
1
•I

i

"::

Advanced
-litformation .
Display Systems

SCICJN
MicroAngelo
MA512

User's Manual
SCION Corporation ©1980

SCION Corporation

Warranty

April 1981

SCION CDrpDratiDn certifies that each cDmputer system will be free frDm defective materials and wDrkman-
ship fDr ninety [90J days frDm date Df shipment tD the Driginal custDmer.

SCION CDrpDratiDn agrees tD CDrrect any Df the abDve defects when the system is returned tD the factDry
prepaid. Written authDrizatiDn must be Dbtained and cDnfirmed in writing by the CustDmer Service Depart-
ment befDre returning the equipment tD the factDry.

Under this warranty, SCION CDrpDratiDn will, at the request Df the custDmer, prDvide the necessary CDm-
ponents required by the custDmer tD CDrrect the equipment in the field. The cDmpDnents will be shipped,
prepaid, Dn a billing memD which will be cancelled upDn receipt Df the defective cDmpDnents at the factDry.
When Drdering cDmpDnents fDr repair Dr replacement, the model number and serial number must be includ-
ed on the custDmer request.

This warranty is invalid if the system is subject tD mis-use, neglect, accident, imprDper instaliatiDn Dr applica-
tion, alteration Dr negligence in use, storage, transportation or handling and where the serial number has
been remDved, defaced or changed.

FOREWORD April 1981

This Spring marks the beginning Df MicrDAngelD's secDnd year Df wide acceptance acrDSS a brDad range Df
applicatiDns. In this system we have attempted tD bring a carefully designed and integrated hard-
ware/firmware/sDftware package tD the marketplace in an affDrdable and pDwerful single bDard graphics
cDmputer. We are pleased tD share Dur excitement in the design Df MicrDAngelD with YDU.

Charles J. Rieger, III
Vice President
Research & Design •

•

•

Content.

1. General Information 7
1.1 Brief System Overview... . .. 7
1 .2 Quick Integration Steps.. B
1 .3 Driving MicroAngelo™ from High Level Software... B

2. System Integration 11
2.1 Changing the Port Addresses.. .. . 11
2.2 Connecting a TV Monitor.. 12
2.3 The Software Interface............ . 12

2.3.1 Sending a Byte to MicroAngeloTM 12
2.3.2 Reading a Response From MicroAngelo™ 13
2.3.3 Restarting MicroAngelo™ 14
2.3.4 Summary of the Control Port... 14

3. Screenware Pak I and Screenware Pak II - the Onboard Software... 17
3.1 ALPHA - the Dumb Terminal Emulator.... 1B

3.1 .1 Dumb Terminal Screen Conventions 1B
3.1.2 Dumb Terminal ASCII Control Codes 19
3.1 .3 Dumb Terminal Printing Options 19
3.1.4 The Dumb Terminal Interface Code 20

3.2 GRAPHICS: The MicroAngelo™ Graphics System 20
3.2.1 GRAPHICS Screen Conventions. 21
3.2.2 GRAPHICS Cursors and Coordinates. 21

4. MicroAngelo™ Commands....................................... 25
4.1 ALPHAMOOE........ 26
4.2 GCURSOR 28
4.3 SCREEN 29
4.4 POINT 30
4.5 VECTOR 31
4.6 REGION 32
4.7 CHARACTER......................... 33
4.8 L1GHTPEN 35
4.9 CROSSHAIRS 37
4.10 MEMORY 38
4.11 UTILITY......... 39
4.12 USER , , 41
4.13 TEST , " , , , 42
4.14 RGRAPHC , 43
4.15 SPLITSCR ' 44
4.16 RPOINT 45
4.17 RVECTOR 46
4.1 B RREGION 47
4.19 CiRCLE....................... 48
4.20 FLOOD 49
4.21 MACRO 50

5. System Details 55
5.1 MicroAngelo™ Memory Map.. 55
5.2 Defining the Alternate Character Set..... 56
5.3 Interfacing Onboard User Code to the Screenware 56
5.4 The MicroAngelo™Physical I/O Ports 57
5.5 Interrupts 57

5.5.1 Enabling/Disabling the Maskable Interrupts 58
5.5.2 Enabling the Real Time Interrupt 58
5.5.3 Connecting Host-Side Interrupts 58

5.6 Connecting a Light Pen 59
5.7 Summary of Hardware Jumper Options and Connectors 59

5.7.1 Hardware Jumpers.. 60
5.7.2 Hardware Connectors 61

5.8 Adapting MicroAngelo™ to Non-S1 DO Bus Systems 63
5.9 Bit Mapping of Display RAM to Video Screen... 64

6. Software Interface Examples 67
6.1 Graphics: Clear Screen, Draw Triangle, Embed in Region 67
6.2 Turn on and Read the Tracking Cross 67
6.3 Write a Message Around the Border of a square :............................... 6B
6.4 Underlining in Dumb Terminal Mode 69
6.5 Sample BASIC Interface....................................... 70
6.6 Interfacing to FORTRAN 71

Appendix 1 - Summary of Screenware Commands... 75
Appendix 2 - The Standard Character Font........ 79
Appendix 3 - Internal Entry Points [Screenware™Pak I) 83
Appendix 4 - Internal Entry Points [Screenware™ Pak II) 87
Appendix 5 - MicroAngelo™Schematics 93 •

•

•

General Information

The MicroAngelo™ Graphics System User's Manual

1. General Information

MicroAngelo™ is an intelligent high resolution refreshed raster scan graphics display system capable of
drawing character and graphics images at high speed on a standard television monitor. Completely contained
on a single IEEE-696 [S100) bus card, MicroAngelo is an independent Z80A-based computer with its own
32K byte display memory and 4K resident operating system, Screenware Pak ITM, or optionally, Screenware
Pak WM [6K). By talking in concise high level commands over a simple inferface, your host computer directs
MicroAngelo in generating graphics and text displays and in controlling the light pen interface. Because of its
self-reliant architectura, MicroAngelo places no computing load or memory space demand on your com-
puter. This means that, after giving directions to MicroAngelo, your CPU can continue with its own com-
puting as MicroAngelo concurrently carries out those directions using its own separate memory and CPU.
The results are a more responsive and convenient graphics/text display system than ever before possible
with traditional graphics board designs.

1.1 Briaf System Overview

The MicroAngelo hardware resides on a single S1 00 bus board. This board contains all the electronics and
software for generating a 51 2 dot wide, 480 dot high, black and white display for a high-resolution TV
monitor [10 mhz bandwidth or better). Since the board includes a ZBOA microprocessor, complete with its
own RAM [32K bytes], EPROM [up to BK bytes), and TV display circuitry, MicroAngelo is actually an in-
dependent, single card computer which when inserted into your computer, appears to your system as two
parallel ports. This architecture makes it possible for your computer to direct MicroAngelo via simple,
powerful high-level graphics commands sent over the two parallel ports, then proceed with its own computa-
tions while MicroAngelo carries out the display generation in parallel. Because of this simple and fast tWG-
port interface, MicroAngelo is easy to integrate and does not require any of your system's valuable addr'ess
space.

The MicroAngelo software, Screenware Pak Ior Screenware Pak II, has been designed so that the system
can be used either as your main console output display, or as a separate graphics display processor, or both.
Logically, the Screenware consists of two largely independent software subsystems called ALPHA and
GRAPHICS. ALPHA emulates a "dumb terminal" interface, while GRAPHICS supports all the graphics
primitives. To get on the air with MicroAngelo as your main output device, you need only implement the sim-
ple interface to ALPHA shown below.

7

1.2 Quick IntegrBtion Steps

(Unless Dtherwise indicated, all memDry addresses and DperatiDn cDdes thrDughDut the manual
are in hexidecimal nDtatiDn.]

TD interface MicrDAngelD tD your cDmputer as the main DUtpUt device, dD the foilDwing three things:

1 . Decide whether Dr nDt the MicrDAngel parallel pDrts, mapped frDm FD-FF, are cDmpatible with
YDur system. If YDur system currently uses any pDrt in this range, YDU may have tD alter the PDrt
Address Jumpers tD SDme Dther 16-pDrt boundary. This procedure is described in the sectiDn en-
titled "Changing the Port Addresses" .

2. Install the fDllowing interface cDde as YDur system's main ["cDnsDle"] Dutput routine. This code
will send the byte in the A register tD MicrDAngelD's ALPHA cDmpDnent, and appear tD YDur
Dperating system tD be a "dumb terminal" interface:

ttyDut
tyD1

push
in
ani
jnz
pDp
out
ret

psw
OF1H
1
ty01
psw
OFOH

save the output byte
read the CDntrDI PDrt
test buffer-full bit
wait until nDt full
restore the DutpUt byte
send it tD the Data PDrt
return

If YDU have changed the pDrt addressing as the result Df Step 1 abDve, replace the references to
output ports FO and F1 in this code to the appropriate new values. The software interface to
MicrDAngelD is described in more detail in the section entitled "Screenware Pak I and Screenware •
Pak II - The Onboard Software"

3. CDnnect MicrDAngelD to a TV mDnitDr, as described in the section entitled "System IntegratiDn".

At pDwer-up time, MicrDAngelD will clear the screen and display the winking text cursDr in the upper left cor-
ner Df the screen.

After getting on the air, you will then be able to take full advantage Df the MicroAngelD graphics facilities,
described in detail in later sectiDns.

1.3. Driving MicroAngelo from High Level SoftwBre

If YDU will be driving MicrDAngelo primarily frDm sDftware written in a higher level language [e.g., BASIC,
FORTRAN], you will find. the interface very straightforward. Read the sectiDn entitled "The SDftware Inter-
face". then refer tD the sectiDns 6.5 and 6.6 for examples.

G
8

System Integration

2. Byetem Integration

The system is supplied fully assembled and tested, and is ready to insert into virtually any 51 00 bus com-
puter after the port addresses have been set to be compatible with the host. [MicroAngelo can be easily
adapted to non-51 00 bus structures. See the section entitled "Adapting MicroAngelo to Non-S100
Systems".] As shipped, the two MicroAngelo ports are mapped as FO and F1 in your system's port address
space. Because of the way MicroAngelo interprets port addresses, however, the hardware will actually res-
pond to S different ports within the group FO-FF, with port addresses FO, F4, FS, Fe responding as one port,
and F1, F5, F9, FD responding as the second port. Before inserting MicroAngelo into your system,
therefore, verify that your system does not already currently use one of these S port addresses.

2.1 Changing the Port Addreeeee

If the MicroAngelo default port addressing is not appropriate for your system, you may move to any other
16 port boundary by altering the Port Address Jumpers J11-J14, which are located near the bottom right
corner of the board. As shipped, all four jumpers are set to logic "1" by default printed circuit traces bet-
ween the center and right hole. To switch a jumper to "0", scratch through the default trace and connect
the center and left hole with a short length of wire. Set J11-J14 according to the following table to obtain
the desired port mapping:

Desired Ports J14 J13 J12 J11

DO-OF 0 0 0 0
10-1 F 0 0 0 1
20-2F 0 0 1 0
3D-3F 0 0 1 1
40-4F 0 1 0 0
50-5F 0 1 0 1
60-6F 0 1 1 0
70-7F 0 1 1 1
SO-SF 1 0 0 0
90-9F 1 0 0 1
AO-AF 1 0 1 0
SO-SF 1 0 1 1
CD-CF 1 1 0 0
DD-DF 1 1 0 1
EO-EF 1 1 1 0
FO-FF 1 1 1 1

For example, to map the ports in the CO-CF group, cut through the default traces on J11 and J12, and
solder in a short wire between the left Bnd center holes on each of these two jumpers.

11

2.2 Connecting a TV Monitor

The final video signals are available at connector JB at the extreme top left of the board. These pins are
numbered 1-6 from left to right, and deliver the following signals:

JB-1 RS.1 70 composite video
JB-2 ground
JB-3 direct-drive TIL video
JB-4 ground
JB-5 direct-drive, horizontal sync
JB-6 direct-drive, vertical sync

The system can drive either a composite video monitor or a direct-drive monitor, or both simultaneously.
Connect a composite video monitor to JB-1, JB-2. Connect a direct-drive monitor to JB-3, JB-4, JB-5,
JB-6.

After setting the port addresses and connecting the TV monitor, the MicroAngelo hardware will be fully
operational in your host system, and you will then be able to install the simple software interface described in
the next sections. The section entitled "System Details" describes other hardware options you may even-
tually wish to use.

2.3 The Software Interface

All communications between your host computer and MicroAngelo occur over the two ports which have
been situated at some 16 port boundary in your system. The lower-addressed port of this pair (e.g., FO) is
the Data Port, the higher-addressed port [e.g., F1] is the Control Port. The Data Port is used for com-
municating B-bit data and command bytes to and from MicroAngelo, the Control Port for handshaking and
for restarting MicroAngelo. The Screenware constantly monitors these two ports in anticipation of the next
graphics command or data byte.

When power is first applied to MicroAngelo, automatic restart circuitry initializes the system hardware
and software. The screen is cleared, all cursors and software options described in sections below are set to
their default values, and the Screenware begins listening over the Data Port for a command or data.

2.3.1 Sending e Byte to MicroAngelo

The Data Port is a latched, bi-directional pathway with handshaking. "Handshaking" means that before
sending a byte, the sender must first verify that the previous byte has been processed by the receiver.
Without handshaking the preceding data or command byte, which may not yet have been acted upon by the
receiver, might Inadvertently be overwritten by the sender's next byte. A latched, handshaking port is essen-
tial when each side of the interface is an intelligent system running asynchronously with respect to the other.
Handshaking applies symmetrically to both sides of the interface.

Handshaking is accomplished with MicroAngelo as follows. The rightmost bit of the Control Port byte will
be "1 " when there is a host command or data byte in the outbound Data Port which MicroAngelo has not yet
acted upon. Thus, before sending any command or data byte over the Data Port, your system should always
read the Control Port, test this "outbound buffer full" bit, and wait for it to become "0", if it is not already.

12

•

•

The following 8080 assembly language subroutine is the standard method of sending a data or command
byte from the host's A register to MicroAngelo [without destroying any other registers]:

dport equ OFOH declare the Data Port address
cport equ OF1H declare the Control Port address

sendbyte push psw save the byte a moment
sdb1 in cport read the Control Port

ani 1 examine the status bit
jnz sbd1 loop if buffer is full
pop psw restore the byte to send
out dport send to the Data Port
ret return

[Note that this code is exactly what would be used if you were driving a dumb terminal.] See the section en-
titled "Software Interface Examples" for an equivalent Interface written in BASIC.

In the opposite direction, when the SCreenware sends the host system a response, an identical
mechanism will cause the SCreenware to wait for the host [i.e., your software] to read the response from
the Data Port before sending the next response byte.

2.3.2. Reeding e Reeponse from MicroAngelo .

The second from the right bit of the Control Port indicates to the host computer whether or not there is a
response byte back from MicroAngelo waiting to be read from the inbound port. When"1 ", this bit indicates
that a response byte is ready to be read over the Data Port; "0" means there is no
byte to be read. When the host reads the byte from the Data Port, this bit is automatically reset to "0" to
inform the Screenware that it is free to send the next response byte, if any.

The following code is the standard method of reading a response from the Screenware. It waits for a
response byte to enter the interface from the MicroAngelo side, then reads it and returns it in the host's A
register [without altering any other registers].

readbyte in
ani
jz
in
ret

cport
2
readbyte
dport

read the Control Port
isolate the"data available" bit
wait if no byte ready yet
read the byte from the Data Port
return

The SENDBYTE and READBYTE routines Implement a complete MicroAngelo interface. In a typical CP/M-
based system, these two subroutines should be coded and placed in the USER 110 area, where they can be
called by high-level system and user software to control MicroAngelo.

13

2.3.3. Restarting MicroAngelo

Your system can restart MicroAngelo at any time via the Control Port. By outputting a 01 byte (actually,
any byte with the rightmost bit" 1") to the Control Port, the host causes the hardware reset condition to
begin on the MicroAngelo board. This reset will persist until a00 byte is sent to the Control Port, and is func-
tionally identical to the power-on reset generated by the MicroAngelo hardware at the time the system was
first turned on. Immediately after the host releases the MicroAngelo from the reset, Screenware Pak I will
clear the screen and reinitialize all modes and parameters to their default values. All current context will be
lost. Screenware Pak II reacts somewhat differently, see Section 4.15 for details.

Example code for restarting MicroAngelo is:

graphrst mvi
out
mvi
out
ret

a,1
cport
a,O
cport

send a "1" to the Control Port

return

You may wish to include this code in your operating system's warm- and/or cold-start initialization code so
that the MicroAngelo display will be resterted each time the host goes through its own initialization se-
quence. On the other hand, the only condition under which you actually have to use the reset is when user
software has sent an erroneous or incomplete command sequence to MicroAngelo, or when user-loaded
code has lost control onboard MicroAngelo (see the UTILITY and USER commands).

2.3.4. Summary of the Control Port

To summarize, the Control Port plays two roles. Reading this port delivers the interface handshaking bits:

7 6 5 4 3 2 1 0

'--XX XX_'-----XX_-.L._XX_-L-XX XX_-L_IF_G

IF: Inbound buffer (from MicroAngelo to host) is full

OF: Outbound buffer(from host to MicroAngelo) is full

XX: Unused

Writing to this port controls the MicroAngelo hardware reset:

•

7

XX

6

XX

5

xx
4

XX

3

XX

2

XX

1 0

xxE]
HR: "1" causes the hardware reset to begin

"0" releases the reset condition, allowing MicroAngelo to restart

XX: Unused

14

Screenware Pak I and
Screenware Pak II

The Onboard Software

3. ScNlllnwaNl Pak I and ScNlllnWaNl Pak II - thll Dnboard Softwarll

Screenware responds to commands and data sent over the Data Port under the conventions described in
the previous section. Screenware can be thought of as two largely independent components: ALPHA and
GRAPHICS. The ALPHA [standing for "alpha-numeric") component manages the graphics display as though
it were a text-only "dumb terminal". This allows you to get on the air quickly, using MicroAngelo as your
system's primary output device. The GRAPHICS component recognizes a variety of graphics commands for
operations such as point, vector, region and special character generation, and light pen control. Because of
the way the Screenware interprets commands and data, ALPHA and GRAPHICS are both always active, so
that you are not forced to be in one mode or the other at each moment, as with some other types of
graphics systems.

Upon receiving a byta from the host over the Data Port, the Screenware first inspects the high-order bit
of the byte. If this bit is "0":

7 6 5 4 3 2 1 o
ASCII CODEL'-J _

the byte is sent to the ALPHA processor. Since the ALPHA processor is emulating a dumb terminal, the
byte will be intarpreted as an ASCII character, and acted upon appropriately. If the code is a printing
character, it is printed on the screen at the current ALPHA cursor, and the cursor is advanced, possibly in-
voking the AUPHA scrolling mechanism. Altarnatively, if it is an ASCII control character [e.g., carriage-
return, backspace), then the AUPHA processor takes the appropriate control action. [The specific ASCII
control codes to which ALPHA responds are described below.) Thus, the ALPHA component provides a corn-
plete dumb terminal emulation.

If the high bit of a received byte is "1 ", the byte is interpreted as a command, with the next five high-order
bits specifying the opcode. Except for opcode 0 [which relates to the dumb terminal emulator), all commands
are handled by the GRAPHICS component.

The Screenware Pak I and Screenware Pak II commands are:

7 6 5 4 3 2 1

O_P_CO_D_E -,-__M_O_D_E_

Opcode Command
Name

Function

Screenware Pak I and Screenware Pak II:

o
1
2
3
4
5
6
7
8
9
10
11

ALPHAMODE
GCURSOR
SCREEN
POINT
VECTOR
REGION
CHARACTER
UGHTPEN
CROSSHAIRS
MEMORY
UTIUTY
USER

select various ALPHA mode options
set or read the graphics cursor
clear the screen, set figure/ground
turn on or read a point
draw a vector [line)
draw a rectangular region
plot or define a graphics character
tum on or off, or read the light pen
control the graphics crosshairs
dump, load screen or memory
arm USER, call user code, arm RTf
call user-defined function

17

Screenware Pak II:

12 TEST perform diagnostic EPROM, RAM, ALPHA, or Mun- t\
ching Squares test

13 RGRAPHC move the graphics cursor by a relative amount
14 SPLITSCR split the screen, or load the default character

generator or ASCII control code group
1"5 RPOINT plot a point at relative displacement from current cur-

sor
16 RVECTOR draw a vector to endpoint specified by relative coor-

dinates
17 RREGION paint a region of extent specified by relative coor-

dinates
18 CIRCLE draw a circle of specified radius at the current

graphics cursor
19 FLOOD flood a bordered region with all 1 's or D's
20 MACRO define, invoke, or delete a named graphics object

21-31 RESERVED reserved for future use

The two rightmost bits of a GRAPHICS command byte are used in specifying a mode or subfunction within
these 20 categories. The ALPHAMOOE command is described below.

3.1 ALPHA - The Dumb Terminal Emulator

At startup time, the Screenware clears the display, displays a winking text cursor in the upper left corner
of the screen, and begins emulating a "dumb terminal" capable of at least a 300 character per second data
rate [3000 baud equivalent] under most conditions. Screenware Pak II enhances this rate to more than
6000 baud. (The limiting factor for the data rate is the scrolling software. For applications requiring higher
data rates. "rolling" instead of scrolling may work to your advantage. See the ALPHAMOOE command.]

Each ASCII code your system sends over the Data Port is treated by the dumb terminal emulator as either
a printing ASCII character or an ASCII control code, and will cause the appropriate screen activity to occur
automatically.

3.1.1 Dumb Terminal Screen Conventione

The ALPHA processor treats the screen as a text grid of 40 lines of 85 characters per line. Row 0 is at
the top, row 39 is at the bottom, column 0 is at the left, column 84 is at the right. The ALPHA CURSOR,
[AR, AC], always identifies the screen position to which the next ALPHA character will be written, and is in-
itialized at restart time to [0, 0).

Characters on the screen are 12 pixels high, 6 pixels wide, and are generated by the Screenware from its
internal character generator table. [Appendix 2 shows this character set in detaiL] However, using the
CHARACTER and/or MEMORY commands, you can define a second, alternate set of 128 characters. [See
the section "Defining the Alternate Character Set" for a description of this procedure.]

18

3.1.2. Dumb Terminal ASCII Control Code8

The ALPHA dumb terminal emulator recognizes and processes the following standard ASCII control
codes:

BS
HT
LF
FF
CR
ESC
DEL

[DB]
[09]
[oA]
[DC]
[00]
[1 B]
[7F)

Backspace (back up to and erase previous character] - .) -' ,
Horizontal Tab [moves to next 8 column boundary]
Line Feed [ignored)
Form Feed [clears the screen) ;.;:'/.'':.' (" eer
Carriage Return [also does a line feed]
Escape (causes the next ALPHA byte to be printed literally]
Delete [treated as BS]

Screenware Pak II conditionally recognizes

HOME
oELEDL
oELEoP
CURUP
CURoN
CURLF
CURRT

[01]
[DE]
[OF)
[11]
[12]
[13]
[14]

Home alpha cursor
Delete text to end-of-line
Delete text to end-of-page

- Cursor up
Cursor down

- Cursor left
Cursor right

3.1.3. Dumb Terminal Printing Option8

The dumb terminal emulator can be conditioned to print text in a number of special modes. If you do not
need any of these modes, no action is required. However, the following modes are available and can be
selected by calls to the ALPHAMooE command described in the section entitled "MicroAngelo
Commands" :

1 . Rgure/ground [whether to print white-on-black or black-on-white characters]
2. Underlining [whether or not to underline characters as they are printed]
3. Overstrike [whether to overstrike or print as usual]
4. Font [whether to use the standard or user-defined font]
5. Cursor [whether or not the winking cursor should be displayed]
6. Scroll [how much to pop up when text would fall off the bottom of the screen]
7. Coordinates [where to print the next text character]

The defaults for these are:

1 . Light Characters on dark background
2. Underlining off
3. Overstrike off
4. Standard font
5. Visible cursor
6. 1o-Iine pop-up
7. Starting cursor coordinates at row 0, column 0

See the ALPHAMOOE command if you wish to change any of these defaults.

19

3.1.4. The Dumb Terminal Interfaca Code

Because of the ALPHA component's ability to emulate a standard terminal, MicroAngelo will become your
system's main output device after a simple integration step, To make MicroAngelo your main output device,
install the following code in your system's User area as the subroutine to be called to output the A register to .\""
the screen. In this code [which is repeated from the section entitled "Quick Integration Steps"), DPDRT and
CPDRT refer to the two communications ports described earlier. Unless you have changed the port mapp-
ing, these are FO and F1 , respectively.

dport equ OFOH declare the Data Port
cport equ OF1H declare the Control Port

ttyout push psw save the output character
tt01 in cport read the MicroAngelo Control Port

ani 1 test the output status bit
jnz tt01 loop if interface buffer still full
pop psw send the character
out dport to the MicroAngelo Data Port
ret return

If you wish warm- and/or cold-starts of your system to restart MicroAngelo, also insert the following reset
code in your host system's initialization sequencersl:

ttyrst mvi a,1 send a hardware reset
out cport to the Control Port
mvi a,O release the reset condition
out cport
ret retum

3.2. GRAPHICS - The MicroAngelo Graphica System

The GRAPHICS processor is responsible for plotting points, vectors, regions and characters of
special size or orientation, and for controlling the light pen interface. GRAPHICS responds to various com-
mands described in the section entitled ..MicroAngelo Commands", and is largely independent of the ALPHA
processor, which emulates a dumb, text-only terminal. The sections below describe the GRAPHICS conven-
tions and cursors.

20

3.2.1. GRAPHICS Screen Conventions

The Screen is a 512 wide by 480 high grid of on/off pixels ("picture elements"). X coordinates range from
0-511 left to right, Y coordinates from 0-479 bottom to top. In the descriptions below, the term "graphics
coordinates" refers to this coordinate system. Since a graphics coordinate requires 9 bits, two bytes are
used when specifying a graphics coordinate to MicroAngelo. By convention, the high byte is always sent first,
the low byte second. For example. to send the coordinate 293 decimal (125 hex), send a first byte of 01
hex, a second byte of 25 hex. Any graphics X coordinate larger than 511 or Y coordinate larger than 479
sent to Screenware will be clipped to its maximum value.

A pixel is "on" when a "1" bit is stored in its corresponding location in the MicroAngelo display memory.
However, whether an "on" condition is seen as a light dot on a dark background or a dark dot on a light
background is determined by the setting of the screen's figure/ground hardware. described in the SCREEN
primitive below.

3.2.2. GRAPHICS Cursors and Coordinates

The Screenware continously maintains six cursor and coordinate pairs:

[AR,AC) the current row and column of the ALPHA CURSOR; AR ranges from 0-39 top
to bottom, AC from 0 to B4 left to right

(AX,AY] the graphics coordinates of the lower left pixel of the character at [AR,AC)

[CX,CY] the main GRAPHICS CURSOR'S coordinates

[LX.LY] the coordinates of the most recent light pen firing

(TX.TY] - the graphics coordinates of the tracking cross

(HX,HYj the graphics coordinates of the crosshairs

(AR,AC) and [AX,AY) are maintained by the ALPHA component. The others are described in the following
sections. and are all initialized to (0,0] at restart time.

21

MicroAngelo
Commands

4. MicroAngelo Commands

This section describes the 12 Screenware Pak I and Pak II commands, and 9 Screenware Pak II com-
mands. In these descriptions the calling sequence is Indicated by

CALL: (hex opcode) (byte) . . . (byte)

I.e., to use the command, send the hex opcode followed by the specified byte-sized parameters, all over the
Data Port. MlcroAngelo responses, If any, are Indicated by

RESPONSE: (byte) . . . (byte)

If a command generates responses, your software must always read those responses. Otherwise, the
Screenware Will become backlogged and will eventually stop responding until any outstanding responses are
read.

The first command, ALPHAMOOE, is used to set the various dumb terminal printing options, and relates
more to the ALPHA component than to the GRAPHICS component. The remaining commands relate to
MicroAngelo graphics. Appendix 1 summarizes all commands and gives decimal and octal equivalents for the
opcodes.

25

4.1. ALPHAMOOE

7 6 5 4 3 2 1 o
OPCODE 0 ALPHAMDDE GJL_O__O O O__O__M__M_

MODE 0: SET ALPHA MODE BITS
CALL' BO (mode)
RESPONSE: none

The ALPHA MODE word IS set to the (mode> byte. The format of the ALPHA MODE word is:

Isc I EC I HS I cu I Fa IOS I UL

SC "0" [PAK I) means do not clear screen or home (AR,AC]
"1" [PAK I) means clear screen and home (AR,AC]
"0" (PAK II) means do not clear alpha area or home [AR,AC)
"1" [PAK II) means clear alpha area and home (AR,AC)

[SC is not actually stored as part of the ALPHA MODE word, but
has only a one-time eHect at command time.]

EC "0" (Pak II only) disables special ASCII code Interpretation
"1" [Pak II only) enables special ASCII code interpretation

HS "0" (Pak II only] selects normal mode
"1" [Pak II only) selects high speed mode

CU "0" enables display of the winking cursor
"1" inhibits display of the cursor

FO "0" selects the standard Screenware Pak character set
"1" selects the user define character set

OS "0" selects normal erase-before-print mode
"1 " selects character overstrike mode

UL "0" inhibits underlining
"1" turns on underlining

FG "0" selects light characters on dark background
"1" selects dark characters on light background

2&

Bits 20H and 40H Df the ALPHA mDde wDrd have meaning in Pak II. Bit 20H Df the ALPHA MODE wDrd IS
nDW defined as the "high speed select" bit. When set tD 1, the new high speed ALPHA mDde IS selected,
when set tD 0 the nDrmal [althDugh alsD SDmewhat imprDved) mDde is selected. the pDwerDn default is nDr-
mal mDde. In high speed mDde, Dnly the innermDst B scan lines Df the character are generated, leaving the
tDp and bDttom 2 Df all characters' 12 scan lines ungenerated. While this is adequate fDr all characters in
the default character set, user-defined characters that make use Df the tDp Dr bDttDm 2 lines will nDt be fully
generated in high speed mDde. AdditiDnally, the high speed mDde ignDres the figure/grDund, underline, and
Dverstrike DptlDn bits.

Bits 40H Df the ALPHA mDde wDrd gDverns whether Dr nDt the special ASCII cDntrDI cDdes fDr cursDr and
screen CDntrDI will be enabled [see the SPLITSCR cDmmand). When this bit is 1 , special cDdes will be pro-
cessed, and will take precedence Dver any Dther interpretatiDn Df thDse B ASCII characters. When this bit is
o [the pDwer Dn default), codes will nDt be recDgnized.

MODE 1 : POSITION ALPHA CURSOR
CALL: B1 (rDw) (cDI)
RESPONSE: nDne

The ALPHA CURSOR is set tD [(rDw), (CDI>]. This "escape sequence" allDws fDr quick repDsi-
tiDning Df the curSDr. Subsequent text will be printed starting at the new locatlDn.

MODE 2: READ ALPHA CURSOR
CALL: B2
RESPONSE: (rDW) (cDI)

The Current ALPHA CURSOR locatiDn is returned, row first then cDlumn.

MODE 3: SET ALPHA SCROLL
CALL: B3 (n)
RESPONSE: nDne

The ALPHA scrDIl parameter is set tD <n) . If <n) = 0, "rDIl mode" is selected. In this mDde,
rather than pDpping up, the curSDr wraps arDund tD the tDp line and clears Dne line at a time In ad-
vance as it reuses the screen. This mDde is fastest, since it requires nD pDp-Up time, but can be
sDmewhat visually cDnfusing. If (n) is greater than 0 and less than 40, the screen will be pDpped
up (n) lines each time text is abDut tD fall Dff the bDttDm . If <n) is greater than 39, the entire
screen will be cleared at pDp-Up time, and new text begun at the tDp.

Notes

The SPLITSCR cDmmand augments the ALPHAMODE cDmmand and prDvides tWD Dther services relating
tD the ALPHA facility. In particular, the ALPHA screen can now be restricted tD a user defined number Df
bDttom screen lines. When the screen has been split by this command, issuing the ALPHA screen clear
command clears Dnly this bottom regiDn. Also, the scroll parameter applies to this bottom region, and is set
by SPLITSCR. Refer to the SPLITSCR sectiDns fDr details.

27

4.2. GCURSOR

OPCODE 1 - GCURSOR

MODE 0: SET GRAPHICS CURSOR
CALL: 84 <xh > (xl> <yh > <yl >
RESPONSE: none

7 6

The Graphics cursor [CX,CYl is set to the values specified. ((xh >is the high byte of the CX coor-
dinate, <xl > is the low byte, (yh > is the high byte of the CY coordinate, <yl > the low byte.) The
main graphics cursor is never actually visible, but serves as the relative origin of several graphics
operations. (CX,CYj is automatically moved by several graphics operations.

MODE 1: READ GRAPHICS CURSOR
CALL: 85
RESPONSE: <xh) <xl > <yh) <yl)

The current (CX,CYj coordinates are reported.

MODE 2: SET (CX,CYl TO (AX,AYj
CALL: 86
RESPONSE: none

CX is set to AX, CY is set to AY. This is useful for coordinating text and graphics.

MODE 3: SET [CX,CY] TO (TX,TY]
CALL: 87
RESPONSE: none

(CX,CYj are set to [TX,TY).

28

4.3. SCREEN

o
M

1

M

2

o
3

1

4

o
5

o
67

[2]0'----- --'- ---JOPCODE 2 - SCREEN

MODE 0: CLEAR SCREEN
CALL: BB
RESPONSE: none

The display screen is cleared by turning all pixels" off". If the figure/ground has been set to Iight-
on-dark, the screen goes completely dark. If the figure/ground has been set to dark-on-light, the
screen goes completely light.

NOTES

In Screenware Pak II the CLEAR SCREEN command applies only to the top region of the screen, in case
the SPUTSCR command has been issued to divide the screen between top [graphics/text] and bottom [dumb
terminal text only]. If the screen is not divided [i. e., all 40 lines are allocated to the ALPHA screen), CLEAR
SCREEN will clear the entire screen. Refer to the SPUTSCR command for details. Also, the tracking cross
and crosshairs are momentarily removed [if on] during a clear so that they are not erroneously erased.

MODE 1: SET SCREEN FIGURE/GROUND
CALL: B9 (fg >
RESPONSE: none

The figure ground is set according to the rightmost bit of the following byte, (fg >. A "0" bit
selects Iight-on-dark, a "1" bit selects dark-on-Iight.

MODE 2: TOGGLE SCREEN FIGURE/GROUND
CALL: SA
RESPONSE: none

The current figure/ground is toggled. This is useful, for example, in rapid screen flashes to attract
the user's attention.

MODE 3: READ SCREEN FIGURE/GROUND
CALL: BB
RESPONSE: (fg >

The current figure/ground status is returned as the rightmost bit of the response byte.

29

0 0 1__1_-,-_M M-----,

4.4 POINT

OPCOOE 3 - POINT

MODE 0: TURN POINT OFF
CALL: 8C (xh > (xl> (Vh > (Vi>
RESPONSE: none

7 6 5 4 3 2 1 o f'

The point at the specified graphics coordinates is turned off. [CX. CYj are set to this location.

MODE 1: TURN POINT ON
CALL: 80 (xh > (xl> (vh > (Vi>
RESPONSE: none

The point at the specified graphics coordinates IS turned on. [CX, CYj are set to this location.

MODE 2: COMPLEMENT POINT
CALL: 8E (xh > (xl> (Vh > (Vi>
RESPONSE: none

The point at the specified graphics coordinates is complemented. (CX, CY) are set to this location.

MODE 3: READ POINT
CALL: 8F (xh) (xl> (Vh > (Vi>
RESPONSE: (val>

A byte containing onlv the requested pixel is returned. If this byte is zero, the point is off; if non-
zero, the point is on. (CX, CYj are set to this location.

".. 1- I

30

4.5 VECTOR

7 6 5 4 3 2 1 0

OPCOOE 4 - VECTOR

MOOE 0: TURN VECTOR OFF
CALL: 90 (xh) (xl) (yh) (yl)
RESPONSE: none

__0 1 0__0_-,-_M M---..J

All points lying along the vector between and including [CX, CYj and the coordinates in
the command are turned off. [CX, CYj are set to the new endpoint after the operation.

MOOE 1: TURN VECTOR ON
CALL: 91 (xh) (xl) (yh) (yl)
RESPONSE: none

All points lying along the vector between and including [CX, CYj and the coordinates specified In
the command are turned on. [CX, CYJ are set to the new endpoint after the operation.

MOOE 2: COMPLEMENT VECTOR
CALL: 92 (xh) (xl) (yh) (yl)
RESPONSE: none

All points lying along the vector between and inclUding [CX, CYj and the coordinates specified in
the command are complemented. [CX, CYJ are set to the new endpOint after the operation.

MOOE 3: NO OPERATION

31

4.6 REGION

OPCODE 5 - REGION

76543210

C2JL_0__0 1 0 1 M__M_

,

MODE 0: TURN REGION OFF
CALL: 94 (x1 h) (x11) (y1 h) (y11) (x2h) (x21) (y2h) (y21)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner pOints given in the
command are turned off. [CX, CYj are unaffected.

MODE 1 : TURN REGION ON
CALL: 95 (x1 h) (x11) (y1 h) (y11) (x2h) (x21) (y2h) (y21)
RESPONSE: none

All bits In the rectangular region identified by the diagonally opposing corner points given In the
command are turned on. [CX, CYj are unaffected.

MODE 2: COMPLEMENT REGION
CALL: 96 (x1 h) (x11) (y1 h) (y11) (x2h) (x21) (y2h) (y21)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner points given in the
command are complemented. [CX, CYj are unaffected.

MODE 3: NO OPERATION

32

Q

4.7 CHARACTER

7 6 5 4 3 2 1 o
OPCOOE 6 - CHARACTER GJ__0__0 1 1 M_

MODE 0: PLOT GRAPHICS CHARACTER
CALL: 98 (c)
RESPONSE: none

The character identified by the following byte, (c). is plotted at (CX, CY], and (CX, CY] is ad-
vanced to the position at which the next graphics character of similar type would be plotted. (CX,
CY] defines where the lower left pixel of the character (with respect to the character's frame of
referenceJ is to be plotted. The low-order 7 bits of (c) are the ASCII code of the desired
character. The high-order bit identifies the font: "0" for standard, "1" for user-defined. (These
are the same fonts as used by ALPHA.] The plotting of the character is carried out according to
the four mode bits In the GRAPHICS MODE WORD (see MODE 1 below]:

xx I XX I XX I XX I FG [SZ] 00

00: These two bits determine the character's print direction
and orientation, as follows:
0: left to right, character upright
1: right to left, character upside-down
2: bottom to top, character 90 degrees ccw
3: top to bottom, character 90 degrees cw

S2: "0" selects normal size character [6 by 12]
"1" selects double size character [12 by 24]

FG: "0" selects light on dark figure/ground
"1 " selects dark on light figure/ground

For example, to write a double-size, dark on light message up the left edge of the screen
(characters 90 degrees CCWj, set the mode word to DE. Note that GRAPHICS characters plot-
ted by this command have no relation to the ALPHA component, except that both rely on the
same fonts. 8ecause of the added complexity, the GRAPHICS mode character plotting takes
somewhat longer than ALPHA mode.

33

MODE 1: SET GRAPHICS CHARACTER MODE
CALL: 99 (mode>
RESPONSE: none

The GRAPHICS MODE word is set to (mode>. The modes thus defined apply to all subsequent
GRAPHICS characters. [See above).

MODE 2: DEFINE ALTERNATE CHARACTER
CALL: 9A (asc > (s11 > ... (sO)
RESPONSE: none

The 6 by 12 bit pattern for ASCII character code (asc) is defined and inserted into the user-
defined font. The bit pattern is sent as 12 bytes (s11) , ... , (sO) which represent 12 scan
lines of the character, from top to bottom. Each (si > byte's low order 6 bits define the 6 pixels
across that scan line of the character. For example, to define ASCII code 13 as a bold, full-height
..1", you would call the Screenware as follows:

9A 13 3F 3F DC DC DC DC DC DC DC DC OC DC

When printed, this character would then appear on the screen as:

• • • • • •
• • • • • •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

To install a complete user font, the UTILITY primitive's block DEPOSIT mode is faster. The user-
defined font is stored in MicroAngelo's memory beginning at address OF94DH. By deposir.ing
12'12B = 1536 continuous bytes starting at this address, you will effectively be loading the
entire user-defined font in one command.

MODE 3: LOAD DEFAULT CHARACTER SET [Screenware Pak II only)
CALL: 9B
RESPONSE: none

The standard MicroAngelo character set in EPROM is copied to the user-defined font region.
Note that this region may also be in use for other purposes [see the USER and MACRO com-
mands). so that care should be taken in managing this storage. This command is useful when the
user Wishes the alternate character set to be largely similar to the default, except where changed
via the DERNE ALTERNATE CHARACTER command.

34

4.8 LIGHTPEN

7 6 5 4 3 2 1 o
OPCODE 7 - L1GHTPEN 0L_0__D 1 1 1 M M_

•

The light pen interface [described electrically in the section entitled "Connecting a Lightpen") provides a
method of communicating with host software by pointing rather than typing. When operating, the light pen
will generate pulses that are converted to coordinates by the Sereenware. In Screenware, the light pen soft-
ware is always enabled, and is always ready to record the most recent light pen signal coordinates, [LX, LY).
These coordinates are accurate to two pixels vertically and horizontally when a quality light pen is used [see
the section entitled "Connecting a Light Pen"].

When the "tracking cross" is turned on [and visible as a small complemented cross on the screen], any
light pen activity within the vicinity of the cross is interpreted as a command to adjust the cross so that it is
dead-centered under the light pen. With the Screenware continulusly [and at high speed) adjusting its loca-
tion to remain under the light pen, the cross appears to follow the pen where ever the user moves it. When
the tracking cross is enabled, its coordinates are known as [TX, TY].

The following commands deal with the light pen interface.

MODE 0: TURN TRACKING CROSS OFF
CALL: 9C
RESPONSE: none

The light pen tracking cross is removed from the screen, if present. The system powers up with
the cross off.

MODE 1 : TURN TRACKING CROSS ON
CALL: 90 (xh) (xl) (yh) (yl)
RESPONSE: none

If the tracking cross is on, it is turned off. The cross is then displayed at the specified coordinates,
and [TX, TY] are set to this position.

MODE 2: READ TRACKING CROSS
CALL: 9E
RESPONSE: 00

or
01 (xh) (xl) (yh) (yl)

The current tracking cross coordinates, [TX, TY). are returned.

35

MODE 3: READ LIGHT PEN
CALL: 9F
RESPONSE: 00

or
01 (xh) (xl) (yh) (yl)

Regardless of whether or not the tracking cross is on, If the light pen has fired since the last
reading via thiS command, a 01 byte, followed by the most recent light pen coordinates, IS return-
ed. A 00 response IS returned if the light pen has not fired since the last reading. The light pen IS
logically reset to await another firing. This mode is useful, for example, in detecting when the user
is pointing at a menu item on the screen.

Notes

In Screenware Pak II the tracking cross pen-following algorithm has been improved to provide a more
stable cross display, and to provide better tracking response. Also, the tracking cross is now momentarily
removed (if on] during either an ALPHA or GRAPHICS screen clear or ALPHA scroll to prevent its erroneous
erasure or duplication

36

4.9 CROSSHAIRS

7 6 5432' °
OPCOOE 8 - CROSSHAIRS l2J,--_o ,__o o o--,,--_M__M_

The Screenware "crosshairs" are a full-screen vertical line and horizontal line which, when visible, in-
tersect at the current crosshair coordinates [HX, HY]. Crosshalrs are useful for indicating the coordinates
of the next graphics operation in an Interactive design enVlronrnent. The crosshairs are independent of the
main graphics cursor [CX, CYj and the tracking cross and lightpen coordinates [TX, TV) and [LX, LY].
However. simple user software that constantly monitors these other coordinates can logically couple the
crosshairs to any of them.

MODE 0: TURN CROSSHAIRS OFF
CALL AD
RESPONSE: none

If the crosshairs are on, they are turned off. [HX, HYj remain as they are.

MODE': DRAW CROSSHAIRS
CALLA' (xh) <xl) (yh) <yl)
RESPONSE: none

If the crosshairs are on, they are turned off. The crosshairs are then turned on at the specified
coordinates, and [HX, HY) are set to these coordinates.

MODE 2: READ CRDSSHAIRS
CALL: A2
RESPONSE: <xh) <xl) (yh) (yl)

The current crosshair coordinates, [HX, HYj, are returned.

MODE 3: DRAW CROSSHAIRS AT [CX, CYj
CALL: A3
RESPONSE: none

If the crosshairs are on, they are turned off. [HX, HYj are set to [CX, CY) and the crosshairs are
drawn at this new location.

Notell

In Screenware Pak II the crosshairs are now momentarily removed [if on) during ALPHA or GRAPHICS
screen clears and for ALPHA scrolling to prevent their erroneous erasure or duplication.

37

4.10 MEMORY

7 6 5 4 321 0

OPCODE 9 - MEMORY

MODE 0: DUMP SCREEN
CALL: A4
RESPONSE: (b1) ... (b7800)

C2J__0__1 0 0 1--,-_M M_

The 7800H bytes of the display screen are reported. top screen scan line first, working left to
right. This command is useful for storing screen images on disk.

MODE 1: LOAD SCREEN
CALL: A5 (b1) ... (b7800)
RESPONSE: none

The 7800H bytes of the display screen are loaded, top screen scan line first, working left to right.
This command will load a previously dumped screen image.

MODE 2; EXAMINE MEMORY 8LOCK
CALL: A6 (nh) (nl) (ah) (al)
RESPONSE: (b1) ... (bn)

The N bytes [specified by (nh) (nl») of MicroAngelo's memory starting at the address
specified by (ah) (al) are reported. See the section entitled "The MicroAngelo Memory Map"
for a description of how the system's memory space is allocated.

MODE 3: DEPOSIT MEMORY 8LOCK
CALL: A7 (nh) (nl) (ah) (al) (b1) ... (bn)
RESPONSE: none

The memory block of specified length and starting address is loaded, using the N bytes following
the command. This command is useful for loading the alternate font, and for loading user graphics
code to augment the Screenware. To load a complete user-defined font of 128 ASCII characters
of 12 scan lines [bytes) each. say:

A7 06 00 F9 40

then write the 6DOH font bytes to the Data Port. [See the section entitled"Defining the Alter-
nate Character Set" for more details.) Before loading user code via this command, see the sec-
tion entitled "The MicroAngelo Memory Map".

Notllll

In Screenware Pak 11 memory deposits and screen loads run much faster because of a change in protocol.
Memory examines and screen dumps run slightly faster.

38

4.11 UTILITY

7

DPCDDE 10 - UTILITY

MODE 0: SET USER COMMAND ADDRESS
CALLAS <ah) <al)
RESPONSE: none

6 5

The address of the code to be called by the USER command (opcode 11] is defined as (ah) (al) .
The code should have been deposited into MicroAngelo's RAM via a MEMORY command prior to
this command. See the section entitled "The MicroAngelo Memory Map" before installing any
user code.

MODE 1 : CALL USER CODE
CALL: A9 (ah) <al) (imask) (iah) (ial)
RESPONSE: none

The Screenware calls the user code at the specified address. The user code gains control of the
MicroAngelo CPU, may alter all registers except the stack pointer, and can return by executing a
RET instruction. If the stack pointer is altered, the Screenware should be reentered at location 0,
[Pak I] or location 69H [Pak II], i.e., restarted.

As the user code is called, 3 types of logical interrupts can be enabled: DFHI [Data From Host],
DTHI [Data To Host], and LPI [Light Pen). [See the section entitled "Interrupts" for a description
of MicroAngelo interrupts.] (imask) identifies which [if any) interrupt sources to enable:

7 6 5 4 3 2 1 0

EJ XX XX XX XX LP OT

LP enable Light Pen interrupts
OT enable Data To Host interrupts
OF enable Data From Host interrupts

When an enabled interrupt occurs, the user interrupt handling code at the address specified by <
iah) (ial) will be called under the following context: (1) interrupts will be disabled, [2J an EX AF,
AF', EXX sequence will have been done to save all registers, [3] the A register will contain the in-
terrupt mask [in the format shown above] defining the source[s] of the current interrupt. After
finishing, the interrupt handling code should return via the sequence EX AF, AF', EXX, EI, RET.
This CALL command will permit you to install a completely independent operating system within
MicroAngelo, and will give this operating system access to interrupts.

39

MOOE 2: SWITCH REAL-TIME INTERRUPTS
CALL: AA 00

or
AA 01 <ah) (al)

RESPONSE: none

If the second byte of the command is 00, the 1/60 second interval interrupts are disabl-
ed. If the second byte is 01 , real-time interrupts are enabled, and will call the user-defined code at
location : 8h) (al). This code should protect all registers on the steck (i.e., not via an EX AF,
AF', EX>< sequence), and should return via a RETI instruction, since the real-time clock interrupt is
non-maskable. Before arming or using the clock, read the section entitled' 'Interrupts".

MODE 3: FORCE COLD START (Screenware Pak II only)
CALL: AS
RESPONSE: none

A cold poweron sequence is forced, causing the MicroAngelo to be completely reset and-send 8 .
This command is necessary because Screenware Pak II distinguishes be-

tween the first and subsequent hardware resets by storing and reading a flag byte (a byte which
would be extremely unlikely to appear in RAM randomly at poweron.).

40

4.12 USER

OPCOOE 11 - USER

MODES 0,1,2,3: CALL USER PRIMITIVE
CALLS:AC,AD,AE,AF
RESPONSES: user-defined

7

1

6

o
5

1

4

o
3

1

2

1

1

M

o
M

•

This command prDvides a simple interface wherein user-extensiDns tD Screenware sDftware can
be called. BefDre using this cDmmand, first install the user cDde in MicroAngelD's RAM using the
MEMORY cDmmand's DEPOSIT mode. Then declare the cDde's entry address via the UTILITY
cDmmand's MODE O. After this setup procedure, the four USER Dpcodes shDwn abDve will all be
rDuted tD this user code. At call time, the tWD mode bits [i.e., the bits that distinguish the fDur
USER cDmmand Dpcodes] are available tD the user code as the twD rightmDst bits Df the B
register [all Dther bits zerD]. The user code is perrritted tD alter any registers except the stack
pDinter, and should return tD the Screenware via a RET instructiDn. BefDre using this feature,
read the sectiDn entitled "The MicrDAngelD MemDry Map".

Note..

The USER cDmmand will usually CDnsume memDry which is alsD used by the CHARACTER cDmmands [per-
taining tD the user-defined alternate character set]. Since the MACRO facility [Screenware Pak II Dnly] will
alsD require SDme Df this memory, additional care in allDcating this space shDuld be exercised. Refer tD the
MACRO cDmmand fDr details.

41

4.13 TEST [ScreenwBre PBk " only)

7 6 5 4 321 o
OPCODE 12 - TEST

MODE 0: TEST EPROM
CALL: 80 (blocks)
RESPONSE: : cksum)

C2JL_0__' 1 0__0_--'---_M M_

(n) 1024 byte blocks, starting at address 0, of the EPROM are checksummed, and the result
returned as (cksum), computed by summing all bytes in the block, modulo 256. This command
provides a means of verifying that the EPROMs are functioning correctly. Specify 6 blocks to test
all of Screenware Pak II. The checksum for each EPROM is noted on the EPROM's label. When
testing more than one EPROM [i.e., testing 4 or 6 blocks], add the individual EPROMs'
checksums [in hexidecimal) to compare with the TEST EPROM's returned (cksum >

MODE 1 : TEST RAM
CALL: 81
RESPONSE: 0 or

1 (ah) (al > (eb) (fb)

The entire 32K MicroAngelo RAM is tested by writing a cyclic test pattern, which ensures that ..
every possible byte value has been successfully stored and read in every memory location. The
test requires several minutes, and is visible as patterns of changing vertical bands on the screen.
If the test discovers no faults, a 0 response is returned and a cold poweron sequence executed to
reset the system. If a fault is discovered, a 1 followed by the faulty address high and low bytes, ex-
pected data byte, and faulty data byte, respectively, are returned. The Screenware then disables
Interrupts, and enters a halt loop, under the assumption that useful computations are no longer
possible.

MODE 2: ALPHA TEST
CALL: 82
RESPONSE: none

The entire default character set is repetitively printed to the ALPHA screen, exercizing the
figure/ground and underline options in various combinations. All ALPHA modes are left unaffected
by the test.

MODE 3: MUNCHING SQUARES
CALL: 83 (s) (i) (n)
RESPONSE: none

Visually interesting, changing geometric patterns are generated by the Munching Squares
algorithm. The seed (s) and increment (i > are any 8 bit values, and determine the pattern
that will be repetitively generated. (n > , any 6 bit value. determines how many cycles the display
will run through before terminating and clearing the screen [(n) = 0 causes 64 cycles]. Each (
n> unit corresponds to about 45 seconds of real time. Try some of these values of [(s), (i).]
for starters: ['.1], [5,19). [2,2). [7,3].

42

4.14 RGRAPHC [Screenware Pak II only)

7 6 5 4 3 2 1 o
OPCOOE13-RGRAPHC 1 o 1 1 o 1 M M

MODE 0: SET RELATIVE GRAPHICS CURSOR
CALL: 84 : dxh) : dxl) (dyh) (dyl)
RESPONSE: none

The graphics cursor is moved by an offset specified by the four calling bytes. 2's complement
arithmetic is used for negative offsets. As with the GRAPHIC command, RGRAPHC clips if
necessary to keep the graphics cursor in bounds.

MODE 1: NO OPERATION

MODE 2: NO OPERATION

MODE 3: NO OPERATION

43

4.15 SPLITSCR (Screenwere Pak II only)

7

OPCOOE 14 - SPLITSCR

MODE 0: SET ALPHA SCREEN SIZE
CALL: BB (I)
RESPONSE: none

6

01H HOME

OEH DELEDL

OFH DELEDP

11 H CURUP
12H CURDN
13H CURLF
14H CURRT
OCH FF

The screen is logically split between a top graphics/text region and bottom text/scrolling region. (
I) specifies the number of text lines to be allocated as the bottom region, and is clipped to the
range 1-40 if not already in that range. Screenware Pak II powers on with an (I) value of 40
[i.e., the entire screen is available to the ALPHA processor, as in Screenware Pak I). Note that
splitting the screen does not restrict graphics to the top region, but rather only restricts the
ALPHA facility to the bottom region. Two side effects of this command are that the ALPHA cur-
sor is homed, and that the ALPHA scroll parameter [the number of lines to pop up when the
ALPHA region of the screen is full) is set to one-quarter the new ALPHA region height [or I
minimum). However, the user is free to redefine the scroll parameter after a SPLITSCR.
SPLITSCR may be called at any time to redefine the size of the ALPHA area.

MODE 1: DEFINE ALPHA CONTROL CODES
CALL: B9 (c1) ... (cB)
RESPONSE: none

The ALPHA [dumb terminal) processor can now be instructed to recognize eight special ASCII
control codes:

the ALPHA cursor is homed to the top left of the ALPHA
region
text at and beyond the current ALPHA cursor is deleted to
the end of the line
text at and beyond the current ALPHA cursor is deleted to
the end of the page [ALPHA region)
the ALPHA cursor is moved up one line if possible
the ALPHA cursor is moved down one line if possible
the AUPHA cursor is moved left one character if possible
the AUPHA cursor is moved right one character if possible
the ALPHA region is cleared [form feed), and the cursor is
homed

To maintain Screenware Pak I compatibility, the ALPHA processor will interpret these special
codes only when the 40H bit of the ALPHA mode word is set [refer to the ALPHAMODE com-
mand). If the default codes are not acceptable, the user may redefine them via this command. All
codes must be in the range O-IFH [i.e., in the ASCII control code region). While this command re-
quires that all eight codes be specified, it will leave unchanged any code whose new value is not in
this range, allowing for selective alteration of the codes. (c1) ... (cB) correspond in order to
the eight functions listed above. In addition to defining the special codes, this command enables
their interpretation by the ALPHA processor [by setting the 40H bit of the ALPHAMODE word).

MODE 2: DON'T IGNORE LINE FEED
CALL: BA
RESPONSE: none

Where MicroAngelo receives command, L1NEFEED will not be ignored until a cold start.

MODE 3 NO OPERATION

44

{

4.16 RPOINT [ScreenwBre PBk II only)

OPCOOE 19 - RPOINT

7 6 5 4 321 0

0_0 1 1 1 1 ----'_M M_

MODE 0: TURN RELATIVE POINT OFF
CALL: BC (dxh) (dxl) (dyh) (dyl)
RESPONSE: none

MODE 1: TURN RELATIVE POINT ON
CALL BO (dxh) <dxl) (dyh) (dyl)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE POINT
CALL: BE (dxh) (dxl) (dyh) (dyl)
RESPONSE: none

MODE 3: READ RELATIVE POINT
CALL: BF (dxh) (dxl) (dyh) (dyl)
RESPONSE: (val;

These commands are identical to the POINT commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. As with the POINT commands, the graphics cursor is updated to the new ab-
solute screen location resulting from the relative offset.

45

4.17 RVECTOR [Screenware Pak II only)

7 6 5 <1 3 2 1 0

OPCOOE 16 - RVECTOR [2]L_1__0 0 0__0_-,--_M M_

MODE 0: TURN RELATIVE VECTOR OFF
CALL: CO (dxh) (dxl) (dyh) (dyl)
RESPONSE: none

MODE 1: TURN RELATIVE VECTOR ON
CALL: C1 (dxh) (dxl) (dyh) (dyl)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE VECTOR
CALL: C2 (dxh) (dxl) (dyh)' (dyl)
RESPONSE: none

MODE 3: NO OPERATION

These commands are identical to the VECTOR commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. As with the VECTOR commands, the graphics cursor is updated to the new
absolute screen location resulting from the relative offset.

46

(,

4.18 RREGION [Screenware Pak II only)

7

OPCOOE 17 - RREGION

6

MODE 0: TURN RELATIVE REGION OFF
CALL: C4 (dx1h > (dx11 > (dy1h > (dy11 > (dx2h > (dx21 > (dy2h > (dy21 >
RESPONSE: none

MODE 1: TURN RELATIVE REGION ON
CALL: C5 (dx1 h > (dx11 > (dy1 h > (dy11 > (dx2h > (dx21 > (dy2h > (dy21 >
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE REGION
CALL: C6 (dx1 h > (dx11 > (dy1 h > (dy11 > (dx2h > (dx21 > (dy2h > (dy21 >
RESPONSE: none

MODE 3: NO OPERATION

These commands are identical to the region commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. Typically, to paint a region situated with one corner at the current graphics
cursor, RREGION is called with coordinates O,O,OX,OY, where OX and DY are the size of the
desired region. As with the region commands, the graphics cursor is not moved.

47

4.19 CIRCLE [Screenwere Pak II only)

7 6 5 4 3 2 1 °
OPCOOE 18 - CIRCLE

MODE 0: TURN CIRCLE OFF
CALL: C8 (r)
RESPONSE: none

UL-_1__0 0 1 0--,_M M_

Points on the circle of radius (r) centered at the current graphics cursor are turned off. (r)
may be any single byte value. Points on the circle out of range In the Y dimension are clipped.
Points out of range in the X dimension are wrapped around to the opposite side of the screen.

MODE 1 : TURN CIRCLE ON
CALL: C9 (r)
RESPONSE: none

Points on the circle of radiUS (r) centered at the current graphics cursor are turned on. Other-
wise, this mode is identical to Mode 0.

MODE 2: COMPLEMENT CIRCLE
CALL: CA (r)
RESPONSE: none

Points on the circle of radius (r) centered at the current graphics cursor are complemented.
Otherwise. this mode IS identical to Mode O.

MODE 3: NO OPERATION

48

4.20 FLOOD (Screenware Plik II only)

7

DPCDDE 19 - FLOOD

MODE 0: FLOOD WITH ZEROES
CALL: CC (xh) (xl) (yh) <yl)
RESPONSE: nDne

6 o

The bDrdered regiDn cDntaining the interiDr pDint specified by the arguments is flDoded with
zeroes. The regiDn must be cDmpletely bDrdered by zerDes, and its interiDr must be cDmpletely
ed with Dnes fDr the algDrithm tD wDrk properly. The regiDn may be any shape, and the starting in-
teriDr pDint may be arbitrarily chosen. The flood algDrithm is capable in principle Df filling virtually
any regiDn. In practice, hDwever, the algDrithm is limited by stack space, and may not be able to fill
an unusually cDmplex region. Generally speaking, the amount Df stack stDrage will relate to the
degree Df cDncavity detail in the border. Regions too complex fDr the 16-level stack will be rare,
but can be flooded in pieces if necessary. AdditiDnally, certain narrDW 45 degree cDrridDrs [i.e.,
"necks" Df complex regiDns which have a single bit WIde, stair-step type of interiDr) pose logical
prDblems, and cannDt be filled because Df pDtential confusiDn with the regiDn's exteriDr. Since the
flDDd algDrithm checks screen limits, it can also be used tD fill the exteriDr Df an Dbject, even
though there are nD bDrders at the screen edges.

MODE 1 : FLOOD WITH ONES
CALL CD (xh) (xl) (yh) (yl)
RESPONSE: none

The regiDn cDntaining the specified interiDr pDint is flooded with ones. The region must be CDrn-
pletely bordered by Dnes, and its interior must be cDmpletely zeroes. Otherwise, this mode is
identical to Mode D.

MODE 2: FLOOD RELATIVE WITH ZEROES
CALL CE (dxh) (dxl) (dyh) (dyl)
RESPONSE: nDne

This command is identical tD MDde 0, except that the starting interiDr pDint is specified as a
relative Dffset frDm the current graphics curSDr.

MODE 3: FILL RELATIVE WITH ONES
CALL CF (dxh) (dxl) (dyh) (dyl)
RESPONSE: nDne

This cDmmand is identical tD MDde 1, except that the starting interiDr pDint is specified as a
relative offset from the current graphics curSDr.

49

4.21 MACRO [Scrllllnwarll Pak II only)

7 6 5 4 321 0

OPCOOE 20 - MACRO C2JL_1__0 1 0 0-----'L-M M_

The macro facility provides for the definitiDn and automatic display Df cDmmonly used objects. It is useful
both in streamlining the display Df such Dbjects, and in higher speed mDvement Df screen objects than wDuld
otherwise be pDssible. The macrD storage space can be up tD 1536 (decimal) bytes IDng. Up to 255 distinct
macrDS can' be defined in this regiDn, each individual macrD being up tD 256 bytes IDng. A macro is any se-
quence Df commands, exactly as they wDuld be sent nDrmally, and is defined by declaring its number (frDm°
to 254), then sending the bytes which represent the sequence Df MicroAngelD cDmmands tD become its
"body". Macros are executed by the INVOKE MACRO cDmmand described belDw. The ERASE MACRO
command can erase a macrD and return its number tD the available pDDI.

The macrD facility will issue responses to the Mode 0, 1, and 2 cDmmands belDw [no respcnse for Mode
3). A respDnse is either O. tD indicate success, or a number from 1 to 6 indicating that a failure occurred and
its nature:

RESPONSE

°1
2
3
4
5
6

MEANING

SUCCESSFUL TRANSACTION
DEFINITION ALREADY IN PROGRESS
MACRO ALREADY EXISTS
MACRO FACILITY SPACE EXHAUSTED
NO DEFINITION IN PROGRESS
MACRO IS TOO LONG [OVER 256 BYTES)
MACRO DOES NOT EXIST

Response bytes must always be read fDr prDper MicroAngelD prDtocDI tD proceed.

Because of limited MicroAngelD RAM, the macro processor uses the memDry which is also allocated as
the user-defined character font, and/or USER code area. While the user can arrange to use all three
features simultaneously, care must be taken to manage this 1536 byte area properly. Each macrD occupies
2 bytes plus the number of bytes in its body. Each ASCII character in the user-defined character generator
area occupies 12 bytes. Thus, by arranging never tD use the first N alternate character codes, the user can
have a macro stDrage area Df 12'N bytes at the beginning Df the 1536 byte area. TD assist in the manage-
ment Df this shared memory, the size Df the macro definition area can be restricted via the ERASE MACRO
command.

MODE 0: START/STOP MACRO DEFINITION
CALL: DO (n)

Dr
DO FF

RESPONSE: (cDde)

If (n) is any value but OFFH, this command begins the definition of the macro whose reference
number will be (n). The new definitiDn will not be begun if there is anDther definitiDn in progress,
if (n) is already in use as a macrD number, Dr if macrD space has been exhausted. The response
code indicating success Dr one Df these failures should always be read by the user code, since
otherwise the MicrDAngelo tD host communication port will remain blocked. After having opened
the definition, the ADD NEXT MACRO BYTE command is used repetitively to build the macro
body. Having built the body, the user instructs the macro facility to end the definition and "install"
the macro by calling the START/STOP MACRO DERNITION command a second time, but with (n
) = OFFH. At that time, the macro becomes usable by the INVOKE MACRO command.

50

(

MODE 1: ADO NEXT MACRO BYTE
CALL: 01 (byte>
RESPONSE: (code)

(byte) is added to the body of the macro under current definition. A failure code will be returned
if there is no definition in progress, if macro space is exhausted or if the macro has become too
long. In case of failure, the current definition is closed and partially built macro discarded. The user
should always read the response (code>.

MODE 2: ERASE MACRO OR CLEAR FACILITY
CALL: 02 (n >

or
02 FF (sh) (sl>

RESPONSE: (code>

In the first case, if <n > is the number of a defined macro, that macro is deleted from the macro
space, and its storage number returned for reuse. If the named macro does not exist, the ap-
propriate error code is returned. In the second case, when <n) = OFFH, the command is inter-
preted as a macro facility reset directive. In this case, all macros are erased, the number of bytes
of the 1536 shared memory region to be allocated to the macro facility is specified by (sh), (sl
>, which should be in the range 0-1536. After this command, any attempt to build macros
beyond this limit will return a failure code. The macro facility powers up in a reset condition, with all
1536 bytes allowed for macro definitions. Both forms of this command return a condition (code
> , which should always be read by the user.

MODE 3: INVOKE MACRO
CALL: 03 (n >
RESPONSE: none

The macro whose number is <n > is invoked, i.e., its body is fed to the command interpreter just
as if it were coming straight from the user. If there is no macro number (n) , A NO OPERATION
results. While the macro's invocation itself may cause a reponse to be generated, the INVOKE
MACRO command itself never returns a success or failure response. When the invoked macro's
body has been completely read, Screenware Pak II reverts to its normal command loop. However,
since there are cases where it may be convenient for one macro to invoke other macros, Screen-
ware Pak II allows a macro invocation nesting depth of 8. Nestings beyond this depth are ignored.
When a nested macro completes, control is resumed in the previous [calling) macro, and so forth
until the normal command processor is again active. Naturally, care should be exercised in defin-
ing macros, since, if a macro's body is incorrect, it may throw Screenware Pak II and the user out
of logical touch with each other, just as would happen in any improperly formed direct command
sequence.

Macros will typically rely heavily on the new relative cursor, point, vector, and region commands, and on
the new circle and flood commands. Generally, the strategy for writing a macro is to work from the current
cursor, and ensure that the cursor is left either where it was originally. or at some meaningful place for the
next macro [if there will be a sequence of them, or, if they have been nested) to pick up. For macros that are
capable of moving objects at relatively high speed on the screen, use only the complement mode of all draw-
ing commands, so that the first invocation of the macro will draw, the second erase.

51

The following example illustrates how to set up, then use a macro. Suppose the goal is to define a macro
that will draw a triangle with lower left vertex at the current graphics cursor, flood the triangle's interior with
1's, draw a circle of D's inside the triangle, flood the circle's interior with D's, then leave the graphics cursor
at the lower left vertex of the triangle where it began. The sequence of commands that are to form the
macro's body is therefore:

RVECTOR +25 +50 draw first side of triangle
RVECTOR +25 -50 draw second side
RVECTOR -50 0 draw third
RFLOOOO +1 +1 flood triangle interior with ones
RGRAPHC +25 +25 move to triangle center point
CIRCLEZ 15 draw circle with zeroes
RFLOODZ 0 0 flood circle interior with zeroes
RGRAPHC -25 -25 return cursor to starting point

Hence, the sequence which defines this sequence as, say, macro 0 is:

DO 00
D1 C1 D1 00 D1 19 D1 00 D1 32
D1 C1 D1 00 D1 19 D1 FF 01 CE
D1 C1 01 FF D1 CE D1 00 D1 00
D1 CF D1 00 01 01 01 00 D1 01
D1 B4 D1 00 D1 19 D1 00 D1 19
D1 C8 D1 OA
D1 CE 01 00 01 00 01 00 01 00
D1 84 D1 FF D1 E7 D1 FF D1 E7
DO FF

start macro 0 definition
send first vector command
send second vector command
send third vector command
send triangle flood command
send rei cursor move command
send circle command
send circle flood command
send rei cursor move command
terminate and install macro

This macro can then be invoked by calls of the form:

D3 00 invoke macro number 0 at current graphics cursor

52

(
!
r

I'
l

System Details

5. Systsm Ostails

MicroAngelo can be effectively used without a knowledge of the information in this section. However, if you
wish to install a lightpen, read the subsection entitled "Connecting a Ught Pen". If you plan on augmenting
Screenware Pak I or Screenware Pak II with additional software, read this entire section.

5.1 Ths MicroAngelo Memory Map

Unless you plan on sending user code across to MicroAngelo via the MEMORY command, you need not be
concerned with the internal memory map of a Screenware Pak. However, in order to install and interface
user-defined graphics code, it is important to understand how a Screenware Pak uses the MicroAngelo
memory space.

REGION

OOOD-OFFF
OOOD-17FF
100D-7FFF
1BOD-7FFF

BOOD-FFFF

BOOO-F7FF
FBOO-FBBF
FBCD-F93F
F94D-FF3F
FF40-FFFF

USE

Screenware Pak I in EPROM
Screenware Pak II in EPROM
Unimplemented [SW PK I]
Unimplemented [SW PK II)
Read-write memory, subdivided as follows:

Visible display
2 and one-half visible scan lines [which should be kept blanked]
Screenware system stack
User-<lefined character generator, or user code area
Screenware working RAM

If the alternate character set is defined and used, there is no space for user code. If, however, the alter-
nate character set is not used [or if only a portion is used), the region F940-FF3F [1.5K bytes) can be used in
whole or in part for user code.

User code should not make any unusual alterations to the system stack, nor should it alter any location in
the FF40-FFFF region.

55

5.2 Defining the Alternete CharllCter Bet

The alternate character set resides in the F94D-FF3F region of MicroAngelo's RAM. Each character sym-
bol occupies 12 bytes, top scan line first. Thus, the region F94D-F948 holds the symbol for ASCII code 0,
with the top scan line at F940, the bottom line at F948. Within each byte, the low-order six bits define the
pixels across a scan line of the character. The CHARACTER and ALPHAMOoE commands allow you to
select this alternate character set, or toggle between the alternate and standard sets.

The alternate character set can be defined all at once by the Pak II command LOAD DEFAULT
CHARACTEI'l SET [Section 4.7), or by depositing [via the MEMORY command) all128'12 bytes starting at
location F940. [If not all 128 symbols need to be defined, you need not send the entire set, and can use any
remaining space for user code.] Alternatively, symbols for individual ASCII codes can be defined using the
CHARACTER command's Mode 2.

As an example, suppose you wish initially to define altemate symbols for ASCII codes 0-63 [the lower half
of the character set). To do this, you say:

A7 deposit 64'1 2 bytes at F940
03 64'12 = 300 (hex)
00
F9 location F940
40 send the 768 [decimal] bytes

Suppose then at a later time you wish to alter the symbol for ASCII code 7. Then you say:

9A define individual symbol via CHARACTER
07 ASCII code 7

send the twelve bytes, top scan line first

5.3 Interfacing Onboard U.er Code to The Screenware

User code installed in the MicroAngelo RAM will probably need to interact with the Screenware software
primitives. Appendix 3, "Screenware Pak I User Entry Points" and Appendix 4, "Screenware Pak II Entry
Points" gives entry point addresses and calling conventions for the various user-callable Screenware Pak I
and Pak II functions.

56

5.4 The MicroAngelo Physicel 110 Ports

When running YDur Dwn sDftware in the MicrDAngelD memory, you may occasiDnal1y wish tD bypass the
Screenware sDftware and interact directly with the MicrDAngelD hardware. When interacting directly with the
hardware, user cDde has access tD the fDllowing informatiDn as ZBoA I/O pDrts 0-3:

PORT MODE FUNCTION

o Input

Output

1

2

3

Input

Output

Input

Output
Input

Output

Data PDrt, frDm hDst

Data PDrt, tD hDst
Status Bits:
o [rightmDst bit) hDst-to-MicrDAngelD data buffer is full
1 MicrDAngelo-to-hDst data buffer is full
2 Light Pen strDbe has fired
3 Screen Figure/GrDund status
4-7 Unused

The rightmDst bit sets the screen figure/grDund ["0" fDr light Dn dark, "1" fDr
dark Dn light]. All other bits are unused.
Light Pen hDrizDntal CDunter latch [left Df screen is CDunt 0, right Df screen is
CDunt 255). accurate tD 2 pixels
Unused
Light Pen vertical CDunter latch [tDp Df screen is CDunt 0, bDttDm Df screen is
CDunt 239), accurate tD 2 scan lines. Reading this pDrt alsD resets the light pen
interface, allDwing it tD trigger Dn the next light pen strDbe. [See the sectiDn en-
titled "CDnnecting a Light Pen" fDr mDre discussiDn.)
Unused

5.5 Interrupts

There are fDur pDtential interrupt SDurces for the MicroAngelD's ZBoA:

OFHI [Data FrDm HDst) - the hDst has just written a byte tD the MicrDAngelD Data PDrt
OTHI [Data TD HDst) - the hDst has just read a byte from the Data PDrt
LPI [Light Pen) - the light pen has just fired
RTI [Real-Time) - the 60 hz interval timer has just fired

The first three interrupt SDurces are cDnnectable as maskable ZBoA interrupts. The Real-Time Interrupt,
when enabled by a hardware jumper, will generate a ZBO NMI [nDn-maskable interrupt) every 1/60 secDnd.

57

5.5. 'I Enabling/DiaabUng Lha M IIkabla Intarrupts

As shipped, only the LPI and DFHI are physically enabled. The DTHI has been disabled by removing U59 pin
9 from its socket. Reinsert this pin to enable the DTH!. [Doing so will not logically interfere with the Screen-
ware's logical operation. However, it will slow the software down somewhat when sending responses back to
the host.]

To disable the DFHI, remove U59 pin 10 from its socket. To disable the LPI, remove U59 pin 13 from its
socket. [00 not disable these, however, unless you are installing a completely new operating system in
EPROM! The Screenware assumes that these two interrupts are enabled, and will not run properly with
them disabled.] See the UTILITY command [Mode 1] for a description of the logical user interface to these
three maskable interrupts.

5.5.2 Enabling the Real-Time Interrupt

The RTI non-maskable interrupt can be enabled by scratching through the default trace between holes 2
and 3 of J3, and jumpering holes 1 and 2 together. After this procedure, a non-maskable interrupt will be
generated every 1/60 second. See the UTILITY command [Mode 2) for a description of the logical user inter-
face to this non-maskable interrupt.

It should be noted that with the RTI connected, there is a very remote possibility that MicroAngelo will not
power up correctly. Immediately after beginning, the Screenware software stores a specific code in one byte
of its read-write memory to remind itself that ATI interrupts are logically disabled. If, however, an RTI occurs
in the several microseconds between powering on and storing this disabling code, and if the MicroAngelo
memory randomly happens to power up with this special code already present in the RTI enabling byte [very
unlikely), then the Screenware will erroneously branch to what it thinks is the user-defined RTI handling code.
This, of course, would cause the system to lose control. To be absolutely certain that MicroAngelo has
powered up correctly with the RTI enabled, use the MEMORY command to examine the RTI logical status
byte at location FFC5 immediately after system power-on [i.e., put this in your cold-start initialization code].
If this byte is not DCCH, keep resetting MicroAngelo [over the Control Port] until it is. Then reset the
system one final time. [The chance of a bad power-up because of these circumstances is quite remote. You
can therefore get along without these procedures for all but the most critical applications.)

5.5.3 Connecting HOllt-Bide Interrupte

Jumper J5 on the MicroAngelo board can be set so that the hOllt will be interrupted whenever
MicroAngelo reads or writes a byte over the Data Port. J5 Pin 5 goes to logic "0" when MicroAngelo writes
a byte to the host. J5 Pin 10 goes to logic "0" when MicroAngelo reads a byte from the host [i.e., when the
host can write another byte to MicroAngelo]. J5 Pins 6,1,7,2,8,3,9,4 connect to the S1 00 bus vec·
tored interrupt lines [S100 fingers 4-11, respectively]. By Jumpering J5 Pin 5 and/or J5 Pin 10 to these
vectored interrupt lines, you can route these two interrupt Signals to the host CPU, IT it is equipped to pro-
cess them. Doing so permits the host operating system soft\vare to support an interrupt-driven protocol
with MicroAngelo.

58

5.6 Connecting a Light Pen

Connector JA at the top right corner of the board IS the Light Pen Connector. Pin1 accepts the rising edge
triggered Light Pen Strobe, Pin 2 is the Light Pen Ground connection, Pin 3 accepts the active high Light Pen
Enable, and Pin 4 is a regulated + 5 volt, 100 ma power source for the light pen. When Pin 3 IS a logic "1"
and a positive edge occurs on Pin 1 , the light pen hardware latch captures the display counters to record the
X-Y location of the light pen. Further positive edges at Pin 1 will not be honored until the Screenware soft-
ware [or user software) reads the counter value from the light pen hardware latch. As shipped, both Pin 1
and Pin 3 are pulled down to logic "0" [by resistors R18, R19, respectively] in the absence of a light pen.

If you wish to connect a light pen that generates both the strobe and enable Signals, simply connect all 4 pins
as described. [If your light pen is of the low-power type, you may have to remove R18 and R19, since these pull-
down resistors may present an excessive current drain to the light pen.) If your light pen has no enable line,
jumper Pin 3 and Pin 4 together to enable the light pen permanently.

See the L1GHTPEN command and the section entitled "Interrupts" for descriptions of the logical light pen
interface and light pen interrupts.

5.7 Summary of Hardware Jumper Options and Connectors

There are 15 jumpers and 3 connectors on the MicroAngelo board. The tables and diagram below sum-
marize and describe these. For most applications there will be no need to alter any jumpers. Default settings
are indicated with asterisks.

59

5.7.1. Hardware Jumpers

NAME

J1

J2

J3

J4

J6-J10

J11-J14

J15

PINS

1-2'
2-3

1-2'
2-3

1-2
2-3'

1-2
2-3'

1-2'
2-3

FUNCTION

Select 480 visible scan lines
Select 448 visible scan lines
[Note that all Screenware software assumes that there are 480 visible
lines. If you select the 448 option, you must assume responsibility for
managing the display screen.]

Select 4 mhz Z80A operation
Select 5 mhz Z80A operation
A Z80A can usually run at 5 mhz. If you want to increase the speed of the
system, select this option.

Enable 60 hz Aeal-Time Interrupt [ATt]
Disable 60 hz ATI
See section entitled "Interrupts"

Holes 6,1,7,2,8,3,9,4 connect to S1 00 bus fingers 4,5,6,7,8,9,
10, 11 respectively. [These are the vectored interrupt lines.] The signal
at hole 5 is the inverted DTHI interrupt, the signal at hole 10 is the true
DFHI signal [see the section entitled "Interrupts"]. By connecting DTHI-
inverted and/or DFHI-true to vectored interrupt lines, you can arrange
for your host system to be interrupted whenever MicroAngelo reads the
byte last sent from the host, or sends a byte to the host. [See the sec-
tion entitled "Interrupts".) The board is shipped with neither interrupt
source connected.

(These jumpers will allow future EPAOM upgrade to an 8K operating
system]

Select port address bit = "0"
Select address bit = "1"
These four jumpers map the two parallel ports over which you com-
municate with MicroAngelo. See the section entitled "Changing the Port
Addresses" .

Enable OFHI and OTHI interrupts
Disable DFHI and DTHI interrupts
This jumper can cause the MicroAngelo Z80A to be interrupted by com-
munications activities with the host, as described in the section entitled
"Interrupts"

60

5.7.2. Hardware Connectors

NAME

JA

JB

JC

PIN

1

2
3

4

1

2
3
4
5
6

1-20

FUNCTION

Light Pen Strobe. A positive-going signal on this pin causes the Screen--
ware software to update [LX, LV), the light pen coordinates
Light Pen Ground
Light Pen Enable. A logic" 1 " on this pin physically enables the Light Pen
Strobe. It is typically fed by the activation switch in the light pen.
+ 5 volt, 100 ma power source for light pen

Composite Video. Connect a composite video TV monitor to this pin and
Pin 2.
Composite Video Ground
TIL Video. Connect a direct-drive video monitor to this and Pins 4, 5, 6
Direct-Drive Ground
Direct-Drive Horizontal Sync
Direct-Drive Vertical Sync

[Reserved for color interface)

61

0

0
III ... (Tl N
(Tl (Tl (Tl fTl - 0 a>
::> ::> ::> ::> fTl fTl N

::> ::> ::>

o
N
::>

62

o
...J...
o
z
c(
o
0:
U

:::l:

-
U

.,

5.8 Adapting MicroAngelo to Non-S100 Bus Systems

Interfacing MicroAngelo to non-51 00 bus systems is relatively straightforward because of its simple
parallel port connection to the host system. Specifically, MicroAngelo requires the following 5100 bus con-
nections:

5100 PIN

1,51
50,100
2
52
90
40
39
38
89
88
35
36
43
93
92
91
42
41
94
95
83
82
29
30
80
79
46
45
78
77

NAME

+8
GNo
+18
-18
007
006
005
004
003
002
001
000
017
016
015
014
013
012
011
DID
A7
A6
A5
A4
A1
AD
SINP
SoUT
P081N
PWR-8AR

FUNCTION

Unregulated +8 volt power (2 amps)
Ground
Unregulated + 18 volt power [1 amp)
Unregulated - 18 volt power [100 ma)
Outbound data line 7
Outbound data line 6
Outbound data line 5
Outbound data line 4
Outbound data line 3
Outbound data line 2
Outbound data line 1
Outbound data line 0
Inbound data line 7
Inbound data line 6
Inbound data line 5
Inbound data line 4
Inbound data line 3
Inbound data line 2
Inbound data line 1
Inbound data line 0
Address line 7
Address line 6
Address line 5
Address line 4
Address line 1
Address line 0
Input request
Output request
Input strobe
Output strobe

,

The data input and output lines can be tied together to form one 8 line bidirectional data bus. Commands
and data are written to MicroAngelo on the coincidence of sour = "1", PWR-8AR = "0" and Board
Select. Responses and status flags are read from MicroAngelo on the coincidence of SINP = "1", PoBIN
= "1" and Board Select. Board Select occurs when address lines A7-A4 match the settings of jumpers
J14-J11 and A1 = "0". On a read or write operation, address line AD determines whether the Data Port
or Control Port is selected.

63

For a stand-alone environment in which MicroAngelo will be powered by its own power supply and will be
unrelated to its host's address space, a simple bidirectional parallel port inteMace can be implemented as
follows:

1. Tie the data inbound and outbound lines together and route them to the host as the 8 bit
bidirectional parallel I/O port.

2. Tie A7, A6, A5. A4 permanently high [to match the default jumpers J14-J11], and tie A1
per.manently low.

3. Tie P081N permanently high, PWR-8AR permanently low.

4. Route AD to the host as the Data/Control Port select line [i.e., MicroAngelo looks like 2 logical
I/O ports over one physical I/O port connection).

5. Route SINP and SOUT to the host as the input and output command lines.

Using this 12 conductor logical interface to the host [8 data lines, AD, SINP, SOUT, ground], MicroAngelo
becomes a stand-alone graphics computer compatible with virtually any type of host system. By connecting
the interrupt lines as described in the section entitled "Interrupts" and routing them to the host, the inter-
face can also support a full interrupt protocol.

5.9 Bit Mapping of Display RAM to Video Screen

The address space of the MicroAngelo from locations 8000 to OFlFF is RAM memory that is displayed on
the video screen. Each of the 245, 670 bits within this range appears as a single picture element [pixel] on
the screen. These bits are mapped onto the screen in a predefined way by the MicroAngelo hardware. The
top leftmost point on the display is the most significant bit of the byte stored at location 8000. The point im-
mediately to its right is the 2nd most significant bit of the byte at 8000. This continues for all the bits in byte
8000 and then proceeds on across the screen with the bits from byte B001, then 8002, 8003, etc. for a
total of 64 bytes. The second display row then begins with the most significant bit from the byte at location
8040. The bottom rightmost bit of the display is the least significant bit of the byte at location OF7FF. The
MEMORY commands "examine" and "deposit" can be used for experimenting with the direct modification
of the video display.

479 - 7654321076543210

: '" [byte 8001]

:... [byte 8000]

[byte 803F]

76543210

Y-Axis

000 -

VIDEO DISPLAY

... [byte FlCO]

76543210

[byte FlFF] ..

76543210

I
000

x - Axis

64

I
511

•

Software Interface
Examples

.'.

6. Softwara Intarfaca Exampias

Send and receive all bytes in these examples using the code shown in the section entitled "The Software In-
terface" .

6.1. Graphics: Cleer Screen. Draw Triangle. Embed in Region

88 clear the screen
84 set the graphics cursor to [128, 128] decimal
00
80
00
80
91 draw vector to [256,384]
01
00
01
80
91 draw a vector to [384,128]
01
80
00
80
91 draw a vector to (128,128]
00
80
00
80
96 embed triangle in region by complementing
00 make the region corners [64,64] and [448,448)
40
00
40
01
CO
01
CO

6.2. Turn On and Read the Tracking Cross

90 turn the tracking cross on at screen center
01 X = 256
00
00 Y = 242
F2

[wait for user to drag it to destination, then type a key on the host
keyboard]

9E read the location

[The Screenware will send the coordinates as four response bytes
which you then read,]

67

6.3. Write a MeB&age Around the Bordar of e Square

This code writes the characters "MicroAngelo!" in a box shape [i.e., "Mic" is on the top, "roA" is on the
right side going down, "nge" is upside-down from right to left on the bottom, and "Io!" is on the left side ger-
ing up. Characters are double size and reversed figure/ground. f,

84
01
00
00
F2
99
DC
98
40
98
69
98
63
99
OF
98
72
98
6F
98
41
99
00
98
6E
98
67
98
65
99
DE
98
6C
98
6F
98
21

move the graphics cursor to the screen center

set graphics character mode for top characters
reversed figure/ground, double size
print "M"

print "i"

print "c"

select new orientation
90 degrees cw, top to bottom
print "r"

print "0"

print "A"

select new orientation
upside-down, right to left
print "n"

print "g"

print "e"

select new orientation
90 degrees ccw, bottom to top
prInt "I"

print "0"

print" !"

68

(

6.4. Underlining in Dumb Terminal Mode

The following code prints the message "Hello there" by sWitching into and out of ALPHA Underline Mode
for a moment.

48 print "H"
65 print "e"
6C print "I"
6C print "I"
6F print "a"
20 print space
80 give ALPHAMODE command to start underlining
02 second-from-rlght bit governs underlining
74 print "t"
68 print "h"
65 print "e"
72 print "r"
65 print "e"
80 turn off underlining
00

69

6.5. Sample BASIC Interface

Most high level graphics software is best developed in a higher level language. To illustrate how to drive
MicroAngelo from North Star BASIC, four functions, FNO, FNI, FNS and FNR are shown below. FNO will
wait for the Control Port to indicate a read-to-send condition, then send a single given byte to MtcroAngelo.
FNI will await a single byte MicroAngelo response, then return it as the functional value. FNS will send a 16
bit quantity [e.g., a coordinate or address], high order byte first, by two calls on FNO. FNR will assemble a
16 bit [two byte] response from MicroAngelo and return the 16 bit quantity as its functional value. In these
examples It is assumed that the Control Port is F1 and the Data Port is FO [241, 240 decimal,
respectively]. If you have changed the port addresses, substitute these with the appropriate port number.

10100 REM SEND A BYTE TO MICROANGELO
10200 DEF FNO(X)
10300 I = INP[241]
10400 IF I (>2°INT[1/2]THEN 10300
10500 OUT 240, X
10600 RETURN 0
10700 FNEND

10BOO REM READ A BYTE FROM MICROANGELO
10900 REM [CALL WITH A DUMMY PARAMETER]
11000 DEF FNI[X]
11100 I = INT[INP[241)/2]
11200 IF I = 2°INT[1/2]
11300 RETURN INP[240]
11400 FNENO

11 500 REM SEND A 16 BIT QUANTITY TO MICROANGELO
11 600 OEF FNS[X)
11700 I = FNO [INT[Xl256]]
11800 I = FNO[X-256°INT[Xl256]]
11 900 RETURN 0
12000 FNEND

12100 REM READ A 16 BIT QUANTITY FROM MICROANGELO
12200 REM [CALL WITH A DUMMY PARAMETER]
12300 DEF FNR[X]
12400 Q = FNI(O]
12500 RETURN 256' Q + FNI(O]
12600 FNEND

70

6.6 Interfacing to FORTRAN

The following subroutines are five examples of FORTRAN routines to direct MicroAngelo., C
C
C ·.. output a byte to MicroAngelo
C

subroutine maout [ibyte)
10 if [inp(241). and.1 J go to 10

call out [240, ibyte)
return
end

C
C
C ... move graphics cursor to cx, cy
C

subroutine cursor [cx, cy)
call maout [84H)
call coord [cx, cy)
return
end

C
C
C ·.. plot a point at cx, cy
C

subroutine point [cx, cy)
call maout (BOH]
call coord (cx, cy)
return
end

C
C
C ... draw a vector to cx, cy
C

subroutine vector [cx, cy)
call maout (91 H)
call coord (cx, cy)
return
end

C
C
C • •• output a 16 bit X and a 16 bit Y coordinate to MicroAngelo
C

subroutine coord [cx, cy)
ic = cxJ256.0
call maout (ic1
ic = int (cx-ic·255.9)
call maout [ic)
ic = cy/256.0
call maout [ic]
ic = int[cy-ic·255.9)
call maout [ic)
return
end

71

Appendix 1 - Summary of Scr8enware Commands

• HEX DEC OCT CALURESPONSE FUNCTION

ALPHAMOoE

80 128 200 C: (mode; Set Alpha Mode Bits
R:none

81 129 201 C: (row) (col> Position Alpha Cursor
R: none

82 130 202 C: none Read Alpha Cursor
R: (row) (col)

83 131 203 C: {n) Set Alpha Scroll
R: none

GCURSOR

84 132 204 C: (xh > (xl > (yh ; (yl) Set Graphics Cursor
R: none

85 133 205 C: none Read Graphics Cursor
R: (xh > (xl > (yh > (yl)

86 134 206 C: none Set [CX, CYj to [AX, AYj
R: none

87 135 207 C: none Set [CX, CYj to [TX, TY)
R: none

SCREEN

88 136 210 C: none Clear Screen
R: none

89 137 211 C: (fg) Set Screen Figure/Ground
R: none

8A 138 212 C: none Toggle Screen Figure/Ground
R: none

88 139 213 C: none Read Screen Figure/Ground
R:(fg>

POINT

8C 140 214 C: (xh > (xl) (yh > (yl) Turn Point Off
R: none

80 141 215 C: (xh > (xl) (yh > (yl) Turn POint On
R: none

8E 142 216 C: (xh > (xl > (yh > (yl) Complement Point
R: none

8F 143 217 C: (xh) (xl) (yh > (yl) Read Point
R: (val)

VECTOR

90 144 220 C: (xh > (xl) (yh > (yl) Turn Vector Off
R: none

91 145 221 C: (xh > (xl) (yh > (yl > Turn Vector On
R: none

92 146 222 C: (xh > (xl) (yh > (yl > Complement Vector
R: none

•
75

REGION

94

95

96

148 224 C: (x1 h) (x11) (V1 h)
(V11) (x2h) (x21)
(V2h) (V21)

R: none
149 225 C: (x1 h) (x11) (V1 h)

(V11) (x2h) (x21)
(V2h) (V21)

R: none
150 226 C: (x1 h) (x11) (V1 h)

(V11) (x2h) (x21)
(V2h) (V21)

R: none

Turn Region Off

Turn Region On

Complement Region

CHARACTER

98

99

9A

98

152 230 C: (c)
R: none

153 231 C: (mode)
R: none

154 232 C: (asc) (s11) ... (sO)
R: none

155 233 C: none
R: none

Plot Graphics Character

Set Graphics Character Mode

Define Alternate Character

Load Default Character Set

L1GHTPEN

9C

90

9E

9F

156 234 C: none
R: none

157 235 C: (xh) (xl) (Vh) (Vi)
R: none

158 236 C: none
R: (xh) (xl) (Vh) (Vi:

159 237 C: none
R: 00 or

01 (xh) (xl) (Vh) (Vi:

Turn Tracking Cross Off

Turn Tracking Cross On

Read Tracking Cross

Read Ught Pen

CROSSHAIRS

AO

A1

A2

A3

160 240 C: none
R: none

161 241 C: (xh) (xl) (Vh) (Vi)
R: none

162 242 C: none
R: (xh) (xl) (Vh) (Vi)

163 243 C: none
R: none

Turn Crosshairs Off

Draw Crosshairs

Read Crosshairs

Draw Crosshairs at [CX. CYj

MEMORY

A4

A5

A6

A7

164 244 C: none
R: (b1) ... (b7800)

165 245 C: (b1) (b7800)
R: none

166 246 C: (nh) (nl) (ah) (al)
R: (b1) ... (bn)

167 247 C: (nh) (nl) (ah) (al)
(b1) ... (bn)

R: none

76

Dump Screen

Load Screen

Examine Memory Block

Deposit Memory Block

UTILITY

AB

A9

AA

AB

USER

AC

AD

AE

AF

TEST

BO

B1

B2

B3

16B 250 C: (ah) (al)
R: none

169 251 C: (ah) (al) (imask)
(ih) (il)

R: none
170252 C:AAOOor

AA 01 (ah) (al)
R: none

171 253 C: none
R: none

172 254 C: [user defined]
R: (user defined)

173 255 C: (user defined)
R: (user defined)

174 256 C: (user defined)
R: (user defined)

175 257 C: (user defined)
R: (user defined)

176 260 C: (blocks)
R: (cksum)

177 261 C: none
R: 0 or

1 (ah) (al) (eb) (fb)
17B 262 C: none

R: none
179 263 C: (s) (i) (n)

R: none

Set User Command Address

Call User Code

Switch Real-Time Interrupts

Force Cold Start

User

User

User

User

Test EPROM

Test RAM

ALPHA Test

Munching Squares

RGRAPHC

84 1BO 264 C: (dxh) (dxl)
(dyh) (dyl)

R: none

Set Relative Graphics Cursor

SPLITSCR

BB

B9

1B4 270 C: (I)
R: none

1B5 271 C: (c1) ... (cB)
R: none

Set ALPHA Screen Size

Define ALPHA Control Codes

RPOINT

BC

BD

BE

BF

1BB 274 C: (dxh) (dxl)
(dyh) (dyl)

R: none
1B9 275 C: (dxh) (dxl)

(dyh) (dyl)
R: none

190 276 C: (dxh) (dxl)
(dyh) (dyl)

R: none
191 277 C: (dxh) (dxl)

(dyh) (dyl)
R: (val)

77

Turn Relative Point Off

Turn Relative Point On

Complement Relative Point

Read Relative Point

RVECTOR

CO 192 300 C: (dxh) (dxl) Turn Relative Vector Off
(dyh) (dyl)

R: none
C1 193 301 C: (dxh) (dxl) Turn Relative Vector On

(dyh) <dyl)
R: none

C2 194 302 C: (dxh) (dxl) Complement Relative Vector
(dyh) (dyl)

R: none

RREGION

C4 196 304 C: <dx1 h) (dx11) Turn Relative Region Off
(dy1 h) < dy11)
(dx2h) (dx21)
(dy2h) (dy21)

R: none
C5 197 305 C: <dx1h) <dx11) Turn Relative Region On

(dy1 h) (dy1\)
<dx2h) (dx21)
<dy2h) (dy21)

R: none
C6 19B 306 C: <dx1h) < dx11) Complement Relative Region

(dy1 h) < dy11)
(dx2h) < dx21)
(dy2h) <dy21)

R: none
CIRCLE

CB 200 310 C: <r) Turn Circle Off (
R: none

C9 201 311 C: < r) Turn Circle On
R: none

CA 202 312 C: (r) Complement Circle
R: none

FLOOD

CC 204 314 C: (xh) (xl) (yh) <yl) Rood with Zeroes
R: none

CO 205 315 C: < xh) < xl) <yh) (yl) Rood with Ones
R: none

CE 206 316 C: <dxh) (dxl) Rood Relative with Zeroes
(dyh) (dyl)

R: none
CF 207 317 C: <dxh) (dxl) Rood Relative with Ones

(dyh) (dyl)
R: none

MACRO

00 20B 320 C: <n) or Start/Stop Macro Definition
FF

R: <code)
01 209 321 C:· (byte) Add Next Macro Byte

R: (code)
02 210 322 C: (n) or Erase Macro or Clear Facility

FF (sh) (sl)
R: (code)

03 211 323 C: (n) Invoke Macro

7B

Appendix 2
The Standard Character Font

• •

• •• • •
• ••
• •• •

• •
•

•
•
•••••
•

•
•
•
•

• • •
• ••

•
•
•
•
•
•

•
•
•
•
•
•

• ••
• ••
• •

•••
•
• ••
•

• • • •
• ••••

•
•

• •••• • ••
00 04 08 OC 10 14 18 1C

• • • •
•
•
• • ••

• ••••
•
•

•
•·.....
•
•

•
•
•• • • •
•
•

•
•••••
•

• ••••
•

• •
• • •
• •

• •
•
•
• ••
•
•
• ••

•
•

•
•

• •••
• • •
• • •
••••
• •
• •
• •

• • •
01 05 09 00 11 15 19 10

• •
• • • • •• • • •

•
•

••••

•

•
• •
• •
•

•

•
• ••••·.....
·.....

•
•

• ••••
•
•

•
•••••
•

•
• ••
• • •
• • •
• • •
• ••
•

• •
• •
•
• •
• •
• •
•

• •
• •
• •
• •
• •
• •
• •
• •

02 06 OA DE 12 16 1A 1E

• • • • •
• • •

•
•••••

•

•
•
•

•
•
•·.....
·.....•

•
•

• •

•
•

• •

• •
•
•

•

•

•
•

••

• •
•
•
• •••
•
•

•
•
•
• ••••

•••••

•
•
•

• ••
• • •
• • •
• ••••

•
•••
•
•

•••••

•••••
•

•
•
• •
•

03 07 DB OF 13 17 1B 1F

79

•

•
•
•
•
•

•• ••
• •
• •
• ••
• •
• •
• ••

•..
• •
• •
• ••••

•
•

• •
•
•
•
•
••

• •

•
•
•
•••

• •
•
•

•
•
•
•
•

•

•

•
••••
• •
•••
• •

• •••
•

20 24 28 2C 30 34 38 3C

•
•
•
•
•
•

• • •
• • •

•
•
•
• ••
• ••

•
•
•
•
•
•
•

• •• • •

•
••
•
•
•
•
• ••

• ••••
•
• •••

•
•

• •...

• ••
• •
• •
• •••

•
•

• •

• ••••
• ••••

21

• •
• •
• •

25

•
• •
• •
•
• • •
• •
•••

29

• • •
•••
•••••
•••
• • •

20

• •
••

31

• ••
• •

•
•• •
•
•
• ••••

35 ..
•
•
••••
• •
• •...

39

••
• •
• •
• •

30

•
•
•
•
•
•
•

22 26 2A 2E 32 36 3A 3E

• •
• •
•••••
• •
•••••
• •
• •

•
•
•

•
•

•••••
•
•

•
•
•
•
•
•
•

• ••
• •

•
••
•

• •
• ••

• ••••
•
•
•
•
•
•

• •
• •
• •
••
•
•

••
• •

•
•
•
•

23 27 28 2F 33 37 38 3F

80

•••

• • •
• • •

•••••

•
•

•
•
•

•
•

•

•
•

•
• •
• •

•
• •

•
•

•
•

•
•
•

•
•••••

•
•

•
•
•

••••

• •••

•

•
•
•
•
•
• ••••

•
•

•

•
•
•

•
•

•

•

•
•

•
•

•
•

•
•
•

•
•
•
•

•

••••

•• • •
•
•

•• •

•••
•

40 44 48 4C 50 54 58 5C

•

•••••
•

•••• •
• ••

•
•
•

•

•
•

•
• •

•
•

•
•

•

•

•

•

•
•

•
•

•
•

•

•

•
•
•

•

• ••

• • •
•

•
•
•

•
•

•

•

•

•

• • •
• • •

•

•
•

•

• ••

••••
•
•

• ••••
•
•

•

•
•

• •

•
•

• • ••••• ••• • • •• • ••• • • ••
41 45 49 40 51 55 59 50

• • •
• • • •

• • • •••••
•
•
• ••
•
•
• •••

•
•
•
•

•••••
•
•
• ••
•
•
•••••·\

•
•••

•
•
•
•
•
•

•
• •
•
•
•
•

•
•
••
•
•
•

•
•
• •
•
•

•

•
•

•

•
•
•
• •
• •
•
•

•
•
•

• ••••
•
•
•
•
•
•••••

•
• ••
• • •
•
•
•
•

42 46 4A 4E 52 56 5A 5E

• ••• •••••

• ••••
• • •

• ••••

•••

•••

•
•
•
•
•

•

•
•
•
•

•

•
•

•
•

•• •••

•

•••

•••

•
•
•

•

•

•
•

•
•
•

•
•
•
•

•
•

•
•

•

• •
•
•

• •
••

•
•

•
•
••

• • ••
•
•

•
•
•

•

•
•••

• ••
•
•

•
•
•

43 47 48 4F 53 57 58 5F

81

•
•
•
•
•
•
•
•

• •
• •
•
• •
• •

•
•

• ••••
•
•
• •
•

• ••
• • •
• •
• •••
•
•

•
•
•
•
•
•
•

•
•
• ••
• • •
• •
• •
• •

••
•

•
•

•• •
• •
•

•
•
•
• •

•

•
•

60 64 68 6e 70 74 78 7C

• •
• •
• •
• •
••••

• ••
• •
• •••
•
• ••

•
•
•
•
•
•

•• •
• • •
• • •
• •
• •

•• •
• ••
• •
••••

•
•

• •
• •
• •
• ••
•• •

• •
• •
• ••
•• •

•
•••

•
•
•
•
•
•
•

61 65 69 6D 71 75 79 7D

•
•
• ••
• • •
• •
•• •
• ••

••
• •
•
• •••
•
•
•

•
•
•
•
•

• •
• •

• ••
• • •
• •
• •
• •

• ••
•• •
•
•
•

• •
• •
• •
• •
•

• ••••
•
•
•
• ••••

•
• ••
•

62 66 6A 6E 72 76 7A 7E

••••
•
•
•
• • • •

•• •
• • •
• •
••••

•
•••

•
•
• •
• •
•••
• •
• •

•••
• •
• •
• •
• ••

••••
•
•••

•
• •••

• •
• •
• • •
• • •
• •

•
•
•
•
•
•
•

•
• ••
• ••••

63 67 68 6F 73 77 78 7F

82

Appendix 3
Screenware"" Pak I Internal Entry Points

•
SYSTEM

entry:
exit:

destroys:
description:

READBUF
entry:
exit:

destroys:
description:

GETBYTE
entry:
exit:

destroys:
description:

GETCOORD
entry:
exit:

destroys:
description:

GETYCORD
entry:
exit:

destroys:
description:

GETADDR
entry:
exit:

destroys:
description:

SENDBYTE
entry:
exit:

destroys:
description:

SENDCDORD
entry:
exit:

destroys:
description:

OOOOH
none
none
NA
call here to restart the system as it would be at cold start

012FH
none
carry flag set if a byte is available, cleared otherwise; if carry set, [A] = byte from
host
A, 0, E, H, L
call here to read a byte from the host [via the interrupt buffered interface] if a
byte is available

01A4H
none
[A] = byte from host
none
call here to read a byte from the host; GETBYTE waits until a byte is available

005BH
none
[HL) = coordinate from host (sent high byte first]
H, L
call here to read a 9-bit coordinate from the host; the high 7 bits of H are zeroed

0197H
none
[HL] = 9-bit coordinate clipped to 479
A
call here to read a 9-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

03BFH
none
[HL] = 16-bit address from host [sent high byte first]
A
call here to get a 16-bit quantity from the host

0259H
[A] = byte
none
B
call here to send a byte to the host; SENDBYTE waits until the outbound buffer is
clear before sending

0254H
[HL] = 16-bit value to send to host
none
B
call here to send 16 bits [high order byte first] to the host

B3

OPYLOC
entry:

exit:

destroys:
description:

SCREENC
entry:
exit:

destroys:
description:

POINT
entry:

exit:
destroys:

description:

VECTOR
entry:

exit:
destroys:

description:

021BH
[DE] = X coordinate [0-511)
[HL) = Y coordinate [0-479)
[A) = bit mask
[B) = bit mask
[C) = bit number [0 leftmost, 7 rightmost)
[HL) = display buffer address
0, E
call here to convert coordinates into a zeo memory address [on the visible screen)
and bit mask; the bit mask [containing one ON bit) identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

01AFH
[A) = mode [0, 1, 2,)
none
all
call here for SCREEN command, as described in the manual; do not call with mode
= 3, since this mode will try to read a byte from the host

01F7H
[B) = mode [0, 1, 2)
[DE] = X coordinate
[HL) = Y coordinate
[CX) = X coordinate
[CY) = Y coordinate
none
all
call here for POINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

0547H
[B) = mode
[DE] = x coordinate
[NEWCX) = x coordinate
[HL) = Ycoordinate
[NEWCY) = Ycoordinate
none
all
call here for the VECTOR commands, as described in the manual

exit:
destroys:

description:

REGION 0275H
entry: enter via the following code sequence:

LXI H,RETURN
PUSH H
MVI B, (mode>
PUSH B
LXI H, (YI >
PUSH H
LXI H, (X2 >
PUSH H
LXI 0, (X1 >
LXI H, (Y2 >
JMP REGION

RETURN: ...
none
all
call via the given sequence for the REGION commands, as described in the manual

B4

CHAR
entry:

exit:
destroys:

description:

DRAWCRDSS
entry:

exit:
destroys:

description:

DRAWHAIRS
entry:

exit:
destroys:

description:

ALPHINIT
entry:
exit:

destroys:
description:

TTYCHAR
entry:
exit:

destroys:
description:

TTY
entry:
exit:

destroys:
description:

D3E7H
[A] = character or character mode bits
[B) = command mode [0, 1, 2)
none
all
call here for the CHARACTER commands, as described in the manual; the com-
mand mode bits select plot character, set character mode, and define alternate
characters; character mode bits are as described in the manual

D6BEH
(TX) = X coordinate
[TY] = Y coordinate
none
all
call here to complement the bits on the tracking crross at (TX, TY), Q.e., if the
cross is on at (TX, TY). turn it off, and vice versa)

D7A2H
[HX] = X coordinate
[HY) = Y coordinate
none
all
call here to complement the bits on the crosshairs at [HX, HY) [i.e., if the
crosshairs are on, turn them off, and vice versa)

D7D9H
none
none
all
call here to reset the alpha interface: [clears the screen and sets AX, AY to top
left of screen)

D7EBH
[A) = ASCII code
none
all
call here to print an ASCII character at AX, AY (TTYCHAR does not advance AX,
AY)

D8EFH
[A) = ASCII code
none
all
call here to send an ASCII code to the ALPHA processor; control codes are
recognized as described in the manual, and AX, AYare advanced, possibly invoking
the scrolling mechanism

85

VariablaB and Parametere:

VARIABLE ADDR #BYTES

CX FFFB 2
CY FFF9 2
NEWCX FFE9 2
NEWCY FFE7 2
AX FFOO 2
AY FFCE 2
AR FFCD 1
AC FFCC 1
ALPHSCRL FFCB 1
ALPHMDDE FFCA 1
CHARMODE FFC9 1
TX FF04 2
TV FFD2 2
TSTAT FF06 1

LPX FFFE 1
LPY FFFF 1
LPSTAT FFFD 1

HX FFBF 2
HY FFC1 2
HSTAT FFBE 1

ROMCHAR 09FA

DESCRIPTION

the current graphics X coordinate
the currant graphics Y coordinate
[see the VECTOR entry point]
[see the VECTOR entry point]
the current ALPHA screen X coordinate
the currant ALPHA screen Y coordinate
the current ALPHA row number
the current ALPHA column number
the current ALPHA scroll parameter
the current ALPHA mode bits
the current GRAPHICS character mode bits
the current tracking cross X coordinate
the current tracking cross Y coordinate
1 if the tracking cross is visible, 0 otherwise [The DRAWCROSS
entry point does not maintain this cell - you should do it manually
when calling DRAWCROSSl
the [X coordinate/2] of the last light pen interrupt
the (Y coordinate/2] of the last light pen interrupt
o if no light pen interrupt has occurred, 1 otherwise [you should
reset to 0 to acknowledge a light pen interrupt]
the current X coordinate of the crosshair
the current Y coordinate of the crosshair
1 if the crosshairs are visible, 0 otherwise [the DRAWHAIRS entry
point does not maintain this cell - you should do it manually when
calling DRAWHAIRS
the beginning of the ROM character generator

86

Appendix 4
ScreenwereTM Pek II Internel Entry Points

•

•

SYSTEM
entry:
exit:

destroys:
description:

READBUF
entry:
exit:

destroys:
description:

GETBYTE
entry:
exit:

destroys:
description:

GETXCORD
entry:
exit:

destroys:
description:

GETYCORD
entry:
exit:

destroys:
description:

GETADDR
entry:
exit:

destroys:
description:

SENDBYTE
entry:
exit:

destroys:
description:

SENDCOORD
entry:
exit:

destroys:
description:

0099H
none
none
NA
call here to restart the system as it would be at cold start

01CCH
none
carry flag set if a byte is available, cleared otherwise; if carry set, [A] byte from
host
A, D,E,H, L
call here to read a byte from the host [via the interrupt buffered interface] if a
byte is available

0059H
none
[A] = byte from host
none
call here to read a byte from the host; GETBYTE waits until a byte is available

0113H
none
[HL] = coordinate from host [sent high byte first]
H, L
call here to read a 9-bit coordinate from the host; the high 7 bits of H are zeroed

003BH
none
[HL] = 9-bit coordinate clipped to 479
A
call here to read a 9-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

0069H
none
[HL] = 16-bit address from host [sent high byte first]
A
call here to get a 16-bit quantity from the host

035DH
[A] = byte
none
B
call here to send a byte to the host; SENDBYTE waits until the outbound buffer is
clear before sending

0358H
[HL] = 16-bit value to send to host
none
B
call here to send 16 bits [high order byte first] to the host

87

oPYLOC
entry:

exit:

destroys:
description:

SCREENC
entry:
exit:

destroys:
description:

POINT
entry:

exit:
destroys:

description:

VECTOR
entry:

exit:
destroys:

description:

031FH
[DE] = X coordinate [0-511]
[HL] = Y coordinate [0-479]
[A] = bit mask
[B) = bit mask
[C) = bit number [0 leftmost, 7 rightmost]
[HL] = display buffer address
0, E
call here to convert coordinates into a ZBO memory address [on the visible screen)
and bit mask; the bit mask [containing one ON bit] identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

0293H
[A] = mode [0, 1, 2,]
none
all
call here for SCREEN command, as described in the manual; do not call with mode
= 3, since this mode will try to read a byte from the host

02FFH
[B) = mode [0, 1, 2]
[OE] = X coordinate
[HL] = Y coordinate
[CX] = X coordinate
[CY] = Y coordinate
none
all
call here for POINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

0767H
[B) = mode
[OE] = x coordinate
[NEWCX] = x coordinate
[HL] = Ycoordinate
[NEWCY) = Ycoordinate
none
all
call here for the VECTOR commands, as described in the manual

exit:
destroys:

description:

REGION 049CH
entry: enter via the following code sequence:

LXI H,RETURN
PUSH H
MVI B, (mode)
PUSH B
LXI H, (Y1)
PUSH H
LXI H, (X2)
PUSH H
LXI 0, (X1)
LXI H, (Y2)
JMP REGION

RETURN: ...
none
all
call via the given sequence for the REGION commands, as described in the manual

88

/'1'

(....'

.... .

•

•

RPOINT
entry:

exit:
destroys:

description:

RVECTOR
entry:

exit:
destroys:

description:

RREGION
entry:

eXit:
destroys:

description:

CHAR
entry:

exit:
destroys:

description:

-fjffi2H-
[8] = mode [0, 1, 2]
[DE] = X coordinate
[HL) = Y coordinate
[CX] = X coordinate
ICY] = Y coordinate
enter via the following code sequence:

GAL-l4J253H- . '-=F=
CALL 02FFH ' •. I,! '
-eAt 0221FH-· ,-y-!-..-l+-'7 .) t- r::- '

none
all
call here for RPOINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

D7A8H
[8) = mode
[DE] = x coordinate
[NEWCX] = x coordinate
[HL] = Ycoordinate
[NEWCY] = Ycoordinate
enter via the following code sequence:

eAtt::C25311-,;; "'... "'"
CALL 0767H
CAtL-D24FH =*..,: '''''_.'

none
all
call here for the RVECTDR commands, as described in manual

El49EII
enter via the following code sequence:

Co'il§l OE'50loj . -"
LXI H,RETURN
PUSH H
MVI 8,[mode]
PUSH B
LXI H,[Y1]
PUSH H
LXI H,[X2]
PUSH H
LXI D,[X1]
LXI H,[Y2]
JMP

...

none
all
call via the given sequence for the RREGION command, as described in the manual

D6D9H
[A] = character or character mode bits
[8] = command mode [0. 1. 2]
none
all
call here for the CHARACTER commands, as described in the manual; the com-
mand mode bits select plot character, set character mode, and define alternate
characters; character mode bits are as described in the manual

89

ORAWCROSS
entry:

exit:
destroys:

description:

OE2SH
[TX) = X coordinate
[TY) = Ycoordinate
none
all
call here to complement the bits on the tracking crtoss at [TX, TY), [i.e., if the
cross is on at [TX, TY), tum it off, and vice versa)

ORAWHAIRS
entry

exit:
destroys:

description:

11B4H
[HX) = X coordinate
[HY) = Y coordinate
none
all
call here to complement the bits on the crosshairs at [HX, HY) [i.e., if the
crosshairs are on, turn them off, and vice versa)

ALPHINIT
entry:
exit:

destroys:
description:

OSCSH
none
none
all
call here to reset the alpha interface: [clears the screen and sets AX, AY to top
left of the alpha area)

TTYCHAR

--------... r r.. "_ T,. •. 1;:- I-
022EH
[A) = number of ALPHA lines
none
all
call here to split the screen into a graphic area and an alpha area

091CH
[A) = ASCII code
none
all
call here to print an ASCII character at AX, AY (TIYCHAR does not advance AX,
AYj

OA69H
[A) = ASCII code
none
all
call here to send an ASCII code to the ALPHA processor; control codes are
recognized as described in the manual, and AX, AY are advanced, possibly invoking
the scrolling mechanism-----=----------- --

entry:
exit:

destroys:
description:

entry:
exit:

destroys:
description:

entry:
exit:

destroys:
description:

SPLO

TTY

WTI
entry:
exit:

destroys:
description:

05C7H
none
none
all
call here to force a cold start to the software and send a byte <AS) to the host

FLO OC5AH
entry: [A] = mode [0, 1)

[DE) = X coordinate
[HL) = Y coordinate
enter via the following code sequence:

PUSH PSW
JMP FLO

exit:
destroys:

description:

none
all
call here to flood the bordered region around point X,Y

90

•

•

•

CIR
entry:

exit:
destroys:

description:

INVOKE
entry:
exit:

destroys:
description:

OFOOH
[A] = radius
[B) = mode [0, 1, 2]
none
all
call here to draw a circle at current graphic cursor

1065H
[A] = macro #
none
all
call here to invoke the desired previously created macro

91

Variablea and Parametars:

VARIABLE ADOR #BYTfS

CX FFFB 2
CY FFF9 2
NEWCX FFE9 2
NEWCY FFE7 2
AX FFoo 2
AY FFCE 2
AR FFCo 1
AC FFCC 1
ALPHSCRL FFCB 1
ALPHMooE FFCA 1
CHARMooE FFC9 1
TX FF04 2
TY FF02 2
TSTAT FF06 1

LPX FFFE 1
LPY FFFF 1
LPSTAT FFFo 1

HX FFBF 2
HY FFC1 2
HSTAT FFBE 1

RoMCHAR 11 DB

DESCRIPTION

the current graphics X coordinate
the current graphics Y coordinate
[see the VECTOR entl)' point)
[see the VECTOR entl)' point)
the current ALPHA screen X coordinate
the current ALPHA screen Y coordinate
the current ALPHA row number
the current ALPHA column number
the current ALPHA scroll parameter
the current ALPHA mode bits
the current GRAPHICS character mode bits
the current tracking cross X coordinate
the current tracking cross Y coordinate
1 if the tracking cross is visible, 0 otherwise [The ORAWCROSS
entl)' point does not maintain this cell - you should do it manually
when calling oRAWCROSSj
the [X coordinate/2j of the last light pen interrupt
the [Y coordinate/2) of the last light pen interrupt
o if no light pen interrupt has occurred. 1 otherwise (you should
reset to 0 to aknowledge a light pen interrupt)
the current X coordinate of the crosshair
the current Y coordinate of the crosshair
1 if the crosshairs are visible, 0 otherwise [the oRAWHAIRS entl)'
point does not maintain this cell - you should do it manually when
calling oRAWHAIRS
the beginning of the ROM character generator

92

.
i
!r-H+-l-L
f
I•

I,
•

.
j.
.'

!l

;1

•

•

•

0-:'
o •

;

.." .

,

•,

---.

o

_ __ 4--

;,
"

i ijP
':lil'l" .. :1
! I

,
"

...
;::' --.':,:

•

•

•

.... "1•
, 1;

I. :

·'lif
, f
: ." •. .-

: "

j
I,

00000000
Q ...

.' <.- .. .

;
• <

.
;

:
b .- .,

(Sf•.
8. e< l).· .g. e c..;, 'f;1. ,.

o • :;;----;; · ,·. , ..
• . -

.. 0 0o - ..

•

o-l-, ,- -- ,--- < • ... - r- -
-- · -- -

· · =
-- ,

1 · r- :

- r-
· :- •, ·· .. · - - •

- · •0· - --- - •
1 -
·· •· !-.. (; ··.· ,

· 1,--- -- ,· 1;-r- - •-

- ----;I "; I.
I I Ii
qil

II
!

0'---
e

.
i -1===, :------:

f---.; .. ;·,

•

,1 :1 ->•> >,
>

,..J.± U- ·
'< · <> , . •· - < - ,· · "
-; · '"

- -. ,..l::l: -I:1,
- -. · l-I-: ·· c • ·c · - · ,, .. -
>-; · ·f-. ·

:--: ..J=J.: -d:
f- ---, · .- '-; ·• c •, , - -- ,· · , • • ·-- · >-;· -

:
.J::.L.

I-
, .--; ·'c , • •· c • ,; ; , · ,· . ·

h >-; ·
:

..d:
f- h · - ---,: -

• c , • ,· < • ·; ; · ,- ·. •·f--. · --
:

: A
I-h - - -. -• ,

• c · - : ;• ; - ·. •
f-; · ·-=.,

i .j -, , .di
I l-f-, · - -:; ·, • · Ic - < • -• · - -. -, ! 1'1' ·,

I lili -;; · >-;

"II!I t::.':-
'J
" :
I .J:<.J! ..d;

'-- f--, · - -;: ·Iji I ! c • • •
! ; . , , ,. · .. •·'--;; · -
I

• • :; -3q.. "I n • .•• '" . -,
1:' . -,.

Cl:z:",n • .'.I b 8Z · .-• 'n •• ; · · •
t .. - '" ... L. -- --, " ." - ·. % - " ,., n g ..

< '"
>

1---:

•

•

. .
' .

•

i lili
Til
I I

•<

..
!.

. .
!.! r----

r;"-,
-

..,

•
,

1;-
; .. ,

"< •,.

: :. ,

; ;;
l.

. -
...:

•

I I
! t----,;

0 ... _ C-

ar '"I-----
<

< ,

i

",

Z ,.

•

