctronics Cramer/Chicago Cramer/Tri-States Inc, Cramer/Connecticur Cramer /EW Huntsyille, Inc.
1739 N, 28th Avenua 1511 South Busse Roag B66 Fedna Tarrece 38 Dodge Avernue, North Haven 2310 Bob Wallace Avenue
602/ 2681331 325930230 E13/771 6441 M03/239-5641 20615395722
Phownix 85000 M. Prospect 80056 Cincinnati 45215 New Haven 06473 Huntgville 35305
Cramarf&rizona Harnilton! Awmet Electronics Sheridan Assoc., |ne, MARYLAND FLORIDA

2B16 N, 16th Strest 3901 North 25th Avenue 10 KnoHersst Drive Cramer /EW Baitimora Cramer/EW Holiywood

B02/263-1112 I12/678-6310 B13/761 6432
- o N 92224 Patapsco Avenua 4035 North 29th Avenue
Phoenix 85006 Schiller Park 80178 Cincinnati 45237 301/364-0100 305/923-8181
CALIFORNIA INDIANA Cramer/Cleveland Baltimare 21230 Hollywoad 33020

B335 Harper Road

Hamilton/Aynet Electronics Sheridan Assce., inc. Cramer/EW Washington Hamilton/Awnet Electranics

340 E. Middefisid Road 4165 Millersville Raad, Suite DI.C7 g“j“ﬂ:f o 18021 Industrial Drive 4020 Narth 20th Avanue
415/961-7000 317/542-0661 wvwan 301/948-0110 305/925-5401

Mountain View 94041 Indianapalis 46205 Sheridan Agsoc., inc. Gaitharsburg 20760 Hollywood 33020
Gramer/San Francisco KANSAS ;ag w:" f;;“‘ Hamilton/Avnet EI Cramer/EW Grisnde

695 Veterans Bivd, Hamitton/Avnet EI . : *':2 3‘“ . 7255 Standard Drive 346 North Graham Ave.
415/3654000 500 W, 75t Street. Sune 106 Cleveland 4212 0117965000 305/941-1550

Redwood City 830532 913/362.9250 ' Sheridan Assoc, Ing, Hanover 20176 Orlando 32814

Hemilton Electro Sales Prairia Villaga 66208 Shiluh Bldg., Suite 260 MASSACHUSETTS GEQRGIA

10912 W, Washington Blvd,
H38W-1171
Cufver City 90230

Cramer{Log Angales
17201 Dalmler Street
F14979-3000

Irvine 92705

Hamiiion/Avnet Electronics
8817 Complax Drive
714/279-.2421

San Diege 92123

CramarfSan Diego
7719 Convoy Court
14/279-6300

San Dinga 92111

COLORADD
Cramar/Denvar

5485 £, Evans Place at Hudson

30¥758-2100
Danver 80222

Hamliton/Aynet Electronics
8321 N, Bresdway
303531212

Danver 80216

NEW MEXICO

Cramer/New Mexico
137 Vermont, N.E.
505/266-5767
Albuquerqus B7108

OREGON

Almac/Stroumn Eleciranics
' GBBEB 5.W. Canyon Rosd

503/292.3 34

Portiand 37228

UTAH

Cramnar/Urah

39T W. 2500 South
801/487-3621

Salt Lake City 84115

Hamiltan/Awnet Elactronios
647 W, Billinis Road
801/262-8481

Salt Lake City 84115

WASHINGTON

AlmaciStraurn Electronics
5411 Sixth Avenue South
206/ 763-2300
Seattla 38108

" CrameriSeattle
5602 Bth Avenue South
206/762-5755
Senttle 98108

Hamilion/Avnet Electranics

2320 Sixth dvenye
206/624-5030
Sastthe 98121

MICHIGAN

Sheridan Assoc, Ing,
A3708 Grend River Avenus
3 3/477.3800

Farmington 48024

Cramer/Detrai
13193 Wayne Raed
313/425-7000
Livonia 48150

Hamiiton/avnat Electronics
13160 Wayne Road
313/522-4700

Livonia 48150

MINNESOTA

Cramer Minneapolis

8053 Bloomington Fresway, Suite 106
612/881 8678 :
Bloomingron 55420

Cramer/Bonn

73275 Bush Lake Road
6129414860

Edina 55435

Hamilton/Awnet Electronics
4840 Viking Drive
612/854-4800

Minneapalis 55431

Industrial Companeants, Inc.
4004 West 78th Stram
612/927-00M

Minnospolis 55431

MISSOURI

Sheridsn Assoc., Inc.

110 South Highway 140, Suite 10
314/837.5200

Florigmant 63033

Hamilwon Electro Sales
292 Brookes Lane
347 N-1144
Hezelwood 63042

AKLAHOMA
CramerTulsa
6336 East 13th Swaet

918/836-3371
Tuka 74112

S046 North Muin St,
513/277-8911
Dayion 45405

TEXAS

Cramer Electranics
2970 Blyswone
214/360-1385
Dnllas 75220

Hamiltan/Awnet Electronics
2403 Farrirgton
214/638-2850

Dallax 75207

Hamilian/Avnet Electronics
1218 West Clay
T13/526-4661

Hougton 77019

WISCONSIN

Cramer/Wisconsin
BE26 N. 815t Street
4144628300
Milwaukae 53225

173

Cramer Electronics, | ne.
85 Weils Avenue
617/969.7700

Newton (2158

Hamiltonf Avnet Electronics

185 Cambridge Street
B17/273 120
Burfington 01803

NEW JERSEY

Hamilton Etectro Seles
220 Little Falls Raoad
201/239-0800

Codar Grave 07009

Cramerfew Jersey
Mo 1 Barett Avenue
201/935 5600
Maoonschie 07074

Hamnilton/Avnet Electranics

1608 Marlton Pike
809/662.9337
Cherry Hill 08034

Cramar/Pannsylvania, Inc.

7300 Route 130 North
GOE/BE2-5061
Pennsaukan 08110

NEW YORK

Cramer /Binghamton
3220 Watson Boulevard
807/764-6681

Endweil 13760

Cramer/Rochester

3269 Wintor Road Sauth
718{275-0300

Rochester 14623

Cramér /Syracuse
6716 Joy Road
3154376671

East Syrscuga 13057

Hamilton/Ayner Electronies

5400 Joy Road
315/437.2642
Syracum 13211

CramerfLong Island
29 Oser Avenue
516/2315600
Hauppauge, L.1. 11727

Hamilton/Avnet Electronics

70 State Sireet
616/333 5800
Wagtbury, L1, 11590

PENNSYLVANIA

Sharidan Assoc., Ing.
4268 MNorth Pike
Marth Pike Pavilion
A 2/3T31070
Monrasvilts 15146

Cramer/EW Atlants
3130 Marjan Drive
40414489050
Atlants 30340

Hamilton/ & vnet Eiectranics

6700 Interstete 85 Accass Road

404/448-0800
Atfanta 30071

NOATH CAROLING

Cramer/EW Roleigh
3901 Winton Rosd
919 a76-2an
Aaleigh 27604

Cramer/EW Winston Salem
938 Burke Streat
9197258711
Winston-Salem 27102

PUERTO RICO

Cramer Electronics de
Fuerto Rico
Subdivision Industriat,
Bo Retirg

Ban German 00753

CANADA

ONTARIO

Cramer/Canada

920 Alness Avenue, Unit No, @

Dowen syievwy
416/861.9222
Taromo 392

Hamiltan/Aynet Eleciranics
6291 Dormain Fd. No, 19
416/677-7432

Missizsauga

Hamiltan/Avnet €lectranics
880 Lady Ellen Place
613/725-3071

Qttawa

QUVEBEC

HamiltonfAynat Electronics
935 Monme De Liesse
$14/735-6393

St, Laurent, Montreal 377

12,

Ordering Information

. The 4004 [CPU} is available in ceramic only and should be

ardered as C4004.
The 400% (ROM], 4002 {RAM) and 4003 (SR} are presently
available off the shelf in plastic only. Standard devices should be
ordered as follows:

4001 Plastic Package)

P4002-1 {Metal Option #1) - Plastic Package

P4002-2 {Metal Option #2} - Plastic Package

P40O0O3 Plastic Package
The 4008 and 4009 standard memory and 1O interface set are
available in plastic only {24 pin BIP), They should be used as a
set and ordered as P4008 and P4009.

. Mask Programming of the 4001

The custom patterns, chip numbers and 1/O options {inciuding
inverting and non-inverting inputs or outputs and on-chip resistor
connected to either Vpp or Vgg} must be specified on a truth
tabile for each 40011 ordered. Blank custom truth tables are avail-
able upon request from Intel.

. SIM4-01 Prototyping System

An interface board in which 17024 electrically prograrnmable
and erasable ROMSs simulate the 4001 mask programmable ROMs
provides a design toal for developing a system, This board con-
tains one 4004, four 4002s and has provision for up to four
1702As5. The board should be ordered as $SIM4-01. The PROMs
should be ordered separately,

. SIM4-02 Prototyping System

This board is an expanded version of the SIM4-01, 1t contains
one 4004, four 40025, and has provision for an additional twelve
4002s and sixteen 1702As, The board should be ordered as
3IM4-02 {the type and number of PROMs and RAMSs should
also be indicated),

. MP7.03 PROM Programmer

This is the programmer board for 1602A/1702A, The three
1702A contral ROMs used with the SIM4 cards for an automatic
programming system are specified by pattern numbers ADG40,
AQG41, AD543. All items should be ordered individually.

. SIM4 Hardware Assemblar

Four PROMs plug into either prototyping board enabling the
micro computer prototype to help program itseif. To order this
set of PROMS, specify pattern numbers A0740, A0741, AD742,
and AQ743,

. S1M4 Hardware Simulator

Nine PROMsS plug into the $1M4-02 to aid in debugging of pro-
grams. To order this set of FROMs, specify pattern numbers
AO0750 through AD758,

. MCS-3 Assembler and Simulator Software Package-

This software packape converts a list of instruction mnemonics
into machine instructions and then simulates the operation of
the MCS-4 program. These programs are written in Fortran |V

-and are available via time-sharing service or directly from Intel.
. MCBA4-10 System intarconnect and Control Module

This rmodule provides control, display and 1/0 interconnect capa-
bility for the SIM4-01. In additian, it provides complete inter-
gonnection between the SIM4-01 and the MP7-03. To order the
interconnact medule anly, specify MCB4-10,

MCB4-20 System |Interconnect and Control Module

This module provides control, display and 1/O interconnect capa-
bitity for the SIM4-02, In addition, it provides complete inter-
connection between the $1M4.02 and the MP7-G3, To order the
interconnect module anly, specify MCB4-20,

Packaging Information

”? LI
Lt

16-LEAD CERAMIC DUAL IN-LINE PACKAGE QUTLINE

f 735 ,
| 830

1 =1

1
Fih1

- | t
134 0 ! _*
155 MAK

- 0n
: I
20 MIN 1 B
028: os:-—l [P ‘ mz . e g
REF ms REF 016, |, D : ™
T Cr R R 1 ™~ E30)

24-LEAD PLASTIC DUAL IN-LINE PACKAGE OUTLINE

A0 D.
P IDENTIFICA
// N Ay 10 TION

L

.19%0 REF
—
——Tq

‘ 160 REF.

wWILD-4 ISTTUCTIOn el
[Those instructions preceded by an asterisk [*) areé 2 word instructions that occupy 2 successive locations in ROM)|
MACHINE INSTRUCTIONS

e PR oPA |
MNEMOD
D40,D, By O Dy Oy Og DESCRIFTION OF QPERATION -
NOP >0 0Q oooo hi> npaeation. !
“IEN a0 0 € CyC4E, Jurnp to AOM address Az AQ_ Ag Az, A‘_ Ay A]. f\‘ {within the ”iTle A
ROM rhat conalns this JCN inswection] if condition Cy Cp C3 Cq
Axhghg Ay Aq g by Ay 15 1rug, BTNErywise skip (90 10 the next insiruetion in sequercel.
*Fim oot o AR ARD Fatch immadiane [directt from ROM Data [, 0y to index register pair
Dy Dp Dy Oy D D4 0y O Incation RAR {2
SRC 0oa 10 R R A1 Bend register control. Send the address [contanis ot indsx ragistar pair RRR)
12 ROM and FAM at X3 and X3 titea in 1h# [ngiryction Cyele,
FIN G0 1 AR RO Fetch indirect from RO, Ssnd. conrents of index ragisier pae |goation 0
o as an address. Crata fetched ic placed inle register pair 1ocation KRR
JIN 01 RR R Jurtp indirgcl. Sand cantents af register pair RAR ouT as &n sddrass
#1 Ay and A g Lime in tne Instuction Cycle
N D1 o0 A‘; Aa As '“3 .
Jump uwnconditicnal o ROM adares A5, A2, Ay
Ag Ag Ag Ag Ay Ay Ay Ay 1.h2
"JMS o1 0 Ang Pg Ag Ag . .Jump 10 subwautine ROM address A, Ag, Ag, save old address [Up 1 tevel
Ay Ay Ay Ay A hy Ay By in stach |
INC g1 10 R R R PR Increment contents af register AARA, (3
.57 901 1 1 RAAA Im.?lcr.nenl conrerts af regluer RRﬁR. Go to HOM od_dress Ao, Ay
B A it ‘2 P within the same ROM that contains this 152 instraction] :f resule #0,
20252 1717t ™M Dfhervuite tkip (90 10 the next instruction jin N
LD0 1000 R AARR Add contents of register ARAR to accumulator with carry.
SUE 1001 R A RR Sublract cortens of register ARRRA 1o acocumulator with barcow,
LC 101 0 R AR AR Load contents ol register RRRR to accomulator.
XCH LI | RARFR Exchange contents of index regiater RRAR and accumulator,
BEL 1100 (=0 = =] Branch back |down 1 lavel ir stack} ared load data DODO to acoumulaior,
LOM 11 01 , DDDD Load dala DODD to accumubatos.

INPUT/OUTPUT AND AAM INSTRUCTIONS

{The AAM™ and ROM's aperared an (a1 the |10 and AAM instructions have been previously seiecied by the last SAC insiructlan exacuted. b

OPR QOPA
MNEMONIC DJ DZ °1 Dﬂ Dy Dy Dy Dﬂ DESCRIFTION OF QPERATION
WHRM 1t 10 Doooqg Write the contents of the accumalator inte the previowily selected

A AM main memory character.
WP T 10 0o o0 Wrire the contenea of the inte the ly salmcred
L}

RAM autpul port. |Outpun Lines!
Write the contents of 1he sequmulatar inTo the previouwsty seected
ARG output port. 1170 Lines)
WER 1110 o0 11 Write the contants of 1he accumu atar into Lhe previcusly sel=cied
hall byte o* readfwnte program memory (for Lues with 4008/4003 anly)

WRR 111 0 o

WRY Lak 111 @ D1 oo Uﬂ\':ﬁ ;:‘:t::r(‘::\e;;‘ctoefr l{;‘.e acouiiulatar 1nta the previously selectad
wa14! rere 1ot M s craraceer 1 o e proviautly e
whz 111 0 0___' 18 \g:lll: ::\:'3::2:‘1?;;10;";.9 accumylator intg (he previcusly selecred
W |0 o v 1| e cememt o e s o e by o
SEM 1110 1000 :.Sublfac‘t thi :‘r‘_m::ﬂ:::llacna RAM rmain memory charecier from
AOM 1110 1 e g1 :‘::dlrt‘:eazr:‘zl::x:erecled AAM main mimdry characlér

RO 1t 10 T o100 :!:;dt.t‘::zg:::r:‘g:‘tmgrtrfi‘.::.;lv selecred RCM inpun porn

ADM 1y 10 101 :ctjc:rt-‘hjdprr:rui:::\l:::::ted RAM main memory character 1o

RO 4 1119 11 60 Raad the praviously salected FAM status craracter [into accumulator, !
roi4t 1110 1Y 01 Fead \he previously selectad FAM status character 1 into seeumalator,
roz'4t 1110 1110 Read the previously salected HAM status character 2 onta acoumlator,
RD:]"" 1110 11 11 Read the previously selectrd AAM siatus character .3 |.r.|tu aceamulsior.

ACCUMULATOR GROUP INSTRUCTIONS

fLe LA B | 090 Coear buth, TAccumalator a0l cairyl
CLL 1_ LI o 0ol Clear carry i)
1AL 1T v 1) b 10 Increment accomulaior,
CMC LI B oo 11 Corulerment carsy.
CMa LN R S | o1 a0 Complement acouniulaner
RAL 111 ¢ 1Dt Hotate lefz dAgounu glar andl Larry)
RAR L IR | o1 10 Rotare right {Accumutatar and carry)
T L B | Lo T | Tramsmii carry ta accumulator‘a‘l";.d.cl;t.a' csrr\f_
bac 11 1t 1 ¢ 0 ¢ Dec-emnet actaiulalu
LS L B | : 10 Lo Transler carry subtracy and clear carry.
i S'i'-c T 1010 Setcanry
DAL 1 1 1 T o1t Devcimnal ad ast ar_'LJI:\’I-uI;;l;I ’
KRR 111 1100 ‘l:::I‘;:?-'gf::lc:ic'ez;diot:v:r;?nt::ccoor::nrs ol th cumulater Aram i o
oCL LI T B | 11 0 Oy igreate cormmmand line. ,

NOTES i The condingn code o essgred as lo ows:
c.l =1 bouper jump conditicn 02 =1 Juirp T anewry atgn iy TRIG C4 =1 Juinp 1oRsl signa 15 a0
Ty o= % N w1 urnp condifon C3 =1 Jump i carrvdink i a1

12 AR 5 1he address of 1 ¢ 8 index register pdirs on the CPLUL
I HRKK 15 (ke sooress ot | ol 16 rdex regisiers ir the CPU

141E ach FAM chip nas 4 reqisders, pach wrh cwancy 3.k characers suldesded o 168 main miemiory choeiasrar aid 4 stefuy characaers,
Chig rumber, RAM registe: and main memoary chaiacter are addressa by an SAC instrucnion. For the salecied L1 o and registar, P o,
status charactes locanons arg selacied Ly Lhe imsiouction code {3PA])

€461 AdVYNHE3d

VANV SH3SA - 13S HILNDINDD OYIIN . ¥-SIN

[®
Inu INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 » (408) 246-7501

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	064
	065
	066
	068
	069
	070
	072
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	xBack

