USCeM2C
reference manudl

eolUs

Z0%0020
digital equipment corporation

.....

DEC-08-E20RA~-A-D

reference manudl

digital equipment corporation

First Printing, July 1975

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance to the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
Digital.

Copyright (:) 1975 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION pages, located at the back of
this document, explain the various services available to Digital soft-
ware users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM

LIMITED RIGHTS LEGEND

Contract No.

Contractor or Subcontractor: Digital Equipment Corporation

All the material contained herein is considered limited rlghts data
under such contract.

PREFACE

CHAPTER 1

1.1

°

R T T e
CECECENN SRR
NN

.
.

= wN -

-

S el

WWLWwwWwwww
AU WD

e
www
O 0o

=
ww
e

o e
= o

o e
°

FHEHERRE R
WWWWWwWwww

. ...

i e il

AU B_WWN
I_I

e
FNGFNIFS
N

=
(53]

FHRHREPE
A

Ao

NN NN

CONTENTS

TALKING TO THE COMPUTER
THE TERMINAL KEYBOARD

IMMEDIATE MODE

It's an Adding Machine!

Hierarchy

Arithmetic and Trigonometric Functions
Relational Operators

Using Letters as Variables

It's a Typewriter!

Character Strings

WRITING A PROGRAM

PRINT Statements: Printing a Message

END and STOP Statements: Halting a Program
CTRL/C: Emergency Stop

GOTO Statements: Changing Direction
GOSUB...RETURN Statements: Subroutines
ON-GOTO and ON-GOSUB Statements: More
Directions

LET Statements: Assigning Variables
Counters: Incrementing Variables

IF Statements: Testing Conditions and
Making Decisijions

FOR...NEXT Statements: Programming Loops
INPUT and LINPUT Statements: Guiding the
User

REMARK Statements: What's Happening
READ...DATA Statements: Number Crunching
RESTORE Statements: Using Data Again
Subscripts and Arrays: More Variables

DIM Statements: Dimensioning Arrays

DEF FN Statements: Do It Yourself Functions
Using Arithmetic and Trigonometric Functions
RANDOMIZE Statements: A Game of Chance

RUNNING A PROGRAM
RUN Statements
GOTO Statements

LISTING A PROGRAM

EDITING A PROGRAM
Before a Line is Stored
After a Line is Stored
Inserting Lines
Deleting Lines

EDIT Statements

iii

Page

vii

1-41

1-47
1-49
1-50
1-53
1-54
1-55
1-57

1-60
1-60
1-61

1-62

1-64
1-64
1-64
1-65
1-65
1-65

1.7 STORING AND RELOADING PROGRAMS VIA PAPER
TAPE

1.8 ERASING A PROGRAM
1.8.1 SCRATCH and BYE Statements
1.8.2 DELETE Statements

CHAPTER 2 CARD READER OPERATIONS

2.1 MARKING THE CARDS
2.1.1 Control Command Field
2.1.2 Line Number Field
2.1.3 Keyword Field

2.1.4 Character Field

USING THE CM8E CARD READER
1 Controls and Indicators

.2 Card Handling Procedures

3 On-Line Operation

USING THE CM8F CARD READER

1 Controls and Indicators

2 Card Handling Procedures

.3 Off-Line Operation

4 On-Line Operation

RUNNING PROGRAMS WITH THE CARD READER
CDR: Assigning the Card Reader

4

4.1

4.2 Entering Data from Cards

4.3 Entering Data from the Terminal

CHAPTER 3 SYSTEM MANAGER INFORMATION
3.1 LOADING THE EDUSYSTEM 20
3.2 READ-IN MODE LOADER
3.3 ANSWERING SYSTEM DIALOG
APPENDIX A ERROR MESSAGES
APPENDIX B BASIC SYNTAXES
APPENDIX C ASCII CHARACTER CODES
APPENDIX D CONFIGURATION TAPES AND 0S/8 OPERATION
D.1 CONFIGURATION TAPES
D.1.1 Version A Reconfiguration
D.1.2 Version B Reconfiguration
SAVING EDUSYSTEM 20 ON 0S/8
.% Version A Storage

Version B Storage

D.3 ASSEMBLING EDUSYSTEM 20 UNDER 0S/8

iv

Number

Yrrws$ NNNNDNDNNDN -
[I O

H w0 o NJoubdhWwWwNhNFENDRF

= o oo

NNI\IJN
[
Uk WN

2-16

wwN

I
N
~

FIGURES

Typical Terminal Keyboards

Range of Legal Numbers

Educational Mark Sense Card

120 LET A=B+C

300 DATA 8.1,6,4.32,"END"

Card Field Layout

Control Command Field

Line Number Field

Keyword Field

Selecting Alphabetic Characters and the
Dollar Sign Symbol

Selecting the Characters: <, >, and ;
Selecting Numbers, Period and Comma
Selecting Special Characters
Selecting Special Characters in Card
Column 40

Specifying Card Continuation
Correcting Errors with RUBout

CM8E Card Reader

CM8E Controls and Indicators

CMB8F Card Reader

CM8F Controls and Indicators

Loading the RIM Loader

Checking the RIM Loader

TABLES

Scientific Notation Examples

Arithmetic and Trigonometric Functions
Relational Operators

CM8E Controls and Indicators

CM8F Front Panel Controls and Indicators
CM8F Rear Panel Controls

RIM Loader Programs

)
[}
Q
(]

NNMNNMNNDNNDNDRF -
|
AU WNNDEF N

NN
[|
O 00 0

2-9
2-10
2-11
2-12
2-13
2-18
2-19
3-3
3-4

Page

1-7
1-10

1-11

2-13
2-20
2-22
3-2

PREFACE

This manual is provided to fill the needs of three types of users:

a. Students
b. Advanced Programmers
c. System Managers

Students can learn fundamentals of programming the Edusystem 25 in
the BASIC language by reading Chapters 1 and 2. Examples which
illustrate the use of a BASIC statement often require an under-
standing of other statements. For this reason, each section in these
chapters contains information based on previous sections. Students
should be encouraged to learn new material and to reinforce existing

knowledge at the same time.

For students, this manual is most effective when terminals are avail-
able. Experimental programs should be tested and run as new topics
are learned. Access to the computer is the most important single

factor in learning how to program.

Advanced programmers can use this manual as a reference source. Each
BASIC statement is explained and syntax requirements are provided in

each section and in Appendix B for easy reference.
Chapter 3 contains information on initializing the PDP-8/E computer

and instructions for use of optional system programs. Most of this

material is directed to the system manager.

vii

The following conventions are observed in this manual:

GOTO line number

Where clarification is required in the examples
used in this manual, underlined copy denotes
information printed by the system on the terminal;

copy not underlined indicates user-typed entries.

This symbol is the notation for typing the
carriage return (CRor RETURN) key on the terminal.

Braces indicate optional elements in a statement

syntax.

Capital letters indicate the exact format of
statements; small letters denote the logical
content of elements in the statement. 1In this
example, the word GOTO must appear as shown,
while an actual number must be substituted for

"line number".

viii

CHAPTER 1

TALKING TO THE COMPUTER

1.1 THE TERMINAL KEYBOARD

The terminal you are using may be an alphanumeric display terminal or
a teleprinter (hard copy) terminal. 1In most cases these terminals
operate identically, so this manual uses the word terminal when

referring to all of these devices.

Terminals are used to relay your instructions to the computer, telling
it to carry out specific operations. The computer (or system) per-
forms the required operations and prints the results on the same
terminal. It also prints error messages on the terminal when you
make certain mistakes. A list of these error messages appears in

Appendix A.

Diagrams of typical terminal keyboards are shown in Figure 1-1.

To type a character on the terminal, simply press the appropriate
key. For example, to type the letter P, press the key on which P

appears.

Some keys have two characters printed on them. For example, the
number 3 on the top row of keys has a number sign character, #, above

it. This number sign is a shifted character.

There are two SHIFT keys located at the left and right ends of the
bottom row of keys. To type a shifted character, hold down either
SHIFT key while typing the character.

This manual represents a shifted letter with the combination:
SHIFT/Character.

M%)|51E- CARRIAGE RETURN

0OOOOOOOOROO®

cleJololclclolelcloleleEle
COPOOOOOROOOE

T @@@@0@@@@@0

CONTROL KEY SPACE) DELETE OR RUBOUT

TELETYPE KEYBOARD

CARRIAGE RETURN

DUHOCOOOOHDOBW

() DEHEOHOHEOEEEEE]
HHHEHEHEOOEOE) (E
#HHEHEHOUDHEOOOEM

SPACE j

RUBOUT OR DELETE

CONTROL KEY (

V1@5 / LA3@ KEYBOARD

= D CE BB L BT EE] L e]
N I O
3 O O
I I I Y N A

SPACE

VT50 / LA36 KEYBOARD

Figure 1-1
Typical Terminal Keyboards

1-2

Similarly, to type the combination CTRL/Character, hold down the
CTRL (Control) key, located at the left side of the keyboard above
the SHIFT key, while typing the character.

Use the space bar to insert spaces as you type. This makes your

printouts and expressions easier to read.

Finally, locate the key labelled RETURN or CR (for Carriage Return) .
It is on the upper right side of the keyboard. This is the key that
actually transmits your typed message to the computer. For this
reason, it is the most important key on the keyboard and the one

most frequently used.

Once you have some familiarity with the terminal keyboard, you are

ready to communicate with the computer.

1.2 IMMEDIATE MODE

There 'is only one basic difference between an adding machine and a
computer: the computer can remember. It can perform instructions
you give it immediately or it can perform them at a later time.

When the computer system performs your instructions immediately
(i.e., in "immediate mode"), the computer works like an adding

machine. It is very fast and it has many sophisticated features
adding machines don't have, but basically in immediate mode it's

an adding machine.

This section describes how to use the computer in immediate mode.
So for now, think of the computer as an adding machine.

1.2.1 It's an Adding Machine!

To add two numbers, type in the word PRINT, then type in the first
number, a plus sign (+), and finally the second number. Now review the
information you have typed on the terminal. If you've made a mistake,
type the RUBOUT or DELETE key to backspace and erase the incorrect
character. Each time the RUBOUT key is typed, the system erases one

more character.

For example, suppose you type:

FRINT 4 +- 7

To remove the minus sign, type the RUBOUT key three times, which
removes the 7, the space, and the minus sign. Now retype a space
and the 7. The printed line now looks like this:

FRINT & += Fo__ 7

To execute the line you just entered, type the RETURN key. In computer

printouts, carriage returns are denoted by, /.

For example, to add 45 and 15, type the following line:

FREIMNT 45 + 415_)/

Since you are in immediate mode, the computer immediately prints the
answer on your terminal: 60 and then READY. Note that on some
terminals zeros are slashed (@) to differentiate them from the capital
letter 0. When the computer types READY, it is finished performing

your ‘instructions and is ready to accept further directions.

If you have access to a terminal while reading this manual, don't be
afraid to experiment with the computer, since you can't damage it

from a terminal. In fact, you can learn more by actually experimenting
than you can from a manual alone.

1-5

Subtraction is accomplished in a similar manner, with the use of a
minus sign (-), as shown below. The items underlined in this print-
out indicate the system prints them on the terminal.

FRINT 45 - 15,/
26

RERDY

Multiplication is accomplished by using an asterisk (*):

FRIMT 45 # 154/

e -
=N

RERADY

Division requires a slash character (/):

To raise a number to a power, use the up-arrow (+) or caret (*) sign.
(This can be typed as SHIFT/N on some terminals. The terminal used
in this manual prints a semi-circle for this character.) For
example, 8 squared is:

FRINT &8 — & </
&4

EERDY

The arithmetic operators discussed above can be combined to form
longer expressions. For example, consider the gravity formula in
physics: F=G(M1)(M2VD2. In order for the computer to understand
this formula and give a value for F, it would have to be written:
G*M1*M2/D42. Of course, since you haven't defined a value for G,
M1, M2 or D, the computer assumes the value of each of these is
zero. So it can't give you an answer, it can only give you an error
message.

FRINT GkMisMzZ/D"2_)
ERROF k1

RERDY

There are 48 different errors which can occur on your computer system.
Error 3, shown above, occurs when you attempt to divide by zero. The
complete list of all 48 errors appears in Appendix A of this manual.

Tt is often convenient to express very large and very small numbers
in a kind of short-hand. Programmers use scientific notation, which
is a method of multiplying numbers by powers of ten. For example,
100 is really 102, 1000 is 103, etc. The number 300 can be expressed
as 3 x 102. When the exponent is negative, of course, the number

is a fraction or decimal. For example, .005 can be expressed as

5 x 10-3. The BASIC language uses the letter E to replace the

characters, x 10. Table 1-1 shows scientific notation examples.

Table 1-1
Scientific Notation Examples
Number Scientific Notation BASIC Notation
1000 103 1E+3
360 3.6 x 102 3.6E+2
-22000 -2.2 x 10* —2.2E+4
.00041 4.1 x 1074 4.1E-4
-.07 -7 x 1072 —7E-2

The largest number you can represent in this manner is about 1lE+38
(i.e., a one followed by 38 zeroes); the smallest decimal is about
1E-38 (i.e., a decimal point followed by 38 zeroes and then a one).

In both cases, negative numbers are also allowed.

Figure 1-2 shows the range of numbers allowed in the EduSystem BASIC
language. Zero is also allowed. Notice that this diagram is not

drawn to scale.

- +
-1E+38 -1E-38 ‘3) 1E-38 1E+38
2%%2 %%%%%a%%%%a E%%%
b4
\ NOT ALLOWED /‘
Figure 1-2

Range of Legal Numbers

1.2.1.1 Hierarchy - If more than one arithmetic operation appears
on a line, the computer performs the operation with the highest
priority first. The order of priority in the BASIC language is:

exponentiation 4
multiplication * (* and / have equal priority)
division /

- +
addition (+ and - have equal priority)
subtraction - :

Consider this example:

FRINT = + 4 » £,/
27

RERDY

Since multiplication has a higher priority than addition, in the
above example, 4 and 6 are multiplied together first and then 3 is
added to the result.

If two operators have the same priority (e.g., multiplication and
division), the computer automatically assigns precedence from left

to right.

-
el
—
-
=
—|
1.0
+
L
™
na
]
Lo

Since multiplication and division have higher priorities than addition

and subtraction, the above expression is evaluated as follows:

4 and 6 are multiplied together; the result (24) is divided by 2;
that result (12) is added to 3; finally, that result (15) minus 9

yields the answer 6.
Parentheses can be used to change the order of precedence. The

operation(s) specified within parenthéses is always performed first.

For example:

MT & % (F-Z1_)

o
R al
1t

51
3t

RERDY.

I

The expression within parentheses, 7 minus 3, is evaluated first;
then the result (4) is multiplied by 5. '

Parentheses can also be nested within other parentheses. In that

case, the operation specified in the deepest pair of parentheses

is performed first.

F

J

v e
RS

[}

RERDY

HT

For example:

£

[xx}

o
R -

i
+
Lo

In the above case, the deepest pair of parentheses contain the

expression 8 + 4.

This is evaluated first. Then the result (12)

is multiplied by 20, since this expression is still in a pair of
parentheses. Finally, that result (240) is subtracted from 5.

When nesting expressions, always be sure the total number of left

parentheses equals the total number of right parenthesés.

1.2.1.2 Arithmetic and Trigonometric Functions - In the BASIC

language, the system recognizes certain 3-letter words as functions.

Table 1-2 lists these functions and their corresponding meanings.

Table 1-2

Arithmetic and Trigonometric Functions

Function

Meaning

ABS (expression)

ATN (expression)

COS (expression)

EXP (expression)

FIX (expression)

INT (expression)
LOG (expression)

MOD (expression,
(expression)

absolute value of the expression

arctangent of the expression; the result is
in radians

cosine of the expression in radians

e (2.71828...) raised to the power of the
expression

integer part of expression; truncate
decimal portion

integer value < value of the expression
natural logarithm (base e) of the expression

remainder of division of first expression
by the second

Table 1-2 (Cont.)

Arithmetic and Trigonometric Functions

Function Meaning

RND (expression) random number between 0 and 1

SGN (expression) 1 if the expression is positive; -1 if the
expression is negative; 0 if the expression
is zero

SIN (expression) sine of the expression in radians

SQR (expression) square root of the expression

TAN (expression) tangent of the expression in radians

o
To find the cosine of 0 , for example, type in:

1.2.1.3

of two or more variables.

FRINT COsc@l)

Relational Operators - Often a program compares the values

Use the set of relational operators shown

below to compare these values. Table 1-3 shows the operators and

combinations of operators as well as their meanings.

Table 1-3

Relational Operators

ANV

equal to

greater then

less than

greater than or equ:sli to
less than or equal to

not equal to

Expressions which use these operators are frequently found in IF

statements (see Section 1.3.9). They are evaluated simply as true

or false.

1.2.1.4 Using Letters as Variables - Often in programming, you may

want to use different numbers in the same formula or equation. Instead
of rewriting the equation with the new numbers each time, you can
substitute a variable in the equation and redefine its value when
needed.

This BASIC feature is one of the most powerful in computer science.
It allows you to manipulate variables without even knowing what

their values are at any given time.

Assigning a variable can be accomplished simply by using an equal

sign (=). For example,
W= S5_J
Wo= 12
2 = ZEE-4_)

Any letter can be a variable in an assignment statement. In addition,
any letter followed by a single digit can be a variable. 1In this

way, 1l variables can be formed for every letter in the alphabet
(e.g., B, Bg, B1l, B2,...,B9). You can use up to 286 variables. If
you need more than that, see Section 1.3.14, Subscripts and Arrays.

Working with variables instead of constants allows a program to be

written and executed faster.

1.2.2 1It's a Typewriter!

You have already seen how the system prints answers to arithmetic
expressions automatically when you use a PRINT statement in immediate

mode. Actually, PRINT statements are far more versatile.

Multiple expressions can be evaluated and printed on one line with

the use of commas.

For example:

FRINT 1,2, %_)
1 .

Semicolons in the PRINT statement between expressions reduce the space

between printed values. For example:

FRINT 3; 2735 372 274_)

s o7 el

= =)

REARLY

In immediate mode, the computer can also act as a typewriter. It

can print alphanumeric messages with the use of the PRINT statement.
Quotation marks (") must be used before and after the message to be

printed. For example:

FRIMT "WHAT AM I DOING HERET®"_/
WHAT AM I OING HERE?

READY

Everything within a set of quotation marks is called a literal. A
literal is printed exactly as it appears, regardless of spelling
errors, syntax inconsistencies or logic mistakes. This is a good
example of how a computer does exactly what it is instructed to do...
no more, no less. Remember: the computer does what you tell it to
do, not what you thought you told it to do.

Literals and numeric data can be intermixed. For example:

FRINT “THE MUMEER OF DAYS IM A MWEEK IS" 7_)
THE HUMEER OF DAYS IN A WEEK IS ¢

FERDY

FRINT "DROES S EQUALY 4@+% %" _)

EAGINE
DOES B + & EQUAL 49 7

FEADY

FRINT “THERE ARE" €8 =+ 24 "MINUTES IM A DAY, ")/
THERE ARE 144@ MINUTES IN A DAY

RERDY

Remember, the system prints everything within a pair of quotation
marks, character by character. In the second example, above, the
arithmetic expression within the quotation marks is not evaluated,
it is merely printed. The expression outside of the quotation marks,

however, is evaluated automatically.

The PRINT statement is the most powerful statement in the BASIC
language and the one used most often by programmers to communicate
with the computer. It is used extensively in the following chapters

to help illustrate other features.

1.2.2.1 Character Strings - The EduSystem can manipulate literals

of six characters or less by assigning them a letter of the alphabet,
followed by the dollar sign ($). So you can have up to 26 string
variables defined at one time. (The number of separate string variables
can be increased by using subscripts. See Section 1.3.14.) For

example,

g = "FAMOUS"_)/

FERDY

The string variable D$ is now defined. It contains the six characters,
FAMOUS. These characters are internally numbered 1 through 6.

The length of a string can be any number from 0 to 6. To find the
length of a string, use the LEN function as follows:

FRINT LENcCD#_)
&

READY

Portions of a string can be extracted by using the MID function:
FRINT MICCD$, S 22,/
us

READY

The MID function prints a specified number of characters (in the
above example, 2 characters) starting from a specified position (in
the above example, character #5) of a specified string variable (in

the above example, string variable D$).

The CAT function combines the contents of two strings as long as the
total number of characters is not greater than six. For example,

if two string variables are defined:

AE = “[0O "J
B$ = "IT!"_)J

a CAT function combines both strings as shown below:
FRINT CATCA$ BF2_J

Lo IT!

RERDY

Notice that combining two strings whose total number of characters
exceeds six results in the first string plus however many characters

can be used in the second string to total six:

FRINT CATCAE, D))
[0 FAM

READY

Finally, the CHR$ function is used to match an ASCII character code
to a character. As an example, the letter Q corresponds to character

code 81. This letter can be printed by executing the statement:
FRINT CHRiiEiQ‘/
4]

Other, non-printing characters can be output by using the CHRS$
function. The following special characters can be printed using the
CHRS$ function:

Bell CHRS$ (7)

Line feed CHRS$ (10)
Form feed CHRS (12)
Carriage return CHRS (13)

ASCII character codes are also useful in alphabetizing names and
words, since the codes correspond to the letters in alphabetical order.
Relational operators, =, >, <, >=, <=, <>, can be used with strings

in the same manner as they are used with numeric operations.

For a complete list of ASCII characters and their codes, see

Appendix C of this manual.

1.3 WRITING A PROGRAM

A program is a list of instructions the computer obeys. The computer
must execute these instructions, or statements, in the order you

specify.

Consequently, the system executes each statement completely before
going on to the next statement. Once it executes a statement, it
proceeds to the next statement immediately and begins to execute it

automatically.

As the programmer, you can direct the system in advance to execute
statements in a special order. This is accomplished within the
program itself. Once the program is written, however, the system

executes it one statement at a time.

Line numbers are used to order statements in a program. They must
appear in the program in ascending order. In the EduSystem, however,
you can type program lines in any order since lines are automatically

sorted as they are entered.

Normally, the system executes statements, one by one, from the lowest
numbered statement to the highest one. Of course, you can direct the
system to execute statements out of order, by using certain statements

in the program.

To enter a statement in a program, simply type in a line number,
leave a space, and then type in the statement. Any number from 1
to 2046 (but no commas or decimal points) can be used as a line
number. Store the entire line by typing the RETURN key, as if you
were executing a statement in immediate mode. Notice that in
immediate mode, when the line number is omitted, the statement is
executed; in the programming mode, the statement is simply stored

for later execution.

Leave an interval between line numbers in a program in case you want
to insert other lines between the ones you have written. Programmers
conventionally use a line numbering interval of 10 starting from
line 10.

10 PRINT...
20 PRINT...
30 PRINT...
40 PRINT...
etc.

Real pessimists, however, use a line number interval of 20.

To replace a statement in a program, simply retype the line number
of the old statement and type in the new statement. The new line
automatically replaces the old one.

To delete a line from a program, type the line number of the old
statement and then type the RETURN key. No trace of the deleted

line remains in computer memory.

Most of the statements discussed in the following sections can be
executed directly from a keyboard or from a program. Some, however,
can be executed only from a program while others can be executed only
in immediate mode. To differentiate these options, braces { } are
used in the syntax description (throughout this manual) to designate

optional items.

When braces enclose a line number, the statement can be executed

either from a keyboard or from a program.

When a line number appears without braces, the statement can be

executed only from a program.

When no line number appears before a statement, that statement can be

executed only from the keyboard in immediate mode.

Storage space can be saved by using the backslash character (\)

to separate statements on one line. For example, the statements:

188 FRINT ®
118 FRINT Y/
128 PRINT 2_/

can be stored as one line:

138 PREINT ®¥ % PRIMT Y “ PRINT &

In the program examples throughout this manual, however, each state-
ment is preceded by its own line number.

Finally, all statements in the BASIC language can be abbreviated by
typing only the first three characters of the word. For example,
the PRINT statement works equally well as PRI. You are permitted -
in fact, encouraged - to use the abbreviated forms whenever possible
to save time in writing programs. Throughout this manual, however,
in an effort to make the statements as self-explanatory as possible,

full statement names are used consistently.

In the sections that follow, this manual discusses how you can direct
the computer to do your work for you. Each programming statement is
discussed in a separate section so that you can refer to specific

statements without having to reread the entire manual.

1.3.1 PRINT Statements: Printing a Message

The PRINT statement is used to print messages on the terminal. 1In
addition, values of variables, expressions and constants can be
printed and lines can be skipped to separate outputs.

Syntax: {line number} PRINT {any combination of text and expressions}

Examples: 40 PRINT 9%2
PRINT "THIS IS IMMEDIATE MODE."
80 PRINT "THIS SUM IS" 278*Y
PRINT 14, 23%X, 19.3-44
90 PRINT

In the above examples, the statements without line numbers can be
executed in immediate mode, but the statements with line numbers
must be programmed. This is also the convention used in the following

sections.

The system evaluates constants or variables which follow the PRINT
statement and prints these numeric values on the terminal when the
PRINT statement is executed. A literal expression is printed when
the characters are enclosed in quotation marks. When nothing follows

a PRINT statement, the terminal simply skips a line in the printout.

Terminal paper is separated into five print zones, each containing
13 character spaces. When the system encounters a comma in a PRINT
statement, it immediately skips to the next available print zone.
For example, the statement:

PRINT 1,2,3

prints these three constants at the beginning of each of three print

zones.

FRINT 1,2, %_
1 z

EEADY

In the same way, literals are also printed at the beginning of print

zones.

To suppress this automatic spacing, use semicolons instead of commas.

For example,

FRIMT “"THIS IS REALLY", "ALL ONE LINE. ")
THIS IS REALLY ALL ONE LINE.
READY

FRINT 1;2:i%_J
iz =

B

FEADY

FREINT "THIS IS REALLY":; "ALL ONE LIHF.")
THIS IS REALLYALL OWE LINE.

Generally, a PRINT statement instructs the system to include a

carriage return and line feed operation.

This is why the terminal

is positioned at the left margin of the paper after each PRINT

operation.
after the last expression in the PRINT statement. A subsequent

cclon
PRINT

There
blank

statement then begins printing on the same line.

are two ways to skip over print positions on a page:

To suppress the carriage return/line feed, type a semi-

print

characters or use the TAB function. Any number of blank

characters can be printed in a PRINT statement between quotation

marks. For example:

FEIMT " "odgE "JUST TESTING FERBINAND")
&% JUST TESTING FERDINAND!

READY

The TAB function instructs the system to begin printing on the print
position specified. These print positions are numbered from the left
margin to the right, 1,2,3,...,72. The print position on which you
want to begin printing must be specified in the TAB function within

parentheses (e.g., TAB(12), TAB(M+5)). To print the word HERE
beginning on print position 30, for example, simply execute the follow-

ing 1line:

FRINT TRE<Z@> "HERE"_)
HERE

READY

PRINT statements are normally used to identify certain outputs in a
program. They are used frequently throughout this manual to form

explanatory headings in programs.

1-22

1.3.2 END and STOP Statements: Halting a Program

The END statement is used to terminate a program. When the system
reaches an END statement, it ceases execution and is ready to accept

new statements either in immediate mode or in a program.
Syntax: line number END

Example: 2000 END

Once you have typed the END statement with a line number, you have
written a program. The program may be short (one line) and it may
not do anything, but it is a program. All programs stop when they
reach an END statement. For this reason, END should always be the
last statement in the program. It should have the highest line

number.

In the EduSystem, an END statement is not required to terminate a
program. But since other systems and languages do require END
statements, this manual uses one in every program to develop the
habit.

The program shown below consists of a PRINT statement and an END

statement:

18 FRINT "THIS IS A PROGRAM!"
26 EMD

Notice that both statements have preceding line numbers. When this
program is run, the system executes the lowest numbered line first
(the PRINT statement) and then executes progressively higher numbered
lines (in this case, the END statement).

To run this program, type in the word RUN and type the RETURN key.

(Detailed information on running a program can be found in Section 1.4.)

RUN_J
THIS IS A FROGRAM!

READY

1-23

When the system executes the END statement, the program has run
completely. To re-execute the program, type RUN and the RETURN key
again. Since the program is stored in memory, it can be run over

and over again simply by typing RUN each time.

Sometimes it is necessary for a programmer to end a program in more
than one place. This can be accomplished with a STOP statement.

Syntax: line number STOP
Example: 40 STOP
Consider the following program!

1@ FRIWT "THIZ IS THE FIRST FART. "
2@ STOF

@ PRIMT “"THIS IS THE SECOMC FART.
46 EMD

Run this program.

RUN_J

THIS IS THE FIRST FART.

EERDY

Notice that the program halts execution when it reaches the STOP
statement on line 20. Therefore, lines 30 and 40 are never executed.
Actually, there is a way to begin program execution at a specific

line. See Section 1.3.4 or 1.4.3 for this information.

1.3.3 CTRL/C: Emergency Stop

The CTRL/C combination is used to abort a program and regain control
of the keyboard. On occasion, program execution continues when you
don't expect it to continue. The only way to stop program execution
from the terminal is to type CTRL/C. For example, consider the follow-

ing program:

18 PRINT
28 FPRINT
28 PRINT
48 PRINT
S8 FPRINT
&8 FRIMT
7@ FREINT
868 FREINT
968 FRINT
168 EM

R LI B SR PR I ORI

W ooo

If you decide to stop this program before it runs completely, type
CTRL/C while it is running. This prints the word STOP on the terminal.
A carriage return/line feed is performed after the READY message is

printed.

RUN_)

e b s [ra e

)
——I
o
o

REARLY

The program halts and you now have control of the terminal keyboard
once more. Program execution cannot continue from any place in the
program but the lowest numbered line (in this case, line 10). To
execute the program again, type RUN and the RETURN key.

CTRL/C is an emergency stop. It should only be used when the program
does completely unexpected things and there is no assurance that it
will stop by itself. The program listed on the next page happens

to be one of those cases.
Using CTRL/C while a program is running can sometimes lead to

dangerous situations, especially when you are handling data. Don't

use CTRL/C unless absolutely necessary.

1-25

1.3.4 GOTO Statements: Changing Direction

As mentioned before, the system executes statements in order, working
from the lowest line number to the highest. You can change this
order by using a GOTO statement in the program.

Syntax: {line number} GOTO line number

Examples: 20 GOTO 3000
GOTO 30

When the system executes the GOTO statement, it branches to the line

number specified in the GOTO statement.

The following example shows how the GOTO statement creates a pro-
gramming loop. Remember that an emergency stop is performed by
typing CTRL/C.

1@ PRIMT "HERE WE GO."

28 FRIMT “"HERE MWE GO AGAIMW. "
@ GOTO zZ@

48 END

RUN_J
HERE WE GC.

HERE WE GO AGAIN.
HERE WE GO AGAIN.
HEFE WE GO AGAIN.
HERE WE GO AGAIN.
ETOF

REALY

When you execute the GOTO statement in immediate mode, the system
locates the line specified by the GOTO statement and begins to
execute the program in memory from that line. For example, assume
the program shown below is in memory. (This program first appears in

Section 1.3.2.)

1@ FRIMT "THIS IS THE FIRST FART. "
28 STOR

@ FRIMT "THIS IS THE SECOME FART.
46 EMD

Executing a GOTO 30 statement from the keyboard instructs the system
to begin execution from line 30, as follows

GOTO ze_)
THIS IS THE SECOND FART.

EEADY

Instructions on how to run a program with a GOTO statement can be
found in Section 1.4.3.

1-27

1.3.5 GOSUB...RETURN Statements: Subroutines

When a certain operation must be executed a few times in a program

it is often convenient to write the operation (called a subroutine)
only once and refer to it throughout the program. This is accomplished
with GOSUB (go to subroutine) and RETURN statements.

Syntax: {line number} GOSUB line number

line number RETURN

Examples: GOSUB 200 50 GOSUB 1000

1000 statement

1100 RETURN

The subroutine to which the GOSUB statement refers can be anywhere
in the program, as long as it is immediately followed by a RETURN
statement. A program can have more than one GOSUB statement, but

each RETURN statement must correspond to at least one GOSUB.

When the system encounters a RETURN, control returns to the next line

after the previously executed GOSUB.

Your program can be laid out as shown below:

5 FPRIMT “THIS FROGEAM ILILUSTRATES THE USE OF GOSUE ANG RETURM. ™
1@ GOSUE 1@aa

2B FRIMT “THIS IS THE FIRST WRRT OF THE FROGRAM. "

6B GOSUBR 166a

4@ FRINT “THIS IS THE SECOND FART OF THE FROGRAM.

58 GOSUE 1868

68 PRIMT “THIS 1% THE THIRD FART OF THE FROGREAM.

78 GOSUE 1ooe

ea STOF

1886 FRIMT "AS YOU CAN SEE. "

1846 PRINT "A SUBROUTIME CAN EBE MORE THAN ONE LINWE LOMG. .. "
1620 PRINMT "REMEMEE® T FOLLOW EACH SUBROUTIWE WITH A RETURM. "
18z8 FEIMT

1648 RETURMN

16858 END

Terminal Output

RUN,
THIS PROGRAM ILLUSTRATES THE USE OF GOSUE AND RETURN.
AS vOU CAN SEE,

A SUBROUTINE CAN EE MORE THAN ONE LINE LONG. ..
REMEMEER TO FOLLOW EACH SUEROUTINE WITH A RETURN.

THIS IS THE FIRST FRRT OF THE FROGRAM.

AS YOU CAN SEE,

A SUBROUTINE CAN EE MORE THAN OME LIME LONG..
REMEMEER TO FOLLOW EACH SUEBROUTINE WITH A RETURHN.

THIS IS THE SECOND FART OF THE FROGREAM.
AS You CAN SEE.
A SUEBROUTIHME CAN EE MORE THAN OWME LIME LUONG..

FEMEMEER TO FOLLOW EACH SUBROUTINE WITH A RETURN.

THIS IS THE THIRD FART OF THE FROGRAN
AS YOUu CAN SEE.
A SUEBRQUTIME CAM EE MORE THAN ONE LIHE LONG..

FEMEMEER TO FOLLOW EACH SUERCOUTIWE WITH A RETLURH.

REALDY
Notice the STOP on line 80. This is a precautionary measure to
ensure the program cannot encounter a RETURN without previously

executing a GOSUB statement.

1.3.6 ON-GOTO and ON-GOSUB Statements: More Directions

The ON-GOTO statement permits the program to transfer control to one of
a set of line numbers depending on the value of a formula.

Syntax: {1ine number} ON expression GOTO line number
, line number, ...

Examples: 50 ON D GOTO 100, 200, 300
ON X-2 GOTO 110, 130, 180, 20

The expression is evaluated and then truncated to an integer. If the
integer value of the expression is 1, the program transfers to the
first line number specified; an integer value of 2 transfers the pro-
gram to the second specified line; etc. The expression after trun-
cation cannot be zero, negative or greater than the number of line
numbers in the list. If the value is any of these, the system ignores
the ON-GOTO statement and continues program execution at the next

line.

The ON-GOSUB statement is used in the same manner as ON-GOTO, dis-

cussed above.

Syntax: {line number} ON expression GOSUB line number
,line number,..}

Consider the following example:
468 ON T+1i GOSUE Sia, Sz@

The system transfers control to line 510 when the expression (T+1)
equals 1 and to line 520 when the expression equals 2. Notice that
in order for (T+1l) to equal 1, T must equal @#. Similarly when T=1,
the expression (T+l) equals 2. This example shows that you can
manipulate data any way you want in the expression of the ON-GOSUB
and ON-GOTO statements.

In immediate mode, ON-GOTO and ON-GOSUB begin program execution at
the specified line, similar to immediate mode GOTO and GOSUB state-
ments (see Sections 1.3.4 and 1.3.5).

1.3.7 LET Statements: Assigning Variables

The LET statement assigns a value to a variable.
Syntax: {line number} {LET} variable = expression

Examples: 30 LET X = 45
LET R4 = 32*M
S = A*T42/2

The word LET is unnecessary in EduSystems. Assignment can be
accomplished simply by using an equal sign (=), as shown in Section
1.2.1.4.

Consider the example shown below.

18 LET W = =

15 PRINT "YARIAELE W YARIAELE Z YARIAEBLES W+Z"
&8 FREINT W

I@ LET & = W # 166

4@ FPRINT M., &. MW+Z

45 W = 5
48 FRINT W, 2
S8 END

RUN_/

VARIAELE W VARIAELE 7 YARIAELES W+Z

E T@8 3A3

5 zam
RERDY

Notice that each LET statement for a specific variable supersedes
previous LET statements without affecting other variables. In this
way, a variable can be used over and over again and can equal different
values in the same program. You can print or perform arithmetic

operations on any variable at any time in the program.

S PRINT "POWERS 0OF 2

16 E = @

28 PRINT "2 TO THE ZERO FUMER ="; 27E
8 E = 1

4@ FEINT "2 TO THE FIRST FOWER ="; 27E
98 E = 2

€8 FPRINT "2 TO THE SECOND FOWER =": Z7E
ve@ E = = .

€@ FRINT "2 TO THE THIRD FOWER =%"; Z7E
98 E = 4

1@@ FRINT "2 TO THE FOURTH FUWER ="; Z7E
i1@ EMD

RUN_/
FOMERS OF 2
' TO _THE ZERO FOWER = 1

-

& TO THE FIEST FOWER = &

£ TO THE SECOWD FOWER = 4
& TO THE THIED FOWER = &

& TO THE FOURTH FOWER = 1€
READY

1-32

1.3.8 Counters: Incrementing Variables

You can use a form of the LET statement to count for you. Since each
LET statement in a program supersedes previous LET statements for the

same variable, a variable can be incremented as shown below.

40 LET G = G+1

or

40 G = G+l

This statement assigns a new value for G. Now the new value is equal
to the old value plus one. If G was originally 13, for example, it

is now 14. Of course, the variable does not have to be incremented

by only one each time; it can be incremented by any number or fraction.
In fact, it can also be multiplied by a factor, divided, raised to a

power, or decremented (subtracted from) .

Using variables as counters helps keep track of specific operations.

This information can be used later in the program. For example:

16 K = 1

2@ PRINT "THIS IS STATEMENT NUMEBER": K
@K o= Ko+

46 GOTO 2@

56 END

RUM_
THIS
THIS
THIS
THIS
THIS
STOF

TATEMENT MWUMEEE
TATEMENT MUMEEE
T
T

ATEMENT NUMEER
TATEMENT NUMEEE

B R [| o

aluafaln

iy ja pon

et bt | et et [t

READY

Be sure the GOTO statement specifies the correct line number. It
must not direct the system to execute the first LET statement. If
this happens, the variable K is always 1 or 2.

=
]

33

Even numbers can be printed:

i8 LET ¥ = 2

28 FPRINT V¥

2 LET ¥ = ¥ + 2
46 GOTO 2@

5@ END

RUN_
2 4 €6 &8 18 12 44 16

STOP

READY

0dd numbers can also be printed, simply by adjusting the first value

of the variable to an odd integer.

i@ LET U = -1

28 LET U = U + 2
28 PRIMT W;

48 GOTO zo

8 END

RUN_)
1 % 5 7 8 141 1% 45 17

cTOF

REARDY

A multiplication table can be generated easily by using a counter.

1@ FRIMT "MUMEER". “TIMES 2", "TIMES X", “TIMES 4"
28 N = @ '

I8 PRINT M. Z#M, Z*M, 4N

48 N = N + 1

6 GOTO =&

68 END
RUNL/
NUMEE R TIMES 2 TIMES z TIMES 4
f B @ B

1 = 3 4

5 4 3 B

z 3] iz

4 g iz i€

5 16 15 =@

&
STOF
READY

1.3.9 IF Statements: Testing Conditions and Making Decisions

The IF statement allows the system to branch to other parts of the
program when certain conditions are reached. As the programmer, you
specify the conditions and you specify where the program branches
to.

Syntax: {line number} IF expression THEN line number or
executable statement

Examples: 45 IF G = 99 THEN 3000
60 IF M * N>P THEN PRINT "FINISHED!"

A program may include certain computations that are executed over
and over again. Rather than typing CTRL/C to stop program execution,
use the IF statement to indicate how many times the computation has
been done. When a counter reaches a certain point, simply branch

to another part of the program.

For example, the program below extracts the square root from the first

ten consecutive numbers.

i@ FRINT "MUMEER", "SQUARE ROOT"
28 LET H = 1

8 PRINT M, SBROND

48 LET N = N + 1

S@ IF N = 11 THEN 7@
€8 GOTO %@
78 FRINT "THIS COMFLETES THE FROGRAM.
g8 END
RUN_J
NUMEER SOUARE ROOT
1 1
z 1. 414214
2 1 7iz@51
4 z
5 2. ZIEBEE
5 7. 44949
7 2 645751
g Z. Gogder
g z
1@ I. 162278
THIS COMFLETEG THE FROGRAM.
READY

Unless the specified terminal condition in the IF statement is true,
the program ignores the line and continues program execution on the
next thighest line number automatically.

In the above example, notice that the IF statement on line 50 directs
the program to branch to line 70 when the variable N is equal to 1ll.

By directing the program to line 70 from line 50, the GOTO statement

on line 60 is skipped over. When the expression (N = 11) is false,

the system ignores line 50 and executes the next highest line number,
line 60.

The IF statement is executed only when the expression is true; when
the expression is false, the system simply ignores the IF statement
and executes the next line number. In this way, the IF statement

is a powerful method by which you can instruct the system to execute

statements in the order you specify.

Once again, be sure to use the right line number in the GOTO state-
"ment. If, in the above example, you write 60 GOTO 20, N is redefined

after each programming loop and the program prints:

over and over again, since N never reaches 2.

Here is another example, showing how you can nest certain statements

between two or more counters.

i@ LET H = 1
C 28 FRINT "ON HAND HUMEER":; H: "1 HAYE:"
i@ LET F = 1
4@ PRINT F; "FINGERS"
5@ LET F = F + 1
«86 IF F > 5 THEN €@
78 GOTO 4@
€8 LET H = H + 1
~ 8@ IF H < X THEN 2@
168 END

In the above example, the number of hands, represented by variable H,
is incremented in line 80. This number is tested on line 90. If
the number of hands is less than 3, the expression (H<3) is true and
the program branches to line 20. On the other hand (pardon the
expression) if the number of hands equals or is greater than 3, the
system simply ignores line 90 and executes line 100 END. This is
because the expression (H<3) in the IF statement is false.

The number of fingers on each hand, represented by variable F, is
incremented in line 50, within the loop created by variable H. The

IF statement that tests the value of F is in line 60. When the
expression (F>5) is false, the system simply ignores line 60 and
executes the next highest numbered line, line 70. When the expression
is true, however, line 60 instructs the system to execute line 80

directly.
‘The output of this program is:

RUNA)
ON HAWD MUMEBER 1 I HAYE:
FIMGERS
FINGEERS
FIMGERS
FINGEES
FINGEERS
HAND HWUMEBER & I HAYE:
FINGEERS
FINGEERS
FIMNGEERS
FIMGERS
FINGERS

[}
LA N DN H T Ol ol pecal LU B LRNY | LS o

E

m

RDY

Other executable expressions can also be included in an IF statement.

For example,
20 IF X=15 THEN PRINT "END OF DATA"

Obviously, the system prints END OF DATA when the expression (X=15)
is true and does not print the message when X#15. In the latter case,
the system simply ignores line 20 and continues execution at the

next highest line of the program.

Similarly, any executable expression or statement can be included in
the IF statement. Some examples are shown below:

40 IF B=99 THEN X=X+1

90 IF P3> .001 THEN STOP

45 IF L*R2=3.14159 THEN INPUT "NEW RADIUS";R2
33 IF V$ = "NAME" THEN GOSUB 1200

When one of the statements on a multiple statement line is an IF
statement, all of the statements beyond the IF statement are executed
regardless of whether the IF expression is true. For example,

@ THEN FRINT "H¥=Z@" S\ PRINT "FIRST LINE"

28 IF ¥ K
5@ THEHM FRINT “"X=S5@" S PRINT "SECOND LINE"

i@ IF ¥
4@ EMD

18 ¥ = 5@

RUN/
FIRST LINE
S=5@
SECOND LINE

REARDY

In the above example, notice that the second statement on the multiple
statement lines 20 and 30 is always executed, even when the preceding
IF statement's expression is false. For this reason, it's best to use

IF statements on separate lines.

1.3.10 FOR...NEXT Statements: Programming Loops

On many occasions a FOR...NEXT statement can be used to replace an
incremented counter and an IF statement. Actually, FOR and NEXT

are two separate statements.

Syntax: {1ine number} FOR simple variable = expression
TO expression {STEP expression}

{line number| NEXT simple variable

Examples:
35 FORJ =1 TO 8 50 FORM =R + 2 TO Y STEP 3
70 NEXT J 100 NEXT M

The system keeps track of the variable specified in the FOR statement.
When program execution reaches the NEXT statement, the system auto-
matically tests to see whether the final value of the variable is
reached. If it is not, the NEXT statement increments the variable

by one and then branches to the line directly below the FOR statement.
When the final value of the variable is reached, the NEXT statement
allows the system to execute the next highest numbered line.

The optional STEP parameter in the FOR statement allows you to incre-
ment or decrement the variable by more or less than 1. Fractions
and variables can be used. Consider the example below.

18 PRINT "THESE RRE THE FIRST SIX NUMBERS. "
20 FOR P = 1 TO ¢

28 PRINT P;
46 NEXT P

S@ PRINT "FINISHED. "
£6 END

RUN./

THESE ARE THE FIRST SIX NUMEBERS.
1 2 2 4 S & FINISHED.

REALY

The FOR...NEXT loop can be of any length and loops can be nested, as

long as the same variable is not used for more than one loop.

Notice how much shorter and clearer the example in section 1.3.9
becomes by using FOR...NEXT loops. The left hand brackets define

the loops for easy analysis.

i@ FOR H = 1 TO 2
28 PRIMNT “0OM HAMD MUMBER": H:i "I HRVE:"
@ FOR F = 4 TO S
[4@ FRINT F; "FINGERS"
S8 MEXT F
8 MERT H
7@ END

RUN,)
ON HAND NUMEBER 1 1 HAVE:
i FINGERS
FINGERS
FINGERS
FINGERS
FINGERS
HAND NUMEER & 1 HAVE:
FINGERS
FINGERS
FINGERS
FINGERS
FINGERS

L
LS BN LPRN | DRl | ol pal [N (PN [N |

FEARDY

1.3.11 INPUT and LINPUT Statements: Guiding the User

The INPUT statement is used to enter information into the program.
Program execution halts temporarily while this information is typed

in.

Syntax: line number INPUT {variable ,variable,...,variable}
line number LINPUT string variable

Examples:

20 INPUT X
40 INPUT M, R$, G
50 LINPUT T$

Sometimes it is convenient to ask the person using your program to
enter information in the form of a numeric value or a literal. This

is accomplished with the INPUT statement.

The INPUT statement assigns the value(s) entered to the variable(s)
specified. The variable(s) can then be used in the program; LET
statements are not required. Any combination of alphanumeric

characters up to and including six characters can be input.

An INPUT statement prints a question mark (?) to prompt the user to
answer. Often the question mark is not enough to explain what in-
formation the program is looking for. So it is a good idea to first
print a message, in the form of a question, before executing the
INPUT statement. Remember: a semi-colon suppresses the carriage

return/line feed in a PRINT statement.

Consider the following example:

18 PRINT "THIS PROGRAM TELLS ¥QU HOW OLD YOU’LL EE IN THE YEARR za@a@. "
20 PRINT "DO YOU WANT TO KNOW";

30 INPUT L#

48 IF L$ = "NO" THEN 1e@

58 PRINT "WHAT IS YOUR FRESENT AGE";

68 INFUT A

7@ PRINT "WHAT YEAR IS THIS";

ga INPUT V¢

96 PRINT "YOU WILL BE "; A + 2@6@ - Y; “YEARS OLD IN THE YEARR Ze@a. "
188 END

RUN_J

THIS FROGEAM TELLS YOU HOW OLD YOU‘LL EE IN THE YERR 2@@6.
PO YOU WANT TO KHOW? YES</ -
WHAT 1S YOUR FRESENT AGEY 45

WHAT YERE 15 THIG? 497%a’

YOU WILL BE 4@ YEARS OLD IN THE YERR Z@AG.

EEARLY

A special form of the INPUT statement (but not the LINPUT statement)
allows you to print a prompting question without using a separate
PRINT statement. Use this form of the INPUT statement, separating

the input variable(s) from the question with a semicolon:

78 IHFUT "HHAT YEARK IS THIS": Y

More than one variable can be assigned in an INPUT statement. The

program below is a more general form of the previous one.

i@ FREINT "THIS PROGRAM TELLS YOU HOW OLD YOU“LL BE IN A GIVEW YEARR. "
26 IMFUT "YOUR AGE. THIS YEAR., THE YEAR YOU“RE SHOOTING FOR"; A. Y, VY@
Z6 FRINT "¥OU WILL EBE"; A + ¥& - ¥; "YEARS OLD IN THE YERR"; Y&

48 EM[

When running this program, enter the numbers requested in order. The
numbers must be separated by commas. Then type the RETURN key.

RUNL/

THIS PROGRAM TELLS YOU HOW OLD YOU’LL EE IN A GIVEN YEAFR.

YOS RCE. THIS YERR, THE VEAE VOU FE SHOOTING FORT 15, 1975, 2aia./
VOU WILL BE S50 YEARS GLD IN THE YEAR 2018

RERDY

As mentioned before, alphanumeric characters can be entered in an
INPUT statement when a string variable is used. String variables
can also be intermixed with simple numeric variables in the same

INPUT statement.

For more than six characters per string variable, use the LINPUT
(Line INPUT) statement. LINPUT accepts a line of characters up to
a carriage return. It separates this line into sections of six
characters apiece and automatically assigns each section to a sub-

scripted string variable.

Consider this example using an INPUT statement first:

i@ IMPUT "WHO WAS THE FIRST FRESIDEWT OF THE LWL 5 ": F#
8 FRINT F&
I8 ENMD

RUH4/

WMHO WAS THE FIRST FRESICDEWT OF THE W 5. % GEORGE HHSHIHGTDH‘)
GEORGE

READY

Normally, an INPUT statement accepts only the first six characters
of an input as the string variable (in the above ease, only the name
GEORGE) . Using LINPUT, however, the entire message can be accepted.
You must use separate PRINT statements to print questions when
executing LINPUT statements; including the message within a LINPUT

statement is not allowed.

i@
2a
a6

K34

4@
5@
6@
<]
ea
a@

RUN_J

PRINT "USING LINFUT STAHTEMENTS. "
PRINT “"WHO WAS THE FIRST FRESIDENT OF THE U. & ";
LINFUT F¢

H = F&(@>

FREINT N

FRINT F&Ci>

FRINT P$(2)

FREINT F&CZ2

FEINT

FRINT F&cl2; F$C23:P$C3)

ENWD

USING LINFUT STHTEMENTS.

MHO WAS THE FIRST FRESIDENT OF THE U. S % GEORGE WASHINGTON ./

iv

GEORGE
WASHI
HGTON

GEORGE MARSHINGTON

RERDY

In the above example, notice that the LINPUT statement creates sub-
scripted variables, where the zero element (i.e., PS$S(F)) contains
the number of characters, including imbedded spaces, subsequent
elements (i.e., P$(1), P$(2),...) each contain six characters. The
number of characters is stored as an alphanumeric string in the
variable P$(F). To use this number, you first have to convert it to
a numeric value with an assignment statement (in the above case,
line 35).

Although the subscripted string variables now all have values, the
simple string variable (in this case, P$) has no value, unless you
previously assigned it a value. More information on subscripted

variables can be found in Section 1.3.14.

When used in conjunction with the IF statement, INPUT allows you to
enter data up to a certain point. For example, in the program shown
below, input data is added together until 9999 is entered. This

creates a terminal condition.

1@ PRINT "THIS FROGRAM ADDS NUMBERS TOGETHER"
28 LET T =

a
i@ IMFUT “NEXT MUMEER": 1
4@ IF I = 9593 THEN 7@
g8 T =T + 1
€@ GOTO =6
78 FRINT "YOUR TOTAL IS": T
g6 END

RUH‘)
THIS FROGEAM ACDS MUMEBERS TOGETHER
HEXT MUMEER?
HEHT MUMEERY Z. &
HEXT HNUMEER?T ZE

HEXT HWUMEBER?T -1.7
HEHT NUMBER?Y 394
YOUR TOTAL IS =25

FEALDY

Notice that since the IF statement in line 40 directs the system to
line 70 when I = 9999, it is not added to the total (in line 50) .
So the printed total is the sum of all the numbers entered up to but

not including the last number (9999).

1-45

1.3.12 REMARK Statements: What's Happening

The :REMARK statement is used in a program to identify the entire
program or certain parts of the program to the programmer. The
information in a REMARK statement is ignored by the system and not

printed on any device.

Syntax: line number REMARK {any combination of characters}
line number ' {any combination of characters}

Examples: 20 REMARK HOW'S THIS FOR AN EXAMPLE??
50 ' YOU CAN USE APOSTROPHES FOR SHORTHAND.

Use the REMARK statement freely throughout your program to identify
specific program segments and what they accomplish. REMARK statements

are a great aid in separating sections for the programmer.

The apostrophe form of a REMARK statement can also be used on the
same line as a programming statement to identify what is happening

on the specific program line. For example,

116 LET A = 1 “SET UP STARTING VALUE.

128 LET E = 1@ “SET UFP TERMINATIHWG VALUE
1%6 PRINT R

146 A = A + 1 “ INCREMENT VARIAEBLE A.
156 IF A = B THEN 178 “ARE WE DONE?

168 GOTO 1z® TNO.

178 EMND “YEE.

=
1

46

1.3.13 READ...DATA Statements: Number Crunching

The READ statement, in conjunction with DATA statements, is used to

enter values of variables in a program.

Syntax: line number READ variable {,variable,...,variable}

line number DATA constant {,constant,...,constant}

Examples: 200 READ X,Y,Z 300 READ AS, K
600 DATA 2.34,45,-12.6 310 DATA "MONDAY", 4

The INPUT statement is inefficient to enter large amounts of values
into a program. The READ and DATA statements, however, can assign
values to variables when these values are known ahead of time.

Consider the following example:

i@ REMARE THIS FROGREAM AYERAGES FIYE HUMEERS.
28 READ A E.C,D.E '

I8 DATH 2. 6,5, 7. ,
4@ FRINT "THE AYERAGE OF THESE NUMEERS IS" C(A+E+C+0+EJ /S
S8 ENL

Lxal

RUH‘)

THE AYERAGE OF THESE NWUMEERS IS 5 &

EEADY

DATA statements can be located anywhere in the program before the END
statement. When the system encounters a READ statement, it searches
for the first DATA statement in the program and enters the first
value in that statement. If the READ statement asks for more than
one value, the system proceeds to the next value in the DATA state-
ment or moves to the next DATA statement.

For example:

186 DATA 1.,2,3
20 DATA 4

3@ READ A,B.C,D.E,F,G,H

48 DATA 5,6

50 PRINT R;B;CiD;E;F;iGiH

68 DATAH 7
78 DATA &
8@ END

Programmers generally find it convenient to place all of the DATA

statements together at the beginning or at the end of the program.

You can mix numeric variables with string variables in the READ

statement, but
corresponds to
expects to see
DATA statement

be sure the type
the type of data
a numeric value,

is a literal, an

of data requested in the READ statement
in the DATA statements. If the system
for example, and the next item in a

error message results.

When using literals in DATA statements, be sure to type the lines

without spaces after the last A in the word DATA. For example:

ie@ LATA “AEC" .9 . "DEF" . 41z - WRONG

i@e DATA“AECY, &, "DEF", 12

4

RIGHT

1.3.13.1 RESTORE Statements: Using Data Again - The RESTORE state-

ment is used to begin reading data again from the lowest numbered

DATA statement in the program.

Syntax: line number RESTORE

When a RESTORE statement is executed, the program enters the first
data items again in a READ statement. For example:

1@
2a
i@
46
Sa
ea
e
ga
sa

EEMARE. THIS FROGEAM SHOWS THE USE OF RESTORE STARATEMEMTS
DATH 4.2, 2,4, 5

DATA &, 7V, &, 3

FREAD A, B, C, DL ESF. G

FRINT A; EB;i CiDs EiFi G

RESTORE

FEAL ¥. Y. 2

FRINT ®iY: 2

EML

RUM_/

-
<

1-49

1.3.14 Subscripts and Arrays: More Variables

In addition to the 286 simple variables (from A to %Z9) and the 26
simple string variables (from A$ to Z$) you can use in a program,
arrays can store elements.

Arrays can be one-dimensional (e.g., R(8)) or two-dimensional (e.g.,
T(2,4)), but the same variable cannot be used for both one-dimensional
and two-dimensional subscripting. Each element in an array can have

a value assigned to it by an INPUT, READ, or LET statement.

18 REMARK THIS PROGRAM ASSIGNS YALUES TO A NUMERIC ARRAY.
28 LET VYi@» = . 14
3@ LET ¥Yiid = 42¢6
48 LET V(2 = 294
5@ LET V(X» = Zowe

€8 PRINT V(@x; VL) YO8 ¥(Z
78 EMND

2. 14 42 & FS c@@@

i@ REMARE THIS FPROGREAM ASSIGHMS LITERALS TO A STRIMG ARRAY

26 G$olrx = "ONE"

8 Ggogh = "THOY

48 G$oZ» = "THREE"

S8 FRIMT G#cdis. GFECZ2N, GECE2

68 EMD

EUH4)

ONE TWG THREE
RERDY

=
I

50

It is often easier to write a program with one array than with a

large number of different variables. For example, to store 15 even

numbers without an array, you must use 15 different variables.

18 REMAREK THIS FROGRAM STORES 15 EVEN MUMEERS THE LONG WAY.
268 READ A B, G, DL E,F, G H, I, J, K, L M N O

@ DATA 2. 4,6, 8,16, 18, 14, 16, 1&, 26, 22, 24, 26, 28, Z@

4@ FPRINT F; B Ci DG Es FiGo Hs I J5 K L Mi M O

56 END

RUN.
2 4

FEADY

You can easily see the problems that arise when 1,000 values or

10,000 values are to be stored in separate variables. Using an afray,

however, is considerably easier.
% REMAREK THIS FROGRAM STORES 15 EYEN HUMEERS IN AN AREAY.
i@ FOrR I = 1 TO 45
@ GoIy» = 2 % 1
468 MHEWT 1
5@ FOR M = 1 TO 15
66 FRINT GOMoI;
7 MNEKT M
g@a EMD
RUH;)
2 4 € & 1@ 12 14 416 418 2@ z2 24 & 28 @
RERDY

Notice that a variable canbe used to identify a specific element in
Different variables can be used for this purpose in a
In the above

an array.
program as long as you keep track of their values.
program, both I and M are used to identify specific elements in the

same array, G.

A two-dimensional array can be used. The first number in a two-
dimensional array identifies the column of the element and the second

number identifies the row.

For example, consider the array, Y, which has 20 elements as follows:

Col. 0 col. 1 Col. 2 Col. 3 Col. 4

Y(0,0) Y(0,1) Y(0,2) Y(0,3) Y(0,4)@——Row 0
Y(1,0) Y(1,1) Y(1,2) Y(1,3) Y(1l,4)——Row 1
Y (2,0) Y(2,1) Y(2,2) Y(2,3) Y(2,4)«@——Row 2
Y (3,0) Y(3,1) Y(3,2) Y(3,3) Y(3,4)«@—Row 3

Generally, programmers store values in two-dimensional arrays in row-
column order. To store the number 278 in each element of the above

array, use this program.

16 REMARK THIS FPROGRAM FRINTS A 4XS ARRAY

28 FOR I = @ TO =
2@ FOR J = @ TO 4
48 YcI,J» = 27e
58 NEXT J

€@ MEXT I

7@ EMND

RUN‘)

READY

In the above program, row zero (I = 0) is filled up first as J goes
from 0 to 4. Then row one (I = 1) is filled up as J goes from 0 to
4, and rows two and three are filled in the same way.

After running the above program, array Y is stored in memory. You
can determine the value of any element in array Y with a PRINT

statement in immediate mode. For example,

FRINT Yoz, 2x)

READY

To print all the values of the elements in this array, simply add a

print routine to the end of the program.

i@ EEMAREK THIS FROGRAM FRINTS A 4XS ARRAY.

28 FOR I = @ TO =
i@ FOR J = 8 TO0 4
486 YoI, Jx = 278
58 NERXT (J

60 NEKT I

€1 REMARE FRINT Y ARRAY ELEMENTS
62 FOR M = & TO =
FOR N = @ TO 4
FRINT YCM, Ny;
HEXT N
FRINT
78 FPRINT
86 NEKT M
9@ END

My
[Nl cull o I -

In this case, two PRINT statements are required: one cancels the
semicolon in line 66, allowing a carriage return/line feed; the other
skips a line between rows for a cleaner table of numbers.

RUN_/
278 27& 278 278 278
278 278 278 2re& Z7E
278 27 278 2re 27VE
278 2vg 278 gre EvE
READY
1.3.14.1 DIM Statements: Dimensioning Arrays - The DIM statement

prepares the system to work with arrays with a fixed number of elements.
In many systems, this is a required statement for array manipulation,
usually found in the beginning of programs; EduSystem BASIC does not

require it.
syntax: line number DIM array variable {,array Variable{,...}}

Example:

10 DIM A(l0), BS(2,5), G(8,8)

Define the size of arrays in the DIM statement, but remember that
each one-dimensional array also includes the zero column. Dimensioning

array L(4), for example, reserves five elements as follows:
L(0), L(1), L(2), L(3), L(4)

Similarly, a two-dimensional array has one additional row and one
additional column. For example, dimensioning array P(2,2) reserves

3 x 3, or nine elements as follows:

P(0,0) P(0,1) P(0,2)
P(1,0) P(1,1) P(1,2)
P(2,0) P(2,1) P(2,2)

1.3.15 DEF FN Statements: Do It Yourself Functions

In addition to the arithmetic and trigonometric functions discussed in
Section 1.2.1.2, you may want to define other functions for a par-
ticular program. The DEF FN statement provides a convenient method for
doing this.

Syntax: line number DEF FN letter (local variable {,variable{,...}})
= expression

Examples:

40 DEF FNM(R) = 3.14159*R42
10 DEF FNA(M1,M2,D) = G*M1*M2/D+2

The program shown below converts degrees from Centigrade to Fahrenheit.

18 REMARE CONYERT DEGREES FROM CEMTIGRARE TO FAHREMHEIT
8 DEF FMDOITx = 878 & T + 22

Z@ IMFUT "TEMFERATURE IMN CENTIGRADE DEGREES":; C

48 FRINT FNL<C» "FAHREMHEIT. "

5@ GOTO Zze

&6 END

RUN_/
TEMPERATURE IN CENTIGRADE DEGREES? ./
22 FAHRENHEIT.

TEMFERATURE IN CENTIGRADE DEGREES? 166/
212 FAHRENHEIT

TEMPERATURE IN CENTIGRADE DEGREES? -4@./
-40 FAHRENHEIT.

TEMPERATURE IN CENTIGRADE DEGREES?

STOF

READY

Notice that the function defined in line 20 as FND(T), is used in
line 40. The variable C replaces T in the above program as long as
it is in the correct form, FND(C). The letter D is a dummy variable,
used by the system only to identify the defined function. Up to 26
different functions (one for each letter of the alphabet) can be
defined in one program, but a separate DEF FN statement must be

used for each.

1.3.16 Using Arithmetic and Trigonometric Functions

The table im Section 1.2.1.2 lists and describes EduSystem's arithmetic
and trigonometric functions. Actually, you can write a program to
perform any one of the arithmetic functions, and it would be a good
programming exercise for you to do se. (Trigonometric functions can

be approximated by using Taylor's series.)

The built-in functions in EduSystem, however, provide a convenient
way to perform these operations. The program shown below, for
example, prints the hypotenuse when the other two sides of a right

triangle are input.

18 REMARE RIGHT TRIAMGLE FROGEAM.

26 IMPUT "LEWGTH OF FIRST LEG": L1

@ IMPUT "LEMWGTH OF SECOMWD LEG": LZ

48 FRINT "THE HYFOTEMUSE IS" S@ROLA™Z + L2720
S8 EMD

RUNZ/

LENGTH OF FIRST LEG? o/
LENGTH OF SECOND LEG? 4 </
THE HYFOTENUSE IS S

FEARDY

In the above example, notice the use of the SQR (square root) function

in line 40.

Adding the INT (integer) function to the program on line 45 instructs
the system to print out the hypotenuse length after truncating it to

a whole number. For example,

16 REMARK RIGHT TRIANGLE FPROGRAM.

28 INPUT "LENGTH OF FIRST LEG"; L1

2@ INPUT "LENGTH OF SECOND LEG"; L2

48 PRINT "THE HYPOTENUSE IS" S@QR¢(L1"2 + Lz2"2)

45 PRINT "THIS LENGTH TRUNCATED IS" INT(SGRC(L1i"2 + L2"2))
58 END

RUN S/

LENGTH OF FIRST LEG? 1 _/
LENGTH OF SECOND LEGT 1 I/
THE HYPOTENUCE 1S 1. 414214
THIS LENGTH TRUNCATED IS 1

.RERADY

Of course, if the result of the expression before truncation is an
integer, the INT function does not affect the result.

RUN L/

LENGTH OF FIRST LEG? S/
LENGTH OF SECOND LEGY 412_/
THE HYFOTEWUSE IS 1%

THIS LEHGTH TRUNCATED IS 1%

RERDY

1.3.16.1 RANDOMIZE Statements: A Game of Chance - The random num-
ber (RND) function Pproduces a random number between 0 and 1. This

is the only function that you cannot duplicate by conventional programs
ming methods. A given program using the RND function produces the
same random numbers each time it is run. For example,

1@ REMARK RANDOM NUMEER EXAMFLE
26 PRINT RND (-.&2143)

3@ PRINT RND ¢-. 521430

40 PRINT RND (-. 521430

58 END

RUN_/

. 2431684
_28gg41e
EEEEE

FEADY

The same random numbers are returned each time the program is run.

EUN}

. 2431684
. 2988412
EERCEE

RERDY

To calculate different random numbers every time, use the RANDOMIZE
statement. This statement is usually placed near the beginning

of a program, as shown below.

1-57

16 REMARK RANDOM NUMEBER EXAMPLE.
15 RANDOMIZE :

28 PRINT RND (-.5214ZX)

28 PRINT RND (-.35214Z)

48 PRINT RND (-. S5214Z2)

58 END

FUN</
1171918
EFCERES
TEg5°117

READY

Running this program again yields a different set of random numbers,
as follows:

FUM L/

The best arguments to use in the RND function are between 0 and -1.
They should have a large number of digits (up to 11), and the last
digit should be a 1, 3, 7, or 9. These rules help ensure the most

random numbers returned.

You can invent many games with the use of the RND function and the
RANDOMIZE statement, so that the chances of playing the game the
same way twice are remote. For example, the program shown below

challenges you to guess the number the computer is "thinking" of.

1@ REMARK “"GUESS MY NUMEBER" GAME.

20 RANDOMIZE

25 I =1

26 N = INT(1@@*RND(-. SS2ZEV))

4@ INFUT "GUESS MY NUMEER"; X

45 IF X = N THEN 93

5@ IF ¥ > N THEN PRINT ¥ "IS& TOO LARGE. "
€@ IF ¥ ¢ N THEN PRINT X "“IS TOO SMALL. "
g I = I + 1

9@ GOTO 4@

95 PRINT "YOU GOT IT IN" I "GUESSES!!®
16@ END

FUNL/

GUESS MY NUMEERT 5./
25 1S TO0 SHALL.

GUESS MY NUMEER? 75/
75 1% T00 LARGE.

GUESS MY NUMEER? &8/
5@ 1S TOO LARGE.

GUESS My NUMEER? S5/
=& 15 TO0 SMALL.

GUESS My NUMEER? S%

YOl GOT IT IN 5 GUESSES!!

[y}
[xy]

READY

1.4 RUNNING A PROGRAM

1.4.1 RUN Statements

To run a program you have just written, simply type the word RUN and
type the RETURN key.

Syntax: RUN

When the RUN statement is executed from the terminal keyboard, all
variables are set to zero and then the program currently in memory

is executed. When program execution is over, the system prints

the word READY, signifying the computer can now obey another instruc-

tion or set of instructions.

1-60

1.4.2 GOTO Statements

A GOTO statement, executed in immediate mode, directs the system to
locate the specified line and begin executing the program in memory
at that line. Values of all variables previously assigned are un-

changed. This is a convenient way to resume program execution from
a certain point in the program after a STOP statement halts the pro-

gram.
For example, assume the program shown below is in memory.

16 FRIMT "WHERE O WE GO FROM HERET"
28 STOF

I8 FREIMT "MEW YORE"

4@ STOF

S8 FRIMT "BOSTOM"

&8 STOF

T PRINT “DEMYVER"

ga EMD

Portions of this program can be executed by directing the system with

GOTO statements, as follows.

RUH
WHERE b0 WE GO FROM HERE?

READY

GOTO Vo
DENVER

READY

GOTO S@
EOSTON -/

RERDY

When using GOTO statements in immediate mode, be sure no program
information before the specified line is required in the remainder

of the program. Using a variable, for example, that was assigned
previously in the program creates illogical results. Also, accessing
a program in the middle of a FOR...NEXT loop or the middle of a sub-

routine results in errors 44 and 30, respectively.

1.5 LISTING A PROGRAM

To print the contents of your program on the terminal, type in the
word LIST and type the RETURN key.

Syntax: LIST {lst line number {,2nd line number}}
Examples:

LIST

LIST 40

LIST 35, 210

When LIST is executed without specifying the first or second line

numbers, the entire program in memory is printed on the terminal.

Specifying the first line number in the LIST statement instructs
the system to print only that line.

When both the first and second line numbers are specified in the
LIST statement, separated by a comma, the system prints both lines

as well as all of the lines between them.

If the program you have in memory is:

1@ PRINT "LIME ia&"
&8 FPRINT "LIME z@"
I8 FRINT "LIME Za"
4@ FRIMNT "LINE 4@"
S8 FRINT "LIMNE Sé"
&8 EMD

A listing can be obtained by executing LIST.

18 PRINT "LIME 18"
28 PRINT "LIME z@"
28 FRIMT “"LINE 38"
48 FPRINT "LIME 48"
o8 PRINT “"LIME Sa*
68 END

RERDY

A specific line can be printed by using the line number in the LIST
statement. For example:

LIST zé_J
2@ PRINT "LINE 2@"

READY

A group of lines can be listed in order by using two line numbers in
the LIST statement. For example:

LIST 26, 562/

2@ FRINT “"LINE z@"
@ PRINT "LIME Z@*"
4@ PRINT “LINE 46"
56 FRIWT “"LIWE S@°

1.6 EDITING A PROGRAM

A program may require editing either before a line is stored with
the RETURN key, or after the line is stored. Each situation has its

own editing procedures.

l1.6.1 Before a Line is Stored

Three keys can be used to correct typing errors: RUBOUT, <« (SHIFT/O),
ALT MODE (ESC on some terminals).

The back arrow, <, SHIFT/O on the keyboard, or RUBOUT is used to
delete a charater from a line. The system prints a back arrow or an
underline, deleting the last character from that line. More than

one back arrow deletes more than one character, in reverse order.
ALT MODE is used to delete an entire line. When this key is used,
the system prints $DELETED, erases that line from the program, and

returns the carriage so that the line can be retyped.

l1.6.2 After a Line is Stored

Once a line of the program is transmitted to computer memory via
the RETURN key, several methods of correction can be used. Lines
can be inserted, deleted or changed. The sections that follow

describe these methods.

1.6.2.1 Inserting Lines - To add a line to a program, simply assign

a line number that falls between two existing lines, enter the line
number and text, and type the RETURN key.

1.6.2.2 Deleting Lines - To erase a line from memory, type the line

number only and then type RETURN. The DELETE statement can also be

used to erase lines from memory.

Syntax: DELETE {lst line number{, 2nd line number} }
Examples: DELETE
DELETE 25

DELETE 80, 110

When DELETE is executed without specifying the first or second line

numbers, the entire program in memory is erased.

Specifying the first line number in the DELETE statement instructs

the system to delete only that line.
When both the first and second line numbers are specified in the
DELETE statement, separated by a comma, the system deletes both

lines as well as all of the lines between them.

1.6.2.3 EDIT Statements - 0ld instructions can be replaced by new

ones by retyping the line. This procedure is adequate for changing
simple lines, but when a line contains a long, complex formula, it is

easier to use the EDIT statement.
Syntax: EDIT line number

The EDIT statement allows you to access a single line and search

for the character or characters to be changed. Once the EDIT state-
ment is executed from the keyboard, the system waits for you to type

a search character. (The system does not print this search character
when you type it.) The search character is one that already exists

on the line to be changed. After the search character is typed,

the system prints the contents of that line until the search character
is printed. At this point, printing stops and you have the following

options:

® Type new characters; the system inserts them following the’
ones already printed.

) Type a form feed (CTRL/L); the system searches for the
next occurrence, if any, of the search character.

e Type a bell (CTRL/G); this signals a change of search
character. Then type a new search character.

) Type a RUBOUT or <«; this deletes one character to the
left each time the key is typed.

) Type the RETURN key; the system terminates editing of the
line at that point, deleting any existing text to the
right.

® Type the ALT MODE key: this deletes all existing characters
on the line except the line number and prints $DELETED
on the terminal. At this point, type a new line (omitting
the line number) and store it with the RETURN key.

® Type the LINE FEED key; the system terminates editing
of the line, saving all remaining characters on that line.

When the EDIT operation is complete, normally by typing a LINE FEED
or RETURN key, you can enter another program line or issue an

immediate mode command.

1.7 STORING AND RELOADING PROGRAMS VIA PAPER TAPE

To store a program currently in memory onto paper tape using the ASR-33
Teletype paper tape punch, perform the following procedure:

1. Turn the teletype control knob to LINE.

2. Type TAPE on the terminal and then type the RETURN key.
(This establishes TAPE mode and transfers system control
to the paper tape punch.)

3. Turn the paper tape punch ON.

4. Type LIST on the terminal and type the RETURN key.

5. When punching is complete, turn the tape punch OFF.

6. Type KEY on the terminal and then type the RETURN key.
(This transfers system control back to the terminal.)

Typing CTRL/C also cancels TAPE mode and transfers control
back to the terminal.

To store a program onto paper tape using the high speed paper tape

punch, perform the procedure shown below. Do not use the high speed
paper tape punch when the card reader is reading cards, as this can

affect card reader operation.

1. Turn the terminal control knob to LINE.

2. Type PTP on the terminal and then type the RETURN key.
3. Turn the high speed punch ON.

4. When punching is complete, turn the punch OFF.

5. Type KEY on the terminal and then type the RETURN key.

Typing CTRL/C also cancels the previous PTP command
and transfers control back to the terminal.

To reload a program using the paper tape reader, perform the proce-

dure shown below.

1. Erase the program currently in memory by typing SCRATCH
on the terminal and then the RETURN key. (This is
because loading a program from paper tape does not
automatically erase the existing program in memory.
Illogical results may occur unless the previous program
is erased.)

2. Turn the teletype paper tape reader to FREE.
3. Turn the teletype control knob to LINE.
4. Insert the tape in the reader.

5. Type TAPE on the terminal and then type the RETURN key
to establish TAPE mode.

6. Turn the teletype reader to START.

7. When the tape is read in, turn the teletype reader to
FREE.

8. Type KEY on the terminal and then type the RETURN key.

Typing CTRL/C also cancels TAPE mode and returns control
to the terminal.

To reload a program using the high speed paper tape reader, perform

the procedure shown below. Do not use the high speed paper tape
reader when the card reader is reading cards, as this can affect

card reader operation.

1. Erase the program currently in memory by typing SCRATCH
on the terminal and then the RETURN key.

2. Turn the high speed paper tape reader ON.

3. Turn the terminal control knob to LINE.

4. Insert the tape in the reader.

5. Type PTR on the terminal and then type the RETURN key.

6. When the tape is read in, turn the paper tape reader OFF.

7. Type KEY on the terminal and then type the RETURN key.

Typing CTRL/C also cancels the previous PTR command and
transfers control back to the terminal.

1.8 ERASING A PROGRAM

1.8.1 SCRATCH and BYE Statements

To erase a program currently in memory, type the word SCRATCH and
type the RETURN key.

Syntax: SCRATCH

Be careful when using the SCRATCH statement. This statement completely
erases the program from memory. To run the program again, it must
either be loaded into memory from another device or rewritten.

The statement, BYE, works identically to SCRATCH.

Syntax: BYE

1.8.2 DELETE Statements

Use the DELETE statement to erase portions of a program from memory.
Syntax: DELETE {1st line number{ ,2nd line number}}
Examples:

DELETE
DELETE 25
DELETE 80,110

When DELETE is executed without specifying the first or second line

numbers, the entire program in memory is erased.

Specifying the first line number in the DELETE statement instructs
the system to delete only that line.

When both the first and second line numbers are specified in the DELETE
statement, separated by a comma, the system deletes both lines as well

as all of the lines between them.

CHAPTER 2

CARD READER OPERATIONS

2.1 MARKING THE CARDS

The system accepts program statements and data from specially
formatted BASIC mark sense cards provided by Digital. Each card

is preprinted with 40 columns of small rectangular boxes. The

column number is printed at the bottom of the card below each column.

Figure 2-1 illustrates the BASIC card.

Illlllllllllllm

I
9 $119 $il9 9 $i19

9lOllI21314151617101920212223241‘526272329 0 131 132 [§133 {134 {135

Figure 2-1
Educational Mark Sense Card

Statements are entered onto the card by marking the appropriate
boxes with an ordinary soft-lead pencil (number 2 is ideal). Do

not use a ball point pen or a felt tip marker.

Each box is marked with a single heavy line, drawn either vertically

or diagonally. It is not necessary to fill the entire box. Avoid
making stray marks, as the system reads all marks on the card —

even the ones outside boxes. Stray marks cause the system to mis-

read the card.

When two or more vertically adjacent boxes are to be marked, they
can be marked with a single vertical stroke. Figure 2-2 shows

examples of properly marked cards.

.DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDE
IEDDDDDIDIIDDIIIDDDDIEDDDDDDDDD[

SlAE!)G
Illlllllllllllllllllllllllllll@
Illlll=IIII=5=%

[7?5‘

FORM

PDP BASIC DIGITAL EQUIPMENT CORR

€DC 6370

I RENEAER A NN A A
P 0 T 7 T
0 s s
O I 1.8 7. .00 00 oo 0 0 8 6 3
8 RN oA £ 0 o 0 0 0 0 0 0 0 o T A e
&%HBIE“?;EE@@@@E@ﬁ@@ﬁ@@@@@@@@ﬁ@@@@@@@@@@

§
§
overcar i) o) [T |0 o1 21T =10 sl =10 =10 1P o1 =1 =1 o1 ool P el eV o1 21 o1 e1(0 1P e1[3 210 o] 1P o] o} o1] =][7 #][¢
1l 7 o o o o o o o il o Pl 71 2 A
)) e)))) e) e) o e) e e
ggso%fbﬂ)%§$ﬂ>%fﬁﬁ>%:%;%ﬁ)%softﬁ)%fﬁﬁ)%§$ﬂa%;Bﬁ>%§t&w%@

wewask B P TP PP AP P INFAF AP NPNPAFNP PP PP PP IP PP PN PN PSR FS P

Q
33 1 3 et et sl A ¢ttt et gt el gt Al st cligti

RE

T T T
J . RETURN] 7T 7T m 7 7r 7 7T 7V 7 77 mﬂﬂmm Rus |

M /|

o0

pavell8 |18 X||8 X]|8_X| 8 x|{8 x]|8 xj{8 xj{& x]|8 X 8 X}|8 X| 8 Xj[8 xj{8 X 8 X 8 Xj(8 Xj{8 |8 X RUB
S= N A [y = Y *1[v,” Y _*1[v_* Y_*1[¥ Y Y [y~ Y _* [CoN]
z(.2 Z Z .2 Z 1.2 Z1l2Z

AR afsEoR7BoBoRrwEnfr2B3Bafs frofl 171810 f 20821 f22 123 24 fl25 f26 f]27 fl28 f] 29 f130 §]31 §132 {133 §134 135 §36 0

10 2

Figure 2-2a
120 LET A=B+C

PDP BASIC DIGITAL EQUIPMENT CORP

CDC 6370

/{ 300 patAd - 1) 10 3@ EMDT T 1
I s AN AN N AR A AN A AN D

i1 72127
B o
S A R 0 % o 4 A
]l e e e e e e e e A e e A e A e e e e e e e e e e e e e e
EE, I8 0740 oo o A W
2 IR o o o o P P A A R
o100 e e e))) 2)))) X) R D e (R R R
o[e]e]le e P ey e) e e e el e e e e e e e el
22000 55 G S =
oo F e) o e R
220 5 o

12038 AR SHOR 7868 98108 11H12813814 8158168175106 819§ 20 821 |22 [23 124 1125 §26 827 [128 £ 29 830 [13) §32 [33 f134 #35

Figure 2-2b
300 DATA 8.1,6,4.32,"END"

The information on a card can be written out in the space provided

at the top of the card. This helps identify program and data cards.

BASIC cards are divided into four areas or fields: the control
command field, the line number field, the keyword field, and the
character field. Each field is separated from an adjacent field

by a thick line, as shown in Figure 2-3.

PDP BASIC DIGITAL EQUIPMENT CORR

CDC 6370

T T T T T T Tt r 1t 1 v v 1T 1T T T 1T T T T 1T 1

PR AL 0000000000000 00UUUUUUUUUUUUU

51 PN A A
O sl s SR

5 0 0 IR

31 3 0 0 0 Eedlfed b

1 ot e e e o 0 4 B

P o o 2 o o 727 o oo o o o o P 1 P A A

)02 e o o o o o o e o R

o 440 e 40 0 o o et et et et gt Al A A A 3 U

220 52 T = A

333 e e e e e e e e o o e e Y

2222 2 e o o o o o 2 4 8
l234567.9)0lll2131415)61710192011222374252627 8 [l 29 @30 §3) 832 [33 B34 7135 136 0
/
Line Number Keyword Character
Field Field Field
Control
Command
Field

Figure 2-3
Card Field Layout

PDP BASIC DIGITAL EQUIPMENT CORPR

L__coc €370

2.1.1 Control Command Field

Any one of the top three boxes in column 1 may be marked, but only
one column 1 box can be marked per card. Figure 2-4 shows the
control command field as it appears.on the cards with the top three

boxes defined.

- CTRL/C

< ‘ Abbreviated form
of statements

Reestablish long
form of statements

Figure 2-4
Control Command Field

The second box in column 1 instructs the system to read the marked
boxes in the keyword field statement in the abbreviated form. The
first three letters of each statement are used in this abbreviated
mode of operation. The box marked PRINT, for example, is entered
as PRI. This is a legal form of the statements in the EduSystem
and it saves memory space. A listing of a program entered in this

way shows the abbreviated form of all these statements.

The abbreviated mode is in effect until the third box in column 1
is marked or a CDR statement is executed to deassign the card

reader (see Section 2.3), thereby disabling the mode.

2.1.2 Line Number Field

The line number field consists of five columns, each containing

ten boxes numbered from 0 through 9. Line numbers up to and
including 2046 can be marked in this field. To enter a line number
on a card, mark the box in each column that corresponds to the
desired digit. Any column that is not marked is ignored. Only one
of the boxes corresponding to the digits 0-9 should be marked in

any column. Figure 2-5 shows two ways to enter the line number 15.

——r
M Y o

ofleflellele

moodD
oooan
SR
nopgn
SEEEN
oopap oopap
aooEa R
oo ooooo
ooppp R

[E1 K1 EY K1 13 | [HH I H

Figure 2-5
Line Number Field

2.1.3 Keyword Field

Each box in the keyword field contains a BASIC keyword. To select
a keyword, simply mark the box that contains the desired keyword.
These boxes are arranged in alphabetical order. Mark only one box
in this field. Since the BASIC card is used with several dialects
of BASIC, not all the keywords on the BASIC card apply to EduSystem
BASIC. Figure 2-6 shows the keyword field.

Figure 2-6
Keyword Field

Legal BASIC language keywords not shown in this field can usually

be entered in the character field (see below).

2.1.4 Character Field

The character field is used to specify:

® arguments to control commands
@ arguments to language keywords

e language keywords in addition to the keyword selected in
the keyword field

e language keywords not appearing in the keyword field
e program data

® keyboard commands

The character field is divided into two subfields separated by a

heavy horizontal line: the zone subfield and the character subfield.

The boxes in columns 9 through 39 are identical and contain all the
alphanumeric characters and most of the punctuation characters.
Boxes in column 40 contain additional punctuation and special

characters.

To select any of the alphabetic characters or the dollar sign ($)

character, two boxes must be marked: a character box and a zone

box. First mark the box containing the desired character. Then

determine the position of that character in its box (i.e., top-left,

middle, bottom-right), and mark the zone box (top, middle, or

bottom) that corresponds to the selected character's position.

Figure 2-7 shows all the characters that can be selected in this way.
VAV ARPAV IV ArAV VARV VAV AV APAVAN LY. iR A

Vi T4T21.8 T 1

Zone OO0 A0 0 AL CMOOUOO

XS 722 12 A A
PR R PR B EE R]

T A4 0 0 0 o i
2 21 7120 o o
O o o A A e e e e e e Y
7 7 o oA A o o ol P P P P e P
g pep A N 2 2123 Tt A A 1 2 o et et o 2 Y A
22 A = s
A e e e e e e A A K S A
o o . A2 A

PDP BASIC DIGITAL EQUIPMENT CORPR

6370

Figure 2-7
Selecting Alphabetic Characters and the Dollar Sign Symbol

The technique used for alphabetic characters is also used to select
the special characters <, >, and ; in the zone field, as shown in

Figure 2-8.

T 41 T 1

NI A
IDDDDHD DDIDDDDIDDDDIDDDDDEDDDD[

ﬂﬂﬁﬂﬂﬁWﬂﬂﬁﬂﬂﬂﬂﬂllﬂﬂﬁﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂl
GG gl ot el 2t A gt 2t 6t A it el A ot et gt i gt gl T
0 2 2 5
e e K e R o 1
] [) "X [l am
= 7 — il VR T R T VR T -

110 o 4
E 1) 9 o LL

POP BASIC DIGITAL EQUIPMENT CORPR

C€DC 6370

Figure 2-8
Selecting the Characters: <, >, and ;

To select the numeric characters, period (.) and comma (,), simply

mark the box containing the character. Figure 2-9 shows these

characters
Hol TG 1.8 Tal T30 T4 81 16l 141 181 191 T T 1 1 T

HDDU]DDDDDDDDDDDDDDDDDDDDDDDDDD[

4ﬁ@@@@@@IEII@IEI@@I@@@E@@E@@@@@I[
e e e e e el e e e e e
))) D e D e e o e) e e A R R e
U143 21 et i gt et gl A et 1 A3 2 2t A et gt AT et gl b el gl
0 0 4 2 R
MIIIIIIIIIIIIIIIIIIIIIIHHIIIIIIE

PDP BASIC DIGITAL EQUIPMENT CORR

Figure 2-9
Selecting Numbers, Period and Comma

To select the characters located in the upper right corner of the

boxes, mark the box containing the desired character and all zone

boxes as shown in Figure 2-10.

1% N\ 1

R A AN

53 1 . T e M . e s
3 8
30 1 0 0 o % 2 oo o o 3 2 0 A
1 o et e e g

Jc -)oJoJ- ° Al imiirimimirRiIR
e e e e e A e e e e e e e e e e R e)) e e

) e e) e e) D) e e 6 e o R R R R
B 2 gt A 2t et et gl A et &t A3 1 gl A TR
N o 1
e A o e A o
0t o o o o o o ot

oBwBuRi2E3faBsBref17f18 B9 20 821 [22 [l23 [} 24 fl25 f] 26 [127 26 [] 29 [130 §131 {32 {33 [§34 {135

PDP BASIC DIGITAL EQUIPMENT CORPR

€DC 6370

Figure 2-10
Selecting Special Characters

To select one of the special characters in column 40, first mark

the corresponding box in the desired column. Then, if the character
is in the top half of its box, mark the top and middle zone boxes.
If the selected character is in the lower half of its box, mark

the middle and lower zone boxes. Although these characters appear
only in column 40, they can be marked in any column of the operand

field, as shown in Figure 2-11. Simply use column 40 as a template.

Note that @, TAB, FORM, and < cannot be interpreted by the system;
question marks are printed to replace them. Character positions
on the bottom of row 40, marked RUB (for rubout) and CON (for

continue) perform special functions that are described below.

T R g 1 1l 1 1kt 1€ 1121 1 T L1 11
L0000 DDDEDDD LU UOUpUUOOO000
0. A
T s s, s
0 A o o 0 0 %
2 2 % 2 o o A K
N o e o o e s e U
o o o) . 4 i P P A P P
))))) e o e e)) e))) e R)
A
0 2 2 5
R e o o e K S R A
o o o e o
BolwofnfrRofuls bl izl Bz f2s 24 flos f2s 27 foo fsfiso §1 foz A foa s oo for oo oo o fl |

PDP BASIC DIGITAL EQUIPMENT CORR

CDC 6370

wHuEizBuBeBisBefzBisf19820 21 B22 f23 24 B2s f2¢6 27 26 [29 130 13 [132 [133 134 135

Figure 2-11
Selecting Special Characters in Card Column 40

2-9

Marking the bottom two boxes in any column specifies a continuation
of the current statement onto the following card. Although the

CON (for continuation) appears only in card column 40, the two
bottom boxes in any column between 9 and 40 can be marked. Any
marked columns that follow a continuation specification on that card
are ignored, so be sure that CON is the last column you use on the

card. Figure 2-12 shows an example of card continuation.

First Card

Adﬂf
14101 1 1

5Mfl“@ﬁ!lDDIDDIDEDDDBEIIDDDDDDDDUDDDDDDD
PP 72720 72 AT
o 13 272 s a7 s S

0 2

310 20 5 3 1 o 2 o o 3 2 o e G

®0w]

38 B 2t e e e e e e R e
0 7 e o e e o P e e P e e
D e))) 4 e) D Y) 6 o 0 D 6 o R

OuE|

PDP BASIC DIGITAL EQUIPMENT CORR

A aletallal alat el gl el el Al At el latiel clial ATl ORI

22223 1 222

1 i 4 o G e o G

¢oc 6370

1 3 00 2. 5
AVE]9 9 9 $I® e rUB

1B203BaBsBoR7RoBoBwBufivainiefs frofr7freflief20821 f22 fl23 24 25 26 [§ 27 {26 {29 B30 31 32 [§33 {34 {135

continuation code

Continuation Card

41 £ lolFl 181414101 £ 14 W17/ 1@ U1 A

H1_ 1610 1M 71 IWIUIABIZI oI L T L L1 1 1 |
LA JUUUUUO@OAUUOUOUOR Y
’IDDDIDDDIID!IDDIEDIIDEDDBQDIDQ[

ET < V]j< \ \
>>>>>>>>>

n
U‘OQOOO o o 0

....... '
nexrfll C U C lac ‘B lB laC (¢ laC IHC IBC (¢ Ie IB la IBC l']aC IGC IBC IBC IBC IBC IeC IBC lac I!C IBC IBC IaC :

e e e e
= R e R R e e A A R AR
P e A
8 P e e e A e 1 e e
¥ sl A A AR AR A A AR A A
o 200120 2 o o T g s S
B CTolTol ol Sl e e P e S

PDP BASIC DIGITAL EQUIPMENT CORPR

Figure 2-12
Specifying Card Continuation

Incorrectly marked cards can be corrected by using the RUB (for
rubout) feature. Marking the bottom three boxes in any column

causes the system to ignore any other character previously selected

in that column. As with the other characters in column 40, RUB

can be used in any column between 9 and 40 simply by using column

40 as a template. See Figure 2-13.

Errors can also be corrected by completely erasing the marks that
are in error; the column can then be correctly marked. Although

more risky than using the RUB feature, erasing is often more

convenient, particularly when the error is in the middle of a fully

marked card. Wherever possible, however, RUB should be used to

correct errors.

12151 141 177 1011 1

B
A
N 4|

54
N

WL IEI215] 2\ \Z\ELS I £l 1 A1\8191wirT 1 | 1 1 1§
SR UOA00OOO U0 OUUUUUOOOL

172122772 T 2 2
o o]lo o[LB E R R EE E R 17 1 |6l 1l T

101 0 0 0 0 72 o 0 6 o
»!n IHC |BC lac |aC |DC |.C laC IBC lgC lﬂ(laClBC :

®0w
-

213133 0 72 20 720 0 o A

SRR R AR AR EEREEREE
e e e e e e e e e e e e
))) g e)) o o)) 2 R R R R

A1 20 20 et et et o 6t A3 et sl Al Al s g
b N 2 A

T A

e e L e

2B83BaBsBeR 7B @ oRrofnf2B3@ra4f1sfrefl17 0108198200821 122 {123 {24 125 {126 {27 8 [l 29 @30 31 32 [l 33 §134 {33

\\\\\\\\ —)
N
RUBoOuUtS /

Figure 2-13

Correcting Errors with RUBout

POP BASIC DIGITAL EGUIPMENT CORP

CDC 6370

2.2 USING THE CM8E CARD READER

This section describes the operating procedures for the CMS8E optical
mark card reader. Figure 2-14 shows the CM8E card reader.

R s

output stackerl

AGHOR SIACK FEED

i

tRe o ERROK ERSUOR
3

| o
Nl NWH o

\>" j -
TAEANE

Figure 2-14
CM8E Card Reader

2.2.1 Controls and Indicators

The controls and indicators used to operate the CM8E card reader are

shown in Figure 2-15 and listed in Table 2-1.

The control panel (see Figure 2-15), located at the lower edge of
the front of the reader, contains the controls and indicators used

for card reader operation.

Figure 2-15
CM8E Controls and Indicators

Table 2-1
CM8E Controls and Indicators

Control or Indicator Type Function

POWER ON switch 2-position rocker When upper portion of
switch is depressed,
applies primary power
to all card reader
circuits except drive
motor.

Depressing lower

portion of switch
removes all power
from reader.

POWER ON indicator green light When 1lit, indicates
primary ac power has
been applied to the
reader.

Table 2-1 (Cont.)
CM8E Controls and Indicators

Control or Indicator Type Function

START switch pushbutton When depressed, starts
main drive motor and
resets all error in-
dicators provided the
error condition has
been corrected. Upon
releasing switch and
allowing motor to
come up to speed, the
reader can start
processing cards.

Lights ON LINE indica-
tor.

STOP switch pushbutton When depressed, stops
reader operation by
stopping main drive
motor. If this switch
is depressed while

card reading ‘is in
process, the current
card cycle is completed
before the motor

stops.

Extinguishes ON LINE
indicator.

ON LINE indicator green light When lit, indicates
the reader is on-1line
and able to accept
commands. This light
comes on when the
START switch is
depressed.

This light goes out
when the STOP switch
is depressed or when
an error condition
occurs.

CARD SUPPLY indicator red light When lit, indicates
either the input
hopper is empty or
that the output
stacker is full.
Condition must be
corrected by the
operator before card
reading can continue.

Stops reader opera-
tion and extinguishes
ON LINE indicator.

Table 2-1 (Cont.)

CM8E Controls and Indicators

Control or Indicator

Type

Function

FEED ERROR indicator

red light

When lit, indicates
the card reader
failed to move a card
into the read station.

Stops card reader op-
eration and extin~-
guishes ON LINE
indicator.

STACK ERROR indicator

red light

When lit, indicates a
card was not properly
delivered to the
output stacker after
the read operation.

Stops card reader
operation and extin-
guishes ON LINE
indicator.

MOTION ERROR indicator

red light

When 1lit, indicates a
card jam in the read
station.

Stops card reader
operation and extin-
guishes ON LINE
indicator.

L.D. ERROR indicator

red light

When 1lit, indicates
the card failed to
pass the light/dark
check at the read
station.

Stops card reader
operation and extin-
guishes ON LINE
indicator.

2.2.2 Card Handling Procedures

The following paragraphs present the recommended procedures for
loading the input hopper, unloading the output stacker, and

correcting error conditions.

To Load Cards:

Step Procedure

1 Pull the hopper follower back with one hand and begin
loading card decks into the hopper. Make certain that
the first card to be read is placed at the front, face
down, column 1 to the left.

2 Continue placing cards into the input hopper until it is
loosely filled.

CAUTION

Do not pack the input hopper so full that the
air from the blower cannot riffle the cards
properly. If the cards are packed too tightly,
it impairs proper operation of the vacuum picker.

3 Cards may continue to be loaded while the reader is
operating provided tension is maintained on the front
portion of the deck as cards are added to the rear.
Additional cards should not be loaded, however, until
the hopper is approximately 1/2 to 2/3 empty.

CAUTION

When maintaining tension on the card deck, use
just enough pressure to maintain the riffle
action to prevent card damage and jamming of
the reader.

4 Normally, all cards are moved through the reader into the
stacker. If, however, it is necessary to remove cards from
the input hopper, simply pull back the follower and remove
the card deck.

To Unload Cards:

To unload cards from the output stacker, pull the stacker follower
back with one hand and remove the card deck from the stacker, being
careful to maintain the order of the deck. The stacker may be

unloaded while the cards are being read.

2.2.3 On-Line Operation

The model CM8E reader has no capability for off-line operation.
Verification of satisfactory operation is determined by successful

on-line operation.

Step Procedure

1 Make certain that the card reader is ON; the POWER ON
indicator should be lit.

2 Make certain the output stacker is empty. Load the input
hopper with the cards to be read.

3 Press the START switch. Observe that the green ON LINE
indicator lights. The card reader is now on-line.

4 If the card reader goes off-line due to an error, it can
be placed back on-line by correcting the error and then
depressing the START switch.

5 To go off-line, simply depress the STOP switch.

2.3 USING THE CM8F CARD READER

This section describes the operating procedures for the CM8F optical

mark card reader. Figure 2-16 shows the CM8F card reader.

Figure 2-16
CM8F Card Reader

2.3.1 Controls and Indicators

The controls and indicators used to operate the CM8F card reader

are shown in Figure 2-17 and listed in Tables 2-2 and 2-3.

The control panel (see Figure 2-17), located at the upper left-hand
corner of the front of the reader, contains the controls and
indicators used for normal on-line/off-line operation of the card

reader.

The rear panel, located at the upper right-hand corner of the back
of the reader, is used for initial setup of the system and for

maintenance purposes.

1

|

1

|

'

1

'

a
©
=
o
o

S
x
m
n
m
=

.
1
1
| HOPPER
CHECK | CHECK
I
I
-

O
O

1
!
POWER | CHECK
I
I

FRONT CONTROL PANEL

AC POWER SWITCH

® LAMP TEST SHUTDOWN
MAN@AUTO

MODE

REMOTE

REAR PANEL

Figure 2-17
CM8F Controls and Indicators

Table 2-2

CM8F Front Panel Controls and Indicators

Control or Indicator

Type

Function

POWER switch

alternate-action
pushbutton/indicator
switch

Controls application of
all power to the card
reader.

When indicator is off,
depressing switch
applies power to

reader and causes
associated indicator to
light.

When indicator is 1lit,
depressing switch
removes all power

from reader and causes
indicator to go out.

READ CHECK indicator

white light

When 1lit, indicates
the card just read

may be torn on the

leading or trailing
edges.

Because READ CHECK
indicates an error
condition, whenever
this indicator is 1lit,
it causes the card
reader to stop opera-
tion and extinguishes
the RESET indicator.

PICK CHECK indicator

white light

When 1lit, indicates the
card reader failed to
move a card into the
read station after it
received a READ COMMAND
from the controller.

Stops card reader
operation and extin-
guishes RESET indica-
tor.

STACK CHECK indicator

white light

When 1lit, indicates the
previous card was not
properly seated in the
output stacker and
therefore may be badly
mutilated.

Stops card reader op-
eration and extinguishes
RESET indicator.

Table 2-2 (Cont.)

CM8F Front Panel Controls and Indicators

Control or Indicator

Type

Function

HOPPER CHECK indicator

white light

When lit, indicates
either the input hopper
is empty or the output
stacker is full.

In either case, the
operator must manually
correct the condition
before card reader
operation can continue.

STOP switch

momentary
pushbutton/indicator
switch (red light)

When depressed,
immediately lights and
drops the READY line,
thereby extinguishing
the RESET indicator.
Card reader operation
then stops as soon as
the card currently in
the read station has
been read.

This switch has no
effect on the system
power, it only stops
the current operation.

RESET switch

momentary
pushbutton/indicator
switch (green light)

When depressed and
released, clears all
error flip-flops and
initializes card reader
logic. Associated
RESET indicator lights
to indicate that the
READY signal is applied
to the controller.

The RESET indicator
goes out when the

STOP switch is de-
pressed or when an
error indicator (READ
CHECK, PICK CHECK,
STACK CHECK, or HOPPER
CHECK) lights.

Table 2-3

CM8F Rear Panel Controls

Control

Type

Function

LAMP TEST switch

pushbutton

When depressed, illuminates
all indicators on the front
control panel to determine
if any of the indicator
lamps are faulty.

SHUTDOWN switch

2-position toggle

Controls automatic opera-
tion of the input hopper
blower.

MAN position - blower
operates continuously.

AUTO position - causes the
blower to shut down
automatically when the
input hopper is emptied.
Blower automatically
restarts when cards are
loaded into the hopper

and the RESET switch is
depressed.

Blower activates approxi-
mately three seconds
after RESET is depressed.

MODE switch

2-position toggle

Permits selection of
either on-line or off-
line operation.

LOCAL position - removes
the READ COMMAND input
from the controller to
allow the operator to

run the reader off-line by
using the RESET and STOP
switches on the front
control panel.

REMOTE position = enables
the READ COMMAND input
from the controller to
allow normal on-line
operation under program
control once RESET is
depressed.

2.3.2 Card Handling Procedures

The following paragraphs present the recommended procedures for
loading the input hopper, unloading the output stacker, and

correcting error conditions.

To Load Cards:

Step Procedure

1 Pull the hopper follower back with one hand and begin
loading card decks into the hopper. Make certain that
the first card to be read is placed at the front, face
down, column 1 to the left.

2 Continue placing cards into the input hopper until it is
loosely filled.

" CAUTION

Do not pack the input hopper so full that the air from
the blower cannot riffle the cards properly. If the
cards are packed too tightly, it impairs proper opera-
tion of the vacuum picker.

3 Cards may continue to be loaded while the reader is
operating provided tension is maintained on the front
portion of the deck as cards are added to the rear.
Additional cards should not be loaded, however, until
the hopper is approximately 1/2 to 2/3 empty.

CAUTION

When maintaining tension on the card deck, use just
enough pressure to maintain the riffle action to prevent
card damage and jamming of the reader.

4 Normally, all cards are moved through the reader into the
stacker. However, if it is necessary to remove cards from
the input hopper, simply pull back the follower and remove
the card deck.

To Unload Cards:

To unload cards from the output stacker, pull the stacker follower
back with one hand and remove the card deck from the stacker, being
careful to maintain the order of the deck. The stacker may be

unloaded while the cards are being read.

2.3.3 O0Off-Line Operation

Off-line operation of the CM8F card reader is used primarily for
setting up and checking reader operation prior to switching to
on-line use; for correcting error conditions; and for maintenance
tests. When placed off-line, the reader can be operated locally

from the control panels. The following procedure is used to energize

the reader and check off-line operation prior to switching to on-line

operation,
Step Procedure
1 Make certain the ac power cord is plugged in and the circuit
breaker on the rear base panel of the reader is in the ON
position.
2 Set MODE switch to LOCAL position.
3 Set SHUTDOWN switch to AUTO position.
4 Depress POWER switch to energize reader. Note that POWER
indicator lights but blower does not come on,
5 Depress LAMP TEST switch and observe that all front panel
indicators are lit.
6 Load a card deck into the input hopper.
7 Depress RESET switch and observe that associated green

indicator comes on. After approximately 3 seconds, cards
should be picked and moved through the read station into
the output stacker.

8 When the input hopper is empty, observe that the HOPPER
CHECK indicator lights, the green RESET indicator goes
out, and the red STOP indicator lights.

9 The card reader may now be operated locally or switched
to on-line operation.

2.3.4

Step

1

On-Line Operation

Procedure

Make certain that the card reader is operational by
performing the procedure given in Section 2.3.3.

Make certain the output stacker is empty. Load the input
hopper with the cards to be read.

Set the MODE switch to REMOTE.

Depress the RESET switch and observe that the associated
green indicator lights. The card reader is now on-line.

If the card reader goes off-line because of an error alarm,
it can be placed back on-line by correcting the error and
then depressing the RESET switch.

To go off-line at any time, depress the STOP switch.

2.4 RUNNING PROGRAMS WITH THE CARD READER

This section explains how to run programs with one of the card
readers described in previous sections. Information on entering

data from the card reader is also supplied.

Finally, this section assumes that you are familiar with marking
educational mark sense cards; they should be used, one statement

per card, in the examples shown in this section.

2.4.1 CDR: Assigning the Card Reader

You can instruct the card reader, from the terminal, to begin reading
cards. First be sure power is supplied to the card reader (the
light marked POWER should be on). In immediate mode, simply type

the command,

cokR_/

REALDY

This command transfers control to the card reader. Be sure no
one else is using the card reader, or you may lose program control
to another user. When CDR is executed again (this time from a
marked card in the card reader), it transfers control back to the

terminal.

Once you have executed CDR from the terminal, load a program on
marked cards onto the card reader. You can also include cards
with immediate mode statements; simply leave the line number field
on these cards blank. For example, mark cards in the following

manner:

SCRATCH

@ PELMT "THILS IS A TES
BOA o 33

B OFRINT A

EMD

T n

ol PO
P BT XN

LI&T
RUM
DELETE i@

LIST

Now press the START button on the card reader. The following

listing shows what is printed on the terminal.

Terminal Output
SCRATCH -

FEADY

i@ FPRINT ®THIS IS A TEST®
28 A=zZ

@ FRINT A

4@ END

LIET

i@ FRIWT “THIS IS A TEST"
268 A=ZZ
Z@ PEIMT A
48 END
FEARDLY
FUM
THIS 15 A TEST
FERDY
DELETEL®

FERLY
LIST

1

=32
FRINT A
END

I

N~ WS I ()
=

RERDY
FELUM

FERLY
LIET

RERDLY
ChE

RERLY

In the above example, notice that the card reader echoes the infor-
mation on each card as it is read. It executes the statement(s) on
each card completely before reading the next card. READY is automati-
cally printed after each immediate mode statement is executed. Once
all program lines are read by the card reader, the program is in com-
puter memory. Subsequent immediate mode statements executed from the
card reader or the terminal (if it has control) can affect the
program. In the above case, for example, the immediate mode state-
ment, DELETE 10, actually erases line 10 from computer memory. This
is verified by a subsequent LIST and RUN; line 10 does not appear

and is not executed.

2-28

Finally, notice that a CDR statement is on the last card. This
transfers control back to the terminal. If you forget to include
this card at the end of the card deck (i.e., after the last state-
ment you want executed), simply type CTRL/C from the terminal.
CTRL/C automatically deassigns the card reader and transfers control
back to the terminal. CTRL/C can also be executed from a card, by
marking the top left box (the one labeled BAS) on a card. Execution
of this CTRL/C is identical to immediate mode execution from the

terminal.

In summary, there is only one way to transfer control to the card
reader: executing CDR from the terminal. There are three ways

to transfer control back to the terminal: executing CDR from a
marked card in the card reader; executing CTRL/C from a marked card

in the card reader; executing CTRL/C from the terminal.

2.4.2 Entering Data from Cards

Normally, string and numeric data can be entered to a program with
the use of DATA statements (see Section 1.3.13) within the program.
INPUT statements are more convenient when using the card reader

because one program can be run over and over again using different

input values.

For example, consider the following program, written on a terminal:

i@ REMAEE THIS PEOGRAM AYERAGES FIYE MNUMEBERS
g8 T =@

i@ FOE M = 1 TO &

48 INFUT X

S8 T =T + K

€8 MERT M

78 FREINT "RWERAGE IS" T/%5

&8 END

Now place six cards (or only two cards, if you use commas between
data elements) in the input hopper of the card reader. These six

cards should have the information shown below, in this order:

RUN
3
6

-1
9

Execute CDR from the terminal and press the START button on the

card reader.

COR_J

Then type CTRL/C at the terminal to return control to the terminal.

2-30

Another method by which you can enter data elements from the card
reader is by programming CDR commands. (Use line numbers for this
purpose.) Be sure to place one CDR statement immediately before the
INPUT and also one CDR statement immediately affer the INPUT in your
program. For example, consider the following program, written at a

terminal:

14 REMARE THIS FPROGREAM AYERAGES FIVE HWUMEBERS
15 CDE

&8 IMFUT A E.C. DL E

I8 ChE

48 FRINT "AYERAGE IS" CA+E+C+D+EX~S

S8 EMD

Now place five cards (or only one card, if you use commas between
data elements) in the input hopper of the card reader and press
the START button. Use the same data elements in this example as

in the previous one:

Execute RUN from the terminal.

FUN/

! E/ 6/ E-'.- _il .‘:‘
AVEEAGE IS 'S
RERDY

ChE

FERDY

In the above example listing, the five data elements were entered

on one card, separated by commas.

2.4.3 Entering Data from the Terminal

You can instruct the card reader to read a program on cards and
execute it, as discussed in Section 3.4.1l. It is often convenient
to instruct the computer to accept data from the terminal, although
the program itself is entered by cards. To halt program execution
until data values are entered by the terminal, use programmed CDR
commands as shown below. Each statement is marked on a separate
card. Once you have marked these cards, place them in the input

hopper of the card reader and press the START button.

if REMARE EWTERIMG DATA FROM A TERMIMAL
28 PRINT “HWHAT IS YOUR MUMEER":

i@ ChE

4@ IMFPUT ¥

58 CDE

66 FPRINT “THARME sou. Y "IS MY FRYORITE"
vE EMD

RN

Notice the CDR commands on both sides of line 40, INPUT Y. The first
CDR command transfers control to the keyboard and the second

returns control to the card reader.

Start the card reader by executing CDR from the terminal.

ChR,/

RERLCY

16 FEM EMTERIMNG [H
2@ FRINT "WHRT IS
I8 CLE

48 THWRUT ¥

S8 CDR

£0 FRINT “THAME YoOu " ¥ IS MY FRVORITE"

TH FEOMA TERMIMAL

|
YOUR MUMEER",

HHHT 15 YOUR MUMEER? 24)
THAME YOU. & IS MY FRAYWORITE

Then type CTRL/C at the terminal to return control to the terminal.
Notice that the program halts at line 40, awaiting your value for Y
to be input from the terminal. Once this is accomplished, line 50
transfers control back to the card reader to continue program execu-

tion.

CHAPTER 3

SYSTEM MANAGER INFORMATION

3.1 LOADING THE EDUSYSTEM 20

EduSystem 20 is usually loaded from paper tape, using the Read-In
Mode (RIM) Loader (see Section 3.2). If your system includes 0S/8,
however, you can load EduSystem 20 from an 0S/8 device (see Appendix

D for instructions on saving EDU20 on an 0S/8 device).

Version A of EduSystem 20 is supplied on paper tape, order number
DEC-08-ED20C-A-PBl. This version does not include provisions for

card reader operation. It requires a minimum of 8K memory.
Version B of EduSystem 20 is supplied on paper tape, order number
DEC-08-ED20C-A-PB3. This version allows card reader operation and

requires a minimum of 12K memory.

3.2 READ-IN MODE LOADER

The Read-In Mode (RIM) Loader is the first program loaded into an
EduSystem computer.® This program is loaded by toggling 17 instruc-
tions into core memory using the console SWITCH REGISTER (SR). The
RIM Loader instructs the computer to receive and store, in core,
data punched on paper tape in RIM coded format -- primarily the Edu-

System system tapes.

IThe RIM Loader is not needed if the EduSystem has a hardware
bootstrap.

There are two RIM Loader programs: one is used when the input is to
be from the low-speed (Teletype) paper tape reader; the other is

used when input is to be from the high-speed paper tape reader. The
locations and corresponding instructions for both programs are listed
in Table 3-1. The procedure for loading (toggling) the RIM program
into core is illustrated in Figure 3-1. The RIM Loader is loaded

into field zero of core.

Table 3-1
RIM Loader Programs

INSTRUCTION
Location Low-Speed High-Speed
7756 6032 6014
7757 6031 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006
7767 6031 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

NO

SET
SR=7756

LOAD RIM
INTO FIELD O

Y

PRESS
ADDR LOAD

YES

SET
SR=FIRST
INSTRUCTION

LIFT DEP

\

SET
SR=NEXT
INSTRUCTION

LIFT DEP

RIM IS LOADED

Figure 3-1
Loading the RIM Loader

3-3

After RIM has been loaded, it is good programming practice to verify
that all instructions were stored properly. This can be done by
performing the steps illustrated in Figure 3-2, which also shows how

to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756 through
7776. EduSystems do not use the RIM locations; therefore, RIM need
not be reloaded unless the contents of the RIM locations have been

altered by the system manager.

SET
SR=7756
‘ PRESS
ADDR LOAD
PRESS
EXAM
MB=
NO ~INsTRUCTION > YES
Y >
SET
SR=MA
] NSTRUCTION
CHECKED
PRESS
ADDR LOAD
RIM IS LOADED
SET SR=
CORRECT
INSTRUCTION
LIFT DEP

Figure 3-2
Checking the RIM Loader

After RIM has been loaded and verified, insert the paper tape
(DEC-08-ED20C-A-PBl for version A; DEC-08-ED20C-A-PB3 for version B)
in the paper tape reader. Leader/Trailer code should be positioned

over the reader sensors.

Be sure the Switch Register contains zeros in every position. Press
the key marked EXTD ADDR LOAD.

Set the Switch Register to 7756 and press the key marked ADDR LOAD.
Now verify that the high speed reader is ON or the Teletype paper
tape reader control knob is set to LINE. Press the keys marked
CLEAR and CONT.

If you are using the high speed reader, the tape will begin reading
in at this point. On the Teletype paper tape reader, set the reader

switch to START. The tape will begin reading in.

When finished loading, the system prints the following message for

version A:

EDUSYSTEM 2@ BASIC
ED2@C-A-VAQg4. gy

Similarly, for version B, the system prints:

EDUSYSTEM 2#@ BASIC
ED2@C-A-VB@Z4.04

3.3 ANSWERING SYSTEM DIALOG

When the system has been activated correctly it begins to ask certain
questions which you must answer to establish the system configura-
tion. When an invalid response is made to any of the system's
questions, an error message (INVALID RESPONSE) is printed and the
question is repeated. The carriage return key should not be typed
after you type a character, since the system enters your response

and continues program execution immediately. The first guestion is:

MUMEER OF USER
{UMEBEE A SRl

L

¢ a4

T

)

Respond with a single digit from 1 to 8, depending on the number of
terminals to be used. (The console terminal counts as the single
user.)

In Version B, the next question is:

CRED READER LSED oY OR HIY

I
=
(L]
m
L
m
D]

Answering N to the above question causes the system to proceed to the
next question. A Y response, however, prompts the system to request
the user numbers of legal terminals. For example, the sample dialog
shown below informs the system that users 1, 2 and 3 are the only
ones allowed to use the card reader.

i .

MARK SEMGSE CHARD REARDER USED oY 0OF MNI7Y

TAN ALL HSERS USE THE CARD READER OY 0OR NIWH
_EGRL MSERT1 MORE v 0OR M
LEGAL USERTZ WORE oY OR MY
UEGHL USERTE MORE oY 0OR HITk

The next gquestion asked is:

CoOE-8SL COMPUTER Of O NIT

Type Y if the EduSystem 20 computer is a PDP-8/L, N if not. An N

response to this question prompts the next question:

(X3}
-
o
=
=
e
ux]

2ul
2

REMOTE TERMINAL CODES 0% OR HNI®

BASIC is asking for a PT08 or KL8E device code for each terminal to
be used (excluding the console terminal). Standard PT08 or KLSE
device codes are 40, 42, 44, 46, 50, 52, and 54. When a system using
PT08 or KL8E interface units is first installed, you determine the
specific device code for each terminal and label each terminal with
its specific device code. If device codes are standard, respond

with Y to this question and BASIC assumes the standard device codes
and continues the dialog. If device codes are not standard, enter

N. The system then asks which codes are to be used for each terminal,
in order, up to the number of users you specified in the first
question. The console terminal's code cannot be changed. The
following example shows the dialog for a five-user system, when

terminals' codes are set to 30, 32, 34, and 36 respectively.

STAWDARD REMOTE TERMIMAL
TERMIMNAL #1 CEWICE CORE™
TERMIHNAL #2 DEWICE COCES
TERMINAL #% DEWICE CODE
TERMINAL #4 LEWICE CODEYIA

The system then asks:
AMY UMUSED TERMIMALS oY 0OR MNx®
Typing N prompts the system to ask the next question, but typing Y

allows the system to ask which terminals are unused. The following

example shows one unused terminal. Notice that the device codes

must be used, rather than the user numbers.

GEVICE CODETdd MORE (Y 0OFR MiTN

The next two questions asked are:

LOOYOU HAYE A

CEQ PUMIH ofF 0Of MNX7
DO Y00 HAYE A [

-
EED EEHDER oY OR HY7™
The next question asked is:

STAMDARD USER

oy
—
)
el
)
[y
(mal
o
e
o]
]
o
-1
P}
e

The above question requires you'to decide whether to partition the
available core equally among the users on the EduSystem 20. If you
respond Y to this question, BASIC determines the size of the core
memory available and divides it equally among the users, then ends
the dialog. If N is the response, BASIC determines the amount of
available core storage and prints the highest core field according

to the following:

Field 7 - 32K core memory
Field 6 - 28K core memory
Field 5 - 24K core memory
Field 4 - 20K core memory
Field 3 - 16K core memory
Field 2 - 12K core memory
Field 1 - 8K core memory

For explanation purposes, the following dialog is written for a. 16K,
5-user EduSystem 20. The available core is to be allocated as

follows:
User 1 - 16 blocks (user 1 is the console terminal)
User 2 - 6 blocks
User 3 - 5 blocks
User 4 - 5 blocks
User 5 - 7 blocks

Each core field, except field 1, contains 16 blocks. (Field 1 con-
tains 7 blocks in version B and 10 blocks in version A.) A core
field may be divided among several users, but no user may be allotted
blocks in more than one core field. To determine the number of
blocks, BASIC prints the following dialog and the system manager

answers as shown:

—THHDﬁFD USER STORRGE ALLOCATIONTHM

FIELD Z
THERE HRE 16 EBLOCES LEFT IN THIS FIELD

YOUR ALLOCATION FOR USER #1 WILL EE HOW MAMY Elnr}-'ih;>
CIELD 2
THERE ARE 46 BLOCKS LEFT IM THIS FIELD

YOUR ALLOGCARTION FOR LUSER #2 WILL BE HOW MAMY BLOCKS?Y EA)
THERE ARRE 48 EBLOCKS LEFT IM THIS FIELD.

YOUR ALLOCATION FOR USER #7 WILL EE HOW MANY PLﬂF}E?c‘)
THERE BRE @5 BLOCKS LEFT IMN THISZ FIELD

YOUR ARLLOCATIOM FOR USER #4 WILL EBE HOW MANY BLOCE E'ﬁ‘)
FIELD 4

THERE ARE A7 B
T

(5 LEFT IN THIS FIELD.
YOUR ALLOCAT ELACKS 7L

M
! EOR USER #% MWILL BE HOW MAHY

When all responses have been entered, BASIC prints:

18 THE AEOVE CORRECT (% OR MN37

If an incorrect response was made, answer N and BASIC begins the

dialog again. A response of Y ends the dialog and BASIC prints:

END DF DIALOGUE

READY

BASIC prints READY on each of the terminals associated with the

specified device codes.

" APPENDIX A

ERROR MESSAGES

The EduSystem checks each statement in a program or in immediate

mode before executing it. If a statement cannot be executed, the

system prints an error code and a line number (if available) in

which the error is found, on your terminal. Procedures used to

correct errors can be found in Section 1.6.

Message

WHAT?

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

10

11

12

13

14

15

16

17

18

Explanation
Immediate mode statement or command not understood.
It does not begin with a line number and is not a
valid system command.
Log of negative or zero number was requested.
Square root of negative number was requested.
Division by zero was requested.
overflow, exponent greater than approximately +38.
Underflow, exponent less than approximateiy -38.

Line too long or program too big.

Characters are being typed too fast; use TAPE command
for reading paper tapes. : .

System overload caused character to be lost.
Program too complex or too many variables. - (GOSUB,
FOR, or user defined function calls are too deeply
nested.)

Missing or illegal operand or double operators.
Missing operator before a left parenthesis.

Missing or illegal number.

Too many digits in number.

No DEF for function call.

Missing or mismatched parentheses or illegal dummy
variable in DEF.

Wrong number of arguments in DEF call.
Illegal character in DEF expression.

Missing or illegal wvariable.

Message

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

19

20
21

22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44

45

Explanation

Single and double subscripted variables with the same
name.

Subscript out of range.
No left parenthesis in function.

Illegal user defined function, not FN followed by a
letter and a left parenthesis.

Mismatched parentheses or missing operator after
right parenthesis.

Syntax error in GOTO.

Syntax error in RESTORE.

Syntax error in GOSUB.

Syntax error in ON.

Unused

Syntax error in RETURN.

RETURN without GOSUB.

Missing left parenthesis in TAB function.
Syntax error in PRINT.

Unavailable device requested.

Missing or illegal line number.

Attempt to GOTO or GOSUB to a nonexistent line.
Missing or illegal relation in IF.

Syntax error in IF,

Missing equal sign or improper variable left of the
equal sign in LET or FOR.

Subscripted index in FOR.
Syntax error in FOR.

FOR without NEXT.

Syntax error in LET. -
Syntax error in NEXT.
NEXT without FOR.

Too much data typed or illegal character in DATA or
the data typed in.

Message Explanation

ERROR 46 Illegal character or function in INPUT or READ.
ERROR 47 Out of data.
ERROR 48 Unrecognized command: RUN mode.

APPENDIX B .

BASIC SYNTAXES

Legend
braces { } - items enclosed within braces are optional.
character - a letter, a number or a symbol.
constant - a number within the range of the computer.
expression - a constant [like 16.4], a variable [like B
or D(6)] or an expression [like 8*A+42 or
A=6].
letter - an alphabetic character from A through Z.
line number - an integer from 1 through 2046.

a simple variable defined only in relation
to the function.

local variable

n - an integer.

text - a series of characters enclosed within
quotation marks.

variable - a simple variable [like B or B7] or an array
variable [like F(9)].

All programming statements must be preceded by a line number. A
statement with no line number indicates the statement can be

executed only in immediate mode.

BYE
Erases programs currently in memory.

{line number} CDR
Transfers control to the card reader from the terminal or to

the terminal from the card reader.

CTRL/C
Stops a running program; prints STOP then READY.

line number DATA constant {,constant,...,constant}
Specifies data for READ statement variables.

line number DEF FN letter (local variable {,variable{,...}}) = expression
Defines a function in one line; a RETURN statement is also
needed.

DELETE {1lst line number {,2nd line number}} ,
Erases specified lines from the program currently in memory.

line number DIM array variable {,array variable {, ...}}
Reserves space in memory for an array of fixed length.

EDIT line number
Searches the line for the character typed; then performs
editing functions depending on the next character typed.

line number END
Terminates program execution and resets the program line
counter to the lowest numbered statement in memory.

{line number} FOR simple variable = expression TO expression
{STEP expression}
Executes the program lines between FOR and the corresponding
NEXT statement a designated number of times; each time the
loop is executed, the simple variable is incremented by 1,
unless STEP is specified.

{line number} GOSUB line number
Begins executing the subroutine at the specified line number;
must have corresponding RETURN statement.

{line number} GOTO line number
Transfers program execution to the specified line number.

{line number} IF expression THEN line number or executable statement
Expression is evaluated; if it is evaluated as 'true', program
execution is transferred to the specified line number.

line number INPUT variable {,variable,...,variable}
Allows values to be assigned to the variables, from the
terminal during program execution when a '?' appears on
the display-.

KEY _
Returns to key (normal) mode.

{line number} {LET} variable = expression
Assignment statement; assigns variable a value.

line number LINPUT string variable
Allows a string of alphanumeric characters greater than
six characters to be assigned to multiple string variables.

LIST {lst line number {,2nd line number}}
Prints the lines, in numerical order, of the program
currently in memory.

{line number} NEXT simple variable
Marks the end of the corresponding FOR loop.

{line number} ON expression GOSUB line number {,line number,...,line number}
Begins executing the subroutine at the first line number if
the expression is truncated to 1, at the second line number
if the expression is truncated to 2, etc.; must have
corresponding RETURN statement.

{line number} ON expression GOTO line number {,line number,...,line number}
Transfers program execution to the first line number if the
expression is truncated to 1, to the second line number if
the expression is truncated to 2, etc.

{line number} PRINT {any combination of text and expressions}
Allows text and values to be output on the terminal;
successive expressions must be separated either by commas
(for maximum spacing between successive outputs) or by
semicolons (for minimum spacing between successive
outputs); if no parameters follow PRINT, the printer performs
a carriage return/line feed.

{line number} PTP
Transfers control to the high speed paper punch from the
terminal.

{1line number} PTR
Transfers control to the high speed paper tape reader from
the terminal.

line number READ variable {,variable,...,variablel}
Reads, from the DATA statement (beginning at the current
data pointer position), values for the specified variables.

line number REMARK {any combination of characters}
Inserts non-executable remarks in a program.

line number RESTORE
Resets data pointer (see READ and DATA) to the first constant

in the lowest-numbered DATA statement.

line number RETURN
RETURN is the subroutine exit, transferring program execution
to the line following the GOSUB statement.

RUN
Begins execution of the program currently in memory.

SCRATCH
Erases program currently in memory.

line number STOP
Terminates program execution.

TAPE
Reads a program or punches a program via the teletype

paper tape reader or punch.

APPENDIX C

ASCII CHARACTER CODES

The ASCII! character codes shown in the following table are used by

the EduSystem as the argument in the CHR$ function. For each ASCII

code a second acceptable form is permitted in CHRS. The second code

is obtained by adding 128 to the code given in the following table.

For example, CHRS$ would print A in response to either 65 or 193 12%

as an argument.

ASCII Code No. ASCII Code No.
Character (Decimal) Character (Decimal)
linefeed 10 o2
formfeed 12 o4
RETURN 13 oS
space 32 o4o @ 64 foo
! 33 ' A 65
" 34 B 66
35 C 67
$ 36 D 68
2 37 E 69
& 38 F 70
' 39 G 71 107
(40 050 H 72 dio
) 41 I 73
* 42 J 74
+ 43 K 75
, 44 L 76
_ 45 M 77
. 46 N 78
/ 47 o} 79 1y
0 48 obo 3 80 120
1 49 0 81
2 50 R 82
3 51 S 83
4 52 T 84
5 53 U 85
6 54 v 86
7 55 w 87
8 56 o7 X 88
9 57 Y 89
: 58 Z 90
; 59 [91
< 60 \ 92
= 61 1 93
> 62 4 94
? 63 o077 <« 95 27

!an abbreviation for American Standard Code for Information
Interchange.

APPENDIX D

CONFIGURATION TAPES AND 0S/8 OPERATION

D.1 CONFIGURATION TAPES

Once EduSystem 20 is loaded and running, you may want to modify the
answers to some of the questions asked in the initial dialog (see
Section 3.3). For example, you may want to add a terminal to the
system or change a terminal code, or allocate more memory to a par-
ticular user. To do this, you can stop time sharing operations and
reload EduSystem 20 from paper tape (a time consuming process), or

you can change the information by using a configuration tape.

The paper tape marked DEC-08-ED20C-A-PB2 is the configuration tape to
be used with version A only; the paper tape marked DEC-08-ED20C-A-PB4
can be used only with version B. Of course, card reader subport can
be added only if the original paper tape contained version B of
EduSystem 20. These tapes allow you to change the configuration of
your system without reloading the entire EduSystem 20 paper tape.

D.1.1 Version A Reconfiguration

To modify the configuration of a version A system, use the paper tape
marked DEC-08-ED20C-A-PB2. Each user should erase the program in
memory by typing SCRATCH on his keyboard and then typing the RETURN
key. Then every user should turn his terminal OFF.

Press the HALT switch and then raise it.

The RIM loader remains in core, but verify that it is there by per-

forming the procedure illustrated in Figure 3-2, Section 3.2.

Now insert the paper tape in the paper tape reader. Leader/Trailer

code should be positioned over the reader sensors.

Be sure the Switch Register contains zeros in every position. Press

the key marked EXTD ADDR LOAD.

Set the Switch Register to 7756 and press the key marked ADDR LOAD.
Now verify that the high speed reader is ON or the Teletype paper
tape reader control knob is set to LINE. Press the keys marked CLEAR
and CONT.

If you are using the high speed reader, the tape will begin reading
in at this point. On the Teletype paper tape reader, set the reader
switch to START. The tape will begin reading in.

When finished loading, the system prints the following message for

version A:

EDUSYSTEM 2§ BASIC
ED2@C-A-VAg4. 00

The system immediately asks the questions you answered in the initial
dialog. Simply re-enter the answers to reflect the new configuration

(see Section 3.3).

D.1.2 Version B Reconfiguration

To modify the configuration of a version B system, use the paper tape
marked DEC-08-ED20C-A-PB4. Each user should erase the program in
memory by typing SCRATCH on his keyboard and then typing the RETURN

key. Then every user should turn his terminal OFF.
Press the HALT switch and then raise it.

The RIM loader remains in core, but verify that it is there by per-

forming the procedure illustrated in Figure 3-2, Section 3-2.

Now insert the paper tape in the paper tape reader. Leader/Trailer

code should be positioned over the reader sensors.

Be sure the Switch Register contains zeros in every position. Press
the key marked EXTD ADDR LOAD.

Set the Switch Register to 7756 and press the key marked ADDR LOAD.
Now verify that the high speed reader is ON or the Teletype paper
tape reader control knob is set to LINE. Press the keys marked
CLEAR and CONT.

If you are using the high speed reader, the tape will begin reading
in at this point. On the Teletype paper tape reader, set the reader
switch to START. The tape will begin reading in.

When finished loading, the system prints the following message for

version B:

EDUSYSTEM 2§ BASIC
ED2@C-A-VB@4.00

The system immediately asks the questions you answered in the initial
dialog. Simple re-enter the answers to reflect the new configuration

(see Section 3.3).

D.2 SAVING EDUSYSTEM 20 ON OS/S

If your system includes 0S/8, EduSystem 20 can be stored on an 0S/8
device. The following two sections describe saving procedures for

versions A and B on the system device.

D.2.1 Version A Storage

EduSystem 20 can be saved under 0S/8 by performing the procedure
shown below. Remember: Version A does not support the card reader.

Once 0S/8 is loaded in the monitor, place the EduSystem 20 binary
paper tape (DEC-08-ED20C-A-PBl) in the paper tape reader. Be sure
the tape is positioned so that the three Leader/Trailer codes after
the RIM-formatted binary loader and before the binary-formatted EDU20

are placed over the sensors.

Type in the characters shown below from your terminal.

Firs)

iELLHH B FTR"EA)
~+~: - Type space after up arrow and CTRL/C after asterisk

;J_HBSLDH,)
#ELZEA. EM$ «altmode key)
SAVE SYS EDUER B-FETF, 1884H-17 5??;194@1,)

EDU20 can now be run by typing:
_R SNELY

The system prints the following message.

TO BODTSTRAR ERCK D575 MOMNITOR:
LOAL ADODORESS BFERA
AND START

The system immediately begins the system dialog shown in Section 3.3.

Refer to that section for information on answering these questions.

D.2.2 Version B Storage

Version B (card reader support) of EduSystem 20 can be saved under

0S/8 by performing the procedure shown below.

Once 0S/8 is loaded in the monitor, place the EduSystem 20 binary
paper tape (DEC-08-ED20C-PB3) in the paper tape reader. Be sure the
tape is positioned so that the three Leader/Trailer codes after the
RIM-formatted binary loader and before the binary-formatted EDU20 are

placed over the sensors.

Type in the characters shown below from your terminal.

CHE. BHCRTER ':‘)
: type space after up arrow and CTRL/C after asterisk

.'q Emuzﬁ G-TETT, AREEA-1TSTT. SEERE-2FFPT 2241 S

EDU20 can now be run by typing:
LR E&UEB‘)

The system prints the following message.

TO BOOTSTRAP BACK O0S548 MOMITOR:
LOAL ADDRESE BFEEQ
AML START

ELUSYSTEM 28 BASIC
ELZAC-A-VERL B8

The system immediately begins the system dialog shown in Section 3.3.

Refer to that section for information on answering these questions.

D.3 ASSEMBLING EDUSYSTEM 20 UNDER 0S/8

If you have the EduSystem 20 source and wish to assemble it using

0s/8, perform the following procedure.

When 0S/8 is loaded in the monitor, type the following characters

from your terminal.

R OPHLS
iEDUQE.EH;LPF:CEDUQBAPHFK‘)

Assembling EDU20 requires at least 16K of core. The /K option

shown above is required since there are too many symbols in EDU20 to
assemble in 8K of core. The option /C is not used because EDU20 is
too large to CREF on 0S/8.

The list file is very large and does not fit on a device which con-
tains many other files. For this reason, the list file should be

output directly to the line printer.

INDEX

Abbreviation,

cards, 2-4

statements, 1-19
Absolute (ABS) function, 1-10
Addition, 1-5
Allocated core memory,
ALT MODE (ESC) key, 1-64,
Apostrophe ('), 1-46
Arctangent, 1-10
Arithmetic functions,
Arithmetic operators,

1-7, 1-8

combining,
Arrays, 1-50

dimensioning, 1-53
ASCII character codes,
Assigning,

card reader, 2-27,

line printer, 2-34

variables, 1-31, 1-41,
ATN function, 1-10

3-7, 3-8
1-66

1-55
1-6,

1-10,
1-5,

1-7

1-16, C-1

2-29

1-47

Back arrow (<) character, 1-64,
1-66
Backslash character
BASIC,
card, 2-1
syntaxes,
Bell, 1-16
Best arguments, RND function,
Braces, ({}), viii, 1-18
Branching, program, 1-26,
BYE statement, 1-69

(\), 1-18

B-1 - B-4
1-58

1-35

Capital letters, viii
Card fields, 2-2, 2-3
Ccard, line numbers, 2-5
Card reader, 2-1
assigning, 2-27,
CM8E, 2-12
CM8F, 2-18
deassigning, 2-4, 2-29
running programs with, 2-26
Cards,
abbreviation,
BASIC, 2-1
CTRL/C, 2-4
entering data from, 2-30
loading, 2-16, 2-23
marking, 2-1
unloading, 2-16,
Carriage return, 1-5,
symbol (), viii
CAT function, 1-15
CDR statement, 2-27,
Character field, 2-7
Character strings, 1-14

2-29

2-4

2-23

1-16, 1-21

2-31

1-16, C-1
2-12
2-18

CHRS$ function,
CM8E card reader,
CM8F card reader,
Codes,
ASCII character,
terminal device,
Combining,
arithmetic operators,
strings, 1-15, 1-16
Commands, see Statements
Computer memory, 1-24
CON (continuation) box, 2-10
Configuring the system, D-1
Control command field, 2-4
Conventions, documentation, vii
Core memory, allocated, 3-7, 3-8
COS (cosine) function, 1-10
Counters, 1-33, 1-39
CR (Carriage Return) key, 1-3
CTRL (Control),

c-1
3-6

1-7

card, 2-4
key, 1-3, 1-67
CTRL/L (form feed) keys, 1-66

CTRL/G (bell) keys, 1-66

Data,
entering, 1-47
reading, 1-47

DATA statement, 1-47
Deassigning,
card reader, 2-4,
line printer, 2-35
Defining functions, 1-54
DEF FN statement, 1-54

2-29

DELETE,
key, 1-5
statement, 1-70
$DELETED, 1-64

Deleting lines, 1-18, 1-65, 1-70
Dimensioning arrays, 1-53

DIM statement, 1-53

Division, 1-6

Documentation conventions, vii
Dollar sign ($), 1-14

EDIT statement, 1-65
Emergency stop, 1-25
END statement, 1-23
Entering data, 1-47
from cards, 2-30
from terminals, 2-32
Entering information, 1-41
Erasing,
lines,
marks,
programs,
Error messages,

1-64, 1-70
2-11

1-69, 1-7
1-7,

1-65,

0
A-1 - A-3

INDEX-1

ESC 1-64
EXP function,

Exponentiation,

(ALT MODE) key,
1-10
1-6

Fields,
card, 2-2, 2-3
character, 2-7
control command,
keyword, 2-6
line number, 2-5

FIX function, 1-10

Form feed, 1-16

FOR statement, 1-39

FOR...NEXT loop, 1-40

Functions,
ABS, 1-10
arithmetic,
ATN, 1-10
AT, 1-15
CHRS, 1-16,
cos, 1-10
defining, 1-54
EXp, 1-10
FIX, 1-10
INT,
LEN,
LOG,
MID,
MOD,
RND,
SGN,
SIN,
SQOR,
TAB,
TAN,
trigonometric,

2-4

1-10, 1-55

c-1

1-10

GOSUB statement, 1-28

GOTO statement, 1-26, 1-61

Hierarchy, 1-8

Identifying,
output, 1-22
programs, 1-46
IF statement, 1-35,
Immediate mode, 1-4,

1-36

1-18, B-1

Incrementing variables (counters),

1-33
Information, entering,
INPUT statement, 1-41
Inserting lines, 1-65
INT (integer) function,

1-41

1-10,

Key,
ALT MODE, 1-64
Carriage Return (CR), 1-3

1-55

Key (cont.
CTRL/C,
CTRL/G,
CTRL/L,
DELETE,
ESC, 1-65
LINE FEED, 1-66
RETURN, 1-3, 1-66
RUBOUT (SHIFT/O),

1-66
SHIFT,

Keyboard,
LA30, 1-2
LA36, 1-2
teletype,
terminal,
VvT05, 1-2
VT50, 1-2

KEY statement,

Keyword field,

LA30 keyboard,

LA36 keyboard,

LEN function, 1-15

Length, string, 1-15

LET statement, 1-31

Letter E, 1-7

Line feed, 1-16, 1-21

LINE FEED key, 1-66

Line numbers, 1-17,
card, 2-5

Line printer,
assigning, 2-34
deassigning, 2-35

Lines,
deleting,
erasing, 1-64
inserting, 1-65

LINPUT (Line INPUT) statement,

1-43

Listing programs, 1-62

LIST statement, 1-62

Literal expressions, 1-14, 1-20

Loading, cards, 2-16, 2-23

Logarithm, 1-10

LOG function, 1-10

Loop, programming, 1-26

),
1-3, 1-68

1-6

1-6

1-5

1-5, 1-64,

1-1

1-3
1-1

1-68

e

-67,
-6
-2

1-2

B-1

1-65

Marking cards, 2-1
Marks, erasing, 2-11
Matrix, 1-50
Memory, computer, 1-24
Messages, error, 1-7
MID function, 1-15
Mode,
immediate, 1-4,
program, 1-18,
TAPE, 1-68
MOD function,

1-18, B-1

B-1

1-10

INDEX~2

Multiple, REMARK statement, 1-46

expressions, 1-13 Replacing statements, 1-18

statements, 1-18, 1-38 RESTORE statement, 1-48
Multiplication, 1-6 RETURN key, 1-3, 1-66

table, 1-34 RETURN statement, 1-28

Re-using variables, 1-32
RND function, 1-11, 1-57

Naming programs, 1-71 best arguments, 1-58

Nested parentheses, 1-10 RUB (rubout) box, 2-11

NEW statement, 1-71 RUBOUT key, 1-5, 1-64, 1-66

NEXT statement, 1-39 Running programs, 1-23, 1-60

Number, with card reader, 2-26
largest, 1-8 RUN statement, 1-60

smallest, 1-8
Numeric variables, 1-48
Saving edusystem on 0S/8, D-3
Scientific notation, 1-7

ON-GOTO statement, 1-30 SCRATCH statement, 1-69
0S/8, saving edusystem on, D-3 Semicolons (;), 1-13, 1-21, 1-41
Output, identifying, 1-22 SGN function, 1-11

SHIFT keys, 1-1
SHIFT/O key, 1-64

Paper tape, Simple variables, 1-12, 1-50

punch, 1-67 Sine, 1-11

reader, 1-68 SIN function, 1-11
Parentheses (), 1-9 Slashed zero (@), 1-5

nested, 1-10 SQR (square root) function, 1-11,
PRINT statement, 1-20 1-55
Print zones, 1-20 Statements,
Priority, 1-8 abbreviating, 1-19
Program, 1-17 BYE, 1-69

branching, 1-26, 1-35 CDR, 2-27, 2-31

editing, 1-64 DATA, 1-47

erasing, 1-69, 1-70 DEF FN, 1-54

identifying, 1-46 DELETE, 1-70

listing, 1-62 DIM, 1-53

loop, 1-26 EDIT, 1-65

mode, 1-18, B-1 END, 1-23

name, 1-71, B-1 FOR, 1-39

retrieving, 2-4 GOSUB, 1-28

running, 1-23, 1-60 GOTO, 1-26, 1-62

storing, 1-67 IF, 1-35

terminating, 1-23 INPUT, 1-41
PTP statement, 1-67 KEY, 1-67, 1-68
PTR statement, 1-68 LET, 1-31
Punch, paper tape, 1-67 LINPUT (Line INPUT), 1-43

LIST, 1-63
multiple, 1-18, 1-38
Question mark (?), 1-41 NEW, 1-71
1

), 1-13, 1-14 NEXT, 1-39
ON-GOTO, 1-30
PRINT, 1-20

Quotation marks ('

RANDOMIZE statement, 1-57 PTP, 1-67
Random number (RND) function, PTR, 1-68

1-11, 1-57 RANDOMIZE, 1-57
Reader, paper tape, 1-68 READ, 1-47
Reading data, 1-47 REMARK, 1-46
Read-In Mode (RIM) Loader, RESTORE, 1-48

3-1 - 3-4 RETURN, 1-28
READ statement, 1-47 RUN, 1-60
Relational operators, 1-11 SCRATCH, 1-69

INDEX-3

Statements (cont.),
sToP, 1-24, 1-61

syntaxes, B-1 - B-4

TAPE, 1-68
STEP parameter, 1-4
Stop, emergency, 1l-
STOP statement, 1-2

0
25

4, 1-61

Storing programs, 1-67
String character, 1-14

combining, 1-15,

length, 1-15

variables, 1-14,
Subroutine, 1-28

Subscripted variables, 1-45

Subtraction, 1-6

Symbol, carriage return (), viii

TAB function, 1-21,

TAPE,
mode, 1-67, 1-68
statement, 1-67,
Teletype keyboard,
Terminal condition,

1-16

1-48

1-22
TAN (tangent) function, 1-11

1-68

1-2

1-45

IF statement, 1-36

Terminal device codes, 3-6

Terminal keyboard, 1-1

Terminals, entering data from,
2-32

Terminating programs, 1-23

Trigonometric functions, 1-10

Truncating, 1-55

Underlined copy, vii
Unloading cards, 2-16, 2-23
Up-arrow sign (4), 1-6

Variables, B-1
assigning, 1-31, 1-41, 1-47
incrementing, 1-33
numeric, 1-48
re-using, 1-32
simple, 1-12, 1-50
string, 1-14, 1-48
subscripted, 1-45
VT05 keyboard, 1-2
VT50 keyboard, 1-2

Zero, slashed (@), 1-5

INDEX-4

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed about cus-
tomer software problems and solutions, new software products, documenta-
tion corrections, as well as programming notes and techniques.

There are two similar levels of service:

. The Software Dispatch
. The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/15
RSX-11D
DOS/BATCH
RSTS-E
DECsystem-10

A Digital Software News for the PDP-11 and a Digital Software News for
the PDP-8/12 are available to any customer who has purchased PDP-11 or
PDP-8/12 software.

A collection of existing problems and solutions for a given software
system is published periodically. A customer receives this publication
with his initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per-
formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main-
tained by Software Communications. Users must sign-up for the news-
letter they desire. This can be done by either completing the form sup-.
plied with the Review or Summary or by writing to:

Software Communications
P.0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to DIGITAL's software should be reported
as follows:

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.O0. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained from
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re-
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation

Software Distribution Center Software Distribution Center
146 Main Street 1400 Terra Bella
Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex-
change center for user-written programs and technical application infor-
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines. Executive routines, edltors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECUS Program Library Catalogs are routinely updated and contain lists
and abstracts of all programs according to computer line:

. PDP-8, FOCAL-8, BASIC-8, PDP-12
. pPDP-7/9, 9, 15
. PDP-11, RSTS-11

. PDP-6/10, 10

Forms and information on acquiring and submitting programs to the DECUS
Library may be obtained from the DECUS office.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE -The Society's technical newsletter, published bi-monthly
aimed at facilitating the interchange of technical in-
formation among users of DIGITAL computers and at dis-
seminating news items concerning the Society. Circula-
tion reached 19,000 in May, 1974.

PROCEEDINGS OF —Contains technical papers presented at DECUS Symposia
THE DIGITAL held twice a year in the United States, once a year
EQUIPMENT USERS in Europe, Australia, and Canada.

SOCIETY

MINUTES OF THE -A report of the DECsystem-10 sessions held at the two
DECsystem-10 United States DECUS Symposia.

SESSIONS

COPY-N-Mail -A monthly mailed communique among DECsystem-10 users.
LUG/SIG -Mailing of Local User Group (LUG) and Special Interest

Group (SIG) communique, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publications, and other DECUS
activities is available from the DECUS offices listed below:

DECUS DECUS EUROPE

Digital Equipment Corporation Digital Equipment Corp. International
146 Main Street (Europe)

Maynard, Massachusetts 01754 P.0O. Box 340

1211 Geneva 26
Switzerland

Please cut alo

EduSystem 20
Reference Manual
DEC-08-E20RA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. [j

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

EduSystem 20
Reference Manual
DEC-08-E20RA-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page) .

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL .
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

digital equipment corporation

