Al vanced

nformatlon
Display Systems

MicroAngelo
- MA 512

User’s Manual
SCION Corporation ©1980

SCION Corporation April 1981

Warranty

SCION Corporation certifies that each computer system will be free from defective materials and workrar-
ship for ninety [S0] days from date of shipment to the original customer.

SCION Corporation agrees to correct any of the above defacts when the system is returned to the factory
prepaid. Written authorization must be obtained and confirmed in writing by the Customer Service Depart-
ment before returning the equipment to the factory.

Under this warranty, SCION Corporation will, at the request of the customer, provide the necessary com-
ponents required by the customer to correct the equipment in the field. The companents will be shipped,
prepaid, on a tilling memo which will be cancelled upon receipt of the defective components at the factory,
When ordering components for repair or replacement, the model number and serial number must be includ-
ed on the customer request.

This warranty is invalid if the system is subject to mis-use, neglect, accident, improper installation or applica-
tion, aiteration or negligence in use, storage, transportation or handfing and where the serial number has
been removed, defaced or changed.

FOREWORD April 1981

This Spring marks the beginning of MicroAngelo's second year of wide scceptance across a broad range of
applications. In this system we have attempted to bring a carefully designed and integrated hard-
ware/firmware/software package to the merketplace in en affordsble and powerful single board graphics
computer. We are pleased to share our excitement in the design of MicroAngelo with you.

Charles J. Rieger, Iii
Vice President
Research & Design

Contents

1. General INFOPMBLION ..o 7
1.1 Brief Systam OVerviewc...cocooviomiemono 7
1.2 Quick INtegration SEEPS ... g
1.3 Driving MicraAngelo™ from High Level Software ... """ 8

2. BYStem INBEGrationcoooiviiiiiiieniee oo 11
2.1 Changing the Port AAresSesco..ocoovooooovcove T 11
2.2 Comnecting 8 TV MONILOroviiiiioe s 12
2.3 The Software Interfacecoo.coecivieoseoceoo 12

2.3.1 Sending & Byte to MicroAngelo™ ... 12
2.3.2 Reading s Response From MicroAngelo™ ... 13
2.3.3 Restarting MicroAngelo™ ... 14
2.3.4 Summary of the Control POtoo.ooooooveesee 14

3. Screenware Psk | and Screenware Pak Il - the Onboard Software e 17

3.1 ALPHA - the Durmb Termingl EMUIBLOrc....ccocoreero, 18
3.1.1 Dumb Terminat Screen Conventions ... " i8
3.1.2 Dumb Terminal ASCII Control Codesc.c.cevcorr 19
3.1.3 Dumb Terminal Printing Optionscococoeoove 19
3.1.4 The Bumb Terminal nterface Codec....ococoeoeroioo 20

3.2 GRAPHICS: The MicroAngelo™ Graphics SYSLEM .. 20
3.2.1 GRAPHICS Screen Conventionsccoococoeeeero 21
3.2.2 GRAPHICS Cursors and Coordinatescococeevoeo 21

4. MIcroAngelo™ COMMENGSooiiiiereensiisies oo 25
4.1 ALPHAMODE ... 28
4.2 GOURSOR ...t 28
4.3 BCREEN ... 29
A4 POINT e 30
4.5 VECTOR ...coooiiiniiiiiiiiiineeee L e it e e ey iyl
A8 BEGION ..o 3z
4.7 CHABACTER ...t 33
4B LIBHTPEN ..o e 35
4.9 CROSSHAIRS ..o e a7z
470 MEMORY it 38
ATV UTILITY e 38
A2 USER e 41
413 TEST e 42
414 AGRAPHC ... 43

475 SPUTSER ..ot a4

A.T8 RPOINT ..o oo 45

A7 BVECTOR oo 46

418 HREGION ...ttt 47

419 CIRCLE . 48

420 FLODD ..ot 49

4.21 MACRO

5. System DELalScoooiiiiiiiii i a5

5.1 MicroANgelo™ Memory MBE ... it 85
5.2 Defining the Alternate Character Set ... 56
5.3 Interfacing Onboard User Code to the SCreenware ... 56
5.4 The MicroAngeto™ Phy5|cal /O POMES 1.ttt e et a7

o TEa T 11, NV 1 TR TP U PP 57
5.5.1 Enabling/Disabling the Maskable Interruptscooooi i, o8

5.5.2 Enabling the Aeal Time INEerrupt ..o o8

5.5.3 Connecting Host-Side INEERTUDES ..viv i rre e e e e e ee e 58

5.6 Connecting 8 Light Pem (... e e e 512
5.7 Summary of Hardware Jumper Options and Connectors ..o, 59
B5.7.1 Hardware JUMDEISuovii it eieie e cert e vnsr e varaenrasnnnasnsrnarnrnnrararaannenceaens 60

5.7.2 HardwWare COMMECEDIS ..ottt e e r e r et anaaeaeres 61

5.8 Adapting MicroAngelo™ to Non-S100 Bus SYSEemsooveiiieiiiiine e B3
5.9 Bit Mapping of Display BAM to Video Screen ... 84

5. Software INLerfaCE EXBMPIES ... i vt et r et e s reraaan it e e e rnaas 67
6.1 Graphics: Clear Screen, Draw Triangle, Embedin Region ..., 67
6.2 Turnonand Read the Tracking Crass e r e ran e 67
6.3 Write a Message Around the Borderofasquare ... 68
B.4 Underlining in Dumb Terminal Modeot 69
B.9 Sample BAG I INterface ... e 70
B.6 INtarfacing 10 FORT RAN L. .. et ra s e e s s st s it e e raaen e e anns 71
Appendix 1 - Summary of Screenware Commands ..o 75
Appendix 2 - The Standard CharaCtar FONE ...t et aas 79
Appendix 3 - internal Entry Points [Screenware™ Pak 1] ..o 83
Appendix 4 - Internal Entry Points [Screenware™ Pak 1] ... e 87

Appendix 5 - MicroAngelo™ Schematics

General Information

The MicroAngelo™ Graphics System User’s Manual

1. General Information

MicroAngelo™ is an intelligent high resolution refreshed raster scan graphics display system capable of
drawing character and graphics images at high speed on a standard television monitor. Completely contained
on a single IEEE-696 [S100] bus card, MicroAngels is an independent ZBQA-based computer with its own
32K byte display memary and 4K resident operating system, Screenware Pak I™, or optionally, Screenware
Pak I™ [BK]. By talking in concise high level commands over a simple inferface, your host computer directs
MicroAngelo in generating graphics and text displays and in controlling the light pen interface. Because of its
self-reliant architecture, MicroAngelo places no computing load or memory space demand on your carn-
puter. This means that, after giving directions to MicroAngelo, your CPU can continue with its own com-
puting as MicroAngelo concurrently carries out those directions using its own separate memory and CPLU.
The results are a more responsive and convenient graphics/text display system than ever before possible
with traditional graphics board designs.

1.1 Brief System Overview

The MicroAngelo hardware resides on a single 5100 bus board. This board cantains all the electronics and
software for generating & 512 dot wide, 480 dot high, black and white display for & high-resolution TV
manitor [10 mhz bandwidth or better). Since the board includes a Z80A microprocessor, complete with its
own RAM (32K bytes), EPROM {up to BK bytes), and TV display circuitry, MicroAngelo is actually an in-
dependent, single card computer which when inserted into your computer, appears ta your system as two
parallel ports. This architecture makes it passible for your computer to direct MicroAngelo via simple,
powerful high-level graphics commands sent over the two paraliel ports, then proceed with its own computa-
tions while MicroAngelo carries out the display generation in parallel. Because of this simple and fast two-
port interface, MicroAngelo is easy to integrate and does not require any of your system’s valuable address
space,

The MicroAngela software, Screenware Pak | or Screenware Pak |, has been designed so that the system
can be used either as your main console output display, or as a separate graphics display processor, or both.
Logically, the Screenware consists of two largely independent software subsystems called ALPHA and
GRAPHICS. ALPHA emulates a '‘dumb terminal” interface, while GRAPHICS supports all the graphics
primitives. To get on the air with MicroAngelo as your main output device, you need only implement the sim-
ple interface to ALPHA shown below.

1.2 Quick Integration Steps

(Unless otherwise indicated. all memory addresses and operation codes throughout the manual
are in hexidecimal notation.)

To interface MicroAngelo to your computer as the main output device, dc the following three things:

1. Decide whether or not the MicroAngel parallel ports, mapped from FO-FF, are compatible with
your systern. If your system currently uses any port in this range, you may have to alter the Port
Address Jumpers to some other 16-port boundary. This procedure is described in the section en-
titled ""Changing the Port Addresses'’.

2. Install the following interface code as your system’s main [*‘console’’] output routine. This code
will send the byte in the A register to MicroAngelo’s ALPHA component, and appear to your
operating system to be 8 “'dumb terminal’’ interface:

ttyout push psw save the output byte
tyol in OF1H read the Control Port
ani 1 test buffer-full bit
jnz ty01 wait until nat full
pop psw restore the output byte
out OFOH send it to the Data Port
ret return

If you have changed the port addressing as the result of Step 1 above, replace the references to
output ports FO and F1 in this code to the appropriate new values. The software interface to
MicroAngelo is described in more detail in the section entitled *Screenware Pak | and Screenware
Pak fl - The Onboard Software”.

3. Connect, MicroAngelo to a TV monitor, as described in the section entitled ""System Integration'’.

At power-up time, MicroAngelo will clear the screen and display the winking text cursar in the upper left cor-
ner of the screen,

After getting on the air, you will then be able to take full advantage of the MicroAngelo graphics facilities,
described in detail in later sections.

1.3. Driving MicroAngelo from High Lavel Software

If you will be driving MicroAngelo primarily from software written in a higher level language {e.g., BASIC,
FOHTRAN], you will find the interface very straightforward. Read the section entitled **The Saftware Inter-
face”, then refer to the sections 6.5 and 6.6 for examples.

System Integration

2. 8Bystem Integration

The system is supplied fully assembled and tested, and is ready to insert into virtually any 5100 bus com-
puter after the port addresses have been set to be compatible with the host. [MicroAngelo can be easily
adapted to non-57100 bus structures. See the section entitled “Adapting MicroAngelo to Non-S100
Systerns”.] As shipped, the two MicroAngelo ports are mapped as FO and F1 in your system's port address
space. Because of the way MicroAngelo interprets port addresses, however, the hardware will actually res-
pond to B different ports within the group FO-FF, with port addresses FO, F4, F8, FC responding as one port,
and F1, F5, F9, FIJ responding as the second port. Before inserting MicroAngelo into your system,
therefore, verify that your system does not already currently use one of these 8 port addresses.

2.1 Changing the Port Addresses

If the MicroAngelo default port addressing is not eppropriate for your system, you may move to any other
16 port boundary by altering the Port Address Jumpers J11-J14, which are located near the bottom right
corner of the board. As shipped, all four jumpers are set to logic "1™ by default printed circuit traces bet-
ween the center and right hale. To switch a jumper to 0", scratch through the default trace and connect
the center and left hole with a short length of wire, Set J1 1-J14 according to the following table to obtain
the desired port mapping:

Desired Ports J14 J13 J12 J11
00-0F] 0 0 0
10-1F 0 0 0 1
20-2F -0 6] 1 0
30-3F 0 0 1 1
40-4F 0 1 0 0
50-5F 0 1 0 1
60-6F 0 1 1 0
70-7F 0 1 1 1
80-8F 1 o 0 0
90-9F 1 0 0 1
AO-AF 1 0 1 0
BO-BF 1 0 1 1
CO-CF 1 1 0 o
DO-DF 1 1 0 1
ED-EF 1 1 1 0
FO-FF 1 1 1 1

For example, to map the ports in the CO-CF graup, cut through the default traces on J11 and J12, and
solder in a short wire between the feft and center holes on each of these two jumpers.

11

2.2 Connecting a TV Monitor

The final video signals are available at connector JB at the extreme top left of the board. These pins are
numbered 1-6 from left to right, and defiver the following signals:

JB-1 R5-170 composite video
JB-2 ground

JB-3 direct-drive TTL vide

JB-4 ground -

JB-5 direct-drive, horizontat sync
JB-B6 direct-drive, vertical sync

The system can drive either 8 composite video monitor or & direct-drive monitor, or both simultaneausly.
Connect & compasite video monitor ta JB-1, JB-2. Connect a direct-drive monitor to JB-3, JB-4, JB-5,
JB-6.

After setting the port addresses and connecting the TV monitor, the MicroAngelo hardware will be fully
operational in your host systemn, and you will then be able to install the simple software interface described in
the next sections. The section entitled '*System Details'* describes other hardweare options you may even-
tually wish to use. :

2.3 The Software Interfacs

All communications between your host computer and MicroAngelo occur over the twa ports which have
been situated at some 16 port boundary in your system. The lower-addressed port of this pair {e.g., F0) is
the Data Port, the higher-addressed port (e.g., F1) is the Control Port. The Data Port is used for com-
municating 8-bit data end command bytes to and from MicroAngelo, the Control Port for handshaking and
for restarting MicroAngelo. The Screenware constantly monitors these two ports in anticipation of the next
graphics command or data byte.

When power is first applied to MicroAngelo, automatic restart circuitry initislizes the system hardware
and software. The screen is cleared, all cursors and software options described in sections below are set to
their defsult values, and the Screenware begins listening over the Data Port for 8 command or data.

2.3.1 Sending a Hyts to MicroAngaslo

The Data Port is a latched, bi-directional pathway with handshaking. ''Handshaking™ means that befare
sending & byte, the sender must first verify that the previous byte hes been processed by the receiver.
Without handshaking the preceding deta or command byte, which may not yet have been acted upon by the
receiver, might inadvertently be overwritten by the sender’'s next byte. A latched, handshaking port is essen-
tial when each side of the interface is an intelligent system running asynchronously with respect to the other.
Handshaking applies symmetrically to both sides of the interface.

Hendshaking is accomplished with MicroAngelo as follows. The rightmost bit of the Control Port byte wil
be "1 when there is a host command or data byte in the outbound Data Port which MicroAngelo has not yet
acted upon. Thus, before sending any command or data byte over the Dats Port, your system should always
read the Contral Part, test this ‘outbound buffer full* bit, and wait for it to become 0", if it is not already.

2

The following BOBO assembly language subroutine is the standsrd method of sending a data or command
byte from the host's A register to MicroAngelo (without destroying any other registers}:

dport equ OFOH declare the Data Port address
cport equ OF1H declare the Control Port eddress
sendbyte push psw save the byte a moment
sdb1 in cpart read the Control Port

ani 1 examine the status bit

jnz sbd1 Joop if buffer is full

pop psw restore the byte to send

out dport send to the Data Port

ret return

[Note that this code is exactly what would be used if you were driving a dumb terminal.) See the section en-
titled “Software Interface Examples' for an equivalent interface written in BASIC.

In the opposite direction, when the Screenware sends the host system a respanse, an identical
mechanism will cause the Screenware to wait for the host [i.e., your softwere] to read the response from
the Data Port before sending the next response byte.

2.3.2. Reading a Response from MicroAngelo

The second from the right bit of the Control Port indicates to the host computer whether or not there is 8
respanse byte back from MicroAngelo waiting to be read from the inbound port. When *'1°*, this bit indicates
that B response byte is ready to be read over the Data Port; 0" means there is no
byte to be read. When the host reads the byte from the Data Port, this bit is automaticaily reset to “'0"" to
inform the Screenware that it is free to send the next response byte, if any.

The following code is the standard method of reading a response from the Screenware. It waits for a
response byte to enter the interface from the MicroAngelo side, then reads it and returns it in the host's A
register {without sltering any other registers).

readbyte i cport read the Control Port
ani 2 isolate the "data avsilable™ bit
iz readbyte wait if no byte resdy yet
in dport read the byte from the Data Port
ret return

The SENDBYTE and READBYTE routines implement a complete MicroAngelo interface. In a typical CP/M-
based system, these two subroutines should be coded and placed in the USER I/0 area, where they can be
called by high-level system and user software to control MicroAngelo.

13

2.3.3. Restarting MicroAAngelo

Your system can restart MicroAngelo at any time via the Control Port. By outputting & 01 byte [actuslly,
any byte with the rightmast bit **1""] to the Control Port, the host causes the hardware reset condition to
begin on the MicroAngelo board. This reset will persist until a 00 byte is sent to the Contro! Port, and is func-
ticnally identical to the power-on reset generated by the MicroAngelo hardware at the time the system was
first turned on. Immediately after the host releases the MicroAngelo from the reset, Screenware Pak | will
clear the screen and reinitialize all modes and perarmeters to their default values. All current context will be
lost. Screenware Pak Il reacts somewhat differently, see Section 4.15 for details.

Example code for restarting MicroAngela is:

graphrst mvi 8,1 send a 1" to the Contral Port
out cport
mvi a,0
out cport
ret return

You may wish to include this code in your operating system's warm- and/or cold-start initialization code so
that the MicroAngelo display will be restarted each time the host goes through its own initialization se-
quence. On the other hand, the only condition under which you actually have to use the reset is when user
software has sent an erroneous or incomplete command sequence to MicroAngelo, or when user-loaded
code has lost control onboard MicroAngelo (see the UTILITY snd USER commands].

2.3.4. Summary of the Control Port

To summarize, the Control Port pleys two roles. Reading this port delivers the interface handshaking bits:

7 3] 5 4 3 2 1 0

XX XX XX xX XX XX IF OF

iF: inbound buffer (from MicroAngelo to host] is full
OF: Outbound buffer{from host to MicroAngelo] is full
XX: Unused

Writing to this port controis the MicroAngelo hardware reset:

7 6 o 4 3 2 1 0

LXXXXXXXXX)(XX)(XHF!

HR: "1 causes the hardware reset ta begin
0" releases the reset condition, allowing MicroAngelo to restart

XX: Unused

14

Screenware Pak | and
Screenware Pak Il
The Onboard Software

3. Screenwara Pak | and Scresnware Pak |l - the Onboard Software

Screenware responds to commands and data sent over the Data Port under the conventions described in
the previous section. Screenware can be thought of as two largely independent components: ALPHA and
GRAPHICS. The ALPHA [standing for ‘“alpha-numeric''] component manages the graphics display as though
it were a text-only “'dumb terminal’. This allows you to get on the air quickly, using MicroAngelo as your
system's primary output device. The GRAPHICS component recognizes s variety of graphics commands for
operations such as point, vestor, region and special character generation, and light pen contro!. Because of
the way the Screenware interprets commands and data, ALPHA and GRAPHICS are both always active, so
that you are not forced to be in one mode or the other at each moment, as with some other types of
graphics systems.

Upon receiving a byte from the host over the Data Port, the Screenware first inspects the high-order bit
of the byte. If this bit is 0"

7 G 5 4 3 2 1 0

0 ASCil CODE

the byte is sent to the ALPHA processor. Since the ALPHA processer is emulating a dumb terminal, the
byte will be interpreted as an ASCH character, and acted upon appropriatety. If the code is a printing
character, it is printed on the screen at the current ALPHA cursor, and the cursor is advanced, possibly in-
voking the ALPHA scroling mechanism, Aiternatively, if it is an ASCI control character [e.qg., carriage-
return, backspace], then the ALPHA processor takes the appropriate control action. {The specific ASCII
control codes to which ALPHA responds are described below.] Thus, the ALPHA component provides a com-
plete durmb terminal emulation.

If the high bit of a received byte is 1", the byte is interpreted as a command, with the next five high-order
bits specifying the opcode. Except for opcode O [which relates to the dumb terminal emulator), all commands
are handled by the GRAPHICS component.

The Screenware Pak | and Screenware Pak Il commands are:
7 5] 5 4 3 2 1

tl ' OPCODE MODE

Command Function

Name

Opcode

Screenware Pak { and Screenware Pak I

0 ALPHAMODE select various ALPHA mode options
1 GCUASOR set or read the graphics cursar

2 SCHEEN clear the screen, set figure/ground

3 POINT turn on or read & point

4 VECTOR draw a vector (fine)

9 REGION draw a rectangular region

6 CHARACTER plot or define a graphics character

7 LIGHTPEN turn on or off, or read the light pen
g CROSSHAIRS control the graphics crosshairs

8 MEMORY dump, load screen or memory

10 uTiuTy arrn USER, call user code, arm RTI
11 USER call user-defined function

17

Screenware Pak (!

12 TEST perform diagnostic EPROM, RAM, ALPHA, or Mun-
ching Squares test

13 RGRAPHC move the graphics cursar by a relative amount

14 SPLITSCR split the screen, ar load the default character
generator or ASCIl control code group

15 RPOINT plot a point at relative displacement from current cur-
sor

16 RVECTOR draw a vector to endpoint specified by relative coor-
dinates

17 RREGION paint a region of extent specified by relative coor-
dinates

1B CIRCLE draw a circle of specified radius at the current
graphics cursor

19 FLOOD flood & bordered region with all 1's or D's

20 MACRO define, invoke, or delete a named graphics object

21-31 HESERVED reserved for future use

The two rightmost bits of a8 GRAPHICS command byte are used in specifying a mode or subfunction within
these 20 categories. The ALPHAMODE command is described below.

3.1 ALPHA - The Dumb Terminal Emulator

At startup time, the Screenware clears the display, displays a winking text cursor in the upper left corner
of the screen, and begins emulating a "dumb terminal™ capable of at least a 300 character per second data
rate (3000 baud equivalent) under most conditions. Screenware Pak I} enhances this rate to more than
6000 baud. [The limiting factor for the data rate is the scrolling software. For applications requiring higher
data rates, “roling"" instead of scroling may work to your advantage. See the ALPHAMODE command.]

Each ASCI! code your system sends over the Data Port is treated by the dumb terminal emulator as either
a printing ASCII character or an ASCH control code, and will cause the appropriate screen activity to ocour
automatically,

3.1.1 Dumb Terminal Screan Conventions

The ALPHA processor treats the screen as a text grid of 40 lines of 85 characters per line. Row O is at
the top. row 39 is at the bottom, column O is at the left, column 84 is at the right. The ALPHA CURSOR,
(AR, AC), aslways identifies the screen pasition to which the next ALPHA character will be written, and is in-
tialized at restart time to (Q, 0).

Characters on the screen are 12 pixels high, 8 pixels wide, and are generated by the Screenware from its
internal character generator table. {Appendix 2 shows this character set in detail.] However, using the
CHARACTER and/or MEMORY commands, you can define a second, alternate set of 1 2B characters, [See
the section ""Defining the Alternate Character Set’ for a description of this pracedure.)

18

3.1.2. Dumb Terminal ASCH Control Codes

The ALPHA dumb terminal emulator recognizes and processes the following standard ASCI control
codes: :

BS 108] - Backspace [back up to and erase previous character)

HT {C9) - Horizontal Tab [moves to next B column boundary)

LF (0A] - Line Feed [ignored)

FF [OC) - Form Feed [clears the screen)

CR (CD) - Carriage Return (also does a line feed]

ESC (18] - Escape [causes the next ALPHA byte to be printed fiterally]
DEL [7F) - Delete [treated as B3]

Screenware Pak Il conditionally recognizes

HOME (013 - Home alpha cursor
DELECL {CE] - Delete text to end-of-line
DELEQOP {OF) - Delete text to end-of-page
CURUP (11) - Cursor up

CURDN [12] - Cursor down

CURLF (13) - Cursor left

CURRT (14) - Cursor right

3.1.3. Dumhb Terminal Printing Options

The dumb terminal emulator can be conditioned to print text in a number of special modes. If you do not
need any of these modes, no action is required. However, the following modes are available and can be
selected by calls to the ALPHAMODE command described in the section entitled ""MicroAngelo
Commands"’;

1. Figure/ground (whether to print white-on-black or black-on-white characters)
2. Underlining [whether or not to underline characters as they are printed)

3. Overstrike [whether to overstrike or print as usual}

4. Font {whether to use the standard or user-defined font]

3. Cursor {whether or nat the winking cursor should be displayed)

6. Scrolt [how much to pop up when text would fail off the battom of the screen)
7. Coordinates {where to print the next text character)

The defaults for these are:

1. Light Characters on dark background

2. Underlining off

3. Overstrike off

4. Standard font

5. Visibie cursor

6. 10-line pop-up

7. Starting cursor coordinates at row O, calumn G

See the ALPHAMODE command if you wish to change any of these defauits.

19

3.1.4. The Dumb Terminal Intarfaca Code

Because of the ALPHA cormpanent’s ability to emulate a standard terminal, Microfngelo will become your
system's main autput device after a simple integration step. To make MicroAngelo your mam output device,
install the following code In your system’s Userr area as the subroutine to be called to output the A register to
the screen. In this code (which is repeated from the section entitled ' Quick Integration Steps™], DPORT and
CPOHT refer to the two communications ports described earlier. Unless you have changed the port mapp-
ing, these are FD and F1, respectively.

dport equ OFCH declare the Data Port
cport, equ OF1H declare the Control Port
ttyout push psw save the output character
tt01 in cport read the MicroAngelo Control Port,
ani 1 test the output status bit
mnz $t01 loop if interface buffer still fult
pop psw send the character
out. dport to the MicroAngelo Data Port
ret return

if you wish warm- and/or cold-starts of your system to restart MicroAngelo, also insert the following reset
code in your hast system’s initialization sequence(s):

ttyrst mvi a1 send a hardware reset
out cport to the Control Port
mvi a0 release the reset condition
out cport
ret return

3.2. GRAPHICS - The MicroAngelo Graphics System

The GRAPHICS processor is responsible for plotting points, vectors, regions and characters of
special size or orientation, and for controlling the fight pen interface. GRAPHICS responds to various com-
mands described in the section entitled '‘MicroAngelo Commands'*, and is |largely independent of the ALPHA

processar, which emulates a dumb, text-only terminal. The sections below describe the GRAPHICS conven-
tions and cursors.

20

3.2.1. GRAPHICS Scresn Conventions

The Screenis a 512 wide by 480 high grid of on/off pixels ["'picture elements’’]. X coordinates range from
0-511 left to right, Y coordinates from 0-473 bottam ta top. In the descriptions below, the term "graphics
coordinates’™ refers to this coordinate system. Since a graphics coordinate requires 9 bits, two bytes are
used when specifying a graphics coardinate to MicroAngelo. By conventian, the high byte is slways sent first,
the low byte second. For example, to send the coardinate 283 decimal (125 hex], send a first byte of 01
hex, a second byte of 25 hex. Any graphics X coordinate {arger than 511 or Y coordinate larger than 479
sent to Screenware will be clipped to its maximum value,

A pixelis "on” when a ""1" bit is stored in its carresponding location in the MicroAngelo display memory.
However, whether an "'on* condition is seen as a light dot on a dark background or a dark dot on a light

background is determined by the setting of the screen's figure/ground hardware, described in the SCREEN
primitive below.

3.2.2. GRAPHICS Cursors and Coordinatas

The Screenware continously maintains six cursor and coordinate pairs:

[AH,AC] - the current row and column of the ALPHA CURSOR; AR ranges from 0-39 top
to bottom, AC from O to 84 left to right
[AX,AY] - the graphics coordinates of the lower left pixel of the character at [AR,AC)

[CX.CY] - the main GRAPHICS CURSOR'S coordinates

[LX,LY) - the coordinates of the most recent fight pen firing
(TX,TY] - the graphics coordinates of the tracking cross
{HX,HY] - the graphics coordinates of the crosshairs

[AR,AC) and [AX,AY) are maintained by the ALPHA component. The athers are described in the following
sections, and are all initialized to [0,0] at restart time.

21

MicroAngelo
Commands

4. MicroAngelo Commands

This section describes the 12 Screenware Pak | and Pak commands, and @ Screenware Pak Il com-
mands. In these descriptions the calling sequence is indiceted by

CALL: <hex opcode) (byte> ... (byte)

.e., to use the command, send the hex opcode followed by the specified byte-sized parameters, all over the
Data Port. MicroAngelo responses, if any, are indicated by

RESPONSE: <byte) ... (byte)

If @ command generates responses, your software must always read those responses. Otherwise, the
Screenware will become backlogged and wil eventually stop responding until any outstanding responses are
read.

The first command, ALPHAMODE, is used to set the various dumb terminal printing options, and relates
more to the ALPHA component than to the GRAPHICS component. The remaining commands relate to
MicroAngelo graphics. Appendix 1 summarizes all commands and gives decimal and octal equivalents for the
opcodes.

25

4.1. ALPHAMODE

OPCODE O

ALPHAMODE r 1 g 0 0 0 0 M

7 s 2 4 3 2 1

MQODE O: SET ALPHA MOOE BITS
CALL: BO (mode >

RESPONSE: none

The ALPHA MODE word is set to the { mode }> byte. The format of the ALPHA MODE word is:

sC

EC

HS

cu

FO

0S

UL

FG

506

EC HS cu FQ 0S UL FG

uUn
||1 "

uDu
||1 1)

ulDu
uDIu
¢|1 "
nou
111 n1
s|1 "
uolu

ll1‘|

means do not clear screen or home [AR,AC)
means ciear screen and home [AR,AC)

[SC is not actually stored as part of the ALPHA MODE word, but
has only a one-time effect at command time.)

[Pak I only) disables special ASCIl code interpretation
[Pak Il oniy] enables special ASCIl code interpretation

[Pak Il only] selects normal mode
[Pak Il only] selects high speed mode

enables display of the winking cursor
inhibits display of the cursor

selects the standard Screenware Pak character set
selects the character overstrike mode

selects normal erase-before-print mode
selects character gverstrike mode

inhibits underlining
turns on underlining

selects light characters on dark background
selects dark characters on light background

26

Bits 20H and 40H of the ALPHA mode word have meaning in Pak (I, Bit 20H of the ALPHA MODE word is
now defined as the "'high speed select” bit. When set to 1, the new high speed ALPHA maode is selected,
when set to O the normal [although alse somewhat improved] mode is selected. the poweron default is nor-
mal mode. In high speed mode, only the innermost 8 scan lines of the character are generated, leaving the
top and bottom 2 of all characters’ 12 scan lines ungenerated. While this is agequate for all characters in
the default character set, user-defined characters that make use of the top or bottom 2 lines will not be fully
generated in high speed mode. Additionally, the high speed mode ignores the figure/ground, underline, and
overstrike option bits.

Bits 40H of the ALPHA mode word governs whether or not the special ASCH control codes for cursor and
screen control will be enabled [see the SPLITSCR command]. When this hit is 1, special codes will be pro-
cessed, and wili take precedence over any cther interpretation of those B8 ASCIl characters. When this hit is
0 [the power on default), codes will not be recognized.

MODE 1: POSITION ALPHA CURSCR
CALL: 81 {(row?} {col?
RESPONSE: none

The ALPHA CURSOR s set to [{row >, (col?]. This “escape sequence’’ allows for quick reposi-
tioning of the cursor. Subsequent text will be printed starting at the new location.

MODE 2: READ ALPHA CURSOR
CALL: B2
RESPONSE: (row > <{col?

The Current ALPHA CURSO0R location is returned, row first than column,

MODE 3: SET ALPHA SCROLL
CALL: 83 <(n>
RESPONSE: none

The ALPHA scrall parameterisset to (n> . if {(n}> = 0, “rol mode" is selected. In this mode,
rather than popping up, the cursor wraps arcund to the top line and clears ane line at a time in ad-
vance as it reuses the screen. This maode is fastest, since it requires no pop-up time, but can be
somewhat visusally confusing. If {n} is greater than O and less than 40, the screan will be popped
up <{n> lines each time text is about to falt off the bottom . If {n} is greater than 39, the entire
screen will be cleared at pop-up time, and new text begun at the top.

Notes

The SPLITSCR command augments the ALPHAMODE command and provides two other services relating
to the ALPHA facility. In particular, the ALPHA screen can now be restricted to 8 user defined number of
bottormn screen lines. When the screen has been split by this command, issuing the ALPHA screen clesr
command clears only this bottom region. Also, the scroll parameter applies te this bottormn region, and is set
by SPLITSCR. Refer to the SPLITSCR sections for details.

27

4.2. GCURSOR

DPCODE 1 - GCUARSOR 1 0 a 0 G 1 M M

MODE C: SET GRAPHICS CLRSOR
CALL: 84 {xh)> (x> (yh> (yi>
RESPONSE: none

The Graphics cursor [CX,CY] is set to the values specified. [(xh> is the high byte of the CX coar-
dinate, <{xI> is the iow byte, (yh) isthe high byte of the CY coordinate, {yl) the low byte.] The
main graphics cursor is never actually visible, but serves as the relative origin of several graphics
operaticns. [CX,CY] is automatically moved by several graphics operations.

MODE 1: READ GRAPHICS CURS0A
CALL: B5
RESPONSE: <(xh» (x> {yh> (ylI>

The current (CX,CY] coordinates are reported.
MODE 2: SET [CX,CY} TO [AX,AY]

CALL: 8B
RESPONSE: none

CXis set to AX, CY is set to AY. This is useful for coordinating text and graphics.
MODE 3: SET [CX,CY) TO (TX,TY}
CALL: B7
RESPONSE: none

[CX,CY] are set ta (TX,TY).

28

4.3. SCREEN

OPCODE 2 - SCREEN 1 D D 8] 1 8] M M

MODE 0O: CLEAR SCREEN
CALL: 88
RESPONSE: none

The display screen is cleared by turning all pixels *'off"". If the figure/ground has been set to light-

on-dark, the screen goes completely dark. If the figure/ground has been set, to dark-on-light, the
screen goes completely light.

NOTES

In Screenware Pak)l the CLEAR SCREEN command applies only to the top region of the screen, in case
the SPLITSCR command has been issued to divide the screen between top [graphics/text) and bottom [dumb
terminal text only]. If the screen is not divided {i.e., all 40 lines are allocated to the ALPHA screen), CLEAR
SCREEN will clear the entire screen, Refer to the SPLITSCR command for details. Also, the tracking cross
and crosshairs are momentarily removed (if on] during a clear so that they are not erroneously erased.

MODE 1: SET SCREEN FIGURE/GRIUND
CALL: 89 (fg>
RESPONSE: none

The figure ground is set according to the rightmost bit of the following byte, <fg>. A 0" bit
selects light-on-dark, a **1" bit selects dark-on-light.

MOOE 2: TOGGLE SCREEN FIGURE/GROUND

CALL: BA
RESPONSE: nane

The current figure/ground is toggled. This is useful, for example, in rapid screen flashes to attract
the user’s attention.

MODE 3: READ SCREEN FIGURE/GROUND
CALL: 8B
RESPONSE: (fg)

The current figure/ground status is returned as the rightmost bit of the response byte.

29

4.4 POINT

OPCODE 3 - POINT 1 O 0o o] 1 M M J

MODE O: TURN POINT OFF
CALL: 8C {(xh> (x> <(yh> (yI>
RESPONSE: none

The point at the specified graphics coordinates is turned off. (CX, CY] are set to this location.

MODE 1: TUBN POINT ON
CALL: BD {xh> {(xI> {yh> {yl)
RESPONSE: none

The point at the specified graphics coordinstes is turned on. [CX, CY] are set to this location.

MODE 2: COMPLEMENT POINT
CALL: BE (xh> (x> {yh> <{y>
RESPONSE: none

The point at the specified graphics coordinates is complemented. (CX, CY] are set to this iocation,
MODE 3: READ POINT

CALL: BF (xh2} (xI> {yh)> <y
RESPONSE: { val)

A byte containing only the requested pixel is returned. If this byte is zero, the point is off; if non-
zero, the point is on. [CX, CY] are set to this location.

30

4.5 VECTOH

7 6 3
OPCODE 4 - VECTOR [1 —l 0 0 1 0 0 M M J

MODE O: TURN VECTOR CFF
CALL: 80 (xh> <(xI) (yh) <yl
RESPONSE: none

All paints lying along the vector between and including (CX, CY) and the coordinates specified in
the command are turned off. {CX, CY] are set to the new endpoint after the operation.

MODE 1: TURN VECTOR ON
CALL: 91 (xh) <{x1> {yh) <y
RESPONSE: none

All paints lying along the vector between and including (CX, CY) and the coordinates specified in
the command are turned on. [CX, CY] are set to the new endpoint after the operation.

MODE 2: COMPLEMENT VECTOR
CALL: 92 {xh> (xi> {yh) (yl>
RESPONSE: nore

All points lying along the vector between and including (CX, CY) and the coordinates specified in
the command are complemented. {CX, CY) are set to the new endpoint after the operation.

MODE 3: NO OPERATION

31

4.6 REGION

OPCODBE 5 - REGION 1 a 0 1 a 1 M MJ

MODE O: TURN REGION OFF
CALL: 84 {xTh) <(x1t) <y1h)> {y11) <xBh)> <{x21> <(y2h)> (y20)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner paints given in the
cormmand are turned off, (CX, CY] are unaffected.

MODE 1: TURN REGION ON
CALL: B85 (x1h> (x11)> C(ylh)> (y1> (x2h> (x21> C(y2h) (y2t)
RESPONSE: none

All bits in the rectangular region identified by the diagonally opposing corner paints given in the
command are turned on. [CX, CY] are unaffected.

MODE 2: COMPLEMENT REGION

CALL: 96 (x1h> (x11> (y1h)> {y11} {(x2h> (xPI} (y2h> (y2l>
RESPONSE: none

Al bits in the rectangular region identified by the diagonally Opposing corner points given in the
command are complemented. (CX, CY) are unaffected.

MQDE 3: NO OPERATION

32

4.7 CHARACTER

OPCODE 6 - CHARACTER 1 0 0 1 1 0 1 M M

MODE 0: PLOT GRAPHICS CHARACTER
CALL: 88 (c»
RESFDONSE: none

The character identified by the following byte, ¢ >, is plotted at [CX, CY), and [CX, CY] is ad-
vanced to the position at which the next graphics character of similar type would be plotted. (CX,
CY defines where the lower left pixel of the character (with respect to the character’s frame of
reference] is to be plotted. The low-order 7 hits of < c > are the ASCIl cade of the desired
character. The high-order hit identifies the font; '0" for standard, *'1" for user-defined. (These
are the same fonts as used by ALPHA.] The plotting of the character is carried out according to
the four mode bits in the GRAPHICS MODE WORD (see MODE 1 bekw]:

XX XX XX XX l—FG]SZ I Do]DD]

DD: These twa bits determing the character's print direction
and orientation, as follows:

0: left ta right, character upright

1 right to left, character upside-down

2: bottom ta top, character 90 degrees cow
3: top to bottom, character 90 degrees cw

SZ: "'0" selects normal size character [B by 12]
"1" selects double size character [12 by 24]

FG: "O" selects light on dark figure/ground
"1 selects dark on light figure/ground

For example, to write a double-size, dark on light message up the left edge of the screen
[characters S0 degrees CCW], set the mode word to DE. Note that GRAPHICS characters plot-
ted by this carnmand have no relation to the ALPHA component, except that both rely on the
same fonts. Because of the added complexity, the GRAPHICS mode character plotting tekes
somewhat longer than ALPHA mode.

33

MOOE 1: SET GRAPHICS CHARACTER MODE
CALL: 99 { mode >
RESPONSE: none

The GRAPHICS MODE word is set to < mode » . The modes thus defined apply to all subsequent
GRAPHICS characters. [See above).

MODE 2: DERINE ALTERNATE CHARACTER
CALL: 9A (asc> (s11» ... (sD>
RESPODNSE: none

The 6 by 12 bit pattern for ASCIt character code ¢ asc) is defined and inserted into the user-
defined font. The bit patternis sent as 12 bytes (s11), ..., (sD> which represent 12 scan
lines of the character, from top to bottom. Esch (si) byte's low order 8 bits define the B pixels
across that scan line of the character. For example, to define ASCIl code 13 as 2 bold, full-height
"T", you would call the Screenware as follows:

9A 13 3F 3F OC OC OC OC OC OC DC OC ac oc

\When printed, this character would then appear on the screen as:

Toinstall a complete user font, the UTILITY primitive’s block DEPOSIT mode is faster. The user-
defined font is stored in MicroAngelo's memory heginning at address OFQ40H. By depositing
12*128 = 1536 continuous bytes starting at this address, you will effectively be ioading the
entire user-defined font in one command.

MQODE 3. LOAD DEFAULT CHARACTER SET [Screenware Pak Il only)
CALL: 98
RESPONSE: nane

The standard MicroAngelo character set in EPROM is copied to the user-defined font region.
Note that this regicn may also be in use for other purposes [see the USER and MACRO carmn-
mands), so that care should be taken in managing this storage. This command is useful when the
user wishes the alternate character set to be largely similar to the defauit, except where changed
via the DEFINE ALTERNATE CHARACTER command.

34

4.8 LIGHTPEN

7 6 5 4 3 G

2 1
OPCODE 7 - LIGHTPEN [1 0 8 1 1 1 | M M]

“The light pen intertace [described electrically in the section entitled "Connecting a tightpen'] provides a
method of communicating with host software by painting rather than typing. When operating, the light pen
will generate pulses that are converted to coordinates by the Screenware. In Screenware, the light pen soft-
ware is always enabied, and is always ready to record the most recent light pen signal coordinates, [LX, LY).
These coordinates are accurate to two pixels vertically and horizontally when a quality light pen is used [see
the section entitled "'Connecting a Light Pen'].

When the “'tracking cross” is turned on (and visible as & small complemented crass on the screen), any
kight pen activity within the vicinity of the cross is interpreted as a command to adjust the cross so that it is
dead-centered under the light pen. With the Screenware continulusly (and at high speed) adjusting its loca-
tion to remain under the light pen, the cross appears to follow the pen where ever the user maoves it. When
the tracking cross is enabled, its coordinates are known as [TX, TY).

The following commands deal with the light pen interface.

MODE 0: TURN TRACKING CROSS OFF
CALL: 9C
RESPCNSE: none

The light pen tracking cross fs remaved from the screen, if present. The system powers up with
the cross off. '

MODE 1: TURN TRACKING CROSS GN
CALL: 8D <(xh> (xi> (yh> {yld
RESPONSE: nane

If the tracking cross is on, it is turned off. The cross is then displayed at the specified coordinates,
and [TX, TY} are set to this position,

MODE 2: READ TRACKING CROSS
CALL: OE
RESPONSE: 00
or
01 <xh> (x> Cyhd> Cy»

The current tracking cross coordinates, [TX. TY], are returned.

35

MOOE 3: READ LIGHT PEN
CALL: SF
RESPONSE: Q0
or
01 (xh> (xi) <yh> (yl>

Regardless of whether or not the tracking crass is on, if the light pen has fired since the last
reading via this command, a 01 byte, foliowed by the most recent light pen coordinates, is return-
ed. A OO response is returned if the light pen has not fired since the last reading. The light pen is
logically reset ta await another firing. This mode is useful, for example, in detecting when the user
is pointing at 8 menu item on the screen.

Notes

in Screenware Pak il the tracking cross pen-following algorithm has been improved to provide & more
stable cross display, and to provide better tracking response. Also, the tracking cross is now momentarily
removed [if on) during either an ALPHA or GRAPHICS screen clear or ALPHA scroli to prevent its erronecus
erasure or duplication

36

4.9 CROSSHAIRS

7 B 5] 4 3 2 1 C
OPCODE 8 - CROSSHAIRS (‘I T c 1 o) 0 J M M l

The Screenware "crosshairs™ are a full-screen vertical line and harizontal line which, when visible, in-
tersect at the current crosshair coordinates [HX, HY). Crosshairs are useful for indicating the coordinates
of the next graphics operation in an interactive design environment. The crosshairs are independent of the
main graphics cursor { CX, CY) and the tracking cross and lightpen coordinates [TX, TY) and (LX, LY].
However, simple user software that constantly monitors these other coordinates can logically couple the
crosshairs to any of them.

MCODE O: TURN CROSSHAIRS OFF
CALL: AD
HESPONSE: none

if the crosshairs are on, they are turned off. (HX, HY) remain as they are.

MODE 1: DRAW CROSSHAIRS
CALL: A1 {xh?> <xl) (yh> {y>
RESPONSE: none

If the crosshairs are on, they are turned off. The crosshairs are then turned on at. the specified
coordinates, and [HX, HY] are set to these coordinates.

MODE 2: READ CROSSHAIRS
CALL: A2
RESPONSE: (xh> (x> (yh> (yl)

The current crosshair coordinates, [HX, HY], are returned.

MODE 3: ORAW CROSSHAIRS AT [CX, CY)
CALL: A3
RESPONSE: nane

If the crosshairs are on, they are turned off. (HX, HY] are set to [CX, CY] and the crosshairs are
drawn at this new location.

Notes

In Screenware Pak Il the crosshairs are now momentarily removed [(if on] during ALPHA or GRAPHICS
screen clears and for ALPHA scroling to prevent their erroneous erasure or duplication.

37

4.10 MEMORY

7 6
OPCODE 9 - MEMORY [1 I 0 1 G o 1 M M

MODE O: DUMP SCREEN
CALL: A4
RESPONSE: <b1> ... (b7800)>

The 7800H bytes of the display screen are reported, top screen scan line first, working left to
right. This command is useful for storing screen images on disk.

MODE 1: LOAD SCREEN
CALL: A5 <b1> ... (b7BODO>
RESPONSE: none

The 7B00H bytes of the display screen are loaded, top screen scan line first, working left to right.
This command will load a previously dumped screen image.

MQODE 2; EXAMINE MEMORY BLOCK
CALL: AB {nh> (nl) {sh}> (al>
RESPONSE: ¢<b1 > ... (bn>

The N bytes [specified by < nh > (nl >) of MicroAngelo’s memory starting at the address
specifiedby (ah) (al) are reported. See the section entitied ' The MicroAngelo Memory Map"™
for & description of how the system’s memory space is allocated.

MODE 3: DEPOSIT MEMORY BLOCK
CALL: A7 <{ph> <{(nl} <ah) ¢al) (b1) ... <{bn)
RESPONSE: none

The memory black of specified length and starting address is loaded, using the N bytes following
the command. This command is usefut for loading the alternate font, and for loading user graphics
code to augment the Screenware. To load a complete user-defined font of 128 ASCI characters
of 12 scan lines (bytes] each, say:

A7 0B 00 F9 40

then write the 600H font bytes to the Data Port. (See the section entitled "' Defining the Alter-
nate Character Set" for more details.] Before loading user code vis this command, see the sec-
tion entitled *'The MicroAngelo Memory Map''.

Notes

In Screenware Pak Il memory depasits and screen loads run much faster because of a change in protocol.
Memary examines and screen dumps run slightly faster.

38

4.11 UTILITY

7 G 5 4 3 2 1 0
QOPCGOE 10 - UTILITY {’I [0 1 0 1 0 1 M M]

MOOE 0: SET USER COMMAND ADDRESS
CALL: AB (ah?> <al>
RESPONSE: none

The address of the code to be called by the USER command [opcade 1 1] is defined as {ah> (al).
The code should have been deposited into MicroAngeio's RAM via 8 MEMORY command prior to
this command, See the section entitled *‘The MicroAngelo Memory Map'' before installing any
user code.

MODE 1: CALL USER CODE
CALL: AG ¢(ah) {al> (imask> (ish» (ial>
HESPONSE: none

The Screenware calls the user code at the specified address. The user code gains controt of the
MicroAngelo CPU, may alter all registers except the stack pointer, and can return by executing a
RET instruction. If the stack pointer is aitered, the Screenware should be reentered st location O,
[Pak 1] or location 69H (Pak 11}, i.e., restarted.

As the user code is called, 3 types of logical interrupts can be enabled: OFH} {Data From Host),
DTHI (Data Ta Host], and LPI [Light Pen]. [See the section entitled “'Interrupts’’ for a description
of MicroAngelo interrupts.) ¢ imask > identifies which [if any) interrupt sources to enable:

7 &) 5 4 3 2 1 0

XX XX } XX XX XX LP DT DF

LP enable Light Pen interrupts
oT enable Data To Host interrupts
DF enable Data From Host interrupts

When an enabled interrupt occurs, the user interrupt handling code at the address specified by <
iah) ¢ial > will be called under the following context: (1] interrupts will be disabled, [2] an EX AF,
AF' EXX sequence will have been done to save all registers, {3] the A register will contain the in-
terrupt mask {in the format shown above] defining the source(s] of the current interrupt. After
finishing, the interrupt handling code should return via the sequence EX AF, AF', EXX, &, RET.
This CALL command will permit you to install a completely independent operating system within
MicroAngelo, and will give this operating system access to interrupts.

39

MODE 2: SWITCH REAL-TIME INTERRUPTS
CALL: AA QO

or

AA DT {ah)> (al)
AESPONSE: none

If the second byte of the command is 00, the 1/60 second real-time interval interrupts are disabi-
ed. If the second byte is 01, real-time interrupts are enabled, and will call the user-defined code at.
location {ah> (al> . This code should protect all registers on the stack [i.e., not via an EX AF,
AF', EXX sequence), and should return via a RETI instruction, since the reak-time clock interrupt is
non-maskabie. Before arming or using the real-time clock, read the section entitled “Interrupts"’.

MODE 3: FORCE COLD START (Screenware Pak | only)
CALL: AB
RESPONSE: none

A cald powerup sequence is forced, causing the MicroAngelo to be completely reset. This com-
mand is necessary because Screenware Pak Il distinguishes between the first and subsequent
hardware resets by storing and reading a flag byte [a byte which would be extremely uniikely to ap-
pear in RAM randomly at paweron].

40

4.12 USER

OPCODE 11 - USER 1 0 0 1 1j ™M M

-

MODES 0,1.2,3: CALL USER PRIMITIVE
CALLS: AC, AD, AE, AF
RESPONSES: user-definad

This command provides a simple interface wherein user-extensions to Screenware software can
be called. Before using this command, first install the user code in MicroAngelo’s RAM using the
MEMORY command’s DEPOSIT mode. Then declare the code’s entry address via the UTILITY
command’s MODE O. After this setup procedure, the four USER opcodes shown above will all be
routed to this user code. At calfl time, the two mode bits {i.e., the bits that distinguish the four
USER command opcodes] are available to the user code as the two rightmost bits of the B
register {all other bits zerc]. The user code is permitted to siter any registers except the stack
pointer, and should return to the Screenware vis a RET instruction. Before using this feature,
read the section entitled "'The MicroAngelo Memory Map®'.

Notes
The USER command will usually consume memory which is also used by the CHARACTER commands (per-
taining to the user-defined alternate character set]. Since the MACRO facility {Screenware Pak Il anly] will

also require some of this memory, additional care in allocating this space should be exercised. Refer to the
MACRO command for details.

41

4.13 TEST (Screenware Pak Il anly]

OPCODE 12 - TEST { 1 0 1 1 U 0 | M M‘}

MQODE D: TEST EPROM
CALL: BO ¢ blocks ?
RESPONSE: { cksum?

{n? 1024 byte blocks, starting at address (, of the EPROM are checksummed, and the result

returned as {cksum } , computed by summing all bytes in the block, modulo 256. This command
provides a means of verifying that the EPROMSs are functianing correctly. Specify 6 blocks to test
all of Screenware Pak Il. The checksum for each EPACM is noted on the EPAOM's iabel. When
testing more than one EPROM (ie., testing 4 or B blocks), add the individual EPROMSs’
checksums [in hexidecimal] to compare with the TEST EPROM's returned ¢ cksum)

MODE 1: TEST RAaM
CALL: B1
RESPONSE: O ar
1 ¢ah) <al>» {eb> (fo>

The entire 32K MicroAngelo RAM is tested by writing a cyclic test pattern, which ensures that
every possible byte vslue has been successfully stored and read in every memory location. The
test requires several minutes, and is visible as patterns of changing vertical bands on the screen.
If the test discovers no faults, a O response is returned and a cold poweron sequence executed to
reset the system. If a fault is discovered, a 1 followed by the faulty address high and low bytes, ex-
pected data byte, and faulty data byte, respectively, are returned. The Screenware then disables
interrupts, and enters a halt loop, under the assumption that useful computations are no longer
possible.

MODE 2: ALPHA TEST
CALL: B2
RAESPONSE: none

The entire default character set is repetitively printed to the ALPHA screen, exercizing the
figure/ground and underline options in various combinations. All ALPHA modes are left unaffected
by the test.

MCDE 3: MUNCHING SQUARES
CaLL: B3 (s> (i> {(n>
RESPONSE: none

Visually interesting, changing geometric patterns are generated by the Munching Squares
algorithm. The seed (s and increment i) are any 8 bit values, and determine the pattern
that. will be repetitively generated. <{n) , any 6 bit value, determines how many cycles the display
wil run through before terminating and clearing the screen { {n?} = 0 causes 54 cycles]. Each <
n 2 unit corresponds to about 45 seconds of real time. Try some of these values of [{(s) . (i)
for starters: [1,1], [5,19], {2.2], [7.3].

42

4.14 RGRAPHC (Screenwara Pek Il only}

OPCODE 13 - RGRAPHC 1 o 1 1 a 1 T M M J

MODE G: SET RELATIVE GRAPHICS CURSOR
CALL: B4 {dxh> tdxl> (dyh> (ayl»
RESPONSE: none

The graphics cursor is moved by an offset specified by the four calling bytes. 2's complement
arithmetic is used for negative offsets. As with the GRAPHIC command, RGRAPHC clips if
necessary to keep the graphics cursor in bounds.

MODE 1: NO OPERATION
MODE 2: NO OPERATION
MODE 3: NO OPERATION

43

4.15 SPLITSCR (Screenware Pak Il anly]}

OPCODE 14 - SPLITSCR L ([C 1 1 1 o M M J

MODE O: SET ALPHA SCREEN SIZE
CALL: BB <1>
RESPONSE: none

The screen is logically spiit between a top graphics/text region and battom text/scrofing region. ¢
I> specifies the number of text fines to be allocated as the bottom region, and is clipped to the
range 1-40 if not already in that range. Screenware Pak Il powers on with an <1} value of 40
[i.e.. the entire screen is available to the ALPHA processor, as in Screenware Pak l}. Note that
splitting the screen does not restrict graphics to the top region, but rather only restricts the
ALLPHA facility to the bottom region. Two side effects of this command are that the ALPHA cur-
sor is homed, and that the ALPHA scroll parameter (the number of lines to pop up when the
ALPHA region of the screen is full] is set to one-quarter the new ALPHA region height {or |
minimurm). However, the user is free to redefine the scroll parameter after a SPUTSCA.
SPUTSCR may be called at any time to redefine the size of the ALPHA area,

MODE 1: DERNE ALPHA CONTRQOL CCOES
CALL: B9 (c1) ... (cB>
RESPONSE: none

The ALPHA [dumb terminal) processor can now be instructed to recognize eight special ASCI
control codes:

0%H HOME the ALPHA cursor is homed to the top left of the ALPHA
region

OEH DELEOL text at and beyond the current ALPHA cursor is deleted to
the end of the line

OFH DELEOP text at and beyond the current ALPHA cursor is deleted to

the end of the page [ALPHA region)
11H CURUP the ALPHA cursor is moved up one line if possible
1eH CURDN the ALPHA cursor is moved down one line if possible

13H CURLF the ALPHA cursar is moved left one character if possible

14H CURAT the ALPHA cursar is moved right one character if possible

OCH FF the ALPHA region is cleared (form feed), and the cursor is
hormed

To maintain Screenware Pak | compatibiity, the ALPHA processor will interpret these special
codes only when the 40H bit of the ALPHA mode word is set, [refer to the ALPHAMODE com-
mand). If the default codes are not acceptable, the user may redefine therm via this command. All
codes must be in the range G-IFH [i.e., in the ASCH contral code region]. While this command re-
quires that all eight codes be specified, it will leave unchanged any code whose new value is not in
this range, allowing for selective aiteration of the codes. <cl® ... (c8) correspond in order to
the eight functions listed above. In addition ta defining the special codes, this command enables
their interpretation by the ALPHA processor [by setting the 40H bit of the ALPHAMODE word).

MODE 2: NO OPERATION
MOOE 3: NO OPERATION

44

4.16 RPOINT (Screanware Pak I only)

7 8 5 4 3 2 1 0

OPCODE 19 - RPOINT r1 0 1 1 1 1 M M—|

MODE D: TUBN RELATIVE POINT OFF
CALL: BC (dxh> {dxI> (dyh> Cdyl)
HAESPONSE: none

MODE 1: TURN RELATIVE POINT ON
CALL: BD (dxh> <(dxl)> {(dyh)> {dyl>
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE PQINT
CALL: BE <dxh)> Cdxl> C(dyh) Cdyl)
RESPONSE: none

MODE 3: READ RELATIVE POINT
CALL: BF (dxh> C(dxl} <dyh> <{dyl)
RESPONSE: ¢ val ?

These commands are identical to the POINT commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. As with the POINT commands, the graphics cursor is updated to the new ab-
solute screen location resulting from the relative offset,

45

4.17 RVECTOR (Screanwars Pak Il only]

7 E
OPCODE 16 - RVECTOR 1 | 1 O o0 0 oM m

MOBE O; TURN RELATIVE VECTOR OFF
CALL: CO {dxh) (dxi> {dyh)> (dyl>
RESPONSE: none

MODE 1: TURAN RELATWE VECTOR ON
CALL: C7 (dxh> {(dxl: {dyh> (dyl)
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE VECTOR
CALL: C2 (dxh> <dxl> (dyh)> (dyl>
RESPONSE: none

MODE 3: NO OPERATION
These commands are identical to the VECTOR commands. except that they interpret their
parameters as the X and Y relative offset from the current graphics cursar, rather than absolute

screen coordinates. As with the VECTOR commands, the graphics cursor is updated to the new
absaolute screen location resulting from the relative offset.

45

4.18 RREGION (Screenware Pak !l only)

1
ORPCODE 17 - RREGION [1 1 0 o 0 1 l M M

MODE 0: TURN RELATIVE REGION GFF
CALL: C4 (dx1h» {(dx11> <dylh)> {dy1l> <dx2h)> <dx2!> <{dy2h> {(dy2i)
RESPONSE: none

MODE 1: TURN RELATIVE REGION ON
CALL: C5 (dx1h > <dx1l> (dyih?> C(dyll> <(dx2h> <(dx2l> <{dy2h> {dy2l>
RESPONSE: none

MODE 2: COMPLEMENT RELATIVE REGION
CALL: CB <dx7h> <(dx11> <(dyth)> <dyli> <dx2h> (dxBl> (dy2h> (dy2l>
RESPONSE: nane

MODE 3: NO OPERATION

These commands are identical to the region commands, except that they interpret their
parameters as the X and Y relative offset from the current graphics cursor, rather than absolute
screen coordinates. Typically, to paint a region situated with one corner at the current graphics
cursor, BREGION is called with coordinates 0,0,0X,0Y, where DX and OY are the size of the
desired region. As with the region commands, the graphics cursor is not moved.

47

4.19 CIRCLE (Scresnwara Pak 1l only)

OPCODE 18 - CIRCLE [1 1 0 0 1 0 M M

MOOE O: TURN CIRCLE OFF
CALL:CB (r>
RESPONSE: none

Points on the circle of radius (r > centered at the current graphics cursor are turned off.)
may be any single byte value. Points on the circle out of range in the Y dimension are clipped.
Points out of range in the X dimension are wrapped around to the opposite side of the screen.

MODE 1: TURN CIRCLE ON
CALL: CY (r>
RESPONSE: nane

Points on the circle of radius <r) centered at the current graphics curser are turned on. Other-
wise, this mode is identical to Maode 0.

MODE 2: COMPLEMENT CIRCLE

CALL: CA (r>
HESPONMNSE: none

Paints on the circle of radius { r) centered at the current graphics cursor are complemented.
Otherwise, this mode is identical to Mode Q.

MODE 3: NO OPERATION

48

4.20 FLOOD [Screenware Pak Il only)

OPCOOE 19 - FLOOD 1 r1 0 0 9 1 [M M l

MODE 0: FLOOD WITH ZEROES
CALL: CC <{xh>» <{xl> {yh> {(yD)
RESPONSE: none

The bordered region containing the interior point specified by the arguments is flooded with
zeroes, The region must be completely bordered by zeroes, and its interior must be completely fill-
ed with ones for the algorithm to work properly. The region may be any shape, and the starting in-
terior point may be arbitrarily chosen. The flood algorithm is capable in principle of filling virtually
any region. In practice, however, the algorithm is limited by stack space, and may not be able to fitl
an unusually complex region. Generally speaking, the amount of stack storage will relate to the
degree of concavity detail in the border. Regions too complex for the 16-level stack will be rare,
but can be flooded in pieces if necessary. Additionally, certain narrow 45 degree corridors [i.e.,
“necks’” of complex regions which have a single bit wide, stair-step type of interior] pose logical
problems, and cannot be filled because of potential confusion with the region's exterior. Since the
flood algorithm checks screen limits, it can also be used to fill the exterior of an object, even
though there sre no borders at the screen edges.

MODE 1: FLOOD WITH ONES
CALL: CO <(xh> <xlI> C(yh} (vl
RESPONSE: none

The region containing the specified interior point is flooded with ones. The region must be com-
pletely bordered by ones, and its interior must be compietely zeroes. Otherwise, this mode is
identical toc Mode 0.

MOOE 2: FLOOD RELATIVE WITH ZEROES
CALL: CE (dxh) {dxl> {(dyh) {(dyl>
RESPONSE: none

This command is identical to Mode O, except that the starting interior paint is specified as a
relative offset from the current graphics cursor.

MODE 3: FILL RELATIVE WITH ONES

CALL: CF {dxh> {dx> (dyh> {dyl>
RESPONSE: none

This command is identical to Mode 1, except that the starting interior paint is specified as a
relative offset from the current graphics cursor.

48

4.21 MACRO (Screenware Pak Il only]

7 5 5 4 3 2 1 0
OPCODE 20 - MACRD | 1 l 1 0 1 0o 0 l M Ml

The macro facility provides for the definition and automatic display of commuonly used objects. 1t is useful
bath in streamlining the display of such cbjects, and in higher speed mavernent of screen ohjects than would
otherwise be pussible. The macro storage space can be up to 1536 (decimal] bytes long. Up to 255 distinct
macros can be defined in this region, each individual macro being up to 256 bytes long. A macro is any se-
quence of commands, exactly as they would be sent normally, and is defined by declaring its number (from O
ta 254), then sending the bytes which represent the sequence of MicroAngelo commands to become its
“body”. Macros are executed by the INVOKE MACRO command described below. The ERASE MACRO
command can erase a macro and return its nurmber to the available pool.

The macro facility will issue responges to the Mode 0, 1, and 2 commands below [no response for Mode
3]. Arespanse is either O, to indicate success, or a number from 1 to 6 indicating that a failure occurred and
its nature:

RESPONSE MEANING

SUCCESSFUL TRANSACTION

DEFINITION ALREADY IN PROGRESS
MACRO ALREADY EXISTS

MACRG FACILITY SPACE £EXHAUSTED
NO DEFINITION iIN PROGRESS

MACRO IS TOD LONG [OVER 256 BYTES)
MACRO DOES NQT EXIST

OO -=20

Respanse bytes must always be read for proper MicroAngelo protocol to proceed.

Because of limited MicroAngelo RAM, the macro processor uses the memory which is also allocated as
the user-defined character font, and/or USER cade area: While the user can arrange to use all three
features simultanzously, care must be taken to manage this 15386 byte srea properly. Each macro ccoupies
2 bytes plus the number of bytes in its body. Each ASCI character in the user-defined character generator
area occupies 12 bytes. Thus, by arranging never to use the first N alternate character codes, the user can
have a macro starage area of 12*N bytes at the beginning of the 1536 byte area. To assist in the manage-
ment of this shared memory, the size of the macro definition area can be restricted via the ERASE MACRD
command.

MODE D: START/STOP MACRO DEFNITION
CALL: OO ¢n?>

ar

D0 FF
RESPONSE: ¢ code »

If ¢n> is any value but OFFH, this command begins the definition of the macro whose reference
number willbe (n) . The new definition will not be begun if there 15 another definition in progress,
if {n?> is aiready inuse as a macro number, or if macro space has been exhausted. The response
cade indicating success or one of these failures should always be read by the user code, since
otherwise the MicroAngelo to host communication port will remain blocked. After having opened
the definition, the ADD NEXT MACRO BYTE command is used repetitively to build the macro
body. Having built the body, the user instructs the macro facility to end the definition and "install"
the macro by calling the START/STOP MACRO DEFINITION command a second time, but with € n
> = OFFH. At that time, the macro becomes usable by the INVOKE MACRO command.

o0

MODE 1: ADD NEXT MACRD BYTE
CALL: D1 (byte >
RESPONSE: ¢ code)

(byte > is added to the bady of the macro under current definition. A failure code wil be returned
if there is no definition in pragress, if macro space is exhausted or if the macro has become too
long. In case of failure, the current definition is closed and partially built macro discarded. The user
should always read the response ¢ code) .

MODE 2: ERASE MACRO OR CLEAR FACILITY
CALL: D2 (n>

or

D2 FF (sh> {sl}
RESPONSE: ¢ code »

In the first case, if <n> is the number of a defined macro, that macro is deleted from the macro
space, and its storage number returned for reuse. If the named macro does not. exist, the ap-
propriate error code is returned. In the second case, when (n)> = OFFH, the command is inter-
preted as a macro facility reset directive. In this case, all macros are erased, the number of bytes
of the 1536 shared memory region to be allocated to the macro facility is specified by (sh)>, (sl
7. which should be in the range 0-1538, After this command, any attempt to build macros
beyond this limit will return a failure code. The macro facility powers up in a reset condition, with &l
1536 bytes allowed for macro definitions. Both forms of this command return a condition { code
? . which should always be read by the user.

MODE 3: INVOKE MACRO
CALL: D3 ¢(n?>
RESPONSE: none

The macro whose numberis <{n) isinvoked, i.e., its body is fed to the command interpreter just
as if it were coming straight from the user. If there is no macro number (n) . A NO OPERATION
results. While the macro’s invocation itself may cause a repense to be generated, the INVOKE
MACRO command itself never returns a success or failure response. When the invoked macra's
body has been completely read, Screenware Pak fl reverts to its normal command loop. However,
since there are cases where it may be convenient for one macro to invoke other macros, Screen-
ware Pak li allows a macro invocation nesting depth of B. Nestings beyond this depth are ignored.
When a nested macro completes, control is resumed in the previous [calling) macro, and so forth
until the normal command processor is again active. Nasturally, care should be exercised in defin-
ing macros, since, if @ macro's bady is incorrect, it may throw Screenware Pak Il and the user out
of logical touch with each other, just as would happen in any improperly formed direct command
sequence.

Macros will typically rely heavily on the new relative cursor, paint, vector, and region commands, and on
the new circle and flood commands, Generally, the strategy for writing & macro is to work from the current
cursor, and ensure that the cursor is left either where it was originally, or at some rmeaningful place for the
next macro (if there will be a sequence of them, or, if they have been nested] to pick up. For macros that are
capable of moving objects at relatively high speed on the screen, use only the cemplement mode of afl draw-
ing commands, so that the first invocation of the macro will draw, the second erase.

54

The following example illustrates how to set up, then use a macro. Suppose the goal is to define a macro’
that will draw a triangle with fower ieft vertex at the current graphics cursor, flood the triangle’s interior with
1's, draw a circle of 0's inside the triangle, flood the circle’s interior with 0's, than leave the graphics cursar
at the lower left vertex of the triangle where it began. The sequence of commands that are to form the
macro’s body is therefore:

RVECTOR +29 +80 draw first side of triangle
RVECTOR +25 -850 draw second side
RVECTOR -B0 0 draw third
RFLGGDO +1 +1 flood triangle interior with ones
RGRAPHC +25 +25 move to triangle center point
CIRCLEZ 15 draw circle with zeroes
RFLOODZ 8] 0 fload circle interior with zeraes
RGRAPHC -25 -25 return cursor to starting point

Hence, the sequence which defines this sequence as. say, macro O is:

0o 0o start macro O definition

01C1 01000119 D1 00 D1 32 send first vector command

D1C1 D10DD119 D1 FF D1 CE send second vector command

D1C1D1FF D1 CE D100 D100 send third vector commeand

D1 CFDT00 0101 D100DT 01 send triangle flood command

BTB4AD10C0OD1T119D100D1 19 send rel cursor move command

01 CB D1 oA send circle command

D1 CED100DT 000100 D100 send circle flood cormmand

D184 D1F DYE7 1 FF D1 E7 send rel cursar move cammand

00 FF terminate and install macra

This macro can then be invoked by calls of the form:

03 ao invoke macra number O at current graphics cursor

a2

System Details

5. System Details

MicroAngelo can be effectively used without a knowledge of the information in this section. However, if you
wish to install a fightpen. read the subsection entitled " Connecting a Light Pen'. If you plan on augmenting
Screenware Pak ! or Screenware Pak Il with additional software, read this entire section.

5.1 The MicroAngeio Memory Map

Unless you plan on sending user code across to MicroAngelo via the MEMORY command, you need not be
concerned with the internal memory map of 8 Screenware Pak. However, in order to install and interface
user-defined graphics code, it is important to understand how a Screenware Pak uses the MicroAngelo
mMemory space.

REGION USE

OC00C-CFFF Screenware Pak | in EPROM

0000-17FF Screenware Pak il in EPROM

1000-7FFF Unimplemented (SW PK]

1800-7FHF Unimplemented [SW PK 1]

BOCO-FFFF Read-write memary, subdivided as follows:
BOOO-F7FF Visible display

FBOO-FBBF < and one-half visible scan lines {which should be kept blanked]
FBCO-FS3F Screenware system stack

FS40-FF3F User-defined character generator, or user code area
FF40-FFFF Screenware working RAM

If the alternate character set is defined and used, there is no space for user code. If, however, the alter-
nate character set is not used (or if only a portion is used), the region FG40-FF3F [1.5K bytes] can be used in
whole or in part for user code.

Lser code should not make any unusual alterations to the system stack, nor should it aiter any location in
the FFAQ-FFFF region.

55

5.2 Defining the Alternate Character Set

The alternate character set resides in the F940-FF3F region of MicroAngela’'s RAM. Each character sym-
bol occupies 12 bytes, top scan line first. Thus, the region F40-F34B holds the symbol for ASCH! code O,
with the top scan line at F840, the bottom line at F94B. Within each byte, the low-order six bits define the
pixels across a scan line of the character. The CHARACTER and ALPHAMODE commands allow you to
select this alternate character set, or toggie between the alternate and standard sets.

The giternate character set can be defined all at once by the Pak Il command LOAD DEFAULT
CHARACTER SET {Section 4.7), or by depositing {via the MEMORY command)] all 128* 12 bytes starting at
location F40. [If not all 128 symbols need to be defined, you need not send the entire set, and can use any
remaining space for user code.) Alternatively, symbols for individual ASCIl codes can be defined using the
CHARACTER command's Mode 2.

As an example, suppose you wish initially to define alternate symbols for ASCIl codes 0-63 (the lower half
of the character set]. To do this, you say:

A7 deposit 64* 12 bytes at F940
03 B4*12 = 300 [hex)

00

Fo location F240

40 send the 768 [decimal] bytes

Suppose then at a later time you wish to alter the symbal far ASCIl code 7. Then you say:

9A define individual symbol via CHARACTER
07 ASCH code 7
send the twelve bytes, top scan line first

5.3 Interfacing Onboard User Code to The Screenware

User code installed in the MicroAngelc RAM will probably need to interact with the Screenware software
primitives, Appendix 3, ""Screenwsre Pak | User Entry Points”™ and Appendix 4, "'Screenware Pak Il Entry
Points' gives entry paint addresses and calling conventions for the various user-callable Screenware Pak |
and Pak |l functions.

ab

5.4 The MicroAngalo Physical I/0 Ports

When running your own software in the MicroAngelo memory, you may occasionally wish to bypass the
Screenware software and interact directly with the MicroAngelo hardware. When interacting directly with the
herdware, user code has access to the following information as Z80A /O ports 0-3:

PORT MODE

0 Input
Output

1 input
Output

2 Input
Cutput

3 Input
_ Output

5.5 Interrupts

FUNCTION

Data Port, from host
Oata Port, to host

Status Bits:

Q {rightmost bit} host-to-MicroAngelo data buffer is full
1 MicreAngelo-to-host data buffer is full

2 Light Pen strabe has fired

3 Screen Figure/Ground status

4-7 Unused

The rightmost bit sets the screen figure/ground [“0" for light on dark, "'1" for
dark on light]. All other bits are unused.

Light Pen horizontal counter latch [left of screen is count D, right of screen is
count 2355), accurate to 2 pixels

Unused

Light Pen vertical counter latch [top of screen is count O, bottom of screen is
count 239], accurate to 2 scan lines. Reading this part also resets the light pen
interface, allowing it to trigger on the next light pen strobe. [See the section en-
titled “"Connecting a Light Pen’" for more discussion.)

Unused

There are four potential interrupt sources for the MicroAngelo's Z80A:

DFHI [Data From Host) - the host has just written a byte to the MicroAngels Data Port
OTHI [Data To Host] - the host has just read a byte from the Data Port

LPI [Light Pen] - the light pen has just fired

AT (Real-Time) - the B0 hz interval timer has just fired

The first three interrupt sources are connectable as maskable ZBOA interrupts. The Real-Time Interrupt,
when enabled by a hardware jumper, will generate a Z80 NMI [non-maskable interrupt) every 1/60 second.

57

5.5.1 Enabling/Disabling the Maskabls Interrupts

As shipped, only the LP! and DFHI are physically enabled. The DTHI has been disabled by removing US9 pin
9 from its socket. Reinsert this pin to enable the DTHI. [Doing so will not Iogically interfere with the Screen-
ware's logical operation. However, it will slow the software down somewhat when sending responses hack to
the host.]

To disable the DFHt, remove USQ pin 10 from its socket. To disable the LPI, remove U539 pin 13 from its
socket. [Do not disable these, however, unless you are installing 8 completely new operating system in
EPROM! The Screenware assumes that these two interrupts are enabled, and will not run properly with
thern disabled.} See the UTILITY command [Mode 1] for a description of the logical user interface to these
three maskable interrupts.

5.5.2 Enshling the Real-Time interrupt

The RTl non-maskable interrupt can be enabled by scratching through the default trace between holes 2
and 3 of U3, and jumpering holes 1 and 2 together. After this procedure, a non-maskable interrupt will be
generated every 1/60 second. See the UTILITY cormmand [Mode 2] for a description of the logical user inter-
face to this non-maskable interrupt.

It should be noted that with the RTI connected, there is a very remote possibility that MicroAngelo will not
power up correctly. Immediately after beginning, the Screenware software stores a specific code in ocne byte
of its read-write memory to remind itself that RTI interrupts are logically disabled. If, however, ar RT! occurs
in the several microseconds between powering on and steoring this disabling code, and if the MicroAngelo
memory randomly happens to power up with this speciat code slready present in the BTl enabling byte [very
unlikely}, then the Screenware will erroneously branch to what it thinks is the user-defined RT| handling cede.
This, of course, would cause the systermn to lose control. To be absolutely certain that MicroAngelo has
powered up correctly with the RT) enabled, use the MEMORY command to examine the RT! logical status
byte at location FFCS immediately after system power-on {i.e., put this in your cold-start. initialization code].
If this byte is not OCCH, keep resetting MicroAngelo [over the Control Port] until it is. Then reset the
system one final time. [The chance of a bad power-up because of these circumstances is quite remote. You
can therefore get along without these procedures for all but the most criticat applications.)

5.5.3 Connecting Host-8ide Interrupts

Jumper J5 on the MicroAngelo board can be set so that the host wili be interrupted whenever
MicroAngelo reads or writes a byte over the Data Port. JS Pin 5 goes tologic *'0"" when MicroAngelo writes
a byte to the hast. J5 Pin 10 goes to logic "0’ when MicroAngelo reads a byte from the host [i.e., when the
host can write another byte to MicroAngela). J5 Pins 6, 1, 7, 2, 8, 3, 8, 4 connect to the 5100 bus vec-
tored interrupt fines [S100 fingers 4-11, respectively]). By jumpering 45 Pin 5 and/or J5 Pin 10 to these
vectored interrupt nes, you can route these two interrupt signals to the host CPU, if it is equipped to pro-
cess them. Doing so permits the host operating system software to support an interrupt-driven protacol
with MicroAngelo.

58

6.6 Connecting a Light Pan

Connector JA at the top right corner of the board is the Light Pen Connector. Pin1 accepts the rising edge
triggered Light Pen Strobe, Pin 2 is the Light Pen Ground connection, Pin 3 accepts the active high Light Pen
Enable, and Pin 4 is & regulated + 5 volt, 100 ma power source for the light pen. When Pin 3 is a togic "1
and a positive edge occurs on Pin 1, the light pen hardware latch captures the display counters to record the
X-Y location of the light pen. Further positive edges at Pin 1 will not be hanored until the Screenware soft-
ware (or user software) reads the counter value from the light pen hardware latch. As shipped, both Pin 4
and Pin 3 are pulled down ta logic “0" [by resistors R18, R19, respectively] in the absence of a light pen.

If you wish to cannect s light pen that generates bath the strobe and enable signals, simply connect all 4 pins
as described. (If your light penis of the low-power type, you may have to remave R18 and B19, since these pull-
down resistors may present an excessive current drain to the light pen.) If your light pen has no enable line,
jumper Pin 3 and Pin 4 together to enable the light pen permanentiy.

See the LIGHTPEN command and the section entitled “Interrupts’ for descriptions of the logical light pen
interface and light pen interrupts.

5.7 Summary of Hardware Jumper Options and Connectors

There are 15 jumpers and 3 connectors on the MicroAngelo board. The tables and diagram below sum-
marize and describe these. For most applications there will be no need to alter any jumpers. Default settings
are indicated with asterisks.

58

5.7.1. Hardware Jumpers

NAME
J1

J2

J3

Ja

J6-J10

Ji1-414

J15

PINS

1-2*
2-3

FUNCTION

Select 480 visible scan lines

Select 448 visible scan lines

(Note that. all Screenware software assumes that there are 480 visible
lines. If you select the 448 option, you must assume responsibility for
managing the display screen.)

Select 4 mhz ZBDA operation

Select 5 mhz ZBOA aperation

A ZBOA can usually run at 5 mhz. If you want to increase the speed of the
system, select this option.

Enable 60 hz Real-Time Interrupt [RTI)
Disable 60 hz RTI
See section entitled “Interrupts’’

Holes 6,1, 7, 2.8, 3, 8, 4 connect to $100 bus fingers 4, 5, 6, 7, 8, 9.
10, 11 respectively. [These are the vectored interrupt fines.) The signal
at hole 5 is the inverted OTHI interrupt, the signal at hole 10 is the true
OFH! signal [see the section entitled *‘Interrupts'’). By connecting DTHI-
inverted and/or OFHI-true to vectored interrupt lines, you can arrange
for your host system to be interrupted whenever MicroAngelo reads the
byte last sent from the host, or sends a byte to the host. [See the sec-
tion entitled "Interrupts’’.] The board is shipped with neither interrupt
source connected.

[These jumpers wik allow future EPROM upgrade to an 8K operating
system])

Select port address bit = 0"

Select address bit = "1™

These four jumpers map the two psrallel ports over which you com-
municate with MicroAngelo. See the section entitled ‘‘Changing the Port
Addresses’'.

Enable OFHI and DTHI interrupts

Disable DFHI and DTH! interrupts

This jumper can cause the MicroAngelo ZBOA to be interrupted by com-
munications activities with the host, as described in the section entitled
"Interrupts"’

60

5.7.2. Hardware Connectors

NAME
JA

J8

JC

L =

I

- Lo

FUNCTION

Light. Pen Strobe. A positive-going signal on this pin causes the Screen-
ware software to update {LX, LY], the light pen coordinates

Light Pen Ground

Light Pen Enable. A logic "*1"" on this pin physically enables the Light Pen
Strobe. It is typically fed by the activation switch in the light pen.

+ 5 volt, 10D ma power source for light pen

Composite Video. Connect a composite video TV monitor to this pin and
Pin 2.

Compaosite Video Ground

TTL Video. Connect a direct-drive video monitor to this and Pins 4,5 6
Direct-Drive Ground

Direct-Orive Harizontal Sync

Direct-Drive Vertical Sync

{Reserved for color interface)

61

8

VIDEO OQUTPUT

LIGHT FEMN fNPU;F

rrrrrr

T 10 [epicedien,,
= “3}@‘ LR ol oﬁulla”cl 53 (0551
gg U34 d ‘
> IEI) oz t u33 q (o= C@IMSTLUSH
O : ” — ﬁ [0 tg[Uag ¢ (U363
of E) — @I 038 {047 tl ;ggs E
Q e o O ol g ‘*E%?‘—
8 oF E e) = v e B T

[ﬂﬂﬂﬂ[[]HHﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂHHHDT

5.8 Adapting MicroAngelo to Non-S100 Bus Systems

Interfacing MicroAngelo to non-5100 bus systems is relatively straightforward becsuse of its simpie
paraliel port connection to the host system. Specifically, MicroAngelo requires the following $100 bus con-
nections:

S100 PN NAME FUNCTION
1.51 +8 Unregulated + B volt power [2 amps]
50,100 GND Ground

- 2 +18 Unreguiated + 18 volt power {1 amp)
52 ~-18 Unregulated — 18 volt power [100 ma)
a0 DO7 Quthound data line 7
40 DOG Outbound data line 6
39 D05 Outbound data fine 5
38 D04 Outbound data line 4
83 003 Outbound data line 3
a4 002 DOutbound data line 2
35 001 Outbound data line 1
36 DOC Outbound data line O
43 o7 inbound data line 7
a3 Dis Inbound data line 6
a2 DIS Inbound data line 5
91 Bla Inbound data lina 4
42 13 Irhound data line 3
41 D12 Inbound data line 2
94 DI " Inbound data line 1
95 DIo Inbound data line O
83 A7 Address line 7
B2 AB Address line 6
29 A5 Address line 5
30 A4 Address line 4
80 A1 Address line 1
79 ACQ Address line O
45 SINP Input request
45 SOouUT Output reguest
78 PDBIN Input strobe
77 PWR-BAR Qutput strobe

The data input and output lines can be tied together to form one 8 line bidirectional data bus. Commands
and data are written to MicroAngelc on the caincidence of SOUT = 1", PWR-BAR = 0" and Board
Select. Responses and status flags are read from MicroAngelo on the coincidence of SINP = 1", PDBIN
= 1" and Board Select. Board Select occurs when address lines A7-A4 match the settings of jumpers
Jd14-411 and A1 = “'0". On a read or write operation, address line AQ determines whether the Data Port
or Control Port is selected.

G3

For a stand-alone environment in which MicroAngelo will be powered by its own power supply and will be

unrelated to its host’s address space, a simple bidirectionsl parallel port interface can be implermented as
follows:

1. Tie the data inbound and ocutbound lines together and route them to the host as the 8 bit
bidirectional parallel I/O port.

2. Tie A7, AB, AB, A4 permanently high [to match the default jumpers J14-J11]), and tie A1
permanently low.

3. Tie PDBIN permanently high, PWR-BAR permanently low.

4. Route AU to the host as the Data/Control Port select line [i.e., MicroAngelo looks like 2 logical
/0 ports over ane physical I/C port connection].

5. Route SINP and SCUT to the host as the input and output command lines.

Using this 12 conductor logical interface to the host {8 data lines, AQ, SINP, SOUT, ground], MicroAngelo
becomes a stand-alone graphics computer compatible with virtually any type of host system. By connecting
the interrupt lines as described in the section entitled "'Interrupts’ and routing them to the host, the inter-
face can also support a full interrupt protocol.

5.9 Hit Mapping of Display RAM to Video Screen

The address space of the MicroAngelo from locations 8000 to OF7FF is RAM memory that is displayed on
the video screen. Each of the 245, 6570 bits within this range appears as a single picture element [pixel) on
the screen. These bits are mapped onto the screen in s predefined way by the MicroAngelo hardware. The
top leftmost paint on the display is the maost significant bit of the byte stored at location 8000. The point im-
mediately Lo its right is the 2nd most significant bit of the byte at 8000. This continues for all the bits in byte
8000 and then proceeds on across the screen with the bits from byte 8001, then 8002, BO0O3, etc. for a
total of 64 bytes. The second display raw then begins with the most significant bit from the byte at location
8040. The bottom rightmost bit of the display is the least significant bit of the byte at location OF7FF. The

MEMORY commands “examine” and “'deposit’’ can be used for experimenting with the direct modification
of the video display.

479 - 7654321076543210 oL 76543210
... [byte BOD1} [byte BO3F] ...
... (byte BOOQ)
Y-Axis
VIDEO DISPLAY
... {byte F7C0] {byte F7FF] ...
000 - 76543210 S 76543210
I |
000 511
X - Axis

64

- Software Interface
Examples

6. Software Interface Examples

Send and receive all bytes in these examples using the code shown in the section entitled ' The Saftware in-
terface”.

6.1. Graphics: Clear Screen, Draw Triangle, Embed in Region

B8 clear the screen

B4 set the graphics cursor to (128, 128) decimal
00

80

00

80

91 draw vector te {256,384]

01

00

01

80

91 draw a vector to (384,128)

01

B0

00

80

a1 draw a vector to [128,128)

00

80

00

80

96 embed triangle in region by complementing
00 make the region corners (64,64} and (448,448)
40

Q0

40

01

Co

01

CcO

6.2. Turn On and Read the Tracking Cross

9D turn the tracking cross on at screen center

1 X = 2bB

0c

00 Y = 242

F2
[wait for user to drag it to destination, then type a key on the host
keyboard)

BE read the location

[The Screenware will send the coordinates as four response bytes
which you then read.)

857

6.3. Write a Message Around the Border of a Square

This code writes the characters “"MicroAngelo!”’ in a box shape (i.e., “Mic’" is on the top, "roA’ is on the
right side going down, “‘nge’ is upside-down from right to left on the bottom, and "'lo!" is on the left side go-
ing up. Characters are double size and reversed figure/ground.

B4 move the graphics cursor to the screen center
D1

00

00

£2

99 set graphics character mode for top characters
ac reversed figure/ground, double size
98 print "‘M"'

4D

a8 print """

58]

98 print "‘c”’

63

99 select new orientation

DF 90 degrees cw, tap to bottom
S8 print *r)

72

98 print “'o”

6F

98 print A

41

99 select new orientation

oD upside-down, right to left

98 print 'n”’

6E

9B print “'g"’

67

aB print "'e"’

65

g9 select new orientation

OE 80 degrees ccw, bottomn to top
98 print “'|"’

6C

98 print ‘o"

BF

98 print "1’

21

68

6.4. Underlining in Dumb Terminal Moads

The following code prints the message "'Hello there'’ by switching into and out of ALPHA Underline Mode
for 8 moment.

48 print "'H"

8H print e’

BC print "'

80 print "I

BF print ‘o’

20 print space

B0 give ALPHAMODE command to start underlining
02 second-from-right bit governs underlining
74 print "t"

68 print ""h"

B85 print e’

72 print “'r*’

B5 print ‘e

80 turn off underiining

00

64

6.5. Sample BASIC Interface

Most high tevel graphics software is best developed in a higher level language. To illustrate how ta drive
MicroAngelo fram North Star BASIC, four functions, FNG, FNI, FNS and FNR are shown below. FNO will
wait for the Control Port to indicate a read-to-send condition, then send a single given byte ta MicroAngelo.
FNI will await a single byte MicroAngelo response, then return it as the functional value. FNS will send 8 16
bit quantity (e.g., a coordinate or address), high order byte first, by twa calls on FNG. FNR will assemble a
16 bit [two byte] respoanse from MicroAngeio and return the 16 bit quantity as its functional value. In these
examples it is assumed that the Control Port is F1 and the Data Port is FO (241, 240Q decimal,
respectively). If you have changed the port addresses. substitute these with the appropriate port nurmber.

10100 REM SEND A BYTE TQ MICROANGELD
10200 DEF FNO[X]

10300 1 = INP[241]

10400 IF 1< > 2*NT(/2]THEN 10300

10500 OUT 240, X

10600 RETURN O

10700 FNEND

10800 REM READ A BYTE FROM MICROANGELD
10900 REM [CALL WITH A DUMMY PARAMETER)
11000 DEF FNI[X)

11100 | = INT(INP{241)/2)

11200 IF1 = 2*INT[/2)

11300 RETURN INP[240]

11400 FNEND

11500 REM SEND A 16 BIT QGUANTITY TO MICROANGELO
11600 DEF FNS[X]

11700 | = FNO (INT[X/256))

11800 ! = FNO[X-256*INT{X/256))

11900 RETURN O

12000 FNEND

12100 BEM READ A 16 BIT QUANTITY FROM MICROANGELD
12200 REM [CALL WITH A DUMMY PARAMETER)

12300 DEF FNR(X)

12400 Q@ = FNI[D]

12500 RETURN 256*Q + FNI[O)

12600 FNEND

74

6.6 Interfacing to FORTRAN

The following subroutines are five examples of FORTRAN routines to direct MicroAngelo.

LRl

output a byte to MicroAngelo

O0Ooo0

subroutine maaut [ibyte]
10 if (inp{241]. and.1]) go to 10
call out (240, ibyte)
return
end

ok ok

move graphics cursor ta cx, cy

Oaoan

subroutine cursar [cx, cy)
call maout {84H)}

call coord (cx, cy)

return

end

L N}

plot a point at cx, cy

aOaoao

subroutine point [cx, cy]
call maout [BOH)

call coord [cx, cy)
return

end

LB

draw a vector to CX, cy

o000

subroutine vector [cx, cy)
call maout {31 H)

call coord {cx, cy)

return

end

output & 16 bit X and a 16 bit Y coordinate to MicroAngelo

oooo

subroutine coord [cx, cy)
ic = ¢cx/256.0

call maout (ic)

ic = int {cx-ic*255.9]
call maaut [ic)

ic = cy/256.0

call maout [ic)

ic = int[cy-ic*255.9)
call maout [ic]

return

end

71

Appendices

Appendix 1 - Summary of Screenware Commands

HEX DEC OCT CALL/RESPONSE FUNCTION

ALPHAMODE

BO 128 200 C: (mode Set Alpha Mode Bits
R:none

81 129 201 C: (row) (col? Position Alpha Cursor
R: none

82 130 202 C:none Read Alpha Cursor
R: {(row} (col)

83 131 203 C: {(n> Set Alpha Scroll
R: none

GCURSOR

B4 132 204 C: (xh) (x1) (yh} C(y» Set Graphics Cursor
R: none

85 133 205 C:none Read Graphics Cursaor
R: {(xh> (x> (yh> (yI>

B6 134 208 C: nore Set [CX, CY] to [AX, AY]
R: none

87 135 207 C:none Set [CX, CY] to [TX, TY]
R: none

SCREEN

a8 138 210 C:none Clear Screen
R: none

89 137 211 C: (fg» Set Screen Fgure/Ground
R: none

gA 138 212 G none _ Toggle Screen Figure/Ground
R: none

8B 138 213 C:none Read Screen Figure/Ground
B: (fg)

POINT

BC 140 214 C: (xh> (x> (yh) () Turn Peint Off
R: none

8D 141 215 C: (xh) (x> (yh) (y) Turn Point On
R: none

BE 142 218 C: (xh) (x> (yh) (v Complement Point
H: none

BF 143 217 C: (xh) (x> (yh)> (yb» Read Point
R: {(val>

VECTOR

g0 144 220 C: (xh> (x> (yh)> (ybd Turn Vector Off
R: none

91 145 221 C: <(xh> (x> (yh> <yl Turn Vector On
R: none

92 146 222 C: {(xh)> (x1) {yh)> (yb> Complement Vector
R: none

75

REGION

94 148 224 C: (xth)> (x> (y1lh) Turn Region Off
Cyi) (x2h) (x21)>
(y2h) (y21)
R: none
95 149 225 C: (x1h)> 1t <(y1h) Turn Region On
Cy1l> (xBh) (x2t)>
{y2h> (y2i)
R: none
9B 150 226 C: {(xTh» (x11> (y1h) Complerment Region
Cyll) (x2h> (x21)
(y2h?> (y2)

R: none
CHARACTER
98 132 230 C: (c» Plot (3raphics Character
R: none
9g 153 231 C: {(mode) Set Graphics Character Mode
R: none
gA 184 232 C: (asc) (s11) ... <s0) Define Alternate Character
R: none
9B 155 233 C:none Load Defauls Character Set
R: none
LIGHTPEN
ac 158 234 C: none Turn Tracking Cross Off
R: none
aD 157 2835 G (xh)> (xl) C(yh> (y> Turn Tracking Cross On
R: none
9E 158 236 C: none Read Tracking Cross
R: (xh)> (x> (yh> Cyld
SF 159 237 C:none Head Light Pen
R: 00 or
01 (xh> (x> {yh) Cyl2
CROSSHAIRS
AQ 160 240 G: none Turn Crosshairs Off
R: none
Al 169 241 C: {(xh> (x> (yh)> <y Oraw Crosshairs
R: none
A2 162 242 C: none Read Crosshairs
R: (xh> (x> (yh)> (y>
A3 163 243 C: none DOraw Crosshairs at (CX, CY)
R: none
MEMORY
Ad 164 244 (C: none Oump Screen
R: (b1)> ... (b7800)
AB 165 245 C: (b1> ... (47800 Losed Screen
R: none
AB 166 248 C: (nh)> {(nt> (ah} (al} Examine Memory Block
R: <b1> ... {bn)
A7 167 247 C: <nh) (nl) (sh) ¢al) Oeposit Memory Block
(b1} ... {bn)
R: none

76

UTILITY

AB 168
A9 169
AA 170
AB 171
USER

AC 172
AD 173
AE 174
AF 175
TEST

BO 176
B1 177
B2 178
B3 179
RGRAPHC
B4 180
SPLITSCA
Bg 184
B9 185
RPOINT

BC 188
B8O 189
BE 190
BF 191

280

251

232

253

254
255
258
257

260

261

262

263

264

270

271

274

275

278

277

0OD0

DoDOoODNOID0D

0

DOD O

IOIO TODIO

IODO

D 03 0O 01 O

Cah) <{(al>

. none
{ah? Cal) {(imask)

Cih> (il >
none

:AACOor

AAD1T ¢(ah) (a
none

. hohe

none

. [user defined)
- [user defined)
: (user defined)
: (user defined)
: {user defined)
: [user defined)
: [user defined)
: (user defined)

: {blocks >

: (cksum >

; none
Dar
1 {(ah) <al) (eb> ¢fb)

: None

: none

s (i) (n
none

s {dxh > (x>
Cdyh > (dyl>

. none

s

: none

24e1) ... {(c83
none

D Cdxh > {dxl>
(dyh)> (dyl»

I nane

Dldxh) (dxld
{dyh)> (dyl>

: none

o (dxhy (dxl)
Cdyhd Cdyl)
none
Cdxh > (dud>
Cdyh)> {ayl)
Cval >

e |

Set User Command Address

Call User Code

Switch Real-Time Interrupts

Force Cold Start

User
User
User

{User

Test EPROM

Test RAM

AlLPHA Test

Munching Squares

Set Relative Graphics Cursor

Set ALPHA Screen Size

Define ALPHA Control Codes

Turn Relative Point Off

Turn Relative Point On

Complement Relative Point

Read Relative Point

RVECTOR

cO 192
Cc1 193
c2 1894
RREGION
ca 196
C5 197
Cce 198
CIRCLE

CcB 200
Cc8 201
CA 202
FRLO0D

cC 204
ch 205
CE 206
CF 2067
MACRO
Do 208
By 209
b2 210
03 211

300

301

302

304

305

306

310
Ny

312

314
315

316

317

320

321

322

323

0OD ODODO

I

2 93 0B 0

DOJIADO

0D 0IOID O

Coxh > (dxl>
{dyh > {dyl>
none

s {dxhy <{dxl>
{dyh> <{dyl>
none

: {dxh > C(dxl»
{dyh > {dyi>

: none

Cdx1h) {dx11>
Cdylh 3y {dyll>
{dx2h> {(dx2l>
(dy2h > (dy2l>
: none

D {dxth} (dxll >
Cdylh > C(dyll>
{dx2h > {dx2l>
{dy2h} {dy21>
: None

cdx1h)y <{dx1l>
Cdylh> <{dyll>
(dx2h> {dx2l>
{dyz2h > {dy2l>
nong

{r>

: none

{r>

T none

{r

none

s Axh) (x> (yb}> (yb>
; None

A{xh)> (x> <yh)> (yl
: None

Cdxh > {dd>
{dyh ¥ {dyl>

. none

: {dxh > <{dxl?
(ayh > C(dyl?

I nane

{(n’ or

FF

: {code?

: {byte?>

: (code)
{n or

FF {sh> {(sl>
{ code

(n»>

Turn Relative Vector Dff

Turn Relative Vector On

Complement Relative Vector

Turn Relative Region Off

Turn Relative Region On

Complement Relative Region

Turn Circle Off
Turn Circle On

Complermnent Circle

Floog with Zeroes
Food with Ones

Flood Relative with Zeroes

Fiood Relative with Ones

Start/Stop Macro Definition

Add Next Macro Byte

Erase Macro or Clear Facility

invoke Macro

Appendix 2
The Standard Character Font

L
arn
LI]

00

08

LR N

LA BN |

10

o1

[E AR R

09

» »
LA R RN |
& *

OA

LB A B R |

LR RN]

L BN]

12

L N J
" & w
LR R EE |
» ® »

LE R |

TA

* F R 2 R " a

03

79

LE N N E]

LN N

0C

LA E R N

14

LR N N
L I

* # & * &« &

oD

1D

- wE
* -

A EEER

06

1E

e e

LR B]

LR

o
e |

* #
L]
* % 85 ®F B % » =
L

*

*
" & F % ¥ &

o
e

-~ % & & # # % % =
* % ® ¥ ¥ & ® &

» - L - LN | *

"hn » » . * -
. x L4 - - * = * -
Y . . ¥ * » " »
* 2 * . . . renee * . *
LA B » L] » * - M pe .
* * . . * *ea .
.
20 21 22 23 24 25 26 27
. . * . * *Ee e o
Py X = * *n » - »
* . e * * YT Y
. * * £x e 00 * * "Ea s
’ * * * - sxsaw
* »x . * . . *
» * . » ey rxe “w
28 29 2A 2B 2C 20 2E 2F
£ & . "y . -
* » L N T] - ™ - “n »
. N LN] * L g LR] -
- YN A sh b -
*» & s " » » Y »
* - . x @ s . - * e »
e x L X resax X R .
30 31 32 33 34 35 36 37
= ¥ * - e Sedeg .
. = * " . . » * X . . .
EXREE a » . - . e
- » LA E RN] - LR -
(E R Y * . » *u
. » . » . . * 8
. . »* "ee * » *
»
38 39 3A 38 3aC 3D 3E 3F

80

rEE &N

L]

rERN

LE]

LA NN]

LR R

(AR KN |

aENE

LR J

47

46

45

44

43

42

41

40

LR N]

LR

LE N

LE R R &

LR X J

LER B &

LR N]

* kb

LN

LE N E N]

4F

4E

4D

4C

48

4A

49

48

LA R BN

LA R N]

LR R RN 2

LR

LR

LA N]

LN]

e erk

b kKN LE N

LER N2

57

56

55

54

53

52

51

50

L]

LE R]

L B NN J

L E NN]

-xy

L]

LE N]

LI

LA E NN]

L]

' EE R Y
5F

5E

5D

5C

5B

5A

59

58

81

*
-
60
"8
- »
- -
® E]
TR Y]
68
»
L
a e
an]
= "
e .
L] *h
70
"
»
-
"
ERE NN |
78

L

LA E

LR R

69

7

L L]

L B

LE N

79

- *
. L]
.- sa *
L] * .
. .
» » [
L] - »
62 63
*
. L X T
* L] L]
L] » L
- - "
L [-
6A 68
[
. . b
* LR *
* - -
L] "]
L - - *
.
72 73
»
-
- * [AR
» .
LR}
L] -
- » LA R
TA 78

*
*
* mx L E R RN
. - »
* * -
cxan .
* -
E 3
&4 65
L3 I .
. . »
. » - *
IR ER - * &
* e
.
6C 6D
'y
x = -
. »
. »
Y .
74 75
TE Y L -
.] »
e . 0 %
L] L T |
saos * &
1C 70

a2

LI I

L

76

7€

+# % # % ® 5 # &

6F

L

77

aEN
LA R

TF

Appendix 3

Screasnware™ Pak | Internal Entry Points

SYSTEM

entry:

exit:
destroys:
description:

READBUF

entry:
exit:

destroys 0
description;

GETBYTE

entry:

exit:
destroys:
description:

GETCOOCRD

entry:

exit:
destroys:
description:

GETYCORD

entry:

axit:
destroys:
description:

GETADDR

entry:

exit:
destroys:
description:

SENDBYTE

entry:

exit:
destroys.:
description:

SENDCOCRD

antry;

exit:
destroys:
description:

CO00OH

none

none

NA

call here to restart the system es it would be at cold start

012FH

none

carry flag set if a byte is available, cleared otherwise; if carry set, [A] = byte from
host

A D EHL

call here to read a byte from the host [via the interrupt buffered interface] if a
byte is available

01A4H

none

[A) = byte from host

none

call here to reed a byte from the host; GETBYTE waits until a byte is available

00sBH

none

(HL) = coordinate from host (sent high byte first)

H, L

call here to read a 9-bit coordinate from the host; the high 7 bits of H are zeroed

0197H

none

{HL] = 9-bit coordinate clipped to 479

A

calt here to read a S-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

038FH

none

(HL] = 16-bit address from host (sent high byte first)
A

call here to get a 16-bit quantity from the host

0259H

[A] = byte

none

8

call here to send a byte to the host; SENDBYTE waits until the outbound buffer is
clear before sending

0254H

[HL) = 16-bit value to send to host

none

B

call here to send 16 bits [high order byte first] to the host

83

DPYLOC
entry:

exit:

destroys:
description;

SCREENC
entry:
exit:

destroys:
description:

POINT

entry:

exit:
destroys:
description:

VECTOR

entry:

exit:
destroys:
description:

REGION

entry:

exit:
destroys:
description:

g21BH

[DE] = X coordinate (0-911)

[HL] = Y coordinate (0-479)

[A] = bit mask

[B] = bit mask

[C) = bit number (D leftmost, 7 rightmaost)

[HL] = display buffer address

D E

call here ta convert coordinates into a ZBO memory address [on the visible screen]
and bit mask; the bit mask [containing one ON bit) identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

[

0O1AFH

[A} = mode [C, 1, 2,)

none

all

call here for SCREEN command, as described in the manual; do not call with mode
= 3. since this mode will try to read a byte from the hast

01F7H

(B) = mode {0, 1, 2]
{DE] = X coordinate
(HL) = Y coordinate

[CX] = X coordinate
[CY] = Y coordinate
nane

all

call here for POINT command, as described in the manual; do not call with mode
= 3, since the code will then send a response to the host

0547H

[B] = mode

[DE) = x coordinate

[NEWCX] = x coordinate

[HL) = y coordinate

[NEWCY] = y coordinate

none

all

call here for the VECTOR commands, as described in the manual

0275H
enter via the following code sequence:

LXI H,AETURN
PUSH H

MVI B, { mode >
PUSH B
EXIH, (Y1)
PUSH H
LXiH, {(X2?
PUSH H
DAD, {(X1>
IXEH, (Y2?>
JMP REGION

RETURN: ...

none

all

call via the given sequence for the REGION commands, as described in the manual

84

CHAR

entry:

exit:
destrays:
description:

DRAWCROSS

entry:

axit:
destroys:
description:

DRAWHAIRS

entry:

exit:
destroys:
description:

ALPHINIT

entry:

exit.:
destroys:
description:

JTYCHAR

entry:

exit;
destroys:
description:

eAtry:

exit:
destroys:
description:

D3IE7H

[A] = character or character mode hits

[B) = command mode (G, 1. &

none

all

call here for the CHARACTER commands, as described in the manual; the com-
mand mode bits select plot character, set character mode, and define alternate
characters,; character mode hits pre as described in the manual

06BEH

[TX) = X coordinate

{TY] = Y coordinate

none

all

call here to complement the bits on the tracking crress at [TX, TY), (i.e.. if the
cross is on at [TX, TY], turn it off, and vice versa)

07A2H

[HX] = X coordinate

[HY]) = Y coordinate

none

all

call here to complernent the bits on the crosshairs at (HX, HY} [i.e., if the
crosshairs are on, turn them off, and vice versa)

07D9H

none

hone

all

call here to reset the alphs interface: (clears the screen and sets AX, AY to top
left of screen)

0O7EBH

[A] = ASCH cede

none

all

call here to print an ASCIl character at AX, AY [TTYCHAR does not advance AX,
AY)

OBEFH

[A) = ASCI code

none

all

call here to send an ASCil code to the ALPHA processor, control codes are
recoygnized as described in the manusl, and AX, AY are advanced, possibly invoking
the scrolling mechanism

Fity

Variables and Paramestars:

VARIABLE

CX

cY

NEWCX
NEWCY

AX

AY

AR

AC
ALPHSCRL
ALPHMODE
CHARMODE
TX

TY

TSTAT

LPX
LPY
LPSTAT

HX

HY
HSTAT

ROMCHAR

ADDCR

FFFB
FFFQ

FFES

FFE7

FFOD
FFCE
FFCD
FFCC
FFCB
FFCA
FFCY
FFD4
FFD2
FFDE

FFFE
FFFF
FFFD

FFBF

FFCA
FFBE

a9FA

#BYTES DESCRIPTION

the current graphics X coordinate

the current graphics Y coordinate

[see the VECTODR entry paint)

[see the VECTOR entry point)

the current ALPHA screen X coordinate

the current ALPHA screen Y coordinate

the current ALPHA row number

the current ALPHA cglumn number

the current ALPHA scroll parameter

the current ALPHA mode bits

the current GRAPHICS character made bits

the current tracking cross X coordinate

the current tracking cross Y coordinate

1 if the tracking cross is visible, O otherwise [The DRAWCROSS
entry paint does not maintain this cell - you shouid do it manuaily
when caling DRAWCRDSS)

the {X coordinate/2] of the last light pen interrupt

the {Y coordinate/2) of the last light pen interrupt

O if no light pen interrupt has occurred, 1 otherwise [you should
reset to O to acknowledge a light pen interrupt)

the current X coordinate of the crosshair

the current Y coordinate of the crosshair

1 if the crosshairs are visible, O otherwise (the DRAWHAIRS entry
point does not maintain this cell - you should do it manually when
caling DRAWHAIRS

the beginning of the AOM character generator

86

Appendix 4

Screenware™ Pak il internal Entry Points

SYSTEM

entry;

exit;
desiroys:
description:

READBUF

entry:
exit:

destroys:
description;

GETBYTE

entry:

exit:
destroys:
description:

GETCOORD

entry:

exit:
destroys:
description:

GETYCORD

entry:

exit:
destroys:
description:

GETADDR

entry:

exit;
destroys:
description:

SENDBYTE

entry:

exit:
destroys:
description:

SENDCOORD

encry:

exit:
destroys:;
description:

D0B8H

none

none

NA

call here to restart the system as it would be at cold start

019EH

none

carry flag set if a byte is available, cleared otherwise; if carry set, [A] = byte from
hast

A D EHL

call here to read a byte from the hast [via the interrupt buffered interface) if a
byte is available

0058H

none

fA} = byte from host

none

call here to read a byte from the host; GETBYTE waits until a byte is available

CODDH

none

[HL} = coordinate from host (sent high byte first}

H L

call here to read a 9-bit coordinate from the host: the high 7 bits of H are zeroed

003BH

none

[HL] = S-hit coordinate clipped to 479
A

call here to read & S-bit coordinate from the host; the coordinate is clipped to 479
if it is larger

0003H

none

[HL} = 16-bit address from host [sent high byte first)
A

call here to get a 18-bit quantity from the host

034AH

[A) = byte

none

B

call here to send a byte to the hast; SENDBYTE waits until the outbound buffer is
clear before sending

0345H
[HL] = 16-hbit value to send to host

none
8
call here to send 16 bits (high order byte first) to the host

87

OPYLOC
entry:

ext:

destroys:
description:

SCREENC
entry:
exit:
destroys:
description:

POINT
entry:

exit:
destroys:
description:

VECTAR

entry:

exit;
destroys:
description:

REGION
entry:

ext:
destroys:
description:

0306H
(DE]) = X coordinate {0-511}

(HL) = Y coordinate [0-479]

[A] = bit mask

[B} = bit mask

(C] = bit number [0 leftmost, 7 rightmost)

(HL] = display buffer address

0, E

call here to convert coordinates into a ZBO memory address [on the visible screen)
and bit mask; the bit mask [containing onre ON bit) identifies the pixel within the ad-
dress byte; the bit number is the position of the ON bit within the byte

02734

(A} = mode [, 1, 2.)

none

all

cal here for SCREEN command, as described in the manual; do not call with mode
= 3, since this mode will try to read a byte from the host

02DBH

(B] = mode [Q, 1, 2]

[OE] = X coordinate

[HL] = Y coordinate

(CX) = X coordinate

(CY]) = Y coordinate

none

all

call here for POINT command, as described in the manuai; do not call with mode
= 3, since the code will then send a response to the host

0781H

[B) = mode

(DE] = x coordinate

INEWCX] = x ccordinate

{HL] = y coordinate

(NEWCY] = y coordinate

none

all

call here for the VECTOR commands, as described in the manual

D48BH
enter via the following code sequence:

LXI H.RETURN
PUSH H

MVI B, { mode ?
PUSH B

LXIH, (Y13
PUSH H

LXI H, (X2?>
PUSH H

LXID, ¢X12>
XIH, (Y23
JMP REGION

RETURN: ...

none

all

call via the given sequence for the REGION commands, as described in the manual

88

RPOINT

entry:

exit:
destroys:
description:

RVECTOR

entry:

exit:
destroys:
description:

RREGION

entry:

exit:
destroys:
description;

CHAR

entry:

exit:
destroys:
description:

DRAWCROSS

entry:

exit:
destroys:
description:

02D2H

(B] = mode [0, 1., 2)

(DE} = X coordinate

(HL) = Y coordinate

[CX) = X coordinate

{CY] = Y coordinate

none

all

call here for RPOINT command, as described in the manual; do not cslf with mode
= 3, since the code will then send a response to the host

07A8H

(B] = mode

(DE} = x coordinate

[NEWCX] = x coordinate

(HL) = y coordinate

[NEWCY] = y coordinate

none

all

call here for the AVECTOR commands, as described in manual

0492H
enter via the following code sequence:

LXI H.RETURN
PUSH H
MVI B,[mode)
PUSH B
LXI H.[Y1]
PUSH H
LXI H.[X2)
PUSH H
X D,[(X1)
LXI H,[Y2]
JMP RREGION
RETURN: ...
none
all
call via the given sequence for the RREGION command, as described in the manual

063eH

[A] = cheracter or character mode bits

(B] = command mode [0, 1, 2]

none

ailt

call here for the CHARACTER commands, as described in the manual; the com-
mand mode bits select plot character, set character mode, and define alternate
characters; character mode bits are as described in the manusat

OESDH

{TX) = X coordinate

(TY]) = Y coordinate

none

all

call here ta complement the bits on the tracking crross at (TX, TY). (i.e., if the
cross is on at [TX, TY), turn it off, and vice versa)

[a

DRAWHAIRS

entry:

exit:
destroys:
description:

ALPHINIT

entry:

exit;
destroys:
description:

TTYCHAR

entry:

exit:
destroys:
description:

entry:

exit;
destroys:
description:

SPLO

entry:

exit:
destroys:
description:

entry:

exit:
destroys:
description:;

FLD

entry:

exit;
destroys:
description:

11A4H

(HX] = X coordinate
(HY] = Y coordinate
none

all

call here to complement the bits on the crosshairs at [HX, HY} [i.e., if the
crosshairs are on, turn them off, and vice versa)

08A9H

none

none

all

call here to reset the alphs interface: (clears the screen and sets AX, AY to top
left of screen)

08F7H

{A} = ASCI code

none

all

call here to print an ASCIl character at AX, AY [TTYCHAR does not advance AX,
AY]

QA71H

[A} = ASCIl code
none

all

call here to send an ASCil code to the ALPHA pracessor; control codes are
recognized as described in the manual, and AX, AY are advanced, possibly invoking
the scralling mechanism

0203H

{A] = number of ALPHA lines

none

gl

call here to split the screen into a graphic area and an alpha area

D&BF7H

none

none

all

call here to force a cold start to the software

0OCB4H

(A] = mode [0, 1)

(DE] = X coordinate

[ML] = Y coordinate

enter via the following code sequence:

PUSH PSW
JMP FLD
none
all
call here to fleod the bordered region around point X,Y

a0

CHA

entry:

exit:
destroys:
description:

INVOKE

entry;

exit:
destroys:
tescription:

OF41H
(A)
(B]
none

all

call here to draw a circle at current graphic cursor

radius
mode [0, 1, 2]

1041H

[A] = macro #
nane

all

call here to invoke the desired previously created macro

9

Variables and Paramsaters:

VARIABLE

CX

cY

NEWCX
NEWCY

AX

AY

AR

AC
ALPHSCRL
ALPHMOOE
CHARMODE
™

TY

TSTAT

LPX
LPY
LPSTAT

HX

HY
HSTAT

ROMCHAR

ADOR

FFFB

FFFS

FFEDQ

FFE?7

FDO
FFCE
FFCD
FFCC
FFCB
FFCA
FC8
FFD4
FFD2
FFDG

FFFE
FFFF
FFFD

FFBF

FFCA
FFBE

1108

#8YTES DESCRIPTION

_, UM _2=2 =22 2NN

O L Y }

—nn

the current graphics X coordinate

the current graphics Y coordinate

{see the VECTOR entry point]

(see the VECTOR entry point)

the current ALPHA screen X coordinate

the current ALPHA screen Y coordinate

the current ALPHA row number

the current ALPHA column number

the current ALPHA scroll parameter

the current ALPHA mode bits

the current GRAPHICS character mode bits

the current tracking cross X coordinate

the current tracking cross Y coordinate

1 if the tracking cross is visible, O otherwise [The DRAWCRUSS
entry point does not maintain shis cell - you should da it manually
when calling DRAWCROSS)

the [X coordinate/2) of the last light pen interrupt

the [Y coordinete/2) of the last light pen interrupt

Q if no light pen interrupt has occurred, 1.otherwise (you should
reset to 0 to aknowledge a light pen interrupt)

the current X coordinate of the crosshair

the current Y coordinate of the crosshair

1 if the crosshairs are visible, O otherwise [the DRAWHAIRS entry
point does not maintain this cell - you should do it manually when
caling DRAWHAIRS

the beginning of the ROM character generator

g2

TZ l ‘mh‘
u sy
42
O ma |
L3
| - :,. Lq?
=57 Moo : e
* l - 4 aud
L1lths - L ary
L | s
. # mld
A3 - *aig
P1] ' - -+ >ay
11 o
3T 1 ;
m I - .
* A%
Tms 2] . 1 "
[*RL 31 | et
ad - . ; L :
b 11 B .
] H us
ML) |
] i
] :
1 S |
e i | [0]
Pl | : Pl |
rrey ool sl et Ae, A ol ol af sl IR PFEITE IR I N
i i UM w3l Ve
) . . U ':p.:.:‘
2L us we LLCTYIES LRETTE Y 1Toafihe ZrokI TN A]-—-—-—-

P —~_ "1... CEEER Ll L ERDGE L EERER .
¥ fiawe OTRT 1 i ! : = rEow
Ixry = | : P
T) ATATHR " ! [.

‘: - : L £
. : - L - 5
LTS - H N
1 * *
FRIELATI L 1 ;)i H [H i3y
LNEpeNECT D P il 0t
' e H - B
| o " - Ap3
JsT I
waga 3 ust
'9;.!—..)-.
1
| .
- o
[k
3
a
=== — SCION CORP
- A B4 D TTCOAG. vIEMEA FiRELEA TEIAD
' -v b
am Er— -
[SCHEMATIC
MICROAMGELD GRAPHICS BO
N — rCa AT —— -
o= 1= — T |
e P o Fremine | =R

e
B
T
=Y 4.1
- A ! *-
LT ‘ ’.n
=tut
| I tawT -

o

ER e

....._.._._..___.l -

ARy
U M BTNy Mg

L-ah A3 42 mi 2i 4 T4 A5

i
| | 11
PLi bl

2w LA 20 I0e 0y 2 A 20
§-30 40,49 3858 33,85 1)

FEZ LERRSTIT
t |
3 e®
‘5g;ffifi‘
. I T
AEE RN B B B T

—
B-r00 BuSh Cdwm

—ngt L4
.’a :
—_— .

"

3

P

——%0."

hedsy

§imP
th-dd)

®

ST ek eay mag
CELTRE RS T TRV 7.0

SCICN CORP
NATID TTCO D VIEMAL ViNGmIR £ 8O

SCHEMATIC

Tmi——— | MICROANGELD GRAPHICS 23
T . Ao mERTT e Y arn
o - 1 e
L, £ 1Tgm e Crtriae wener a0

amay

YRhLANL
LR L]
3
1 1)
-k
Lq ¢ -
w == u!
gag TiukINy TLLNISI
ioh CRLELEE t b a3 Tr 1 |1 |4
[* &
ik -*] »
oy f »
. — " . 1
"
ot
sy — L
ok + TuIkiv y
o1 -
-t + o
'
] : Frerrrs ' P——— — 5-hiamx
— !
Il
meal U
I bairyhir-gly L Iy (AR L1014)
T ‘ ’ -
LIS LY t
? Pty " i
|§I|| BISEEIO0
sy Rand

Ao

LT

47 Av 0% i Ol 01

=== |~ SCION CORP
Pl BAKN O TTCO D YrERNA ¥1 18 FEiRQ

: s T SCHEMATIC
MICROAMGELO GRAFHICS an
C—AL Ll il -y

I}

LT Ty T L5 f 0 {

AT A% A4 1oy WA 14 423 ARG LI] ddad 2 mir vl wl VR kbl L I R N B}
. L] L Lo v ' ' I
Y . | T
; ; I |
I 1 c | :] ; P
t + * [s
! l b | 170 o €
| s L . o . il
i o o ! < s
ne sz IS iw g A IR —_
s 24T 5 LS 257 H Tz -5 ’
an [_al Yl
1 -1 L -1 1 c 4 I¥] 3 [l 4
- ! ')
| : ! :
1 ! :
‘ | | I
. | ! .
: - - i
! ; ? :
| | r [| joAaoIEs
! 1
PRI LNt ly
Jious o
| |. o Y Friat o r———
! b PEde L e Wiy %
i — v[aa T s BYYE e TY
! : favy oF e —
i 4G MEHOEY LIS B ————0 IATh TH
LI - s nui;’. el
=
S
J: 47 2
; = L !
d at
84 zare gur
2%
[- R
oo
youlrfafam iy s Y] i
"f Tak 3t ! AP N Y
oo |2
Rl
AUNISEHOEN
al il -
Iy iy Oy By ty 050, By
N PLTT
i
J %2 | {
Wty
26 |
iy
- o SCIOKR CORP
WARIO TTCD D vIEANA YMEINIL TEI80
——— T= SCHEMATIC
‘
—_— MICROANGELQ GRAPHIC'S aD.
— il O [GRd B RT] om0 2
- - —] I { L
A LT | Hat Tocuien AT AR T

™

LIZAESS

=z Lel e r Iy
£
v + T ' i ; :
1 4 L ! — -
[: - - R —
o . — - e s
| T 1 i ! ;
:] ; H ! I .
o M M j i ! ' i
| 1 ! . ! . :
BANK 2 | 1 ! - * - t ! —t t ! : ;
| : P : ! ' | A I I i i I
| zeirs | |3 fe e irs | "“‘1’_} hoy '?‘l""—l ﬂb]wi-z.,]-,i, | SIELLEY o TR
. S
e — L bt s e ‘ "1 ang A ans o P i b
G2 r‘. L2 . Uz uzs 4w = 427 ‘ ‘ ‘
Ll y N l Y Y ' g ' H - ! ; :
: [|] | i ERE
’ . — .
: I i : i
o . d ' : 1
= : : HE | b
! i R
| : . .
i 1 . ! L . !
‘ | !
‘ | |
i : y
: : : H 1
i | : |
. | R
| ! et |
o1 | - . [.
P ,1 | ' ! i = ! I i
: L] v - 1 ! | - P
: L ; M i : N M s ; o
. l 1 I . ' . ; | M I .
v : 1 T T v ; T ; — !) : .
1 T T : : o T
EELTES ! . ! I . T I
) : _ i . i . ; ;
vl ! : ! | ! l | an ;
| SARN ' - | Yy | | i
wlolie i alaln rlef |s sleln [2la b aholu e ;_l slofu |2 fa|r 18 oo n izl s sretriale 7 AJ plemlte vy '
41k 1 "j i 4 '—’% anng H'_:' Lite * '_% YT : '—J% Lk * '__; HE Hi’ soe * i
L2 i ; u's ™ L # T IS] J1T i T ue T L) ! |
3 Ij . I B CY 13 [Js s B ! 1) IES Iy |3 B ls !
I_ : : !) L | i n I |
i ! ' ! | |
e + md) i - i
i H i : EINTRL - !
, L i i ! aws TOTT
i ‘ . e :
| ' o .
! : i ! ' |
: ‘ i !
ls : 29 e a3 I 21 o5 N |
+ i w - & L - -
Fried I a5 L] 21 23 @1]
T Tais ot ey SCION CORP
g —_— RASHD TTCA RD. VIEMRA ¥iSgimis TEAD
e i Sl SCHEMATIC
= MICROANGELO GRAPHICS 8D
= = m]-uu-urr - —iv
rar | =
[pp— wad Tazurin TR g

-4 - -
.) , o 10T -3 ;
- _!.' IH _!__-
T s el
a1
AnisL €3 TaWT r 4 "-"g“{
TANT
" EvilT
Ehad | 4 oy
13-50 K-1G01
-
-4 ¥R1 L4
. —_— i
14-2, . LM La8T-1F T
| 0 .
- - -—
<5 L 49 Qi
TAMT Taut
c Too Thuat
—
ms 3
o . .
» 3 -3¢
PPN I R HT LY
1 |
e
Fetar [L- B LR
P oTawt AT
- > QL
Ty YT o=
" FEuER
e P P ¥l
o o
foowatT

SR
H [t
LP L
STH0BE | EHABLE
-

+5¢

EIIIII?TI[T

L 20W1| veunxl HELANEK

FIELD vBLAMK HEBLARE

i
b
|
!
|
i
|

=il a SCION CORP,
- '.?._‘ — N4390 TYCQO MG WIEMEL viNSrkiaZITRO
— SCHEMATIC
- - MICROANGELD GRAPHIC'S BD
—— — — - ; L L TTT TRy oy
R : ORI o e Gy

	01
	02
	03
	04
	05
	06
	07
	08
	09
	11
	12
	13
	14
	15
	17
	18
	19
	20
	21
	23
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	67
	68
	69
	70
	71
	73
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98

