Re-order No. 1084-01

MICROPOLIS
1040/105C S-100
FLOPPY DISK SUBSYSTEMS
USER'S MANUAL

MopEL Mo. [053-TL

DOCUMENT NUMBER 100089-01
REVISION 10 - APRIL 1979

PROPRIETARY NOTICE

Information contained in this manual may not be duplicated in full or

in part by any person without prior written consent of Micropolis
Corporation, The sole purpose of this manual is to provide the user

with adequately detailed documentation to efficiently install and operate
the equipment supplied by Micropolis and to write programs using
Micropolis Software. The use of this document for all other purposes

is prohibited.

MICROPOLIS CORPORATION, 7959 DEERING AVENUE, CANOGA PARK, CALIFORNIA 91304

MICROPQILIS

COPYRIGHT 1979

FOREWORD

This manual provides operating and programing instructions for the
Micropolis 1040/1050 S-100 Series Floppy Disk Sub-systems. The first
three chapters provide a detailed description of the physical system
integration process from unpacking the system components to defining
system configurations. The fourth chapter deals with the Micropolis
Diskette Operating System. The fifth chapter deals with Micropolis
Disk Extended BASIC. Chapter six indicates disk access techniques
independent of BASIC or DOS.

This manual does not deal with maintenance. See 1040/1050 $-100
Series Floppy Disk Sub-systems Maintenance Manual, document number
100090~01-8

The latest revision of each page has been included with this manual.
The individual pages of this manual are subject to replacement under
new releases or versions of the software. Such replacement or
additional changes are given the date of the change.

The initial release of a Micropolis software product is given the number
1.0, meaning release 1, version 0. Any corrections and amplifications
to the software are accumulated and issued under a new version number;
thus, the first revision version number is 1.1. When a major group of
new features is added, plus the accumulated corrections of earlier
versions, a new release number is assigned, such as 2.0,

Please read this manual thoroughly as to installation and operation.

Should you require additional assistance in servicing this equipment,
please contact your dealer who sold it (or MICROPOLIS in the case of

direct purchase).

Rev. 8 9/78 j

LIMITED 90 DAY WARRANTY

Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California
91304, telephone (213) 703-1121, warrants the electrical and mechanical
parts of its products to be free from defects in design, materials and
workmanship for a period of ninety (90) days from date of delivery to
the original end user. Should a product prove defective during the
‘warranty period, it will be repaired or replaced free of charge.

Software supplied with the product is warranted to conform to Micropolis'
software product description applicable at the time of order. Micropolis'
sole obligation with respect to the warranty of its software is to remedy
any nonconformance.

In order to validate this warranty, the warranty registration form found
in the front of the user's manual must be complieted and returned to
Micropolis within ten (10) days from date of purchase.

If the product was purchased from a computer store, it must be returned
to such store for repair, along with the original shipping carton, if
possible.

If, and only if, the product was purchased directly from Micropolis, in
‘order to obtain repairs, the product should be carefully packaged in the
original shipping carton and sent (preferably by United Parcel Service)

to Micropolis at the above address, attention: Customer Service. Prior
to shipment Return Authorization Number should be obtained from Micropolis
Customer Service. You should include a note in the package giving your
name, address, proof of purchase and delivery date and a brief description
of the problem experienced. Micropolis recommends that you insure the
package for the full value of the product. The product will be repaired
as soon as possible, but, in any event, within thirty (30) days.

This warranty shall be null and void should the product be damaged,
subjected to misuse, improper maintenance, negligence, accident or should
its serial number or any part thereof be altered, defaced or removed.
Further, this warranty will be null and void should the product's design
be altered or should repairs be attempted by one not authorized by
Micropolis to make repairs.

Micropolis shall not be responsible for any incidental or consequential
damages. Some states do not allow the exclusion or limitation of
incidental or consequential damages, so this limitation or exclusion
may not apply to you.

This warranty 1imits any implied warranty to ninety (90) days from date
of delivery to the original end user. Some states do not allow limita-
tions on how long an implied warranty lasts, so this limitation may not
apply to you.

This warranty gives you specific legal rights and you may also have
other rights which vary from state to state.

Rev. 7 3/78 ii

TABLE OF CONTENTS

SECTION I GENERAL INFORMATION

1.8 INTRODUCTION

1.1
1.2

e d e —t ot
L} . .

— w——f

IDENTIFICATION PLATE
OVERVIEW OF SUBSYSTEMS

.2.1 FUNCTION DESCRIPTION
.2.2 MODEL VERSIONS
.2.3 MEDIA

PHYSICAL DESCRIPTION AND DIMENSIONS

3.1 1953/1P33 DUAL DISK DRIVE MODULE

.3.2 1943/1823 AND 1@42/1922 SINGLE DISK DRIVE MODULE

.3.3 1941/1821 SINGLE DISK DRIVE MODULE WITHOUT POWER SUPPLY
3.4 1971 CONTROLLER

3.5 INTERFACE CABLES

SPECIFICATIONS

4.1 DRIVE PERFORMANCE
.4.2 ENVIRONMENTAL

1.4.3 DRIVE RELIABILITY

—

1

SUMMARY OF MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE

.5.1 ELEMENTS OF MDOS
.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC

SECTION IT INSTALLATION

2.@ INTRODUCTION

2.1 HARDWARE INSTALLATION

(A T RN e 3 o]
—t od ot mamd

M3 ™
(P —

[ae R h N
PO
M P S R

™~
—_

~4 CNh (N

© o

UNPACKING THE EQUIPMENT

INITIAL CHECKOUT

CONTROLLER HARDWARE REQUIREMENTS
CONTROLLER CONFIGURATION

1.4.1 CHANGING THE CONTROLLER BASE ADODRESS
1.4.2 REJUMPERING FOR 3 MHZ OR 4 MHZ OPERATION

INSTALLING THE CONTROLLER AND INTERFACE CABLE
DAISY CHAINING MULTIPLE DISK DRIVES
APPLYING DC POWER - MODEL 1041/1921 ONLY

1.7.1 REGULATED DC
1.7.2 UNREGULATED DC

CUSTOM MOUNTING OF THE 1941/1921 DRIVES
LOADING AND UNLOADING

0-1

Rev. 7 3/78

PAGE

el ol —d —d —
LI N | [I |]
] —_—

i
1
— =W w WO 0000 0o 00 o] WMo —

— et ot ad
[| [] 1

—
1

N —
E I I |

1-10

1-12
1-13

™o "]
4 1 3
— e

e B AN T ot R
1

|
¥ LN v] P] a3 L2 —

1

Mo P PN
1

1

sl wmnad
—

MNP l‘;)l\'.‘l

—_—
= D2

™ [V I AN [pv]
] N M
o G P =

g+l
[~]
&5]

N e N
20~ Oh BN PO R RS LR AT AN
- » - - [- - -

NI M ™)
™M™ MY

SECTION

SRR AR A R AL L O L) = Py
> do Lo Py oLe o fa Gl Py =

N M MR Y M BN NN MND
N . ' . v .
L G Lo WD W

SYSTEM SOFTWARE INSTALLATION

PROGRAM DEVELOPMENT SOFTWARE MEMORY REQUIREMENTS
SUPPORTED I/0 DEVICES

LOADING THE PDS MDOS SYSTEM INTO MEMORY FROM THE
MASTER DISKETTE '

CONFIGURING THE PDS SYSTEMS FOR YOUR TERMINAL

CONFIGURING A STANDARD TERMINAL
CONFIGURING A MODIFIED STANDARD TERMINAL
NON-STANDARD TERMINAL CONFIGURATION

.1 THE CONSOLE I/0 TABLE

.2 LOGICAL CONSOLE I/0

.3 PHYSICAL CONSOLE DEVICE INPUT
.4 PHYSICAL CONSOLE DEVICE OUTPUT

.6 PHYSICAL CONSOLE DEVICE INITIALIZE
.7 STARTING YOUR SYSTEM

SYSTEM PRINTER CONFIGURATION
CONFIGURING THE SUPPLIED PRINTER HANDLER

PRINTER INTERFACE EXAMPLE
CONFIGURING SPECIAL PRINTER HANDLERS

LR on

g ML) T el

1 THE LIST 1/0 TABLE

2 LOGICAL LIST I/0 _

3 PHYSICAL LIST DEVICE OUTPUT

4 PHYSICAL LIST DEVICE ATTENTION ROUTINE
5 PHYSICAL LIST DEVICE INITIALIZE

NN N
- - - - *

3.
. 3.
.3.

3.

3.

CREATING YOUR SYSTEM DISKETTE

CREATING A BASIC ONLY SYSTEM DISKETTE

MAKING ADDITIONAL COPIES OF YOUR SYSTEM DISKETTE
USING A SINGLE DRIVE

II1 NORMAL OPERATION

3.9 INTRODUCTION

3.1 BOOTSTRAP PROCEDURE
3.2 OPERATING HINTS

3.3 CONCEPT OF BACKUP

SECTION

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.9 INTRODUCTION TO MDOS

4.1 THE

N
.2
.3
4

Rev, 7

MDOS EXECUTIVE
ENTERING EXECUTIVE COMMANDS
EXECUTIVE STATEMENT FORMAT

CANCELING AN OPERATION
DISPLAY CONTROL

0-2

3/78

.5 PHYSICAL CONSOLE DEVICE BREAK CHECK ROUTINE

=
]

EoY
N I A S S S

J=

Rev.

2
2
.2
2
2

N S S N S S SN S SIS I SN S SO SO LS S S

.5 EXPLICIT EXECUTIVE COMMANDS

I—I-—l-—l-—l—ul—‘-—l-—-‘—l-—-'-—l-—'—l-—‘—l_ﬂ-—‘-—‘—l—l-—l_l
- - 1] - L]] " " [} L] - L] - " - L] L] - L] » L]
Moot

.1 THE COMP COMMAND

.2 THE DUMP COMMAND

.3 THE ENTR COMMAND

.4 THE FILL COMMAND

.5 THE MOVE COMMAND

.6 THE SEAR COMMAND

.7 THE SEARN COMMAND
.8 THE CREATE COMMAND
.5.9 THE DISP COMMAND
.18 THE FILES COMMAND
.11 THE FREE COMMAND
.12 THE SCRATCH COMMAND
.13 THE LOAD COMMAND
.14 THE SAVE COMMAND
.15 THE RENAME COMMAND
.16 TYPE COMMAND

.17 THE APP COMMAND
.18 THE ASSIGN COMMAND
.19 THE EXEC COMMAND
.20 THE MATH COMMAND
.21 THE PROMPT COMMAND
.22 THE INIT COMMAND

MDOS DISK FILE I/0

]
.2
.3
.4

TRACK INDEXED FILE STORAGE

FILE NAMES
FILE PROTECTION AND TYPE DEFINITION
FILE AND RECORD STRUCTURE

.2.5 FILE ACCESS METHODS
.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

MDOS SHARED SUBROUTINES

.3.

- S N A L L L - Y
L 0 L L L0 Cad G Gad G = L (W Lo L W
el] ol el el e e et))) aend —)

1

CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

. L] L] - - - - " "
A OO~ O N B L) BN

@CIN - CONSOLE INPUT

BCOUT - CONSOLE OUTPUT

@CBRK - CONSOLE BREAK CHECK

BCDIN - CONSOLE DEVICE INPUT

RCDOUT - CONSOLE DEVICE OUTPUT

@CDBRK - CONSOLE DEVICE BREAK CHECK
@COINIT - CONSOLE DEVICE INITIALIZATION
@LOUT ~ LIST OUTPUT

BLATN - LIST ATTENTION

.1@ ®LDOUT - LIST DEVICE QUTPUT

.11 BLDATN - LIST BEVICE ATTENTION

.12 ®LDINIT - LIST DEVICE INITIALIZATION
.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN
.14 BLCRLF - LIST LINE FEED CARRIAGE RETURN
.15 BASSIGN - ASSIGN

0-3

10 4/79

PAGE

| L L T R B I |

LI R I I T A I |

hhhhbbhhhbh-{bbhbb-hhhhbh =
—_—— e S OO WR RO NSO T O DN e £

1
maad
(5]

1]

SRRl
RN [[B | —)
O W W

.
1 1

—]
o -~

4-13

4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-20
4-20

M PO

Rev.

S N N S N PO S S N S S

W b B ADS DB SAEBDRALSLORADBRRS W

L T 7L T]

ST

Qo Lo W W

9

] Lo L W L L W L

[AARAEAENREANANARANARIRILE A NI w A G D o W
L] L3 - " L] - L] L] L] - * L] a a - -

G Qo L
v %
Gt G L

et e ik] el —

.16 ®CILINE - CONSOLE INPUT LINE

.17 GHEXOUT - HEXADECIMAL QUTPUT

.18 GHEXADDOUT - HEXADECIMAL ADDRESS OUTPUT
.19 @HEXOUTSPC - HEXADECIMAL QUTPUT WITH SPACE
.20 @SPACEQUT - SPACE OUT '

.21 BNLINEOUT - NEW LINE QUTPUT

.22 BLINEOUT - LINE QUTPUT '

TEXT LINE PARSING SUBROUTINES

2.

T GPARAM - PARAMETER

2.2 RSKIPSPACE - SKIP SPACES
2.
2.
2

3 BSCAN - SCAN
4 @SEAR - SEARCH
5 GAHEXTBIN - ASCII HEX TO BINARY

THE FILE ACCESS ROUTINES

G0 G o L G LD L0 Lo Lo L L Lo L

.1 GCREATE -~ CREATE

.2 @GFILESTAT - GET FILE STATUS

.3 @DIRSEARCH - DIRECTORY SEARCH

.4 GOPENFILE - OPEN A FILE

.5 BCLOSEFILE - CLOSE A FILE

.6 @RFILEINF - READ FILE INFORMATIOM

.7 BSINXTRS - SET INDEX POSITION TO RECORD START
.8 GRRECORDLEN - READ RECORD LENGTH

.9 @RINXPOS - READ INDEX POSITION

. 1P @SINXPOS - SET INDEX POSITION

.11 @INCINX - INCREMENT INDEX POSITION

.12 GRFINXPOS - READ FROM INDEX POSITION :
.13 GRFINXPOSI - READ FROM INDEX POSITION AND

INCREMENT INDEX

3.14 @WTINXPOS - WRITE TO INDEX POSITION

3.
.3,

3.
3.3.15 GWTINXPOSI ~ WRITE TO INDEX POSITION AND

INCREMENT INDEX

.16 @LOADDATA - LOAD DATA
.17 @SAVEDATA - SAVE DATA
.18 GDFINXPOSTEOR - DELETE FROM INDEX POSITION TO

END OF RECORD

19 GDFINXPOS - DELETE FROM INDEX POSITION TO END OF

FILE
2P ®INCRECPOS - INCREMENT RECORD POSITION

FILE MANAGEMENT SUBROUTINES

A,
4
.4
A

1 BFREE - FREE

.2 BRENAME - RENAME
.3 @TYPE - FILE TYPE
.4 BSCRATCH - SCRATCH A FILE

0-4

1/79

o
=
2]
m

|

¥

i
PO DS PR NS NI N
PSP ot md — ot —3

¥

BERE B DRRALLRD

Rev.

B N O S -
S N N S

P I — T - = O A L g S (3} o I] w

o S

L

.3.

e L

4

L L oW

g

(o)} GO W W ww

L] - - - L) - . » - - L] L] L] a +*

PHYSICAL DISK ACCESS ROUTINES

@GETASEC - GET A SECTOR
@PUTASEC - PUT A SECTOR

QVERIFYSECTOR - YERIFY A SECTOR
5 Q@SEEKTRACK - SEEK TO A TRACK

5.1

.5.2

.5.3 GWRITESECTOR - WRITE A SECTOR
5.4

5.

5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

PROCESSOR ORIENTED UTILITY ROUTINES

.1 GHLADDA - ADD A TO HL

.2 @INXM - INCREMENT MEMORY

.3 GLHLINDEXED - LOAD HL INDIRECT INDEXED

.4 QLHLI - LOAD HL INDIRECT

.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

.7 @TRANSDHBCR - TRANSFER FROM DE TO Hi. FOR A COUNT OF
BC REVERSE

.8 OTRANSFILENAME - TRANSFER A FILENAME

.9 QFILLZER - FILL ZEROES

.18 @FILLSPC - FILL SPACES

.11 @FILLA - FILL FROM THE A REGISTER

.12 @COMPARE - COMPARE HL TO DE

Ghhhohn AT

EXTENDED 8@8¢ INTEGER ARITHMETIC (16 BITS)

7.7 QDEADDHL - BC=DE+HL
.7.2 @DESUBHL - BC=DE-HL
7.3 ®DEMULHL - BC=DE*HL
7.4 GDEDIVHL - BC=DE/HL
.7.5 @DEMODHL - BC=DEZHL

MESSAGE OUTPUT SUBROUTINES

.8.1 BDISKERROR - DISK ERROR MESSAGES
.8.2 QCLOSEFILES - CLOSE ALL FILES
.8.3 BERRORMES - ERROR MESSAGES

.8.4 OMESSAGEOUT - MESSAGE QUTPUT

SYSTEM BUFFERS AND ENTRY POINTS

LINEEDIT - THE MDOS LINE EDITOR

.1
.2
.3

ENTERING LINES TO LINEEDIT
KEYING IN A NEW TEXT FILE
ENTERING LINEEDIT COMMANDS

.4 THE CLEAR COMMAND
.5 THE NAME COMMAND
.6 THE FILE COMMAND
.7 THE AUTG COMMAND

7

0-5

3/78

PAGE
4-33

4-34
4-34
4-35
4-35
4-35
4-35

4-36
4-36

LI I N !
W
e] DY

t

¥
a0 W W (5] Lad G LD L Lo L w
€O 0000 0o GO~

L=

g g] - PR R I e B b
1

1

OO WO W

T
-
[an]

PR LRSS RE SR

N N N N N S W S N N S Sy Y N N S S NN N

B A N

S N

b I

.8
.9
.10 THE APPEND COMMAND
.11 THE SAVE COMMAND

.12 THE RESAVE COMMAND
.13 THE LIST COMMAND

.14 THE LISTP COMMAND

.15 THE PRINT COMMAND

.16 THE PRINTP COMMAND
.17 THE TAB COMMAND

.18 THE DELT COMMAND

.19 THE RENUM COMMAND

.28 THE SEARCH COMMAND
.21 THE SEARCHALL COMMAND
.22 THE CHANGE COMMAND
.23 THE CHANGEALL COMMAND
.24 THE EDIT COMMAND

THE PROMPT COMMAND
THE LOAD COMMAND

.24.1 ADVANCING THE EDIT POINTER

.24.2 CHANGING THE NEXT CHARACTER - C

.24.3 DELETING THE NEXT CHARACTER - D

.24.4 INSERTING CHARACTERS - 1

.24.5 LISTING THE LINE IN THE EDIT BUFFER - L
.24.6 SEARCHING TG A SPECIFIED CHARACTER - S
24,7 DELETING TO A SPECIFIED CHARACTER - K
.24.8 QUITTING THE EDIT COMMAND MODE - Q
.24.9 COMPLETING THE EDIT COMMAND

.25 THE DOS COMMAND - EXITING FROM LINEEDIT
.4.26 LINEEDIT FILE STRUCTURE

ASSM - THE MICROPOLIS 8@3p/8@85 DISK ASSEMBLER

L] - - *
I BEdds O
BW IO N

IS SN SN S SO S N

bmTnnmg o

HOW TO INVOKE ASSM
LANGUAGE ELEMENTS

LITERALS
OPERATORS

2.1

.2.2 SYMBOLIC NAMES
2.3

.2.4 OPCODE MNEMONICS

OPERANDS

ASSEMBLER DIRECTIVES

4.1 ORG - QRIGIN

4.2 LINK - LIND TO A FILE
.4.3 END - END OF ASSEMBLY
4.4 EQU - EQUATE

4.5 INP - INPUT

4.6 PRT -~ PRINT

.4.7 TAB - TAB SETTINGS

Rev. 8 9/78

=
In
&y
m

|

tr 1 1 1 v 1 1

]
[Ea e pa i sy R e R L N
MR-~ OOCWOUWWPROODO~N~ICYOYDN

] R
e

1
nmomaamgn g
G W W RITO N PO

1 1
o o
o a0

-Ilh-l‘-‘- - o o PP b?hhh#h#bh&b&-ﬁhhh
1

~i N

t

1

L]
-0 oW

i 10 1

T S N U N O S S S S N
i

NN o T ch o an

L Lo L N - —

.8 NLIST - NO LIST TO PRINTER
.9 LIST - LIST TO PRINTER

.13 FORM - FORM FEED

.11 DB - DEFINE BYTE

.12 DW - DEFINE WORD

.13 DD - DEFINE DATA

.14 DT - DEFINE TEXT

.17 DS - DEFINE STORAGE
.18 FILL - FILL STORAGE
.19 IFF - IF FALSE
.20 IFT - IFT TRUE
.21 ENDIF - END OF IFF

S S S S S SO SIS S SN S S S
Moot ononon
S S S N S SN - S N

.5.5 ASSEMBLER ERRORS

SYMSAVE UTILITY

FILECOPY UTILITY

DISKCOPY UTILITY

MDOS ERROR MESSAGES

.10 COPYFILE UTILITY FOR SINGLE DISK
.11 MICROPOLIS DEBUG

.12 DEBUG-GEN UTILITY

o e - L L
WO 0~ Y E

SECTION V MICROPOLIS DISK EXTEMDED BASIC

.15 DTZ - DEFINE TEXT TERMINATED WITH ZEROD
.16 DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH

INTRODUCT ION

ENTERING LINES T0 THE BASIC INTERPRETER

5.0

5.1

5.2 ENTERING A PROGRAM

5.3 IMMEDIATELY EXECUTED LINES

.3.1 THE EDIT COMMAND
.3.2 THE RENUM COMMAND
.3.3 THE MERGE COMMAND

N

4 DELETE COMMAND

5 LIST COMMAND

.6 SAVE COMMAND

7 LOAD COMMAND

8 DISPLAY COMMAND

.9 SCRATCH COMMAND

RUN COMMAND

.11 INTERRUPTING A RUNNING PROGRAM
.12 CONTINUING AN INTERRUPTED PROGRAM
.13 PROGRAM TRACING COMMANDS

.14 BASIC SYSTEM ERROR HANDLING
.15 BASIC CHARACTER SET

.16 DATA

MMM IO g Lh
—
o

5.16.1 CONSTANTS
5.16.2 VARIABLES
5.16.3 OUTPUT FORMATS

0-7
Rev. 8 9/78

oo
1

oo,
1 1 t
Fa s G) =t

11

]
— D DWW RARASN-INGTTON OB W

Mo O

nonnaronon oA
1 1 1

[R5))
t

t

—k

5.17 OPERATORS
5.1
5.1
5.1
b.1

'5.18 FUNCTIONS

7.7 NUMERIC OPERATORS
7.2 STRING OPERATORS

7.3 RELATIONAL OPERATORS
7.4 LOGICAL OPERATORS

5.18.1 INTRINSIC FUNCTIONS

5.18.1.1 NUMERIC FUNCTIONS

ABS
ATN
Cos
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN -
SQR
TAN

5.18.7.2 STRING FUNCTICNS

5.18.1.3 SPECIAL FUNCTIONS

5.18.2 USER DEFINED FUNCTIONS

Rev. 8 9/78

ASC
CHARS
FMT
INDEX
LEFT$
LEN
MID$
MAX

MIN
REPEATS
RIGHT$
STR$
VAL
VERIFY

IN

PEEK
PGMSIZE
SPACELEFT

0-8

LI I I B R R |

mmmmmmmmclnmmmmmmmm
et] ol] i d ot and md mind b —d and —d —d —a
WOWOoWoomOmoo oo

| IO O L .
MMM NMNROMNOMNMMNMN NN

oMo
|
el et el et i ittt —) -t (O D

5.19 Expressions

Evaluation of Expressions
Numeric Expressions
String Expressions
Logical Expressions

L1 uun L
* = = =
ol el e
O DO WD
B B

5,20 BASIC Statements

DATA
DEF FN
DEF F4.
DIM
END
EXEC
FLOW
FOR
.9 GOSUB -
.20,10 GOTO
5.20.11 IF,,THEN
5.20,12 INPUT
5.20,13 LET
5.20.14 MEMEND
5.20,15 NEXT
5.20.16 NOFLOW
5.20.17 ON,.GOTO
5.20.18 0N, ,GOSUB
5,20,19 oUT
5.20.20 POKE
5.20.21 PRINT
5.20,22 READ
5.20,23 REM
5.20,24 RESTORE
5.20.25 RETURN
5,20,26 SIZES
5.20,27 STOP
5.20.28 STRING

I T
. . L2 T T T

tiwviinlbibhun b law
- L S

o oV T T R T G LT U L

OO OO 0o 0o
(Ve lils R e R R

5.21 BASIC DISK FILE I/0

5.21,1 Disk Files
5,21.2 Disk File Commands

1 DISPLAY
2 LOAD

3 PLOADG
4 SAVE

5 SCRATCH
& CHAIN

7 LINK

Rev. 7 3/78

5-36

5-36
5-37
5-37

. 5-38

5~38
5-39
5-39
5-40
5«42
5-43
5-43
5-44
5-44
5~45
5-45
5=-45

5-45

5-46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5=50
5-50
5-50

5.21.3 Disk I/0 Statements

5.21

5.21.3.1 OPEN
5.21.3.2 PUT
5.21.3.3 GET
5.21.3.4 CLOSE
5.21.3.5 ATTRS
5.21.3.6 EOF
5.21.3.7 FREESPACE
5.21.3.8 " GETSEEK
5.21.3.9 PUTSEEK
5.21.3.70 RENAME

ATTR
ERR
ERR$
NAME
RECGET
RECPUT
SIZE
TRACKS
FREETR

.4 Disk I/0 Functipns

5.22 BASIC PRINT FILE OUTPUT

Rev. 7 3/78

5.22.

5.22

1 Printer Related Language Features

5.22.1.1 OPEN

5.22.1.2 PUT

5.22.1.3 CLOSE

5.22.1.4 ENDPAGE

5.22.1.5 ASSIGN

5.22.1.6 LISTP

5.22.1.7 PAGESIZE

.2 Notes on Printer Related

Programming

2.22.2.1 Separating Print Files
and Interactive Messages

5.22,2.2 Paginating Print Files

5.22.2.3 Spooling Print Files to
Disk for Later Output

5.22.2.4 Draining File OQutput to A

: Null Device
5.22.2.5 Echoing of Terminal

Qutput to Printer

5-70

5-73
5-76

5-76
5-77

SECTION VI DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0

jea e N Ne Na))
- * - -
NP L DO -

a
»

6.6

INTRODUCT ION

FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
HARDWARE FUNDAMENTALS

CONTROLLER REGISTERS

DISK OPERATIONS

ERROR HANDLING

DISK DRIVER

APPENDIX A - BASIC ERROR MESSAGES

APPENDIX B - BASIC UTILITY PROGRAM

APPENDIX C - ACCESSING DISKCOPY FROM BASIC

APPENDIX D - SUMMARY OF MDOS ERROR MESSAGES

APPENDIX E - SYSTEM I/0 LISTINGS

APPENDIX F - MICROPOLIS DISK BOOTSTRAP

APPENDIX G - FEATURES PROGRAM TO SHORTEN BASIC
0-11

Rev. 8 9/78

o
x>
oY
m

|

I |

1

1 t 1
PP — D] G W2
— O W

1

m"nrncc")mrn-l e e R N R R R
1

I GENERAL INFORMATION AND SPECIFICATIONS

1.0 INTRODUCTION

This section provides general information, and specifications of Micropolis
Floppy Disk storage subsystems Model Numbers 1021 through 1053.

1.1 IDENTIFICATION PLATE

An identification plate is located on the base chassis (bottom of unit).
It shows model number, serial number, line voltage and fuse rating. Both
model number and serial number should always be quoted in warranty
correspondence.

WARNING - When replacing the fuse always use a fuse of the same type and
rating. These are:

OPERATING VOLTAGE FUSE TYPE AMPERE VOLTAGE LITTELFUSE MICROPOLIS

RANGE VAC RMS _ RATING RATING PART NUMBER PART NUMBER -
100 to 125 ~ 3AG SLO-BLO 1.0 250 313001 626-0002-8

200 to 240 3AG SLO-BLO 0.5 . 250 313.500 - 626-0001-0

WARNING - This equipment is provided with a 3 pin power plug. The plug
must be inserted in a 3 pin receptable with the third pin connected
to earth ground.

1.2 OVERVIEW OF SUBSYSTEMS

1.2.1 FUNCTION DESCRIPTION

Each subsystem comprises:"'

° A storage module consisting of an enclosure, drive electronics and
one {or two disk drives) depending on model. Power supplies may
or may not be provided depending on model number.

° A single printed circuit board designed to be physically and
electrically compatible with S-100 bus and 8080/7Z80 based micro-
computers,

° A software package together with documentation is provided, which
allows the subsystem to be used effectively by both end users and
system designers having varying levels of experience.

The subsystems are fully automatic and require no operator intervention during

normai operation. Applications include random access mass data storage, data
entry, data output and program storage.

1-1

Rev. 7 3/78

*

1.2.2 MODEL VERSIONS

Each model number is followed by either the notation Mod I or Mod 1I. These
notations indicate whether the system operates at a track density of 48 TPI
{35 tracks total) or 100 TPI (77 tracks total). Mod I storage modules have
a black disk load actuator and Mod II modules have a blue disk load actuator,

The mode]s descr1bed in th1s document are

l‘“‘_"'

1053 Mod II

\\.

!

1053 Mod I: Cc

1043 Mod II:

1042 Mod I:

1041 Mod II:

1041 Mod I:

Rev.

10 4/79

Complete Metaf]oppy

tm dual d1sk subsystem w1th a tota1 of
630 kilobytes of formatted on-line storage. Includes two
disk drives, $-100/8080/Z-8C compatible controiler (Model
10?1) dr1ve enc]osure, interface cable A and power supp1y

Complete Macrofloppy dual-disk subsystem similar to the
1053 Mod II except with a total of 287 kilobytes of formatted
on-1ine storage.

Complete MetafToppytm-single—disk subsystem with a total of
315 kilobytes of formatted on-line storage. Includes one
disk drive, $-100/8080/780 compatible controller (Model
1071), drive enclosure, interface cable A and power supply.

Complete Macrof1oppy single-disk subsystem similar to 1043
Mod II except with a total of 143 kilobytes of formatted
on-line storage. -

Complete Metafloppytm single-disk subsystem with 315 kilobytes
of on-line storage. Similar to 1043 except drive is enclosed
in a protective sleeve which does not include a power supply
or regulator/heat sink package, but includes a power cable A
for connection to an external regulated power supply. The
1041 Mod II can be used in a desk-top mode, or the rubber feet
can be removed and the unit mounted in the customer's chassis.

Complete Macrofloppy single-disk subsystem with a total of

143 kilobytes of formatted on-line storage Similar to 1041
Mod II except for storage capacity.

1-2

1033 Mod II: Add-on dual-disk storage module with a total of 630 kilobytes
of formatted on-line storage. Includes two disk-drives, drive
enclosure and power supply. Attaches to a 1053 Mod II using
a Daisy Chain cable.

1033 Mod 1I: Add-on dual-disk storage module similar to the 1033 Mod 11
except with a total of 287 kilobytes of formatted on-line
storage. Attaches to a 1053 Mod I using a Daisy Chain cable.

1023 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Includes one disk drive. drive
enclosure and power supply. Attaches to a 1043/1053 Mod 11
using a Daisy Chain cable.

1022 Mod I: Add-on single disk storage module similar to the 1023 Mod II
except with a total of 287 kilobytes of formatted on-line
storage, Attaches to a 1043/1053 Mod I using a Daisy Chain
cable.

1021 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Similar to 1023 Mod II except
drive is enclosed in a protective sleeve which does not include
a power supply or requlator/heat sink package. Attaches to a
1043/1053 Mod II using a Daisy Chain cable and includes a power
cable for connection to an external regulated power supply.

1021 Mod I: Add-on single disk storage module similar to the 1021 Mod 11
except with a formatted on-1ine storage of 143 kilobytes.
Attaches to a 1043/1053 Mod I using a Daisy Chain cable.

1091-01: Requlator kit. Includes heat sink, regulator IC's, cables
and mounting hardware. Provides regulators to convert S-100
bus unreqgulated voltages to the voltages required to operate
1047171021 drives and includes a power cable B for connection
to S-100 bus unrequlated voltages via a socket on the subsystem
controller.

1.2.3 MEDIA (DISKETTES)

The recording medium used with Micropolis storage subsystems is an industry-
standard 5 1/4-inch diskette (Figure 1.1) in its hard-sectored version with
16 sectors, each defined by a sector hole. Thus, it has one index hole and
16 sector holes. Diskettes of this type are available from Micropolis or
from many local sources, such as computer stores.

NOTE: Do NOT use diskettes with other than 16 hard sectors, or those which
are soft-sectored (no sector holes). They will not work.

1-3

Rav 7 3/78

B /—LABEL
[y ’/

DISKETTE NG

MICROPQILIS | E/E“E%'éu’$°“°‘

/—DRIVE SPINDLE HOLE

SECTOR/IMDEX HOLE

{BOTH SIDES
51/4

' o o

READ/WRITE HEAD ACCESS—/ ‘\——-S— STRESS RELIEF MO TCHES

HOLE (BOTH SIDES)

Figure 1.1 5 1/4 inch Diskette

1-4

Rev. 7 3/78

New diskettes must be initialized (formatted) before being used for the first
time. See Appendix B for the initialization procedure.

The sub-systems are equipped with-a File Protect (Write Protect) feature
which protacts a suitably treated diskette from inadvertent erasure or over-
writing of important files. File Protect tabs are provided with each package
of diskettes from Micropolis. Installation of these File Protect tabs is
shown in Figure 1.2.

The nature of in-contact recording as used in magnetic tape and floppy disk
drives requires that the medium be replaced from time to time. The intervals
naturally depend on the kind of usage. Continual loading of the head on a
single track will naturally result in its deterioration before that of the
remainder of the diskette. Your diskette is protected as far as possible by
the smooth characteristics of the Micropolis ceramic head and by the automatic
head untoad feature which raises the head load pad from the surface of the
diskette if no activity has occurred for 5 seconds.

When a diskette is loaded--that is, when a diskette is inserted and the manual
Toad actuator is depressed--it begins and continues to rotate inside the jacket.
The user can extend the Tife of a diskette by unloading the actuator during
periods in which the disk is not in use; this raises the head Toad pad and
discontinues rotation.

1-5

Rev. 7 3/78

| WRITE PROTECT TAB
WRITE ENABLE NOTCH FOLD OVER SIDE OF DISK WRITE PROTECT TAB IN PLACE

Y N

™~ INDEX AND
SECTOR HOLE

Figure 1.2 How To Mount Write Protect Tab

NOTE: Micropolis 1021 through 1053 Series Systems use standard 5 1/4-inch
diskettes with 16 hard sectors ONLY !! Do NOT attempt to use
diskettes with other, non-standard number of sectors or diskettes

which are soft-sectored. They will not work.

1-6

Rev. 7 3/78

CAUTION: The diskette must be treated with care to ensure
good reliability. Figure 1.3 summarizes the DO's
and DON'Ts.

P Aot Frotes yox

Prodeonn Schulien
o

No No

Non Falsch

Ievsexet Caretully Insettar
frnerer aveds somny SuiQfalhg tinselzen

Ithd 18
Never Nuncg
Jamais Hie
BRI
WC-52C
SOF-125¢
taver Nunca
lamais Nig
BOOE b

Figure 1.3

1-7

Rev., 7 3/78

1.3 PHYSICAL DESCRIPTION AND DIMENSIONS

1.3.1 1053/1033 DUAL DISK DRIVE MODULE

Height 8.0" 20.3 cm,
Width 9.2" 23.4 cm.
Depth 13.0" 33.0 cm.
Weight 18 1bs. 8.2 Kg.

Input Power requirements: 115/230 VAC, 50/60 Hz.
Standby 60 VA; Operating 78 VA,

1.3.2 1043/1023 and 1042/1022 SINGLE DISK DRIVE MODULE

Height 4.0" 10.2 cm.
Width 5.9¢ 15.0 cm.
Depth 12.2" 31.0 cm.
Weight 9.0 1bs. 4.1 Kg.

Input Power requirements: 115/230 VAC, 56/60 Hz.
Standby 30 VA; Operating 45 VA,

1.3.3 1041/102%1 SINGLE DISK DRIVE MODULE {WITHOUT POWER SUPPLY)

Height 4.0" 10.2 cm.
Width 5.9" 15.0 cm.
Depth g.6" 24.3 cm.
Weight 5.0 1hs. 2.3 Kg.

Input Power vequirements: +5V *5% requlated .5A
+12V¥ +5% reqgulated 1.15A

1.3.4 1071 CONTROLLER

The controller is a single printed circuit board, physically and electrically
compatible with S-100 bus and 8080/Z80 microcomputers.

Height {not including the edge connector to the motherboard):
5.0" 12.7 cm.
Width 10.0" 25.4 cm.

The edge connector for the interface cable is recessed to keep the over-
a1l height at 5.0" when the cable is connected.

1-8

Rev. 7 3/78

1.3.5 INTERFACE CABLES

The standard Interface Cable A (1083-01) is 54" (137 ¢m.) long. It uses
34-wire flat cable with card edge connectors at each end. Pin 1 is indicated
by a contrasting wire color along the appropriate edge. This cable is

used to connegct the controller directly to any single storage wodule (which
can in turn contain one or two disk drives). When two or more storage modules
are to be connected to the controller, the appropriate Daisy Chain cable

must be used in place of the standard Cable A.

Daisy Chain Mode Total : Total
Type Connectors Storage Modules
B 1083-02 3
C 1083-03 4 3
D 1083-04 5

The maximum number of storage modules that can be daisy chained to a single
controller is four. This can be any combination of single and dual modules
with the Timitation that the total number of drives that can be daisy chained
is four.

-

.4 SPECIFICATIONS

.4.1 DRIVE PERFORMANCE

—

o x Capacity per drive, Mod II: 315K bytes, formatted
Mod T : 143K bytes, formatted

* Transfer rate: 250K bits/second
* Average rotational latency time: 100 milliseconds (ms)

* Access time - track-to-track: 30 ms
settling time: 10 ms

* Head load time: 75 ms

* Head positioner: stepper motor with lead-screw drive
* Drive motor start time: 1 second

* Rotational speed: 300 RPM

* Recording density: 5248 bits per inch (BPI} Mod II
5162 bits per inch (BPI) Mod I

* Recording mode: MFM

* Track density, Mod II: 100 tracks per inch (TPI)
Mod I : 48 tracks per inch (TPI)

* Surfaces used per diskette: 1

1-9

Rev. 7 3/78

1.4.2 ENVIRONMENTAL

Operating temperature: 50°-104°F, 10°-40°C

Relative Humidity: 20%-80% (without condensation)

1.4.3 DRIVE RELIABILITY

MIBF 8000 hrs.

MITR 0.5 hrs.

Media Life _ 3 X 106 passes on single track
Head Life 10,000 hrs.

Soft Error Rate 1 1in 109

Hard Error Rate 1 in 10;2

Seek Error Rate 1 in 10

1.5 SUMMARY OF MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE

Micropolis Program Development Software (PDS) consists of two systems:
. 1) The Micropolis Diskette Operating System (MDOS)
2) Micropolis Disk Extended BASIC

Both PDS systems are included on the PDS MASTER diskette that goes with
each Micropolis disk subsystem. Figure 1.4 pictures the relationship
between the two PDS systems.

A Program Development Software system is a group of programs that aid

the programmer in developing, maintaining, and executing application
programs. MODOS and BASIC provide this aid for assembly language programs
and BASIC programs, respectively. They are both written in the instruction
set of the 8P8@ microcomputer. They can be run on 8@8Q/8@85/780 micro-
computer systems that utilize the S-10% bus and a Micropolis disk subsystem
as the primary file device.

MDOS and BASIC share a common program module called RES. This module
contains the system console, system printer, and diskette I/0 routines.
These routines are always resident in the computer system memory when
either MDOS or BASIC is running.

As a consequence of the shared RES module both MDOS and BASIC offer the
same console and printer I/0 support capabilities and it is only necessary
to configure (personalize) the RES module one time for the hardware 1/0
interfaces of a particular system. Additionally, both MDOS and BASIC
utilize the same diskette organization and file structure so that files
created under MDOS and files created under BASIC can each be processed

by either system. 1In particular, BASIC can access assembly language
functions created by the MDOS assembler provided that the functions meet
BASIC's memory requirements and DO NOT call MDOS subroutines; and applica-
tion programs can be written in assembly language to run under MDOS and
process data files created by BASIC.

1-10
Rev. 7 3/78

FIGURE 1.4 MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE (PDS) SYSTEMS

MDOS
EXECUTIVE

 ASSEMBLY
LANGUAGE
APPLICATION
PROGRAMS

i it mad b

b

LY

ASSEMBLER FILECOPY

EDITOR
SYMSAVE

Rev. 7 3/78

RES MODULE

COMMON CONSOLE
AND PRINTER 1/0

COMMON DISK
FILE STRUCTURES

DISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS

A11 parts of the MDOS and BASIC systems other than the RES module are
completely separate. MDOS consists of the RES module, the MDOS module,
and the applications program area which extends into high memory. BASIC
consists of the RES module, the BASIC interpreter module, and the BASIC
program buffer which extends into high memory. Memory maps of the MDOS
and BASIC systems are shown in Chapter II, Figures 2.6 and 2.7.

Also provided is a BASIC UTILITY program that provides for formatting a
disk and examining and changing memory.

Control of the computer system is easily transferred from the MDOS system
to the BASIC system and vice versa. The MDOS executive responds to the
command BASIC. It reads the BASIC interpreter from a specified disk unit,
loads it into memory after the RES module and transfers control to BASIC.
The BASIC command interpreter responds to the command LINK "MDOS". It
reads the MDOS module from a specified disk unit, lToads it into memory
after the RES module and transfers control to the MDOS executive.

1.5.1 ELEMENTS OF MDOS

The Micropolis Diskette Operating System {MDOS) consists of an executive
program, a group of shared subroutines available to user programs, and an
assembly language program development package.

The MDOS executive program implements an interactive command language

that allows the user to control computer system operations from the system
console. It provides commands for memory management, file management,

1/0 control and program control.

MDOS contains a very large group of subroutines which can be called from

a user’'s application program. These subroutines provide for console and
printer character 1I/0, buffered line /0, text Tine parameter parsing,
sequential and random file access, file management, physical diskette
access, and 16 bit integer arithmetic. There are also a number of processor
oriented utility subroutines.

The MDOS application prdgrams that are supplied by Micropolis to support
assembly language program development include:

ASSM - a two pass, 8@8p/8@85, disk to disk assembler program.

LINEEDIT - a 1ine number oriented assembly language text editor with
character within 1ine editing and global search and change
capabilities.

FILECOPY ~ a utility that copies disk files.

DISKCOPY - a utility that makes a binary copy of an entire diskette.

SYMSAVE - a utility that creates a source file of symbol eguate statements
from the symbol table left in memory immediately after an assembly.

DEBUG - a utility that facilitates checkout and debugginc of 8p8p/8085
machine Tanguage programs.

1-12

Rev. 8 9/78

§.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC

Micropolis Disk Extended BASIC is a complete, self-contained software
package that provides total support for BASIC programming. When BASIC
is loaded you have at hand a powerful set of tools for developing,
testing, executing and maintaining BASIC programs.

Program 1ines may be as long as 25@ characters in length and may include
multiple statements. The maximum Tine number is 65529.

BASIC has 12 immediate mode commands, including: SAVE a file, LOAD a

file, DISPLAY the file directory, SCRATCH a file, LIST a program, DELETE
lines from a program, RUN a program, CNTL/C to interrupt a running program,
CONT to continue an interrupted program, CNTL/X to cancel an input Tine,
FLOW and NOFLOW to enable and disable the flow trace debuging aid.

BASIC supports 6 distinct data types, including integers, integer arrays,
floating point numbers in the range 1£-61 to 1E62-1, string arrays, floating
point arrays, and character strings up to 258 characters long. Integer and
floating point arrays may have up to 4 dimensions. String arrays may have
up to 3 dimensions plus a length parameter.

A unique SIZES statement enables you to select the precision of numeric
variables up to 6@ digits for simple arithmetic and 2P digits for
transcendental functions. The system defaults to 8 digits for real
numbers and & for integers.

BASIC supports numeric operators for addition, subtraction, multiplication,
division, integer division, and exponentiation. There are relational
operators to compare numbers or strings and the logical operators AND, OR,
and NOT. String concatenation is also available.

Numeric functions incliude ABS, ATN, CO0S, EXP, FIX, FRAC, INT, LN, LOG,
MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHAR$, FMT, INDEX, LEFT$, LEN, MID$, MAX,
MIN, REPEATS, RIGHTS, STR$, VAL, VERIFY.

The unique FMT(X,¥$} function is the key to a powerful formatted output
capability. It returns a string which is the value of X formatted per
the image defined by format string Y$.

The DEF FN statement is provided to allow construction of user defined
functions. An assembly language function may be linked to using the DEF
FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT, END, EXEC,
FOR-NEXT-STEP, GOSUB, GOTQ, IF-THEN, INPUT, LET, LINK, MEMEND, MERGE, NOFLOW,

FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT, READ, REM, RENUM, RESTORE,
RETURN, SIZES, STOP, and STRING.

1-13

Rev. 8 9/78

The CHAIN is a true chain that passes variables from the current program
segment to next one loaded from disk.

EXEC is a unique statement that allows a string variable or. constant to be
executed as if it were a predefined.program line.

Pata file programming in Micropolis Disk Extended BASIC is simple. Files

can be opened simultaneously for both sequential and direct (random) access

in both read and write modes. Up to 1@ files can be open at one time. A

CLEAR option allows a file to be opened for rewrite instead of append. An

END option provides an on-endfile-goto capab1]1ty An ERROR option provides an
on-error-goto capability.

‘Data is written to and read from files using GET and PUT statements with
variabte lists that allow a mixture of numeric and string variabTes,

Files must be CLOSEd after use.
" The file 1/0 structure also extends to printer and console output files

to afford a high degree of device independence. Additional options on
the OPEN statement facilitate the pagination of output reports.

Rev. 7 3/78

I] INSTALLATION

2.0 INTRODUCTION

This chapter describes how to install your Micropolis disk subsystem
hardware in a ¢ompatible computer system and how to configure the
Micropolis system software for that computer. The computer must be an
S-100 bus system using an 8080, 8085, or 280 processor. A keyboard
display console device is required. Figure 2.1 illustrates a typical
installation. o '

2.1 HARDWARE INSTALLATION

The disk subsystem. hardware consists of 1 to 4 disk storage modules,

an associated interface cable and a controller printed circuit board.
Installing the subsystem is accomplished by unpacking and visually in-
specting the equipment; configuring the controller as necessary for
your particular computer system; installing the controller in the S-100
bus and connecting the storage modules to the controiler. A diskette
may then be Joaded into the disk drive. Hardware installation must

be complete before system software configuration can begin.

2.1.1 UNPACKING THE EQUIPMENT

"The sub-systems are shipped in a protective container which meets the
National Safe Transit Specification (Project 1A, Category 1). The con-
tainer is designed to minimize the possibility of damage during shipment.

The following procedure describes the recommended method for unpacking
the elements of the sub-system.

1) Place the shipping container on a flat work surface.

2} Cut the sealing tape on the container top carefully; open
the top flaps.

3} Remove the User's Manual shipping box (12" X 12" X 2") and the
controller box {12" X 6" X 1") and set aside.

4) For a Dual Disk Module shipment, slide the Disk Module still
supported by the 3" foam end pieces carefully out of the
container, It will be necessary for the container to be held
while this takes place.

For a Single Disk Module shipment, remove the module box from
the outer shipping container. Cut open the tape sealing the
top of the box, open the top flaps and carefully remove the
Disk Module. For 1941/1821 Modules, the interface cable,
power cable and optional regulator kit will be packed in the
module box.

2-1

Rev. 7 3/78

Vil 24K $-100/8080
MICROCOMPUTER

544" FLOPPY

T

'DUAL (OR SINGLE}
FLOPPY DISC DRIVE

Figure 2.1 Typical Instailation

2-2

Rev. 7 3/78

5) RETAIN THE PACKING MATERIALS IN CASE IT IS NECESSARY TC RETURN
THE EQUIPMENT TO THE SOURCE OR SUPPLIER. DO NOT ATTEMPT TO
SHIP THE EQUIPMENT EXCEPT IN THE ORIGINAL PACKING.

2.1.2 INITIAL CHECKOUT

Open the plastic bag enclosing the Disk Module and the controller bhox

and inspect for shipping damage. If shipping damage is evident, call the
origin of the shipment: typically, the dealer from whom the eguipment was
purchased or shipped (or Micropolis in the case of a direct factory sale).

DG NOT RETURN THE DAMAGED EQUIPMENT UNTIL THE SHIPPING COMPANY INSPECTOR
HAS REVIEWED THE DAMAGE, SINCE AN INSURANCE CLAIM WILL BE MADE.

Ensure that the model number on the identification plate is as ordered.
If a Mod II {(high capacity) drive was ordered check that the disk load
actuator on the front of the drive is blue; for a Mod T the actuator
is black.

2.1.3 CONTROLLER HARDWARE REQUIREMENTS

The disk controller board is accessed as a 1K block of memory using
memory-mapped 1/0. This addressing scheme lTeaves the full 256 standard
I/0 addresses for user devices. The controller is implemented as a
"software controller”; most of the work required to access the disk is
performed in software. The operation of the primitive read/write and
timing 1oops depends upon instruction timing, which places the foliowing
restrictions on the system environment:

1} RAM memory must be fast enough to operate without wait states.
This implies 450 nsec or less access time with a 2 MHz system
clock. _

2} 1f dynamic RAM is used, the overhead for refresh must not be
more than 1 CPU clock cycle per 32 usecond period. The refresh
logic must operate properly with approximately 18 usec/32 usec
period spent in wait states. (The controller synchronizes disk
transfers by asserting the PRDY line.)

3) Interrupts are disabied during disk I/0 operations.

4) No cycle-stealing DMA devices may be in operation during disk
I/0 operations.

5} The first 512 bytes of the 1K controller address space are

allocated to the bootstrap, which is implemented in a 70 nsec
ROM. The controller is mapped into the Tast 512 bytes,

2.1.4 CONTROLLER CONFIGURATION AN E D 2 0A4 00 H

The Micropolis disk controller is normally configured to operate at a
base address of FA@PH with a 2 MHz processor. You must ensure that there
is no other memory in your system that conflicts with the 1K space

2-3

Rev. 7 3/78

beginning at F4PPH. If a conflict exists follow the procedure in 2.1.4.1
to resolve the conflict. If you want to operate with @ 3 MHz or 4 MHz
processor follow the procedure in 2.1.4.2.

2.1.4.1 CHANGING THE CONTROLLER BASE ADDRESS To (C4)o%

The controller may be jumpered for a base address at any TK boundary
from COPPH to FCAPH by performing the following procedure.

1} Referring to Figure'z;z, Tocate the address jumpers WI through
Wd. {The controller is shipped with W3 only installed.)

2) Referring to Figure 2.3, determine the jumpers required for the
desired base address. Install the required jumpers using a short
length of insulated wire.

3) Solder in the new jumper(s} using a 25-30 watt soldering iron
and resin-core solder.

2.1.4.2 REJUMPERING FOR 3 MHz OR:4 MHz OPERATION

To operate the disk subsystem at processor speeds greater than 2 MHz, a
jumper must be installed on the controller as follows.

1) Referring to Figure 2.4 locate the ribbon cable edge connector
and the resistors R25, Ré and R7.

2} Between R25 and R6 is a jumper location, WS. Install jumper
W9 using a small length of insulated wire and solder in place
using a 25-30 watt soldering iron and resin-core solder.

A significant throughput advantage may be realized by operating the disk
subsystem with a 3 MHz 3085 or 4 MHz 780 processor. However, two
important notes apply to this type of operation.

1} System integrity is critical at higher clock rates, particuliarly
4 MHz. Buss noise in an S-100 buss system which is not specifically
designed for 4 MHz operation may reach unacceptable levels when
a 4 MHz ZPU is used. To obtain best performance, it is suggested
that the user place the Micropolis disk controller as close as
possible to the CPU board, preferably the next slot.

2} Memory speed is extremely critical. Some "250 nsec memories
may not operate at 4 MHz because of logic delays which degrade
the theoretical access time such that the access requirements
of M1 cycles are not met. These marginal memory boards may be
used if your processor is capable of inserting a wait state in
an M1 cycle.

2.1.5 INSTALLING THE CONTROLLER AND INTERFACE CABLE

There are five steps involved in installing the controlier and connecting
the disk drive(s) to it. Figure 2.1 illustrates a typical installation.

2-4

Rev. 7 3/78

Address Jumpers wi 0)
| wr ¢ L4
Wl

Figure 2.2 Locating The Controller Address Jumpers

2-5

Rev 7 73/78

ADDRESS BIT -

JUMPER
A15 A4 A13 A12 A1l A10 A9 A8 JUMPER INSTALI
BASE ADDRESS N/A | W W2 W3 wWd | /A Wl W2 W3
Y i coi 00 - C3FF ' 1o o0 o otlo o Y Yy
—>1 C41 00 - C7FF 1 1|0 o 0o 100 Yooy v
Caoe ' C8) 00 - CBFF 1 110 0 1 000 Yooy
' CC1 00 - CFFF 1 1o o 1 1{0 0 YooY N
: D01 00 - D3FF 1 110 1 0 olo0 o0 Y N Y
! D41 00 - D7FF 1 170 1 0 1100 Y Ny
t D31 00 - DBFF T 110 1 1 oo o0 Y N N
' DC ! 00 - DFFF 1 110 1 1 110 0 Y OON N
' E0 00 - E3FF 1 1|1 06 0o 0l0 0 Ny
L E4T 00 - ETFF 111 0 o0 1100 Ny
| E8 ! 00 - EBFF 1 1{1 0 1 010 0 Ny N
LECY 00 - EFFF 1 1f1 0 1 16 o0 Ny N
L0 00 - F3FF 1 1411 1 @ 010 o0 NN Y
EESEEQR, F4§ 00 - F7FF 1 11 1 0 110 o0 NN Y
' F31 00 - FBFF 1 111 1 1 0lo o NN N
LFC 00 - FEFF T 301 1 1 1100 o0 NN N

As an example, if you wish to use base address E400, install jumpers at
W2 and W3.

Figure 2.3 Controller Base Address Jumper Configurations

2-6

Rev. 7 3/78

1041 Power Connector

Speed Jumper

e

TR

Figure 2.4 'Locating the controller processor speed jumper and the 1041
power connector

2-7

Rev. 7 3/78

1)

2)

Remove the cover from your microcomputer, exposing the
printed circuit board assembiies.

The Micropolis Controller is designed to be inserted at

any position on the 5-100 bus, Choose a position on the bus
which is most convenient for dressing the interface cable
from the back or side of the computer chassis.

Insert the Controller with its component side facing thef
same direction as the component side of the already installed
boards. '

Install the interface connector by inserting it onto the

34-pin etched connector on the top edge of the Controiler

board. Take care to align the contrasting colored wire

in the Interface Cable itself with pin 1 on the Controller

board. The connection is keyed and can be inserted one way

only, so do not force it hard if there is resistance; instead,
remove the connector and recheck the alignment before reinserting.

Connect the other end of the Interface Cable to the Disk
Module.

For the Dual Disk Module, the etched interface connector is
located at the rear of the unit. The connector should be
installed ensuring that the contrasting cable color indicating
pin 1 is located at the top of the flat cable.

For the Single Disk Module except 1941/1021, the Interface

Cable is shipped already installed in the module itself. If

it becomes necessary to remove the Interface Cable, the following
procedure should be followed: ' :

a) Remove the screws on each side and the single
screw at the top-rear of the cover. Slide the cover
-back about one quarter of an inch to disengage it from
the front bezel and raise it carefully to avoid damage
to Teads.

b) Unplug the connector from the circuit board and fold
it through the slot in the base of the module.

c} Replace the cover by reversing the process in a) above,
taking particular care to avoid trapping the head Teads
at the front-left of the module.

For 1041/1921 modules, 1nsta11 the connector on the circuit

board edge connector accessable through the opening at the
rear of the protective sleeve.

2-8

Rev., 7 3/78

2.1.6 DAISY CHAINING MULTIPLE DISK DRIVES

Up to four disk drives (four Single or two Dual modules or. two Singles
plus one Dual) may be connected to the Controller, Accessory cables
(daisy chain cables) which allow. connection of two or three or four
modules are available. These consist of lengths of flat cable with
connectors on each end and one or more connectors spliced at appropriate
points down the cable. The method of installation is identical to that
in 2.1.5 above.

Normally, a Single Disk Module shipped as part of a 1043/1042 or 1041
subsystem has line terminators in place and disk address @ (determined
by jumper positions on the printed circuit board in the module). Unless
otherwise notified, Micropolis ships an "add-on" model of a single disk
module {1023/1022/1021) assigned as address "1" without interface line
terminators.

Normally, a Dual Disk Module shipped as part of a 1053 subsystem has 1line
terminators in place and disk addresses set at @ and 1. Note that the slide
switch Tocated {from the rear of the unit) on the printed circuit board

just above the interface connector may be used to reverse the address assign-
ments within the dual module, so that the drive formerly addressed as @

ijs now 1, and vice versa. This is particularly useful, for example, when

a disk on which data files can only be accessed through programs written

for disk @ can be mounted on disk drive address 1, and by toggling the
switch the necessity for swapping disks or changing software is removed.

An “add-on" Dual Disk Module (1033) is assigned addresses "2" and "3" and
has no interface 1ine terminators.

In any multiple disk module system implementation, it is mandatory that:

1) Only one drive module contain line terminators.

2) That module containing the line terminator {usually module 9
for Single Disk Modules or moduie @/1 for Dual Disk Modules)
should be physically connected to the last connector on the
daisy chain interface cable, i.e. the furthest from the
Controllier end of the cable.

2.1.7 APPLYING DC POWER (MODEL 1@41/1$21 ONLY)

Model 1841/1821 modules do not include power supplies thereby requiring
the user to supply DC power. The user may provide requlated power
directly or may provide unregulated voltages to modu]es equipped with
the optional regulator kit, Model 1¢91-01.

2-9

Rev. 7 3/78

) S
. _‘ 5/—’ .?_':I:_'_zz -,—,.
/ ' {
Jsr ‘ ‘ *:y
o-{Al3}-e E’ 2.
agU U
"~ ,a~'l g 1 R
X bwo 111!
-_;..-:I.o.__w' — &)f2]8
——— e
,_—w&: 4 o Se
i
| e 4 o &
————y U ’__-._n: [u
r—— R R ey K

" DRIVE
¥ ELECTRONICS
P.C.B.A.
Jb

Figure 2.5 Model 1041/1021 Power Connectors

Rev. 7 3/78

2.1.7.1 REGULATED DC

Regulated DC voltages are applied to J5 of the drive electronics board
(refer to Figure 2.5 for Tocation of J5) as follows:

J5 ' CURRENT WIRE

PIN VOLTAGE REQUIREMENTS COLOR*
7 +5VDC + 5% .5 AMP VIOLET
6 +5Y RETURN BLUE
4 +12VDC + 5% 1.15 AMP YELLOW
3 12V RETURN ORANGE

*Wire color refers to power cable A supplied with 1841/1821 drive.

+5 Return and +12 Return must be connected together at the power supply.
The drive chassis must be connected to the computer chassis or directly
to earth ground.

2.1.7.2 UNREGULATED DC

Unrequlated DC power may be applied to modules equipped with the optional
regulator kit Model 1@91-1. Each regulator kit provides regulated DC
power for one 1§41 or 1821 module. Install the kit as follows:

Install the heatsink assembly on the rear of the protective sleeve using
the hardware provided. Plug the connector from the heatsink onto J5 of
the drive electronics board (see Figure 2.5 for location of J5).

Unregulated DC power is applied to J2 of the drive electronics board
(see Figure 2.5 for location of J2) as follows:

J2 CURRENT WIRE
PIN VOLTAGE REQUIREMENTS COLOR*
1 *‘?I]gNggefkﬁgED 1.15 AMP BROWY

2 KEY

3 +16V RETURN ORANGE
+8Y UNREGULATED '

5 +8 RETURN GREEN

*{ire color refers to the 4 wire power cable B supplied with the regulator kit.

2-11
Rev. 7 3/78

Unregulated DC may be obtained from an S-100 bus computer by connecting
the 4 wire power cable B supplied with the regulator kit between J2 of
the drive electronics board and J3 on the Controller B board. A maximum
of one drive may be powered by the controller in this manner. It is
suggested that multi-drive systems be powered directly by a separate

power supply. Dual power supplies providing +5 and +12 requlated are
commercially available from several manufacturers.

Z.1.8 CUSTOM MOUNTING OF THE 1041/10217 DRIVES

The 1041/1021 disk drive is enclosed in a protective sleeve with four
rubber feet installed for desk-top use. The rubber feet may be peeled
off for custom mounting, such as in the front panel of a computer main
frame. '

The following guide Tines are recommended.

Refer to Figure 2.5-B.

Rev.

a)

b}

c)

d)

ej

The drive may be mounted in any orientation except up-side down.
If the drive is to be mounted vertically, it should be ordered
as such so that the disk eject system can be suitably adjusted.

Use the recommended panel opening and insert the drive through the
panel opening from the front so that the drives are restrained from
rotating. '

On no account should the mounting scheme rely on any restraint
to drive motion being applied through the plastic bezel.

When mounting the drive with the width dimension {5.9") vertical, _
use the outside two screws indicated in Figure 2.5-B on the appropriate
side and two spacers to secure the drive to the hase chassis.

Spacers should be at least 0.5" outside diameter.

The screws should be of such a length as to not protrude more
than 0.2" into the inside of the drive.

The holes in the base chassis should have adequate clearance to
take up tolerances. This precludes the use of flat head screws.

When mounting the drive with the width dimension (5.9") horizontal,
use brackets made of .060 min. steel mounted to the base chassis

to secure the drive in four places using the outside two screws

on both sides.

~ Holes in the brackets should have adequate clearance so that when

all screws are tight, stress is not communicated to the drive.

2-12

8 9/78

i . 9 ¥ [4 "k
F BT
(24.20)
.20 a.2% o
b (.80 (20.93)
—
.80
88 TOP (14.73)
(14,93}
!
C
N
]
\—REC:UL.ATOR a7 (ePTiONAL)
—»
’ .28
INCHED
(%.Bs%) | (B.33) (™)
B > t
s -BB
1 ® \ O K | @23
R
‘-J L5 3.12 EHH‘“nﬂmnﬁibkk_ f
-_t —iind d
—_ (2.96) 7'922:' 09 @-32 HOLE, 3PER SIDE,OUT2IDE TWO SCREWS ON EACH
~——(12.93) - SIDE WMAY BE REMOVED £ HOLES CAN BE USED FOR
: EXTERMAL MOUNTIMN
UNLESS WWEAWEN SPECWIED: | CONTRACT NO.
DIMENSIONS ARE 1M INCHES.
FRAC. DEGIMALS - ANGLES s
' TIONS X 000 > DR BY :
1. SUGGESTED PANEL OPENING @ L et IR Yty
A s.82s 90 By 3.305 7512 wenes WATERAL e BY
14.726 722 By 8.3955:325 owm FINESH APPROVED BV
& NEXT ASSY UsED OM
M— APPLICATION D HOT SCALE DRAWING

Rev.

8 9/78

Figure 2.5 - B OUTLINE DRAMING

f) When mounting the drive vertically, the drive mounting should not
allow strass to be placed on the plastic bezel.

2.1.9 DISK LOADING AND UNLOADING

The flexible disk is Joaded with the load actuator in the "up" position.
Push the disk "home" until an audible ¢lick occurs. This means the disk

is properly located in the receiver. Load the disk, by pushing down on

the load actuator, as far as it will go. Move the actuator firmly and
slowly to ensure proper seating of the disk on the locating cone. The
actuator remains in the “down" position indicating that the disk is loaded.

If the disk is absent or if it is not properly "home" it is not possible
to depress the Toad actuator. This feature protects the disk from damage
if not Tocated properly.

To unload the disk, depress the load actuator as far as it will go, and
allow it to rise to the "up" position. In order to eject the disk, place
the tip of the forefinger under the load surface of the actuator and tilt
the actuator upwards. This action unlatches the interlock and pushes the
disk into your hand.

2-14

Rev. 7 3/78

2.2 SYSTEM SOFTWARE INSTALLATION

Each Micropolis disk subsystem includes a MASTER diskette which contains
the Program Development Software (PDS) systems. Software installation
consists of building a SYSTEM diskette configured for your I/0 devices
from the unconfigured MASTER diskette.

2.2.1 PROGRAM DEVELOPMENT SOFTWARE MEMORY REQUIREMENTS

The Micropolis Diskette Operating System {MDOS) requires a minimum of
16 kbytes of contiguous RAM starting at @@P@#. Figure 2.6 illustrates
these memory requirements.

The Micropolis disk extended BASIC system requires a minimum of 24 kbytes
of contiguous RAM, starting at location P@@@. BASIC automatically sizes
RAM memory when it is started. If you have additional RAM which you desire
BASIC to use, this memory must be strapped to be contiguous with this

first 28K. Figure 2.7 illustrates these memory requirements.

2.2.2 SUPPORTED 1/0 DEVICES

The PDS MDOS and the PDS BASIC system support the same I/0 devices through
the common RES module.

1) Micropolis flexible disk subsystems

2) Terminal - (See Figure 2.8}

3} Line Printer

2.2.3 LOADING THE PDS MDOS SYSTEM INTO MEMORY FROM THE MASTER DISKETTE

The first procedure in the sequence leading to a configured SYSTEM disk
is to load the PDS MDOS System from the unconfigured MASTER disk into
memory and determine that the Toad was successful.

1) Ensure that the Micropolis controller and disk drive are
properly connected to your system. Apply power to your system.

2} Insert the PDS MASTER diskette into your drive (unit @ on multiple
drive systems) and load the diskette by depressing the actuator
lever,

3) Activate the bootstrap ROM on the controller. For Altair/Imsai
type computers with a front panel, this is done by setting the
address switches to the bootstrap address {FEREM unless the Capp H
controller base address has been changed), reset, examine, and
run. For computers under control of a resident ROM monitor,
follow the manufacturers instructions on starting program
execution at a given address. Use the address of the bootstrap
ROM EE#ﬂﬁH unless the controller base address has been changed).
4o B

Rev. 7 3/78

FIGURE 2.6 MDOS MEMORY MAP - Release 4.#

gApPH

pp6AH

P1ARH
1598H

2BAPH

C4o F%

F6P@H

;1&99 F8ABH

Rev. 10 4779

Not used by Mfcropo?is hardware/software

Initially used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.

The RES module contains all permanently resident
I1/0 and Disk Control Routines and associated
buffers.

The MDOS module contains the command executive
and all user callable routines not in RES.

The Applications program area extends from here to the
end of contiguous memory.

BOOTSTRAP ROM as supplied by Micropalis

Micropolis Disk Controller

FIGURE 2.7 BASIC SYSTEM MEMORY MAP - Release 4.9

PoOopH

@P6AH

BTAQH

1598H -

579PH

Lo F4f}ﬂ“

FoPH

Rev. 8 9/78

Not used by Micropolis hardware/software

Initially used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.

The RES moduie contains all permanently resident
1/0 and Disk Control Routines and associated
buffers.

The BASIC Interpreter

The BASIC current program buffer extends
from here to the end of contiguous memory.

BOOTSTRAP ROM as supplied by Micropolis

Micropolis Disk Controlier

When the boot program is started, the unit select indicator.on
the drive will illuminate and the disk head will load with an
audible "click", Computer front panel address Tights will flash
while reading is taking place.

After about 10 seconds, the unit select indicator should go out
and the head will unload with an audible "¢lick". If this has

not occurred within about 20 seconds then the boot program has
been unable to read the system loader into RAM properly. Reset
the system and try again. If a retry is unsuccessful, then remove
the diskette and re-load it into the drive; the diskette may not
have seated properly the first time.

4) When the unit select indicator goes out, press stop and observe
the address indicators. The halt address should be one of the
following.

@397H - Loader error
@4CDH - Good load

To determine if the load was successful in systems without a
front panel, or to ascertain the cause of a loader error,
examine the contents of location @#39AH (Loader termination
status). The status code should be one of the following.

47H {ASCII"G") - GOOD LOAD - the RES and MDOS modules are now
in RAM.

554 (ASCII"U") - UNRECOVERABLE DISK ERROR - the Toader was
unable to read the system into memory. '

Probable causes:

*Diskette is not seated properly.
*Drive did not step properly - remove and reinsert diskette and
retry boot process. _

4DH (ASCII"M") - BAD MEMORY - The loader tried to write into
memory and was unable to read back the same data. Probable
causes are:

*Insufficient contiguous memory -~ 16K bytes from address P
are required.

*Memory is write protected.
*Defective memory.

B19BH/@19CH contain the RAM address at which the error occurred.

If the status code is not one of the above, the memory into which -
the Toader was read may be defective or nonexistent.

2-18

Rev. 8 9/78

2.2.4 CONFIGURING THE PDS SYSTEMS FOR YOUR TERMINAL

The Micropolis disk subsystem and the PDS systems are designed to run

in an $-100 bus - 8080 compatible microcomputer. S5-100 bus compatibility
does not define the device addresses or I/0 protocol used in communicating
with the various interface boards which may be used to connect a terminal
keyboard/printer to your computer. Therefore, it is necessary to customize
the terminal input-output routines in the RES module to accommodate your
precise equipment configuration.

The MDOS system loaded per Section 2.2.3 contains a special configurator
program which is provided to simplify the terminal configuration task

for specific "standard” terminal interface boards. These boards are
standard in the sense that the port addresses and flag bit assignments
conform to what is used by the manufacturers in their stand-alone software.
Figure 2.8 is a Tist of computers and interface boards and "standard" ports
and logic. To determine which terminal configuration procedure applies

to your equipment refer to Figure 2.8 and follow these steps.

1) If your equipment is listed in the DEVICE column and your port
addresses and flag bit assignments match the ones 1isted, then
configure your terminal by following the procedure in Section
2.2.4.1.

2) If your equipment is listed in the DEVICE column but you have
used different port addresses or flag bit ass1gnments, then
configure your terminal by following the procedure in Section
2.2.4.2.

3) If your equipment is not listed in Figure 2.8, then configure
your terminal by following the procedure in Section 2.2.4.3.

2.2.4.1 CONFIGURING A STANDARD TERMINAL

1} In Altair/Imsai front panel type systems, set the address
switches to @#4DIH and examine. Set the program input {sense) switches
to the configuration number corresponding to your configuration
in Figure 2.8 and press run. This activates the configurator
program.

In systems without a front panel, set the desired configuration
number into location @4DPH and start program execution at
location P4D6H. This activates the configurator program.

2) Once started, the configurator program will build the terminal
handler corresponding to the configuration number and will start
MDOS which should output the sign-on message:

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

3) Continue the SYSTEM disk budeing process with Section 2.2.5.

Rev. 7 3/78

FIGURE 2.8

STANDARD TERMINAL CONFICURATIONS

Config
¢ Altair 88-2510
1 IMSAI S102
2 Altair SIO A,B,C (not rev §)
3 Altair SI0 A,B,C (rev #)
4 PTC 3P+S
5 .IMSAI MIO
6 Altair 88~4PI0

The above configurations assume a terminal output line

Port Assigoments

(HEX)

Input Output Data Data

Status Status In

10 3 - 11
3 3 P
) ¢ 1
[/ ¢ 1
@ # 1

43 43 42

14 12 11

output stream following a carriage return. _
See ASSIGN command in MDOS or BASIC for instructions for changing width or number of nulls.

8fH COMPAL - 8g

Qut

11

2

42

13

Flag Bits-

Input

Ready Level

Cutput

‘Ready Level

Device Type

¢

1

HIGH

HIGH

Low

HIGH

HIGH

HIGH

© HIGH

1

.

Terminal I/0 is performed through the COMPAL monitor

81H PTC SOL - 2§ WITH SOLOS 1.3 - Terminal I/0 is performed through SOLOS pseudo port @.

Rev. 7 3/78

2-20

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

SERTAL

SERTIAL

SERTIAL

SERIAL

SERIAL

SERIAL

PARALLEL

width of 72 characters and append 2 nulls to the

2.2.4.2 CONFIGURING A MODIFIED STANDARD TERMINAL

To modify one of the standard terminal handlers to accommodate different
port addresses or flag bit assignments proceed as follows.

Rev.

1)

Tt mrmm
P s o4 e
N Ly PO —

3)

Refer to the listing of the 1/0 handler and configurator
program in Appendix E. The 1listing is structured as follows:

Logical input/output routines

General terminal handler

Line printer handler

Configurator (starting with label "CNFIG")

Blocks of configuration parameters corresponding

to the configurations Tisted in Figure 2.8, labelled
CNFGP, CNFGl...... CNFGn

Locate the parameter block which corresponds to your I/0 board.

The parameter block is organized as follows:

ADDRESS CONTENTS/DESCRIPTION

CNFG +@ Terminal Input Status Port
+1 Terminal Input Status Port
+2 Terminal Output Status Port
+3 Terminal Data Input Port
+4 Terminal Data Input Port
+5 Terminal Data OQutput Port
+6 Data Input Ready Flag
+7 Data Input Ready Mask
+8 Data Input Ready Flag
+9 Data Input Ready Mask
+A Data Output Ready Fiag’
+B Data Output Ready Mask
+C Bytecount For Init Logic = n

+D
' Initialize Logic

+E+(n-1)

Modify the parameter block for the port addresses and/or flag
bit assignments used by your interface card {don't overlook
changing the addresses in the initialize code as well).

The flags and masks are created as follows:
a} Data input/output ready flag byte is ANDed with
the appropriate status byte to extract the desired

status bit. The result is then exclusive - OR'ed
with the associated mask byte.

2-21

3/78

b} If the status bit is high true, i.e., (1) = condition
true, then the mask associated with the flag byte =
flag byte. - '

c) If the status bit is low true, i.e., (§) = condition
true, then the mask = @

5} In Altair/Imsai front panel type systems, set the address switches
to PADIH and examine. Set the program input (sense) switches to the
configuration number corresponding to your configuration in Figure
2.8 and press run. This activates the configurator program.

In systems without a front panel, set the desired configuration
number into Tocation B4pPH and start program execution at location
P4D6H. This activates the configurator program.

6) Once started, the configurator program will build the modified
terminal handler and will start MDOS which should output the
sign-on message:

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978
7) Continue the SYSTEM disk building process with Section 2.2.5.

2.2.4.3 NON-STANDARD TERMINAL CONFIGURATION

If your terminal/interface device cannot be found in Figure 2.8, this
section describes the I/0 requirements of the PDS systems so that you
can write your own terminal handler.

When you boot the MASTER diskette a set of generalized I/0 handlers are
loaded into memory within the RES module. Figure 2.9 1is a map of this
area. '

2.2.4.3.1 THE CONSOLE I/0 TABLE

The GCIOTABLE has the following form:
ORG @CIOTABLE

WRAPFLAG DB @

NULLS bB 3

WIDTH DB 3FH
DS 1

enable {@)} or disable (1) console wrap logic
console null count + 1

console carriage width

must be provided for internal system use

DW CIN ; address of logical console input

W COUT ; address of logical console output

DW CBRK ; address of Tlogical console break check

DW CDIN ; address of physical console device input

DW CDOUT ; address of physical console device output

DW CDBRK ; address of physical console device break check
DW CDINIT ; address of physical console device initialize

2-22

Rev. 7 3/78

FIGURE 2.9 1/0 DRIVER AREA IN RES MODULE

PTABH

QINBUFF - system input buffer

4 bytes which hold the addresses of @CIOTABLE
and GLIOTABLE

@CIOTABLE - yectors to
console driver routines

@LIDOTABLE - vectors to
Tist device driver
routines

Logical conscle input
and output routines
A1l of this area is
space for logical and
physical I/0 drivers. .

reserve space

“Logical printer output 1t 1is organized as.

routines shown to the left when
the system is first
loaded from the MASTER
disk.

reserve space

GPCON :
Physical console input
and output routines

reserve space

QPLIST
Physical 1ist device
output routines

reserve space

Rev. 7 3/78

2-23

2.2.4.3.2 LOGICAL CONSOLE 10 (CIN, COUT, CBRK)

The Togical input, output and check break routines should not have to be
changed. They are tailored to support all MDOS and BASIC requirements.

2.2.4.3.3 PHYSICAL CONSOLE DEVICE INPUT (CDIN)

The:consoTe physical input routine must have the following characteristics:
1} It must return all registers except A & B unchanged..
2} It can use the A register (destroy it).

3) It must return an ASCII character including the parity bit if any,
in the B register.

4) It must return the carry flag clear (NC}. The other status flags
can be in any state.

If the physical character input routine is rewritten, its entry address
must be put into the BCIOTABLE at DW CDIN.

2.2.4.3.4 PHYSICAL CONSOLE DEVICE QUTPUT (CDOUT)

The c&hsn1e physical output routine must have the f011owing characteristics:
1) It must take an ASCII character in the B register.
2) It must. return all registers except A unchanged.
3) It can use the A register {destroy it).

4) It must return the carry flag clear {NC). The other status flags
can be in any state.

If the physical character output routine is rewritten, its entry address
must be put into the ®CIOTABLE at DW CDOUT.

2.2.4.3.5 PHYSICAL CONSOLE DEVICE BREAK CHECK ROUTINE (CDBRK)

The console physical check break routine must have the following
characteristics:

1) It must check the console 1nput status port to determ1ne if a
key has been pressed.

2) If no key has been pressed it must return all registers except A
unchanged and the zero flag clear (NZ).

3). If a key has been pressed return the byte 1nc]ud1ng the parity bit
if any, in the B register. _

2-24

Rev. 7 3/78

The A register can be used (destroyed). A1l other reg1stérs N
must be unchanged. The zero flag must be set (Z).

4} The status fIags other than zero can be in any state.

If the physical check break routine is rewritten, its entry address must
be put into the @CIOTABLE at DW CDBRK.

2.2.4.3.6 PHYSICAL CONSOLE DEVICE INITIALIZE jﬁDINIT]

This routine initializes the input/output 1nterface Some devices are not
programable and cannot be software initialized, while others-1ike the .
INTEL 8251, or the Motorola 6850 must be software 1n1t1a11zed o

If your equipment needs software initialization, the rout1ne must have the
following characteristics:

1} It must return all the registers except A unchanged.
2} It can use the A register (destroy it).

3) It must return the carry flag clear (NC). The other status flags
¢an be in any state. T

If your equipment does not need to be software initialized your routine
only needs to clear carry (NC) and return.

If you rewrite the initialization routine, you must put its‘entry'address
into the BCIOTABLE at DW CDINMIT,

2.2.4.3.7 STARTING YOUR SYSTEM

After you have written your driver and made the appropriate patches to the
@CIOTABLE, you are ready to start the system. Change the soft halt-at
location 4CEH and 4CFH to E7H and P4H. Start executlggmggblgggglgn#Q_E?H -
The System will sign on with SR

MICROPOLIS MBOS VS X.X - COPYRIGHT 1978

Proceed to Section 2.2.5 to configure your system for other supported
devices.

2.2.5 SYSTEM PRINTER CONFIGURATION

The Program Development system provides line printer support as well as’
terminal and disk 1/0. If your system does not have a printer separate
from the terminal, you are not required to build a line printer handIer
and may proceed to Section 2.2.6 to create your system disk.

2-25

Rev. 7 3/78

PDS as loaded per Section 2.2.3 contains a generalized line printer handler.
In many cases this handler can be configured to your equipment by patching
the appropriate port addresses and flag bit assignments into the proper
Tocations. To determine if this handler can support your eguipment, refer

to the Tisting of the physical Tine printer handler in Appendix E.3 beginning
at the OQRG @PLIST. Section 2.2.5.1 is a procedure for configuring this
handler, if applicable. Section 2.2.5.2 presents a detailed example of
“interfacing a TELETYPE Model 40 printer. Section 2.2.5.3 is a procedure

for writing your own printer handler, if necessary. .

2.2.5.) CONFIGURING THE SUPPLIED PRINTER HANDLER

‘The supplied printer handler performs three functions; output'of an ASCII
gharacter, detection of a printer attentjon condition, and software
1n1t1alizat1on of programable printer interface devices.

Refer tq the printer handler in the system I/0 HANDLER listing in
- Appendix E. The handler accesses the printer through three I/0 port
- addresses:

PTDAT -« Printer Data Port -- Character data to be printed will be output

- %o f 15 part.

PTCTL - Printer Control Port -- READY TO RECEIVE status will be read from
this port

PTSTS ~n Printer Status -- PRINTER ATTENTION status will be read from this
port. 1f your printer does not generate attention status then this port
will not be used.

) Prxnter attent1on detection requires two masks: PMSK1 and PMSK2. The
“handler inputs from port PTSTS and extracts the printer attention bit(s)
by ANDing the status with PMSKI. The result is then exclusive OR'ed

with PM3K2, The resulting condition code will be zera if printer is

operationa1 or non-zero if an attention cond1t1on exists.

.Examp1ea Assume a printer generates ON-LINE and PAPEROUT status which

are connegted to bits 7 and @, respectively, of the status port. PMSKI

will bg #81H to extract bits 7 and B. The printer will be operational if
and only if bit 7 = 1 and bit @ = @. PMSK2 must be constructed to yield

a result of zero for this bit combination. Since Exclusive OR'ing the
status which PMSK2 results in complementing each bit of the status for which
the corresponding bit in PMSK2 = 1, the mask value required is @8@H.

~ Ready to receive status detection also requires two masks: PMSK3 and

”'-PN5K4 - The handler inputs from port PTCTL and extracts the ready to

rﬁceive bit{s) by ANDing the status read with PMSK3. The result is then
exclusive OR'ed with PMSK4. The resulting condition code will be zero
if the printer is ready to receive or non-zero if the printer is busy.

~ The masks are formed in the same manner as illustrated for printer
attention detection.

2-26

.Rev. ?. 3??8

Configure the printer handler as follows:

1)

2)

3)

4)

5)

6)
7)
8)
9)

10)

1)

Determine the values of the port addresses and masks as described
above for your printer and interface board. Determine the
instructions required to initialize your printer/interface board.

You can make the patches with your running MDOS system or with
your front panel switches (or monitor). If you want to use the
system to make the changes, refer to the description of the ENTR
command under MDOS EXECUTIVE in Chapter 4.

Change Tocation @LIOTABLE+8 in the 1isting to the address of
LBOUT.

This change is necessary because when the system boots this
address is set to CDOUT, so both logical output streams go to
the console device, which effectively no ops the printer handler.

If your printer does not support a printer attention condition
skip to Step 8.

To configure the printer attention routine change location LDATN
and LDATN+1 to @ (NOP)}. The system boots with an XRA A and a

RET in these locations which turns the attention logic off.
Placing the two NOP's in the code activates the printer attention
Togic.

Change location LDATN+3 to the value of PTSTS (printer status
port address) for your printer.

Change location LDATN+6 to the value of PMSKI and lTocation LDATN+8
to the value of PMSKZ. The printer attention logic is configured.

To configure the character output routine, change location LDOUT1+1
to the value of PTCTL {(printer control port address).

Change LDOUT2+1 to the value of PTDAT (printer data output port
address).

Change location LDOUTI+4 to the value of PMSK3 and location
LDOUTT+6 to the value of PMSK4. The printer character output
routine is configured.

If your interface device requires software initialization, enter
the machine code required starting at LDINIT and ending with the
code C9H (RET). The code as assembled in the Tisting initializes
an INTEL 8251 USART for two stop & 8 data bits with no parity. To
activate this Togic change locations LDINIT and LDINIT+] to 8.

If your equipment does not need jnitialization do not make any
change to this code.

2-27

Rev. 7 3/78

12) The logical printer output routine provides carriage return line
feed after a specified number of characters as an option.

This allows lines longer than'fhe carriage to wrap around rather
than banging at the end of the carriage. If you want to disable
this feature, change location PWRAPFLAG to a 1, otherwise disregard.

13) The number of nulls output in conjunction with a carriage return
and the width associated with the wrap logic can be set using the
ASSIGN command. These values are set at 2 nulls and 72 character
width when the system is booted. The ASSIGN command is described
in Chapter 4 under MDOS EXECUTIVE COMMANDS and Chapter 5 under
BASIC PRINT FILE OUTPUT.

14) Some applications and systems programs need to know if the printer
hardware is capable of advancing to the top of a page when a form
feed is output or if the software needs to handle the top of form
by issuing the correct number of line feeds.

A memory location is provided in the RES module which can be set

at configuration time to indicate the type of printer you have.
This memory location is called FORMFLAG and is located at 4C8H.

A FORMFLAG of @ indicates a printer which does not do a top of form
when it receives a form feed. A FORMFLAG of 1 indicates a printer
that does a top of form when it receives a form feed. The value

of the FORMFLAG is @ as the system is shipped. This is the
configuration that would be used with a Teletype 33 that does not
have a hardware top of form feature.

If your printer does a top of form when it receives a form feed
(ASCII code 12 decimal) set this location to a 1 by typing:

ENTR 4C8 and a carriage return
1/ and a carrTage return,

The ASSM program, for example, checks the FORMFLAG and outputs
a form feed if it is a 1 or 1ine feeds if @, to advance to the
top of the next page.

User applications programs can also use the FORMFLAG to make

the software less hardware dependent by providing both form feed
logic and multiple line feed logic, which is conditionally
executed depending on the sense of the FORMFLAG.

:15) You have finished configurihg_thé line printer handler. Type
EXEC 4E7 and a carriage return, to warmstart the system and
initialize the printer.

You can test the printer by typing ASSIGN 2 3 and a carriage
return. The printer should echo all characters typed on the
console. Type ASSIGN 2 2 and a carriage return and the printer
should stop echo1ng

Rev. 8 9/78 2-28

16) Procede to Section 2.2.6 to create a configured SYSTEM disk.
2.2.5.2 pRINTﬁR INTERFACE EXAMPLE

This section presents a comprehensive case study of interfacing a TELETYPE
Model 49 line printer to an IMSAI 8P8P system. This example assumes an
S102-2 SERIAL INTERFACE BOARD with the terminal connected to port A. The
printer is equipped with an ASCII EIA-type interface which 1nterfaces
directly to port B of the SI02.

The printer interface is illustrated in Figure 2.19 and consists of the
following signals:

1) CHASSIS GROUND

2} SIGNAL GROUND

3) RECEIVED DATA -- Serial data to be printed.

4) CLEAR TQ SEND -- The printer interface line "REQUEST NEXT
‘CHARACTER" (RNC) is applied to the CTS line to enable the USART
device on the serial board. This synchronizes transfers to the
printer and allows the TRANSMITTER READY status bit of the
USART to function as "READY TO RECEIVE".

5) DATA TERMINAL READY -- The printer asserts the DTR line when

printer power is on and n¢ alarm conditions such as paper out
exist. This status line is jumpered to the USART DATA SET READY

Rev. 8 9/78 2-28.1

8L/6 8 "A9Y

¢°8¢-¢

Figure 2.19 Interfacing a Teletype Model 49 Printer with EIA Interface Option to an

INTEL

8251

IMSAI SI102-Z2 Port B

- - -
{ _ I
I AR CHASSIS GND 1
|- H . I
I I
7 BA SGL GND >
| ' | ' --L-—_
* |
- - |
TXO 75184 j_ -1|5 1 BB ‘REC DATA 41
T] ’ | I
8 _ | ; b ' :
eTs ?; B! JETY 5 c8 eTs 4] {RNC)
! [] })
» ! I
N I ! ! i
t ! } _ _ e
DTR 75189 7 ¢ 'y & cc DSk 6!
. _ 1 I
PART OF JUMPER |

IMSAT SI02-2

PLATFORM B-8

PRINTER INTERCONNECT

CABLE

TELETYPE
MOD 49
PRINTER

[
b .
— — - = =

\ EIA -- EDGE CONNECTOR CABLE

. FROM BACKPANEL TO 5102 PCBA

NOT SHOWN

(DSR) input line. The state of this line may be read as one of
the USART status bits and serves as PRINTER OPERATIONAL for
printer attention detection.

6) DATA SET READY -- The DATA TERMINAL READY output line from the
USART is applied to the DATA SET READY (DSR) interface line.
When asserted, DSR turns the pr1nter motor on.

This interface requires the user to fabricate the pr1nter 1nterconnect
cable shown.

The SI102-2 is to be jumpered so that the USART status-register may be read
from port 5 and the USART data register may be written into from port 4.

The status byte read from the USART consists of the following bits:

7165432119

%

Ao
- T D e

BIT7 -- DSR = (PRINTER OPERATIONAL)
= Printer Attention
1 = Printer Operational
BIT 6-1 -- Don't Care
BIT [-- TRANSMITTER READY -- {READY TO RECEIVE) 1 = the

USART is ready to receive a character to transmit
to the printer.

Since both printer operational and ready to receive are contained in the
same status byte, PTSTS = PTCTL =

The printer data port is the USART data register, so PTDAT = 4.

The masks required for attention and ready status are:

PMSK1 = @8{H
PMSK2 = @8@H
PMSK3 =
PMSK4 = 1

Refer to the printer handler in the System I/0 HANDLER listing in Appendix
E. The handler 1isted has been assembled for the example given in this
section.

Details of the operation of the 8251 USART may be obtained from the INTEL
application note AP-16 USING THE 8251 USART.

2-29

Rev, 7 3/78

Since all of the port addresses and other parameters are assembled into
the system printer handler, configuring the handler for this example is

simply a matter of enabling the handler.

However, to illustrate the

procedure given in Section 2.2.5.1 the full dialogue is given below.
The procedyre step numbers are annotated to the right of the listing:

>ENTR 5@A
>CB 6/

Sk1p to Step B if Printer Attention
is not requ1red _

>ENTR 658
> B/
>ENTR 6EB
>5/
>ENTR 6EE
>89/
>ENTR 6F§- .
>80/
SENTR 6D .
>5/
>ENTR DR
>4/ _
>ENTR503
>1/
>ENTR 6D5
>1/
>ENTR 6FE
>3 @ 3E AA D3 § 3E. 49 D3 5 3ECED3S
>3E 17 D3 5 €8/
>ENTR 518
>1/ .
>ASSIGN 2 2 48 1
>EXEC 4E7 -

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

2-30

Rev. 8 9/78

Step

Step

Step
Step
Step

Step

Step

Step

Step

Step

Steb
Step

10

11

12

13
14

2.2.5.3 CONFIGURING SPECIAL PRINTER HANDLERS

If you are unable to patch the generalized print handler for your system,
you will have to write your own. A general discussion of the needed routines

follows. See Figure 2.9,

2.2.5.3.1 THE LIST 1/0 TABLE

ORG @LIOTABLE

DW
DW
DW
DW
DW
DW
DW
PWRAPFLAG DB
PNULLS DB
PWIDTH DB
DS

The addresses

p
LOUT
LATN
p
Loout
LDATN
LDINIT
f

3

72

1

L T T A L I PN TR Y

place holder corresponding to CIN

“address of logical Tist output

address of Togical Tist attention check

piace holder corresponding to CDIN

address of physical 1ist device output

address of physical 1ist device attention check
address of physical 1ist device initialize
enable (@) or disable (1) list device wrap logic
1ist device null count + 1

1ist device carriage width

must be provided for internal system use

in the table point to the actual routines. PNULLS AND PWIDTH

may be changed at any time in either MDOS or BASIC by using the ASSIGN command.

2.2.5.3.2 LOGICAL LIST I/0 (LOUT, LATN}

The logical output routines have been tailored to meet the requirements
of MDOS and BASIC. They should not have to be rewritten,

2,2.5.3.3 PHYSICAL LIST DEVICE OUTPUT (LDOUT)

LDOUT is the physical output routine. Most standard interface boards can

be accommodated by patching the output port addresses and the ready mask
values into the supplied printer handler {see the listing in Appendix E).
This generalized printer handier is in place after the system is booted.
However, there are some cases where the generalized printer handler cannot
be used. A couple of examples might be systems using an old BAUDOT teletype
as a printer, or DIABLO which uses a non-standard ETX system. In these
cases the physical output routine must do considerably more than just output
when the print device is ready. For the BAUDOT teletype the physical output
routine must convert from ASCII to BAUDQOT before outputing.

- The physical output handler must have the following characteristics to
interface with the rest of the system:

1} The character to be output is passed to the physical output routine
in the B register in ASCIL

2) The physical output routine can use (destroy) the A register.

Rev. 7 3/78

2-3]

3) A1 registers except A must be returned unchanged.

4} Some printers can signal when paper is out, the motor is off, or
they are out of ribbon. The system supports printers which can
signal a PRINTER ATTENTION condition.

[T the printer needs attention, the physical output routine should
return with the carry flag set (C). If your printer does not
support a Printer attention condition, then always return with the
carry clear (NC). The other status flags can be returned in any
state. ' :

2.2.5.3.4 PHYSICAL LIST DEVICE ATTENTION ROUTINE (LDATN)

LDATN is a rout1ne which checks PRINTER ATTENTION on pr1nters which support
this cond1t10n

If your printer does not support printer attention, then this rout1ne can
simply clear carry and return.

LDATN XRA A
RET

If your printer is capab1e of signaling printer attention, your LDATN
routine must have the following characteristics:

1) The LDATN routine can use {destroy) the A register.
2) A1l registers eicept A must be returned unchanged.
3} If the printer needs attention the routine returns with the carry

set (C), otherwise the carry is returned clear {NC). The other
status flags can be returned in any state.

2.2.5.3.5'PHYSICAL LIST DEVICE INITIALIZE (LDINIT)

LDINIT is a routine which initializes the printer/interface device. Some
devices are not programable and cannot be software initialized in which
case the LDINIT routine needs only clear carry and return.

LDINIT. XRA~ A
RET

I you need a software initialization sequence, it must have the following
characteristics:

1) The LDINIT routine can use (destroy) the A register.
2) A1l registers except A must be returned uﬁchanged.

3) The carry f]ag must be returned clear (NC). The other status flags
can be returned in any state.

2-32

Rev. 7 3/78

2.2.6 CREATING YOUR SYSTEM DISKETTE

The Program Development system is shipped with a MASTER diskette and a
SYSTEM diskette, which is a duplicate of the Master.

This is done as a convenience for people with a single drive system, and
provides a simple, fast method for generating your first configured running
SYSTEM diskette. However, to generate additional configured systems on a
blank diskette requires a more detailed procedure if you have only one
drive. This procedure is described in Section 2.2.8.

With a multiple drive system it is simple to make additional copys using
either the DISKCOPY utility which makes a duplicate diskette on another
drive, or the FILECOPY utility which copies a named file from one drive to
another

After the system has been configured to the input/output requirements of
your equipment, you are ready to create your configured SYSTEM diskette.

1) Remove the MASTER diskette and keep it in a safe place. The
MASTER diskette should never be re-written.

2} Insert the nonconfigured SYSTEM diskette in your drive (unit B on
multiple drive systems).

3) Type FILES and a carriage return. A Jist of all the files on the
system diskette will be displayed.

4) The first file entry on the diskette is DIR which is the directory.
The second file entry is RES, which is the resident portion of
the Program Development Software systems.

5) Type TYPE "RES" @ and a carriage return. This changes the file
type from read only and permanent to a normal data file. This
must be done prior to removing the file from the directory in
preparation to saving the new configured version.

6) Type SCRATCH "RES" and a carr1age return. This removes the
file from the directory.

7) Type SAVE "RES" 2B1 1598 .3 and a carriage return. The unit
select Tight will go on indicating that your configured RES
file is being written onto the diskette.

8) When the system prompt ">" is printed again, the file has been
saved. Type FILES and a carriage return. RES should be the
second file entry.

RESTIRT AT 04%7,

2-33
Rev. 8 9/78

9} Due to the addition of the three commands, EDIT, RENUM and MERGE,
the current BASIC is longer than BASICs before version 4.8. If
there is no need to shorten BASIC, ignore this step. If
you want the SYSTEM diskette to have a shortened version of BASIC,
proceed to APPENDIX G, the FEATURES PROGRAM, which describes the
procedure for shortening BASIC. When this procedure is completed,
you are running a shortened BASIC. Do the fo110w1ng to save the
shortened BASIC on the SYSTEM d1skette

In resoonse to BASIC's READY prompt:

a) Type OPEN 1 “BASIC”:ATTRS(])=S and a carriage return.

b) Type SAVE "BASIC" 1SR1572,116R5DFF\and a carriage return,

c) Type ATTRS(])?]GRF:CLQSE 1 and a carriage return,

The System diskette now has a copy of your personalized system. You may want

to make a copy of your personalized system at this time as a backup. If you
have a single system, go to Section 2.2.8. If you have a muitiple drive system,
type DISKCOPY and a carriage return. The DISKCOPY program will be brought in
from the disk and type instructions for its use.

2.2.7 CREATING A BASIC ONLY SYSTEM DISKETTE

Some users may only want to program in BASIC or may be developing BASIC
application program packages for sale. You can create a BASIC only system
which will boot up directly to BASIC. The BASIC only system should not use
the SYSTEM diskette provided, rather a new blank diskette should be used.
This procedure should only be followed after you have configured your system
as described in Section 2.2.4 and 2.2.5, and created a configured System disk
as in Section 2.2.6,

1} Put a b]ank diskette in disk drive p.

2) Type INIT @ and a carriage return.
The system responds ARE YOU SURE? This is done to help prevent
accidentally initializing a diskette. The initialization process
will destroy anything which was prev1ous1y on the diskette. If
you are sure the diskette you have in drive § is to be initialized,
Type Y and a carr1age return
When the prompt ">" js printed again, the d1skette is initialized.

3) Remove the initialized diskette and put the SYSTEM diskette back
into drive 0.

2-34

Rev, 10 4/79

4) Type BASIC and a carriage return.
BASIC will be loaded into memory and sign on with

MICROPOLIS BASIC VS X.X - COPYRIGHT 1978
READY

NOTE: It is possible to optionally remove features from BASIC before
creating the BASIC only diskette. See Appendix G for details.

5} Remove the SYSTEM diskette and put the initialized diskette back
into drive 9. :

6) Type SAVE "N:BASIC" 16R2B1, 16R5DFF and a carriage return.

BASIC will be written onto the initialized disk. When this
is done the system will respond, READY.

7) Type OPEN 1 "BASIC":ATTRS(1)=3:CLOSE 1 and a carriage return.

This will set the attributes of BASIC to permanent and write
protected. The diskette is now a valid BASIC only configured
system disk.

If you want to copy the BASIC UTILITY program onto the BASIC only diskette,
proceed as follows.

1) Put the original SYSTEM diskette into drive 0.
2) Type LOAD "UTILITY" and a carriage return.

The UTILITY program will be loaded into BASIC's current program
buffer and BASIC will respond, READY.

3) Remove the SYSTEM diskette and put the BASIC only diskette in
drive B.

4) Type SAVE "N:UTILITY" and a carriage return.

The UTILITY program will be written on the BASIC disk.
Users with multiple drive systems may also wish to place the DISKCOPY
utility on the BASIC disk. This can be done by using the FILECOPY
capability in MDOS.

2.2.8 MAKING ADDITIONAL COPIES OF YOUR SYSTEM USING A SINGLE DRIVE

Micropolis provides two diskettes with your drive as described in Section
2.2.3 to simplify the initial system generation procedure, for single drive
owners. However, after you have configured your system and created your
SYSTEM diskette, it would be a good idea to make a back up copy of your
configured SYSTEM diskette - especially if you have a nonstandard system

which- is harder to personalize.
BEFORE COPYING YOUR CONFIGURED SYSTEM, IT IS RECOMMENDED THAT YOU PUT A WRITE

PROTECT TAB ON THE SYSTEM DISKETTE. IF NECESSARY, THIS WRITE PROTECT TAB CAN
BE REMOVED AFTER THE COPYING PROCESS IS COMPLETE.

Rey. 8 9/78 2-35

There are two utilities which can be used to make a copy of a configured
system diskette:

1) The DISKCOPY utility can be used to make an exact duplicate image

2)

of a diskette. DISKCOPY can be used on a single drive system,
though the procedure is somewhat more difficult than for mu1t1pTe
drives. Refer to chapter 4, sect1on 4.8 for instruction on using
DISKCOPY in this manner,

A spec1a1 utility called COPYFILE is provided for the single drive
owner. COPYFILE is similar to FILECOPY which is designed for
muitiple drives. COPYFILE makes it simpler for the single drive
owner to backup disk files on another diskette. Refer to chapter
4, section 4.1 for instructions on using COPYFILE.

When using COPYFILE to backup your configured systems d1skette,
the following steps should be followed:

a} Initialize a blank diskette by typing the command INIT P
and a carriage return. The system prompts

ARE YOU SURE?

If you are, type a 'Y' Any other response will cancel the
command.

When the system prompts '>', the diskette is initialized.

b) The RES file must be the first file to be copied on the newly
inftialized diskette. If any other file is copied before RES,
the new diskette will not boot. Type:

COPYFILE "RES"

and a carriage return.

The COPYFILE progfam leads the user interactively through the
copying process.

¢) The second file on the copy diskette should be MPOS. Type:
COPYFILE "MDOS" -
and a carriage return.

d) The rest of the system files can be copied in any order you wish.

2-36

Rev. 8 9/78

ITT NORMAL QPERATION

3.0 INTRODUCTION

This section describes the day-to- -day 0perat1nq procedure for a user-
configured systenm. _

3.]'BOOTSTRAP PROCEDURE

1} Ensure that the diskette drive and controller are properly inter-
connected with your system and that the proper type of memory
is configured and instalied in your system. Apply power to the
diskette drive and system.

©2) Insert the configured SYSTEM diskatte_fnﬁb the drive (drive §
of dual drives) and load the diskette. On single drives, wait
about 5 seconds to ensure the unit is up to speed

'3) Activate the bootstrap ROM on the contro11er For A1ta1r/1msa1
-~ type computers with a front panel, this is done by setting the
address switches to the bootstrap address (FA@PH unless the

controller base address has been changed), reset, examine, and
run. For computers under control of a resident ROM monitor,
follow the manufacturers instructions on starting program
execut1on at a given address. Use the address of the bootstrap
ROM' (F4%?H unless the controller base address has been changed).
- Cmpg W
When the boot program is started, the unit se1ect indicator on
the drive will illuminate and the d1sk head will load with an
audible "click". .

The address lights on the computer front -panel (if you have

one) will flash the load process which will take 4 to 7 seconds.
The bootstrap program brings the system loader into RAM and it
loads and starts the configured systemh-'when this process is
complete, the loaded system will output a sign-on message to
your terminal. - The MDOS system s1gns on with

_MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

The BASIC system s1gn$ on with

MICROPOLIS BASIC VS XX - COPYRIGHT 1978
READY

31

Rev. 7 3/78

- 4) Approximately 5 seconds after the load is complete, the drive
will automatically be de-selected. This will be evidenced by
the audible "click" of the head unloading and the unit. select
1nd1cat0r will ext1nguish

If the system has not signed on within 10 seconds observe '
the unit select indicator. If the unit is still se1ected after
about 20-30 seconds, the bootstrap program has not been able to
read the loader into memory. Reset your system and remove the
SYSTEM diskette. Inspect the diskette for any obvious damage
or contamination, Re~load the diskette and retry the bootstrap
operation, L ' '

If the system has not signed on but the unit select indicator
has extinguished, the Joader may not have been able to read the
- system into memory. Stop the system and examine location

#39AH which contains the loader termination status. The status
¢ode should be one of the following:

47H (ASCII "G") - THE SYSTEM WAS LOADED WITHOUT AN ERROR - the
problem is probably with your terminal or 1nterFace (ensure
your terminal is on line).

554 (ASCII "U") - UNRECOVERABLE DISK ERRQR

" The system loader was unable to read the system’ from the diskette
properly. -Remove the diskette and inspect for ebvious damage or
contamination. Re-insert the diskette and retry ‘the boot operation.

4DH (ASCII "M"} - MEMORY ERROR - the system loader réads the system
into its read buffer sector by sector and moves the data from each
sector into the RAM area where it executes. During this process,
the loader reads the data back to ensure that the move destination
contains aoperable RAM. [f the data read back does not compare,
then the loader aborts with an "M" error. @19BH/@19CH contains
the RAM address at which the error occurred. Try to deposit/
examine @, FFH, 5AH, ABH at the address which caused the error.

a) If the examine always yields FFH, there is no RAM at
that address {or a memory board fa11ure wh1ch makes
it appear so) or memory 1s protected.

b) If the examined data does not match the data deposited
- at that location, you probably have a defective memory
beard or the memory is protected.

¢) If memory appears to be OK, retry the boot operation -
if it fails again you may have noise or some similar
transient memory error problem.

If the status code is not one of the above, the RAM at PPABH -

@3ABH into which the loader is read may be defective, protected,
or nonexistent,

Rev. 8 9/78

3.2 OPERATING HINTS

1) The Micropolis fiexible disk drive subsystem was designed to take

2)

3)

Rev. 7

every reasonable precaution to protect your diskettes and the data
recorded on them. Examples of this care are the door interlock
which prevents loading of the diskette until it is properly inserted,
and the automatic 5 second deselect feature which relieves the head
load pressure from the recording surface when the drive is not in
use. Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing

the diskette to ensure its long service 1ife. The following
precautions are guidelines for proper handling:

a) The exposed recording surface is easily contaminated - do
not touch or attempt to clean the surface. Do not smoke,
eat or drink while handling the diskette. Whenever the
diskette is removed from the drive, return it to its
protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which
may be damaged if handled carelessly. Do not place heavy
objects on the diskette; do not expose the diskette to
excessive heat or suntight: do not use rubber bands or
paper clips on the diskette; do not bend or fold the
diskette.

¢) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette
or it may be damaged by the force exerted in writing. A
fiber-tip type of pen is recommended. Return the diskette
to its envelope before writing on labels.

d} Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may
result in the loss of information.

If a diskette is damaged or contaminated it should be replaced.
If a contaminated diskette is placed in the drive, the receiver
and read/write head may become contaminated and ruin other diskettes.

The auto-deselect will ensure reasonable diskette 1ife. But, as a
rule you should unload the diskette whenever it is not going to be
accessed for long periods of time. This will give added diskette

life and prolong the 1ife of the drive motor.

A1l diskettes used with the Micropolis subsystem must be initialized
before they can be used. The required initialization can be performed
by using the INIT command in the MDOS System or by using the BASIC
UTILITY program provided on the MASTER diskette and described in
Appendix B.

3-3

3/78

3.3 THE CONCEPT OF BACKUP

A key concept in the successful operation of any computer system is BACKUP.
System failures are not a matter of probability, they are a matter of
certainty. Failures may occur because of internal problems such as component
failures or defects in media used in storage devices; or because of external
sources such as power failure or line transients. Adoption of a sensible
back-up scheme can minimize the inconvenience and expense of system failures.

In the context of microcomputers equipped with Micropolis flexible disk
storage subsystems, backup means taking steps to ensure that your program
and data files are not lost. '

Protecting your programs is easy if the convention of master and working
copies of programs is adopted as follows:

1} A master program diskette exists for the purpose of backup only.
It is kept in a safe place and is only used when its contents are
copied to a working diskette. '

2) In day to day operations, programs are loaded and executed from
working diskettes.

3} Never use the master diskette for program development. Copy its
contents onto a working diskette and perform the program editing
using the working diskette. _

4) When editing program files, resave the program file periodically.
In the event of a failure, the chance of losing all of a lengthy
editing session is reduced.

5) When the editing of a program is complete, the diskette containing
the source program should be saved as a temporary master. ODebugging
of the program should be performed using a copy of the temporary
master. Subsequent program editing may be performed on the temporary
master or a copy of it depending upon how extensive the previous
editing was. The key concept is: If the only copy of a program
under development is destroyed, it should be possible to recreate
the Tatest version from previous masters and documentation of the
changes made to the previous programs. {e.g., marked-up program
listings) The extent to which this concept is extended depends
upon weighing the inconvenience and time of making backup copies
against the possible Toss and inconvenience caused by a failure.

6) Once the program under development is stable and ready to be phased
into operation, the temporary master becomes the new current master
diskette. The previous master should be retained as a 'grandfather'
backup master, until it is certain that the new program functions
properly and there is no need to fall back to the previous program.

Listings of the programs on the master diskette should be saved in
- a safe place as further security.

Rev. 8 9/78 3-4

Protection of data files is more difficult. The extent to which data files
may. be protected depends upon the application but the concept is the same.
In a properly designed system it should be possible to recreate the current
data base from a backup copy and a Tist of the changes which have occurred
since backup copies of the files were made.

A static data base may be protected by procedures similar to those given for
program protection.

A dynamic data base, such as the data base used in an intereactive order entry
or inventory control system, is difficult to protect. A properly designed
system should include making frequent backup copies and saving the transactions
against the data base in a separate file, preferably on a different device
from the device on which the data base resides. If a failure occurs, the

data base may be reconstructed except for transactions which may have been
processing at the time of the failure. Many books and articles have been
written concerning the design and security of data bases - consuit them

for an in depth discussion of the problems and solutions.

In systems which have only one disk drive, the backup process involves
swapping diskettes in and out of the drive. ATthough the need for backup

is independent of the number of drives in the system, in this context the
time and invonvenience of the process may appear to overshadow the

potential value. Micropolis has attempted to minimize this time and
inconvenience by providing file and disk copy utility programs which support
the single disk drive environment.

In systems which have two or more disk drives, the Micropolis DISKCOPY program

provides the easiest means of making backup copies. The entire contents
of a diskette may be copied onto another diskette in a few minutes.

Rev. 8 9/78 3-5

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.9 INTRODUCTION TO MDOS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MDOS)}. MDOS consists of an executive
program, a group of shared subroutines available to user programs,
and an assembly language program deveiopment package.

The MDOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/0 control and program control. _

MDOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
console and printer character 1/0, buffered line I/0, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor oriented utility subroutines.

Six application programs make up the package that supports assembly
Tanguage program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8P80/8P85 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent

symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
language programs.

4-1

Rev. 8 9/78

4.1 THE MDOS EXECUTIVE

The MDOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MDOS is loaded it signs on with the
message :

MICROPOLIS MDOS VS. X.X - COPYRIGHT 1978

>

It is then waiting for an ekécutive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the 1line. A backarrow is echoed
- to the terminal display for each character deleted.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return Tine
feed combination is echoed to the terminal display. The
executive is positioned to accept entry of a new tine.

4.1.2 EXECUTIVE STATEMENT FORMAT

An executive statement has the following form:
funit:INAME ["<ASCII>" "<ASCII>" ... "<ASCII>" <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MDOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only

and must not be preceded by any spaces. In addition, executable assembly
language programs can be ‘loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII characters in the code range 21 hex to 7E hex. Imbeded
spaces, double quotes, backarrows, and rubouts are not allowed in
implicit command filenames.

When an executive statement is entered the executive program searches
its table of explicit command names for a match with the NAME that was
input. If the NAME is found in the table of command names the statement
is executed immediately. If the NAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

-2
Rev. 7 3/78

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAME4d file is to
be found. If no unit number is specified, unit @ is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the specified disk drive for the file. If
the file is found on the disk {and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is output

to the console stream: COMMAND NOT FOQUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at Jeast one space between
the NAME and any parameters. A1l parameters must be separated from each
other by at least one space. Entry of an executive statement with too many
parameters of either type, or without the required spaces between fieids

will resuit in a SYNTAX ERRQOR.

ASCII parameters consist of from @ to 1@ ASCII characters in the code range
20K to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCIT parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters

in an ASCII parameter will result in a SYNTAX ERROR.

ASCIT parameters in executive statements are generally used to specify

disk filenames. In this usage a unit number may be prefixed to the ASCII
filename within the quotation marks by typing the unit number followed by

a colon (:) followed by the filename. This indicates the disk drive unit

on which the file is to be found. If no unit is specified, unit @ is
assumed. The digit of the unit specification and the colon are not included
in the 1@ character length restriction for ASCII parameters. For example,
"DATAFILEQT" and "“T:DATAFILEOT" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from § to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

A1l MDOS explicit commands and all application programs supplied by Micropolis
can be cancelled in progress by holding down the control key and typing a

C {(CNTL/C) on the console keyboard. The operation will be terminated as soon
as.the CNTL/C is recogn1zed and the message CANCELLED will be output to the
console. Control is returned to the MDOS executive.

4-3

Rev. 7 3/78

4.1.4 DISPLAY CONTROL

ATl MDOS explicit commands and all application programs supplied by Micropolis
can be temporarily stopped in progress by holding down the control key and
typing an S {CNTL/S). The process will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
viewed at reading speed by stopping and resuming the output as necessary.

4,1.5 EXPLICIT EXECUTIVE COMMANDS

Command syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional,

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. blockZ>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those Tocations. Example:

>COMP 5pPP 5pBF 501p
5ppa 91 99 514

The block of memory from 5008 to S5@)F is compared with the block of memory
from 541@ to 5P1F. One Tocation fails to compare. Location 5@P4 contains
#1 while the corresponding location, 5814, in the second block contains §9.

4.1.5.2 THE DUMP_ COMMAND

DUMP <start addr.>[<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown

16 to a line with the memor¥ address_at the left margin. If the optional end
address parameter is not entered, only one byte is displayed. Example:

>DUMP 5p@@ 5911)

SP0p SP Cp 27 77 4F 33 4F CD 7D 9E 98 PP ©6GA FD 82 99

5@1p 77 2B

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78

The ENTR command ailows data to be entered into memory directiy from the
console device. Example:

>ENTR 7900
>78 89
6F/

Three bytes were entered starting at location 7099 hex. These were 78
at 70pB, 89 at 79@1, and 6F at location 78P2.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last 1ine must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex vaiue in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command filis a block of memory with a specified byte.
Example:

SFILL 7900 8090 9

Each byte of memory in the block from 7002 to 8839 is changed to a B9
by this command.

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block 1is
changed to be an exact copy of the source block. Example:

>MOVE 3900 49p0 7908

Each byte in the memory block from 3009 to 4PPP is copied into the
corresponding position in the memory block from 78p@ to 8¢Q@.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3009 3@82p 9F
3pp4 9F
38 9F

The block of memory from 3998 to 3820 is searched for all occurrences of
a 9F. Location 3904 and Tocation 3P18 both contain 9F. No other
locations in the block contain 9F.

4-5

Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3008 3019 67
3pp2 B9 67
3p@6 76 67

The block of memory from 3@P® to 3@1P is searched for all non-matches with
the mask 67. Location 3082 contained a 9 rather than a 67, and 3896
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE "[unit:])<filename>" [<file type>]

The CREATE command creates a new file in the directory of the diskette

in the specified unit and allocates the initial track for the file. If
no unit is specified, unit @ is assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to @.

4.1.5.9 THE DISP COMMAND

DISP "[unit:3i<filename>" [<record number>]

The DISP command outputs a formatted hex display of the data contents of

g file to the system console. The unit number indicates the disk drive

on which the file is to be found. If no unit is specified, unit @ is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed.

Each record is displayed with a header 1ine that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data 1ine has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that Tline.

>DISP "1:TEST" 29

4923 3009 pp22

B9 12 2ABD 76 8F ED 54 41 89 p@ @p 82 BC CC 76 89
10 78 83 3B BB 8B 54 58 56 9@ 88 32 31 30 AD 20 90

20 89 55
pg2A 3C8p 9P@3
P9 FF FF FF

pRZB 3F33 PBE9
P9 45 43 4B 4C 31 37 38 @D 9@

@p2C 2899 POOY
END-FILE

4-6

Rev. 8 9/78

The first line of the display shows the record number 29, the load

address 3C@P, and the length of the record 22 bytes (all in hex}. The
header line is followed by three lines which display the data in record

29. Each data line starts with the index position of the first byte in the
1ine. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C8@ and
contains @3 bytes of data.

Record 2B has a load address 3FP@ and contains @9 bytes of data.

The last header is for record 2C which has a load address of 2B@3 and a
record length of @. If the file is an executable object file {1ike ASSM
for examplie), the address in the zero length sector is the execution
address of the file. LOADiIng stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1
Rev. 8 9/78

4.1.5.1p THE FILES COMMAND

FILES [<unit>]

The FILES command outputs a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is
specified, unit @ is assumed. Example:

>FILES 1 _
DIR B3 popo
RES g3 9913
MDOS pF ppIC
LINEEDIT 15 pppc
ASSM 15 pyip
SYMSAVE 15 pop3
FILECOPY 15 pp@3
DISKCOPY @F 9PRo
BASIC BF ppaB

The files on drive one are displayed on the console. The left column
contains the filename, the second column is the file type, and the
third column contains the number of sectors the file uses. A1l numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>]

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk drive. If no unit is specified, unit @ is assumed. Example:

>FREE 1
P38

The diskette on drive one has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]J<filename>"

The SCRATCH command removes a named filte from the dirvectory of a diskette
and returns its allocated tracks to ava11ab1e status. Disk drive # is
assumed if no unit 1is specified.

Note: Some files cannot be SCRATCHed withcut first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

4-7

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command Toads (reads) a named file from a diskette into the computers
memory and then returns control to the MDOS executive. If no unit number
is specified, the file is expected to be found on unit 9.

The LOAD command can be used in conjunction with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be Toaded. The
process of LOADing an OBJECT file is described in 4.1.5.13.71. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.

An OVERLAY file is defined as any file with a file type value in the range

AC - @F hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WRONG FILE TYPE. OVERLAY files are not LOADable because

they generally imply the replacement of the MDOS module and require immediate
execution. Control cannot be returned to the MDOS executive and must be
transferred immediately to the newly overlayed program module. If there is

a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MDOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
@3 - @B hex or 14 - 1B hex. These ranges include ASSM object files, BASIC
'save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:
LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4}. This is called a
'scatter load' because it permits records in the file to be Teaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first @ length record in the file is
encountered.

If the-optional start address is not specified in the LOAD command, then
the 1oad of an OBJECT file proceeds according to the following example.

The OBJECT file to be loaded is "TEST".

DISP "TEST"
Ppop 2BP3 PORS
PP 31 32 33 34 35

0p01 2Cpp PRR4
P9 54 45 53 54

ppp2 289G PPOP
END-FILE
2-8

Rev. 8 9/78

Typoing LOAD "TEST" loads two text strings into memory. The string "12345"
in record @ i1s loaded starting at 2B@9 hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2C@9 hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case is 2B@@ hex. This file, however, could not be

a run file as it stands as there is no executable code.

If the load address of the first record is less than 2BP3 hex, the message
LOAD ADDRESS ERROR is displayed because file may not be loaded beneath the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are Toaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5000 loads the
string "12345" starting at memory location 5pP8 hex for five bytes. The

offset is calculated by subtracting the load address in the header of the first
record from the start-address. 50@0-2B@0=2508 hex. The string "TEST" is
loaded starting at 5108 hex for four bytes. The load address in the header

of the second record, 2C@P has the offset 2500 hex added to it and the result
is the offset-1oad address. '

If the optional start-address is less than 2B@0 the message LOAD ADDRESS
ERROR is displayed.

4.1.5.13.2 THE LOAD COMMAND FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as

a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges P-7, 1P-13 hex, and 1C-FF hex. These ranges cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD “"[unit:] <filename>" <start addr.>

The start address parameter is mandatory. If a start address is not specified
a SYNTAX ERROR message will be displayed. If the start address is less than

- 2B@@ HEX a LOAD ADDRESS ERROR will result. This prevents accidental destruc-
tion of the operating system.

4-8.1

Rev. 8 9/78

Data is loaded starting at the specified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiquously. Only the
number of data bytes in each record are Toaded, The LOAD command does not
pad records of less than 256 bytes. If a file were loaded at location
3099 and the first record had only 4 data bytes in it, then the first data
byte from the next record would be loaded at location 39%4. Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4} has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves {writes) a new file to a diskette from a block

of memory. The file is written sequentially from the memory start

address through the memory end address into full seguential records. If
no unit number is specified, the file is written to unit B. If a file

type is not specified the file type will be zero. If an execution address
is not specified, the execution address of the file will be set to the
start address of the memory block. Note that the type and execution
address- parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "1:NEWFILE" 2Bf@ 3700 0 3p@9

A file is created on the diskette in drive one with the name NEWFILE
~and the memory block from 2BP@ to 37P@ is written to that file. The file
is given a type of @ and the execution address saved with the file is
3p0¢. If no execution address had been specified then 28pg would be
saved as the execution address.

4.1.5.15 THE RENAME COMMAND

RENAME "[unit:]<filename>" "<new name>"

The RENAME command changes the name of a diskette file to a specified

new name. If no unit number is specified, the file to be renamed 1is
expected to be found on unit @. Example:

>RENAME "1:0LDFILE" “NEWFILE"

The file named OLDFILE on the diskette in drive one is changed to NEWFILE

on the diskette in drive one. The file type is unchanged by the renaming
process.

4-3.2

Rev. 8 9/78

4.1.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1:PROGRAMX" 15

The type of the file PROGRAMX on disk drive one is changed to a value
of 156,

4.1.5.17 THE APP COMMAND

APP ["<ASCII>" "<ASCII>"..."<ASCII>"] [<hex> <hex>...<hex>]

The APP command transfers program control from the MDOS executive to

the start of the MDOS applications area at 2B@P hex. It expects a valid
executable pragram to be in the applications area with its entry point

at the beginning. Up to four ASCII parameters and four hex parameters

can be passed to the program. For exampie, if you are doing several
assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.

After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1:SQURCE" "OBJECT" "P"

[f the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembler
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated listing
on the print device.

The APP command functions 1like the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.1.5.18 THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to Togical
output streams and the values for carriage width and nullcount of the
referenced physical device. The physical device number must be 1 or 2.
The logical stream mask must be a #,1,2, or 3. The device width and
nuflcount must be numeric values in the range 1 to FF hex. The width
and nullcount parameters are optional. If width or nullcount are not .
included, the values corresponding to the referenced physical device

4-9

Rev, 10 4/79

are not changed. If only the device width is included, then the
nullcount is left unchanged. However, if a nulTcount is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width. : - S

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists of all
output generated by LISTP and PRINTP commands in the 1ine editor, and
by all 1istings in the assembier. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is confiqured as the system console (see
Section 2.2.4.1 on terminal configuration). Physical device number two
represents the hard copy print device which is configured as the system
printer {see Section 2.2.4.3).

The output of a Togical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous
assignment of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing: :

>ASSIGN 1 1
>ASSIGN 2 2

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is longer than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The

width c¢an be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currently
assigned to stream one with a width of 8@ characters (decimal), it could
be changed to a width of 72 characters {decimal) as follows:

>ASSIGN T 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character
serial devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

4-10

Rev. 7 3/78

output nulls {ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and

no nulls {nulicount=1), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 &

132 decimal is 84, and 6 will result in f1ve nulls being output after a
carriage return.

Because the MDOS executive language has been designed to be 1nteractive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. If expects a valid program to begin at that address.
The address of the operating systems warm start entry point is PUSHed
onto the 8P8B's hardware stack by the EXEC command. Therefore, if the
executed program does not set its own stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers., It displays the sum, difference, product, quotient, and modulus.
Exampie:

>MATH 4 5
#p@S FFFF 0014 PRAR 2994

The results are displayed from left to right: 4+5=9 ; 4-5=FFFF ; 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4.1.5.21 PROMPT "<ASCII>"

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-1

Rev. 8 9/78

not allowed. The prompt is initially > when the system is configured.
Example:

>PROMPT '"%"

ek

The prompt is changed from > to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector

to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of

a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE YOU SURE?. It waits
for a 'Y' or 'N' response to indicate yes or no. An 'N' cancels the
command without doing any damage. Example:

INIT 1
ARE YOU SURE?

The diskette on drive one will be initialized if a 'Y' is typed. A1l

other replys will result in the command being canceled. Control returns
to the executive.

Rev. 7 3/78

4.2 MDOS DISK FILE I/0

MDOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track

P of each diskette contains a directory of the files on that diskette.

Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track P also contains a track map
index that lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly)} by record or byte within record.

4,2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOD I subsystems and 77 on

MOD II subsystems}, except the directory track @. When MDOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment. '

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MDOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference through
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from @ to 1§ ASCII characters in the code range
20K to 7EH except for 22H which is the double quote and 5FH and 7FH
which are interpreted as backspace requests by the Togical console
input routines.

A unit number may be prefixed to the filename by typing the unit number
followed by a colon {:) followed by the filename. This indicates the

disk drive unit on which the file is to be found. If no unit is specified,
unit § is assumed. The digit of the unit specification and the colon

are not included in the 1@ character length restriction for ASCII para-
meters. For example, DATAFILE@T and 1:DATAFILE@1 are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not

start with a blank. It may have no imbeded blanks and it may not exist
in the MDOS explicit command table.

4-13
Rev, 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 1@ characters long and use the ASCII
characters from 2D hex through 5A hex except the colon {3A hex). This
should be kept in mind when creating file names for MDOS. The BASIC
file names are a subset of the MDOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MDOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MDOS also allows files to be classified
as to unique information content by assigning a type designation. A files'
access codes and type designation are combined in one byte of the files®
directory entry.. The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT

18

po A normal read/write file
g1 A normal read only file

18 A permanent read/write file
11 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary.

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes § through 7F hex are reserved for present and future system usage

and should not be assigned other meanings by the user. The codes from 8@
to FF hex are available to the user and are not used by the system.

4-14

Rev. 8 9/78

The executive, the assembler, and the editor check file types when called
upon to toad, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE DESCRIPTION

INMEX_ .

Pp-p3 MDOS & BASIC DATA FILES

p4-p7 EDITOR/ASSEMBLER SOURCE FILES
p8-g8 ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
pc-pF EXECUTABLE OVERLAY FILES
19-13 BASIC PROGRAM FILES

14-17 EXECUTABLE SYSTEM FILES

18-18B EXECUTABLE USER FILES

1C-7F RESERVED FOR FUTURE EXPANSION
80-FF AVAILABLE FOR UBSER DEFINITION

The Tine editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 files.

Executable system files and user files may be loaded with the load command.
Any attempt to load a file below the application program area will result

in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an executable file
will result in the message WRONG FILE TYPE.

It is not possible to Toad an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump tc the MDOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functional MDOS code.

4.2.4 FILE AND RECORD STRUCTURE

An MDOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track B of the diskette.

Each record of an MDOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of

@ to 256 data bytes. The memory address tells MDOS where in memory to load
the data from that record. The length indicator tells MDOS how many valid
data bytes are in the record. A record needs a minimum block of &4 bytes
and a maximum bTock of 268 bytes to be properly stored.

The records of a MDOS file are stored on the sectors of a diskette, one

for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 26@ bytes are available

for a record. Short records, including @ length (empty} records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any

time by rewriting the sector to make use of the unused bytes.

4-15

Rav. G 1/79

The object program file that corresponds to the following assembly
language program serves to illustrate the MDOS file and record structure.

ADDR Bl B2 B3 E LINE# LABEL 0PCODE OPERAND
popP 1989 START ORG AppPH
apgp 21 PP 70 2000 LXI H, 70@PH
4993 3pP@ DATA DS 10H
4913 pp apPp BYTE DB ¢

ap14 5EPP DATAT DS 19H
agea 91 6000 BYTE DB]

4925 €3 25 49 7809 BEGIN JMP $

ap28 8899 END BEGIN

The first record of the object file has 4p@@ hex in the memory address
bytes in Intel low/high format. The record length bytes contain 2803,
indicating that the record has only three bytes of data. The three data
bytes are 21 @@ 78. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4813 and a
length of 9981, one byte of data P@. This record is also stored on the
disk as one sector. The third record has a memory address of 4024 and a
length of §@P4, four bytes of data @1 C3 25 4@. This record is stored
oh the disk as one sector. A fourth record is written that has a memory
address 4825 and a length of 288@8. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement,

The structure of this object file is standard for all MDOS executable

or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file

execution address. Given an executable file type, the records of this file
could be loaded into memory at 4990, 4813 and 424 by typing its name to
the executive. Direct processor control would transfer to 4925 to begin
program execution. This type of file is called a scatter loadable file
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.

Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record

is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly (randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

4-16

Revy. 8 g9/78

untit a full 256 byte record is constructed and then writes it to the

next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner

may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may

also be read sequentially a record at a time by starting at the first record,
reading the record Tength and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file,

4.2.6 COMPATIBILITY BETWEEN MDOS AND BASIC FILES

BASIC file names are a subset of MDOS file names. Therefore all BASIC files
can be handied by the MDOS file name parsing logic, but not all MDOS file
name can be handied by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 258 bytes of data. The
file and record structure is the same as that used by MDOS as discussed

in Section 4.2.4. The two bytes at the start of the record which hold the
length of the record can never be greater than 250 if the file is to be
used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 25@. MDOS can create BASIC readable files as follows:

1860 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE

2000 START MY 1 E,25@

3999 GET CALL GETPATE

3500 JC EXIT ;CLOSE FILE & EXIT
4000 CALL BWTINXPOSI

5000 DCR £

6030 INZ GET

7909 CALL @INCRECPOS

3Pp0 - JMP START

This partial program illustrates a method for writing 25@ byte records.

For these records to be meaningfull to BASIC, the data must be seven bit

ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC)}. The subroutine GETDATE is the users data acquisi-
tion routine which returns the carry flag set when the process is done.
OWTINXPOSI and ®INCRECPOS are MDOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17

4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character 1/0, buffered
Tine I/0, text Tine parameter parsing, seguential and random file access,
file management, physical diskette access, and 16 bit integer arithmetic.
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQ1 and SYSQZ2. These are editor compatible source
files that contain the names of all of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQ1 and SYSQZ files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.5.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

§.3.1 CONSOLE AND PRINTER INPUT/QUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines Tink the system with
the device handlers described in Chapter Il under confiquring for
supported devices. _

The device handler routines start with a vector table whose address is

@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables

using RCONSOLEADDR, and GLISTADDR which are buffers that hoid pointers

to the actual location of GCIOTABLE and @®LIOTABLE. By changing the two
bytes at locations GCONSOLEADDR or BLISTADDR the user can have special

purpose drivers jn memory at the same time as the standard drivers.

4.3.1.1 RCIN - CONSOLE INPUT

The @CIN routine waits for input from the system console. It strips
parity and changes ASCII codes 5F (backarrow) and 7F {rubout) into @8
(backspace). It returns the input character {7 bit ASCII)} in the B
register, with the carry flag clear (NC)}. It preserves the HL, DE,
and C registers. _

4.3.1.2 @COUT - CONSOLE CUTPUT

The @COUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code @8 hex (backspace} into a 5F {backarrow).

If the wrap logic for the device assi%ned to the console stream is enabled
a 1ine feed and a carriage return nulls sequence will be output when the

4-18

Rev. 8 9/78

number of characters on the line equals the width. Refer to the ASSIGN
command in the MDOS executive. It expects the character {7 bit ASCII)
in the B register. It returns the carry flag set {(C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 BCBRK - CONSOLE CHECK BREAK

The ®CBRK routine checks the console device for the input of a cancel
(control C), or a pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (43} is
input. It preserves the HL, DE, and C registers. On pause {control S}
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 GCDIN - CONSOLE DEVICE INPUT

The GCDIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear {NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT

The @CDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
%t preserves the DE, HL, and BC registers. It returns the carry flag clear
NC).

4.3.1.6 GCDBRK - CONSOLE DEVICE BREAK CHECK

The GCDBRK routine checks the console input ready status. If an input

is ready it gets the input. Otherwise it returns immediately. It retyrns
the zero flag set {Z) and the input character (8 bits including parity

in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the GCDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 QACHINIT - CONSOLE DEVICE INITIALIZATION

The BCDINIT routine initializes the console interface device. It preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OYTPUT

The @LOUT routine waits until the list stream is ready to receive and

then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the list stream. It changes ASCI] code 98 hex (backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the list stream
is enabled a 1ine feed and a carriage return nulls sequence will be output

4-19

RPaw A G/7R

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MDOS executive. It expects the character

{7 bit ASCII} in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
11, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive.
It preserves the HL, DE, and BC registers.

4.3.1.9 BLATN - LIST ATTENTION

The BLATN routine checks the 1ist stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MDOS executive. It preserves the HL, DE, and BC registers.

4.3.1.10 ®LDOUT - LIST DEVICE QUTPUT

The ALDOUT routine waits until the 1ist device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag

set (C) if a printer attention occurs.

4.3.1.71 OLDATN - LIST DEVICE ATTENTION

The BLDATN routine checks the 1ist device for a printer attention condition.
It returns the carry flag set (C)} if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION

The QLDINIT routine initializes the Tist device. It preserves the HL, DE,
and BC registers. It returns the carry flag clear {NC).

4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN

The BCCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,
DE, and BC registers. '

4.3.1.14 @LCRLF - LIST LINE FEED CARRIAGE RETURN

The BLCRLF routine outputs a line feed carriage return and nulls to the

1ist output stream. It returns the carry flag set (C)} if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MDOS executive. It preserves the HL,

DE, and BC registers.

4.3.1.15 RASSIGN - ASSIGN

~The @ASSIGN routine assigns the physical device to specified Togical stream(s}
and sets the width and nullcount associated with the device. It expects the
physical device number in the E register, the logical stream mask in the D

4-20

Rev. 7 3/78

register, the width in the C register, the nulicount (nulls+1} in the B
register, and the number of parameters passed in the H register. No
registers are preserved. ({Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams).

4.3.1.16 @CILINE - CONSOLE INPUT LINE

The @CILINE routine outputs a specified prompt message to the console

and then buffers up to 132 characters of input text from the consoie
device. It provides the standard backspace (rubout) and line cancel
{CNTL/X) controls during the 1ine entry process. The text 1ine input is
terminated by a carriage return. ({Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of @ through 1F hex or the high order eight

bit of the last byte set. It returns the input line in RINBUFF, and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control char-
acters input during the line entry process are echoed to the console stream
but not entered into @INBUFF.

4.3.1.17 BHEXOUT - HEXADECIMAL QUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3.1.18 @HEXADDOUT - HEXADECIMAL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the

HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGM command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 GHEXQUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The QHEXOUTSPC routine converts an unsigned 8 bit binary value in the
A register 1to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDQS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 ESPACEOUT - SPACE QUTPUT

The BSPACEQOUT routine outputs a space (2§ hex} to the console stream.

It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command in the MDOS executive. It preserves the HL, DE, and

C registers. _

4-21

Rev. 9 1/79

4.3.1.21 @NLINEOUT - NEW LINE QUTPUT

The BNLINEQUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text line in the HL registers. The message pointed to must be properly
terminated with a byte code in the range @ through 1F hex or the high

order eighth bit of the last byte set. It returns the carry flag

clear (NC) in all cases. It preserves the HL, DE, and C registers.

4.3.1.22 BLINEOUT - LINE QUTPUT

The @LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text Tine in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range @ through 1F hex or the high order eighth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves

the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines

for the MDOS executive. After the command has been entered into the input
buffer using BCILINE, the QSCAN routine is used to locate the first space
after the command, and @SKIPSPACE skips to the first non-space character.

Then the QPARAM routine separates the command parameters into buffers according
to their type. G@PARAM makes use of Q@SCAN, MSKIPSPACE, and GAHEXTBIN to do

its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into ®MASKADDR and the @SEAR routine
searches the MDOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and B8LHLI will get the function
from the table, which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve

the parameters from the appropriate buffers with LHLD instructions.

The user can use these routines to parse applications program input lines
using similar logic.

4.3.2.1 GPARAM - PARAMETER

The BPARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.
It expects the start address of the text to be parsed in the HL registers.
It returns ASCII parameters in GASCBUFF@ through RASCBUFF3.

It returns unit numbers in @DRIVENE through GDRIVENS3.

4-22
Rev. 8 9/78

It returns binary (numeric)} parameters in GBBUFFR through @BBUFF3.
It returns the number of ASCII parameters in BNASCPAR.

It returns the number of unit number parameters in @NDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set {C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 BSKIPSPACE - SKIP SPACES -

The BSKIPSPACE routine skips spaces in a text line.

It expects the text Jine's start ﬁddress in the HL register.

It returns the address in the HL registers of the first non-space character.
If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 OSCAN - SCAN

The BSCAN routine scans a text 1ine for the first occurrence of a specified
character,

It expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 ASEAR - SEARCH

The BSEAR routine searches a table of argument-function pairs and returns

the address of the function associated with the argument. The Tast character
of the argument has the most significant bit set high. For example, an

ASCII A is 41 hex. If the most significant bit is set high it is a C1 hex.

4-23

Rev. 7 3/78

The argument is immediately followed by its function. The arguments can be
variable length but the functions must all be the same length. The end of
the table is marked by a @ following the last function.

It expects the table's start address in the HL register and the argument
masks' starting address in GMASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size (number of bytes) of the functions in the table.

It returns the zero f1ag clear {NZ} and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, je. the address of
the @ after the Tast function.

It preserves the DE and BC registers.

4.3.2.5 BAHEXTBIN - ASCIT HEX TO BINARY

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in Tength. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B regisier.

It returns the DE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits Tong or not a hex value, the
routine returns the carry flag clear (NC) and the illegal character $
address in the DE registers.

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MDOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number

and a filebuffer. MDOS supports simultaneously open files numbered from
P through 7. It makes available two resident filebuffers. Additional
filebuffers must be aliocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

4-24

Rev. 7 3/78

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current record will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag.

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. 1Its value may vary from

P to 256. A @ length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current racord is a logical pointer that marks

the next byte in the record to be accessed. The value of the index position
ranges from @ to 255. However, the index position may never be greater than
- the Tength in a particular record. An index position of § indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last

byte in a full record.

- If the index position in the current record is less than the current record
length, then it points to a valid byte position within the record. That

byte may be read or rewritten. If the index position is equal to the current
record length, then it points to the end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position

may be written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to @ and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

[f the end of record position is written to, the length of the current

record is increased by one and the position just written becomes a valid

byte position. This allows data to be added to the end of a record extending
it up to its maximum Tength of 256 bytes. Note, however, that incrementing
the index position when it already has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to @.

A new file may be written sequentially by byte by repeatedly writing to

the index position and incrementing the index position. This will produce
a file of full records with the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position number may be
set or incremented. Setting the record position updates the current
record to disk as necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequent1a11y write a file of short/mixed length
records,

When processing of a file is complete, the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 RCREATE - CREATE

The @CREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty
(@ Tength) record written to it. It is left open and ready for access
with the index position set to # and the empty record as the current

- record.

It expects the file number in the B register and the disk unit number in the
€ register and the filename in GASCIIBUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the HL, DE,Iand BC registers.
4.3.3.2 @GFILESTAT ~ GET FILE STATUS

The OGFILESTAT routine checks the open/closed status of a file.
It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
"FILE NOT OPEN" message code in the A register.

It presefves the HL, DE, and BC registers.

If the routine detects an error it returns the carry fTag set (C) and
the error message code in the A register.

4-26

Rev. 8 g/78

4.3.3.3 GDIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the C register and the file name in
G®ASCIIBUFF.

It returns the zero flag clear (NZ) and the “FILE NOT FOUND" message
code in the A register if the file is not in the directory.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.4 GOPENFILE - OPEN A FILE

The @OPENFILE routine opens a file for processing. It aséigns a specified
logical file number and filebuffer to the file.

It expects the file name in GASCIIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.5 QRCLOSEFILE ~ CLOSE A FILE

The @CLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation,

It expects the file number in the B register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.3.6 @RFILEINF - READ FILE INFORMATION

The GRFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file plus one in the DE registers.

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set. (C) and
the error message code in the A register.

4.3.3.7 BSINXTRS - SET INDEX POSITION TO RECORD START

The BSINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set to 8.

It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.8 GRRECORDLEN - READ RECORD LENGTH

The ®RRECORDLEN routine gets the length of the current record in a file.
It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry flag set (L} and
the error message code in the A register.

4.3.3.9 GRINXPOS - READ INDEX POSITION

The BRINXPOS routine gets the index pos1t1on of the current record of a
file.

It expects the file number in the B register.
It returns the index position in the C_register.
It preserves the HL, DE, B registers.

1f the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4-28

Rev. 10 4/79

4.3.3.1P @SINXPOS - SET INDEX POSITION

The @SINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index position in
the C register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.11 @INCINX - INCREMENT INDEX POSITION

The @INCINX routine increments the index position in the current record
of a file. If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to 8.

It expects the file number in the B register.

It returns the zero flag set (Z) if the index position is in the same
record. :

It returns the zero flag clear {NZ) if the index position is in a new
record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.3.12 RRFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pointed to by the index position
in the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is

set to @ and the data is read from this position.

It expects the file number in thé B register.

It returns the data in the C register.

It returns the zero flag set (Z) if the data is from the same record.

It returns the zero flag clear (NZ) if the data is from a new record.

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-29

Rev. 7 3/78

4.3.3.13 GRFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The BRFINXPOSI routine reads the data byte pointed to by the index position in
the current record of a file and then increments the index position. If the
original index position is at the EOR position, the current record is updated
to disk as necessary and the next record of the file becomes the current

record. The index position is set to @ and the data is read from that position.
Then the increment takes place. If the increment would result in a value
greater than the current record length, the current record is updated to disk
as necessary and the next record from the file becomes the current record. The
index position is set to @ in that case. '

It expects the file number in B.

It returns the data in the C register.

It returns. the zero flag set {Z) if the data is from the same record.
It returns the zero flag cTear'(NZ) if the data is from a new record.
it preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A reqgister,

4.3.3.14 GWTINXPOS - WRITE TO INDEX POSITION

The GWTINXPOS routine writes to the index position in the current record

of a file. If the index position is the EOR position the record length

is extended by one.

It expects the data in the C register, and the filenumber in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.15 GWTINXPOSI - WRITE TO INDEX POSITION AND INCREMENT INDEX

The AUTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the EOR
position the current record length is extended by one. If the increment
would result in an index greater than 255, then the current record is up-
dated to disk as necessary and the next record in the file becomes the
current record. The index position is set to @ in this case.

1t expects the data in the C register, and the filenumber in the B register.

It returns the zero flag set (Z) if the index position remains on the same
record as before the write.

4-30

Rev. 9 1/79

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

It preserves the HL, DE, BC reaisters.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.16 GLOADDATA - LOAD DATA

The GLOADDATA routine loads a block of data into memory starting from the
index position in the current record and continuing for a specified number
of bytes. It advances the index position 1ike a repeated sequence of reads
and increments.

It expects the file number in the B register.
It expects the start address of the memory block in the HL registers.
It expects the block size in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to QLOADDATA the buffer GMEMORYPNTR contains the address of the
memory byte immediately after the last memory byte loaded. For example, if
5 bytes are loaded into 4P@@H through 4PP4H, then BMEMORYPNTR contains the
address 4P@A5H in standard low-high format. This is useful in cases where
the number of bytes loaded is less than the number of bytes requested
because an end of file is encountered during the BLOADDATA.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.17 B@SAVEDATA - SAVE DATA

The ASAVEDATA routine writes a block of memory to a file starting at the
index position of the current record and continuing for a specified number
of bytes. It advances the index position 1ike a repeated sequence of writes
and increments. :

It expects the file number in the B register.

It expects the start address of the memory block in the HL registers.

It expects the number of bytes in the memory block in the DE registers,

4-31

Rev. 9 1/79

It returns the zero flag set (Z)} if the index position remains on the same
record as before the write.

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

After a call to ®SAVEDATA the buffer ®MEMORYPNTR contains the address of the
memory byte immediately after the Tast memory byte saved. For example, if

5 bytes are saved from 4P@PH to 4@AP4H then AMEMORYPNTR contains 4985H in
standard low-high format. This is useful in cases where a DISK FULL condition
causes less bytes to be saved than are requested in the call to @SAVEDATA.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.18 GDFINXPOSTEOR - DELETE FROM INDEX POSITION TQ END OF RECORD

The @DFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record length equal to the value of the
index position. '

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3%.1

Rev, 9 1/79

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The RDFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
pasition number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation

to other files.

It expects the file number in the B register.
It preserves the HL, DE, BC registers.

If the routine detects an error it veturns the carry flag set (C) and
the error message code in the A register.

4.3.3.20 @RINCRECPOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary,
reads in the next record which becomes the current record and sets the
index position to @. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary

on occasion to perform housekeeping functions such as removing old files,

- changing file types and names, and determining the amount of space left
on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly

by applications programs.

4.3.4.1 BFREE - FREE

The @FREE routine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.
It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.2 GRENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32
Rev. 7 3/78

It expects the file number in the B register.
It expects the new name in QASCIIBUFF.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C} and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type {attributes) of a file. See Section
4.2.3 for type definitions.

1t expects the file number in the B register.
It expects the new file type in the C register.
It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.4.4 BSCRATCH - SCRATCH A FILE

The RSCRATCH routine deletes a specified file from a specified disk unit.
It expects the unit number in the C register.

It expects the file name in ®ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MDOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MDOS file
system and provide access to a specified logical block on a specified
track of a diskette.

Micropolis MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD IT subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered @ through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from @ through 15.

4-33

Rev. 7 3/78

Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system. '

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 12345 6 7 8 9101112131415 16
PHYSICAL SECTORS p 2468191214 1 3 5 7 9111315

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
If it is necessary to access the sectors of a track in true physically
sequential order, the application program must use the table above to
unmap the sectors. For example, to access sector @ followed by sector 1
the program would have to specify 1og1ca1 block 1 followed by logical
block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access rout1nes are used
to operate on such records.

4.3.5.1 GGETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set {C)} and
the error message code in the A register.

4.3.5.2 QPUTASEC - PUT A SECTOR

The @PUTASEC routine puts {writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This

is called a preread. It requires that the preread sector be readable.

Tt expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

4-34

Rev. 7 3/78

It expects the address in the HL register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.5.3 GWRITESECTOR - WRITE A SECTOR

The BWRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number 1n'the C register.

It expects the track number in the D register and the logical block
number in the E register.

It expects the address in the HL reg1sters of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.5.4 @VERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register,

If the routine detects an error it returns the carry flag set (C} and
the error message code in the A register.

4.3.5.5 @SEEKTRACK - SEEK TO A TRACK

The BSEEKTRACK routine moves the read/wrxte head to a specified track on
a specified disk unit.

It expects the unit number in the C register.
It expects the track number in the D register.

If the routine detects an error it returns the carry flag set {C) and
the error message code in the A register.

4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

The @®RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35
Rev. 7 3/78

It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8@8@ to
provide for some commonly required operat1ons

When parentheses enclose an item in the following subsections, th15
indicates the contents of the memory Tocation specified by the value
within the parentheses. For example, HL=(HL) means that the HL register
pair is replaced with the bytes at the address in HL and HL+1. I[If the
HL registers contain the address 4PPP@ hex, and at location 4@P@ there is
a P1, and at location 4@@T there is a @2, then the HL register would be
replaced by #2071 hex. The low byte goes into-L and the high byte into H.

4.3.6.1 @HLADDA - ADD A TO HL

The GHLADDA routine adds the unsigned 8 bit value in the A register to
the unsigned 16 bit value in the HL registers.

It expects a value in the HL, and the A registers.
It returns HL=HL+A,
It preserves the DE and BC registers.

4.3.6.2 @INXM - INCREMENT MEMORY

The ®INXM routine increments a memory pair pointed to by the HL registers.
It is similar to an INR M instruction but it operates on a byte pair

(16 bits) in memory.

1t expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 GLHLINDEXED ~ LOAD HL INDIRECT IMDEXED

The GLHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.
It returns HL=(HL+2*A).

It preserves the DE and BC registers.

4-36

Rev. 8 9/78

4.3.6.4 GLHLT - LOAD HL INDIRECT

The GLHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers.
It returns HL = (HL).
It preserves the BC and DE registers.

4.3.6.5 GTRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The @TRANSDHC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end. '

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the C register.

It returns (HML+@...+C) = (DE+D...+C).

It preserves the B register.

4.3.6.6 BTRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF BC

The BTRANSDHBC routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the start of each block and works to
the end.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+P...+BC) = (DE+D...+BC).

4.3.6.7 GTRANSDHBCR - TRANSFER FROM DE 10 HL FOR A COUNT OF BC REVERSE

The @TRANSDHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC regqgisters.

It returns (HL+BC....+@) = (DE+BC....+p).

437

Rev. 7 3/78

4.3.6.8 BTRANSFILENAME - TRANSFER A FILENAME

The BTRANSFILENAME routine copies a.filename from one of the ASCII
buffers (BASCBUFF® through @ASCBUFF3) to the BASCIIBUFF.

It expects the @ASCBUFF number (ie. P to 3) in the C register.
It preserves the HL, DE, and BC registers.
4.3.6.9 @FILLZER - FILL ZEROES

The ®FILLZER routine fills a block of memory up to 256 bytes in Tength
with zeros.

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.10@FILLSPC - FILL SPACES

The @FILLSPC routine fills a b]ock of memory up to 256 bytes in length
with spaces {hex 2§).

It expects the start address of the memory block in the HL registers
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 @FILLA = FILL FROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

it expects the start address of the memory block in the HL reg1sters,
the number of bytes to fill in the B register, and a fill value in the
A register.

It preserves the DE and C registers.

4.3.6.12 ®COMPARE - COMPARE HL TO DE

The RCOMPARE routine compares the value in the HL reg1sters to the
value in the DE registers.

It expects a value in the DE register and the value to compare it to in
the HL register. The forms are Tike an 8@8@¢ CMP B instruction where DE
is analogous to the A register and HL is analogous to the B register.

4-38

Rev. 7 3/78

It returns the following sense:

DE = HL zero flag set (Z), carry flag clear (NC)
DE > HL zero flag clear (NZ}, carry flag clear (NC)
DE < HL zero flag clear {NZ), carry flag set (C}
DE >=Hl. zero flag any state, carry flag clear (NC)

It preserves the HL, DE, and BC registers.
4.3.7 EXTENDED 8p8p INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 80989 to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division {quotient,
and modulus),

The resuit of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of GDEDIVHL and
@DEMODHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 RDEADDHL - BC=DE+HL

The @DEADDHL routine perfarms 16 bit unsigned integer addition.
It expects the addend in the DE register and the augend in the HL registers.

It vreturns the sum in the BC registers and the”carry clear {NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HI|

The GDESUBHL routine performs 16 bit unsigned integer subtraction us1ng
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 GDEMULHL - BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.
It expects the muitiplicand in the DE registers and the multiplier in the
HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers and the carry clear (NC} unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.4 GDEDIVHL - BC=DE/HL

The BDEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers,
It returns the integer quotient in the BC registers.

It preserves the.HL and DE registers.

4.3.7.5 @DEMODHL - BC=DEZHL

The @®DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus {remainder) of the operation.

It expects the dividend in the DE registers and the divisor in the HL registers.
It returns the remainder of the division in the BC registers.
It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of GDEMODHL.

4.3.8 MESSAGE QUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.

Some of the routines access the system messages while others allow the user

to set up a table of applications messages. The system messages are described
in Section 4.8.

4.3.8.1 GDISKERROR - DISK ERROR MESSAGES _

The BDISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MDOS executive which resets
the 8@8f stack to the MDOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4}) when they return
a carry set {C) condition and an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

4-40

Rev. 7 3/78

4,3.8.2 RCLOSEFILES - CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.

It always returns the carry flag clear {NC}.

It preserves the HL, DE and BC registers.

4.3.8.3 GERRORMES - ERROR MESSAGES

The @ERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.
1t preserves the C register.

4.3.8.4 GMESSAGEOUT - MESSAGE OUTPUT

The @MESSAGEOUT routine is a generalized message~table output routine.

The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with

a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth

hit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. €1 hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in the table. je., B is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of @CIOTABLE

GLISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table
BLIOTABLE - Start address of the 1ist input/output vector table
@PCON - Start address of physita] console driver routines

@PLIST - Start address of physical list driver routines

4-41
Rev. 8 9/78

@WARMSTART - Warm start entry point; initializes console and 1ist devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. OQutputs the current MDOS

executive prompt and initializes the MDOS stack. This entry does not output
the signon message.

@FILEBUFFERP and GFILEBUFFER1 - @FILEBUFFER® and RFILEBUFFER1 are 288 byte
buffers used by the system for file access. They may be used as applications
program file buffers. See the section on FILE ACCESS ROUTINES.

@APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. Al] file types except overlay
(@C-PF hex) must have load addresses greater than or equal to BAPROGRAM or

a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the QSEAR routine. @MASKADDR points
to the address of the mask string.

@MDOSRETURN - Applications programs that have not changed the I/0 initializa-
tion return to this entry point instead of ®WARMSTART. GMDOSRETURN outputs

the MDOS signon message and initializes the MDOS stack but does not reinitialize
the 1/0 handlers.

The following buffers are used by the GPARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.
@NDRVPAR @NASCPAR @NBINPAR
2) Ten byte buffers which holds ASCII parameters.

@ASCBUFF® @ASCBUFF]
@ASCBUFF2 BASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@ORIVEND @DRIVENT
BORIVEN2 GDRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFFQ ®BBUFF1
@BBUFF2 @BBUFF3

®ASCIIBUFF - RASCIIBUFF is a ten byte buffer which holds filenames for
the GCREATE, @RENAME, @SCRATCH, and @GTRANSFILENAME routines.

@INBUFF - G@INBUFF is the system input buffer. It is 132 bytes long.

4-42
Rev. 9 1/79

4.4 1L INEEDIT - THE MDOS LINE EDITOR

LINEEDIT is an MDOS application program which provides assistance in
creating and maintaining assembly Tanguage source program files that
are compatible with the MDOS 8988/8@85 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD "LINEEDIT" followed by the command
APP. It signs on with the message MDOS LINE EDITOR VS, X.X.

The user interacts with LINEEDIT through the system console. Lines
entered at the keyboard may be text 1ines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting Tines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists

of not more than 132 characters typed in sequence. The entry of a line

is terminated by pressing the RETURN key. During the entry of a line

each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text 1ine are ASCII
characters in the code range 2@H to 7EH with the exception of the backarrow
(5FH}. LINEEDIT also uses the MDOS console output system to keep track

of the character count as a 1ine is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.
1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed

to the terminal display for each character deleted. WNeither the
deleted characters nor the backarrow are incliuded in the line count.

4-43

Rev. 7 3/78

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
positioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading Tine number. Each line number must be in the range @ to 999%. A
text file is entered one 1ine at a time using the normal line entry
procedure. As each line is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by 1ine number. The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in the new line
including the line number. [INEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing Tine in the current text file enter the line number
and the new text. The new line will automatically replace the old line
that has the same Tine number in the current text file.

To delete one existing program line in the current text file type the
1ine number and press the return key. The corresponding Tine will be
eliminated from the current text file. Note that multiple lines may also
be eTiminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic 1ine numbering feature. Prior to typing the first character
of a new line, you can cause the 'next’' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' 1ine number.

4.4.3 ENTERING LINEEDIT COMMANDS

Whenever a line is typed which does not begin with a line number,
LINEEDIT attempts to interpret this 1ine as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed. LINEEDIT commands are single words or abbreviations
followed by parameters if required. A1l LINEEDIT commands are uppercase
only. If the command requires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

4-44

Rev. 7 3/78

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the contents of the current text file has
not been stored on disk since it was Tast altered. When the message appears
the current text file is not yet lost. To override this warning type Y

and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed. '

4.4.5 THE NAME COMMAND

The current text file in the edit buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory. When the
NAME command s executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of
the current text file in memory. A text file may be keyed into the edit
buffer before it is named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address 1imits in memory can

be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
current text file will be displayed, followed by two hex numbers which are
the starting and ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic Tine numbering facility adds a fixed increment to
the last entered line number in order to compute the 'next’' automatic
1ine number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing
an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT '"message" is the general
form of this command. The message may be from 1 to 1@ characters in
length and include any characters valid in a text l1ine. It must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be restored to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
comnand. The double quotes must be used as shown. The filename must be
a valid MDOS filename. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3 followed by a colon (:).
It designates the disk unit on which the specified file is to be found
If no unit number is specified, unit @ is assumed.

When a text file is successfully ioaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current
text file is not yet Tost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type N and
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER OVERFLOW.
See Appendix D for an explanation of this condition.

4.4.10 THE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MDOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from P to 3 followed by a colon {:). It designates the disk unit

on which the specified file 1s to be found. If no unit number is specified,
unit @ is assumed.

4-46

Rev. 7 3/78

When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by Tine number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.11 THE SAVE COMMAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command

is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from @ to 3. It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit @ is assumed.

The name of the current text file in the edit buffer is used to create

an entry in the directory of the specified disk and the text file is
stored on the disk under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn't conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from @ to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number i3 specified, unit @ is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file

type.
4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to

the system console by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST Tinenumberl Tinenumber2. The display
will begin with 1inenumberl or the next highest and continue through
Tinenumber2 or the next lowest. If linenumberl and linenumber? are the
same, only one line will be displayed. If Tinenumber2 is less than
linenumberl, nothing will be displayed. If 1inenumber2 is not supplied,
the display will begin with Tinenumberl or the next highest, and continue
through the Tast line currently in the current text file. If no 1ine
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text Tines that is
oriented to 8@8P assembly language source text. The format is defined

as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the
text Tine through the first space or colon {:) that occurs. The third
field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The operand consists of all characters following the opcode through the
next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon (;) following the space that terminates the operands
and continues to the end of the text line.

Refer to the TAB command to change the tab settings which determine the
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This,
effectively removes the tabulation effects which are designed for assembly
Tanguage source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP linenumberl, and LISTP Tinenumberl 1inenumberZ.

The LISTP command functions the same as the LIST command except that output
1s directed to the system printer instead of the system console.

4-48

Rev. 7 3/78

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT linenumberl, and PRINT T1inenumberl 1inenumber2.
The linenumber specifications in the PRINT command function the same as

in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the Tine numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly lanquage source

text is desired, it can be obtained by setting the tabs to 1 1 1 and using -
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of 1ines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP linenumberl, and PRINTP Tinenumberl
Tinenumber?. '

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB number]
numberZ number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins. :

The initial and default values of the TAB parameters are 15, 22, 36 decimal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possible or the value
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file

by using the DELT cowmmand. The forms of this command are DELT 1inenumberi,
and DELT Tinenumberl linenumberZ. Lines will be deleted from linenumber]

or the next highest that exists, through Tinenumber2 or the next lowest that
exists. If linenumber2 is less than linenumberl nothing will be deleted.

If they are equal only that line will be deleted. 1If only Tinenumberi is
specified then only that line will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

Rev. 8 9/78 4-49

4.4.19 THE RENUM COMMAND

A11 or part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the 1ine number of the first
1ine to change and sets it equal to the starting number. The 1ine number
of each Tine after the first line to change is then set to the value of
the preceding new 1ine number plus the increment value. If no first 1ine
to change is specified, the first line in the edit buffer is assumed. If
no increment value is specified, the value 1@ is used. If no starting
number is specified, the value @ is used. Typing RENUM alone will produce
a text file numbered from @ by 18's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH 1inenumberl, or SEARCH linenumberil
linenumber2. SEARCH without a Tinenumber specified will search the whole
buffer. SEARCH 1inenumberl will search from the Tine number specified

to the end of the buffer. SEARCH 1inenumberl linenumberZ will search the
buffer starting at the first 1ine specified through the second line
specified.

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK ?. A stiring of up to 132 legal text line characters can be
entered. The entry is terminated by pressing the return key. LIMEEDIT
searches through the 1ines in the current text file looking for the first
occurrence within each line of a substring that matches the specified search
mask. It examines every line except those Tines that begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly Tanguage source text. Refer to the SEARCHALL command to operate

on comment lines.

The SEARCH command also provides a universal match character capability.
Each gquestion mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I1 will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no lines in the current text file contain a match to the specified
search mask, the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.2]1 THE SEARCHALL COMMAND

A1l lines in the current text file that contain a specified string of
text, including those 1ines that begin with an asterisk (*} can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL linenumberl, or SEARCHALL
Tinenumberl linenumber2. SEARCHALL without a Tinenumber specified will
search the whole buffer. - SEARCHALL linenumberl will search from the line
number specified to the end of the buffer. SEARCHALL Tinenumberl linenumber?Z
will search the buffer starting at the first line specified through the
second 1ine specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with

an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in Tines of the current text

file can be replaced with a different string of same or different length

by using the CHANGE command. The forms of this command are CHANGE, CHANGE
linenumbert, or CHANGE 1inenumberl Tinenumber2. CHANGE without a 1inenumber
specified will change all lines in the buffer. CHANGE Tinenumberl will
change lines from the 1ine number specified to the end of the buffer. CHANGE
Tinenumberl Tinenumber2 will change lines in the buffer starting at the

first 1ine specified through the second line specified.

CHANGE operates on all lines within the specified range except 1ines starting
with an asterisk (*) or semicolon (;)}. These lines are considered comment
Tines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines. '

When the CHANGE command 1is entered, LINEEDIT will respond with the prompt
SEARCH MASK 7. A string of up to 132 legal text 1ine characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUMD will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO ?. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
locking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer length accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHANGE command also respects the universal match character capability
as described under the SEARCH command. 1If the search mask contains one or
more question marks (?) these characters positions will match any character
in the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST

1@ STELABEL1A

2@ SZBLABEL2A

3¢ BLABEL3

CHANGE

SEARCH MASK ? 57?@
CHANGE TO ? @
19 @LABELTA

2 GLABELZA

The change-to string may also contain question marks (?)}. This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST

19 TAGRIA

2P TAGOFF

30 TAG22A

CHANGE

SEARCH MASK 7 TAG??A
CHANGE TO ? LABEL?7B
19 LABELB1B

3% LABEL22B

Lines 18 and 3@ have been changed while Tine 2 is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 1¢ and 3@ have been changed. The #1 in line 19 and the
22 in 1ine 3@ have been retained.

4.4.23 THE CHANGEALL COMMAND

The first occurrences of a specified string in all Tines of the current
text file, including those Tines that begin with an asterisk (*), or
semicolon {;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL , CHANGEALL 1linenumbert, or CHANGEALL 1inenumberl linenumber?2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT COMMAND

The text within a specified 1ine in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT linenumber
is the form of this command. If the specified linenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT

processes an EDIT command by copying the specified 1ine into a special
editing buffer and displaying the 1ine number at the left margin of the
consote. An invisible edit pointer is set to point to the first character
in the text Tine after the space that terminates the line number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a Tine in the special edit buffer.

Rev. 8 9/78 4-52

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (\). The edit pointer is.left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - 1

Characters may be inserted into the 1ine or at the end of the Tine by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by

the edit pointer. C(haracters are inserted in sequence as typed until
the insert mode is terminated by typing an escape (1B hex). The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
1ine in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the 1line may be displayed by typing

an 1 or L. The characters are displayed on the console followed by

a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks 1ike before
editing is completed. 1t may also be useful to use this command immediately
after entering the original EDIT command. This would display the line

about to be edited without exiting the editing mode.

4-52.1

Rev. 9 1/79

4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing ans or S

followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character

are printed on the console. The edit pointer is left pointing at the
first occurrence of the searched for character. If the search argument
does not exist in the line then the entire 1ine is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character, The deleted
characters are displayed on the console, enclosed in backslashes {\).
If the search argument does not exist in the edit 1ine, then all the
“characters from the edit pointer to the end of the line are deleted.
The edit pointer is left po1nt1ng at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partially edited 1ine in the

special editing buffer is abandoned. No changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The 1ine in the special editing buffer can replace the Tine in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MBOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is

returned to the MDOS executive which signs on with the message MICROPOLIS
MDOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED,
PROCEED?. This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The DOS command will be processed. Otherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will-
be waiting for an alternate command.

4-53

Rev. 9 1/79

4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEDIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count -includes the count byte and the carriage
return at the end of the line. The count byte is foliowed by four bytes
that hold the digits of the Tine number in ASCII. The 1ine number can
range from @909 to 9999. At least one space {20 hex) follows the Tine
number. The remainder of the 1ine can contain from @ to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest Tine contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEDIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there is no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a @1 to mark the end of the file.

The current text file is written to a disk file just as it appears in

the edit buffer. A1l records in the disk file with the possible exception
of the last one are full records. A text line may span two records. ‘The
following logic could be used in an MDOS application program designed to
process an editor source file.

1909 START CALL @RFINXPOSI
2P0 DCR c

3p0p JiZ ENDOFFILE
4000 MVI 0,9

5000 MOV E,C

609P LXI H,BUFFER
7009 CALL @LOADDATA
8P2@ *PROCESS THE LINE IN THE BUFFER

Spoe JMP START

The @RFINXPQOS routine gets the 1ine count byte into the C register. If
the count is B1 the end of the file has been reached. Otherwise, all
program Tines have a 1ine length of no less than 6. The line length is
moved into the DE registers (D=p) and the buffer address is placed into

the HL registers. The G@LOADDATA routine starts at the index position

and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text T1ine. The program can
then process the text Tine and Toop back to get the next line.

4-54

Rev. 7. 3/78

4.5 ASSM - THE MICROPOLIS 8@3p/8p85 DISK ASSEMBLER

An assembler converts a source program written in an assembly language
into an object program which consists of a sequence of binary codes that
can be loaded into a computer's main memory and executed. ASSM is an
assembler for the 8@80/8085 micro-processors. It uses a MICROPOLIS
diskette subsystem as peripheral storage for the source and object files
during the assembly process. Use of a peripheral storage medium allows
the assembly of programs that could not otherwise be assembled because
the source and object files could not fit into the micro-processors main
memory during the assembly.

ASSM produces an absolute object file that can be scatter loaded into
main memory. The object file contains all address references generated
by ORG and DS statements. The operating system puts the object code in
the proper place. Object files on disk do not have to be contiguous
memory images to load correctly.

4.5.1 HOW TO TINVOKE ASSM

From the MDOS executive ASSM is invoked by entering the file name ASSM,
Tike an MDOS command, followed by a list of parameters. The format is

as follows:

ASSM “<source filename>" "<object filename>" "<options>" [<offset>]

The source file must be a TYPE @4 through @7 file which has been created
by the line editor program described in Section 4.4. The object file will
be created by ASSM and given a TYPE of 8. '

The option field directs the output from the assembler to different places.
Options are specified by grouping the following letters together as required:

E Only assembly errors will be listed. FREDES

P The assembly listing will be paginated.

S Only an assembly listing will be produced. No object Sovply CAPE

code will be written to disk or memory.

M The object code will be written directly into memory at
locations specified in the source unless an offset is specified.

L The 1ine numbers used during editing will not be written 4o c/ng Ao

on the assembly listing.

T The symbol table created by the assembly will be output Syrmg. TABLE

at the end of the listing.

C A1l output from the assembler will go to the console output device.

4-55

Rev. 8 9/78

Option codes are grouped together within the option string. For example,
ASSM "1:SGAME" "GAME" "PLT" will assemble the source file called SGAME on
disk drive one and create an object file on drive zero by the name GAME.
The assembly Tisting will be output to the 1ist stream and each page will
be numbered and titled with a field header at the top of each page. The
Tine numbers used by the editor will not appear on the assembly listing.
The symbol table will be added to the end of the assembiy listing.

The P option causes the assembler to paginate and title the output listing.
If the FORMFLAG location {see 2.2.5.1) contains a zero value, the pagina-
tion will be done by outputting Tinefeeds to advance the paper to the top
of the next page. If the FORMFLAG location contains a non-zero value, a
single FORMFEED (ASCIT 12) will be output. When using the linefeed mode,
the assembler will assume the paper is at the top of form when the assembly
command is given from MDOS. In the formfeed mode, a formfeed will be out-
- put before any printing to resynchronize to the top of form. The FORMFLAG
location should be configured when the system printer 1/0 is configured.

See section 2.2.5.1.

4-56

Rev. 8 9/78

The S and M options are mutually exclusive. S indicates that no object
code is to he produced while M indicates that the object code is to be
placed into memory. The S option is always dominant.

When the options S or M are specified the second ASCII parameter which
holds the filename for the object file can be teft out by typing "",
because these options do not produce a disk file. If the second parameter
is present it is ignored. The parameters are positional so the "" must be
used if there is no object file and/or there are no options.

Examp]es: ASSM "STEST" "TEST" "™
ASSM "STEST" "" "pS"
The blank parameter is mandatory in both cases.

The optional offset parameter is only used when the object code is to
be placed directly into memory using the M option. The offset is added
to the actual address where the code would be placed as specified by
the programs ORG statement. The code is assembled to run at the ORG
address but is placed at a different address temporarily. The object
code will not run at the resulting offset address and must be moved to
the proper location before being executed. The offset is useful when
the program is intended to run at QAPROGRAM. The program must first be
placed into a memory area that does not conflict with the assembler
program or the generated symbol table.

Example:

p5pe LINK 'SYSQi!

1004 LINK 'sYsQz2'!

2009 START ORG @APROGRAM :2B@P HEX

3000 FILL 1PH,8 12ROG-280F FILL P
4080 BEGIN JMP $ 3 SOFT HALT

5900 END BEGIN ;EXADD TO SOFTHALT
ASSM HQTEST" "" "M ngm

After the assembly memory would look as follows:

5800 00 09 PP 00 PP o0 03 98 00 03 0D 90 2D 0P 99 PP
5818 C3 19 2B .

The code will not run at this location because the soft hait jump is
assembled for an ORG of 2B@@ hex. A MOVE 5B@@ 5B12 2BPP command would

move the code down to the proper location and an EXEC 2B1® would run
the program properly.

4-56.1

Rey. 9 1/79

If this program were assembled into memory without the offset parameter,
it would attempt to overwrite the assembler resulting in a LOAD ADDRESS
ERROR. For this reason assembling directly into memory requires great
care and should only be done if you are absolutely sure all the code
produced during the assembly is outside of the operating system; outside
of the assembler program; and does not conflict with the generated symbotl
table. The symbol tables starts immediately after the assembler program
and grows toward high memory. Each label requires one byte for each
character of the label plus two bytes for the address or value definition
of the label. The approximate size of the symbol table can be evaluated
by averaging the label size adding two and multiplying by the number of
labels. If the size of the symbol table plus a safety margin is added to
30p@ hex (the start of the symbol table rounded up to the next even page),
the resulting address should be a safe area to put the object code when
using the M option.

4.5.2 LANGUAGE ELEMENTS

The assembler translates assembly language statements into 8388 machine
code. A statement consists of a line number, a iabel, an opcode,
operands, and comments. :

The first element is the line number. The assembler ignores the line
numbers in the source 1ine. Line numbers are only used by the line editor
program and have no meaning to the assembler.

The second element in a statement must be a label or a delimiter to indicate
that there is no label in the statement. ASSM accepts two label delimiters,
the space, and the colon (:}. If a label does not appear, then the first
etement of the statement must be a space or a colon (:). Additional spaces
are ignored and the next non space character is the start of the third element.

The third element in a statement is the operation code mnemonic. The assembler
uses the standard 3@83/8085 opcode mnemonics developed by the manufacti ~er.

The fourth element in a statement is the operand field. Some opcodes
require no operands while others need one or two. If an operand is not
required, the fourth element is automatically considered to be a comment
field.

The last element of a statement is the comment field. The comment field
is printed on assembly 1istings but is ignored by the assembler. It's
only purpose is for program documentation and clarity. If the comment
field is preceded by a semi-colon (;) the comment will be formated on

the assembly listing. If the semi-colon is Teft out, the comment will
appear after the operand field just as it was entered. This feature does
not effect the assembly in any way. It is only a formating feature.

The statement line looks as follows:

LINE# LABEL OPCODE OPERANDS COMMENTS

4-57

Rev. 8 9/78

A1l spaces shown are mandatory as delimiters, except after a label

where the colon (:) can replace the space as a delimiter. Additional .
spaces are ignored with the exception that a label must start immediately
after the space following the 1ine number.

A line can be designated as a comment only line. This is done by putting an
asterisk (*) or a semicolon (;) as the character immediately after the space
that follows the line number. If the comment line is formed with an asterisk
(*), the line will be listed exactly as entered. If it is formed with a semi-
colon {(;), it will be tabulated to start on the same column as in-line comments.

4,5.2.1 LITERALS

The assembler provides for numeric and ASCII literals. Numeric literals
can be decimal, hexadecimal, binary, or octa] The following suffixes
designate the appropr1ate base

A capital H is used to designate base 16, hexadecimal.

A capital B is used to designate base 2, binary.

A capital Q is used to designate base 8, octal.

Base 1@, decimal, can be designated by either a capital D, or no suffix.

Al11 numeric literals must begin with a digit in the range zero through nine
regardless of the base. This is done to avoid ambiguity between
hexadecimal 1iterals and symbolic names. For example, the hex address

F99C must be written as @F9BCH. '

ASCII titerals appear between single quotes ('} and can include any ASCII

character from 20 hex to 7€ hex except the backarrow (5F hex), and the
single quote (').

4.5.2.2 SYMBOLIC NAMES

Labels are symbolic names. Operands may also be symbolic names instead
of literals.

SymboTic names consist of a string of ASCII characters. A symbolic name
can be from 1 to 47 characters Tong. It is made up of ASCII characters
from 3@ hex to 39 hex and 4@ hex to 7E hex, except the backarrow (5F hex).

Symbolic names may not start with the digits @ through 9. This avoids
ambiquity between numeric Titerals and symbolic names. The following
characters are valid within a symbolic name:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwxyz
$1234567896[1~ [}]™\

Symboiic names are defined when they appear as labels of an opcade or a
pseudo-opcode. This associates a sixteen bit address or value with the
label. Symbolic names that are defined may appear as arguments in operands.

Rev. 9 1/79 4-58

Some symbolic names are already defined by ASSM itself and should not
normally be redefined in the source program. ASSM gives the registers
of the 8P8p the following symbolic names:

Register 7 is A.

Register @ is B
Register 1 is C
Register 2 is D.
Register 3 is E.
Register 4 is H.
Register 5 is L.
Register 6 is M, PSW, and SP.

ASSM gives the value of the program counter the symbolic name $. It
changes as the assembly proceeds by assuming the value of the program
counter at the start of each statement Tine being translated.

For example, the following source program line would produce a jump to
itself {also called a soft halt).

0109 Jup § +JUMP TQ SELF
4,5.2.3 OPERATORS

ASSM recognizes 1P operators designated with the characters +, -, *, /,
%. &, , #, >, and <. These operators may combine with symbolic names and
literals to form complex expressions, as described in Section 4.5.3.

A1l operators treat their arguments as 16 bit unsigned quantities and
generate 16 bit unsigned quantities as their result. The operations are
from left to right with no hierarchal precedence and no precedence
specifier (no parenthesis).

The operator + produces the arithmetic sum of its operands to 16 bits.
The operator - produces the arithmetic difference of its operands when
used as a subtraction, or the arithmetic negative of its operand when
used as unary minus.

The operator * produces the arithmetic product of its operands.

The operator / produces the arithmetic integer quotient of its operands,
discarding any remainder.

The operator % produces the integer remainder obtained by dividing the
first operand by the second.

The operator & produces the bit-by-bit logical AND of its operands.
The operator ! produces the bit-by-bit logical OR of its operands.

The operator # produces the bit-by-bit logical EXCLUSIVE-QR of its

oberands.

4-59

Rev. 7 3/78

The operator > produces a 16 bit rotate to the right by the number of
bits specified in the second operand. The least significant bit becomes
the most significant bit and all other bits are shifted to the right.
Example:

11112800111131818>3 evaluates to 18111119220111128

The operator < produces a 16 bit rotate to the left by the number of
bits specified in the second operand. The most significant bit becomes
the least significant bit and all other bits are shifted to the left.
Example:

11110028111181018<3 evaluates to 12088111101211118B
4.5.2.4 OPCODE MNEMONICS

The standard Intel mnemonics for the B8@88 and the 8885 are used without
exception. For a detailed discussion of the 8P80p/8#85 opcodes refer to
the "INTEL 8089 ASSEMBLY LANGUAGE PROGRAMMING MANUAL". Opcodes must be
UPPERCASE only.

4.5.3 OPERANDS

Not all opcodes have operands. If an opcode does not have an operand,
the element after the opcode is the comment. Some opcodes have one
operand while others have two. Where two operands are required they
must be separated by a comma (,). There may be no spaces imbedded within
the operands.

An operand may consist of a simple or complex expression. A simple
expression is a numeric or ASCII Titeral, or a symbolic name. A complex
expression is a combination of numeric or ASCII Titerals, symbolic names,
and operators. The operand is the evaluation of the expression to 16
bits. :

Examples:

10¢@ REG7 EQU 1

200@ TEST EQU 1908H

3808 INC EQU)

4299 TEST LXI REG7+4 ,TEST*6+INC&7<8 sCOMPLEX EXP

The LXI opcode takes two operands. Both of the operands in the example

are complex expressions. The expressions are evaluated to 16 bits and
truncated to the size of the operands. In the case of the example the

first operand would be truncated to 8 bits because it represents a

register (#5). The second operand evaluates to 16 bits and is not truncated
because it is a 16 bit operand (@680 hex).

4-60

Rev. 7 3/78

4.5.4 ASSEMBLER DIRECTIVES

Assembler directives appear in the source program and provide information
needed by the assembler to allocate memory space, initialize values, and
format Tistings. Assembler directives are often called pseudo-operations
or pseudo-ops. The assembler directives are mnemonics. They are issued
in statements 1ike opcodes. The general pseudo-op statement form is as
follows:

LINE# LABEL PSEUDO-0P OPERAND COMMENT

The label is optional in all but two of the assembler directives. These
are the EQU and the INP pseudo-aps. For the cthers the label i$ used
when necessary and has the same form and restrictions as Tabels with
opcodes. The END, INP, and PRT pseudo-ops can optionally have operands.
The FORM, LIST, NLIST, and ENDIF never have operands.

Pseudo-op operands have the same form as opcode operands. They can be
simple or complex expressions.

Labels and ¢operands are optional with some pseudo-ops. Comments are
always optional.

Many of the assembler directives are the same as the INTEL pseudo-ops
described in the "INTEL 8p8@ ASSEMBLY LANGUAGE PROGRAMMING MANUAL*™.
However, some are unique to ASSM. Therefore, all of the pseudo-operations
are described in detail.

4.5.4,1 ORG - ORIGIN

The ORG pseudo-op specifies where a program or routine within a program
is to be placed in memory by setting the assembler's program counter to
the value of the operand. [f a program does not haveé an ORG, then the
program is assembled at zero. Symbolic names used as operands in the
ORG statement must be defined before the ORG statement is encountered.
If a 1abel is present, it is associated with the evaluated operands’
address.

4.5.4.2 LINK - LINK TO A FILE

The LINK pseudo-op allows separate program files on disk to be assembled
to produce one object file. The LINK operand is a source program file
name enclosed between single quotes. When a LINK statement is encountered
in a source program, assembly continues from the start of the source file
named in the operand field and information is saved to allow ASSM to pick
up from where it was in the linking source file when the Tinked to source
file is completed.

4-6]

Rev. 7 3/78

102D LXI H,4038H
2000 LINK 'TEST' ;ASSM TEST AND
3000 MOV ALM ;COME BACK HERE

In the above example the assembly would assemble all of the file TEST
between the LXI H.,4P@PH and the MOV A,M. '

The LINK statement allows the assembly of source programs that are much
larger than could possibly fit into memory at one time.

No unit is specified in the LINK operand. The Tinked to file is located
as follows. The disk that has the source file which was given in the

MDOS command that invoked the assembily is searched. If the linked to file
is on that disk the assembly continues as described above. If the linked
to file is not Tocated the search proceeds from unit zero through three.
If a unit is not Toaded or does not exist in the system it is bypassed and
the search continues until the filename is found or all units have been
searched,

4-62

Rev. 8 9/78

4.5.4.3 END - END OF ASSEMBLY

The END statement signifies to ASSM that the physical end of a program

has been reached. Because ASSM allows muitiple disk files to be assembled
as a single large program, multiple END statements can occur when files
have been LINKed together. Under these conditions the END signals the end
of a source file and not the absolute end of the assembly. The END will
cause the assembler to terminate its current pass on a source file and
proceed to the next source file, or the next pass. When a program consists
of multiple source files, the END statement can be absent from all but the
Tast file.

In addition to marking the end of a program, the END pseudo-op also
designates the start-of-execution address by its' operand. If the END
statement is missing, or the operand is left off, the start of execution
address is the physically first ORG of a program. The END statement allows
an execution address to be specified that is different from the physical
start of the program. For example, a program which is structured to have

a data area before the executable code can specify the start of execution
address as follows:

p5p9 LINK 'sYsql!
1000 LINK 'sysQ2!
1109 ORG 4080+
1208 INBUF DS 255 ; INPUT BUFFER
1399 BEGIX MV1 C,1

1400 LXI H, INBUF
1580 START CALL BCIN

1698 CALL @CoUT
1700 INR C

1820 Jz BEGIN
1900 CP1 fDH

29000 JNZ START
2108 LXI H, INBUF
2200 CALL BNLINEOUT
2309 JMP BEGIN
9999 END BEGIN

The name of the object file for this program could be used as an implicit
command in the MDOS executive. By typing the name of the file, the executive
toads the file and transfers program control to the address specified in

the END statement.

Rev. 9 1/79 4-62.1

4.5.4.4 EQU - EQUATE

The EQU pseudo-op equates a literal value to a symbolic name. This
pseudo-op requires a label and an operand.

1909 TEN EQU 19
2009 TWENTY EQU 2*TEN

When the labels TEN, TWENTY are used within the program they will have
the value of 10 and 2§ respectively.

4.5.4.5 INP -~ INPUT

The INP pseudo-op allows the operator to assign a value to a label from
the system console during pass one of the assembly. The INP statement
requires a label. It can have an optional operand. The operand must be
an ASCII 1iteral. 1If an operand is present, it is output as a prompt to
the console stream during pass one followed by a question mark (?).

ASSM then waits for an input from the console. If no operand is
present the INP statement prompts with a question mark.

The input can be in the form of simple or complex expression including
Titerails and/or symbolic names. Symbolic names must have already been
defined before the INP statement is encountered during pass one.
Example:

1003 TEST INP 'INPUT!

During pass one of the assembly the prompt would be displayed on the
system console and the assembler would wait for an input.

INPUT
?

4.5.4.6 PRT - PRINT

The PRT pseudo-op outputs the values of its operands to the console
stream during assembly pass two. The operands can be simple or complex
literals and/or symbolic names. If no operands are present the PRT
outputs a carriage return line feed only.

Example:
1908 TEST EQu 70P0H
2098 PRT "THIS IS A TEST',TEST

During pass two the message THIS IS A TEST 798@ is displayed on the
system console.

4-63

Rev. 8 9/78

4.5.4.7 TAB - TAB SETTINGS

The TAB pseudo-op changes the tab settings for the assembly listing at
assembly time. The TAB settings are initially 15,22,36. The first column
is defined as the column at which Tabels start. The positions of the
opcode, operand and comment fields can be changed with the TAB pseudo-op.
The statement expects three operands. The first operand is the opcode
field tab, the second operand is the operand field tab, and the third is
the comment field tab.

If an operand is set to zero, that tab is set to the 1n1t1a1 default va]ue.
The operands can be simple or complex expressions.

4.5.4.8 MNLIST - NO LIST TGO PRINTER

The NLIST pseudo-op suppresses the listing of the assembly to the list
stream from the point in the source file at which it is encountered until
the next occurrence of a LIST pseudo-op.

Note: 1If the E option (see section 4.5.1) was specified, the LIST and
NLIST pseudo-ops will be ignored. 1In all cases, however, any assembly
lines which contain errors will be output.

4.5.4.9 LIST - LIST TO PRINTER

The LIST pseudo-op is used to start a Iisting at the point at which it is
encountered in the source file after a prev1ous NLIST statement has sup-
pressed the listing.

4.5.4.10 FORM - FORM FEED

The FORM pseudo-op is used to control output pagination when the P option
is in effect. The FORM statement has two modes. The first causes the
assembler to eject the paper to the top of the next page and continue
printing. To use this mode the FORM statement must have no operand. The
second mode sets the length {in # of Tines) of the output page.

1908 FORM 66 ;this sets the form length
1919 FORM ;this ejects the page

The example will cause the assembler to use a page size of 66 lines. This
means that 58 Tines of program text will be output with 8 lines for page
number, header and margin.

4-64

Rev. 8 9/78

4.5.4.11 DB - DEFINE BYTE

The DB pseudo-op defines one or more bytes of memory storage. The DB
statement has one or more operands.

1902 TEST 0B 1,20H,11B,76Q,TEST+3 ;DEFINE BYTES

The DB statement's operands can be simple or complex expressions, with
the exception that ASCII literals can only be one byte long per operand.

Example:

1099 DB TR,
Is valid while:

1089 TEST DB '"THIS'

Is not valid.

4-64.1

Rev. 8 9/78

4.5.4.12 DW - DEFINE WORD

The DW pseudo-op defines one or more two byte words of memory storage
in standard Intel low/high address format. The DW statements can have
muitiple operands which can be simple or complex expressions.

1009 TEST D 40PPH ,5557H

100PH would appear as @9 4P and 5557H would appear as 57 55 in the
object file.

4.5.4.13 DD - DEFINE DATA

The DD pseudo-op defines one or more two byte words in high/Tow format.
1006 TEST DD 4P@PH ,5557H

40PBH would appear as 4P @9 and 5557H would appear as 55 %7 in the
object file. _

4.5.4.14 DT - DEFINE TEXT

- The DT pseudo-op is used to define a line of text enclgsed between
single quotes. The text string can contain any ASCII characters as
described in the section on literals.

1999 TEST DT ‘ABC'

The following object code would be produced by this example: 41 42 43,

4.5.4.15 DTZ - DEFINE TEXT TERMINATED WITH ZERO

The DTZ pseudo-op is used to define a line of text. When the string is
assembled the ASCII code is terminated by a zero.

1030 TEST DTZ '‘ABC'

The following object code would be produced by this example: 41 42 43
po. | .

4.5.4.16_DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH

The DTH pseudo-op s used to define a 1ine of text. When the string is
assembled the ASCI! code of the last character in the string is ORed
with 8@ hex.

1998 TEST DTH 'ABC'

The following object code would be produced by this example: 41 42 C3.

4-65

Rev. 7 3/78

4.5.4.17 DS - DEFINE STORAGE

The DS pseudo-op is used to set aside storage space. It requires one
operand which can be a simple or complex expression that evaluates to
the number of bytes to be set aside as storage (1 to FFFF hex). No code
is written into the storage area. The assembler adds the operand to the
assembler program counter and continues code production at the resulting
address. Because the assembier produces scatter Toadable object files,
any code in the DS area will not be disturbed when the object file is
loaded. '

4.5.4.18 FILL - FILL STORAGE

The FILL pseudo-op sets aside storage space and fills it with a specified
byte. It requires two operands which can be simple or complex expressions
that evaluate to the number of bytes to be filled (1 to FF hex) and the
byte to be stored (§ to FF hex).

1989 TEST FILL PAH,8 ;FILL 1@ BYTES WITH 8

The above example would set aside ten bytes of storage and fill it with
@8's.

4.5.4.19 IFF - IF FALSE

The IFF pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an IFF statement
and the end of the block is marked by an ENDIF statement. The block is
assembled if the operand of the IFF statement evaluates to zero.

2008 TEST IFF LABEL

If LABEL is equal to zero then the code between the IFF and the ENDIF
will be assembled, otherwise it will not be assembled.

4.5.4.20 IFT - IF TRUE

The IFT pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an IFT statement
and the end of the block is marked by the ENDIF statement. The block is
assembled if the operand of the IFT statement evaluates to non-zero.

4.5.4.21 ENDIF - END OF IF

The ENDIF pseudo-op ends a conditional assembly block. Conditional
assemblies can be nested up to 255 deep. A label associated with an IFF
or IFT will always appear in the symbol table. However, a label
associated with an ENDIF will appear only if the block is active.
Statements inside nested conditional assemblies will be active only if
the outer IF is active.

4-66

Rev. 7 3/78

4.5.5 ASSEMBLY ERRORS

The assembler is designed to catch typographical and syntactic errors

and flag them on 1listings. These errors are typically oversights; improper
use of labels, opcodes, or operands. The assembler cannot catch programming
Togic errors. A program with flagged errors may still assemble properly
depending on the type of error. This is true of syntax errors in listing
format statements 1ike TAB. If the TAB statement is used and the operands
are left out a syntax error is printed with the line on the listing. The
assembler defaults the tab settings to the initial value and continues. The
code will be OK (assuming no other errors) and the Tisting will have the default
tabs. In all but one case the assembler will continue the assembly doing the
best with each 1ine it encounters and flagging lines that do not make sense.
The one exception is a LINK error when the file named in the operand does not
exist. This error outputs a FILE NOT FOUND message to the console stream

and the assembly is aborted at the point the error is encountered. Syntax
errors in the LINK statement do not abort the assembly. The line is flagged
and the assembly continues.

Because this is a two pass assembler, pseudo-ops which are evaluated during
pass one must have operands that have already been defined before the statement
is encountered. This is true of the following pseudo-ops: EQU, ORG, DS, INP,
IFF, IFT, FILL. If the operand is not defined before the pseudo-op is
encountered, an undefined symbol error {error code U} is output along with the
1ine in error during pass one. Because the program counter is not properly
updated at that point in pass one, a phase error will occur in pass two. That
is, code will be placed in the right place but references (addresses) in branch
instructions will be wrong. The following example illustrates this case:

18@@ START ORG AP@PH
2099 STORAGE BS -~ LENGTH
3909 LENGTH EQU 40H
4pp0 JMP $

In the above example 1ine 20@@ has a forward reference to line 300P which is

not defined at this point in pass one. During pass one line 298P will be flagged
as having an undefined symbol and the assembly continues. The code produced
during pass two will have a phase error as follows:

ADDR B1 B2 B3
494p C3 00 4P

The jump to self is in error because the storage could not be properly defined
during pass one due to the forward reference.

A quick reference summary of ASSM error messages is shown below. Refer to
appendix D for explanations of these message conditions.

A ARGUMENT ERROR R REGISTER ERROR

D DUPLICATE LABEL ERROR S SYNTAX ERROR

L LABEL ERROR lJ UNDEFINED SYMBOL ERROR
M MISSING LABEL ERROR V VALUE ERROR

0 OPCODE ERROR

4-67

Rev. 9 1/79

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table Teft in memory immediately after an
assembly. This equate batch is stored as an editor source file and can
be edited by the 1ine editor and assembled by the assembler. The program
is invoked from the MDOS executive by typing SYMSAVE followed by an ASCII
filename parameter encliosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

Lunit: JSYMSAVE “<filename>" [“<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
pa0 1099 ORG 4p9@H
4000 C3 29 40 2083 START JMP $

4pp3 N 3093 DATAl DB 91

appa 92 ' APPP DATAZ DR B2

4995 93 5000 DATA3 0B 23

4@06 603% FINISH END START

. Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE "TEST"

The file TEST that SYMSAVE creates is an editor compatible source file
which Tooks as follows:

@P@1 START EQU 4QGQH

pP@2 DATAT EQU APP3H
pP03 DATAZ EQU APA4AH
PdP4 DATA3 EQU 4P@5H

pAd5 FINISH EQU 4336H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE “TESTT" "DATA"
The file TEST1 looks as follows:

PAP1 DATAI EQU 4034
p@p2 DATA2 EQU 49P4H
#P@3 DATA3 EQU 4P@5H

This file contains only the symbols which start with the string DATA.

4-68

L) P > NIT0

A symbol equate file can be used in other programs by using the assembler
LINK pseudo-op.

Example:

ADDR B1 B2 B3 E LINE LABEL OPCODE OPERAND
ppeA 1900 LINK "TEST'
P0ap 2000 ORG FINISH
4p36 3E B 3000 BEGIN MVI A,DATAY
4038 32 93 49 4000 STA DATAZ
4088 C3 0P 4D 5000 JMP START
400 6paa END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses

all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number by itself if the copied file is to have the same
name as the original.

[unit:JFILECOPY "<[unit:]filename>" "<[unit:]newfilename>"
or
Lunit:JFILECOPY "<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters
an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.8 DISKCOPY UTILITY

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MDOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about two
minutes to copy and verify all 315k bytes of a MOD II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY
A sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SQURCE} DISKETTE
?

4-69
Rev. 7 3/78

DISKCOPY waits until the unit number 1is entered. When a number between
@ and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (P to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE ?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM.DISKETTE IN UNIT £
TYPE Y WHEN READY
?

When a Y is typed the disk in unit @ is rebooted. If it's an MDOS diskette
MDOS is booted. If the disk in unit @ is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COPY
MORE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:
PERM I/0 ERROR ON DESTINATION DISKETTE

or

PERM I/0 ERROR ON SOURCE DISKETTE

indicating where the error occurred.

4-70
Rev. 7 3/78

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. 1In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator 1ight goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator 1ight comes on type a control S again. When the select
indicator 1ight goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
process is repeated, swaping the source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COPY or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MDOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the-
error message output routines to generate the proper error message.

Example:
A file is created by the following BASIC program:

19 DIM A$(248)

20 7$=CHAR$(13):REM CARRIAGE RET

3@ GPEN 1 “N:TEXTFILE":REM NEW FILE

49 INPUT A$:REM GET A LINE OF TEXT FROM CONSOLE

5@ IF A$="EXIT" THEN 8@:REM END INPUT BY TYPING EXIT
6@ PUT 1 A$+Z$:REM CONCATENATE CARR RTN AT END

72 GOTO 4@:REM LOOP TILL EXIT

8@ CLOSE 1

99 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly language routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78

pRod
010
pp2p
P3P START
Apag
AR50
pRep
pe7P
2p39
ppas
9108
0119
p12¢
A13p
pi4p
2159
2169
p179
p189
£190
p2po
p219
P22p NEXTCHR
p23p
p24p
P25
pe6p
p27p
B28p
p29p
P30
p31p EXIT
9329
p33p
B340
B350

Note the handling of the errors in lines

318-340.

Rev. 8 9/78

LINK
LINK
ORG
CALL
LDA
ORA
JZ
MVI
CALL
MVI
LDA
MOV
LXI
CALL
JC
CALL
JC
MOV
ANI
ORA
MVI
JNZ
MVI
CALL
JC
MOV
MOV
CPI
CZ
CALL
JMP
CPI
JZ
STC
JMP
END

'SYSQl!
'sysqz2’
RAPROGRAM
@CCRLF
@NASCPAR

A
QERRORMES
c,d
@TRANSFILENAME
B,#
@DRIVEND
C.A
H,@FILEBUFFER®
@OPENFILE
@DTSKERROR
@RFILEINF
@DISKERROR
A,B

@FCH

A

A, 17
@DISKERROR
B,P :
@RFINXPOSI
EXIT

B8,C

A,B

@DH

9CCRLF
@CouUT
NEXTCHR

2
BCLOSEFILE

@DISKERROR
START

4-72

+MDOS EQUATE BATCH

;MDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURN LINEFEED
;NUMBER OF ASCII PARAMETERS
;IF ZERO

;ERROR

;@ASCBUFFP

sMOVE INTO RASCIIBUFFER
;FILE NUMBER

;UNIT NUMBER

1 INTO C FOR OPEN

;USE SYSTEM BUFFER 9
;OPEN THE FILE

sIF ERROR CODE IN A
;CHECK THE FILE TYPE

;IF ERROR CODE IN A

sFILE TYPE

yTYPE NOT ATTRIBUTES
;BASIC DATA FILES=8
;WRONG FILE TYPE MESSAGE
+ERROR

;FILE NUMBER

;READ FILE BYTE AT A TIME
;END? OR ERROR?

; CHARACTER FOR OQUTPUT
;INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF

;OTHER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?

;CLOSE AND RETURN TO MDCS
;ERROR

;ERROR MESSAGE IN A

63, 149, 160, 219, 249, and

The error codes are summarized below.

the error messages.

CODE# MESSAGE

p SYNTAX ERROR

1 PERM I/0 ERR

2 END-FILE

3 DISK FULL

4 FILE NOT FOUND

5 DUPLICATE NAME

6 PARM ERR

7 DRIVE NOT UP

8 PERM FILE

9 WRITE PROTECT

19 FILE NOT OPEN

2! COMMAND NOT FOUND
12 BAD FILE #

13 FILE OPEN

14 READ ONLY FILE

15 BAD RECORD #

16 CANCELLED

17 WRONG FILE TYPE
18 INDEX PAST EOR

19 LOAD ADDRESS ERROR

Rev. 8 9/78

§-73

See appendix D for definitions of

4.1 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] filename>"
The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE 9@
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the destination disk with the same name and filetype as
the source file. It then writes the file from memory onto the destination
diskette.

If the file 1is longer than can be held in memory at one time the COPYFILE
program will prompt:

INSERT SOURCE DISKETTE INTO DRIVE @
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS. .

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

Rev, 9 1/79 4-74

4.11 DEBUG - THE PDS 8#8p/8885 PROGRAM DEBUGGER

Micropolis DEBUG is a utility program which facilitates checkout and
debugging of 8080/8885 machine language programs. It provides an
environment in which the performance of a program can be monitared by
starting and stopping program execution at user-specified points and by
examining and/or changing the contents of relevant machine registers and

memory locations.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4K block of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MDOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility (see Section 4.12?.
Example:

>DEBUG- 7§
MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive. '

The program may be executed one instruction at a time (referred to as
"single-stepping”) with the machine state displayed after each step.
Alternatively, the resulits of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '*',

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed

character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8 9/78 ' 4-75

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:
NAME [<hex> <hex>...<hex>]

The NAME in an executive statement is the name of one of the DEBUG commands.
Command names are uppercase only and must not be preceded by any spaces.

If the command name is not recognized by DEBUG a SYNTAX error message is -
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. All parameters must be separated from each other by at least
one space. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from @ to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will resylt in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive {see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
i1Tustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
optional.

< > Symbol brackets. This space should be replaced by the item described.

4.11.2,1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block
of memory. Sequential memory locations are shown 16 to a Tine with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

*DUMP b@@@d 5911
5009 5P CP 27 77 4F 33 4F CD 7D 9E 93 #p 6A FD 82 90
5@19 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

*DUMP 5p82 591F
S92 7 77 4F 33 4F CD 7D 9E 98 PP 6A FD 82 9
SP1p 77 2B 54 56 F4 3E 23 2A 34 87 19 3b 21 2C 2A 2B

Rev. 8 9/78 4-76

4.11.2.2 THE ENTR COMMAND
ENTR <start addr.>_

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7000
*78 89
6F/

Three bytes were entered starting at Tocation 7@@@ hex. These were 78
at 7099, 89 at 7091, and 6F at location 70P2.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed

the standard backspacing and CNTL/X tools are available for line correction.
The Tlast value on the last Tine must be followed by a slash {/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4,11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7900 800p 9

Each byte of memory in the block from 7908 to 8@PP is changed to a A9
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

*MOVE 3000 4pp0 7009

Each byte in the memory block from 3988 to 4908P is copied into the
corresponding pasition in the memory block from 7898 to 80@0.

Rev. 8 9/78 - 4-77

4,11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

*SEAR 3092 SQZQ 9F
3004 9F
318 9F

The block of memory from 39¢9 to 3P28 is searched for all occurrences of
a 9F. Location 3PP4 and Tocation 3P18 both contain 9F. No other
locations in the block contain 9F.

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

*SEARN 3008 3p1p 67
3002 @9 67
306 76 67

The block of memory from 3@@P to 3P1@ is searched fof all non-matches
with the mask 67. Location 3@P2 contained a 9 rather than a 67, and
3096 contained a 76 rather than a 67. :

4.11.2.7 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COMP command compares two blocks of memory and displays address Tocations
that do not compare and the data at those locations. Example:

*COMP 5000 S00F 5919
5p@4 P1 @9 5¢14

The block of memory from 5@P@ to 5@@F is compared with the block of memory
from 5018 to 5@1F. One location fails to compare. Location 5P@4 contains
1 while the corresponding locatian, 5014, in the second block contains §9.

4.11.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 8§8p/8885 mnemonic form of the bytes contained
in the specified memory block.

*DUMP 30p@ 3pP8
309 CA 92 37 B7 C3 1A 37 CB

Rev. 8 9/78 ' 4-78

*LIST 3999 3008
3909 Jz 37@2
303 ORA A
3994 JMP 371A
P8 CB ¥

The memory block from 3088 to 3@P7 contains three 3089/8085 instructions.
The byte following the third instruction is not a valid 8@8@/8885 instruction.
This is indicated by the '*' following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUG's
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display and/or
alter the state of the 8f8p/8985 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs {(e.g. at the address
contained in BC) along with the word on the top of the stack are displayed.
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

PP ZCMEH 9992 PRPP 3PRR 1234 PP 0P 00 PORP
PPp@ LXI SP,1234

The second 1ine of the display indicates the processor state. The columns
@B, BD, ®H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence

of any character indicates the opposite condition on the same flag.

- The third 1ine displays the address and mnemonic of the next instruction

to be executed. The address of the instruction corresponds to the current
value of the 8@8@ program counter {PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by

using a command such as the CONT or RET commands. MNote that the state of

the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8 9/78 4-79

4.11.3.2 REGISTER SETTING COMMANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8@8@/8@885 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a reg1ster
setting command is a register name followed by a hex data value.

The following register names may be used:

A B CDEWHTL
BC DE HL SP PC QSP

The first Tine shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 6PF3, the
A register value to 7, and the value at the top of the stack to C172.

*PC 60F3
*A 7
*@SP €172

'4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 3§89/8035 processor flags
to be set or reset prior to the execution of next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in. assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPO FH FNH

The FZ and FNZ commands set the state of the ZERO flag to zero or non-zero.
The FC and FNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.
The FH and FNH commands set the state of the HALF-CARRY fiag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry.

Rev. 8 9/78 4-80

4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
pPA9 FFFF

4+5 equals 9 and 4-5 equals FFFF,
4.11.4.2 TRE RST COMMAND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 8@8p or 8@85 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST &' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility

used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPQINT MODE

Breakpoints provide a means to stop program execution at a given point. When
program execution reaches that point control of the processor is transferred

to DEBUG. Once in DEBUG, the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address

with one of the 'RST' instructions of the 8p89/8985 (see 4.11.4.2 the RST
command}. Then DEBUG replaces the three bytes of code at the corresponding
*RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
Khen the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the brocessor to 'CALL' the RST vector
Tocation which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the ‘user program registers' and replaces
the original contents of both the breakpo1nted instruction and the RST
vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at Teast one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

When a breakpoint is encountered during program execution, DEBUG will dispTay
the contents of the program registers in the following format:

A FLAGS BC DE HL SP @B GD @H @SP
13 poRe A00P POAY BIAZ P2 PP PP T4FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPOINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' dinstruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor.

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

The SET command defines a permanent breakpoint. The breakpoint # and the

hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint #'s may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).

Rev. 8 9/78 4-82

4.11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DIsSB
@1 2354
@3 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints wiil be cleared. If a breakpoint .
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed. '
Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:
*EXEC 3914
A FLAGS BC DE HL SP ®B @D G@H B6SP

@@ Z C 9PP12 @341 3674 @195 29 QB P9 3P54
357 JMP 3643
*

Program execution was started at Jocation 3014 {(hex). A breakpoint was
encountered at location 35§7 returning control back to DEBUG.

Rev. 8 9/78 4-83

4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count specifies the numbe
of times it must be hit before control is transferred back to DEBUG, If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operat10n is cancelled. If the
breakpoint # specified in the REPT command 1s not set, a SYNTAX error is displaye
Example:

*SET 1 300¢

B0 £ 2000 0P00 00PD R1AR 02 90 99 POGP
3pp@ DCR B

*B0 1FRQ 0pp@ 000D A1AQ 00 28 00 900
3901 JMP 3p@P

*REPT 1 8
A FLAGS BC HL SP 6B @D GH @SP

*ﬂﬂ E 1809 ﬂ@ﬂﬂ ppag P1AD PO 20 09 OO

The breakpoint at location 38P@ (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed.

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by using the CONT or RET commands. When
control of the processor returns to DEBUG, the breakpoints are cleared.
Temparary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CONT [<break 1> [<break 2> [<break 3> [<break 4>]]1]]

The CONT command continues execution of the user's program at the current

PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F

A FLAGS BC DE HL SP @B @D @H @sP
P M 0122 P341 3674 9195 0@ 6@ 0P 3p54
3587 DCR A
*

Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) is encountered, which returns control back to DEBUG.

Rev. 9 1/79 4-84

4.11.5.10 THE RET COMMAND
RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@8SP). This allows the user to 'RETURN' from a subroutine which was
'"CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction
has been executed or when the top of the stack contains a known return
address. Otherwise a breakpoint might be placed at an address which is not

a part of the program. {e.g. the last instruction was a 'PUSH' and therefore
the top of the stack contains a data word instead of a return address)
Example:

*DISR : !

A FLAGS BC DE HL SP @B @D @H @SP
@p 7 - pPOD GROD DPOD DORO 0P 0D @ PBRB
2APP LXI SP,3p0Q

B0 7 POP0 PRG0 BOPD 3PEP A0 0P @B 3243
2Ap3 CALL 2B@P

B0 L 0089 GP0P PPOD 2FFE PO OF DY 2AP6 -
2Bp@ STC

*RET

A FLAGS BC DE H. SP @B @D @H @SP
@@ IC ppoR 9e09 0RR08 3000 20 AP 9@ 3243

After the second instruction single-step, the RET command causes a temporary
breakpoint to be set at iocation 2A@6 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2AP6
control of the processor is returned to DEBUG and the processor state is
displayed.

Exception Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

TEXT Call MESSAGE
DTH “SIGNON"
RET

MESSAGE XTHL
CALL @LINEOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that iocation. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 9 1/79 4-85

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a detailed inspection
of what the program is doing on an instruction by instruction basis. Each
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays

the contents of the processor registers.

Example:
*DISR

A FLAGS BC DE HL SP @B @D @H BSP
13 pope P39P PODPO P1A2 28 0P BP 14FE
ZAP@ STC
*13 C PRP0 0000 PRRR PIA2 9@ PP G2 T4FE
2881 XRA A

00 7 E PORD PO0P DA0R 1AZ PP 9@ PP T4FE
2AR2 STA 345F

At the '*' prompt the user typed a space which caused DEBUG to single-step

an instruction and print the resulting register contents on the same Tine.

In the single-step mode of operation, DEBUG makes a local copy of the instructio
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify
the program in any way which alTows programs in ROM may be stepped through
without problem.

4.11.5.12 THE TRACE MODE COMMAND
TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. Dyring a TRACE the
Control S / Control C functions provide pause and break control.

Example:

*TRACE

P9 E 180D 0000 POAR D1AD PO 00 PP 0GP
3901 IMP 399
@0 E 1800 p00P 0p00 D1AD PP 00 £0 P0NP
3999 DCR B
98 E 1790 0PPO PPPR D1AP 0P 90 00 PEPY
3901 JMP 3099
@@ E 1709 09RO PR3O D1AD PP 29 0P 20PO
3PP DCR B |
Ll 1600 000D 200D GIAD AP 20 93 PPPO
3901 IMP 3000

*

The program was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed.

Rev. 9 1/79 4-86

Exception Note: The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MDOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction.

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the MDOS executive. DEBUG is then invoked from the MDOS executive

by typing the name of a configured DEBUG version as created by DEBUG-GEN
{see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAM"

>DEBUG

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*

DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

If the program to be monitored is one which runs in the MDOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MDOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MDOS Executive at the warmstart address which is 4E7H.
Example:

*SET 1 2BR@

*EXEC 4E7

MICROPOLIS MDOS V.S. X.X - COPYRIGHT 1978
>APP “ASCITPARM" 12

A FLAGS BC DE HL SP BB ©D @H BSP

2Bp9 LXI SP, D1AP

Permanent breakpoint number 1 is set at the program entry point 2BP@ hex
and execution is begun at the system warmstart address. The MDOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the application area and to pass

one ASCII and one numeric parameter. The breakpoint is then encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands. '

Rev. 8 9/78 4-87

If the program to be monitored is one which can be executed directly without
requiring any parameters from the MDOS executive, then the simplest way

to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3008
*SP 1AQ
*CONT 3020

The program counter is set to 3809 hex and the stack is set at 1AP hex. A
temporary breakpoint is set at 3P2P hex and program execution is begun at
the PC value, 3008 hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXITING DEBUG

- The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
- by clearing all permanent breakpoints with the CLR command and then using.
the CONT command without setting any temporary breakpoints. Second, the .
user may simpiy return to the MDOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This, warmstarts the MDOS executive and leaves the program without any
breakpo1nts set.

4.11.8 RE-ENTERING DEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by execut1ng the f1rst address of the 1K boundary on which
DEBUG is running. This 'warmstart' procedure will cause any breakpoints
which were set in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only
way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is listed in 4.11.9.7.
Assume that the program and DEBUG are on disk unit @ along with an MDOS
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-38

4.11.9.1 SAMPLE PROGRAM LISTING

3090 16 0@ pogp MVI D,p
3Pp2 21 8p 82 991P LXI H,28@H
3p85 Cb 13 39 PP2¢ LOOP: CALL SuB
3998 25 PR3 DCR H
3909 C2 95 30 Pp4p JNZ LOOP
3gec 7D pa5p . MOV A,L
300 @F pp6p RRC
3PBE 6F po7e MOV L,A
3ppF D2 B5 30 0@8p JNC LOOP
312 €9 gpag RET
M3 F5 P1pp SuB: PUSH PSHW
N4 7C p11g MOV A.H
3915 BS p12p ORA L
3916 Fi @130 POP PSK
3917 C9 p149 RET

- 4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugginyg session listing which
follows. '

The first three 1ines show the test program being loaded into memory along
with the 1pad and execution of the DEBUG. Once DEBUG is loaded and running
it signs on and displays its executive prompt '*'. At that point the PC

and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location 3P@C using
the CONT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3@P5. A permanent breakpoint is SET and
the REPT command used to allow the inner toop {the CALL, DCR H and JINZ) to
execute twice.. After two loops control returns to DEBUG., The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted.,

MICROPOLIS MDOS V.S. 4.9 - COPYRIGHT 1978

>LOAD “TEST" load program into memory
>DEBUG-79 . run debug (79P@ hex)

MICROPOLIS DEBUG V.S. 4.8 - COPYRIGHT 1978

*SP 1AD set up a stack
*PC 3000 - set up PC

Rev. 9 1/79 4-89

*DISR

A FLAGS BC DE HL SP @B @D @H ®SP

88 ZIC E P09 Ppo0 2900 P1AD C3 C3 C3 5845

3pop MV D,p@
*SET 1 3@12 set breakpoint on final RET
*DISB

@91 3p12

*80 ZC E 0QPG 0000 PAPO P1AP €3 C3 C3 5845 single-step
3\p2 LXI H,028p : _
*80 ZCE 0000 POPD D280 @1AP C3 C3 11 5845 single-step
395 CALL 3213 : '
*80 ZC E PP0¢ 29QP 0283 P19E €3 C3 11 3p@8 single-step
3313 PUSH PSW .
*RET return from SUB caltl

A FLAGS BC DE HL SP @B D @H BSP

#2 M pPO@ PPOR P28¢ B1AP C3 C3 1] 5845

3¢@8 DCR H _
*CONT 3g@0C set temporary break and go
A FLAGS BC DE HL SP @B @D @H @SP

1 2 E 0000 pP2P PA8R B1AP C3 C3 PA 5845

3p8C MOV A,L
*TRACE trace execution

8¢ Z E Pp0P 2903 098P P1AD C3 C3 PA 5845

308D RRC

40 7 E DPOP 0920 PP3D P1AG C3 C3 PA 5845

300E MOV L,A

46 7 E 9009 PPRB PR4P PIAR C3 C3 @A 5845

30@F JNC 3095

40 Z E Ppop Ppog po4p P1AR C3 C3 PA 5845

3p@5 CALL 3013
*SET 2 399C
*REPT 2 2
A FLAGS BC DE HL SP @B
20 2 E ppp PpOpP 9p2p P1AP C3
3pPC MOV AL
*CLR 2 |
*DISB
21 3912
*CONT
A FLAGS BC DE HL SP @B
8@ ZIC E fapp pEdp PRSP P1AR C3
3p12 RET
*CLR
*EXEC 4E7

Control C hit here

set permanent break
execute inner loop twice
@D @H BSP

C3 PA 5845

clear breakpoint 2
disptay breakpoints

complete program
@D BH BSP
C3 PA 5845

clear all breakpoints
warmstart MDOS

MICROPOLIS MDOS V.S. 4.8 - COPYRIGHT 1978

Rev. 9 1/79

4-90

4.11.10 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MD0S executive. The
only part of PDS on which DEBUG velies is the console and printer 1/0
Togic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines that BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MDOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor
by using the statement LINK "DEBUG-XX". Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

LOAD "BASICPGM"
READY

LIST

19 DEF FAA=16R7@19
28 A=FAA (1)

3@ PRINT A

4@ END

READY

MEMEND 16R7990
READY

LOAD "MROUTINE"
READY

LINK "DEBUG-74"

MICROPOLIS DEBUG ¥.S. X.X - COPYRIGHT 1978

*SET 1 7919
*EXEC 4E7

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY

RUN

A FLAGS

............ . DEBUG Register display
7013 PUSH H

*

Rev. 8 9/78 4-9]

From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine language routine beginning at address 7919
hex. BASIC's end of memory is.set to 7020 hex and the machine routine
"MROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 74P@ hex is then linked to. In DEBUG a permanent breakpoint

is set at 7010 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex -and BASIC signs on
again. A RUN command starts execution of the BASIC program, which accesses
the machine routine when 1ine 2@ s executed. The DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required. :

4.12 THE DEBUG-GEN UTILITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
-within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiqguous memory address space which may start on any
1K boundary above the beginning of the MDOS applications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEN Tike an executive statement (see Section 4.1.2) or by entering
the command LOAD "DEBUG-GEN" followed by the command APP.

The program signs on with the message
DERUG GENERATION PROGRAM VS. X.X.

and prompts for the memory address at which the DEBUG will run with the
message _

ENTER PAGE ADDRESS (2B-Fp) ?

Type a two digit hexadecimal number that corresponds to the high-order byte
of the start address where the DEBUG will run. This address may only be on

a 1K boundary. The program will ignore the Towest 2 bits of the response.
DEBUG-GEN creates a type 14 file on disk unit @ and fills it with the

relocated DEBUG system. The file name is "DEBUG-XX" where XX (hex) is the
page address entered by the user.

Rev. 9 1/79 ' 4-92

Example:

MICROPOLIS MDOS V.S. 4.9 - COPYRIGHT 1978
>DEBUG-GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS (2B-Fp) ? 78

RUN FILE NAMED DEBUG-79

>

In this example a program file named "DEBUG-78" is created on disk unit @.
This file is a running DEBUG package which will use the memory space from
708BH to 7FFFH.

Rev. & 1/79 4-93

V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCT ION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropolis Disk Extended Basic. Both
systems are supplied on a MASTER diskette incliuded with each Micropolis disk
subsystem. The auto-load bootstrap brings MDOS, which is the first system on
the diskette, into memory. Control is transferred from MDOS to BASIC by

typing the filename BASIC to the MDOS executive. It is also possible to create
a BASIC only diskette so that BASIC may be directly loaded by the bootstrap
system. See Chapter II, Section 2. This chapter describes the Micropolis
BASIC interpreter and its associated BASIC programming language.

The Micropolis BASIC Interpreter is a special 8080 machine langquage program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original BASIC programming Tanguage was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropolis
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for com-
bining them are described in sections following.

5.1 ENTERING LINtS TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from MDOS

or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a 1ine to be input.

A line consists of not more than 250 characters typed in sequence. The
entry of a line is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will ignore the
extra characters and respond only to the RETURN, RUBout or CNTL/X keys.

During the entry of a line each character that is typed is echoed by the
Interpreter on the terminal display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the Tine entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 9 1/79

the count exceeds the width of the display device. This combination is not
included in the line count. -

Two control features may be used when entering a 1ine.

1} Each time the RUBOUT key is depressed the next previously
typed character will be deleted from the Tine. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the Tine count. ,

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current 1ine to be cancelled. A carriage return
1ine feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new line.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
of a leading line number. A BASIC program is entered one program line at
a time using the normal line entry procedures. The message READY is not
displayed after the entry of a program line. This permits consecutive
program Tines to be entered conveniently. As each program line is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system's main memory.

Each 1ine of a BASIC program is composed of a 1line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colon (:}. The length of a program line may not exceed 250 characters
including the digits in the 1ine number. Each 1ine number must be within
the range 0 - 65529. Spaces preceding the first digit of a Tine number
are ignored. Spaces embedded in a 1ine number are not legal. All other
spaces in a program line are preserved as entered.

Program lines are stored.in the program buffer in numeric order by line
number. The lines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new line in the
program buffer in proper seguence.

To modify an existing program line enter the line number and the new
statement or statements. The new Tine will automaticaily replace the
0ld 1ine in the program buffer that has the same line number.

To delete an existing program line type the Tine number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Note that mu1t1p1e 1ines may also be eliminated by using the DELETE command
as described in 5.4.

Rev. 8 9/78

5.3 IMMEDIATELY EXECUTED LINES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a 1ine number and the line
is treated as a program line. (see Section 5.2)., 1If the first non blank
character is not a digit then the line is interpreted for immediate
execution. _

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are anly
functional within a program. Multiple statements may be included in an
immediate 1ine by separating them with colons (:) BASIC statements are
covered in Section 5.20.

Another form of immediate Tine is the command. Commands are operations
which generally make sense only in immediate mode. Most of the commands
in BASIC system relate to the brogram buffer and to the manipulation and
execution of BASIC programs. The available commands are described in the
following sections. '

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT 1inenumber

A specified 1ine in the BASIC program buffer can be changed without retyping
the entire Tine by using the EDIT command. EDIT linenumber is the form of
this command. 1If the specified linenumber is not found in the current program
buffer, the message STMT # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified line into a special editing buffer and
setting an invisible pointer to point to the first digit of the linenumber
that begins the text line. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a Tine in the
special edit buffer. The whole Tine including the linenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text 1ine immediately after the one that is displayed. The entire
1ine can be displayed in this manner,

5.3.1.2 CHANGING THE MNEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a ¢ or C, followed by the new character.

The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to

point to the character immediately after the new displayed character.

5-3
Rev. 8 9/78

5.3.1.3 DELETING THE NEXT CHARACTER - D

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3.7.4 INSERTING CHARACTERS - 1

Characters may be inserted into the line or at the end of the line by

typing an i or I followed by the characters to be inserted. The

insertion begins immediately before the character pointed to by the

edit pointer. Characters are inserted in sequence as typed until the

insert mode is terminated by typing an escape (1B hex)}. The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position

of the edit pointer to the end of the 1ine may be displayed by typing an

1 or L. The characters are displayed on the console followed by a carriage
return-1ine feed. The edit pointer is reset to the beginning position.
This command is useful to see what the Tine looks Tike before editing is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the 1ine about to
‘be edited without exiting the editing mode.

5.3.1.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
Tine then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position

up to but not including a specified search character can be deleted by
typing a k or X followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
argument does not exist in the edit 1ine, then all the characters from the
edit pointer to the end of the 1ine are deleted. The edit pointer is left
pointing at the search character or at the end of the line.

5-4

Rev. 8 9/78

5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the 1ine in the current
text file by typing a q or Q. The partially edited line in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The 1ine in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EBIT
comnand mode. If the line number of the 1ine in the special edit buffer
matches a line number in the current program buffer, then the edited line
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no Jine in the current program buffer with the same
1ine number as the Tine in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the Tine number during the edit.

5.3.2 THE RENUM COMMAND

RENUM

RENUM {starting-number)

RENUM (starting-number, increment)

RENUM (starting-number, increment, first-1ine-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
Tine numbers, and Tine number references that follow branch statements.

These statements are GOTO, GOSUB, ON...GOTO, ON...GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), RENUM {starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the line number of the first-line-to-change and sets it equal to

the starting-number. The line number of each 1ine after the first-line-to-change
is then set to the value of the preceding new Tine number plus the increment
value. If no first-line-to-change is specified, the first line in the program
buffer is assumed. If no increment value is specified, the value 1@ is used.

I[f no starting-number is specified, the value 18 is used. Typing RENUM alone
will produce a program numbered from 1@ by 18's. Examples:

Assume that the current program buffer contains the following program:

9 REM RENUM EXAMPLE PROGRAM

25 INPUT “VALUE";A -

3¢ PRINT “THE SQUARE ROOT OF";A;"IS";SQR(A)}
45 GOTO 25

The command RENUM (58,39,38) would produce the following:
9 REM RENUM EXAMPLE PROGRAM
25 INPUT “"VALUE";A
5@ PRINT “THE SQUARE ROOT OF";A;"IS";SQR(A)
8¢ GOTO 25
5-4.1

Rev. 8 9/78

The command RENUM would produce the following:

14 REM RENUM EXAMPLE PROGRAM

2@ INPUT "VALUE";A

39 PRINT "THE SQUARE ROOT OF";A;"IS";SQR{A)
49 GOTO 2@

The command RENUM (16@) would produce the following:

109 REM RENUM EXAMPLE PROGRAM

119 INPUT "VALUE";A

12¢ PRINT "THE SQUARE ROOT OF";A;"IS";SQR{A)
13¢ GOTO 119

The command RENUM (12§9,188) would produce the following:

1989 REM RENUM EXAMPLE PROGRAM

1193 INPUT "“VALUE" ;A :
1209 PRINT “THE SQUARE ROOT OF"3A;"IS";SQR(A)
1392 GOTO 1190

Several error conditions are checked before any renumbering is done. This

is to safeguard the program against possible damage. As errors are detected
error messages are printed along with the 1ines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the errors-are corrected.

Entering a RENUM command may result in the message MUMBER OUT OF RANGE
followed by the 1ine where the error occurred. This is an indication that
the renumbering attempt Tead to a Tine number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a 1ine number greater than 65529.

Entering a RENUM command may result in the message MEMORY OVERFLOW. This
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may result in the message STMT # NOT FOUND without
printing the offending line. This occurs when the specified
first-1ine-to-change does not exist in the program. No change is made.
Example; if the program is:

18 PRINT "TEST"
29 GOTO 19

The command RENUM (199,10,30) would cause a STMT # NOT FOUND error because
there is no Tine 3@ at which to start renumbering.

Entering a RENUM command may result in the message STMT # NOT FOUND followed
by the line where the error occurred. This indicates that a branch statement
(GOTO,GOSUB, etc.} contained a reference to a line number that does not exist
in the program. If this is intentional a stub line should be placed in the
program to alTow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

5-4.2
Rev. 8 9/78

Entering a RENUM command may result in the message SYNTAX ERROR. This can
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or.parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a seguence error in the line numbering (e.g. the
1ines were numbered 18,20,30,40 and you typed RENUM (19,16,38). This would
result in numbers 19,28,19,29 which is not allowed.).

The RENUM command does not change Tine numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manually.

RENUM will not renumber 1line number references in scientific notation (1E3),
or expressions (GOTD 90*8+3)}. Such references must be changed manually.

If computed GOTC's, GOSUB's or RESTORE's are used in the program they will
more than 1ikely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.

Example; if the program is:

19 DATA THIS,IS,A,TEST
2 DATA MORE,TEST,HERE,END
- 3@ INPUT "WHICH DATA,1 or 2",A
49 RESTORE (19*A)
5@ READ A$%,B$,C$,D$

The command RENUM (182.,18,32) would renumber the executable part of the
program while leaving the DATA statemenis unchanged.

19 DATA THIS,IS,A,TEST

29 DATA MORE,TEST,HERE,END

129 INPUT "WHICH DATA,1 OR 2",A
119 RESTORE (1g*A)

12¢ READ A$,B$.C$,DS$

The computed RESTORE on line 11§ would still function after the program is
renumbered. However, if lines 18 and 2@ had been renumbered, then the
program would not perform as intended.

The RENUM command c¢an cause a line to expand to a length greater than 25@
characters. Such a long line can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 258 characters
long. The Basic EDIT command uses the 250 character input buffer during
editing. If renumbering causes a Tine Jonger than 25@ characters and that
Tine is later edited using the Basic EDIT command the 1ine will be truncated
at 25@ characters by the editor.

5.3.3 THE MERGE COMMAND

MERGE "unit#:filename"
The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the

command is MERGE "unit#:filename"”. The unit# is a number from @ to three
followed by a colon. If no unit number is specified, unit zero is assumed.

5-4.3
Rev. 8 9/78

lLines are merged one at a time from the merge file into the current program
buffer, starting with the first line in the merge file. If the 1ine number
in the merge file is the same as a Tine number presently in the program
buffer, then the 1ine from the file replaces the Tine in the buffer. If the
line number in the merge file does not match any Tine number in the program
buffer, then the 1ine from the file is inserted in the current program
buffer in proper line number order. When all Tines from the merge file have
been placed in the program buffer the MERGE is compiete. '

The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the merge program must be less than the space currently available to BASIC,
otherwise a LOAD OVERRUN message is output and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY OVERFLOW is output
and the merge does not take place. :

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and talleys the vote.
This module is allocated line numbers from 1000 to 20@@. The data has been
allocated 1ines 19 to 1P@ and the printer output module is allocated 1ines
530¢ to 6004.

The program under test uses Tines 19-3@ as test data, and lines 5p@P-5918
prints the test results. The program Tooks as follows in the program buffer:

19 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM

2(-REM TEST DATA.

3@ DATA 1,1,2,2,3,3.4.4,0,1.,4,1,99

1999 REM PROCESS SURVEY MODULE.

1419 T=1 :REM INIT TOTAL COUNTER

1929 REM VALID DATA IS @=NO OPINION,1=YES,2=N0O,99=END OF DATA.
1925 READ C : '

1930 IF C=@¢ THEN T1=T1+1

1949 IF C=1 THEN T2=T2+]

1950 IF C=3 THEN T3=T3+]

1069 IF C=99 THEN T=T-1:G0T0 5009

1979 IF C<@ OR C>2 AND C<>99 THEN PRINT “ITEM";T;"NOT VALID"
1088 T=T+i

1099 GOTO 1925

5p@9 REM TEST PRINT OUT ROUTINE

5918 PRINT "NO OPINION=";T1;" YES=";T2;" NO=";T3;" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE

5809 REM PRINT MODULE

5019 OPEN 1 "*P" ERROR 52pp

5@2p A$="779":B$="VZ9"

5038 P1=T1/T:P2=T2/T:P3=T3/T

5048 IF P1+P2+P3<>19f THEN PRINT"PERCENT ERROR":STOP
5959 PUT 1 TAB(6@);"“NO"

5-4.4
Rev. 8 9/78

56 PUT 1 TAB{1@);"RESPONSES";TAB(25);"YES %";TAB(46)"N0 %";

5070 PUT 1 TAB(6@)"OPINION %"

5P8P PUT 1 REPEATS("=",72)

599 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(38) ;FMT{P1,B%);
5199 PUT 1 TAB(45);FMT(T2,A%);TAB(51);FMT(P2,B$);TAB(6D) ;FMT(T3,A5) 3
5119 PUT 1 TAB(69);FMT(P3,B$)

512p PUT 1 REPEATS$("-",72)

5139 CLOSE 1: STOP
5209 PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5@20

When the real print module is debugged the command SAVE "PART2" saves it on
the disk.

To test the system PART1 and PART2 are combined by typing the commands

LOAD "PART1" and a carriage return, and then the command MERGE “"PART2" and

a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on disk by typing the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as follows:

DELETE

19 REM LIVE DATA

20 DATA 1,1,1,2,2,1,0,1.,2,1
3@ DATA 2,2,2,2,1,2,2,1,1,]1
4 DATA 1,1,1,2,2,1,2,1,8,8

5@ DATA 99

And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD “PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

1@ REM LIVE DATA

20 DATA 1,1.1,2,2,1,0,1,2,]
39 DATA 9,2,2,2,1,2,2,1,1,1
4@ DATA 1,1,1,2,2,1,2,1,8.0
5@ DATA 99

10@@ REM PROCESS SERVEY MODULE.

1919 T=1 :REM INIT TOTAL COUNTER

1929 REM VALID DATA IS @=NO OPINION,1=YES,2=N0O,39=END OF DATA.
1925 READ C

103@ IF C=f THEN Ti=T1+

1948 IF C=1 THEN T2=T2+1

1050 IF C=3 THEN T3=T3+1

1969 IF C=99 THEN T=T-1:G0TC 5@99

1878 IF C<@ OR C>2 AND C<>99 THEM PRINT "ITEM";T;"NOT VALID"
1989 T=T+1

1990 GOTO 1925

5-4.5

Rev. 8 9/78

5009 REM PRINT MODULE

5019 OPEN 1 "*P" ERROR 52¢0

5p2@ A$="779":B$="VZ9"

5@3P P1=T1/T:P2=T2/T:P3=T3/T

594 IF P1+P2+P3<>1PP THEN PRINT"PERCENT ERROR":STOP

5850 PUT 1 TAB{6@};"NO"

5060 PUT 1 TAB(19);"RESPONSES";TAB(25);"YES %";TAB{46)"NO %";

5079 PUT 1 TAB(BB)"OPINION %"

58P PUT 1 REPEAT${"=",72)

5099 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT{T1,A$);TAB{30);FMT(P1,B%);
5109 PUT 1 TAB{45);FMT(T2, A$) TAB(S]) FMT(PZ B$); TAB(GB) FMT(T3 A$),
5119 PUT 1 TAB(69);FMT(P3,B%)

5129 PUT 1 REPEAT$(“ ",72)

513@ CLOSE1: STOP
52(¢ PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5020

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-Y to eliminate the 1lines numbered X through Y. Line number

Y must be greater than 1line number X. If either Tine X or line Y or both

are not in the current program buffer a LINE NOT FOUND message will be displayec
and nothing will be deleted.

Type DELETE X- to eliminate line X through the last line in the current
program buffer. If line X is not in the buffer a LINE NOT FOUND message
will be displayed and nothing will be deleted.

Type DELETE -Y to eliminate the first line through 1ine Y in the current
program buffer. If line Y is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

A1l or part of the program in the current program buffer can be listed
on the terminal display device by using the LIST Command. There are four
forms of this command.

Type LIST X-Y to display the lines numbered X through Y. Line number Y must
be greater than line number X. If either line X or Y are not in the current
program buffer the first present Tine number greater than X or Y will be used
instead.

- Type LIST X- to display the 1ines from line X through the last 1line in the

current program buffer. If Tine X is not in the current program buffer the
first present line number greater than X will be used instead.

5-4.6
Rev. 8 9/78

Type LIST -Y to display the first Tine through l1ine number Y in the current
program buffer. If line Y is not in the current program buffer the first
present Tine number greater than Y will be used instead.

Type LIST to display the entire content of the current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE "N: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 1§ characters long. The characters

5-4.7

Rev. 8 9/78

which are legal in a file name are the letters A through Z, the digits ¢
through 9, and ten special characters including comma (,), dash (-),
period (.), slash (/), semi-colon (;), less than ({), equal (=), greater
than (), question mark (?) and at sign (@),

The N: is optiomnal. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten
and replaced by the program in the program buffer, If no such file exists
the message FILE WOT FOUND will be output. However, if the N: is included
in the S5AVE command then a new file will be created with the designated
name on the designated unit. If N: is used and the file already exists

on the specified unit the message DUPLICATE NAME will be output.

The unit number; is also optional. When present it consists of a single
digit from @ to 3 followed by the colon (:), It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit @ is assumed.

5,7 THE LOAD COMMARND

A previously stored program can be retrieved from disk and placed in the
current program buffer by using the LOAD command.

LOAD "unit number: name of file" is the general form of the command.

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 1 characters and may use the
letters A-Z, the digits ¢-9 and the special characters (,), (-}, (.), (1),
),), (=, (?)s(@),(>)' B

The unit number: is optional., If it is used it must consist of a single
digit from @ to 3 followed by a colon (:). It designates the address of

the disk unit on which the specified file is to be found, If no unit number
is specified, unit ¢ is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost, If
the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
1.0AD FILE will be output,

5.8 THE DISFLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette directory and its name is always DIR, The names currently recorded
in a diskette directory can be ocutput to the terminal display by using the
DISPLAY command.

DISPLAY 'Munit number: DIR"™ is the general form of the command.

2-5
Rev., 2 5/77

The word DISPLAY and the quotation marks and the name DIR must be nresent.

The unit number: is optional, If it 18 not present unit ¢ is assumed, If

it is used it must consist of a single digit from @ to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command outputs the filenames five to a line, The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC,

If the diskette in the specified unit does not contain a valid directory file
a PERM I/DERR message will result because the disk cannot be accessed by
the BASIC system,

5.9 THE SCRATCH COMMAND

A file that is stored on disk may be eliminated by usirg the SCRATCH command.
SCRATCH ‘'unit number: name of file" is the general form of the command,

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to 1¢ characters, including
the letters A-Z, the digits ¢-9 and the special characters (,), (-), (.),

s Gy, O, (D, O, (D, @.

The unit number: is optional. Tf it is used it must consist of a single
digit from ¢ to 3 followed by a colen (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no
unit number is specified, unit @ will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be
output,

When a file is SCRATCHed the storage space ytiused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buffer it may be executed by using the
RUUN command. :

RUN is the form of the command.
When the RUN command is entered, the interpreter resets all disk files to
"closed”, and frees all memory space previously allocated to variables from

the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

5-6

Rev. 2 5/77

ascending order of line number. This sequence is altered only when
particular program statements deliberately change the sequence by trans-
ferring control. Each pregram line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution 1s halted when an END or STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence, At this point the interpreter
displays the message READY and waits for a line to be entered,

5.11 TNTERRUPTING A RUNNING PROGRAM

The execution of a pregram may be interrupted prior to completion by
holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY.

The interruption generally cccurs after the end of whatever program line
was being executed when the CONTROL’' C was entered., In the case of the
input statement and whenever characters are being output, the interrupt
will occur immediately. Under theae circumstances the remainder of the
input or output will be lost if a continue is attempted (see section 5.12}).

When program execution is interrupted, the value of all program variables
remain as last assigned, Any-open disk files remain open with file pointers
current, Varlables may be examined by using immediate PRINT statements and
may be altered with immediate assignment statements. These are frequently
used aids in debugging programs, However, if the program Iin the current
program buffer 1s modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued,

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROL C procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the CONT command.

CONT is the form of the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not possible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed,

5-7
Rev, 2 5/77

5.13 PROGRAM TRACING COMMANDS

Often, when developing a new program, it is useful to be able to follow
the execution on a line by line basis. This capability is provided in
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability. When the FLOW trace capability is enabled and the RUN command
is entered the interpreter displays each program line immediately before

it is executed. The FLOW trace remains enabled after the end of a program -
execution. It must be specifically disabled.

NOFLOW is the form of the command which disables the program line tracing
capability.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an immediate line
which has just been entered or the next program line during program
execyution, it is possible that an error condition may arise. If this
occurs the interpreter tried to indicate the problem by displaying an
appropriate error message at the terminal,

If the line in error is an immediate line then the error message will
be directly followed by the message READY. All or part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message, All or part of the erroneous program line may not have been
executed, Program execution is not continuable. after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes,

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT 0 (5F HEX)
backspace character and the RUB QUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of the
corresponding ASCII codes are listed in table 5.1.

5-8

Rev. 8 9/78

5.16 BASIC DATA

BASIC programs operate on two types of data: Numeric and String. WNumeric data
includes integers and real (floating point) numbers, Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks, A data item
may be a constant which has an unchangimg value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and referenced as a member of the array.

5.16,1 CONSTANTS

A constant is an unvarying value, It is expressed as its actual value, A
constant may be a numeric value, or a character string value,

5,16.1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36, The format
of an integer may be: '

Integer format: -nn....n Example: -93784
Radix format: ~-xxRnn....n Example: =-16R7B2

Where (-) is an optional sign, ®x is the number base, R indicates radix
format, and nn....n is the number expressed with the digits B-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is 1-5E (2%ISIZE) to 5E (2%ISIZE). See SIZES statement
for definition of ISIZE., The maximum value of an integer specified in
radix format is 65535, A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix specified.

A real number is a positive or negative npumber whieh includes a decimal
point and fractiomal part or a number expressed in scilentific notation,
The formats of a real number may be:

Real format: -nn.,..n.nn... Example: -2,677

Scientific format: -an., .nB-xx Example: 257E-4
-nn...n.nn.,.E-xx Example: -12,231E1l4

Where nn...n.nn... represents the number exnressed using the digits $-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent; E specifies scientific notation and xx represents the
exponent expressed with the digits $-9.

~ The range of a real number is 1E-61 to (lE62)-1.

5-9
Rev., 2 5/77

BASIC CHARACTER SET IN COLLATING SECUBCE

CHAR DECIMAL HEX OCTAL

(space) 32

R B R R RS 2 ARG R R R RS

NV A DD AITRA B U HONY o o ke s AR R R

Rev, 1 5/77

20
21
22
23
24
25
26
=
28
29
24
2B
2¢
2D
2F
2F
30
31
a2
33
34
35
36
3’?’.
33
39
3A
3
3¢
3D
3.1
3y

Table 5.1 Standard Collating Sequence

040
041
042
043
044
045
046
047
050
051

t W/ i marpEdgudegdoRR My ot =B

CHAR DECIMAL HEX OCTAL

64
b
66
687
éa

-

70
¢!
72
3
74
75
76
a4
s
Nt
80
a1
82
83
84
8%
86
a7
88

89

90
91
92
93
54
28

40
41
42
43
44
45
46

47 .

48
49
44
4B
4C
4)
4E
4F
50
51
52
53
54
55
58
X4
58
9
LY Y
5B
5C
8D
5%
By

«9,1 .

100
101
102
103
104
105
106
107
110

111

112
113
114
115

"~ 116

117
120
121
122
123
124
125
1286
127
130
131
132
135
134
138
136
137

5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered

as a constant, a string must be enclosed in quotes (". Quotes

within a string must be doubled (the constant " is entered as AL I8
The length of a string is the number of characters., The maximum

length of all character strings within a program is set by the SIZES
statement,

5.16.2 VARTABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. TSIZE defines the memory space for
integers; RSIZE for real variables; and SSIZE for character strings.

5,16.2.1 INTEGER VARIABLES

Integer variables are designated by any letter followed by a percent
sign (%).. :

The range of an integer is from 1-3E(2*ISIZE) to 5E(2*ISIZE).

The internal format is 2 BCD digits per byte stored in tens complement.
If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs,

5.16.2.2 REAL VARTABLES

Real variables are indicated by any letter (nbt enclosed in quotes)
or a letter followed by a digit. The range of a real is 1E-61 to
(1E62)-1. The precision or level of accuracy is 2(RSIZE-1) decimal
digits.

The Internal Storage Format Is:
Byte 1: 1 bit sign and 7 bit exponent (excess 64)
Byte 2 thru RSIZE: 2 BCD digits per byte,

5.16.2,3 STRING VARIABLES

A string variable 1s designated by a letter followed by a dollar

sign (8). String variables may have a length of up to 258 characters,
The default value of maximum string length is defined by the SSIZE
parameter of the SIZES statement. The maximum SIZE of any particular
string may be declared in a DIM statement, which supercedes the

SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on the right,

The internal format of a string variable is:

5-10

Rev., 2 5/77

Byte 1: Maximum string length

Byte 2: Current string length

Byte 3 thry N: Any character, 1 character per byte
{(N= 2+ Maximum string length found in Byte 1)

Automatic conversion between integer and real data types is pro-
vided which allows mixed-mode arithmetic., A real value is con-

verted to an integer by truncating the fractional part while
preserving the sign of the number.

Conversion between string and numeric data types is provided by
the STR$, VAL, FMT, CHARS, and ASC functions, See section 5.18,1,2
for description of these functions,

5.16.2,5 ARRAYS

Numeric and character string data may be stored in memory as
arrays, An array is a set of variables of one data type (numeric
or character) identified by a single variable name. A numeric
array is denoted by a singie letter or a single letter followed
by a percent sign (%) and may have 1 to 4 dimensions. A string
array is denoted by a single letter followed by & dollar sign ($)
and may have 1 to 3 dimemsions, Both typee of drray are zero
indexed, An array must be declared in a DIM statement which
defines the number of dimensions and the index range In each
dimension. An array indexing error occurs if an attempt is made
to reference an element of an array which has not been defined in
a DIM statement.

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory, For
example, an array A which has a dimension of 4 1s stored:

(%
(1)
(2)
(3)
(4)

An element of a one dimensional array is referenced by the array
name and by the index of the element within the array, enclosed in
parentheses, The 4th element of array A in the above example is
A (3). The index may be specified by a constant, as in this
example, & numeric variable, or a numeric expression.

B e

' 5«11
Rev. 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as: :

c ¢ C
0 0 0
L L L
g 1 2
ROW @ -
ROWw 1 Axrray B(3,2)
7,
ROW 2 h/%
ROW 3) '

An element of a 2 dimensional array is referenced by the array
name and the row and column indices. The shaded element in the
above illustration is referred to as B(2,2), where the first
index is the row index and the second is the column index,

The elements. of & 2 dimensional array are stored sequentially in
memory in column major order, that is column by columnm. The
elements of the array B would be stored:

(d,d_)_ :
(1,
(2,9)
(3,9)
(4,1)
(1,1)
2,1)
(3,1)
(6,2)
(1,2)
(2,2)
(3,2)

FHEEDE R

As with one~dimensional arrays, the row and column indices may be
specified by & constant, a numeric variable or a numeriec expression,

3 and 4 dimensional arrays are extensions of the two dimensional
concept, An element of one of those arrays is referenced by the
array name and the appropriate number of indices, :

5.16.3 OUTPUT FORMATS

A numeric data item is converted to a string when it is output to

5=12
Rev. 1 5/77

the terminal.

Unless the output format is explicitly specified

by use of the FMT function, a numeric value will be output in
one of three default formats according to the following rules:

1)
2)

3)
4)

5)

6)
7

The negative sign (if present) precedes the number

A space is
A space is

output in place of a positive sign
output following the number.

A number is either-a whole number or a decimal

number. A whole number is a number without a
fractional part. A decimal number is a number

with a whole and a fractional part,.

The cutput formats are: Whole, Decimal and Scientific.

Whole:
Decimal :

{ =) xxxxxxx¥
{-)xxx ... x.xxxb

Scientific: {-)n.xxxxx E(-) TTH

The value

= minus sign if negative, blank if positive
digit position

one non-zero digit

= gignifies exponent

exponent

= blank

fl

of an integer variable is output in whole format.

A constant or the value of a real variable is output as

follows:

a)

b)

c)

If the constant or value is a whole number

having less than or equal the number of digits

spec ified by RSIZE, then whole format is used.

I1f the constant or value is a decimal number greater
than or equal to .l and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

Otherwise, scientific format is used.

String data is output without modification.

The maximum output line length is 250 characters. If an attempt
is made to output a line longer than the maximum length, €.9.,by
trying to output 2 strings of 25@ characters with the same print
statement, the message OUTPUT OVERFLOW is displayed and the line
is not printed.

Rev. @

1/79

5-13

5.17 BASIC OPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric(arithmetic); String; Relational; and Logical.

5.17.1 Numeric Operators

Numeric operatwrs. specify arithmetic operations to be performed
upon mumeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric wvariable or a numeric
array element. Numeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

I g
pg,‘v P E e

!

Symbol i Operation

/
VIE A (ﬁ{} Exponentiation
Division
Multiplication
Integer Division (X\Y = Int(X/Y))
Subtraction
Addition

Apads oo o f

s>

The unary operators are listed below:

Symbol Operation
- Negation

No effect

The "+" symbol is recognized as a unary operator to allow constructs
such as A= +7 and A= +B to be syntactically correct although the "+
has no effect,

5.17.2 String Operators

One operator is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference,

Sngol ' QOperation
+ Concatenation

5-14

Rev. 2 5/77

The '"+" operator yields a string composed of the characters in the
string data item to the left of the operator followed by the char-
acters in the string data item to the right of the operator.

EXAMPIE: TIf A$ = "ABCD" and BS$ = "EFGH'" the operation AS$ + BS
vields the string "ABCDEFGH"

5.17,3 Relational Operators

Relational operators allow the comparison of the values of numeric
or string data items,

The relational operators are listed below:

ngbgl Meaning

< Less Than

} Greater Than

- Equal to
L= _Less than or equal to
>‘= Greater than or equal to
<» Not equal to

A relational operator is used in an expression of the form (Data Item 1
operator Data Item 2) which yields a single value as follows: The
values of the two data items are compared, Based upon this comparison
if the expression is true, the value "true" (1) is returned, If the
expression is false, the value "false" (#) is returned.

EXAMPIE: TIf A=1 and B=2 then

A(B Yields a value of 1
A<sB Yields a value of @

The data items compared must both be the same data type (numeric or
string) or a type error results.

String comparison is performed as follows: Starting from the leftmost
character, two strings are compared character-by-character untii there
is a mis-match or the end of one of the strings is reached. If there
is a mis-match, the string containing the character which is higher in
the collating sequence is considered '"greater" than the other string.
If the end of one of the strings is reached without a mis-match and
the strings are not of the same length then the longer string is
“"oreater”., If the end of one string is reached and the strings are

of the same length then the strings are 'equal".

5-15

Rev. 2 5/77

5.17.4 Logical Operators

The relational operators as described in section 3.17.3 return a
value of "true" or "false!", This type of value is referred to as
a boolean value and is represented in Micropolis BASIC as an integer,
Truth or falsity is determined by converting the integer to a 16 bit
binary number., If the least significant bit of the binary number is
§ then the value is false, else the value is true., - Lagical operators
specify operations to be performed with boolean values as described
below; - oo

Binary logical Operators IR ’ :

Operator Expression Truth Table
AND VAL 1 AND VAL 2 VAL 1 VAL 2 RESULT
True True True
True False False
False True False
False False False

Operator Expression Truth Table
OR VAL 1 OR VAL 2 VAL 1 VAL 2 RESULT
True True True
True False True |
False True True
False False False

Unary Logical Operators

Operator Expression Truth Table
NOT NOT VAL VAL RESULT
[True False

[False True

The primary function of the loglcal operators is to allow the"
formation of complex exnressions which evaluate to a single va]ue of
"true or "falge", .

'EXAMPLE A{=B AND C=0

5~16

Rev. 2 5/77

A secondary function is nrovided by the 16 bit implementation of
Boolean values. The logical orerators perform the above defined
functions across the full 16 bits. This allows you to perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8¢8¢ instructions. The utility of this feature is illus-
trated im the following example which is a serial I/0Q handler for
an IMSAT S5I0 board.

8¢P@ REM INPUT ROUTINE - RETURNS CHAR IN A

8188 A = IN (3) AND 2: IF A =P GOTO 81¢¢ :! WAIT INPUT READY
8208 A = IN (2) AND 16R7F: RETURN:! MASK PARITY AND RETURN
839¢ REM OUTPUT CHARACTER IN A '

84@¢ B= IN (3) ANDl: IF B=P GOTO 8480 :! WAIT OUTPUT READY
85908 OUT(2) = A: RETURN :! QUTPUT AND RETURN

NOTE: This example will not work for I/0 to the terminal device,
The BASIC interpreter checks for input from the terminal
between execution of BASIC statements and will gobble any
character received unless it is a CTL/C.

5,18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single wvalue.

BASIC recognizes two types of functionms: Intrinmsic functioms which are
built into BASIC; and user defined functions.

5.18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, string, special
and file. The functions relating to files are discussed in the file
I/0 section.

5.18.1.1 Numeric Functions

The numeric functions provide most of the commonly used trigonometric

and math functions, The math package computes these functions with up
to 29 digits of precision, which requires RSIZE to be set less than or
equal to 1§. Attemrting to use the math functions with RSIZE greater
than 18 will cause a PRECISION ERROR. The numeric functions are detailed
in table 5.2. :

Rev., 8 9/78 5-17

Table 5.2 RUMERIC FUNCTIONS

‘Funcition

_Reference Value
ABS(x) The absolute value of x, where x is a
' numeric expression,
ATN(x) The arctangent of x, where x is a
numeric expression, Returns value in the
_range -T2 o W/2.
Cos(x) The cosine of x, where X is a numeric
exrression in radians.
EXP(x) The value of e raised to the power x,
where x is a numeric expression. _
The whole number part of x with any £frac-
FIX(x) tional part truncated.-and the sign preserved]
where x is a numeric expreassion,
FRAC (x) The fractional part of x with the sign
preserved, where X is a numeric expression.
INT(x) The greatest integer not greater than x,
where x is a numeric expression.
LN(x) The logarithm of x to the base e, where
¥ is a numeric expression with a value
greater than §.
LOG (x) The logarithm of X to base 1#, where x
is a numeric expression with a value
greater than #. :
MAX(x,y) The greater value, X or y, where both x
and vy are numeric eXpressions.
MIN (x,y) The lesser value, x or y, where both x
and vy are numeric expressions,
MOD(x,y) % modulo vy which is equal to x-(y¥INT(x/y)).

Rev, 2 5/77

Both x and v must be numeric expresgions,

5-18

Table 5, 2 {cont)

Function % R L
Reference Value

Generates a pseudo random number between

@ and 1. The argument X is a numeric
expression which controls the number generated
ag follows:

If x is non zero, RND generates a number
RND(x) using x as the seed. TIf x=fl, the last

random number generated is used as the seed,
Rereatedly calling RND with x=f generates

a sequence of pseudo random numbers,

SGN(x) +1 if the sign of X is positive, -1 if the
sign of x is negative, P if x is @,

SIN(x) The sine of x where x is a numeric exp-
resgion in radians.

SQR(x) - The positive square root of x, where x is
___a positive puymeric expression,

TAN(x) The tangent of x, where x is a numeric
expression in radians.

Rev, 2 5/77 5-19

5.18.1.2 String Functions

String functions are provided to compare strings, manipulate substrings
and to convert between numeric and string data types. The string functions
are detailed in table 5. 3.

Table 5. 3, STRING FUNCTIONS

Function
Reference Value

ASC(s%) The ASCII code of the first character
in string s88. Returns a numeric value

CHARS (x) Returns the character whose ASCII code
is x

Returns a string consisting of the value
x formatted by the picture contained in
string y$. The argument y§ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
string. The following characters are
FMT (x,y%) used to format the digits of a number:

9-- A digit position of the number
leading zeroes are output as ''@"

Z-- A digit position. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. If V is
not specified, the decimal point
is gssumed to be at the far right
resulting in truncation of the
fractional part of the number.

$-- A digit position, If more than 1
$ appears in the string then the
digit position closest to theleadinﬁ
non-zero digit of the numbercontains
a "8" and the leading zeroes are
blanked,

%-« A digit position, Leading zeroes
are replaced by asterisks,

,~- A comma appearing before the leading
digit is replaced with a blank,
asterisk or dollar sign according to
the context.

411 other characters are output unchang
If the number is tooc large to fit in th
format srecified, the entire string is
filled with question marks (?),

Rev, 2 5/77 5-20

Table 5.3 {continued)

‘Function

Reference © Value

INDEX (%8, v%) The position in string x$ of the first occurrence
of string y$. If string y$ is not a substring of
x$, then # is returned.

LEFTS (x$, n) Returns n leftmost characters of x$,

LEN (x%) . Returns length of x3.

MID$ (x$,n,y) Returns y characters from string x$ starting with
character n,

MAX (x8$,v$) The greater, string x§ or string y$. See the

' collating sequence in Table 5.1.

MIN (x5,v$) The lesser, string x$ or string y$. See the
collating sequence in Table 5.1.

REPEATS (x$, n) The character string with string x$§ repeated
n number of times.

RIGHTS (%%, n) The n rightmost characters of string x$,

STRS (n) Converts the number n te a string.

VAL (x%) | Converts the string x$ to & nunber. The contents
of x$ may be numeric digits or a numeric expression,
EXAMPLE: If A$ = "242", then VAL (AS)=4

VERIFY (x8, v$) Verifies that all characters in string x3 are also
in y8. Returns the position of the first character
in x$ which is not found in y$. If all characters
in x$ are in y$ returns 9,

5-21

Rev. 2 5/77

5.18.1.3 8Special Functions

Micropolis BASIC provides several other functions which pertain
neither to numbers nor strings. Theae special functions are
detailed in Table 5.4

Table 5.4 - SPECTAL FUNCTIONS
Function :
Reference : Value
IN(k) Inputs a value from I/0 port x. The
value of X must be greater than # and
.Iess than 256,
PEEK (%) ' Returns the contents of memory
‘ ' location x. The value of x muat he.
_greater than @ and less than 65536,
 PGMSIZE Returns the size of the program
currently occupying the program buffer
in bytes.
SPACELEFT Returns the amount of space left in
the program buffer 1in bytes.

5.18,2 VUser Defined Functions

Micropolis BASIC provides the ability to define two types of functions:
BASIC functions and assembly language functions.

5.18,2.1 TUser Defined BASIC Functioﬁs

BASIC allows the user to define functions which consist of BASIC
expreseions and which are referenced in the same manner ag the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(letter) (parameter) = eipressioﬁ
Function Optional Expression which provides
Name Parameter the value of the functien
5-22

Rev. 2 5/77

The characteristics of a function definition are:

1) Function Name--consists of the characters "FN" and one of
the letters A-Z yielding up to 26 user-defined BASIC functions.

2) Parameter--z function may optionally include a parameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter'., TFor example, consider the function defined by:

16 DEF ENZ(X) = XP34x{2+a+n

The parameter X is a 'dummy' in the sense that when the function
is referenced, the value pessed in the function reference is
used in the place of '"X". The parameter is only used in the
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.When the function is
referenced, the current values of A and B are used in evaluating
the expression, ' :

3) Expression--a fupction may be defined as either a string function
or a numeric function by the form of the expression. The ex-
pression may be any BASIC expression which y&elds a single value
of the appropriate data type.

A function reference consists of the 3 character function name
and the parameter (enclosed in parentheses) if a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants, A small program using the above
defined function 1s given below as an example:

10 DEF FNA(X) =x}34xh2+a+n
20 INPUT A,B,C
30 PRINT FNA(C)
40 GOTO 20
READY
RUN
? 2,3,1

7
20,1,2
13
b4

INTERRUPT
READY.

5-23
Rev. 6 9/77

Below ig an exaﬁﬁle of a string function.

5 SIZES(5,4,80)

10. DEF FNB(S$)=REPEATS (S$,N)

20 INPUT A$,N

30 B$=FNB(AS)+"ISN'T THIS REPETITIVE?"
40 PRINT B$ | |

READY
RUN

? VAGAIN AND ",4

AGATN AND AGATN AND AGAIN AND AGAIN AND ISN'T THIS REPETITIVE?
READY

See the "DEF FN" statement for more detailed information.

5.18.2,2 Assembly Language Functions

Micropolis BASIC allows the user to define Assembly Language
"Functions” which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments

to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub-
routine returns control. : -

An Assembly Language Function is defined as follows:
DEF FA (letter)= eipfession

The function name consists of the characters "FA" and one of the
letters A-Z yielding up to 26 assembly language functions. The
expression is a numeric expression which specifies the memory address
of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in parentheses,

Examples:
109 A = FAA
2¢@ AS = FAB (BS, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the vaiuwe of the function reference.

5-24

Rev, 7 3/78

The arguments and result are passed through the following locations
which define the subroutine 1inkage:

LOCATION LABEL DESCRIPTION
P4BCH ARG Pointer to the first argument
PABEH ARG2 Pointer to the second argument
P4COH ARG3 Pointer to the third argument
P4aC2H . ARG4 Pointer to the fourth argument
PaCaH NARGS Number of arguments passed
@4C5H RSIZE Values of RSIZE, ISIZE
P4CeH ISIZE and SSIZE as described
P4C7H SSIZE in Section 5.20.26

PIAPH RESULT 250 byte result buffer

When an assembly language subroutine is referenced, the basic interpreter
sets the pointers in the linkage table to point to the values of the
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the interpreter expects to find
the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARGI-4 and of the result returned
is:

BYTE § - Type Indicator

1 - Real
2 - Integer
3 - String
BYTE 1-N- Refer to Section 5.16.2 "Variables" for the

internal storage format for each variable type.
The length of each variable type is specified
by RSIZE, ISIZE and SSIZE.
The general procedure for using assembly language subroutines is as follows:
1} Load BASIC from MDOS or directly from a BASIC only SYSTEM DISK.

2) Set the memory space used by BASIC using the MEMEND statement
to reserve space above BASIC for your subroutine.

3} Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may now be used.

5-25

Rev. 7 3/78

The assembly -language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly language development tools of the

MDOS system. The source program was entered with LINEEDIT and then assembled
w;th ASSM to produce an object file named CONCAT which can be Toaded by
BASIC. o :

The CONCAT subroutine expects two string arguments to be passed and returns

a string which is composed of the second argument concatenated with the first
argument. If only oneé argument is passed, the result string is "argument.
error”. If both arguments are not strings, the string returned is "type
error", :

Note: This example is not_éompIete - a proper subroutihe of this type
would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded, etc.

3-26

Rev, 7 3/78

A

20¢0
2000
2300
2000
eeao
2002
2Coe
2002
2202
22D
2020
20873
2220
2000
2202
2202
2229
3339
2222
200
2200
6242
6342
6242
6242
6048
6242
62 40
6243
6245
60 45
6248
6040
624E
6851
6254
6255
6257
6254
GO EA
BE5A
6¢54
605D
635F
62 62
6261
62 62
62€3
6764
6265
6268
6263
62 EE
6871
6672
6275
6376

2lAg
24BC
@4 BE
Q4C0O
g4Cz
24C4
g4ce
g4C6

24C7

8D €d
BC @4

g7 6o
BY 24

87 69

A2 21

B3

BC 04

76 €8

.BE P4

79 60
Al 21

‘A2 21

Rev. 7 3/78

L - -

Tieole e ot bk o 3o e obe ateafe o e o o s o ook ol ol ol e e ol ok ke o ok ol o o

. *
* ASSEMBLY LANGUAGE *
* SUBROUTINE LINKAGE *
* DEMC 1978 *
L : : »
Wi afe ot ofc ol ol o o e ot e e ol e e o e ol o e e o ool ol o o o e e e ool o o
; \
L
*
RESULT EQU 1A@H
ARG1 EQU 4BCH
BRGZ EQU ARG1+2
ARGZ EQU ARG1+4
ARG4 EQU ARG1+6
NARGS EQU ARG1+8
RSIZE EQU ARG1+9
ISIZE EQU ARG1+1D
SSIZE BQU ARG1+11
%* .
CRG 604PH
THIS CEMO ACCEPTS TWO ARGUMENTS
WHICF ARE STRINGS AND RETURNS
ARG1 CONCATENATED WITH ARG2.
NBRCK LDA NARGS $CHECK FOR TWO
CPI 2 } ARCUMENTS .
JNZ NBRER ;IF NOT TWO - ERPOR,
TYPCK LELD ARG1 }ELSE, CHECK TYPE OF
MOV A M ARG1. IT MUST
CPI 3 ;BE A STRING.
JNZ TYPERR ;IF NOT - ERROR,
LELD ARG2 ELSE, CHECK ARC2
MOV A,M $IT ALSO MUST
CPI 3 BE A STRING.
JNZ TYPERR ;IF NCT - ERROR.
*
* BOTH ARGUMENTS ARE VALID STRINGS
1XI D,RESULT ;SETUP RETURN
MYI A3 iPARAMITER AS A
STAX . D 5STRING TYPE.
INX D SKIP OVER
INK D ; LENGTE FOR
INX D s NOW |
“IRA A 3 ZERO LENGTH
MOV B,A $ COUNTER.
~ _LELD ARGl sMOVE FIRST)
MSTR CALL MOVE s ARGUMENT TO RESULT
LHLD ARG2 sMOVE SECOND
CALL MCVE ; AGRUMENT TO RESULT
¥0V AR GET LENGTH COUNT
STA RESULT+1 ;PUT COUNT INTO
STA RESULT+2 ;RESULT.,
RET | ;DONE, RETURN TO BASIC

5-27

6279
€279
€879
€275
6279
£27G
6279
6274
€273
8770
607 I
€2 7K
627 F
€052
€761
BEEZ
6¢ 53
BLEE
B2ET
6287
6287
GOEA
EY T
€281
60 SE
5363
6955
6256
5257
5295
6299
6494
£2CB
6297
629k
E2CE
B2CE
6241
6344
BZAT
60AL
EIAE
6CA3
8ZAE
62R1
5234
BZE7
62BA
BEBC
62BC

ge
54
45
52
52

5}
41

=4
-~

43
45
4F

Sk
ge

AR
Ag

, @3

£85

e
59

52

e
52
4D
54
52
52

Rev. 7 3/78

€
63

€2
21

Ee

dA
52
25

4F

¢E -

47

45 .
<0 .

52

O3 % 3

1%

YOVE

MOV EL

e

* .
TYPERR
X
NBRIR
EMSG

*
NBEMSG

INY
INX

MOV

INX
MOV
STAX
INX
INX
INE
DCE
INZ
RET

LXI
JNVP

LXI
LXI
MV
STAX
INX
INX
INX
XRA
MCV
JMP

MESS

D3

DT

LB
D

END

-

Eomdgeimomm

L

B, TYPMSG
EMSG

- B, NBRMSG
L,RESULT

AGES

,9.12

= =

-
<t
[

MCVE ARGUMENTS TO RESULT.

HL REGCISTERS HAS ARGUMENT ADDRESS.
DE REGISTERS HAS POSITION IN RESULT.
B REGISTER IS COUNT

;SKIP TYPE
+SKIP MAX LENGTH
sGET LENGTH COF STRING

+GET CHARACTER -
» PUT. IT INTC RESULT
s NEXT -

s COUNT +1

y LENGTH -1
s LOCP TILL DONE
s DONE '

3PUT MESSAGE IN RESULT
;STRING TYPE

; ZERO CCUNT
;M¥OVE TO RESULT

"TYPE ERFOR’

@,2,14

"ARGUMENT ERROR’

NBRCK

' 5-28

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

HEADY

LIsST

1¢ TIM A3(250),835{250",05(250)
2¢ MEIMIND 16ESFFF

2% LCAD "CONGAT

472 TEF FAA-16R6040C

52 INPUT A3

63 INPUT BS

72 0S-FAA(AS,BS)

82 PPINT (% .

9z GOTO &2

READY

KN

? 1234%

? 67892

122456785¢

? HCW IS THE TIME

7 FOR ALL GCOTL MEN

NCW IS THE TIMEFCER ALL GOOD MEN

?
INTERRUPT

64 INPUT B¢

FEADY

PEINT FAAad,

AXGU¥ENT ERFCE

RFADY

DRINT FAA{A,B)

TYPE ERKOE

EEATY))

PRINT FAA(12345 ,"67362)
1224567699

READY

5-29

Rev. 7 3/78

Pages 5-30 through 5-32 left blank intentionally.

5-30 .

Rev. 7 3/78

5,19 BASIC EXPRESSTONS

A BASIC expression is a combination of data items and function references

conmnected by operators, An expression specifies an operation or serijes of
operations that yields a single value, which is referred to as the value of
the expression.
elements.

5.19.1

Data items may be constants, simple variables, or array
Operators may be arithmetic, string, relational, and logical.

Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1)

2)

3)

4)

Operator Precedence =-- Operators encountered in an
expression are performed in the following order:

1) Function references

2} TUnary operators

3) Arithmetic & string operators
4) Relational operators

5) Logical orerators

Operators which have the same level of precedence are
performed in the order in which they are encountered
in scanning the expression from left to right.

The normal rules of precedence & order of -evaluation

may be overridlenby the use of parentheses to partition
an expression into subexpressions. Nesting of sub-
expressions is limited by the overall complexity of the
expression, If an expression is too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

Expressions containing subexpressions are evaluated
from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation

apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators,
Operations are performed in the following order:

Revw,

2

5/77

and numeric data items and evaluates to a numeric result.

'5-33

1) Function references

2) Unary #4 dnd -

3) Exponentiation

4) Division and Multiplicatieon
5) 1Integer division

6) Addition and Subtraction

Parentheses may bhe used to force evaluation in the exact order desired,
EXAMPLES:
L. 2%347%4
This expression is evaluated as follows: (V(x) indicates the wvalue
' of x)
1) 2%3 yields 6
2) 7%4 yields 28
3 V(2*3) + V(7*4) yields 84
2. 2%(347) *4
This expression is evaluated as follows:
1) 347 yields 1¢
2) 2% V(3+7) yields 20
3) V(2%V(3+7)) *4 yields 80

5.19.3 String Expressions

A string expression consists of string function references, string
operators, and string data items and evaluates to a string result,
Operations are performed in the following order:

1}y Function references
-2} Concatenation

EXAMPLE: Let B$ = "The number is"
BS+STRS (134)
This expression is evaluated as follows:
1) STR$(134) yields " 134 "

2) V (8TR$(134)) is concatenated with the current
value of B$ which yields "The number is 134 "

5-34

Rev, 2 5/77

5.19.4 Logical Expressions

A logical expression consists of numeric and string expressions
combined with relational and logical operators. The value of a
logical expression is a Boolean value, OQOperations are performed
as follows:

1
2)
3)
4)
3)
6)
7

EXAMPLE :

A+24=3

Functien references are performed,

The NOT operation is performed,

Numeric and string expressions are evaluated,

Relational operations are performed

The AND operations are performed

The OR operations are performed

Parentheses may be used to force evaluation in the exact order
desired

AND B+3¢5 OR NOT (B$="A")

This expression is evaluated as follows:

1y

2)

4)
5)

6)

7
8)

Note:

Rev, 2

The value of B$ is compared with "A" (Note: if parentheses
had not been used, BASIC would have tried to rerform NOT
B$ which would have given an error) Temporary result Tl is
set =1 if B$="A" else is set =@

Tl is complemented

A+?2 ig evaluated

B+3 is evaluated

The value of A+2 is compared with 3 and a temporary result
T2 is set =@ if A+23}3 or 1 otherwise,

The value of B+3 is compared with 5 and T3 is set =@

if B+3 is greater thanm or equal to 5 else is set =1,

T2 is ANDed with T3 yielding T4

The value of the expression is obtained by OR'ing T4

with T1

The NOT operator complements the 16 bit representation of
Boolean values so the final value of this expression is
65535 1if true and 65534 if false.

5/77

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program, and
describe the data and operating environment of the program. '

Every BASIC statement consists of a keyword followed by a list of zéro or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same progrém line separated by
the colon (:) (see section 5.2).

The statements included in the BASIC language are listed alphabetically
and described in detail in the following pages. Conventions of notation
used are:

1) .
{B Indicates a choice of one of the items enclosed.
C

2) [1] Indicates optional items.

3) Parentheses {) used in definitions must be included as
illustrated.

5.20.1 DATA {numeric constant} {numeric constant}
string constant s string constant

15¢ DATA 25, "APRIL 1, 1977", 26E-3

The DATA statement is used to define a list of data internal
to a BASIC nrogram which may be accessed with the READ state-
ment. When a BASIC program is started, the DATA nointer is
initialized to point to the firstdata item in the first DATA
statement in the program. When a READ statement is executed,
one value is read from the list for each variable specified
and the vointer is advanced to point to the next ddta item,
When the data items in a DATA statement are depleted, the
pointer is set to noint to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-
tiguous list. The RESTORE statement can be used to re-position
the DATA pointer to point to the first data item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

5-36
Rev, 2 5/77

5.20,2 DEF FN letter [(function parameter nawm)] = expression

i@ DEF FNA = X+Y+4Z
1§@ DEF FNL(A)= (4%*3,1415%A)/3
150 DEF FNR(MS$)= REPEATS(MS$,5)

The DEF FN statement is used to define a function.
The name of the function defined is "FN" followed

by one of the letters A-Z. Each function name may be
defined only once in a given program,

For example, if the statement 110 DEF FNN= 3, 1415%R2
were used in a program. 260 DEF FNN (MS$)=REPEAT(MS,5)
could not be used because the function names are
identical, The statement 260 DEF FNM {M$)=REPEAT(MS,5)
would be legal.

A function parameter is optional., If nresent, it is a
dummy warameter and its name may be any simple variable
name, A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN statement is non-exXecutable and may appear
anywhere in a program,

5.20.3 DEF FA letter = numeric expression
9¢ DEF FAA = L6R7008

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.

The function name consists of the letters "FA" and one

of the letters A-Z., The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 "Assembly Language Functions" for details of
linkage and passing arguments.

5-37
Rev. 2 5/77

5,20,4 DIM letter (%] (I1, I2, ... I4)
DIM letter ${length)
DIM letter $(I1, ron I3&Iength)

1§ DIM A (2,4)

2¢ DIM B%(2,3,4,5)
39 DIM AS(48)

49 DIM A$(2,3,40)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays,

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A~Z, An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
gions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension,

The second form is used to set the maximum length of a
string variable, The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The length
gpecified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement,

The third form is used to define a string array., The array
name consists of one of the letters A-Z followed by the dollar
sign ($). A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified., The value
of each I defines the maximum value of the index for that
dimension, The last parameter specified in the parameter

list is the maximum length of each string element,

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions,

5,20,5 END
14688 END

The END statement is optional in BASIC, Execution will
terminate when the END statement is executed and may not
be continued with the CONT command, It is recommended
that an END statement be the last statement of a program
to serve as a listing aid, 1Its presence ensures that the
listing is complete,

5-38
Rev, 2 5/77 '

5.20.6 EXEC string expression

5,20.7

Rev.

180 EXEC A$

The EXEC statement is a feature unique to Micropolis BASIC,
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by colons(:)., The expression passed is checked for
syntax errors and then executed if valid. The following
program is given as an example of the power inherent in this
statement, The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator.

LIST

10 INPUT A$: EXEC SPRINT "+A$: GOTO 10
READY

RUN
7 242
4
7 SIN(3.14159/4)

. 70710595
? .

FLOW

19 FLow

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs, The program trace will out-
put to the terminal the program line of each statement which
is executed, The program line will be output again if the
THEN portion of an IF . , . THEN statement is exécuted. The
program trace is turned off by the NOFLOW statement,

5-319

2 5/77

5.20.8 FOR numeric = humeric TO numeric STEP numeric :J
n

variable expression expression expressio
3¢ FOR X =1 TO 3¢
49 FOR Y = 30 to @ STEP -1
5S¢ FOR X = A to B

The FOR statement initiates the repeated execution of a set

of statements following it. The set begins with the statement
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the

FOR statement, The numeric variable controls the number of
times the set of statements is to be executed and is called the
loop variable. The set of statements to be executed is
referred to as a FOR . . NEXT loop. '

The expressions specify the initial wvalue of the loop
variable, the terminal value of the loop variable, and the
value to be added to the loop variable after each pass

. through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used,

The statements within the FOR ., . . NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal values.

The STEP value can be negative, as in:

2§ FOR I = 108 to ¢ STEP -19 -
This statement would cause the initial value of the loon
variable I to be set at 1@, subtract 1@ from the loop
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value p.

The statement 15 FOR J = P TO ¢ would cause the FOR loop

to be executed one time, That is, the statements between
the FOR J. . ., . and the NEXT J statements would be executed
once before the loop variable of f# + 1 would be compared to
the limit value of . At this point the loop variable 1limit
would have been exceeded and program execution would fall
through to the next line number.

A set of FOR , . .T0. . .NEXT statements may be nested within
one or more sets of FOR, . .TO. . .NEXT statements. For
example:

16/ FORK =1 TO 96
26 FORL =1 To 15
36 PRINT K,L

4@ NEXT L

56 NEXT K

5-40
Rev. 2 5/77

When nesting FOR. . .TO. . .NEXT statements it is imperative
that the inside loop (in this case the L loop) be completely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

14 FORK =1 T0O 9p
20 TOR L =1 TO 15
3¢ PRINT K,L

4@ NEXT K

5¢ NEXT L

The error message "™ISSING FOR" would occur when the "NEXT L"
statement is encountered. '

If a GOTO or IF, . .THEN statement is executed from within a
loop, the program execution will continue in a normal manpner,
BASIC will continue the loop from the current value of the

loop variable if the loop is re-entered at some later point,

5-41

Rev, 2 5/77

5.20,9 . GOSUB {linemumber . | .
numeric expression}]

210 GOSUB 1000

The GOSUB statement causes a set of statements to be executed as
4 subtroutine.

When a GOSUB statement is executed, control is transferred to the
first statement whose line number is specified in the GOSUB
statement, The referenced line number and all statements following

-1t will be executed.until a .RETURN statement is encountered.
Control is then returned to the statement following the GOSUB,
Consider the following: ; . -

'16G END . o

'21¢ INPUT X,Z

226 A =X +1: B =7Z-1§
23¢ RETURN

150 GOSUB "21: PRINT A + B _

When line number 158 is executed, control is transferred to line
number 21¢. Line 21@ and 22@ are executed, then 238, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested, That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed, The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number. If
this is done, care must be taken to insure that the value of

the expression is a positive real number, The fractional part

of the number will be truncated in forming the line number.

A NUMBER OUT OF RANGE error will occur if the noember is invalid.

. 5-42
Rev, 2 §5/77

5.20.10

5.20.11

Rev.

5

GOTO line number
numeric expression
16¢ GOTO 5008
20¢ GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line. A4 GOTO statement may
reference any line in a program, including its own line. The

line number may be specified as a comstant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value, The fractional part of the number will be
truncated in forming a line nuwber. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur.

IF logical expression | [gﬂ_g_u_] STATEMENT | :STATEMENT |
THEN line number
14 IF ALB THEN PRINT "™V
26 IF A =2 GOTO 19¢

3¢ IF A =4 THEN 140

It

4 IF A =2 ANDC = 3 THEN D = 2: GOTO 1486

The first form of the TF statement provides conditional exgcution
of one or more statements based upon the value of a logical
expression,

The statements subject to conditional execution must all reside
within the same program line as the IF statement. TIf the logical
expression evaluates to '"true'', then the statements are executed,
If the expression evaluates to "false'", then all remaining state-
ments within the line are ignored., The keyword THEN is optionail
in this form,

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.

If the expression evaluates to "true', control is transferred
to the first statement in the specified program line. If the
expression evaluates to '"false', program execution continues

at the next sequential program line. The line number must be
specified as a constant, TIf the line number srecified does not
exist in the program, a STMT # NOT FOUND error occurs,

5~43

5/77

5.20.12

5.20.13

Rev. 6 9/77

INPUT [“prompstring”{f}] variable list

19 INPUT A,A$
2P INPUT “ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
terminal and waits for the user to enter the data. If a
prompt string followed by a semicolon (;} is included, the
string is output, followed by a question mark (?) before
waiting. If a prompt string followed by a comma (,) is
included, the string is output and then the question mark
is output on the next line before waiting for entry. If

no prompt string is included, a question mark is output

to the next terminal Tine before waiting for input.

One value must be entered for each variable in the variable
1ist. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a

TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable iist
should be entered again in proper order. The last value
entered is delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the terminal and
the statement waits for more input to satisfy the variable
1ist. If too many values are entered, EXTRA INPUT IGNORED

is output to the terminal and the program continues execution.

{LET] variable = expression

1P LETA=5
28 A% = "FAT HIPPO"

The LET statement causes the expression to be evaluated and
assigns the resuiting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44

5.20.14 MEMEND numeric expression
1¢ MEMEND 16R70@@

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC., One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

3.20.15 NEXT numeric variable
19 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution
of a FOR statement naming the same loop variable, a 'MISSING
FOR error occurs.

5.20.16 NOFLOW
506 NOFLOW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

5.20,17 ON numeric expression GOTO line number 1list

1% ON R+5 GOTO 206, 300, 409
206 ON J GOTO A+50, 40¢.B

The ON,..GOTQ statement causes control to be transferred to
the line number whose positional value in the line number list
is equal to the expression. If the expression is zero or
greater than the number of lines in the list, control is
passed to the next statement. If the expression is fracticnal,
the fraction is truncated prior to the GOTO being executed.

If the expression is negative a NUMBER OUT OF RANGE error
occurs., The line numbers in the line number list may be
numeric constants or numeric expressions, If a line number

in the list does not exist a STMT # NOT FOUND error occurs,

5-45
Rev, 2 5/77

5.20,18 ON pumeric éxpression GOSUB iine pumber Jlist

163 ON X GOSUB 504, 608, 700, 800
208 ON Z+2 GOSUB B,C, 6p@

The ON.,.GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in

the line number list is equal te the value of the numeric
expression.

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement.
If the expression is fractional, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs,

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
list does not exist a STMT # NOT FOUND error occurs.

When a RETURN statement is encountered in the subroutine,
control returns to the statement followng the ON.,.GOSUB
statement.

5.20.19 OUT (numeric expressioﬁ 1) = numeric expression 2
186 OUT (16R18) = 29

The QUT statement causes the value of expression 2 to be
output to the I/0 port specified by expression 1., Both
expressions must be numeric expressions with values in the
range @ to 255 or a NUMBER OUT OF RANGE error occurs,

5.20.20 POKE (numeric expression 1) = numeric expression 2

14@# POKE (16R69¢Q) = 20d
20 POKE (A) = B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range ¢ to 65335 and expression 2
must be in the range @ to 255, If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE ~error occurs, Care must be exercised to ensure
that the location POKE'd does not cause BASIC to crash.

Rev, 2 5/77

5.20,21

Rev. ©

PRINT expression {i} [TAB(numeric expressioé]. .

1A PRINT A;B;C
2¢¢ PRINT TAB(1@); "THE ANSWER IS"; FMT(A,"ZZZ9V.99")

The PRINT statement causes the value of the expressions in
the expression list to be output to the terminal, Exrressions
are output in the formats described in section 5.16.3,
"output Formats',

An output line consists of up to 250 characters and is
partitioned into 16 character print fietds. Print nosition
within an output line is controlled as follows:

1) An expression is output starting st the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semicolon (3).

2) 1If the expression is followed by a semicolon,
the print position is set to the next position
following the last character output for the
expression, If the expression is the last
expression of the PRINT statement then output
generated by subsequent PRINT statements will
start at this position on this line of the output
on the terminal.

3) If the expression is followed by a comma, the
print position will be set to the beginning of
the next 16 character print field after out-
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subsequent PRINT statements will
begin at this position on this line of output
on the terminal.

4) 1If the last expression of the PRINT statement is
not terminated by a comma or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
exnression.

5) The print position may be explicitly set by including
references to the tab function which operates only
in PRINT or PUT statements. TAB moves the nrint
position to the position smecified by the wvalue of
the tab function parameter. If the position is
already beyond the specified value when the print

5-47

5/77

statement is executed then the specified value is
simply ignored. '

BASIC contains a parameter which specifies the length of a
physical output line on the termimal. If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary,

5=48§
Rev, 2 5/77

5.20.22 READ variable list
18 READ A,B,C$

The READ statement reads values from the BASIC programs
internal data list which is created by including data
statements within the program. One value is read from

the data list for each variable appearing in the variable
list. If there is insufficient data in the data list to
satisfy the variable list then RAN OUT OF DATA will be
output., If a string value is read for a numeric variable
then a TYPE ERROR will occur. Values are read sequentially
from the data list unless the pointer which points to the
next value to be read is repositioned by use of the RESTORE
statement.

5.20.23 BREM remark text
19 REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

The REM statement is used to include comment text. The
character (!) may also be used to include comments in a
program line. The REM statement and any characters fol-
lowing a (!) character in a program line are non-executable
and are ignored.

5.20.24 RESTORE numeric expressioﬂ]

1% RESTORE
20 RESTORE 25

The RESTORE statement is used to position the data list
pointer which allows control of the sequence in which

data items are read from the program's internal data list.
The pointer will be set to the first data item of the data
statement whose line number is specified by the numeric
expression, If an expression is not specified, the pointer
will be set to the first item in the first data statement
appearing in the program,

5.20,25 RETURN
1#¢ RETURN

The RETURN statement transfers control to the statement
immediately following the last GOSUB statement eXecuted.

If a RETURN statement is encountered prior to the execution
of a GOSUB statement the error message "NOTHING TO RETURN
TO is output to the terminal,

5-49
Rev. 2 5/77

constant 1, constant 2, constant 3, | constant 4

5.20.26 SIZES (numer'ic numeric numeric [’numer‘ic])

5.20.27

5.20.28

Rev. 6 9/77

20 SIZES {5,4,89)

30 SIZES (6,5,40,309P) |
The SIZES statement 1s used to specify the number of bytes
of storage to be used for real variables (RSIZE)}, integer
variables (ISIZE) and string variables. {SSIZE), and the
maximum program size when using chained program segments _
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and Tess than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and Tess than 3p. The value of constant 3 specifies
SSIZE which must be greater than P and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for program
size, after which variable space allocation begins.

%f no SgZES statement is executed, the default SIZES are
5,3.,44).

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

STOP
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT command.

STRING string expression
19 STRING ";"
The STRING statement defines the current string delimiter

used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either

-the end of the record ar the first occurence of the string

delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

5-50

5.21 BASIC DISK FILE I/0

A file is a data structure which may be accessed as a named entity and consists
of a collection of data grouped into elementary units called records, The file
structure is generally used for storing data on mass storage devices such as a
disk, Disk Extended BASIC provides the ability to create and access files stored
on the disk. Common maintenance operations such as renaming or deleting a file
are included,.

5.21.1 Disk Files

Bach file stored on a diskette is jdentified by @ file name, which may be

from 1 to 18 characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The minimum amount of space required ko store a file is one track. When a
"new" file is opened, a complete track is allocated. This track and auny
other track assigned by the BASIC file system to this file remain unavail-
able to any other file until released by the user. The maximum number of
files that can be stotred on a disk is a function of the number of tracks
available on the disk. The Mod I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector. A
file is accessed sector by sector; therefore a "record" is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is allocated for each 'new'" file opened. When 16 records have been
written to a particular file, another track is allocated, The file
appears contiguous to the program, even if it is not stored on contiguous
tracks, It is not possible to store one file on more than one disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data,

1) Program Files - A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6. The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression., A LOAD command will load the data from a
program file into the BASIC program buffer.

2} Object Files - An object file is an image of a block of memory
which was saved using the memory range option of the SAVE command.
A LOAD command will read the data back into the memory locations
from which it was saved. This is the format in which assembly
language programs may be stored on the disk.

5-51
Rev, 2 5/77

Several keywords are provided to manipulate disk files as described

3)

below:

Data Files - Data files contain data created by and are
accessible to BASIC programs by use of the PUT and

GET statements., Each execution of a PUT statement
stores 1 record in the file, Datg within each record
is represented as ASCII characters,

Each record is a 258§ character string. A data file
may not be loaded using the LOAD command, Micropolis
BASIC provides the ability to access the records of a
data file either sequentially or directly. (commonly
referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes,

1)

2)

Write Protect - A file which is Write
Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided
by a Write Protect tab installed on a
diskette, Tf a physical Write Protect
tab is installed on a diskette, all
operationsg which attempt to modify a
file or the directory will yield a
WRITE PROTECT error.

Permanent -~ A Permanent file may be re-

written but may not deleted by a SCRATCH command.

A file may be both Permanent and Write Protected,

5.21.2 Disk File Commands

Commands are provided to load and save program or object files, delete

a file, and to display a list of the files which reside on a diskette.
Although cosmands may appear in a BASIC program, commands will gederally
be executed in Immediate mode. All disk commands reference the directory

of the desired diskette.

If the diskette is not loaded or a malfunction

exists in the disk drive which causes it to return a not ready status
the message ORIVE NOT UP will be output to the terminal when a command
If the drive is unable to read or write on the diskette

is executed.

properly then a PERM I/0 ERROR will result,

Rev,

2

5/77

5«52

5.21,2,1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY A$

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

" [uni.t'.] DIR" where unit is the drive

unit address in the range of @ to 3. If omitted, drive @ is assumed.
If the string is a constant it must be enclosed in quotes ("), If

a directory does not exist on the diskette a 'FILE NOT FOUND error
results,

5,21.2,2 LOAD string expression
LOAD ''2:DEMOPGM"

The LOAD command loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [Pnit:] filename" where unit is the

unit address in the range @ to 3. If omitted, unit # is assumed,

The file pame may be a2ny valid filename. If the string is a constant
it must be enclosed in quotes ("), If the desired file doas not
reside on the diskette a FILE NOT FOUND error results, If the

file is a data format file, a NOT A LOAD FILE' error results.

5,21.2.3 PLOADG string expression
PLOADG "@§:NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the fiist line of the new program,

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This is accomnlished by using
a PLOADG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no nrogram variables
or open files are retained from one program or segment to the next,

5-53

Rev. 3 6/77

The string expression in the PLOADG statement must evaluate to the
following form:

"[Pnit{l filename"

where unit is the unit address in the range @ to 3. If omitted,
unit @ iz assumed, The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ('), If
the desired file does not reside on the diskette a FILE NOT FOUND
error results., If the file is a data format file, a NOT A LOAD
FILE error results., If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement,

5.21,2.4 SAVE string expression {ﬁemory address rang%]

SAVE "N:1:NEWPRG"
SAVE "N:LOADER" 16R7¢@#¢, 16R7DFF

The SAVE command stores program format or object format files on the
diskette, The file is specified by the string expression which must
evaluate to the following form:

" [N::' [unit :] filename"

If the file to be saved does not already exist on the diskette, the
"N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range $-3. If omitted, unit @ is assumed. If the
string is a constant it must be enclosed in gquotes (').

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in ~rogram
format,

If the memory range option is specified it must be of the form:

numeric expression 1, numeric expression 2

The numeric expressions must evaluate to positive real values in
the range @ - 65535. Fractional parts will be truncated. The
contents of memory from .expression 1 to expression 2 will be
stored in the desired file in object format.

5-54
Rev. 3 6/77

If "N:" is not specified for a new file, a FILE NOT FOUND

error results. If a file has a Write Protect attribute,

it cannot be overwritten and a WRITE PROTECT error will
~pccur if an attempt is made to save it. If a file specified

as new already exists a DUPLICATE NAME error occurs.

5.21.2.5 SCRATCH string expression
SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
and releases the tracks allocated to the file for use by other
files. The file to be scratched is specified by the expression
which must evaluate to the form:

"[unit:] filename" where the unit is

- the drive unit address in the range # - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit @ is assumed.

If the spécified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

5.21.2.6 CHAIN string expression
99¢ CHAIN "NEXTPART"

The CHAIN statement loads the BASIC program file specified

in the string expression into the current program buffer and
~then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the Tast program segment,
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. This means that the filenumber is disassociated

from the filename and made free for reuse; but the directory
‘15 'not updated and therefore any changes in the length of

the file are not recorded. In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

Rev. 6 9/77 5-54.1

Rev, 6 9/77

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available
system memory would otherwise permit. It makes it possible
to transfer data and control from section to section of a
very large program that has been divided into separately
loadable segments. To use the CHAIN statement effectively
certain rules must be observed.

1)

2)

3)

The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If

this condition does occur a LOAD OVERRUN error
will be reported. A procedure for aveiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each.
segment can be determined by LOADing it and using
the PGMSIZE function (see section 5.18.1.3).
Assuming a set of three program files named

SEGT, SEGZ, SEG3, the following example illustrates

- the procedure:

LOAD "SEGT"
READY

PRINT PGMSIZE
472

READY

LOAD "SEG2"
PRINT PGMSIZE
526

READY

LOAD "SEG3"
PRINT PGMSIZE
126

READY

In this example the largest PGMSIZE is 526, If
SEGT were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES {5,3,49,526) would be included

as the first statement of SEGT.

A1l files should be closed before executing a
CHAIN statement.

A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this is done only
the current value of the loop index variable will
be preserved across the CHAIN.

5-54.2

4) A CHAIN statement should not normally be executed from within
a subroutine. 1If this is done the RETURN information for that
subroutine is lost across the CHAIN.

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program size. A special internal test allows such a statement
to be chained back to as necessary.

5.271.2.7 LINK string expression

LINK "MDOS"
LINK "DISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MDOS and DISKCOPY. These files compietely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the

disk unit is not ready, control will return to BASIC where the error will

be reported. If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft hait. This is done because BASIC
has already been partially destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
Tanguage program file that runs in high memory above the end of BASIC

{see MEMEND statement}. It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/0 STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/0 statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/0 statements refer to files through a program
"File Number"; An OPEN statement must be executed to
asgociate a file on the diskette with a rrogram file
number, '

2) When all I/0 operations on a file are complete, a file
mist be closed by executing a CLOSE statement. Closing
a file consists of updating the directory to reflect all
operations which have been performed since the file was
opened, and disassociating the file from the program
file number., CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost.

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands., If the diskette is not

loaded or a malfunction exists which prevents the drive from
performing operations then a DRIVE NOT UP error results. If the
disk is unable to perform the specified read/write operation properly,
a PERM I/0 ERROR results.

A program file number may be in the range § to 9. As many as 19
files may be open at once within a program. If an T/0 statement
attempts to access a file which has not been opened by an QPEN
statement then a ‘FILE NOT OPEN error results.

If an I/0 statement specifies a file number outside the range #
to 9 then a 'NOT A FILE# error occurs,

5.21.3.1 OPEN file number string expression options

14 OPEN 1 '"N: NEWFILE"
"2 OPEN 2 "JOE" END 100@ ERROR 5@¢¢

The OPEN statement opens the specified file for access by disk
I/0 statements, The file is selected by the string expression
which must evaluate to the form;

"[i] Einit :] filename"

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file., The
unit specifies the drive unit address which must be in the range #-9,
The filename may be any valid filename. If the string is a constant,
it must be enclosed in quotes ("), If the unit address is omitted,
unit @ is assumed. If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs, If a file
specified as new already exists, a DUPLICATE NAME error occurs,

5-35
Rev, 8 9/78

The filenumber must be a numeric expression with a value of # - 9,
The filename specified will be associated with this file number

until the file 18 closed and all file I/0 directed to the file number
will be performed using this file,

Each open file has two associated pointers which point to the next
record to be accessed in a sequential PUT or GET statement. When
a file is opened, the sequential GET pointer is initialized to
point to the first record. The sequential PUT pointer is initialized
to point to the record following the last record. The last record in
the file is considered the end of the file for GET statements. The
last record +1 is considered the end of file for PUT statements,
For example a 5 record file would have pointers initialized as follows:
r EQOF for a GET (Read)
¥—EOF for a PUT (Write)

RECORD 1] 2| 3| & |s ']--;-_i
_____]

Sequential Sequential

GET pointer PUT pointer

An open file may be read from and written to both sequentially and
directly by record,

The open statement includes several options which are listed below:

1) CLEAR - The CLEAR option overrides the normal initialization
of the sequential GET & PUT peointers. The pointers are
initialized so that the file is empty. A subsequent GET
will encounter an end-of-file. A PUT will write into
record 1, This option is generally used to initialize the
pointers for re-writing a file sequentially,

2} END pumeric expression

The END option specifies the line number te GOTO when the
end-of-file is encountered during a read operation. The
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. 1If the line does
not exist, a STMT # NOT FOUND error occurs. This eption
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an END-FILE' error.

5-56
Rev. 2 5/77

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/0 error occurs. The numeric expression must
avaluate to a positive real number which is a valid
ptrogram line within the program when the fractiomal part,
if any, is truncated. If the line does not exist, a
‘STMT # NOT FOUND ' error occurs. This option allows

a BASIC program to handle disk I/0 errors without being
aborted., If the error option is not included, a disk
1/0 error will cause the appropriate error message to

be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT filenumber RECORD record number expression List

186 PUT 1 A;B;C
200 PUT 1 A;AS$+","; B
304 PUT 1 RECORD 3 A;B;C

The PUT statement causes the values of the expressions in the ex-
pression list to be written onto a record of the file specified by
the filenumber expression. The filenumber must be a numeric ex-
pression having a value of the digits @ - 9 when the fractional
part, if any, is truncated.

Fach execution of a PUT statement writes one record Iinto the file.

Each disk record is composed of a 25@ character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that print lines
are built. The rules for building the string are as follows:

1} The record string is partitioned into 16 character £fields.
A pointer which is initialized to point to the first char-
acter in the string keeps track of the next position in
the string to be loaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 '"Qutput Formats'. The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma(,) or a
semicolon(;).

5=57
Rev. 6 9/77 ’

3) If the expression is followed by a comma(,) after the
expression has been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4} If the expression is followed by a semicolor{;), after the
~expression has been loaded into the string the pointer is
set to the character position following the last character
of the expression.

5) After all expressions have been Joaded into the record.
string, any remaining characters in the string are padded
with blanks and the record string is written onto the
diskette.

EXAMPLE: If A = 19P and B = -2.5, the statement:
10¢ PUT 1 A;B

would cause the following record to be written on
the disk: (Note: P denotes a blank)

N 199ﬁ,-‘ .5 ﬁﬁ

The Statement
190 PUT 1 A,B

would cause the following record to be written to
the disk:

NGl ﬁﬂgﬁlﬁﬁﬂﬁﬁﬁbhﬁ 2 %_,E . B,

PAD 229 Character pad

The expressions in the expression list may be numeric and string in any
order subject to the following restrictions: (1} If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. ({2) The Tlast character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Foilowed or the expression will not be properly read back.

249 Character pad

On Input, numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank, so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk Tooks for the current string delimiter to denote the end of a
string If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current str1ng
delimiter precedes the string.

Rev. 8 9/78 5-58

_ Rey. 9

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in all
string constants, and precede all string expressions following numeric

expressions with the string delimiter.
EXAMPLE :

To write the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

1@ﬁ PUT 1 A;","+‘B$+”,“;C;",”+E$+“,";F$+","
(This example uses the default delimiter, comma (,))

If it is desired te change the string delimiter, the following approach
could be used to implement the previous example:

19 D$ = ";" §! SET STRING DELIMITER
2¢ STRING D$

106 PUT 1 A;D$+B$+D$;C;D$+ES+DS;F$+DS

If this approach is used, the string delimiter must be the same
when a record is read as vwhen it was writtem or incorrect results
will be obtained,

If the record option is not included, the record is written into the
file at the record number specified by the sequentialPUT pointer. The
pointer is then incremented by 1.

If the record number option is included, the record is written into
the record specified by the record number exoression. The record
number expression must have a value which is a positive real number.
The fractional nrart is truncated, I the record number is greater
than .the end-of-file as described in 5.21.3,1, a PARM ERROR

occurs,

NOTE: Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The rointer will
only be moved by a sequential PUT or execution of a PUTSEEK
statement.

If an attempt is made to write more than 25§ characters into a

record, the message QUTPUT OVERFLOW will be output to the terminal
and nothing will be written.

/79

5.21.3.3 GET filenumber RECORD record number variable list

1@ GET 1 A,B,C$
2086 GET 1 RECORD 1#¢ A,B C$

The GET statement reads a record from the file specified by the
filenumber expression and assigns the values read to the variable
list. The filenumber expression must evaluate to one of the digits
- 9. The fractional part, if amy, is truncated.

If a string is read for numeric variable, a ‘TYPE ERROR results,
If too few values exist in the record string to satisfy the
variable list, a RAN OUT OF DATA error occurs. If an attem;t
is made to get a record which is past the last record, an END
FILE errar opccurs.

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET pointer will then be incremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression, The expression must
evaluate to a positive real number. The fractional part will be
truncated,

NOTE: The sequential GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement,

5.21.3.4 CLOSE filenumber
164 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/0. The filenumber exrression
must evaluate to one of the digits f - 9.when the fractional part
is truncated.

Closing a file consists of updating the file entry in the diskette
directory to reflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As a rule, all files which are opened in a
progtam should be closed before the program terminates. All files
which have been written into must be closed or the directory will
not be updated and data written into the file may be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the program buffer, such as a DELETE,

. 5-60
Rev, 2 5/77

TOAD or line insertion/deletion. Implicit cleosure does not update
the directory.

5.21.3.5 ATTRS (filenumber) = numeric expression
199 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the numeric expression., The file-
number expression must evaluate to one of the digits @-9 when the
fractional part is truncated, The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE ATTRIBUTE
i Program File

6

8 Object File

2 Permanent File

1 Write Protect

A file which deoes not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

19 = 1642+1 = Write protected, permanent, program file

9 = 8+1 = Write protected, object file

26 16+8+2 = Invalid combination - This would identify
a file as being a Permanent Program file and
Object file, which is not possible.

A main intent of the ATTRS statement is to allow the user to change
the Write Protect and Permanent attributes only., The File Format
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR function.

5.21,3.6 EQF (filenumber) = expression
15¢ EOF (9) = 58

The EQF statement sets the file length parameter of the file
referenced by the file number to the value of the expression,
The filenumber expression must evaluate to one of the digits

- 9 when the fractional part is truncated. The expression
must evaluate to a positive real number, The fractional part
will be truncated. The EOF statement is used to decrease the
length of a file., The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 109 records and it is desired to delete the last 50
records, the statement

168 EOF (1) = 51

5-61

Rev, 2 5/77

would cause record 5@ to be the last accessable record. The following
cautions apply to the use of EQOF statement:

1) The EQF statement does not reset the sequential PUT/GET
pointers. If they are set beyond the new EQF an -END-FILE
error will occur if a PUT or GET is attempted. Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements.

2) Do Not Set The EQF Bevond the true length of the file,
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage, :

3) Resetting the EOF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3.7 FREESPACE filenumber
16# FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by filenumber which are beyond the current end of
file. Filenumber expression must evaluate to one of the digits

@ - 9 when the fractiomal part is truncated, If there are no
excess tracks allocated an "END FILE" error results.

5.21.3.8 GETSEEK (filenumber) = numeric expression
5¢ GETSEER (1) = 28 '

The GETSEEK statement sets the sequential GET pointer associated
with the filenumber to the wvalue of the numeric expression. The
filenumer expression must evaluate to one of the digits @ - 9 when
the fractional part is truncated. The numeric expression must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater than zero and less than or
equal to the last record number or a PARM ERROR or “END FILE
error will occur when a sequential GET is performed. The current
position of the pointer may be accessed by using the RECGET function,

5.21.3.9 PUTSEEK (filenumber) = numeric expression
1#¢ PUTSEEK (2) = 38

The PUTSEEK statement sets the sequential PUT pointer associated
with the filenumber to the value of the numeric exnression. The
filenumber expression must evaluate to one of the digits # - 9
when the fractional part is truncated. The numeric expression must

5-62
Rev. 8 9/78

evaluate to a positive real number. The fractional part is truncated.
The value must be greater than zero and less than the last record
number +2 or a PARM ERROR will occur when a sequential PUT is
performed., The current value of the rointer may be accessed by

using the RECPUT function,

5.21.3,1#% RENAME (filenumber) = string expression
166 RENAME (1) = "NEWNAME"

The RENAME statement changes the name of the file referenced by
the filenumber to the wvalue of the string exrression. The file-
number expression must evaluate to ope of the digits # - 9 when
the fractiomal part is truncated, The string expression must
evaluate to a valid file name. The current name can be accessed
using the NAME function.

5,21.4 DISK T/0 FUNCTIONS

Disk File I/0 functions are included within BASIC to provide information
about a currently open file, Each function reference includes a file
number expression which must evaluate to one of the digits # - 9 when the
fractional part is truncated. If the specified file number does not

have a file currently opened to it a FILE ROT OPEN error occurs. The
disk file I/0 functions are detailed in table 5.5,

5-63
Rev, 2 5/77

TABLE 5.5 DISK I/0 FUNGCTIONS

Function
Reference

VALUE

ATTR (n)

Returns the attribute parameter associated with
file m, See section 5.21,3.5 for a description
of the value,

ERR

Returns the error code associated with the last
disk error, The error codes are:

- No Error

- Permanent I/0 Error
- End-File

- Disk Full -~

- File Not Found
Duplicate Name

- Parameter Error

- Drive Not Up

- Permanent File

- Write Protect

W00 IS L e Ly TS
1

12 - Printer Attention

The error ceode is not reset by a successful operation,
So is meaningless unless an error occurs,

ERRS

Returns the error message string associated with the
last disk error,

NAME (n)

Returns a string containing the name of the file
associated with file number n.

RECCET (n)

Returns the value of
associated with file

the sequential GET pointer
number n,

RECPUT (n)

Returns the value of

the sequential PUT pointer

associated with file number n.

SIZE {n)

Returns the SIZE (in records) of the file associated
with file number pn,

TRACKS (n)

Returns the number of disk tracks currently
allocated to file number n.

FREETR (n)

Returns the number of disk tracks currently
available for allocation {free) on the disk
unit associated with file number-n.

Rev.

9 1/79

5-64

5.22 BASIC PRINT FILE QUTPUT

Micropolis BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems,

terminal.

" Rey.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option
They achieve a high flexibility of output control by expanding the

keywords.

disk file I/0 scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

&

9/77

19 OPEN 1 "*P" PAGESIZE 66 ENDPAGE 999
29 OPEN 2 "*T"
3p OPEN 7 "*N"

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a filenumber with a filename specified in the string expression.

The filenumber must be a numeric expression with a value of p - 9.

The string expression which contains the filename must have one of

three

1)

2)

3)

specific values which designate a particular output print device.

Fitename *P associates the filenumber being opened with the
system printer,

Filename *T associates the filenumber being opened with the
display element of the system terminal.

Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.1.

There are two print file options available with the OPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a limit value for
an internal system counter which counts the number of lines
output to the associated filenumber. The counter is incre-
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon {see section
5.22.1.2). Each time the 1limit count is reached, the

5-65

Rev. 6

5.22.1.2

5.22.1.3

9/77

counter is reset and the system checks for a correspond-
ing ENDPAGE option.

The numeric expression must evaluate to a whole number from '
P - 65535. If a print file is opened without a PAGESIZE
option the internal 1imit value defaults to a value of 66
which is the number of lines per page on standard 11 inch
forms.

b) ENDPAGE 1inenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the Timit is
reached on the internal Tines per page counter. The line-
number must be a numeric expression which evaluates to a
legal linenumber. That Tine should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no-ENDPAGE option is specified for a given file the
internal lines per page counter is just reset each time the
limit is reached and processing continues normally.

PUT filenumber expression list

15 PUT @ "TOTAL = "; A1, "ITEM NAME ="; BS
25 PUT 7 A, B;

The PUT statement causes the values of the expressions in the
expression list to be assembled into an output record which is then
output to the print file device associated with the filenumber.

The filenumber must be a numeric expression with a value in the
range @ - 9. The expression 1ist consists of a sequence of
constants and/or variables separated by commas or semicolons. The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.21. Separate
carriage width wraparound control is provided for the printer
device. If the expression Tist ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
Tines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option)}. The TAB and FMT func-
tions may be used in PUT statements.

CLOSE filenumber

99 CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be in
the range p - 9. When a print file is closed the associated
filenumber is freed for use in a subsequent OPEN to another file.

5-66

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or Tine insertion change.

5.22.1.4 ENDPAGE filenumber
25 ENDPAGE 7
28 ENDPAGE R6

The ENDPAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated filenumber and thereby position the output device to the
beginning of the next logical page. The filenumber must be a numeric
expression with a value in the range § - 9. When the ENDPAGE state-
ment is executed the current value of the lines per page counter
associated with filenumber is subtracted from its 1imit value. The
result determines the number of empty lines which are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

5.22,1.5 ASSIGN (physical device number, logical stream indicator, device
width., null count)
18 ASSIGN (2,1,80,6)
28 ASSIGN (2,2,132)
30 ASSIGN (1,1)

The ASSIGN statement is a dual purpose statement which provides the
ability to specify the connections of physical output print devices:
to logical output streams and the values for carriage width and
nullcount of the referenced physical device. The physical device
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
evaluates to a 1, 2 or 3. The device width and nullcount must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in-

- cluded, the values corresponding to the referenced physical device
are not changed. If only the device width is included, then the
nulicount is left unchanged. Note however that specifying a null-
count requires that a device width also be specified, i.e., if the
statement only contains three arguments, the third will always be
treated as a device width. _

Logical ‘output stream number 1 consists of all output generated by
system messages, keyboard echoing, PRINT statements, LIST commands,
and PUT statements when the corresponding filenumber is open to *T.
-Logical output stream 2 consists of all output generated by LISTP
commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a value of
3 to represent both logical output streams 1 and 2.

Rev. 6 9/77 5-67

Rev. 6

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is conf1gured
as the system printer. (see section 3.3.4}.

The output of & logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to

one or both logical streams. Whenever a physical device is ASSIGNed
its previous assignment state is effectively cancelled. A 1ist of
legal device connections follows:

ASSIGN (1,1)

connects terminal display to stream 1 only

ASSIGN (1,2) connects terminal display to stream 2 only

ASSIGN (1,3) connects terminal display to stream 1 and

stream 2

ASSIGN (2,1)

connects printer to stream 1 only

ASSIGN (2,2)
ASSIGN (2,3)

connects printer to stream 2 only

connects printer to stream 1 and stream 2.

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device
has a carriage width and a nullicount parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parameter determines the maximum number of spaces on each
line for the given device., When a line is output that is longer
than width the autowrap feature is activated and a carriage return
line feed is inserted between character number width and width +1.
The autowrap feature may be disabled at confiquration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width

of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). HNote that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re-
loaded. The nullcount parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device. It is important with unbuffered character serial devices
which may lose characters while the carriage is being returned.

- The ndicount parameter for a given device may be dynamically changed

by restating the current device assignment and WIDTH with a new

nulicount. For example, if the printer were currently assigned to

stream 2, 132 columns, no nulls (nullcount = 1), it could be changed

- to stream 2, 132 columns, 5 nulls by using the statement ASSIGN

9/77

(2,2,132,6).
5-68

Rev.

5.22.1.6

5.22.1.7

6 9/77

Because BASIC is an interactive language it depends on the avail-
ability of a display device for system messages and keyboard

echoing. An interlock is therefore built in to ensure that stream

1 always has at least one device assigned to it. If an ASSIGN state-
ment is processed the result of which would violate this condition,
then physical device 1 {s automatically assigned to stream 1 as part
of the ASSIGN being processed,

LISTP X - ¥

LISTP

LISTP 19
LISTP -1@
LISTP 14-
LISTP 1¢-10¢

The LISTP commwand causes a 1isting of the program in the current
program buffer to be directed to logical output stream 2 which is
normally connected with the system printer. This COMMAND is anal-
ogous to the LIST command {see section 5.5) with two exceptions.
The LIST command directs its output to logical stream 1 which is
normally connected to the system terminal display. The LISTP
command outputs a paginated listing with three blank 1ines at the
top and bottom of each page and 6P lines of 1isting as standard,
(see 5.22.1.7). _

X and Y must be legal 1inenumber constants.
LISTP prints the entire program buffer.

LISTP X prints only line X if present or the first Tine greater than
X if no line X exists.

LISTP X- prints all lines starting with X or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru line Y or
the first greater than Y.

LISTP X-Y prints from line X or first greater than X through line Y
or first greater than Y.

PAGESIZE numeric expression
PAGESIZE 42

The PAGESIZE command is related to the LISTP command, It causes the
number of lines of listing per page of the LISTP command to be set
to the value of the numeric expression in the PAGESIZE statement,
This number is the number of actually printed lines not including the
3 blank lines at the top and bottom of each page. For exampie, to
tist a program on paper which holds 48 lines per page, the statement

‘PAGESIZE 42 would be the proper value to use., When BASIC is config-

ured the default value for this parameter is 6@.

5-69

NOTE that the PAGESIZE statement as described here i{s syntactically
and functionally distinct from the PAGESIZE option of the OPEN
statement as described in 5,22,1,1

5.22.2 Notes On Printer Related Programming

Used properly and with care the printer related language features in
Micropolis BASIC provide for highly flexible and efficient programming
of many common print file related functions. This section proyides some
examples and commentary.

5.22.2.1 Separating Print Files and Interactive Messages

There is a large variety of applications which can be programmed in
the following three part structure:

1) Output to the terminal display a sequence of prompting
messages which lead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de-
sired output data.

3) Qutput to the printer one or more pages which present the
desired output data with proper labelling in an appropriate
report format.

This structure requires the ability to separate output which is
normally intended for the operators terminal from output which is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminail
display messages and PUT statements to open print files for system
printer output. The technique is illustrated by the following program
for building a depreciation schedule chart,

Rev. & 9/77 ' 5-70

100 %
[]

FRINT
FRINT
)} FRINT
150 FRINT
i PRIMNT
IHFUT
FRIHMT
INFLUT
FRINT
IHPUT

L

—

U g
LT Ty

FUT
FUT =
t FLUT

20 PUT

L1

CLOZE
EMD

Rev. 6 9/77

s+ OARTA INHFPLIT

=
S FOT 3T

+es C[MFUTE RHD

MERT K

TECTION

“THIZ FROGRAM WILL BUILD A DEFPECIATION ZUHEDULE ™
"EHDWIMG YERFE BY YERF DEFEECIATION OF
"AT ETRAIGHT LIME AMD 200% ACCELERARTED EARTE:. "
"FLERZE EHTER
A

"PLERZE EMTER TERM IH
T

“FPLEAZE ENTER FIRET
ke

AZEET WHLLE "3
YEARE"S
YERFE IF TERM (B,

137Fe"s

s+ PREINT OUT CHRET HEADIHGE

OFEH =2 "ep"

|:|=

FUT o
"TEPRECIATION
FUT 2

YERRE" . "ET.

ICHEDILE FOR % "3R3 " OWER "3T:"

LH. DEF."» "ERLAMCE"« "z 005

FFRINT EHCH LIHE

3

5-71

A FIMED RZIET"

VERR T "

OEF. " "ERLHANCE”

R

THI:Z PROGEAM WILL ELUILD A DEFPRECIATION =CHEDULE
EHOMING YEAR BY YERFR DEFPEECIATION OF A FIXMED RESET
AT ZTRAIGHT LIME AMD 200% ACCELERATED FRTEX:.

FLERZE EMTER RESET VYRLUE ¥ 100000

FLEASE ENTER TERM IN YERREIT 295 _
FLEARZE EMTER FIRIT YEAR OF TERM «<E&. 1977»7Y 1934

DEPRECIATION =SCHEDULE FOR % 100000 OWER 25 YERR D)

m
I
Al

=T. LH. DEF. BEALANCE SEN DEF. ERLAMNCE

4000. 00
G000, 00

SO0, 0n
L0

T

T

0
R

e
)]

[==
el
N =4

1220 K 3 |)

1521 ;2 T 7 % B
1332 GOgn, E oREa0n, a0 B OETVL, &0 T FVERs
1953 o e, EBN00 T =S40, 0o Fosg3y. Sl T Fleds
15249 GO0, O ¥ S0000, 00 P OS7Z21.14 oS3z
1385 T A000. 00 T FEO00, 0D t SEFE.eS B oEOR3E
1955 4000, 08 T OFEN00.0u T 4250, 249 T 55784
1227 4000, 010 P oeS0nn, an T d44e2. V7 E OB132t
1228 B 40040, 00 o000, O T 410s.75 T 4F21e€
1953 T 4000, 00 T a0, aa T O2FEY.e9 T 42425
19910 T o4900,.400 T OSEeNnn, a0 T 3475140 R e TR
=B 4000, 20 F Seono. 00 2139709 T Y
1232 £ 4000, 00 E o4En00.0n T 29d41.33 g A T
1333 £ d4000, G0 E 44000, 00 T EFOR. 02 F oz111%
1954 F da0d0.008 F 40080, 00 T 2439.54 T o2oeds
1395 £ 4000, 00 £ I0gn, 00 T 229037 T O2A3E%
1935 ¥ 4000.00 F IS00R. 0 EO21a7.14 R Y
1997 T 4000.00 T o2s00n. an 1593357 E 2o
1798 T 40040,00 T 2d00R, 00 T 178343 E IS 1S K
1393 FoS004, 00 T 26000, 00 Polean, &1 % 138E%
00D £ 4000.00 F 15000, 00 FO1909,54 T 17353
2na1 400000 ¥ 12000, 00 T 13EE.7E ¥ 19%71
20a2 % 4000.00 F =000.00 E 1277.62 b I T
o0z F 4400, 00 ¥ Ja0a, o0 FoOLIVPS. 46 13517
S 004 4000, 00] . 0 101,42 T 124EE

RERLDY

Rev. 6 9/77 5-72

5.22.2.2

Rev. 6 '9/77

Paginating Print Files

When the number of Tines in a print file spans several printed

pages it is often required to print the file with page numbers,
headings and an equal number of 1ines on each page. The ENDPAGE
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of tools for accomplishing this goal. The
following example shows the depreciation schedule program of section
5.22,2.1 modified to print on 29 line pages with each page numbered
and titled. Note the use of the PAGESIZE and ENDPAGE options in
1ine 320 in conjunction with the page heading subroutine at 1ine 60@.
NOTE also the use of the ENDPAGE statement in 1ine 510 which ejects
the last report page and leaves the printer at the top of the next
blank page.

5-73

Rev. &6 9/77

H *e¢ [ATH IHFUT ZECTIOM
[]

FPEINMT “THI:Z FROGRAM WILL EUILD A DEFRECIATION SCHEBDULE™
FRINT "SHOWING YERR EBEY YERR DEPRECIATION OF A FISED ASZET”

FRIMT "AT ZTEAIGHT LIME AMD 200X ACCELERATED RATES.
FEINT '

FEINT “FLERZE ENTEF AZIET YHLUE "3

IMPUT R

FRINT "PLEAZE EWTER TEREM IM YERRZI"]

IMPUT T

FRINT “"PLEARZE EMTER FIRET YERR OF TERM (EG. 137V "3
IMPUT ¥

1

t eee OUTFUT INITIALIZATIDH

|

OPEH 9 "eP" PAGESIZE &0 EMDPAGE &0l
P=1:30SUE £00
Bl1=A:B2=A:S=A - TiFE="$222222V, ¥3"

[3

! eee COMPUTE AMD PRINT ERCH LINE
]

FOR K=1TOT

E1=B1-%

D=2eE2-T

F2=B&-1

FUT 9 YsFHMTC(SyFEY o FMT (BLaFE2 s FMT (D FED s FHT CEZ s FED
T=Y+1

HEXT K

EMDPAGE 9:CLOZE =

=TOP

[|

i ees FHGE HEADING ZUBRDOUTINE
X

FUT
PUT
PUT Ay u - il
FUT 9 "DEPRECIATION ICHEDULE FOR % "SART OvER "sTi
PUT 9:pUT D

TRE(7E»: "PRGE "3

w0 D

YERR CE2

PUT 2 YEAR™+"ET. LH. DEF."s "BRLANCE"« 2007 LEF."s "BALAMCE"

PUT 9

P=F+1

RETURN
EMD

5-74

tEADY

2L

"HI& PROGEAM WILL EBUILD A DEPRECIATIONM SCHEDULE
:HOWING YERR EBY YEAR DEFPFRECIRTION OF A FIXED ASZET
iT ZTRAIGHT LINE RAND 200% ACCELERATED RATES.

*LERSE ENTER RISET YALUE 7 100000
LEAZE ENTER TERM IN YERREST 25
*LERZE ENTER FIREY YEAR DF TERM <EG. 197V>»7 1320

FRIGE
JEFEECIATION =CHEDULE FOR % 100000 DOVER &% YEAR S
YERR 2T, LK. DEF,. BALANCE c{0% DEP. EARLAMCE
1920 £ S000, 00 ¥ 3000, 00 F oB000,010 Eoa2000, an
1981 4000, 00 F 22000, 00 F C3a0.00 P oedean, 0o
133¢ T 4000.00 F 23000, 00 E EFFLI.ED R] g |
1921 £ 4000, 00 B 24000, 80 T e2e®.50 P F1eaa.80
1954 3 4000,00 F L0020, 00 ¥ S57¥31.14 RS FrE i
1355 § 40u00,00 F vendo, nn ¥ SeVeE.e5 T E0e35.50
19&5 ¥ 4000.00 ¥ Fa0on,. a0 5 4850, 24 E OSSVE4, 66
1927 B o4000.00 F &2000,.00 B O4462.77V B 413;1 b=ts
1923 £ 4000,00 F 4000, 00 ¥ Oo4105.75 T oav2le, 12
1REd 4000, 06 EF a0000, 00 ¥ IVYF.ER T 434;_.04
1990 ¥ 4000, 00 F Se00on, 00 F 2475.1n0 EOG9SER, V3
1931 0 4000, 00 $ S2000, 00 FO3197. 09 F 2EVER . B3
FRGE
TEFPRECIATION SCHEDULE FOR % ta00o0n OVER 25 YEARCS)
rERF =T. LH. DEF. PALANCE c00% DEF. EALAMCE
1352 £ 400,00 § 42000, 00 ¥ 2941.,32 E Z2825.20
1933 ¥ 4000.00 % 44000.00 B O27¢05, 02 B o21112.23
1954 $ 4000,00 F 40000, 00 T 24583.54 F oEEesa. TSI
1335 E Sa0a, 00 ¥ 35000, 00 £ 2290, 27 E 2e329.325
132396 % 4000,00 % 22000, 00 F 2107.14 T 29z232.21
1937 ¥ 4000,00 F 223000, 00 T 193,57 T 2E292.63
i3Iz £ 4000,800 F 24000, 00 EOI7vE3.49 £ 20310.14
1339 F 4000,00 ¥ 20000, 00 B oledin. gl T 12253, 23
cnan g 4000, 00 ¥ loOnn, 0 ¥ O1502.54 B AGRC k= e]
200l $F 4000,00 $ 12000, 00 F 1352.73 B 19971, 00
0o $ 4000.00 $ So0Q,00 ¥ 12V7.63 148335, 38
003 ¥ 4000.00 £ 400000 F 1175.4% F 13517.85
FHGE
DEFFECIATION SCHEDULE FOR & 100000 OYER 25 NERROE
YERE ET. LH. DEFP. BALAHCE cu0x DEF. EALAMCE
=004 : . ¥ 494000.00 3 LU0 3 103t,.42 F 1e4326. 48

Rev. &6 9/77 " 5-75

Rev,

5.22.2.3

5.22.2.4

8

Spooling Print Files To Disk For Later Output

The commonality of the OPEN, CLOSE and PUT statements to both disk

and print files makes it possible to alter a print file program so
that the output is saved in a disk file instead of sent to the printer.
The procedure is to change the filename in the relevant OPEN statement
from "*P" to some appropriate disk filename. For example, line 32§

in the depreciation program listing might be changed to

320 OPEN 9 "N:DEP-REPORT" PAGESIZE 20 ENDPAGE 6@@

A print file that has been spooled to disk in this manner can be
printed out at a later time by using the following program:

5 INPUT "ENTER PAGE WIDTH OF FILE TO BE PRINTED";A
1@ DIM AS(A) :
20 STRING CHARS{16RFF)}

36 INPUT "ENTER NAME OF FILE TO BE PRINTED";A$
4@ OPEN 1 A$ END 9¢

5@ OPEN 2 "#p"

6@ GET 1 AS$

76 PUT 2 AS

88 GOTO 60

9@ CLOSE 1

199 CLOSE 2

118 END

Note that the string into which each disk record is read must be
dimensioned to a length which matches the expected page width of
the report (lines 5 and 1§}. This ensures that the extra blank
padding that fills each disk record will not be printed out causing
extra blanks Tines on most printers.

Note also that line 20 changes the system string delimiter to a
value that is illegal in normal print files. This ensures that the
entire content of each line will be assigned to and printed from A$
regardless of which characters appear in the print file. If this
were not done any commas in the print file would cause erroneous
output. '

Draining File Output To A Null Device

During the program development and test process or in a reduced
system hardware environment it is sometimes useful to run a program
which outputs one or more files and he able to suppress one or more
of the output files while the rest of the program runs normailly.

In Micropolis BASIC this is easily accomplished by changing the
filename in the open statement of each file to be suppressed to a

“UXNY. When the program is run all output to "*N" files will be

9/78

suppressed or drained away without otherwise affecting program
operation. The following program illustrates this idea.

5-76

5.22.2.5

Rev. 8 9/78

1¢ DIM A$(4,30)

20 FOR J=1 TO 4:A${J)="":NEXT J
3@ INPUT " FIRST LINE "'A$(1)
4@ INPUT “SECOND LINE "“;A${2)

5@ INPUT " THIRD LINE ";A$(3)

6@ INPUT "FOURTH LINE ";A$(4)

7@ B$="LABELS"

8@ INPUT "ADD TO DISK FILE (Y/N)";X$
9¢ IF X$ ="Y" THEN B$="=N"

-igg C$="*P"

11@ INPUT "“PRINT LABEL (Y/N}":X$
12¢0 IF X$= "Y" THEN C$="=+N"

]3@ x$_l|]

14@ OPEN 1

158 PUT 1 A$(1)+X$+A$(2)+x$+A$(3)+X$+A$(4)+A$
16@ CLOSE 1

17 OPEN 2 C$

180 FOR J=1 TO 4:PUT 2 A${J):NEXT J
19@ CLOSE 2

200 GOTO 20

The file output section attempts to add four lines of input to a
label file and then print a copy of the new label entry. If either
or both of these functions is refused by the operator during the
input section, the program changes the filename variable for the
associated OPEN statement to "*N". When the output section exe-
cutes the refused function output is simply drained, i.e. not
output anywhere.

Echoing Of Terminal Output To Printer

On systems with a video terminal and printer device it is often
desirable to obtain a hard copy audit trail of all system program
operation, including all of the prompts and system messages normally
directed to the terminal only. This is easily done by using the
statement

ASSIGN (2,3).

This statement causes the hard copy printer to be connected to logical
output stream 1 which includes all print statements, input dialogue,
keyboard echoing, *T files, and system messages; and to logical out-
put stream 2 which includes all *P print files. Thus everything
aimed at the terminal thru stream 1 will also go to the printer.

This echo mode remains active until changed. The statement ASSIGN
{2,2) will restore the system to normal which is device 1

" (terminal) connected to stream 1 and device 2 {printer) connected to

stream 2.

5-77

(This page left blank deliberately.)

6-1

Rev. & 7/77

f LABEL
| /

CISKETTE NO |

MICROPOLIS T e

|~ DRIVE SPINDLE HOLE

| ——SECTCR/INDEX HOLE

k3
51740 {BOTH SIDES)

¥ Q ,j
READ/\WRITE HEAD ACCESS ; STRESS RELIEF NOTCHES

HOLE (BOTH S1DES}

Figure 6.1

6-2
Rev, & 7/77

VI, DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0 INTRODUCTTON

This section describes the Micropolis flexible disk subsystem in
sufficient detail to enable an experienced 8#8@ assembly language
programmer to implement a disk driver.

6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1,1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6,1. The medium consists
of a thin, oxide coated circular disk permanently housed in
a protective plastic jacket, The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates, Several holes in the rplastic jacket
allow a disk drive to access the disk., When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which rnresses the disk against the head,
access the disk through the read/write head access holes,

A photo detector senses sector and index holes through the
sector/index hole. A switch in the disk drive senses the
Write Protect cutout. If a Write Protect tab is placed

over the cutout, the diskette may be read, but may not be
written on. If the cutout is open, both read and write
operations may be performed,

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette, Data is recorded on the diskette on concentric
tracks. The outermost track is Track @ and the innermost
track is 76 in Mod IT subsystems and Track 34 in Mod I
subsystems, Fach track has an unformatted capacity of
6250 bytes. Disk data transfers arve performed on a block
basis, which would require a 6250 byte RAM buffer in the
computer for a full track size block, This buffer size

is wasteful of memory, so the actual format used divides

a track into blocks of more manageable size called sectors.
The format used in the Micropelis flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index sensor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector #§ and indicates the next hole is
sector @,

6-3
Rev. 4 7/77

I~
DDDDD
LE

) \ \\:—i . _- \

-

]
_

-

4

-

¥

H
EEEEE

o
|||||
T4

Re
v
. 4
7/
77

Each sector has an unformatted capacity of anmproximately 399
bytes., However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and to allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives,
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder,

The recommended sector format is illustrated in Figure 6.2.

This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board, This format

was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond

the scope of this section,.

A disk sector consists of the following fields:

1) Preamble: The preamble is composed of anproximately 4% bytes
of zero (@) data bits. The preamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics
of the sector/index sensor. It also provides a field of known
data pattern for synchronization of the read data decoder.

2) Sync: The sync byte is a byte of @FFH data which is used in
the disk controller to define the beginning of useful data.

3} Header: The header is a 2 byte block consisting of the binary
track address of the track on which the sector resides (P-76 (34))
and the address of the sector (0-15)., The header is used to
verify that the proper sector is being accessed in a disk I/0
pperation.

4) Data: The data field consists of 266 bytes of user data,

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: 2a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. In write operations, the computed
checksum is written immediately following the data field. 1In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

6-5
Rev. 4 7/77

COMPUTER TNTERFACE

4 SECOMND TIMER

bl

UMIT ADDPRESS |

SELECT LOGIE —
UNIT SELECTED
-

4 BIT SECTOR
_ ADDRESS

INDEX SEPARATOR

DRIVE SELLCT

SECTORIMDEX PULSE

SECTCR FLAG
SECTOR COUNTER

__SECIOR INTERRUPT

TRACK ZERC STATUS
- ——— -

STEP

s

ALK ZERO

|
i

DIRECTION

POSITEQMER

PROY
__ XFER READY

WRITE PROTECT
STATUS
. o READWRITE
. CONTROL

WRITE

|
WRITE PROTECT
T p- -

WRITE EMABLE

COMTROL

WRITE/ERASE

— -

*—

WRITE DATA

.

SER1AI WRITE DATA

fn- CONTRCL LOGIC

READ/WRITE/ERASE

| B BT DATA

EMNCOBER

DaTA DECOLER

| SBITDATA

READHY STATUS

COMTROLLER

TRACK ZERD SWATCH

STEPPER
MOTCR
Dk IVE

STEP

MOTOR I

WRITE PROTECT

MCTOR
7 COMTRGL -
LOCIC

]
DRIVE ELECTROMICS

READSWRITE/ERASE CONTROL AMD DATA

DRIVE MECHANILS

Loi)
-
(Vs
€{
1N
=
s
=y
'S DISKETTE
1CADR LOaD
SOLEROIN
HEAD LOAD PAC
SECTORIMDEX
PULSE SEMSOR
READ/ WRITE
HEAD
\\%_\\\w
%Y
i !
i L]
pie)
_____ ———— ;
< _}1_- a4 o
[f
HEAD CARRIAGE
WRITE PROTECT
SWITCH
=
I"hq‘
e
—
SPINDLE MOTOR CONTROL ~F
-
=
DISKETTE LEOADES SWITCH ,;-qé

6) Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector holes on the disk and tolerance for disk speed and
write clock variations.

6.2 HARDWARE FUNDAMENTALS

Figure 6.3 is a block diagram of the Micropolis flexible disk
subsystem, The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

1) Spirdle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 3¢@ RPM,
After an appropriate delay te allow the speed to stabilize,
the drive {s ready to accept commends, If the drive is
selected by the controller, the drive will indicate this
state by asserting ready status,

2) Sector Logic: When the disk is rotating, the sector/index
hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk, The controller
geparates the sector and index pulses and counts the sector
pulses, thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head. A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operatio
may be initiated, '

3) Position Control Logic: The read/write head is mounted on a
carriage which is moved from track to track by a stepper
motor-driven lead screw. Positioning is accomplished by
specifying the desired direction (in or out) and issuing
a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction. When a drive is
first selected, such as at power on, the track position of
the drive is indeterminate. Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is positioned at track #, a
microswitch associated with the positioning mechanism is
made, The state of this "track #" switch is provided as
a status bit., Recalibration consists of examining the
track # status and if it is not true, issuing a command to
step out., After an appropriate delay to allow the command
to be executed, the process is repeated. Once the positioner
has been calibrated, the software must keep track of the
current posit ion,

Rev. & 7/77

Rev. &

4)

Read/Write Logic: Data is transferred between the computer
and the controller on a byte-by-byte basis. For write
aoperations, the controller generates the preamble and then
converts 8-bit byte data from the computer to the serial
data which 1s recorded on the disk. When the computer
stops supplying data, the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed. For read operations, the controller converts
the serial data stream coming from the disk to 8-bit bytes
and automatically detects the sync byte to determine when
valid data is available.

The controller generates a "transfer ready" status flag
which indicates that the controller is ready to accept

data in a write operation, or that data is available in
a read operation,

The controller is accessed using a technique called
"memory-mapped I/0". This means that the controller
command, status and data registers are treated as _
memory addresses and that controller read/write commands
are actually memory reference instructions, When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
until the controller is ready to transfer data, From
the computer's point of view, the controller appears to
be slow memory. '

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head. Whenever the drive is performing
a write operation, the positioner control and