
A Division of Pertee Computer Corporation
6741 VARIEL AVENUE - CANOGA PARK - CALIFORNIA 91303 - PHONE: (213) 348-1391

TELEX/TWX 910-494-2788

OPERATOR'S MANUAL

iCOM MACRO ASSEMBLER

@ August, 1976

I,
r

iCOM MACRO ASSEMBLER

The iCOM Macro Assembler, used in conjunction with

the iCOM Text Editor and FDOS-II on the iCOM Floppy

Disk System provides the programmer the necessary tools

for rapid, efficient software development.

The following text is intended as a guide and ref­

erence for those already experienced in Assembly Lang­

uage programming.

Section I deals with the 8080 Assembly Language

instructions required by the iCOM Assembler to produce

executable object code.

Section II discusses the psuedo-instructions used

by the iCOM Assembler to assist the programmer with

his programming task.

Section III describes the macro capability of the

iCOM Assembler, a feature which facilitates greater

ease and efficiency in software development.

•r
iii

~

--l.,

ERRATA SHEET

Make the following changes to the label examples:

Page Was Is

Label Label--
44 SPRT: SPRT

45 SPRT: SPRT

46 name: name

46 LOAD: LOAD

47 PSMG: PSMG
\...-

48 MDEC: MDEC

l
iCOM MACRO ASSEMBLER

8080 ASSEMBLY LANGUAGE INSTRUCTIONS

CONTENTS

PAGE

OPERATION

SECTION I -]\SSEMBLY LANGUAGE INSTRUCTIONS

I. StatemE~nt Mnemonics
A. Label Field
B. Code Field
C. Operand Field
D. Comment Field

II. Data Statements
A. DB - Define Byte
B. DW Define Word
C. DS Define Storage

III. Carry Bit Instructions
A. STC - Set Carry
B. CMC - Complement Carry

1

2
3
4
4

10

11
12
12

13
13

IV. Single Register Instructions
A.
B.
C.
D.

INR
DCR
CMA
DAA

- Increment Register or Memory
Decrement Register or Memory
Complement Accumulator
Decimal Adjust Accumulator

14
14
14
15

V. NOP - No Operation 16

VI. Data Transfer Instructions
A.
B.
C.

MOV
STAX
LDAX

- Move
Store Accumulator
Load Accumulator

17
18
18

VII. Register
A. ADD -
B. ADC -

C. SUB -

D. SBB -

E. ANA -

l.", F. XRA -

G. ORA -

or Memory to Accumulator Instructions
Add Register or Memory to Accumulator 19
Add Register or Memory to Accumulator
with Carry 19

Subtract Register or Memory from
Accumulator 20

Subtract Register or Memory from 20
Accumulator with Borrow

Logical AND Register or Memory with 20
Accumulator

Logical EXCLUSIVE-OR Register or 21
Memory with Accumulator

Logical OR Register or Memory with 21
Accumulator

i.

H. CMP - Compare Register or Memory with
Accumulator

PAGE

21

VIII. Rotate Accumulator Instructions
A. RLC - Rotate Accumulator Left 22
B. RRC - Rotate Accumulator Right 22
C. RAL - Rotate Accumulator Left through Carry 22
D. RAR - Rotate Accumulator Right through Carry 23

IX. Register Pair Instructions
A. PUSH - Push Data onto Stack 24
B. POP Pop Data Off Stack 25
C. DAD Double Add 25
D. INX Increment Register Pair 26
E. DCX Decrement Register Pair 26
F. XCHG Exchange Registers 26
G. XTHL - Exchange Stack 26
H. SPHL - Load SP from Hand L 26

X. Immediate instructions
A. LXI - Load Register Pair Immediate 27
B. MVI - Move Immediate Data 28
C. ADI - Add Immediate to Accumulator 28
D. ACI - Add Immediate to Accumulator with Carry 28
E. SUI - Subtract Immediate from Accumulator 28
F. SBI - Subtract Immediate from Accumulator 29

with Borrow
G. ANI - AND Immediate with Accumulator 29
H. XRI - EXCLUSIVE-OR Immediate with Accumulator 29
I. ORI - OR Immediate with Accumulator 29
J. CPI - Compare Immediate with Accumulator 30

XI. Direct Addressing Instructions
A. STA - Store Accumulator Direct
B. LDA - Load Accumulator Direct
C. SHLD - Store Hand L Direct
D. LHLD - Load Hand L Direct

31
31
31
31

XII. Jump Instructions
A.
B.
C.
D.
E.
F.
G.
H.
1.
J.

PCHL
JMP
JC
JNC
JZ
JNZ
JM
JP
JPE
JPO

- Load Program Counter
Jump
Jump if Carry
Jump if No Carry
Jump if Zero
Jump if Not Zero
Jump if Minus
Jump if positive
Jump if Parity Even
Jump if Parity odd

11.

32
32
32
33
33
33
33
33
33
33

PAGE

\....,.., XIII. Call Subroutine Instructions
A. CALL - Call 34
B. CC - Call if Carry 34
C. CNC - Call if No Carry 34
D. CZ - Call if Zero 35
E. CNZ - Call if Not Zero 35
F. CM - Call if Minus 35
G. CP - Call if Plus 35
H. CPE - Call if Parity Even 35
I. CPO - Call if Parity Odd 35

XIV. Return from Subroutine Instructions
A. RET - Return 36
B. RC - Return if Carry 36
C. RNC - Return if No Carry 36
D. RZ - Return if Zero 36
E. RNZ - Return if Not Zero 37
F. RM - Return if Minus 37
G. RP - Return if Plus 37
H. RPE - Return if Parity Even 37
I. RPO - Return if Parity Odd 37

XV. Restart: Instruction
RST - Hestart 38

\...." XVI. Interrupt Flip-Flop Instructions
A. EI - Enable Interrupts 39
B. DI - Disable Interrupts 39

XVII. Input/Output Instructions
A. IN - Input 40
B. OU'l' - Output 40

XVIII. Halt Instruction
HLT - Halt 40

SECTION II - PSEUDO INSTRUCTIONS

A. ORG - Origin 42
B. EQU - Equate 42
C. SET - Set 42
D. END - End of Assembly 42
E. IF and ENDIF - Conditional Assembly 42
F. MACRO and ENDM - Macro Definition 43

iii.

SECTION III - MACRO PROGRAMMING

A. OPERATION
1. Definition
2. Reference
3. Expansion

B. MACRO TERMS AND IMPLEMENTATION
1. Definition
2. Reference
3. Expansion

C. LABELS AND NAMES
1. Instruction Labels
2. Equate Names
3. Set Names

D. MACRO PARAMETER SUBSTITUTION

APPENDIX - MNEMONIC INDEX

PAGE

44
45
45
45

46
47
48

49
50
51

52

1.

.J

OPERATION OF THE

iCOM MACRO ASSEMBLER

Execution of the Assembler is accomplished from FODS by
the command:

ASMB,INPUT-FILE-NAME,OUTPUT-FILE-NAME,PASS(Cr)

This command assumes (1) the diskette in drive g is a sys­
tems diskette, (2) the input file (INPUT-FILE-NAME) is
present on a diskette in drive and consists of 8080 source
code, and (3) sufficient space exists on the output disk­
ette to accomodate the resulting object code file (OUTPUT­
FILE-NAME) or source listing file, if either is requested.

PASS determines the type of output generated, as follows:

PASS VALUE

2

3

4

5

OUTPUT

Source listing on the list device

Executable object code in hexidecimal
format on the output file

Both a source listing and object file

Source listing on the output file

1

SECTION I

8080 ASSEMBLY LANGUAGE: INSTRUCTIONS

FOR THE

iCOM MACRO ASSEtJlBLER

The following statement format is required by the iCOM
Macro AssE~mbler to produce object: code which is to be
executed.

I. STATEMENT MNEMONICS

An instruction consists of up to four parts, or FIELDS.
They are:

A. L}\BEL - (Field 1) The inst:ruction's name. Used
to reference the instruction.

B. CODE - (Field 2) Defines operation to be performed
by instructions.

C. OPERAND - (Field 3) Provides address or data infor­
mation needed by t:he CODE field.

D. COMMENT - (Field 4) Used for programmer's clarifi­
cation, but is ignored by the Assembler.
Using COMMENTS makes the operator's program
more readable by describing each operation
in the program.

EXAMPLE:

LABEL CODE OPERAND COMMENT
--

ST1\RT: LXI SP,STACK ; Set stack pointer

STEND: DB 20H Create one byte data
constant

ST1\CK: EQU ~lFFFH Top of stack

MVI A,2~H Set A to ASCII space

2

A.

Only alpha.numeric characters, or one of the special char­
acters listed below may be used as the first character of
a label. The label may be up to five characters long,
and a cololn (:) must follow the last character.

EXAMPLE:: Special Characters

@ A.t sign

? Q1uestion mark

EXAMPLE:: Valid Label Fields

FI4F:

@JMlP :

?MV'I:

Instructiolnswhich may not be used as LABELS are operation
codes, pseudo-instructions and register names defined with­
in the Assembler, (described in Section II).

If a label has more than five characters, only the first
five will be recognized:

INSTRUCTION: will be read as INSTR:

Labels serve as instruction addresses and cannot be dup­
licated. One instruction, however, may have more than
one label, as follows I

EXAMPLE::
LBL'I: ; First label

LBL'2: MVI A,2'H • Second label,

ADD B

JZ LBL'1

ADD C

JNZ LBL'2

Each JMP instruction will cause program control to be trans­
ferred to the same MVI instruction.

3

B. CODE FIELD

The CODE field contains a code which identifies the machine
operation to be performed. These are referred to as Op
CODES and include such instructions as ADD, SUBTRACT, JUMP,
etc. For example, the JUMP instruction is identified by
the letters JUM. These letters must appear in the CODE
field to identify the instruction as JUMP, and there must
be at least one space following t.he CODE field.

EXAMPLE: BEGIN: JMP S'I'ART

INCORRECT: BEGIN: JMPSTART

C. OPERAND FIELD

The OPERAND field contains information used together with
the CODE field to define the operation to be performed
by the instruction. The OPERAND field may be absent or
may consist of one item, or two items separated by a
comma, depending upon the CODE field.

Four types of information that may be entered as items of
an OPERAND field, may be specified in the following nine
ways:

OPERAND FIELD

INFORMATION REQUIRED:

Register
Register Pair
Immediate Data
16 bit Memory Address

WAYS OF SPECIFYING INFORMATION

WAYS OF SPECIFYING INFORMATION:

Hexadecimal Data
Decimal Data
Octal Data
Binary Data
Program Counter ($)
ASCII Constant
Labels assigned values
Labels of instructions
Expressions

1. HEXADECIMAL DATA--Each hexadecimal number must be
followed by a letter "H" and must begin with a numeric
digit.

EXAMPLE:

LABEL CODE
START: MVI

OPERAND
A,OFFH

COMMEN'I'
; Load Register A with the hexi­
; decimal value FF

4

2. DECIMAL DATA--Each decimal number may optionally be
followed by the letter "D" (decimal), or may stand
alone.

EXAMPLE:

LABEL

START:

CODE

MVI

OPERAND COMMENT

A,255 ; Load register A with
; the value 255 (FF hex)

3. OCTAL DATA--Each octal number must be followed by one
of the letters "0" or "0".

EXAMPLE:

START: MVI A,3770 Load accumulator with
octal value 377

4. BINARY DATA--Each binary number must be followed by
the letter "B".

EXAMPLE:

START: MVI lllB,llllllllB Load register A
with FF

5. CURRENT PROGRAM COUNTER--Specified as the character
$ and is equal to the address of the current instruc­
tion.

EXAMPLE:

. BEGIN: JMP $+9

The instruction causes program control to be trans­
ferred to the address 9 bytes beyond where the JMP
instruction is loaded.

6. ASCII CONSTANT--One or more ASCII characters enclosed
in single quotes. Two successive single quotes must
be used to represent one single quote within an ASCII
constant.

EXAMPLE:

CHARS:

CHARS :

MVI

DB

A, , * ,

'*"*'

5

Load A register with
a-bit ASCII repre­
sentation of an ••­
terisk

Set data string at
; CHARS to the ASCII

representation of
'

7. LABELS ASSIGNED VALUES--Labels that have been assigned
a numeric value by the Assembler are built in and are -J
always active.

LABEL assigned to NUMERIC represent REGISTER

B
C
D
E
H
L
M
A

o
I
2
3
4
5
6
7

B
C
D
E
H
L
Memory ref.
Register A

EXAMPLE: If DATUM has been equated to the hexadecimal
F8H, all the following instructions load
the D register with the hexidecimal value F8.

LABEL

AI:
A2 :
A3 :

CODE

MVI
MVI
MVI

OPERAND

D,DATUM
2,F8H
2,DATUM

COMMENT

8. LABELS OF INSTRUCTION--Labels which appear in the
LABEL field of another instruction.

EXAMPLE:

BEGIN:

START:

JMP

MVI

START

A,20H

Jump to instruc­
tion at START

9. EXPRESSIONS--Arithmetic and logical expressions in­
volving data types I - 8 connected by the arithmetic
operators + (addition), - (unary minus and subtrac­
tion), * (multiplication) , j(division), MOD (modulo),
logical operators NOT, AND, OR, XOR, SHR (shift right) ,
SHL (shift left), and left and right parentheses.

All operators treat their arguments as 16-bit quan­
tities, and generate 16-bit quantities as their
result.

The operator + produces the arithmetic sum of its
operands.

The operator - produces the arithmetic difference
of its operand when used a.s subtraction, or the
arithmetic negative of its operand when used as
unary minus.

6

The operator * produces the arithmetic product of
its operands.

The operator / produces the arithmetic integer
quotient of its operands, discarding any remainder.

The operator MOD produces the integer remainder
obtained by dividing the first operand by the
sE!cond.

The operator NOT complements each bit of its
operand.

The operator AND produces the bit-by-bit logical
AliID of its operands.

The operator OR produces the bit-by-bit logical
OR of its operands.

The operator XOR produces the bit-by-bit logical
E)i:CLUSlVE-OR of its operands.

The SHR and SHL operators are linear shifts which
CcLuse the first operand to be shifted, either right
or left, respectively, by the number of bit posi­
ti.ons specified by the second operand.' Zeroes are
shifted into the high-order or low-order bits,
rE~spectively, of the first operand.

The programmer must insure that the result generated
by any operation fits the requirements of the operation
beinc.:r coded. For instance, the operand of an MVI
instruction must be an a-bit value.

E>~AMPLE: MVI A,NOT 0

The E!xample shown here is an invalid instruction be­
cause NOT 0 produces the 16-bit hexadecimal number
FFFF.

EXAMPLE: MVI A,NOT 0 AND OFFH

This instruction is valid since the most significant
a bits of the result are going to be 0, and the result
can be represented in a bits.

7

An instruction mnemonic in parentheses is a legal expres­
sion of an optional field. Its value is the encoding of
the instruction. The following example shows the instruc­
tion loading the hexadecimal address (16-bit address of
the label LaC shifted right 8 bits) into the A register.

LABEL

LaC:

CODE

MVI

OPERAND

A,LOC SHR 8

EXAMPLE: Instruction will load the value
18+(16/2)=18+8=26 (IAH)

SHIFT: MVI D,18+10H/2

EXAMPLE: Instruction defines a byte of value C3H
(encoding of a JMP instruction) at
location INSTR.

INSTR: DB (JMP)

Operators cause expressions to be evaluated in this order:

1. Parenthesized expressions
2. *,/, MOD, SHL, SHR
3. +,- (unary and binary)
4. NOT
5. AND
6 OR XOR

PARENTHESIZED EXPRESSIONS-- The most deeply parenthesized
expressions are evaluated 'first.

EXAMPLE: The instruction: MVI A, (18+l0H)/2
Value to be loaded: (18+8)/2=13 into A
register.

MOD, SHL, SHR, NOT, AND, OR, XOR-'- All must be separated
from their operands by at least one blank space.

EXAMPLE: MVI A,DATUM ANDOFH is invalid

MVI A,DATUM AND OFH is valid

The following four types of information may be specified
using any number of all of the above nine data specifi­
cations.

8

1. A register, or code indicating memory reference, may
utilize all of the above ninE! except the current pro­
gram counter and labels of instruction to specify
the register or memory reference. However, specifi­
cations must evaluate to a number, 0-7, as follows:

VALUE REGISTER

o B
1 C
2 D
3 E
4 H
5 L
6 Memory reference
7 A (Acc:::umulator)

EXAMPLE:

LABEL

INSl:
INS2:
INS3:

CODE

MVI
MVI
MVI

OPERAND

REG4,OFFH
4H,2EH
8/2,2EH

If REG4 has been equated to '7, the above instruction
will load the value FFH into register 4 (H register).

2. REGISTER PAIRS--Used to serve as the source or desti­
nation in a data operation.

REGISTER PAIR SPECIFICATION ...

Specification
B
D
H

PSW

SP

Register Pair
Registers B & C
Registers D & E
Registers H & L
Program status word and

Register A
l6-bit stack pointer

register

3. IMMEDIATE DATA--To be used as a data item.

EXAMPLE:

LABEL CODE OPERAND COMMENT

START: MVI C,DATA Load the H register with the
; value of DATA

9

4. l6-BIT ADDRESS--Label of another instruction in memory.

EXAMPLE:

LABEL CODE OPERAND

BEGIN JMP START

COMMENT

: Jump to the instruction at
; START

JMP

D. COMMENT FIELD

OE800H Jump to address E800H

A single rule governing this field is: comments must
begin with the semicolon (:). Comment fields may also
appear alone on a line.

EXAMPLE:

BEGIN: MVI C,OADH Comment here

Another comment here

10

II. DATA STATEMENTS

The three data statements are:

DB - Define Byte(s) of Data

DW - Define Word (2 bytes) of data

DS - Define Storage (bytes)

Data statements define the ways in which data is specified
in, and received by, a program. An a-bit byte contains
one of the 256 possible combinations of zeros and ones,
and any specified combination may be interpreted in sev­
eral ways. The code lFH may be interpreted, for instance,
as a machine instruction (Rotate Accumulator Right Through
Carry), as a hexadecimal value lFH=3lD, or as the bit pat­
tern 00011111.

Arithmetic instructions assume that the data bytes upon
which they operate are in two's complement format. The
result of the operation performed is also two's complement.

A. DB -- Define Byte(s) of Data

FORMAT: LABEL CODE OPERAND

~-' LABEL: DB String

"String" may be a list of:

1. Arithmetic and logical expressions using any of
the arithmetic and logical operations which eval­
uate to a-bit data quantities.

2. Strings of ASCII characters surrounded by quota­
tion marks.

The a-bit value of each expression, or the a-bit ASCII
representation of each character is stored in the next
available byte of memory beginning with the byte addressed
by LABEL. The most significant bit of each ASCII charac­
ter is =0.

ASSEMBLED
EXAMPLE: INSTRUCTION CODE OPERAND DATA (Hex)

DATUM:
STRNG:
NFVAL:

DB
DB
DB

11

OFFH
'ABC'
-OsH

FF
414243
FB

B. DW -- Define word (2 bytes) of data

FORMAT: LABEL CODE OPERAND

ADDRS: DW LIST

"List" is the expression(s) which evaluate to 16-bit data
quantities. The least significant 8 bits of the expres­
sion are stored in the lower address memory byte (LABEL)
and the most significant 8 bits are stored in the next
higher addressed byte (LABEL+l). (It is standard pro­
cedure to reverse the order of the high and low address
bytes when storing addresses in memory.)

EXAMPLE:
ASSEMBLED

INSTRUCTION CODE OPERAND DATA (Hex)

ADDRl:
ADDR2:
ADDR3 :

DW START 00E8
DW OF4CIH CIF4
DW 4FC2H,4FC3H C24FC34F

START is the label at E800H. Data are stored with the
least significant 8 bits first.

C. DS -- Define Storage (bytes)

FORMAT: VALU: DS exp

"exp" represents a n arithmetic or logical expression.

The value of exp specifies the number of memory bytes to
be reserved for data storage. Data values are not assembled
into these bytes; the programmer must not assume a data
byte to be zero, for instance.

EXAMPLE: The first instruction is assembled VALUE,
the second instruction is assembled at mem­
ory location VALUE+IO.

LABEL CODE OPERAND

VALU: DS OAH
DS 150

12

COMMENT

Reserve next 10 bytes
Reserve next 150 bytes

III. CARRY BI'r INSTRUCTIONS

\......- FORMAT:

Carry bit instructions
operate directly upon
the carry bit, and each
occupies one byte.

MACHINE
LABEL CODE OPERAND CODE

A. STC -- Set Carry
The carry bit is set to
one. Condi.tion bits
affected is CARRY only.

B. CMC -- Complement Carry
If the ca.rry bit is 0, it
is set to 1. If the carry
bit is 1, it is reset to O.
Condition bits affected are
CARRY.

13

Label STC

Label CMC

37

3F

IV. SINGLE REGISTER INSTRUCTIONS

Single register instructions operate on a single register,
or memory location. If a memory reference is specified,
the memory byte addressed by the Hand L registers is
operated upon. The H register holds the most significant
8 bits of the address; the L register holds the least sig­
nificant 8 bits of the address.

The four single register instructions are:

INR - Increment Register or Memory

DCR - Decrement Register or Memory

CMA - Complement Accumulator

DAA - Decimal Adjust Accumulator

FORMAT:
MACHINE

CODE OPERAND CODE

A. INR -- Increment Register or memory.

The specified register or memory byte
is incremented by one. Condition bits
affected are ZERO, SIGN, PARITY,
AUXILIARY CARRY.

EXAMPLE: If register A contains
FEH, the instruction INR A will
cause register A to contain FFH.

B. DCR -- Decrement Register or
Memory.
The specified register or memory
byte is decremented by one.

INR A 3C
INR B 04
INR C OC
INR D 14
INR E lC
INR H 24
INR L 2C
INR M 34

DCR A 3D
DCR B 05
DCR C OD
DCR D 15
DCR E ID
DCR H 25
DCR L 2D
DCR M 35

C. CMA -- Complement Accumulator.
Each bit of the contents of the
accumulator is complemented, pro­
ducing one's complement.

14

CMA 2F

~ (continued)

EXAMPLE: If the accumulator contains FOH, the instruc­
tion CMA will cause the accumulator to contain OFH.

Accumulator = 1 1 1 1 0 0 0 O=FOH

.Accumulator = 0 0 0 0 1 1 1 l=OFH

D. DAA Decimal Adjust Accumulator
FORMAT:

The a-bit hexadecimal number in
the accumulator is adjusted to
form two 4-bit binary-coded dec­
imal digits by the following 2­
step procedure.

MACHINE
CODE OPERAND CODE

DM 27

1. If the least significant four bits of the accumulator
represents a number greater than 9, or if the auxiliary
carry bit is equal to one, the accumulator is incre­
mented by six. If neither of these conditions exist,
no incrementing occurs.

2. If the most significant four bits of the accumulator
now represent a number greater than 9, or if the nor­
mal carry bit is equal to one, the most significant
four bits of the accumulator are incremented by six.
If neither of these conditions exist, no incrementing
occurs.

If a carry out of the least significant four bits occurs
during step #1, the auxiliary carry bit is set. If not,
it is unaffected.

If a carry out of the most significant four bits occurs
during step *2, the normal carry bit is set. If not, it
is unaffected.

The DAA instruction is used when adding decimal numbers.
It is the ONLY instruction whose operation is affected
by the auxiliary carry bit. Condition bits which are
affected are ZERO, SIGN, PARITY, CARRY and AUXILIARY CARRY.

EXAMPLE: If the a~cumulator contains 9BH, and both
carry bits equal 0, the DAA instruction
will operate in the following manner:

1. Bits 0-3 are greater than 9, and 6 is added to the
accumulator. This addition will generate a carry
out of the lower four bits, setting the auxiliary
bit.

15

DM -- (continued)

J

Bit Number: 7 6 5 4 3 2 1 0

Accumulator: 1 0 0 1 1 0 1 1 = 9BH
+ 6 = 0 1 1 0

1 0 1 0+0 0 0 1 = A1H

Auxiliary Carry = 1

2. Bits 4-7 are now greater than 9, and 6 is added
to these bits. This addition will generate a
carry-out of the upper four bits, setting the
carry bit.

Bit Number: 7 6 5 4 3 2 1 0

Accumulator =1 0 1 0 0 0 0 1 = A1H

+ 6 = 0 1 1 0

1) 0 0 0 0 0 0 0 1,
Carry = 1

The accumulator will now contain 1, and both carry
bits will be = 1.

v. NOP INSTRUCTION

FORMAT: LABEL CODE OPERAND MACHINE CODE

Label NOP 00

The NOP instruction occupies
one byte. No operation occurs.
Execution continues with the
next sequential instruction,
and no condition bits are
affected.

16

VI. DATA TRANSFER INSTRUCTIONS

Data transfer instructions transfer data between registers
or between memory and registers. The three data transfer
instructions are:

MOV - Move

STAX- Store Accumulator

LDAX- Load Accumulator

A. MOV INSTRUCTION

One byte of data is moved from
the source register to the dest­
ination register. The data re­
places the contents of the dest­
ination register. The source
register remains unchanged. No
condition bits are affected.

FORMAT:

LABEL

Label

CODE OPERAND

MOV dst,src

EXAMPLE: CODE OPERAND COMMENT

MOV A,C Move contents of the

'\...""
C register to the
A register

MOV M,A Move contents of
the A register to
the memory byte
specified by the
contents of the
Hand L register
pair

MACHINE MACHINE
CODE OPERAND CODE CODE OPERAND CODE

MOV A,B 78 MOV C,A 4F
MOV A,C 79 MOV C,B 48
MOV A,D 7A MOV C,D 4A
MOV A,E 7B MOV C,E 4B
MOV A,H 7C MOV C,H 4C
MOV A,L 7D MOV C,L 4D
MOV A,M 7E MOV C,M 4E

MOV B,A 47 MOV D,A 57
MOV B,C 41 MOV D,B 50
MOV B,D 42 MOV D,C 51
MOV B,E 43 MOV D,E 53

\....... MOV B,H 44 MOV D,H 54
MOV B,L 45 MOV D,L 55
MOV BM 46 MOV D,M 56

17

MOV INSTRUCTION (continued)

MACHINE MACHINE
CODE OPERAND CODE CODE OPERAND CODE

MOV E,A 5F MOV L,A 6F
MOV E,B 58 MOV L,B 68
MOV E,C 59 MOV L,C 69
MOV E,D 5A MOV L,D 6A
MOV E,H 5C MOV L,E 6B
MOV E,L 5D MOV L,H 6C
MOV E,M 5E MOV L,M 6E

MOV H,A 67 MOV M,A 77
MOV H,B 60 MOV M,B 70
MOV H,C 61 MOV M,C 71
MOV H,D 62 MOV M,D 72
MOV H,E 63 MOV M,E 73
MOV H,L 65 MOV M,H 74
MOV H,M 66 MOV M,L 75

B. STAX STORE ACCUMULATOR

The contE~nts of the accum- FORMAT:
ulator are stored in the MACHINE
memory location addressed CODE OPERAND CODE
by registers Band C, or
by registers D and E. No STAX B 02
condition bits are affec-
ted. STAX D 12

C. LDAX LOAD ACCUMULATOR

The contents of the memory LDAX B OA
location addressed by reg-
isters Band C, or by reg- LDAX D lA
isters D and E, replace the
contents of the accumula-
tor. No condition bits are
affected.

18

VII. REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Eight instructions operate on the accumulator, using a
byte fetehed from another register or memory. These in­
structions occupy one byte. They are:

A. ADD _. Add register or memory to accumulator
B. ADC -. Add register or memory to accumulator with carry
C. SUB _. Subtract register or memory from accumulator
D. SBB _. Subtract register or memory from accumulator

with borrow
E. ANA _. Logical AND register or memory with accumulator
F. XRA _. Logical EXCLUSIVE-OR register or memory with

accumulator
G. ORA _. Logical OR register or memory with accumulator
H. CMP _. Compare register or memory with accumulator

These instructions operate on the accumulator using the
byte in 1~e register specified. If a memory reference
is specified, the instructions use the byte in the memory
location addressed by registers Hand L. The H register
holds the~ most significant 8 bits of the address, and the
L registe~r holds the least significant 8 bits of the ad­
dress. ~~he specified byte will remain unchanged by any
of the instructions in this category. The result replaces
the contemts of the accumulator.

A. ADD - Add Register or Memory to Accumulator

FORMAT:The specified byte is added to
the contemts of the accumulator
using two's complement ari thme­
tic. Condition bits affected
are: CARRY, SIGN, ZERO, PARITY,
AUXILIARY CARRY.

MACHINE
CODE OPERAND CODE

ADD A 87
ADD B 80
ADD C 81
ADD D 82
ADD E 83
ADD H 84
ADD L 85
ADD M 86

B. ADC - Add Register or Memory to Accumulator
wit.h Carry

The specifi.ed byte plus the con­
tent of t.he carry bit is added
to the contents of the accumula­
tor. Condi.tion bits affected
are: CARRY, SIGN, ZERO, PARITY,
AUXILIARY CARRY.

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

A
B
C
D
E
H
L
M

8F
88
89
8A
8B
BC
8D
BE

19

C. SUB - Subtract Register or Memory from Accumulator

The specified byte is subtrac­
ted from the accumulator using
two's complement arithmetic.
If there is no overflow out of
the high-order bit position,
(a borrow did not occur) the
carry bit is set. If a borrow
did occur, the carry bit is re­
set. Condition bits affected
are CARRY, SIGN, ZERO, PARITY,
AUXILIARY CARRY.

FORMAT:
MACHINE

CODE OPERAND CODE

SUB A 97
SUB B 90
SUB C 91
SUB D 92
SUB E 9~

SUB H 94
SUB L 95
SUB M 96

D. SBB - Subtract Register or Memory from Accumulator
with Borrow

The carry bit is internally
added to the contents of the
specified byte. The value is
then subtracted from the ac­
cumulator using two's comple­
ment arithmetic.

This instruction is used when
performing subtractions. It
adjusts the result of subtract­
ing two bytes when a previous
subtraction has produced a neg­
ative result. Condition bits
affected are: CARRY, SIGN,
ZERO, PARITY, and AUXILIARY
CARRY.

SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB

A
B
C
D
E
H
L
M

9F
98
99
9A
9B
9C
9D
9E

E. ANA - Logical AND Register or Memory with Accumulator

The specified byte is logi­
cally ANDed, bit-by-bit, with
the contents of the accumulator.
The carry bit is reset to zero.
The logical AND function of two
bits is one if both the bits
equal one.

20

ANA
ANA
ANA
ANA
ANA
ANA
ANA
ANA

A
B
C
D
E
H
L
M

A7
AO
Al
A2
A3
A4
A5
A6

F. XRA - Logical EXCLUSIVE-OR Register or Memory with Zero
Accumulator

The specified byte is EXCLUSIVE­
ORed, bit-by-bit with the con­
tents of the accumulator. The
carry bit is reset to zero.
The EXCLUSIVE-OR function of
two bits equals one if the val­
ues of the bits are different.
Condition bits affected are CARRY,
ZERO, SIGN and PARITY.

FORMAT:

CODE OPERAND

XRA A
XRA B
XRA C
XRA D
XRA E
XRA H
XRA L
XRA M

MACHINE
CODE

AF
A8
A9
AA
AB
AC
AD
AE

G. ORA - Logical OR Register or Memory with Accumulator

The specified byte is logically
ORed, bit-by-bit, with the con­
tents of the accumulator. The
carry bit is reset to zero.
The logical OR function of two
bits equals zero if both the bits
equal zero. Condition bi.ts affec­
ted are CARRY, ZERO, SIGN and
PARITY.

ORA
ORA
ORA
ORA
ORA
ORA
ORA
ORA

A
B
C
D
E
H
L
M

B7
BO
Bl
B2
B3
B4
B5
B6

H. CMP - Compare Register or Memory with Accumulator

BF
B8
B9
BA
BB
BC
BD
BE

A
B
C
D
E
H
L
M

CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

The specified byte is compared
to the contents of the accumula­
tor. The comparison is performed
by internally subtracting the
contents of the specified regi­
ster from the accumulator, leav­
ing both unchanged, and setting
the condition bits according to
the result. The zero bit is set
if the quantities are equal, and
reset if they are not. Since a
subtract operation occurs, the
carry bit is set if there is no
overflow out of bit 7: innicat-
ing that the contents of the spe-
cified register are greater than
the contents of the accumulator.
If there is overflow out of bit 7, the carry bit is
reset. If the two quantities to be compared differ in
sign, the sense of the carry bit is reversed. Condition
bits affected are CARRY, ZERO, SIGN, PARITY and AUXILIARY
CARRY.

21

VIII. ROTATE ACCUMULATOR INSTRUCTIONS

When specifying instructions which rotate the contents
of the accumulator, no memory locations, or other regi­
sters, are referenced. The four Rotate Accumulator In­
structions are:

A. RLC - Rotate Accumulator Left
B. RRC - Rotate Accumulator Right
C. RAL - Rotate Accumulator Left through Carry
D. RAR - Rotate Accumulator Right through Carry

FORMAT:
MACHINE

CODE OPERAND CODE

A. RLC - Rotate Accumulator Left

The carry bit is set equal to the
high-order bit of the accumulator.
The contents of the accumulator are
rotated one bit position to the
left, and the high-order bit is
transferred to the low-order bit
position of the accumulator, and
to the carry bit. Condition bit
affected is CARRY.

B. RRC - Rota.te Accumulator Right

The carry bit is set equal to the
low-order bit of the accumulator.
The contents of the accumulator are
rotated one bit position to the
right, wi t.hthe low-order bit be­
ing transferred to the high-order
bit position of the accumulator,
and to the carry bit. Condition
bit affected is CARRY.

RLC

RRC

07

OF

C. RAL - Rotate Accumulator Left through Carry

The contents of the accumulator RAL
are rotate!d one bit position to
the left. The high-order bit of
the accumulator replaces the carry
bit, and t:he carry bit replaces
the low-order bit of the accumu-
lator. Condition bit affected is
CARRY.

22

17

D. RAR - Rot:ate Accumulator Right through Carry

The contents of the accumulator
are rotat:ed one bit position to
the right:. The low-order bit of
the accumulator replaces the car­
ry bit, cmd the carry bit replac­
es the high-order bit of the accum­
ulator. Condition bit affected
is CARRY.

23

FORMAT:
MACHINE

CODE OPERAND CODE

RAR IF

IX. REGISTER PAIR INSTRUCTIONS

Register pair instructions operate on pairs of registers.
The eight register pair instructions are:

A. PUSH - Push Data onto Stack
B. POP - Pop Data off Stack
C. DAD - Double Add
D. INX - Increment Register Pair
E. DCX - Decrement Register Pair
F. XCHG - Exchange Registers
G. XTHL - Exhange Stack
H. SPHL - Load SP from Hand L

FORMAT:
MACHINE

CODE OPERAND CODE
A. PUSH - Push Data Onto Stack

The contents of the specified reg­
ister pair are saved in the two
bytes of memory indicated by the
stack pointer (SP). The contents
of the first register are saved
at the memory address one less
than the address indicated by
the stack pointer. The contents
of the second register are saved
at the address two less than the
address indicated by the stack
pointer. If register pair PSW
is specified, the first byte of
information saved holds the set­
tings of the five condition bits.
Condition bits saved are CARRY,
ZERO, SIGN, PARITY and AUXILIARY
CARRY.

PUSH
PUSH
PUSH
PUSH

PSW
B
D
H

F5
C5
D5
E5

After the data has been saved,
stack pointer is decremented
by two. No condition bits are
affected.

24

EXAMPLE:
Using S Z o A 0 P 1 C

Bit
-7- S - State of sign bit

6 Z - State of Zero bit
5 0 - Always 0
4 A - State of Auxiliary

Carry Bit
3 0 - Always 0
2 P - State of Parity bit
1 1 - Always 1
0 C - State of Carry bit

-J

\

B. POP - Pop Data Off Stack

The contents of the specified
register pair are restored from
two bytes of memory indicated
by the st~ack pointer SP. The
byte of data at the memory add­
ress indicated by SP is loaded
into the second register of the
register pair. The byte of data
at the address one greater than
the address indicated by SP is
loaded into the first register
of the pair. If PSW is speci­
fied, the byte of data indicated
by the contents of the stack
pointer is used to restore the
A register and the byte of data
indicated by the contents of the
s tack pointer, plus one, is
used to restore the values of the
five condition bits using the
example described in (A) PUSH.
The five condition bits affec­
ted are CARRY, ZERO, SIGN, PARITY
and AUXILIARY CARRY. If pair
PSW is not specified no condition
bits are affected. After the
data is restored, the stack
pointer is incremented by two.
Condition bits affected are
POP PSW.

FORMAT:

CODE OPERAND

POP PSW
POP B
POP D
POP H

MACHINE
CODE

Fl
Cl
Dl
El

C. DAD - Double Add

The l6-bit number in the spe­
cified register pair is added
to the 16-bit number held in the
Hand L registers, using two's
complement arithmetic. The re­
sult replaces the contents of the
Hand L registers. If a carry
out of bit 16 results from the
DAD operation, the ca~ry bit is
set to 1. Condition bit affec­
ted is CARRY.

25

DAD
DAD
DAD
DAD

B
D
H
SP

09
19
29
39

D. INX - Increment Register Pair

FORMAT:
MACHINE

CODE OPERAND CODE

The l6-bit: number is held in
the speci fied register pair
and is incremented by one. No
condition bits are affected.

E. DCX - Decrement Register Pair

The l6-bi t. number held in the
specified register pair is decre­
mented by one. No condition bits
are affect.ed.

F. XCHG - Exchange Registers

The 16 bits of data held in the
Hand L registers are exchanged
with the 16 bits of data held in
the D and E registers. No con­
dition bits are affected.

INX
INX
INX
INX

DCX
DCX
DCX
DCX

XCHG

B
D
H
SP

B
D
H
SP

03
13
23
33

OB
lB
2B
35

EB

G. XTHL - Exchange Stack with Hand L XTHL

The contents of the L register
are exchanged with the contents
of the memory byte whose address
resides in the stack pointer.
The contents of the H register
are exchanged with the contents
of the mem.ory byte whose address
is one greater than the one held
in the stack pointer. No con­
dition bits are affected.

E3

H. SPHL - Load SP from Hand L

The 16 bits of data held in the
Hand L registers replace the
contents of the stack pointer.
The contents of the Hand L reg­
isters are not changed. No con­
dition bits are affected.

26

SPHL F9

1,,-,

X. IMMEDIATE INSTRUCTIONS

The remaining iCOM assembly language instructions perform
operations using a byte-, or bytes, of data which are part
of the instruction itself. Listed below are those ten
instructions and their definitions.

Instructions in this section occupy two or three bytes
of data. The LXI occupies 3 bytes, and the remaining in­
structions occupy two bytes. Except for the LXI and MVI
instructions, all instructions in this section operate on
the accumulator or the memory byte specified by the con­
tents of the Hand L register pair, using one byte of imme­
diate data. The result replaces the contents of the ac­
cumulator.

The ten IMMEDIATE instructions are:

A. LXI - Load Register Pair Immediate
B. MVI - Move Immediate Data
C. ADI - Add Immediate to Accumulator
D. ACI - Add Immediate to Accumulator with Carry
E. SUI - Subtract Immediate From Accumulator
F. SBI - Subtract Immediate from Accumulator with Borrow
G. ANI - AND Immediate with Accumulator
H. XRI - EXCLUSIVE-OR Immediate with Accumulator
I. ORI - OR immediate with Accumulator
J. CPI - Compare Immediate with Accumulator

FORMAT:
A. LXI - Load Register Pair MACHINE

Immediate CODE OPERAND CODE

The LXI instruction operates on LXI B,data 01
the specified register pair, using LXI D,data 11
two bytes of immediate data. LXI H,data 21
The third byte of the instruc- LXI SP,data 31
tion (most significant a bits of
the l6-bit immediate data) is
loaded into the first register of
the specified pair and the second
byte of the instruction (the least
significant a bits of the l6-bit
immediate data) is loa~ed into the
second register of the specified
pair. If SP is specified as the register pair, the second
byte of the instruction replaces the least significant
a bits of the stack pointer, and the third byte of the
instruction replaces the most significant a bits of the
stack pointer. No condition bits are affected.

The immediate data for LXI is a l6-bit quantity. All other
immediate instructions require an a-bit data value.

27

FORMAT:
MACHINE

CODE OPERAND CODE

B. MVI - Move Immediate Data

The MVI instruction operates on
the specified register using one
byte of immediate data. If a
memory reference is specified,
the instruction operates on the
memory location addressed by reg­
isters Hand L. The H register
holds the most significant 8 bits
and the L register holds the least
significant 8 bits of the address.

MVI
MVI
MVI
MVI
MVI
MVI
MVI
MVI

A,data
B,data
C,data
D,data
E,data
H,data
L,data
M,data

3E
06
DE
16
IE
26
2E
36

The byte of immediate data is stored
in the specified register, or memory
byte. No condition bits are affected.

C. ADI - Add Immediate to Accumulator ADI

The byte of immediate data is
added to the contents of the ac­
cumulator using two's complement
arithmetic. Condition bits which
are affected are CARRY, SIGN, ZERO,
PARITY and AUXILIARY CARRY.

data C6

D. ACI - Add Immediate to Accumulator
with Carry ACI

The byte of immediate data is
added to the contents of the ac­
cumulator, plus the contents of
the carry bit. Condition bits
affected are CARRY, SIGN, ZERO,
PARITY, and AUXILIARY CARRY.

data CE

D6data
E. SUI - Subtract Immediate from

Accumulator with Borrow SUI

The byte of immediate data is sub-
tracted from the contents of the
accumulator using two's comple-
ment arithmetic. In this sub-
traction operation, the carry
bit is set, indicating a borrow,
provided there is no overflow from the high-order bit posi­
tion. It is reset if there is an overflow. Condition bits
affected are CARRY, SIGN, ZERO, PARITY, and AUXILIARY CARRY.

28

FORMAT:
MACHINE

CODE OPERAND CODE

F. SBI - Subtract Immediate from
Accumulator with Borrow SBI

The carry bit is inte'fhally added
to the byte of immediate data.
The value is then subtracted from
the accumulator using two's comple­
ment arithmetic. The Sill instruc-
tion is best utilized when perform-
ign multibyte subtractions. In
this subtraction operation, the
carry bi"t is set if there is no
overflow from the high-order pos­
ition, and it is reset if there
is an overflow. Condition bits
affected are CARRY, SIGN, ZERO,
PARITY, and AUXILIARY CARRY.

data DE

G. ANI - AND Immediate with Accumulator--
The byte of immediate data is
logically ANDed with the contents
of the accumulator. The carry
bit is reset to zero. Condition

'~~ bits affected are CARRY, ZERO,
SIGN and PARITY.

H. XRI - EXCLUSIVE-OR Immediate
with Accumulator

The byte of immediate data is
EXCLUSlVE-ORed with the contents
of the accumulator. The carry bit
is set to zero. Condition bits
affected are CARRY, ZERO, SIGN
and PARITY.

I. ORI - OR Immediate with
Accumulator

The byte of immediate data is
logically ORed with the contents
of the accumulator. 'lhe result
is stored in the accumulator. The
carry bit is reset to zero, and the
zero, sign and parity bits are set
according to the result. Condition
bits affected are CARRY, ZERO, SIGN
and PARITY.

29

ANI

XRI

ORI

data

data

data

E6

EE

F6

FORMAT:
MACHINE

CODE OPERAND CODE

J. CPI - Compare Immediate with
Accumulator

The byte of immediate data is
compared to the contents of the
accumulator. The comparison is
performed by internally subtrac­
ting the data from the accumu­
lator using two's complement arith­
metic, leaving the accumulator
unchanged, but setting the condi­
tion bits by the result.

CPI data FE

For instance, the zero bit is set if the quantities are
equal, and reset if they are not equal.

In the CPI instruction a subtract operation is performed.
The carry bit is set if there is no overflow from bit 7,
indicating the immediate data is greater than the contents
of the accumulator. The carry bit will be reset if there
is overflow. .

If the two quantities to be compared differ in sign, the
sense of the carry bit is reversed. Condition bits affec­
ted are CARRY, ZERO, SIGN, PARITY and AUXILIARY CARRY.

30

XI. DIRECT ADDRESSING INSTRUCTIONS

The instructions listed below reference memory by a two­
byte address which is part of the instruction. All instruc­
tions in this category occupy three bytes. The least sig­
nificant byte of the address occupies the second byte of the
instruction. The most significant byte occupies the third
byte of the instruction. The four Direct Addressing In­
structions are:

A. STA - Store Accumulator Direct
B. LDA - Load Accumulator Direct
C. SHLD - Store Hand L Direct
D. LHLD - Load Hand L Direct

FORMAT:
MACHINE

CODE OPERAND CODE
A. STA - Store Accumulator Direct

The contents of the accumulator
replace the byte at the memory
address which is formed by com­
bining OK and LOW ADD (byte two
of the instruction). No condi­
tion bits are affected.

B. LDA - Load Accumulator Direct

The byte at the memory address,
which is formed by combining
HI ADD and LOW ADD, replaces the
contents of the accumulator. No
condition bits are affected.

STA

LDA

adr

adr

32

3A

C. SHLD - Store Hand L Direct SHLD adr 22

The contents of the L register
are stored at the memory address,
formed by combining HI ADD and
LOW ADD. Contents of the H regi-
ster are stored at the next higher
memory address. No condition
bits are affected.

D. LHLD - Load Hand L Direct LHLD adr 2A

The byte at the memory address
formed by concatenating HI ADD
with LOW ADD replaces the contents
of the L register. The byte at the
next higher memory address replaces
the contents of the H register. No
condition bits are affected.

31

XII. JUMP INSTRUCTIONS

There are tE~n jump instructions, listed below. These instruc­
tions alter the normal execution sequence and each occupies
either one or three bytes. The 3-byte instructions cause a
transfer of program control. For instance, if the specified
condition is true, program execution will continue at the
memory addrE~ss formed by combining the 8 bits of HI ADD (third
byte) and the 8 bits of LOW ADD (second byte). If the spe­
cified condition is false, program execution will resume with
the next sequential instructions.

Jump instruction addresses are stored in memory with the low­
order byte first. The ten jump instructions are:

A. PCHL - Load Program Counter
B. JMP - Jump
C. JC - Jump if Carry
D. JNC - Jump if No Carry
E. JZ - Jump if Zero
F. JNZ - Jump if Not Zero
G. JM - Jump if Minus
H. JP - Jump if Positive
I. JPE - Jump if Parity Even
J. JPO - Jump if Parity Odd

A. PCHL - Load Program Counter

The contents of the H register
replace the most significant
8 bits of the program counter.
The contents of the L register
replace the least significant
8 bits of the program counter.
The program then executes at the
address contained in the Hand
L registers. No condition bits
are affected..

FORMAT:
MACHINE

CODE OPERAND CODE

PCHL E9

B. JMP - Jump

Program execution continues at
specified mE~mory address. No
condition bits are affected.

C. JC - Jump if Carry

Program exec:ution continues at
the specified memory address,
if the carry bit is one. No
condition bits are affected.

32

JMP

JC

adr

adr

C3

DA

FORMAT:
MACHINE

CODE OPERAND CODE
D. JNC - Jump if No Carry

Program execution continues
at the specified memory address,
if the carry bit is zero. No
conditions bits are affected.

E. JZ - Jump if Zero

Program execution continues at
the specified memory address, if
the zero bit is one. No condi­
tion bits are affected.

F. JNZ - Jump is Not Zero

Program execution continues at
specified memory address, if the
zero bit is zero. No condition
bits are affected.

G. JM - Jump if Minus

If the sign bit is one (negative
result) program execution contin­
ues at the specified memory add­
ress. No condition bits are
affected.

H. JP - Jump if Positive

Program execution continues
at the specified memory address,
if the sign bit is zero. No con­
dition bits are affected.

I. JPE - Jump if Parity Even

If the parity bit is one (even
parity), program execution con­
tinues at the specified memory
address. No condition bits are
affected.

J. JPO - Jump if Parity Odd

If the parity bit is zero (odd
parity), program execution con­
tinues at the specified memory
address. No condition bits are
affected.

33

JNC

JZ

JNZ

JM

JP

JPE

JPO

adr

adr

adr

adr

adr

adr

adr

D2

CA

C2

FA

F2

EA

E2

XIII. CALL SUBROUTINE INSTRUCTIONS

There are nine call subroutine instructions which operate
much like the JMP instructions in that they cause the trans­
fer of program control. In addition, they cause a return
address to be pushed onto the stack for use by the RETURN
instructions. (See Section XIV., Return from Subroutine
Instructions) .

Call subroutine instructions occupy three bytes of memory.
Call instructions are stored in memory with the low-order
byte first. Subroutines may be called under specified con­
ditions. If the condition is true, a return address is
pushed onto the stack and program execution continues at
memory address formed by combining the 8 bits of HI ADD
and 8 bits of LOW ADD. If the specified condition is false,
program execution continues with the next sequential in­
struction.

The nine call subroutine instructions are:

A. CALL - Call
B. CC - Call if Carry
C. CNC - Call if No Carry
D. CZ - Call if Zero
E. CNZ - Call if Not Zero
F. CM - Call if Minus
G. CP - Call if Plus
H. CPE - Call if Parity Even
I. CPO - Call if Parity Odd

FORMAT:
MACHINE

CODE OPERAND CODE

A. CALL - Call

A CALL operation is uncondition­
ally performed to the specified
address. No condition bits
are affected.

CALL adr CD

B. CC - Call if Carry CC adr DC
If the carry bit is one, a CALL
operation is performed to the
specified address. No condition
bits are affected.

C. CNC - Call if No Carry ~C adr D4
If the carry bit is zero, a
call operation is performed to
the specified address. No
condition bits are affected.

34

FORMAT:
MACHINE

CODE OPERAND CODE
D. CZ - Call if Zero

If the zero bit is one, a call
operation is performed to spe­
cified address. No condition
bits are affected.

E. CNZ - Call if Not Zero

If the zero bit is zero, a call
operation i.s performed to the
specified address. No condition
bits are affected.

F. CM - Call if Minus

Call operat:ion is performed to
specified address if sign bit
is one. No condition bits are
affected.

G. CP - Call if Plus

A call operation is performed
to the specified address if
the sign bit is zero. No con­
dition bits are affected.

H. CPE - Call if Parity Even

A call operation is performed
to the specified address, if the
parity bit is one. No condi­
tion bits are affected.

I. CPO - Call if Parity Odd

If the parity bit is zero, a
call opera1:ion is performed to
the specified address. No con­
dition bits are affected.

35

CZ

CNZ

CM

CP

CPE

CPO

adr

adr

adr

adr

adr

adr

CC

C4

FC

F4

EC

E4

XIV. RETURN FROM SUBROUTINE INSTRUCTIONS

The nine RE~mRN instructions listed below are used to return
from subrou1:ines by popping the last address saved on the
stack into 1:he program counter. This causes a transfer of
program control to that address. Return instructions occupy
one byte.

Return opercltions are performed upon specified conditions.
If the specified condition is true, a return operation is
performed. If it is not true, program execution continues
with the next sequential instruction.

The nine return instructions are:

A. RET - Return
B. RC - Return if Carry
C. RNC - Return if No Carry
D. RZ - Return if Zero
E. RNZ - Return if Not Zero
F. FM - Return if Minus
G. RP - Return if Plus
H. RPE - Return if Parity Even
I. RPO- Return if Parity Odd

FORMAT:
MACHINE

CODE OPERAND CODE

A. RET - Return

A return opE~ration is uncondi­
tionally performed. Execution
normally proceeds with the in­
struction in~ediately follow­
ing the last call instruction.
No condition bits are affected.

B. RC - Return if Carry

If the carry bit is one, a re­
turn operati.on is performed, and
no condition bits are affected.

C. RNC - Return if No Carry

If the zero bit is one, a return
operation is performed. No con­
dition bits are affected.

D. RZ - Return if Zero

A return ope~ration is performed
if the zero bit is one. No con­
dition bits are affected.

36

RET

RC

RNC

RZ

C9

D8

DO

C8

FORMAT:
MACHINE

CODE OPERAND CODE
E. RNZ - Return if Not Zero

If the zero bit is zero, a re­
turn operation is performed.
No condition bits are affected.

F. RM - Return if Minus

If the sign bit is one (minus
result) a return operation is
performed. No condition bits
are affecb~d.

G. RP - Return if Plus

If the sign bit is zero (posi­
tive result), a return operation
is performl~d. No condition bits
are affecb~d.

H. RPE - Return if Parity Even

If the parity bit is one (even
parity), a return operation is
performed. No condition bits
are affecb~d.

I. RPO - Return if Parity Odd

If the parity bit is zero (odd
parity), a return operation is
performed. No condition bits
are affected.

37

RNZ

RM

RP

RPE

RPO

co

F8

Fa

E8

EO

xv. RST (RESTART) INSTRUCTION

FORMAT:
MACHINE

CODE OPERAND CODE
The RST' instruction, a special
purpose subroutine jump, occu­
pies one byte.

RST
RST
RST
RST
RST
RST
RST
RST

o
1
2
3
4
5
6
7

C7
CF
07
OF
E7
EF
F7
FF

The operand expression must evaluate to a number in the
range 0 - 7" The contents of the program counter are
pushed onto the stack, providing a return address for
later use by a RETURN instruction. Program execution con­
tinues at memory address: OPERAND X 8

Normally, this instruction is used in conjunction with up
to eight 8-byte rou.tines in the lower 64 words of memory,
to provide interrupts processing. The interrupt mechanism
causes a specified RST instruction to be executed, and
transfers control to a subroutine. For example, RST 1,
when executed, would cause program execution to continue
at memory location 8.

RETURN then causes the original program to continue exe­
cution at the location of the interrupt. No condition
bits are affected.

38

XVI. INTERRUPT l~LIP-FLOP INSTRUCTIONS

Interrupts operate directly upon the Interrupt Enable flip­
flop INTE. These instructions occupy one byte. The two
interrupt instructions are:

A. EI - Enable Interrupts
B. DI - Disable Interrupts

FORMAT:
MACHINE

CODE OPERAND CODE

A. EI - Enable Interrupts

The EI instruction sets the INTE
flip-flop, enabling the CPU to
recognize and respond to inter­
rupts. No condition bits are
affected.

B. DI - Disable Interrupts

The DI instruction resets the INTE
flip-flop, causing the CPU to
ignore all interrupts. No con­
dition bits are affected.

39

EI

DI

FB

F3

XVII. INPUT/OUTPUT INSTRUCTIONS

The input and output instructions cause data to be input
or output from the microprocessor. Instructions in this
category occupy two bytes. They are:

A. IN'- Input

B. OUT -Output

FORMAT:
MACHINE

CODE OPERAND CODE

A. IN - Input

An eight-bit data byte is read
from the input port specified
by the operand and replaces the
contents of the accumulator.
No condition bits are affected.

B. OUT - Outpu1t

The contents of the accumulator
are output to the output port
specified by the operand. No
condition bits are affected.

XVIII. HLT - HALT INSTRUCTION

The HLT instruction occupies
one byte.

The program counter is incre­
mented to the address of the next
sequential instruction. The CPU
then enters the STOPPED state.
There is no further action until
an interrupt occurs.

If the interrupt system is dis­
abled and an HLT instruction is
executed, the microprocessor must
be powered down and repowered to
continue operation. No condition
bits are affected.

40

IN

OUT

HLT

data

data

DB

D3

76

SECTION II

PSEUDO INSTRUCTIONS FOR

iCOM MACRO ASSEMBLER

Pseudo-instruction, which are recognized by the Assembler,
are sritten the same way as the machine instructions, dis­
cussed in Section I, Items III through XVIII. However,
the pseudo-instruction does not cause any object code to be
generated. Instead it provides the assembler with data for
future use while generating object code.

The six-psuedo instructions are:

A. ORG - Origin
B. EQU - Equate
C. SEll' - Set
D. END - End of Assembly
E. IF and ENDIF - Conditional Assembly
F. MACRO and ENDM - Macro definition

Pseudo-inst:ruction names are not followed by a colon, as are
labels. The pseudo-instructions which do require names in
the label field are:

MACRO

EQU

SET

Optional labels may be used in the label fields of the re­
maining pseudo-instructions, as are used on machine instruc­
tions.

41

A. ORG - Origin

FORMAT:

CODE OPERAND

The assembler's location counter is set
to the value of a 16-bit memory address
expression. The first instruction gen­
erated after an ORG statement is assem­
bled at the expression, exp, and so
forth. If no ORG appears before the
first instruction in the program, assem­
bly will begin at location O.

B. EQU - Equate

The assembler assigns name the value of
expo Subsequently when the name is
encountered in the assembly, this value
of exp will be used. The EQU symbol
may not be redefined. The name in the
LABEL field may appear only once for
the EQU symbol.

C. SET - Set

A name in the label field is required.
Identical to the EQU equation, the
SET instruction differs only in that
symbols may be defined more than once.
The value of exp will always be used
in the assembly until changed by a new
SET instruction.

D. END - End of Assembly

The end of the program is signified by
use of the END statement. Only one END
statement may appear in the assembly
and is the last statement input. Object
program and listing of the source program
may now begin. END is a required state­
ment.

ORG

EQU

SET

END

exp

exp

exp

E. IF and ENDIF - Conditional Assembly

The assembler evaluates exp, and if
evaluated to zero, the statements between
IF and ENDIF are disregarded. If not
zero, the statements are assembled as
if the IF and ENDIF did not exist.

42

IF exp
statements
ENDIF

FORMAT:

CODE OPERAND

F. MACRO and ENDM; Macro Definition MACRO list

Name in the label field is required.
For a complete explanation of program­
ming with macros, see Section III fol­
lowing this section.

The assembler accepts statements between
MACRO and ENDM as the definition of the
macro "namE~". When name is encountered
in the codE~ field, the assembler sub­
stitutes the specification in the op­
erand field for occurrences of "list"
in the macro definition. The statements
are then assembled.

The pseudo·- instruction MACRO may not
appear in 1:he list of statements between
MACRO and ENDM. Macros may not be used
to define other macros.

43

Statements

ENDM

SECTION III

MACRO PROGRAMMING FOR

THE

iCOM MACRO ASSEMBLER

Macros provide an important tool which can increase the effi­
ciency and readability of the program. Its compiler capa­
bilities make the assembly program much more powerful in that
large programs may be divided into segments for separate
testing. In addition, macros provide the programmer exten­
sive analyzing capabilities in debugging. When the user be­
comes fully familiar with the use of macros, he will find
he has a valuable means for tailoring programming to his
particular needs.

The user will therefore utilize macro programming to decrease
debugging time, reduce the drudgery of often-repeated groups
of instructions, and reduce duplication of efforts between
programmers.

A. OPERATION

The macro name and its representative instructions are selec­
ted by the programmer. The macro name, or symbol specified
to the assembler, appears in the code field and represents
a group of instructions.

EXAMPLE: This macro will print the contents of the accu­
mulator, after shifting it, to the right one bit,
and a zero will shift to the high order bit po­
sition. This macro will be called SHPRT, and is
defined by writing the following instructions:

LABEL CODE OPERAND COMMENT

SHPRT: r-1ACRO
RRC Ro1::ate accumulator right
l~NI 7FH Clear high order bit
MOV C,A
CALL CO Output to console
ENDM

44

The macro may be referenced later in the program by using
this instruction:

LABEL CODE OPERAND COMMENT

LDA TEMP Load Accumulator
SHPRT

This would be the same as writing:

LDA
RRC
ANI
MOV
CALL

TEMP

7FH
C,A
CO

; Load Accumulator

As demonstrated above, three aspects of macros are imme­
diately available to the programmer:

1. DEFINITION
2 • REFERENCE
3. EXPANSION

1. Definition specifies the sequence the instructions will
take. SHPRT is used to specify the four instructions in
the code field. Each macro need be specified only once
in the proc~ram.

EXAMPLE: LABEL CODE

SHPRT: MACRO
RRC
ANI
MOV
CALL
ENDM

OPERAND

7FH
C,A
CO

2. Reference specifies the macro at a point in the program,
and the macro may be referenced in any number of state­
ments by inserting the macro name in the code field:

LDA TEMP
SHPR'I'
STA TEMP

; Macro referenced

3. Expansion is the complete instruction sequence represented
by the macro reference. The macro expansion will be pre­
sent in its machine language equivalent and will be gen­
erated by the assembler in the object program:

LDA
RRC
ANI
MOV
CALL
STA

TEMP

7FH
C,A
CO
TEMP

45

; Macro referenced

B. MACRO TERMS AND IMPLEMENTATION

A macro must first be defined, then referenced, and each
reference must have an equivalent expansion. Each of the
three aspects of a macro is discussed below.

FORMAT:

LABEL CODE OPERAND

1. MACRO DEFINI'TION

The macro definition indi- name: MACRO list
cates to the assembler that
the symbol "name" is the equiva-(.....macro body)
lent to the group of statements
residing between the pseudo ENDM
instructions MACRO and ENDM.
The macro definition does not
produce assembled data in the
object program. The macro
body, or group of statements,
may be assembly language instruc­
tions, pseudo-instructions except
MACRO or ENDM, comments or ref­
erences to other macros.

Expressions indicating parameters specified by a macro
reference is called "list". These expressions are replaced
in the macro body and serve to designate the location of
macro parameters. "list" expressions are called "dummy
parameters".

This macro takes the memory LOAD:
address of the label specified
by the macro reference, loads
the address into the H register
and loads the least significant
8 bits into the B register.

MACRO
LXI
MVI
ENDM

ADDR
H,ADDR
B,ADDR AND OFFH

The reference:

Equivalent to the expansion:

The reference:

Equivalent to the expansion:

LOAD LABEL

LXI H,LABEL
MVI B,LABEL AND OFFH

LOAD INST

MVI H,INST
B,INST AND OFFH

MACRO and END statements tell the assembler than when LOAD
appears in the code field the characters in the operand field
are to be substituted wherever the symbol ADDR appears in the
macro body, and the LXI and MVI instructions are inserted into
the statements and assembled.

46

2. MACRO REFE1RENCE

The name of a macro appears in the label field of the MACRO
pseudo-instruction. A list of expressions is substituted
in the operand field, using the first string of "list" to
replace eVI:!ry occurrence of the first dummy parameter in the
macro body, the second to replace every second occurrence,
etc.

If the parameters appearing in the macro reference are fewer
than in the definition, a null string is substituted for the
remaining expressions. If more parameters appear in the ref­
erence than the definition, the extra parameters are ignored.

EXAMPLE:

Using the macro
definition:

Reference:

FORMAT:

LABEL CODE OPERAND COMMENT

PMSG: MACRO PI,P2,P3 Comment
LXI H,P2
MVI B,PI Comment
CALL
ENDM

PMSG MSGI,CNT,ADDR Print message
on device X

Equivalent to
Expansion:

Reference:

Equivalent to
Expansion:

LXI
MVI
CALL

PMSG

LXI
MVI
CALL

H,MSGI
B,CNT
ADDR

MSG2,NUMB,ADDR2

H,MSG2
B,NUMB
ADDR2

47

Print messagE
on device X

3. MACRO EXPANSION

Macro expansion is the result of substituting the macro par­
ameters into the macro body. The expansion statements are
assembled into the assembler just as it assembles other state­
ments. For instance, each statement derived from expansion
of the macro must be a legal assembler statement.

EXAMPLE:

Using the macro
definition:

Reference:

Result is legal
expansion:

However, using
reference:

FORMAT:

LABEL

MDEC:

CODE

MACRO
DCX
ENDM

MDEC

DCX

MDEC

OPERAND

Pl
pl

H

H

L

Results in illegal
expansion: DCX L

This will be flagged as an error.

48

C. LABELS AND NAMES

Two terms are used to determine how references, definitions
and expansions of macros are used.

GLOBAL:: A symbol is globally defined if its value is
known and can be referenced by any statement
in the program, regardless of whether the
statement is the result of expansion of a
macro.

LOCAL: A symbol is locally defined if its value is
known and can be referenced only within a
specific macro expansion.

1. INSTRUCTION LABELS

A symbol may normally appear in the label field of only one
instruction. However, if a label appears in the macro body
it will be generated any time the macro is referenced. Macros
are treated as local labels to avoid multiple-label conflicts.

To generate a global label, the programmer must type two
colons following the label in the macro definition. This
global label may be generated just once since it is unique
in the program.

If two references to MACI
appear in a program, CONTU
will be a local label and each
JMP CONTU instruction refers CON,]~U:

to the label generated with-
in its own expansion:

CODE OPERAND

MACRO
macro body
JMP CONTU
ENDM

MACI
CONTU
macro body
JMP CONTU

EXAMPLE:

Def ini tion::

If CONTU had been followed,
in the macro definition, by
two colons (::) CONTU would
be generated as a global
label by the first reference
to MACl, and the second re­
ference would be flagged as
an error.

FORMAT:

LABEL

MAC1
CONTU:

CONTU:

49

MAC 1
CONTU
macro
JMP

body
CONTU

2. EQUATE Names

Equate names on statements within a macro are always local,
and are always defined within the expansion in which they
are generated.

EXAMPLE:: FORMAT:
ASSM.

LABEL CODE OPERAND DATA--
Macro definition: MAC2 MACRO

VALU EQU 40H
DB VALU
ENDM

Valid program: VALU EQU OFFH FF
DBI: DB VALU

MAC 2
VALU EQU 40H

DB VALU 40
DB2 : DB VALU FF

VALU is defined first globally with the value FF. The ref­
erence to VALU at DBI therefore produces a byte equal to FF.

MAC2 is the macro reference which ~Jenerates the symbol VALU
and is defined only within the macro expansion with the value
40. The reference to VALU by the second statement produces
a byte equal to 40.

The reference to VALU at DB2 refers to the global definition
of VALU, because the VALU statemen1: ends the macro expansion.
The statement at DB2 therefore produces a byte qual to the
value FF.

50

\
3. SET Names

If a SET s"tatement is generated by a macro, and the name has
previously been defined globally by another SET statement,
the generated statement changes the global value of the name
thereafter. If the SET statement's name had not previously
been defined, the name is defined locally and applies only in
the current macro expansion.

EXAMPLE:

Macro Definition:

Valid Program Section:

FORMAT:
ASSEM.

LABEL CODE OPERAND DATA

MAC 3 MACRO
SYMBL SET 16

DB SYMBL
ENDM

SYMBL SET 32D
DBl: DB SYMBL 20

MAC 2
SYMBL SET 16D

DB SYMBL 10
DB2 : DB SYMBL 10

SYMBL is first defined globally with the value 32. This
causes the reference at DBI to produce a byte of 20H. The
macro reference MAC2 resets the global value to 10H, causing
the second statement to produce a value of lOH. The value
of SYMBL remains equal to 10H, as indicated by the referenc2
at DB2.

EXAMPLE: MAC 2
SYMBL SET

DB
DB3: DB

16
SYMBL
SYMBL

10
ERROR

The statement at DB3 is invalid because SYMBL is unknown
globally.

51

D. MACRO PARAMETER SUBSTITUTION

Macro parameters value is assigned prior to expansion, when
the macro is referenced. Evaluation can be delayed by en­
closing a parameter in quotation marks so that the charac­
ter string will appear in the macro body. The string will
be evaluated at the occurrence of macro expansion.

EXAMPLE:

Macro M.A..C 3 is defined
at beginnign of program:

The value of LABL is
set to 5 by writing
SET prior to the first
reference to MAC3.

Macro Reference:

This causes assembler to
evaluate LABL and to sub­
stitute the value 5 for
parameter Pl.

or: Macro Reference:

FORMAT:

LABEL CODE OPERAND

MAC 3 MACRO PI
LABL SET 0
DB PI
ENDM

LABL SET 5

MAC3 LABL

MAC3 "LABL"

Assembler evaluates ex­
pression "LABL", produc­
ing the characters LABL
as the value of parameter Pl.
Expansion is now produced.
PI now produces the value 0
because LABL is altered by
the first statement of the
expansion.

Expansion produced:

52

LABL SET
DB

o
LABL Assembles

as 0

APPENDIX

iCOM MACRO ASSEMBLER

MNEMONIC INDEX

STATEMENT

ACI

ADC

ADD

ADI

ANA

ANI

CALL

OPERATION

Add Immediate to
Accumulator with Carry

Add Register/Memory to
Accumulator with Carry

Add Register or Memory
to Accumulator

Add Immediate to
Accumulator

Losrical AND Register
or Memory with
Accumulator

AND Immediate with
Accumulator

Call

TYPE INSTRUCTION

Immediate Instruction

Register/Memory to
Accumulator

Register/Memory to
Accumulator

Immediate Instruction

Register/Memory to
Accumulator Instruc.

Immediate Instruction

Call Subroutine Instruc.

PAGE NO.

28

19

19

28

20

29

34

CNZ

CZ

CC

CM

CMA

CMC

CMP

Call if Not Zero Call Subroutine Instruc.

Call if Zero Call Subroutine Instruc.

Call if Carry Call Subroutine Instruc.

Call if Minus Call Subroutine Instruc.

Complement Accumulator Single Register Instruc.

Complement Carry Carry Bit Instruction

Crnnpare Register or Register/Memory to
Memory with Accumulator Accumulator Instruction

35

35

34

35

14

13

21

CNC

CP

CPE

CPO

Call if No Carry

Call if Plus

Call if Parity Even

Call if Parity Odd

Call Subroutine Instruc.

Call Subroutine Instruc.

Call Subroutine Instruc.

Call Subroutine Instruc.

34

35

35

35

CPI Compare Immediate with Immediate Instruction
Accumulator

1.

30

STATEMENT

DB

OPERATION

Define Byte

TYPE INSTRUCTION

Data Statement

PAGE NO.

11

DAA Decimal Adjust Accumu- Single Register Instruc. 15
lator

DW Define Word Data Statement 12

DAD Double Add Register Pair Instruc. 25

DS Define Storage Data Statement 12

DCR Decrement Register Single Register Instruc. 14
or Memory

DCX Decrement Register Register Pair Instruction 26
Pair

DI Disable Interrupts Interrupt Flip-Flop Inst. 39

EI Enable Interrupts Interrupt Flip-Flop Inst. 39

END End of Assembly PSE!udo-Instruction 42

ENDM End Macro Statement PSE!Udo-Instruction 43

EQU Equate Pseudo-Instruction 42

HLT Halt: Halt Instruction 40

IF and
ENDIF Conditional Assembly PSE!udo-Instruction 42

IN Input Input/Output Instruction 40

INR Increment Register or Single Register Instruc. 14
Memory

INX Increment Register Register Pair Instruction 26
Pair

JMP Jump Jump Instruction 32

JZ Jump if Zero Jump Instruction 33

JNZ Jump if Not Zero Jump Instruction 33

JP Jump if Positive Jump Instruction 33

JM Jump if Minus Jump Instruction 33

JC Jump if Carry Jump Instruction 33

II.

STATEMENT

JNC

JPE

JPO

OPERATION

Jump if No Carry

Jump if Parity Even

Jump if Parity Odd

TYPE INSTRUCTION

Jump Instruction

Jump Instruction

Jump Instruction

PAGE NO.

33

33

33

LDA Load Accumulator Direct Direct Addressing Instruc. 31

LDAX

LHLD

Load Accumulator

Load Hand L Direct

Data Transfer Instruction 18

Direct Addressing Instruc. 31

LXI Load Register Pair
Immediate

Immediate Instruction 27

MACRO and
ENDM Macro Definition Pseudo-Instructions 43

MOV

MVI

NOP

Move

Move Immediate Data

No Operation

Data Transfer Instruction 17

Immediate Instruction 28

NOP Instruction 16

ORA Logical OR Register
or Memory with
Accumulator

Register/Memory to
Accumulator Instruction

21

ORI

ORG

OUT

PCHL

POP

PUSH

RAL

RAR

OR Immediate with
Accumulator

Origin

output

Load Program Counter

Pop Data Off Stack

Push Data Onto Stack

Rotate Accumulator
Left Through Carry

Rotate Accumulator
Right through Carry

Immediate Instruction 29

Pseudo-Instruction 42

Input/Output Instructions 40

Jump Instruction 36

Register Pair Instruction 25

Register Pair Instruction 24

Rotate Accumulator Instruc.22

Rotate Accumulator Instruc.23

RLC Rotate Accumulator Left Rotate Accumulator Instruc.22

III.

STATEMENT OPERATION TYPE INSTRUCTION PAGE NO.

RRC Rotate Accumulator
Right

Rotate Accumulator Instruc.22

RET

RZ

RNZ

RP

RM

RC

RNC

RPE

RPO

RST

SET

Return

Return if Zero

Return if Not Zero

Return if Plus

Return if Minus

Return if Carry

Return if No Carry

Return if Parity Even

Return if Parity Odd

Restart

Set

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Return from Subroutine

Restart Instruction

Pseudo-Instruction

36

36

37

37

37

36

36

37

37

38

42

SPHL

SHLD

STA

STAX

STC

Load SP from Hand L

Store Hand L Direct

Ston:! Accumulator
Direct

Store Accumulator

Set Carry

Register Pair Instruction 26

Direct Addressing Instruc. 31

Direct Addressing Instruc. 31

Data Transfer Instruction 18

Carry Bit Instruction 13

SUB Subtract Register or Register/Memory to
Memory from Accumulator Accumulator Instruction

20

SUI Subtract Immediate
from Accumulator

Immediate Instruction 28

SBB

SBI

Subtract Register or Register/Memory to
Memory from Accumulator Accumulator Instruction
With Borrow

Subtract Immediate from Immediate Instruction
Accwnulator with Borrow

IV.

20

29

STATEMENT OPERATION TYPE INSTRUCTION PAGE NO.
\--"

XCHG Exchange Registers Register Pait' Instruc. 26

XTHL Exchange Stack Register Pair Instruc. 26

XRA Logical EXCLUSIVE-OR Register/Memory to 21
Register or Memory Accumulator Instruction
wi1:h Accumulator

XRI EXCLUSIVE-OR Immediate Immediate Instruction 29
with Accumulator

V.

ADDENDUM APPENDIX

iCOM MACRO ASSEMBLER

ERROR MESSAGES

The iCOM Macro Assembler detects errors by indicating a single­
letter code on the output listing. If mUltiple errors occur
in a single line of code, only the first error is indicated.

CODE DEFINITION EXAMPLE

B

E

F

I

Balance Error--Parentheses in
an expre~5ion or quotes in a
string are unbalanced.

Expressio~ Error--Poorly con­
structed expression due to mis­
sing operator, omitted comma
or misspelled opcode.

Format Error--Error in format
of a statement, usually caused
by a missing or extraneous op­
erand.

Illegal Character--Illegal ASCII
character is present in the
statement or a numeric charac­
ter is too large for the base
of the nunmer in which it occurs.

ERROR: ORG $/256+1)*256-$
DB fA

CORRECTION:
ORG (256+1)*256-$
DB 'A'

ERROR: ORG ($/256+1)256-$

CORRECTION:
ORG ($/256+1)*256-$

ERROR: MOV A
MOV A,B,C

CORRECTION:
MOV A,B

ERROR: MVI A,02B
ADI A,79Q

CORRECTION:
MVI A,OOOOOOlOB
ADI A,77Q

M Multiple Definition--Symbol or
macro is defined more than once.
M occurs on all definitions of
and references to the multiply­
defined s}~bol. Symbols must
be unique in the first five
characters.

ERROR: LOCATIONl:
LOCATION2:

CORRECTION:
LOCI: NOP
LOC2: NOP

NOP
NOP

N Nesting Error--ENDIF, ENDM, or
END statements improperly nested.
IF statement must precede state­
ments which appear in the pro­
gram, followed by ENDIF.

ERROR: ENDIF
CORRECTION:

IF (expression)
statements
ENDIF ---

P Phase Error--Value of an element
being defined has changed be­
tween pass one and pass two
of the assembly.

VI.

CODE DEFINITION EXAMPLE

p

Q

R

S

(ContinuE~d)

During pass one, BEGIN is un­
defined when ORG is encountered.
Assembler assumes it to be at
location zero and begins assem­
bling the program at zero.
During pass two BEGIN is equal
to 5. The location assigned
to every label in the program
will then be increased by 5,
producing the P error.

Questionable Syntax--Omission
or misspelled opcode.

Register Error--Register spe­
cified for an operation is in­
valid for the operation.

Stack OVE~rflow--Assembler's
internal expression evaluation
stack is too large for avail­
able memory. Causes include
using excessively long char­
acter strings, excessive nest­
ed macros, excessive nested IF
statemen1:s, or too complex ex­
presisons.

Nested IF statement occurs
between another IF/ENDIF pair.

ERROR: ORG BEGIN
statements
BEGIN EQU 5
statements

CORRECTION:
BEGIN EQU 5
statements
ORG BEGIN

ERROR: MVO A,B
CORRECTION:

MOV A,B

ERROR: INR 9
CORRECTION:

INR 7

ERROR: IF expression
IF expression
IF expression
statements
ENDIF
ENDIF
ENDIF

CORRECTION:
IF expression
IF expression
statements
ENDIF
ENDIF

T Table Overflow--Assembler's
symbol table space is exhausted,
caused by using excessive sym­
bols in one assembly, or by
accumula"t:ing more macro text
than the assembler can store
in available memory. To correct,
add memory or reduce the number
of labels.

U Undefined Identifier--Symbol
used in an operand field has
never been defined by appearing
in the label field of another
instruction

VII.

ERROR: JMP LABl
CORRECTION:

JMP LABl
statements

LABl instruction

CODE DEFINITION EXAMPLE

v Illegal Value--Value of an op­
erand or expression exceeds range
required for a specific expres­
sion. ThE! MVI instruction, for
example, must be in the number
range a to 255.

VIII.

ERROR: MVI A,257

CORRECTION:
MVI A,255

