e S —

ADVANCED FOCAL

TECHNICAL SPECIFICATIONS

DEC-08-AJBB-DL

ADVANCED FOCAL
TECHNICAL SPECIFICATIONS

For additional copies order No. DEC-08-AJBB-DL from Program Library, Digital Equipment
Corporation, Maynard, Mass. Price: $5.00
DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Ist Printing April 1969

Copyrighf©196? by Digital Equipment Corporation

The following are registered trademarks of Digital
Equipment Corporaticn, Moynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2,1.11
2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2,12
2,121
2.12.2
2.13

CONTENTS
CHAPTER T
INTRODUCTION

CHAPTER 2
COMMANDS

Type, Ask
Literals
Numerical Input Formats
Alphanumeric Input Formats
Special Characters
Print Positions
Symbol Table
Qutput Formats

Terminators

Off-Line Data Tapes {c.f., Section 4.5.3)

Corrections
Roundoff
DO

Editing and Text Manipulation Facilities

Command-=Input
ERASE
MODIFY

FOR

IF

GOTO

RETURN

QUIT

COMMENT

CONTINUE

SET

High-Speed Reader
General
Other Rules

The Functions

Page

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-10

2.13.1
2.13.2
2.13.3
2.13.4
2.13.5
2.13.6
2.13.7
2.13.8
2.14

2.14.1
2.14.2
2.14.3
2.15

3.1

3.2

3.3

3.4

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.5

3.5.1
3.5.2
3.5.3
3.5.4

CONTENTS (Cont}

General
Analog to Digital
Extended Functions
Random Numbers
Standard Functions
Using the Arctangent
Boolean Functions
FNEW - A User Functions
The Library Command
L-Command For Single User System
LIBRA Command Specifications for Multi-User Systems
DF32 FOCAL FILE STRUCTURE
Write
CHAPTER 3
FOCAL USAGE
Requirements
Loading Procedure
Initial Dialogue
Operation
Restart Procedure
Keyboard Error Recovery
Parentheses
Trace Feature
Variables, Functions and Numbers
Error Diognostics
Arithmetic Priorities
ASCII data
Indirect Commands
Saving Focal Programs
Paper Tape
LINC Tape
Disk Monitor System
Disk System and Extended Functions

Page
2-10
2-10
2-11
2-11
2-11
2-12
2-13
2-13
2-13
2-13
2-14
2-15
2-16

CONTENTS (Cont)

Page
3.5.5 Disk System and Extended Memory 3-6
3.5.6 For 4=user FOCAL SAVE command, see Section 4.6.6 3-7
3.5.7 EAE Patch for FOCAL, 1969 3-7

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 Machine Requirements 4-1
4.2 Design Specifications 4-1
4.2.1 Desigh Goals 4-1
4.2.2 Input 4~1
4,2.2,1 Input Format 4~1
4,2,2,2 Characier Sef 4-1
4,23 Qutput 4-2
4,2.3.1 Qutput Format 4-2
4.2.3.2 The Input/Qutput and Interrupt Processor 4-2
4.2.4 Organization 4-3
4.2.4.1 Arithmetic Package 4-3
4.2.4.2 Storage 4-3
4.3 Hardware Errors 4-4
4.4 Internal Environment 4-4
4,41 Adding a User's Function; FNEW(Z) 4~4
4.,4,2 Internal Subroutine Conventions 4-6
4.4,2.1 Calling Sequences 4-4.
4.4.2.2 Subroutine Qrganization 4-7
4.4.3 Character Sorting 4-7
4.4.4 Language 4-8
4.5 Notes 4-9
4.5.1 Core Utilization 4-9
4.5.2 Extended Functions 4-9
4.5.3 Error Printouts 4-10
4.5.4 No Interrupts 4-10
4,55 Operating HS Reader Without Interrupts 4-10
4.5.6 Non-Typing of Program Tapes During Loading 4-10
4,5.7 Explanation of NAGSW (Not All or Group Switeh) 4-10

4,5.8
4.5.9
4.5.10
4.6
4.6.1
4.6.2
4.6.3
4.7
4.7.1
4.7.2
4.7.2.1
4.7.3
4.7.3.1
4.7.3.2
4.7.3.3
4.7.3.4
4.7.3.5
4.7.4
4.8
4.,8.1
4.8.2
4.2

5.1
5.1.1
5.1.2
5.2
5.2.1
§5.2.2
5.2,2.1
5.2.2.2
5.2.3

CONTENTS (Cont)

Daota Inaccuracies

Estimating the Lenght of User's Program
FOCAL Systems
FOCAL Systems Assembly
FOCAL Binary Paper Tapes
FOCAL Listings
FOCAL Segments
8K Single User Overlay - 8K
Extended Precision Overlay ~ 4Word
Double Precision Multiply in Four-Word FOCAL
Four User Overlay - QUAD
Four User Loading and Operating Procedure
Swapping
Workload and Timing
Special Conirols
Dialogue
Graphics for Circles and Lines - CLIN
FOCAL Demonstrations
One-Line Function Plotting
How to Demonstrate FOCAL's Power Quickly
FOCAL Versus BASIC
CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS
FOCAL for the LAB=-8
Standard
Additionsi (Possible) FOCAL Functions for AX-08
FNEW for Data Arrays
Storage Requirements
Usage
Loading
Calling Sequence

Recursive Calling

wi

Page
4-11
4-11
4-11
4-12
4-14
4-15
4~15
4-15
4-15
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-18
4-22
4-22
4-23
4-23

CONTENTS (Conf)

Page
5.2.4 Restrictions 5-4
5.2.5 Description B=d
5.3 Dynamic Interrupt Processing via FOCAL, 1969 5-5
5.4 Simultaneous Equations® Solutions 5=6
5.5 Fast Fourier Transforms Programs 5-6
5.6 Travel Voucher to Expense Voucher Conversion Program 5-8
5.7 Twins Demo 5-10
APPENDIX A
FOCAL COMMAND SUMMARY
APPENDIX B
ERROR DIAGNOSTICS
APPENDIX C
EXPLANATION CF NEW INSTRUCTIONS
APPENDIX D
FOCAL CORE LAYQUT
APPENDIX E
SYMBOL TABLE AND OTHER TABLES/LISTS
APPENDIX F
FOCAL SYNTAX
APPENDIX G
ILLUSTRATIONS
ILLUSTRATIONS
4-1 Figure 4-1 4-8
D-1 FOCAL Core Layout Dynamic Storage D-4
G-1 (Sheet 1) Arithmetic Evaluation G-1
G-1 (Sheet 2} Arithmetic Evaluation G-2
G-1 (Sheet 3) Arithmetic Evaluation G-3
G~1 (Sheet 4) Arithmetic Evaluation (Analysis of Functions) G-4
G~2 Command/Tnput G-5
G-3 Main Control and Transfer G=-6
G-4 DO Command G-7
G-5 (Sheet 1) Input/Output Commands G-8

G-5 (Sheet 2) Input/Qutput Commands G-9

vil

TLLUSTRATIONS (Cont)

G-b6 Heration Control
G-7 Conditional Branch Command
G-8 Character Editing

G-9 (Sheet 1) ERASE and Delete
G-~9 (Sheet 2) ERASE and Deletfe
G-10 (Sheet 1) Interrupt Handler
G=~10 (Sheet 2) Interrupt Handler

G-11 Variable Look-up and Enter
G-12 Character Unpacking
G-13 “FINDLN" Routine
TABLES
4-1 FOCAL Source Segmenis
4-2 Allowable FOCAL Systems
4-3 Yariations for FOCAL Systems
B-1 Error Diagnostics of FOCAL, 1969
C-1 MNew Instructions
D-1 FOCAL Core Layout Usage
D-2 Detailed FOCAL Core Layout
F-1 Syntax in Backus Normal Form
F-2 FOCAL Commands in French

viil

Page

G-10
G-11
G-12
G-13
G-14
G-15
G~16
G~17
G-18
G-19

4-13
4-13
4-14

CHAPTER 1
INTRODUCTION

FOCAL? Is a service program for the PDP-8 family of computers, designed to help scientists,
engineers, and students solve numerical problems.

The FOCALT'M'Ianguage is used as a tool in o conversational mode; that is, the user creates
his problem step by step, while sitting ot the computer; when the steps of the problem have been
completed, they can be executed and the results checked. Steps can be quickly changed, added or
deleted.

One great advantage of a computer is that once a problem has been formulated, the machine
can be made to repeat the same steps in the calculation over and over again, Until now, the job of
generating the program was costly, time=consuming, and generally required the talents of o specialist
catled a programmer. For many modest jobs of computation, o person unfamiliar with computers and
programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome
detail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit
the user to communicate directly with the computer. The user has the advantages of the computer put
at his disposal without the requirement that he master the iniricacies of machine language programming,
since the FOCAL language consists of imperative English statements in standard mathematical notation.

FOCAL is flexible; commands may be abbreviated, and some may be concatenated within
the same line. Each input string or line containing one or more commands is terminated by a carriage
return.

A great deal of power has also been put into the editing properties of the command language .
Normally, deletions, replacements, and insertions are taken care of by the line number which indicates
the replacement or repositioning of lines. If single characters are to be changed within a FOCAL com-
mand line, it is not necessary to retype the entfire string. The changes may be executed by using the
MODIFY command. Thus, complex command strings may be modified quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk .
On-line command/input may be either direct (to be executed immediately) or indirect (to be stored
and executed later) commands. An example of a direct command s

*TYPE 5%*5%5,1 (User)
= 125.000* (PDP-8)

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in

immediate mode (see Appendix A).

tFormulating On-Line Caleulations in Algebraic Language {or FORmula CALculator)

M- Trademark of the Digital Equipment Corporation, Maynard, Mass.

T-1

Text input requires that a numerical digit, in the form ab.cd and within a range of 1.01 to
31.99, follow the * . The number to the left of the period is called the group number. The nonzero
number to the right is called the specific line or step number. While keying in command,/input strings,
the rubout key and the left arrow may be used to delete single characters or to kill the entire line,
respectively.

Since the command decoder is table driven, FOCAL can be medified by a small binary tape
to understand foreign languages commands. (See Appendix F-2)

FOCAL is written especially for the educational and engineering markets and is intended to
be used as a problem solving tool. If gives quick and concise reinforcement, minimizes turnaround
time, and provides an unambiguous printed record .

FOCAL is also an extremely flexible, high accuracy, high resolution, general-purpose desk
calculator and demonstration program.

This document deseribes the language, operating procedures for Disk Monitor and FOCAL;
use of High Speed reader; addition of user function FNEW; and many other details of interest. Symbol
tables, lists, and flow-charts are included.

There are also descriptions of the 10-digit overlay, 4 user overlay, and the complete

graphics function.

CHAPTER 2
COMMANDS

2.1 TYPE, ASK

The TYPE and the ASK statements are used for output and input of literals, alphanumeric
calculations, and formats. The simplest form of the TYPE statement is @ command {e.g., TYPE A*1.4),
This will cause the program to type =, evaluate the expression, and type out the result. Several
expressions of this kind may be typed from the same statement if the expressions are each ended by
commas ,

The ASK statement is similar to the TYPE statement in form, but only single variable names

can be used instead of expressions, and the user types in the values.

2.1.1 Literals

For output of literals, the user may enclose characters in quotation marks. The carriage
refurn will automatically generate closing quotation marks. The bell may only be inserted during

initial input, not via the MODIFY command.

2.1.2 Numerical Input Formats

Keyboard responses to ASK inputs may

a. have leading spaces

b. be preceded by + or - sign if desired or required
c. be in any fixed point or floating point format

d. be terminated by any terminating character, carriage return, or ALTMODE. It is
recommanded, however, that the space be adopted as the conventional and general purpose inpuf
terminator. The ALTMODE is a special nonprinting terminator that may be used to synchronize the
program with external events. For example, to insert special paper in the teletype before executing
the program, type Ask A; GO and RETURN, then load the paper, and hit ALTMODE. The value of
the variable used remains unchanged.

2.1.3 Alphanumeric Input Formats

Input data that is in response to an ASK command may take any format, may be signed or
unsigned, and must be terminated by a legitimate terminoting character (space, CR, comma, /, etc.).
This means that alphabetic input may also be accepted by an ASK input command (see 3.4.9). This is
done by a simple hash-cading technique so that the program can recognize keyboard responses by a

single comparison. See example under the IF command for an i{lustration of how fo program the

2-1

recognition of the user reply "WAIT". This is possible because the leading zero causes a character
string to be interpreted as a number. (e.g-,

*TYPE OANSWER = 0.26130E+22%),
Any literal word containing the letter "E" twice ir one input will cause the ASK statement to be

terminated as the program interprets this letter as an exponent.

2,1.4 Special Characters

The exclamation point (1), percent (%), dollar sign ($), and the number sign (#) may be
used next to quotation marks or by themselves. They cannof be used to terminate alphanumeric
expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numeriza! typeouts with an equal sign (=) before beginning
the output conversation process. The ASK statement types a colon (:} when it is ready fo receive key-
board data.

To type an expression before its results, the user may enclose the expression in question

marks. This is a special use of the trace feature.

*TYPE ?A*5.27?
A*5.2=+10.40
*

2,1.5 Print Positions

Carriage returns are not automatically supplied at the termination of a typeout. To supply
carriage returns within a TYPE or ASK statement, the exclamation mark (1) is used. This is similar to
the use of the slash in FORTRAN format stafements.

Occasionally, it is desirable to return the carriage and type out again on the same line
without giving a line feed. A number sign (*) returns the print mechanism to the left hand margin but
does not feed the paper forward. This feature may be used to plot another variable along the same

coordinate.

2.1.6 Symbel Table

TYPE $ (dollar sign) causes the contents of the symbol table to be typed out with the current
values of all variables created. The symbol table is typed with subscripts and values in chronological
order. The routine then returns as though o carriage return had been encountered in the TYPE state-
ment, thereby terminating the TYPE command. Both the TYPE and the ASK statements may be followed

by a semicolon (;) and other commands, unless a § is in the string.

2-2

2.1.7 Qutput Formats

The output format may be changed within a TYPE statement by %X.YY, where X and YY are
positive integers less than 31. X is equal to the total number of digits to be output and YY is equal
to the number of digits to the right of the decimal point.

During output, leading zeroes are typed as spaces. If the number is larger than the field
width indicates, FOCAL will convert fo E format. E format is also specified by % alone. (Floating-
point decimal: 0. XXXXXXXE=Y, where E means "10 to the Yth power".) The current output format
is retained until explicitly changed. If a number is oo large for the current format, the E format is

used temporarily.

2.1.8 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may
therefore be terminated by any legitimate terminating character {e.g., space, comma, *, efc.). In
the TYPE statement, arguments are scanned by the EVAL Recursive Routine and must therefore be ter=
minated by comma, semicolon, or carriage return. In either the TYPE or ASK statement, command

arguments may be preceded by format control characters # 1 ", Example:

*ASK?A B C 7
A b, B :6C 7)*

All commands except WRITE, RETURN, MODIFY, QUIT and ERASE may be combined on the same line

if separated by a semicolon.

2.1.9 Off-Line Data Tapes {c.f., Section 4.5.3)

To prepare data tapes off-line, type the data word, the terminating space, and the "here-is"

key. Use backspace and rubout to remove characters off-line.

2.1.10 Corrections

For editing input to an A3K command before the input has been terminated, the left arrow

(=) is used.

2.1.11 Roundoff

Numbers to be typed out are rounded-off to the last significant digit to be printed (i .e.,

the rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

2.2 Do

The DO command is used chiefly to form subroutines from single lines, groups of lines, or
from the entire text buffer. Thus, the instruction DO 3.3 makes a subroutine of line 3.3. For a single
line subroutine, control will be returned when the end of the line is encountered or when the line is
otherwise terminated {e.g., by a RETURN statement, or in the case of TYPE, with the §).

One of the most useful features of a command language of this type is the ability to form
subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine
beginning with the first group 5 line number. Control will then proceed through the group numbers
going from smaller to larger. A return or an exit is generated from this type of subroutine by using the
word RETURN, or by encountering the end of that group, or by transferring contro! out of the group via
a GOTO or IF command. Similarly, the entire text buffer may be used as a recursive subroutine by
simply using DO or DO ALL.

The DO statement may be concatenatecd with other legitimate commands by terminating it
with o semicolon. Thus, asingle line may contain a number of subroutine calls. In this way, several
forms of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable sforage.

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the
object line of the GOTO command; that line will be
executed and return made: to the DO processor. If the
next line number is within the group (if this is a group
subroutine), it will be executed. If, however, a line
number outside of that group is about to be executed,
then a return will be made from the DO subroutine and
if any of the DO command line remains, it will be
processed .

2.3 EDITING AND TEXT MANIPULATION FACILITIES

2.3.1 Command-Input

A line number which has already been used and is reused in a new input will cause the new
input to replace the line that previously had that number. Insertions are made af the appropriate point
in a numerically-ordered string of lines. For example, line number 1.01 (the smallest line number)

will be inserted in front of (or above) line number 1.1. The largest line number is 15,99,

2-4

2.3.2 ERASE

Removal of a single line may be made by using the ERASE command. For example, ERASE
2.2 will cause line 2.2 to be deleted. No error comment will be given if that line number does not
exist. The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text,
ong must type the words ERASE ALL.

ERASE, used alone, has the function of merely removing the variables. This may also be
thought of as initializing the values of the variables to zero.

To examine a single line, type WRITE followed by the line number. For example, WRITE
3.3 will cause line 3.3 to be typed out with its line number on the Teletype. WRITE 4.0 will cause all
of group four to be written on the Teletype. WRITE ALL will cause al! of the text to be printed on the

Teletype, left justified, with title and line numbers in numerical order.

2.3.3 MODIFY

When only a few characters of o particular line must be replaced, the MODIFY command is
used fo avoid replacing the entire [ine. For example, to change characters in line 5.41, type MODIFY
5.41. This command is terminated by a carriage return, and the program waits for the user to type that
character at which he wishes to make changes or additions. The program will then type out the con-
tents of that line until the search character is typed. (The search character is not echoed when it is
first keyed in by the user.) The progrom will now accept input.

At this point, the user has seven options:

a. type in new characters in addition to the ones that have already been typed out;

b. type a form-feed; this will cause the search to proceed to the next occurrence, if any,
of the search character;

c. fype a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command;

d. use the rubout key to delete characters going to the left;

e. type a left arrow to delete the line over to the left margin;

f. type o carriage return to terminate the line at that point and move the text to the right;

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode, as
these commands refurn to command mode upon completion. The reason for this is that internal pointers
may be changed by these commands.

During command/input, the left arrow will delete the line numbers as well as the text.
During the MODIFY command typing the left arrow will not delete the line number.

When the rubout key is struck, a backslash (\) is typed for each character that is deleted.

NOTE

Any modifications to the text will cause the variables
to be deleted as if an ERASE command had been given.
This is caused by the organization of the data structure.
It is justified by the principle that a change of program
probably means a change of variables as well.

2.4 FOR

This command is used for convenience in setting up program loops and iterations. The

general format is:
FORA =B, C, D;-——-.

The index A is initialized to the value B, then the command string following the semicolon is executed
ot least once. When the carriage return is encountered, the value of A is incremented by C and com-
pored to the value of D. [f A is less than or equal fo D, then the command siring after the semicolon
is executed again. This process is repeated until A is greater than D.

Naturally, A must be a single variable; but B, C, and D may all be expressions, variables,
or numbers. The computations involved in the FOR statement are done in floafing point arithmetic. If
comma and the value C are omitted, then it is assumed that the increment is one. For example:

SETB=3; FORT1 =0, 10; TYPEB t [, | (power of 3)

2.5 IF

To provide transfer of control affer o comparison, we have adopted the IF statement format
from FORTRAN. The norma! form of the IF statement contains the word IF, followed by o space, a
parenthesized expression, and three line numbers separated from each other by commas. The program
will GOTO the first line number if the expression is less than zero, the second line number if the
statement has a value of zero, and the third line number if the value of the expression is greater than
zero.

Alternative forms of the IF command are obtained by replacing the comma between the fine
numbers by a semicolon. In this case, if the condition is met which would normally cause the program
to transfer to a line number past that position, then the remainder of the line will be executed.
Exomple:

ASK REPLY
IF {REPLY - OWAIT) 6.4, 5.01; RETURN
IF (REPLY -~ OYES) 6.3, 5.02; 6.3

NCGTE

The IF command could occasionally fail to take the
= 0 branch due to internal computation and fruncation
errors.

2.6 GOTO

This command causes control of the program to be transferred to the indicated line number.
A specific line number must be given as the argument of the GOTO command. If command is initially
handed to the program by means of an immediately executed GO, control will proceed from low num-
bered lines to higher numbered lines as is usual in a computer program. Control will be returned to
command mode upon encountering a QUIT command, the end of the text, or a RETURN at the top level .
The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Its operation is perfectly straightforward when used with any other statement.

2.7 RETURN

The RETURN command is used to exit from DO subroutines. It is implemented internally by
setting the current program counter to zero. When this situation is encountered by the DO statement

it exits. (Refer to the DO command, Section 3.2.).

2.8 QUIT

A QUIT causes the program fo return immediately to command/input mode, type *, and

wait.

2.9 COMMENT

Beginning a command string with the letter C will cause the remainder of that line to be

ignored so that comments may be inserted into the program,

2.10 CONTINUE

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

2.11 SET

The SET command for arithmetic substitution is used for setting the value of a variable equal

to the result of an expression. The SET statement may contain function calls, variable names, and

2~7

numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus
exponentiation, may be used with these operands. The priority of the operators is a standard system:
+=/*1. These, however, moy be superseded by the use of parenthetical expressions. The SET state-
ment moy be terminated by either o carriage return or a semicolon, in which case it may be followed

by additional commands. For example:

SET AA=B(5+<&+CONST>*ALPHA/ [5/BETA]); GOTO 3.2

2.12 HIGH-SPEED READER

2.12.1 General

The asterisk {*) is also used as a flip-flop control over the selection of the input device to
be used by a FOCAL program. (See the examples that follow.) An out-of-tape condition will return
to low=speed reader input and change the status of the * flip=flop. An error condition, however, does
not change that * flip-flop (see notes below).

For example, fyping:

5
will read in a program tape or a series of immediate commands.
**%ASK ABCDZ
will fill AB with data from tape. If tape is empty, control will return to command mode.

*1.1% FORI=1, 5 ASK AX({1)
DO 1.1

If the tape contains fewer than 5 pieces of data, then remaining ifems are taken from keyboard. {See

¢ below.)

2.12.2 Other Rules

a. *as a command may be concatenated with other processes [JMP (PROC):
(e.g., 01.30%; ASK A, B;¥%)

b. If an out-of-tape condition is encountered while reading commands, then the input
device is switched to keyboard and all is returned to normal. (This oceurs when the user has no reader.)
It is equivalent to receipt of g left arrow. [JMP (IBAR)].

c. If an out-of-tape condition occurs while executing an ASK command, then FOCAL
responds as if the end of the command line {carriage return) has been reached. [I1SZ PDLXR; POPJ]

Thus,
*5 ASK A,B,C,D

produces:::{out of tape on C): and the user is back to normal mede.

2-8

However,

*ERASE
®; for 1=1, 20; ASK A(1); TYPET, !,

: =1,0000
: = 2,0000
: = 3,0000
: {out of tape for 1=4)
: (mow accepting from keyboard) 123, = 5.0000
: 345, = 6.0000
: 701,00 (Control -C typed)
*TYPE §
T@ (00) = 7.0000
A @ (01) = (data from tope}
A @ (02) = (data from tape)
A @ (03) = (data from tape)
A@ (04) = .0000
A @ (05) = 123.0000

. A @ (06) = 345.000

d. When an error occurs from the reader (illegal command, etc.)}, the code will be typed
out and input device control returned to the low-spesd device. However, the device flip~flop (HSPSW)
will still indicate that the reader is active. Consequently, it will be necessary to give two asterisks
before the reader will be activated again.

ok
Fraxx12 .83 (Buffer full)
*%
T

{reader now active again).

e. It is necessary to have a fairly long timing loop to detect the out-of-tape condition
{slow readers, restart delays, etc.). As aresult, the user of a PDP~8/S may encounter long delays if
there is no high speed reader or when the reader is out of tape. However, the initial dialogue makes
a correction for this when an 8/5 is being used.

f. Since the reader operates with the interrupt on, one may use Control-C to return at
once to keyboard input mode. A manual interrupt via Control-C (?01.00) or o console restart (?00.00)
gives the same effect.

g. All commands, including "*" may be executed in immediate mode from the high speed
reader, This has several beneficial results:

(1} Program tapes may be composed that are self-protecting and self-starting

ERASE ALL {protection)
01.10 ASK "Power of 2?"REPLY {input indirect program)
01.30 TYPE 2 REPLY, !, GOTO 1.1

(etc)
GOTO 1.1 {starting)
5,3,1 (data)

This particular program is an infinite loop and must be stopped by a Control~C
from the keyboard .

(2) Programs may chain themselves together,

ERASE ALL

3.4 TYPE "NUMBER 1"111; ASK A

3.5*% (indirect command)

* GO {device restored to low speed and program

started)
The printout from this tape will be:

*E (START READER)
kel NUMBER 1
(Three lines accepted)

{Erase processed)
: (waiting for keyboard input}) (user)
(execution of 3.5 * at this point will reactivate the high speed reader).
{(3) Immediate mode commands on the tape allow maximum storage for variables.

{4) If the interrupts are disobled by the patches shown in Section 4.5.3, then two
tapes may be merged from both high~ and low-speed readers by a resident FOCAL
program .

2.13 THE FUNCTIONS

2.13.1 General

The functions are provided to give extended arithmetic capabilities and the potential for
expansion to additional input/output devices. There are basically three types of functions. The first
group contains integer parts, sign part, square roct, fractional, and absolute value functions. The
second group has the input/output for scope and analog/digital converter functions. The third group
has extended arithmetic computations of trigonomatric and exponential functions.

A function call consists of no more than four letters beginning with the letter F and followed
by a parenthetical expression (e.g., FSGN {A-B *2)). This expression is evaluated before fransferring

to the function process itself.

2.13.2 Andlog to Digital
a. Input

The function FADC(X) is used to tuke a reading from an analog-to-digital converter,
The value of the function is a 12-bit integer reading. The argument "X" is the channel member (AX08)
in decimal. Additional version of the ADC function could be designed to provide for synchronization
by a clock or other means. (c.f., Chapter 5}

*SET A=FADC () *5

2-10

b. Output

The scope function FDIS (expression, expression) is used o sef and display an X-Y
coordinate on a Model 34 Scope and scope interface. The value returned for each of these functions
is the integer part of the second expression.

*SET Z = FDIS(X, X43/50)

2,13.3 Extended Functions
The extended arithmetic functions (FEXP, FLOG, FATN, FCOS, FSIN) are retained at the
option of the user. They consume opproximately 800 characters of text storage area. These arithmetic

functions are adcapted from the extended arithmefic functions of the three=word, floating point package.

2.13.4 Random Numbers

A simple random number generator is provided in the basic package as FRAN()! An expanded
version could incorporate the random number generator from the DECUS library.

Functions for other devices are provided as overlay tapes (see Appendix H).

2.13.5 Standard Functions
a. Trigonometric Functions

All arguments are in radians
FSIN () - the sine functions
FCOS () = the cosine function
FATN () - the arctangent

From these functions, the user may compute all other trigonometric functions. (See FOCAL User's
Manual }

b. Logarithmic Functions
FLOG ()} —-log to the base e or Naperian base
FEXP (} -e tothe power

¢. Arithmetic Functions
FSQT () - the square root
FSGN () - one (1) with the sign of the argument
FABS {) = the absolute value
FITR () - the next smaller integer part maximum of 1024
LOG]0 (ARG) = LOGe (ARG) *LOG]O(e)

LOG () = 0.434295
LOG, (10) = 2,30258
e =2.71828

where:
1 degree = .0174533 radians
1 radian = 57.2758 degrees

2,13.6 Using The Arctangent

An arctan function cycles between + n/2 and - w/2. Thus, to get a correct range for 0-2r
radians from the expression FATN(Y/X), we must use the signs of X and Y.
X Y FATN(X/Y)
+ 0-P1/2
P1/2 - PI
- - PI - 3*P1/2
+ - 3*P1/2 - P1*2

+ o+

* (0
INLE& A ¥ FUNCTION COMEUTED
= Baii= 1.08= Galtif= GARAONC = P.ARpReE
= Ha3B= BeF6= QL.30= O 30PLAG = Gl ARPGAG
= {eb0= BeH3= F.5T= GesPRAOA = DGR REA
= BB EBe62= (B.T8= (B.900000 = PSRN
= 1e203 Q436 {Pu93= 1206060 = 1206066
= 1e5P= @.892 1.0H= |.56p000 = 1.S50PRO0
= le86i== Be23= P 973= 1.34)600 = 1« RECRARE
% Pellim= PaSlm R.B6== 1041680 = ZelBRARD
2 PedPi== BaTld7 (4 EB== PaT741595 = 2. aAPrpee
= BelB== @P+9lm PedlI=- Pes41595 = 2. TARRRR
= Je0PB== (+99= Bela== [a141595 = 3= ARG HO
3385~ G99z~ Falbz Ha]158402 = 3. 3PRRE6G
2 3.60== Pa90=- D.dd4= P 4SEELP2 = A EQC AV
= 3.9B=- PsT3== D69 A.THE4PD = 3. FREROGE
= 44 20== N 89==- P.BT= 1.6055400 = 4. 2ORP0F
= 4 3P0== Pe2}i=- Pa9B= 1358400 = Qe SARGERR
= A+ 8BU= DRaP%=- 1 .00z~ 1.48320a8 = 4. BRAARP
= SelB= [s3B8=~ @e935= 1.1H3208 = S5.|1GBRRA
= S«dil= DPebd== R.T77=- B.EBI196 = S5, 400006
= Se7dE QeBa=~ B.552- H.583195 = S5. THPRERN
= GeiBm . F6=~ G.2B=- R.2B3198 = 6« ARAFAHN
2 Ha 3= 1eDB= BA2= QuD1HBH2 = P.R168R2
- HebB= E+95= B3l DP.3I6BO3 = P.3168F3
S Ge98= PaB2= H458= @P.6168B00 = Pe6)6BOH
C~FQCAL » B/68B
Pl T 12011 INDEX X Y FUNCTION COMFPUTED
P1+10 FOR I=0»+3.73 TYPE ':X4.02,13D 2
9120 TYPE !!!!3WRITE ALL
P136 QUIT
BZ2+.10 S5ET Y=FSINC(]I)3 SET X=FCOSC])
B2.20 TYPE RsYs ZB+BELFATN(Y /7« X+ E=~jB>)3 DO 1233 TYPE " " THi

132180 IF (X)}1343513+42213:3

1320 SET Xe])E-1D8

13.50 SET TH=FATN{(FABS<Y/X>)

13440 SET PI=3.141596

1358 IF (Y> 13+68 1F (XY 13.73 RETURN
1368 IF (XY 13+835ET TH=PI+PI-TH) RETURN
1370 SET THwF1-TH1 RETURN

13.80 SET THeFI+TH) RETURN

¥

2.13.7 Boolean Fukctions

TRUE is +1
FALSE is -1

*
()

AND OR NOR XOR CARRY SUM
1= - 1= 1 =T=-T

-1 1 1= -1 1=

-1 1 1= -1
=1 1 el= 1
XOR is A*B

NOR is FSGN(-A-B)

OR is FSGN(A+B)

AND is FSGN(A+B-1)
NOT(A) is -A

The result of adding A and B is
CARRY = FSGN{A+B-1)

on
it mmt o —

I

o
1

T

SUM =-A*B

x

*WRITE 15

15.05 TYPE" A B AND OR NOR XOR CARRY SUM"!

15.10 FOR A=-1,2,1; FOR B=-1,2,1,TYPE A,B," "; DO 15.2

15.15 QUIT

15.20 TYPE FSGN(A+B-1),FSGN(A+B), FSGN(-A-B),A*B, " "FSGN{A+B-1),-A*B, !
L]

2.13.8 FMNEW - A User Function

This function name may be used to call a machine language routine for any reason.

{See Section 4.4.1)

2.14 THE LIBRARY COMMAND

The form and usage of this mass storage command will vary with the computer and FOCAL

system used. {c.f., 4.6)

2.14.1 L.-Command For Single User System

The command may be given in either direct or indirect mode. Execution of this command
first causes the octal typeout of the contents of four FOCAL pointers: CFRS, BUFR, LASTV, and
BOTTOM, respectively. The second action is to type out whatever characters follow the "L" to serve
as operating instructions for the user. The third action is to furn off the interrupts and transfer to the

Disk Monitor or 8-Library System by jumping to 7600.

The four octal numbers represent:

a. the start of text buffer,

b. the end of text buffer,

c¢. the end of the variable list,

d. the bottom of the push-down list.

These command features will permit optimum usage of available disk storage and be compat-
ible with the Disk Monitor.

After debugging o program, o typical user will execute ERASE and LIB. (This causes B and
C to be equal in the 4K system.) He will then save the program and restart or call another program.
{See Section 3.4.12)

Manval Chaining may also be done. For example, when a program reaches line 12.3, it
may need to call another routine (as in o series of teaching programs, demos, or math subroutines).
The user, however, must be given instructions on how to proceed:

12.30L1B .CALL LES2
For example, execution of 12.3 may produce:

3206

3345

3401

4407

.CALL LES2

.CALL LES2 [User types this]
.START

*

In the 8K Version, the text and variables are stored independently. For this reason, the 8K

version can have different programs operating on the same dafa. (See Section 3.4.14)

2.14,2 LIBRA Command Specifications for Multi-User Systems*®

Four modifiers of the LIBRARY command are implemented to alow automatic program
storage, retrieval, and management in multi-user FOCAL. This extension to the FOCAL system is
implemented under the segment name LIBRA and requires at least an 8K PDP-8 with one DF32.

The LIBRARY command and its variations are:

a. To save a program on disk,

LIBRA SAVE name)

Where "name"” is a 1 to 4 character identifier and) is described in the FOCAL language specifications.

*Not completed

2-14

Errors:
(1) A program with an identical name has been found in the directory |ist
(2) Name missing from command
{3) Disk /O error (non-recoverable)
b. To call a pregram on disk,
LIBRA CALL name
Errors;
(1) No such program on directory list
(2} Name missing from command
(3) Disk 1/0O error (non-recoverable)
¢. To delete a program from disk,
LIBRA DELETE name
Errors:
{1} No such program name in directory list
(2) Name missing from command
(3) Disk L/O error
d. To list the directory
LIBRA LIST
Errors:

(1} Disk 1/O error

NOTE

This command will destroy any program by an effective

"ERASE ALL".
The directory is printed ten across for as many lines as necessary .

2.14.3 DF32 FOCAL FILE STRUCTURE

Programs are stored in blocks 16008 words long. This allows 36 blocks of storage on one
DF32 and o directory of 512 words or 256 entries. This directory is sufficient for the maximum DF32
configuration allowdble on o PDP-8,

T. Disk 36 blocks

2. Disk 72 blocks

3. Disk 110 blocks

4. Disk 146 blocks

2-15

The directory is a linear list with a maximum size of 512 words (with 2 words/entry). Word position in
the list corresponds to the block position on the disk. The blocks begin at location]0008 from the end
of the directory and extend in increments of 16008 to the end of the disk. The end of the list is an
entry of ones. Unused blocks are indicated by entries of all zeroes.

The LIBRARY functions swap usets in the multiple user system. This diminishes the total
number of blocks by the maximum number of allowed users. A disk program is required to clear the

directory, and to set the maximum number of blocks available.

2,15 WRITE

The WRITE command is used to 1ist the entire indirect program (WRITE ALL or W), specified
groups, or single lines. When all text is printed, a leader-identifier is given at the top of the listing.
This identifies which major version is being used for the particular indirect program. (FOCAL, 1969;
8K FOCAL @ 1969; 4-word @ 1969).

NOTE
The WRITE command disables the trace,

2-16

CHAPTER 3
FOCAL USAGE

3.1 REQUIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL: PDP-5, PDP-8,
PDP-8/S, PDP-8/1, PDP-8/L., LAB-8, LINC-8, T55~8, PDP-12.

3.2 LOADING PROCEDURE

a. The RIM or Read~In-Mode Loader must be in memory. (See RIM Loader Manual for o
thorough discussion.)

b. The RIM Loader is used to load the Binary Loader. (See Binary Loader Manual for a
complete description.)

¢. The Binary Loader is used to load FOCAL.
d. Upon halting, press the CONTINUE key, since the program is loaded in two sections.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.
g. Press the START key.,

h. The initial dialogue will begin.

3.3 INITIAL DIALOGUE

The program will identify the DEC 12-bit computer you are using and make appropriate
corrections to itself. If the user determines that extra space is required, the program will permit rejec-
tion of extended functions,

FOCAL is ready for commands when it types *.
3.4 OPERATION

3.4.1 Restart Procedure

There are two methods to restart the system.

Method 1 - Type the character control /C at any time; (FOCAL acknowledges this by typing
?01.00).

Method 2 = a. Put 200 info the Switch Register
b. Press the STOP key
¢. Press the LOAD ADDRESS key
d. Press the START key
e. The program will then type ?00.00 indicating @ manual restart, and an
asterisk indicating it is ready to receive input.

3-1

3.4.2 Keyboard Error Recovery

If an error is made while typing commands to FOCAL, one of the following methods may be
used fo recover:

a. Use the RUBOUT key on the teletype keyboard to erase the preceding character. The
RUBQUT key echoes \ for each character removed.

b. Use the MODIFY command, with the modify control characters, to search the command
string for any character in error and alter or delete that character.

c. Use Left Arrow 1o delete over to the left margin.

d. Use Left Arrow to delete input data.

3.4.3 Parentheses

The following parenthetical pairs may be used in any alphanumeric expression: parentheses,
angle brackets { < >), and square brackets ([1). The program checks to see whether the proper
matching terminator has been used at the correct level. Use of these ferminators in different configura-

tions provides additional clarity in reading clphanumeric expressions.

3.4.4 Trace Feature

A trace feature may be used to detect errors, follow program control, and creafe special
formats. To implement the trace feature, insert a question mark into a command sfring af any point.
Each succeeding character will then be typed out as it is interpreted until another question mark is

encountered or until the program returns to command=-input mode.

3.4.5 Variables, Functions and Numbers

A variable name consists of one or two alphanumeric characters, of which the first must be

a letter. The second character may be A-Z, 0-9, ", Additional characters are ignored.
Function names are easily distinguished from variable names because they start with the

letter F. A number always begins with a digit 0-7.

3.4.6 Error Diagnostics

Programming errors are indicated by an error diagnostic. The printout is in the form
XX . XX @ GG.SS. The first number is a specific error number derived from the core address of the
error call. The GG.SS is the number of the line, if any, of the text which contains the error.

The error diagnostic printouts are intended o be efficient yet informative and explicit.

Used in conjunction with the trace feature, these will pinpoint errors precisely. (See Appendix B).

Example:

*DO 2.357
SET A=5/C + ?28.72 (Divide by zero, C=0)
*

3.4.7 Arithmetic Priorities
t
*
/
.
Operations of equal priority are executed from left to right {e.g., T 21312=64 not 512).

3.4.8 ASCII data

ASCII input of A-Z has the values of 1-26 per digit per [etter respectively, thus,

*ASK A; TYPE A
1£=26,00
*AATA

:AZ =36.00

This is also true for internal numerical constants like ONQO, OYES, efc.
{See the IF command for an example of this feature.)

The tachnique may also be used to create o kind of associative memory:

*ASK A; ASK GRADE (A)

:DICK : 95
*ASK A;TYPE GR(A);
:DICK =95

3.4.9 Indirect Commands

If a Teletype line is prefixed by o line number, that line is not executed immediately, but
is stored for later execution. Line numbers must be in the range 1.01 to 31.99. The numbers 0.0,
1.00, 2.00, 3, etc., are illegal line numbers and are used to indicate the entire group. The number
to the left of the point is called the group number; the number to the right is called the step number.
Execution of indirect commands is begun by an immediate GOTO of DO command. The GOTCO com-
mand causes FQCAL to start the program by execufing the command at a specified [ine number (e.g.,
GOTO 1.3). The GO command causes FOCAL to go to the lowest numbered line to begin executing
the program and continues until it runs out of program text. FOCAL can automatically cross group

koundaries.

3-3

3.5 SAVING FOCAL PROGRAMS

3.5.1 Paper Tape

To save a FOCAL symbolic text, type WRITE ALL, turn on the punch, type @ marks for
leader-trailer, and type carriage return. When all of the program has been typed out, type additional
@ marks for more leader-trailer, tum off the punch, and continue your conversation with the computer.

(To save a FOCAL binary program, see Appendix C.1.)

3.5.2 LINC Tape (see Section 2.14.1; TCO1 via 8-LIBRARY SYSTEM; PDP-12)

On LINC tape, load FOCAL program as follows:
a. Load FOCAL binary tape, execute Initial dialeg, ond call UPDATE.

NAME; START
SA (OCTAL): 200
MEM LOCATIONS: <4800, 7577 >;

b. Call UPDATE again.

NAME: FOCAL
SA (OCTAL): {none)
MEM LOCATIONS: <0, 3377 >;

¢. Calling Sequence:

FOCAL
START

*

d. Write the desired FOCAL routine.

e. Give an "L" command. Four octal numbers will be printed, and control will retum to
the Library System.

UPDATE

NAME: {user's choice)
SA {OCTAL): {none})
MEM LOCATIONS: <0 ><(A), (B) >;
Where "(A)" and "(B)" mean the first and second octal numbers.

f. To call a program:
FOCAL

(user's choice)

START

*

3.5.3 Disk Monitor System (see Section 2.14.1}

a. Build the Disk System.

b. Load FOCAL into field zero.
(If the computer has 8K, use the binary loader in field T1.)
Alternate procedure: Use PIP to place the binary on disk. Then, use LOAD on the
disk file. (This procedure is faster for a teletype, but uses more disk space.)

c. Load Address 200, START, and complete the initiol dialogue.
d. Load Address 7600 and START.
e. Initialize the disk as follows:

.SAVE START!4600-7577;200
.SAVE FQCAL10-3377;

f. Run FOCAL.

.2FOCAL
. 2 START

(Create Program)

g- Save program; return to disk Monitor by giving an L command.
.SAVE (name);0, (A} - (B) [note saving page zerol

h. Run a program (ofter doing either step f or g).

LFOCAL)

.CALL {nome)

.START 3 [linefeed will not occur]
*(FOCAL ready)

i Steps g and h may be repeated.

3.5.4 Disk System and Extended Functions

To cope with configurations invelving deletion of extended functions, proceed as follows:
a. Load FOCAL and start ar 7600;

.SAVE START!4600-7577;200

.SAVE INIT:0,3200-4577; [note saving page zero)
LCALL INIT

.START

{Diaglogue, answer YES]

*L

.SAVE FOCALI10-3377;

k. To reinitialize a system without some extended functions, type

FOCAL
.CALL INIT
.START

[Bialogue, answer NO, YES, i.e., keep sine and cosine]
*L
.SAVE STNY 15200-7577;200

c. To create a system without any extended functions, type

.FOCAL
LCALL INIT
.START

[Dialogue, answer NO, NOJ
*L
SAVE STNN 15400-7577;200

d. Be sure to use the correct START command with each user program.

)

[to use no exponential function version]

FOCAL
.CALL NEXP
.STNY

*

(2) or

[to use no cosine function version]
.FOCAL

.CALL NCOS
.STNN

*

3.5.5 Disk System and Extended Memory (see section 2.14.1)

Follow these operations o set up an 8K version of FOCAL on the disk:

[Build Disk System]

[Load FOCAL]

[Start at 200]

[Dialogue, answer questions.]

*L)

0100 (A)
0121 (B)
3217 (o))
XXXX (D)

.SAVE ST8K! (D) =-7577;200
.SAVE FCL8! 0 - 3177;
.SAVE NUL8: T3100; 10113

The SAVE command for a finished 8K FOCAL program is
.SAVE CODE:1(A) ~ 1(8); 10113
where (A) and (B) are the first and second four digit numbers typed out by the L-command. These are

the field one bounds of the program text. The value of (D} will depend on the functions retained.

3.5.6

3.5.7

The variables, however, are in field zero. To save a set of data, type:

.SAVE DAT8:0;3200-(C);

[note saving page zero, field zerol

To set up a null program with a particular data set, type:

.FCL8

.CALL DAT8
.CALL NUL8

.5T8K

For 4-user FOCAL SAVE command, see Section 4.6.6.

EAE Patch for FOCAL, 1949

7203
7204
7205
7206
7207
7210
7211
7212

3206
1256
7425

0
3253
7501
3255
5227

DCA
TAD
MQL
0
DCA
MQA
DCA
SNP

3
MP2
MUY
MP5

MP3
415

3-7

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardware configuration necessary to run this program is a 4K PDP-8 family
computer with ASR-33.
Scope, an additional 4K memory, and high-speed reader and punch are availoble options.

Additional PT08s are added for extra users.

4.2 DESIGN SPECIFICATIONS

4.2.1 Design Goals

FOCAL is a conversational language and operating system for a basic PDP-8. It is designed

to facilitate on=line editing and execution of symbolic programs. (For BNF description, see Appendix
F.})

4.2.2 Input

The keyboard, low-speed reader, or high=speed reader may be used for input of program

text and for commands to be executed immediately. Keyboard input is double buffered.

4.2.2.1 Input Format ~ See description of the commands in Chapter 2 for format information.

4,2.2.2 Character Set ~ Input and output characters are in ASCII teletype code. Interpretive opera-

tions are alse done internally in expanded ASCIL. The text buffer is packed two characters to a word

as follows.
number = represented as: prints as
300 = not packed = ignored: @
301 - 336 =01 -~ 36: A-Z
337 =not packed ~ edit zontrol, kill line: -,

240 - 276 =40 - 76: symbols
277 =37: 2,

340 - 376 =7740 - 7776 (extended codes): non=printing

377 = not packed - edit control, delete preceding character; if a character
is deleted, \ (backslash) is typed.

200 = not packed ~ ignored; leader-trailer

210 -~ 237 =7701 = 7737: control characters
000 = not packed - ignored: blank tape.

4~1

4.2.3 Output

4.2,3.1 OQutput Format ~ See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3.2 The Input/Output and Interrupt Processor ~ The purpose of the interrupt handler and the 1/0
buffers is to permit input and oulput fo proceed asynchronously with calculations. This allows an
optimal use of the computer time. When the interrupt handler finds that the teletype output flag has
been raised, it clears that flag and looks to see whether there are any additional characters in the
teletype output buffer to be printed. If there are, it takes the next character from the buffer, prints
it, clears that location in the buffer, and moves the pointers. Separate peinters are maintained for
both the interrupt processor and for the program output subroutine (XOUTL). If the interrupt handler
finds that there are no more characters to be output on the Teletype, it will clear the teletype in-
progress=switch (TELSW). If the interrupt handler does output another character, it sets TELSW to a
nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to
print, it makes a call to XOUTL. This routine first checks to see if TELSW has been set. If TELSW is
zero, no further interrupts are expected by the intarrupt processor, and the output routine immediately
types the character itself and sets TELSW fo a nonzero value., Otherwise, if the interrupt processor is
in motion, then the output routine places the character into the buffer and increments the pointer. If
there is no room in the buffer for additional characters, the fow-speed output roufine waits until room
is available. The keyboard input processors are similar in organization te the output routines except
that no in-progress-switch is needed and the input is only double buffered,

Another advantage of the interrupt system is that it enables the user to sfop program loops
from the keyboard by typing Control C. The recovery routine will then reset the 1/O pointers, type
out the message code ?01.00, and return to command mode. Manual restart via the console switches
also goes to the recovery routine, resets the pointers, and types out message code ?00.00. In fact,
all error diagnosties go to the recovery routine. Error printing is withheld until prior printing is com-
plete, Otherwise, on occasion, a full buffer could be dumped and the error message could be printed
as many as 16 characters before it should have otherwise occurred. This would be misleading when
using the trace mode to discover specific errors within a character string.

The recovery routine may also be called by the interrupt processor if it discovers that there
is no more room in the keyboard buffer. For example, this could occur if the user continues to type on
the keyboard while the program is making computations. Physical evidence of the error is indicated by

failure of the computer to echo characters as the user types.

NOTE

This error could also occur when reading a paper tape
program info the text buffer via the low-speed reader.

If the cutput hardware is slower than the input hard-
ware, more text is read in than is being read out of the
buffer, resulting in failure of the program to empty the
reader buffer as quickly as it is being filled up, since

the program synchronizes the reading of the characters
with sending them into the buffers. In other words, the
program synchronizes its side of the 1/O buffers, but the
interrupt side of the 1/O buffers proceeds at a rate deter-
mined by the hardware. To prevent this type of error with
long input tapes, which were prepared off-line, carriage
retums may be followed by some blank tape which is ig-
nored by the input routines, thereby giving the output
routine time to catch up. This is essentially a hardware
problem since the program is unable to stop the low-speed
reader,

4,2.4 Organization

4.2.4.1 Arithmetic Package - The arithmetic is done in the floating point system. The three-word
floating point package allows six digits of accuracy plus the extended functions. The program will
eventually use four words as an option. The exponential range is approximately ten to the six hundredth,
Internal accuracy during computations is 6.924 decimal digits.

The four-word floating point system creafes ten digits of accuracy, including roundoff. It

does, however, require more storage for variables and for push-down list data.

4.2,4.2 Storage - The major components of the program occupy locations 1-3200. The remaining

storage 3200 - 4600 is used for text storage, variable storage, and push-down storage, in that order.
The text occupies approximately two characters per register. The variables occupy either five or six
locations per variable depending on whether the three~ or four-word option is utilized,

Remaining storage is allocated to the push-down list. Overflow will occur only when one
of these lists exceeds the remdining storage. This could happen in the case of complex programs which
have multiple levels or recursive subroutine calls, The push—down list contains three kinds of data,
One of these is a single location for push-jump and pop~jump operations. The content of the accumu-
lator is also pushed into the same list in a single register. The third type of push-down storage is

floating point storage (see Appendix D).

4-3

Thi s important storage allocation scheme permits flexibility in the trode off of text size,
number of variables, and complexity of the program, rather than restricting the user to a fixed number

of statements or characters, or to a fixed number of subroutine calls, or to o limited number of variables.

4.3 HARDWARE ERRORS

The 8/S will halt at location EXIT +6 if a parity error occurs,

4.4 INTERNAL ENVIRONMENT

4.4.1 Adding a User's Function;FNEW(Z} (c.f., Section 5.2)

The FOCAL system was designed to be easily interfaced for new hardware such as LAB-8,
multiplexed ADCs real-time clocks, or to software such as a nonlinear function.

The information given below, the symbol table, the various lisis, and a core layout are in-
tended to be sufficient for all required modifications and patches. This symbolic approach ensures
greater flexibility and compatibility with DEC modifications to FOCAL, other user's routines, and
assembly via PAL 111 on o PDP-8.

Example: Suppose we had a scope routine to display characters at a given point on a scope.
We will call this routine from FOCAL as function by FNEW (X, Y, SHOW). Here X and Y are expres-
sions to be used as display coordinates for the start of SHOW,

a. First, patch the function branch table,

*FNTABF + 15

XFNEW
b. When control arrives ot XFINEW, the X has already been evoluated.
XFNEW, JMS I INTEGER /make 12 bit integer
in AC
DXL /set X - coor,
CLA
¢. MNow, test for the possibility of another argument.
TAD CHAR
TAD MCOMMA
SZA CLA
JMP 1 EFUN3I /no more
d. Move past the separating comma.
GETC
SPNOR

e. Evaluate the second argument.

PUSHJ /this FNEW is
EVAL /not recursive
JMS I INTEGER
DYS;CLA /set Y and intensify
SPNOR
TAD CHAR
TAD MCOMMA
SZA CLA
JMP 1 EFUNS3I
f. Now, pick up the single letters for display until the end of the function is reached.
DCHR, GETC

TAD CHAR
TAD MRPAR
SNA CLA
JMP 1 EFUN31

Char. display routine called here; (for Tektronics Y002, it is simply PRINTC)
JMP DCHR

g. Definitions from the symbol table are available in Appendix E.

Summary:

a. User defined functions must leave their value, if any, in FLAC and return by a
JMP 1 EFUNZ3I.

b. The contents of FLAC is converted to an integer in FLAC and in the AC by a
JMS T INTEGER.

c. The floating point arithmetic interpreter is entered by JMS 1 7.
(FOCAL uses its own version of the floating point package.)
d. The address of the user's function is placed by him in the FNTABF list,

e. Location BOTTOM contains the address of the lost location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for
storage of the function processor. The user should achieve his function implementations
using the information given here and in the symbol table without using the actual listing so
that changes made by different users may be compatible and so that they may also be
relocated easily should any changes be made by DEC. (see Section 4.5.1 for Core
Utilization List)

f. The argument following the function name is evaluated and left in FLAC before control
is fransferred to the particular function handler. Since evaluation is terminated by either
a comma (,) or a right parenthesis, o special function could have more than one argument.

Only in the case of multiple arguments does a user need to worry about saving his
warking machine language storage for a possible recursive use of his function. The contents

of the AC are saved by PUSHA and restored by POPA for this purpose. If there is another
argument, it may be evaluated by PUSHJ; EVAL. Doing a PUSHJ; EVAL=1 is equivalent to

GETC;PUSHJ;EVAL.

Internal Subroutine Conventions

Calling Sequences —= The {AC)=0 unless it contains information for the subroutines. Upon

returns {AC)Y=0 unless it contains dafa.

There are six types of routines and subroutines used in the implementation of this program:

a. Normal subroutines called by an effective

JMS SUBR1
which contain zero at their enfry point
SUBRT,0
and a return by a
JMP I SUBR1
b. New instructions called by
PRNTIL.N /{to print a line number)

and usually defined by

PRNTLN = JMS 1.
XPRNT

where XPRNT is the entry point for a normal subroutine. These new instructions may have
multiple returns/multiple arguments:

SORTJ Jcall;
LISTé-1 /data list minus one;
INLIST-LIST & /increment fo branch table

/return if CHAR is not in LIST6

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC all use the variable CHAR as their argument. The new
instructions SORTJ and PRENTC use CHAR only if the AC is zero. If the AC is nonzero,
then that value is used. Still others use only the AC for their argument:

RTLS, TSTLPR, PUSHA, and TSTGRP, (see Appendix G).

c. Recursive routines called by

PUSHJ Jcall
EVAL /oddress
! /return

where the address contains the first instruction of the routine. The return address is kept in
the push=down list, and exit is made by use of

POPJ Jexit subroutine.

4=6

Such routines may call each other or themselves in any sequence and/or recursively by

saving data on the push=down list. Others are EVAL, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORTJ /go to command
COMLST-1
COMGQO-COMLST

ERROR 3 /illegal command

The individual command routines use only new instructions and recursive routines. They may
exit in one of three possible ways:

(1) POPJ - if C.R. is encountered or
(2) transfer fo another command routine or
(3) transfer to START

e. Floating point groups of interpretive instructions similar to the following format:

FINT /enter floating interpreter (i.e., JAS 17)
FGET FLARG

FMPY 1 PTI

EPUT FLARG

FXIT /\eave floating interpreter

f. Main processor modules to handle text input and keyboard commands. This routine
could be "locked-out" by an instructor to protect and execute a stored or immediate
command program repeatedly .

IBAR, INPUT X

Similarly, selected commands are easily deleted by the instructor by placing zero in the
appropriate locations in COMLST.

Line number input and explicit replacements are "short circuited” b
p P P y

GOMNE + 11, error 3

4.4.2.2 Subroutine Organization = Figure 4-1 illustrates the internal use of various subroutines.
{c.f., Flow Charts in Appendix G).

4.4.3 Character Sorting

If a program must contend with a number of different characters {or 11-bit items) each of
which can initiate different responses, simply look up the oddress of the action that corresponds to a
given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the
most efficient method for determining the correspending address.

The method used in FOCAL is the table sort and branch. This method uses a subroutine to

match up an input character with one member of a list of characters. The call to the subroutine is

followed by

a. fthe address minus one of the list and

b. the difference between that list and a second list. The latter list contains the corre-
sponding addresses. Thus, if a match is found in the first list, the difference is added fo the address of
that match to compute the address in the second list which contains the name of the action to be
performed.

c. The next instruction to be executed if a match is not found.

In addition to being simple and concise, although more time consuming than other methods,
this technique has another advantage that is especially useful in a PDP-8: the tables may be placed
at page boundaries to take up the slack that often occurs at the end of a page. This results in a more

efficient use of available core storage.

d. COMMAND ROUTINES

COMMAND AND
INPLUIT PROCESEOR

T | 0o

GO TR

D TYPE
&

L]
-
:
L]
-
NEW
b INSTRUCT WONS WRITE
y
o. NORMAL SUBRCUTINES I C-I RICURSIVE SUBROUTINES

|
] il

RECURSIVE SUBROJTINES

Figure 4-1

4.4.4 Language

The program is written in PAL 111 with floating point commands, as well s program-defined

commands, implemented as subroutine calls. (see Appendix G) The program must be assembled using
PALTO.

4-8

4.5

NOTES

4.5.1 Core Utilization
NAMES PLACE SEGMENT
0-15, 17-166 FOCAL (4K}
167-175 8K
176-2572 FOCAL {4K)
2573-2577 8K
2600~2724 {Interrupt Handler)
2725=3117 FOCAL {4K)
IOBUF: 3120 {1/O Buffer)
COMEIN: 3140 (Command Buffer)
FRST: 3206 {Text Buffer)
BEGIN: 4420-4577 (Initializafion)
4430-4577 CLIN
FEXP: 46204774 (Extended Functions)
ARTN: 5000-5166 [VF freel
FCOS: 5200-5345 [32 freel
TGO: 5400~5577 [O freel
DECONV: 5600-5773 [4 freel
FLOUTP: 46000-6157 {Ovtput Conversion)
THISD: 6160-6176 8K
FLINTP: 6200-6317 {(Input Conversion)
HREAD: 6320-6377 (High Speed Reader)
FPNT: 5400-7177 (Floating interpreter)
MP4: 7200-7377 fnone freel
XSQRT: 74007502 [FSQT() and format buffer]
LIBRARY: 7503-7556 (Single user L command)
XRTD: 75577576 8K
Storage of text is 3200--4577 14 functions
32005177 11 functions
32005377 ¢ functions

4.5.2 Extended Functions

Extended Functions may be reinitialized by loading in the second part of main program tape.
Functions are normally deleted by answering the questions asked when FOCAL is initiated.
However, they may also be erased by changing location 0035 to 5377, and locations 401 through
0405 to 2725. Retaining the extended functions allows approximately 1200 characters of text or 170
varicbles (or any combination in the ratio of 7 characters to one variable). Deleting the extended

functions allows approximately 1800 characters or 250 variables.

4.5.3 Error Printouts

Errors ?01.00
?00.00
and ?11.35

Because these errors are time dependent, they may be followed by nonexistant or false line number,

4.5.4 No Interrupts

To read data tapes without running the risk of Keyboard=Input=Buffer overflow (?11.35}, it
is necessary to remove the interrupt. This action means that Control~C will not work .

To run FOCAL without interrupts, change:

Loc/From To
63/2676 1353
64/2666 2413

2732/6001 3336

2762/6046 7000

The high-speed punch will now run in parallel with the low-speed punch!
To run the high speed punch at top speed change:
1356/6041 6021

4.5.5 QOperating HS Reader Without Interrupts

To run the high-speed reader without interrupts, make the above patches plus two more:

6324/1037 6011
6325/7700 7410

4.,5.6 Non-Typing of Program Tapes During Leoding

The "echo" feature for the ASR=33 may be suppressed by changing location 2163 to 7000
(from 4551). This will cause only asterisks to be typed as the tape is read. There will not be line
feeds or carriage returns. {(c.f., 4.7.3.4 for multi-user system)

Any output commands will be typed out in the usual manner, as will dicgnostics, answers,

etc. Entries from the keyboard will not be typed.

4.,5.7 Explanation of NAGSW (Not All or Group Switch)

Since LINENO may be modified, a record is needed of whether a specific line number was
given by XX.YY (where XX and YY are nonzero} or whether a group was indicated by XX or XX: or

XX.00 or whether "ALL" text was indicated by either zero, less than one, or a non-numeric argument:

110

NAGSW =

For one line 4000
For a group 0000
For all text 0001
Ervor 4001
PDP-8 code for testing NAGSW:
skip if
Or One All Group
ONE SMA - SMA SZA
ALL - SPA SNA SNA
GROUP SMA SZA SPA SZA SZA
4.5.8 Data Inaccuracies

The logical conclusion from the inequality]08 < 227 is that the user can represent 8-digit
decimal floating=point numbers accurately by 27-bit floating=-point numbers, However, 28 significant
bits are needed to represent some 8-digit numbers accurately. In general, we can show that if
10P < 2471 , then g significant bits are always enough for p-digit decimal accuracy. Finally, we can
define a compact 27-bit floating-point representation that will give 28 significant bits, for numbers of

practical importcnce.] In FOCAL, 23 bits are used giving 6.9 digit accuracy.

4,5.9 Eliminating = and : in 1/O Formats

Leading equal signs and colons in 1/O formats are omitted by making the following patch:

Loc/From To
1216/4551 7600 /-
6002/4551 7600 /=

4.5.10 Estimating the Length of User's Program

FOCAL requires five words for each identifier stored in the symbol table and one word for

each two choracters of stored program. This may be calculated by

c
55+ 2 . 1.01 = length of user's program
where s = Number of identifiers defined
¢ = Number of characters in indirect program

If the fotal program area or symbol table area becomes too large, FOCAL types an ervor message .
]Goldberg, B. "8-Digit Accuracy",

Communications of the ACM
Vol. 10, No. 2, February, 1967

4-1

FOCAL occupies core locations 1-33008 and 46008_75768. This leaves approximately
70010 locations for the user's program (indirect program, identifiers, and push-down {ist). The ex-
tended functions occupy locations 4600-5377. If the user decides not to refain the extended functions
at load-time, there will be space left for approximately ”0010 characters for the user's program,

The L~command may be used to indicate how much core is available for the user,

4.6 FOCAL SYSTEMS

FOCAL systems are designed to fake advantage of as many PDP~8 configurations as possible.
With this in mind, the system source language is divided into segments which, when loaded together,
fit the needs of a user and his particular configuration. Thus, when a user changes his configuration
or requirements, he does not need to secure an enfirely new FOCAL tape but only to load a new seg-
ment corresponding to the change in his configurction. The scheme used also has the advantage of
simple maintenance, since changes are made to one source file for all possible systems and in some
cases re-assembly of other segments is not needed.

Two source segments create a FOCAL system for a 4K PDP-8. Others are used to create o
FOCAL system with (1) ten digit arithmetic, (2) 8K memory, and (3} circular and linear grophics.

The segments of the FOCAL system and their functions are listed in Table 4-1. The ASCII
source segments FOCAL.ASC and FLOAT .ASC must be assembled with all configurations and the
resulting binary segment, FOCAL.BIN, when loaded makes a one user FOCAL system for a 4K PDP-8.

The segment INIT.ASC is assembled alone, but when INIT.BIN is loaded with FOCAL -BIN
into field zero it gives you the initial dialog. If the extended functions are to be retained, it is not
necessary to load INIT af all. All corrections for machine type will be made anyway. After FOCAL
is started and/or the dialog is completed the user may proceed to load other binary segments.

If a user has an 8K PDP-8 and wants to create a large program with extended precision
arithmetic, he need only load FOCAL.BIN, start, and then load 4WORD.BIN, and 8K.BIN as
indicated in Table 4-2. If he wants to share his PDP-8 with three other people, he just loads FOCAL.
BIN and QUAD.BIN into field one and start.

Intra-references between segments is handled by small multiple assemblies, rather than a
large assembly with conditionals for each possible system. For example, fo obtain a binary copy of
the segment QUAD .BIN, use PAL10 to assemble, QUAD.ASC, FOCAL.ASC, FLOAT.ASC. This
assembly produces only the listing and binary files for QUAD which end with the PSEUDOQ=op's
"XLIST" and "NOPUNCH". Tables 4-2 and 4-3 give the allowabie combinations of the binary

segments to produce legal configurations of the FOCAL system.

4-12

Table 4-1
FOCAL System Source Segments

ASCII Segment Name

Function

Description

FOCAL*
FLOAT*
4WORD
8K
QUAD

LIBRAT

CLIN
PENT
INIT

The interpreter & TTY 1/O driver.

Modified Floating Point Package.

Extended precision overlay to FLOAT (give 10 digits).
Allows one user to take advantage of an 8K PDP-8.

Allows multiple users (up to 4) to use FOCAL or
8K PDP-8.

Allows multiple users (up to 7) to run and save
FOCAL programs on an 8K PDP-8 with disk.

The user may have a scope fo interact with FOCAL.
A variation of QUAD allowing five (5) users.

The symbolic source for the initial dialog program.

{4.6.5)
4.6.4)
(4.6.6)

(2.14.2)

(5.8)

*These two segments must be assembled and loaded together for all configurations. They are
separated for editing convenience.

TNof yet implemented.

Table 4-2
Allowable FOCAL Systems

1 -~ Must be loaded into field one
Q0 - Must be [oaded into field zero

Y - Command may be used if disk system is built

N - Command i5 illegal
* ~ Command different

Binary Segment

Allowed Combinations &
Subsets are indicated by

Minimum Hardware

entries in vertical columns Required
FOCAL Co0CO0O1 111 4K
INIT (optional) 0000
4WORD 00 1 1 4K
8K 00 8K
QUAD or PENT (hon-8/5) 0000 8K/PT08s
LIBRA (hon-8/5) 00 8K/PT08s/DF32

CLIN {optional)
LIBRARY COMMAND

{for disk monitor)

01 i
YYYY NN* *

Graphics Terminal

DF32

FOCAL is always loaded first in the proper field.

4-13

Table 4-3
Variations for FOCAL Sysfems

Any combination of these three sets (2%2*4=14),

a. 8K overlay b. Disk Monitor c. No Dialogue
4K No Disk No ext. functions
SINe, COSine only
All ext. functions

or QUAD four-user system or PENT five-user sysiem (PENT is obtained by o
modified assembly of QUAD; see listing) may be used with

CLIN graphics (4)
4WQORD averlay
Neither

Bath

These are formed from only six sections of binary tapes.

The CLIN graphics function can be used for numerical control .

4K FOCAL can be run on the following DEC computers: 5, 8, 8/5, 8/, 8/,
LINC-8, LAB-8, TS5-8, PDP-12.

a. Load FOCAL & INIT
b. do initial dialogue
c. load any or all of 4WORD, 8K, CLIN.

d. restart and use

4.6.1 FOCAL Systems Assembly

a. Systems programs
*1C

.RUN T PALTO
*FOCAL.BIN,FOCAL.LST+FOCAL.ZZL ,FLOAT.ZZ].

*QUAD.BIN,QUAD.LST~QUAD.ZZL ,FOCAL.ZZL,FLOAT.ZZL
b. Initial dialogue
* 1C

.RUN T PALIO
*INIT.BIN, INIT.LST~INIT.ZZL

*

c. Overlay routines
.R PAL1O
*AWORD.BIN,4WORD .LST+4WORD.ZZL,FOCAL.ZZL ,FLOAT.ZZL
*8K .BIN,8K.LST+8K.ZZL,FOCAL.ZZL ,FLOAT.ZZL
*CLIN.BIN,CLIN,LST-CLIN.ZZL ,FOCAL.ZZL,FLOAT.ZZL

*

4-14

4.6.2 FOCAL Binary Paper Tapes
.AS DSK D
DSK ASSIGNED

JAS PTP
PTP ASSIGNED

R PIP
*PTP:~/1D:QUAD .BIN
*PTP: +/1D:4WORD .BIN 8K .BIN ,CLIN.BIN

*PTP:+/1D:FOCAL .BIN,INIT.BIN
tC

4.6.3 FOCAL Listings

*LPT:<D:QUAD.LST,4WORD.LST,8K.LST,CLIN.LST,INIT.LST,FOCAL.LST
*TTY: </L DTAa:
58: FREE BLOCKS LEFT

FOCAL .ZZL
FLOAT .ZZL
QUAD ZZL
4WORD .ZZL
8K ZZL
CLIN ZZL
INIT ZZL
PALIO SAV
JR36

JR46

4.7 FOCAL SEGMENTS

4.7.1 8K Single User Overlay - 8K

To increase the size of program, the 8K overlay uses the upper 4K for storage of the user's
source fext. The maximum number of variables does not change as they are still stored in the lower 8K.

Load the overlay after doing the initial dialogue with the 4K version.

4.7.2 Extended Precision Overlay -~ 4Word

This overlay provides FOCAL with 10-digit accuracy when the 10th digit goes to enable.
The overlay increases the number of words needed to store a number from three words to four words.
The number of variables that may be stored is decreased accordingly .

Load the overlay ofter doing the initial dialogue with the 4K version.

4-15

4.7.2.1 Double Precision Multiply in Four-Word FOCAL

To multiply two numbers, the product of which is greater than ten digits and yet retain the
least significant figures, use a double precision operation.

For example, to multiply:

M = 20243974
by
N = 69732824

let MO = the st 4 digits of M and let M1 = the 2nd 4 digits of M. Similarly, NO and N1 are the left
and right halves of N.
Note the correction of an input error in the high order part of N,
W
C-4WORD@1/69

14,10 ASK 1,MO,MI,"*"NO,N1,1
14,20 SET A=MO*NO

14.30 SET B=NO*MT + MO*N1
14,40 SET C=MI]*N]1

14.50 SET Z=FITR(C*1E-4)

14,60 SET C=C-Z*1E4

14.70 SET B=B+Z

14,80 SET Z=FITR(B*1E-4)

14,90 SET B=B-Z *IE4

14,99 TYPE 1%8,A+Z ,%4,8,C, |
*GO

12024 :3974 * 6928+6973 2824
= 14116694= 7600= 2576

*

4.7.3 Four User Overlay ~ QUAD

QUAD allows an 8K PDP-8/1, -8/L with up to four teletypes to time-share FOCAL. In
effect, each user has the equivalent of a 4K PDP-8 or PDP-12 with FOCAL. The QUAD overlay is
located in the lower 4K, and the FOCAL interpreter is located in the upper 4K. Users are traded for
one of three other users in the lower 4K, Swapping of users is based upon 1/O waits and checkpoints
in the FOCAL interpreter.

4.7.3.17 Four User Loading and Operating Procedure

a. Load Ist binary part info field one. (FOCAL.BIN)
b. Load 2nd binary port into field one. (QUAD.BIN)

4-16

c. lLoad address

7600
and START

.SAVE F4UB!0-2177,3000,3600,5400;200
.SAVE F4UA!0~13220, 14600~17577;

{Any errors made here may require reloading field zero.)
d. (Calling Sequence)

F4UA
F4U8B

(If any problem occurs hit stop, record the PC and restart at 200 or reload.)

4.7.3.2 Swapping = At certain poinfs in the FOCAL program it is a pure procedure. If swapping
occurs af these times, then only 1K of impure data needs fo be saved instead of 4K. This factor of
four considerably improves system performance. Such a point is called a checkpoint.

Each time an operating pragram reaches a checkpoint the executive routine checks to see
whether another user should be swapped in ot that time.

This check is also made if the operating program goes into a state of waiting for input-output,

except for output during use of trace.

4.7.3.3 Workload and Timing
a. Swapping is done on o demand (I/O wait) and a cooperative (checkpoint) basis.
Therefore, no clock is needed. Not having a clock reduces system overhead by about ten percent.

b. Fully asynchronous 1/Q is backed up by large {over 16 characters) and uniform (easy to
process) character buffers. Serial to porallel conversion of the bit stream is done in external hardware
by PTO08 line controllers. This reduces system load by 18 to 30 percent.

¢. If each of eight user programs takes less than 100-17 msec to generate one 8—digit
output string, then the system is barely output bound and no delay will be observed in response times.
The 17 msec is average access fime to the disk, and one TTY character takes 100 msec to be typed.

4.7.3.4 Special Controls = A confrol-R character (TAPE} suppresses echo of input tapes except for
the line-feed. A control=T {(NOT-TAPE) or Conirol=C restores the echo of input characters.
It is a good practice to punch a Control=R at the beginning of all off-line tapes. An

alternative is simply to type Control~R manually before setting the low speed reader to RUN.

4,7.3,5 Didlogue = There is no initial dialogue with QUAD.

4.7.4 Graphics for Circles and Lines - CLIN

sCL IV = GRAPHICY OVERLAY FOx FOCAL,z2K PALLY V133 14=-MAR=69 16181
/CLIN ~ GRAPHICS OVERLAY FOR FOCAL,Z#K

/FINITE DIFFERENCE EQUATION DF A CIRCLE ~ FOR FOCAL
/16,2 5 o3X=X@B3g 3Y=YOis RzFgpT(pt2+pt2)

/16,3 S Z=FNEW(6.3%R%C,P,0,%x?,YR,S/R)

f16,4 S %P=X;S YH=Y

/LINEAR DIFFERE\CE EQUATION of A LINE

79744 D 64535 ZZFNEW(R,P/R,Q/R,XA,Y?,7)1D 1644

6857 OXS=6057
6053 Pxi=6@53

6867 DYS=6067
2935 #,07TOM
2035 4437 Felh=1
2427 #FNTABF+1%
3427 4449 FCIN
444, 244,44,
444, 4453 FCIN, JMS I INTEGER
4449 7049 CMA
4442 3342 DCA R /SAVE THE POINT COUNT
4443 1342 TAD XxP
4444 3Q1¢ DCA AXIN /START DATA POINTERS
4445 1117 Tald M5 /FOR 5 MORE ITEMS
4446 3316 LA CT
4447 4537 GETa, PUSH.} /COMPUTE EACH ARG,
4458 1612 EVAL=1
4451 1944 TAD EXP JFOUR FIXED POINT RESULTS
4432 1341 TAD LP
4453 3044 DCA EXP
4454 4453 JMS | INTEGER
44355 723p CLA
4456 1025 TAD P13 /SAVE UNNORMALIZED FORM
4437 3410 DCA T AXIN
4450 1045 TAD HORD
4453 3410 DCA I AXIN
4462 1446 TAD LODRD
4453 34i0 DCA I AXIN
4464 2316 152 CT /TEST FOR END OF DATA
4455 5247 JMP GETA
4456 1246 TAD {LDRD /TEST FOR CJRCLE OR LINE
4457 7640 g2A CLa
4479 5343 JMP XFCIR

4-18

FCILIN = GHAPHICS OVERLAY FUR FUCALZ7K PALL2 V133 14=MARa6Y9 16181 PAGE 2

4471
447,
147

4474
4475
4476
4477
45 13
4511
4572
4523
45 44
4575
4536
15737
4518
4511
4512
4513
4914
41515

7110

1334
3331
7044
1338
1342
5293
3357
7113
13534
1326
3834
7R 4
1333
1325
AL 7
3343
2342
g7l
55455

XFLIN, ©CLL /VECTOR PLOT ALGORITHM
TAL X4,
TAD P32
nLa xadt
RAL
TAD Xap
TAD PR
DxL /(6317)= FOR LAS=8
DCA XPa
CLL
TAD Y@1
TAD Q%
DCA Y1
RAL
TAD Y@@
TAD nY
DYS /(6387) = FOR LAB«R
DCaA Yor
182 R
JMPOXE N
JMP T EFUNS]
Fr7 7

ZTO DISPLAY A PQINT X,Y: SET Z2=FQIS(X,Y)

ATO DRAW LINE X8:Y2 TO X,v: DG 47

/TU SET X6,YP=x, Y NO [A.q

/10 ERASE SCREEN ¢ TYPE "(ERASE CODE)"™

/T0 RESET PRINT CRIGIN? TYPE "(RESET gope)™

/TU ORAW A CIRCLE ABOUT Xg,YP STARTING AT X,Y

/AND GOInG COUNTERCLOCKWISE FOR FRACTION

/0F A CIRCLE ALPHA SET S=+,iSET C=ALPHAIDD 346
/TO GO CLOCKWISE ! SET SseliD0 16

/GRQUPS 146 AND 17 CREATE QR USE THE VARIABLES
XX XP,Y0,2,R,CorPaQ, K, AND Se
/S MAY BE REPLACED BY A 1 IF DESIRED,

JCLIN « 3RAPAICS OVERLAY FOR FOCAL,Z#K PAL1Z V133 14-MAR=69 163101 PAGE 3

4916 prg CT,
4517 A%9G
4523 200
4521 g3l PP
4522 @iy P@e
4523 Y9 P1s
1524 g9935 03
d925 3929 23,
4576 ARoR a1
4527 3313 XK
4538 320y X@a,
4531 AN Xal,
4932 2313 YY’
4535 3212 YRd,
4534 AP Yal,
4535 F9873 KK+
4526 FR0G3
4537 2433
4549 4527 XXP,
4541 It 4 LPs
abaz AAIH R,
ZT0 USE AN =
ZaUup THE FOELEN
/16,25 § K=5/@
/16,30 F

/17,28 D 16,4

5
4]

5]

S=m

PP-1
14

PLOTTER, CLIN 1S NOT NEEDED; SIMPL,
ING LINES TO GROUPS 16 AND 17

[z@,6.3#RaC;S Pap=0eK;$S G=0sPsK;}S ZEFDIS(XB+P.,YE+A)
f17,10 D 162iF 1s58.Ri5 XpzX0+P/RiS YR=YR+Q/R3S 2=FDIS(XR.YQ)

sTHE 1TERATION PARAMETER "I MAY BE TAKEN IN GREATER INCREMENTS IF THE

7SUALE FACTOR
V.44 00 L6
'¥s Fortisg,

!

7

IS ALSO CHANGED;

$SET K=4/R

1,E,

44RIS Xp=Xp+K%PIS YP=YQ+Q*KIS ZeFDIS{XA.YQ)

420

FCLIN -

GRAP-HICS OVERLAY FOR FOCAL 22K PAL2LY

4543
4544
4545
4546
4547
4550
4531
4532
4553
4554
4555

4536
4557
4564
4561
4562
4553
45454
4545
45456
4567

4579
4571
4572

4427
3324
4335
6316
2321
2316
6321
1327
2025
4453
6057

4427
3321
4335
1324
6324
1332
2038
4453
6057
7220

2342
5343
5535

46280
2021

xFLCIR,

NOPUNCH
PAGE
FIELD 1
XL1sgT

FINT
FGET
FMUL
FPUT
FGET
Fsug
FPUT
Fanp
FXIT
JMS

DXS

FI T
FolT
FMUL
FADD
FRUT
Faln
FX1T
JMS
DYS
CLA

152
JMP
JMPp

g6
KK
cT
PP
CT
PP
XX

I INTEGER

pp
KK
Q0
80
Yy

I INTEGER

R
XFCIR
I EFUNS]

4-21

V133 14-MAR=6% 16121 PAGE 4

/CIRCLE ALGOR[THM

/(6317) - FOR LAB=8

/CLEﬁRS AC

/{63A7) = FOR LAB#8

4.8 FOCAL DEMONSTRATIONS

4.8.1 One-Line Function Plotting

This example demonstrates the use of FOCAL to present, in graphic form, some given funcfion

over a range of values. In this example, the function used is

y =30 + 15(5IN(x) Je -
with x ranging from 0 to 15 in increments of .5. This damped sine wave has many physical applications,
especially in electronics and mechanics (for example, in designing shock absorbers for automobiles).

In the actual coding of the example, the variables T and J were used in place of x and y,
respectively; any two variables could have been used. The single line 08.01 contains a set of nested
loops for [and J. The J loop types spaces horizontally for the y coordinate of the function; the I loop
prints the * symbol and the carriage return and line feeds for the x coordinate. The function itself is
used as the upper limit of the J loop showing the power of FOCAL commands.

The technique illustrated by this example can be used to plot any desired function. Although
the * symbol was used here, any legal FOCAL character is acceptable.

28.01 F 1=0,.5,15; T "*",1; F J=0,30+15*FSIN{D}*FEXP <=.T*I T " *

*

*DO 8.01

w*

4-22

4.8.2 How To Demonstrate FOCAL's Power Quickly

a. Load the program and start at 200.

b. Explain that the initial dialogue gives you options.
c. Try some other response like MAYBE) .

d. Now answer YES } .

e. The preceeding has demonstrated the interactive capabilities of the language and the
compromises that it permits.

f. Ina 4K machine (4096 words) FOCAL gives the user 15 functions and uses only 3K,
leaving enough room to solve up to 6th order simultaneous equations.

g. The asterisk {*) means that FOCAL can now respond to your commands.
h. The basic command is TYPE:

*TYPE 512+ FSQT (5) 5
i. Now compute 5 factorial:

*SET ALPHA=1
*FOR 1=1, 5; SET ALPHA=ALPH *I

j- The answer is ready when the next asterisk is typed out:
Then type
*TYPE ALPHA
for the answer .

k. Now if you are using a PDP-8 or =8/1, demonstrate a large number:

*SET A=1
FOR 1=1, 300; SET A=A]

some time later

*TYPE A
=0.395 615

. Now generate a plot via a stored program:

*1.1 FOR Y=Q, .5, 15; TYPE! ; DO2

*1.2 QUIT

*2.1 FOR X=0, 12+10*FSIN{Y); TYPE " "
*2.2 TYPE " * "

*GO

m. Now use the MODIFY Command to change 10* to FEXP (Y/6)* and try again.

4.9 FOCAL Versus BASIC

FOCAL is superior to BASIC, not only in terms of computing power and ease of use, but also

in maximum use of the memory space, which is so often limited in small computer systems.

4-23

FOCAL contains all the power of BASIC, and in addition provides the following capabilities:

a. Control of the output format (i .e., precise figure location on u page and graphical
representation);

b. An "immediate" mode, allowing the system to operate as a desk calculator and to
execute simple problems without writing a program;

c. The capability of executing individual “stored program” statements in the immediate
mode for debugging and verification;

d. Built-in symbolic editor capable of searching program statements for specified characters
and inserting and deleting characters within a statement, thereby eliminating the retyping
of the entire program statement;

e. Multiple statements may be grouped on each line for more logical ordering of the pro-
gram;

f. True multiple level re-entrant subroutining capabilities;

g. A trace feature which fypes out selected segments of a program f{as the program is
executed) to pin point exactly where a program error occurred;

h. Commands may be abbreviated to one letter; this eliminates wasted typing time when
writing a program and-increases the available storage space for use by additional program
statements;

i. Programs may be saved on disk and chained together;

i. Point plot displays, vector displays, X, Y plotters, and analog to digital converters
may be operated by FOCAL; this capability can be used in an on-line, real-time fashion;

k. FOCAL SYSTEMS allow use of several hardware configurations: 8K, 10 digit, display,
and multi-user.

4-24

CHAPTER 5
ADDITIONAL FOCAL APPLICATIONS

5.1 FOCAL FOR THE LAB-8

5.1.1 Standard

Two commands have been added to FOCAL fo implement the A to D converter and the
oscilloscope display on the AX08.
a. Ato D Command:
FADC{N) where N is the channel numbker in decimal.
The command:
SET Z = FADC{(28)

gives the varioble Z a value of octal channel 34 depending on the position of the upper
righthand potentiometer. The other 3 knobs are channels 29, 30 and 31. A subroutine
in FOCAL to read the A to D in volts is as follows:

15.1 ASK CHAN;C-0,1,2,3

15.2 SET X=FADC(28+CH)

15.3 IF (X-256)15.Y,15.4;SET X=X~4096
15.4 SET X=X/255

The input variable is CH for values of 0 to 3, and the output variable is X with values
+/volt.

b. Display Command:
The display command has been modified to use only one statement to define X and Y.
SET Z = FDIS(X,Y).

will display a point on the oscilloscope screen defined by points X and Y. X can range
between 0-511 and Y from -255 to +255. The variable Z is a dummy. (It is given the
value of the integer part of Y.}. (c.f., Section 5.8 for circle and sector algorithms.)

CAUTION

Since the ADC of the AX08 hardware is an integral part
of the display logic, using both display and A and D,
may result in splatter of the Y direction of the oscillo-
scope screer,

5.1.2 Additional (Possible} FOCAL Functions for AX-08

FADC (n): Converts {decimal) channel n. Returns result of conversion.

FDIS {x,y): Loads display X and Y; intensifies point.

FTIM (n): Delays n RC clock pulses (n < 4096)
Returns # of 100 ps increments since last used.
Xtal clock interrupt is enabled.
Interrupt servicing for Xtal clock as
follows:

SKXK

JMP OTHERS
CLXK

ISF TIME +1
JMP .+3

ISF TIME
NOP

ION
JMPIQ

Clock flag servicing will tie up 20% of processor time.
When FTIM is called, do the following sequence:

TAD (1002) /enable Xtal clock, start RC clock
OTEN
get n
SNA
JMP XTIME
CMA 1AC
DCA RCNTR
CLRK
SKRK
IMP -1
1Sz RCNTR
RMP -4
XTIME, PUT TIME, TIME +1 in FLAC
DCA TIME
DCA TIME +1
return to FOCAL

a=0: Turn on relays indicated by b (b < 7)
Turn off relays indicated by ¢ (¢ < 7)
as follows:

get b
RAL; RTL
AND (70
OTEN
get ¢
RTL; RAL
AND (70
CMA
ZTEN
CLA
refurn to FOCAL

a=1: “and" external register with mask
b: mask {octal)
c: ignored

Get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

CMA JAC

TAD MASK

SNA CLA

IAC

store in FLAC
return to FOCAL

a=2: Yor" external register with mask
b: mask (octal}
c: ignored

get characters of b
interpret as octal #
DCA XMASK
XRIN

AND MASK

XRCL

SZA CLA

IAC

store in FLAC
return fo FOCAL

5.2 FINEW FOR DATA ARRAYS*

A new function for 8-K FOCAL is available which uses field one to store data arrays in
floating double precision, single precision, and signed integer format. This facility is added to
FOCAL via the function call FNEW, The function may be called recursively to any level, and oll
of the features of FOCAL are retaired. In addition an ERASE or ERASE ALL command will not wipe

out the array . Hence, variables may be stored for use in successive programs.

5.2.1 Storage Requirements

Fits info unused locations in floating point package
5.2.2 Usage
5.2.2.1 Lloading - Load after FOCAL has been loaded into the machine (and the initial dialogue is

executed). Load the first part of the overlay using the Big Loader. If a single precision floating

array is desired press CONTINUE. A patch should now be read in to allow a 1980 element array in

*Originated by University of Georgia, program not supported by DEC,

5-3

single precision floating point. If an integer array (maximum number = 3047) is desired press
CONTINUE. A patch will now be read in fo allow a 3965 element signed integer array.
Restart FOCAL af 200,

5.2.2.2 Calling Sequence - To store a variable Z as array element J;
* § X=FNEW (J,2)
or
*4.35 X=FNEW (J,Z)
In addition, X will be set equal to Z,
To call the array element K and set Z equal to this element:
% § Z=FNEW(K)
i.e., if there is only one argument the instruction is interpreted as a "GET". If there are

two arguments it is interpreted os a "PUT".

5.2.3 Recursive Calling

The function FNEW may be called recursively at any level. viz.
* § Z=FNEW [J, FNEW{J+10)]
sets Z=FNEW(J+10) and stores FNEW(J+10) in array element J.
* 3.2 § Z=FDIS (J*1000) , FDIS(FNEW(J)*NORM})
the arguments may be any arithmetic expression. The following are valid:
* S Z=FNEW (J*10-3, FEXP(XZ)*Y)
* § Z=FNEW (J,FNEW (K)*FEXP(FNEW(L))}

5.2.4 Restrictions

Double precision floating: 0<J <1320 (23 bits of significance)

Single precision floating: 0<J <1979 (17 bits of significance)

Integer Array: 0<J <3965 {11 bits of significance)
1Z1<2047

5.2.5 Description

The function FNEW protects the binary loader in upper core. The function checks to see if
J is too large, but does not check to see if Z is larger than 2047 in the integer array case (c.f., array
overlay).

The user, of course, may subdivide this array into any number of smaller arrays, keeping

track of his own indices.

5-4

5.3 DYNAMIC INTERRUPT PROCESSING VIA FOCAL, 1969

This simple patch allows real-time interrupts to initiate execution of a specific FOCAL
subroutine (e.g. Group 31) which gains control (i.e., D031) when an interrupt occurs from an external
device. The FOCAL subroutine could sample various channels of the A/D converter, set a few con-
stants, then turn off the interrupt, and return to the main FOCAL program. The main FOCAL program
will carry out the analysis or output of data during the time between these external device interrupts.
The external device could even be an animal and the time between interrupts will be asynchronous and
long (between 1 and 1000 seconds), or the external device will be a clock, in which case the time

between interrupts will probably not be less than 100 ms or greater than 1 sec.

/patch to interrupt processor
{tag assignments from symbol table)

EXIT /replaces H.S. Reader
10M /skip if device
JMP .43
NOP /"HINBUF" is cleored
*PC1 /checkpoint in main program
JMP 1 175 / wvalid for 8K, also
*167
DIPCHK /Dynamic Interrupt Check
*HINBUF
1 /initialized to non-zero
*HREAD
DIPCHK,TAD HINBUF
SZA CLA
POPJ
TAD PC /save FOCAL register
PUSHA
TAD SPCLN /lyour group #)
DCA LINENO
DCA NAGSW
ISZ HINBUF
PUSHJ
DO-+1
POPA
DCA PC
POPJ
SPCLN, 7600 /{group 31)

The routine in group 31 refurns control by "RETURN". This feature does not operate until

main program is started. It will operafe during execution of a direct command.

5.4 SIMULTANEOUS EQUATIONS' SOLUTIONS

This program will work with o set of simultaneous linear equations (in 4K. FOCAL 6 equations
is the limit} and oufput the solutions. To do this the program requests a value "L", the number of equa-
tions and variables to be processed. The program then requests the coefficients and constants for each
equation, in a matrix like format. The solution values are typed out in a column with the names "X(0)"

through "X(L-1)". The program is available through DECUS.

5.5 FAST FOQURIER TRANSFORMS PROG RAMS

The FAST FOURIER TRANSFORMS Program is designed to accept samples of a complex wave
pattern as input and, through a FOURIER analysis, describe its component sine and cosine waves in
terms of amplitudes and frequencies.

The user inputs a number "N", which must be a power of two, (in 4K. FOCAL, "4" is the
limit) and which describes the number of samples to be used in the analysis. Next the samples, which
are wave height measurements taken at regular intervals, are requested. Output is in the form of two
columns (side by side), the left of which describes the cosine wave components while right hand
column describes the sine wave components.

It should be noted that because the number of samples is always o power of two, the number

of complex multiplications is cut drastically . For this reason computation time is also greatly reduced.

NOTE

In order to use this program, the extra extended
function FX{A,B) must be loaded into memory
via the BIN loader.

FAST FOURIER TRANSFORMS

W
C-FOCAL.,1968

01.08 A "POWER OF 2 " ,NU

01.10 5 N=2 tNU;S TP=2*3.14159/N

01.18 S 5=N/2:, L=1;S Q=5-1;5 H=1-NU

01.20 F 110,N=-T;A 1;A 1, XR(D);S XI()=0

01.22 5§ SR=XR(QUSIHXR(Q);S XR{Q+S)=XR{Q}-XR(Q+5);S XR{Q)=SR
01.241 (Q) 1.26,1.26;5 Q=Q-1;G 1.22

01.261 (L-NU) 1.28,1.54,1.28

01.28 § L=L+1;S $=5/2;5 H=H+1;5 P=N-1;5 Z=1/2t(-H))
01.325 C=1

01.34 5 U=FITR(P*Z);S K=FX(NU,U)*TP

01.36 S CO=FCOS{K);S SN=FSIN(K)

01.38 5 GR=CO*XR{P)4SN*XI(P);S GI=CO*XI(P}-SN*XR(P)

i-6

01.40 5 Q=P-5;5 SR=GRHXR(Q);S SISGI+XI{Q);S XR (Q)=XR(Q)-GR

01.42 S XI{Q)=XI(Q)-GL;S XR(P)=SR:, XI(P)=SI

01.46 S P=P-1; I (-FABS[C-S)) 1.48; I (P-S+1) 1.52,1.26,1.52

01.48'5 C=C+;G 1,34

01.525 P=P-5;G 1.32

01.54 F 1=0,N-1;5 K=FX(NU,I);T 1,%3.2,2*XR(K)/N," ", 29X (K)/N
*

*C~TRANSFORM OF INTERFERENCE PATTERN FORMED BY MIXING A SINE
*C-WAVE OF AMPLITUDE 1.0 AND A COSINE WAVE OF AMPLITUDE 1.5

*

*GO

POWER OF 2 :3

:1.5

:1.768

:1

:~.353

=1.5

:~1.768

:=1

:.353

+0.00 =+}.00
=+1 .50 ==1.00
=+},00 =+),00
=+).00 ==0.00
=+).00 =+0.00
=H).00 =+).00
=+0,00 =+).00
=+1.,50 =+1.00*

*

JFNEW(u,v) for FFT
*BOTTOM

4377
*FNTABF+1Y

XFEX
*4400

XFX, JMS [INTEGER

Dca U
PUSHJ

EVAL-1
JMS T INTEGER
CIA
DCA T2
DCA LORD/low order

TAD U

CLL RAR
DCA U

TAD LORD
RAL

DCA LORD
ISZ T2

JMP 7
JMP I EFUNBSI

3.6 TRAVEL VOUCHER TO EXPENSE YOUCHER CONVERSION PROGRAM

Though FOCAL is not a business oriented language the use of FOCAL in business applications
is not impossible. Such a use is seen in the TRAVEL VOUCHER TO EXPENSE VOUCHER CONVERSION
program with which the user may ease the task of reporting his expenses after a business trip,

Working from the input of the number of the days using the expense account and the categor-

ized input of the expenses encountered {all amounts must be entered in terms of cents rather than dollars)

during that period, the computer tallies and itemizes
a. the daily expenses and
b. the totals of the expenses over the enfire period.

The data, thus summarized, are very easily franscribed onto an employee expense voucher.

TRAVEL VOUCHER TO EXPENSE VOUCHER
CONVERSION PROGRAM

C-FOQCAL., 1969

01.01 T 1!l "EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENNIES)"
01.05 ERASE

01.10 ASK %6.02,1"HOW MANY DAYS 2" DAYS, !

01.20 IF {DAYS) 1.1,1.1; FOR I=1,DAYS; DO 5

01.40T 1! " THE TRIP TOTALS ARE™;F [=1,30;T " "

01.41T "GRAND"!

01.60 SETLO=LT; SET ME=ET

01.70 SETQJ=0T; SET MI=MT; DO 7

01.80 TYPE " $"!111l]

01.90G 1.05

05.10 ASK !11"BRKFST " Bl

05.20 ASK I"LUNCH " B2

05.30 ASK !"DINNER " B3

05.40 ASK I"SNACKS " B4

05.50 ASK !"MILES TRAVELED ? "B5; SET B5=B5*9; TYPE " $ B5/100; DO 6
05.60 ASK ["HOTEL " Bé

05.70 ASK !"OTHER " B7

05.73 ASK !"TELez " B8

05.75 A I'TAXE "C1

05.76A 1"PARKN "C2

05.77A 1"TOLL "C3

05.85 ASK 1"MISC. " B9

05.90 TYPE 1"THE DAILY TOTALS ARE"!

05.91 SET LO=B6; SET ME=B1+B2+83+B4

05.92 SET OJ=B5+C1; SET MI=BF+B8+B7+C2+ 3
05.93 TYPE "DAY NO."; DO 7.1

05.94 TYPE 1%3,1," ";D07.2; DO7.3
05.95 SET LT=LT+LO; SET ET=ET+ME

05.96 SET OT=0T+0DJ; SET MT=MT+MI

5-8

06.10 ASK " MISC. TRAV. ? "Bé; SET B5=B5+Bé

07.10T " LODGING MEALS OTHERTRAV. MISC. TOTAL
07.15T 1

07.20T %8.02,L0/100," "ME/100," “QJ/100," "MIAQO,"
07.30 T (LO+ME+OJ+MI)/100

E

*
*G

EXPENSE ACCOUNTER (TYPE ALL AMOUNTS IN PENMNIES)
HOW MANY DAYS? :2

BRKFST :150
LUNCH 170
DINNER :645
SNACKS :35
MILES TRAVELED ? :36
$ =+ 3.24 MISC. TRAV. ?:0

HOTEL :1400

OTHER :0

TELE 40

TAXI :0

PARKN :250

TOLL 0

MISC, 0

THE DAILY TOTALS ARE

DAY NO. LODGING MEALS OTHER TRAV. MISC TOTAL
=+ 1 =+ 14.00 =+ 10.00 =+ 3.24 =+ 2,90 =+ 30.14

BRKFST :98

LUNCH :192

DINNER :650

SNACKS :30

MILES TRAVELED ? :23

$ =+ 2.07 MISC. TRAV, 7 :0

HOTEL :1400

OTHER :398

TELE 1285

TAXI 0

PARKN ;250

TOLL :0

MISC, :0

THE DAILY TOTALS ARE

DAY NO. LODGING MEALS OTHER TRAV. MISC TOTAL

=+ 2 =+ 14,00 =+ 9,70 =+ 2.07 =+ 9,33 =+ 35.10

THE TRIP TOTALS ARE GRAND
LODGING MEALS OTHER TRAV . MISC TOTAL

=+ 28.00 =+ 19.70 =+ 5.31 =+ 12.23 =+ 65.24 %

5.7

TWINS DEMO

The TWINS DEMO Program is an interesting experiment in the applications of plotting with

a visual scope display unit. Tt must be noted that several functions must be loaded info memory before

this program will operate. This program is an integral part of curve fitting. The Twins Demo requires

Vé8/1 Control with Tektronix 611 Scope. (i.e., 340 control)

W

TWINSG DEMO

C-FOCAL., 1969

01
ol
01
01
01

08

1
11

055
105
70F
.75

.805

02,
03.
04,
05.
06.

07.
07.

08.
08.
08.
08.
.508
08.
08.
09.
10,

.10F
20F

12,
12,
13.

14,
14,
14,

10
10
10
10
10F

10F
20F

10 F
20 F

40

605
708
10F
10F

10F
20F
10F

10F
20F
30R

A=FDIS {) ~FDXS () +FNEW(2) + FNEW (256)

A=.2;S SW=19

T=0,.05,6.284;5 T2=T+3.14159/4;00 1.8;DO 15

G 2.1

R=4*FSIN(T) +4;$ X=B4R*FCOS(T2);5 ¥=32+R*FSIN(T2)

F Y=28.5,A,32;5 K=({¥-30.5/1.5) t 2;5 X=9-(K*K«K);BO 15
F X=7.4,A,10.5;5 Y=26.5-((X-9)12),/2;DO 15

S X=10.5;F ¥=17,2*A,24.8;DO 15

F X=7 .2*A,8;5 Y=22-7*(X-7); DO 15

X=10.5,A,15,5 Y=26-FSOT{5*(X-10) };DO 15

X=11,5,A,14.5;:D 8.5
X=14.5,.2*A,15;D 8.5

X=3,A,4.6;D0 8.4

X=11,A,12;D0 8.4

G 9.1

S K=X-7;5 Y=12+(K*K)/4;D0O 15
Y-21-FSQT(6.25-(X~12.5)12);D 15

Y=(X-7)12-1;D 15

X=5+FSIN{(3.14159*(¥~12)/7);D 15

Y=0,2*A,16;5 X=12-{ { Y-8)12)/64;DD 15

X=2,A,4.5;5 K=X-3;5 Y=K*{K*{.47*K-.5)+1.03)+26;D0 15

X=2,(.2*A),2.85;D 8.6
X=4.7,.2*A,6;0 8.6

Y=4,5,2*A,12;D 8.7
Y=15,2*A,25;0 8.7
X=5.3,.3%A,6;8 Y=-7%(X~6);D0 15

Y=12,2*A,24;5 K=((¥Y-15.5)/11)12;5 X=5.5+12 5*{K*K-K};;DO 15
Y=4,2%A 12;5 K=Y=-8.5;5 X=8.1-FSQT{27-K*K);DO 15

NOTE

Group 15 must be supplied to scale X, Y and call ap-
propriate display for the device. (c.f., Section 5.8)

£-10

APPENDIX A
FOCAL COMMAND SUMMARY

Command Abbr Example of Form Explanation
TYPE T TYPE FSQT (AL t 3+F5QT (B)) Evaluates expression, types out =,
and resulf in currenf output format,
TYPE "TEXT STRING "1 Types text. Use | to generate
carriage return line feed,
WRITE \ii WRITE ALL FOCAL prints the entire indirect
: program .
WRITE 1 FOCAL types out afl group T lines.
WRITE 1.1 FOCAL prints line 1.1
1F I IF (X) 1.2,1.3,1.4; Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,
or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of
the line is executed.

MODIFY M MODIFY 1.15 Enables editing of characters on
tine 1.15

The next character typed becomes the search character. FOCAL will position itself after
the search character; then the user may

a. type new text, or

b. form-feed to go to the next occurrence, or

c. bell to change the search character, or

d., rubout to delete backwards, or

e. leff arrow to kill backwards, or

‘f. carriage return to end the line, or

g. line~feed to save the rest of the line.

QUIT Q QUIT or * or conirol-C Returns control to user.
RETURN R RETURN Terminates DO subroutines
SET S SET A = 5/B * SCALE(3) Substitution statement

ASK A ASK ALPHA (I +2 * J) FOCAL types a colon for each

varioble; the user types o value to
define each variable.

Command

COMMENT

CONTIMUE
DO

ERASE

FOR

GO

GOTO

Abbr

C

Example of Form

C - compute area

C - ignore temporarily
DO 4.14
DO 4

DO ALL

ERASE

ERASE 2

ERASE 2.1

ERASE ALL

FORI =x,y,z; TYPEI

GO

GOTO 3.4

C - The Fourteen (14) Functions are

Explanation

If a line begins with the letter C,
the remainder of the line will be
ignored.

Execute line 4.14; return

Execute all group 4 lines, return
when group is expanded or when a
RETURN is encountered.

Execute entire indirect text as o
subroutine.

Erases the symbal table.
Erases all group 2 lines.
Deletes line 2.1,
Deletes all user text.

The command string following the
semicalon is executed for each value;
X,¥,Z are consfants, variables, or
expressions. x=initial value of I,
y =value added to I until I is greater
than z. y is assumed =1 if omitted.

Starts indirect program at lowest
numbered line number,

Starts indirect program at line 3.4

FSQT () - Square Root

FABS () - Absolute Value

FSGN () - Sign Part of the Expression

FITR () - Integer Part of the Expression
FRAN () - A Noise Generator

FEXP () - Natural Base to the Power

FSIN { Yond - FCOS(), FATN {) - Trig Functions
FLOG () ~ Naperian Log

FDIS {X,Y) - Scope Functions

FADC () - Analog to Digital Input Function
FNEW {) - User Function

EX () - Extra User Function

JA -2

APPENDIX B
ERROR DIAGNOSTICS*

Table B-1
Error Diagnostics of FOCAL, 1969
Location Code Meaning

?00.00 tanual Start given from console.

201.00 Interrupt from keyboard via control-C.
0250 ?01.40 Illegal step or line number used.
0316 ?01.78 Group number is too large.
0340 ?01.96 Double periods found in a line number.
0351 ?01.:5 Line number is too large.
0362 ?01.;4 (Group zero is an illegal line number.
0440 202.32 Nonexistant Group referenced by 'DO".
0464 ?02.52 Nonexistant line referenced by 'DO".
0517 ?02.79 Storage was filled by push—down list,
0605 ?03.05 Nonexistant line used after 'GOTO" or 'IF'.
0634 ?03.28 Illegal command used.
1047 ?04.34 Left of ""=" in error in 'FOR" or 'SET'.
1064 704,52 Excess right terminators encountered,
1074 ?04. 60 Illegal terminator in 'FOR' command.
1147 704.:3 Missing argument in Display command.
1260 205,48 Bad argument to '"MODIFY'.
1406 ?06.06 Illegal use of function or number.
1466 206 .54 Storage is filled by variables,
1626 ?07.22 Operator missing in expression or double 'E'.
1646 ?07.38 No operator used before parenthesis.
1755 207 .:9 No argument given after function call,
1764 07 .;6 Illegal function name or double operators used.
2057 708.47 Parenthesis do not match.
2213 ?09.11 Bad argument in 'ERASE'.
2551 ?10.:5 Starage was filled by text.
2643 ?11.35 Input buffer has overflowed.
5042 ?20.34 Logarithm of zero requested.
5644 723.36 Literal number is foo large.
6543 726,99 t Power is too large or negative.
FARN ?28.73 Division by zero requested.
7405 ?30.05 Imaginary square roots required.,

?31.<7 Illegal character, unavailable command, or unavailable

function used.

*The above diagnostics apply only to the version of FOCAL, 1949, issued on tape DEC-08-AJAE-B

B.1 OBTAINING ERROR CODES VIA ODT36

To obtain error codes via QDT36, proceed as follows:
a. Start QDT at 3600.
b. User types underlined letters:

{change, from, to)
43201357 1275 (line feed)
4321/4745 3067 (line feed) {LINENO)
4322/1675 4552 (line feed) (PRNTLN)
4323/4246 7000 (carriage refurn)

63/2676 1355 (C.R.) (OUTDEV, OUTL)

¢. then.
M7777 7777 (line fesd)
4273/0001 4400 (C.R.)
4565W (ERROR 2)

Calling addresses and error codes will be printed here. The first two and last error codes

(00.00,01.00,31, <7) are always the same,

APPENDIX C

EXPLANATION OF NEW INSTRUCTIONS

C.1 NEW INSTRUCTIONS (see Table C-T)

c.1.1 Push Down List Instructions

The user's push down list begins at the start of the floating point package and grows up

toward the last variable. The initial value of the push down [ist pointer is contained in location

"BOTTOM". The pointer is kept in an auto-index labeled "PDLXR". The instructions used fo manage

the list are given below:

PUSHA
POPA
PUSHF

POPF

PUSHJ

POPJ

places the contents of the AC onto the list as the current entry
adds the current entry of the push down list to the AC,

saves a group of data, normally a floating point entry.
This instruction is followed by a pointer to a 3 word {or
4 word) group of data. These 3 or 4 words are placed
on the push down [ist as the current entry.

restores a 3 or 4 word group of dafa from the current
entry on the push down list according to the pointer
which follows the instruction. The location "MFLT"
contains either =3 or -4 and determines the number
of words affected by "PUSHF" and "POPF",

calls subroutine which is pointed to by the word follow-
ing the instruction. The refurn address is placed on the
push down [ist as the current entry,

the current entry is used as a return address from a sub-
routine.

C.1.2 Character Handling Instructions

These instructions are used to pick-up, save, and print characters for processing by FOCAL.

Characters are fetched from the user's storage area or from the ASR-33 input buffer, Character con-

version between 8 and 6 bits and the truce feature are handled by these routines.

PRINTC

READC

PACKC

is used to print a character. If the AC is zero upon
entry then the character in "CHAR" is printed. If the
AC is non-zero, then the contents of the AC is printed.

Reads a character from the user's input buffer (ASR-33
input) and echos all characters except line feeds and
rubouts. The character is placed into "CHAR".

places the 8-bit character in "CHAR" into the user's
storage area. If the character is a rubout the previous
character is deleted from the user's area and a back-
slash is echoed via "PRINTC". The character is

C-1

converted into 6-bit code. The auvte index
"AXIN" and the flip-flop "XCTIN" are pointers
to the user's storage area.

GETC this instruction fetches the next character from the
right or left side of the word pointed to by "AXQUT"
and "XCT" and places it info "CHAR", If a question
mark character is detected the dump switch "DMPSW"
is flipped. If the dump switch is on then the character
in "CHAR" is printed via "PRINTC",

SPNOR Blanks and leading zeroes are ignored by repeated
: calls to "GETC".

C.1.3 Character Testing Routines

These guide the inferpreter through the source text. They are testing routines used through-

out FOCAL in interpreting the program and in other instances.

SORTC the character in "CHAR" is classified according to
an ASCII list which is pointed to by the location follow-
ing the instruction. If the character is found in the [ist
an exit is made to the location following the list pointer.
If no character is found exit is made to the second location
following the list poinfer. If the character was found in
the list then "SORTCN" contains the position relafive to
zero in the [ist searched. The list is terminated by a negative
word .

SORTJ the character in "CHAR" or in the AC is classified accord-
ing to a list as per "SORTC". If the character is found in
the ASCII list, then a jump to an address is made from a
second list, The second list is pointed to by the 2nd
location following eall. If the character is not found then
exit is made as per "SORTC". "SORTCN" is not changed,

however.

TESTC this instruction fetches the next non-space and classifies
it as a terminator, number, function, or letter. The instruc-
tion then skips zero, one, two or three cells accordingly.

TESTN "CHAR" is classified according to whether it is o period
{no skip), number (skip two), or other (skip one}. If
"CHAR" is a number then its binary value is in "SORTCN",

TSTLPR This instruction skips the next instruction if the AC contains
a left parenthesis.

C.1.4 Line Number Handling Instructions

This group is used in manipulating line data and fine numbers.

TSTGRP If the group of the line number in the AC is equal
to the group on the line in "LINENG" the next
instruction is skipped.

PRNTLN the caded line in "LINENO" is printed as a decimal
fraction with group number and the step number
separated by a decimal point.

GETLN "SPNOR" is called and a line number is built in
"LINENG" via calls to "GETC". "NAGSW" is set
to indicate whether the line number was a group, line,
or "ALL" designator.

FINDLMN the fine number coded in "LINENO" is searched for
in the user's fext area. If the line is found, the aufo-
index "AXOUT" and "XCT" are set to point to the
line's text and an instruction is skipped. If the line
is not found, the pointer "AXOUT" is set to poinf
to the next higher line and no instructions are skipped.
"THISLN" poinfs to the line found on the next larger
line and "LASTLN" points to the previous/less
line.

ENDLN "ENDLN" [inks the line in the user's storage area
to the rest of his text. It uses the result of the "FINDLN"
insfruction to accomplish this. The new end of the user's
buffer is sef-up in "AXIN". This command is used for
insertion of new text, reconnecting after a deletion,
and reconnection after Modify .

Table C-1
New Instructions

PUSHJ} = JMST . /RECURSIVE SUBROUTINE CALL
XPUSH.

POPA =TAD I POLXR /RESTQORE AC

POPJ =JMP T . /SUBROUTINE RETURN
XPUPJ

PUSHA = JMST , /SAVE AC
XPUSHA

PUSHF = JMST /SAVE GROUP OF DATA
PD2

POPE=JUMS T . /RESTORE GROUP
PD3

GETC=JMS T , /UNPACK A CHARACTER
UTRA

PACKC =JMST . /PACK A CHARACTER
PACBUF

SORTI=JMST . /SORT AND BRANCH ON AC OR CHAR
SORTB

/NUMERICAL LIST -1

/ADDRESS LIST - NUMERICAL LIST

C-3

Table C~1 {Cont)
New Instructions

SORTC =JMS T .
XSORTC
PRINTC = JMS 1
OouT
READC =JMS T .
CHIN
PRNTEN = JMS T .
XPRNT
GETLN =JMS T .
XGETLN
FINDLN = JMS I
XFIND
ENDLN =JMS T L
XENDLN
RTLS = JMS I
XRTLS
SPNOR = JMS 1
XSPNOR
TESTN=JMS T .
XTESTN
TSTLPR=JMS T .
LPRTST
TSTGRP =JMS T .
GRPTST
TESTC = JMS |
XTESTC

ERROR2 = JMS 1

ERROR3 = JMS 1

ERROR4 =JMS T .
ERRZ

/SORT CHAR

/PRINT AC OR CHAR

/READ ASR-33 INTO CHAR AND PRINT IT
/PRINT C (LINENO)

/UNPACK AND FORM A LINENUMBER
/SEARCH FOR A GIVEN LINE

/INSERT LINE POINTERS

/ROTATE LEFT SIX

/IGNORE SPACE AND LEADING ZEROS
/PERIOD: OTHER: NUMBER

/SKIP IS 5 <SORTCN <11 (1. E. AN L-PAR)
/SKIP IF G{AC) = G {LINENO)

/TERM; NUMBER; FUNCTION; LETTER
/EXCESS SOMETHING ERROR

/MISCELLANEOUS ERROR
/FORMAT ERROR

C-4

APPENDIX D
FOCAL CORE LAYOUT

Table D-1
Focal Core Layout-Usage

Mnemonics Whoat
ZERO
START FOCAL PROPER
BUFBEG BUFFER AREA
BEGIN INITIAL DIALOGUE
FEXP
(BET 2+ 3)
ARTN EXTENDED
(FLAG 3 +1) FUNCTIONS
FCOS
(FLOA + 11)
TEMPO + 1)] OUTPUT
DECONVY CONVERSION
(INFIX +5) -] INPUT-
FLOUTP OUTPUT
(OUTOG+4) j ROUTINES
ELINTP
{P43+1)
FPNT FLOATING —POINT
ACMINS INTERPRETER
(RART+1)
DNORM
(BUFFER + 10)
BINARY :} LOADERS
(RIM)

Table D=2
Detailed FOCAL Core Layout

Miscellaneous

Numbers

Floating=Point Working Area
Constants

New Instruction Pointers
Variobles

START

Command/lnpu’r

Line Read Roufine

'DO! Routine

Push-POP Routines

IGOTO" and "WRITE® and Misc.
'"TFY, "SET", 'FOR' and Misc.
'ASK*, 'TYPE', '"MODIFY"

"GETARG" - Recursive Routine
"SPNOR", "TESTN", "POPJ"
‘RETRUN'

"EVAL" - Recursive Roufine
OPNEXT = read operator
ARGNXT - read operand
ETERM - evaluate terminator
FLOP - floating operations called
ENUM - number processor
EFUN - function processor
ELPAR - left parens processor
EFUN3 ~ function refurns
"DELETE" - Recursive Routine
DOK =~ group delete

DONE - garbage collection
"FINDLN" - Mormal Routine
Find exact match or next larger
'ERASE' command processor
"GETC" - unpack text and trace
"ENDLN", "PRNTLN"

[/O Subroutines

Interrupt Processor

ERROR Processor

"PACKC" - pack text

Rubout routine

D=2

*3120

Table D-2 (Cont)
/O Buffer

Command Buffer
Text Buffer Begins

Once-~Cnly Code
SELF~START

CLEAR ALL FLAGS
TYPE MESSAGE

ODT-JR {for X-FUN)

QODT-JR {for dialogue)

Floating Point Routines

{(c.f., Section 4.5.2)

Extended Functions

/O Controller
Interpreter

Binary Louder

or 8-5Y5 LIB Bootstrap
or Disk Monitor Bootstrap
Rim loader

T
E
X *4400 -
T
/
v
A
R
I
A
B
L
E
S
/.
P
U
5
H
D #3600
O
W #4500
N
L
I
S
T
*A5600
*5400
*4400
*7600
*7756
End of Field Zero
Field One
Command
Buffer

Extended Text Storage

FOCAL CORE LAYOUT

0000
PAGE ZERO
FOCAL
v o
A B
C D
3200 N
77 15 _’#*,,,f~f***’”’;> KEEXT
N | A
- VAR
s| EXP
> FREE

PUSH A

PUSH J

PUSH F
4600

5400

EXTENDED FUNCTIONS

FLOATING —POINT PACKAGE

7T

LOADERS

Figure D-1

FOCAL Core Layout

Dynamic Storage

-4

E.1 SYMBOL TABLE
FFOCAL J22M PALLY
A 7345
ABSOL 6751
ABSOL2 6153
4350L3 7375
ABSOLY 5571
ACLH ¥241
aC1L k1LY
ACHING AET3
ACTING 2771
ACTION 442¢
ACTIVE #E37
ACTYP 1143
apn ap6l
40K 347
AONNE 6673
AF 4577
ALF1 4763
ALF2 4763
ALFZ 4755
ALON BT
AL TGN K623
ALIST 1372
ALISTP D@72
ALPHY 1436
AMOUMT &T722
ARCALG 4732
ARCHTN 5974
AAGNXT 1723
AHTN 5
ASHFT 6665
ASK 1202
ATE] 4465
ATES 4513
ATLIST 157¢
ATSH P56
AXTn 10
AXOULT ag17
R AE4s
AACK s523
TASER 614
AASES 1549
AASEYX n&17?
apLMP ner
BEGIN 4371
AELLX 2534
REND 44432
8ETY 4773
HETZ 4774
RETA eo12
BETZ 4766
BF 4702
RF X 4557

v351%

Lt=APR=AD

BF XX 4554
IMOVE 1255
BUTTOM AR3S
WYFEEG 3217
AUYFFER 7479
BUFR AgsQ
BUFRS 1373
RUFRSP 3p45
BUFST 5531
[2347
b B1 113
n14 2554
144 5142
T2 123
c2rgm agss
L26d 6113
03 5346
-] 5342
r? 8336
ey 5332
CCR nB77
z0oF 704
tOF1 6211
rExX] 4504
CEXP 4503
oF 4705
BFRS P133
GFARSY 2137
LHAR o066
CHARM AB26
CHIN 2155
CHRCNT 1253
CHECON 1852
CHRT 6133
Cla TP4]
e1F 4202
CIFi 4212
CLa 7200
CLEU 7427
CLF PR74
CLL 7109
tMA 7242
GML Teze
CNTR ARR?
CNTRLC 2324
ENTRLX 0331
CNTRM paz24
CNTRT na32
{0DET ogaq
¢al 1255
COMBOT @226
GOMBUF BL32

APPENDIX E
SYMBOL TABLE AND OTHER TABLESLISTS

15134

PAGE 121

COME TN
COMENY
coMGN
COMLST
COMMFN
CONL
CONTIN
CONTH
NSTaAR
ETABS
n
DaTUM
DATUMA
DCONP
DCONT
DCouMT
DpT e
OEBGSW
REECK
NECK®P
OECHH
DECONY
OECP
DECR
DELETE
GF
DGRP
DGRP1L
NG
nIGIT
DIGITS
BIvy
nive
NIVIDE
DLISTP
nPMOOME
DMPSHW
DMULT
DMUL T4
DNORM
DNUMRR
0

DOK
DONE
DOONE
NOUBLE
DPECVYFPY
0PN
oPT
DSAVE
DYABLE
DIST

3148
3206
1163
a774
Asie
537
1147
PATS
p225%
LELE
pael
7182
7252
6303
PeTL
6143
2a04
2026
pa4d
a107
5627
5600
5533
5523
4565
4710
0425
Mq4]
5543
5713
PERY
8754
6757
7152
7102
7063
pLoa
7004
7836
7335
5714
2420
2111
2127
2463
9127
4302
6305
6145
5440
2070
8647

DUBDIV
QUBLAD
DUMLNZ
ovl

E
EBELL
ECALL
ECCR
ECHO
ECHOLS
EFOP
EFUN
EFUNZ2
EFUN3
EFUNI]
ELPAR
END
ENDF !
ENOQLN
ENDY
ENUM
EQUT
EP7
EPAR
EPARZ
ER3
ERASE
ERG
ERL
ERR2
ERRQRZ
ERRQRJ
ERRQOR4
ERRQRS
ERT
ERY
ERVX
ESCA
ETERM
ETERM]
ETERM2
ETERMN
EVAL
EX1
EXASK
EXCHEK
EXCHE
EXCHEL
EXGO
EXGON
EXIT
EXITL

7261
5733
2e12
7247
g4z
p512
1601
2632
2454
1624
[.]3-1.
1743
1754
2017
gi3e
1743
2134
p243
45%6
#1335
1732
AAT4
pO%2
170
1765
4555
2204
222%
2222
2724
4566
4546
4566
2725
2el4
2217
2237
2532
1647
1427
1455
1644
1643
fg4p
2662
1037
1872
261%
1ea?
1215
2044
5a34

FFOCAL ,£74

FXIT?
FxIT2
FXTITY
Favpn
Fur
FAPRIM
EXPRM
FXPRYT
FXRD
FXFEAD
Faegn
FXSWP
FATR

F
FOONT
FCeS
fFoousT
FEMDZ
FEXP
FEXT
rgne
FGN3
cGnd
FGno
Final
FIGo4
FINCR
F] MOLN
FInDM
FIMFIN
FINKF
FINPLT
FIMT
FISW
%]
Flxm
FLAL
FLAD
FLaGl
FLAG?
FLARG
FLARGP
FLDMY
FLEX
FLGT
FLIMIT
FLINTP
FLISTL
FLIST2
FLMY
FiL.0G
Fi,NP

BALL.

5372
7363
7661
2657
b LX)
62E
162
1873
1214
2675
1254
1142
2313
rR43
1171
52249
5535
2257
4672
302
tdil
327
4R34
LY.
4221
4261
1945
4855
2244
1137
1133
4131
4427
7852
6774
8753
ngédq
4506
5162
4725
2e3g
#125
7127
6815
6467
1275
6238
577
n574
4583
5049
1674

V515

12-4PR=B9

FLouT S55¢
FLOJUTP £8028
FLPT 6465
FLSuU 45PE
FLTOME 24p%
FLTXR 814
FLTXR2 QE1%5
FLTZER 2487
FMl2 £1472
FKEG 5163
FNOR Taee
FNPT 4554
FNTARFE 2374
FNTARL 2145
Fog 141
FQUTRY 7134
FPACS 7474
FRNT L4PQ
FPRAHT S445
FRST 3206
FRSTX 3218
FSIN 522%
FXIT apep
1N 4466
GECALL 1462
GEND 2334
GERR P34P
GET1 233g
GETS 2345
GETARG 1403
GETC agas
GETLM™ 4554
GETSCN 1045
GETYAR 1487
GEX]T r352
GFNDL 1585
GINC p7e
GLIST 1377
GO 5821
GOCR a451
GONE P232
GOTO 603
GRPTST Q744
GS1 1437
652 1463
653 1441
G54 1454
GSERCH 1426
GTEM nd21
GZERR g362
HINBUF 9837
HLT 7402

F-2

19138

OAGE 121-1

HOLD re3s
HaLn?t 1276
HoLon 1277
HORD ng45
HREAM 6321
HREANZ £324
HEGOR L3654
HSP nz273
H5PELK 8375
MEPY 4361
[ThL] 273
MSW]TC #3443
HTST &376
133 2414
tac 791
1BAR ngiz
TBUFT n156
1guFn s N2}
TECALL 1037
IF 1213
1Fs 1035
TF3 1825
IGNOP 2217
1GNORE 7447
tLIsT [l i
IN 5513
INRYF Pa34
INDEV roéd
{NDRCT 4463
INFIY 24m1
INTTL R:J:p
TNTTLE 3311
TNLIST 2578
tNQan 4327
INPUT ny%é
INPUTX #2711
INBUR A3
INTERE #D%3
INTRPM 920}
INTRPT 24323
toayF 3129
10F &902
1ON 6021
107X "118
IPART 1048
IRETH 2227
JTABLE 4573
1TERY 7470
JUMP 5462
(4] 5525
KEY 2321
KEYX A447

KINT
KRB
KSF
KSF1
K$F2
KSF 3
KSF 4
Ll

L2

L3

L4

LBA
LBAX
LBAY
L88
LASTLM
LASTOP
LASTV
LGON
LG2E
LIBRAR
LINEND
LISTS
LISTS
LIST?
LISTGQ
LISTL
LISTF
LoG2
LOGS
LOGS
LOG?
LGGS
LOOKUP
LoaPR1
LORD
LP7
LPRTSY
Miga
MLAPT
M11
Mle
M137
Hi4p
M144
Mg

M20
MZRa
MZPBM
H24Q
MZ4AM
LF{.1

2625
5836
4P31
s401
&421
4441
481
5126
5133
5134
5137
4553
45%3
4552
4551
PR25
PB55
231
n371
4713
7503
Pa67
eRr7
nar2
P8T4
1370
2223
1145
5157
5142
5145
5159
51%3
4571
6431
PR46
7584
2035
ie1
6147
mi21
2413
2357
re3-1.1
6137
P11
aLes
L1 LT
APSs
pLL4
3346
1528

JFOCAL, 270

M271
M4

M4
Y“49M
MgM

hd 3

MEM
M77
MBRE &K
vEzae
MCOM
MER
MCRM
"0
MDECK
MED

HE
MELY
MIF
“MINE
MINSK]
MINUSZ
HINUSA
MINUSE
MINUSZ
MLISTR
MQn
MODIFY
“OVELD
MOVERD
MP1
MPil
MPLT7T
MP2
MPE
MP4
MPS
MP &
MPER
HPLYS
MQ

MQA
MARD
MSPACE
MULDLY
MULTY
MULT1@
MULT2
MULTY
MX
MEERD
NAGSHK

PALL®

1827
141
2358
2057
2061
2129
1162
7123
-
7446
1136
A416
063
5576
Apa3
1135
ne0e
ai17
7268
S662
a5y
7153
7112
6301
5663
@77
5215
1256
1232
1243
7254
a575
2445
7256
7255
7208
7253
7210
#1115
5664
35
7501
P44
5665
7101
4566
5667
5715
4752
4533
aARe7
fR&sS

v515

18w iPRmET

NEGP 4724
NEWLU PEag
MEXTR 1144
NEXTU 1145
L1 7301
NL 2 7326
N 2@ae 7332
NLI??? T35¢e
N4 T3IXY
NLETT7 7382
NLZT?S 7348
NL?7TE 7344
NQECHD #4845
NOP 7029
NORF 6513
NORM 8587
NORMF 7147
NOUSRS PB73
NOX 58675
NOX1 $711
NQXZ2 &704
01 4179
02 4544
N4 44472
ns 45463
0é 4554
OBUF Mip4
OBUF I nLEs
OBUFD P18
OFFDEC 4422
OmM12 5539
ONDECK 4421
ONE 4714
QouT 4544
ne 3115
OPHMINS 5565
OPNEXT 14622
OPTARL 1731
OPTRP 2683
OFTR1 2665
OPTRN 26584
oPUT 5532
OTHER PZ2i5
oyrT 2445
ouTA 5535
OUTCR 2476
OUTDEY Q@263
ouTDS 6354
T, 13%4
ouUTX 2475
OVER] RO4Z
OvER2 247

19138

PAGE 121e2

g id 11"
PLA ' L
rLED P34
sipare rRas
By 2965
P1é i 811
pLdg 6532
P17 aLe?
P1Y7 7106
PLTM Be54
P2 45846
P2Y 2p55
rZOQr 2373
Fe? 6752
Rr277 2Lie
pPaM fraz
P3 2934
P33z 7S
P37 geée
P377 2553
P4 ggeR
P47 £55%2
PAGEM pL24
P43 4314
P§727 1LY
p? 1545
pPFOAR oL
PI976 p764
LR LT 14 2404
P77 122
PFTaM 21031
P7FaR 2372
PII5N 2763
P7757 2351
PTIM AR4S
Pas 2524
PACHUF 2502
PiCHKT 4544
PACKST P27
PACK 2538
PaLG 8261
PARITY p3p2
PARTES 2947
PC pozz
PCL 25614
PCHECK B24%
LT a510
PCK1 2535
RCM aiel
PR2 2534
LAvh] 25%4
POLXR 2043

PDP
POPS
PDPEY
POPE!
PED
FPER

Pl

P12
RIOY
PLCE
PLS
PM2E0P D
PNTR
POPA
POPF
POPJ
FPTEN
PRINTC
PRINT(
PRANT
PRNT2
PRNTE
PRNTT
PRNTLN
PROC
PROCES
PSIN
PTL
PICH
PTEN
PTEST
PUSHA
PUSHF
PUSHJ
R&

RAL
RANQ
RAR
RARL
RARZ
RDIY
READC
RECOVR
REGOVX
REMAIN
REPT
RESOL
RESOL3
RESOLS
RESOLY
RESTAR
RESTQR

4542
as7e
4463
4547
6135
give
131
5336
5316
5534
5025
1144
AR31
1443
4544
5541
B1l44
4551
7550
2442
3114
7527
61312
458%
2611
610
P45
aa3R
126
6275
1457
454z
4547
4549
5443
1884
1532
7210
6571
6572
152
4552
274p@
2761
5712
6146
6752
7376
6304
173
LET:}]
B304

JFOCKL (Z2M

RESTP
RESUME
eET
RETRN
RETURN
REVIT
RFC
RMF
RNAZ
ROOTHO
QT
RQUNND
RR®
RSF
RTL
ATLE&
RTR
RURY
RURZ
RUR3
RUR4
QBURS
RYRLT
SAC
SADR
SAVAC
SAVE
SAVLK
SBAR
SCHAR
SCONT
sgourt
SET
SETW
SETHI
S5EX
SEXC
SFOUND
8607
SIGN
S16GNF
SILENT
SIM
SING
SIMGLE
SKP
gL
EMA
SHIN
SMP
SHSP
SN

Pab1?

6377
2623
5452
1563
5536
7146
&dl4
4244
5527
7461
2507
6151
APl
&011
7288
4557
7eiz2
Igra
3g42
323
337
Ipay
2555
2933
61959
262¢
3751
2621
1382
1273
127¢
5534
1941
ps27
re2s
134¢
F74L
1306
1312
7124
7250
P343
2662
mazL
26356
Y418
B34
7500
6136
5121
6134
7453

¥515

1d=atR-69

SN T42
sSQRTE 1314
SQRTE 455
SQRTCH Pd%N4
SORTY 4547
SPa TSLe
SPECIa &777
SPL Tafe
SPLAT g5
SPHORF 4569
SQravwl Tae7
SGENP 7455
SRFT™ rz2é1
SRNLST 1353
ST4RT 2177
STARTL 5064
STARTY BEse
5URS 1517
SZ4 Tadyg
SEL 7432
T nppd
T1 nR3z
TL? 4428
T2 2471
T2 2624
T3 PR3]
TAR|T 6464
taci 6723
TasK 1204
TASKS 12%1
TCF h24;
TCRLF 1251
TCRLF2 124¢
TOuUMP 3ese
TELSW ra1é
TELSwL P27E
TELSwZ A27é
TELSWI 2277
TELSY4 M3Pg
TELSWS A3RL
TE 5154
TEMP 4724
TEMPY g2
TEMPT g2y
TEMPY ag3g
TEY 6271
TENRT 4152
TERMS 1770
TEST? 6736
TEST4 73646
TEST& n3zy
TESTC 45864

E-4

19138

PAGE 121=3

TEST® A543
TEX[? r744
TEXTS 1610
TEXT~ p75
TEXTF w17
TEXTFM 2274
TGN 5478
THIR 7257
THISLN 2273
THISNP @24
TINTR 1241
TLtST 1490
TLISTEZ 1424
TLISTI 2377
LS £348
TP £QA4
TQuoT 1232
TR £573
TRT1 1163
TRCZ 1164
15F 341
T15F1 6411
TSFP LERY
15K 3 6491
T5F4 5471
TSETGRP 4563
TSTLPR 4562
TYY n322
TTYPY P347
Twn 4721
TWOPTY B3ré
TYPE 1223
TYPE? 1226
INTE"¥ 7633
JPaR ABH6
USER*D M4l
SERTS 1219
T 2276
uTa 2375
UTRA 7274
1Y 2316
VAL ral2
WaALL nHs4
WQRQDS 2893
WRTTE 2635
ATEST2 Fe%53
WTESTG 76467
WX A8T3
X 5322
%1 5235
X2 4475
¥ 2656

XAHS
XACTIO
xADC

1 4:]
XAUF
XCOM
XCT
XCTIN
ADECK
XDELET
XDYS
XENDLN
xF
XFIND
XGETLN
X133
KN
XINPUT
XINT
XKEY
XOUTL
¥RPOPJ
XPR
XPR2
XPRNT
XPRANT]
XPUSMA
KPUSH,
¥R18@
XR11
XRi2
XR13
XRAN
XRARZ
ARSTAR
XRT
XRY2
XRTL&
¥SGN
¥S0RTE
XSPNOR
XS02
XSOR
XSQART
XT3
XTOUMP
XTESTC
XTESTN
XTTX
XTTY
KXTTY
bAE]

2314
2643
1343
2655
514
ne23
@20
1. ¥4
FaA0
2942
1142
2363
4560
2242
A3re
2666
&3S
5866
11682
%412
25676
1965
1862
1064
2425
1213
n477
2521
012
2811
aR12
7oL3
1553
7385
n3i2
ag1l
agaL2
g4
2014
A721
1517
4676
5326
7400
rrL7
293S
ATAD
1533
n727
*718
n7az
2451

/FOCAL,Z2AM PalL1? V515 10-4PR=6?

ZERD 6520

ERRORS DETECTED: @
RUN=TIME! 32 SECONDS
6K CORE USED

19138

PAGE 121~4

E.2

OTHER TABLES AND LISTS

ZLLST OF FUNCTYION ADDRESSES,

373 FNTABF=.

1373 2214
4374 2810
1379 1161
1276

1377 1%;%
A477% 1344
3471 5439
Jere 45820
1433 5448
3444 52975
1475 5279
14756 7498
1427 2725
141@ 2725
1411 2725
14 2p3p XRTL6,
141% 7126
j414 7Qdé
1415 7@d6
4416 5612

p775 COMLST=,

94775 ©B323
@776 @326
2777 B311
102 Q394
1621 8337
1022 B3IL3
1623 83921
124 B324
167% B314
1?36 93@5
a7y BP3xo7
E1p 0@%5
1611 B321¢
1€l 8322
1013 @212

XAHS /ABS -ABSOLUTE VALUFE
XSGN /SGN «-g1GN PART
XINT /1TR =INTEGER PART
xDYs /D18 =DISPLAY AND INTENSIFY
XRAN /RAN ~RANDOM NUMBER
XANDC /A0 =qFaD ANALOG TO DIGITAL CONVERTER
ARTN FATN -
FEXP JEXP =EXPONENTIAL FUNCTTONS
FLNG /L06G -
FSIN /SIN =TRIG FUNCTIONS
FC ICag -
«sBRr ss8% -souare RooT
ERRORS /NEW ~USER DEFINED FUNCTIONS
ERRQRS /COM -
ERRQRS /X -
7] /ROTATE AG LEFT SIX = "RTLG"™
CLL RTL
RTI.
RTL
JMP 1 %RTLEG
/ENGL ISH_FRENCH
/COMMAND DECODING LIST
323 /SET = ORG,NIZE
308 /FOR = QuAND
311 /1F - 8]
304 /00 - FAIZ
3p7 /GOTOD VA
303 /cOMMENT= pOMMENTE
3e1 /ASK = DEMANDE
324 /TYPE ~ TAPE
314 /LIBRARY= ENTREPOSE
305 /ERASE = BIFFE
7 /WRITE =~ INSCRIS
gEE /MOOIFY =~ MQDIFIE
321 /QUIT = ARRETE
322 /RETURN = RETQOURNE
212 /tASTERISKY=EXPANDABLE COMMAND

(NAMES ARF IN “FNTABL")

1164
11565
11606
1167
1174
1173
1172
1173
1.74
1475
1176
1i77
12084
1271
1222

2165
2160
2167
21743
2171
2172
2173
2174
2175
2176
2177
2220

2201,
2292
2283

1164
1p42
142
114
@417
2694
2615
1243
1224
7503
2204
P636
1257
3177
1563
6361

2165
2533
2658
2636
2565
26319
2517
as72
2624
2629
2654
257%
2792
2633
2567
2338

cOMGO=y /cOMMAND ROUTINg AgpRESSES

FNT“BL='

SET

FOR

1F

Do

GOTOD
COMMENT
ASK
TYPE
LIBRARY
ERASE
WRITE
MODRIFY
START
RETRN
HSPX

2533
2659
2636
2565
2638
2517
2572
2624
2625
2654
2575
2702
2631
2567
2330

/{REFERENCED)

yRETURN Tn COMMAND MODE VIA 'QUIT!

FACTIVATE THE HIGH SPEED READER

/ABS
/SGN
FITR
/018
FRAN
/AQC
FATN
FEXP
/L,06
/SN
/C0S
/507
/NEMW
/COM
/X

E-7

/t.1ST OF CODED FUNCTION NAMES

ZAUAD » MULTI=JSER SYSTEM W]TH FOCAL,#2K

6451
3355
2456
D333
BIZ6
2333
3333
2333
2456
3333
@333
B467
A333
A467
3453
8333
2333

2333

8345
#333
P351
7333
8333
8333
2458

2

2333
9451
2451
2451
2456
B453

/CONTROL TABLE

TGNORE
CTaBSs
ECHD
CNTRLX
CNTRLC
CNTRLX
CNTRLX
CNTRLX
ECHD
CNTRL X
CNTRLX
NOECHO
CNTRL X
NQECH(Q
GCCR
CNTRL X
CNTRLX
CNTRLX
CNTRLX
SILENT
CNTRLX
TTYPE
CNTRLX
CNTRL X
CNTRILX
ECHO
CnTREX
CNTRLX
I1GNORE
IGNORE
IGNORE
ECHD
GOCR

-8

PALL1B

/LIT.

v1i33 14~MAR=£9 15149

/tA=HOME

/tB

/C=END DF MESSAGE
/Db

/E

/F

/G = BELL

/H

/1

/J =~ LF,

7K

/L ~FF,

/M =C,R,

/N -

/B

/P

/0

/R=YAPE

/S= (7802) = FCR DEBUGGING
/T=NOT TAPE
/U

Fa'

/W =E,0,MED]A
/X=ERASE

/Y

/¢

/0

FAY

/1

JUPAR =
+LEPTARGORO

“4%0RD (10 UIGIT)

78
4116
321¢
3211
3za12
3213
5526
5927
5310
5314
532¢

6143

6277

h432
65472

6736

7936
7125

7072

apid4
aete

205,
NeaM

ar7y
Agne
di16é
7774
3210
2435%
6427
1722
AgqIm
5526
7766
?P13

531¢
3755
5514
375%
532¢
375%

6143
7765
6277

3146

6412
7418
6540
7800
6736
gp43

7836
3275
7105
7880
7¢72
7082

OVEKRLAY FOR FOCAL,#ZK PAL1D V133 14~MARST 15154

F4WORD (14 UIGIT) OVERLAY FOR FQCAL,7ZK

WORPS=4
DIG{TS=12
#F ISk

¥
#GINC

WORDS+2
*MELT

~WORDS
*FHGT+2

TEXY @Cr4uwnR0@

MU
-DIGITS /EXTENDED LENGTH OF OUTPUT FORMAT
DIGITS+1/RND2
HTHOPI+2
3755 /CORRECT CONSTANTS
*»pl+2
375%
WpIQT+2
3755
#0COUNT
-DIGITS-1
#pTEN+2
3146 /CONSTANT ONE
!FPNT#Z
SKP /00 NOT CLEAR DVERFLOW WORDS
*#ZERO+2H
NQP
*»TESTR2
43
«0OMUL T4
DCA DATUM=S
*MULDIVeq
NOP
#OMDONE+7
NOP

4WORD (1@ UTGITY OVERLAY FQR FOCAL,ZEK PALLD

7240

7271
7272
7273
7274
7275
7276
7277
7378
73721
73982
7323
7324
7325
73726
7327
7312
7341
7312
7313
7314
7315
7316
7317
73120
7321

7264
77%5

7271
10473
1947
3253
7abia
1642
1046
3256
7804
1045
1941
7424
5312
3545
1258
3047
1256
3346
7200
1254
7004
3254
128¢
7024
1220
1335

2¢91

sMIF

#UVE+2

-q3

TAD
Tan
0Ga
RAL
TAD
TAf
DCA
RAL
TAD
TAD
SNL
JMP
nCA
TAD
DGA
TAD
nca
Cla
TAD
RAL
NCA
TAD
RAL
nCA
TAD

OVERL
QVER?
MP5

ACLL
LORD
MP?2

HORD
AC1H

r*6
HORD
MPS
OVERZ2
MpP2
LORD

MPY
MP1
mp 4

MP 4
DNORM

NOPUNCH
FIELD 1
XLIST

E-10

V133 14-MAR=-59 15154

/COMBINE ONE POSITION AND
/SAVE RESULT

/ADD QVERFLOW

/SKIP IF OQVERFLOW

/UPDATE FLAC

/CLEAR ACCUMULATOR
/SAVE OVERFLOW BITS CIRCULARLY

/8K

OVE<LAY FOR FOCAL,Z7K

6291
3@1@
294¢

A4

2190
ap22
2020
A231
3226
206¢
2126
3131
7¢12
4132
212¢
7134
ar2e
4166
2565
6168
6173
7557
7564
2572
2128

/8K

OVERLAY FOR FOCAL,Z2K

PALLLA

V133 1l4=-MAR-69

15157

PAGE 1

JTEXT 1S IN FIELD 1; VARIABLES ANGC PDL ARE IN FIELD @

’.SAVE STBK1()=7577;200
/L SAVE FCLBIA=3377;
/«SAVE NULBI1IQ12231@113

/ SAVE NAMRI1D1¥3=(B);19113

ChF=6201
Rz
FIl1ELD ¢
LINE@=s1ap
wp
5]
*LASTY
COMEQUT
*BUFR
LINE1
*«COMBUF
14
«CFRS
LINER
#ENDT
LINE1
#1648
opC, ROT+5 /PC
DTHIS, THISD FTHISLN
DpTg, PT10 /PT1
DXKT, XRTD FITAD T XRT)
DAXEN, AXIND F(0CA 1 AxIN)
CAX UT+ AXaUTD ZCTAD 1 AxayuT)
DLIB; DL?Ba FLINK FOR

K L=COMMAND

Fa-1

OVEILAY FOk FOCAL,#%K PALLE

2020
2821
JL B2
apA3
4524
2925
23826
a2az

3120
2121
2122
21323
2134
2125
2138
4127
211¢
2111
2112

4113
dila
2115
a116
2117
3120
2121
2122
3123
A124
2125

2020

091

g V)
.
S5

o

2000
SDED
2090
LD,
5051
2060
2126

slog
G620

APAQ
2355
7213
40086
1783
2114
4700
6171
6671
7715

6291
1¢@7
3426
6202
5525
6g22
1496
3007
6203
552%
7630
B126

vRde
egon
“pdn

V133 14=-MAR~69 15157

LI IR IIIISP L AL SIS LIS EL PP p 220070700777/

FIELD 1
*pope
#
a
a
a
a
5451
BUFR
LINEL
@

/EERD PC

/TOUMP DATA

@
TEXT ®C=8K FOCAL ®

6174
4671
7715
S5T8K, CuF P sSTART 8K USER FILE AT THIS ADDRESS
TAD 7
DCA ! 6
cIF P
JMP 1 RLIB
bi.i188, 10F
TAQD T &
nca 7
CciF cDF P
JMP] el
RLIH, 7842 FRETURN Tg DISK MONITOR,
LINE1=|
FIELD @2
L3141
2
NOPUNCH
XLIST

APPENDIX F
FOCAL SYNTAX

Table F-1
Syntax in Backus Normal Form

<immediate command > : : = <program statement > C R,
<indirect command >: : = <line # > <program statement >C.R.

<line # >: 1 = <group no. > * <line no. >

<group no. >: : = 1-31

<fineno.>::=01-99 | 1-9

<program stafement > : + = <command >|
<command > <space > <arguments >» | <command string > |
<program statement >; <program statement >

<command >: : = WRITE | DO | ERASE | 6O| GOTO

<arguments >: : = ALL | <line # > t <group no. >

<command string > : : = <type statement >] <Library statement > |

<Ask statement > | <If statement >
<Modify statement > | <Set statement >
<For statement > | QUIT| RETURN | COMMENT | CONTINUE

<Set statement >: : = SET <space > <variable > = <expression >
<For statement >: : = FOR <space > <variable > = <expression >,
<expression >, <expression >; <program statement > |

FOR <space > <variable >= <expression >, <expression >;
<program statement >

<If statement >: : = [F <space > <subscript > <line # >; |
IF <space > <subscript > <line # >, <line #>;]
IF <space > <subscript > <line ¥ >, <line # >, <line # >
<Ask statement > : : = ASK <spuce > <Ask arguments >
<Ask arguments > : : = <operand >, <Ask arguments >|
I <Ask arguments >| # <Ask arguments > |% <format code >, <Ask arguments >
" <character string > " <Ask arguments > |<nu|l >
<operand > <space > | $
<format code >: : = <line #> | <null > | <group no., >
<Library statement >: : =
LIBRARY <space > <Library Command >
<space > <file NAME >
‘<Library Command>: : = CALL| SAVE| DELETE| LIST

F-1

<character string > : : = <null > | <character > <character string >
<character >: : =a=z | <digit >| <special symbols >
<digit>:: = 1—-9| 0

<terminator >: : = <space >| |7 |C-R.

<not space >: : = <null > | <character >

<special symbols >: : = &| ' |:| @
<leader-trailer >: : =@ | [2001] <null >

<File name > : : = <character string >

<data [ist > : : = <variable > | <variagkle >, <data list >

<Type statement >: : = TYPE <space > <Type arguments >

<Type Arguments >: : = <Ask arguments > | <expression >|
<Type arguments >, <Type arguments >

<Modify statement >: : = MODIFY <space ><line #>

This command is then followed by keyboard input
characters defined as <search character >

plus

<null > | <character string >| <control character >|
<character string > <control characters >

<control charcter >: : = [bell <search character >|
[form3 | [Fine-feed | C.R. |

[AC1 | = | [rub-out]

<Variable >: : = <letter > | <letter > <character >|
<Variable > <subseript >
<Subseript > : : = <left paren > <expression > <right paren >

<operand > : : =<variable > | <constant >| <subseript > | <function >

<lefrparen>::= <| (| [
<right paren>::=> } | 1
<expression >: : = <unary > <operand > | <operand >|

<expression > <operator > <expression >
<unary >: : = +| -
<operator>::= t|* | /| +]-
<Function >: : = F <function code > <subscript >

<function code >: : =SIN .| COS | LOG | ATN | EXP
SQT | ADC | DIS |ITR |
ABS | SGN | RAN | NEW |

NOTE

Spaces are ignored except when required.

Commandments Francais Pour Le Calculateur Electronique "IGOR"

Table F-2
FOCAL Commands In French

English French Letter
1. SET ORGANIZE C
2. FOR QUAND Q
3. IF 51 S
4, DO FAIS F
5. GOTC VA v
6. COMMENT COMMENTE C
7. ASK DEMANDE D
8. TYPE TAPE T
9. LIBRARY ENTREPOSE E
10. ERASE BIFFE B
11, WRHE INSCRIS 1
12, MODIFY MODIFIE M
13. QUIT ARRETE A
14, RETURN RETOURNE R

CE N'EST PAS PARFAIT
MAIS "IGOR" EST INTELLIGENT
IL COMPRENDRA

NOTE
" GOR" refers to PDP-8/1

F-3

APPENDIX G
ILLUSTRATIONS

Cra —ry é]
C_e >—+

4
LASTOP
=0

TEST
18t
CHA&R

o
Caw

— v
(OPNEXT-2

— =7
PUSH J
GETVAR
{PT1) = VAR

T S—
]
TEST

FOR
TERMINATOR

NO

ERROR 4 ETERMN

Figure G=1 (Sheet 1) Arithmetic Evaluation

,l FLARG = ZERO
PT2) = FLARG

ETERMN —_—

THIS
LPAR
7

y
NO

(ETERM } -
THISOP =
SORTCN

ERROR 4

R2AR
?
THISOP =
9
THIS
=
LAST
?

| LOAD LAST
QPERATOR

(ETERMWZ }

3

EXECLTE LAST
OPEIATION
LAST = YES
POPA
THIS =0 POPJ
LASTOP ?

ETERMZ

RETURN

Figure G-1 (Sheet 2} Arithmetic Evaluation

G-2

SET (PT1}
ENUM =
FLARG

SET INSUB
TO USE
GETC

EFARZ

FINPUT

¥

(OPNEXT)

LAS_TOP
THISOP
ARGNXT 3
é‘

ERROR4

_ DUMP EXTRA
EFUN 4 ARG

OPNEXT-2 pa— EFUN3

Analysis of Operands Analysis of Sub-Expressions and Constants

Figure G~1 (Sheet 3) Arithmetic Evaluation

G-3

ASSEMBLE
C_EFUN CODE NAME _ j

(EFUNZ >‘_'_"'_‘

4

SORTCN

LPAR
1

YES

POPA

GET BACK AMD
BRANCH ON
NCTION CODE

L
‘ ERROR4)

ILLEGAL

NAME

NG

ERROR4

l

FNTABL FNTABF

L

ARG = FLARG
PT1) = FLARG

CHAR = RPAR,
COMMA OR C. R.

L

LIST OF LIST DF
CODED NAMES FUNCTION
ADDRESSES

TYPICAL FUNCTION
COMPUTE

THE
FUNCTION

LEAVE
ARGUMENT
IN FLAG

EFUN3

NORMALIZE
AND SAVE
IN FLARG

ARTEST]

t DPMEXT ,

Figure G-1 (Sheet 4) Arithmetic Evaluation (Analysis of Functions)

Gi=4

FUNCTION
RETURN

OR START
INITIAL DIALOQG

INIT PC=0
START ORKING PomTERsl_'I DNPSW =1

PRINT
‘*-

——

{ IBAR }

PREPARE
COMMAND BUFFER

-~
-

WAIT FOR

‘ |IGNOR }

READC

SORTY

‘ IGNOR+4 }

PACKC

INPLIT

t

PC=(PC)
LOAD PC+1

FINISH PACKING
C.R,

IN LIST

{ IRETN)

Figure G-2 Command/Input

ON LINE
COMMAND

START

TESTN

DELETE OLD
LINE AND SET
POINTERS

—

SAVE
THE TEXT OF
THE LINE

START

MANUAL RESTART WiA LOC 200

C %200 y»(eEoN)

RESET ALL
POINTERS

ERROR2

(PR Q0.00

PC=
THISLN

1
{ START)
PROCESS — "
PROC

IGNORE

SPACE ","

coL 'y BRANCH OR

. COMMAND
l CHARAGTER

PUSHA GO T COMGO
COMMAND NEXT
CHARAGTER TERMINATOR

SORTY COMLST

{ ERRORZ }

Figure G-3 Main Control and Transfer

G-6

SAVE NEXT

CHARACTER
CONTINUE
PUSHF
Tgi"rp DATA (S
SAVED

YES

ONE

NOT
THERE
ERRORZ
oK

DGRP -
F .
INIT TEXT
POINTERS . I PUSH,
SAVE NABSW PROCESS
PUSHF
— DCHAR
v LINEP LINEND

PUSHY
PROCESS
-2

Figure G-4 DQ Command

ASK

D

{ TASK s |

D1SABLE
THE TRACE

GETC

L

SORTJ

pouy
L
-y

PRINTC

ATSW = —

FOR "ASK"
REMEMBER
WHICH COMMAND
THIS IS
ATSW:= 2
FOR"TYPE"
ALIST
%
ENABLE
THE TRACE "
I
YES -
SORTJ
##
$
5P
C.R.

VAN

Figure G-5 (Sheet 1}

v

ATLIST
TINTR

TQUOT
TCRLF
TCRLF2

TOUMP

TASK4

TASK4
PROCESS

B

E— TYPE
l GE—' CR+LF
LisT2 TLISTS
u ‘ TASK4 l
TYPE
cR PCL gLy

Input/Qutput Commands

G-8

TASKG

/\
AS
P

¥

PUSHJ
GETARG

INSUSB 1
TG INDICATE USE
OF READC

SAVE THE
LAST
CHARACTER

I

PRINT

w,n

‘

POINT TO
INCOMING
CHARACTER

e

K. FINPUT

N

RESTORE
THE LAST
CHARACTER

B5IC }

Figure G-5 (Sheet 2)

K NO PUSHJ
ES

TINTHD

READ AND
SAVE FORMAT
DATA

{ TYPE]

Input/Qutput Commands

al-9

READ TQ
“="8iGN

PUSHJ
EVAL-1

INITI&LIZE
THE
VARIABLE

N

HUHS

[l

FLIST!

PROCESS

P

SORT) |

Figure G-6

SAVE
VARIABLE

ADDRESS

RE AD
FHE LIMIT

(ERROR4]

|

FLIST2

FLIMIT FLIMIT

SAVE THE
INCREMENT

PUSHJ
E¥AL=1

SAVE LiMIT
AND
TEXT POINTERS

FINFIN

SET THE
INCREMEMT

TO +1

I FCONT }—
&

Iteration Control

o

1

PUSHJ
PROCESS

UPDATE
THE
VARIABLE

NC

TLIST

TESTC

/2\
N AN O U

-

@wss (7
Y _
ENABLE

l g e <3ETC

/

YES
RIGHT)
LINE GOTO

TLIST TLIST
1F1

- \ PROCESS
CR

PC

Figure G-7 Conditional Branch Command

G-11

AR

MODIFY

NO
= o—1

SCONT+ 1 y

L
L

READ A
LINE NUMBER
FINDLN T
NO -
_ YES
SET ALL
POINTERS
FOR INPUT
YES
LINE =@
?/
READ KEYBOARD ASR 33
y
SAVE SEARCH
CHARACTER
GETC
y
.
LUNTE] wisTs LISTGO
SRETN
4
=
SORTJ

!

SGOT

Figure G-8 Character Editing

"

LG

RESTART
INPUT
POINTERS

SFOUND

READC

SORTJ

PACKC

LISTE

FORM-FEED

BELL

LINE-FEED

CARRIAGE - RETURH

SEARCH CHARACTER

SRNLST
SHAR

L
SCONT
SRETHN

SGOT

E ERRORS

RESET TEXT
POINTS

ERV ——————— g

RESET
VARIABLE
LIST

POPJ >

SET UP A

{ DONE BASE FOR
THE BIG NOR

NOR ALL
TEXT LINES

GARBAGE COLLECTION

DELETE

Figure G-9 (Sheet 1) FERASE and Delete

G-13

Comme >—— o
GETLN
INDL N |—d
b
SET UP
ANN FOR
'DELETE"
L
FORCE A
RETURN TO
'START'
ERG
X
DELETE
ONE LINE
ADD ONE RO
MEASURE LENGTH
OF THE LINE YES
l ERV
REMOVE THE
POINTERS

'

SEARCH STRING
AND
CORRECT POINTERS

OQNE

Figure G-9 (Sheet 2) ERASE and Delete

G-14

INTRP

S5AVE
STATUS

‘ exaT }

KEYBOARD NO TINT)
MANLIAL
INTERRUPT “»'ES REcovﬁ———
VIA AC. —
o
ERRORZ D
ANY
SPACE FOR 10
INPUT
TYES
SAVE NO \
INPUT DATA B“?,NK/
YES - |GNORE
S S —
TTY Ne EXIT }
[
YES
CLEAR FLLAGS
any MORE PO EXIT)
4
TYPE BND
NOR THE
FOINTERS
RESET EXECUTE
MACHINE mall HIGH SPEED
CONDITIONS READER

|

I

SAVE
ERROR NUMBER
TURN ON TELSW

RESET alLL

POINTERS

!

TLS

CONT INUE

!

Figure G-10 (Sheet 1)

G-15

interrupt Handler

RNTLR

!F
START

XouTL

ENTRY -

SAVE DATA

EXIT XOUTL had

10N

<

HOR
POINTERS

{ X133 }——-——«—b

ENTRY | — —l

IN PROGRESS
]

ANY INPUT
¢

TYPE CHARACTER
AND
START PROGRESS

EXIT xQUTL

SAVE INPUT
CLEAN
AC= INPUT
EXIT X133
ERRORX
ERR¥%
MASK CALLING
ADDRESS
WAIT FOR
PREPARE ERROR - QUTPUT
TO FINISH

{ RECOVR)1-—-

Figure G-10 (Sheet 2)

G-16

Interrupt Handler

L-D

GETARG

GETWAR

TESTC

LEGAL
4

i

SAVE TWO
LETTERS

4

IGNORE
THE REST

:F
GSEARCH

WAS LAST
AN L— PAR
?

SAVE NAME

ECALL

r

RESTORE NAME

RTEST)

]
L 4

SAVE THE
SUBSCRIFT AND
START SEARCH

Figure G-11

END OF LIST
=

NO

L———— LOCOK AT NEXT

YES

+ 1
NAGSW

Varicble Look=up and Enfer

ADD THE

INITIALIZE

VARIABLE NAME
AND SUBSCRIPT

1S
SUBSCRIPT
=] 4
2

SET PT?
TO DATA

/_L\
{ POPJ >

NO

EXIT

TG ZERQ

CHECK FOR
END OF
STORAGE

FuLL

QK

| J
I BVDJ “

8[-9

UTRA

|

UTRA+

ute

200 [-276
}

ENTRY

SET CHAR

GET 1

3001-376
¥

SET CHAR

|

CHAR="P"
?

CHAR

¥

EXIT UTRA

Figure G-12 Character Unpacking

¢

READ
RIGHT HAaLF

READ NEXT
AND GET
LEFT HALF

77=EXTEND
H

AC=CHAR-40Q

EXIT GET)

GET 1

1

READ ANDTHER
HALF AND
INVERT

FLIP DTPSW

CHAR =277

“FINDLN"

 ——

NO

Figure G-13

FIND & ENTRY
FARTICUL AR
LINE FOR &
GIVEN
LINENUMBER
OR GROUP LASTLN:CFRS

I

CHANGE
DATA FIELD

I

AL =CFRS

THLISLK = AC

1

XRT2 s THISLN

SIZE 0K >— ERRORZ
P

FOUND IT 5 YES
[

MOVE POINTERS

INCR EXIT
WAS SET UP
YES
17 LAST ST OUTPUT
¢ POINTERS
EXIT

G-1?

"FINDLN" Routine

"FINDLNS

S GNALLIID

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised softwarc, as well as programming notes, software
problems, and documentation corrections are published monthly by Software Informa-
tion Service in the following newsletters,

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9 Family

These newstetters contain information applicable to software available from Digital's
Program Library (see title page for address). Software products and documents arc
usually shipped onky after the Program Library receives a specific request from a vscer,

Digital Equipment Computer Users Society (DECUS) maintains a user library and pub-
lishes a catalog of programs as well as the DECUSCOPE magazine for its members and
non-members who request it.

Pleasc complete the card below to receive information on DECUS membership or to place
your name on the newsletter mailing hist,

Plecase send

3 DECUS membership information,
or add my name to the

0 DECUSCOPE non-membership list,

And, send me the Digital Software News for the
0O pDP-8 O ppPY

NAME
COMPANY
ADDRESS
CITY STATE Z1p

FIRST CLASS
PERMIT NO 33
MAYNARD. MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED S5TATES

Postage will be paid by: mﬂaﬂnanl

DECUS

Digital Equipment Corporation
146 Main Street

Maynard, Mass. 01754

ADVANCED FOCAL
TECHNICAL SPECIFICATIONS
DEC-05-AJBB-DL

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - - your critical evaluation of this manual,

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find crrors in this manual! Please cxplain, giving page numbers.

How can this manual be improved?

DEC also strives to keep its customers informed on current DEC software and publications. Thus, the
following periodically distributed publications are available upon request. Please check the publication(s)
desired,

(O Digital Software News for (QPDP-8/1 Software Manual (O PDP-8/1 User's Bookshelf,
the PDP-8 Family, contains Update, contains addenda/ contains a bibliography of
current information on sofi- errata sheets for updating current and forthcoming
ware problems, programming softwarc manuals. software manuals.

notes, new and reviscd soft-
ware and manuals.

Please describe your position. .

Name Organization

Sireet Department

City State Zip or Country

ceninneeees Do Not Tear - Fold Here and Staple «oeereermmeimsmmncrn i

FIRST CLASS
PERMIT NO. 31
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
P

T mnﬁnnall

Digital Equipment Corporation
Software Information Services
146 Main Street, Blde. 3-5
Maynard, Massachusetts 01754

Digtal Equioment Corportir dilgilta |

printed in U.5.A,

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	replyA
	replyB
	replyC
	replyD
	xBack

