EDUsystem ~ 50
USERS GUIDE

DEC-08-E50UA-A-D

digital equipment corporation

EDUsystem - 50
USERS GUIDE

DEC-08-E5QUA-A-D

August 1975

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS 01754

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Eguipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms cf such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the back of
this document, explain the various services available to Digital soft-
ware users,

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s8/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL R8X

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rights data
under such contract.

PREFACE

CHAPTER

CHAPTER

ZHAPTER

CONTENTS

INTRODUCTICN
USER PROGRAMS
USER FILES

TSS/8 HARDWARE CONFIGURATION

EDUSYSTEM 50 MONITOR
CALLING THE MONITOR
LOGGING INTO EDSYSTEM 50
LOGGING OUT OF EDUSYSTEM 50

SYSTEM LIBRARY PROGRAM CONTROL
TYPING MONITOR CCMMANDS
CONTROLLING OUTPUT
COMMUNICATING WITH OTHER USERS
HUNG OUTPUT DEVICES

SYSTEM STATUS REPORTS

RESOURCE SHARING

ERROR MESSAGES

SYSTEM LIBRARY PROGRAMS

GENERAL FILE CHARACTERISTICS

CONTROLLING THE EXECUTICN OF SYSTEM
LIBRARY PROGRAMS

RETURNING TO THE MONITOR

1-2

1-2

-3

2-14

2+15

2-15

2-16

2-20

CHAPTER 4

4.2.4

4.2.5

4,2.9
4,2,10
4,2,11
4.2.12
4,2,13
4,2,13.1
4,2,13,2
4,2.13.3
4,2,13.4
4.2,13,5
4,2.13.6
4.2.13.7

4.2.14

- ii -
CALLING AND USING BASIC

BASIC
LANGUAGE FEATURES
Truncation Function, FIX (X)
ON GOT(Q Statement
SLEEP Statement
Comments
Blank Lines
Multiple Statements per Line
Editing BASIC Statements
Saving Compliled Programs
File Protection
Project-Programmer Numbers
Restricted Accounts
Catalog Format
Strings in BASIC
Reading String Data
Printing Strings
Inputting Strings
Line Input
Working with Strings
The CHANGE Statement
The CHRS Function
Program Chaining
DISK DATA FILES
File Records

Opening a Disk File

CHAPTER

4,3.3

4.3.4

4.4

4.4,1

4.4.2

5.0.1

5.6.2

Reading/Writing Disk Files
Closing/Deleting Disk Files
DECTAPE DATA FILES

DECtape File Records

Opening a DECtape File
Reading/Writing DECtape Files
Clesing DECtape Files

Using DECtape Data Files with 0S/8
FORTRAN

LINE PRINTER OQUTPUT

INTERNAL DATA CODES

Numeric Data

String Data

ERROR MESSAGES

FOCAL

USING FOCAL COMMANDS

FOCAL OVER VIEW

NUMBERS

VARIABLE NAMES

ARITHMETIC OPERATIONS
Priority of Arithmetic QOperations
Enclosures

INPUT/OUTPUT COMMANDS

TYPE Command

ASK Command

5.6.2.1 Text Output with ASK

- 1ii -

4-29

4-30

4-30

4-31

4-32

5.7
5.8
5.8.1
5.8.2

5.8.2.1

5-8.202-

5.8.6.1
5.8,6.2

5,8.6.3

5.10.1
5.10.2
5.,10.3
5.11

5-12

COMMPUTATIONAL COMMAND (SET)
CONTROL COMMAND

GO or GOTO Command

IF Command

IF with ress Than Three Line
Numbers

Arithwetic Comparison with IF
Command

DO Command
Nested DO
RETURN Command
QUIT Command
FOR Command
FOR with a DO
Nested FOR and DO
Subscript Variables
COMMENT or CONTINUE Command
EDIT COMMAND
WRITE OR WRITE ALL Command
ERASE and ERASE ALL Command
MODIFY Command
LIBRARY COMMANDS
LIBRARY SAVE Command

LIBRARY CALL Command

Error Messages with Library Commands

ESTIMATING PROGRAM LENGTH

DEBUGGING

- iv -

5=12

5-13

5=13

CHAPTER

5.12.1

5'-12-2

5.13

5.13.1

5.13.2

5.13,3

5.13.4

5.13.5

5.13.6

5.13.7

5.13.8

5.13.9

5.13.10
5,14

5.15

6.4.1

6.4.2

6.4.3

Using the Error Diagnostics
Using the Trace Feature
FOCAL FUNCTIONS
Sine Function (FSIN)
Cosine Function (FCOS)
Exponential Function (FEXP)
Logarithm Function (FLOG)
Arctangent Function (FATN)
Square Root Function (FSQT)
Absolute value Function (FABS)
Sign Part Function (FSGN)

Integer Part Function (FITR)

Random Number Function (FRAN)
FOCAL OUTPUT OPERATIONS

CONTROL CHARACTERS

FORTRAN

CALLING FORTRAN-D

USING FORTRAN-D
LINE FORMAT

Statement Numbers

Statement Continuation Character
FORTRAN STATEMENTS

Comment Statements

Character Set

Constants

5=26

5~27

5=27

5.13 FOCAL FUNCTIONS

5.13.1 Sine Function (FSIN)

5.13.2 Cosine Function (FCOS)

5.13.3 Exponential Function (FEXP)
5.13.4 Logarithm Function (FLOG)
5.13.5 Arctangent Function {FATN)
5.13.¢6 Square Root Function (FSQT)
5.13.7 Absolute Value Function (FABS)
5.13.8 Sign Part Function (FSGN)
5.13.9 Integer Part Function (FITR)

5.13.10 Random Number Function (FRAN)

5.14 FOCAL OUTPUT OPERATIONS

5.15 CONTROL CHARACTERS

CHAPTER 6 FORTRAN

6.1 CALLING FORTRAN-D

6.2 USING FORTRAN-D

6.3 LINE FORMAT

6.3.1 Statement Numbers

6.3.2 Statement Continuation Character

6.4 FORTRAN STATEMENTS

6.4.1 Comment Statements

6.4.2 Character Set

6.4.3 Constants

6.4.3.1 Integer Constants

6.4.3.2 Real Constants

6.4.3.3 Fixed and F}oating-Point
Representation

- i -

- vii -

T 6.4,3.1 Integer Constants 6=7
6.4.3.2 Real Constants 6-8
6.4,3.3 Fixed and Fleating-Point 6-8

Representation
6.4.4 Variables 6-10
6.4.4.1 Integer Variables 6-11
6.4.4.2 Real Variables 6-11
6.4.4.3 Scalar variables 6-11
6.4.4.4 Array Variables 6-11
6.4.5 DIMENSION Statement 6-12
6.5 FORTRAN ARITHMETIC 6-13
6.5.1 Arithmetic Operators 6-13
6.5.1.1 Use of Parentheses 6-15
6.5.2 Arithmetic Expressions 6-16
6.5.3 Arithwmetic Statements 6-17
6.5.3.1 Multiple Replacement 6-18
6.5.4 Functions 6-=20
6.6. PROGRAM CONTROL STATEMENTS 6-21
6.6.1 END Statement 6-21
6.6.2 STOP Statement 6-21
6.6,3 PAUSE Statement 6=-22
6.6.4 GO TO Statement 6~-22
0.6.5 Example of Inteqér Summation 6-23
6.6.6 IF statement ©6-23
0.6.7 DO Loops 6-25
6.6.7.1 CONTINUE Statement ©6-28

6.6.8 Computed GO TO 6-28

6.7.2.1

6.7.2-2

6.7.3

6.7.7.1
6.7.7.2

6.7.7.3

FORTRAN INPUT/OUTPUT
Data Formats
ASCII Coded Data
Binary Coded hata
Input/Output Statements
ACCEPT and TYPE Statements
Read and Write Statements

Variable Specification in 1/0
Statements

FORMAT Statements
The A Format Specification

Input Format

Integer values --the I Format

Real Values -- the E Format
output Formats

E and I Formats

FORMATS Control Specifications-

Hollerith OQutput
INFLEMENTATION NOTES
Double Subscripts
Substatement Feature

Error Checking

FORTRAN-D Source Program Restrictions

6=29

6=-30

6-30

6~-30

6=-30

6-31 .

6-32

6~33

6-+35

6-36

6-~37

6-~-39

6~40

6-40

6-40

6-44

FORTRAN-D Compiler and Operating System 6-44

Core Map

- viii -

CHAPTER

7.1

7.2

7.3

7.3.1

7.3.2

7.3.3

7.4

7.4.1

7.4.2

7.6

7.6.1

7.6.1.1

7.6.1.2

- ix -

FORTRAN-D ERROR DIAGNOSTICS
Compiler Compilation Diagnostics
Compiler Systems Diagnostics

Operating System Diagnostics

PAT.~-D ASSEMELER
INTRODUCTION
EDUSYSTEM 50 PAL-D
SYNTAX
L,egal Characters
Tllegal Characters
Format Effectors

NUMBERS

Arithmetic and Logical Operators

Evaluating Expressions
STATEMENTS
Labels
Operators
Operands
Comments
SYMBOLS
Symbol Distinetion
Permanent Symbols
User-Defined Symbkols
Symbolic Address
Symbolic Operators

Symbolic Operands

6-50

7-1

7-1

7-11

7-12

7-12

7.6,5

7.6.6

7.8
7.8.1
7.8.1.1
7.8.1.2
7.8.2
7.8.2.1

7.8.2.2

7-9

7-9.1

7.9.2

7.9.3

7.9.4

Symbol Table

Direct Assignment Statements

ADDRESS ASSIGNMENTS
Current Address Indicator
Indirect Address
Autoindexing
Literals

INSTRUCTIONS

Menory Reference Instructions

Paging
Off-page Referencing

Augmented Instructions
Operate Microinstructions

Input~-Qutput Transfer
Microinstructions

PSEUDO-OPERATORS
Current Location Counter
Extended Memory
RADIX Control
Listing Control
TEXT Facility
End of Program
End of File
Altering the Symbol Table

Internal Representation

7=-13

7-14

7-17

7-18

7-20

7-23

7-24

7-25

7-25

7-25

7-31

7-32

7=32

7-32

7.10

7.10.1

7.10.2

7.10.3

7.10.4

- 7.10.5

CHAPTER

CHAPTER

8.2

8.3

8.4

9.1.1
9.1.1.1

9.1.1.2

PROGRAM PREPARATION AND ASSEMELER
OUTPUT

Program File
Assembly
Pass 1
pass 2
Pass 3
QPERATING THE PALD ASSEMEBLER

ERROR DIAGNOSTICS

UTILITY PROGRAMS

SYMBOLIC EDITOR

LOADER

OCTAL DEBUGGING TECHNIQUE (bDTHI)
CATALOG (CAT)

SYSTEM STATUS (SYSTAT)

PROGRAMS FOR HANDLING DATA

PERIPHERAT, UTILITY TRANSFER ROUTINES
{(PUTR)

PUTR Commands
ZERO Commands
DELETE Cormmands
DIRECTORY Commands
LIST Command
TYPE Command
PUNCH Command

TAPE Command

- xi -

7=37

7-38

7-38

7-39

7-42

9-1

9-1

9-10

9-11

9-12

9-12

9-13

9-13

9.1.1.9' Special Notes 9-13
2.1.1.10 Default Propagation 9-15
9.1.1.11 DECtape and RK@5 Disks 9-16
9.1.2 TSS/8 File Extensions 9-17
9.1.3 PUTR Switches 9-17
9.2 PERIPHERAL INTERCHANGE PROGRAM (PIP) 9-18
9.2.1 PIP Conventions 9-.18
9.2.2 Paper Tape to Disk Transfers 9-19
9.2.3 Disk to Paper Tape Transfers 9-19
9.2.4 High-Speed Reader/Punch Assignments 9-20
9.2.5 BIN Format File Transfers 9-21
9.2.6 Moving Disk Files 9-21
9.2.7 Deleting Disk Files 9-21
9.3 COPY PROGRAM 922
9.3.1 Using and Calling COPY 9-22
9.3.2 Loading Files from DECtape 9-23
9.3.3 Saving Disk Files on DECtape 9-23
9,3.4 Listing Directories 9-.24
9.3.5 Deleting Files 9-25
9.3.5.1 Deleting All Existing Files on a 9~25
Device
9.3.6 Example of COPY Usage 9-26
9.3.7 BASIC File Transfers 9-28
9.3.8 Save Format File Transfers 9-28

- xXij =~

CHAPTER 10 ADVANCED MONITOR COMMANDS 10-1

10,1 INTRODUCTION 10-1
10.2 CONTROL. OF USER PROGRAMS 10-3
10.3 DEFINING DISK FILES 10~-4
10.3.1 Creating a Disk File 18=5
10.3.2 Cpening and Closing a File 10-5
10.3.3 Extending, Reducing, and Renaming 10-6

a Disk File

10.3.4 Protection Codes 10~7
10,.3.5 Error Conditions 10-10
10.4 SAVING AND RESTORING USER PROGRAMS 10-10
10.5 UTILITY COMMANDS 10~-14
CHAPTER 11 WRITING ASSEMBLY LANGUAGE PROGRAMS 11~-1
11.1 INTRODUCTION 11-1
11.2 CONSOLE I/0 11-2
11.3 FILES AND DISK 1/0 11=-6
11.4 ASSIGNABLE DEVICES 11-14
11.5 PROGRAM CONTROL 11-21
11.6 PROGRAM AND SYSTEM STATUS 11-23
11,7 PDP-8 COMPATIBILITY 11-28

- xiii -

APPENDIX A MONITOR COMMAND SUMMARY A-1

~A.l MONITOR COMMANDS A-1

A.l.1l Logging In and Qut A-1

A.l.2 Device Allecation 3-2

A.l.3 File Handling A-2

- a.l.4 control of User Programs A-3

A.l.5 Utility Commands A-4
APPENDIY B CHARACTER CODES B-1
APPENDIX C STORAGE ALLOCATION c-1

c.1 STORAGE MAP c-1

c.2 FILE DIRECTORIES c-1
APPENDIX D* ERROR MESSAGES D-1

D.1 BASTC ERROR MESSAGES

D.2 CAT ERROR MESSAGES

D.3 COPY ERROR MESSAGES

D.4 DECODE ERROR MESSAGES

D.5 FOCAL ERROR MESSAGES

D.6 FORTRAN~D COMPILER COMPILATION DIGNOSTICS

D.7 FORTRAN-D COMPILER SYSTEMS DIAGNOSTICS

D.8 FORTRAN-D OPERATING SYSTEM DIAGNOSTICS

D.9 LOADER ERROR MESSAGES

*NOTE: Information on the above can be found from page D-1 through D-27.

- xXiv -

D.10 LOGID ERROR MESSAGES

D.11 MONITOR ERROR MESSAGES

D.12 NON-FATAL EXECUTION ERROR MESSAGES
D.13 PAL-D ERROR DIAGNOSTICS
D.14 PERIPHERAL INTERCHANGE PROGRAM (PIP)

ERROR MESSAGES
D.15 PERIPHERAL UTILITY TRANSFER ROUTINES
(PUTR} ERROR MESSAGES

NOTE: Information on the above can be found from page D-1 through D-27.

= XV o=

CHAPTER 1

INTRODUCTION

EduSystem 50 is a general purpose, time-sharing system for PDP-8
computers that offers up to 20 users a comprehensive library of System
Programs. These programs provide facilities for editing, assembling,
compiling, debugging, loading, saving, calling, and executing user
programs on-line., An extended BASIC language provides users with the
ability to use strings, files, and program chaining. Two higher-level
languages, FOCAL and FORTRAN, are also provided. All languages and
utilities may be used simultanecusly. One group of users may be
working in BASIC while another is using assembly language. EduSystem

50 serves all levels of users simultaneously.

By separating the central processing operations from time-
consuming interactions with human users, the computer can, in effect,
work on a number of programs simultaneocusly. Cycling between programs
and giving only a fraction of a second at a time to each program or
task, the computer can deal with many users seemingly at once. The
appearance is created that each user has the computer tc himself. The
execution of various programs is done without their interfering with
each other and without lengthy delays in the response to individual
users.

The heart of EduSystem 50 is a complex of subprograms called the
Monitor. The Monitor coordinates the operations of the various pro-
grams and user conscles, ensuring that the user is always in contact
with his program. The EduSystem 50 Monitor allocates the time and
services of the computer to the various users; it grants a slice of
processing time to each job, and schedules jobs in sequential order
to make most efficient use of the system disk. The Monitor handles
user requests for hardware operations (reader, punch, etc), swaps
(moves) programs between memory and disk, and manages the user's

private files.

1.1 USER PROGRAMS

When the user is working with EduSystem 50, it appears to him as
though he had his own 4K (4096 word) PDP-8 computer. He then has the
capability of doing anything which can be done in a 4K computer plus
the capabilities of the Monitor. Several users can run different
programs at virtually the same time because the Monitor controls the
scheduling of execution times. The Monitor brings a program into
core from the disk, allows it to execute for a short time, and takes
note of the state at which execution is étopped. The user is allotted
a 4K block of core that contains his particular program; this 4K block
is swapped (moved) from core onto a 4K area of disk when the Monitor

needs to bring another user program into core to be executed.

After the user's program has been executed for a period of time,
it is placed at the end of the queue {line) of user programs waiting
to be run. If only one program is ready to run, it is allowed to do
so without interruption until another program is ready. If a user
wishes to maintain a permanent copy of his program, he can save a
copy within the file area of the disk (an area separate from the

swapping area) or on DECtape or paper tape.
1.2 USER FILES

A user is any person logged into EduSystem 50. Each user has an
account number and password assigned to him by the System Manager.
The account number and password allow the user to gain access to the
computer. The account number is also used to identify whatever files

the user may own within the EduSystem 50 file system.

The system disk is divided into logical areas called files. &
user can store programs or data in files on the system disk. The user
can further specify which users may access his files and for what
purpose (read, write, or both). Parts of the disk are used to store

system files, those programs which are accessible to anyone using

the system. A major portion of this manual deals with how to use

the system files, generally called System Library Programs.

With the appropriate Monitor commands, the user can create new
files and manipulate 0ld files (extend, reduce, or delete them).
These commands are summarized in Table 2-1. Most individual System
Library Programs are able to handle user files as input or output
with commands issued from the user's console. Such commands are

described under the section on the appropriate System Library Program.

1.3 T8S/8 HARDWARE CONFIGURATIONS

A minimum configuration for TSS/8 includes:

a) PDP-8, 8I, or 8E, with at least 12K words of memory and the
time-share option. (All are referred to in the following
text as PDP-8.) For efficient operation, 16K minimum is
highly recommended.

b) RFO8 disk with at least one RS08 (can use DF32 with at least
two platters, but this is not recommended because of very
little area and slow speed).

c) Multi-terminal capability - one or more KL8Es or PTO8s or
a DCO8A,

All, except 8I with DCO8A, reguire a real-time clock.

Optional hardware supported:

a) Up to 32K words of memory.

b) DCO8A - may be used only on a PDP-8I and may be used in
addition to PTO8s.

<) 689AG modem controller - for use with DCOSA only.

d) EAE - all instructions of any standard EAE are supported

with the exception of the traditional PDP-8 step counter;
which is not saved or restored.

e) High-Speed Reader - a paper tape reader is required to
build TSS/8. A low-speed reader may be used, however the
build procedure will be very time consuming.

f) High-Speed Punch.
1-3

g)
h)
i)
3
k)
1)

m}

Line Printer - LPO8/LE8 or LS08/LSSE.

- DECtape - TCOL or TCO8 and up to eight drives (NOT TDSE).

Up to four disks (three additicnal RS08s).
Card Reader.

RK-8E disk (up to four drives).

Power failure protection.

MI8EF or MI8SEG hardware bootstrap.

Software provided with the Standard EduSystem 50 includes the

following:

General-purpose time-sharing Monitor System.
Time-shared BASIC language processor.

Time-shared assembly language package including text editor,
gsymbolic assembler, loader, and utility debugging program.

Time-shared FORTRAN-D and FOCAL language processors.
System—utility programs, including PUTR, PIP COPY, etc.

Library of sample programs, textbooks, and curriculum
guides.

CEAPTER 2

EDUSYSTEM 50 MONITOR

EduSystem 50 Monitor controls the allocation and use of hardware
resources. Many of these functions of the Monitor are invisible, and
of no concern to the user?! for example, the way it allows many users
to run programs on a single computer. In other instances, the user
explicitly tells the Monitor what he would like to do by typing one
or more of the Monitor commands described in this chapter.

The Monitor commands described in the first half of this chapter
are those needed to log into the system, to utilize the System
Library Programs, and to log out of the system. All users must be
familiar with these commands. The commands described in the last
half of this chapter are not needed to run SyStem Library Programs
such as BASIC or FOCAL but are freguently useful. The Advanced
Monitor commands described in Chapter 10 are primarily useful for
creating assembly language programs and files. Table 2-1 contains a

summary of the Monitor commands.

TABLE 2-1.
Monitor Commands Explanation
Logging In and Out
LOGIN C1 sl Request to login:

Cl = user's account nunber
81 = user's password

LOGOUT Request to logout: processing and
console time are printed.

Table 2-1. (Cont.)

Monitor Commands

Explanation

TIME C1

Device Allocation

ASSIGN Ll

ASSIGN L1 C1

RELEASE L1

RELEASE 1.1 Cl

File Handling
CIOSE Sl

CREATE S1

EXTEND Cl D1

F Cl

Request printout of processing time:
Cl = job number

If C1 is omitted and the user is
logged in, the processing time of the
current job is printed. 1If Cl = 4,
or if the user is not logged in and
Cl is omitted the time of day is
printed.

Reserve device:

Roorww

1l for paper tape reader

for paper tape punch
for line printer
for card reader
for any DECtape unit
for any RK@5 unit
Reserve specific unit

L1 = D for DECtape

K for RK@S5

Cl = unit number
Release device:

L1 =R, P, L, or C (see ASSIGN L1}

L1 = D for DECtape

K for RK@5
Cl = unit number

Close files:
81 = list of internal file numbers
Create new file:
S1 = name of new file
Extend length of file:
internal file number

number of segments to be
added to end of file

cl
D1

Print information about an open file.

Cl = internal file number
22

Table 2-1. (Cont.)

Monitor Commands

Explanation

OPEN Cl S1 C2

PROTECT C1 C2

REDUCE Cl D1

RENAME C1 81

Control of User Programs

DEPOSIT Cl1 C2...Cn

EXAMINE C1l D1

RESTART
RESTART €1

START

Establish association between internal
file number and file:

Cl = internal file number
8l = file name
C2 = account number.

If C2 is omitted; the ueser's account
is assumed.

Protect a file:
internal file number

new file protection mask
{(see 10.3.4)

Cl
Cc2

Reduce length of file:

Cl = internal file number

D1 = number of segments to be
removed from end of file

Rename a file:

Cl = internal file number
81 = new name of file

Store in core memory:

¢l = location

C2 = contents to be stored in
Location Cl

C3 = contents to be stored in

Location Cl+l, etc.
List specified contents:
first location

number of location to be listed
D1<10 decimal

cl
D1

|

Print the program restart address.
Set preogram restart address.

Restart user program.

2-3

Table 2-1. {Cont.)

Monitor Commands

Explanation

START C1

Utility Commands

BREAK

BREAK C1

DUPLEX

LoaD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

R 51

R sl

cl

Ccl
Ccl
sl
Sl
Sl
s1

Cl

RUN S1
RUN C1 sS1
RUN S1 C2
RUN Cl1 Sl

sl
51
sl
sl

Cc2
c2
Cc2

c2
Cc2
Cc2

c3

c2

c3
C3 Cc4

c4

Execute user program:

Cl = starting location

Print current keyboard break mask
Set keyboard break mask:

Cl = new mask
Echo typed characters on printer.
Load core image:

Cl = owhner's account number; if

not specified the user's
account is assumed.

Sl = name of file

C2 = file address of first word to
be loaded; if not specified,
g is assumed.

C3 = core address of first word to

be loaded; if not specified,
is assumed.

C4 = core address of last word to
be loaded; if not specified,
the highest possible value is
assumed.

Run system file:
S1 = name of file
Cl = starting address; if omitted,

@ is assumed

RUN USER FILE:

Sl = name of file

Cl = owner's account numnber: if
omitted the user's account is
assumed.

C2 = starting address; if omitted,

@ is assumed.

STOP execution

Table 2-1. (Cont.)

Monitor Commands Explanation
SAVE Cl1 sl SAVE core image:
SAVE Cl s1 C2 Cl = owner's account number; if not

specified, the user's account
is agsumed.

SAVE Cl S1 ¢2 C3
SAVE C1 S1 C2 C3 ¢4

SAVE S1 S1 = name of file

SAVE S1 C2

SAVE 81 C2 C3 C2 = file address of first word to
SAVE Sl C2 C3 C4 be saved; if not specified, #

is assumed.

C3 = core address of first word to
be saved; if not specified, ¢
is assumed.

C4 = core address of last word to
be saved; if not specified, the
highest possible value is

assumed.
SWITCH Print the value of the user's switch
register.
SWITCH Cl Set switch register:

Cl = word to be sget

TAIK Cl Sl Send a message to console Cl:

Cl = destination console
S1 = message
UNDUPLEX Inhibit echo of characters typed to a

user program,

USER Print the user's job number, account
number, and console number.

USER Cl Print the job number, account num-
ber and conscle number of job Cl.

WHERE Print the current value of the user's
switch register, PC, Link, AC, and EAE
registers.

NOTE

All Monitor commands must be terminated
by typing the RETURN key. All words
within a Monitor command line are sepa-
rated by one or more spaces.

2.1 CALLING THE MONITOR

The user enters commands to system programs, such as BASIC and
FOCAL, in exactly the same way that he enters commands to the Monitor
{i.e., by typing them at the keyboard)}; therefore, the system must
have some way of distinguishing between the two cases. It does so by
defining two modes of console operation: Monitor mode and program
mode. When a user's console is in Monitor mode, all input is inter-
preted as heing commands to the Monitor. Othefwise, all input is
assumed to be to the user program or system program. which is being

run by the user.

A special character, CTRL/B (obtained by pressing B with the
CTRL key held down, and echoed on the terminagl as #B), is used to
unconditionally place the user’s console in the Monitor mode.
Typing CTRL/B tells the system that the command to follow is a
Monitor command, regardless of the current console mode. Generally,
the command which follows the CTRL/B will be the S command.

{B Return to Monitor mecde.

{B{BS Return to Monitor mode from a program which is
printing. (The two CTRL/B's stop the printout,
allowing the S command to be typed.)

It is not necessary to precede each Monitor command with CTRL/B.
Once in the Monitor mode, a console stays in that mode until a com-
mand is entered to start a system program. To signify that the
console is in the Monitor mode, the system prints a dot (.} at the
left margin of the conscle printer paper. This dot indicates that
the characters entered next are to be treated as a Monitor command.
Thus, the CTRL/B capability is important when a user is running a
program and wishes to issue a Monitor command. He may, for example,
be using one language {or system program) and want to change to

another, as shown below:

NOTE
Characters typed by the user are underlined

to eliminate confusion with characters
printed by the system.

+R FOCAL

SHALL 1 RETAIN LOGs EXP» ATN 7:NO
SHALL | RETAIN SINE., COSINE ?2:NO
PROCEED»

*TYPE 6+18-3-~1

= 12.0000%TYPE 25+5%2+5
= A0.0208+1BS

2~7

*R BASIC

NEW OR OLD--NEW
NEV PROGRAM NAME--

Notice that the Monitor responds to CTRL/B followed by S, by printing
a dot at the left-hand margin.

2.2 LOGGING INTO EDUSYSTEM 50

To prevent unauthorized usage and to allow the Monitor to main-
tain a record of system usage, EduSystem 50 requires that each user
identify himself to the system before using it. Before attempting to
log into the system, the user should ensure that the console LINE/QFF/
LOCAL knob is set to LINE and then press the RETURN key. If the con-
sole is connected to EduSystem 50 and is not already in use, the
Monitor rolls the console paper up two lines and prints a dot at the
left margin of the paper. The dot indicates that the system is in
Monitor mode and that the Monitor is waiting for a command. The
LOGIN command allows the user to gain access to EduSystem 50,

The user types LOGIN followed by an account number and password.
Providing the console is free (not already logged in), the command,
account number, and password are not printed on the console paper as
the keys are typed. If the command name letters are being printed,
stop typing the command; instead, strike the RETURN key, log out
using the LOGOUT command (see Logging out of EduSystem 50). At this
point, a successful LOGIN can be accomplished. The LOGIN command is

formatted as shown below:
+LOGIN 1234 ABCD (only the dot appears)
The dot (.) is printed by the Monitor, LOGIN is the command name,

1234 represents the user account number, and ABCD represents the

password.

2-8

NOTE

A command word and each parameter
(except the last) is always followed
by a space. Command lines are always
terminated with the RETURN key. The
RETURN key enters the full command
line to the system.

When a user types something other than a valid LOGIN command,

the Monitor responds in one of the following ways:

ILLEGAL REQUEST (user typed LOGIN ABCD ABCD)
+LOGIN 4771 DEMO (user typed valid LOGIN on an already
ALREADY LOGGED IN logged in console)

::osm PLEASE (user typed ASSIGN D 3)

UNAUTHORIZED ACCOUNT {user typed an incorrect account

number or password)

In the third example, ASSIGN D 3 is a valid command but is not
appropriate until the user is logged into the system. In the first
example, the Monitor finds that the LOGIN command is improperly for-
matted (the first parameter must be a 1- to 4- digit number); the
console print out tells the user that he has made an ILLEGAL REQUEST.
When the console is already logged in and the user types the LOGIN
command, the characters typed echo at the console and the Monitor
informs the user that the console is occupied with the message

ALREADY LOGGED IN.

If the user attempts to use an incorrect account number or pass-

word, the Monitor replies UNAUTHORIZED ACCOUNT. Thus the Monjitor <¢an
distinguish an invalid command from a valid command; it can also dis-
tinguish whether the wvalid command is appropriate when issued,

2-9

whether the command is properly formatted, and whether the account

number and password are acceptable. 1In all the preceding examples,
Monitor ignores the command and prints another dot.

When the Monitor finds the LOGIN command properly formatted and
the account number and password acceptable, it responds by identify-
ing the version of the system being used, the job number assigned to
the user, the number of the console being used, and the time-of-day
in hours, minutes, and seconds. This information is usually followed

by a note from the System Manager concerning the system. For example:

TS5S5/8.24 JOB 81 (00,031 Ke4a 15226213

YOU ARE NOW LOGGED INTO THE BHS EDUSYSTEM 58
PROCEED AT YOUHR OWUN SPEED

The Monitor then prints another dot and waits for the user to
issue the next command. The job number assigned is an internal num-
ber by which the system identifies each on-line user; the user need

not remember this number.

2.3 LOGGING OUT QOF EDUSYSTEM 50

The LOGOUT command indicates to the Monitor that the user is
finished and ready to leave his terminal. When Monitor receives a
LOGOUT command, it disconnects the user terminal from the system and
records the amount of computer time used during the session and the
total real time of the session. It also notes any user files deleted

or saved. For example:

«LOGOUT

JOB 1, USER [12,34

DELETED 1 Flinmc . :.Lg?ggnagggxg?ﬂ AT (9120219 ON 27 NOV 74
SAVED 11 FILES ¢ 38. DISK BLOCKS)
RUNTIME 2@:00:24 ¢ 7, CPU UNITS)
ELAPSED TIME B2:14:39

2-10

Computer processing time used in this example was 24 seconds, while
the elapsed time between LOGIN and LOGOUT was 2 hours, 14 minutes,

and 39 seconds.

when typing the LOGOUT command, the user may follow it with a
colon and an option to initiate some action by the system.
_ To specify

an option, the user types, for example:

+LOGOUT:K

If no option is specified, the S option is assumed; similarly if a
user is simultaneously logged in at two (or more) consoles, no files

will he deleted until he logs off his last job. For example:
+LOGOUT: ?

TYPE tBS TO ABORT LOG-0UT: OR
TYPE ONE OF THE FOLLOWING (AND CAR RET):

K TO KILL JOB AND DELETE ALL UNPROTECTED FILES;
L TO LIST YOUR DISK DIRECTORY:
S TO SAVE ALL (NON-TEMPORARY) FILES: OR
I TO INDIVIDUALLY SAVE AND DELETE FILES AS FOLLOWS:
AFTER EACH FILE NAME IS LISTED. TYPE:
P TO SAVE AND PROTECT.»
S TO SAVE WITHOUT PROTECTING» OR
CAR RET ONLY TO DELETE.
CONFIRM: L
FIE «BIN <17> 1. BLOCKS
BAS@OO .TMP <17> 1.+ BLOCKS
BAS100.TMP <17> 1. BLOCKS
INTER .BAS <17> 1+ BLOCKS
PROC «FCL <12> 2. BLOCKS
CONFIRM: 1
FIE +BIN <1 7> l. BLOCKS 1 S
BASQOQ2.TMP <17> 1. BLOCKS @ DELETED
BAS100.TMP <17> 1. BLOCKS 1 DELETED
INTER +BAS <1 7> 1. BLOCKS 1
PROC .FCL <12> 2. BLOCKS : S

JOB 1, USER { 3,133 LOGGED OFF K@0 AT 10146:07 ON 27 NOV 74
DELETED 3 FILES ¢ 3. DISK BLOCKS)

SAVEP 2 FILES (3+ DISK BLOCKS)?

RUNTIME 903190125 ¢ 2. CPU UNITS)

ELAPSED TIME 00:06:12

2-11

JOB 1, USER (3,13) LOGGED OFF K@@ AT 1#:46:07 ON 11-27-74
DELETED 3 FILES (3. DISK BLOCKS)
SAVED 2 FILES 3. DISK BLOCKS)
RUNTIME @@:@@:25 (2. CPU UNITS)
ELAPSED TIME gg@:06:12

In the previous example, the user typed a question mark to check
the LOGOUT options. When LOGOUT completed the printed explanation,
it printed CONFIRM: and waited for a user reply. 1In this case, the
user requested a listing of his files, LOGOUT followed this listing
with a second CONFIRM: to which the user replied I. When using the I
option, the user is advised not to type his reply to individual entries
until printing stops. DELETED is printed automatically by the system
to show that the temporary files are deleted without user interwvention.

The user saved binary file FIE and the FOCAL file PROG. The BASIC

file INTER was deleted by typing the RETURN key.

An optional method of logging out of the system is to type K in
response to the Monitor dot or K followed by a colon and an option

designation. For example:

oK

JOB 1, USER [12,341 LOGGED OFF K@@ AT 19:20:19 ON 27 NOV 74
SAVED 3 FILES (4. DISK BLOCKS)

RUNTIME @09:20:87 ¢ 1. CPU UNITS)

ELAPSED TIME 08113257

A complete list of the logout option can be found in table 2-2
on page 2-13.6

2.4 SYSTEM LIBRARY PROGRAM CONTROL

once logged into the system, the user can call any EduSystem 50
System Library Program. To call a library program, the user types
the command R (meaning run) followed by one or more sgpaces and the

program name, For example:
«R BASIC

NEW OR OLD--

2.5 TYPING MONITOR COMMANDS

When typing a command to the Monitor, it is possible to correct a
letter without retyping the entire line. To do this, press the RUBOUT
{or DELETE) key. This will remove characters from the end of the line
one by one, and print the deleted characters, When the incorrect
characters have been removed, continue typing the correct line,

To erase an entire command line and start ovér, type CTRL/B and

then the desired command.

2.6 CONTROLLING QUTPUT

An optional feature of the Monitor allows the user to suspend

terminal output from the Monitor. 1If, for example, he is running a
program which causes much output, he may type a CTRL/S (4 S). This
signals the Monitor to stop sending to the terminal. When the user
wishes to see more output, he types a CTRL/Q (:Q) , and output continues
from where it left off, Users with a VT50 can cause the terminal to

sned the 'S and +Q automatically.

-13

3]

2.6,1 System Library Program Control

Once logged into the system, the user can call any EDUsystem
50 System Library Program. To call a library program, the user
types the command R (meaning run) followed by one or more spaces

and the program name., For example:

.R BASIC

NEW OR OLD

TABLE 2-2
L.OGOUT OPTICNS

Option Function

: 1 Allow the user to individually decide which files to
save or delete. Temporary files are deleted
automatically.

tK Delete all unprotected files from disk.

:L ‘List the user's file directory. After listing the
files, the system prints CONFIRM: and the user replies
with one of the options.

:Q LOGOUT without any printed message.

:S Save all nontemporary files. A temporary file is
cne of the following:

BASOnn
BASlnn
TEMEnn

where nn is the console number at which the user is
logged into the system. A temporary file 1is created
by a System Library Program and listed in CATALOG
listings. A temporary file is also considered to

be any file with a .TMP extension. If no option is
specified in the LOGOUT command, :5 is the default.

:? Print a listing of the available options and their
functions.

The Monitor fetches the BASIC language processor from the
System Library and starts it. BASIC begins its dialog by asking if

2-13.5

the user wishes to work on a new program or retrieve an old one
from disk storage. Notice that once BASIC begins, the console is
no longer in Mconitor mode. Dots are no longer printed at the margin.

All input is now processed by the BASIC language processor.
If the user types a program name which cannot be found in the

System Library, the Monitor responds with an error meésage and

returns the conscle to the Monitor mode, as follows:

2-13.6

«R BASICK
FILE HOT FOUND

The exact contents of a System Library may vary from installa-
tion to installation. The System Manager may choose to make any

number of programs available to all users.

2.7 COMMUNICATION WITH OTHER USERS

Although EduSystem 50 gives each system user the impression that
he is the only user of the system, it is actually supporting many
users at a time. Often it is useful to communicate with another
user, or with the system operator; this is done with the TALK com-
mand. The TALK command requests the Monitor to print a message on
another system terminal. For example, a user at terminal 7 can ask
the system operator to turn on the high-speed punch by typing the

following command (the initial dot is printed by the Monitor):

+TA 8 PLEASE TURN ON THE HIGH-SPEED PUNCH.
The above command causes the following to be printed at console 0.

** K0T (12,341 *» _
PLEASE TURN ON THE HIGH=-SPEED PUNCH.

KO7 indicates that terminal 7 sent the message. Any terminal
can initiate a message to any other terminal. However, if the
destination terminal is printing at that time, the message will not
be sent. The initiating terminal would, in this case, receive the

message BUSY as a response.

2.9

HUNG QUTPUT DEVICES

When the paper tape punch or line printer is off line or
hung, the Monitor takes special action so that it is usually
possible to continue with little or no data loss. When these
devices are hung, the output buffer is not cleared. A system
error is generated, and regenerated every few seconds until the
condition is cleared. If the user program has not enabled
errors, the result will be a printed "HUNG DEVICE" message,
and then the terminal bell will ring, trying to persuade the
user to do something. There are only two things the user ﬁay
do to remove himself from this condition. If he is not interes-
ted in continuing, he may release the hung device. If he does
wish to continue he should put the device on line, and it should

take off. He may now type "START" to continue program execution.

SYSTEM STATUS REPORTS

The command SYSTAT initiates a printout of the full status
of EduSystem 50, how many users are on-line, what they are
doing, etc. The command SYSTAT is equivalent to typing R
SYSTAT. The format of the status report is described in the

section on Utility Programs.

The user can obtain information on the amount of computer
time used by him, the amount used by another user, or obtain
the time of day with the TIME command. The TIME command can be

issued in one of the following three forms:

2-15

TIME Returns the elapsed processor time of the user
issuing the TIME command since he logged into
the system. If the user is not logged in, the
time of day is returned.

TIME O Returns the time of day.

TIME n Returns the amount or processor time used by
job n since logging into the system.

For example:

«TIME
oe:o00:00
+TIME 2
15t31:18
+TIME 1@
02:001 34

RESOURCE SHARING

All system users, when logged into the system, have access
to the System Library, disk storage, a virtuél 4K PDP-8, and
the EduSystem 50 Monitor. The Monitor handles disk resource
reguests automatically. The Monitor also maintains a pool of
available devices which are assigned to users upon request on
a first-come, first-served basis. Devices such as the high-
speed paper-tape reader cannot, by their very nature, be assigned
to several programs simultaneously. Therefore, the Monitor
grants individual users exclusive access to these devices when
needed. The system disk is not assigned since it can be used

by more than one user simultaneously.

2~16

All systems include a high-speed paper-tape reader in the pool
of available devices. Many systems also include a high-speed paper-
tape punch, a high-speed line printer, a card reader, RKBE, and/or
one or more DECtapes. These assignable devices are normally used
with the System Library Program PUTR to store programs or data for
later use.

When a device is assignable (present on the system) and available
{(not being used), the ASSIGN command may be used to reserve the
desired unit or units for exclusive use by the console issuing the

command. The valid ASSIGN commands are formatted as shown below:

ASSIGN C Assign the card reader.

ASSIGN D Assign a DECtape unit.

ASSIGN K Assign a RK@S unit.

ASSIGN L Assign the line printer.

ASSIGN P Assign the high-speed paper-tape punch.
ASSIGN R Assign the high-speed paper-tape reader.

If other devices are assignable, the System Manager will inform
the user of the appropriate device designator. The following is an

example of using an invalid device designator:

+ASSIGN X
ILLEGAL REQUEST

The Monitor ignores the request, responds with the appropriate
message, and prints another dot. When a valid ASSIGN command is
issued, the Monitor checks the availability of the device and

responds accordingly. For example:

*ASSIGN R
R ASSIGNED
+ASSIGN P

JOB 02 (12,34) KOs Has P

When the system contains multiple units of a device, the user
an available unit

simply specifies the device; the Monitor assigns

and respends with the unit number. For example:

*ASSIGN D
D 2 ASSIGNED

If all DECtape units are busy, the Monitor prints the message
shown below:

+ASSIGN D
DEVICE NOT AVAILABLE

A specific unit can be requested by leaving a space between the

device designator and the device number. For example:

+ASSIGN D 4
D 4 ASSIGNED
The ASSIGN command assigns only one device at a time. Therefore,
when multiple devices are to be assigned, each must be assigned
The following will not accomplish the desired assignments,

separately.
either with or without the illegal commas.

sASSIGN R » D2, D |
R ASSIGNED

The Monitor accepted the first device designator and ignored the
rest of the command. If device R is unavailable, the Monitor prints
the appropriate message. The following commands complete the desired

assignments {(assuming available devices):

+ASSIGN D 2
D 2 ASSIGNED
+«ASSIGN D 1
D 1 ASSIGNED

When the user has finished working with an assigned device, he
should use the RELEASE command to terminate the assignment and allow
other users access to the device. (When a user logs out of the
system, any devices still assigned to him are automatically released.)
A particular device is released when the user enters the RELEASE
command, a space, and the device designator (and unit number if
required), as shown below:

+RELEASE R
+RELEASE D 3

In the previous example, the high-speed reader and DECtape unit
3 are released. The Monitor prints a dot on the next line if the
release is accomplished; otherwise, it prints a message. If, for
example, a request is made to release a device which has not been

assigned to the issuing console, the following happens:

«RELEASE D 2
ILLEGAL REQUEST

The Monitor printed ILLEGAL REQUEST after it checked and found that
the specified device was not assigned to the console issuing the

command.
NOTE

All commands must be formatted properly:;
ILLEGAL REQUEST is printed if the user
fails to separate the device designator
and unit number with a space.

When multiple device units were reserved by a user, each must

be individually released. For example:

+RELEASE D 1
+RELEASE D 2
+RELEASE R

The Monitor does not perform checking when releasing a device
as it does when assigning a device. The user may have two device
units {e.g., two DECtape units) assigned and Monitor would not know
which to release; therefore, device numbers are necessary with a
RELEASE command. When only one unit of a specific device (one high-
speed reader or punch, etc.} is on the system, the device designator

alone is sufficient.

2.11 ERROR MESSAGES

An appropriate error message is printed whenever: a Monitor
command cannot be performed at the time it is requested, a typing
error is made, or the command is illegal (or nonexistent). Following
each error message, the Monitor ignores the command and prints
another dot, after which the user can issue another command. Table

2-3 is a list of the Monitor error messages.

TABLE 2-3
MONITOR ERROR MESSAGES

Message Explanation
ALREADY LOGGED IN The user tried to log in on a console
which isg already in use..
BUSY The user attempted to talk to a console

which is currently printing or on which
ancther user is typing.

DEVICE NOT AVAILABLE An ASSIGN command has been entered for
either:

1) a device which is not present on
the system, or

2) a device which is temporarily busy
and should be available in a few
seconds.

FULL The system is full. Another user cannot

log in until one of the present users
logs cut.

Table 2-3. {Cont.)

Message Explanation

ILLEGAL REQUEST The user requested an illegal com-
mand. This error usually results
when some parameter has been given
an incorrect value or the request
refers to a facility not owned by
the user.

LOGIN PLEASE The user attempted to use a console
which is not logged into the system.

512? The System Interpreter does not
understand the command. Sl=command.

TYPE tBS FIRST The user attempted to use a system
command which cannot presently be
honored due to the status of the
user's program.

UNAUTHORIZED ACCOUNT The user attempted to log into the
system with an invalid account
number or password.

WAIT FOR I/0 A request cannot be honored because
a device is busy. Try typing the
command again.

CHAPTER 3

SYSTEM LIBRARY PROGRAMS

The System Library contains a comprehensive set of user programs
for a wide range of applications. Language processors, such as BASIC
and FOCAL, allow the user to code and run programs in interactive
languages. -FORT' compiles and executes programs written in
FORTRAN language. A complete assembly language system allows programs
to be written in PALD, assembled, and run. Various utility programs
perform special functions. The DEC-supplied System Library consists

of the following programs.

® BASIC - an easily learned interactive language originally
developed at Dartmouth College.

r CAT - used to list all the files which a user has stored in
his library.

e COPY ~ a utility program used to transfer files between the
system disk and DECtape.

™ EDIT - a line-oriented text editor, used to create and
modify source programs (such as FORTRAN) and data files.

® FOCAL - DEC's own interactive language for on-line problem
solving, designed especially for use on mini-computers.

® FORT - a modified wversion of FORTRAN II.

. LOADER - a binary loader used to load assembled programs
for execution.

° ODTHI - Octal Debugging Technique for testing and modifying
assembly language programs.

e PALD - a 2-pass symbolic assembler.

® PIP ~ Peripheral Interchange Program for transferring files
between the system disk, paper tape, and line printer,

® FUTR - a utility program used to transfer files between all
EduSystem 50 devices.

. SYSTAT - (System Status) a utility program that prints a
brief description of the system status.

3-1

A more detailed description of each of the above System Library

Programs is presented in the following sections.

3.1 GENERAL FILE CHARACTERISTICS

A fundamental feature of the Monitor is its ability to save
programs or other data for each user in his own private library.
These individual user libraries are maintained on the system disk.
Individual entries in the library are called files, whether they
contain programs or data. Within the library itself, there is no
distinction between types of files by their contents. Each file is

identified with a file name by which it is known and called into use.

The user does not directly create and update the files in his
library. He uses the System Library Programs for this purpose. For
example, he can use the SAVE command in BASIC. The SAVE command
takes the BASIC program named and saves it as a file in the user's
library for future use. Similarly, EDIT can be used to modify an
existing file, resulting in the creation ¢f a new file. Therefore,
although the Monitor provides the actual file storage capability,
most file manipulation is done while System Library Programs are
being run.

The System Library Programs which operate on these files must
know which file to use, when to create a new file, and what to call
it. Each Library Program has its own method of determining whether a
user wishes to use an old file or create a new one; this is explained
in the sections on individual library programs.

Example 1:

«R BASIC

NEW OR OLD--0LD
OLD PROGRAM NAME~--PRIME

READY

Example 2:

«R FORT

INFUTSTYPE
OUTPUT!BTYPE

For most of his work, the user requires access to only his own
library. However, it is often a useful feature to be able to obtain
a program from ancother user's library, allowing a single file to be
shared by several users. To access a program from another user's
library, the user must tell the system in which individual library
the file is stored., The user tells the system by entering the account
number of the library's owner. (In the absence of an account number,
the user's own library is the assumed source.}) To get a file from the

System Library, type an asterisk immediately after the file name.

Example 1:

«R BASIC

NEW OR OLD=--0OLD
OLD PROGRAM NAME--HOSSR*

READY

«R PALD

INPUTINOTPIP 5449
OUTPUTBINI

NOTE

Most examples in the discussions of indi-
vidual System Library Programs use file
names within the user's own library. The
user is free (file protect permitting) teo
use files from other user's libraries.

Access to another user's files is gained only with his permission.
A user may "protect" his files against other users, i.e., prevent them

from gaining access to his files, even though they know his program

name and account number. Library Programs never permit a user to
write in another user's files. Specifying a file which is protected,
or specifying a nonexistent file, is an error that is detected
immediately. BAn error message is printed and the file name is

requested again.

The user places his output in a single file; however, it is
often useful to input several files together. (For example, the user
may wish to assemble two parts of a PAL-D program together.) To
specify more than one input file, separate the file names by commas.
No Library Program (except PUTR) allows more than three input files.

FORTRAN is limited to two; BASIC allows only one.

BASIC is a self-contained programming system, with an editor,
compiler, and run-time system. It also has a distinctive file format.
Files created by BASIC are not compatible with files created by other
Library Programs. All other Library Programs depend on each other:;
therefore, all other Library Programs use the same format for their
disk files. Consequently, files created by the Editor can be used

as input to PAL-D or FORTRAN programs as data files.

The Monitor includes a disk quota system, which limits the
amount of file space that each account can have. A user can find
out what his own quota is by running the program CAT. Any time an
account exceeds this disk quota, the Monitor will print a message such
as [MYFILE EXCEEDING DISK QUOTA] warning the user that he is about to
run out of disk space. The amount by which he may exceed his disk

quota is called the grace quota, and is defined by the System Manager.

Up to this point, only files that exist within the time-sharing
system, i.e., on the system disk, have been described; however,
EduSystem 50 provides other means of file storage such as paper tape,
RKAS cartridge disk, and DECtape. The Library Programs PIP, COPY,
and PUTR can be used to transfer data between any devices which are

present on the System.

3.2 CONTROLLING THE EXECUTION OF SYSTEM LIBRARY PROGRAMS

EduSystem 50 provides the user with two options for stopping the
system. CTRL/C (C with the CTRL key held down) allows the user to
stop his BASIC program and return to the beginning of that program
without returning to the Monitor. For example, if the user begins
to run a BASIC program that has an endless loop, he can type CTRL/C

to stop it. BASIC responds to {C with READY. All other Library

Programs respond in a similar manner.

CTRL/B is used to stop the Library Program most recently called.
CTRL/B followed by S and the RETURN key unconditicnally returns the
user to the Monitor mode; the user can then call another Library
Program, If the system is printing, two CTRL/B's and the S ({B{BS)

are reguired to stop the system.

RUBOUT is another useful character that deletes the last typed
character. Some Library Programs respond by printing \ or - while
others print the deleted character. If the RUBOUT key is typed while
entering file names for input or output to a Library Program, RUBOUT
deletes the whole line. The request for input or output is then

repeated.

3.3 RETURNING TO THE MONITOR

The user can stop the execution of a System Library Program at
any time by typing CTRL/B followed by S and the RETURN key. The
System Library Programs can also initiate a return to the Monitor.
When the System Library Programs initiate a return, {BS is printed
just as though the user had terminated the program. For example,
BASIC returns to the Monitor when the user types the BYE command:

READY

BYE
tBS

L]

FORTRAN returns to the Monitor after completing execution of a
program. CAT and SYSTAT return after printing their particular data
output. PAL-D returns after completion of an assembly, LOADER at
the end of a normal load, and EDIT after completion of an EDIT.
FOCAL, ODT, and PIP never return to the Monitor; these programs must

be terminated by the user with CTRL/B followed by S. Some System

Library Programs return to the Monitor when a fatal error condition
is detected.

CHAPTER 4

CALLING AND USING BASIC

4.1 BASIC

EduSystem 50 BASIC is a time-sharing version of the BASIC
language. It allows even the beginning computer user to write and
run meaningful programs. In addition, EduSystem 50 BASIC has ad-
vanced language features such as strings, files, and program chaining.
This section describes the BASIC language capabilities not discussed in
Chapter 1 of the EduSystem Handbook. Table 4-4 contains a complete

summary of the EduSystem 50 BASIC language.

To call BASIC, the user types:

R BASIC

After the user logs into EduSystem 50, and ¢alls BASIC in the above
manner, BASIC prints NEW OR OLD--. The user then types the appropri-
ate adjective: NEW (if he wants to enter a new program) or OLD (if
he wants to retrieve a program that was previously f£iled),

BASIC then asks NEW PROGRAM NAME-- {or OLD PROGRAM NAME--) and
the user types any combination of six letters or less. If the user
is recalling an old program file from the disk, he must use exactly
the same name as when he originally instructed BASIC to save it.

BASIC prints READY to signal the start of the editing phase;
the user then begins to type the new program. If the user types a
line consisting of only a line number followed by the RETURN key,
that line is deleted. Each line must begin with a line number
greater than 0 and less than 2047 and which contains no non-digit

characters. To enter an entire line to the computer, the user must
press the RETURN key.

If the user makes a typing error while typing a statement and
notices it immediately, he can correct it by typing the RUBOUT (or
DELETE) key (right-hand side of the kevboard), or the back arrow key.
Typing either key deletes the character in the preceding space and
prints a.backarrow (=) character for each character erased. The
user can then type the correct characters. Typing the RUBOUT key a
number of times erases one character from the current line (spaces
are characters) to the.left for each RUBOQUT typed.

While BASIC is in the editing phase, certain additional commands
(which must not have line numbers) are available. The commands are

described in Table 4-4 under Edit/Control Commands.

4.2 LANGUAGE FEATURES

4.2.1 Truncation Function, FIX(X)

The truncation function returns the integer part of X. For

example:

18 PRINT "FIX(12.2)=" FIX¢(10.2)
29 END
RUN

Fi1X(iB.2)= 10

FIX is like INT for positive arguments, and can be defined as:

FIX (X} = SGN({X) * INT(ABS(X))

4.2.2 ON GOTO Statement

The ON...GOTO statement may be used to provide a many-way branch.
The general form of the ON...GOTC is:

ON expression GOTO line number, line number ...

If the value of the integer part of the expression is 1, a GOTO is
performed to the first statement. If the value of the integer part
of the expression is 2, a GOTO to the second statement number is
performed, etc. If the value is less than one, or greater than the
number of statement numbers, the program terminates and an error
message is printed. Examples of ON GOTO are shown below:

999 ON N GOTO 1008.,400,200,600.499

872 ON A+SQR(B#*C) GOTO 100,200

4.2.3 SLEEP Statement

The SLEEP statement causes a BASIC program te pause for a
specified interval, then continue running. SLEEP is followed by the

number of seconds the pregram is to pause. For example:
222 SLEEP 30

or

228 LET N=15
222 SLEEP 2#N

causes a 30 second delay in the program,

The SLEEP statement is a useful way for a program to wait for a
device (DECtape or line printer) which is busy. The ELSE clause in
the OPEN statement can go to a routine which pauses for a while, then
retries the OPEN. When the current user finishes with the device and
releases it, the program may then proceed to OPEN and use it. This
capability is especially useful when many users may be looking up
information on a single DECtape file. It may also be used to allow
two programs to communicate with each other. Each writes information

on a tape file for the other, or others, to read.

SLEEP should always be used when waiting for a device. While
the program is sleeping it is not using any processor time. A SLEEF
time of 30 to 60 seconds is recommended. It is particularly important
that the program not wait by repetitively retrying the OPEN. To do
80 wastes computer time and slows down other users. The integer part
of the argument is used to determine the number of seconds to delay.
This value must be between 0 and 4095.

4.2.4 Comments

An entire statement of comments may be included in the BASIC
program by means of the REM statement. Often comments are easier to
read if they are placed on the same line with an executable statement
rather than in a separate REMARK statement. This can be accomplished
by ending an executable statement with an apostrophe. Everything to
the right of the apostrophe up to the statement terminator (carriage
return or backslash) is ignored (unless the apostrophe occurs within

a print literal or string constant.) For example:

1@ LET X=Y °*THIS 1S A COMMENT'
2@ PRINT "BUT THIS 1S NOT A COMMENT"
38 LET X3$="A'E"

Thus, a comment is added to line 10 with an apostrophe, but in lines
20 and 30 the apostrophe is treated as a valid character.

4,2.5 Blank Lines

To make BASIC programs easier to read, bkblank lines can be in-
serted anywhere in a BASIC program. These can be used to break a
program into logical sections, or (as is often done) to insert
remarks with the apostrophe feature. For example:

1@ *PROGRAM WRITTEN BY SAM JONEX~S
100

4-4

Note that to insert a blank line, you must type one or more spaces
after the line number; typing the line number alone will just delete
that line from the program.

4.2.6 Multiple Statements Per Line

As many statements as will fit may be typed on a single program
line. Each statement must be separated by the backslash character
"\". The only statement requiring a line number is the initial one.
For example:

189 FOR 1I=1 TO 18\PRINT I\NEXT I

Note that the backslash character acts as a statement terminator and

thus cannot be included in a comment statement.

4.2.7 Editing BASIC Statements

If a program line is incorrect, it can be corrected by retyping
it. Minor errors in statements can be corrected by using the EDIT
command. The user types EDIT followed by the line number of the
statement to be edited. BASIC responds by printing a left bracket
([}). The user then types a search character. BASIC prints a close
bracket and prints the statement through the first occurrence of the

specified search character. The user may then:

1. Type new characters which are inserted at that point in the
statement,
2. Type cone or more back arrows (+) to delete characters to

the left of the search character.

3. Type the ALT MODE key to delete the entire line up to that
point (but not the line number).

4, Type CTRL/L to continue to the next occurrence of the
search character.

5. Type CTRL/G to specify a new search character.

6. Type LINE FEED to finish the edit, keeping the remainder
of the line unchanged.

7. Type RETURN to finish the edit, deleting the remainder of
the line.

4.2.8 Saving Compiled Programs

BASIC compiles the current program each time it is run. If,
however, a program will be used frequently without being changed, it
may be stored in its compiled form. A compiled program can be re-
trieved and executed faster than a BASIC source program. To save a
compiled program, the user types., for example:

COMPILE FAME

The program is saved on the disk under the specified name (FAME in this casd
If a file by that name exists, BASIC prints DUPLICATE FILE NAME and
does not compile that program.

Once a program has been compiled, it may be retrieved and run
just like an ordinary BASIC source program. It may not, however, be
listed, saved, or changed. If an attempt is made to do any of these
things, the message EXECUTE ONLY is printed. The compile capability
may therefore be used to protect programs from unauthorized listing
or changing. Since only BASIC source programs can be edited, the
user may wish to store both a source and a compiled version of a

given program.

Compiled files are distinguished from regqgular BASIC programs by
their file extensions. BASIC source programs have an extension of
.BAS. Compiled files have an extension of .BAC. These extensions

are printed along with the file name when a catalog is requested.

4-6

4,2.9 File Protection

EduSystem 50 permits a user to specify a protection code for
each file. {(See Chapter 10 for a full description of protection
codes.) The commands which write disk files (SAVE, REPLACE,
COMPILE} alsc permit the user to specify what protection is to be
given to a £ile. This is done by following the file name with the
protection code in angle brackets. For example:

SAVE DEMO <18>
will create and save a file named DEMO.BAS having a protection code
of 10. When no protection is specified, a protection of 12 is auto-

matically assumed.

4.2.10 Project-Programmer Numbers

In specifying the Account Number prior to requesting an OLD file,
the user may optionally type a Project-Programmer number (giving the
Account Number as two 2-digit numbers separated by commas instead of
a single 4-digit number). 1In this way, the user may RUN files from
another user's disk area. For example, both of the following are
acceptable:

OLD PROGRAM NAME-<-FILE 13,3
where 13 is the Project Number and 3 is the Programmer Number, or:
OLD PROGRAM NAME--FILE 1383

where 1303 is the account number. The two file name indications are

equivalent.

4.2.11 Restricted Accounts

As an added system protection, BASIC checks to see if an
attempt is being made to run BASIC under Accounts 1 or 2. If so,
BASIC prints the error message:

IMPROPER ACCOUNT #

ABORT
tBS

thus preventing BASIC from interfering with the System Directories

or the System Library.

4.2.12 Catalog Format

The CATALOG command prints the user's directory, file names
and file extensions, file size, and file protection ccodes. For

example;:

CATALQg

NAME SIZE PROT
TEMPOO 1 12

DEMO .BAS 1 10

IBOLD .BAC 1 1@

BASO0Q.TMP | 17

BAS 1900 .TMP 1 17

4,2.13 Strings in BASIC

EduSystem 50 BASIC has the ability to manipulate alphabetic
information (or strings). A string is a sequence of characters,
each of which is a printing ASCII character (see Appendix B).
EduSystem 50 strings consist of one to six characters; strings of

more than six characters are truncated on input teo six characters.

Variables can be introduced for simple strings, string arrays,
and string matrices. A string variable is denoted by following the

variable name with the dollar sign character ($). For example:

AlS A simple string of up to six characters.
v${7) The seventh string in the array v§(n).
M$(1,1) An element of a string matrix M$(n,m).

When string arraye or matrices are used, a DIM statement is

required, For example:

10 DIM VS(1B),M8(5,5)

reserves space for eleven 6-character strings for the array V$, and

space for 36 é-character strings for the matrix M$S.

4.2.13.1 Reading String Data -- Strings of characters may be read
into string variables from DATA statements. Each string data element
is a string of one to six characters enclosed in quotation marks.

The quotation marks are not part of the actual string. For example:

18 READ A$,B%,(CS
200 DATA "JONES™,"SMITH', "HOWE"

The string JONES is read into A$, SMITH into B$, and HOWE into CS$S.
If the string contains more than six characters, the excess characters

are ignored. The fellowing program:

10 READ AS

20 PRINT A%

30 DATA “TIME-SHARING"
49 END

RUN

causes only

TIME-S

4-9

to be printed.

String and numeric elements may be intermixed in DATA statements.
A READ operation always fetches the next element of the appropriate
type. In the following example:

12 READ A,AS,D
€0 DATA "YES"»>2.5,"N0"»1

2.5 is read into A, YES into AS, and 1 into B.

The standard RESTORE statement (as described in Chapter &) resets
the data peinters for both string and numeric elements. Two special
forms of the RESTORE command, RESTORE* and RESTORES, may be used to
reset just the numeric or string data list pointers, respectively.

For example:

1@ READ A»AS.B

2@ DATA "YES"»2.5,"N0"s1
32 PRINT A»AS%sB

42 RESTORE*

50 READ A,AS:B

6@ PRINT A.AS,B

79 END

RUN

would print:

Beb YES 1
2.5 NO 1

If line 40 were changed to RESTORE, this program would print:

5 YES |
5

2.
2. YES 1

gsince the numeric as well as string data lists would be reset.

4,2.13.2 Printing Strings -- The BASIC PRINT statement may be used

to print string information. If the semicolon character is used to

separate string variables in a PRINT command, the strings are printed
with no intervening spaces. For example, the program:

12 READ AS.B3,Cs

28 PRINT CS$:BS3AS

30 DATA "ING".,"SHAR","TIME-"

48 END
RUN

causes the following to be printed:

TIME-SHARING

4,2.13.3 Inputting Strings —-- String information may be entered into
a BASIC program by means of the INPUT command. Strings typed at the

keyboard may contain any of the standard ASCII characters on the user
terminal except back arrow (+) and quotation mark (")}. Back arrow is
used in BASIC to delete the last character typed. Commas are used as
terminators just as with numeric input. If a string contains a comma,

the entire string must be enclosed in guotation marks. The following

program demonstrates string input.

18 INPUT AS,BS$,CS
20 PRINT C$.,Bs,AS%

30 END

RUN

? JONES,SMITH,HOWE

HOWE SMITH JONES
READY

Strings and numeric information may be combined in the same
INPUT statement as in the following example. Necte that if an input
string contains more than six characters, only the first six are

retained.

4-11

10 INPUT A,A3,B%
2@ PRINT A%,B%sA
3@ END

RUN

7 B1754-MAYNARD.MASS .,
MAY NAR MASS. 1754

The numeric variable A is set to 1754 (leading zeros are deleted},
the string MAYNAR is put in the string variable A$§, and the string
MASS. is put into the string variable B$. To print the number 01754,

the number could be input and output as a character string.

4.2.13.4 Line Input -- Strings of more than six characters may be

entered by means of the LINPUT (line input) statement. A LINPUT

statement is followed by one or more string variables. For example:

1@ LINPUT AS(1),A3(2),A8(3),A8(4),A8(S)
The first six characters to by typed are stored in the first string
variable, the next six in the second, and so until the line of input

is terminated by a carriage return,

Commas and quotes are treated as ordinary characters and hence
are stored in the string variables. For example, if the following

line were typed in response to the above LINPUT command:

?MAYNARDs, MASS. 01754

then the values of the string wvariables would be as follows:

aA$({l) = "MAYNAR"
A$(2) = "D, M-Asn
A§(3) = "s. 017"
AS(4) = "54"
AS(5) = un]

lstrings may consist of zero characters. Such a string is empty (or
null}. If printed, it causes nothing to be output. The null string
is usually represented by a pair of quotes with nothing between ("").
The null string should not be confused with a string of one or more
spaces.

In the above example, the maximum number of characters which
could be typed would be 30. Any additional characters would be
ignored. In all cases, the maximum number of characters which may
be typed in response to LINPUT is 506. If a longer line is typed, the
message LINE TOO LONG is printed. The input line is ignored and

must be reentered.

It is possgible to mix numeric and string variables in a LINPUT
statement, but this practice is not recommended. As an illustration
of how this might be done, consider the example given earlier:

18 LINPUT AsAS$:BS
where the user might type:

? 81 754,MAYNARD>, MA
This still sets the numeric variable A to 1754 (when used in LINPUT
statements, numeric input remains unchanged). However, the string
variable A$ would now be MAYNAR, and the string variable B$ would

be D, MA.

When inputting strings with LINPUT, the error messages: MORE?
and TOO MUCH INPUT, EXCESS IGNORED cannot occur.,

4.2.13.5 Working With Strings =- Strings may be used in both LET

and IF statements. For example:

18 LET YSa"YES™
2@ IF Z$="NO" THEN 100

The first statement stores the string YES in the string variable ¥§.
The second branches to statement 100 if 2$ contains the string NO.
For two strings to be equal, they must contain the same characters
in the same order and be the same length. In particular, trailing

blanks are significant since they change the length of the string.
"YES" is not equal to "YES ".

The relational operators <« and » may also be used with string
variables. When used with strings, these operators mean "earlier
in alphabetic order" or "later in alphabetic order", respectively.
They may be used to alphabetize a list of strings, for example. The
relation operators »>=, <=, and< > may be used in a similar manner.
The arithmetic operations (+, -, *, /,t) are not defined for strings.
Thus statements such as LET A$ = 3*5 and LET C$ = AS$+B$ have no
meaning, and should not be used in a BASIC program. They will not
cause a diagnostic to be printed; however, the results of such

operations are undefined.

4,2.13.6 The CHANGE Statement -- The CHANGE statement may be used to
access and alter individual characters within a string. Every string
character has a numeric ASCII code {see Appendix B), a number which
is used to indicate that particular character. The CHANGE statement
converts a string into an array of numbers, or vice wversa. The
CHANGE statement has the form:

180 CHANGE A TO As

or

128 CHANGE AS TO A

where A$ is any string variable (or an element of a subscripted
string variable) and A is an array variable with at least six elements.
Any array variables used in CHANGE statements must have appeared in a

DIM statement with a dimension of at least six.

The following program illustrates the use of the CHANGE state-
ment by changing a string variable into an array of numbers.

4-14

18 DINM A(S)

2@ READ AS

3@ CHANGE AS TO &

48 PRINT AC@IZACL1IZAC2IIAC3I2A4042A(523A(62

S6 DATA "ABCD"

68 END
RUN

4 65 66 67 68 8 P

The CHANGE statement takes each character of thes string and stores
its corresponding numefic {ASCII) code in elements one to six of the
array. Remaining array elements are set to zero. The length of the
string (0-6 characters) is stored in the zero element of the array.
In the example above, the character codes for A, B, C, and D are
stored in A(l) to A(4). A(5) and A{6) are set to zero. The number

4 is stored in A(0) since the string A$ is four characters long.

CHANGE may also be used to change an array of numeric codes into

a character string as in the following program:

12 DIM A6

28 FOR I=8 TO S

30 READ A(I)

49 NEXT 1

5@ CHANGE A TO AS

608 PRINT AS

79 DATA 5,69,68,85,53,48
8@ END

RUN

EDUSE

The length of the resulting string is determined by the zero ele-
ment of the array. In the previous example, the string is five
characters long. The elements of the array, starting at subscript 1,
are assumed to be numeric character codes; these are converted to
characters and are stored in the string. If any codes encountered
are not valid character codes, or if an invalid string length is
given, the message BAD VALUE IN CHANGE STATEMENT AT LINE n is printed,

and execution is stopped.

A BASIC string of less than six characters always has the re-
maining character positions filled with zeros. For this reason, when
such a string is changed to an array, the first six array elements
are set to zero. The CHANGE statement always fills six array ele-
ments, even though the strings may not be six characters long. The
user should be careful to dimension the array used in a CHANGE state-
ment to at least six. If a string of characters is transformed into
an array of less than six elements, an undetected error will Qccur.

The CHANGE statement is usable with strings not created by
BASIC. It may, for example, be used to access files other than
BASIC data files. Each string variable corresponds to three PDP-8
words. The CHANGE statement treats these three words as six 6-bit
bytes, converts each 6-bit byte to its numeric character code
eqguivalent and stores it in the corresponding array element. The
zero element of the array, the string length, is set equal to the
nunber of bytes (characters) before the first zero byte. When read-
ing unspecified data, there may be non-zero bytes feollowing this zero
byte. If so, they will be transferred to the array as well.

4,2.13.7 The CHRS Function -- Occasionally, it is desirable to type

a character other than those in the printing ASCII set, or to compute
the value of a character to be printed. For this purpose, the CHRS
function can be used in a PRINT statement. The argument of the CHR$
function is sent as an ASCII character to the Teletype. For example:

12 FOR 1=8 TO 9

2@ PRINT CHRS(I+48);
30 NEXT I

49 END

prints 0123456789, since 48 to 57 are the ASCITI values for the
characters 0 to 9. The following special characters can also be

printed using the CHR$ function:

Bell CHRS (7)

Line feed CHR$ (10)
Carriage return CHRS (13)
Quote (") CHRS (34)
Back arrow (-} CHRS (95)
Form feed CHRS (12)

The Teletype will accept characters from Q0 to 255 (decimal},
many of which do nothing on mest kinds cof teletypes. Some of the
special (non-printing) characters should not be used. For example,

CHR$ (4) causes a Dataphone to disconnect.

For each ASCII cocde there is a second acceptable form permitted
in CHANGE and CHR$. The second code is obtained by adding 128 to
the code given in the table in Appendix B. For example, CHR$ would
type A in response to either 65 or 193 as an argument.

4.2.14 Program Chaining

Most programs are easily accommodated by EduSystem 50 BASIC. If
a program becomes very long, however, it may be necessary to break it
into several segments. Typically, programs of more than two to three
hundred statements must be split into more than one file. A program
that has been broken into more than one piece is commonly called a

chained program.

Each part of a chained program is saved on the disk as a separate
file. The last statement of each part to be executed is a CHAIN
statement specifying the name of the next part of the program. The
next file is then loaded and executed. It may in turn chain to still
another part of the program. The general form of the chain command is:

414 CHAIN "NAME™
or

414 CHAIN AS

4-17

where NAME is the name of the next segment to be executed (one to
six characters enclosed in gquotation marks). The name of the next
segment may alsoc be contained in a string variable. 1In either case,
the file of that name is loaded and run. Thus, the statement:

999 CHAIN "SEGR"™

is equivalent to:

CLD
DLD PROGRAM NAME--S5EG2

READY
RUN

except that it happens automatically. Each separate part of the
program automatically links to the next part of the program chain.

The individual sections of a chained program may be either
regular source files {.BAS) or compiled files {.BAC). If the sections
are source files, they must be compiled before they are run. A
chained program runs more efficiently if all its sections have been

compiled. Source and compiled files cannot be mixed in program files.

If an error occurs while compiling or running a chained program,
the name of the section containing the error is printed as part of the
error messade., In all cases, whether a program terminates by an error
or a STOP or END, BASIC returns to the first program in the chain.
This is the one which is available for editing and rerunning when
BASIC prints READY.

Most chained programs reguire that information from cne section
be passed to the next. The first section may, for example, accept
input values and perform some preliminary calculations. The inter-
mediate results must then be passed to the next section of the pro-
grams. This passing of values is done by means of data files which
are explained in the next section. Whenever a CHAIN operation is

performed, program data which has not been saved in a file is lost.

4-18

Variable and array values are not automatically passed to the next

program.

4.3 DISK DATA FILES

The standard BASIC language provides two ways of handling pro-
gram data items. They may be stored within the program (in DATA
statements) or they may be typed from the terminal. DATA statements,
however, allow for only a limited amount of data. Also, the data is
accessible only to the program in which it is embedded. Typing data
from the terminal allows it to be entered into any program, but this
is a time-consuning process. In either case, the data or results of
calculations cannot be conveniently stored for future use. All these

limitations may be overcome by the use of disk data files.

A data file is separate from the program or programs which use
it. It is a file on the disk similar to a saved program, but it
contains numbers or strings rather than program statements. This
information may be read or written by a BASIC program. (Information
in a data file is stored in a coded format; therefore, it cannot be
iisted by the BASIC Editor or EDIT.} {(The maximum size of a data file
is about 350,000 characters.) String and numeric information may be
combined in a single data file. The number of data files a user may
have is limited to about 100, space allowing. When a file is first

created, its contents are undefined.

4.3.1 File Records

A data file is made up of logical units called records. A
record may be as small as a single numeric or string variable. More
typically, it is a group of variables or arrays. The design of the
program usually dictates the most efficient size of the record. If,
for example, the program manipulates a series of 5 by 5 matrices,
each record could contain one such matrix. If the program operates
on 80-character alphanumeric recerds, 14 string variables might

comprise a record.

The size and composition of a record are defined with a RECORD
statement. Like the DIM statement, RECORD is followed by a series of
variables. They may, however, be unsubscripted as well as subscripted.
For example:

18 RECORD A(5,5)
18 RECORD B${14)
12 RECORD A.B,C3(8)»DsE(5)

The set of variables mentioned in a RECORD statement, taken
together, constitute a record. Each element within the record is a
field. Numeric and string information may be mixed to comprise a
more convenient record.

Variables mentioned in a RECORD statement should not appear in
a DIM statement. The RECORD statement reserves variable space
exactly as a DIM statement does. The difference is that the variables
are also identified as being used for file input and output. Non-
subscripted variables appearing in RECORD statements must not have
been used previously in a program; therefore RECORD statements should
always be the first statements in a program.

Records may be any length. 2 long record is typically more
efficient since more information is transferred in a single operation.
Records should, however, be only as long as necessary since excess
variables lengthen the file. In particular, it is important to
remember that all arrays and matrices have zero elements. The array
A(5,5) has 36 elements, not 25. If A appears as part of a record,
all 36 elements should be used.

It is also useful to try to make record sizes 43 variables long,
or a multiple of 43. Each RECORD statement reserves program variable
space in units of 43 whether or not the record is that big. Unless
the record fills this area, some program variable space is wasted.

It is not worthwhile, however, to make an inherently small record 43
variables long just to conform to this convention; this would make
the file unnecessarily large.

4-20

4.,13.2 Opening a Disk File

Disk data files are completely separate from the programs which
use them. Therefore, the program must specify which file or files
it will use. The OPEN command is used for this purpcse. OPENing a
disk data file associates it with an internal file number, either 8 or
9. (A program may have two disk data files open at one time.) For

example:

190 OPEN 9, “DATA)@"
199 OPEN 8,48

The name of the file to be opened may be explicitly stated in
the OPEN command. If it is, it must be contained in quotation marks,
The file name may also be contained in a string variable, allowing
the program to decide which file to open, perhaps on the basis of
input from the program's user. In either case, the name of the file
is preceded by the internal file number, either 8 or 9. This argu-
ment may also be an expression whose value is either 8 or 9.

When a file is opened on an internal file number which has a
file already open, the previocusly opened file is closed and the new

file opened.

If no file of that name exists, the file is created. In either
case, once the file is open, it is available for both reading and
writing. BASIC disk data files are assigned an extension of .DAT
which need not be specified as part of the file name in the OPEN
statement.

4.13.3 Reading/Writing Disk Files

Once open, files may be read and written, one record at a time,
using the GET and PUT statements. GET statements read one record
of information directly inte the variable in the RECORD statement.

PUT statements write the present values of the wvariables in the
RECORD statement. Both GET and PUT statements are followed by the
internal file number (8 or 9 or an expression), the line number of
the RECORD statement containing the variables to be transferred, and
the name of a control variable. For example:

1028 RECORD A»B,C$(30),D(8)
110 OPEN &,"FILE}l"

120 LET 1=8

139 GET 8,1080,1

The contrel variable specifies the file record to be transferred.
In the example above, FILEl is opened as internal file 8. The value
of the control variable, I, is zerc. The GET statement in line 130
reads the first record (record 0) of FILE]l into A, B, and the arrays
C$ and D. 8Single numeric values are read into A and B. 31 strings
are read in C%, and 9 numeric values are read into D. After each
transfer, whether it is a GET or a PUT, the value of the control
variable ig automatically incremented. Successive GET's or PUT's

automatically proceed to the next record of the file,

The PUT statement has a similar format. For example, if line
130 of the preceding program had been:

138 PUT 8,100,1

the present values of A, B, C$ and D would have been written to the
first record of FILEL.

File records may be accessed randomly by setting the control
variable to the desired record number before doing the GET or PUT.
Single records may be read, changed, and then written without pro-
cessing the entire file. When reading a file, the record referenced
in the GET statement must, of course, be the same as the record
referenced in the PUT statement which wrote the data onto the file.

The total length of the record and the relationship of string and

numeric fields within the records used for the GET's and PUT's must
be the same. If they are not, impreoper information will be read and
written.

New files may be created by copening a file which does not already
exist. As successive records are written onto the file, its length
is extended as necessary. When a new file is created, it is useful
to immediately write an end-of-file code in the last record. Writing
the last record first forces the entire file to be allocated, making
sure that enough disk space is available. It also provides an end-
of-file mark. Programs which read this file may then check for this
end-of-file mark to avoid reading past the end of the data file which

results in an error.

Existing files may be enlarged by writing a new record farther
out. If the program does not know how big the file will be, it may
simply write records to the file in sequence. The file will be
automatically extended. When all the reccords have been written, one
final end-of-file mark can be added.

In general, all records read or written on a specific file shouid
be the same length, i.e., contain the same number of variakles,
However, if the user is careful he may intermix records of different

lengths in a file. Suppose the following statement is executed:

4@ PUT 8,100.N

and the value of N is n and the record specified by statement 100 is
of length m. The PUT statement will write m variables in the file
starting at the m*n variable. The simple rule for computing the
first variable in the file to be accessed is the record length times
the record number. (Remember the first record is record number

Zero.)

4-23

4.3.4 Closing/Deleting Disk Files

When all work has been completed on a data file, it should be
closed with a CLOSE statement. Once the file is closed, it may not
be read or written unless it is reopened. The file does, however,
remain on the disk and is available for future use. The CLOSE
statement is followed by the internal file number to be closed (8 or
9). For example:

950 CLOSE g

If the disk file was just created for temporary scratch use (to
pass parameters during a CHAIN, for example), it should be deleted
at the end of the program instead of closed. The UNSAVE statement is
used to delete files. For example:

1980 UNSAVE o

The file opened on internal file number 9 is deleted from the disk.
Both CLOSE and UNSAVE may be followed by an expression equating to

8 or 9 instead of a constant.

Open disk data files are automatically closed at the end of the
program, unless the program CHAINs to another program. In this case,
all open files remain open and the new program may access them with-

out executing an OQPEN statement.

4.4 DECTAPE DATA FILES

Large permanent data files are best stored on DECtape rather
than on disk. Each DECtape holds up to 380,000 characters of infor-
mation. DECtape data files may be dismounted for safekeeping,
thereby insuring their privacy. Data files on DECtape are similar
to files on disk except that they do NOT have filenames. Each reel
of DECtape is treated as a discrete data file. When the tape is

4-24

mounted on a DECtape drive, records may be read and written directly
onto the tape.

A DECtape data file may be used by only one user at a time. Once
a DECtape unit is assigned, a single user has exclusive access to it
until he releases it. Each DECtape drive has a WRITE LOCK switch
which physically prevents any write operations to that unit. If the
WRITE LOCK switch is set, programs may not write on the tape even if

the unit is assigned.

DECtape data files may be used in a variety of ways. Programs
which need large data files should use DECtape to avoid consuming
large disk areas. Administrative files, such as student or employee
records, are best stored on DECtape. Since they are removable and
can be write-locked when mounted, their use can be tightly controlled.
DECtapes are also useful for information retrieval. A data tape may
be kept permanently mounted but write-locked. Individual users may
run programs which assign and guery that file, then release it for

others to use.

4.4.1 DECtape File Records

Records for DECtape data files are specified the same way as
for disk data files: with a RECORD statement. 2All rules for disk
records apply to DECtape records. In fact, the same RECORD statement
may be used for both a DECtape and disk file. (This is useful when
transferring a tape file to a disgk file for processing. Access to
disk data files is considerably faster than to DECtape data files.)

It is possible to specify any record length for a DECtape data
file, but a size of 43 variables is suggested, even more strongly
than for disk data files. DECtapes are physically structured intoe
blocks, each of which holds exactly 43 variables. If the record
specified by the program is, for example, 44 variables, it requires
two full blocks on the tape.

4-25

Records which are multiples of 43 variables are efficient in
utilizing DECtape space but are not efficient in speed. Such re-
cords are written in consecutive DECtape blocks. The tape unit
cannot read or write consecutive blocks without stopping the tape and
rewinding it slightly (rocking). This tape rocking also occurs when
single block records (43 variables or less) are read or written as
consecutive DECtape records. (In this case, each DECtape file record
correspohds to a physical tape block.)

The most efficient way to utilize DECtape is to make records
43 variables in length and write them onto every tenth record in
the file (records 0, 10, 20, etc.}). When the entire length of the
tape has been traversed {(the last block of the tape is number 1473),
write next into records 1, 11, 21, etc. 1In this way, every record
is eventually filled. Programs which will be used repeatedly should
access the tape in this manner.

4,4.2 Opening a DECtape File

DECtape data files, iike disk files, are completely separate from
the programs which use them. Therefore, the program may specify
which tape, or tapes, it will use. The OPEN statement is used for
this purpese. Since DECtape files do not have names,2 the OPEN
statement specifies the DECtape unit number to be used. It is assumed
that the proper tape reel has been mounted. If the file is to be
updated, the unit should be write—enabled. If not, it should be
write-locked. The OPEN statement is followed by the unit number to
be used (0-7).

188 OPEN 2
182 OPEN 7

2It is 1mportant to note that BASIC data file DECtapes are not the
same as the file-oriented DECtapes used by COPY. There is no
directory on a BASIC DECtape file. Each tape is considered to be
one file of data.

4-26

The unit number could be an expression. Making the unit number
a variable is very useful since it is hard to predict which units
will be available at the time the program is run. When the unit
specification is a variable, the user may mount the file on any free
unit, then INPUT the number into the program.

When the OPEN statement is executed, the indicated DECtape unit
is automatically assigned to the user. It cannot subsequently be
assigned to any other user. Thus, it is possible to try to open,
hence assign, a unit which is already assigned. If, in the above
examples, units 2 and 7 were already assigned to the current user or
any other user, the program would be terminated and an error message

printed.

An alternative form of the OPEN statement allows the program
itgself to handle this situation. OPEN statements may include an
ELSE clause which specifies a line number. TIf the OPEN statement
fails, BASIC autcomatically performs a GOTO to this line number.

For example:
10@ OPEN 2 ELSE 992

If unit 2 is available, it is assigned and BASIC goes on to execute
the next statement. If unit 2 is not available, statement 900 is
executed next. Statement 500 could print a message and perhaps ask

for an alternate unit number.

4.4.3 Reading/Writing DECtape Files

DECtape data files are read and written using the same GET and
PUT statements as are used for disk data files. The internal file
number is a number between 0 and 7, or an expression. Unlike disk
data files, DECtape data files are of a constant length equal to the
capacity of the tape. The exact number of records per reel depends

on the record size as follows:

4-27

Record Size Tape Capacity

1-43 variables 1474 records
44-86 wvariables 737 records
87-129 variables 49] records

As indicated in the section on DECtape data records, a record
size of 43 wvariables or less is recommended since it conforms to
the physical blocking of the tapes themselves. It is also desirable
to space the records along the tape so that the tape does not waste
time rocking. The following subroutine could be used to write 1474
records on the tape in this fashion. It assumes that R is set to

zerc before it is called the first time and that the unit number is
in U.

5090 REM SUBROUTINE TO WRITE RECORDS ALONG TAPE
519 REM WRITES ONE RECORD EACH TIME CALLED
515 PUT Us1@:R 'REMEMBER THIS INCREMENTS R
517 LET R=R+9 *SPACE OUT 10 BLOCKS

524 IF R<1474 THEN 550 *OK TO RETURN

530 IF R=1479 THEN $60 °'TAPE IS5 FULL

548 LET R=R-1479

545 1F R>? THEN 550

547 LET R=R+1#

558 RETURN

560 STOP °*TAPE IS FULL

The following function may alsc be used to convert a logical
record number (0 to 1469) to a physical record block spaced along
the tape. This function does not use blocks 0~3. These blocks are,
therefore, available for a header or label. Both the subroutine

above and the function below assume a record length of 43 variables
or less.

FNC(X) = (X-INT(X/147)*147)*10 + INT (X/147)+4

Once opened, any record on the tape may be read. The tape unit
must, however, be write-enabled if it is to be written. Trying to
PUT to a write-locked tape is an error.

4-28

4.4.4 Closing DECtape Files

!

Once all work on a DECtape data file has been completed it may
be closed. Closing a file releases the tape unit and makes it avail-
able to other users. Thus, if the tape contains important informa-
tion (and especially if it is write-enabled) the CLOSE should not be
done until the tape reel has been removed. If no CLOSE statement is
encountered in the program, the unit remains assigned after the pro-
gram has finished. The DECtape unit remains assigned until a Monitor
RELEASE command is executed or the user logs out. An example of a
CLOSE statement follows:

1188 CLOSE 6

4.4.5 Using Dectape Data Files with 05/8 FORTRAN

Numeric DECtape data files written by BASIC may be read by 0S/8
FORTRAN with the FORTRAN RTAPE and WTAPE subroutines, and vice-versa.
{String and Hollerith variables use different character codes.) _
Thus, it is possible to use BASIC to prepare an input or update tape
for a stand-alone FORTRAN program. This provides a convenient way
to do big jobs in off-hours, without having to leave the time-sharing

mode for very long.

4.5 LINE PRINTER OUTPUT

If a line printer is available, it may be used both to list
BASIC programs and to serve as an output device for the programs
themselves. The line printer may only be used by one user at a time.
The statements associated with line printer output are LLIST and
LPRINT.

LLIST is similar to the LIST command except that the program

listing is output to the line printer rather than to the Teletype.

The LLIST command assumes that no other user has the line printer

4-29

assigned and responds by typing WHAT? if the line printer is not
available. After the listing is complete, the line printer is
released and is available to any user.

BASIC programs may use the line printer as an output device
during execution by means of the LPRINT statement. LPRINT is
exactly 1ike PRINT except that the information goes to the line
printer rather than to the Teletype. All formatting conventions of
the PRINT statement are available with LPRINT. In particular,

CHRS$ (12) may be used to skip to the top of the next form (page).

The LPRINT statement alsc assumes that no other user has the
line printer assigned. However, using this statement when the line
printer is not available causes the program to terminate. Once
LPRINT successfully assigns the line printer, it remains assigned
until the program terminates.

The OPEN and CLOSE statements may be used to assign and release
the line printer. An OPEN statement with a device number of 1l
assigns the line printer, or if it is not available and an ELSE
clause is specified, transfers control to the line number specified
in the ELSE clause. CLOSE 11 releases the line printer.

4.6 INTERNAL DATA CODES

Using the file I/0 capabilities and the CHANGE statement, it is
possible to examine data which was written on a DECtape or disk file
by a program other than BASIC. There are two data formats: numeric
and string.

4.6.1 Numeric Data

Each numeric value in BASIC is three PDP-8 words long. The

storage format for numeric data is as follows:

WORD 1

1 L L 1 i N i 1 1

LN A A
SIGN —* l
BIMNARY EXPONENT

HIGH ORDER MANTISSA

MANTISSA

LOW ORDER MANTISSA

A one in the sign bit means that the number is negative. The expo-

nent is kept in excess 200 form where:

200g is 290
201g is 21
177¢ is 271

The assumed decimal point is between bit 8 and 9 of word 1. Alsc,

the number is always normalized, meaning that bit 9 is always 1
unless the number is zero. (2ero is represented by three zero words.)
Note that this format is the same as the format used by 05/8 FORTRAN
II; it is not the same as FORTRAN-D format.

4,6.2 BString Data

Each string variable is three PDP-8 words long. EBEach word con-
tains two 6-bit bytes or characters. 1If a string variable is filled
by a GET from a source which was not written by a BASIC program, a
BASIC program may examine the data in the variable by performing a
CHANGE on that variable. The sgix bytes will be translated as if they
were internal character codes for BASIC string characters. Table 4-1
shows how this translation interprets the 64 possible types. Note
that after such a CHANGE, the 0th element of the array contains a

count of the number of characters occurring before the first null.

TABLE 4-1

BASIC INTERNAL DATA CODES

6-Bit 6-Bit

Byte Byte ASCII Byte Byte ASCII

Octal Decimal Char. Octal Decimal Char.
00 0 NULL 40 32 ?
0l 1 SPACE 41 33 @
02 2 ! 42 34 A
03 3 " 43 35 B
04 4 # 44 36 C
05 5 $ 45 37 D
06 6 % 46 38 E
07 7 & 47 39 F
10 8 ' 50 40 G
11 9 { 51 41 H
12 10) 52 42 I
13 11l * 53 43 J
14 12 + 54 44 K
15 13 ’ 55 45 L
le 14 - 56 46 M
17 15 . 57 47 N
20 16 /- 60 48 0
21 17 0 6l 49 P
22 18 1 62 50 Q
23 19 2 63 51 R
24 20 3 64 52 S
25 21 4 65 53 T
26 22 5 66 54 U
27 23 6 67 55 v
30 24 7 70 56 W
31 25 8 71 57 X
32 26 9 72 58 Y
33 27 : 73 59 Z
34 28 H 74 &0 [
35 29 < 75 61 \
36 30 = 76 62]
37 31 > 77 63 t

4.7 ERROR MESSAGES

Most programs, especially if they are at all complex do not
execute correctly the first time they are tried. EduSystem 50 checks
all BASIC statements when they are entered and before executing them.

If it cannot execute a

statement, it informs the user by printing one

of the error messages shown in Table 4-2, followed by the line number,

if present, in which the error occurred.

In addition, the system checks for non-fatal execution errors

and notifies the user that he performed a computational range error.

When errors of this type occur, the messages shown in Table 4-3

appear, followed by the line number in which the error occurred.

TABLE 4-2

BASIC ERROR MESSAGES

Message

Explanation

ABORT

ARRAY OR RECORD USED
BEFORE DEFINITION

BAD FILE FORMAT

BAD FILE NAME

BAD SLEEP ARGUMENT

BAD VALUE IN CHANGE

STATEMENT

CAN'T CREATE FILE

BASIC can not run for some reason.
Perhaps the user's disk quota is
exceeded.

The RECORD statement must occur before
any reference to it is made. A DIM
statement must occur before an array
is used. (RECORD and DIM are placed
at the beginning of a program.)

The program specified in regponse to
OLD PROGRAM NAME was not acceptable
to BASIC. This is generally caused
to load a non-BASIC (FORTRAN or PAL-D)
program.

The file name used is not valid, e.g.,
it does not begin with a letter.

The argument of the SLEEP statement
must have a number greater than or
equal to 0, and less than or equal to
4094.

While performing CHANGE A TO A%, one
of the elements of the array A was
found to contain an illegal value.

An OPEN statement tried to create a
file, but there is: (a) no disk space
available, (b) no file name specified,
or (c) a null string has been given

as the file name.

Table 4-2 (Cont.)

Message

Explanation

CAN'T DELETE FILE

CAN'T DELETE: name
CAN'T FIND LINE
CAN'T FIND "name" IN

SYSTEM LIBRARY

CHAIN TO BAD FILE

DEF STATEMENT MISSING

DEVICE BUSY

DIMENSTON TOO LARGE
DISK FULL

DUPLICATE FILE NAME

EXECUTE ONLY

FOR WITHOUT NEXT

GET BEYOND END OF FILE

UNSAVE cannot delete a file. This is
usually due to the fact that another
user has the file open, or the file is
protected with a code >20.

An attempt has been made to UNSAVE a
protected file.

An attempt has been made to edit a
non-existent line.

The requested old file cannot be found.

The file specified by the CHAIN has an
invalid format: it is not a BASIC
format file. The "PROGRAM IS..."
message will follow this error message.
The program name will be the name of
the bad file.

A function needing a DEF statement
exists in the program.

The user tried to OPEN DECtapes 0-7,
line printer, or paper tape punch, but
the device was unavailable, and there

was no ELSE clause in the OPEN statement.

Too large an array to fit in the avail-
able core.

There is no more storage space on the
system disk.

An attempt has been made to SAVE a
program, but one with that name already
exists.

An attempt has been made to list, save,
oY alter a BASIC complied program,
The program can only be run,

There is an unmatched FOR statement in
the program.

Disk data file is too small to have a

record with the number specified in the
GET statement at line n.

4-34

Table 4-2 (Cont.)

Message

Explanation

GET/PUT

GOSUEB -

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ITLLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

IMPROPER ACCOUNT # ABORT ¢BS

IMPROPER DIM OR RECORD

ERROR

RETURN ERROR

CHARACTER

CONSTANT

FORMAT

FOR NESTING

INSTRUCTION

LINE NUMBER

OPERATION

SYNTAX

VARTABLE

STATEMENT

A hardware error occurred in GET or
PUT. (This is usually due to a
DECtape unit being write-locked.)

Subroutines are too deeply nested or
a RETURN statement exists outside a
subroutine.

The user attempted to use an illegal
character in the statement being
processed.

The format of a constant in the state-
ment being processed is not valid.

The structure of the statement does
not agree with BASIC syntax.

FOR-NEXT loops are too deeply nested
or NEXT appears before FOR.

A statement was used which is not
one of the legal BASIC statements.

The format of the line number being
used in a GOTO or IF statement is
not acceptable. A line number has
been typed which is not between 1
and 2046, inclusive,.

The expression being processed does
not agree with the BASIC rules (this is
probably due to unmatched parentheses).

The expression in a statement does
not agree with the BASIC syntax.

An illegal variable was used in an
array.

A user logged in under account numbers
1 (system account) or 2 (system li-
brary) and tried to run BASIC. This
is prohibited.

Syntax error in DIM or RECORD state-
ment, or an array name that was pre-
viously dimensioned is reused.

Message

Explanation

INVALID DEVICE NO.

INVALID RECORD NO.

LINE TOO LONG

MISUSE OF CHRS$

MISUSED TAB

NEXT WITHOUT FOR

NO END STATEMENT

ON INDEX OUT OF RANGE

OUT OF DATA

PROGRAM IS "progname"

PROGRAM NOT FOUND

PROGRAM TOO LARGE

The device number in the file I/0O state-
ment is not between 0 and 11 inclusive,
{(or X and 1l inclusive where X is a
number set by the system manager).

The record number must be a number
which is greater than or equal to 0
and less than or equal to 4095. For
DECtape I/0 the maximum record number
is limited further by the DECtape size.

Too much has been typed.

The CHR$ function was used in an in-
valid manner. CHRS$, like TAB, can
appear only in PRINT statements.

The TAB function was used in an in-
valid manner. TAB can appear only in
PRINT statements.

Not enough values have been entered in
response to an INPUT command. The rest
of the values may be entered.

The NEXT statement indicated has no
preceding FOR statement.

All programs must have an END statement.

The value of the index is less than
one, or greater than the number of
statement numbers.

An attempt was made to READ more data
than was supplied by the user.

This message may immediately follow

an error message, to identify the
current program in a series of CHAINed
programs, If there is no CHAIN, this
message will not occur.

The file which the user tried to access
with a CHAIN statement does not exist
in his disk area. The PROGRAM IS
message will also occur,

The program is too large to be executed.
Make it smaller.

4-36

Takle 4-2. {(Cont.}

Message Explanation

STACK OVERFLOW The user programmed a situation in
which the expression is too compli-
cated tc be executed.

SUBSCRIPT ERROR A negative subscript was used for an
array.

SYSTEM I-0 ERRCR BASIC was unable to perform the desired
disk I/0.

TIME LIMIT EXCEEDED The number of statements executed by

a job has exceeded the maximum estab-
lished by the system manager. Gener-
ally, some error was made and the pro-
gram is caught in a loop.

TOOC MUCH INPUT, EXCESS Too many values have been entered in
IGNORED response to an INPUT command.
UNDEFINED LINE NUMBER The line number appearing in a GOTO or

an IF-THEN statement does not appear
in the program.

UNOPEN DISK UNIT The user tried to do a GET, PUT, or
UNSAVE to device 8 or 9, without a
file being previously opened on the
device

WHAT? The editor cannot understand the
command given.

4-37

TABLE 4-3

NON-FATAL EXECUTION ERRORS

Message

Explanation

IC

LN

ov

8Q

/0

An illegal character or constant has
been typed in response to an INPUT
statement. The input is requested
again.

An attempt was made to compute the
logarithm of zero or a negative number.
Zero is used for the result.

Overflow - the result of a calculation
was too large for the computer to
handle. The largest possible number
is used for the result.

An attempt was made to raise a negative
number to a fractional power. The
absolute value of that number raised to
the fractional power is used.

An attempt was made to compute the
square root of a negative number. The
square root of the absolute value is
used for the result.

Underflow - the result of a calculation
was too small for the computer to
handle. Zero is used for the result.

Zero divide - an attempt was made to
divide by zero. The largest possible
number is used for the result.

6eE-%

TABLE 4-4

EDUSYSTEM 50 BASIC LANGUAGE SUMMARY

Statement

Format

Explanation

Input/Output Statements

CLOSE
DATA

GET

INPUT
LINPUT

LPRINT

QPEN
OPEN-ELSE
PRINT

PUT

READ
RESTORE
RESTORE¥*
RESTORES$

UNSAVE

CLOSE £

DATA nlfnzp - .nn
GET f£,1,r

INPUT V1,270V

LINPUT V$1,V$2 F v |V$n
LPRINT €1/82,...8,

OPEN f,n$
OPEN f ELSE n
PRINT ej1,e5,...ep

pUT £,1,r

READ V],V2,s...V
RESTORE
RESTORE*
RESTORES

n

UNSAVE £

Close file f£f.

Numbers n, through n, = variables in READ
statement.

Read record r from file £ into the variables
in line 1.

Get v, through v, input from the terminal.

Get long character string input from terminal
{(up to 50 characters).

Print values cof specified text or expressions
on line printer,

Open a file named n$ as file number £f.
Open a file, go to line n if unavailable.

Print values of specified text, variables, or
expressions.

Write record r, formatted as in line 1, into
file f£f.

Read variablesv] throughw from DATA list.
Reset DATA pointer to beginning value.
Reset DATA pointer for numeric data only.

Reset DATA pointer for character string data
only.

Delete file £ from disk storage.

ov-v

Table 4-4. {Cont.)

Statement Format

Explanation

Transfer of Controls

GOTO GOTO 1

IF-GOTO IF e; r ey GOTO 1
IF-THEN IF e] r e; THEN 1
ON-GOTO ON e GOTO 17,1,,...13

Loops and Subscripts

DIM DIM v(d]), vidy,dy)
FOR-TO-STEP FOR v=e] TO e, STEP ej

NEXT NEXT v
Subroutines

GOSUB GO5UB 1

RETURN RETURN

STOP STOP

Others

CHAIN CHBAIN n$%

CHANGE CHANGE Vi TO v2
DEF DEF FNA({x)}=f (x)
END END

Transfer control to line number 1.

If relationship r between e; and ej; is true,
transfer control to line number 1.

Same as IF-GOTO.
Computed GOTO.

Dimension gsubscripted variables.

Set up program loop. Define v values beginning
at e)] to ep, incremented by eq.

Terminate program loop. {Increment value of v

until v>es.)

Enter subroutine at line 1.

Return from subroutine to statement following
GOSUB statement.

Transfer control to END statement.

Link to next program.

Change character string to array of character
codes or vice versa.

Define a function.
End of program.

187k 's

Table 4-4. (Cont.)
Statement Format Explanation
LET LET v=f Assign value of formula f to variable v,
RANDOMIZE RANDOMIZE Randomize random number routine.
REMARK REM text Insert a remark or comment.
SLEEP SLEEP n Cause program to pause for n seconds,

Edit/Control Commands

BYE
CATALOG
COMPILE
CTRL/C
DELETE

EDIT

KEY

L1isT

LLIST
NEW
QLD

BYE

CAT

COM name
tC

DEL n

n

DEL n,m
EDI n
(c)

KEY

LIST
LIST n
LIST n,m
LLIST
NEW

OLD

Leave BASIC Mcnitor.

List names of programs in storage area.
Compile program in core and save it on disk.
Stop program execution; return to edit phase.
Delete line n.

Delete line n.

Delete lines n through m, inclusive,

Search line n for character c.

Return to keyboard mode after TAPE.
List entire program in core.

List line n only.

List lines n through m, inclusive.
List program on line printer.

Clear core, request program name.

Clear core, bring program to core from
storage area.

Al

Table 4-4. (Cont.)

Statement Format : ‘Explanation
REPLACE REP Replace old file on disk with version in core,
REP name If name is not specified, o0ld name is retained.
RUN RUN Conmpile and run program in core.
SAVE SAVE name Store program named on storage device.
SCRATCH SCR Erase current program from core.
TAPE TAP Read paper tape; suppress printing on Teletype.
UNSAVE UNSAVE name Delete program named from storage device.
Functions
ABS ABS (x) Absolute value of x.
ATN ATN (x) Arctangent of x (result in radians).
cos COS8 (x) Cosine of x (x in radians).
EXP EXP {x) e¥X (e is approximately 2.7182818),
INT INT (%) Greatest i1nteger of x.
LOG LOG (x) MNMatural logarithm of x.
RND RND (x) Random number.
SGN SGN (%} Sign of x (+1 if positive, -1 if negative, 0O
’ if zero).
SIN SIN(x) Sine of x (x in radians).
SQOR SOR (%) Square root of x.
TAN TAN (x) Tangent of x (x in radians).
TAB TAB (x) Controls printing position on terminal or line printer,
FIX FIX{x) Truncates decimal portion of x.
CHRS CHRS {x) Converts character code to character. Used

only with the PRINT or LPRINT statements.

FOCAL (FOrmula CALculator) is an on-line, interactive, service
program for the PDP-8 family of computers, designed to help scientists,
engineers, and students solve numerical problems. The language con-
sists of short imperative English statements which are easy to learn.
FOCAL is used for simulating mathematical mocdels, for curve plotting,
for handling sets of simultanecus equations, and for many other kinds

of problems.

To call FOCAL, type:

«R FOCAL

FOCAL enters its initial dialogue, and asks if its extended functions
are to be retained. The extended functions are exponential, sine,
cosine; arctangent, and logarithm, If the FOCAL pregram to be run
uses any ef these functions, the user responds YES. If not, the

user responds NO to free more space for the user program. Without
the extended functions, there is room for approximately 1100 charac-
ters of program. If the extended functions are retained, there is

room for approximately 735 characters.

5.1 USING FOCAL COMMANDS

Whenever FOCAL prints an asterigk, it is in command mode, and
the user may type any of the FOCAL commands in response to the
asterisk. FOCAL commands may be direct or indirect. A direct com-
mand is typed directly after the asterisk and 1s executed immediately.

The format for direct commands is:

*COMMAND

An indirect command is always identified by a line number.
Indirect commands are not executed until program control passes to
the line number associated with the command. The format for indirect

commands is:
*GG.ss COMMAND

When the user is typing indirect commands, he may use any line
number in the range 1.01 to 31.99, except those ending in .00.
Numpbers such as 1.00 or 31.00 are illegal as line numbers; they are
used to identify an entire group of line numbers. Line numbers are
typed in the format:

GG.ss
where GG is the group number and ss is the step number. It is not
necessary to type two digits after the decimal; e.g., 2.1 is equiva-

lent to 2.10.

All FOCAL commands must be followed immediately with a space.
All FOCAL command lines must be terminated with the RETURN key.

5.2 FOCAL OVERVIEW

FOCAL consists of 12 commands which are all the beginner
needs to write programs. FOCAL commands may be typed in their
entirety or abbreviated. The FOCAL commands are:

Command

ASK
COMMENT or CONTINUE
DO

ERASE or ERASE ALL

Explanation

Used to assign values to variables from
the kevyboard.

Used for comments or non-executable
program steps.

Used to cause a specific line or group
of lines to be executed.

Used to erase part of a program or an
entire program.

FOR Used to increment a number and execute
a user-specified command for each value
of the number incremented.

GO or GOTO Used to direct program control to the
lowest line number, or to some specific
line number.

IF Used to direct program control condi-
tionally after a comparison.

MODIFY Used to edit words or characters on a
program line.

QUIT Used to halt program execution and
return contrel to user.

RETURN Used to terminate DO routines.

SET Used to define wvariables and evaluate
expressions.

TYPE Used to print text, results of calcu-

laticons, and values of variables.

These commands are explained in detail with actual computer

output in this section.

For the convenience of the user, a detailed

FOCAL command summary is included in Table 5-1.

NUMBERS
A FOCAL number may be any decimal number between —10615 and
. Numbers may be written signed (+ or -) or unsigned, either

with a decimal point and a fractional part or in exponential format
(see Data Formats) with a mantissa and exponent. In FOCAL, all

numbers are internally represented in expconential format, retaining

up to six significant digits. If more than six digits are specified,

the number will be rounded to six digits.
identical in FOCAL:

The following numbers are

60

60.00
6EL
600E-1

60.00003

5.4 VARIABLE NAMES

FOCAL variable names may consist of either one or two characters.
The first character must always be alphabetic; however, it cannot be
an F because FOCAL reserves that character for function names (see

FOCAL Functions). The second character may be either alphabetic or

numeric, The user may write variable names consisting of more than

two characters, but FOCAL uses only the first two characters to

identify the variable.1 Therefore, the first two characters must be
unique .

+SET A=56789

+SET B=123456

+SET C1s15

*SET C2=30

#SET DEPTH=10

+«SET DISTANCE=C1+C2

Variables may also be subscripted. For a discussion of what

subscripted variables are and how they are used, see Subscripted
Variables.

A variable is represented internally as a binary fraction with an
exponent. See Data Formats.

5-4

5.5 ARITHMETIC QPERATIONS
To print the results of arithmetic calculations, the user types
the FOCA

culated. Then he presses the RETURN key, and FQCAL prints the

P
L command TYPE followed by a space and the data to be cal-

answer, For example:

*TYPE 6+108-3~1
= 12.20800%

The above example shows two of the arithmetic operations (+ and
-) performed by FOCAL. Arithmetic operations are performed from
left teo right except when the operation to the right has priority or

when enclosures are used. (See Enclosures.)

*TYPE 6+5; TYPE 5+2-33 TYPE 18-6
= 11.0000= 4.0000= 4.P2000+%

NOTE

Several commands may be typed on the szame
line if they are separated by semi-colons
(). This is true for all FOCAL commands
except the LIBRARY commands.

Unless indicated otherwise, FOCAL mathematical computations

retain an accuracy of six significant digits.

5.5.1 Priority of Arithmetic Operations

The FOCAL arithmetic operations priorities are:

First priority - exponentiation (t)z

Second priority = multiplication ({*)

2When exponentiation is performed by FOCAL, the power to which a
number is raised must be a positive integer. If a calculated
exponent exceeds the limits of size, no error message is given.
The result will go to zero.

Third priority - division (/)
Last priority - addition (+), subtraction (-)

When FQCAL evaluates an expression which includes several arithmetic

operations, the above order of priority is followed. Therefore,
FOCAL evaluates

*TYPE 25+45%2+5

to have a value of

= 40 0000

because multiplication (*) has a higher priority than addition ({(+).

5.5.2 Enclosures

The order of executing arithmetic operations is also influenced
by enclosures. Three kinds of enclosures may be used with FOCAL:
parentheses {), square brackets |]3, and angle brackets<>». FOCAL
treats them all the same. For example, the result of the expression:

TYPE C(A+B)<C+D>%[E+F)
is the same as the result of:
TYPE (A+BY(C+DIX{(E+F)
If the expression contains enclosures within enclesures (called

nesting), FOCAL executes the contents of the innermost enclosures
first and works outward.

*TYPE (5%<2+3»=(5)12
= 400.000¢*

3[and] are typed by SHIFT/K and SHIFT/M, respectively.

5-6

5.6 INPUT/OUTPUT COMMANDS

E.6.1 TYPE Command

The TYPE command is used to print results of calculations,
values of variables, text or character strings, and variable tables.

TYPE may also be used to print combinations of text and variables,.

Example 1 - Result of a Calculation:

*TYPE 1+1
= 2.0000%

Example 2 - Value of a Variable or Variables:

*SET N=5+53 SET M=32
*TYPE NsM
= 10.0000= 30.0000%

Example 3 - Text:

TYPE "THIS IS A LINE OF TEXT", 14

THIS IS A LINE OF TEXT
*

Example 4 -~ Variable Tables:

*TYPE %
Ne(RB 3= 1¢.0000

MelRd)= 30.0000
*

The user may command FOCAL to print all of the user-defined
variabkles (variable table) by using the TYPE command and a deollar
sign ($).

4The exclamation mark {!) causes a carriage return and line feed.

If a variable consists of only one letter, an at sign (@) is
inserted as a second character in the variable table printout, as
shown in the example above.

*SET N=25
*TYPE "N IS"sN
N IS= 25.8000*

NOTE
Any variable, constant, or expression in

a TYPE or ASK command must be followed by
a comma, semicolon, or carriage return.

5.6.2 ASK Command

The ASK command is normally used in indirect commands to enable
the user to input numerical data during the execution of his program.
The ASK command is similar to the TYPE command in form, but only
single variable names, not expressions, are used; and the user types
the values in response to a colon (:) printed by the ASK command.

#1199 ASK XsYsZ

When FOCAL encounters line 11.99 in the above example, it prints a
colon and waits for the user to type a value (in any format) and

a terminator5 for the first variable. This process continues until
all the variables in the ASK command have been given values.

The value is assigned to the variable when the user types a
terminator; so any time before the terminator is typed, the value
can be changed. If the user types back arrow (- or SHIFT/O)
immediately after the value and before he types a terminator, he can

then type the correct value and a terminator.

5Terminators are SPACE, comma, ALT MODE, and RETURN keys. If the
user types the RUBQUT key, it is ignored.

5-8

®ASK XaYsZ

'S5 : User typed 5 and RETURN key.

16 User typed 6 and RETURN key.

18«7 User typed 8,. , 7 and RETURN key.
*TYPE Xs1sYs 122

= S.83008

= £.0000

= 70000 *>

The ALT MODE key is a special non-spacing terminator which

enables the user to have a previously assigned value unchanged.

*ASK X»YsZ
t3

1112 User typed ALT MODE because he did

*TYPE Xa212Ys!.2 not want to change the value of Y.
= 3.0000

= 6 .0000
= 12.0000*

5.6.2.1 Text Output with ASK —-— The ASK command, just as the TYPE
command, may be used to print text. Carriage return and line spacing

are controlled the same as with the TYPE command (see Data Formats).

#ASK “WHAT IS YOUR AGE?" AGE
WHAT IS YOUR AGE?319
*

The word foilowing the text in the command line (AGE, in this
example) is the variable.

5.7 COMPUTATIONAL COMMAND (SET)

The SET command enables the user to assign a numerical value to
a variable and store both the value and the variable. Then, when he
uses the wvariable in an expressionﬁ, FOCAL automatically substitutes
the numerical value that the user previously specified:

6 . . '
An expression is a combination of arithmetic operations or functions

which may be reduced to a single number by FOCAL.

*SET E=2.71828

*SET PI=3.14159

*TYPE "Pl TIMES E".FPI*E
PI TIMES E= B8.5397*

The value of a variable may be changed at any time by another SET

command .

*SET Al=3+2
*S5ET Al=Al+]
*TYPE Al

= 60000

5.8 CONTROL COMMANDS

5.8.1 GO or GOTO Command

The GO commang causes FOCAL to go the lowest numbered line in

the program and begin executing the indirect commands.

*l.]1 SET A=l

*1.3 SET B=2

*1.5 TYPE AsB

*G0

= 1 +0000= 2.0000*

In the above example the GO command caused execution to begin at line
1.1.

The GOTO command causeg FOCAL to go to a specific line in the
program and begin executing the indirect commands in ascending line

number order.

*ERASE

*le.l SET A=}

*]1.3 SET B=2

*1+.5 TYPE AsB

*G0TO 1.3

= 2.00e8= 2.0000%

5-10

In the preceding example, A and B are equal to zero at the start
of the program. The ERASE and ERASE ALL commands are used to ensure
that all variables are equal to zero until they are assigned a speci-
fic value. Since the GOTO command causes program execution to begin

at line 1.3, line 1.1 is never executed and A is not set to 1.

5.8.2 IF Command

The IF command is a conditional command used to transfer program

control after a comparison. The normal IF command format is:

IF space (expression) linel, line2, line3

The expression or variable is evaluated, and program control is
transferred to the first line number if the value of the expression
is less than zero, to the second line number if the value is zero, or

to the third line number if the wvalue is greater than zero.

The program helow transfers control to line number 2.1, 2.3, or

2.5, according to the value of the expression in the IF command.

*2.1 TYPE “LES5 THAN ZERO"3QUIT
*2.3 TYPE "“EQUAL TO ZERO";QUIT

*2.5 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25)2¢15243,2¢5

EQUAL TO ZERO#

5.8.2.1 IF with Less Than Three Line Numbers -- The IF command format
can be altered to transfer program contrel to one or two lines. For

example, if a semicolon or a carriage return is immediately after the
first line number, control goes to the first line number if the wvalue
of the expression is less than zero. If the value is not less than

zero, control goes to the next seguential command. For example:

%2.20 IF (X) 1.8:TYPE "Q"

When line 2.20 is executed, program control goes to line 1.8 if X
is less than zero. 1If X is not less than zero, Q is typed.

If a semicolon or a carriage return follows the second line
numper, control goes to the first or second line number, depending
upon whether the value of the expression is less than zero or egual
to zero. If the value is greater than zero, control goes to the next

sequential command. For example:

¥3.19 IF (B)l«Bsl .9
*3.20 TYPE B

If B is less than zero, control goes to line 1.8; if B equals
zero, control goes to 1.9; and if it is greater than zero, control
goes to the hext seguential command, in this case line 3.20, and the

value of B is printed.

5.8.2.2 Arithmetic Comparison with IF Command -- The IF command can
be used with all the arithmetic operations of FOCAL.

Example 1 - Addition:

#1410 IF (A+B)2.1,2.5,0.10
Example 2 -~ Subtraction:
*5:.16 IF (A-B)1.63TYPE X"
Example 3 - Division:

*3.18 IF (M/NXS5:+525.6
*3.15 TYPE "GREATER THAN ZERD"

Example 4 - Multiplication:

*T.20 1IF (P*1)38.1
7.25 TYPE P=]

Example 5 - Exponentiation:

24415 IF (XtNYB+L1 264822643

5.8.3 DC Command

The DO command is used to make subroutines of single lines or
groups of lines. Control is returned to the line following the DO
command after the subroutine is executed.

#1.1 SET A=13SET B=2

*1.2 TYPE "STARTING"

1.3 DO 3.2

*2.1 TYPE “FINISHED"

*3+] SET A=335ET B=4

*3.2 TYPE A+B

*30

STARTING= 3.0280FINISHED= T.0600%

If the user types a command such as DO 3, the DO command treats
the group of program lines beginning with 3 as a subroutine. Contreol
proceeds in ascending order through the group numbers until the end

cf the group is reached, or until a RETURN command is executed.

5.8.3.1 ©Nested DO -~ DO commands may be nested as shown in the

following example:

*1.]1] TYPE "BEGIN",!
*]1.2 DO 2

*¥1.3 TYPE "END"»':QUIT
¥ o

¥2+1 DO 5413 TYPE As!
*#¥2.2 DO 5.23 TYPE A,siIn!
*¥2+3 DO 7453 TYPE As!

*

*3.] SET A=1

*¥5.2 SET A=2

*

*¥7«5 SET A=3

1.0000
2.0000
2.0000

*mokoHow
=
=)

The number of nested DO commands is limited only by the amount
of core memory available after storage is allocated for program and

variables.

5.8.4 RETURN Command

The RETURN command is used to exit from a DO subroutine. When a
RETURN command is encountered during execution of a DO subroutine,
the program exists from its subroutine status and returns to the
command following the DO command that initiated the subroutine status.

5.8.5 QUIT Command

When the QUIT command is executed, FOCAL prints an asterisk and

returns to command mode.

5.8.6 FOR Command

The FOR command is used to set up program loops and iterative

procedures. The general command format is:

*FOR A
*FOR A = B,D; commands

B,C,D; commands

The variable A is initialized to the value B, then the command
or commands following the semicolon are executed. When the commands
have been executed, the value of A is incremented by C and compared’
to the wvalue of D. If 2 is less than or equal to D, the command
after the semicolon is executed again. This process is repeated until
A is greater than D, at which time FOCAL goes to the next sequential

line. The command or commands will always be executed at least once.

5-14

A must be a single variable. B, C, and D may be expressions,
variables, or numbers. If the value € is omitted, it is assumed that
the ingrement isg one. If C and D are omitted, the FOR command is
handled iike a SET command and no iteration is performed. A FOR
command may be used with a DO command and nested:

5.8.6.1 FQOR with a DO

*ERASE ALL

*1le1! FOR X=1s51,5} Do 2
1.2 QUIT

*

*¥*2+] TYPE 14" X", X
*2+.2 SET A=X+109

*2+.3 TYPE !, A" A

* 30

X= 1.0000
Az 101.0000
X= 2.0000
A= Ip2.9p00
X= 3.0000
A= 103.00¢00
X= 4.2000
A= 104.0060
X= 5.0000
A= 105.0080«

5.8.6.2 Nested FOR and DO

*1.] FOR Z=1,33 TYPE" A B C "
1.2 TYPE !

#]1.5 FOR A=1533 DO 3

*}+7 QUIT

*

*3.1 FOR B=1.,35 DO 4

*4.,1 FOR C=1,33 TYPE %Z1.A,BsC."
*4.2 TYPE !

*GO

A B C a B C A B C
= = iI=1 = 1= 1=2 = 1= 1= 3
= = 2= 1 = 1= = 2 = 1= 2= J}
= 1= = 1 = |= 3= 2 = 1= 3= 3
= = = 1 = P= = 2 = 2= 1= 3
= = = i = 8= = 2 s 9=z 9= 2
= = = 1 = 2= 3= 2 = = 3= 3
= = 1= 1 = = 1l= 2 = 3= 1= 3
= = 2= 1 = = =2 = 3= 8= 3
= 3= 3= 1 = 3= A= 2 = 3= 3= 3
* 5-19

Another way of handling the same program is:

*1.] FOR Z=1,33TYPE " A B C * .
*1.2 FOR A=1s33FOR B=l,33TYPE '3;FOR C=1»33TYPE X1,A»B»Cs

*GO

5.8.6.3 Subscripted Variables -- Variables may be further identified

by subscripts which are enclosed in parentheses immediately following

the variables. For example:

*SET AB(B8)=5
*SET AB(1)=10
*SET AB(2)=2]5
*SET AB(3)=20
*SET AB{(4)=25
*SET AB{5)=39
*FOR X=0,53 TYPE AB(X)»!
Q.-SADPANE+B]
B+«100B0QE+Q2
D.15P00GE+02
Q.200200E+02
D +250000E+@2
@.300000E+22

oo g

In the above example, subscripts are used to set up an array
called AB. Any element in the array can be represented by a sub-
script in the range 0 to 5. The first element in an array always
has a subscript of 0. A subscript may be a number, another variable,
or an expression. If it is a number, it must be in the range +2047,
In order to be properly represented by the TYPE $ command, subscript
numbers must be positive integers in the range from 0 to $9. The
TYPE $ command will print subscripts greater than 99 as two random
characters, although their contents will be correct as assigned by

the program.

5~16

5.8.7 COMMENT or CONTINUE Command

The COMMENT or CONTINUE command {(abbreviated as C} causes the
program line to bhe ignored by FOCAL. The user may use the C command
to insert comments into the program, or he may use the C command line
as a non-executable program step. In either case, program lines
beginning with C are skipped when the program is executed. However,

comments are printed in response to a WRITE command.

*ERASE ALL

*l1+1 C INITIALIZE VARIABLES
*¥1 .2 SET A=5

*].3 SET B=6

*] .4 SET C=7

*

*2+.1 C PERFORM CALCULATION
*¥2.2 TYPE A+RB+(C

5.9 EDIT COMMANDS

5.9.1 WRITE or WRITE ALL Command

The WRITE or WRITE ALL command causes FOCAL to print a program
line, a group of lines, or an entire indirect program on the terminal.

*WRITE 2.1 Print a single line.
*WURITE 2 Print a group of lines.
*WRITE Print an entire programn.

Once the program is completed, the user may want to save it by
putting it on paper tape. The procedure for saving a FOCAL program

on—-line is as follows:

1. Make sure FOCAL is in command mede.
2. Type WRITE.
3. Set low-speed punch te ON pesiticn.

4. Type RETURN key.

FOCAL will punch the entire program onto the paper tape and simul-

taneously print it on the terminal.

Paper tapes may be read in from the Terminal Reader by following

these instructions.

1) Make sure FOCAL is in command mode.

2) Place tape in Reader (Reader off).

3) Type CTRL/R.

4) Turn Reader on.

5) Turn Reader off when the tape reaches the Trailer.

6) Type CTRL/T.

Paper tapes may also be punched in the following manner.

1) Turn Terminal offline to Local.
2) Turn punch on.
3) Hold the REPEAT, CTRL, and SHIFT keys down. Now press the P

and hold all four keys down until four or five inches of
L.eader are punched. Release the repeat key first.

4) Turn off the punch and return the Terminal to the line
position.

5) Type CTRL/R, and turn the punch on.

6) Type W A, followed by a carriage return {(this will not echo
on the terminal).

7) When the tape is finished punching, turn the punch off,
and type CTRL/T.

8) Repeat steps 1, 2, 3, and 4 for making Trailer.

5.9.2 ERASE and ERASE ALL Commands

The ERASE command deletes symbolic names, lines, or groups of
lines.

*ERASE Delete all names defined in symbol table.
*ERASE 2.2 Delete line 2.2.
*ERASE 2 Delete all lines in group 2.

5-18

The user can check to see if the line(s) has been deleted by
typing the WRITE command after the ERASE command. This is a useful
procedure for checking commands and alsc for obtaining a clean print-

out of the current program.

The ERASE ALL command deletes the entire indirect program. It
is good programming practice to type ERASE ALL before starting to
type a new program, The ERASE ALL command is generally used only with
direct commands because it returns control to command mode upon

completion.

5.9.3 MODIFY Command

The MODIFY command is used to change characters within a line
without changing the entire line. The format for MODIFY is:

MODIFY line number RETURN key Search character

The search character is not printed. After the user has typed
the line number, PETURN key, and search character, FOCAL prints
the contents of the specified line until it encounters the search
character. When the search character is read and printing stops,

the user has any one or more of the following options:

1. Type new characters in addition to those already printed.

2. Type a form feed (CTRL/L). This causes the search to
proceed to the next occurrence, if any, of the search
character,

3. Type CTRL/BELL. The user can then change the search
character he specified in the MODIFY command.

4. Type the RUBOUT key. This causes FOCAL to delete a

character, starting with the last character printed and
deleting one character to the left each time RUBOUT is
typed.

5. Type the back arrow (-~} key. This causes FOCAL to delete
everything between the back arrow and the line number.

6. Type the RETURN key. This causes FOCAL to terminate the
line at that point, deleting everything to the right.

7. Type the LINE FEED key. This is normally done after the
user has exercised one or more of the above opticns. After
the user has modified the line, he may type LINE FEED and
cause the remainder of the line from the search character
to the end to be printed and saved.

*7.01 JACK AND BILL WSNT UF THE HILL
*MODIFY 7.081

JACK AND BNJILL WS\E
. NT UP THE HILL

In the above example, B was typed as the search character for
line 7.01. (Note that the search character did not print.) FOCAL
stopped printing when it encountered the search character (B), and
the user typed the RUBOUT key (\} to delete the B. Then he typed
the correct letter J. Next he typed CTRL/BELL and the $ key to
change the search character. FOCAL continued to print the line
until the new search character was encountered. The user typed
RUBOUT to delete the $§ and then typed the correct character (E).
He then typed the LINE FEED key and the remainder of the line was
printed.

CAUTION

When any text editing is done, the values
in the user's symbol table are reset to
zero,

If the user defines his symbecls in direct statements and then
uses a MODIFY command, the values of his symbols are erased and
must be redefined. However, if the user defines his symbols by
means of indirect statements prior to using a MODIFY command, the
values will not be erased because these symbols are not entered in
the symbol table until the statements defining them are executed.
Notice in the example below that the values of A and B were set using

direct statements, However, typing the lines 1.1 through 1.3 reset
these values to zero.

*ERASE- ALL

*SET A=l

*SET B=2 .

*1s1 SET C=3

*!1.2 SET D=

#1.3 TYPE A+B+C+D; TYPE !'; TYPE %
*G0

= 2.788002E+81
Ce(gdl= A.3P0R00E+C1
DE(@B)= Q.400002E+D]
ABLOB)= Q.000Q00E+2D
Be(@d)= 0.00000RE+2D
*

5.10 LIBRARY COMMANDS

In addition to the basic FOCAL commands, there are two special
commands to perform the library functions: storing and retrieving
data from the system disk. All commands following the LIBRARY com-
mand on the same line are ignored. Names of files may be from 1 to
6 characters long. Only alphanumeric characters, letters, and num-
bers should be used in file names. The library commands, like other

FOCAT. commands, may be abbreviated.

5.10.1 LTIBRARY SAVE Command

This command copies the current program into the user's area on

disk and gives it the name specified. For example, the command:;

*L S TRUE
will cause the current program to be stored on disk under the name

TRUE. The program will also remain in the user's area.

5.10.2 LIBRARY CALL_Command

This command copies the named program from disk into the user's

area. For example, the commands:

*t, C TRUE
*W

will cause the program TRUE to be recalled from the disk into the
user's area and listed on the terminal. Any program currently in
the user's area will be erased. The program TRUE can then be

executed with a GO command.

If the LIBRARY CALL command is given a line number and stored,
it must have at least one numbered command feollowing it. In this
case, the LIBRARY CALL command will cause the named program to be
called into the user's area and executed as if GO had been typed.

For exanple:

¥*3.10 L C TRIJE
*3.11 C

If the above commands are included in a program, they will
cause TRUE to be brought in and executed at that point. If there
are lines beyond 3.1l remaining to be executed, they will be deleted.
This procedure allows the user to chain FOCAL programs as in BASIC.

5.10.3 Error Messages with Library Commands

When the LIBRARY commands are used, five errors are possible,

These are also listed in the error code summary in Table 5-3.

5-22

Message

230.71

230.<0

?31.42

?31.43

?31.44

Explanation

The command appeared to be a LIBRARY
command but was not, for example:

LIBRARY OPEN

No action is taken; the command should
be retyped.

Either an unacceptable file name was
specified or no name was specified
where one was reguired.

The file name specified does not match
any name currently in the user's disk

directory. This error will only occur
with the LIBRARY CALL command.

There is already a program with the
specified name in the directery. This
error will only occur with the LIBRARY
SAVE COMMAND.

This user's disk directory is full.
The current program cannot be saved
until others have been deleted. This
error will only occur with the LIBRARY
SAVE command.

5.11 ESTIMATING PROGRAM LENGTH

FOCAL permits approximately 1100 (decimal) locations to be

used for the user program and variables without the extended math

functions, and approximately 735 locations with the extended func-

tions (sine, cosine, log, exponential, etc.). Since FOCAL requires

five locations for each variable stored in the variable table and

one location for each two characters of stored program, the approx-

imate length of a program may be determined by the formula:

Length of program

where

58 + + 2L

(S1Te)

5-23

S = number of variables

:

= number of characters in program
L = number of lines

If the total program area or variable table area becomes too
large, FOCAL prints an error message {06.54 or 10.:5). The following
routine allows the user to find out how many core locations are left
for his use.

*ERASE

*FOR I=1,38@5 SET A(l)=]
23654

*TYPE 24,145,"LOCATIONS LEFT"
= 79SLOCATIONS LEFT#

(Disregard error code}

5.12 DEBUGGING

5.12.1 Using the Error Diagnostics

Whenever FOCAL detects an illegal command or improbable condi-
tion within a user's program, the execution of the program stops and
an error message is printed in the form ?XX.XX@GG.ss, where ?XX.XX
is the error message and GG.ss is the line at which the error

occurred, (See Table 5-3 for the complete list of error messages.)

Depending upon the type of error detected, the user may ignore
the error message or make program changes before continuing. For
example, if the user types CTRL/C to terminate a loop, the error
message ?01.00 is printed and program control goes to command mode;
so, in this case, the user ignores the message and types his next
command. If a program stops and the message 703.05 is printed, the
user must examine his program to determine which command line is
wrong. In the following program, line 1.3 contains the instructions

to transfer to a nonexistent line number.

*ERASE ALL

*1.1 SET A=2; TYPE "A"sA,!
#1.2 SET B=43 TYPE "B, B!
*1.3 GOTO 1.01

*1.4 TYPE “A+B">A+B

* G0

Az 2.0000
B= 4.0000
703 .85 @ Bl .38
&

5.12.2 Using the Trace Feature

The trace feature is used to check the logic in part of a FOCAL
program. To implement the trace feature, the user inserts a question
mark (?) into a command string at any point. FOCAL prints each
succeeding character as it is executed until another question mark is
encountered or until the program returns to command mode. For

example, the trace feature is used to print parts of 3 lines in the
following program:

*ERASE ALL

#1.1 SET A=]

#¥1.2 SET B=5

*1+3 SET C=3

x1.4 TYPE 78+B-C?7.!?
x1+.5 TYPE ?B+A/C7,!
*1.6 TYPE ?B~C/A%?

*G0

A+B-C= 3.6002
B+A/C= 53333
B-C/A= 2.2000*

NOTE
The WRITE command disables the trace feature.

5.13 FOCAL FUNCTIONS

The FOCAL functions improve and simplify arithmetic capabilities.
In general, the FOCAL functions may be used anywhere a number or a
variable is legal in a mathematical expression. A standard function

call congists of three cor four letters beginning with the letter F

4
L

5-25

and followed by an expression in parentheses. The FOCAL functions

are summarized in Table 5-2.

The functions must be used with a legal FOCAL command. They

cannot be used alone as commands. For example:

*SET Z=A+FSQT(FSIN(X))

Within a normal range of arguments, at least five significant
digits of accuracy may be expected for the trigonometric, exponential,
and logarithmic functions. The following functions are available to
FOCAL users.

5.13.1 Sine Function (FSIN)

The sine function (FSIN) is used to calculate the sine of a user-

specified angle in radians., The format for FSIN is:

FSIN {angle)

*TYFE FSIN(SolﬂlSQIQ)
= @.TCT1*

The format for calculation the sine of an angle in degrees is:
FSIN (degrees* 3.14159/180)

*TYFE FSIN(30#%3.14159/184)
= B.5900%*

5.13.2 Cosine Function (FCOS)

The cosine function is used to calculate the cosine of a user-

specified angle in radians. The format for FCOS is:

FCOS (angle)

5-26

*TYPE FCOS(2*3-14159)J!

= ' 1-9900
*TYPE FCOS(.50000),
=T D+8776
*TYPE FCOSC45%3 1415
. Qs 4
= D771 % 180>

5.13.3 Exponential Function (FEXP)

The exponential function (FEXP) is used to compute e (e=2.71828)

tc a power specified by the user. The format for FEXP is:

FEXP (power)

*TYPE FEXPC(]),!

= 2.7183

*TYPE FEXFC(D),!

= 10009

*TYPE FEXP{(-1=23456)
= Q.0000%

5.13.4 Logarithm Function (FLOG)

The logarithm function (FLOG) is used to compute the natural

logarithm (log,) of a number specified by the user. The format for

FLOG is:

FLOG (numher)

*TYPE FLOG(1 .0000),!
= G.0P00

*TYPE FLOG(1 «98765),!
= D.6870

*TYPE FLOG(2.865)

= P.7251%

The following formulas are useful for finding logarithms to base
10:

1og]gX=logX/1ogg10=0.434294 log.X

5-27

5.13.5 Arctangent Function (FATN)

The arctangent function (FATN) is used to calculate the angle

in radians of a user-specified tangent. The format for FATN is:

FATN (tangent)

*TYPE FATN(1.),!?

= P«7854

*TYPE FATN(.31385),1
= #3834

*TYPE FATN(3.14159)
= 1.2626%

5.13.6 Sqguare Root Function (FSQT)

The square root function (FSQT) is used to compute the square

root of an expression. The format for FSQT is:

FSQT (expression)

*TYPE FSQT(4)5!

= 2.0000

*TYPE FSQT(9),!

= 3.0008

*S5ET Z=FSQTC(144); TYPE 7
= 12.0000*

5.13.7 Absolute Value Function (FABS)

The absolute value function (FABS) is used to indicate the
absolute (positive) value of an expression. The format for FABS is:

FABS (expression)

*+TYPE FABS(=661,!
= 66 .0000

*TYPE FABS(+23),!
= £23.0000

*TYPE FABS(=99.65)
= 99.0500%

5.13.8 Sign Part Function (FSGN)

The sign part function (FSGN) is used to output the sign part
{(+ or =} of a number with a value of 1. FSGN {(0}=1. The format for
FSGN is:

FSGN (expression)

*TYPE F5GN(6-4)s!

= 1 @000
*TYPE FSGN(@),!
= 1.0006

*TYPE FSGN(-T7)
- 1 .00020*

5.13.9 Integer Part Function (FITR)

The integer part function (FITR) is used to output the integer
part of a number. The format for FITR is:

FITR (expression)

For positive numbers, FITR(X) is the greatest integer function.
For negative numbers, FITR(-X) is the integer part of -X. The
greatest integer function for negative numbers is obtained by FITR
{-X)-1. For example:

*TYPE FITR(S5.2),!

= 5.8000

*TYPE FITR(55¢66)»!
= 55.0000

*TYPE FITRC=4.1)

=- 4.0000%

5.13.10 Random Number Function (FRAN)

The randem number function (FRAN) is used to generate non-
statistical pseudo-random numbers in the range 0.5000 to 0.9999.
No argument is used with the FRAN function. The format for FRAN is:

FRAN ()}

*TYPE FRAN(),!

= A.6873
*TYPE FRANC)
= B7376%*

FRAN can be used to produce a less biased number. For example:

*SET A=FRAN()*5D
*SET B=A-FITR(A)

The value assigned to B is a random number in the range 0.0000
to 0.9999.

5.14 FOCAL OQOUTPUT OPERATIONS

The following is a description of symbols used in FOCAL output

operations:
S ol Explanation
To set output format, TYPE %x.y Where x is the total
number of digits, and y
is the number of digits
to the right of the
decimal point.
TYPE %6.3, 123.456 FOCAL prints: =+123.456
TYPE % Resets output format to
fleating point.
To type symbol table, TYPE $ Other statements may not

follow on this line.

5.15 CONTROL CHARACTERS

FOCAL control characters and their explanations are shown helow:

% Cutput format delimiter

! Carriage return and line feed

Carriage return

S Type symbol table contents

() Parentheses i

{1 Square brackets (mathematics)
<> Angle brackets

nonm Quotation marks (text string)
?? Question marks (trace feature)
SPACE key (names)

RETURN key {(lines) {nonprinting)

ALT MODE key {with ASK statement)
COMMA (expressions)
Semicolon {commands and statements)

A)

TABLE 5-1

FOCAL COMMAND SUMMARY

Command Abbreviation Example of Form Explanation

ASK A ASK X,Y,2Z FOCAL prints a colon for each
variable; the user types a value
to define each variable.

COMMENT C COMMENT If a line begins with the letter
C, the remainder of the line will
be igncored.

CONTINUE C C Dummy lines.

DO D DO 4.1 Execute line 4.1; return to com-
mand following DO command.

D DO 4.0 Execute all group 4 lines; return
to command following DO command,
or when a RETURN is encountered.

DA DO ALL Execute all program lines until a
RETURN is encountered.

ERASE E ERASE Erases the symbol table.

ERASE 2.0 Erases all group 2 lines.
ERASE 2.1 Erases line 2.1.
ERASE ALL Erases all user input.

FOR F FOR i=x,vy,2; (commands) Where the command following is
executed at each new value,
x=initial value of 1i,
y=value added to i until i is

greater than =z.

GO G GO Starts indirect program at lowest

numbered line number,

£E-69

Takble 5-1, (Cont.)

Command

Abbreviation

Example of Form

Explanation

GOTO

IF

LIBRARY CALL
LIBRARY SAVE

MODIFY

QUIT

RETURN

SET

G?

LS

GO?

GOTO 3.4

IF (X)in,Ln,Ln
IF (X)Ln,Ln; {commands)
IF (X)Ln: (commands)

LIBRARY CALL name
LIBRARY SAVE name

MODIFY n

QUIT

RETURN

SET A=5/B*C;

Starts at lowest numbered line
number and traces entire indirect
program until another ? is en-~
countered, or until completion
of program.

Starts indirect program (transfers
cgontrol to line 3.4). Must have
argument.

Where X is a defined identifier,

a value, or an expression, followed
by three line numbers. If X is
less than zero, control is trans-
faerred to the first line number.

If X is egual to zero, control is
to the second line number. If X

ig greater than zero, control is

to the third line number.

Calls stored program from the disk.
Saves program on the disk.

Enables editing of any characterxr
on line n.

Returns control to the user.

Terminates DO subroutines, retur-
ning to the original sequence,

Defines identifiers in the symbol
table.

peE-§

Table 5-1. {Cont.)

Command Abbreviation Example of Form Explanation
TYPE T TYPE A+B-C; Evaluates expression and prints =
and result in current output
format.
TYPE A-B,C/E; Computes and prints each expres-
sion separated by commas.
TYPE "TEXT STRING" Prints text. May be followed by
! to generate carriage return-
line feed, or # to generate
carriage return,
WRITE W WRITE FOCAL prints the entire indirect
program.
W A WRITE ALL
WRITE 1.0 FOCAL prints all group 1 lines.
WRITE 1.1 FOCAL prints line 1.1.

TABLE 5-2

FOCAL FUNCTICHNS

Function Format Interpretation

Square Root FSQT (x) Where x is a positive number or
expression greater than zero.

Absolute Value FARS (x) FOCAL ignores the sign of x.

Sign Part FSGN (x) FOCAL evaluates the sign part only,

: with 1.0000 as integer.

Integer Part FITR (x) FOCAL operates on the integer part
of x, ignoring any fractional part.

Random Number FRAN (x) FOCAL generates a random number,

Generator The value of x is ignored.

7Exponential FEXP (x) FOCAL generates e to the power x.
(2.71828%)

7Sine FSIN (x) - FOCAL generates the sine of x in
radians.

TCosine FCOS {x) FOCAL generates the cosine of x in
radians.

7Arctangent FATN (x) FOCAL generates the arctangent of
X in radians.

7Logarithm FLOG (x) FOCAL generates loge (x).

?These are extended functions and may be chosen or deleted when

FOCAL is loaded.

5-35

TABLE 5-3

FOCAL ERROR MESSAGES

Message Explanation
?200.00 Manual start given from console.

?201.00 Interrupt from keyboard via CTRL/C.
201.40 Illegal step or line number used.
201.78 Group number is too large.

201.96 Double periods found in a line number,
?01.:5 Line number is too large.

?201.:4 Group zero is an illegal line number.
702.32 Nonexistent group referenced by DO.
202.52 Nonexistent line referenced by DO.
?02.79 Storage was filled by push-down list.
203.05 Nonexistent line used after GOTO or IF.
?03.28 Illegal command used.

?204.39 Left of = in error in FOR or SET.
704.52 Excess right terminators encountered.
?04.60 Illegal terminator in FOR commang.
?204.:3 Missing argument in display command.
?05.48 Bad argument to MODIFY,

?206.06 Illegal use of function or number.
?06.54 Storage is filled by wvariables.

207.22 Operator missing in expression or double E.
207.38 No operator used before parenthesis,
?207.:9 No argument given after function call.
?207.;6 Illegal function name or double operators.
208.47 Parentheses do not match.

?209.11 Bad argument in ERASE.

?210.:5 Storage was filled by text.

211.35 Input buffer has overflowed.

?220.34 Logarithm of zero requested.

?23.36 Literal number is too large.

Tablie 5-3. (Cont.)

Message Explanation

226.989 Exponent is too large or negative.

?28.73 Division by zero regquested.

?230.05 Imaginary sguare roots required.

?31.<7 Illegal character, unavailable command, or unavailable
function used.

730.71 Undefined library command.

?30.>0 Bad argument or missing argument to library command.

?31.42 No such name in library directory. '

?31.43 Attempt to enter a duplicate name in the directory.

?31.44 Library directory is full.

CHAPTER &

FORTRAN

FORTRAN-D compiles and runs programs written in the PDP-8
version of FORTRAN II. Programs (usually created and stored with
the Symbolic Editor) are compiled in a single pass and executed

{avtomatically) immediately following compilation.

6.1 CALLING FORTRAN-D

T¢ use FORTRAN-D, type:

»R FORT

FORTRAN requests the name of the input file, i.e., the file contain-
ing the FORTRAN program to be compiled and run. The user responds
with the file name and the RETURN key. FORTRAN then requests the
name of an output file in which to store the compiled versicon of the
program. For normal usage, just the RETURN key need be typed.
FORTRAN places the compiled code in a file of its own, then proceeds
to run the program,.

If a file name is entered for output, FORTRAN creates a perma-
nent file in which the compiled binary program is saved. It is then
possible to rerun this program without recompiling it. To run an

already compiled program, call the FORTRAN operating system directly
by typing:

+R FOSL

FOSL requests the name of an input file. Enter the name of the

file containing the compiled binary. For example, if the user types:

6-1

+«R FORT

INPUTtMATRIX
OUTPUT:

FORTRAN compiles and executes the program MATRIX but does not save

the compiled binary.

FORTRAN compiles and executes the program MATRIX and then leaves

the compiled binary in the file named BMTRIX when the user types:

«R FORT

INPUTIMATRIX
OUTPUT: BMTRIX

The FORTRAN binary program BMTRIX is executed without first

being compiled when the user types:

R FOSL

INPUT:BMTRIX

All FORTRAN programs return to the Monitor when they have com-

pleted execution.

6.2 USING FORTRAN-D

Differing versions of PDP~8 FORTRAN offer slightly different
features, FORTRAN-D differs in the way it is called into use
{described above), and in its I/0 capability (described below).

FORTRAN-ID allows three data formats:

I Integer format
E Exponential format
A Alpha format, ASCII value of a character is stored as an

integer value.

The standard device for READ and WRITE statements is the termi-
nal, which is assigned device code 1. Because the terminal is so
frequently used, FORTRAN-D includes two special input/output instruc-
tions, ACCEPT and TYPE. These instructions imply use of the termi-
nal; therefore, the device code neead not ke specified. ACCEPT is
especially convenient if data is to be entered at the keyboard
because this instruction automatically supplies a line feed when the
RETURN key is typed. Also, the user can correct an errcneously
typed value by striking the RUBOUT key.

A FORTRAN-D program can also utilize the high-speed reader and
punch for I/0. These devices are assigned code 2. Because the high-
speed reader and punch are shared by all users, it is necessary to
assign them if they are to be used. Assign the appropriate devices
and mount tapes in the reader before running FORTRAN-D. An auto-
matic DEASSIGN is performed by FORTRAN before it returns to the
Monitor; therefore, the user must reassign the devices before each

run.

FORTRAN-D alsc allows programs to read and write data files on
the disk. These data files are completely separate from the program
files. Data files are read and written by standard READ and WRITE
statements within the FORTRAN-D program. The device code for the
disk is 3. Because programs using the disk are treated differently
by FORT (the FORTRAN-D compiler), it is necessary to identify pro-
grams which use the disk. These programs are identified by a DEFINE
DISK statement as the first statement in any such FORTRAN-D program
including a READ or WRITE statement with device code 3.

Just as FORT itself must ask for the name of its input and
output files, sc must a FORTRAN program ask for the names of its disk
files. FORTRAN-D programs do this by typing INPUT: and OUTPUT: a
second time. The user responds by typing the name of the files to be
read or written by the program. FORTRAN-D asks for both input and
output for all programs which include a DEFINE DISK statement. If

only input (or output) is to be used, the user responds to the other

by typing the RETURN key.

6.3 LINE FORMAT

FORTRAN programs consist of a series of lines, each a string
of 72 characters or less (the width of the terminal paper from
margin to margin). Each line contains two fields: the first, which
begins at the left margin, is an identification field: the second
contains the statement field. Termination of a line is indicated to
the computer by a carriage return, accomplished by typing the RETURN

key.

The identification field can be blank, or can contain one of the

fellowing types of identification:

1. A Statement number. This number, which can be any positive
integer from 1 to 2047 inclusive, identifies the statement
on that line for reference by othexr parts of the program.
Statement numbers are used for program control or to assist
the programmer in identifyving segments of his program.

2. The letter, €. This identifies the remainder of the line
as a comment.

Although the identification field may be left blank, it cannot

be omitted entirely. The statement field begins immediately after

a blank space and extends through the next carriage return. A sample

FORTRAN program is shown below:

C THIS PROGRAM CALCULATES FACTORIALS
5 TYPE 2@
10 ACCEPT 308->N
1FACT=1
3e IF (N=~1) 5,32,33
32 TYPE 40@,N.1FACT
GO TO 18
33 DO 35 Is1sN

IFACT=IFACT*I]

35 CONTINUE

GO TO az
200 - FORMAT (/,"PLEASE TYPE A POSITIVE NUMBER",/)
300 FORMAT (1)
400 FORMAT (/»,1/" FACTORIAL iS",1)

END

FORTRAN source programs are generated using the Symbolic Editor
Program. The Editor will facilitate formatting lines by use of a
tab character, permitting automatic movement to an indented second
field.

6.3.1 Statement Numbers

Each statement can have a positive, nonzero integer (0-2047) as
its number. The statement number is used to reference that parti-
cular statement elsewhere in a program. A statement number consists
of cone to four digits beginning at the left hand margin and is
followed by aspace or tab. Statement numbers can be assigned non-
sequentially; however, no two statements can have the same number.
There must be no more than 40 statement numbers in a given program,

and they must have a value of 2047 (decimal) or less.

6.3.2 Statement Continuation Character

Frequently, a statement is too long to fit on one line. If the
character single quote (') appears as the last character of a line
before the carriage return, the next line is treated az a continua-
tion of the preceding statement. A statement may be continued on as
many lines as necessary to complete it, but the maximum number of
characters in the statement cannot exceed 128 (about two formatted

lines). For example:

i@ A=B**2«(4 xAXC/(B*%2+] « 5XA%XCIIX4.3"
+Bx%2+((SAQTF(CY*SATF(D)) /(B*x%2+] « S*AXC))

is equivalent to the formula:

B2 + 1.5+A<C 2 4 1.5-a-C

A =82 - (4'A°C) *4°3+B2+ ('\/6) \/ﬁ)
B

Although the continuation character, (') allows a single
statement to extend over two or more lines, no more than one state-~

ment can be written on one line,

6.4 FORTRAN STATEMENTS

FORTRAN statements are of several types with various functions

distinguished as follows:

1. Comment statements allow a programmer to insert notes
within the program.

2. Arithmetic statements resemble algebraic formulas. They
define calculations to be performed.

3. Control statements govern the sequence of statement
execution within a program. These statements reference
program line numbers,

4, Specification statements allocate data storage and specify
input/output formats.

5. Input/output statements control the transfer of information
into and out of the computer.

6.4.1 Comment Statements

The character €, at the left margin of a line, designates that
line as a comment line. A comment has no effect upon the compilation
process but can serve as a guide to program logic for later debugging,
etc. There is no limit to the number of comment lines which can
appear in a given program. A comment cannot be continued by use of
the continuation character, ('), but must be continued in a second

comment statement. For example:

C THIS 1S AN EXAMPLE
c OF & COMMENT

6€.4.2 Character Set

The following characters are used in the FORTRAN language:

1. The alphabetic characters, A through Z.
The numeric characters, 0 through 9.

3. The control characters:
; semicolon CR carriage return
. period LF line feed
' single quote { left parenthesis
" double gquote } right parenthesis
, comma

4. The coperators:
** exponentiation / division
+ addition * multiplication
- subtraction = replacement

All other characters are ignored by the Compiler except as
Hollerith information found in FORMAT statements (where all terminal
characters are lecal). The SPACE character has no grammatical func-
tion (it is not a delimiter) except in FORMAT statements and can be

used freely to make a program easier to read.
6.4.3 Constants

Constants are explicit numeric values appearing in statements.
Two types of constants, integer and real, are permitted in FORTRAN.

6.4.3.1 Integer Constants -- Integer (fixed-point) constants are

represented by a string of one to four decimal digits, written with
an optional sign and without a decimal point. An integer constant

must fall within the range +2047. For example:

6-7

47
+47 {+ sign is optional)

-2
0434 {leading zeros are ignored)
-0 {(same as zero)
6.4.3.2 Real Constants -- Real constants are represented by a digit

string, an explicit decimal point, and are written with an opticnal
sign.l - Real constants can also be written in exponential notation
with an integer exponent to denote a power of ten (i.e., 7.2 x 103
is written 7.2E+3). A real constant may consist of any number of
digits but only the leftmost six digits appear in the compiled pro-

gram. Real constants must fall within the range 0.14 x 10-38 to
1.7 x 1038. For example:
+4,50 (plus sign is optional)
4.50
-23.09 14
-3.0El4 (same as ~3.0 x 107 ")
7. (saved as 7.00000, not the same as the integer 7)
6.4.3.3 Fixed and Floating-Point Representation —- The difference

betweén integers and real numbers in FORTRAN is the way in which
each is represented in core memory. Both types of numbers are con-

verted to binary to be stored in the computer.

A FORTRAN integer is stored in one 1l2-bit computer word., The
sign of the number is kept in the high-order bit and the magnitude
(the integer wvalue) in the remaining 1l bits. This representation,
shown schematically in Figure 6-1, is called fixed point, because the
decimal point is always considered to be to the right of the right-
most digit. A FORTRAN integer may not exceed the range of +2047.

All integers greater than +2047 are taken modulo 2048 (i.e., 2049 is
considered to be 1; 4099, to be 3).

lWhere a number is to be identified as being negative, a minus sign

(-} must be used. A plus sign {+) is cptional; with no sign, a
number is considered positive.

6-8

The floating-point format consists of two parts: an exponent
{or characteristic) and a mantisga. The mantissa is a binary frac-
tion with the radix point assumed to be to the left of bit one of
the mantissa. The mantissa is always normalized; meaning it is
stored with leading zeros eliminated so that the leftmost bit is
always significant. The exponent represents the power of two by
which the mantissa is multiplied to obtain the true value of the
number for use in computation. The exponent and mantissa are both

stored in two's complement form.

SIGHN

l I MAGHNITUOE

o a. FORTRAN INTEGER

SIGN _OF EXPOMENT

T
1 1 I EXPONENT I
1

ol 1 1

SIGN_OF
MANTSSAw,
z ! MANTISSA |
i .
a1 T
3 MANTISSA]

b FLOATING POINT

Figure 6-1. Number Representation

Users should not attempt to input floating point constants of
more than six decimal digits, either in the FORTRAN source program

or via the run-time ACCEPT statement.

Integers cannot appear in floating-point expressions except as
exponent or subscripts. Some examples of illegal and legal expres-

sions are as follows:

Expression Legal Mode

A{(IY*B(J)**2 Yes Floating
I(M)*K(N) Yes Fixed
l6.*B Yes Floating
{KE+16)*3 Yes Fixed
A** (1+2)/B Yes Floating
8*A No -
4.*J No -

I+D No -

6.4.4 Variables

A variable is a symbol whose value may change during execution
of a program. The name of a variable consists of one or more alpha-
numeric characters, the first of which must be alphabetic. Only the
first four characters are interpreted as defining the variable name;
the rest are ignored. For example, the name EPSILON would be inter-
preted by the Compiler as EPSI. Since only the first four characters
are meaningful, the two names XSUMl and XSUM2 would be considered
identical,

Spaces, as mentioned earlier, are ignored. The name EX IT
represents one variable, not two. Thus, EX IT, EXIT, or even EXI T
are identical names as far as the Compilexr is concerned, and they

all refer to the same numerical guantity.

The type (or mode) of a variable (integer or real) is determined
by the first letter of the variable name.

1. Integer variables begin with the letters:

I, J, ¥, L, M, or N

2, Real variables begin with any letter other than those above.

6-10

Variakles of each type may be either scalar or array variables,

as explained below.

6.4.4.1 Integer Variables -- Integer variables undergo arithmetic

calculations with automatic truncation of any fractiomnal part. For
example, if the current value of K iz 5 and the current value of J

is 9, then J/K would yield 1 as a result.

6.4.4.2 Real Variables -- A variable is real when its name begins

with any character othexr than I, J, K, L, M, or N. Real variables
underge no truncation in arithmetic calculations. Real variables
may be converted to integer variables, and vice-versa, across an

eqgual sign.

6.4.4.3 Scalar Variables -— A scalar variable, which may be either

integer or real, represents a single number, as opposed tc an array
(below} representing a collection of numbers. For example, the

following are scalar variables:

G2
A
TOTAL (considered to be TOTA by the computer)
J
6.4.4.4 Array Variables -- An array variable represents a single

element of a one-dimensional array of quantities. The variable is
denoted by the array name followed by a subscript enclosed in paren-
theses. The subscript may be any combination of integer variables

and integer constants forming a valid expression, as follows:
(V) (V+C) (v-C) (C)

where V is a fixed point {(integer) variable, and C is a fixed-point

constant (not equal to 0).

6-11

The value of the expression in parentheses determines the

referenced érray element. For example, the row matrix, Al, would
be represented by the subscripted variable A{l), and the second
element in the row would be represented by A(2). Examples of array

variables are:

Legal Forms Illegal Forms
¥ {1) A{2+1)
A(K+2) B{C)

£.4.5 DIMENSION Statement

Array names must be identified as such to the FORTRAN Compiler.

Two items of information must be provided in any program using arrays:

A Which are the subscripted variables?

2. What is the maximum value of the subscript? (When an
array is used, a certain amount of storage space must be
set aside by the Compiler for the array elements.)

This information is provided by the DIMENSION statement:

DIMENSION A(20),B¢]15)

where A and B are array names, and the integer constants 20 and 15

are the maximum dimensions of each subscript.

The rules governing the use of array variables and the DIMENSION
statement are as follows:

1. All array names must appear in a DIMENSION statement.

2. DIMENSION statements may be used more than once and may
appear anywhere in the FORTRAN program, provided that the
DIMENSION of an array appears before any statement which
references the array.

3. Any number of arrays can be defined in a single DIMENSION
statement.

4. For notes on how to implement double subscripts (i.e.,
A2{1,J)), see Section 6.8, Implementation Notes.

Array varlables may be either integer or real, depending upon

the initial letter of the array name.
DIMENSION LIST(32):MAT(108)sREGR(2Q)

In the statement above, the names LIST and MAT designate integer
arrays; that is, all elements of both arrays are integers. The third
name, REGR, degignates a floating point, or real array. The first
array is a list containing a maximum of 30 elements; the second array

has a maximum of 100 elements.

The third array is a floating-point array and there are a maxi-
murt of 20 elements in it. Not all elements of an array need be used
in the course of a program; but, if using the DIMENSION statement
the variable LIST (31) could not be referenced without the occur-

rence of an error mesgage.

6.5 FORTRAN ARITHMETIC

6.5.1 Arithmetic Operators

The arithmetic operators are symbols representing the common
arithmetic operations. The important rule about operators in the
FORTRAN arithmetic expressions is that: every operation must be
explicitly represented by an operator. In particular, the multipli-
cation sign must never be omitted. A symbol for exponentiation is
also provided since superscript notation is not available on a

terminal.

Normally, a FORTRAN expression is evaluated from left to right,
like an algebraic formula. There are exceptions to this rule; cer-
tain operations are always performed before others, regardless of

order. This priority of evaluation is as follows:

1. Expressions within parentheses {)

2. Unary minus -

3. Exponentiation *x

4. Multiplication or Division * or /
5. addition or Subtraction + or -

The term "binding strength" is freguently used to refer to the
relative position of an operator in a table such as the one above,
which is in order of descending binding strength. Thus, exponentia-
tion has a greater binding strength than addition, and multiplication

and division have egual binding strength.

The unary minus is the arithmetic operator which indicates that
a guantity is less than zero, such as -53, -K, -12.3. It refers
only to the constant or variable which it precedes as opposed to a
binary operator, which refers to operands on either side of itself
as in the expression A-B. A unary minus is recognized by the fact
that it is preceded by another operateor, not by an operand. For

example:
AvBxk=2/0C-D

The first minus sign {indicating a negative exponent) is unary:
the second (indicating subtraction) is binary. At present it is not
possible to raise an integer variable or integer constant to an
integer value with FORTRAN-D. - Only real values can be raised to

integer powers.

The left-to-right rule can be stated more precisely: A sequence
of operations of equal binding strength is evaluated from left to
right. To change the order of evaluation, parentheses are required;
Thus, the expression A-B*C is evaluated as A-(B*C), not {A-B)*C.
Examples of the left-to-right rule follow:

The expression: Is evaluated as:

A/B*C (A/B) *C
\/B/A (a/B)/C
AR BREC (A**B) **C
6.5.1.1 Use of Parentheses -- Note the use of parentheses in the

exanple below. They are used to enclose the subscript of the dimen-

sicnal variable, D; to specify the order of operations of the ex-
pression involving A, B, and C; and to enclose the argument of the
function SINF.

DI+ CA+BIX*C+SINF(X)

In algebra there are several devices, such as square brackets
{ 1, rococo brackets{ J , etc., for distinguishing between levels
when expressions are nested. In FORTRAN, only the parentheses are
available, so the programmer must be especially careful to pair
parentheses properly. In any given expression, the number of left

parentheses must be equal to the number of right parentheses.

An easy way to check the proper pairing of parentheses is by

counting out, illustrated in the following example:

(2+AM* (AM+1,))/ ({X*¥%24C*%2) *P)
1 2 10 12 1 0

The procedure is this: Reading the expression from left to
right, assign the number, 1, to the first left parenthesis (if you
encounter a right parenthesis first, the expression is already
wrong). Increase the count by one each time a left parenthesis is
read, and decrease the count by one when a right parenthesis is
found. When the expression has bheen completely scanned, the count

should be zero. If it becomes less than zero during the scanning,

there are too many right parentheses. If it is greater than zero at

the end of an expression, there are excess left parentheses.

6.5.2 Arithmetic Expressions
An algebraic formula such as:

5a + 4b(x2 - xo}

represents a relationship between symbols (a, b, x, xo) and constants
(5, 4, 2) indicated by mathematical functions and arithmetic
operators (+, -, multiplication, exponentiation}). This same formula
can be written as a FORTRAN arithmetic expression with very little

change in appearance:

(S e*A+4 XxBR (X**2-XZRO))

The construction of both expressions is the same; the differences

are notational.

Elements of an arithmetic expression are of four types: con-
stants, variables, operators, and functions. An expression may
consist of a single constant or variable or a string of constants,

variables, and functions connected by operators.

Examples of arithmetic expressions follow; each expression is

shown with its corresponding algebraic form.

Algebraic Expression FORTRAN Expression
2 Vx 2. *SQTF (X) /3.
3
3xw = 2ixty) (3.*X*PI~2.% (X+Y)) /4.25
asin & + 2a cos(® - 45) A*SINF (THTA) +2.*A*COSF

{ {THTA) -0 .78540)

6-16

2

(@’ - b?)

5 (A**2-B*%2) / (A+B)**2
{a + b)

6.5.3 Arithmetic Statements

The arithmetic statement relates a variable, V, to an arithmetic

expression, E, by means of the replacement operator, (+}:
V=E

Such a statement looks like a mathematical equation, but is treated
differently. The equal sign is interpreted in a special sense; it
does not represent a relationship between left and right memkers,

but rather specifies an operation to be performed.

In an arithmetic statement, the value of the expression to the
right of the equal sign replaces the value of the variable on the
left. This means that the value of the left-hand variable will
change after the execution of an arithmetic statement. & few

illustrations of arithmetic statements are given below.

1. VMAX = VO + AXT

2. T = 2.*PI*SQTF(1./G)

3. PI = 3.14159

4. THTA = OMGA + ALPH*T**2/2.
5. MIN = MINO

6. INDX = INDX + 2

With the interpretation of the equal sign stated above, Example
6 becomes meaningful as an arithmetic statement. If, for example,
the value of INDX is 40 before the statement is executed, its value

will be 42 after execution.

In arithmetic expressions, a binary operator requires an operand
on its left and right. The egqual sign of an arithmetic statement is
also considered to be.a binary operator, as demonstrated in the

following revised table of operators:

Operator Use Interpretation

- {Unary) -A negate A

*k A**B raise A to the Bth power

* A*B multiply A by B

/ A/B divide A by B

+ A+B add B to A

- (Binary) A-B subtract B from A

= =B replace the value of A with the

value of B

The replacement operator is considered to have the lowest
binding strength of all operators; therefore, the expression on the
right is evaluated before the operation indicated by the equal sign

is performed,

6.5.3.1 Multiple Replacement -- An important result of treating the

egual sign as an operator is that operations can be performed in
seguence. Just as there can be a series of additions, A+B+C, there

can also be a series of replacements:

Notice that because the operand to the left of an equal sign
must be a variable, only the rightmost operand, represented by D in
the example, may be an arithmetic expression. The statement is inter-
preted as feollows: "Let the value of the expression D replace the
value of the variable C, which then replaces the value of the
variable B" and s0 on. In other words, the value of the rightmost
expression is given to each of the variables in the string to the
left. A common use for this construction is in setting up initial

values:

XZRO=SZRO=AZRO=0.
T=T1=TE=T3=58.
P=FP=4.%ATM=AK

Only simple variables will compile correctly in this manner.
For example, statements of the type A{l)=A(2)=R(1)=0.123 are not
allowed and will not compile properly (subscripted variables may

not be used in multiple replacement statements).

Multiple replacement done in a single statement must not contain

mixed mode wvariables. That is;

A=B=C=10.)
cempiles correctly
I=J=7 compiles correctly
A=J=7 does not compile correctly

Mode Conversion

Another useful result in treating the equal sign as an operator
ig that the value of an expression on the right of an equal sign is
converted to the mode of the left-hand variable, if necessary, before
storage. For example: '

A=M Stores the value of M as a floating-point number in A

K=B Stores the value of B (truncated) as an integer number
in K

If B= 4.75 and M = 7, the conversion above will result in the
following values being assigned:

A
K

7.00000
4

6.5.4 Functions

Functions are used in FORTRAN just asg they are in ordinary
mathematics, acting as variables in arithmetic expressions. The
function name represents a call to a special subprogram which per-
forms the calculations to evaluate the function; the result is used
in the computation of the expression in which the function occurs.
FORTRAN-D provides several mathematical functions: square root,

sine, cosine, arctangent, exponentiation, and natural logarithm.

The argument of a function can be a simple variable, a sub-
scripted variable, or an expression. The argument must be in a
floating-point format. FORTRAN recognizes a symbol as a function
when it is a predefined symbol ending in F and followed by an
argument enclosed in parentheses (if the F is missing from the
term, the symbol is treated as a subscripted variable). The argu-
ment of a function can consist of another function or groups of

functions. For example, the expression:

LOGF(SINF(X/2.)/COSF(X/2:))

)

FORTRAN-D contains the fcllowing functions:

T

is equivalent to log tan (

Function Name Meaning

ATNF (X) Arctangent X, where X is expressed
in radians

COSF {X) Cosine of X, where X is expressed
in radians

EXPF (X) Exponential of X

LOGF (X) Logarithm of X

SINF (X) Sine of X, where X is expressed
in radians

SQTF (X) Square root of X

6-20

6.6 PROGRAM CONTROL STATEMENTS

In this section, FORTRAN statements are discussed in the con-
text of program sequences. FORTRAN statements are executed in the
order in which they are written unless instructions are given to the
contrary by use of the program control statements. These statements
allow the programmer to alter sequence, repeat sections, suspend

operations, or bring the program to a complete halt.

6.6.1 END Statement

END occurs alone on a line and indicates the physical end of
the program to the FORTRAN Compiler. It can be preceded by a line
number. Every program must contain an END statement.

6.6.2 STOP Statement

A program arranged so that the last written statement is the
final and only stopping place needs no other terminating indication;
the END statement automatically determines the final halt. Many
programs, however, contain loops and branches so that the last
executed statement can be somewhere in the middle of the written
program. Frequently there is more than one stopping point. Such
terminations are indicated by the STOP statement. This causes a
final, complete halt; no further computation is possible, although

the program may be completely restarted from the beginning.

When a STOP is encountered during program execution, the
system signifies that a STOP has occurred by outputting an exclama-
tion point ({!) to the terminal or high-speed punch, whichever is
being used as the output device.

6-21

6.6.3 PAUSE Statement

The STOP statement prevents further computation after it has
been executed. There is a way, however, to suspend operation for a
time and then restart the program. This procedure is frequently
necessary when the user must do such tasks as loading and unlocading
paper tapes in the middle of a program. This kind of temporary halt
is provided by the PAUSE statement. The PAUSE statement halts the
program and returns control to the EduSystem 50 Monitor. The user
may then perform any nhecessary manipulations and restart the program

by typing the Monitor command START.

6.6.4 GO TO Statement

There are various ways in which program flow may be directed.
As shown schematically in Figure 6-2, a program may be a straight-
line sequence {1}, or it may branch to an entirely different se-
guence (2}, return tc an earlier point (3), or skip to a later point
(4). The blocks represent sections of FORTRAN code. The lines

indicate the path which contrcl takes as the program executes.

All of these branches can be performed in several ways, the

simplest of which uses the statement:

Figure 6~2. Program Flow

GO TO n

where n is a statement number in the program. The use of this
statement is described in the fellowing example, which also illus-
trates the construction of a leoop, the name given to program branches

of the type shown in the example above.

6.6.5 Example of Integer Summation

In the fellowing example, the sum of successive integers is
accumulated by repeated addition. The main computation is provided
by the three-instruction loop beginning with Statement 2. The
statements preceding this loop provide the starting conditions, called
the initialization. The partial sum is set to zero, and the first
integer is given the value cf one. The loop then adds the integer
value to the partial sum, increments the integer, and repeats the

operation.

C SUM OF FIRST N INTEGERS BY ITERATION
KSuM=0
INUM=1
2 KSUM=INUM+KSUM
INUM=INUM+]
GO TO 2
END

6.6.6 IF Statement

The program shown in the preceding example performs the required
computation, but note that the loop is endless. To get out of the
locp the user must know when to stop the iteration and what to do

afterwards.

The IF statement fills both requirements. It has the following

form:

IFP(E) K,L,M

6-23

where E is any variable name, arithmetic expression, or arithmetic
statement, and K, L, and M are statement numbers. The statement

is interpreted in this way:

If the value of E < (§,G60 TO statement K
E = 0,G0 TO statement L
E > 0,G0 TO statement M

Thus, the IF statement decides when to stop a loop by evaluating
an expression. It also provides program branch checices with the
transfer of control, depending on the results of the evaluation of

E. For example:

c SUM OF THE FIRST 50 INTEGERS
KSUM=2
INUM=1
2 HS5UM=1NUM+KSUM
INUM= I NUM+1
IF (INUM=-50)2,2,3
3 S5TOP
END

In the foregoing example, the initialization and main loop are
the same as for the example in Figure 6-2 except that the GO TO
statement of the earlier program has been replaced by an IF state-
ment. The IF statement says, "if the value of the variable INUM is
less than, or equal to, 50 {which is the same as saying that if the
value of the expression INUM-50 is less than or egqual to zero),
transfer control to Statement 2 and continue the computation. If
the value is greater than 50, stop." (See Section 6.8, Implementa-

tion Notes, for an alternate sclution.)

A loop may also be used to compute a series of values. The
following illustration is an example of a program to generate terms
in the Fibonacci series of integers, in which each succeeding mem-

ber of the series is the sum of the two members preceding it:

N
1

24

C FIBONACCT SERI
ES, 180 T

DIMENSION FIBC1g@) ERHS
FiB(l)ﬂ'l 1Y)
FIB(Zi=1,.0
H=3
FIB(K)RFIB(K'I)+FIB(K*2)
KaK+]
iF (K~-19035,5,1p
12 S5TOP

.END

L6 ¥]

In this program, the initialization includes a DIMENSION state-
ment which reserves space in storage, and two statements which pro-
vide the starting wvalues necessary to generate the series. Each
time a term is computed, the subscript is incremented so that each
succeeding term is stored in the next location of the table. As
soon as the subscript is greater than 100, the calculation stops.

6.6.7 DO_Loops

Iterative procedures such_as the program loop are so commoen
that a more concise way of presenting them is warranted. Three
statements are required to initialize the subscript, increment it,
and test for termination. The following type of statement combines

all these functions:
DO n J=K1,K2,K3

here n is a statement number,J is a simple (non-subscripted)
integer variable, and Kl, K2, and K3 are simple integer variables
or integer constants which provide, in order, the initial wvalue to
which J is set, the maximum value of J for which the loop will be
executed, and the amount by which J is incremented at each return
to the beginning of the loop. If K3 is omitted from the statement
it is assumed to be one (l). Statement n must be a CONTINUE

statement.

6-25

c FIBONACCI SERIES, 100 TERMS
DIMENSION FIBC1@2)
FIB(11)=1.8
FIB(2)=].0
DO S K=3» 100
FIB(K)=FIB(K=1)+F1B(K-2)

5 CONTINUE
STOF
END

In words, the DO statement says "Execute all statements through
Statement 5 with K=3; when Statement 5 is encountered, perform the
following test: If K+l is less than or egual to 100, set K=K+l and
continue the program by executing the first statement after the DO
statement. If K+l is greater than 100, the next sequential state-

ment following Statement 5 is executed.”

DO locps are commonly used in computations with subscripted
variables. In such cases, it is usually necessary to perform the
loops within ioops. Such nesting of DO loops is permitted in
FORTRAN.

c FIRST LOOP
DO 18 I=1,209
X(I)=0.

C NESTED LOOP FOLLOWS

DO 5 K=2,40,2
XCII=XCI)+(B(KI-Z(K))*%2

5 CONTINUE

C END OF NESTED LOOP
AUID)=XC1D)*%2+C(1)

10 CONTINUE

Sequential elements in the array X(I) are formed by summing
the square of the difference of every second element in the B and
Z arrays. Then the array A{I) is formed by summing every element
in the array C(I) and the sguare of every element in the array X(I).

The algebraic expression for the loop is as follows:

6-26

Ai=xi Ci for 1=1,2,3,...20
where A0 5
%, =3 b, - 2.) for k=2,4,6,...40
sz Tk Tk '
The following three rules loops must be observed:
1. DO loops may be nested, hut they may not overlap. Nested

loops may end on the same statement, but an inner loop may
not extend beyond the last statement of an ocuter loop.
Figure 6-3 schematically illustrates permitted and forbid-
den arrangements.

2. If the user transfers into the range of a DO loop, the
value to be incremented (J, for example) is not auto-
matically initialized as specified in the DO statement.
Transferring into the range of a DO loop is allowed as

long as:
a. Control was originally transferred out of the DO loop
by some means cthexr than by completing it.
b. Incrementing and testing start with the current value
of J at the time control returns to the loop.
3. A DO loop must end on a CONTINUE statement.

jola]
Do

s]
m
CONTINUE [——

CONTINUE —_—

oo

ZONTINUE
COMTINUE

EGAL MNESTING

Bo TECHMIQUES

oo
Do

—inl

CONTIMNUE

CONTINUE 1

LEGAL NESTING
TECHMNIOQUES

Figure 6-3. Legal and Illegal Nesting Technigues

D

_D COMNTINUE —
oo [pa ——
COMTINUE 3 COMTINGE L

CONTINUE CONTINUE

ACCEFTABLE HLEGAL
BRANCHING BRANCHING

Figure 6~4. Program Branching in DO Loops

6.6.7.1 CONTINUE Statement -~ A special statement (CONTINUE) is

provided which is not an executable statement itself, but provides
a termination for all DO loops. DO loops must be terminated on a
CONTINUE statement. The CONTINUE statement is identified with the

line number given in the DO statement. For example:

DO 37 MM=1,180
IF (X(MM)=108.) 37,42,37

37 CONTINUE
GO TO 1@2
42 STOP

A single CONTINUE statement can be referenced more than once
in a single DO loop or can serve as the terminating line for two or

more nested DO loops.

6.6.8 Computed GO TO

The GO TO statement previously described is unconditional and
provides neo alternatives. The IF statement offers a maximum of
three branch points. One way of providing a greater number of alter-
natives is by using the computed GO TC, which has the following form:

GO TO (K1,K2,K3,...,Kn),J

6-28

where Knisaistatement nunber, and J is a simple integer variable,
which takes on values of 1,2,3,...n according to the results of

some previous computation. For example:

IVAR=14%J/2+K
GO TO (5+755+7+55T7512),1VAR

causes a branch to Statement 5 when IVAR=1l, 3, or 5; to Statement

7 when IVAR=2, 4, or 6; and tc Statement 10 when IVAR=7. When IVAR
is less than 1 or greater than 7, the next sequential statement
after the GO TO is executed.

6.7 FORTRAN INPUT/QUTPUT

Sc far, we have assumed that all information (programs, data,
and sub-programs) is in memory, without regard to how it is put
there. Programs are read by a special loader, but the programmer
is responsible for the input of data and the output of results by

including directions for I/0 operations in his program.

For any input/output procedure, several guestions must be

answered:

1. In which direction is the data going? The data coming in
is being read into memory; information going out is being
written on whatever medium is specified.

2. Which device is being used? Information may be trans-
ferred between core and whatever input/output devices
are available; each I/0 operation must specify the device
involved.

3. Where in core memory is the data coming from or going to?
The amcunt of data and its location in the computer storage
must be specified.

4. In what mode is the data represented? 1In addition to
floating and fixed-point modes for numeric data, there is
the Hollerith mode for transferring alphanumeric or text
information.

5. What is the arrangement of the data? The format of incom-
ing or outgoing data must be specified.

For every data transfer between core memory and an external
device, two statements are required to provide all of the informa-
tion listed above. The first three items are specified by the
input/output statement, and the last two items are determined by
the FORMAT statement.

6.7.1 Data Formats

FORTRAN-D provides for communication of data to and from a
program in the following ways:

6.7.1.1 ASCII Coded Data ~— The terminal can be used to transfer

data to the program either via the keyboard (in which case the user
types the data) or from previously punched paper tape (read via the
terminal tape reader). Data can be output from a program to the
terminal producing a printed copy with or without the corresponding
punched paper tape. The high-speed reader and punch can also be
used for data transfer via punched paper tape. No printed copy is
made when output is tc the high-speed punch.

6.7.1.2 Binary Coded Data —-— System disk can also be used for data

transfer, in which case the data is stored as a core image. Integers
are read and written as single 12-bit words, floating-point numbers
as three words. Alphanumeric information is transmitted as 8-bit
ASCII coded characters right-justified in 12-bit words (one charac-

ter per word).

6.7.2 Input/Output Statements

Input/Output statements control the transfer of information.
As illustrated below, I/0 statements consist ¢f three basic items
of information: the device being accessed and the direction of
transfer, the number of the FORMAT statement controlling the arrange-
ment of data, and the list of variable names whose values are to be

output or changed by new input.

NOTE

There is a restriction on subscripted
variables when used with I/0 statements.
Subscripts to be used with I/0 state-
ments must be of the form: LI, where
each L is a letter, and not of the form
LD, where D is a digit. For example:

DO 10 Li=t,y
ACCEPT 7.A(L1)

will not store information correctly.
The statement should read:

DO 19 LL=1,4
ACCEPT 7,A(LL)

AC%EPT N,v(1) ,V{(I+1) ,v(I+2)
b .

Ligt of variable names

Statement number of FORMAT
Statement

—Device Selection and direction of
transfer

6.7.2.1 ACCEPT and TYPE Statements —- ACCEPT and TYPE transfer in-
formation between the terminal and EduSystem 50. ACCEPT causes

information to be read into core memory from either the keyboard,
the terminal paper tape reader, or the high-speed reader if it is
assigned before calling FORTRAN-D. ACCEPT is especially convenient
if data is to be entered at the keyboard since it automatically
supplies line feed when the RETURN key is typed. Also, the user
may correct an erroneously typed value by typing the RUBOUT key.

TYPE causes information to be transferred from core memory
to the terminal printer, the terminal paper tape punch, or the

high-speed punch if it is assigned before calling FORTRAN-D.

If the user needs the high-speed reader and punch for I/0, he
must assign the devices for his use before calling the FORTRAN
compiler (FORT) or operating system (FOSL). Once logged into
EduSystem 50, he replies to Monitor's dot with the appropriate assign
statements. For example:

+ASSIGN P
P ASSIGNED

«AS5IGN R
R ASSIGNED

The Monitor replies with P ASSIGNED and R ASSIGNED in response
to the user. If the device requested is not availakle (being used
by someone else), the Monitor responds with a message telling who
has the device assigned. The high-speed reader/punch is device
code 2. If running several programs, the user should reassign the

devices before each run.

6.7.2.2 READ and WRITE Statements -- EduSystem 50 FORTRAN also
allows programs to read and write data files on disk. These data

files are completely separate from program files. Data files are
read and written by standard READ and WRITE statements within the
FORTRAN program. The device code for the disk is 3. Since pro-
grams which use disk are treated differently by FORT from those
which do not use disk, it is necessary tco identify programs which
do. This is done by placing a DEFINE DISK statement as the first
statement in any FORTRAN program which includes a READ or WRITE
statement with a device code of 3.

Just as FORT must ask for the names of its input and output
files, so must a FORTRAN program ask for the names of its disk
files. FORTRAN programs do this by typing INPUT: and OUTPUT: a
second time. The user responds by typing the names of the data
files to be read or written by the program. FORTRAN will ask for

both INPUT and OUTPUT for all programs which include a DEFINE DISK
statemgnt. If only one is to be used, respond to the other by
typing the RETURN key.

6.7.3 Variazble Smecification in I/0 Statements

Following the instruction that selects the device and direction
of transfer is the statement number of the FORMAT statement that
controls the arrangement of the information being transferred., For

example:

ACCEPT 10,4
ig FORMAT (E)

Every I/0 statement must have a reference to a FORMAT statement.

The final item specified in the I/0 statement is the list of
variables. This is a sequential list of the names of variables and
array elements whose values are to be transferred in the order
indicated. There is no restriction on the number of names which
may appear in the list of an I/0 statement, as leong as the total
statement length does not exceed 128 characters. The modes of the
variables named need not agree with the corresponding FORMAT
statement; however, the modes specified in the FORMAT statement take
precedence. For example, where A=3.2,J=27,KAL=302, and BOB=7.58:

TYPE 235A>J,KAL,»BOB
23 FORMAT (1,Es1,E)

The decimal portion of A is dropped and the number 3 is printed
as an integer; the value of J is printed as a normalized number;

KAL is printed as an integer; and BOB is printed as a normalized
number. The output would lcok like the following:

3 D.2706QOE+2 302 @.758000E+1

6-33

NOTE

In READ and ACCEPT statements, although
the number is read according to the
FORMAT statement, it is stored according
to the mode of the variable. For example:

] ACCEPT 1@28
10 FORMAT (1)

causes the number 12.3 typed by the user
to be read as 12 and stored as 0.120000E+2.

Array names included in I/0 lists must be subscripted in one

of the following forms:
A (V) A (V+C) A(V-C) A(C)

where A is the array name, V is a simple integer variable and C is

a pogitive nonzero integer constant.

TYPE 105,A,1,BsClI+]12,NC(J+]1?
18 FORMAT (E»Is»E»/)

If the list contains more names than there are elements in the
FORMAT statement, the FORMAT statement is reinitialized when the
elements are exhausted. The first element in the FORMAT statement
then corresponds to the next name in the list. For instance, in
the preceding example when the value of the variable, B, is printed
in the E format, the control character, slash (/), causes a carriage
return/line feed to cecur. Then the FORMAT statement is reinitiali-
zed, and the array element, C (I+l), is printed in the E format and
the array element N{(J+l) in the I format.

6-34

The list does not have to exhaust the elements of a FORMAT
statement. If there are fewer names in the 1ist than there are
elements in the FORMAT statement, the program completes the I/0
operation and proceeds to the next sequential FORTRAN statement.
If this next statement is another I/0 statement that references a
previously unexhausted FORMAT statement, that FORMAT statement is
reinitialized. FORMAT statements are reinitialized when they are

referenced or when all of their elements are exhausted.

6.7.4 FORMAT Statement

The FORMAT statement controls the arrangement and mode of the
information being transferred. The values of names appearing in the
I/0 statement list are transferred in the mode specified by the
corresponding element in the FORMAT statement. These controlling
elements consist of the characters E, I, A, slash (/), and guote
("). The set of elehents must be enclosed in parentheses and

separated by commas. For example:

FORMAT (AsEs1»/7s"HOLLERITH™)

The control elements E and I are used for defining the mode of
the data being transferred. When a variable is transferred in the
E format, it is stored or output in floating-point form. If the
variable is transferred in the I format, it is stored or output in
fixed-point or integer form. Mode conversion on input or output can
be accomplished because the elements in the FORMAT statement define
the mode of the data. The mode of the original variable is over-

ridden where necessary. For example:

TYPE 18,4
18 FORMAT (1)

6-35

The variable, A, is printed as an integer, and the fractional
part of A is truncated. If A has a value of 14.96, only the integer
part, 14, is printed. If A has an absolute value of less than one,

zero is printed.

6.7.5 The Format Specification

The control element, A, is used for defining the alphanumeric
mode of data I/0. When a variable is to be assigned an alpha-
numeric value, data is read one character per variable. FORTRAN
ignores CTRL/C, blank tape, RUBOUT, and 0200 code (leader/trailer
tape). FORTRAN does not see the form-feed character when input is
from the digk. The decimal equivalent of the ASCII value of the

character is assigned to the variable. For example:
A = 301 {OCTAL) = 192 (decimal)

Any variable assigned the alphanumeric value, A, would be set
equal to 192.

It is possible to do arithmetic with integer variables assigned

alphanumeric values. For example:

DO 19 J=1,5
ACCEPT 12,Kc¢y)

IF (K€J)=14]y
10 CONTINUE 12540, 10

te FORMAT(A)

where the IF statement tests to see if the last character read is a
carriage return (which is ASCII 215 or 141 decimal); if so, control

transfers to Statement 40; if not, control stays within the DO loop.

It is not possible to do arithmetic with real variables assigned
alphanumeric values. Output in alphanumeric format converts the
value of the variable into an ASCII character and prints that char-

acter. For example:

12 FORMAT (A)
DO 28 I=1,5
TYPE 12.,A(d)
29 CONTINUE

If the variables A{l) through A{5} were not originally assigned

alphanumeric values, the results of the output can be meaningless.

6.7.6 Input Formats

Input data words can only consist of a sign, a decimal value,
an exponent value if the data is floating-point, and a field ter-
minating character such as space. Any character that is not a
number, decimal point, sign, or E can be used to terminate a field
except the RUBOUT character. When typing data, any number of
spaces or other nonnumeric characters can be typed before the sign

or decimal value in order to make the hard copy more readable.

Input data can be transferred into core memory from either the
terminal paper-tape reader, the keyboard, or the high-speed reader.
Input can be entered in either fixed- or floating-point modes
{(integers or decimal numbers). The mode in which data is stored
in core memory is controlled by the first letter of the wvariable
name. The characters read into core are determined by the corres-

ponding element in the FORMAT statement.

6.7.6.1 1Integer Values—-the I Format -- An integer data field con-

sists of sign2 and up to six decimal characters. Some examples of

integer values are as follows:

T et o i
Plus sign can be represented by a plus or space character. Minus
is represented by a minus character. If a sign character is ab-
sent from the data word, the data is stored as positive.

Typed Numbers Values Accepted

-2001 -2001
-49 -0040
-0040 -0040
16 0016
+2041 2041

6.7.6.2 Real Values~-the E Format -- A floating-point input word

consists ©of a sign, the data value up to six decimal characters, an
E if an exponent is to be included, the sign of the exponent, and
the exponent (i.e., the power of ten by which the data word is

multiplied). For example:
ddd .dddEnn

The d's represent numerical characters in the data and the n's
represent the 2-digit power of ten of the exponent {preceded by a
sign). Either the sign, the decimal point, or the entire exponent
part can be omitted. If the sign is omitted, the number is assumed
to be positive: if the decimal point is omitted, it is assumed to
appear after the rightmost decimal character. If the exponent is

omitted, the power of ten is taken as zero.

Some examples of floating-point values are as follows:

Typed Numbers Values Accepted
2
16 0.16 x 10
.16E02 0.16 x 102
1600.E-02 0.16 x 10°

6.7.7 OQutput Formats

6.7.7.1 E and I Formats ~- Integer values are always printed as the

sign and a2 maximum number of four characters with spaces replacing

6-38

leading zeros. On output, integers are left justified within the
stated field. Sufficient trailing spaces are printed tco f£ill the

field followed by one additional space.

Floating-point values are printed in a floating-point format
which consists of sign, leading zerco, decimal peoint, six decimal
characters, the character E, the sign of the exponent {minus or
plus}, and an exponent value ¢f twe characters. For example:

Integer Values Qutput Format
-1043 -1043
-0016 - 15
+0016 + 16

Floating-point values are printed as follows:
S0.ddddddEsnn

where: S represents the sign, minus sign, or space
dddddd represents six decimal digits of the data word
E indicates exponential representation
s represents the sign of the exponent value

nn represents the exponent value

Some examples of floating-point output are:

Decimal Value Qutput Format
-8,388,608.0 -0.838860E+07
-.000119209 0.119209E-03
6.7.7.2 FORMAT Control Specifications -- In most cases when data is

to be presented, it must be labeled and arranged properly on a data
sheet. 1In order that this can be accomplished with FORTRAN, a

-39

provision has been made so that text information and spacing can be
printed along with the data words. These features are provided by
the special FORMAT control elements quote (") and slash (/). The

slash character causes a return to the left margin.

6.7.7.3 Hollerith Output -- When text information is enclosed in
quotes and is contained as part of a FORMAT statement, it is output
to the specified device as it appears in the statement. This output

occurs when a TYPE or WRITE statement references a FORMAT statement
containing text, and all other elements of the FORMAT statement
previous to the text have been used. All legal terminal characters
(other than the quote character itself) can be contained within

quotes and output as text.

TYPE 10
19 FORMAT (/,"THIS IS HOLLERITH*, /)
TYPE 1600.aMIN,AMAX
1@p FORMAT (/s"MINIMUM=""1E, /> "MAXIMUM=",E, /)
TYPE 21¢@
2ie FORMAT C/,/," CUMULATIVE DISTRIBUTION", 7, /"
" INCREMENTS FREQUENCY", /)

DO 229 K=1,100
TYPE 258,K,VALUCL)Y,VALUCK+1),COUNT(K)
CONTINUE

25@ FORMAT (1."™ ", Es* ",E," ",F,/)

6.8 IMPLEMENTATION NOTES

6.8.1 Double Subscripts

This version of FORTRAN does not have the facility for double-
subscripted variables. To accomplish double subscripting, the
programmer has to include indexing statements in the source program
as illustrated below. In this example, the matrices are stored
columnwise in memory; that is, sequential locations in memory are

used as fellows:

6-40

Relative Position

Element in Memory (INDX)
aiil 1
azl 2
a3l 3
a4l 4
asl 5
aél 6
al2 7
az22
ase6e 35
ae66 36

If referencing Element a56 in the array, M=5, N=6, (I=6 for a

& by & array), and INDX=M+I* (N-1)=5+I*5=35. If referencing Element

a2z,

INDX=2+6*1=8,

MATRIX MULTIPLY PROGRAM
DIMENSION A{36),B(36):C(36)
ACCEPT DIMENSION OF ARRAY
ACCEPT 1.1

FORMAT (I}

DO 18 M=1,1

DO 1P N=l1,1
INDX=M+I%(N-1)

ACCEPT FIRST MATRIX
ACCEPT 1,ACINDX)
FORMAT(E)}

CONTINUE

TYFE 15

FORMAT (/2/27)

DO 26 M=1.,1

DO 20 N=zl,1
INDX=M+I*(N-1)

ACCEPT SECOND MATRIX
ACCEPT 1.,BC(INDX)
CC(INDX>»=0

CONTINUE

MULTIPLY MATRICES

6-41

DO 39 M=1.,1
DO 3@ N=1,1
DG 30 K=1.,1
IC=N+1*(M-1)
IA=N+]I*%(K«1>
IBaK+1*(M=12
CCICY=CCICI+ACTIAIXB(IR)
30 CONTINUE
TYPE 15
c PRINT RESULTS IN MATRIX FORM
DO 40 M=1,!
TYPE 21
DO 40 N=).l
INDX=2M+I%(N=])
TYFE 1.CCINDXD

40 CONTINUE

21 FORMAT (/)
TYPE 15
END

6.8.2 Substatement Feature

The most important result of treating the equal sign as a binary
operator (as explained in Section 6.4,3, Arithmetic Statements) isg
that it may be used more than once in arithmetic statement. In addi-
tion to simple replacement operations (see Section 6.5.3.2, Multiple

Replacement), consider the following:

CPRM=(CKL-CKG)/(CFG=FP*(QR+}.))

The internal arithmetic statement {(or substatement), CPG=P¥*
(Q+1), is set off from the rest of the statement by parentheses.
The complete statement is a concise way of expressing the following

common type of mathematical procedure:

C -
ret:s cl = %ia
Py

Where: Cpg = p(g+l)

The stating of a relation followed by the conditions for eval-

uating any of the variables can be expressed in a single arithmetic
statement in FORTRAN,

A second use of the egual sign is shown below. For background
on this short program, gee the discussicn of the same problem in
the section on the IF gtatement.

SUM OF THE FIRST 5@ INTEGERS

C
KSUM=0
INUM=58 -
KSUM= I NUM+KSU
° IF CINUM=INUM=}23,3.2
3 STOP

In this example, the sum is formed by counting down, but the
same results are achieved as in the section on the IF statement.
The initialization is changed so that INUM starts with the value of
50 instead of 0, and the statement, INUM=INUM+l, is no longer
required. -

6.8.3 Error Checking

Because of the extremely compact nature of the FORTRAN-D Com-
piler, either FORTRAN features or error checking will suffer. In the
case of FORTRAN-D, checking for certain errors is not as impertant as
preserving the language. Therefore, the programmer is advised to
follow the rules as stated in this manual and carefully check his

program for mistakes. For example, the statement,

a=B+C -

will compile, although at execution time it will give unpredictable
results.

It should be noted that data areas must not extend below loca-
tion 5600 in FORTRAN-D. No diagnostic is issued unless program and
data areas actually overlap. A maximum of 89610 words are available
for data. Care should be taken not to exceed the limits through use
of large arrays, etc. Similar obvious errors are accepted by the

Compiler; their effects are often unpredictable.

6.8.4 FORTRAN-D Source Program Restrictions

The following limits are imposed upon all FORTRAN-D source

programs:

1. Not more than 896 data cells. This includes all dimen-
sional variables, user-defined variables, constants, and
all constants generated by the usage of a DO loop.

2. Not more than 20 undefined forward references to unique
statement numbers per program. An undefined forward
reference is a reference to any statement label that has
not previously occurred in the program. Multiple refer-
ences to the same undefined statement numbers are consi-
dered as one reference.

3. Not more than 64 different variable names per program.
4. Not more than 128 characters per input statement.

5, Not more than 40 numbered statements per program.

6.8.4 FORTRAN-D Compiler and Operating System Core Map

The Compiler occupies the following core locations:

0003-7600 Compiler plus tables

7200-7600 Compiler tables (undefined forward
reference tahles, etc.)

The Operating System occupies locations:

0000-5200 Operating System without disk I/0
0000-6000 Operating System for disk I/0

6~-44

Locations 5201 through 7576 are available for the user's program
when using paper tape input/output. '

6.9 FORTRAN-D ERROR DIAGNOSTICS

Diagnostic procedures are provided in the Compiler to assist the
programmer in program compilation. When the compiler detects errors
in a FORTRAN source program, it prints the error messages on the user
terminal. These messages indicate the source of the errors and direct
the programmer's efforts to correct them. To speed up the Compiler
process, the Compiler prints only an error code. The programmer then
looks up the error message corresponding to the code in Tables 6-2

through €6-4 and takes the appreopriate corrective measures.

6.9.1 Compiler Compilation Diagnestics

Format of Diagnostics

XX{X XX XX
T-——-The identifying condition code

The number of statements since the appearance
of a numbered statement (octal value).

The statement number of the last numbered statement.

For example:

10 A=1(J+*1)
B=A* (H+SINF(THTA)

During compilation of the previous statements, the following
error code would be printed:

6-45

TABLE 6-1

FORTRAN-D STATEMENT SUMMARY

Statement and Form

Explanation

Arithmetic Statements

vV = e

Control Statements

CONTINUE

DO n i=k. ,k

17XprKk3

END

GO TO n
GO TO (nl,nz,...,nn],l

IF (e) nl,nz,n3

PAUSE
END

Specification Statements

COMMENT

DEFINE DISK

2I?EN?ION vl(nl}, v2(n2),...
n'n
FORMAT (sl,sz,...,sn)

Input/Cutput Statements

ACCEPT £, list

v is a variable (possibly subscripted):
e is an expression.

Proceed.

n is the statement number of a CON-

TINUE; 1 is an integer variable; k,k,k
, . 17273

are integers or nonsubscripted

integer variables.

Terminate compilation; last statement
in program.

n is a statement number.
nj,...,n, are statement numbers; i1 is a
nonsubscripted integer variable.

e is an expression; nj,n3,n3 are state-
ment numbers.

Temperarily . suspend execution.

Terminate compilation; last statement
in program.

Designated by C as first character on
line.

Enables disk I/0.

Vires-sV, are variable names; Nyy-e.,n

, n
are integers.

s is a data field specification.

f is a FORMAT statement number; list is
a list of variables; input is from the

terminal.

6-46

Table 6-1. {Cont.)

Statement and Form

Explanation

READ u,f,list

TYPE f,list

WRITE u,f,list

u is an integer representing the device
which data is to be read: l=terminal
2=high-speed reader, 3=disk; f is a
FORMAT statement number; 1list is a list
of variables.

£ is a FORMAT statement number; list is
a list of variables: output is to the
terminal.

u is an integer representing device
onto which data will be written: 1=
terminal, 2=high-speed punch, 3=disk,

f is a FORMAT statement number; list is
a list of wvariabkles,

19 41 11

indicating that a statement which occurs one statement octal (one

decimal} after the appearance of Statement 10 is in error. The

message corresponding to Code 11 shows that the number of left and

right parentheses in the statement is not equal.

If a statement number is referenced but does not appear in the

source program, the diagnostic code will be printed as follows:

XHXXX 77 20

where the number usually reserved for the last numbered statement

(xxxx) is replaced by the missing statement, e.g.

GO TO 120

The diagnostic would appear as follows where Statement 100 is never

defined.

1pg 77 28

6-47

TABLE 6-2

FORTRAN-D COMPILER COMPILATION DIAGNOSTICS

Error
Code Explanation

00 Mixed mode arithmetic expression.

01 Missing variable or constant in arithmetic expression.

03 Comma was found in arithmetic expression.

04 Too many operators in this expression.

05 Function argument is in fixed-point mode.

06 Floating-point variable used as a subscript.

07 Too many variable names in this program.

10 Program too large, core storage exceeded.

11 Unbalanced right and left parentheses.

12 Illegal character found in this statement.

13 Compiler could not identify this statement.

14 More than one statement with same statement number.

15 Subscripted variable did not appear in a DIMENSION
statement.

16 Statement too long to process.

17 Floating-point operand should have been fixed-point.

20 Undefined statement number.

21 Too many numbered statements in this program.

22 Too many parentheses in this statement,

23 Too many statements have been referenced before they
appear in the program.

25 DEFINE statement was preceded by some executable
statement.

26 Statement does not begin with a space, tab, C, or
number.

TABLE 6-3

FORTRAN-D COMPILER SYSTEMS DIAGNOSTICS

Error

Caode Explanation

0240 System file error. The disk may be full.

3100 Illegal operator on compiler stack.

3417 Preprecedence error.

6204 Error in opening the compiler, FDCOMP. Must be stored
under account 2.

6211 Error in reading the compiler, FDCOMP,

6463 Error in reading the compiler, FDCOMP.

6731 Disk output error.

6746 No END statement in input file,

6.9.2 Compiler Systems Diagnostics

Certain errors can make it impossible for the Compiler to pro-
ceed in the normal manner. These errors occur before the Compiler
has been loaded into core. They may be caused by improperly loading
the Compiler, by not having an END statement on a source file, by a
machine malfunction, or by other errors. These errors, referred to

as system errors, are explained in Table 6-3.

The compiler may halt (print CTRL/B followed by S) with the PC

set to one of the values listed in Table 6-4 (use the WHERE command
to determine the PC). The file error code will be in the AC.

TABLE 6-4
FORTRAN D ERROR HALTS
PC Explanation
5004 Error opening FOSSIL. FOSSIL, the FORTRAN cperating
system, must be stored under account 2.
5011 Error reading FQOSSIL,
6142 Error opening FOSL. FOSL, the FORTRAN operating sys-
tem loader, must be stored under account 2.
6147 Error reading FQSL.

6-49

6.9.3 Operating System Diagnostics

Not all errors are detected by the Compiler. Some errors can
conly be detected by the operating system (FOSL). Also there are
some conditions which indicate errors on the part of the Compiler
and/or operating system. When such an error occurs during running
of a program, the computer prints out an error message containing
the word TILT or ERROR and an error number. The program then stops,

prints BS, and returns to the Monitor.

TABLE &-5

FORTRAN-D OPERATING SYSTEM DIAGNOSTICS

Error
Code Explanation
01 Checksum eryor on FORTRAN binary input.
02 Illegal origin or data address on FORTRAN binary input,
04 Disk input-output error3.
05 High-speed reader error.
06 Illegal FORTRAN binary input device.
11 Attempt to divide by zero.
12 Floating-point input data conversion error.
13 Illegal op code.
14 Disk input-putput errors.
15 Non-FORMAT statement used as a FORMAT.
16 Illegal FORMAT specification.
17 Floating-point number larger than 2047.
20 Square root of a negative number.
21 Exponential negative number.
22 Legarithm of a number less than or equal to zero.
40 Illegal device code used in READ or WRITE statement.

3May be caused by machine malfunction or cperating system error.

Table 6-5, {(Cont.}

Exrror
Code Explanation
41 System device full, could not complete a WRITE
statement.
76 Stack underflow error?.
77 Stack overflow erroré.
4

May be caused by source preogram or loading error; to correct, try
the following:

a. Recompile the source program.

b. Examine source program (in particular the arithmetic statements
and subscripted variables).

6-51

CHAPTER 7

PAL-D ASSEMBLER

7.1 INTRODUCT ION

The EduSystem 50 Assembly System is composed of the PAL-D
Symbolic Assembler, LOADER, and ODTHI. The PAL-D Assembler is used
to translate the user's source program into an object program
(binary or machine code). LOADER is used to transfer the user's
object program from the disk into core for debugging or execution.
ODTHI (Octal Debugging Technigque} is used to dynamically debug the

object program which has been loaded into core using LOADER.

PAL-D (an acronym for Program Assembly Language for the Disk)
ig a two pass Asgembler (with optional third pass) designed for 4K
PDP-8 family of computers. A program, written in the PAL-D source
language, is translated by the Assembler into a binary file in two
passes through the Assembler. The binary file is loaded, by the

LOADER, into the computer for executicn.

During the first pass of the assembly, all user symbols are
defined and placed in the Assembler's symbol table. During the
second pass, the binary equivalents of the inpu£ source language are
generated. The Assembler's third pass produces a printed assembly
listing of the program's instructions with the location, generated
binary, and source code side by side on each line. To call the

PAL-D Assembler, the user types:

»R PALD

PAL-D responds by requesting INPUT: Type the name of the source

program or programs to be assembled. A maximum of three files can

7-1

be assembled together. PAL-D then requests QUTPUT: Type the name
of the new file in which PAL-D will store the assembled program in
executable binary form. PAL-D then requests OPTION: For a normal
assembly, press the RETURN key. For a listing on the line printer,
respons with L. If an assembly listing is not desired, respond to

OPTION with N.

PAL-D then proceeds to assemble the program: any errors in
the program are indicated; the program symbol table is printed:; and
finally, an assembly listing of the source program is printed. When
the listing is completed and the assembly finished, control is
returned to the Monitor. When PAL-D begins printing the symbol table
at the end of pass 2, the binary file has already been generated.

Thus, the user may type CTRL/C to bypass the symbol table print out.

7.2 EduSystem 50 PAL-D

Because of the necessary hardware changes made for time-sharing
on EduSystem 50, PAL-D has been revised in the following ways (as

differing from PAL-D on a non-timeshared PDP-8):

a. PAL-D, under EduSystem 50, allows a very large number of
user symbols in addition to the permanent symbols listed
in Table 7-1. The permanent symbol table has been revised
to include all instructions peculiar to the time-sharing
system.

b. A CTRL/C (#C) from the terminal terminates the assembly,
and halts PAL-D, sending the user back to the Monitor.

7.3 SYNTAX

Programs processed under PAL-D are written using ASCII charac-

ters.

7.3.1 Legal Characters

The following characters are acceptable to PAL-D:

=%

b.

Ca

The alphabetic characters (ABCD...XYZ)

The numeric characters (0 1 2 3

The special characters

L.

-4

Space
Plus

Minus

Exclamation Mark

Carriage Return

Tabulation

Comma
Equal Sign

Semicolon

Dellar Sign

Asterisk

Point (Period)

Slash
Ampersand
Quote
Parentheses

Brackets

456 78 9

Separates symbols and numbers.
Combines symbols or numbers (add)
Combines symbols or numbers (subtract)

Combines symbols or numbers
{inclusive OR)

Terminates a line

Formats symbols or numbers or
source tape output

Assigns symbolic address
Direct assignment of symbol values

Terminates coding line (will not
terminate comments)

Indicates end of pass

Sets current location counter;
redefines origin

Has value equal to current location
counter

Indicates start of comment
Combines symbols or numbers {(AND)
Generates ASCII constant

Defines literal on current page

Defines page 0 literal

d. Ignored characters

Form-Feed Indicates the end of a logical
page of source program

Blank Tape Used for leader/trailer
Code 200 Used for leader/trailer
Rubout Follows tabulation characters

for timing purposes

Line-Feed Follows carriage return and causes
terminal paper tc roll upward one
line :

Since certain characters are invisible (i.e., nonprinting), the
following symbols are used throughout this chapter to represent their
presence:

.. Space

- Tabulation

vy Carriage Return

7.3.2 1Illegal Characters

All characters other than those listed above are illegal when
not in a comment or TEXT field and, being illegal, their occurrence
causes the error message IC (Illegal Character) to be printed by

PAL-D.

7.3.3 Format Effectors

Tabulations are usually used in the body of a source program to
provide a neat page; they can separate fields from one another, as

between a statement and a comment. For example, a line written

G0, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form

GO» TAD TOTAL /MAIN LOOF

7-4

Either the ";" (semiccolon) or "Q" (carriage return-line feed)
character may be used as a statement terminator. The semicolon is
considered identical to carriage return-line feed except that it

will not terminate a comment. Example:

TAD A /THIS IS A COMMENT; TAD B

The entire expression between the "/" (slash) and #{carriage

return} is considered a comment.

The semicolon also allows the programmer to place several lines
of coding on a single line. TIf, for example, he wishes to write a
sequence of instructions to rotate the contents of the accumulator

and link six places to the right, it might look like

RTR
RTR

RTR &/

The programmer may place all three RTRs on a single line by separat-
ing them with the special character ";" and terminating the line
with a carriage return. The above sequence of instructions can then

be written
RTR: RTR: RTR

This format is particularly useful when setting aside a section of
data storage for a list. For example, a 12-word list could be

reserved by specifying the following format.

. - g
18T @; @3 0; B3 O;
L ’ m: A3 @3 03 83 O

A neat printout (or program listing) makes subsequent editing,
debugging, and interpretation much easier than when the coding is

laid out in a haphazard fashion.
7.4 NUMBERS

Any sequence of numbers delimited by a punctuation character is

interpreted numerically by PAL-D.

The radix control pseudo-operators (pseudo-ops} indicate to the
Assembler the radix to be used in number interpretation {see Section
7.9). The pseudo-op DECIMAL indicates that all numbers are to be
interpreted as decimal until the next occurrence of the pseudo-op
OCTAL. The pseudo-op OCTAL indicates that all numbers are to be
interpreted as octal until the next occurrence of the pseudo-op

DECIMAL.

The radix is initially set to octal and remains octal unless

otherwise specified.

7.4.1 Arithmetic and Logical Operators

The arithmetic and logical operators are:

+ Plus 2s complement addition (modulo 4096)

- Minus 25 complement subtraction {modulo
4096)

! Exclamation Mark Boolean inclusive OR {union}

& Ampersand Boolean AND (intersection)

-Space Interpreted as inclusive OR when
used to separate twe symbolic
operators., Example:

—

TAG, CLA__CLL ¢/

7.4.2 Evaluating Expressions

Symbols and numbers (exclusive of pseudo-op symbols) may be
combined by using the arithmetic and logical operators to form expres-

sions. Expressions are evaluated from left to right. Example:

A B A+B A-B AlB A&B
vValue 0002 0003 0005 7777 0003 0002
Value 0007 0005 0014 0002 0007 0005

Value 0700 0007 0707 0671 0707 0000
7.5 STATEMENTS

PAL-D source programs are usually prepared on a terminal with the
aid of the Editor as a sequence of statements. Each statement is
written on a single line and is terminated by a carriage return-line
feed sequence. PAL-D statements are virtually format free; that is,
elements of a statement are not placed in numbered columns with rigidly
controlled spacing between elements, as in punched-card oriented

assemblers.

There are four types of elements in a PAL-D statement which are
identified by the order of appearance in the statement, and by the
separating, or delimiting character which follows or precedes the

element.

Statements are written in the general form
label, operator operand /comment

The Assembler interprets and processes these statements, generating
one or more binary instructions or data words, or performing an
assembly process. A statement must contain at least one of these

elements and may contain all four types.
7.5.1 Labels

A label is the symbolic name created by the source programmer
to identify the position of the statement in the program. If present,

the label is written first in a statement and terminated by a comma.

7.5.2 Operators

An operator may be one of the mnemonic machine instfuction codes
(Tables 7-1 &7-2),0r a pseudo-operation (pseudo-op) code which directs
assembly processing. The assembly pseudo-op codes are described in
Section 7.9. Operators are terminated with a space if an operand

follows or with a semicolon, slash, or carriage return.

7.5.3 Operands

Operands are usually the symbolic address of the data to be
accessed when an instruction is executed, or the input data or argu-
ments of a pseudo-op. In each case, interpretation of operands in a
statement depends on the statement operator. Operands are terminated
by a semiceolon, a slash if a comment follows, or a carriage return-

line feed.

7.5.4 Comments

The programmer may add notes to a statement following a slash
mark. Such comments do not affect assembly processing or program
execution, but are useful in the program listing for later analysis

or debugging.
7.6 SYMBOLS

The programmer may create symbols to use as statement labels,
as operators, and as operands. A symbol is a string of one or more
alphanumeric characters delimited by a punctuation character. A
symbol contains from one to six characters from the set of 26 alpha-
betic characters and ten digits O through 9; however, the first

character must be alphabetic.

7.6.1 Svymbol Distinction

The PAL-D Assembler makes a distinction between the types of
symbols it is processing. These types are
2. Permanent symbols

JMS A symbol whose value of 4000(octal) is taken from
PAL-D's permanent operation code symbol table.

b. User-defined symbols
HERE A user-defined symbol; when used as a symbolic

address tag, its value is the address of the
statement it tags (this value is assigned by PAL-D).

7.6.1.1 Permanent Symbels

PAL-D has in its permanent symbol table definitions of its
operation codes, operate commands, and many input-output transfer (IOT)
microinstructions (see table 7-2 \}. PAL-D's permanent symbols may

be used without prior definition by the user.

7-9

7.6.1.2 User-Defined Svmbols

User-defined symbols are composed according to the following

rules.

a. The characters must be alphabetic (A-Z) or numeric(0-9).
b. The first character must be alphabetic.
¢. Only the first six characters of any symbol are meaningful

to PAL~-D; the remainder, if any, are ignored.

Note that because of the third rule above, a symbol such as INTEGER
would be interpreted as INTEGE since the seventh character is ignored.
Remember, if symbols of more than six characters are used, the pro-
gramer must avoid defining two apparently different symbols whose
first characters are identical. For example, the two symbols

GEORGE1l and GEORGE2 differ only in the seventh character, thus the

Assembler treats them as being the same symbol, GEQORGE.

When the symbol following the space 1s a user-defined symbol,

the space acts as an address field delimiter. Example:

*2117
A, CLA

JMP A

where A is a user-defined symbol with the wvalue 2117. The expression

JMP A is evaluated as follows.

JMP 101 000 000 000 (binary representation of
_ permanent symbol JMP)

Address A 000 011 001 111 (binary representation of
address 3a)

The operation codes (op codes) are inclusively ORed to form
JMP A 101 011 001 111

or written more concisely in octal as 5317.

7.6.2 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear
first in the statement and must be immediately followed by a comma.
When used in this way, a symbol is said to be defined. A defined
symbol can reference an instruction or data word at any point in the
program. A symbol can be defined as a label only once. If a program-—
mer attempts to define the same symbol as a label again, the second
or successive attempt is ignored and an error is indicated. The
Assembler recognizes only the first definition. These are legal

symbolic addresses:

ADDR,
TOTAL,

SUM,
The following symbolic addresses are illegal:

TABC, {first character must be alphabetic)

LAB , {comma must immediately follow label)

7-11

7.6.3 Svmbolic Operators

Symbols used as operators must be predefined by the Asgembler or
by the programmer. TIf a statement has no label, the operator may
appear first in the statement, and must be terminated by a space, tab,

semicolon, or carriage return. The following are examples of legal

operators:
TAD (a mnemonic machine instruction operator)
PAGE {an Assembler pseudo-op)
ZIP {legal only if defined by the user)

7.6.4 Svymbolic QOperands

Symbols used as operands must have a value defined by the user.
These may be symbolic references to previously defined labels where
the arguments to be used by this instruction are to be feund, or the

values of symbolic operands may be constants or character strings.

TOTALs TAD ACi+TAG

The wvalues of the two symbols ACl and TAG, already defined by
the user, are combined by a two's complement add. This value is

used as the address of the operand.

7.6.5 8ymbol Tables

The Assembler processes symbols in source program statements by
referencing its symbol tables which contain all defined symbols along

with the binary value assigned to each symbol.

7-12

Initially, the Assembler's permanent symbol table contains the
mnemonic op codes of the machine instructions and the Assembler
pseudo-op codes, as listed in tables 7-1 and 7-2., As the source
program is processed, symbols defined in the source program are added

to the user's symbol table.

7.6.6 Direct Assignment Statements

The programmer inserts new symbols with their assigned values
directly into the symbol table by using a direct assignment statement

of the form

symbol = value

where the value may be a number or expression. For example,

ALPHA=5
RETA=17

A direct assignment statement may also be used to give a new

symbol the same value as a previously defined symbol.

BETA=17
GAMMA=BETA

The new symbol, GAMMA, is entered into the user's symbol table with

the value 17.

The value assigned to a symbol may be changed.

ALPHA=7

changes the value assigned to the first example from 5 to 7.

7-13

The user may also define symbols by use of the comma. When the
first symbol of a statement is terminated by a comma, it is assigned

a value equal to the current location counter (CLC). For example,

*100

TAGS CLA /SET CLCCORIGIN) To 1gg
JMP A

B, o

s DCA B

The symbol TAG is assigned a wvalue of 0100, the symbol B a value of

0102, and the symbol A a wvalue of 0103.

Direct assignment statements do not generate instructions or
data in the object program. These statements are used to assign values

so that symbols can be conveniently used in other statements.

7.7 ADDRESS ASSIGNMENTS

The PAL-D Assembler gets the origin, or starting address, of the
source program to absolute location (address) 0200 unless the origin
is gpecified by the programmer, As source statements are processed,
PAL-D assigns consecutive memory addresses to the instructions and
data words of the object program. This is done by incrementing the
location counter each time a memory location is assigned. A statement
which generates a single object program storage word increments the
location counter by one. Another statement may generate six storage

words, thus incrementing the location counter by six.

7-14

TABLE 7-1

EDUSYSTEM 50 SYMBOL LIST

Cede Mnemonic Operation Event Time

Memory Reference Instructions

0000 AND Logical AND

1000 TAD Twos complement add

2000 ISZ Increment and skip if zero
3000 DCA Deposit and Clear AC

4000 JMS Jump to subroutine

5000 JMP Jump

6000 I0T

7000 OPR Operate

Group 1 Operate Microinstructions

7000 NOP No operation 1
7001 IAC Increment AC 3
7004 RAL Rotate AC and link left one 3
7006 RTL Rotate AC and link left two 3
7010 RAR Rotate AC and link right one 3
7012 RTR Rotate AC and link right two 3
70290 CML Complement link 2
7040 CMa Complement AC 2
7100 CLL Clear link 1
7200 CLA Clear AC 1

7-15

Table 7-1. (Cont.)

Code Mnemonic Operation Event Time

Group 2 Operate Microinstructions

7402 HLT Halts the computer 4
7404 OSR Inclusive OR switch register with AC 3
7410 SKP Skip unconditionally 1
7420 SNL Skip on nonzero link 1
7430 SZL Skip on zero link 1
7440 SZA Skip on zero AC 1
7450 SNA Skip on nonzero AC 1
7500 SMA Skip on minus AC 1
7510 SPA Skip on plus AC (zero is positive) 1
Combined Operate Microinstructions

7041 CIA Complement and increment AC 1
7120 STL Set link to 1 1
7204 GLK Get link (put link in AC, bit 11) 1
7240 STA set AC = -1 1
7604 LAS Load AC with switch register 1

PSEUDO-OPERATORS

DECIMAL ' OCTAL

EXPUNGE PAGE
FIELD PAUSE
FIXTAB TEXT
I XLIST

Direct assignment statements and some Assembler pseudo-ops do
not generate storage words and therefore do not affect the location

counter,

7.7.1 Current Address Indicator

The special character . (point or period) always has a value
equal to the value of the current location counter. It may be used
as any integer or symbol (except to the left of an equal sign).

Example:

%200
JMF .2

is equivalent to JMP 0202. Also,

*300
«+2400

will produce in location 0300 the guantity 2700. Consider

*2200
CALL=JMS I .
ges7

The second line, CALL=JMS I .does not increment the current location
counter, therefore, 0027 is placed in location 2200 and CALL is placed
in the user's symbol table with an associated value of 4600 (the octal

equivalent of JMS I).

7-17

7.7.2 Indirect Addressing

When the character appears in a statement between a memory
reference instruction and an operand, the operand becomes the address

containing the address of the statement to be executed. Consider

TAD 49

which is a direct address statement, where 40 is interpreted as the
address containing the quantity to be added to the accumulator. Thus,
if address 40 contains 0432, then 0432 is added to the accumulator.
Now consider

TAD 1 49

which is an indirect address statement, where 40 is interpreted as
the address ©f the address containing the quantity to be added to the
accumulator., Thus, if address 40 contains 432, and address 432 con-

tains 456, then 456 is added to the accumulator.

Then a reference is made to an address not on the same page as
the reference, PAL-D sets the indirect bit (bit 3) of the machine
instruction, generating an indirect address linkage to the off-page
reference (see Paging and Off-Page Referencing, Sections 7.8.1.1 and
7.8.1.2}).

In the case of geveral off-page references to the same address,

the indirect address linkage will be generated only once. Example:

*2117
-9 CLA

2600
TAD A

DCA A

The space preceding the user-~defined symbol A acts as an address field
delimiter. PAL-D will recognize that the address tag A is not on the
current page (in this case 2600-2777) and will generate a link to it

in the following manner. In location 2600, PAL-D will place the word
1777 {(octal equivalent of TAaD I 2777)

and in location 2777 (the last location on the current page) the word
2117 (the actual address of A) will be placed. When it sees the second
reference to A it will use the previous link word rather than creating
a new one.

PAL-D will recognize and generate an indirect address linkage
only when the address referenced is to a location on another page,
not the current page. The programmer must use the character I to
indicate an explicit indirect address when indirectly addressing to a

location on the current page.

PAL-D cannot generate a link for an instruction that is already
gspecified as being an indirect address. In this case, PAL-D will type
the error message 11 (Illegal Indirect); the error message is ignored

and assembly is continued.

7.7.3 Autoindexing

Interpage references are often necessary for obtaining operands
when processing large amounts of data. The PDP-8 computers have
facilities to ease the addressing of this data. When absolute loca-
tions 10 to 17 (octal) are indirectly addressed, the content of the
location is incremented before it is used as an address and the incre-
mented number is left in the location. This allows the programmer to
address consecutive memory locations using a minimum of statements.

It must be remembered that initially these locations (10 to 17)
must be set to one less than the first desired address. Because of
their characteristics, these locations are called auntoindex registers.
No incrementation takes place when locations 10 to 17 are addressed

directly. Example:

Statement is in location 500
Data is on the page starting at 5000

Autoindexing register 10 is used for addressing

476 1377 TAD (S@@B-1) /SET UP A
UTO 1
0477 3P1¢ DCA 19 /WITH 47177 o
8580 1412 TAD I 1@ /CC10) IS INCREMENTED TO S500¢ BEFORE
: N /1T 135 USED AS AN ADDRESS
@577 47117 /LITERAL GENERATED BY PAL-D

7=-20

When the statement in location 500 is executed, the content of loca-
tion 10 will be incremented to 5000 and the content of location 5000
will be added to the content of the accumulator. If the instruction
TAD I 10 is re-executed, the content of location 5001 is added to the

content of the accumulator., and so on.

7.7.4 Literals

Symbolic and integer literals {constants) may be defined as shown

below:

CLA Operator and operand must always
TAD (2)

DCA INDEX be separated with a space.

The left parenthesis is a signal to the Assembler that the integer
following is to be assigned a location in the table at the top of the
current page. This is the same table in which the indirect address
linkages are stored. In the above example, the quantity 2 is stored

in the first free location in a list beginning at the top of the cur-
rent page {(relative address 177}, and the statement in which it appears

is encoded with an address referring to that location.

A literal is assigned to storage the first time it is encountered;

subsequent references will be to the same location.

If the programmer wishes to assign literals to page O rather than

the current page, he must use sqguare brackets,[J, in place of paren=-

theses. Whether using parentheses or sguare brackets, the right or
closing member is optional and may always be replaced with a carriage

return.

TAD (777

Nesting -~ Literals may be nested as shown below.

*200
TADCTAD(30

will generate

o208 1276

» -

03;6 13;7 (literals assigned to locations

9377 0038 0377 and 0376; top of current page)

This type of nesting may be carried to many levels.

Literals are stored on each page starting at relative address
177 (only 12710 or 1778 literals may be placed on page 0). If
literals are being generated for some nonzero page and then the origin
is set to another page, the current page literal buffer is punched
out during pass 2. If the origin is reset to the previously used
page, the same literal will be generated if used again.

If a single character is preceded by a gquote ("), the 8-bit value
of the ASCII code for that character is inserted instead of taking the

letter as a symbol.

7-22

Example:
xanp CLA

TAD ("A

will place the constant 0301 in the accumulator.

7.8 INSTRUCTIONS

There are two basic groups of instructions: memory reference
and augmented. Memory reference instructions require an operand;:

augmented instructions do not require an operand,

7.8.1 Memory Reference Instructions

In PDP-8 computers, some instructions regquire a reference to
memory. They are appropriately designated memory reference instruc-

tions, and take the following format.

DOPERATION MEMCRY
CODES O-% PAGE

o] 1 2 3 4 5 1] 7 a 9 e 11

INDIRECT lDD;EsS
ADORESSING

Memory Reference Instruction Bit Assignments

Bits 0 through 2 contain the operation code of the instruction to be
performed (such as AND,TAD, . or JMP}. Bit 3 tells the computer if

the instruction is indirect, that is, if the address of the instruction
specifies the location of the operand, or if it specifies the location
of the address of the operand. Bit 4 tells the computer if the instruc-
tion is referencing the current page or page zero. This leaves bits

5 through 11 (7 bits) to specify an address. In these 7 bits, 200

octal or 128 decimal locations may be specified; the page bit increases
accessible locations to 400 octal or 256 decimal.
The address field of a memory reference instruction may be any
valid expression., Example:
A=27¢

*200
TAD A-20

produces, in location 200, the word

1250
which in bkinary is 001 010 101 0000

which is also TAD 250.

7.8.1.1 Paging

To ease the programmer's addressing problems, a convention has
been defined that devides memory into sectors called pages. Each page
contains 200 octal locations (128 decimal)} numbered 0 to 177 (octal)
on that page. There are 40 octal or 32 decimal pages numbered 0 to
37 (octal). Some examples of page numbers and the absolute and
relative locations (addresses) are shown below. It must be borne in

mind, however, that there is no physical separation of pages in memory.

Absolute Relative
Page Address Address
0 0-177 Q- 177
] 200 - 377 0-177
2 400 - 577 0-177
34 7400 - 7577 0-177
37 7600 - 7777 0-177

7-24

The following table offers a comparison of specific absolute

and relative addresses on the same page.

; Absolute Relative
Page Address Address
0 10 10
3 617 17
12 2577 177
31 6255 55
37 7777 177

Since only seven bits are necessary to address 200 octal loca-

tions, bits 5 to 11 are reserved for this function.

7.8.1.2 0ff-Page Referencing

The page on which an absolute address is contained can be deter-
mined from bit 4 of the instruction. If bit 4 is a 0, the address
refers to a location on page 0; if bit 4 is a 1, the address refers
to a location on the current {(same) page, that is, the same memory

page as the instruction.

7.8.2 Augmented Instructions

Augmented instructions are divided into two groups: operate and

input-output transfer microinstructions.

7.8.2.1 Operate Microinstructions

Within the operate group there are two groups of microinstructions.
Group 1 microinstructions are principally for clear, complement, rotate,
and increment operations and are designated by the presence of a 0 in

bit 3 of the machine instruction word. (See table 7-1.)

7-25

ROTATE ¢
ROTATE poSiTign F A O,
BC AND L 2 POSITIONS
OZEE:Y;ON cLA cMa RIGHT A
—— —— r "

CONTAINS Ly ™l
a0 To
SPECIFY
GROLPY

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions are used principally in checking the
content of the accumulator and link and, based on the check, continu-
ing to or skipping the next statement. Group 2 microinstructions are
identified by the presence- of a 1 in bit 3 and a 0 in bit 11 of the
machine instruction word. (See table 7-1.)

HEVERSE
Sl

QPERLTION SE"MS'NG 37 it
COCE 7 Cud StA arrs 4,6, L
S e, s, —,

e 1 2 2 4 k] & ? B 3 A

4
CONTAING &1 SMa SNL ose roniaes s
TQ SPECIF v Lrous 2
GROUP 2

Group 2 Operate Microinstruction Bit Assignments

Group 1 and group 2 microinstructions can not be combined because
bit 3 determines only one or the other,
Within Group 2, there are two groups of skip instructions. They

may be referred teo as the OR group and the AND group.

OR Group AND Group
SMA SPA
SZA SNA
SNL SZL

The OR group is designated by a 0 in bit 8, the AND group by a 1 in
bit 8. OR and AND group instructions cannot be combined because bit

8 determines only one or the other.

If the programmer does combine legal skip instructions, it is

important to note the conditions under which a skip may occur.

7.8.2.2

OR Group - If these skips are combined in a statement, the

inclusive OR cof the conditions determines the skip.

SZA SNL

The next statement is skipped if

the accumulator contains 0000, or
the link is a 1, or
both conditions exist.

AND Group - If the skips are combined in a statement, the

logical AND of the conditions determines the skip.

SNa SZL

“The next statement is skipped only if the accumulator dif-

fers from 0000 and the link is 0.

Input—Qutput Transfer Microinstructions

These microinstructions initiate operation of peripheral equip-

ment and effect information transfer between the central processor

and the input-output device (s}. This is the principal function of

the input-output transfer (IOT} microinstructions. Table 7-2 lists

all valid IOT microinstructions, and each is discugsed in detail in

Chapter 11.

EDUSYSTEM 50

TABLE 7-2

IOT INSTRUCTION SUMMARY

Number

Instruction

Function

Program Control

6200
6402
6403
6405
6411
6412
6413
6414
6415
6416
6417
6420
6421
6422
6430
6431
6440
6442
7402
7404

File Control

CKS
DUP
UND
CLS
URT
TOD
RCR
DATE
SYN
ST™
SRA
TSS
USE
CON
SSW
SEA
ASD
REL
HLT
OSR

6406
6600
6601
6602
6603

SEGS
REN
OPEN
CLOS
RFILE

Check Status

Duplex Console
Unduplex Console

Clear Status

User Run Time

Time of Day

Return Clock Rate

Date

Quantum Synchronization
Set Timer

Set Restart Address
Skip on TS8S5/8

User

Console

Set Swtich Register

Set Error Address
Assign Device

Release Device

Halt

OR With Switch Register

Segment Count
Rename File
Open File
Close File
Read File

7=28

Table 7-2. (Cont.}

Number Instruction Function
6604 PROT Protect File

6605 WFILE Write File

6610 CRF Create File

6611 BXT Extend File

6612 RED Reduce File

6613 FINF File Information

6614 SIZE Segment Size |

6616 WHO Who

6617 ACT Account Number

Input Buffer Control

6030 KSR Read Keyboard String

6031 KSF Skip on Keyboard Flag

6032 Kce Clear Keyboard Flag

6034 KRS Read Keyboard Buffer Static
6036 KRB Read Keyboard Buffer Dynamic
6400 KSB Set Kevboard Break

6401 SBC Set Buffer Control Flags

Output Buffer Control

6040 SAS Send A String

6041 TSF Skip On Teleprinter Flag
6042 TCF Clear Teleprinter Flag
6044 TPC Load Teleprinter and Print
6046 TLS Load Teleprinter Sequence

High-Speed Paper Tape Reader and Control

6010 RRS Read Reader String
6011 RSF Skip On Reader Flag
6012 RRB Read Reader Buffer
5014 RFC Reader Fetch Character

Table 7-2. (Cont.)

Number Instruction Function

High-Speed Paper Tape Punch and Control

6020 PST Punch String

6021 ' PSF Skip On Punch Flag

6022 PCF Clear Punch Flag

6024 PPC Lead Punch Buffer and Punch Character
6026 PLS Load Punch Buffer Sequence

DECtape Control

6764 DTXA Load Status Register A
6771 DTSF Skip On Flags
6772 DTRB Read Status Register B

Line Printer

6660 LST Print String

6662 ICF Clear Printer Flag
6661 LSF Skip on Printer Flag
6664 LLC Print Character

6666 LPC Print Character

Card Reader

6632 RCRA Read Card, Alpha
6634 RCRB Read Card, Binary
6636 RCRC Read Card, Compressed

Disk Cartridge

6743 DLAG Perform Disk Transfer
6772 RDS Read Device Status

7.9 PSEUDO-OPERATORS

The ?rogrammer may use pseudo-operators (pseudo-ops} to direct
the Assembler to perform certain tasks or to interpret subsequent
coding in a certain manner, Some pseudo-ops generate storage words
in the object program, other pseudo-ops direct the Assembler on how
to proceed with the assembly. FPseudo-ops are maintained in the
Assembler’s permanent symbol table,

The function of each PAL-D pseudo-op is described below.

7.9.1 cCurrent Location Counter

The programmer may use the PAGE pseudo-op to reset the current

location counter (CLC} to the first location on a specified page.

PAGE without an argument, the CLC is reset to the first loca-
tion on the next succeeding page. Thus, if a program is
being assembled into page 1 and the programmer wishes to
begin the next segment of his program on page 2, he need
only insert PAGE, as follows,

JMP .a7 {Last location used on page 1)
PAGE
CLA (First location on page 2}

PAGE n resets the CLC to the first location of page n, where n
is an integer, a previously defined symbol, or a symbo-
lic expression. Example:

(sets the CLC to location 40Q)

PAGE 2 (sets the CLC to location 1400)

PAGE 6

7.9.2 Extended Memory

When using more than one memory bank, the pseudo-op FIELD ingtructs
the Assembler to output a field setting.
FIELD n where n is an integer, a previ-
ously defined symkol, or a sym-

bolic expression within the
range of O<n<7.

7-31

This pseudo-op causes a field setting (binary word) of the form

11 XXX 000 where 000<XxXxX<1l1ll
to be output on the binary file during pass 2. This word is inter-
preted by the Loader, which then begins loading information from the
file - into the new field. (Field settings are ignored by TSS/8

1OADER.)

7.2.3 RADIX Control

Integers used in a source program are usually taken as octal
numbers. If, however, the programmer wishes to have certain numbers
treated as decimal, he may use the pseudo-op DECIMAL.

DECIMAL all integers in subsequent coding are taken as deci-
mal until the occurrence of the pseudo-op OCTAL.

OCTAL resets the radix to its original octal base.

7.9.4 Listing Control

During pass 3, a listing of the source program is printed .
The programmer may, however, control the output of his pass 3 listing

by use of the pseudo-op XLIST.

XLrsr Those portions of the source program enclosed by XLIST
will not appear in the pass 3 listing.

7.9.5 Text Facility

The pseudo-op TEXT enables the user to represent a character or
string of characters in ASCII code trimmed to six bits and packed two
characters to a word. The numerical values generated by TEXT are left-
justified in the storage words they occupy, with the unused bits of

the last word filled with Os.

A string of text may be entered by giving the pseudo-op TEXT
followed by a space, a delimiting character, a string of text, and

the same delimiting character. Example:
TEXT ATEXT STRINGA

The first printing character following TEXT is taken as the delimiting
character, and the text string is the characters which follow until
the delimiting character is again encountered.

If the example above were at location 0200, the pass 3 listing

would be as follows.

2288 2405 TEXT ATE
2281 3024 AT
g202 4023 S {— denotes a space}

0eP3 2422 TR
@204 1116 1IN
pees 700 GA

NOTE

With TEXT, any printing character

may be used as a delimiting character;
the delimiting character cannot be
used in the text string.,

7.9.6 End of Program

The special symbol $ (dollar sign) indicates the end of a pro-

gram., When the Assembler encounters the §$, it terminates the pass.

7.9.7 EBEnd of File

The pseudo-op PAUSE signals some assemblers to stop processing

the current input file. TSS/8 PAL-D ignores any PAUSE statements.

7-33

7.9.8 Altering the Symhol Table

PAL-D has a permanent symbol table which containg all instruc-
tions (symbols and their octal wvalues) required by EduSystem 50. They
are referred to as PAL-D's basic instructions or symbols, and are
listed in tables 7-1 and 7-2.

When the symbolic program to be assembled required instructions
not already in the table (e.g., card reader I0T's), the table must be
altered to include those instructions. PAL-D has two pseudo-ops that
are used to alter the permanent symbol table: |

EXPUNGE deletes the entire permanent symbol table, except
pseudo-ops.

FIXTAB appends symbols to the table for duration of the
assembly. All symbols defined before the occurrence
of FIXTAB are temporarily made part of the permanent
symbol table.

These pseudo-ops can be used to eliminate unneeded symbols from the
table, thus providing more storage for user symbols.

To append the following card reader IOT's to the symbol table,

the programmer generates an ASCII file containing:

RCSF=6631
RCSP=667]
RCRD=6674
FIXTAB
This file is then included as one of the input files to PAL-D. (Only

the last input file should contain a dollar sign.)

7.9.9 Internal Representation

Each permanent and user-defined symbol occupies four words {loca-

tions} in the symbol table storage area, as shown below:

7-34

Word 1 C] X 458 + C2 first 2 characters
Wo;d 2 C3 X 458 + C4 second 2 characters
Ward 3 C5 x 458 + C{, third 2 characters
Word 4 octal code or address

where Cl,lcz,...c6 represent the first character, second character,...,

sixth character resprectively. (Symbols may consist of from one to
six characters.) Bits 0 and 1 of word 1 and bit 0 of word 2 are
system flags. With a permanent symbol, word 4 contains the octal code
of the symbol; with a user-defined symbol, word 4 contains the address

of the symbol. For example: the permanent symbol TAD is represented

as follows.

Word 1 = 248x458+01 = 13458 or TA
Word 2 = 04, x45_ +00 = 224_+4000 = 4224 D
8 8 8 ;
flag bit
Word 3 = 0000
Word 4 = 1000 (octal code for TAD)

Note that the first degit of the ASCII octal code for each character
is always trimmed by the assembler so that the character is represen-
ted using six bits of a word. TFor example, ASCII code for T is 324,

it was trimmed to 24; A is 301, it was trimmed to 01; etc.

7.10 PROGRAM PREPARATION AND ASSEMBLER QUTPUT

The source language file is prepared using the Editor.

7.10.1 Program File

Since the Assembler ignores certain characters, these may be used

7-35

freely to produce a more readable symbolic source file. These useful

characters are tab and form-feed.

The Assembler will also ignore extraneous spaces, carriage return-

line feed combinations, and rubouts.

The program body consists of statements and pseudo-ops. The
program is terminated by the dollar sign ($). If the program is
large, it may be split into as many as three files. This often

facilitates editing the source program since each section is physical-

1y smaller.

The Assembler initially sets the origin {current location counter)
of the source program to 0200. The programmer may reset the current

location counter by use of the asterisk.

The following two programs are identical except that format

effectors were used in the second printout.

200

/EXAMPLE OF FORMAT

BEGINs @/START OF PROGRAM
KCC

KSF/WAIT FOR FLAG

JMP +-1/FLAG NOT SET YET
KRB/READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE/IS IT A SPACE?
SNA CLA

HLT/YES

JMP BEGIN+2/N0: INPUT AGAIN
CHARs 0/TEMPORARY STORAGE
MSPACE, -248/-ASCl!1 EQUIVALENT
/END OF EXAMFLE

3

*200
/EXAMPLE OF FORMAT

BEGIN, @ J3TART OF PROGRAM
KCC
KSF /WAIT FOR FLAG
JMP -l /FLAG NOT SET YET
KRB /READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE /1S IT A SPACE?
SNa CLA
HLT /YES
JMP BEGIN+2 /sNO: INPUT AGAIN
CHAR>» % /TEMPORARY STORAGE
MSPACE, =240 /=A5CI1 EQUIVALENT
/END OF EXAMPLE
3

Both of these programs will produce the same binary code. The second,

however, is easier to read.

7.10.2 Assembly

PAL-D is a two-pass assembler with an optional third pass which
produces a side-by-side assembly listing of the symbolic source state-
ments, their octal eguivalents, and assigned absolute addresses. These
passes are invisible to the user. However, the user determines whether
or not the third pass will be made by his response to PAL-D's QOPTION:

query (see Section 7-11).
7.10.3 Pass 1

During pass 1, PAL-D processes the source (file) and places in

its user's symbol table the definitions of all symbols used. The

7=37

user's symbol table is printed at the end of pass 2. If any symbols
remain undefined at the end of pass 1, the US (Undefined Symbol)
diagnostic is printed during pass 2 when the undefined symbol is en-
countered (see Error Diagnostics}. The symbol table is printed in
alphabetical or er on the terminal. If the program listed above were

assembled, PAL-D would output the following symbol table.

BEGIN 9220 CHAR 2213 MSPACE @214

7.10.4 Pass 2

During pass 2, PAL-D processes the'source or file and generates
binary output using the symbol table equivalences defined during pass
1. The binary output may be loaded in core by LOADER.

The binary coded file consists of leader code, an origin setting,
and data words. Every occurrence in the source program of an asterisk
causes a new origin setting in the binary output. At the end of the
kinary coded file, a binary checksum is produced and ﬁrailer code is

generated.
7.10.5 Pass 3

During pass 3, PAL-D processes the source file and prints out a
side-by-side listing of the generated octal code and the original
source language. If the program shown above were assembled, the pass

3 listing would be:

738

*200
/EXAMPLE OF FORMAT

9200 00OP BEGINs B /START OF 3

261 6932 KCC FROGRAM

geee 6931 KSF /WAIT FOR FLAG

gggz Zggg ;MP =1 /FLAG NOT SET YET
RB /READ IN CHAR

P205 3213 DCA CHAR QCTER

p2R6 1213 TAD CHAR

e227 12t4 TAD MSPACE /IS IT A SPACE?

22190 7650 SNA CLA SPACE?

8211 74p2 HLT /YES

pale sgep2 JMp BEGIN+2 /NOt INPUT AGAIN

g213 PoP@ CHAR,) /TEMPORARY STORAGE

0214 7548 MSPACE, =240 /=ASCII EQUIVALENT
: /END QOF EXAMPLE
1BS

7.11 OPERATING THE PALD ASSEMBLER

aAssembling with PAL-D in TSS/8 requires no operator intervention
between passes. The symbol table is typed out at the end of pass two
and the listing at the end of pass three. The assembly may be termi-
nated at any point by typing CTRL/C. Controcl will revert from PAL-D
to the Monitor program which will type out a dot (@} and wait for the
next instruction from the terminal. In the illustrations which follow,
non-underlined characters are those typed out by the system; underlined
characters represent user-supplied data. Time sharing assemblies are
requested as follows.

In response to the monitor's dot

-

the user types the command, a space and the name of the system
program,

«R PALD

PAL-D is brought into core and signals its readiness by requesting
an input file name.

INPUT: TYPE

7-39

The user reply in this case was BIN2, a user symbol for a source
program to be assembled. PAL-D next requests the name of an
output file.

OUTPUT: TYPEB

The usex response was TYPE2, the name under which the assembled
program will be stored. Optionally, the user may type the RETURN
key to specify no output file.

OUTPUT:

This is useful in debugging. A program may be corrected and
reassembled any number of times with production of an output
file postponed until a satisfactory version is achieved. PAL-D's
final gquery is whether the user wants a program listing.

OPTION:

There are three effective responses only: N signifying No, L
signifying a listing on the Line printer, and ,/ (RETURN key)
signifying a listing on the terminal. When it receives the final
response, PAL-D reads in the user source program from disk (source
programs are stored prior to assembly) and proceeds with the
assembly. After assembly, PAL-D returns control to the Monitor
which types

tBS

and waits for the user to supply the next command.

NOTE
Under the TSS/8 Monitor PAL-D does not require a dollar
sign ($) as the last entry in a source program, but if it
does not find one it types a message to warn the user
that his program may not be assembled properly by an
assembly program other than time-sharing PAL-D.
The following listing was reproduced from a time sharing run.
It illustrates the initial dialogue, the symbol table produced at the

end of pass 2 (any error messages would also appear at this point) and

the listing, in octal notation, produced during pass 3.

INITIAL
DIALOGUE

SYMBOL
TABLE

PROGRAM
LISTING

LITERALS

ok PALR

INPUT R INZ
OUTPUT : TYPE

[oPTION:
[CouUNT Ma15
CRLF palt
LOOP PBane
nnT 7425
RE Male
START Pa3u
[naBy 7290

Rad1 a2l

pape 1377

M4A3 3215

fapa 1376

pans 3216

pane 1216

paRT 4P2S

palp 2216

pat1 2215

fale 5206

Aa13 4P17

pala 1432

Pals ARAn

Aa14 PAPR

P&17 ARAA

Rar® 1375

Pazt 4225

par2 1374

M4a23 4225

pars S617

Pa2s ARAR

Pa2 e 6946

naz1 &0RA1

#4530 5207

@43y 1PRA

|pa3ze 5a25

(@574 Q212

@575 @215

#5762 6M

@577 7766

TIRS

START »

LGOP »

COUNT .,
KEGS»
CRLF »

ouT -

/PROGRAM TO TYPE OUT 123454789
* 4700

cLA
Jm3
TAD
nCA
TAD
DeA
TAD
JV5
I52
157
JMP
JMS
HLT
5]

@

o

TAD
JMS
TAD
Jms
JME
#

TLS
TSF
JP
cLA
JMP

7-41

CRLF
(-12
COUNT
(260 /ASC1I FOR ZEKO
KEG
RES
ouT
KEG
COUNT
LOGH
CRLF

(215 ZASCII FOrk CARKIAGE RETURN
ouT

(212 /a5C11 FOr LINE FEED

ouTt

I CHLF

|

I oUT

7.12 ERROR DIAGNOSTICS

PAL-D makes many error checks as it processes source language
statements. When an error is detected, the Assembler prints an error

message. The format of the error messages is

ERROR CODE ADDRESS

where ERROR CODE is a two-letter code which specifies the type of
error, and ADDRESS is either the absolute octal address where the error
occurred or the address of the error relative to the last symbolic tag
(if there was one) on the current page.

The programmer should examine each error indication to determine
whether correction is required.

PAL-D's error messages are listed and explained below.

Error
Code Explanation

BE Two PAL-D internal tables have overlapped - This situation
can usually be corrected by decreasing the level of literal
nesting or number of current page literals used prior to
this point on the page.

DE Systemg device error - An error was detected when trying
to read or write the system device; after three failures,
control is returned to the Monitor.

DF Syvstems device full - The capacity of the systems device
has been exceeded; assembly is terminated and control is
returned to the Monitor.

IC Illegal character - An illegal character was encountered
in other than a comment or TEXT field; the character is
ignored and the assembly continued.

ID Illegal redefinition of a symbol - An attempt was made

to give a previously defined symbol a new value by other
means than the equal sign; the symbol was not redefined.

7-42

IE

IT

ND

PE

SE

Us

ZE

Illegal equals - An equal sign was used in the wrong
context. Examples:

TAD A +=B (the expression to the left of the equal
sign is not a single symbol or, the
expression to the right of the equal

A+B=C sign was not previously defined)

Illegal indirect — An off-page reference was made; a
link could not be generated because the indirect bit
was already set. Example:

*200
TAD I A 4

PAGE ¢/
A, 7240

The program terminator, $, is missing.

Current nonzero page exceeded - An attempt was made to
a. override a literal with an instruction, or
b. override an instruction with a literal: this can be
corrected by
{1) decreasing the number of literals on the page or
(2) decreasing the number of instructions on the page.

Symbol table exceeded - Assembly is terminated and control
is returned to the Monitor.

Undefined symbol - A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

Page 0 exceeded - Same as PE except with reference to
pags 0.

CHAPTER 8

UTILITY PROGRAMS .

8.1 SYMBOLIC EDITOR

The EduSystem 50 Symbolic Editor (EDIT) provides the user with
a powerful tocl for creating and modifying source files online. Its

precise capabilities and commands are detailed in Introduction to

Programming, Chapter 5. EDIT allows the user to delete, insert,

change, and append lines of text, and then obtain a clean listing of
the updated file. EDIT also contains commands for searching the file

for a given character.

EDIT considers a file to be divided into logical units, called
pages. A page of text is generally 50-60 lines long, and hence
corresponds to a physical page of program listing. A FORTRAN-D
program is generally 1-3 pages in length; a program prepared for
PAL-D may be several pages in length. EDIT operates on one page of
text at a time, allowing the user to relate his editing to the
physical pages of his listing. EDIT reads a page of text from the
input file into its internal buffer where the page becomes available
for editing. When a page has been completely updated, it is written
onto the output file and the next page of the input file is made
available. EDIT provides several powerful commands for paging through

the source file gquickly and conveniently.

NOTE

The end of a page of text is marked by a
form feed (CTRL/L) character. Form feed
is ignored by all EduSystem 50 language
processors.

To call the Editor, type:

+R EDIT

EDIT responds by requesting INPUT: Type and enter the name of
the source file to be edited. If a new file is to be created using
EDIT, there is no input file. In this case, strike the RETURN key.
EDIT then requests OUTPUT: Type the name of the new, edited, file
to be created. The name of the output file must be different from
the name of the input file, If EDIT is being called to list the
input file, there is no need to create an 6utput file; strike the
RETURN key. When EDIT sets up its internal files and is ready for a

command, it rings the bell on the terminal.
For example:

«R EDIT
INPUT:WXZOLD
QUTPUT:XYZNEW (Bell rings at this point.)

8.2 LOADER

LOADER is used to load programs in BIN format from a disk file
into the user's core area for execution. These files in BIN format
can be created by PAL-D in the course of an assembly or they can be
loaded from paper tape using PIP or PUTR (see the PIP section for
special instructions on loading BIN format tapes).

To call LOADER, type:

«R LOADER

LOADER responds by asking for INPUT: Respond by entering the
name of the file or files to be loaded. Although many System Library
Programs allow multiple input files, the LOADER uses this feature to

TABLE 8-1

SYMBOLIC EDITOR OPERATIONS SUMMARY

Special Characters

Function

Carriage Return {RETURN KEY)

CTRL/C

CTRL/ U

Equal Sign {=)

Form Feed (CTRL/L Combination)
Left Angle Bracket (<)

Line Feed (1)

Right Angle Bracket (>)

Rubout

Sirash (/)

Tabulation (CTRL/TAB Key
Combination)

Text Mode - BEnter the line in the text
buffer.

Text Mode - Same as form feed.

Text Mode - Cancel the entire line of
text, continue typing on next line,
Command Mode - Cancel command. Editor
issues a ? and carriage return/line feed.

Command Mode - Used in conijunction with
. and / to obtain their wvaluve (for
example, type .=).

Text Mode - End of inputs, return to
command mode.

Command Mode - List the previous line
(equivalent to .-1L).

Text Mode - Used in SEARCH command to
insert a CR/LF combination intoc the
line being searched.

Command Mode - List the next line
{equivalent to .+1L).

Text Mode - Delete from right to left
one character for each rubout typed.
Does not delete past the beginning of
the line. 1Is not in effect during a
READ command.

Command Mode - Same as CTRL/U.

Command Mode - Value equal to number of
last line in buffer. Used as argument
{(as in /-5,/1).

Text Mode -~ Produces a tabulation
which, on output, is interpreted as
spaces.

TABLE 8-2

EDIT COMMAND SUMMARY

Command Format Meaning
APPEND A Append incoming text from keyboard to any
already in the buffer until a form feed is
encountered.
+C CTRL/C Stop listing and return to Command Mode.
CHANGE nc Delete line n, replace it with any number

of lines from the keyboard until a form
feed is entered.

m,nC Delete lines m through n, replace from key-
board as above until form feed is entered.
DELETE nD Delete line n of the text.
m,nb Delete lines m through n inclusive.
END E Output the contents of the buffer. Read

any pages remaining in the input file,
outputting them to the output file. When
everything in the input file has been moved
to the output file, close it out and return
to the Monitor. E is equivalent to a
sufficient number of N's followed by a T

command.
GET G Get and list the next line beginning with
a tag.
INSERT I Insert before line 1 all the text from
the keyboard until a form feed is entered.
nI Insert before line n until a form feed is
entered.
KILL K Kill the buffer (i.e., delete all text lines).
LIST L List the entire buffer.
nL List line n.
m,nL List lines through n inclusive.
MOVE m,n5kM Move lines m through n inclusive to before
line k.
NEXT N Output the entire buffer and a form feed,

kill the buffer and read the next page.

Table 8-2. {(Cont.)

Commanad Format Meaning
nN Repeat the above sequence n times.
PROCEED P Cutput the contents of the buffer to the
output file, followed by a form feed.
nP Qutput line n, followed by a form feed.
m,nP Cutput lines m through n inclusive
followed by a form feed.
READ R Read text from the input file and append
to buffer until a form feed is encountered.
SEARCH S Search the entire buffer for the character

specified (but not echoed} after the
carriage return. Allow medification when
found. Editor outputs a slash {/) before
beginning a SEARCH.

ns Search line n, as above, allow modification.
m,ns Search lines m through n inclusive, allow
modification.
TERMINATE T Close out the output file and return to the
Monitor.

special advantage. Because it loads the files in the order they are
typed, LOADER can be used to load patches and overlays. After it has
requested INPUT, LOADER requests OPTION: For normal operation strike
the RETURN key; LOADER is able‘to load any part of core, except loca-
tions 7767 ~ 7777.1f the program to be loaded is to be debugged,
respond to OPTION: with D. This will cause ODTHI to be loaded along

with the input files and started. ODTHI indicates that it is ready by
printing a second line feed. ODTHI uses locations 4 and 7000 - 7777;

and if loaded along with a program which uses any ¢f these locations,
the result is unpredicatble.

8-5

Example 1: Normal Operation

«R LOADER

INFUTSMAINs PATCH1s PATCH2
OPTION:

tBS

Example 2: Load ODT with Input File

+R LOADER
INPUT?PROGI
OPTIONID

As seen in the first example, LOADER returns control to Monitor
when it is finished. The user can then start the program by using
the Monitor command START. For example, LOADER can be used to load

and run the short program given as an example in the section on PAL-D.

+«R LOADER

INPUT:EIN2
OPTION:

tBS
+START 429

0123456789
tB5

NOTE
All BIN format files loaded by LOADER
include a checksum. If LOADER detects a

checksum error while loading, it prints
LOAD ERROR and terminates the load.

8.3 OCTAL DEBUGGING TECHNIQUE (ODTHI)

ODTHI is a powerful octal debugging tocl for testing and modifying
PDP-8 programs in actual machine language. It allows the user to
control the execution of his program and, where necessary, make
immediate corrections to the program without the need to reassemble.

The complete command repertoire of ODT is documented in Intro-

duction to Programming, Chapter 5. ODTHI (on EduSystem 50} is the

high-core version which resides in locations 7000 through 7777.
The paper-tape output commands of regular ODT are not available in

BduSystem 50 ODT. To call ODTHI, the user types:

«LOAD 2 ODTHI @ 7000
+START 7000

If ODTHI is to be used to debug a program being loaded with
LOADER, ODTHY can be loaded and started directly by specifying the

Debug (D) option to LOADER.

ODTHI executes an SRA (Set Restart Address) as part of its initia-
lization process. As a result, typing CTRL/C always returns control to
ODTHI. If the program being debugged sets up its own restart address,
typing CTRL/C transfers control to the new restart address. It is
necessary to type ?BS followed by START 7000 to force control back
to ODTHI. Every time ODTHI regains control, it puts the terminal in
duplex mode. Users debugging programs which do not operate in duplex

mode, should be aware of this fact.

ODTHI saves the state of the delimiter mask, when it regains
controel via a breakpoint. The state of this masgk is restored on a

Continue {C} command, but not on a GO (G) command.

8.4 CATALOG (CAT)

The Monitor maintains a library of disk files for each user.
The System Library Program CAT is used to obtain a catalog of the
contents of thig library. For each file, CAT prints the size of the
file in units of disk segments. The size of a disk segment is 256
(decimal) words of disk storage. The protection code for the file is
also given. (See the section on Advanced Monitor Commands for a

8-7

TABLE 8-3

oDT COMMAND SUMMARY

Command Meaning
A Open for modification, the register in which the con-
tents of AC were wtored when the breakpoint was
encountered.
B Remove the breakpoint.
nnnns Establish a breakpoint at location nnnn.

Back Arrow ()
{SHIFT/0)

C

nnnncC

nnnnG

Illegal Character

LINE FEED
M

LINE FEED

LINE FEED
RETURN
/

Close register, open indirectly.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past the break-
point nnnn times before interrupting the user’'s
program at the breakpoint location.

Transfer program control to location nnnn.

Current line typed by user is ignored, ODT types ?CR/LF.

Close register and open the next sequential one for
modification.

Open the search mask register, initially set to 7777.
It may be changed by opening the search mask register
and typing the desired value after the value typed by
ODT, then closing the register.

Close search mask register and open next register
immediately following, containing the location at
which the search begins. It may be changed by typing
the lower limit after the one typed by ODT, then
closing the register.

Close lower search register, open next register contain-

ing the upper search limit initially set to 7000
(location of ODT}. It may be changed by typing

the desired upper limit after the one typed by ODT and

closing the register with a carriage return.

Close previocusly opened register.

Reopen latest opened register.

Table 8-3. (Cont.)

Command . Meaning
nnnn/ Open register designated by the octal number nnnn.
Up Arrow (4) Close register, take contentgs of that regigter as
(SHIFT/N) a memory reference and open it.

nnnnw Search the portion of core as defined by the upper
and lower limits for the octal wvalue nnnn.

precise explanation of protection codes.) If the program was created
by any of the System Library Programs, it has a protection code of
12, meaning that other users can read the file, but only the owner

can change it. To call CAT, type:

*R CAT

The CAT program then prints a listing similar to the one shown

below and concludes by printing $BS and exiting to the Monitor.

«R CAT

DISK FILES FCR USER 3,13 ON 9-JUN-72

NAME SIZE PROT DATE

FIE +BIN 1 17 3-JUN=-70
PROG FCL 2 12 9=-JUN-7D
INTER «BAS 1 17 9-JUN-70
BASOQ@0@.TMP 1 17 9-JUN~-T70
BAS160.TMP 1 17 9-JUN=-T0
INT2 +BAC 1 37 9-JUN-7@
FCLPRG.FCL 2 12 9-JUN=-T8

TOTAL DISK SEGMENTS: 9

tBS

8.5 SYSTEM STATUS (SYSTAT)

It is frequently useful to know the status of the system as a
whole; how many users are on-line, where they are, what they are

g-9

doing, etc. The SYSTAT program provides this capability. To call

SYSTAT, type:

«SYSTAT

or, to produce a listing on the line printer,
*SYSTAT:L

SYSTAT responds by printing on the first line: the version of
the Monitor being run, the time, and the date. SYSTAT then reports
the uptime which is the length of time in hours, minutes, and
seconds since the system was last put on-line.

SYSTAT then lists all on-line userg. Each user is identified
by his account number., The Jjob number assigned to him and the number
of the console he is using are indicated, as is the particular
program he is running. The state of each user is indicated, whether
he is running (RUN}, nct running (#BS) or waiting for something. 1If
a user has byped CTRL/S to stop his printing, ¢S will be printed;
otherwise tQ will be printed. The amount of computer time used by
each user since he logged in is given.

If more users are on-line than the system has core fields to
hold them, the fact that the system is swapping is reported. The
number of free core blocks used internally by the Monitor for Terminal
buffering and various other purposes is printed. Then SYSTAT reports
any unavailable devices, i.e., devices which are assigned to indivi-
dual users. The job to which they are attached is also indicated.
Finally, the number of available segments of disk storage is reported.

A sample SYSTAT listing is shown below. SYSTAT terminates by

printing tBS and exiting to the Monitor.

+SYSTAT

STATUS OF TSS/8.24 DEC PDP-8 #]1 AT 16:123:32 ON

UPTIME @D:023:232

JOB WHO WHERE WHAT STATUS
i g: 3 Kpa SYSTAT RUN tQ
2 43,21 K@ag PIP KEY tQ

AVAILABLE CORE @K FREE CORE=319
BUSY DEVICES NONE

284 FREE DISK SEGMENTS

tBS

9 DEC 74

RUNTIME

ga:edsta2
PoiGRsio

CHAPTER 9

PROGRAMS FOR HANDLING DATA

9.1 PERIPHERAL UTILITY TRANSFER ROUTINES (PUTR)

PUTR {(Peripheral Utility Transfer Routines) is a utility pro-

gram used to transfer files between all TSS/8 devices. PUTR can
perform most of the functions of the programs PIP and COPY which

operated under the previous version of the TSS/8 Monitor. The

following is a list of TSS/8 devices used by PUTR.

Device Names

CDR: Card Reader

Dn: or DTAn: DECtape: Disk Monitor, COPY, 0S5/8, or PUTR
KBD: Terminal Keyboard/Reader

LPT: Line Printer

PTP: High-Speed Paper Tape Punch

PTR: High-Speed Paper Tape Reader

REAn: or RKBn: RK@S! 05/8 file structure

SYS: TS5/8 user file area

TTP: Terminal Punch

TTY: Terminal Printer

9.1.1 PUTR Commands

PUTR Commands are entered at the terminal in response to the
asterisk which is printed at the left margin. A command may be

typed with a command string of the form:

*command device:output files = device:input files

If a mistake is made while typing a PUTR command, there are
three special characters which help correct the situation. Typing
RUROUT {or DELETE) deletes characters from the end of the line,
printing the deleted characters. Typing a LINE FEED causes the com-
mand line to be printed on the user's terminal without executing
it, and typing CTRL/U deletes the entire line.

Commands to PUTR can be abbreviated: however most cannot be
abbreviated with less than three characters. PUTR commands and

their purposes are listed below in alphabetical order.

COPY Copy files.

DELETE Delete files,

DIRECTORY List directories of file structured devices.
EXIT Returns to TSS/8 Monitor.

LIST List files on the line printer (LPT).

PUNCH Punches files on the high-speed punch.

TAPE Punches files on the terminal punch.

TYPE Types files on terminal (TTY).

ZERO Zeroes RK@S to 0S/8 format. Zeroes DECtape to

PUTR format.
Examples of these commands are given in the following paragraphs.

Examples:

*R PUTR
*COPY DTAQ: FOO.5AV=F00.5aV

This will copy the file FOO.SAV from the system area onto DTAJ.

NOTE
The DECtape mounted on DTAZ: must be
either PUTR format or 0S/8 format.
PUTR cannot write onto the Disk Monitor
or COPY format DECtapes.

To make a PUTR formatted tape use the ZERO Command which is
described below. PUTR can only read Disk Monitor and COPY format
DECtapes. This means that the user must convert any such tape that
he may wish to write on. To convert a tape the user may use the

following procedure. First, mount an empty tape on unit @. Then

mount the tape to be converted on unit 1 and type the following:

«R PUTR

*ZERO DTA@:

ARE YOU SURE?
YES

*COPY DTA@:=DTALs

This will move all the files from DTAl: (COPY or Disk Moniteor for-

mat) to DTA®: (PUTR format).

PUTR is a very powerful program, as these examples illustrate.

An "*" in a command line says that any name will match.

*COPY DTA@: =#%.BAS

This command line will cause all files with the extension .BAS to be
put onto the DECtape on unit #.
*DELETE *.TMp

The command line will delete all files on your system area with

extension ,TMP.

*DEL 7717

This command will delete all files whose names are three charac-
ters or less in length. The "?" is called a "wild card". This

character will match on any character in its position.
*DEL_ABD?

This may be used to delete all files with names which are 3 or

4 characters in length and with ABD as the first three characters.

DEL =

This will delete all files on your system area. 2ER0Q cannot

be used for the system disk.

DEL DTAQ:

This could be used if the DECtape on unit @ were an 05/8 format
tape and if the user wanted it to remain an 0S/8 format tape. A
ZERO command would change it to a PUTR format tape.

*TYPE ABC

This will type the file ABC on the terminal. This file is
assumed to be a TSS/8 format ASCII file,

*LIST DTA@:FILE.LS/0S8

This will list an 0S/8 format ASCII file on the line printer.
0S/8 and TSS/8 character formats are different, and, therefore,
character conversion switches have been added to PUTR.

NOTE
TSS/8 character files can be stored on
05/8 DECtapes and RK@5 diskpacks. It
is not necessary to do character con-
versions if the user is not going to
use the file on 0S/8. The following is
an example of a command line which may

be used if one wishes to use a file
under 0S/8.

COPY RKABt.PA/0SB=FILE/TSE

This will put FILE.PA on RKAZ:, converting it from TSS/8 format
to 08/8 format. Switches on the output (left) side indicate how
characters are to be packed. Switches on the input (right) side

indicate how characters are to be unpacked.

NOTE

There is a compatability problem between
TSS/8 and 05/8. 08/8 needs a CTRL/Z at
the end of ASCII files. Since no TSS/8
programs insert this CTRL/Z, most 08/8
programs cannot work with ASCII files
generated by TSS/8 and converted by PUTR.

*LIST FoO
is equivalent to

*COPY LPT1=F00/TS8

*LIST F0O/BAS
This will list a BASIC program on the LPT.

*COPY FO0.BAS/BAS=PTR!

This will take an ASCII paper tape of a program and create a

BASIC program file called FOO.BAS. When creating a BASIC file using

9-6

PUTR, the input must be wvalid and in increasing line-number order, or

BASIC will not be able to process it.

NOTE

he Paper Tape Reader handler will print
"% and will wait for a carriage return
to be typed to indicate the paper tape is

ready. The default program names on PTR:
and CDR: are "NONAME".

T
a

*«COPY DTA@SFOO-PAL/TSB‘CDR:/B26

This will create a TSS/8 3-for-2 packed ASCII File from the card
reader, DEC @26 card code.

NOTE

@26 is the default switch for the card
reader.

*COrY PROG.BQS/BAS=CDR:

This will create a BASIC program file from the card reader
(826 code).

Additional notes:

Files on the TSS/8 system disk are unique only in their file

names. Files on DECtape and RK@5 are unique in file name and exten-

sion. This means that the user can have the files FOO.BAS and

FOO.BAC ON DECtape or RK@5 but not on the TSS/8 system disk, Files
may be copied from other user areas only if the user knows the name
of the file. The following is an example of this.

*COPY DTA@IMYFILE.BAS=HISFILE(]1,12]

9.1.3. - Card Reader: END-~-OF~-FILE, Hung Device

An end of file on the card reader is indicated by a card with a
/% in columns 1 and 2, with the rest of the card blank.

If the card reader should have a hardware error, i.e., pick fail,
or if it runs out of cards, the Monitor prints out the hung device
message. When this happens, type "START". At this point, PUTR will
ask "BAD CARD, TRY AGAIN?". The user may answer by typing either
"N" followed by a carriage return to cause an end of file on the card
reader, a carriage return only if it is desired to continue reading
cards (after fixing the status of the card reader), or CTRL/C to
give up. The error message above will also print out if 39,40, or
80 columns were not read. If this happens, place the card which was
just read at the bottom of the deck to be re-read.

9.2 - COPY COMMAND

The general format for the COPY command is:
*COPY fdev:] output name Eextension] [/_’switches]]_-=] Eev:]

input name E:ext] [P ’ Prg Eswitches]

Items in large brackets are optional. One of "¢ ", "=", or "¢"
must be used to separate the output and input file descriptors. Up
to six input file descriptors may be specified (separated by commas).
The default output and input devices (dev:) are SYS:. The default
output and input extensions are * (to be explained).

The switches on the output side indicate the type of character
packing (defanlt is IMAGE). Switches on the input side indicate the
type of character unpacking (default is image). "[P,Pn]" is the
account number where the file is located. This is only applicable to
input from 5YS:. If a device is specified withcut a file name, all
the files on that device will be selected. The asterisk (*) can be
used either for the file name or the extension, or both. If used on

input side, all file names or extensions will match.

NOTE
A user may not reference another user's
file directory. Therefore, asterisks (*)}

and wild cards (?) cannot be successfully
used when an account number is given.

The asterisk on the output side uses the file name or the

extension of the file opened on the input side.

CAUTION
TSS/8 system files are unigque in name only,

whereas DECtape and RKA5 files are unigue
in name and extension.

It is possible to have the files FOO.BAS and FOO.BAC on a DECtape

or RK@5 but not under the same account number on the system disk.

Storing FOO.BAS on the system disk will delete any file named FOO,

for example FOO.BAC.

The question mark (?) is a wild card character which is similar
to the asterisk (*}, except that it matches any character in its
position. The question mark cannot be used on TS$5/8 extensions since

these extensions are internal numbers rather than character extensions.

Examples of COPY Commands:

*COPY FO00=D2:FQD.BAS Coples FQO.BAS Erom P@F: to 5Y3:
{same extension). -

*COPY *=DD1t *.BAS Copies all files with .BAS exten-
sions from DF: to S5YS:

*COPY #=DO:A,BsC Copies A,B,C from Df: to SYS:
{same name and extension).

*COFY *.,.TMP=D@t*.ASC Copies all files from DZ: with

the extension .ASC to files on
SYS: with same name but with the
extension .TMP.

Converts an 05/8 character format
to TSS/8 format while copying a
file from DJ: to the system disk,
S¥S5:., X

«COPY DOt =x% Saves all files from §YS5: conto D@:

*COPY *+ASC/TSB8=DP31F00.AS/058

NOTE
If DECtape is used for output, it must

be either a PUTR structure or 05/8 type
tape, and not a Disk Monitor or COPY tape.

9.1.1.1 ZERO Commands

Format

*ZERO Dn: or Zeroes DECtape directories to
*ZERO DTAn: PUTR file structure.

*ZERO RKAn: or Zeroes RKP5 to 05/8 file structure.
*ZERO RKBn: '

after typing a ZERO command, PUTR will ask "ARE YOU SURE?" Type Y or

N for YES or NO, as the case may be.

9.1.1.2 DELETE Command

Format

*DELETE dev: name ext. , more files

NOTE

If the user wishes to zero his account
he may type the following command line.

*DELETE »

The following command line may be used
to zero 0S/8 DECtapes and to preserve
the 05/8 file structure.

*DELETE Dn: oY
*DELETE DTAn:

9.1.1.3 DIRECTORY Commands

Format

*DIRECTORY [dev:] name [.ext] or
*DIRECTORY [dev:]

Example:
*DIRECTORY {carriage return)

This command line will give a directory listing of all files

on your disk area (SYS:).

*DIR DO /LPT

This command will give a directory listing of the DECtape on
unit @. The listing will be printed on the line printer, if it is

available.

Please note that directory listings of the Monitor, and COPY

format tapes will include just the names and extensions.

*DIR *.BAS

This will make a directory listing of the files on SYS: that

have the extension .BAS.

2.1.1.4 LIST Command

Examples:

*LIST FOO
*LIST BASPRO/BAS
*LIST DA:LIST.LS5/058

The LIST command changes the default input switch from /IM to
/TS8 and sets in the default output device, LPT:. "LIST FOO" is

identical to "*COPY LPT:=F0O0/TS8".

9.1.1.5 TYPE Command

The TYPE command is identical to the LIST command except that
the output device is TTY:. "LIST" and “TYPE" will insert a carriage
return/line feed in the output when the line length for the LPT: or
TTY: is exceeded and will not output RUBOUTs. "TYPE" will insert 4
line feeds for every form feed it sees. If the text that exceeds the
line limit for the device need not be printed, then the /TRIM switch

should be appended to the file descriptor. For example,

*TYPE FOO/TRIM

9.1.1.6 PUNCH Command

The PUNCH command “*PUNCH name" is equivalent to:
*COPY PTP:=name/TS8

9.1.1.7 TAPE Command

The TAPE command "*TAPE name" is equivalent to:

*COPY TTP:=name/TS8

Both PUNCH and TAPE will punch LEADER/TRAILER on the tapes. The

following are examples:

*PUNCH FOO
(TSS/8 ASCII Format)

*PUNCH BASPRG/BAS _ (BASIC Format)
*PUNCH SAVPRG/SAV {(SAVE Format)

9.1.1.8 EXIT Command

This is the command which will enable the user to exit from

PUTR.

Example:

*EXIT
tBS

or

*E
tBS

9.1.1.9 Special Notes

BINARY PAPER TAPES

No switch is required to punch a binary tape. However, if the
binary is an 0S/8 file /088 will be required. Binaries on TSS/8 and

9-13

05/8 are stored the same way that ASCII files are stored on their

respective systems.

When a binary tape is read use the /TS8 switch or the /0S8 switch
on the output side of the COPY Command, and /BIN on the input side.
/BIN tells the input to compute a checksum on the tape.

Examples:

*COPY TSFILE.BIN/TS8=PTR:/BIN
*COPY D2:OSFILE.BN/0SB=PTRt/BIN

SAVE FORMAT PAPER TAPES

Punch the tape, with /SAV on the input file descriptor, using
PUNCH or TAPE.

Example:

*PUNCH SaVFIL/Sav

When reading the tape, read it with /SAV on the input side.

Example:

*COPY FO0.SAV=PTRt/5AV

/SAV and /BIN should not be mixed on the same command line.

Example of bad switch use:
*PUNCH FOO/SAV,FO0O2/BIN

NOTE

Typing CTRL/C will cause PUTR to return
te the "*"_, If PUTR is in the process
of copying files, the file that is cur-
rently being transferred will not be
completely transferred. Therefore, the
user should delete the last name which
PUTR printed.

9-14

9.1.1.10 Default Propagation

When more than one file description is included on the input
side of a PUTR command, then any parameters not specified in one
file description are the same as those of the previougs description.
Example:

*LIST DTAQtA»B»C

This will list the files A, B, and C from DTA@.

*L1IST A,DTAB:B,DTAltC

This will list the files A from SYS: (the user's file area), B
from DTAZ:, and C from DTAl. A similar rule alsc applies to switches.

To list two 05/8 files from DTAf:, do NOT type

*LIST DTABtA,B/058

for the /0S8 will apply conly to file B. Rather, type

*LIST DTA@:1A/0S8,B

The /0S8 will now apply to both file A and file B.

Using CTRL/O

While PUTR is transferring files, it prints the name of each
input file as it begins reading it. This print-out can be disabled
by typing CTRL/0O. The print-out can be re-enabled by typing a

carriage return.

9-15

9.1.1.11 DECtapes and RK@> Disk

DECtapes can be Disk Monitor, COPY, 0S/8, or PUTR file structure
tapes. PUTR will know which tape is mounted. PUTR will not write
on the Disk_Monitor or COPY DECtapes, However, it will read them so
that the user may update his tapes if necessary. The RK@#5 is in
0s/8 file structure format. RK@ZS is divided into two logical de-
vices, RKAn: and RKBn: where n is the drive number ($-3). RKan: is
the first half of the disk, and RKBn: 1is the second half of the disk.
Each of the writeable devices Dn:, RKAn:, and RKBn: has directory
space for up to 240 entries. A ZERO operation on DECtapes zeroes to

PUTR format. A ZERO operation on RKAn: or RKBn: zeroes to 0S/8 format.

NOTE

The data format of the files is indepen-
dent of the file structure. This means
that TSs5/8 files can be put on an 0S/8
type device without any conversion. Any
ASCII or binary file that will be used by
the 08/8 or TSS/8 systems should have the
appropriate switches (/0S8 or /TS8) while
copying. It is alsoc helpful when storing
both formats (/0S8 and /TS8) on the same
device, that you use TSS/8 type extensions
(.BIN, .ASC, .BAS} for the TS5/8 type
files and 05/8 type extensions (.BN, .AS,
.BA...) for the 08/8 type files.

9.1.2 T5s/8 FPILE EXTENSIONS

File Extension Internal Number
.ASC 1 ASCII
. SAV 2 SAVE
.BIN 3 BINARY
.BAS 4 BASIC SCURCE
.BAC 5 BASIC COMPILED
PCL 6 FOCAL SOURCE
. TMP 7 TEMPORARY
. 10 Blank - required by System.
.DAT 11 DATA FILE (BASIC)
.LST 12 LISTING FILE
-.PAL 13 PAL, SOURCE

. 14 UNASSIGNED
. 15 UNASSIGNED
. 16 UNASSIGNED
. 17 UNASSIGNED

9.1.3 PUTR SWITCHES

Switches for all devices:

IM - IMAGE transfer; no conversion

6BIT ~ Six Bit ASCII packed 2 characters/word
X240 - Excess 240, 2 characters/word

X237 - Excess 237, 2 characters/word

0osg - 05/8, 3 characters/2 words

TS - TSS/8, 3 characters/2 words

BAS - TSS/8 BASIC format

Paper Tape Switches

BIN -~ Binary check summing
SAV - Save format with check summing

9-17

Card Reader Switchesg

ALP - RCRA, & bit internal alpha.

CoOM - RCRC, compressed 8 bit (PDPB8-E systens)
226 #26 to ASCII

@29 #29 to ASCII

Line Printer and Terminal

TRIM - Trims off excess line.
(NOTE: a carriage return /line feed will he
inserted in a line that is too long for the
device if TRIM is not specified.}

LPT - List on line printer if available (DIRECTORY
command only).

9.2 PERIPHERAL INTERCHANGE PROGRAM (PIP)

Disk is a convenient storage medium for many files; however, it
may be more useful to keep some programs on paper tape. PIP provides
a convenient means of transferring files between disk and paper tape,

for those users who wish to preserve copies of their files off-line.

9.2.1 PIP Conventions

PIP may be considered a link between disk file storage and
paper-tape devices. To punch a desired file, PIP obtains that file
from the disk and punches it on paper tape. Similarly, to load a
paper tape, PIP inputs the tape from the reader, then outputs it to
a disk file.

The way files are named is important to PIP. Files on disk are
always named. Paper tapes, on the other hand, have no names as far
as the system is concerned (although the user can label the physical
tape in any manner he chooses). Paper tapes never have file names;
therefore, PIP uses the absence of a file name to indicate a paper
tape (absence of a file name is indicated by striking the RETURN key).

9-18

The way in which INPUT: and OUTPUT: is indicated provides the
means for determining the direction of file transfer. If PIP is to
get its input from the disk, the input is a file name; if the input
is from a paper tape; no file name is given. Similarly, if PIP is
to output to the disk, the file name is indicated; if output is to

paper tape, no name is given. To call PIP, type:

«R PIP

$.2.2 Paper Tape to Disk Transfers

To move a paper tape to disk, strike the RETURN key when PIP
requests INPUT: Since PIP must output to the disk, respond to
OUTPUT: by typing a file name. When PIP requests OPTION: type T to
indicate that the paper tape is being loaded from the Terminal

reader. For example:

+R PIP

INPUT:
OUTPUT:FILE]
OPTION:T

The paper tape in the low-speed reader is read and stored in the
system as FILEL,

9.,2.3 Disk to Paper Tape Transfers

To move a disk file onto paper tape, the use of file names is
reversed since PIP must input a disk file and output it to paper tape.

The option remains the same. For example:

*R PIP

INPUTIFILE]
CUTPUT:
OPTION:T

The contents of FILEL are then punched at the Terminal.

9.2.4 High-Speed Reader/Punch Assignments

PIP can also be used with high-speed paper-tape devices. The
format of the INPUT: and OUTPUT: responses is the same. However,
for the high-speed reader, the option is R and for the punch it is P.

Since the reader and punch are assignable devices, they are not
always available (other users may have one or both assigned). There-
fore, whenever PIP is given a command which utilizes one of these
devices, it checks to make sure that the device is available. If it
is, PIP automatically assigns it (thus, it is not necessary to assign
the device before running PIP}. If the device is unavailable, PIP
informs the user. For example:

INPUTS
OUTPUT:ABCD
OPTIONSR

PIP reads the paper tape in the high-speed reader and stores it in
the system as ABCD,

INPUT: ABCD
OUTPUT:
OPTION:P

PIP punches out file ABCD on the high-speed punch.

INPUT3 ABCD
OUTPUT:
OPTION:P
DEVICE NOT AVAILABLE OR HUNG

The punch is assigned to another user, or there is no punch on the

EduSystem 50, or there is one but it is turned off,

9-20

9.2.5 Bin Format File Transfers

The examples above work for all ASCII file transfers (except
BASIC programs, explained in Section 9.4.8}). The examples are also
valid for punching BIN files, with one exception; most installations
do not allow any BIN format tapes to be loaded from the low-speed

reader.

9.2 .6 Moving Disk Files

PIP can be used to move the contents of one file into.another.
This is often useful in copying a file from another user's library
(providing the file is not protected) into your own library. To
copy from disk file to disk file, specify a file name for both input
and output. Reply to OPTION: by striking the RETURN key. For

example:

INPUTIFOCAL 2
OQUTPUT: FOCALX
OPTION:

PIP gets FOCAL from account number 2's library and moves it into the
file FOCALX.

9.2.7 Deleting Disk Files

One of the principal reasons for punching files on paper tape is
to free disk space. Once punched, the disk file is no longer needed.

PIP offers a convenient means of deleting files, the Delete option:

INPUT? ABCD
QUTPUT:
OPTION: D

PIP deletes file ABCD, provided that the file is not protected against
being changed.

9,3.7 BASIC File Transfers

BASIC stores its programs in a unigque file format. Therefore,
it is not possible to locad or punch BASIC files in the usual way. To
provide a convenient means of handling BASIC programs, the B option
is available in PIP. The B option is used for both reading and
punching BASIC preograms. The responses to INPUT: and OUTPUT: indicate
the direction of the transfer; the high-speed reader or punch is
always assumed for the B option. (To read or punch tapes at low-
speed, use BASIC itself.) |

PIP assumes that any BASIC tapes it loads are clean and error-
free. Only tapes actually created by BASIC should be loaded with
PIP. Tapes created coff-line, and thus liable to contain errors,
should be loaded low-speed by BASIC itself with the TAPE command.

9.3.8 Save Format File Transfers

Another special file format is that of the SAVE files, those
programs directly executed by EduSystem 50. (The Systems Library
Programs are examples of SAVE format files.) PIP provides the S
option, to allow these files to be punched on paper tape. SAVE
format tapes make sense only to PIP and PUTR. They cannot be input
to any other Systems Programs.’

The responses to INPUT: and OUTPUT: indicate the direction of
the transfer; the high-speed reader or punch is always assumed for

the S option.

NOTE

SAVE format tapes include a checksum. If
PIP detects an incorrect read, it prints

LOAD ERROR, and terminates the load, re-

peating the request for input.

5-21.1

TABLE 9-1

PIP OPTION SUMMARY

Option Explanation

B Transfer a BASIC program file between the disk and the
high-speed reader or punch. The response to input
and output indicates the direction of the transfer.

Delete the file specified for input.

F List a BASIC program on the line printer.

K Load a save format paper-tape from the terminal. This
option will not work on most TSS/8 installations.

L Transfer an ASCII file from the disk to the line
printer.

P Punch the contents of a disk file on the high-speed
punch.

R Read a tape from the high-speed reader and store it
as a disk file.

s Transfer a SAVE format file between the disk and the

high-speed reader or punch. The response to INPUT:
and OUTPUT: indicates the direction of the transfer.

T Transfer a file between the disk and the terminal
reader or punch. The response to INPUT: and OUTPUT:
indicates the direction of the transfer.

9.3 COPY PROGRAM

Many EduSystem 50 installations include one or more DECtapes.
For these installations, DECtape provides a convenient and inexpen-
sive means of file storage. The COPY program is used to transfer

files between disk and DECtape.

9.3.1 Using and Calling COPY

COPY is the intermediary between disk and DECtape. To write a
disk file out to DECtape, COPY inputs the file from the disk, then

outputs it to the DECtape. To bring a DECtape file onto the disk,
COPY inputs from the DECtape, then outputs to the disk.

Files kept on DECtape have file names just as they do on the
disk. To avoid confusion, the user must tell COPY where the file
is to be found. If it is on DECtape, the DECtape designation and
the number of the DECtape unit must preface the file name. The DEC~-
tape number is always separated from the file name by a colon. Thus
D1:FILEl means the file name FILEl on the DECtape which is currently
mounted on DECtape unit number one. The number of available tape
units varies among installations. The maximum is eight (numbered
0-7). If a file name is not prefaced by a DECtape number, the file

is assumed to be on the system disk.

Files stored on DECtape do not have protection codes in the
sense that disk files do. They are, however, protected against
unauthorized access. When a DECtape is not mounted, it is not
available to any user. When it is mounted, it is available only to
the user who has assigned the DECtape unit on which it is mounted.
Even then it can not be altered unless the DECtape unit is set to
WRITE ENABLE. Users should be sure to assign a DECtape unit before
mounting their tape, and dismount the tape before releasing the de-
vice. Normally, the DECtape unit to be used should be assigned
before calling COPY.

To call COPY, type:

«R COPY

COPY responds by asking which option the user wishes to employ.

The COPY options are discussed below and summarized in Table 9-2.

9-92.5

9.2.2 Loading Files from DECtape

To load a file onto the disk from DECtape, use the COPY option.
When COPY requests OPTION, respond with COPY, or C, or strike the
RETURN key (the COPY option is assumed). When COPY requests INPUT,
type the number of the DECtape unit on which the file can be found
(D, D1, D2, D3, D4, D5, D6, or D7) followed by a colon and the
name of the file on the DECtape., When COPY requests OUTPUT, type
and enter the name to be given to the output file on the disk. COPY
then moves the DECtape file onto the disk. (When using COPY, it is
not mandatory to insert a space between the device designator and the

device number. For example:

OPTION- COPY
INPUT - D4:P&R
OUTPUT~ PQR

If for any reason, COPY cannot find the DECtape file specified
for input (the specified DECtape is unavailable or nonexistent, or
the file name does not exist on that DECtape), COPY prints a ? and
repeats the request for input. If the disk file specified for output
already exists, COPY prints a ? and repeats the request for output.

COPY does not overwrite an existing file. For example:

CPTION~- C
INPUT~ D9:PQR
?7INPUT- D4tPQRS
?INPUT- D43PQR
OUTPUT - PRR

9.3.3 BSaving Disk Files on DECtape

Saving a disk file on DECtape is very similar to lcading one.
The option is still COPY. For input, respond with the name of the
file on the disk. For output, type the DECtape unit number, colon,
and the name to be given to this file. For example:

9-23

OPTION=~ C
INPUT=- ABCD
OUTPUT~ D43 ABCD

If COPY cannot find the file on the disk, or if it is protected,
COPY prints a ? and repeats the request for input. If COPY cannot
create the desired DECtape file (the specified DECtape does not
exist or is unavailable, or it is not WRITE ENABLED, or a file by

that name already exists on the tape) COPY prints a ? and repeats
the request for output.

9.3.4 Listing Directories

COPY can be used to list the directory of a device. To list a
directory, respond to OPTION by typing LIST, or just L. COPY then
asks which device directory it is to list. To list a DECtape
directory, respond with the device name (DO,...,D7}). Do not follow
it by a colon. For example:

«R COPY

OPTION~ LIST
INPUT~- D1

1372. FREE BLOCKS

NaME SIZE DATE

BASIC «5AV 66 9-MAR~78
FACTAL.BAS 18 2=-MAR-70
CONVER«BAC 6 1=-MAR=T78
PALD +SAV 32 31-MAR-70@

The unit of DECtape storage is the block, which is 128 (decimal)
words. Because the unit of disk storage, the segment, is generally
256 words, a file occupies twice as many blocks of DECtape storage
as it did segments on the disk.

9-24

COPY can also be used to list the user's disk directory. Use
the LIST option, but respond to DEVICE by simply striking the RETURN
key. The directory listing is similar to the listing sbtained by

running the CAT program.

9.3.5 Deleting Files

COPY can also be used to delete files, either on the disk or on
a selected DECtape. To delete a file, respond to OPTION by typing
DELETE, or just D. Respond to INPUT by typing the name of the file
to be deleted. If the file is on a DECtape, preface the file name

with the DECtape unit number and a colon. For example:

OPTION~ DELETE
INPUT- D4:ABCD

If COPY cannot find the file to be deleted, or having found it,
cannot delete it (it is a protected disk file or a DECtape file on a
unit which is not WRITE ENABLED}, COPY prints a ? and repeats the

reguest for INPUT.

9.3.5.1 Deleting All Existing Files on a Device

COPY can be used to delete all existing files on a device. To do
so0, respond to OPTION by typing ZERO, or just Z. When COPY requests
INPUT respond with the name of the device. COPY will not zero the
system disk. The ZERO option should also be used to format a blank
DECtape before attempting to copy any files onto it. For example:

OPTION=- ZERO
INPUT- D4

9-25.

TABLE 9-2

COPY OPTION SUMMARY

Option Abbreviation Explanation

COPY C Transfer a file between disk and DECtape.
DELETE D Delete a file.

EXIT E Exit to the Monitor.

LIST L List a directory.

ZERO Z Delete all files.

COPY cannot delete files from a DECtape unless it is WRITE ENABLED.

It cannot delete disk files which are write protected.

9.3.6

Example of COPY Usage

+AS5IGN D 5
D 5 ASSIGNED

«R COPY

OPTION~
DEVICE~

OPTION~-
DEVICE~-

1462,

NAME

ZERO
D5

LIST
D5

FREE BLOCKS

SIZE

DATE

OPTION=- LIST
DEVICE-

DISK FILES FOR USER 54,40 ON 9-DEC=74.

NAME
SOLVE

SIZE PROT
«BAS i l2

DATE
F-DEC-74

TOTAL DISK SEGMENTS: 1

OFPTION=- COFY
INPUT~- SOLVE
CUTPUT~- D5:S0LVE

OPTION- DELETE
INPUT~ SOLVE

OPTION~ LIST
DEVICE- DS

1468. FREE BLOCKS

NANME S1ZE DATE
SOLYVE .BAS 2 9-DEC-74

OPTION- LIST

DEVICE-

DISK FILES FOR USER 54,40 ON 9-DEC-74.
NAME S1ZE PROT DATE

TOTAL DISK SEGMENTS: @

OPTION- COPY

INPUT= DS:SQLVE
QUTPUT - ABCD

OPTION=- LIST
DEVICE -
DISK FILES FOR USER S4,48 ON 9-DEC-74.

NAME SIZE PROT DATE
ABCD .BAS 1 12 9-DEC=74

TOTAL DISK SEGMENTS: 1
OPTION- RENAME

INPUT=- ABCD
CUTPUT- FIE.BIN<]7>

OPTION- LIST
DEVICE=-
DISK FILES FOR USER S4.40 ON 9-DEC-74.

NAME SIZE PROT DATE
FIE +BIN 1 17 9-DEC-T74

TOTAL DISK SEGMENTS: 1 9-27
OPTION=- EXIT

LB =1
+RELEASE D 5

CHAPTER 10

ADVANCED MONITOR COMMANDS

10.1 INTRODUCTION

The fundamental Monitor commands described previously are those
needed to utilize existing System Library Programs. The EduSystem 50
Moniter also provides powerful commands for users who wish.to create

their own library programs.

To use the System Library Programs described previously, it was
not necessary to be familiar with the actual machine that runs them,
the PDP-8/E. To create new library programs for EduSystem 50, this
is necessary because they are written in the PDP-8 assembly language.
The user codes his programs for a 4K PDP-8, subject to the time-
sharing conventions discussed in this section. The programs are
created with EDIT, then assembled by PAL-D and loaded by LOADER.

Only at this point are the programs able to be run by EduSystem 50.
In the course of this program development, the same program exists

in many formats.

The source program is a disk file containing ASCII characters
in an Editor format. PAL-D reads the file and translates it into a
second file, the assembled program in BIN format. Neither of these
files is capable of being executed directly by EduSystem 50. The
BIN format tape must be loaded intc core by LOADER before it can

actually be executed.

At this point it is possible to save the program in a file format
that is directly executable by EduSystem 50. Such a file, called a
SAVE format file, contains an image of the user's core area after the
program has been loaded by LOADER. These SAVE format files differ

10-1

from all the files which are created by System Library Programs and
cannot be executed directly by EduSystem 50. Thus, it is not possible
to save a BASIC program (e.q., FILEl while running BASIC}, then return
to Monitor type R FILEl, and get meaningful results. The program in
FILEl must be executed under control of the BASIC language processor,
Only SAVE format files can be called into execution directly by the

R command. (All System Library Programs are stored in SAVE format

and can be run with the R command.)

NOTE

In the following examples, Sn, Cn, and
Dn are used tco stand for alphanumeric
strings (such as file names), octal num-—
bers, and decimal numbers, respectively.

A number of Monitor command conventions are available to make
the commands easier to use. First, more than one command may be
typed on a line. Individual commands are separated by a semi-colon
(;}. Second, only enough characters of a command to uniquely specify
it need by typed. Thus, DEPOSIT can be abbreviated DE or DEP.

+LOAD FILE1;DEP 20 70003ST 200
is exactly equivalent to:

« LOAD FILE}
« DEPOSIT 26 7000
+«START 208

These conventions are available for the elementary Monitor com-~
mands as well. They are, however, especially convenient for the

advanced commands.

10-2

10.2 CONTROL OF USER PROGRAMS

Once a PAL-D program has been loaded by LGADER, several Monitor
commands are available for controlling its execution. These com-

mands are shown in Table 10-1.

It is possible to give these utility commands while a user pro-
gram is running. The CTRL/B character (i{B) gets the attention of the
Monitor without stopping program execution. ({B followed by the S
command stops the program.) B can be used together with the WHERE
command to follow program execution. After executing these commands,

Monitor does not put the Terminal back into Monitor mode.

' TABLE 10-1

MONITOR PROGRAEM CONTROL COMMANDS

Command Explanation

DEPOSIT C1 C2...Cn Deposit the octal values C2 to Cn in the lo-—-
cations starting at Cl. DEPOSIT is used to
make small octal modifications to a user
program. No more than 10 {decimal) locations
can be modified by a single DEPOSIT

instruction.
EXAMINE Cl Printlthe octal contents of location Cl.
EXAMINE C1 D1 Print the contents of D1 locations starting
at Cl.
START Restart execution of a user program where it

was interrupted (either by execution of an
HLT or by {BS typed at the keyboard). When
the START command is given, the program's
state 1is restored.

START C1l Start execution of a user program at location
Cl. When a program is started, keybhoard
input is no longer interpreted as commands
tc Monitor. Input characters are passed to
the running program. START Cl clears the
user's AC and link.

10-3

Table 10-1. {(Cont.)

Command Explanation

WHERE Print the present status of the user program.
The user's AC, PC, LINK and switch register
are printed. Also, any EAE registers which
are present are printed.

10.3 DEFINING DISK FILES

The Monitor allows the user to save core images of his program
on the disk for future use. However, before saving such a core

image, the user must define a disk file in which to save it.

Disk files, like the user's core, are made up of 12-bit words.
Unlike the user's core, which is always 4K in size, a file can be
any size. The unit of disk file storage is the segment; a segment is
256 (decimal) words long. Files are at least one segment long when
created and grow by appending additional segments to the end of the
file. 1In defining a file, the user first creates it, then extends
it to whatever length he needs. To have a whole 4K image on a system
with a segment size of 256 (decimal) words, a 16 segment file is re-
quired. If only part of the contents of the user's core is to be

saved, a correspondingly smaller file can be used.

A file can be created at any time. However, to modify or re-
define it in any way, the file must be open. Up to four files can be
open for a user simultaneously. Opening a file connnects it to an
internal open file number (0, 1, 2, or 3). Once a file is open, it
is referenced by this internal file number rather than by its file

name.

10-4

10.2.1 Creating a Disk File

The CREATE command defines an area of disk space and associates

it with the name given in the command line.

The file name can be one to¢ six alphanumeric characters of which
the first must be a letter. Creating a file deletes any existing
file of the same name, unless that file is write protected. When
created, files are always one segment in size. A new file is arbi-
trarily assigned a protection code of 12, meaning that other users
may access it but only the owner may change it. Until it has been

written, the contents of a newly defined file are undefined.

10.3.2 Opening and Closing a File

To use a file, it must first be opened with the OPEN command.
A file can be opened on any of four internal file numbers: 0, 1,
2, or 3. A user can have up to four files open at a time. If a file
is open on an internal file number for which a file is already 0pén,

that file is first closed. For example:

+ CREATE AB
+OPEN 1 4B

AB is now an open file and can be referenced as file 1.

An open file can be closed at any time by means of the CLOSE
command. Once closed, a file cannct be accessed in any way until it
is reopened. It is possible to close more than one file with a

single command. For example:

+CLOSE 8 ! 2 3

10-5

10.3.3 Extending, Reducing, and Renaming a Disk File

When created, a file is one segment long. If a larger file is
needed, the original file can be extended. For example, the

command :

.EXTEND Cl D1

extends the file presently open on internal file Cl by D1 segments.
Extending a file adds one or more segments to the end of that file.
The contents of the old part of the file are not changed. Until
written, the contents of the newly added segments are unspecified.
An existing file may be reduced in size by means of the REDUCE com-

mand. For example, the command:

.REDUCE C1 D1

reduces the file presently cpen on internal file Cl by Dl segments.
Reducing a file deletes the number of segments indicated from the

end of the file. The contents of remaining segments of the file are
unchanged. If a file is reduced to zerc segments, or if Dl is greater
than the number of segments in the file, it is deleted entirely. An

example of the creation and deletion of a 4K file:

+CREATE FOURK
+OPEN 3 FOURK
+EXTEND 3 15
<REDUCE 3 18

Existing opened files can be renamed. Renaming a file does not change

its contents in any way. For example, the command:

-RENAME C1 S1

renames as S1 the file open on internal file number Cl.

10-6

10.3.4 Protection Codes

The user can protect his files against unauthorized access. He
can also s?ecify the extent of accessg certain other users can have
to his files. For example, a user's associates can be permitted to
look at the data of certain files but not permitted to alter that
data.

When it is createa, a file is assigned a protection code of 12.
This protection code is defined below and can be changed

¢, but only by the owner of that file. For example, the command:

.PROTECT C1 C2

gives the protection code C2 to the file open on internal file number
Cl.

The protection code is actually a 5-bit mask. Each bit specifies

a unigue level of protection.

File protection masks (C2) are assigned as follows:

1 Read protect against users whose project number differs
from owner's.

2 Write protect against users whose project number differs
from owner's.

4 Read protect against users whose project number is same
as owner's.

10 Write protect against users whose project number is
same as owner's.

20 Write protect against owner. To change the program
the owner must change the protect code,

Protection codes are determined as the unique sum of any of
the above codes. Some 0f the more common protection codes are as

follows:

Command Explanation

PROTECT 1 O Allow other users to access the file and
change it.

PROTECT 1 12 Allow other users to access the file but

: not change it. .

PROTECT 1 17 Allow only the file owner to read the file.
He can also change it.

PROTECT 1 37 Allow only the file owner to read the file,
He cannot, however, change it. {To change

it, he must first change the protection.)

A user's project number is the first 2 digits of the 4-digit
account number. The protection word contains a filename extension,
and has the following format:

0 4 5 6 7 11

FILENAME EXTENSION UNUSED PROTECTION CODE
i] j I 1 I 1] 1

The filename extension gives additional information about the
file, which is printed in some directory listings. The filename

extension codes are:

0 blank
1 ASC ASCII files, such as PAL source.
2 . SAV Save format files.
3 .BIN Binary files; must be loaded with program
LOADER. :
4 .BAS BASIC source file,
.BAC BASIC compiled program file.
.FCL FOCAL file

10-8

7 . TMP Temporary file.

11 .DAT Basic data file.
12 .LST Listing file.
13 .PAL PAL source file.

The protection word may be set by using PROTECT:

«PROTECT & @217

This changes the protection of the file opén under internal file
number 0 so that the file has an extension of .ASC, and that it

cannot be read or written by any person other than its owner.

Finally, the user can ask what file is open on a given internal
file number by means of the F (File information) command. For exam-

ple, the command:

P Cl

prints the following information about the file presently open on an

internal file Cl:

a. Account number of file owner.

b. Name of file.

c. File extension.

d. Protection code.

e. Size of file in segments {decimal).

For example:

«F 1
2002 TYPE 21 12 5

10-9

—

10.3.5 Error Conditions

There are a number of error conditions which prevent the execu-
tion of the file definition commands (as previously described). One
of the following error messages is printed by Monitor if an error

condition is detected:

Message Explanation
DIRECTORY FULL A CREATE command has been issued, but

the user's directory is full. He can
delete any of his files to make room
for the new file. This message also
indicates a user has exceeded his disk
quota.

{MYFILE EXCEEDING DISK QUOTA] The user has extended a file beyond his
allowed disk quota. The amount of extra
space (grace) the user is allowed is
determined by the system manager.

FAILED BY n SEGMENTS The user has attempted to extend a file,
but cannot because of lack of segments
on the system, or because he is attemp-
ting to go beyond the grace quota. The
number of segments requested, but not
available, is printed,

FILE IN USE An EXTEND, REDUCE, PROTECT, or RENAME
command has been issued for a file which
is in use elsewhere by another user.
Because changing a file which is being

- used (i.e., has been opened) could dis-
rupt another user's work, under these
conditions such a change is prohibited.

FILE NOT FOUND The user has attempted to OPEN a non-
existent file.

FILE NOT OPEN An EXTEND, REDUCE, PROTECT, or RENAME
command has been issued for an internal
file number for which no file is open.

PROTECTION VIOLATION An attempt has been made to change a
file which is write protected against
the user.

10.4. SAVING AND RESTORING USER PROGRAMS

Once a file has been defined, the user can save all or any part

of his user core in the file. Files and user core are addresses in

10-10

the same way, by 12-bit words. The user can transfer his file into
any part of core.

The SAVE command regquires one tc five parameters. The name
of the file to be written into must always be given. If the file
is not in the user's own library, the appropriate account number is
entered before the file name. (Writing into a file owned by another
user 1is subject to file protection.) In either case, the parameters
are separated by spaces. The SAVE command writes the indicated

section of core out into the indicated file.

If no parameters follow the file name, Monitor starts at location
zero of the user's core and saves it in location zero of the disk
file. It continues to write core locations into the disk file until:
{(a) it has written the whole 4K or (b} it has filled the file. Either
condition completes the SAVE.

The user can further define his SAVE command by indicating parts
of core to be saved in specific parts of the disk file. He does
this by typing one to three parameters following the file name. The
first parameter following the file name indicates a specific disk file
address at which to begin writing. The second parameter following the
file name indicates a specific core address at which to begin the
transfer. If only the first two parameters are typed, the transfer

terminates when either the end of core or the end of file is reached.

Command : Explanation
SAVE S1 Assuming that a disk file 51 exists, and
SAVE C1 81 that it is not write protected, the contents

of core are saved in S§l1l. In the first case,
Sl is assumed to be in the library of the
user giving the command. In the second
case, it is assumed to be in the library of
the user whose account number is Cl.

SAVE S1 C2 C3 C4 Locations C3 to C4 (inclusive) are saved in
file S1 starting at disk file location C2.
81 is assumed to be in the user's own li-
brary. If S1 is preceded by the parameter
Cl, it is assumed to be in the library of
the user whose account number is Cl.

10-11

Once a core image has been saved in a disk file, it can be
restored to core by means of the LOAD command. It should be noted
that the Monitor command LOAD is very different from the System
Library Program LOADER. LOADER loads a BIN format file {(created by
PAL-D) into the user's core. LOAD loads a SAVE format file (created

by a previous SAVE command) into core.

The LOAD command requires from one to five parameters. The
name of the file to be loaded must always be given. If the file is
in the user's own library, this file name is typed after the SAVE
command itself. If it is in another user's library, his account
number is entered before the file name. (Reading another user's file
is subject to file protection.) 1In either case, the parameters are

separated by spaces.

Command Explanation
LOAD S1 Assuming that a disk file S1 exists, and
LOAD C1 S1 that it is not read protected, the contents

of the file 81 are loaded into core. In
the first case S1 is assumed to be in the
library of the user giving the command. 1In
the second case, it is assumed to be in the
library of the user whose account number

is D1.

The user can further define his LOAD command by using the same

optional parameters discussed in the section on the SAVE command.

Command Explanation

LOAD 51 C2 C3 C4 Locations C3 to C4 (inclusive) are loaded
from the file S1 starting at file location
C2I

LOAD NEWF 5 10 17 Words 5 to 14 (inclusive) of the file named
NEWF are loaded into locations 10 to 17 of
the user's core.

10-12

T oA T

It is not necessary to open a file before using it in a LOAD or
SAVE command. Both commands automatically open the specified file

on internal file number 3 before performing the tra

AL £ —_
iISrer. After

completion of the command, the file remains open on file number 3.

A special macro-command, RUN, exists to allow a program to be

loaded and started all in one command.

Command Explanation
RUN S1 Load file S1 into core from the disk and
RUN Cl1 81 start execution at location 0.

In the first example, file S1 is assumed

to be in the user's own libraryv. In the
second, it is assumed to be in the library
of the user whose account number is Cl.

RUN Sl is exactly equivalent to LOAD S51;
START 0. RUN Cl1 Sl is exactly equivalent to
LOAD C1 S81; START 0.

RUN S1 C2 Load file into core from the disk and start
RUN C1 81 C2 execution at leocation C2.

The R command (see the section EduSystem 50 Monitor} is a special

case of the RUN command. For example, the command:

.R Sl

loads file S1 from the System Library (account number 2) and starts
at location 0. R 81 is exactly equivalent to RUN 2 S51.

Typing an address after the program name in a "R" or
"RUN" command causes execution to begin at that address,

rather than at zero.

10-13

Sometimes, when typing a complex SI command, the rubout (or delete)
key may have been used a number of times to make corrections, and the
user may not be guite sure of what was typed. A LINE FEED may be
typed to instruct SI to print out the command line as SI currently
understands it. If the command line was entered while a program was
running by prefacing the command with tB, SI will print fB to signify
this, or else it will start the line with a dot. Similarly, if an
attempt is made to rubout characters when there are none to rubout,
SI will print either ¢B or a dot to signify this condition.

At times, the sgystem becomes very busy, and an SI command takes
a2 long time to execute. If a user attempts to enter another command
at this time, his typing is ignored and his terminal bell rings to

warn him to wait.

10.5 UTILITY COMMANDS

The Monitor provides a number of special purpose commands to aid
in program development and use. The Monitor utility commands are

summarized in Table 10-2.

10-14

TABLE 10-2

MONITOR UTILITY COMMANDS

Command

Explanation

BREAK

BREAK C1

DUPLEX

RESTART
RESTART C1l

SWITCH

SWITCH C1

UNDUPLEX

USER

USER C1

VERSION

Print the current value of the user's
delimiter mask.

Set the user's delimiter mask fto Cl. {The
use of the delimiter mask is discussed in
the chapter on assembly language
programming),

Place the user's terminal in duplex mode.
All characters typed at the keyboard are
automatically printed as they are entered.

Print the user's restart address.

Set the user program restart address to Cl.
If CTRL/C is typed at the keyboard, Monitor
forces a jump to location Cl in the user's

program.

Print the current value of the user's switch
register.

Set the user's switch register to Cl. Moni-
tor maintains a switch register for each
user. When his program executes on OSR

(OR the switch register into the AC) this
value is the one which is loaded.

Take the user's terminal out of duplex mode.
Input characters are received by the Monitor
and by the user program without their being

printed at the console.

Print the user's job number, account number,
and console number.

Print the job number, account number,
and console number associated with job Cl.

Print the version of the Monitor being used.

10-15

CHAPTER 1li

11.1 INTRODUCTION

In addition to the higher-level programming languages available
in the EduSystem 50 library, the user can also code and run pro-
grams written in the PDP-8 assembly language, PAL-D (Program
Assembly Language). These programs are prepared with EDIT, assembled
with PAL-D, then loaded with ILOADER.

A user can program EduSystem 50 just as he would any other
4X PDP-8. {Assembly language programs must fit in 4K of core.)
All memory reference instructions (AND, TaAD, ISZ, DCA, JMS,
and JMP) function as on a stand-alone PDP-8, All operate instructions
(instruction code 7) also function as on a regular PDP-8 (except that
microcoding HLT or OSR with any other operate instruction but CLA

gives unpredictable results).

The major difference between EduSystem 50 programming and
regular PDP-8 programming is in the IOT (input/output transfer)
instructions. Some instructions which are valid on stand-alcne
PDP-8s, such as CDF, CIF, ION, IOF are considered illegal in-
structions under timesharing. There are a great many new IOTs within
EduSystem 50 that are not valid on a regular PDP-8. Finally, there
are IOTs which operate on EduSystem 50 in the same manner as on stand-
along PDP-8s. (Table 7-2 is a summary of EduSystem 50 IOT

Instructions.)

The way EduSystem 50 actually executes an IOT instruction is
also different. Non-IOT instructions ({(except HLT and OSR) are
executed by the hardware, while IOTs (and HLT and OSR) are executed
by the EduSystem 50 Monitor.

11-1

In general, EduSystem 50 provides the programming capabilities
of a 4K PDP-8 and allows programs of considerably greater complexity
to be run within the constraints of each user's 4K of core. System
Library Programs, all of which were written in assembly language and
make use of the EduSystem 50 IOTs dealt with below, are examples of
programs which can be run on EduSystem 50.

NOTE: Some of the following instructions do not operate the same
under account 1. For information on these instructions, see the
Manager's guide.

11.2 CONSOLE 1/0

User programs handle console (terminal) I/0 in almost the same
way as stand-alone PDP-8 programs. The KRB instruction is used to
input a character, the TLS instruction to ocutput a character. The
KSF and TSF (followed by JMP .-1) can be used but are not needed.
Monitor handles all timing problems whether these skip IOTs are

present or not.

EduSystem 50 differs from the stand-alone PDP-8 in that under
EduSystem 50 the user program interacts with multi-character input
and output buffers (maintained by Monitor} rather than with single
character registers. Depending on the state of the system, these
buffers may have one, many, or no characters in them. During
normal program execution, this fact is of no consequence. User
pPrograms still send and receive characters one at a time. There are
times, however, when it is useful to clear out any and all characters

in the buffers; a special IOT exists for this purpose (SBC).

On a stand-alone system, characters are input as soon as they
are typed, whether they are of immediate interest or not. Usually,
these characters are stored by the program until a terminating (or
delimiting) character is found. At this time, the whole line of
characters is processed. On a swapping, time-sharing system such as
EduSystem 50, this mode of operation is wasteful. It is far more
efficient to allow input characters to accumulate in the Monitor
input buffer until a delimiter is found. There is an IOT to specify

which characters are to be considered delimiters (KSB).

11-2

EduSystem 50 also allows programs to input and output strings of
characters. The read string (XSR) and send string (SAS) instruc-
tions provide a convenient and efficient means of doing lengthy

transfers.

All keyboard input uses full-duplexed hardware; there is no
wired connection between the keyboard and printer (i.e., characters
are not printed on the console as typed). Input characters are
echoed to the console under program control rather than by hard-
ware. Because input characters are allowea to accumulate in buffers
before being passed to the user program, it is important to have
Monitor perform the echoing rather than user programs. There is
an ICT (DUP} to set up this autcomatic echoing as well as an IOT

(UND) to inhibit echoing for such operations as reading tapes.

Read Keyboard Buffer (KRB} Octal Code: 6036

Operation: Read the next input character into bits 4-11 of the AC.

Load Teleprinter Sequence (TLS) Octal Code: 6046

Operation: The ASCII character in AC bits 4-11 is printed on the

user's console.

Skip on Keyboard Flag (KSF) Octal Code: 6031

Operation: The next instruction is skipped if there is a delimiter

character in the user's input buffer.

Read Kevboard String (KSR} QOctal Code: 6030

Operation: Execution of this instruction initiates a transfer of one
or more characters from the user's keyboard to a designated core
area., Before executing KSR, load the AC with the address of a

two-~word block, where:

Word 1l: negative of the number of characters to be transferred.

Word 2: address of the core area into which characters are to
be placed minus one,.

The transfer is terminated when either:

a. the indicated number of characters have been input or
b. a delimiter is seen. At the end of the transfer, the word

count and core address are updated and the AC is cleared.

Send A String (SAS) Octal Code: 6040

Operation: Before executing an SAS load the AC with the address
of a two-word block, where:

Word 1: contains the negative of the number of characters to
be sent.

Word 2: contains the address - 1 of the first word of the string.

The characters are stored one per word right justified starting at
the address specified by word 2. Upon execution of SAS, the system
takes only as many characters as will fit in the output buffer. It
then makes the appropriate adjustment to word 2 to indicate a new
starting address and to word 1 to indicate the reduced character
count; it returns to the instruction following the SAS. If the chax-
acter count is reduced to zero, the instruction following SAS is
skipped. The instruction following the SAS usually contains a JMP
.—2 to continue the block transfer of terminal characters. The

AC is cleared by SAS.

Set Keyboard Break (KSB) Octal Code: 6400

Operation: Rather than activate a user's program to receive each
character as it is typed, EduSystem 50 accumulates input characters
until a certain character, or characters, is seen. To tell the
Monitor which characters to look for (these characters are referred
to as delimiters), load the AC with a 12-bit mask before executing
a KSB. For each bit in the mask which is set, Monitor considers

the corresponding character or characters to be delimiters.

11-4

Bit Specifies

0 = check rest of mask

[~

1 = any character is break

1 301-332 (all letters}
2 260-271 (all numbers)
3 211 (Horizontal tab)
4 212=215 {line feed, vertical tab, form feed, RETURN)
5 241-273 (1"$$%&" () *+,-./1;
6 240 (space)
7 274-300 (< + >7@)
8 333-337 ([\]t+)
9 377 (RUBOUT)
10 375 (ALT MODE)
11 any characters not mentioned above
Duplex (DUP) Octal Code: 6402

Operation: DUP informs Monitor that the user wishes each character
typed at the console to be echoed on that conscle's printer as it is
received by Monitor. The DUP instruction does not affect the user's

registers.

Unduplex (UND) Octal Code: 6403

Operation: UND informs Monitor that the user wishes to suppress
character echoing. This can be done for reasons of privacy or be-
cause a program does its own character echoing. The user's registers
are unaffected by UND.

Set Buffer Control (SBC) Octal Code: 6401

Operation: SBC permits the user program to clear its terminal input
and/or output buffer. Before executing SBC set bits 0 and 1 of the
AC as indicated below:

Bit 0 Clear output buffer.
Bit 1 Clear input buffer.

11-5

11.3 FILES AND DISK I/O

All user programs can gain access to disk storage. The time-
sharing Monitor maintains a pool of available disk space which is
allocated in units referred to as segments. Segments are 256 word
each. These segments are used to make up user files on the disk.
Monitor also maintains, for each user, a directory of all files which

he has defined.

The I0Ts which allow the user to acceés the disk are of two
types: those which define files on the disk and those which transfer

data between a defined file and the user's core.

NOTE

CREATE and OPEN require that a user set up a file
name in core. FINF and WHO return file names to
core. Each must be specified in internal code

(excess 40 code) as shown in Table 11-1. Charac-

ters are packed two to a word.

The first step in defining a file is to create it. Creating a
file reserves a single segment of disk storage and assoclates it with
a name. This file can then be extended to any length desired. Ex-
tending a file appends more segments to it. Similarly, a file can be
reduced by any number of segments. Reducing a file removes the last
segment or segments from the file. Reducing a file to zero segments
deletes it entirely. Once created, a file can be protected, thereby
restricting access to it. When created, a file can bhe read by any
user, but only the creator can write in it. This protection can be

reset if desired. Finalliy, it is possible to rename an existing file.

11-6

TABLE 11-1

EDUSYSTEM 50 INTERNAL CHARACTER SET

6-Bitl 8-Bit 6-Bitt 8-Bit
Character Octal Octal Character Octal Octal
Space 00 240 @ 40 300
! 01 241 A 41 301
" 02 242 B 42 302
¥ 03 243 C 43 303
$ 04 244 D 44 304
3 05 245 E 45 ' 305
& 06 246 P 46 306
, 07 247 G 47 307
(10 250 H 50 310
) 11 251 I 51 311
* 12 252 J 52 312
+ 13 253 K 53 313
, 14 254 L 54 314
- 15 255 M 55 315
. 16 256 N 56 317
/ 17 257 0 57 317
0 20 260 P 60 320
1 21 261 Q 61 321
2 22 262 R 62 322
3 23 263 S 63 323
4 24 264 T 64 324
5 25 265 U 65 325
6 26 266 v 66 326
7 27 267 W 67 327
8 30 270 X 70 330
9 31 271 Y 71 331
: 32 272 A 72 332
: 33 273 [73 333.
< 34 274 N 74 334
= 35 275] 75 335
> 36 276 t 76 336
? 37 277 -— 77 337

l'I‘he 6-bit octal code is used to store passwords and file names only.

‘._I
'._I
)
~d

None of these actions affect the contents of the file-they only
reserve space on the disk. Until it has been written in, the actual
content of a file is unspecified. Extending a file does not alter the
content of the file as it previously existed. Once defined, files can
be used to read and write data. Any number of words (1 to 409%96) can
be moved from any part of the user's core to any part of a file
{subject to file protection). The user program specifies a location
in core and a word count. This indicates how many words are to
be transferred and from (or to) where in core they are to be moved.
Also specified is a disk file address indicating what part of the file
is involved. This address is the address of a word in the file.

Files are addressed in the same manner as core: 1in 12-bit words.
Unlike core, however, files can be longer than 4K. To address these
files provision is made for a 24-bit disk file address, containing

the high-order and low-order file addresses.

File addresses are independent of any consideration of segments.
The file address is meaningful only in defining files. Files can be
read and written across segment boundaries without restriction. (The

user cannot read or write beyond the last segment boundary.)

When it executes a file read or write IOT, the system updates the
core address and word count and places an error code in the error
word (see RFILE) if any error is detected. At the end of a successful
transfer, the word count is set to zeroc and the core address set to
the last word transferred. If the transfer cannot be completed for
some reason, the word count and core address indicate how much of
the transfer was successful; the error word indicates the cause of
the failure. All file operations except CREATE {and OPEN) reguire
that the file be open. Up to four files can be open at a time. The
process of opening a file associates it with one of four internal
file numbers (0, 1, 2 or 3). All file IOTs except CREATE and OPEN,
are specified in terms of one of these internal file numbers, rather

than a file name. 1I0Ts operate on the file which is indicated by

11-8

that internal file number at the time. It is therefore possible to
write file handling programs which are independent of the actual
file{s} they operate on.

Each user has a disk quota, defined by the system manager.
When a file 1is extended beyond this quota, the Monitor prints the
message [EXCEEDING DISK QUOTA] . When this happens, the user may no
longer create files and may only extend. The amount by which a user
may exceed his disk quota is called the "grace" quota, and is defined
by the system manager.

File IOTs, that are successfully completed, return with the AC
cleared. 1If an error was found which prohibited execution of the IOT,

one of the following error codes is returned.

Code
4000 There was no file opened on the specified internal file
nunber.
4400 Attempting to redefine a file which is open to another
user,
5000 Attempting to create a file for a user whose directory
is full, or who has exceeded his disk quota.
5400 Bad directory.
6000 File protection violation.
6400 Invalid file name.
7000 Attempting to open a nonexistent file.
7400 Disk is full.
Create a File {(CRF) Octal Code: 6610

QOperation: The user can request the system to create a new file of
one segment. The user program provides the new name for the file.

Load the AC with the beginning address of a 3-word block, where:

Words 1 through 3: contain the 6é-character name.
If there is some reason why the request cannot be granted, the system

will return a non-zero error code in the AC. The protection code of
a newly created file is 12,

Extend A File (EXT) | Octal Code: 6611

Operation: To extend the length of an existing file, that file must
be currently open. Load the AC with the beginning address of a

2-word block, where:

Word 1: contains the internal file number of the file to be
extended.

Word 2: contains the number of segments the system éhould
append to the file.

If for some reason the request to extend a file cannot be granted,
the AC will contain 4000, 6000, or the number of segments it failed
to append.

Reduce A File (RED) Octal Code: 6612

Operation: To reduce the length of an existing file, that file must
be currently open. Load the AC with the beginning address of a

2-word block, where:

Word 1l: contains the internal file number of the file to be
reduced.

Word 2: contains the number of segments to be removed.

This request is granted unless the file to be reduced is currently
opened to another user or if the file is write protected against the

user.

Rename A File (REN) Octal Code: 6600

Operation: REN is used to change the name of a file. Load the
BC with the address of a 4-word bklock where:

Word 1: contains the internal file number associated with
the file whose name is to be changed.
Words 2-4: contains the new name. This name is in 6~bit

characters packed two in a word.

11-10

Protect A File (PROT) Octal Ccde: 6604

Operation: The owner of a file can protect his file from unauthor-
. _

Ao + by unging i 4
e il N L e &‘lﬂ Lo O g) e kL i ey e e s

ecuting PROT, load the AC with:

Bits @ to 4 File extension code (for further information
on extensions see the description of the
PROTECT Monitor commandle

Bits 5 and 6 Internal file number of the reserved file to be

protected.
Bit 7 Write protect against owner.
Bit 8 Write protect against users whose project

number is same as owner's.

Bit 9 Read protect against users whose project number
is same as owner's.

Bit 10 Write protect against users whose project number
differs from owner's.

Bit 11 Read protect against users whose project number

differs from owner's.

A file must be opened before it can be protected. PROT is legal
only when performed by the file owner, i.e., the user who created
the file. All attempts to access the file which violate any of the
protection flags are considered illegal. (For further information

on project numbers, see Appendix C).

Open A File {OPEN) Octal Code: 6601

Operation: OPEN is used to associate a file with an internal file
number, which is necessary because all file operations are in terms
of the internal file numbers. Before executing the OPEN IOT, load
the AC with the beginning address of a 5-word block, where:

Word 1: contains the internal file number.
Word 2: contains the account number of the owner of the
file. If 0, the account number of the current user

is specified,

11-11

Word 3-5: contain the name of the file to be opened. This
name 1is in 6-bit characters packed two to a word.

If there was another file associated with the internal file number
before the execution of the OPEN IOT, it is closed automatically

before the new file is associated with the internal file number.

Close A File (CLOS) Octal Code: 6602

Operation: CLOS terminates the association between files and their
internal file numbers. Before executing CLOS, load the AC with a
selection pattern for the internal £file numbers whose associated
files are to be closed. The file is closed if bit I is 1, where

I =">Dbit 0, 1, 2, or 3.

READ File (RFILE) and Write File (WFILE) Octal Code:
6603 & 6605

Operation: Once the association of a file with an internal file num-
ber has been made, these IOTs allow the actual file reference to be
made. They are illegal on a file that has not been opened (assc-

ciated with an internal file number).

To read or write a file, load the AC with the address of a 6-word
block, then execute the IOT. The format for the 6-word block is:

Word 1l: contains the high-order file word address.

Word 2: contains the internal file number

Word 3: contains the negative of the number of words for the
operation. This number is either the number of
words to be read or the number of words to be
written.

Word 4: contains a pointer to the beginning address -~ 1 of a
buffer located in the user program. On a read oper-
ation this buffer receives the information from the
file: on a write operation this buffer holds the

information that is to be sent to the file.

11-12

Word 5: contains the least significant 12 bits of the initial
file word address to begin the operation.

Word 6: contains an error code:
0 if no error

=

if parity error
if file shorter than werd count

if file not open

= L o

if protection violated

The read or write begins at the word specified by words 1 and 5.
For example:

TAD X

WFILE

X, L+l

A
1

-299

6477

244
means: write 200 (octal) words starting at word 200 of the £ile
that is associated with internal file number one from a core area

starting at location 6500.

After completion of the trénsfer, the word count (word 3) and core
address (word 4) are updated. If an error was detected the appro-

priate error code is placed in word 6.

File Information (FINF) Octal Code: 65613

Operation: FINF enables a user program to determine what file,
if any, is associated with an internal file number. Load the AC
with the beginning address of a 7-word block, where:

Word 1l: contains the internal file number for which the
user program wishes information.
Words 2 contain the information that the system returns

through 7: after executing FINF.

11-13

Word 2: contains the account number of the owner or zero
if no file is associated with the internal file
number, that is, the file is not open.
Words 3-~5: contains the name of the file in 6-bit code.
Word 6: contains the file extension code and protection
code. See Monitor PROTECT command for more details.
Word 7: contains the number of segments which compose
the file.

11.4 "ASSIGNABLE DEVICES

Users can access both their own terminal and the disk; with the
remaining system devices (referred to as the assignable devices)
this is not true. One function of the Monitor is to ensure that de-
vice usage never conflicts. Only one user at a time can access the
high-speed paper-tape reader or punch, or any one of the DEC-
tapes. To ensure that only one user can access a device, EduSystem
50 requires that the device be assigned before it is used. After a
device is assigned, it is not available until it is released by its

owner,

Once assigned, the device is programmed much as on a stand-
alone PDP-8. The RRB instruction is used to read a character from
the high-speed reader; the PLS instruction is used to punch one ¢on
the high-speed punch. The skip IOTs (RFS and PSF) can be used

(followed by JMP.-1} but are not necessary. For block transfers,
there are two string transfer commands: RRS and PST.

The DECtape instructions have been simplified. A single instruc-
tion, DTXA, initiates the transfer of a block of data. The DTRB
instruction is then used to determine if the transfer was successful.
The skip instruction, DTSF, can be used (followed by JMP.-1) but is
not necessary.

11~14

Executing any of the assingable device I0Ts without first as-
signing the device gives the following results: {a) If the device is
assigned to another user, the instruction is considered illegal: pro-
gram execution is now terminated and an error message printed: {b}

If the device is available it is automatically assigned before exe-
cution of the TQT. The device then belongs to this user until he
releases it.

Because these devices are shared by all users, the Monitor must
ensure that they are operable at all times. 1In particular, the
Monitor must ensure that a user is not waiting for a device which is
not available. This situation can arise when trying to use the punch
when it is turned off, or when the reader has read off the end of a
tape. All these conditions, known as "hung devicesg" are considered
to be system errors. If the program doing the transfer has been en-
abled for system errors (by executing an SEA), control transfers to
the error routine indicated which must clear the error flag in the
status word before continuing (See Section 11.6). If the user
program has not been enabled for system errors, a hung device causes
the program to be terminated and an error message is printed.

When the paper tape punch or line printer is off line or hung,
the Monitor takes special action so that it is usually possible to
continue with little or no data loss. When these devices are hung,
the output buffer is not cleared. A system error is generated, and
regenerated every few seconds until the condition is cleared. If
the user program has not enabled errors, the result will be a printed

"HUNG DEVICE" message, and then the terminal bell will ring, trying

11-15

to persuade the user to do something. There are only two things the
user may do to remove himself from this condition. If he is not
interested in continuing, he may release the hung device, If he does
wish to continue he should put the device on line, and it should
take off. He may now type "START" to continue program execution.

Assign Device ({ASD) OCtal COde: 6440

Operation: If the device specified by the content of the AC is
available, it is assigned to the users program and the AC is cleared.
Otherwise, the number of the job owning the device is placed in

the AC. If the device does not exist, 7777 is returned in the AC.

4300 Paper-tape reader
4001 Paper-tape punch

4003 Line printer

4004 Card reader

4005+N DECtape unit N, N=0-7
4015 RKSE drive N, N=0-3

The assignment is in effect until a corresponding REL instruction
or LOGOUT is executed.

Release Device ({(REL) Octal Code: 6442

Operation: The device specified by the contents of the AC is re-
leaseed (providing it was owned by the user cxecuting the REL).
The AC is c¢leared. Releas ing a device makes it availlable to other
users.

Skip on Reader Flag (RSF) Octal Code: 6011

Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

Read Reader Buffer (RRB) Octal Codes: 5012 & 6016

Operation: The contents of the reader buifer are transferred into
bits 4 - 11 of the AC. This ingtruction does not clear the AZ.
If the reader buffer is empty, the user program is put into a wait state

until the buffer is full or an end-of-tape condition is detected.

11-16

Reader Clear Buffer (RCRB) Octal Code: 6017

Operation: Any characters, which may have been read from the high-
speed reader but not passed to the user, are cleared fro the
buffer.

Read Reader String (RRS) Octal Code: 6010

Operation: This instruction initiates a transfer from the high-speed
reader to a selected area in the users core. Before executing RRS,
load the AC with the address of a 2-word block where:
word l:.minus the number of characters to be transferred.
word 2: the address of the user core area minus one.
The transfer is terminated by either of two conditions: (a) the
word count (word 1) is zero indicating that the required number of
characters have been read or (b) the reader has read off the end of
the tape (a system error condition). In either case, the word count
and core address are updated. RRS clears the AC.

Load Punch Buffer Sequence (PLS} Octal Code: 6026

Operation: The ASCII character in AC bits 4 - 11 is transmitted
to the high-speed punch. PLS does not clear the accumulator.

Skip on Punch Flag (PSF) Octal Code: 6021

Operation: The contents of the PC are incremented by one so that
the next segquential instruction is skipped.

Punch String (PST) QCtal Code: 6020

Operation: PST allows a user program to punch a string of charac-
tses. Before executing PST, load the AC with the beginning address

of a 2-word block where:

11-16.5

word 1: contains the negative of the number of characters
to be punched.

Word 2: contains the beginning address - 1 of the string to
punched; the characters should be right justified
one per word,

After execution of PST, the system takes only as many characters as
fit in the punch buffer; it then makes the appropriate adjustment

to word 2 to indicate a new starting address and to word 1 to indi-
cate the reduced character count. It returns to the instruction
following the PST which may be a JMP .-2 to continue the transfer.
If the character count is reduced to zero, the instruction following

PST is skipped. The AC is cleared by PST.

IL.ine Printer Print (LPC) ' Octal Code: 6666

Operation: The ASCII character in bits 4 through 11 of the AC are
placed into the line-printer buffer to be printed. LPC does not
change the AC.

Line Printer Skip on Flag {LSF) Octal Code: 6661

Operation: The contents of the PC are incremented by one so that the
next sequential instruction is skipped.

Line Printer Send-A-String (LST) Octal Code: 6660

Operation: LST allows the user program to print a string of charac-
ters. Before executing LST, load the AC with the beginning address
of a 2-word block, where:

Word 1: Contains the negative of the number of characters to
be printed.

Word 2: Contains the beginning address -1 of the string to
be printed; the characters should be right justified
one per word.

After execution of LST, the system takes only as many characters as

fit in the punch buffer; it then makes the appropriate adjustment to

word Z to indicate a new starting address and to word 2 to indicate

11-17

the reduced character count. It returns to the instruction following
the PST which may be a JMP .-2 to continue the transfer. If the
character count is reduced to zero, the instruction following PST

is skipped. The AC is cleared by LST.

Load Status Register A (DTXA) Octal Code: 6764

Operation: DTXAa allows a user program to read and write records
(129~word blocks}) on DECtape. Load the AC with the beginning address

of a 3-word block, where:

Word 1: contains:
Bit 1 Meaning
0-2 contains the transport unit select number,
3 is set to 1 to read/write in reverse
4-5 should be g
6-8=2 for read data function,
=4 "for write data function"
9-11 should be @
Word 2: contains the DECtape block number.
Word 3: contains the beginning core address - 1 of a 2@1 (octal)

word buffer.
After DTXA is given, the DECtape request is placed in the DECtape
request queue. Control does not return to the user until the request
has been honored or an error has occurred. DTXA does not update word
3. The AC is cleared by DTXA.

Skip on Flags (DTSF) Octal Code: 6771

Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

11-18

Read Status Register B (DTRB) Octal Code: 6772

Operation: The content of DECtape status register B is loaded into
the AC. This instruction is also used with the card reader and RK@5.

See Read Statuns (RDS)} for details.

Read card Alphanumeric RCRA) Octal Code: 6632
Read card Binary (RCRB} Octal Code: 6634
Read card Compressed (RCRC) Octal Code: 6636

Before executing the above instructions, load the AC with the address
minus 2 of an 80 word buffer. A card is read and the data is put
into the buffer in the same form as the corresponding hardware IOT.
The UUQ returns in the AC the number of characters successfully
transferred to the user's buffer. (See also 6772 - RDS.)

Disk Load Address and ge (DLAG) Octal Code: 6743

Allows the user to read or write on the RK8E. To use, load the
AC with the address of a three word block, where

Word 1: Bit 0 = 0 for a read,
= 1 for a write
Bits 3-8 contain the number of pages to read/write,
1 to 40.
Bits 9-10 contain the drive number 0 to 3.
Bit 11 contains the high order sector address.
Word 2: contains the core buffer address minus one,

Word 3: contains the low order sector address.

11-19

Upon return, the AC contains the number of blocks transferred.

To determine error conditions, see 6772-RDS.

The disk transfer is made in 400 (octal) word blocks. Each RKO05

drive contains 14540 (octal) blocks. To specify the initial block
number, the high order bit goes into word 1 of the parameter block,
and the'remaining 11 bits into word 3. If the transfer requests an
odd number of pages on a write, the last page of the last block on
the disk will contain zeros. Upon return, the AC contains (P+1)/2,

where P is the number of pages successfully transferred.

Read Status (RDS) Octal Code: 6772

The contents of the device status register are placed into the AC.

The information obtained pertains to the RK8E, DECtape, or
Card Reader, depending on which was most recently used. The
contents of the device status register are:

RKBE: RKBE Status Register

w
|_I.
rr

Assiggment

Control done

(13

Heads in motion
Seek fail
File not ready

Busy error

LL]

Time out error

Write lock out error

CRC error

Data request late

o W oo - s W= O
"

’_I

Drive status error

| o
=

Cylinder address error

11-20

DECtape: TCO8/TCOl Status register B
Bit_O: Error flag

l: Mark track error

2: End of tape

3: Select error

4: Parity error

5: Timing error

1l1: DECtape flag (normal)
The status register for DECtape may also include 4¢gF or 44¢1.
These are software generated errors such as block number out of range.
Card reader: The device status register contains the address of the
last word of data transferred to the user's buffer. In addition,
the device status retister may contain 7777. This indicates that
CTRL/B followed by S was typed while a DECtape or RK@5 transfer was

in progress, and the transfer was not finished.

11.5 PROGRAM CONTROL

There are a number of ways that the status of a running program
can be changed. The program can be terminated in one of three ways:
by execution of a HLT, by the user typing CTRL/B followed by S to
force a program halt, or by a program error which forces Monitor to

terminate the program after printing an error message.

It is also possible for the status of a running program to change
without it being terminated. First, the user program can request
that it handle its own program error conditions. In this case, Mon-
itor does not terminate a job on an error; instead, it transfers con-
trol to a user error handler., This error handler then determines
what the error was, by a CKS instruction and takes appropriate action.
Monitor also provides the program with an interrupt key, CTRL/C.
If the user types a CTRL/C, the Monitor unconditionally transfers
control to a restart address. Thus, the user program can handle

its own restarts.

11-21

Halt (HLT) QOctal Code: 7402

Operation: This instruction is used to stop the user program and
return control to Monitor., Executing HLT is equivalent to typing
tBS followed by RETURN.

Set Restart Address (SRA) Octal Code: 6417

Operation: This instruction allows the user to specify an address
to which control is transferred when an {C is typed on the user's
console, Load the AC with the restart address and execute SRA.

If 1 C is detected, the program’s input and output buffers are
cleared, the AC and Link are cleared and control goes to the re-

start address.

Set Error Address (SEA) Octal Code: 6431

Operation: This instruction allows the user to specify an address

to which control is transferred in the event of a system error., Load
the AC with an address before executing SEA, If a system error is
detected, Monitor simulates a JMS to the error address. The pro-
gram counter is stored in the error address and control transferred
to the error address +l1. AC, Link, and input/output buffers are

not affected. The error code of the system error is in STRO bits
9~11. The error routine must read these bits (by a CKS) to determine

the cause of the error, then clear them by means of a CLS.

The only error code that occurs, for example, in the course of
normal system usage is due to a hung device. This error occurs when
the user attempts to use a punch, line printer, or reader which is
not turned on, or allows the paper-tape reader to run off the end of
a tape. In the case of the line printer or the punch, the error
routine must release the device or the device must be turned on to
clear the error condition. The illegal IOT error probably means that
an assignable device IOT was executed without the device first being
assigned. Swap and file errors occur if a hardware error is detec-

ted while Monitor is swapping user programs or while reading or writing

11-22

file directories. These are system malfunctions from which there is
no recovery.

11.6 PROGRAM AND SYSTEM STATUS

Because EduSystem 50 programs run under control of a time-
sharing Monitor, it is important for them to determine their status
within the system and the status of the system as a whole. Several

I0Ts, listed below, have been defined for this purpose. .

Check Status (CKE) Octal Code: 6200

Monitor maintains for each user a complete set of status informa-
tion, his program’s running status and the state of his input/ocutput

devices. This status information, stored in three words, can be
accessed by a running program with the CKS instruction. Before

executing a CKS, load the accumulator (AC) with the address of

a three-~word block. Executing CKS gtores the three status words
{STRO, STRl, and DEVICE STATUS REGISTER) in the three-work block
and clears the AC.

The formats of these registers are;

STRO Bits

0 Run Bit User program is in the run state
1 Error Enable Program handles its own errors
2 JCOMBD Program was compute bound

3 JSPEEK User has R privilege

4 JSACC User is privileged account

5 JSIOT System use only

6 JSIOTC System use only

7 Not used Not used

8 JSINER System use only
9-11 Error Code System detected error condition

Illegal TIOT

Swap read error
Swag write error
Pisk file error
Bung device

AIHIBD

11-23

STR1 Bits

0 Timer Time is up
1 File 0 Internal file 0 is not busy
2 File 1 Internal file 1 is not busy
3 File 2 Internal file 2 is not busy
4 File 3 Internal file 3 is not busy
8 Delimiter There is a delimiter in the input buffer
6 Line Printer Output buffer is not full
7 Teleprinter Output buffer is not full
8 Reader Character in reader buffer
9 Punch Punch buffer is not full
10 Exror System error has occurred.
11 Wait Job is not waiting

Device Status Register: The contents of the Device Status Register
pertain to the card reader, DECtape, or RK@S as described under
the Read Status (RDS) IOT.

OR With Switch Register (0OSR) Octal Code: 7404

Operation: The content of the user's switch register is inclusively
ORed into the AC.

Set Switch Register (SSW) Octal Code: 6430

Operation: The content of the AC is stored in the user's switch
register. The AC is cleared.

Assembly language programs run under control of the Monitor.
The following IOTs are defined to allow a program to determine the
status of the system as a whole. |

Segqment Size (SIZE) Octal Code: 6614

Operation: The segment is the basic unit of on-line file storage.

The size of a segment {0400 octal) is returned in the AC.

11-24

Segment Count (SEGS) Octal Code: 6406

Operation: The number of available disk segments is returned in
the AC.

Account (ACT) Octal Code: 6617

Operation: The account number (of the job number in the AC) is re-
turned in the AC. If AC is 0, the account number for the current
job is returned. If the requested job does not exist, zero is

returned.

Who (WHO) Octal Code: 6616

Operation: The account number and password of the current job are
returned to the 3-word block whose address is in the AC and the AC

is cleared.

User (USE) Octal Code: 6421

Operation: Return in the AC the number of the current job.

Console (CQON) Octal Code: 6422

Operation: Return in the AC the console unit number assigned tc the
job whose number is in the AC, if that console number does not exist,

-1 is returned.

User Run Time (URT)) Qctal Code: 6411

Operation: Load the AC with the address of a 3-word block,

where word 1 contains the number of the job for which the run

time is sought. The run time is returned in the last two locations
of the block. If job 0 is specified, the run time of the current

job is returned. The AC is cleared.

Time-of-Day (TOD) Octal Code: 6412

Operation: Returns the time of day in the two locations starting

at the location of the address in the AC. The time of day is
returned in clock ticks since midnight. The AC is cleared. The
clock ticks 10 times per second.

11-25

RETURN CLOCK Rate (RCR) Octal Code: 6413

Operation: The number of clock ticks per second is returned in the

AC. The clock ticks every 100 ms, the AC will be set to 12 (octal).

Date (DATE) Octal Code: 6414

Operation: Returns the date in the AC. The format of this 12-bit
number is:

DATE= ((YEAR-1974) #12+ (MONTH-1)}) *31+DAY-1

Skip on EduSystem 50 (TSS) Octal Code: 6420

Operation: This instruction is used by programs which run under
both EduSystem 50 and on a standard PDP-8. Under EduSystem 50,

the instruction following TSS is skipped and the Monitor version
number is returned in the AC. On a standard PDP-8, the IOT has the

effect of a NOP instruction.

Quantum Synchronization (SYN} Octal Code: 6415

Operation: Upon execution of this instruction, the system dis-
misses the user program and sets it in the run state so that it will
be run again in turn. Ordinarily, this instruction is used to en-

sure a full time guantum to perform some critical operation.

Set Time (STM) Octal Code: 6416

Operation: The system provides a clock time for each user pro-
gram. By means of this IOT, the time can be set to "fire" after a
specified number of clock ticks have elapsed. Load the AC with
the time (in seconds) to prime the timer. Upon execution of the

STM instruction, the system sets the time to "fire" in the specified
number of seconds, clears the AC, and dismisses the job. After the.

specified time has elapsed, the job is restarted. Due to the time-

sharing environment, this time may vary by a second or two.

11-26

11.6 1/2 SPECIAL INSTRUCTIONS

The following instructions are usable only on certain TSS/8
systems, and are not included in the PALD symbol table.

Grt Flags (GTF) Octal Code: 6004

Operation: Upon execution of this instruction, the link is
placed into AC bit 0, and the EAE GT flag (if present) is placed
into AC bit 1. The rest of the AC is cleared. This instruction
is valid only on a PDP-8/E.

Restore Flags (RTF) Octal Code: 6005

Operation: Upon execution of this instruction, AC bit 0 is
pPlaced into the link and AC bit 1 ig used to set or clear the EAE
GT flag (if present). The AC is not changed by RTF. This instuction
is valid only on a PDP-8/E.

Skip or Greater Than Flag{SGT) Octal Code: 6006

Operation: If the system includes an EAE, and if its GT flag
is set, this instruction will cause the PC to be incremented by one
so that the next core location is skipped. This instruction is
valid only on a PDP-8/E.

In addition, all operate type instructions which the computer is
capable of executing may be used. This includes the BSW and MQ
instructions on any PDP-8/E, and all the EAE instructions on systems
which have an EAE.

11-27

11.7 PDP-8 COMPATABILITY

Programming EduSystem 50 in assembly language is very similar to
programming a stand-alone PDP-8. All instructions except the IOTs
operate identically in either case. As discussed previously, pro-
gramming such devices as the terminal and high-speed reader/punch for
Edusystem 50 is somewhat simpler. EduSystem 50 runs programs which
include timing loops. Thus, programs written for stand-alone PDP-8s
with terminal and high-speed reader or punch will run on EduSystem
50, although generally not as efficiently as programs which are
written specifically for EduSystem 50.

The same is not true for disk and DECtape operations because
EduSystem 50 uses a simplified programming structure for these
devices. The actual differences in coding are very small, It is a
simple task to adapt previously written code for EduSystem 50 disk
and DECtape.

There are a few standard changes which users generally make
in adapting PDP-8 code to EduSystem 50. Monitor does the echoing
rather than the user program. The TLS which does the echo can be
deleted and a DUP instruction added somewhere near the start of the
program. Also, for efficiency, the EduSystem 50 delimiter capa-
bility can be used. A KSB inlthe program determines what the

delimiters are.

Many PDP-8 programs execute a reader and punch IOT early in the
program, to initialize the device, whether they are actually to be
used or not. If the devices are free, they are assigned and thus
made unavailable to other users. If they are unavailable, the program
terminates on an illegal IOT. Thus, it is important not to execute

these IOTs randomly. If a disk card reader or DECtape is involved,

11-28

the actual transfer code must be altered to conform to EduSystem 50.
(The fact that core page 37, locations 7600 through 7777, is avail
able to EduSystem 50 programs is useful in making these changes.

New code can be placed in

the area normally reserved for the Binary
Loader.)

The mbst difficult code to convert is that code which operates
under interrupt. To be run under EduSystem 50, these programs must
be recoded so as not to use the interrupt.

I0oTs for nonexistent devices are ignored as are CDFs and CIFs.
It must be remembered that many IOTs have been redefined for use as
special EduSystem 50 instructions. 1In all other situations, EduSystem

50 remains compatible with stand-alone systems whenever possible.

11-29

APPENDIX a

EDUSYSTEM 50
MONITOR COMMAND SUMMARY

A.1 MONITOR COMMANDS

A Monitor command is a string of characters terminated by a
semicolon (;), a colon (:), or a carriage return (RETURN key).
Parameters of commands can be octal numbers, decimal numbers,
character strings, or single letters. 1In the following summary,

parameters are coded as follows:

Cl, C2,... represent octal numbers

pl, D2,... represent decimal numbers
L, L2,... represent single letters
gl, 82,... represent character strings

A.1.1 LOGGING IN AND OUT

KJOB used as an alternative to LOGOUT
LOGIN Cl 51 Request to login:
Cl =Iuser's account number

51 = user's password

LOGOUT Request to logout: processing and device
time are printed.
TIME Cl Cl = job number

A) If Cl is omitted and the user is
logged in, the processing time of
the current job is printed. 1If
Cl=0, or if the user is not logged
in and Cl is omitted, the time of day
ig printed.

A.1.2 DEVICE ALLOCATION

ASSIGN D Cl Reserve DECtape unit: Cl = DECtape unit numbex
ASSIGN K Cl Assigns a specific RK@5 unit
ASSIGN L1 Reserve device:

L1 = R for paper tape reader
P for paper tape punch
D for any DECtape unit
L for line printer
C for Card Reader
K for any RK@5 unit
RELEASE D Cl1 Release DECtape unit: Cl = DECtape unit number
RELEASE K C1l Release an RK@S5 unit: Cl = RK@5 drive number
RELEASE L1 Release device:
L1 = R for paper tape reader
P for paper tape punch
L for line printer

C for card reader

A.1.3 FILE HANDLING

CLOSE Sl Close fileg:

S1 = list of internal file numbers
CREATE S1 Create new file:

Sl = name of new file
EXTEND C1 D1 Extend length of file:

Cl = internal file number

D1 = number of segments to be added to
end of file

F CL Print information about an open file

Cl = internal file number

n-2

OPEN Cl1 s1 C2 Establish association bhetween internal file
number and file:
Cl = internal file number
Sl = file name

C2 = account number. If omitted, the user's
account is assumed.

PROTECT Cl C2 Protect a file:

Cl = internal file number

C2 = new file protection mask (See 10.3.4)
REDUCE C1 D1 Reduce length of file:

Cl = internal file number

number of segments to be removed from
end of file

Dl

RENAME Cl sl Rename a file:
€l = internal file number

sl new name of file

A.1.4 CONTROL QOF USER PROGRAMS

DEPOSIT Cl C2...Cn Store in core memory:
Cl = location
C2 = contents to be stored in location C1l

C3 contents to be stored in location Cl+]1, etc.

EXAMINE Cl D1 List specified contents:

Cl = first location
D1 = number of location to be listed, DIL10
{(decimal)
RESTART Print the program restart address

RESTART C1

START

START

BREAK

BREAK

DUPLEX

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

R 81

R 51

cl

cl

cl

sl

sl

sl

s1

Cl

RUN S1

Ccl

Cl

UTILITY COMMANDS

51

s1

51

cz2

c2

C2

RUN C1l sl

RUN S1 C2

Cc2

c2 C3

C3

c3 c4

RUN Cl sl C2

S

Set program restart address.

Restart user program.

Execute user program:

Ccl =

starting location

Print keyboard break mask.

Set kevboard break mask:

cl =

Echo

Load

Cl =

c2

il

c3

c4 =

new mask
typed characters on printer.

Core image:

owner's account number; if not specified

the user's account is assumed.

file address of first word to be loaded; if

not specified, # is assumed.

core address of first word to be loaded: if

not specified; ¥ is assumed,

core address of last word to be loaded; if
not specified, highest possible wvalue is

assumed.

Run system file:

51 =

i

Cl

name of file

beginning address; if omitted, # is

Run user file:

sl

cl =

c2 =

Stop

Save

name of file

owner's account nurber; if omitted,
account 1s assumed.

starting address; if omitted, 9 is
execution

Core image:

assumed.

the user's

assumed.

SAVE C1 51

SAVE C1 sl ¢2

SAVE Cl 81 c2 C3

SWITCH

SWITCH C1

TALK C1 sl

UNDUPLEX

USER

USER Cl

WHERE

Cl = owner's account number; if not specified the
uger's account number is assumed.

S1 = name of file

1l

Cc2 file address of first word to be saved: if

not specified, @ is assumed.

Print the current wvalue of the user's switch
register.

Set switch register:
Cl = word to be set
Send a message to console Cl:

Cl = destination console

sl message
Inhikit echo of characters typed to a user program

Print the user's job number, account number, and
console number, '

Print the job number, account number, and console
number of job Cl.

Print the current value of the user's PC, AC,
link, switch register, and FAE registers.

APPENDIX B

CHARACTER CODES

The AScII! character codes shown in the following table are
used by EduSystems as the argument in the CHR$ function. For
each ASCII code a2 segend acceptable form is permitited in CHRS.
The second code is obtained by adding 128 to the code given in
the following table. For example, CHR$ would print A in response
to either 65 or 193 as an argument. These codes are also used with
the CHANGE statement in EduSystem 50.

ASCII Code No. ASCII Code No.
Character (Decimal) Character {Decimal)

linefeed 10
formfeed 12
RETURN 13

space 32 e 64

! 33 A 64

" 34 B 66

* 35 C 67

$ 36 D 68

% 37 E 69

& 38 F 70

' 39 G 71

{ 40 H 72

41 I 73

* 42 J 74

+ 43 K 75

’ 44 L 76

- 45 M 77

. 46 N 78

/ 47 0 79

lAn abbreviation for American Standard Code for Information Interchange.

B-1

ASCII Code No. ASCII Code No.

Character (Decimal) Chafacter (Decimal)
0 48 P 80
1 49 Q 81
2 50 R 82
3 51 3 83
4 52 T 84
5 53 u 85
6 54 ' 1)
7 585 W 87
8 56 X 88
9 57 Y 89
: 58 2 30
; 59 [91
< 60 \ 92
= 61] 93
> 62] 94
? 63 -— 85

APPENDIX C

c.l STORAGE MAP

The system's storage allocation is illustrated below.

CORE MEMORY

T
O L USER ; USER

MONITOR | MONITOR | o USER || prOGRAM | PROGRAM | PROGRAM
4K 4K AK AK 4K 4K

DISK STORAGE

] T8 | TseIl
st 1P, INIT

i RS o) | mee 1y | JOB® T | o8 #2 //JOB#N FILES /Zru.es
MONITOR ;J|_-= SWAPPING &REA*+— FILE AREA——I

-

Figure C-1. EduSystem 50 Storage Map

C.2 FILE DIRECTORIES

There are two directories on the disk: the Master File Directory
(MFD) referenced mainly by the system, and the User File Directory
(UFD) , referenced by the user. One of the functions of the MFD is to
service the UFD. A UFD is a particular user's file directory con-

taining the names of programs he has created on the disk.

The UFD is a file like any other file except that its filename is
the project-programmer number and password. When a user is logged in
under a specific number and references the disk, he is actually refer-
encing his own file area on the disk through the UFD which has his |

project~programmer number as its name.

MASTER FILE DIRECTORY

USER FILE DIRECTORY

WORD 1 PROJECT NO. PROG. NQ.
{1 CHAR.) PAISS ' CHAR}

1Y CHAR | WOIRD (1 CHaR)

Il CHAR Y Fi|LE {1 CHAR
11 CHAR.] NAME {1 CHAR }
11 CHAR) RD 11 CHaR)

LINK TO NEXT ENTRY

LINK TOY NEXT EMTRY

[DI‘SK GUGTA

T Iu [PROTECTED BITS

CONSOLE TiME SEGMENT COUNT
CPL TIME DATE OF CREATION
WORD 8 POINTER TORETRIEVAL POINTER TO RETRIEVAL
o LINK TQ MEXT RETRIEVAL BLOCK
SEGMENT #1 SEGMENT #1
SEGMENT # 2 SEGMENT #7
SEGMENT # 3 SEGMENT #3
SEGMENT #4 SECMENT #4
SEGMENT #5 SEGMENT #5
SEGMENT # & SEGMENT 34
SEGMENT #7 SEGMENT # 7

Figure C -2,

System account numbers are a combination of a project number
and a programmer number. If expressed as a four-digit octal number,

the first two digits of the account number are the project number,

File Directories

and the last two digits are the programmer number.

APPENDIX D

ERROR MESSAGES

Message Program Explanation

ABORT BASIC BASIC can not run for some
reason. Perhaps the user's
disk quota is exceeded.

ARRAY OR RECORD USED BEFORE BASIC The RECORD statement must occur
DEFINITION
before any reference to it is
made. A DIM statement must occur
before an array is used. (RECORD

and DIM are placed at the begin-

ning of a program.)

BAD FILE FORMAT BASIC The program specified in response
to OLD PROGRAM NAME was not ac-
ceptable to BASIC., This is gen-
erally caused by: (1) trying
to load an obsolete compiled
(.BAC) file, or {(2) trying to
load a non-BASIC (FORTRAN or PAL-D}

program.

BAD FILE NAME BASIC The file name used is not wvalid;
e.g., it does not begin with a

letter.

BAD SLEEP ARGUMENT The argument of the SLEEP state-
ment must have a number greater
than or equal to 0, and less

D-1 than or egqual to 4095.

Message Program

Explanation

BAD VALUE IN CHANGE STATEMENT

CAN'T CREATE FILE

CAN'T DELETE FILE

CAN'T FIND LINE BASIC

CAN'T FIND "NAME" IN SYSTEM BASIC

LIBRARY

While performing CHANGE A TO AS,
one of the elements of the array
A was found to contain an illegal

value.

An OPEN statement tried to create
a file, but there is: (a) no
disk space available, (b) no file
name specified, or (¢) a null
string has been given as the file
name.

UNSAVE cannot delete a file. This
is usually due to¢ the fact that
another user has the file open,

or the file is protected with a

code > 20.

An attempt has been made to edit

a nonexistent line.

The requested OLD file cannot

be found.

Message

Program

Explanation

CHAIN TO BAD FILE

DEF STATEMENT MISSING

DEVICE BUSY

DIMENSION TOO LARGE

DISK FULL

DUPLICATE FILE NAME

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

The file specified by the CHAIN
has an invalid format; it is not

a BASIC format file. The "PROGRAM
IS..." message will follow this
error message. The program name

will be the name of the bad file.

A function needing a DEF statement

exists in the program.

The user tried to OPEN DECtapes
0-7, line printer, or paper tape
punch, but the device was unavail-
able, and there was no ELSE clause

in the OPEN statement.

Too large an array to fit in the

available core.

There is no more storage space
on the system disk, or the user
has exceeded his disk qguota.

An attempt has been made to SAVE
a program but one already exists

with that name.

Message Program Explanation

EXECUTE ONLY BASIC An attempt has been made to list,
edit, or alter a BASIC compiled

program. It may be run only.

FOR WITHOUT NEXT BASIC There is an unmatched FOR state-

ment in the program.

GET BEYOND END OF FILE BASIC Disk data file is too small to
have a record with the number
specified in the GET statement

at line n.

GET/PUT ERROR BASIC A hardware error occurred in GET
or PUT. (This is usually due to

a DECtape unit being write-locked.)

GOSUB-RETURN ERROR BASIC Subroutines are too deeply nested
or a RETURN statement exists out-

side a subroutine.

ILLEGAL CHARACTER BASIC The user attempted to use an il-
legal character in the statement

being processed.

ILLEGAL CONSTANT BASIC The format of a constant in the
statement being processed is not

valid.

Message Program R ExXplanation

ILLEGAL FORMAT BASIC The structure of the statement
does not agree with BASIC syntax.

ILLEGAL FCR NESTIHNG BASIC FOR NEXT loops are too deeply
nested or NEXT appears before FOR.

ILLEGAL INSTRUCTION BASIC A statement was used which is not
one of the legal BASIC statements.

ILLEGAL LINE NUMBER BASIC The format of the line number be-
ing used in a GOTO or IF statement
is not acceptable.

ILLEGAL OPERATION BASIC The expression being processed
does not agree with the BASIC
rules (this is probably due to
unmatched parenthéses).

ILLEGAL SYNTAX BASIC The expression in a statement
does not agree with the BASIC
syntax.

ILLEGAL VARIABLE BASIC An illegal variable was used
in an array.

IMPROPER ACCOUNT # BASIC A user leogged in under account

ABORT
+BS

numbers 1 f{system account} or 2
(system library) and tried to run

BASIC. This is prohibited.

Message

Program

Explanation

IMPROPER DIM OR RECORD
STATEMENT

INVALID DEVICE NO.

INVALID RECORD NO.

LINE TOO LONG

MISUSED TAB

MISUSE OF CHRS

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

Syntax error in DIM or RECORD
statement, or an array name
that was previously dimensioned

is reused.

The device number in the file
I/0 statement is not between 0
and 11 inclusive, {or X and 11
inclusive where X is a number

set by the system manager).

The record number must be a
number which is greater than

or equal to 0 and less than or
equal to 4095. For DECtape I1/0
the maximum record number is
limited further by the DECtape

gize.

Too much hasg been typed.

The TAB function was used in
an invalid manner. TAB can ap-

pear cnly in PRINT statements.

The CHR$ function was used in
an invalid manner. CHRS$, like
TAB, can appear only in PRINT

statements.

Message

Program

Explanation

MORE?

NEXT WITHOUT FOR

NQ END STATEMENT

ON INDEX OUT OF RANGE

OUT OF DATA

PROGRAM IS "progname"

PROGRAM NOT FOUND

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

BASIC

Not enough values have been en-
tered in response to an INPUT
command. The rest of the values
may he entered.

The NEXT statement indicated has

no preceding FOR statement.

All programs must have an END

statement,

The value of the index is less
than one, or greater than the num-

ber of statement numbers.

. An attempt was made to READ more

data than was supplied by the user.

This message may immediately fol-
low an error message, to identify
the current program in a series
of CHAINed programs. If there is
no CHAIN, this message will not

occur.,

The file which the user tried to
access with a CHAIN statement does
not exist in his disk area. The

PROGRAM IS message will also occur.

Message Program Explanation

PROGRAM TOO LARGE BASIC The program is too large to be
executed. Make it smaller.

STACK OVERFLOW BASIC The user programmed a situation
in which the expression is too
complibated to be executed.

SUBSCRIPT ERROR BASIC A negative subscript was used
for an array.

SYSTEM I-0 ERROR BASIC BASIC was unable to perform the
desired disk I1/0.

TIME LIMIT EXCEEDED BASIC The number of statements executed
by a job has exceeded the maximum
established by the system manager.
Generally, some error was made and
the program is caught in a loop.

TOO MUCE INPUT, EXCESS BASIC Too many values have been entered

IGNORED
in response to an INPUT command.

UNDEFINED LINE NUMBER BASIC The line number appearing in a

GOTO or an IF-THEN statement does

not appear in the program.

Message Program Explanation
UNOPEN DISK UNIT BASIC - The user tried to do a GET,
PUT, or UNSAVE to device 8
or 9, without a file being
previously opened on the device.

WHAT? BASIC The editor cannot understand
the command given.

ACCOUNT ERROR CAT A directory listing has been
requested for an account number
which CAT cannot find.

EFERRCR IN MFD OR UFD CAT A directory is bad. The system
may have to be rebuilt.

SYSTEM ERROR CAT The system has returned an error

code when CAT attempted a file

operation.

Message Program Explanation

CAN'T ASSIGN DECTAPE COPY An attempt has been made to use
a DECtape which cannot be as-
signed, probably because it is
assigned to someone else.

CAN'T DELETE: NAME COPY The named file cannot be deleted
because it is protected.

DECTAPE FULL COPY There is not room on the DEC-
tape for the file.

DISK FULL COPY The disk is full.

?ERROR COPY A command line may have been
typed incorrectly.

SELECT ERROR COPY A DECtape unit is either not set
to REMOTE or is WRITE PROTECTed
and copy is trying to write.
Type ST to try again,

COMMAND ERROR DECODE A command line is formatted

improperly, one of the listed
files cannot be found, RUBOUT
has been pressed, the disk is
full for output, or there has

been some kind of file error.

Message Program Explanation

PROTECT ERROR DECODE An attempt has been made to write
into someone else's file, write
into one's own file which is pro-
tected or open to another user,
or read someone else's file which
is protected.

200.00 FOCAL Manual start given from console.

?01.00 FOCAL Interrupt from keyboard via CTRL/C.

201,40 FOCAL Illegal step or line number used.

?01.78 FOCAL Group number is too large.

701.96 FOCAL Double periods found in a line
number.

?01.;4 FOCAL Group zero is an illegal line
number.

?01.:5 FOCAL Line number is too large

702.32 FOCAL Nonexistent group referenced by DO.

202,52 FOCAL Nonexistent line referenced by DO.

?202.79 FOCAL Storage was filled by push-down
list.

203.05 FOCAL Nonexistent line used after GOTO
or IF,

?03.28 FOCAL Illegal command used.

?04.39 FOCAL Left of = in error in FOR or SET.

?04.52 FOCAL Excess right terminators encoun-
tered,

?204.60 FOCAL Illegal terminator in FOR command.

Message Program Explanation

?204,:3 FOCAL Missing argument in display
command.

?05.48 FOCAL Bad argument to MODIFY.

?206.06 FOCAL Illegal use of function or number.

?06.54 FOCAL Storage is filled by variables.

?207.22 FOCAL Operator missing in expression
or double E.

?07.38 FOCAL No operator used before parenthesis.

?207.:6 FOCAL Illegal function name or double
operators.

?707.:9 FOCAL No argument given after function
call,

?08.47 FOCAL Parentheses do not match.

?209.11 FOCAL Bad argument in ERASE.

?10.:5 FOCAL Storage was filled by text.

?11.35 FOCAL Input buffer has overflowed.

?720.34 FOCAL Logarithm of zero requested.

?23.36 FOCAL Literal number is too large.

?26.99 FOCAL Exponent is too large or negative,

?228.73 FOCAL Division by zero reguested.

?30.05 FOCAL Imaginary square roots required.

Message Program Explanation

?30.71 FOCAL Undefined library command.

?230. 0 FOCAL Bad argument or missing argu-
ment to library command.

?31., 7 FOCAL Illegal character, unavailable
command, or unavailable function
used.

?31.42 FOCAL No such name in library directory.

?31.43 FOCAL Attempt to enter a duplicate name
in the directory.

?31.44 FOCAL Library directory is full.

00 FORTRAN-D Mixed mode arithmetic expression.

01 FORTRAN-D Missing variable or constant in
arithmetic expression.

03 FORTRAN-D Comma was found in arithmetic ex-
pression.

04 FORTRAN~-D Too many operators in this expres-
sion.

05 FORTRAN-D Function argument is in fixed-

| point mode.

06 FORTRAN-D Floating-point variable used as a
subscript.

07 FORTRAN-D Too many variable names in this
program.

10 FORTRAN-D Program too large, core storage
exceeded.

11 FORTRAN-D Unbalanced right and left paren-

theses.

Message Program Explanation

12 FORTRAN-D Tllegal character fpund in this
statement

13 FORTRAN-D Compiler could not identify this
statement

14 FORTRAN-D More than one statement with same
statement number

15 FORTRAN-D Subscripted variable did not appear
in a DIMENSION statement

16 FORTRAN-D Statement toc long to process

17 FORTRAN-D Floating-point operand should have
been fixed-point

20 FORTRAN-D Undefined statement number

21 FORTRAN-D Too many numbered statements in
this program

22 FORTRAN-D Too many parentheses in this state-
ment

23 FORTRAN-D Too many statements have been
referenced before they appear in
the program

25 FORTRAN-D DEFINE statement was preceded by
some executable statement

26 FORTRAN-D Statement does not begin with a
space, tab, C, or number

0240 FORTRAN-D System file error. One of the

D~14

FORTRAN components cannot be found
or the disk is full, preventing
FORTRAN from proceeding. Try re-

calling FORT.

Message Program Explanation

3100 FORTRAN-D Illegal operator on compiler stack.

3417 FORTRAN-D Pre-precedence error.

61458 FORTRAN-D Could not find FOSL on system
device; if the error occursg,; it
may be necessary to relcocad FORT
and FOSL.

6223 FORTRAN-D Error while loading the Compiler.

6226 FORTRAN-D Same as above.

6257 FORTRAN-D Same as above.

6724 FORTRAN-D No END statement on source device.

6746 FORTRAN~-D Same as above.

7114 FORTRAN-D Same as above.

0l Checksum error on FORTRAN binary
input

02 Illegal origin or data address on
FORTRAN binary input

04 Disk input-cutput error

05 High-speed reader error

06 Illegal FORTRAN binary input device

11 Attempt to divide by zero

12 Floating~point input data conver-
sion error.

13 Illegal op code

14 Disk input-output error

Message Program Explanaticn

15 Non-FORMAT statement used as a
FORMAT

16 Illegal FORMAT specification

17 Floating-point number larger than
2047

20 Square root of a negative number

21 Exponential negative number

22 Logarithm of a number larger than
2047

40 Illegal device code used in READ
or WRITE statement

41 System device full, could not
complete a WRITE statement

76 Stack underflow error

77 Stack overflow error

L.OAD ERROR LOGID The file given as input is not a

| valid binary file.

DUPLICATE ACCOUNT # LOGID An attempt has been made to define

| an account, but the account number
already exists with a different
password.

LOGGED IN ~- NOT DELETED LOGID A user is logged in under an ac-
count which the manager is attempt-
ing to delete.

NQOT FOUND LOGID An attempt has been made to delete

an account which cannot be found.

Message

Program Explanation

OPEN FILE - NOT DELETED LOGID An account cannot be deleted be-
cause one of its files is open to
some other user.

RESTRICTED ACCESS LOGID Accounts 1, 2, and 3 cannct be de-
leted by LOGID.

RESTRICTED ACCESS 1BS LOGID LOGID can be run only under ac-
count 1,

SYSTEM ERROR LOGID An erfor code has been returned
from a file operation. Possibly
someone has a file open belonging
to an account which is being dele-
ted.

Message Program Explanation

ALREADY LOGGED IN MONITOR The user tried to log in on a
console which is already in use.

BAD DIRECTORY MONITOR A request cannot be honored be-
cause a disk directory is invalid.

BAD FILE NAME MONITOR An invalid file name has been given

BUSY MONITOR The user attempted teo talk to a
console which is currently printing
or on which another user is typing.

DEVICE NOT AVAILABLE MONITOR A device which a user tried to as-

D-17

sign is not present on the system,
or is temporarily busy and will be

free in a few seconds.

Message Program Explanation
DIRECTORY FULL MONITOR A request cannot be honored

because the user's directory
is full, or his disk quota

ig exceeded.

DISK FULL MONITOR A request cannot be honored
because the digk is full.
DISK ERRCR FOR JOB MONITOR There has been an error while
reading or writing in a disk
file.
MYFILE EXCEEDING MONITOR The user has extended a file
DISK QUOTA

beyond the allowed disk quota.
The amount of extra space
(grace} the user is allowed
is determined by the system
manager. This message is
informational only.

FAILED BY n SEGMENTS MONITOR An EXTE command cannot be com-
Eletgg Egcause the ggsﬁ or direc-

ory is full, or the disk quota
would be exceeded.

FILE IN USE MONITOR A file ca. 0> be altered because
it is open to another user, or
possibly twice to one user.

FILE NOT FOUND MONITOR A file cannot be found.

FILE NOT QPEN MONITOR A file request has been made, but
there is no file open on the inter-
nal file number which has been

given.

FULL MONITOR The system is full. Another user
cannot log in until one of the
present users logs out.

HUNG DEVICE FOR JOB MONITOR A device which the user tried to
use is not responding. For the
paper tape punch and line printer,
this message will be repeated un-
til the device is turned on or

released.

Message

Program

Explanation

ILLEGAL IOT FOR JOB

ILLEGAL REQUEST

LOGIN PLEASE

PROTECTION VIOLATION

SWAP ERROR FOR JOB

MONITOR

MONITCOR

MONITOR

MONITOR

MONITOR

D-19

The user has tried to execute an
IOT which is illegal. This can
mean that either he has tried to
uge a device which is not avail-
able, or he has executed a privi-
leged I0T, but is not in the privi-

leged condition-at the time.

The user requested an illegal com-
mand. This error usually results
when some parameter has been given
an incorrect value or the request
refere to a facility not owned

by the user.

The user attempted to use a console
which is not logged into the

system.

A reguest cannot be honored because
of a file's protection, or because

it is open more than once,

These has been a disk error while

swapping the user's program,

Message Program Explanation

TYPE +BS FIRST MONITOR The user typed a command which
cannot be honored, while a pro-
gram is running. The user should
type CTRL/B followed by S, a
carriage return, and then enter
his command. He may then type
START to continue running the pro-

gram.

UNAUTHORIZED ACCOUNT MONITOR The user attempted to log into
the system with an invalid account

number or password.

WAIT FOR 1/0 MONITOR A command cannot be honored be-
cause of I/0 in progress. Wait

a few seconds and try again.

LC Non-Fatal &An invalid character was typed
BASIC in response to an INPUT state-

ment.
LN Non-Fatal An attempt was made to compute

the leogarithm of zero or a nega-
tive number. Zero is used for

the result.

ov Non-Fatal Overflow - the result of a cal-
BASIC
culation was too large for the
computer to handle. The largest
possible number is used for the

result.

Messaae Program Explanation
PW Non-Fatal An attempt was made to raise a
BASIC
negative number to a fractional
power. The absclute value of
that number raised to the frac-
tional power is used.
R} Non-Fatal An attempt was made to compute the
BASTC
square root of a negative number.
The square root of the absolute
value is used for the result.
UN Non-Fatal Underflow - the result of a calcu-
BASIC
lation was too small for the com-
puter to handle. Zero is used for
the result.
/0 Non=-Fatal Zero divide - an attempt was made
BASIC
to divide by zero. The largest
possible number is used for the
result.
BE PAL-D Two PAL-D internal tables have

overlapped. This situation can
usually be corrected by decreasing
the level of literal nesting or
number of current page literals

used prior to this pocint on the

page.

Message

Program

Explanation

DE

DF

IC

ID

IE

PAL-D

PAL-D

PAL-D

PAL-D

PAL-D

System device error -~ An error

was detected when trying to read
or write onto the system device;
after three failures, control is

returned to the Monitor.

Systems device full - The capacity
of the system device has been ex-
ceeded; assembly is terminated and

control is returned to the Monitor.

Illegal character - An illegal
character was encountered other
than in a comment or TEXT field;
the character is ignored and the

assembly continued.

Illegal redefinition of a symbol -
An attempt was made tc give a pre-
viously defined symbol a new value
by means other than the equal sign;

the symbol was not redefined.

Illegal equals - An equal sign was
used in the wrong context.

Examples:
TAD A+=B the expression to the
A+B=C left of the equal sign
is not a single symbol
or, the expression to
the right of the equal
sign was not previously

defined.

Message

Program

Explanation

Ir

ND

PE

SE

Us

PAL-D

PAL~-D

PAL-D

PAL-D

PAL-D

Illegal indirect - An off-page ref-
erence was made: a link could not
be generated because the indirect

bit was already set.

The program terminator, $, is nmiss-

ing.

Current nonzero page exceeded - An
attempt was made to:
a. override a literal with an
instruction, or
b. override an instruction with
a literal; this can be corrected
by
(1) decreasing thelnumber of
literals on the page or
{2) decreasing the number of

instructions on the page.

Symbol table exceeded - Assembly
is terminated and control is

returned to the Monitor,

Undefined symbol - A symbol has
been processed during pass 2 that
was not defined before the end of

pass 1.

Message Program Explanation

ZE PAL-D Page 0 exceeded - Same as PE

except with reference to page 0.

COMMAND ERROR PIP An illegal option has been entered.
DISK I/0 ERROR PTP Self-explanatory.
DIRECTORY FULL PIP The file specified for output

cannot be written into because

the user's directory is full.

DEVICE NOT AVAILABLE OR PIP A device cannot be assigned or is
HUNG
hung. Hung devices usually result

from having the device turned off.

FILE NOT FOUND FIP The file listed as input cannct
be found.
LOAD ERROR (nnnn} PIP A SAVE format paper tape was not

read properly. nnnn = the final

checksum.

OUTPUT FILE IN USE PIP The ocutput file cannot be written
into because some other user has

that file open.

Message Program EXplanation

PROTECTED PIP A file cannot be accessed because
of protection.

*%**SYSTEM ERROR*** PIP The disk is full.

DISK FULIL

ARE YQU SURR? PTITR The user is trying to zero a
device. To proceed, type Y.
Type anything else otherwise.

BAD CARD TRY AGAIN? PUTR When PUTR tried to read a card,
it did not receive 39, 40, or 80
columns. Typing N and a carriage
return will cause PUTR to close
the output file, or typing anything
else will cause PUTR to try reading
once again.

BAD INPUT DEVICE PUTR An attempt has been made to input

| from a device which is output only,

such as LPT:.

BAD QUTPUT DEVICE PUTR An attempt has been made to output
to an input-only device, such as
PTR:.

BAD SWITCH PUTR A switch (characters following a
slash) is invalid.

BAD SYSTEM DIRECTORY PUTR The system directory is invalid.

CAN'T ASSIGN DEVICE PUTR The listed device cannot be

. assigned. Type any character

and try again, or type CTRL/C
to give up.

Message Program Explanation

CAN'T DELETE PUTR The listed file could not be
deleted.
CAN'T OPEN INPUT PUTR The file listed as input cannot

be opened.

CAN'T OPEN OUTPUT PUTR The desired output file cannot

be opened.

CREATE ERROR PUTR A file with the desired name
cannot ke created on the system
disk. Perhaps one with that name

already exists and is protected.

DECTAPE STATUS B ERROR PUTR An error has occurred while read-

ing or writing a DECtape. The
error code is in the switch
register, which can be found
by typing CTRL/B, then W, then

RETURN
DIRECTORY FULL PUTR The DECtape or RK@5 directory
has no more room.
ILLEGAL SYNTAX PUTR PUTR cannot understand the command

which was typed.

ILLEGAL UNIT PUTR The unit number for DECtape or

RKSE was invalid.

INPUT ERROR PUTR There has been an error while

reading from the input device.

LINE TOO LONG PUTR The command line just typed was
D-26
too long for PUTR.

Megsage Program FXplanation

NOT UNDER ACCOUNT 1 PUTR PUTR must never be run under
account 1.

NO END OF FILE PUTR When reading a BASIC file, the
physical end of the file was
found before the legical end
of file.

NO FILES FOUND PUTR The user has reguested some
operation, but PUTR has found
no files to operate upon.

QLD DECTAFPE PUTR An attempt has been made to
output to a DECtape which is
neither 0S/8 nor PUTR format.

QUTPUT FILE TOO LARGE PUTR There is not room for the
output file.

PUTR2 APPEND ERROR PUTR2 PUTR2 could not successfully
append itself to PUTR. Per-
haps PUTR is being used by
another user, has already had
PUTR2 appended to it, is not
the same version as PUTR2, or
the disk is full.

RKFS I/0 ERROR PUTR There has been an error while
reading or writing on the RK@5.
The status can be found in the
switch register, which can be
found by typing CTRL/B followed
by SW and RETURN.

RKZ5 NOT READY? PUTR The RK@5 is not ready or write-
locked. Type CTRL/C to abort
the operation or any other
character to try again.

SELECT ERROR? PUTR A DECtape unit is not on remote
or not write enabled. Type a
carriage return to try again or
CTRL/C to abort the operation.

SYSTEM READ ERRCR PUTR There has been an error while
reading from the system disk.

SYSTEM WRITE ERROR PUTR There has been an error while
writing to the system disk.

USE DEL * PUTR zero is an invalid command for
S5YS:.

WHAT? PUTR PUTR cannot understand the

command just typed.

HOW TC OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed about cus-
tomer software problems and solutions, new software products, documenta-
tion corrections, as well as programming notes and techniques.

There are twe similar levels of service:

. The Software Dispatch
. The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/15
RSX~11D

DOS /BATCH
RSTS-E
DECsystem-10

A Digital Software News for the PDP-11 and a Digital Software News for
the PDP-8/12 are available to any customer who has purchased PDP-11 or
PDP-8/12 software. '

A collection of existing problems and solutions for a given software
system is published periodically. &A customer receives this publication
with his initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per-
formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main-
tained by Software Communications. Users must sign-up for the news-
letter they desire. This can be done by either completing the form sup-
plied with the Review or Summary or by writing to:

Software Communications
P.0O. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to DIGITAL's software should be reported
as follows: ‘

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.QO. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained from
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re-
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation

Software Distribution Center Software Distribution Center
146 Main Street 1400 Terra Bella
Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex-
change center for user-written programs and technical application infor-
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines., Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECUS Program Library Catalogs are routinely updated and contain lists
and abstracts of all progqrams according to computer line:

PDP-8, FOCAL-8, BASIC-§, PDP-12
PODP-7/9, 9, 15

PDP-11, RSTS-11

PDP-6/10, 10

Forms and information on acquiring and submitting programs to the DECUS
Library may be obtained from the DECUS office.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE ~The Society's technical newsletter, published bi-monthly,
aimed at facilitating the interchange of technical in-
formation among users of DIGITAL computers and at dis-
seminating news items concerning the Society. Circula-
tion reached 19,000 in May, 1974.

PROCEEDINGS OF -Contains technical papers presented at DECUS Symposia

THE DIGITAL held twice a year in the United States, once a year
EQUIPMENT USERS in Burope, Australia, and Canada.

SOCIETY

MINUTES OF THE -4 report of the DECsystem-10 sessions held at the two
DECsystem-10 United States DECUS Symposia.

SESSTIONS

COPY-N-Mail =A monthly mailed communigque among DECsystem-10 users.
LUG/SIG -Mailing of Local User Group {LUG) and Special Interest

Group (5IG) communigue, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publicationsg, and other DECUS
activities is available from the DECUS officeg listed below:

DECUS DECUS EURCPE

Digital Equipment Corporation Digital Equipment Corp. Internaticnal
146 Main Street (Eurcpe)

Maynard, Massachusetts 01754 P.0O. Box 340

1211 Geneva 26
Switzerland

Please cut along this line,

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with socftware should be reported on a Software
Problem Repcrt (SPR} form {see the HOW TO OBTAIN
SOFTWARE INFCORMATION page).

Did you find errors in this manual? If so, specify by page.

pid you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer

User with little programming experience

0
O
[J Occasional programmer (experienced)
O
(] student programmer

O

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

1f you do not require a written reply, please check here. []

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NQ. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Pastage will be paid by:

clilgliltiall

Software Communications
P, O, Box F
Maynard, Massachusetts 01754

digital equipment corporation

	000001
	000002
	000003
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13.0
	02-13.5
	02-13.6
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21.0
	09-21.1
	09-22.0
	09-22.5
	09-23
	09-24
	09-25
	09-26
	09-27
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16.0
	11-16.5
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	replyA
	replyB
	replyC
	replyD
	xBack

