P

dlilgliltall
' cigitc_! equment corporation

Copyright 1969 by
Digital Equipment Corporation

PDP is a registered trademark

of Digital Equipment Corporation

The material in this handbook is for information pur-
poses only and is subject to change without notice.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
PDP-11 SYSTEMS .
KA11 PROCESSOR ... o
- Priority lnterrupts ..
Reentrant Code ...t rrrrevaen .
General Registers
Instrucbon Set ..

Asynchronous Operatlon S VSOOI .

PACKAGING ...

CHAPTER 2 SYSTEM INTRODUCTION
SYSTEM DEFINITION .

“ SYSTEM COMPONENTS ...

UNIBUS ...
Single Bus ..
Bidlrectional Lmes
Master-Slave Relation
Interlocked Communication ...
Dynamic Master-Slave Relationccccovveeeivveerinnens

KA1l CENTRAL PROCESSORccvvvemiivniieie e eann
General Registers ..
Central Procedsor Status Reglster

CORE MEMORY .. riees

PERIPHERAL DEVICES ...

SYSTEM INTERACTION ..

- TRANSFER OF BUS M&STER

PRIORITY STRUCTURE ..

NPR Requests .,
Interrupt Requests

CHAPTER 3 ADDRESSING MODES

ADDRESS FIELDS et v
General Register Addressing
Indexed Addressing ... s
Autoincrement Mode Mdressing
Autodecrement Addressing ..
STACK PROCESSING .
USE OF THE PC AS A GENERAL REGISTER
Iimmediate Addressing ..
Absolute Addressing e .
Relative ADdressing ... e
Deferred Relative Addressingoccooveiiiin
USE OF THE SP AS A GENERAL REGISTER Ceeorrrenerna
DOUBLE OPERAND ADDRESSINGcooooiiiiiiienicvreeevnnns

CHAPTER 4 mmuc-rm si-:T

INSTRUCTION TIMING .
NOTATION ..

WRKNNRKRN R - -

WONNNNORPBADN RN AN A D

- DOUBLE OPERAND lNSTRUCTIONS

ﬂrl!l'll'rl!‘l:ll: UPEI'!I:IDHS
. Boolean Instructions

BRANCHES .

Unconditional Branch
o« Simple Conditional Branches

‘Signed Conditional Branches .

Unsigned Conditional Branches
SUBROUTINES

Examplas ...

SINGLE OPERAND INSTRUCTIONS
Multiple Precision Operations ..
ROtatesocorveee e rinanes
ShIftS o
EXAMPIBS ..o r e g s s e

BYTE OPERATIONS .
Double Operand By'te lnstructions
Example ...

Single Operand Instructlons
CONDITION CODE OPERATORS .
MISCELLANEODUS CONTROL INSTRUCTIONS .
PROCESSOR TRAPS ..o irirrmninnie e

Trap INStrUCtionS ...t s reaer e

Stack Overflow Trap

Bus Error Traps

Trace Traps

CHAPTER 5 ADDRESS ALI.OOATION .

ADDRESS MAP e ecersnressearaes
Interrupt and Trap Vector ...
Processor Stack and General Storage

Peripheral Registerscccooiir s e :

CORE MEMORY ...ttt e csre s centeenenan
Read-Write Core Memory :
Read-Only Core Memory
Wordlet Memoryccoceeveiinnviennns SOUTOT PO PSP OU PR

"CHAPTER6 PROGRAMMING OF PERI_PHERAI.S

DEVICE REGISTERS .

CONTROL & STATUS 'REGISTERS .
Device Function Bits
Memory Extension
Done Enable and Interrupt Enable
Condition Bits .
Unit Bits .
Error Blts

DATA BUFFER REGISTERS

PROGRAMMING EXAMPLES—NON INTERRUPT

INTERRUPT STRUCTURE . i rrerenieeneeanetn

PROGRAMMING EX&MPLE

CHAPTER 7 PERIPHERAL BULLETINS ' .

TELETYPE (MODEL LT33-DC/DD)ocvvviiirree i ecece s
B e e e s e s
Power Requirement ... P

v

SER5E68G

-T2 T A AL Rege

53
53

TELETYPE CONTROL {MODEL KLl 1)
Teletype Controf . .
Heyboard/Reader Operation ,,,,,,,,,,,,,,,,,,,,

Registers (TKS, TKB) IO
Teleprinter/Punch

Registers (TPS, TPB)
Programming Example
Peripheral Address Assugnments

Mounting ..
HIGH-SPEED PERFORATED TAPE READER (MODEL PC
Tape Reader ..o,
Registers (PRS, PRB) .. .

Programming Example
Peripheral Address Assmnments
Tape Punch . e
Reglsters (PPS PPB)
Programming .Example .
Penpheral Address Asmgnments
Mounting .. -
Enwronrnental .. even
Line Frequency Clock (Model KW11-L) ..
Register ...
Peripheral Address Assngnments
Mounting ..
Vector Address

PrOTity Levelc.c.ooooccoo o SO

CHAPTER 8 DESCRIPTION OF THE UNIBUS _ .
GENERAL CONCEPTS OF THE UNIBUS ...

Single BUS ..o
Bidirectional Bus RO
Master-Slave Ralation ...

. Interfocked Communication

Dynamic Master-Slave Relation ...

UNIBUS SIGNALS .

NON-INTERRUPT SIGNALS
Data Lines .. i
Address Llnes
Control Lines ... eaei e .
Master Sync & Slave SYNn¢occoivireiiniann,
Parity Available & Parity Bitc.ccooiiiin.

Initialization v e aa el v

Spare 1 & Spare 2
INTERRUPT SIGNALS
Bus Request Lines
+ Bus Grant Lines TR
Non-Processor Request ...
Non-Processor Grant
_Belection ﬂcknowledge
Interrupt (and) Bus Busy ..
UNIBUS DATA TRANSFER OPERATIONS
DATO and DATOB ..
DATI and DATIP
Examples of Data Transfers0............ccooveenn..

11) ...

Signal Description of Data Transfers ...

55

Priority Arbitrltion .
Selection of Next Bup Maler

Example of lnterrupt, etc
Example of NPR Operation ..

CHAPTER 9 INTERFACING

REGISTERS .

BUS DRIVERS 'AND RECEIVERS ..
ADDRESS SELECTOR . .
INTERRUPT CONTRDL

DEVICE CONTROL LOGIC

CHAPIER 10 CONF!GUIATION AND INSTAI.I.ATIG! PLAN’NIHG

MODULAR CONSTRUCTION .. OOV PPUUOR
MOUNTING BOXES AND CAB!NETS
PDP-11 Tabletop Box for 11/20, B o
PDP-11 Basic Mounting Boxc........
PDP-11 Tabletop Extension Mounting Box ..
PDP-11+Freestanding Base Cabinetcooevevinnns
Freestanding Programmer's Table ...
SYSTEM UNITS AND CABLES ..o crecrisnvaressrsraresenns.
Peripheral Mounting Unit ...
Blank System Unitc.coooerviniriiei e cvesseresreansanns
Unibus Modulecoovviiiiiiiie e cee e reeies e reenare
Unibus Cable .. e eeeeeeeitaeeeeteeet b et eeeea e rraer e e
CABLE REQUIREMENTS
PDP-11/20 POWER REQUIREMENTS
TELETYPE REQUIREMENTS
ENVIRONMENTAL REQUIREMENTS
INSTALLATION PROCEDURE .

CHAPTER 11 PAPER TAPE SOFI'\'IMIE SYS'I'EM

PAL-11A Assembler FUTUUT

ED11 Editor .. .

ODT On-Line Debugglng
JOX lnput.-‘Output etc.
Math Package ..
Loaders ..

Core Dump Routmes

CHAPTER 12 THE OPERATOR'S CONSOLE

CQNSOLE ELEMENTS .
Indicator LIBhtS ... it "

Register Displaysooooiiii i e reerereereraresas .

Switch Register ...
Control Switches ... e
CONTROL SWITCH OPERATION .

APPENDIX A—-PDP-11 INSTRUCTION REPEI“'OIRE

APPENDIX B—ADDRESSING SUMMARY .

ADDRESSING MODES . e e s
General Register Addressmg
PC Register Addressing ..

vl

JNNBE BRBARRP

RERERRER RRAVIBR/R22RRBBIIYYY

8933

FREQ 2 BY

INSTRUCTION FORMATSt
APPENDIX C—ADDRESS MAP ...

APPENDIX D—UNIBUS OPERATIONS ..o,
DATA-TRANSFERS ... e eeeeeeeee e

DATIH and DATIP ...

DATO and DATOBocoo e
PTR-PRIORITY TRANSFERocoooiiimmmmrieee
INTR—INTErRUPE ... e
GENERAL NOTES ON THE BUS OPERATIONSc.............

vit

The PDP-11 is available in two versions—PDP-11/10 and PDP-
11/20. The basic PDP-11/10 contains 1,024 words of read only
memary in conjunction with 128 words of read/write memory and
the basic PDP-11/20 includes 4,096, words of read/write memoary.

vill

CHAPTER 1
INTRODUCTION

This publication is a handbook for Digital Equipment Corporation's PDP-11.
It provides a comprehensive overview of the system structure, the instruction
repertoire, input/output programming, peripherals, general interfacing, soft-
" ware, and conscle operation.

PDP-11 is Digital's answer to the demand for a modular system for real-time
data acquisition, analysis and control. PDP-11 systems can handle a wide
variety of realtime control applications—each. system being individually
tailored from a comprehensive array of modular buiMing blocks. Digital is
unique among manufacturers of small-scale computers.in its ability to pro-
vide not only fast and efficient processing units, but also a large family of its
own compatible 1/O devices including A/D and D/A converters, magnetic
tape, disk storage. paper tape, and displays, as well as a wide range of
géneral-purpose modules. This capability offers the user a new, more efficient
approach to real-time systems.

The following paragraphs introduce the new PDP-11 by way of highlighting
several of the important design features that set it apart from other machines
in its class. Subsequent chapters of this manual place these features in their
proper context and provide detailed descriptions of each.

PDP-11 SYSTEMS -
The PDP-11 is available in two versions designated as PDP-11/10 and PDP-

read-only memory, and 128 16-bit words of read-write memory. The basic
PDP-11/20 contains a KAll processor and 4,096 words of 16-bit read-write
core memory, a programmer's console, and an ASR-33 Teletype. Both ver-
sions can be similarly expanded with either read-write or read-only memory
and peripheral devices.

UNIBUS -

" Unibus is the name given to the single bus structure of the PDP-11, The
processor, memory and all peripheral devices share the same high-speed
bus. The Unibus enables the processor to view peripheral devices as active
memory locations which perform special functions. Peripherals can thus be
addressed as memory. In other words, memeory reference instructions -can
operate directly on' control, status, or data registers in peripheral devices.
Data transfers from input to output devices can bypass the processor com-
pletely.

KA1l PROCESSOR

The KA1l processor incorporates a unique combination of powerful features
not previousiy available in 16-bit computers.

‘Priority Interrupts—A four-level automatic priority interrupt system permits
the processor to respond automatically to conditions outside the system, or
in the processor itself, Any number of separate devices can be attached to
each level.

Each peripheral device in a PDP-11 system has a hardware pointer to its own
unique pair of memory locations which, in turn, point to the device's service
routine. This unique identification eliminates the need for polling of devices

to identify an interrupt, since the interrupt servicing hardware selects and
begins executing the appropriate service routine.

The davice's interrupt priority and service routine priority are independent.
This allows dynamic adjustment of system behavior in response to real-time °
conditions.

The interrupt system allows the processor continually to compare its own
priority levels with the levels of any interrupting devites and to acknowledge
the device with the highest level above the processor's priority level. Servic-
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device can be resumed automatically
upon completion of the higher level servicing., Such a process, called nested
interrupt servicing, can be carried out to any ievel.

Reentrant Code—Both the interrupt handling hardware and the subroutine
call hardware are designed to facilitate writing reentrant code for the
PDP-11. This type of code allows use of a single copy of a given subroutine
or program to be shared by more than one process or task. This reduces the
amount of core needed for multi-task applications such as the concurrent
servicing of many peripheral devices,

General Registers—The PDP-11 is equipped with eight general registers. All
. are program-accessible and can be used as accumulators, as pointers to
memoty locations, or as full-word index registers. Six registers are used for
general-purpose access while the seventh and eighth registers are used as
a stack pointer and program counter respectively.

Instruction Set—An important feature of the PDP-11 instruction set is the
availability of double operand instructions. These instructions allow memory-
to-memory processing and eliminate the need to use registers for storage of
intermediate results. By using double operand iastructions, every memory
location can be treated as an accumulator, This significantly reduces the
length of programs by eliminating load and store operations associated with
single operand machines.

Addressing—Much of the power of the PDP-11 is derived from its wide range
of addressing capabilities. PDP-11 addressing modes include list sequential
addressing, full address indexing, full 16-bit word addressing, 8-bit byte
addressing, stack addressing, and direct addressing to 32K words.

Variable length instruction formatting allows a minimum number of bits to
- be used for each addressing mode. This results in efficient use of program
storage space.

Asynchronous Operation—The PDP-11's memory and processor operations
are asynchronous. As a result, 1f/O devices transferting directly to or from
memory may steal memory cycles during instruction operation.

PACKAGING -

The PDP-11 has adopted a modutar approach to allow costom configuring of
systems, easy expansion, and easy servicing. Systemns are composed of basic
building blocks, called System Units, which are completely independent sub-
systems connected only by pluggable Unibus and powes connections.
There is no fixed wiring between them. An example of this type of subsystem
is a 4,096-word memaory module.

System Units can be mounted in many combinations within the PDP-11
hardware, since there are no fixed positions for memory or {0 device con-
trollers. Additional units can be mounted easily and coninected to the system

in the fieid. In case maintenance is required, defective System Units can be
replaced with spares and operstion resumed within a few minutes.

SOFTWARE : :

A compiste package of user-oriented software inciudes:

Absolute assembler providing object and source fistings

String-oriented editor

Debugging routines capable of operating in a priority interrupt environ-
ment -

Input{ output handlers for standard peripherals

Relocatable integer and fioating point math library

Al PDP-11 processors, memorties and peripherals are electrically
and mechanically modular subsystems supported in System Units.
which are simply plugged together to form a computer tailored to
user needs, : '

‘4

CHAPTER 2

SYSTEM INTRODUCTION

. SYSTEM DEFINITION
Digital Equipment Corporation's PDP-11 is a 16-bit, general-purpose, parallel-
logic computer using two's complement arithmetic. The PDP-11 is a variable
word length processor which .directly addresses 32,768 16-bit words or
65,536 8-bit bytes. All communication between system components is done
on a singte high-speed bus called a Unibus. Standard features of the system
include eight general-purpose registers which can be used as accumulators,

index registers, or address pointers, and a muitileve! automatic pnonty in- .

terrupt system.

- SYSTEM COMPONENTS

UNIBUS—There are five concepts that are very important for understanding
both lthe hardware and software implications of the Unibus, .

8in¢le Bus—The Unibus is a single, common path that connects the central
processor memory, and all peripherals. Addresses, data, and controf informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the Unibus, The)

processor uses the same set of signals to communicate with memory as with

peripheral devices. Peripheral devices also use this set of signals when com-

municating with the processor, memory, or other peripheral devices.

Peripheral device registers may be manipulated as flexibly as core memory
by the centrai processor. Ali the instructions that can be appiied to daia in

core meimory can be applied equally well to data in peripheral device regis-,

ters. This is an especially powerful feature, considering the special capability
of PDP-11 instructions to process data in any memory location as though it
were an accumulator,

Bidirectionat Lines—Unibus lines are bidirectional, sé that the same signals
which are received as input can be driven as output. This means that a
peripheral device register can be either read or set by the central processor
or other peripheral devices; thus, the same register can be used- for both
input and output functions.

Master-Slave Relation—Communication between fwo devices on the bus is
in the form of a master-slave relationship. At any point in time, there is one
device that has control of the bus. This controlling device is termed the
“bus master.” The master device controls the bus when communicating with
ancther device on the bus, termed the “slave.”” A typical example of this
relationship is the processor, as master, fetching an instruction from mem-
ory {which is always a slave). Another example is the disk, as master, trans-
ferring data to memory, as slave.

interiocked Communication—Communication on the Unibus is interlocked
so that for each control signal issued by the master device, there must be a
response from the slave in order to complete the transfer. Therefore, com-
munication is independent of the physical bus length and the response time
of the master and slave devices. The maximum transfer rate on the Unibus
is one 16-bit word every 750 nanoseconds, or 1.3 million 16-bit words- per
second.

s

Dynamic Master-Siave Relation—Master-siave relationships are dynamic. The
Jprocessor, for example, may pass bus control to a disk. The disk, as master,
could then communicaté with a slave ntemory bank. ,

Since the Unibus is used by the processor and all |/ O devices, thers is a
priority structure to determine which device gets control of the bus. Thete-
fore, every device on the Unibus which is capable of becoming bus rmaster
has a ‘priority assigned to it. When two devices which are capable of bscom-
ing a bus master request use of the bus simultaneously, the device with the
higher priority will receive control first. Dstails of what conditions must be
satisfied before a device will get control of the bus are given in the section
on System Interaction.

KA1l CENTRAL PROCESSOR—There are four major features which are of
particular interest to the programmer: 1), the General Registers; 2), the
Processor Status Word; (3), the Addressing Modes; and 4), the Instruction
Set. The addressing modes and the instruction set of the PDP-11 processor
witl be discussed in detail in Chapters 3 and 4.

General Registers—The KA1l processor contains eight 16-bit general regis-
- ters. These eight general registers (referred to as RO, R1, R7) may
be used as accumulators, as index registers, or as stack pointers, One of
these registers, R7, is reserved as a program counter (PC). Generally, the
PC holds the address of the next instruction, but it may point to data or
to an address of data. The register R6 has the special function of processor
stack pointer, ’

Central Processor Ststus Register—The Central Processor Status Register
(PS} contains information on the curreat priority of the processor, the result
of previous operations, and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The priority of the
central processor can be set under program control to any one of eight.
levels, This information is held in bits 5, 6, and 7 of the P5. _
Four bits of the PS are assigned to monitoring different .results of previous
instructions. These bits are set as follows:

Z—if the result was zero

N—if the result was negative : b

C—-if the operation resulted in a carry fromn the ‘most significant bit

V—if the operation resuited in an arithmetic overflow

The T bit Is used in program debugging and can be set or cleared under pro-
gram control. If this bit is set, when an instruction is fetched from memory
a processor trap will be caused by the completion of the Instruction’s
execution. _ :)

Pl s) Processon 'rlulzlvle}'
I T R M T S ey

T * El El 3 2 1 [-]

, Central Processor Status Register (PS) o
CORE MEMORY-—The PDP-11 allows both 16-bit word and 8-bit byte ad-
dressing. The address space may be filled by core memory and peripheral
device registers. The top 4,096 words generally are reserved for peripheral
device registers. The remainder of address space can be used for read-write .
core memory or read-only core memory.

Read-write core memory is currently available in 4,096 16-bit word segments.
This memory has a cycle time of 1.2 microsecordds and an access time of
500 nanoseconds. It is a standard part of a PDP-11/20 system.

Read-only core memoty (ROM) is available in 1,024 16 bit-word segments.
The access time of the ROM is 500 nanoseconds. Memory is also available in
128 16-bit word segments with a 2.0 microsecond cycle time., Both 1,024
words of read-only mernory and 128 words of read-write memory mount in
a single System Unit and are a standard part of the PDP-11/10 system.

PERIPHERAL DEVICES—The ASR-33 Telstype with low-speed paper tape
reader and punch is provided in the basic PDP-11/20 system. Options for the
PDP-11 include a paper tape reader capable of reading 300 characters per
second, a paper tape punch with an output capacity of 50 characters per
second, and additional Teletype units. Provision is made for the addition
of numerous peripheral devices. These include standard DEC peripherals a

well as other devices which will be unique to the PDP-11. :

SYSTEM INTERACTION

At any point in time only one device can be in control of the bus, or be bus
master. The master communicates with another device on the bus which is
called the slave. Usually, the established master will communicate with the
slave in the form of data transfers.

Full 16-bit words or 8-bit bytes of information can be transferred on the bus
between the master and the slave. The information can be instructions, ad-
dresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and re-
storing the results into memory after execution of instructions, Pure data
transfers occur between a disk control and memory.

TRANSFER OF BUS MASTER—When a device {other than the central pro-
cessor) is capable of becoming bus master and requests use of the bus, it is
generally for one of two purposes: 1) to make a non-processor transfer of
data directly to or from memory, or 2) to interrupt program execution and
force the processor to branch to a specific address where an interrupt
service routine is located. :

PRIORITY STRUCTURE—When a device capable of -becoming.bus master
requests use of the bus, the handling of that request depends on the loca:.
tion of that device in the priority structure. These factors must be considered
to determine the priority of the request:

1. The processor's priority can be set under prograrm control to one of
eight levels using bits 7, 6, and 5 in the processor. status register.
These three bits set a priority level that inhibits granting of bus re-
quests on lower levels.

2. Bus requests from external devices can be made on one of five re-
quest lines. A non-processor request (NPR) has the highest priority, .
and its request is honored by the processor between bus cycles of
an instruction execution. Bus request 7 (BR7) is the next highest

~priority, and BR4 is the lowest. The four lower level priority requests
are honored by the processor between instructions. When the pro-
cessor's priority is set to a level, for example 6, all bus requests on
BR6 and helow. are ignored,

3. When more than one device is connected to the same bus request
(BR) line, a device nearer the central processor has a higher priority
than a device farther away. Any number of devices can be connected
to a given BR or NPR line.

. Once'a device other than the processor has control of the bus, it is for one
of two types of requests: 1) NPR Request, 2) titerrupt Request.

NPR Requests—NPR data transfers can be made between any two peripheral
devices without the supervision of the processor. Normally, NPR transfers
are between a mass storage device, such as a disk, and core memory.
The structure of the bus also permits device-to-device transfers, allowing
customer-designed peripheral controllers to access other devices such as
digks directly. .

An NPR device has very fast access to the bus and can transfer at high data
rates once it has control. The processor state is ndt affected by the transfer;
therefore the processor can relinquish control while an instruction is if
progress. This can occur at the end of any bus cycle except in between a
read-modify-write-sequence. (See Chdpter 8 for details). tn the PDP-11, an
NPR device can gain bus control in 3.5 microseconds or less. An NPR device
in control of the bus may transfer 16-bit words from memory at mernory

speed or every 1.2 microseconds in the PDP-11/20 or every 1.0 microseconds
in the PDP-11/10. :

Interrupt Requests—Devices that request interrupts on the bus request lines
(BR7, BR6, BR5, BR4) can take advantage of the power and flexibility of
the processor. The entire instruction set is available for manipulating data
and status registers. When a device servicing program must be run, the task -
currently under way in the central processor is interrupted and the device
service routine Is initiated. Once the device request has been satisfied, the
processor returns to the interrupted task, -

In the PDP-11, the return address for the interrupted routine and the proces-
sor status word are held in a “stack.” A stack is a dynamic sequential
list of data with special provision for access from one end. A stack is also
called a “push down" or “LIFQ” (Last-In First-Out) list. Storage and re-
trieval from stacks is called *‘pushing” and “popping” respectively. These
operations are illustrated in Figure 2-1.

In the PDP-11, a stack is automatically maintained by the hardware for inter-
rupt processing. Thus, higher level requests can interrupt the processing of
lower level interrupt service, and automatically return control to the lower
level interrupt service routines when the higher level servicing is completed.

Here is an éxample of this procedure. A peripheral requires service and
requests use of the bus at one of the -BR levels (BR7, BR6, BR5, BR4). The
operations undertaken to “service” the device are as follows:

| ‘/Eo ‘ /!l !
v — D

1 AN EMPTY 2. PUSHING A . 3. PUSHING ANDTHER
STACK OATUM ONTD OATUM ONTO THE
THE STACK STACKS
E2 E2 E3 E3
£ / /
E1 E1 Eq E1
EQ . Ed £Q Ed
4. ANOTHER 3 P .
b 5. PO 6. PUSH T POP

Fig 2-1 lllustration of Push and Pop Operations

. 1. Priorities permitting, the processor relinguishes the bus to that
device.,

2. When the device has contro! of the bus, it sends the processor an
interrupt command with the address of the words in memory con-
taining the address and status of the appropriate device service
routine.

3. The processor then ‘pushes”—first, the current central processor
status (PS) and then, the current program counter (PC) onto the
processor stack.

4. The new. PC and PS (the “interrupt vector’”) are taken from the loca-
‘tion specified by the . device and the next location, and the device

@ p— a
1, PROCESS & |5 FUNMING 4 PROCESS 1 TEG
- psonun 15M . WITH PCePCy AND e
POINTING TO LOCATION STATUS = PS).
L PROCESS 15 STARTED
=P,
PROGRAM o P
[
TEA
TED
e
rsg
L PROGRAM
2 INTERRUPT 4TORS @
PROCESS @ WITH
PCaPCp AND STATUS= S99
FSg STARTS PROCESE 1
5P — PCa .
& PROCESS 2 COMPLETES
. i WITH & ATL MSTRICTION
L (MSMRSSES INTERRUPT) .
PROGRAM PC 15 RESET TO PCy AMD
STATUS IS RESET 70 P
PROCESS 1 RESUMES e
TES
FCa
P20
L] PROGRAM
3 PROCESS 1 USES STRCK @
FOR TEMFORART ey
STORUGE (TEg TE, +)
6 PROCESS | RELEASES - ¢
- THE TEMPORAAY o
P | TE1 STORAGE HOLODING -
TEQ AMD TEA
TED
hioied P — PR
FE0 esd
Fo.
PROGRAM o PROGRAM
T FROCESS § COMPLETES @

:?I OFERATION WITH & prey

PG IS RESET TO POo
AND STATUS |5 NESET
To PS5, 5P —wPd

L
PROCESS @ RESUMES PROGRAM

Figure 2.2 Nested Device Servicing

g

service routine is begun. Note that those operations all occur auto-
matically and that no device-polling is required to determine which
service routine to execute,

. 7.2 microseconds is the time interval between the central processor's
receiving the interrupt command and the fetching of the first instruc.
tion. This assumes there were no NPR -transfers during this time.
. The device service routine can resume the interrupted process by
-executing the RTI (Return from Interrupt) iristruction which “pops’
the processor stack back into the PC and PS. This requires 4.5
microseconds if there are no intervening NPR's.

. A device service routine can be interrupted in turn by a sufficiently
high priority bus request any time after completion of its first in-
struction.

. if such an interrupt occurs, the PC and PS of the device service
routine are automatically pushed into the stack and the new device
routine initiated as above. This “nesting” of priority interrupts can
g0 on to any level, limited only by the core available for the stack.
More commonly, this process will nest only four levels deep since
there are four levels of BR signals. An example of nested device
servicing is shown in Figure 2-2. A rough core map is given for each
s:'ep of the process. The SP points to the top word of the stack as
shown.

10

CHAPTER 3
ADDRESSING MODES

Most data in a program s structured in some way—in a table, in a stack, in
a table of addresses, or perhaps In a small set of frequently-used variables'
local to a limited region of a program. The PDP-11 handles these common
data structures with addressing modes specifically designed for each kind
of access. In addition, addressing for unstructured data is general enodgh
to permit direct random acgess to all of core. Memory is not broken up into
pages and fields {often awkward and wasteful of core storage).

Addressing in the PDP-11 is done through the general registers. Programs
requiring several stacks can use the general registers for stack pointers.
Those requiring many local variables can use general registers as accumu-
Iators. The general registers can be used interchangeably as index registers
or as sequential list pointers to access tabularedata. Address arithmetic may
be done directly in the general registers.

- ADDRESS FIELDS _

POP-11 instruction words contain a 6-bit address field divided into two sub-
fields selecting the general register and the mode generating the effectwe
address.

|||_|||||1||t||"°°‘|m”"'l

INSTRUCTION WORD:

The register subfield specifies which of the eight general registers is to be
used in the address calculation. The mode subfield indicates how this register
is to be used In determining the operand. These modes will be described
in the following paragraphs.

GENERAL REGISTER ADDRESSING—The general registers will be usecl .as
simple accumulators for operating on frequently-accessed variables. In this
mede, the operand is heid directly in the general register. The general reg-
" isters are in fast memory, (280-nanosecond cycle time) resulting in a speed
improvement for operations on these variables,

PAL:11, the PDP-11 assembler, interprets instructions of the form

OPR R
as general register operations. R has been defined as a register name and
OPR is used to represent a general instruction mnemonic. The address field
for general register operations is

ADDRESS FELD - GENERAL REMISTER
DM00E 15 W{NCATED A3 M OCTAL DWGNT)

Operands that are pointed to .by addresses (indirect or deferred) are de-
noted to PAL-11 by the @ symbol. Thus, instructions of the form

OPR @R
specify deferred registsr addressing and have the following address field.

11

Deferred register addressing may also be selected in PAL-11 by the form
OPR (R).

INDEXED ADDRESSING——The general registers may be used as index reg-
isters to permit random access of items in tables or stacks of data. Instruc-
tions of the form

OPR X(R)

specify indexed mode addressing. The effective address is the. sum of X
and the contents of the specified general register R.

. -
The index word confaining X follows the instruction word.
' AOOAESS FIELD-INDEXED MODE

m&‘_ Loy T4]

’ - g " 2 I
MDEX WORD
INDEMED ADDRESSMG

Index mode addressing can be deferred to permit access of data elements
through tables or stacks of their addresses The address field for index de-
ferred mode is

AODRESS FIELO-OEFERRCD NDEXED
ODE

It is specified by instructions of the form
) OPR @X(R)

AUTOINCREMENT ADDRESSING—Automcrement addressing provides for
automatic stepping of a pointer through sequential elements of a table
of operands. In this mode, the address of the operand is taken from the
general register and then the contents of the register are stepped (incre-
mented by one or two) to address the next word or byte depending upon
whether the instruction operates on byte or word data. Instructions of the
_ form '
OPR (R)-i-
specify autoincrement addressing. The address field for automcrement ad-

dressing is

ACORESE FIELD- AUTOMCREMENT

This mode may also be deferred. Instructions of the form

OPR @(R}+ i
specify deferred autolncrement addressing and assemble with the following

address field,

ADONCSS FELD - AUTOINCREMENT
DCFENAED NOOE

AUTODECREMENT ADDRESSING—Autodecrement addressing steps the spe-
cified general register to the next lower byte (decrement by one) or word

12

(decrement by two) address and -uses the new contents of the general reg-
ister as the operand address. Instructions of the form

-OPR -~ (R)

specify autodecrement addressing. The address field for autodecrement ad- -
dressing is

ADDMESS FIELD~ AUTONCREMENT
' MODE

This mode also may be deferred and specified by instructions of the form
OPR @ —(R). When deferred the address field is

-
ADOPESS FIELD- Sy TOMCREMENT -
DEFERRED MODE -

STACK PROCESSING

The combination of autoincrement addressing in which the general register is
stepped forward after the operand address is determined and autodecrement
addressing in which the generai register is stepped backward before the
.operand address is determined is the basic requirement for convenient low
overhead stack operations.

The PDP-11 has extensive stack processing capabilities. The stack pointer
(5P), RS, maintains a stack for the nested handling of interrupts. All of the
general registers can maintain stacks under program control. Elements in
the middle of stacks may be accessed through indexed addressing. This

nrnuulne far raruvoniant arnace af dunamisaily ascionad tamoararnr etarars
PP IaRS e QUNVENIDINT aliess U uyniaiiday abbighch whipoiary Swiags,

especially useful in nested procedures.
USE OF THE PC AS A GENERAL REGISTER

There are special implications in the use of the addressing modes already
described when applied to the PC (R7). The use of the PC with the address-
ing modes described above generates immediate, absolute, relative, and
deferred relative addressing.

IMMEDIATE ADDRESSING—Immaediate addressing provides time and space
improvement for access of constant operands by including the constant in .
the instruction. The instruction word referencing an immediate operang

‘specifies autoincrement addressing through the program counter. The ad- -
dress field would be

T .

ADDRESS FIELD-IWMEDIATE MODE

The program counter points to the word after the instruction word. The con-
tents of this word are therefore used as the operand and the program counter
is stepped to the next word. PAL-11 recognizes address expressions of the
form “#n” as immediate operands and codes them with the address field
shown above followed by a word of data (n).

A full word is assembled for immediate operands even in byte instructions
so that instruction words are always fetched from even locations.

ABSOLUTE ADDRESSING—The contents of the location following the instruc-

13

tion ‘word may be taken as the address of an operand by specifying deferral
in immediate mode addressing. That is, instructions of the form

: . OPR @#A . _
refer to the operand at address A. PAL-11 assembles address sxpressions of
this form into an address fieid

ADDRERS FIELD-ABSOLUTE MBDE

followed by a word containing the o!:erand addrass.

RELATIVE ADDRESSING—Relative addressing specifies the operang address
relative to the instruction location. This is accomplished by using the PC as
an index regisier. The PC is considered as a base address. The offset, the
distance between the. location of the operand and the PC, is held in the
index word of the instruction. PAL-11 assembles instructions of the form

OFR A

(where A has not been assigned as a name of a general register) as an
instruction word with the address field

ADORESS ELC-RELATVE MODE

followed by an index word of the form

DEFERRED RELATIVE ADDRESSING—Deferrai of reiative addressing permits
access to data through memory locations holding operand addresses. The

“@" character specifies deferred addressing; i.e., OPR @A. The address fieid
for deferred relative addressing is '

T

FORESS PO RELATE move

USE OF THE SP AS A GENERAL REGISTER

The processor stack pointer wili in most cases be the general register used
in PDP-11 stack operations. Note that the content of SP, (SP), refers to the
top element of the stack, that —(SP)} will push data onto the stack, that
(SP}+ willl pop data off the stack, and that X{SP) will permit random access
of items on the stack. Since the SP is used by the processor for interrupt
handling, it has a special attribute: aptoincrements and autodecrements are
_always done in steps of two. Byte operations using the SP in this way will
simply leave odd addresses unmodified.

DOUBLE OPERAND ADDRESSING

Operations which imply two operands such as add, subtract and compare
are presented in the PDP:11 by instructions which specify two addresses, The
instruction word for Such operations is of the form

T T T T T T T 1 T
i O FIELO | ! sw!u m'ussr:w DESTIMATION ADORESS FIELO '
1 1 | 1 1 ! L [1 l 1

WETAUCTION WORD-~ DOUBLE OPERAND METACTIONS

Instruction Word—Double Operand lnstructions

14

and is followed by index words and immediate operands for the source and
destination address fields as appropriate. Source address calculations are
performed before destination address calculations. Since each operand may
be anywhere in core storage or in the general registers, each memory location
is thus effectively provided with the arithmetic capabilities of an accumulator.
Further, since peripheral device registers and memory location are addressed
in the same way, the contents of peripheral data buffers can be stored or
loaded directly to and from memory without use of any general register. This
means that interrupt routines can be executed without saving and restering
any of the general registers.

15

)

. TUOIIRUIGLUOD Aue AJlenyiiA Ul
pasn 8q o3 sieseydued pue saowaw Jo sHIoMBL Sumo|ie snqiun
B pajied SR |estoAun B ypm Jandusod ¥q-91 B 81 IT1-ddd 2yl

CHAPTER 4
INSTRUCTION SET

This chapter presents the order code for the PDP-11. Each PDP-11 instruc-
tion is described in terms of five parameters: operation, effect on condition
codes, hase timing, assembler mnemonics, and octal representation. Special
comments are included where appropriate.

NOTATION
The following notations will be used in this section:
(XXX : The contents of XXX
sIc ; The Source Address
dst 1 The Destination Address
A : Boolean "“AND” Function
v : Boolean "OR" Function
¥ : Boolean “Exclusive OR" Function
-~ : Boolean ‘NOT*’ Function {Complement)
- : "becomes"”
+ : “is popped from the stack'"
1 : "is pushed onto the stack”

INSTRUCTION TIMING

The PDP-11 is an asynchronous processor in which, in many cases, memory
and processor operations are overjapped. The execution time for an instruc-
tion is the sum of a basic instruction time and the time to determine and
fetch the source and/or destination operands. The following table shows the
addressing times required for the various modes of addressing source and
destination operands. The instruction time for each operation is given
{throughout this chapter) for the 11/20 configuration. AY times stated are
subject to =209, variation.

ADDRESSING FORM THAING
(src or dst) sre (us)f dst (us)t

R 0 0

(R) or @R : 1.5 1.4
(R) + 1.5 1.4*
—{R) 1.5 1.4%
@(R) + 27 2,64
@—(R) 2.7 2.6%
BASE(R) 2.7 2.6%
@BASE(R) or @(R) 3.9 3.8*

* dst time is .4 ps. lesa than listed time If instruction was a
CoMPare, CoMPare Byte
Bit Test, Bit Test Byte
- TeST, or TeST Byta
none of which ever modify the destination word.
t refarencing bytes at odd addresses adds 0.5us 10 arc and dst times.

DOUBLE OPERAND INSTRUCTIONS—Double Operand Instructions are sepre- -
sented in assemnbly language as: :
: OPR src, dst

where src and dst are the addresses of the source and destination operands
respectively. The execution time for these operations is comprised of the
source time, the destination time, and the instruction time. The source and
destination {imes depend on addressing modes and are described in the pre-
ceding table.

17

Arithmetic Operations-—
MOV src, dst 23us

MOve

o, 1 ErC ‘ dsl
[llllllllllllll
1%

2 W 5 9 Q
Operation: (sr¢) - (dst)

Condition Codes:

Z: set if (src) = O; cleared otherwise
M: setif (sr¢) < O; cleared otherwise
C: not affected

V: cleared

Description: Moves the source operand to the destination location. The pre-
vious contents of the destination are lost. The contents of the source are
not affected.

The MOV instruction is a generalization of ‘load,’”” “store,” “setup,” ‘push,”
“pop,’ and interregister transfer operations.

General registers may be loaded with the contents of memory addresses with
instructions of the form:

MOV src, R

Registers may be loaded with a couhter, and pointer values with MOV in-
structions:

MOV #n, R
{which loads the number n into register R)
Operands may be pushed onto a stack by:
MOV sre, «(R)

and may be popped off a stack by:
MOV (R)}4, dst

Interregister transfers are simply:

MOV RA, RB
(RA and RB are general registers}

Memory-to-memory transfers may be done with the MOV instruction in the
general form:
MOV src, dst

ADL ADD src, dst 23uy

e |
Iol I-16| 1 'srt:’ 1 1 I 1 i [1 I

15 121 & 5 - . o
Operation: (sr¢) + (dst) - (dst)

Condition Codes: Z: set if result = 0; cleared otherwise
N: set if result < O; cleared otherwise
C: set if there was a carry from the most sugnificant bit
of the result; cleared otherwise
. V& set if there was arithmetic overflow as a result of the
operation, that is, if both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise

18

Description; Adds the source operand fo the destination operand and stores
the resuit st the destination address. The original contents of the destination
are lost. The aamtents of the source are hot aflected. Two's comm(pt addi-
tion is performeal.)

The ADD instruction includes as special cases the “add-to-register," ‘‘add-to-
memory,” and “sdd-register-to-register” functions:

Add-tofRegister ADD src, R

Add-to-Memory ADD R, dst

Add Register-to-Register ADD RA, RB

_Arithmetic may also be done directly in mamory by the general form ADD
instruction
ADD sve, dst

Use of this form saves considerable loadingy and storing of accumulators.

Two special cases of the ADD instruction are particularly useful in compilers,
interpreters, and other stack arithmetic processes:
ADD {(R)+, (R)
{where R is the stack pointer)
whlch replaces the top two elements jof the stack with their sum; and ADD
src, (R), which increases the top element of the stack by the contents of
the source address. '

The “Add Immediate” operation is yét another special case of this general-
ized ADD instruction:

ADD #n. dst

Immediate operations are useful in dealmg wi'th constant operands Note
that:

ADD #n, R
steps the register R (which may be an index register) through n addresses
eliminating the need for a special "add-to-lndex- register” instruction.

Al these special cases of the ADD mstructlon apply aqually well to the other
- double gperand instruetions that follow.

SUBtrogt SUB sre, dst . 23us
: src dst I
F 1l s_l_J il ! 1 1 I 1 1 H Ll
15 2 1 6 5 Q

Operation: (dst) — (src) - (dst) [in detail, (dst) + ~ (src) 4+ 1 = (dst)]
Condition Codes: Z: set if result = O; cleared otherwise
N: set if result <7 O; cleared otherwise.
C: cleared if there was a carry from the most significant
bit of the resuit; set otherwise
V: set if there was arithmetic overflow as a result of the
opetation, that is, if.the operands were of opposite
- signs and the sign of source was the same as the
: sign of the result; cleared otherwise.

Description: Subtracts the source operand from the destination operand and

teaves the result at the destination address. The original contents of the
destination are lost. The contents of the source are not affacted.

19

£ MADara LMP are det . . 23us™
Ll 1 L BG;
st ast
I ° I i 2 1 I 1 1 I [] i | | L l [] L
95 1’ o . 6 5 o

-Operation; (sr¢) — {dst) [in detail, {src) + ~— (dst) 4 1]

. Condition Codes: Z: set if result = 0; cleared otherwise

N: set if result < O; cleared otherwise

C: cleared if there was a carry from the most significant
bit of the result; set otherwise

V: set if there was arithmetic overflow; that is, operands
were of opposite signs and the sign of the destination
was the same as the sign of the result; cleared
otherwise.

Description: Arithmetically cempares the source and destination operands.
Affects neither operand. The only action is to set the condition codes
appropriately.

Boolean Instructions—These |nstruct|ons have the same format- as the
double operand arithmetic group. They permit operatlons on data at the
bit level.

Blt Set BIS src dst 2.3us
’ I ¢ I i s 1 l 1 i I 1 Fl I i 1 I 1 1

15 Coozos € 5 e

. Operation: (src} V (dst) —» (dst)

Conditiod Codes: Z: set if result = 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V: cleared

Description: Performs “Inclusive OR” transfer between the source and des-
tination operands and leaves the result at the destination address; that is,
corresponding bits set in the source are set in the destination. The original
contents of the destination are lost. The source is not affected.

81t Claor ° BI‘C sre, g8t 29us
| o a | swe] an I
i L 1 L i | .o 1 i 1 1 1 i
15 12 " & S 0

Operation: ~— (sre) A (dst) = (dst)

Conditions Codes: Z: set if resuit = O; cleared otherwise
M: set if high-order bit of result set; cleared otherwise
C: not affected
Y. cleared -

Description: The BIC instruction clears each bit in the destination that cor-
responds to a set bit in the source. The original contents of the destination -
are lost. The contents of the sources are unaffected.

*There is no read/modlfy/write cycls in the CMP, BIT, and TST operations This aavos
0.4 us in all destination address modes except raglster mode.

.20.

BIt Tost . BIT src, det , X 2.9us*

1- 3 1 .
boy (3 |, ey o e
- B - 2 " _ e 5 _)

Operation: (src)' A (dst)

Condition Codes: . Z: set if result = Q; cleared otherwise
N: set if high-order bit of result set: cleared otherwise
C: not affected
V: cleared

Description: Performs logical “and’’ comparison of the source and destination
operands and modifies condition codes accordingly. Neither the source nor
destination operands are affected.

The BIT imstruction may be used to test whether any of the corresponding
bits that are set in the destination are also set in the source or whether
all corresponding bits set in the destination are clear in the source.

Note that the operations of BIS, BIC, and BIT are parallel in that the same
mask may be used to set, clear and test the state of particular bits in a word.

BRANCHES—Branches have the instruction format

Qpavation Brx loc Instruction Time

r oparation code l Ty]
| 1 1 i 1 i 1 i 1 1 i | 1

5 .8 7 o

The offset is treated as a signed two's complement displacement to be mul-
tiplied by 2 and applied to the program counter. The program counter points
to the next word in sequence. The effect is to cause the next instruction to
. be taken from an address, “loc”, located up to 127 words back (— 254
bytes) or 128 words ahead (- 256 bytes) of the branch instruction. PAL-11
gives an error indication in the instruction if “loc” is outside this range.

The PDP-11 assembler handies address arithmetic for the user and com-
putes and assembles the proper offset field for branch instructions in the
form

Bxx foc

where loc is the address to which the branch is to be made. The branch
instructions have no effect on condition codes.

Unconditional Branch—

BRanch {Uncondtional) _BR loc 26us

|°||°|||°||4|||||l|1_l
15 B 7 0

Operation: loc - (PC)

Description: Provides a way of transferring program control within a limited
range with a one word instruction. The execution time is equal to the in-
struction time (2.6us) for the operation.

21

Simple Coriditionsi Branches—Conditioned branches combine in one instruc-
tion a conditional sKip, unconditional branch sequence,

Timinfg for the conditional branches is sliown as exacut:ion time if the con- .
dition is not met, followed by the execution time if the condition is met (and
a pragram branch occurs). i

Bronth on EQualiZerc) BEQ \oc 1%us,26us

otfset
|°| A L |4l ' P T B |

15 8 7 o
Operation: loc=» (PC)IfZ =1

Description: Tests the state of the Z-bit and causes a branch if Z is set. k
is used to test equality following a CMP operation, to test that no bits set
in the destination were also set in the source following a BIT operation, and
generally, to test that the resuit of the previoug operation was zero,

* Thus the sequence

- CMP ADB ; compare A and B
BEQ C ; branch if they are equal

will branchto CfA=B (A — B=0)
and the sequence

ADD AB -~ ; addAtoB

BEQ C branch if the resuit = 0
will branchtoCifA+ B=0.
Branch on Not Ea-..-e!!z;-e} aNE o tSus 2.6 us
" offsat
l°| LA AN l°| ' I
15 a7 [

Operation: loc - (PC) if Z = 0

- Description: Tests the state of the Z-bit and causes a branch if the Z.bit is
clear. BNE is the complementary.operation to BEQ. It is used to test in-
equality following a2 CMP, to test that some bits set in the destination were
also set in the source, following a BIT and, generally, to test that the result
of the pravious operation was not zero.

Branch on Minus B 1ot 1_5 n1,2.Gus
ottael I
bl 1 ° 1 I 1 ° 1] ‘T i l 1 1] 1 1
15 B 7 Q

Operation: loc —» {(PCYIfN =1

Description: Tests the state of the N-bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the result of the previous
aparation.

Branch on PLus ’ BPL loc . L5us, Z6us

. offset l
L'l _lol l _[°_|_ |°I 1 I 1 i | L i
15 - . 8 T i 4]

22

Operation: loc » (PC)ifN =0.

Description: Tests the state of the N-bit and causes a branch if N is clear.
BPL is the complementary operation to BMI.

Branch on Corry Set B8CS loc 1.5us%,2.6us

|‘|:°|l13||4|||'|llll
15 s 7 . o

Operation: loc » (PC)fC =1

Description: Tests the state of the C-bit and causes a branch if C is set. It
is used to test for-a carry in the result of a previous operation.

Bronch on Corry Cleor BCC loc 15 us,26us

' offser) I
L wey g3,) 0 0™y
15 a T o

Operation: loc > (PC) fC =0

Description: Tests the state of the C-bit and causes a branch if C is clear.
BCC is the complementary operation to BCS.

Branch on oVerflow Set avs lot 15us,26us

I L B S L L

15 _ 8 7 °

Operation: loc - (PC) if V=1

Description: Tests the state of the V-bit (overflow) and causes a branch if
the V-bit is set. BVS is used to detect arithmetic overflow in ‘the previous
operation,

Branch on oVerflow Cleor BVC loe 1.5us,26us
oftzet

TN

15 B 7 [

-

Operation: loc ~ (PC) if V=0

Description: Tests the state of the V-bit and causes a branch if the V-bit is
clear. BVC is the complementary operation to BVS.

Signed Conditional Branches—Particular combinations of the condition code
bits are tested with the signed conditioned branches. These instructions are
used to test the results of instructions in which the operands were consid-
ered as signed (two’s complermnent) values.

Note that the sense of signed comparisons differs from that of unsigned
comparisons in that in sigred 16-bit, two's complement arithmetic the
sequence of values is as follows:

077776
positive .
© 000001
000000
177777
177776
negative .
100001
smallest 100000
whereas in unsigned 16-bit arithmetic the sequence is considered to be
highestcccoooevivveennn, 177777
000002
000001
lowest ... 000000
Bronch on Less Thon{Zero} BLT loc 1,5s|:s. 2‘81;;.
{1zt
Lol o, 4 .2, |4T My
s 0

Operation: lo¢c > (PCYFN¥V =1

Description: Causes a branch if the “Exclusive OR” of the N- and V-bits are’
1. Thus BLT will always branch following an operation that added two neg-
ative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even i overfiow
occurred). Further, BLT will never cause a branch when it follows & CMP
instruction operating on a positive source and negative destination. BLY
will not cause a branch if the result .of the previous operation was zero
. {without overflow).

Branch on Greater than or Equal [Zero) BGE loc 1S5us, 26us

[oy Lo, 1 L2, qel 4 o 1, 1]
8 7 1]

Operation: loc > {PCY I N¥V =0

Description: Causes a branch if N and V are either both clear or both sef.
BGE is the complementary operation to BLT. Thus BGE will always cause
& branch when it folows an operation that caused addition to two positive
numbers. BGE will also cause a branch on a zero result.

24

Branch on Lass than or Equu.l {Zaro} BLE loc 15 us, 26us

o] 19 H 1 34 |4| A | I A L [

15 8 7 N v]

Operationz loc - (PC) ifZv(N¥ V) =1

Description; Operation of BLE is similar to that of BLT but in addition will
«cause a branch if the result of the previous operation was zero,

Branch on Greoter Thon(Zero) BGT loe 15us,2.6us
ottaet
[o I 1 o 1 I [3 [I © l [I 1 L I 1 1
15 : 8 7 : L +]

Operation: loc » (PCY if Zv (N¥ V) =

Description; Operation of BGT is similar to BGE, except that BGT will not
cause a branch on a zero result.

Unsigned Conditional Branches—The Unsigned Conditional Branches pro-
vide a means of testing the resuit of comparison operations in which the
operands are considerad as unsigned values.

Branch on Highar BHI 15us, 2. 6us
. offsel
I ! I [0 [I [1 [I 0—[L - I [L J L L I
k13 a 7 [»]
QOperation: lo¢ - (PC)ifbothCandZ =0

Description: Causes a branch if the previous operation caused neither a carry
nor a 2ero result. This will happen in comparison (CMP) operations as long
as the source has a higher unsigned value than the destination,

Bronth on LOwer or Some BLOS loc . 1.5u8, 26us

offset . J
[‘lol L i [4I 1] 1 1 | 1 1
15 B 7)

Q

Operation: loc - (PC)ifCvZ =1

Description: Causes a branch if the previous operation caused either a carry
or a zero result, BLOS is the complementary operation to BHI. The branch
will occur in comparison operations as long as the source is equal to, or has
a Iower unsigned value than, the destination.

Companson of unslgned values with the CMP instruction can be tested for
“higher or same’” and “higher’ by a simple test of the C-bit. For convenience,
the mnemonics BHIS (Branch on Higher or Same) and BLOS (Branch on
Lower Or Same) have been defined such that BHIS = BCC and BLO = BCS.

Branch on Highet or Some BHIS loe 1.5u4, 2 6us
' offset —l
b | 1 04] P 3 | © I Il] A 1 | |
"

‘a7 . 0
Operation; loc - (PC)IfC =0 ’

Deascription: BHIS is the same Instrustion as BCC

25

Bronch on LOwer 8o

3

o

S | I.l3

|

15

Operation: loc - (PC) ifC =1
Description: BLO is the same instruction as BCS

.- The following exampie illustrates the use of some of the instructions and
addressing modes described thus far. Two new instructions are used: INC
(INCrement) and ASL (Arithmetic Shift Left) which respectively, add 1 (INC)
and multiply an operand by 2 {(ASL). Their operation is fully described later

in this chapter,

This example demonstrates the generation of a table (histogram) that shows
the frequency of occurrence of each value in another table (within a range
of wvalues 1-100), Histogram generation (including initialization) requires

4 | 1 I 1 1
8

T

22 words. Values outside the range 1-10% are ignored.

HIST:
CLOOP:

NOCOUNT:

The JUMP Instruction—JMP (JuMP) provides more flexible program branch-
ing then is provided with the branch instructions, Control may be transferred
to any location in memory (no range limitation) and can be accomplished

MOV #OTABLE, RO
MOV # —100., R1
'CLR (RO)+

INC R1

BNE CLOOP

MOV # ITABLE, RO
MOV # ~1000., R1
MOV #100., R2
MOV (RO)-+, R4
BLE NOCOUNT
CMP R4, R2

BGT NOCOUNT
ASL R4

INC OTABLE (R4)
ING R1

BNE HLOOP

HALT

:set up to clear outpurt table
;100 entries in output table

;clear next entry
;check if done

;if not, continue ¢learing

;set up input pointer
;length of table
;mayx input value
;eet next input vaiue

;ignore if less than or equal zero
check against max value

Jignore if greater

;2 bytes per table entry
sincrement proper e¢lement

sinput done?

;if not, continue scanning

;histogram complete

with the full flexibility of the PDP-11 addressing modes.

JuMP JMP dst 12us
. dst

Loy vor vy 0 vy 40 0™

15 6 5 0

Operation: dst — (PC)
Conditioned Codes: not affected

Description: Reglster mode is lllegal in JMP instructions and will cause an
“iliegal instruction’ condition, (Program control cannot be transferred to a
register.) Register deferred mode is-legal and will cause program control to
be transferred to the address held in the specified register, Note that instruc-

tions are word data and must therefore be fetched from an even-numbered

26

address. A “boundary error’" condition will result when the processor at-
tempts to fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a table of dispatch vectors.

SUBROUTINES—The subroutine cail in the PDP-1i provides for automatic
nesting of subroutines, reentrancy, and multiple entry points. Subroutur]es_
may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism modifies no fixed
location in memory and thus also provides for reentrancy. Tpis allows one
copy of a subroutine to be shared among several interrupling processes.

Jump 16 SubRouline ISR req, dst) 42ut
l_ol_'lol l :4-1 l ‘flul 1 |“'| L 1
) 15 ? 8 6 & _ [+]
Operation: dst - (tmp) {tmp is an internal processor register)
(reg) | {push reg contents onto processor stack)
(PC) > {reg) (PC holds location following JSR; this address
{tmp) > (PC) now put in reg)

Condition Codes: not affected

Description: Execution time for JSR is the sum of instruction and destination
times. In execution of the JSR, the old contents of the specified._register,
{the “linkage pointer”), are automatically pushed onto the processor stack
and new linkage information placed in the register. Thus subroutines nested
within subroutines to any depth may all be called with the same linkage

register. There is no need either to plan the maximum depth at which any .

particular subroutine will be called or to include instructions in each routine
to save and restore the linkage pointer. Further, since all linkages are saved
in a reentrant manner—on the processor stack—execution of a subroutine

" may be interrupted, the same subroutine reéentered and executed by an
interrupt service routine. Execution of the initial subroutine can then be
resumed when other requests are satisfied. This process (calied nesting) can
proceed to any level. :

A subroutine called with a JSR reg, dst instruction can access the arugments
following the call with either autcincrement addressing, (reg) +, (if argu-
ments are accessed sequentially) or by indexed addressing, X(reg), (if ac-
cessed in random order). These addressing modes may also be deferred,
@ (reg)+ and @X(reg) if the parameters are operand addresses rather than
the operands themselves.

JSR PC, dst is a special case of the PDP-11 subroutine call suitable for
subroutine calls that transmit parameters through the general registers. No
register except the program counter is modified by this call.

Another special case of the JSR instruction is JSR PC, (SP)4 which ex-
changes the top element of the processor stack and the contents of the
program -counter. Use of this instruction allows two routines to swap pro-
gram control and resume operation when recalfed where they left off. Such

wyoutines are called “'co-routines.”
T

Return from a subroutine is done by the RTS instruction: RTS reg loads the
cbntents of the reg into the PC and pops the top element of the processor
stack into the specified register.

27

ReTura from Subwoutine

ATS g

0] ,9, f -0, |-,2, 1 4%, |‘:

"

Cperation: (reg) - (PC)
) 1 (reg)

Condition Codes: not affected

Description: Loads content of reg into PC and pops the top element of the'
processor stack into the specified register. Execution time for RTS is equal
to the basic instruction time.

Return from a subroutine is typically made through the same register that
was used in its call. Thus, a subroutine called with a JSR PC, dst exists
with a RTS PC and a subroutine calied with a JSR R5, dst, picks up param-
eters with addressing modes (R5)4, X(R5),"or @X(RE) and finally exists
with a RTS R5.

Programming Examples of the Use of Subroutines—

1. Passing arguments

3 2 0

in subroutine calls—The subroutine TOLER

checks each element in an array of unsigned integers to determine
whether any elements are outside specified limits. If all are within
tolerance, the value O is returned in the register RO, if TOLER find
an element out of tolerance, it returns the address of the bad
element 4 2 in RO. The calling sequence for TOLER is:

WORD ARRAY

JSR R5, TOLER

WORD —LENGTH

WORD HILIM
WORD LOLIM

;address of array tg be
ichecked (WORD expres-
;sion—defines a word equal
;to the value of the expres-
;sion)

;minus # of items in array
;upper limit of tolerance
Jlower limit of tolerance
:subroutine returns Fere

iTolerance Check-Array Elements Within Limits?
TOLER:

TLOOP:

TEXIT:

MOV (RS5)+,

_ MOV (R5)+,

MOV (RS)4-,
MOV (R5)+,
MOV (RO)+,
CMP R4, R2
BHI TEXIT
CMP R4, R3
BLO TEXIT
INC R1

BNE TLOOP
CLR RO

RTS RS

RO
Rl
R2
R3

R4

iget array address

:get minus the length

:get high tolerance limit
;get low tolerance Hmit
;get next element of array
;check it against high limit
;leave routine if higher
:check it against low limit
Jleave routine if lower
:increment count, check
;whether at end of array
:continue if not at end yek
;exit with RO = O if all ok

;return, RO holds poirter
or @

The instruction INC R1 increases the oontents of R1 by 1 and the instruction
CLR RO zeroes the register RO

2. Saving and restoring registers on the stack—This submutine pushes
RO-R5 onto the stack. It is called by:

JSR RS, SAVE
SAVE: MOV R4, —(5P) ;:R5 was pushed by the JSR~
MOV R3, —(SP) ;R5 will be at the bottom
T of the stack
~ MOV R2, —(SP) ;R4, R3, R2, Rl, and RO
;in order
MOV R1, —(SP) swill be above it
MOV RO, —(SP) ;RO is at the top of the
: stack
JMP R5 ;RS holds the return ad-
dress

The TST operation is equivalent to comparing the operand with 0, i.e,
TST opr = CMP opr, #0
The only effect is to set the appropriate condition codes.

The followlng example illustrates a subroutme to restore RO-RS from the
stack.

- REST: TST (SP) + ;this increments the SP by 2
MOV (SP)4, RD ;the registers are restored
MOV (SP) 4, R1 ;in reverse order to that in
MOV (SP)+, R2 which
MOV (5P)4, R3 'they were put on the stack
MOY (5P)4, R4 ;RS is loaded into the PC

RTS RS and the old RS restored

The operation TST (SP)4 removes the top element on the stack. At the time
it is used, the top element holds the contents of R5 that were saved by the
call to REST. Since RS is to be loaded with the value saved on the stack
by SAVE, this information is not needed.

3, Stacks, recursion, and nesting—The following subroutine converts
an unsigned binary integer to a string of typed ASCIl characters. In
the routine, the remainders of successive divisions by 10 are saved
and then typed in reverse order,

The operation of the subroutine is to call a part of itself (begin-
ning with DECREM) repeatedly until a zero quotient is calculated
by an integer divide subroutine, IDIVR. At each iteration, the dividend
is divided by 10, the resulting quotient replaces the dividend, and
the remainder is pushed onto the processor stack. The processor
stack thus holds interleaved data (remainders} and control informa-
tion (return addresses from calls to DECPNT and DECREM) when
the quotient finally comes up as O and the branch is made to
DECTTY. The portion of the routine beginning at DECTTY then pops
a remainder from the stack, converts it to an ASCIl character, types
- it and then returns control to DECTTY (with RTS PC) until the stack
is reduced finally to its state immediately after the call to DECPNT.

29

nt axecution of) urne contral to tha main

A character is typed in DECTY by {oading the teleprinter buffer
{TPB) and waiting for the teleprinter READY flag, the most significant

bit of the low-order byte of the teleprinter status word (TPS),

to be set.

. The symbols CR and LF are assumed equal to the ASCIl repre-

sentations for carriage return and line feed respectively.

This subroutine types the unsigned integer in RO, It illustrates recursion and

the use of stacks.

:

DECPNT: MOV #10., R2 ;set up divisor of 10
DECREM: JSR PC, IDIVR ;subroutine divides (R0O) by
#{R2)
MOV R1, —(SP) ;quotient is in RO, remain-
ider is in R1
TST RO ;after pushing remainder
: ;onto stack test quotient
BEQ DECTTY ;if the quotient is 0, we're
:done getting remainders
: JSR PC, DECREM ;if not try again
DECTTY: MOV (SP)+, RO et next remainder
: ADD #60, RO ;make an ASCIl character
TTYOUT: MOV RO, TPB -stype the ASCII character in
TTYLUP: TST TPS ywait for the. teleprinter to
;be done
BPL TTYLUP ;TPS is negative when the
: TP is done
CMP. #CR, RO ;was the character of a car-
riage return
BEQ TTYLF ;if not: return, if s0; get a
dine feed
RTS PC ;returns either to DECTTY
- ;0T main program
_TTYLF: MOV '#LF, TPB itype a line feed)
BR TTYLUFP ;and wait for it to be com-

ipleted

Multiple entry points—In the example that follows, the subroutines
described above are used to type out all the entries in a table of
unsigned mtegers that are not within specified tolerance.

The subroutine TOLER is entered at TOLER for initialization and at -

- TLOOP to pick up each bad entry of the array after the first one.

The subroutine DECPNT is entered at DECPNT t6 print the value of
the unsigned binary number held in RO and at TTYOUT to print the
ASCH character held in RO. TTYOUT prints the carriage réturn, line
feed sequence when it sees the carriage return character.

This routine types all out-of-tolerance elements of an integer array.
The program starts at TYPOUT.

30

TYPFIN:
TYPOUT:

. TYPCHK:

HALT

JSR RS, TOLER

+ WORD ARRAY

- WORD —LENGTH
- WORD HILIM

» WORD LOLIM
BEQ TYPFIN

JSR R5, SAVE
MOV —(R0), RO
JSR PC, DECPNT
MOV #CR, RO
JSR PC, TTYOUT

JSR R5, REST
JSR RS, TLOOP

BR TYPCHK

;suspend processor opera-
;tion, wait for key continue
;€et address of bad item;
rinitialization entry

;address of array

iflength of array

Jhigh limit

Jlow limit

:Z-bit is set if no more out
;of limits

:an element is out of limits,
;save registers

RO holds address 4 2, get
;operand into RO

sprint out number

itype CR, LF

;note use of second entry
spoint

;yrestore registers

;continue searching array,
;alternate entry

- ;another bad element?

SINGLE OPERAND INSTRUCTIONS-Singlte Operand Instructions are repre-

sented as: .
OPaRation OPR dst

Instruction Time
. | i operation code dst l
| 1 1] 1 1 | 1 1 1 1 | 1 1

15 ' € 5 0
The execution time for single operand instructions is the sum of the basic
instruction time and destination a’ddress time for the operation.

General Operations—

ClLaoR CLR dst Z2.3us
dst

log voy 108y ooy T o 1]

15 13 5 o

Operation: 0 = (dst)

Condition Codes: Z: set .
: N: cleared
C: cleared
V: cleared
Description: Zeroes the specified destination.
INCrament * INCdsd 23 us
- dst :
I£J1°-|1|5|||2||||:|‘
15

6 5 R
Operation: (dst) 4+ 1 = (dst)

Condition Codes: Z: set if the result is O; cleared otherwise

N: set if the result is <7 0; cieared otherwise
C: not affected
V. set if (dst) held 077777; cleared otherwise

Description: Adds 1 to the contents of the destination.

31

DECremant DEC dst 23uy

Iol 19 |48,] 43, I l'_ld“| 1 J
15 . . € s)

Operation: {dst) — 1 - (dst)

Condition Codes Z: set if the result is O; cleared otherwise
N:set if the result is < 0; cleared otherwise
¥: not affected
C: set if (dst) was 100000; cleared otherwise

Description: Subtracts 1 from the contents of the destination.
NEGate . NEG dst 2.3us

dat
log o0 1 a8 a0]
m -8 s o

Operation: — (dst) - (dst)

Condition Codes: as in SUB dst, #0- :
. Z set if the result is 0; cleared otherwise
N: set if the result is <7 O; ¢cleared otherwise
C: cleared if the result is O; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Replaces the contents of the destination address by their two’s
complement. (However, 100000, is replaced by itself—in two's complement
notation the most negative number has no positive counterpart.)

TeST TST dst 23us*
dst
I o | 1 0 1 [] 5 1 l 1 7 1 I 1t | 1 i
15 & 5 Q

Operation: 0 — (dst)

Condition Codes: as in CMP #0, dst
Z: set if the result is O; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: cleared
v: cleared

Description: Sets the condition codes Z and N according to the contents of
the destination address.

COMplamant COM det 23us
. dast
E] 1% L¢3, 1 L 1y I A | L
15 6 93 " Q

Operation: ~ (dst) - (dst)

Condition Codes: Z: set if result is O; cleared otherwise

N: set if most significant bit of result set; cleafed other-

wise

C: set

V. cleared
Description: Replaces . the : contents: .of thg destination addregss by gheur
logical complement (each: bit grual to. 0 is set and -eagh bit equal 101 is
cleared).

* See the note for the CMP instruction.

32

Multiple Precision Operations—It is sometimes convenient to do arithmetic
on operands considered as muitipfe words.- The PDP-11 makes speciai pro-
vision for such operations with the instructions ADC (ADd Carry) and SBC
" (SuBtract Carry).

ADd Corry
{o1

15
Operation: (dst) + (p) - (dst)

Condition Codes: . Z:
N
C:

v:

ADC dst

dst I
lol | 15| I '5| l 1 [] I 1 [
& 5]

-set if result = 0; cleared otherwise

set if result < (; cleared otherwise

set if (dst) was 177777 and (C) was 1; cleared other-
wise :

set if (dst) was 077777 and (C) was 1; cleared other-
wise.

Description: Adds the contents of the C-bit into the destination. This permits
the carry from the addition of the two low-order words to be carried into the
high-order result.

3

Ey

Double precision addition may be done with the following instruction se-
quence: '

ADD AO, BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al, Bl ; add high-order parts
SuBitrac! Corry SBC dsi 23ue
dst
°l 4%y 145, t ,°8, ' Ll I

- : 13 5 o
Operation: (dst) — {(C) = (dst}

Condition Codes: Z: setif the result O; cleared otherwise
N: set if the result < O; cleared otherwise
C: cleared if the result is 0 and C = 1; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Subtracts the contents of the C-bit from the destination. This
permits the carry from the subtraction of two low-order wotds to be sub-
tracted from the high-order part of the resul.

Double pfecision subtraction is done by: -

SuB AQ, BO B
SBC Bl
SUB Al, Bl
Double precision negation is accomplished with: _
NEG BO :negate low-order part; sets C unless BO =0
SBC Bl :makes “NEG B1"” = “COMB B1"" unless BO =0
. NEG Bl ;negate high-order part

Rotates—Testing of sequential bits of a word and detailed bit manipulation
are aided with rotate operations. The instructions ROR (ROtate Right) and
ROL (ROtate Left) cause the C-bit of the status register to be effectively
appended to the destination operand in circular bit shifting.

33

R(tate Right ROR st) - 23us

| ° | dst l
DJ_ 1 ¢ 1 l 1 € 1 1 i 1 : 1 H 1 1 1

. - . - 5 [»]

Condition Codes: Z: set if all bits of result = O; cieared ctherwise.
N: set if the high-order bit of the result is set; cleared
otherwise
C: loaded with the low- order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the rotate operation).

Description: Rotates all bits of the destination right one place. Bit 0 is loaded
into the C-bit of the status word and the prewous contents of the C-bit are
loaded into bit 15 of the destination.

ROtote Left ROL st 2.3us
ast
|°| ML L. M e
15 € 5 o
Condition Codes: Z: set if all bits of the resuit word = Q; cleared other-
wise - .
N: set if the high-order bit of the result word is set;
cleared otherwise

C: loaded with the high-order bit of the destination
Vi loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the rotate operation)

Description: Rotates all bits of the destination Ieft one place. Bit 15 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into hit O of the destination.

SWAp Bytes SWAQ dst © 23us

I dst]
Y I 1 0 1 I 1 o b l 1 3J_ I i i I i A
15 8 5]

Condition Codes: Z: set if low-order byte of result = 0; cleared otherwise
N: set if high-order bit of low-order byte (bit 7} of result
is set; cleared otherwise
C: cleared
V: cleared

Description: Exchanges high-order byte and low-order byte of the destination
word (dst must be a word address).

Shifts—Scaling data by factors of 2 is accomplished by the shift instryctions:
ASR—Arithmetic Shift Right
ASL—-Arithmetic Shift Left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The
low-order bit is filled with O in shifts to the left. Bits shifted out of the C-bit
are lost.

Arithmetic Shift Right SR det 23us

o1 o0 4 2o, 1 42, Lo v |

Condition Codes: Z: set if the result = O; cleared otherwise

N: set if the high-order bit of the result is set; cleared
otherwise

C: loaded from the Iow order bit of the destination

¥: loaded from the Exclusive OR of the N-bit and C-bit

{as set by the compietion.of the shift operation)

Descnptlon' Shifts all bits of the destination right one place. Bit 15 is repli-
cated. The C-bit is loaded from bit O of the destination. ASR performs signed
division of the destination by 2.

Arithmatic Shift Caft ASL dat . 23us
' dst R I
[0 [1 2 | i s, | i 2t I 1 1 | 1 1
15 [5 0

Condition Codes; Z: set if the result = 0; cleared otherwise
N: set if the high-order bit of the result is set; cleared
otherwise
C: loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the shift operation) .

Description: Shifts all bits of the destination left one place. Bit 0 is loaded
with a 0. The C-bit of the status word is 1oaded from the most significant bit
of the destination. ASL perforims a signed multiplication of the destination
by 2.

Multiple precision shifting is done with a sequence of shifts and rotates.

Double Precision Right Shift:

ASR Al; low-order bit of Al to C-bit
ROR AQ; C-bit to high-order bit of AD

Double Precision Left Shift:

ASL AO;. high-order bit of AD to C-bit
ROL Al; C-bit to low-order bit of Al

Norm_alizatidn of operands (scaling of the operand until the operand taken
as a 15-bit fraction with sign is in the range — 14 < operand = 14) pro-
ceeds as follows:

NORM: ASL A ; shift O’s into low-order bit
BEQ NFIN ;if the result is O, the operation is
; complete
BYC NORM ™; if the sign did not change, contmue
ROR A restore the sign
BR - NDONE ; normallzatlon complete
- NFIN3: ROR A - -; festore the sign: 000000 or 100000
Tt " ASR: A - anl ‘replicate it 000000 or 140000
NDONE: :

35

Double precision normalization proceeds similarly:

DNORM: ASL AQ : doubie precision left shift
ROL Al I
BEQ DZERDO ; high order result 02, if so, checl low
BVC DNORM ; if the sign did not change, continue

ROR Al ; restore the sign
BR ., DNDONE : normalization complete
DZERO: TST AD ; low order zero, ton?
BNE DNORM ; if not, continue normalization
ROR Al ; restore the sign; 000000 or 100000
ASR Al : and replicate it; 000000 or 140000

DNDONE: . . .

The following example illustrates the use of shifts and rotates in a 16-bit un-
signed integer multiply subroutine. Access of operands through address
parameters following the subroutine is also shown. The multiplication takes
115-170 us in in-line code. The entire subroutine as shown below takes
approximately 200 us and requires 16 words. The calling seguence is JSR

R5, MULT. ’
+« WORD MCAND ; address of multiplicand .
+ WORD MPLIER ; address of multiplier
+ WORD PROD ;-address of product

MULT: CLR RO
MOV @ (R5) 4, R1 ; get multiplier into R1
MOV @ (R5) 4, R2 ; get multiplicand into R2

MOV #-16., R3 ; set counter
MLOOP: ASL RO) ; double prec shift
ROL R1 : ; shift and add multiply
BCC NOADD - ; most significant bit governs add
ADD R2, RO ; if set add in multiplicand
ADC R1 ; keep 32-bit product
NOADD: INCR3 ; done?
BMNE MLOOP ; if not continue
MOV (R5) 4+, R2° ; get address to store prod.
MOV RO, (R2) 4+ ; put low-grder away, move to high
MOV R1, {R2) ; put high-order away
RTS R5 ; return to calling program

BYTE OPERATIONS—The PDP-11 processor includes a full complement of
instructions that manipulate byte operands, Addressing is byte-oriented so
that instructions for byte manipulation are straightforward. In addition, byte
instructions with autoincrement or autodecrement direct addressing cause
"the specified register to be stepped by one to point to the next byte of data.
Byte operations in register mode access the low-order byte of the specified

" register, These provisions enable the PDP-11 to perform as either a word or
byte processcr,

Timing of byte instructions is the same as for word instructions except that
an additional 0.6 us is required for access of bytes at odd addresses.

Double Operand Byta Instructions—

_MOVe Byte : MOVB src, dst 23us

1] |'|l| |“ch] I.n lwl'- |I

- A5 7 1 & 5 ' o

36

Operation: (src) > (dst)
Condition Codes: Set on the byte result as in MOV

Description: Same as MOV instruction. The MOVB instruction in register mode
(unique among byte operatibns) extends the most significant bit of the byte
register (sign extension). Otherwise MOVB opérates on bytes exactly as MOV
operates on words.

CoMPars Byts CMPB wo, dat 23us®
. -] 1]
1] + 2 | g r PR R ‘
15 2z " € 5 0
Operation: (src) — {(dst) : in detail (src) 4 ~ (dst) + 1

Condition Codes: Set on the byte result as in CMP

Deséription: Same as CMP instruction.

Bit Set Byte BISB sre,da 2.3us
- 3 dst J
[14 %, I ' R D B -
15 1?2) 1 -3 5 1]

Operation: {src) V (dst) = (dst) .
Condition Codes: Set on the hyte result as in BIS
- Description: Same as BIS.

Btt Clsor Byte BICB trc , dat 2.3us

[I sr¢ l dst
t]4, i 1 I R T T L\

15 12 1 . € 5 °

Operation; ~ (src) (dst) - (dst)
Condition Codes: set on the byte result as in BIC
Description: Same as BIC.

Bit Test Byte BITB we,dst . 23us®
o gat
r‘ I [3_] [| L I 1 1 I 1 1 I L 1 l
15 1z # 6 5 : [+

Operation: (sr¢) (dst)
Condition Codes: Set on the byte result as in BIT
Description: Same as BIT.

The following subroutine scans a packed character string of variable length
lines, removes blanks and unpacks the string to left-justified length lines.
INSTRING is the address of the INput STRING, OUTSTRING is the address
of the OUTput String. EOLCHAR, SPCHAR, and EORCHAR are the End Of
Line CHARacter, SPace CHARacter, and End of Record CHARacter respec-
tively. -

* See the note for the CMP Instruction.

LNLINE is the Length of uNpacked LINES. The routine requires 24 words.

EDIT: MOV #INSTRING, RO ; set up input byte pointer

MOV #OUTSTRING, R1 ; set up output byte pointer

MOV #ECLCHAR, R2 ; put high use constant in reg.
. MOV #SPCHAR, R3 ; to save time in loop
NOLINE: MOV #LNLINE, R4 ; R4 holds # char left in line
NXTCHR: MOVB (R0O) 4 ,R5 ; get next byte

CMP R5, R2 ; end of line?

BEQ FILINE ; if yes, fill line

CMP RS, R3 ; blank?

BEQ NXTCHR ; if yes, skip character

DEC R4 ; decrement # of characters left in line

MOVE R5, {R1} + ; move byte to output string

BR NXTCHR ; continue .
FILINE: CLRBE (R1) + ; put a blank byte in output

DEC R4 ; decrement # char left

BME FILINE ; continue if not end
CHKEND: CMPB (R0O), # EORCHAR ; end of record?

BNE NULINE : ; if not EOR, start next line
Single Operand Byte Instructions—

CLeaRt Byte ’ CLR® dxt . 2.3us
dst
r‘ L 9%y 1 45, ¢ ;@ I ' I J
15 _ s s o

Operation: 0 - (dst)
Condition Codes: Set on the byte result as in CLR
Description: Same as CLR

INCrement Byta INCB dst 23us

|'| 1 9] lsl_ i 123 I 1 1 i 1 1 ‘
15 & 9]

Operation: (dst) 4+ 1 — (dst) _
Condition Codes: Set on the byte result as in INC N

Description: Same as INC, The carry from a byle does not affect any other
byte. . . _
QECramant Byle DECH-dst 23us

dst
1 | I oi I .5. I l!. I i J 1 1 L
8 6 S e

Operation: (dst) — 1 - (dst)
Condition Codes: $et on the byte result as in DEC
Description: Same as DEC.

RTINS

38

Operation: as in ROR on byte operands
Condition Codes: Set on the byte result as ROR
Description: Same as ROR
* See¢ the note ﬁr the CMP instruction.

39

NEGate Byte NEGE dst 23us
' - I dat I
1] [l o] ! _|_5 1 | L 1 L [1 1
15 - 6 5 0
Operation: —(dst) - (dst) oin defail, ~ {dst} 4 1 = (dst)
. Condition Codes: Set on the byte result as NEG
Description: Same as NEG.
ToST Byte TSTS dst 2.3us"
i . . ot
L‘ | 1 o 1 I 1 $ 1 | 1 7 1 L 1 1 | 1 L J
15 ’ & 5 0
Operation; 0 — (dst))
Condition Codes: Set on the byte result as TST
Description: Same as TST.
COMplamant Byfe COMB dst 2.3us
I‘l 1 90 | a5, 1 ogr, L :dﬂl L I
15 & 5 o
Operation: ~ (dst) - (dst)
Condition Codes: Set on the byte result as COM
Description: Same as COM.
ADd Corry Byt ADCB ds! 23us
dst
L' |] 0 1 I 1 3 1 | L 5 1 I 3 1 ¥ | 1 l—l
15 ' & & o
Operation: {dst) 4 (C) — (dst)
Condition Codes: Set on the byte result as ADC
Description: Same as ADC. ’
SuBtract Corey Byte SBCB dst 2.3us
I‘l £ %0 s 1,8, L cd"l L l
15 S 8 5 0
Operation: (dst) — (C) - (dst)
Condition Codes: Set on the byte result as SBC
Description: Same as SBC.
ROtate Right Byte RORD dst 23us*
|J| () 2, 1,8, 1 l"-_’l I N |dﬁ| i :_l
(L & 5 0

Operation: as in ROL on byte operands
Condition Codes: set on the byte results as ROL
Description: Same as ROL
Aritmetic St Right Byle ASRB dst 23usf

1] ;°9, | 48, 1 128y ' I
15 € 5 o

Operation: as in ASR on byte operands
Condition Codes: set on the byte result as ASR

Description: Same as ASR _
Arithmeatic Shift Left Byte ASLE dur 2.3u3%

] ot
|'||°1||5|l|31!|:|1L:|
'

& 5 . - o
Operation: as in ASL on byte operands

Condition Codes: set on the byte results as ASL
n: Same as ASL

-CONDITION CODE OPERATORS—Condition code ;Jperators set and clear con-
dition code hits. Selectable combinations of these bits may be cleared or set
together in one instruction,

Condition Code Qperators : 1508

01 o0, 4o, 1 42, I“I‘:"I" zI""’l"':l

15

Condition code bits corresponding to bits in the condition code operator
(bits 3-0; N, Z, ¥, C) are modified according to the sense of bit 4, the sat/
clear bit of the operator. The followlng mnemonics are permanent symbols
in the assembler:

Mnemonic Operation OpCode Mnemonic Operation Op Code

CLC Clear C 000241 SEC Set C 000261
CLY Clear V 000242 SEV Set V 000262
cLZ Clear Z 000244 SEZ Set 7 000264
CLN Clear N 000250 SEN Set N 000270

Timing for all condition code operators is the basic instruction time (1.5u45%)
for the operators, (The codes 000240 and 000260 are the shortest “‘no-opera-
tion" instructions.)

¥ Shift and retate operations require an additfonal 0.6 us to access bytes at odd
addresses.

40

inone of the ahovs en‘}. or elear nneratione mav he QRed tagethar 1o

e P W LIS GRS YA R W WIWAA] AWM REIWIR MRHAT AW W TR VW WRETWE ww

form new instruction mnemonics. For example: CLCV = CLC ! CLV. The new
instruction clears C and V bits. (1" signifies “inclusive or” in PAL-11.)

MISCELLANEOUS CONTROL INSTRUCTIONS

Dambin
S !

RES# ExToraal bus RESET 20 ms
0] 40, | 4%; 1 4%, [404 1 454]
15 ' 0

Condition Codes: not affected

Description: Sends an INIT pulse along the Unibus by the processor. All
devices on the bus are reset to their state at power-up.

WAt for interrupT WAIT 18us
I o |] OI | 1 o L _|_ 1 0I I 1 s 1 l [! 1 I
15 : o

Condition Codes: not affected .

‘Description: Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a WAIT command,
the processor will not compete for bus use by fetching instructions or
operands fromm memory. This permits higher transfer rates between a device
and memory, since no processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions, the PC points
to the next instruction following the WAIT operation.

Thus when an interrupt causes the PC and PS to be pushed onto the proces-
sor stack, the address of the next instruction following the WAIT is saved.
The exit from the interrupt routine {i.e. execution of an RTI instruction) will
cause resumption of the interrupted process at the instruction following the
WAIT.

HALT HALT 1808

l_°| Ly 1L g 1,05 1 g9, 1 40,]
* ']

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is given
control of the bus. The console data lights display the contents of RQ; the
console address lights display the address of the halt instructiort. Transfers
on the Unibus are terminated irnmediately. The PC points to the next in-
struction to be executed. Pressing the continue key on the console causes
processor operation to resume. No INIT signal is given.

Processor Traps —Processor Traps are intermally generated interrupts.
Error conditions, completion of an instruction in trace mode (i.e. T-bit of
status word set), and certain instructions cause traps. As in interrupts, the
current PC and PS are saved on the processor stack and a new PC and PS
are loaded from the appropriate trap (interrupt) vector. See Appendix C for
a summary of Trap Vector Addresses,

J_'ra% Instructions—Trap Instructions provide for calls to emulato.rs, 1o
momtors, debugging packages, and user-defined interpreters.

41

EMulgior Trops EMT wxx ' . B9us

X :
[1 o,) 4o Lo, 1o ™ o}
1% B 7 1]

Operation: (PS) | SP
(PC) | SP
(30 > PC
(32) - PS

Condition Codes: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 30.
All operation codes from 104000 to 104377 are EMT calis. The low-order
byte, bits 0-7 of the EMT instructions, may be used to transmit information
to the emulating routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word at address 30;
the new central processor status (P$) is taken from the word at address 32.

TRAF TRAP xxk ' 8.9us
. uxy

[-' | 2% | 44, l“ T B ST

15 8 7 : [}

Operation: as in EMT except the trap vector is located at 34,
Condition Codes: loaded from trap vector.

Description: Performs a trap sequence with a trap vector address of 34.
Operation codes from 104400 to 104777 are TRAP instructions, TRAPs and
EMTs are identical in operation, except that the trap vector for TRRP is at
address 34.

140 Trop 10T B.9us
Lol_lol I 194 l 19 I 1 94 | 1 3
Q

Operatiorl' as EMT except the trap vector is located at address 20 and no
mformatlon is transmitted in the low byte.

Condition Codes: loaded from trap vector.

Description: Used to call the 1/ O executive routine 10X,
No defined mnemonic 000003 eSus

Lol_ -Io—l I Iol I]0] I lol I I3| I
. 0

Cperation: Same as 10T except that trap vector is located at address 14.
Condition Codes: loaded from trap vector,

Description: Used to call debugging aids. The user is cautioned against -
employing code 000003 in programs run under these debugging aids.

42

ReTurn from Interrupt RTI 48us

lof 1 9 i 1% | loi l 19 I'.zj_l
o

15
Operation: SP 1 (PC), SP 1 (PS).
Condition Codes: loaded from processor stack.

Description: Used to exit from an interrupt or TRAP service routine. The PC
and PS are restored (popped) from the processor stack. -

Instruction traps are also caused by attempts to execute instruction codes
reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions). Ordetr codes not
corresponding to any of the instructions described above are considered to
_be reserved instructions. Illegal instructions are JMP and JSR with register
mode destinations. Reserved and iliegal instruction traps occur as described
under EMT, but trap through vectors at addresses 10 and 04 respectively.

Stack Qverflow Trap—Stack .Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400, through
the processor stack pointer R6 (5P) in autodecrement or autodecrement de-
ferred addressing. The instruction causing the overflow is completed before
the trap is made.

Bus Error Traps—Bus Error Traps are:

1. Boundary Errors—attempts to reference word operands at odd ad-
-dresses.

2, Time-Out Errors—attempts to reference addresses on the bus that
made no response within 10 uxs. tn general, these are caused by at-
tempts to reference nonexistent memory, and attempts to' reference
nonexistent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4,

‘Trace Trap—Trace Trap enables bit 4 of the PS word and causes processdr
traps at the end of instruction executions. The instruction that is executed
after the instruction that set the T-bit will proceed to completion and then
cause a processor trap through the trap vector at address 14.

The following are special cases and are detailed in subsequent paragraphs.

1. The traced instruction cleared the T-bit.

2. The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T-bit was set and
the fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT. ‘

8. The traced instruction was a HALT.

- An instruction that cleared the T-bit—Upon fetching the fraced instruction
an internal flag, the trace flag, was set. The trap will still occur at the end
of execution of this instruction. The stacked status word, however, will have
a clear T-bit.

An instruction that set the T- btt—-Smce the T-bit was already set, setting it
again has no effect,

An instruction that caused an Instruction Trap—The instruction trap is
sprung and the entire routine for the service trap is executed. If the service
- routine exists with an RTl or In any other way restores the stacked status
word, the T-bit is set again, the Instruction following the traced instruction
is executed and, unless it is one of the special cases noted above, a trace
trap occurs.

An instruction that caused a Bus Error—This is treated as in an lnstrucﬂop
Trap. The only difference is that the error service is not as likely to exit
with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow—The instruction completes
execution as usual—the Stack Overflow does not cause a trap. The Trace
Trap Vector is loaded into the PC and PS, and the old PC and PS are pushed
onto the stack. Stack Overflow occurs again, and this time the trap is made.,

An interrupt betwsen setting of the T-bit and fetch of the traced instruction—
The entire interrupt service routine is executed and then the T-bit is set again
by the exiting RTI. The traced instruction is executed (if there have been no

other interrupts) and, unless it is a special case noted above, causes a trace
trap.

Note that no interrupts are acknowledged betweerl the time of fetchmg any
trapped instruction {including one that is trapped by reason of the T-bit being
set) and completing execution of the first instruction of the trap service.

A WAIT—The trap occeurred immediately. The address of the next instruction
is saved on the stack. .

A HALT—The processor halts. When the continue key on the console is
pressed, the instruction following-the HALT is fetched and executed. Unless
it is one of the exceptions noted above, the trap occurs immediately follow-
ing execution.

Trap priosities—In case rnultiple' processor trap conditions occur simultane-
ously the following order of priorities is observed (from high to low):

1, Bus Errors

2. ‘instruction Traps

3. Trace Trap

4. Stack Overfiow Trap

The details on the trace trap process have been described in the trace trap
operational description which includes cases in which an instruction being
traced causes a bus error, instruction trap, or a stack overflow trap.

If a bus error is caused by the trap process handling instruction traps, trace
traps, stack overflow traps, or a previous bus error, the procegsor is haited.

If a stack overflow is caused by the trap process in handliing bus errors, in-

struction traps, or trace traps, the process is completed and then the stack
overflow trap is sprung.

CHAPTER 5
ADDRESS ALLOCATION

The PDP-11 provides for a very flexible addressing structure. Both 16-bit
words and 8-bit bytes can be directly addressed. Addresses. are 16-bits long
allowing for direct addressing of 32,768 words or 65,536 bytes.

ADDRESS MAP

As a2 result of the organization of the PDP-11, bus addresses serve several
functions. A map. of possible PDP-11 bus address allocation is shown

BUS ADDRESS CONTENT
o .
. Processor.
. Program Counter : Trap Vectors
. and Device
. Processor Status Word Interrupt
. Vectors
400, Stack Pointer Overflow Limit
. Stacks, Program and Data Storage
. 1
160000,
. : Typical
. i Registers for
. Programmed
. Status Register and Transfer
. Data Buffer Register Device
: Device Address Register Typical
. Word Count Register Registers
. Memory Address Register " fora
. Control and Status Registers Block
. Transfer
. i Device
177777,

Figure 5-1
Simplified Address Allocation Map

45

in Figure 5-1. Three areas of addresses of particular interest to the pro-
grammers are; 1) interrupt and Trap Vectors; 2) Processor Stack and General
Storage; and 3) Peripheral Device Registers.

INTERRUPT AND TRAP VECTORS—Addresses between location zero and
location 400, are generally reserved for interrupt and trap vectors.

PROCESSOR STACK AND GENERAL STORAGE—Addresses between 400,
and the limit of implemented core are available for the processor stack or
_ other programs and data. The highest address in this region is 157777..

- PERIPHERAL DEVICE REGISTERS—Addresses above 160000, generally are
reserved for peripheral device status, control, and data registers. The general
registers and the processor status can be addressed from the program
console using addresses in this area.

A more detailed address allocation map can be found in Appendix D.

CORE MEMORY

The three types of core memory that can be used in a PDP-11 system are:
1) Read-Write Core Memory; 2} Read-Only Core Memory; and 3) Wordlet
Memery. These memories can be located anywhere in address space provided
they do not overlap. They do not have to be in continuous address locations,

MM11-E READ WRITE CORE MEMORY—The MM11-E has the followlng
specifications:

Capacrty: 4,096 16-bit words or 8,192 B-bit bytes -

Cycle Time: 1.2 microseconds

Access Time: 500 nanoseconds

Configuration; Planer 3-wire, 3-D using 22 mil cores

Packaging: One standard PDP-11 System Unit

Interface: Designed to work with PDP-11 bus, TTL-compatlbre

MR11-A READ-ONLY CORE MEMORY (ROM)—The ROM has the following
specifications:

Capacity: 1,024 16-bit words or 2,048 8-bit bytes

Access Time: 500 nanoseconds :

Configuration: 2-piece core with wire brald 256 wires, 64 cores

Packaging: 3/4 of one standard PDP-11 System Unit
. Interface: Designed to work with PDP-11 bus, TTL-compatible

MW11-A WORDLET MEMORY—The wordlet memory is used with ROM sys-

terns and provides read-write memory capacity for temporary data and in-

struction storage.

Capacity: 128 16-bit words or 256 8-bit bytes

Cycle Time: 2.0 microseconds

Access Time: 1.0 microsecond

Configuration: 5-Wire, 3D

Packaging: /4 standard PDP-11 single System Unit-

_ Interface: The wordlet memory will work with the ROM and interfaces
- through the ROM System Unit to the PDP-11 bus. .

CHAPTER 6
PROGRAMMING OF PERIPHERALS

Programming of peripherals is extremely simple in the PDP-11—a special
class of Instructions to deal with input/output operations is unnecessary.
“The Unibus permits a unified addressing structure in which control, status,
and data registers for peripheral devices are directly addressed as memory
locations. Therefore all operations on these registers, such as transferring
information into or out of them or manpulating data within them, are per-
formed by normal memory reference instruction.

The ability to use all memory reference instructions on peripheral device .
registers greatly increases the flexibility of input/output programming. In-
formation in a device reglster can be compared directly with a value and a
branch made on the result.

CMP #101, RRB
BEQ SERVICE

In this case the program looks for 101, from the paper tape reader data
buffer, and branches if it finds it. There is no need to transfer the informa-
tion into an intermediate register for comparison. .

When the character is of interest, a memory reference instruction can trans-
fer the character into a user buffer in core or in another peripheral device.

MOV PRB, LOC

This instruction transfers a character from the paper tape reader buffer into
a user-defined location.

Al arithmetic operations can be performed on a peripheral device register,

_ . ADD #10, "DSX
This instruction will add 10, to a display's x-deflection register.

All peripheral devicé registers can be treated as accumulators. There is no
nead to funne! all data transfers, arithmetic operations, and comparisons
through a single or small number of accumulator registers,

DEVICE REGISTERS

_All peripheral devices are specified by a set of registers which are addressed
as core memery and manipulated as flexibly as an accumulator. There are
two types of registers assoclated with each device: 1) Control and Status Reg-
isters (CSR); and 2) Data Registers.

CONTROL AND STATUS REGISTERS (CSR)—Each peripheral has one or more

control and status registers which contain all the information necessary to

communicate with that device. The general form of a control and status
- register is shown below.

EXPRMD S i

EXPANDS) B — el
1) 1 1 I ponE | ERR ﬁm 1 |
| Emrns i BUsY A T L DOME | runy | ENE ENTENSION :\anlﬁ
i
[} 1 3 ® n 0 L] [] T + [4 3 2] [

General Control and Status Register

This general form does not necessarily apply to any device, but is presented
as a format which could be used as a guideline for designing peripheral

47

devices. Many devices will require less than sixteen status bits, Other devices

will ramtira maore than elviaan hite and thavafees wsll reguir
T ST OIS wiail SIATSCN O3 anag wisiaioie Wil regiuir

and control registers.

Device Function Bits—These three bits specify operations that a device is
to perform. An example of one operation for a paper tape reader is read
.one character. For a disk one operation would be read a block of words from
memory and store them on the disk.

Memory Extension Bits—These t_wo bits are reserved for future expansion.
They will allow devices to use a full 18 bits to specify addresses on the bus.

-Done Enable and Error Enable Bits—These two bits are independently pro-
grammable. If bit6is set, an interrupt will occur as a result of a function
done condition. If bit 5 is set, an interrupt will occur as the resuit of an
error condition. This occurs when one or more of the error bits is set to a
one. To Initiate an interrupt routine to read from the paper tape reader,
the instruction

MOV #101, PRS
could be used. This sets bit 0 and bit 6 of the paper tape reader control and
status register. Setting bit O starts the read operation and setting bit 6
enables an Interrupt to occur when the read operation’is complete,

Condition Bits—The CSR contains a DONE bit, a READY bit, or a DONE-
BUSY pair of bits, depending on the device. These bits are set and cleared
by the hardware, but may be queried by the program fo determine the
availability of the device. For example, the teleprinter status register (TPS)
has a READY bit (7) that is cleared on request for output and then set when
output is complete. The keyboard status register (TKS) has a DONE-BUSY
pair (Bits 7 and 11) that distinguishes between no Input (DONE = BUSY
= 0), input under way (DONE = @, BUSY = 1), and input complete (DONE
=1, BUSY = 0).

The DONE bit could be used to control an input loop for reading from the
paper tape reader as follows:
LOOP: TSTB PRS s test low byte of paper tape status registar
’ BPFL LOOP + branch back if DONE bit {bit 7) is not set

Unit Bits—Some peripheral systems have more than one device per control.
For example, a disk system can have multiple surfaces per control .and an
analog-to-digital converter can have multiple channels. The unit bits select
the proper surface or channel.

Emmor Bits—Generally there-is an individual bit associated with a specific
error, When more bits are required for errors, they can be obtained by ex-
panding the error section in the word or by using another status word.

Example of Control and Status Register—The high-speed paper tape reader
control and status register (PRS} is as follows:

ouT DONE
| or ey . | oo | EnE . READ
TAFE

[T * [-7]

These bits may be read or set by instructions whichk use the appropriate
effective address. Bit O of the PRS is the function bit for reading one char-

48

acter. Incrementing the PRS will set bit O and cause one character to be
read. The instruction

INC PRS

performs that function. MOV #1, PRS does the same thing but takes one
more word,

DATA BUFFER REGISTERS—Each device has at least one buffer register
for temporarily storing data to be transfer into or out of the computer. The
number and type of data registers is a function of the device. The paper
tape reader and punch use single 8-bit data buffer registers. A disk would
use 16-bit data registers and some devices may use two 16-bit registers for
data buffers.

PROGRAMMING EXAMPLES

PROGRAM CONTROLLED DATA TRANSFER WITH THE INTERRUPT DISABLED
—Single character 1/O devices (teletype, paper tape reader{punch) have an
addressable register buffer through which data is transferred. For input, the
data buffer register i§ the source operand of the instruction used to get the
data; for output, it7is the destination operand. For exampie assuming the
paper tape reader interrupt is not enabled, character input could proceed
as follows:

MOV R, —(5P)
MOV . #BUFFER, R
START: INC PRS
LOOP: BIT PRS, #100200
BEQ LOOP
BMI ERROR
MOVB PRB, (R)4+

save R on the stack

pointer to input buffer into register R
start up reader

test DONE and ERROR bits

branch back if none on yet

branch to error routine if minus
move byte from device buffer reg-
ister to user's buffer and increment
pointer

check for end of buffer

get next character-

restore R

CMP #LIMIT R,
BGE START
MOV (SP}4, R

wr my ome R RE WA TR oma oma WE wA HE

Character output to the paper tape punch might be executed as foilows:
MOV RO, —(5P) ; save RO
MOV R1, —(5P) save R1 :
MOV NCHAR, RO * number of characters into RO
MOV BUFFER, Rl user buffer address into R1

LOOP; BIT PPS, #100200 test device ready and error bits

BEQ LOOP :+ fall through if on

EMI ERROR + branch on error

MOVB (R1)4, FPPB ; output character, |ncrement pointer

DEC RO . ; decrement character counter {and
7 set condition codes)

‘BGT LOOP ; repeat if greater than zero

MOV (SP)+, . RO ; restore RO

MOV (5P)+, R1 H restorle R1

BLOCK TRANSFER WITH THE INTERRUPT DISABLED—High-speed block
transfer devices use the Unibus to make data transfers between the device
and core memory. These devices are provided with addressible registers
that control the flow of data.

49

A typical set might be:
1. Control and status register
2.- Memory address register
3. Word count register
4. Device address register

Loading the device address register would in general initiate the transfer,
which then proceeds without processor intervention. The device issues pon-
processor requests for the Unibus that, when granted, allow direct data
. transfer between the device and memory. These requests are interleaved
with processor-requests for the bus. If very fast transfer is required, the
processor may exacute a WAIT instruction after starting the block transter.

The DONE or approptiate .error bits are set in the CSR with completion of
the transfer or when an error occurs, These may be enabled to cause an
interrupt or may be tested to determine when the device neec]s assistance.

A block transfer could be executed as follows:

MOV #401, DKS, . read block of data (function 1)
_ from unit 1

MOV #BUFADR, DKMA buffer address to memory ad-

: dress register

word count to word count register
block number to device address
register, which starts the trans-
fer

MOV #BUFCNT, DKWC
MOV #BLKNO, DKDA

R TR I T ETE T

i whe-n data is needed.
LOOP: BIT #DKMSK, DKS ; test done bit and error bnts

I

BEQ LOOP: branch back if none on
BIT #DKEMSK, DKS ; test for any error bits
BNE ERROR ; branch if any on

; data is now in buffer at BUFADR
INTERRUPT STRUCTURE

If the appropriate inferrupt enable bit is on, in the control and status register
of a device, transition from Q to 1 of the DONE or READY bit causes an
interrupt request to be issued to the processor. Also if DONE or READY is a
1 when the interrupt enable is tumed on, an Interrupt request is made. It
the device makes the request at a priority greater thap that at which the
processor is running and no other conflicts exist, the request is granted and
the interrupt sequence takes place:

a. the current program counter and processor status are pushed onto
the processor stack;

b, the new PC and PS are loaded from a pair of locations (the interrupt
vector) in low core unique to the interrupting device.

Since each device has a unique interrupt vector which dispatches control to
the appropriate interrupt handling routine immediately, no device polling is
required. Furthermore, since the PS contains the processor priority, the
priority at which an interrupt request is serviced can be set under program
contrel and is independent of the priority of the interrupt request. The

50

ReTurn from Interrupt instruction is used to reverse the action of the
Interrupt sequence, The top two words on the stack are popped into the PC
and PS, returning control to the interrupted sequence.

PROGRAMMING EXAMPLE

A paper tape reader interrupt service could appear as follows:

. First the user must initialize the service routine by specifying an address
pointer and a word count

INIT: MOV # BUFADR, #0 set up address pointer

POINTR=.—2 . in third word of MOV instruction.
MOV #CNTR, #0 set up character count in
CRCNT =.~2 third word of MOV instruction.

MOV #101, PRS read a character with interrupt

enabled.

R LA I

When the interrupt request occurs and is acknowledged, the processor stores
the current PC and PS5 on the stack. Next it picks up the interrupt vector or
new PC and PS beginning at location 70, The next instruction executed is
the first instruction of the device service routine at PRSER.
PRSER: TST PRS ; test for error

BMI ERROR hranch to error routine if
bit 15 of PRS is set.
move character (byte)
from reader to buffer
increment pointer ~

MOVE PRB, @POINTR
INC POINTR

e mE owr %Y mE oma v oy me

DEC CRCNT decrement character count
BEQ - DONE branch when input done
-INC PRS start reader for next character
DONE: RTI return from interrupt

51

The DIGITAL M225 module contairs 8 high speed general-purpose
registers. The M225 general registers provide program flexibility
when used as accumulators, index registers, and pointers to data
words. o

52

CHAPTER 7

TELETYPE (MODEL LT33-DC/DD)

The standard Teletype Model 33 ASR (Automatic Send-Receive) can be used
to type in or print out information at a rate of up to ten characters per sec-
ond, or to read in or punch out perforated paper tape at a ten characters
per second rate. Signals transferred between the 33 ASR and the control
logic are standard serial, 11-unit code Teletype signals. Yhe signals consist
of “marks’ and ‘‘spaces” which correspond fo idle and bias current in the
Teletype serial line, and to 0's and 1's in the control and computer. The
start mark and subsequent eight bits are each one unit of time duration and
are followed by the stop mark which is two units.

The 8-bit code used by the Model 33 ASR Teletype unit is the Amencal
Standard Code for Information Interchange {ASCH) modified. Te convert the
ASCIl code to Teletype code, add 200 octal (ASCIl 4+ 200. = Teletype).

The Model 33 ASR can generate all assigned codes except 340 through
374 and 376, The Model 33 ASR can detect all characters, but does not
interpret all codes that it can generate as commands, The standard number
of characters printed per line is 72. The sequence for proceeding to the next
line is a carriage return followed by a line feed. Punched tape format is as
follows:

Tape Channel 87 654 s 321
. Binary Code 10 110 100

(Punch = 1) _

Octal Code 2 6 4

(S = Sprocket}

SIZE-- Floor space approximately 2214 " wide, 1814 deep
Cable |ength 8 feet

MODEL POWER REQUIREMENTS
LT33.-DC _ 115 v =10% 60 +045 Hz
LT33-DD 230 V £10% 50 x£0.75 Hz

TELETYPE CONTROL (MODEL KL11)

TELETYPE CONTROL—Serial information read or written by a Teletype unit
is assembled or disassembled by the contro! for parallel transfer on the
Unibus. The contro! also provides the flags which cause a pnonty intercupt
and indicate the availability of the teletype.

KEYBDARD/READER—The Teletype control contains an 8-bit buffer (TKB)
which assembles and holds the code for the last character struck on the
keyboard or read from the tape. Teletype characters from the keyboard/
reader are received serially by the 8-bit shift register TKB, The code of-a
Teletype character is loaded into the TKB so that ‘‘spaces’ comrespond to
binary 0's and holes, “marks,’” correspond to binary 1's. Upon program
command, the contents of the TKB may be transferted in parallel to a
memory location or a general register.

A character is read from the low-speed reader by setting the Teletype reader
enable bit, (RDR ENB), to a 1. This sets the busy bit (BUSY) to a 1. When a
Teletype character starts to enter, the control de-energizes a relay in the

53

Telétype unit to release the tape feed latch. When released, the latch
mechanism stops tape motion only when a complete character has been
sensed, and before sensing of the next character is started. When the charac-
ter is available in buffer (TKB), the busy bit (BUSY) is cleared and the done
flag (DONE) is set. if the interrupt is enabled, a request is made for the bus
at level 4 (BR4). The interrupt véctor is at location 60,. The DONE bit is
cleared by any instruction which reads the contents of the buffer (TKB} into
the processor, If the DONE flag is cleared hefore the interrupt is granted, no
interrupt will occur. The keyboard must be read within 18 milliseconds of
DONE to ensure no loss of information.

Registers!
Teletype Keyboard Status (TKS)

1

 — s —-— P B

[
I_mINT ENB Eﬁg
Bit -)
0 RDR ENB _ Requests that one character be read from the

reader; set from the bus: (Note: Setting RDR
ENB causes tape to advance by one character
which is shifted into TKB if DONE is cleared.)
Receipt of START bit on the serial input line sets
BUSY, clears RDR ENB and clears TKB.

6 INT ENB 0—-No interrupt; 1-—Attach the keyboard and
reader to the priority interrupt system at bus
request level 4.

7 DONE Character available; cleared by reading the buf-
fer (TKB).
11 BUSY Character is being read; set by RDR ENB going

to a 1. Cleared by DONE going to a 1.

1 The followmg notation will be used throughout this chapter for describing mgistars
- A power clear sets this bit to 0.
l — A power clear sets this bit to 1,
* «= This bit can only be read from the bus.
$ — This bit can only be set from the bus. If it is read, it will always appear
as zeto.

'l_'eletype Keyhoard Buffer (TKB),

| | 8-8IT CMARACTER “I
5 s T 0

" TELEPRINTER/PUNCH—On program command, a character is sent in parel-
lel from a memory location (or a general register) to the TPB shift register
for transmission to the teleprinter/punch unit. The control generates the
start ““space,” then shifts the eight bits serially into the Teletype unit, and
then generates the stop “marks.” This transfer of information from the TPB
into the teleprinter/punch unit is accomplished at the normal Teletype rate
and requires 100 milliseconds for completion. The READY flag in the tele-
printer/punch indicates that the TPE is ready to receive a new character. A
maintenance mode is provided which connects the TPB eutput to the TKEB
input so that the parallel serial and serial paraliel shifting may be verified.

54

Registers
. Teleprinter Status Word (TPS)

' 7 6 2
: -* . .
L [0l lof]

L l—-INT ENB me‘rzmcs

READY CONTROL
Bit _ .
2 MAINT Maintenance function which connects TPB serial
output to TKB serial input. _
6 INT ENB 0—No interrupt; 1—attaches the Teleprinter to
the priority interrupt system at BR4.
7 READY Set by punch/printer DONE; cleared by loading
the tefeprinter-buffer (TPB).
Teleprinter Buffer (TPB)
I [© B-BIT CHARACTER DATA “7!
15 s 7 : 0

PROGRAMMING EXAMPLE—To read & character from tape and echo it on

the printer;
ECHO: {NC TKS ; set RDR ENB
b TSTB TKS ; test for DONE set
BPL —2 ; test again if not set
TSTB TPS " ; test for printer READY set
BPL —2 ; test again if not set
MOVB TKB, TPB ; put input character into output
buffer to be printed)
BR ECHO ; return for another character
PERIPHERAL ADDRESS ASSIGNMENTS
TKS 177560
TKB 177562
TPS 177564
. TPB 177566
VECTOR ADDRESS Keyboard/Reader 60
. Telaprinter/ Punch 64

PRIORITY LEVEL set te BR4—Teletype printer is lower than the Teletype
keyboard ' ’

MOUNTING—Requires one small peripheral controller mounting space (1 '
of a DD11 or one of two such spaces in KAlLl)

HIGH-SPEED PERFORATED TAPE READER PUNCH AND
CONTROL (TYPE PC11)

TAPE READER—This device senses 8-hole perforated paper or Mylar tape
photo-electrically at 300 characters per second. The reader control requests -

reader movement, transfers data from the reader into the reader buffer
(PRB), and signals the computer when incoming data is present. it does this

55

by setting a DONE bit. §f the interrupt is enabled and the interrupt is granted,
the processor traps to location 70, and may immediately begin executing the
service routine for the paper tape reader.

Registers - ’

"Paper Tape Reader Status Word {(PRS)

15 1" 7 8 0
* K *] [3
Lol [lolo] o]
L error L Busy LNt Ena L ron
DONE . ENE
Bit .
0 RDR ENB Requests read of next character; can be set from
bus only if ERROR = 0. Clears PRB, sets BUSY,
6 INT ENB 0—No interrupt; 1—attached to priority interrupt
systemn at BR4. (Note: Interrupt occurs when INT
ENB is a 1 and either the error flag, ERROR, or
the done flag, DONE, becomes a 1.)
7 DONE Set by character available: cleared by reading the
paper, tape reader buffer (PRB).
11 BUSY Set by RDR ENB going to a 1; cleared by DONE
) goingtoa l.. Coe
15 ERROR Error Flag — Set or cleared by out-of-tape sensor

or off line switch. :

Paper Tape Reader Buffer (PRB}

l I 8-BIT CHARACTER "]
15 8 7 o
./
PROGRAMMING EXAMPLE—Tape reading subroutine (not using interrupt):
READ: INCB PRS ; enable reader
TEST: - BIT #100 200 PRS ; test for error or done
- BEQ TEST ; branch back if not done
BMI ERROR : branch if error =1
MOVB PRB, RO ;- get character from buffer
RTS R ; return to caler
ERROR: (message type out routine)
HALT ; wait for operator intervention
JMP READ ; try again when continug switch is hit.

TAPE PUNCH—This option of a Royal McBee paper tape punch that per-
forates S-hole tape at a rate of 50 characters per second. Information to be
punched on a line of tape is loaded in an 8-bit punch buffer (PPB) from a
memory location or one of the general registers. The punch flag, READY,
becomes a 1 at the completion of punching action, signaling new information
may be transferred into the punch buffer and punching initiated.

56

Registers
Paper Tape Punch Status Word (PPSY

15 T

& o
-
S| - [ol |
— grpon L L—INT ENB
DONE
Bu .
6 INT ENB 0—No [nterrupt; 1—Attached fq priority interrupt
i system. (Note: An interrupt occurs when INT ENB
is a 1 and either the ERROR flag or the READY flag
becomes a 1.) : _
7 READY Set by punch done; cieared by loading the paper
' tape punch buffer {PPB). ,
15 ERROR Error Flag—Set by out-of-tape sensor, or unit powar
off switch,

Paper Tape Punch Buffer (PPB)

l ’ l 8-BIT CHARACTER DATA “J

5 8 T [

Loading the buffer initiates punching.

PROGRAMMING EXAMPLE

PUNCH: BIT #100200, PPS ; test for ready or error
BEQ PUNCH

"~ BM1 ERROR
MOV RO, PPB ;
RTS R :
ERROR: (message type out)

HALT; wait for operator to fix punch
JMP PUNCH; try again when Continue is hit.

PERIPHERAL ADDRESS ASSIGNMENTS

PRS 177550
PRB 177552
PPS 177554
PPB 177556

VECTOR ADDRESSES—Reader 70
Punch 74

PRIORITY LEVEL—Set to BR4. Punch is lower than reader.

MOUNTING—E!ectromechanical asserﬁbly—-—E!A Standard 19" rack, 1014
vertical mounting space, by 17145 " deep.

PCi1:M Controller—One small peripheral contmllef mounting space {14
of DD11 or one of two such places in KAll).

57

ENVIRONMENTAL

55°—100°F o
2094 —95% RH (without condensation}
MODEL DESCRIPTION . POWER REQUIREMENTS
"PC1t Reader, Punch & Control 115+109, &0 Hz
PCl11A Reader, Punch & Control 1152109, 50 Hz
PR11 Reader & Control 115+109%, 5060 Hz

LINE FREQUENCY CLOCK (TYPE KW11.L)

The KW1EkL real time clock provides @ method of measuring time intervals
at line frequency. This clock consists of a frequency source and control logic.
When enabled the clock causes an interrupt every 16.6 or 20 milliseconds,
depending upon lifie frequency.
Register -
Line Time Clock Statu_§ Register (LKS)
' L -
L olo

|_ L_1INTR ENB
CLOCK

Bit :
6 INTR ENB When set, an interrupt will gecur every time CLOCK goes true.
Cleared by program or reset or start sequence.

7 CLOCK Set to 1 every 16.6 milliseconds (60 Hz) or 20 milliseconds (50 .
Hz). Cleared by reading LKS, RESET or pressing the STARY

) switch.
PERIPHERAL ADDRESS AS__SIGNMENTS
LKS _ 177546
YECTOR ADDRESS 100
PR_IOI!ITY LEVEL BR6

MOUNTING—This option plugs into the KAll processor.

58

CHAPTER 8
DESCRIPTION OF THE UNIBUS

Qomn‘iu’niEation between all system units in a PDP-11 configuration is done

by a single common bus: the Unibus. All communication—both instructions -

and logicai operations~—is defined by a set of 56 signais. This set of 56 sig-
nals is used for program controlled data transfers, direct memory data trans-
fers, priority bus control, and program interrupt.

This chapter presents the concepts of the Unibus and how they affect pro-

gram software and interfacing hardware. The use of the 56 bus signals to
effect data transfers and to control bus use is also described.

GENERAL CONCEPTS OF THE UNIBUS

" There are five major aspects of the Unibus that affect both software and
hardware considerations in the PDP-11.

SINGLE BUS—The set of 56 signals that comprise the Unibus is the one
and only bus connecting all peripheral devices, memories, and the central
processor. Thus, to every device there exists a single set of signals by which
it can be interrogated by the processor or other devices, or be used by the
device itself to transfer data to and from mernory.

The processor uses this same set of signals to communicate with all mem-
ories and devices. The important point here is that the form of the com-
munication used by processor and peripheral devices is identical. Conse-
quently, the same set of program instructions used to reference memory
is used to reference peripheral devices. (A look at the PDP-11 instruction
set will reveal that there are no explicit 1/0 instructions.)

Peripheral devices in a PDP-11 system are designed to respond to the Unibus
in the same manner as memory. Device status registers, device con-
trol registers, and device data registers are each assigned unique “memory”
addresses. For example, the instruction MOVB RO, PUNCH would load the
punch buffer register with an 8.bit character contained in RO. Cther in-
structions would monitor the punch status and the program could deter-
mine when the punching operation was complete.

BIDIRECTIONAL BUS—Unibus bus signals are bidirectional—the signal re-
ceived as an-input can be driven as an output, as shown in Figure 8-1.

rm——————==——7
| RECEIVE. BUS SIGNAL I
| I
- g I
3|1 DRIVE BUS SIGNAL |
i
2l | !
] L L DEVICE LOGIC |
¥

. Figure 871 Bidirectional Nature of the Bus

MASTER-SLAYE RELATION—At any one point in time, there is one device,
called the master, that has control of the bus. The master. device controls

59

-

the bus to communicate with other devices, called slaves, on the bus. An
example of this relationship is the processor (master) fetching an instruction
from memory (which is always a slave).

INTERLOCKED COMMUNICATION—For each control signal issued by the
master device, there is a response from the slave; thus bus communication
~ Is independent of the physical bus length and the response tifme of the mas-
ter and slave devices. Also, master-slave relationships can exist in nearly
any ctombination between fast-responding and slow-responding devices,

DYNAMIC MASTER-SLAVE RELATION—Master-slave relationships are dy-
namic. The processor, for example, can pass bus contro! to a disk. The disk,
as master, could then communicate with & slave memory bank.

UNIBUS SIGNALS :

The 56 Unibus signals ¢an be divided into two major groups—the interrupt
group and the non-interrupt group. The interrupt group can then be sub-
divided into two classes—the request and control class and the grant class.
All bus signals except the grant class are bidirectional in nature and are
connected to every device (though they may not be used by every device).
The grant signals, because of their special nature in priority bus control
(to be explained later), are bussed through each device and are unidirectional
in nature.

NON-INTERRUPT SIGNALS

Data Lines (D < 15:00 >)—(Note that the notation A <ab> specifies
b—a + 1 signal lines which are named Aa through Ab.) The 16 data lines
are used to transfer information between master and slave. This is the bit

format: . _
(: HIGH BYTE L LOW BYTE [

15) L o

Address Lines (A < 17:00 »)——The 18 address lines are used by the master
device to select the slave (a unique core memory or device register address)
with which it will be communicating. This is the bit format of the 18 signals:

17 16 15 _ 10

N BYTE POINTER—

jo-EXT.

PROGAAM ADDRESS

N N —

A < 15:01 > are used to specify a unique 16-bit word group. In byte opera-
tions, AQQ is used to specify the byte being referenced. If a word is refer-
enced at X (X must be even, since words can be addressed on even bound-
aries only), the low byte cart be referenced at X and the high byte at X 4+ 1,

A < 15:00 > are supplied by the software as memoty reference addresses.
Al7 and Al6 are used as extended memory bits for relocation and as pro-
tection schemes in future systems. In the PDP-11/20 and the PDP-11/10,
Al7 and Al6 are asserted or forced to 1 whenever an attempt is made to
reference a memory location where Al5S = Al4 — Al3 = 1. Thus the hard-
ware converts the 16-bit software address to a full 18-bit-bus address.

An address map is shown in Figure 8-2.

60

il

SOFTWARE ADDRESS ~ HAROWARE ADORESS

000000-01T777 000000 -N7777
) st 4
MEMORY BaNk |
020000-037777 020000-037777
2nd 4K
MEMORY BANK
|)
| '
¥0000-157777 ' 140000-157777
Tih 4K
MEMORY BANK)
160000177777 T60000-777777
PERIPHERAL
BANK
Figure 8-2 Address Map .

The peripheral bank is composed of the processor's fast memory, status
register, conscle switch register, and all device registers.

Control Lines (C < 1:0 >)—These two bus signals are coded by the master
device to indicate to the slave one of four possible data transfer operations.

Master Synchronization and Slave Synchronization (MSYN, SSYN)—MYSN
is a control signal used by the master to indicate to the slave that address
and control information is present, SSYN is the slave's response to MSYN

Initializatlon (INIT)—Thls signal is é powar clear signal asserted by the con-
sole and the processor which is used to reset peripheral devices,

PA, PB, SP1, SP2—These lines are not implemented on the PDP-IL"IO or
PDP-11/20.

INTERRUPT SIGNALS

Bus Request Lines (BR & 7:4 >)}~-These four bus signals are used by
peripheral devices to request control of the bus.

Bus Grant Lines (BG < 7:4 >)—These signals are the processor's response
to a BR. They will be asserted only at the end of instruction execution.

Non-Processor Request (NPR)—This is a bus request from a periphei‘al
device to the processor.

Non-Processor Grant {(NPG)—This is the processor's response to an NPR. It
occurs at the end of bus cycles within the instruction execution.

Selection Acknowledge (SACK)—SACK is asserted by a bus-requesting device
that has received a bus grant. Bus control will pass to this device when the
current master of the bus completes its operations.

INTERRUPT ({INTR)—This signal is asserted by the master to start program
interruption in the processor,

_Bus Busy (BBSY)—This signal denotes bus in use by a master device.

UNIBUS DATA TRANSFER OPERATIONS
Direction of data transfers on the Unibus is defined in relation to the master

61

device. A data transfer from processor to memory (always a slave) is ‘;data
out,” and a transfer from memory to processor is 'data in.”

TYPES OF DATA TRANSFERS—The type of data transfer being made between
rhaster and slave is determined by the C lines coded as follows:

Ct co

0 O | GATI- DATa in

aQ ! [DATIP-DATa In, Pouse

L] 0 | DATD —0ATa Out

1 1 [DATO®-DATo Qut, Byte ;

DATO AND DATOB—The DATO and DATOB operations are used to transfer
data out of the rmaster to the slave. DATO is used to transfer a word to the
address specified by A < 17:01 >. The slave ignores AOO and the data ap-
pears onD < 15:00>-. DATOB is used to transfer & byte of data to the ad-
dress specified by A < 17:00 . ADD = O indicates the low byle, and data
appears on D < 07:00 >; AOD = 1 indicates the high byte, and data appears
on D < 15:08 .

DAY] AND DATIP—The DAT1 and DATIP operations transfer data from a slave
whose address is specified on A < 17:01 > into the master. Both transfers
are made in words on D < 15:00 >>. In destructive read-out devices, DATI
commands a read-write operation, while a DATIP commands a read operation
only and sets a pause flag. When the device receives the subsequent DATO
or DATOB and its pause flag is set, the uscal read cycle is skipped and an
immediate write cycle is initiated. Thus, DATIPs are immediately followed
by a DATO or DATOB to effect 2 read-modify-write data exchange. In non-
destructive read-out devices, DATt and DATIP are treated identicaily.

This diagram illustrates the data flow in the four data transfers:

DATI OR DATIP

DATA= 0C15:00>
5

8|7 0
SLAVE REGISTER
HIGH BYTE { LOW BYTE

[B 4 [

MASTER

DATOBAAOO $ DATOBAACD
DATA=*D <15:08 > paTO - | DATA=D <Q7:00 >
DATA=Df5: 00>

Figure 8-3 Data Flow

Note that all transfers into the master are word operations; it is up to the
master to accept the appropriate byte. On a DATOB, the master must place
the byte on the appropriate data lines; the slave must accept the proper byte.

DATA TRANSFER EXAMPLES—The bus operations used by the processor for
a typical instruction sequence iliustrates how the data transfer operations
are used. The “program” starts at location 1000:

1000: INCB @RO
ADD #3, @RO

where RO contains 500.and location 500 contains 10023. The result of this

' - 82

instruction sequence will leave 10027 in location 500. In binary form, this
coding appears as:’

1000: 105210 ;INCB @RO
1002: 062710 ;ADD (PC)+, @RO
1004: 000003 3

. The following table lists the bus operations that result as a consequence
of these two instructions:

Processor Cycle - Bus Operation Bus Address Data Transferred
Fetch DATI (PC) = 001000 105210
Destination DATIP (RO} = 000500 010023

. Execute DATOR ’ (RO) = 000500 000024
Fetch DATI : {PC) = 001002 062710
. Source DATS (PC) = 001004 000003
Destination DATIP {ROY = Q00500 010024
Execute DATO {RO) = 000500 010027

NOGREN e

Note that in step 3, it is inconsequential what data appears on D < 15:08 >>;
the slave accepts only the modified low byte.

A second example of bus operation compares the contents of the Teletype
keyhcard data buffer whose address Is 177560 with the ASCII value for the
lotter “A."

200: . CMPB @#177560, #301

This instruction is assembled in three words as follows:

200: 123727 ICMPB @(R7)+, (R7)+
202: 177560 - ;Address of data buffer
204: 000301 ;301
The processor will execute this instruction with these cycles:
Processor Cycle Bus Operation Bus Address Data Transferred
1. Fetch DATI (PC) = 200 " 123727 '
2. Source DATI (PC) = 202 177560
3. Source DATI 777560 Ascll
4. Destination DATI {PC) = 204 000301
5. Execute none — condition codes set internally.

Note that in step 3, the software speclﬁed address 177560 was converted to
the bus address 777660.

SIGNAL DESCRIPTION OF DATA TRANSFERS—Figure 8.4(a) shows the sig-
nal flow between master and slave during a DATC operation. (The sequence
is similar for DATOB except that only a byte of information is transferred.)
The master sets Control for DATO, sets Address for the unique slave address,
and sets Data for the information to be transferred. The master then asserts
MSYN. This signal is recelved by the slave that recognizes its address; it
rasponds by accepting the data ard asserting SSYN. SSYN is received by the
master which then negates Control, Address, Data, and MSYN. The slave
sees MSYN negated and negates SSYN. The master de\rice continues its.
operation when it sees SSYN negated.

63

MASTER : T SLAVE
OPERATION; DATO ‘

AL.D ‘
METN
\
* 35N
MSYN
AC,D

Figure 8-4(a)

The flow of signals for DATI) is shown in Figure B.4(b). (DATIP is similar
except that the internal operation of the slave device is modified.) The master
sets Control for DATI, sets Address for the slave to be selected, and asserts
MSYN. The selected slave responds by setting Data for the information re-
quested and asserts SSYN. The master sees SSYN, accepts the data, and
then negates Control, Address, and MSYN. The slave sees MSYN negated
and negates SSYN. The master continues when it sees SSYN negated.

A more detailed signal sequence for the DATI, DATIP, DATO, and DATOB bus
operations can be found in Appendix D.

MASTER -) SLAVE

QPERATION: DATI

a,c
MSYN

L I S
RE

r - §SYN,D
Figure 8-4(b)
UNIBUS CONTROL OPERATIONS

The following section will deal with how a device becomes master of the bus
.and how control of the bus is transferred from one device to another. Two
additional bus operations will be presented—the PTR (Priority Transfer) and
INTR (Interrupt).)

In normal operation, the processor is bus master, fetching instructions and

. operands from memory. Other devices on the bus have the capability of
becoming bus master, and use the bus for one of two purposes: 1}, to gain
direct memuory access or 2), to interrupt program execution and force the
processor to branch to a specific address.

PRIORITY ARBITRATION—Transfer of bus control from one device to ancther
is determined by a priority scheme in which three factors must be considered.

First, the prbcessor's priority is determined by bits 7, 6, and 5§ in the pro-

64

'

cessor status register. These three bits set a priority level that Inhibits
granting of bus requests on lower leveis.

‘Second, bus requests from external devices can be made on one of five
request lines. NPR has the highest priority, and its request is honored by the
processor between bus cycles of an instruction execution. BR7 is the next
highest; BR4 is the lowest. These four lower level requests are honored by
the processor between instructions, except when the instruction currently
being executed causes an internal trap (either an error or trap instruction).
In this case, BR requests will not be honored until completion of the first
instruction after the trap sequence. Thus if two requests are made to the
processor for bus control, the higher of the two requests will be honored first.

Third, in response to a bus request, the processor may honor the request by
asserting a bus grant (BG) corresponding to the line on which the bus re-
quest was made, This signal is passed serially through each device in the
system, If a device had made a request, it would. block the grant signal
and prevent it from reaching the following devices. Thus, in this “pass-the-
puise” chain, the device that is closest to the processor has the highest
priotity on that request ievel.

This table lists device priorities:
Highest: Devices on NPR
: Processor when priority — 111 -
Devices on BR7 .
Processor when priority = 110
Devices on BR6
Processor when priority = 101
Devices on BR5
Processor when priority = 100
Devices on BR4
Processor when priority = 011
Internal options '
Processor when priority = 010
_Internal options
Processor when priority = 001
Internal options
Lowest: Processor when priority = 000

When the processor's priority is set at N, all requests for bus control at
level N and below are ignored.

SELECTION OF NEXT BUS MASTER—The signal sequence by which a device
becomes selected as next bus master is the PTR (Priority Transfer) bus
operation. Note that this operation does not actually transfer bus control;
it only selects a device as next bus master. it takes one additional condition
to complete the transfer: the current bus master must complete its bus
operations. The signal that indicates this is BBSY. Thus, when a device makes
an NPR or BR requést to the processor for bus control, it waits until it first
becornes selected as next bus master by the PTR operation and second, it
no longer senses BBSY, The negation of the BBSY signal indicates that
the current master has completed its bus operation, The selected device
now becomes bus rmaster and asserts BESY itself. - '

INTERRUPT SEQUENCE—Once the device has bus control and is asserting
BBSY itself, it is sole user of the bus until it releases its control. This release
of control can be made either actively or passively. Passive release is realized

65

by negating BBSY. Bus contral will then pass to either a device that was
selected in the meantime by another PTR sequence or back to the processor,
which will continue where it was interrupted. Active release of bus control
is realized through the INTR bus sequence.

The INTR (intefrupt) operation is used by the bus master to transfer to the
processor a memory address (called the interrupt vector). Two consecutive
words, the starting address of an interrupt service routine and a new status
word, are stored at the jnterrupt vector address. After the INTR sequence is
complete, the processor automatically becomes bus master and begins a trap
sequence in which it stores the current value of the PC and PS on the stack
and fetches a new PC and PS from the location pointed to by the interrupt
vector. Thus, the next instruction executed is the start of the interrupt

service routing.

It is illegal to issue an INTR command after gaining control of the bus by
requesting on an NPR line. NPR requests are granted during instruction
execution and external bus masters must restrict their bus use'to nonpre-
cessor activities.

Interrupt Servicing Sequence Example—The following is an example of the .
INTR sequence,

When a peripheral requires service and requests control of the bus with a
BR signal, the operations undertaken to “service” the device are as follows:

® Gain Control of the Bus—When the processor has no higher priority tasks

to complete, it relinguishes the bus to that device. Higher priority items are

{in order of priority):

1. Acknowledging an NPR request

2, Handling a processor error (iHega! instructions, requirements for non-
existent memory, etc.)

3. Completing the current instruction _

4. Acknowledging a trace trap

5. Continuing a higher priority process

6. Acknowledging a higher level BR signal

7. Acknowledging same level BR signals for devices closer to the processor

® Do INTR Sequence—when the device has control of the bus, it initiates
an INTR sequence, transferrlng to the processor the interrupt vector address
which specifies two words in memory containing the address and status of
the appropriate device service routine,

® Push Old Interrupt Vector Onto Stack—The processor then “pushes”—
first, the current central processor status (PS) and then the current program
counter (PC} onto the processor stack.

® Fetch New Interrupt Yector—The new PC and FS (the “interrupt vector™)
are taken from the address specified by the device, and the device service
routine is begun. Note that those operations all occur automatically and that
no device polling is required to détermine which service routine to execute.

Example of NPR Operatlon—Disk operatlon gives an example of a device
‘which uses the bus for direct memory access. Under program control, the
processor would initialize registers in the disk control that specify word count
{WC, number of words in block of data to be transferred), memory address
(MA, the address at which the block of data is found or is loaded), and Track
Address (TA, the point on the disk where the block of data starts). Also, the

66

program would set certain function bits in the disk's command and status
register that specify a read or write function. For this example. assume the
disk was set to read

Once the disk’s control registers are inmalized the disk control fogic starts
a search for the requested data. (The processor in the meantime has con-
tinued in its program execution.) When the disk has found the data, it
assernbles the first 16-bit word from the disk surface into its data register.
The disk now requests bus control via the NPR request line. The processor,
when it has completed its current bus cycle of the current instruction and
no higher NPR requests exist, grants control of the bus to the disk. The disk,
as bus master, effects a DATO bus -operation, transferring the contents to
its data buffer to the core address held in its MA. The MA is now incremented
and the WC is decremented. When the DATO operation is complete, the disk
passively releases control of the bus.

When the second word has been assembled, the disk again requests bus
control, does a data transfer, and then releases bus control. This cycle is
repeated until the WC reaches zero. At this peoint, the disk has completed
the transfer that was requested.

To notify the program that the transfer is finished, the disk initiates a request
for bus control at the BR level, gains contro] when higher priority requests
are satisfied, and does an immediate INTR o the processor and causes the
program to branch to a specific service program (as described in the previous
axample). _ ~

Details of the INTR and PTR bus operations can be found in Appendix D,

67

The plug-in console board with modular construction is supplied
in the basic 11/20 configuration. In addition to aiding program-
ming, console _contributes to ease of maintenance on the PDP-11.

HAPTER 9

WFE EFAE EEmER W

interfacing

A typical device bus interface as shown in Figure 9-1 is composed of five
major components: 1), Registers; 2), Bus Drivers and Receivers; 3}, Address
Selector; 4), Interrupt Control; and 5), Device Control Logic.

REGISTERS

Each device is assigned bus addresses at which the program can inter-
rogate and/or load the device status, control, and data registers. The stan-
dardized mapping for these registers and the bit assignments of the com- -
mand/status register (CSR) were given in Chapters 5 and 6.

As shown in Figure 9-1, all information flow between the device logic and
the Unibus is done through the registers. In general, registers are designed
to be both loadable and readable from the bus. This allows the program to
use such instructions as ADD RO, REG, or INC REG. However, registers can -
be “one-sided,” either “read-only” or “write-only.” Examples of read-only
bits are the DONE and BUSY flags in the device’'s CSR. These bits are de-
rived from the internal state of the device logic and are not under direct
program control. Write-only registers are used when it is unnecessary to
read back information. Attempting to read such a register would result in an
all-zero transfer. The instructions effective with this type of register are then
limited to those which load the register such as MOV RO, REG, or CLR REG
(as opposed to ADD REG, RO, or INC REG).

N

D <0885

.%;{L arez |aus ulwml {mus ulwm| [ous DL\EM] Wn]m|

X S— Lo
ﬁ 2y)
AT — _]_—‘2

R

Figure 9.1 Typical Peripheral Device Interface

BUS DRIVERS AND RECEIVERS

To maintain the transmission-line characteristics of the Unibus, special cir-
cuits are required to pass signals to and from the bus. The majority of bus
signals (all except the five grant lines) are received, driven and terminated
- as shown in Figure 9-2.

69

— ' I_'__""_'l.

—
! +5 | +5, |
: i R } li j R2 Ii
| } ' b l
i a3 [RECEIVER |) I
[| ' | ' |
| l =)—_ | |
= | | - |
[ME30 | [W30 |
I | S |
DRIVER

R1, R22180.0 5% 1/4W
R3, A4+ 39000 5% 1/4W

1

Figure 9.2 Typical Unibus Line

Information is received from the bus using gates which have a high input
impedance and proper logi¢ thresholds. High input levels must be greater
than 2.5 V with an input current less than 160 pa. Low level input must be
less than 1.4 V with an input current greater than O pa. :

information transmitted on the bus must be driven with open collector drivers
capable of sinking 50 ma with a collector voltage of less than B V. Output

. leakage current must be less than 25 xa. :

in PDP-11 systems, the bus signals are terminated at both ends by resistor
dividers provided on the M330 module. Physically, an M930 is located in
_ the processor; another is located at the last unit on the bus. A bus signal
sits at logical “0" {inactive, or negated state) at a voltage of 3.4 V. A bus
line is at logical “1" (active, or asserted) when it is pulled to ground.

Drivers and receivers meeting these specifications are avaifable on the
M783, M784 and M785 modules as shown in Figures 9-3, 9-4 and 9-5.

70

105 ADDRESS SELECTOR

The M105 Address Selector as shown in Figure 9-6 is used to provide gating
signals for up to four device registers. The selector decodes the 18-bit bus
address on A <7 17:00 > as follows:

2 [czn 0 D. n 0 B.
e
o 2 - '
g e T
4 ovwrns . -
i—]unrn o__ " D- 0

Figure 9.3 M783 Unibus Drivers

D
M M

T D —

T

TIITT:

:

%
i

"
1

"
L

Figure 9.4 M784 Unibus Receivers
71

+5 THD

Az &2h O
3
4 NFD
1
M wo o—
—
o MFD
O

7

&8 MFD

|

|

|

e

|

3o

PPYYORYY

Figure 9.5 M785 Unibus Drivers and Receivers

AOD is used for byte control. A01 and AO2 are decoded to provide one of
four addresses. A < 12:03 > are determined by jumpers on the card. When
the jumper is in, the selector will look for a O on that address line-
A < 17:13 > must all be 1's—(this defines the exiernal bank). Other bus
inputs to the selector are C < 1;0 >> and MSYN. The single bus output is
SSYN. The user signals are SELECT O, 2, 4, and 6 (corresponding tc the
decoding of A02 and AO1, one of whith is asserted when A < 17:13 > are all.
1's and A < 12:03 > compare with the state of the jumpers. Other user sig-
hals are OUT HIGH (gate data into high byte), OUT LOW (gate data into low
byte), and IN {gate data onto the bus). The equations for these last three
signals are as follows:

OUTHIGH = DATO + DATOB*A00
OUTLOW = DATO 4 DATOB*AGO
IN = - DATI < DATIP

where “+' means a logical or and “*™" means 2 logical and. .
Use of the ML105, drivers, receivers and a flip-flop register is shown in Fig-
ure 9-7. ,

EXT. cap

SEYN L
MEYN L co.}";’io,_
A7L q ;
— SELECT ® H
A
- o
d—o12 g SELECT 2 H
—Og—0
—_— 010 00— P M
—_——0 O—
° § SELECT 4 H
—_—a—07 O0— 2
—_——06 00—
—_——05 O— SELECT 6 H
——g—04 0—
AW ————03 O—
P | |
ADIL)
“2?" : . - OUT HIGH H
L QUT LOW H
oL CONTROL IHNH
MOB ADDRESS
SELECTOR

Figure 9.6 _M105 Address Sel_ector

M782 INTERRUPT CONTROL

The M782 Interrupt Control module contains the necessary logic circuits to
aflow a peripheral device to gain bus control and perform a program inter-
rupt. The three circuits on this card are block diagrammied in Figure 9-8.
Note that only signals relevant to the user's interface are shown; bus
signals SSYN, BBSY and SACK have been omitted for clarity.

The Master Control circuit is used to galn bus control. When INT and INT
ENB are asserted, a bus request is made on the request line to which BR
_is jumpered. When the processor issues the corresponding grant and other
bus conditions are met, the MASTER signal is asserted, indicating that this
device now has bus control. Note that this circuit also can be used to gain
bus control on an NPR line for a device which requests the bus for direct
memory access, :

L

73

m o uega BNEE — —MRQENE T — —U ST | — —I00G 80— =680 S0 |- — — 50 s * — * LI
A ———— .

H8yY8t

E] 3 _] 9
L3 1 03 — — i 9 _ o.Bcl_ L I— 030 I—m.
Q) o ' [' o] [.

1]

-
<
~G
~GT

Figure 9.7 Typical Peripheral Device Register
74

In addition to two Master Control circuits, a third logic network provides the

necessary signals and gating to perform the INTR bus operation. When either

of the START INTR signals is asserted, the INTR bus signal is asserted

along with a vector address on D < 07:02 . Bits 07:03 are determined by

jumpers on the card. A jumper “in" forces a O in that bit. Bit 2 is controlied

by Vector Bit 2. When the processor responds to the INTR signal by asserting -
S3YN, the INTR DONE signal is asserted. This line is used to clear the

condition which asserted INTR START.

INT &
o .
T B o
A
B3 IN & MNTTEN BG OUT
—_———] . oL n
SLEAR 4 o uasTeR

START INTK & & "5 07
< 0 P e 086

START MHTR B & © b s 0as
C O—P—— us ks

0 0P ous D82

vecToR MT 2 —— A

%z
-
|
i
i

INT B :
. R B
W!Ne|]
[]

; MASTER T

BG W B ConTROL &
A B

CLEA B . MASTER

- Figure 9.8 M782 Interrupt Control

Figure 9-9 shows a possible interconnection of the M782 to provide inde-
pendent interrupts for two possible conditions in a device: ERROR and DONE.
The ERROR and DONE signais shown in Figure 9-9 are signals from bits 15
and 7 in a device's CSR. Likewise ERROR INT ENB and DONE INT ENB are
derived from the CSR. Both interrupts in this example are tied to the BR4
level'. the corresponding grant line BG4 enters the ERROR Master Controf and
is passed on to the DONE Master Control, Thus, ERROR hds a sllghtly higher
priority interrupt teve! than DONE.

Both MASTER signals are tied to the INTR control. Thus, whenever either
ERROR or DONE gains bus control, an INTR operation is initiated. Note
that Vector Bit 2isa 1 or 0 as a function of which master control
is interrupting. Also, INTR DONE is tied to MASTER CLEAR to clear the
master condition,

DEVICE CONTROL LOGIC

The type of control logic for a peripheral depends on the nature of the
device. Digital offers a wide line of general-purpose logit modules for iny

plementing control logic. These modules are described in

Digital publication: The Logic Handbook.

e goamn - I
EAR B " START WFR A L
oot T ST WR B A,
£ H
u"‘
VECTOR BIT 2 H

detail in another

§3248

Figure 9.9

7%

Typical Interconnection of M782 Interrupt Contro!

CHAPTER 10
CONFIGURATION AND INSTALLATION PLANNING

MODULAR CONSTRUCTION _

Physically, the PDP-11 is composed of a number of System Units. Each
System Unit is composed of three B-slot connector blocks mounted end-to-
end as shown In Flgure 10-1. The Unibus connects to the System Unit at
the lower left and at the upper left. Power also connects to the unit in the
leftmost black. A System Unit is connected to other System Units only via
the Unibus.

UNIBUS CONNECTION
Fal

R

@

m
§

IR

M
§

i
®

AR

Y.

&GCTION

Figure 10.1 System Unit

The remainder of the System Unit contains logic for the processor, memory
or. an I{O device interface. This logic is composed of single height, double
height, or quad height modules which are 8.5 ” deep.

The use of System Units allows the PDP-11 to be optimally packaged for
each individual application. Up to six System Units can be mounted into a
single mounting box. For a basic PDP-11/20 systern, the processor/console
would fili 214 System Unit spaces and 4096 words of core memoty would
fill one Systern Unit space. This leaves 215 spaces for user-designated op-
tions. This woold allow the user to add 8,192 words of additional core
memory, a Teletype control, and a High-Speed Paper Tape Control, or 4,096
words of core memory and six Teletype interfaces, Larger systems will
require a BA11-EC or BA11-ES Extension Mounting Box which contains space
for six additional System Units.

The use of System Units also facilitates expansion of systems in the field
and service. To add an additional option to a PDP-11 system, the proper
System Unit is mounted in the Basic or Extension Mounting Box and the
Unibus is extended. Servicing of the PDP-11 can be done by swapping
modules or by swapping System Units.

MOUNTING BOXES AND CABINETS

The POP-11 is available as either a tabletop or rack- mounted configura-
tion. The rack-mounted configuration may be installed in a DEC cabinet or
mounted in a customer cabinet, The PGP-11 mounts in an EIA standard 19-
inch cabinet. The rack-mounted PDP-11 has tilt-slides as standard mount-
ing hardware. .

- The followlng mounting units and cabinets aré avallable for PDP-11 systems.

PDP-11 TABLETOP BOX AND POWER SUPPLY FOR 11/20, 11/10 SYSTEMS'
{BA11-CC AND H720)—This cover and box may be speciﬂed with a basic
11/20 and 11710 system and includes:

‘1. H720 Power Supply

2. 15’ of power cord with ground wire

77

~ For 115 V standard, 3-prong, U-ground, 15-ampere connectors

- For 230 V pigtail ieads on one end

3. Cooling Fans

4. Filter

5. Programmaers Console with 11/20 or Turn-Key Console with 11/10

Approximate Size—11" high, 20~ wide, 24" deep. Figure 10-2 shows the
fayout of this unit. . .

Figure 10.2 Table Tap PDP-11 Dimensions

Approximate Weight—100 Ibs. (inciuding CP, consofe and 4K core)

Power—120 V * 10%,, 47-63 Hz 6 amps. single phase
" (BA11-CC and H720-A)

230V = 109, 4763 Hz 3 amps. single phase
(BA11.CC and H720-B)

PDP-11 BASIC MOUNTING BOX AND POWER SUPPLY (BA11-CS AND H720)
—This basic mounting box may be specified with a basic 11/20 or a 11/10
system and includes:; ’

1. Tilt and Lock Ghasis Slides

2. H720 Power Supply

3. 15’ of power cord with ground wire

- For 115 V standard, 3-prong, U-ground, 15-ampere connector

-+ For 230 V pigtail lead® on one end .

4. Cooling Fans :

5. Filter '

6. Programmers Console with 131/20 or Turn-Key Console with 11/10

Approximate Size~—1014" high, 19 wide, 23 deep. Figures 10-3, 10-4 and
10-5 show the layout of this unit and give slide dimensions.

»

78

Approximate Weight——90 Itis. (including CP, cdnsole and 4K core)

Power—120 V +109%, 47-63 Hz 6 amps. single phase
{BA11-C5 and H720-A) +»
230V £10%,, 47-63 Hz 3 amps. single phase
(BA11-C5 and H720-B) - -

| S okl sl 1

g

3

¥
oy

|
-+ B "|

Figure 10.4 Rear View of Mounting Hardware

“ o TTIRT IO e
— : <~ Pl
-*»'_.—-0 = '—;-"$ op— E !
s - — EE & o IR
|kl T et " e e e — e ——r J:

s e |

BIE VIEW OF WOURTRTD HARDSAE

Figure 10.5 Side View of Mounting Hardware

79

PDP-11 TASLETOP EXTENSION MOUNTING BOX (BA1l-EC)—The tabletop
Extension Box is supplied, when ordered, for mounting of up to 6 additional
Systemn Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. 15 of power cord with ground wire
- For 115 V standard, 3-prong, U-ground, 15-ampere connector
= For 230 V pigtail leads on one end
. 2. Cooling Fans
3. Filter
4. Front Pane}
8. Unibus Cable from Basic Mounting Box, 8’6" long

Approximate Size—11" high, 20" wide, 24" deep

Power—120 V = 109, 47-63 Hz 6 amps. - single phase
{when H720-A is added)
230V *=10%,, 47-63 Hz 3amps. . single phase.
(when H720-B is added) '

PDP-11 EXTENSION MOUNTING BOX (BAl11-ES)-—The Extension Box is sup-
plied, when ordered, for mounting of up o & additional System Units which
- can not be contained in the Basic Mounting Box. This unit contalns
. Tilt and Lock chassis slides

15’ of power cord with ground wire

For 115 V standard, 3-prong, U-ground, 15-ampere connector

For 230 V pigtail leads on one end

Cooling Fans
. Filter
. Front Panel
Bus Cable from Basic Box, 8’ 6" long

Approximate siza—10L4" high, 19" wide, 23" deep

Power—120 V = 109%, 47-63 Hz 6 amps. single phase
{when H720-A is added)-

230V =109, 47-63 Hz 3 amps. single phase
(when H720-B is added)

PDP-11 FREESTANDING BASE CABINET (H960-CA)—This optional cabinet
cabinet can be used to mount the BA11-CS Basic Mounting Box and a
BAl11-ES Extension Mounting Box supplied with Tilt and Lock chassns slides
in addition to other PDP-11 equipment.

Panel capacity is six 10147 high mounting spaces, each of which is covered
with black plastic panels if equ:pment is not mounted—-(5 panels, maximum,
" supplied).

items supplied with the cabinet include:

H950-A Frame

H952-E Coasters

H-952-F Levelers

H-952-C Fan Assembly (in top of cabinet)

. H-950-8 Filter

POP-11 Logo

H-950-B Rear Door

1014 Plastic Bezels, maximum of 5 supplied
. Two H952-A End Panels

oompwy pE

PONAG SN

10. H950-D Mounting Panel Doors

11. H952-B Stabilizer Feet

12. #7406782 Kick Plate

13, #7005909 Power Dnstr:hutaon Panet (ac and de, mounted on upper

lett slde)}
Approximate Size—22" wide, 39" deep (including stabilizer feet), 714" high
Approximate Weight—lso ibs. (without computer)

Voltage—115 ¥ 60 Hz (for fans)
230 V 50 Hz (for fans)

PDP-11 POWER SUPPLY SUBSYSTEM H720—This Power supply is used in
the Basic and Extension Mounting boxes and supplies power to all devices
.mounted in one of these boxes. It is included in basic PDP-11 systems,
but must be ordered separately with a BA11ES or BA11EC Extension Mount
ing Box.

Approxlmata Size—1614 " wide, 8 high, 6” deep
Approximate Weight—25 Ibs.
Voltages—{specify input voltage)

IN 108V £10%, 4763 Hz 6 amps (H720R)
120V £10%,, 4763 Hz 6 amps (H720A)
216V +109%, 47-63 Hz 3 amps (H7208B)
228V =10%, 4763 H:z 3 amps (H7208B)
240V +10%, 47-63 Hz 3 amps. (H7208B)

_OuT - 45V .59 : - 12 amps
—~15V £59%, : 10 amps
+8RMS (unregulated) 1.5 amps
—22v (unregulated) 1.0 amps

FREESTANDING PROGRAMMER'S TABLE (H952-HA)—This freestanding table
fits directly below the programmer's console in the Freestanding Base
* Cabinet and extends into the cabinet approximately 1”. The surface plate is-

- . supported by s own adjustable height legs.

Approximate Size—20" extension from c¢abinet, 19" wide, 27% above floor

SYSTEM UNITS AND CABLES

The following items are available for mounting standard and special periph-
eral device logic into a PDP-11 system.

PERIPHERAL MOUNTING UNIT (DD11-A)—The DD11 is a prewired System
Unit which allows standard small peripheral interfaces to be mounted in a
PDP-11 system. It accepts standard small peripheral interfaces (up to 4)
such as the KL11 Teletype Control or the controller portion (PC11-M) of the
Migh Speed Reader/Punch. For mountlng, it requures one-slxth (1/6) of a
BA1l Mcunting Box.

BLANK SYSTEM UNIT (BB11)—The BB11 consists of three 288-pin con-
nector blocks connected end-to-end. This unit 35 unwired except for Unibus
and power connections and allows customer-built interfaces to be integrated
easily into a PDP-11 system. For mounting it requires one-sixth (1/6) of a
BAll Mounting Box.

81

UNIBUS MODULE (M920)—The M920 is a double module which connects
the Unibus from one System Unit to the next within a Mounting Box, The
printéd circuit cards are separated 'by 17 for this® purpose. A single M920
will carry all 56 Unibus signals and 14 grounds.

- UNIBUS CABLE (BC11A)—The BC11A is a 120-conductor ﬂexpnnt cable used -
to connect System Units in different mounting boxes or a peripheral. device
which is removed from the mounting boxes.

The 120 signals consist of the 56 Unibus lines plus 64 grounds, Signals and
grounds aiternafe to minimize cross talk. ~

Type iength
BC11A-2. ol
BC11A-5 5¢
BC11A-BA 86"
BC11A-10 10
BC11A-15 15
BC11A-25 25°

CABLE REQUIREMENTS

when an Extension Mounting Box is used, an extemal cable, the ECIIA, is
the only signal conngction between mounting boxes. This external bus cable
may also be used to connect cther peripherals to the PDP-11. The maximum
combined, internal and external, bus cable length is 50°. ~

PDP-11/20 POWER REQUIREMENTS :

Input Voltage and Current—-105 125 Vac, 6 amperes, 210-260 Vac 3 am-
peres, {single phase)

Line Frequency—47-63 Hz

Power Dissipation—400 watts ..

A standard 15-foof, 3-prong, U-ground, 15-ampere, line cord is provided on-
the rear of the PDP-11 for connection to the power source on 120 Vac
modeis, On 230 Vac models, a 15-foot, 3-conductor cable with pigtails is
provided.

. TELETYPE REQUIREMENTS

The standard Teletype requires a floor space approximately 2215 inches
wide by 1815 inches deep. The Teletype cable length restricts its location to
mthin 8 feet of the side of the computer.

fnput Voltage-—-l.lS Vac +109%, 60 Hz +0.45 Hz, 230 Vac *109%, 50 Hz
*0.75 Hz ’

Line Current Drain-——2.0 amperes
Power Dissipation—150 watts

The Teletype plugs into the rear of the PDP-11 Basic Mounting Box and is
tumed ON and OFF by the power switch on the front panel of the PDP-11.

ENVIRONMENTAL REQUIREMENTS

The PDP-11 is desighed to operate from 410 to 450°C and with a relative
humidity of from 20 to 959 (without condensation).

82

; INSTALI.ATION ‘PROCEDURE
The PDP-11 is crated for shipment to the customer snte to prevent damage.
Instaliation is provided by DEC personnel at the customers site.

Computer customers may send persorinel to instruction courses on computér
operation, programming, and maintenance conducted regularly in Maynard,
Massachusetts, Palo Alto, California, and Reading, England.

The PDP-11 has adopted a modalar packaging appreach to allow
custom configuring of systems, easy expansion and easy servicing.

CHAPTER 11
PAPER TAPE SOFTWARE SYSTEM

PAPER TAPE SOFTWARE SYSTEM (PTS)

PTS is a compatible group of software packages designed to aid development
of PDP-11 application programs. A brief description of each item with its
major features is offered below with detailed programming information avail-
able in corresponding software user's manuals.

~ PTS FEATURES

@ 4K Absolute Assembler . .
® Symbolic Program Editor for editing of paper tape which is string oriented
® On-Liné Debugging Aid allowmg rapid and accurate modification of assem-
bled programs
@ /O Driver Routine. allowing subroutine level communication with periph-
eral devices and double buffered input/autput operation concurrent with
running programs

@ Floating Point Math Package using both reentrant and relocatable code
® General Utilities including loaders and dumnp routines

PAL-11A ASSEMBLER—This two- or three-pass assembler runs on a PDP-11
with 4K words of core memory and an ASR-33. Rt will also accommodate a
high-speed readerfpunch. Optional outputs include the absolute object code,
an assembly listing containing each scurce statement, and an indication of
any errors detected in the statement. A sympol table may he alphabetacally
listed.

ED11 EDITOR—The PDP-11 Editor (ED11) allows the user to type identified

" portions of source program on the teleprinter and to make corrections. or
additions. This is accomplished by typing simple commands that cause the
Editor tovead, print, punch out on paper tape, search, delete and/or add to
the text of the program.

Use of the ED11 presupposes no special knowledge or technical skill beyond
that of the operation of explicitly defined one-character commands. The
. commands are grouped according to function: input, positioning of the
current-character location pointer, output, search (which is done by charac-
ter string), insert, delete, and exchange of text portions.

ED11 uses 2,000 words of core and requires an ASR-33 unit which includes
a printer, keyboard, paper tape reader and paper tape punch, Alternatively,
a KSR-33 may be used in conjunction with the high-speed paper tape reader
and punch.

ODT-11 ON-LINE DEBUGGING TECHNIQUE—ODT-11 is a core resident pro-
gram which allows the user to debug his binary programs at the console by
running them in specific segments and checking for expected results at vari-
ous points. If modification of the program is needed, the user can alter the
contents of the appropriate location by “‘opening’ it and typing in new data.

Two versions of ODT are awvailable, one being a subset of the other. The
larger system uses 750 words of core and utilizes an ASR-33, or a KSR-33
and a high-speed paper tape punch and reader, The smaller version uses the
same peripherals and 500 words of core. Up to eight breakpoints can be set
using the larger wversion of ODT, while one breakpoint is allowed in the
smaller version,

Debugging aperations alternate between commands to ODT and the running
of the program to be debugged. Breakpoints are set in the user's program by
ODT commands, and a command to run starts execution of the program.
When a breakpoint is encountered, the program run is suspended, and the
progress of its execution can be monitored and altered. This is accomplished
by using commands to open memory locations of |nterest as well as special
registers.

An operator may examine and change the operating priority of both ODT
and the user's program, the mask and address range for searches, resuits
of logical and arithmetic operations, the SP and PC, and the general registers.
Other commands will search for values of specified bits of a word, or for
references to an address within an address range, calculate 16-bit and 8-bit
affsets to an address and restart the running of the user's program at any
address.

10X Input/Output Utility Peripheral Driver—IOX is a set of service routines
allowing single: cr double buffered 1/O processing on an ASR-33 and/or a high-
speed paper tape reader and punch. This routine allows the user to make
simple assembly language calls specifying devices and data forms to accom-
plish interrupt-controlled data transfer concurrent with execution of the run-
ning program. Multiple devices can be run sirmnultaneously.

IOX frees the user from the details of dealing directty with the device and
allows development of programs which may be run under the direction of a
monitor with minimum modification.

10X also provides some degree of real-time control by allowing yser programs
to be executed at priority levels at the completion of some device action or
data transfer.

MATH PACKAGE-—A number of commonly used subroutines are available to
asimplify programming. These routines are reentrant and relocatable to pro-
vide maximum flexibility. Arguments are treated as floating point numbers
with a signed 31-bit fraction and a signed 15-bit exponent. Subroutines sup-
plied include:

ADD

MULtiply

SUBtract

DiVide

SIN

Ccos

ATAN

FIX—FLOAT

FLOAT—FIX

NORmalize

(integer MULtiply and DIVide are also supplied)

LOADERS—Two ioaders are used:
& A Bootstrap loader loads the ABSolute loader and iurnps toit,

@ ABSolute loader loads PAL-11A output, checks for checksum errors and
jumps to a user program or halts when done.

éor\-a DUMP ROUTINES—Routines are provided which dump specified
ranges Of core lacations on paper tape in absolute format or on the tele-

printer in octal.

. oy

CHAPTER 12
' THE OPERATOR’S CONSOLE

"The PDP-11 Operator's Console has been configured to achieve convenient
control of the system. Through switches and keys on the console, programs
or information can bhe manually inserted or modified. Also indicator lamps on
the console face display the status of the machine, the contents of the Bus
- Address- Register and the data at the output of the data paths.

The console is shown in Figure 12-1.

[+ 1| 1 B — X - | l-‘m"'l""&_l m:u-%
=" r S .) e e
bt s - T I ER D R W al3 [[= - E
- r
Figure 12-1

CONSOLE ELEMENTS
The console has the following indicators and switches:

1. A bank of 8 indicators, indjcating the following conditions or oper-
- ations: Fetch, Execute, Bus, .Run, Source, Destination and Address
(2 bits).

2. An 18-bit Address Register Display

3. A 16-bit Data Register Display

4. An 18-bit Switch Register

5. Control Switches:

-a. LOAD ADDR (Load Address)
b. EXAM (Examine)
. c. CONT (Continue)
-d.. ENABLE{HALT
e. $/INST—S/CYCLE (Smgle Instruction/ Single Cycle)
f. START
g. DEP (Deposit)

INDICATOR LIGHTS—The indicators signify specific machine functions,
operations, or states. Each is defined below.
L. Fetch—indicates that the’ central processor is in the state of fetching
_an instruction.
2. Execute—indicates that the central processor is in the state of
executing an instruction.

87

3. Bus—indicates that a penpherel is controlllng the bus. It is lit when
BBSY (Bus Busy) is asserted, uniess the processor (wmcn inciudes
the console) is asserting BBSY.

4. Run—indicates that the processor is running. i monitors the control
flip-flop for the internal clock.

5. Sourcer—indicates that the central processor is obtaining source
data except from an internal register. .

6. Destination—indicates that the central processor is obtaining des-
tination data (except from an internal register).

7. Address-—identifies the source or destination address cycie of the

central processor, using two lights that are decoded zero, one, two,

or three. When references are made via the Unibus to the addresses,
the lights tell the machine’s source or destination cycle. For an in:
ternal register reference, there is a “zeroth” addressing operation.

REGISTER DISPLAYS—The Operator's Console has an 18-bit Address Regis-
ter Display and a 16-bit Data Register Display, The Address Register Display
is tied directly to the oufput of an 18-bit flip-flop register called the Bus
Address Register. This register displays the address of data examined or
deposited.

.The 16-bit data register is divided on the face of the console by a [me into
two 8-bit bytes. This register is tied to the output of the processor data paths
and will reflect the output of the pracessor adder.

SWITCH REGISTER—-The PDP-11/10 and PDP-11/20 can reference 218 bytes
addresses. However, the Unibus has expansion capability for 218 byte ad-
dresses. In order that the console can access the entire 18-bit address
scheme, the swltch register is 18 bits wide, These hits are assigned as 0

through 17. The highe two are used anly as addresses A cwitch in the
WiIvuEiy 4LF. LR Ill‘l"-ﬂ\ RITAS AR MW Wiy WETILWEY ¥ &P

“up’’ position is considered to have a "1" value and in the “clown" position
to have a “0”’ value. The condition of the 18 switches can be loaded into the
bus address register or any memory location by using the appropriate control
switches which are described below.

CONTROL SWITCHES—The switches listed In item 5 of the *“Console
Eiements'* have these specific control functions:

1. LOAD ADDR—transfers the contents of the 18- brt switch register
into the bus address register. B

2. EXAM—displays the contents of the location specrﬁed by the bus
address register. _

3. DEP—deposits the contents of the low 16 bits of the switch regrster
into the address then displayed in the address register. (This switch
is actuated by raising it.)

4. ENABLE/HALT—allows or prevents runmng of programs. For a pro-
gram to run, the switch must be in the ENABLE position (up). Placrng
the switch in the HALT position {down} will halt the system,

5. START—starts executing a programn when the ENABLE/HALT switch
Is in the ENABLE position. When the START switch is depressed, it

- asserts a system initialization signal; the system actuaily starts when
the switch is released. The processor will start executing at the
address which was last loaded by the LOAD ADDR key.

6. CONT—allows the machine to continue without initialization from
whatever state it was in when halted.

7. §/INST-8/CYCLE—determines whether a single instruction or a
single bus cycle is performed when the CONT switch is depressed
while the machine is in the halt mode.

.

when the system is running a program, the LOAD ADDR, EXAM, and DE-
POSIT functions are disabled to prevent disrupting the program. When the
maching is to be halted, the ENABLE/HALT switch is thrown to the halt
position. The machine will halt either at the end of the cucrent instruction,
or at the end of the current bus cycle, depending upon the position of the
$/INST-8/CYCLE switch.

‘QPERATING THE CONTROL SWITCHES

When the PDP-11 has been halted, it is possible to examine and update bus
iocations., To examine a specific location, thé operator sets the switches of
the switch register to correspond to the location's address. The operator then
presses LOAD ADDR, which will transfer the contents of the switch register
into the bus address register. The location of the address to be examined is
then displayed in the address register display. The operator then depresses
EXAM. The data in that location will appear in the data register display.

If the operator then depresses EXAM again, the bus address register will be
incremented by 2 to the next word address and the new location will be
examined. In the PDP-11, the bus address register will always be pointing to
the data currently displayed in the data register, The incrementation occurs
when the EXAM switch is depressed, and then the location is examined.

The examine function has been designed so that if LOAD ADDR and then :
EXAM are depressed, the address register will not be incremented. In this
case, the [ocation reflected in the address register display is examined
directly. However, on the second (and successive) depressings of EXAM, the
bus address register is incremented. This wili continue for successive de-
pressings as long as another control switch is not depressed.

If the operator finds an incorrect entry in the data register, he can enter new
data there by putting it in the switch register and raising the DEP key. The
address register will not increment when this data is deposited. Therefore,
when the operator presses the EXAM key, he can examine the data he just
deposited. However, when he presses EXAM again, the system will increment.

if the operator attempts to examine data from, or deposit data into, a non-
existent memoty location, the “time out’’ feature will cause an error flag. The
data register will then reflect location 4, the trap locatlon, for references to
nonexistent locations. To verify this condition, the operator should try to
deposit some number other than four in that location; if four is still indi-
cated, this would indicate that either nothing is assigned to that location, or
that whatever is assigned to that location is not working properly.

When doing consecutive examines or consecutive deposits, the address will
increment by 2, to successive word locations. However, if the programmer is
examining the fast registers (the “scratch pad” memory), the system only
increments by 1. The reason for this is that once the switch register is set
properly, the programmer can then use the four least significant bits of the
switch register in examining fast memory registers from the front panel.

To start a PDP-11 program, the programmer loads the starting address of
the program in the switch register, depresses LOAD ADDR, and after ensur-
ing that the ENABLE/HALT switch is in the ENABLE position, depresses
SeTéART. The program will ‘start to run as soon as the START switch is re-
leased.

The Run indicator lamp is driven off the flip-flop that controls the clock. '
Normally, when the system is running, not oniy will this light be on, ._but the

89

_other lights, (Fetch, Execute, Source, Destination, the Address lights, and the
Address and Data registers) will be flickering. If the run light is on, and none
of the other indicators are flickering, the system could. be executing - a “wait"”
iinstruction which waits for an interrupt. '

While in the halt mode, if the operator wishes to do a siggle instruction, he
places the S/INST-S/CYCLE switch in the S/INST position and depresses
CONT. When CONT is depressed, the console momentarily passes control to
the processor, allowing the machine to execute one instruction before regain-
ing control. Each time the CONT switch is depressed, the machine will

execute one instruction.

Similarty, if the operator wishes to have the machine perform a single bus
cycle, he places the S/INST-S/CYCLE switch in the S/CYCLE position and
prasses CONT. The machine will then ‘perform one complete bus cycle and
halt. The operator cannot do an examine or deposit funttion at the end of a
. single bus cycle unless the cycle ends coincidental with the end of an in-
struction. This prevents altering machine flow. Only when the machine is at
the end of an instruction and in the halt mode can the examine or deposit
functions operate.

To start the machine running its program again, the operator. places the
ENABLE/HALT switch in the ENABLE position, and depresses the CONT
switch. .) ~ .

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE

. : Condition
instruction Codes
Mnemenic Operation OPCode ZNCV Timing
DOUBLE, OPERAND GROUP: OPR scr, dst _
MOV(B) MOVe (Byte) A88DD vy —0 2.3
(src) - (dst) :
CMP(B) CoMPare {Byte) 28800 vy Yy o 2.3*
- {sre) — (dst) '
BIT(BY ~ BIt Test (Byte) 385DD v —0 29"
(src) A (dst)
BIC(B) BIt Clear (Byte) 488DD ¢y ¥—0 29
~{src) A (dst) > (dst) :
BIS(B) BIt Set (Byte) S588DD ¢y —0D 23

(src) y {dst) - (dst)

ADD ADD * , 06SSDD ¢y vy 23

(src} + (dst} > (dst) : -

SUB - " SUBtract 1688DD ¥ y'vy 23
* {dst) — (src) - (dst) :

CONDITIONAL BRANCHES: Bxx 1oc

BR + BRanch {unconditionally)) 0004XX = ———— 26—
loc = (PC)

BNE Branch if Not Equal (Zero) 0010XX —_— 26—

" loc> (PCYIFZ=0 . _

BEQ Branch if Equal (Zero) . 0014XX e — 26—
loc-> (PCYHFZ=1

BGE . Branch if Greater or Equal (Zero) 0020XX —— 26—
toc= (PCYWNYV=0) -

BLT Branch if Less Than (Zero} 0024XX —— 26—
loc= {(PCYIfN¥V =1

BGT Branch if Greater Than (Zero) 0030XX & —— 26—

_ loc=> (PCYFZVv(IN¥V =0)

BLE Branch if Less Than or Equal (Zero) 0034X(— 26—
loc—> (PCYIfZv(N¥V) =1 ,

BPL - Branch if PLus 1000XX —— 26—
lec=> (PC)IFN=0 L

BMI Branch if Minus . 1004XX — 26—

N loc—= (PC)ifN=1

BHI Branch if Higher 1010XX - —— 26—
loc—> (PC)IfCvZ=0

BLOS . Branch if LOwer of Same 1014XX —— 26—
loc» (PC)fCvZ=1

BVC Branch if oVerflow Clear 1020XX — 26—

-~ loc—> (PC)ifV=10)

BVS Branch if oVerflow Set 1024XX —_— 26—

loc— (PCYifv=1 :
, BCC Branch if Carry Clear 1030XX — 26—

(or BHIS) loc> (PCYifC=0

BCS Branch if Carry Set 1034XX ——— 26—

(or BLO) loc = (PCYifC =1

91

SUBROUTINE CALL: JSR reg, dst
+JSR Jump to SubRoutine O04ROD ——— 4.2
(dst)> (tmp), (reg) | .
. (PC)—> (reg), (tmp) ~ (FC)
SUBROUTINE RETURN: RTS reg _ :
RTS ReTurn from Subroutine 00020R —— 35
' (reg) - PC, 1 (reg)

SINGLE OPERAND GRQUP: OPR dst

CLR(B) CleaR (Byte) -050DD 1000 2.3
0= (dst) ' '

COM(B) COMplement {Byte) : 05100 v v 00 23
~ (dst) > (dsb) :

INC(B) INCrement (Byte) “052DD Yy—y 23
{dst) + 1 - (dst)

DEC(B} DECrement (Byte)} 053DD ¢yy—y 23

= T sty — 1 > (dst)

NEG(B) NEGate {Byte) 054DD ¢y Yy 23
~{dst) +- 1 > (dst)

ADC(B) ADd Carry (Byte) 058DD yvvVy 2.3
(dst) + (C) — (dst)

SBC(B) SuBtract Carry (Byte) 056DD v/ v vV 23

: (dst) — (C) = (dst)
TST(B) TeST (Byte) 057DD ¢ YOO 2.3*
— (dst)

ROR(B) ROtate Right (Byte) 600D Y yy 23°
rotate right 1 place with C

ROL(B) = ROtate Left {Byte) 06100 vy y 23°

. rotate left 1 place with C
ASR(B) Arithmetic Shift Right (Byte)- Qe2DD yyyy 2.3°
- shift right with sign extension .)

ASL(B) Arithmetic Shift Left (Byte) 06300 Yy /Yy 23°
shift left with 10-order zero

JMP JuMP Qo010 —— 1.2
(dst) » (PC)

SWAB SWAp Bytes - 0003DD y y'00 2.3
bytes of a word are exchanged

CONDITION CODE OPERATORS: OPR 15

Condition Code Operators set or clear combinations of condition code bits,
Selected bits are set if S = 1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared.

CONDITION CODE OPERATORS!:

R TS
] U I |

15 ' '

Thus SEC = 000261 sets the C bit and has no effec’t on the other condition
code bits (CLC = 000241 clears the C Bn)

OPERATE GROUP: OPR- :

HALY HALT GOO000 —— 1.8
processor stops; (RO) and the HALT address in lights

WAIT WAIT 000001 — 18

processor releases bus, walts for interrupt

92

RTI ReTurn from Interrupt 000002 ‘;/ Yy 4.8

1 (PC), 1 (PS)
107 Input/Output Trap 000004 vVvvvy 89
(P8}). (PC}|, (20) > (PC). (22)—> (PS)

RESET RESET —_— 20 ms.
an INiT pulse i is issued by the CP : -

EMT - EMulator Trap 104000—104377 ¢y vy 89
(PS)¢ (PC) |, (30) - (PC), (32) > (PS)

TRAP 104400—104777 Yvvy 89
(PS)J« (PC) |, (34) » (PC), (36) > (PS)

NOTATION: _

1. for order codes -

word/ byte bit, set for byte {4100000)

. SS—source field,
" DD—destination field
Xx—offset (8 bit)

2. for operations

wl¢>

=J-—><-.-d:

3. for timing

\ol’

and,

or,

not,
contents of,

~ XOR

“is pushed onto the processor stack’

*the contents of the top of the processor stack is
popped and becomes' .

“becormnes’

0.4 pus less if not register mode

0.9 us less if conditions for branch not met

1.2 us more if addressing odd byte

{0.6 us additional in addressing odd bytes otherwise)

4. for condition codes

O = &

set conditionally
n?t affected
eared

93

The PDP-11 derives speed and me
range of addressing capabilities.

ADDRESSING. MODES -

| woe [nemsten]

Mc or ost
GENERAL REGISTER ADDRESSING. '_ _

Timing (u9)

Mode Description Symbeolic src dst
0 - register R 00 LY
1 register deferred @ Ror (R) 15 1.4
2 auto increment (R) 4 1.5 1.4
3 auto increment deferred @ (R) + 2.7 26
4 auto decrement - —{R) 15 14
5 auto decrement.deferred @ —(R) 2.7 26
6 indexed . X (R) 2.7 26
7 indexed deferred @ X(R)or @ (R) 3.9 38

Looee | 7.1
we or di ;
PC REGISTER ADDRESSING

Timing us)

Mode Description Symbelic _ src dst
2 immediate #n 1.5 1.4
3 absolute @ #A . 2.7 26
-6 relative A 2.7 2.6
7 relative deferred @A 3.9 38

INSTRUCTION FORMATS

DOUBLE OPERAND GROUP: OPR sec, dst

I?Pciwealnlmlallliwlnj

13 2 n 6 5 . o

CONDITIONAL BRANCHES: Bax.toc [loc={offset-2)+. +2)

oF CODE [; J
Lo o 1737 O R T B
15 s @)

95

SUBROUTINE CALL! JSR reg, dst

roj Iol I_l‘l i
13

9 8 6 5 - 0

SUBROUTINE RETURN. RTS reg

. . - l’” 3
'T)l 10_1 [%, 1 1 2 |_|°| [:JJ
15

SlNQ.E OPERAND GROUP. OPR dsi

I_I 1 L] lw foocl ! L L I 1 'I‘“I I 1 l

15 € 5 0

CONDITION CODE OPERATORS.

o o o 2 4|slnlz[v[c|
fl PR T TN T T Al T |
m s 4 3 2 1 0

c
g
o
2
i
2
ﬁ
2
:
g

BUS ERRCOR, NLEGAL INSTRUCTION, STACK OVERFLOW TRAP

VECTOR ,
RESERVED INSTRUCTIONS TRAP VECTOR

-
o

14 CODE 000003 AND TRACE TRAP VECTOR
20 1OT INSTUCTION TRAP VECTOR
24 POWER FAIL INTERRUPT VECTOR
30 ° EMT INSTRUCTION TRAP VECTOR
34 TRAPINSTUCTION TRAP VECTOR
40
g;;‘ } SYSTEM SOFTWARE COMMUNICATION
so °F .
60 ~ TELEPRINTER INTERRUPT VECTOR
64 TELETYPE KEYBOARD AND LOW SPEED READER INTERRUPT

VECTOR

70 HIGH SPEED PAPER TAPE PUNCH INTERRUPT VECTOR
74 HIGH SPEED PAPER TAPE READER INTERRUPT VECTOR
. (additional imterrupt vectors)

400

PROCESSOR STACK
PROGRAM AND DATA
RESIDENT SYSTEM SOFTWARE

L]

. {ABSOLUTE LOADER, BOOTSTRAP, 1/0 EXECUTIVE)
(end of implemented storage)

160000

SMALL READ-ONLY STORAGE UNITS

-

OTHER PERIPHERAL DEVICE REGISTERS

177550 HIGH SPEED READER AND PUNCH DEVICE STATUS AND BUFFER
REGISTERS

97

177560 TELETYPE KEYBOARD AND PUNCH DEVICE STATUS AND BUFFER
REGISTER - : : '

177576
177600

-

RESERVED FOR EXPANSION OF PROCESSOR REGISTERS

177677
177700

GENERAL REGISTERS RO -—R7

177776 CENTRAL PROCESSOR STATUS REGISTER (PS) -

APPENDIX D—UNIBUS OPERATIONS

There are 'six bus operations: four to effect data transfers, one to transfer
bus control; 2nd one to effect a program interrupt. This appendix describes
the signal interaction on the Unibus to perfofm these six operations.

DATA TRANSFERS

. The four data transfers use the C lines coded as follows:

C1 co

0 0 DATI-DATa In

0 1 DATIP-DATa In, Pause
1 0 DATO-DATa Out

1 1 DATCB-DATa Out, Byte

DATI AND DATIP—These two bus operations transfer data from a slave
whose address is specified by A < 17:01 > into the master. Both transfers
are made in words on D < 15:00 >, In destructive read-out devites,
DATI commands a read-restore operation, while DATIP commands a read-
pause operation and the setting of a pause flag. DATIPs are to be followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non
destructive read-out devices, DATI and DATIP are treated identically. The
‘sequence of operations is as follows:

1. Master puts address on A, Q or 1 on C, and waits 150 nanoseconds.
(75 nanoseconds for deskewing address 4+ 75 nancseconds for ad-
dress decoding).

2. Master asserts MSYN.

3. Slave decodes address, sees 0 or 1 on C, and MSYN and begins read
cycle (fiip-flop register would simply gate fiop outputs to bus).

4. Slave completes read cycle, outputs data to D lines, and asserts
SSYN. If the slave is a destructive read-out device, it now restores
data on a DATL it sets a pause flag on a DATIP.

' Figure D-1 shows the signals for a DAT] operation.

DATI
S AT R _
ADDHESS -CONTROL —T T . I -
DaTA —— % | S
[| I
MSYN - R
S5YN In L
SIGNALS AT S1AVE
ADDRESS-CONTROL ————I R D
DATA _ iT e
MSYN R —_
SEYN T | I
MEMORY GYCLE = f#EAD TRESTOREL
TaSIGNAL AS TRANSMITTED .

. R*SIENAL AS RECEIVED

I;igure D-1DATI Operation

99

5. Master sees SSYN and wails 75 nanoseconds, minimum (data des-
kewing - internal gating deskewing).

6. Master strobes data, drops MSYN, and waits 75 nanoseconds (des-
kew address). .

7. Master drops A and C and waits for SSYN to fall,

8. Slave sees MSYN fall and drops SSYN and D lines.

9. Master sees SSYN fall, signaling end of bus operation.

~ NOTES:

1. Step 1 of the next data transfer may begin at step 7 of the current DATIE or
DATIP.

‘2. Step 2 of the next data transfer rnay begln at step 9 of the current DATI or

DATIP, . :

DATO AND DATOB—These two bus operations transfer data out of the mas-
ter to the slave. DATO is used to transfer a word to the address specified
by A < 17:01 >». The slave ignores AOO and the data appears on D < 15:00 .
DATOB is used to transfer a byte to the address specified by A < 17:00 >
AOQ = O indicates. the low byte and data appeéars on D < 07:00 >; AGO =1
indicates high byte and data appears on D < 15:08 >». The sequence of op-
eration is as follows:

1. Master puts address on A, data on D, 2 or 3 on C, and waits 150
nanoseconds (75 nanoseconds for deskewmg address 4 75 nano-
gseconds for address decoding). ’

2. Master asserts MSYN.

3. Glave decodes address, sees 2 or 3 on C and MSYN and strobes in
word or byte. When slave has taken data, it asserts SSYN. If the slave
is @ destructive read-out device and its pause flag is set (by DATIP),
slave begins write cycle; if .not, slave must first do a read cycle to
clear the memory ¢eil and then a write.

Master sees SSYN and drops MSYN and waits 75 nanoseconds (des-
‘kew address).

. Master drops A, D, and C, and waits for SSYN to fall.
Slave sees MSYN fall and drops SSYN.

. Master sees SSYN fall, signaling end of bus operation.

N p

Figure D-2 shows the signals for a DATO operation.
DATO o
SIGNALS AT MASTER

L]

ADDRESS-CONTROL — 7

oara —I 7 . '
woy ———— 1T
557N IR—L——-—
SIGNALS AT SLAVE - .
ADORESS-CONTROL ———I R - L —.
DATA ———emee— R | S
MSYN — |- |
SSYN — It
MEMORY CYCLE CLERR [WATE
Figure D-2 DATG Qperation

100

NOTES:

¢ i

1. Step 1 of the next data transfer may beagin at step 5 of the current DATO or
DATOB.
2. Step 2 of the next data transfer may begm at step 7 of the current DATO or °

DATOB.
PTR-PRIORITY TRANSFER

This bus operation is used to pass control of the bus from one master to
another. The steps which follow are performed simultanecusly with the data
transfers: .

0.
1.
2,

3

o o

1

Current master device always has BBSY asserted. .
Requesting device asserts its assigned BR line.

Processor sees BR asserted, determines which BR is highest, and
asserts the corresponding BG line if the processor's current priority
level allow that level of bus request.

Each device that receives the BG passes it on %o the next device
unless it itself is requesting.

. The BG is propagated along the priority chain until it reaches the

first requesting device. This device becomes selected as next bus -
master and does not allow the BG to pass to succeeding devices.
The selected device asserts SACK and drops its BR, and waits for
BBSY, BG, and SSYN to drop, .
The processor sees SACK and drops BG.

The device which is current master completes its data transfers,
drops BBSY, and ceases to be bus master.

The selected device sees BG, BBSY, and SSYN drop, becomes bus
master, asserts BBSY, drops SACK, and begins data transfers.

. New master relinquishes bus control, either to the processor or to a

requesting device, by dropping BBSY at the end of its last bus op-
eration. This is termed a passive release of bus control.

1. NFR bus request ati‘ dled as ab
2. Processor defers action on BR <?:4> until last bus cycle of an instruction
wxecution or interrupt sequence, NPR is acted upon immediately.

. Processor becomes bus master and asserts BBESY whensver it sees BBSY =0
and no other device has been selected or is being selected as naxt bus master,
. Processor will not execute step 2 if SACK is asserted. Sea note 2 under INTR.
Figure D-3 shows the signals for a PTR operation. ’
PTR

SIGNALS AT DEVICE
R —F L.
86 L

sacK Ir

SIGNALS AT PROCESSOR
) pp—— w1
B e T .
SACK R

T’ SIGNAL AS TRANSMITTED
R = SIBNAL AS RECEIVED

Figure D-3 PTR Operation

101

INTR—INTerRupt

This bus operation is initiated by a master immediately after receiving bus
control to effect a program interrupt in the processor. It proceeds as follows:

0. Device has become bus master via PTR and BBSY is asserted.

1. Master puts interrupt vector address on D and asserts INTR.

2. Processor sees INTR and waits 75 nanoseconds (deskew data),

3. Processor strobes data and asserts SSYN.

4. Master sees SSYN, drops INTR, D, and BBSY. The master has now
rellnquised bus control diréctly to the procassor. The INTR sequence
is termed an active release of bus control.

- 5. Processor sees INTR drop and drops SSYN and. ‘enters interrupt
sequence to update PC and PS.
NOTES: :)
1. Step 1 must be made simultansously with step B of PTR; that’is, SACK cannot
\ be dropped until INTR is asserted.

2! When the processor sees SACK drop, it waits 75 ds {deskew). I, at
that time, INTR = 1, the processor imes no BG's until the Interrupt aequence
s complete. .

Figure D-4 shows the signals for the INTR operation.

Jnm
SIBNALS AT MASTER
SBSY_ T | . |R "
[V P — 1 '
iR I — _ o
SSYN wr . e
1 4 ’
88SY 5 L
oaTh — R | I
mwwe—— R —
sovw T

T SIGNAL AS TRANSMITTED
N R+ SIGNAL AS RECEIVED

Figure D-4 INTR Operation

GENERAL NOTES ON THE BUS OPERATIONS

1. A master device doing a read-modify-write operation must keep bus

control BBSY asserted for both bus transactions {both the DATIP
* and the DATO or DATOB). This is the one case where an NPR request
will not be honored between bus transactions.

2. A device becomes master by the PTR operation. If the request for -
bus control was made on the NPR line, bus control must be released
passively (by dropping BBSY). Bus control is then passed either back
to the processor to execute the next bus cycle of the instruction or
to another device requesting on the NPR line. I¥ a device becomes
master via a' BR request line, control may be passed actively back
to the processor by using the INTR operation or passively (by drop-

102

ping BBSY): If control is given up actively, only NPR requests will be

“honored during the interrupt sequence of updating the PC and PS.
if control is given up passively, control may pass either to the
- processor to feich the next instruction or to an NPR requesting
device.

i03

The PDP-11 provides Direct Device Addressing. All memory and
devices on the Unibus are directly addressable and may be op-
erated upon by alt computer instructions. Direct device to device
transfers are possible,

104

