LINKER
CDL Z80 LINKER

User’s Manual

Version 1.0

Sept 30, 1979

Copyright 1979 by Computer Design Labs

o

B

K

k

CDL 280 LINKER User’s Manual
Table of Contents

Table of Contents

Introduction-.-.............................-..... 2
Overview of LINKER ConceptSessesrassssnssccsssssces 2
LINKER Input Format...................-...-....... 5

3.1 Command SyntaXeeeeeseescescsccsssssccccsse 8
3.2 Output File.......I....l.l......'..-.-I... 8
3 3 Input Files. LB B I B I I I B B I I I B R I) 9‘

General Purpose OptiOnNS..sssssssscssesssscsccacsaall

1 !MAIN .cl-ao.a-oc-ca-na-nc-.on.o--o.-too-alo
2 /MAP -0.o.-c--occ.o.lc--naonnco..an.nno-n-lo
3 ISEARCH lo.o.--o--oobao.-no--cvo-.--nac.oolz
4 /DEFINE ..-......-..........-.............12
5 !ASCII nco-no-no-otcoc.oo-n.n.o.-oooocc.on13
6 IBINARY-..-...--.........-g...-.13
7 }NOIDAD ll.....'..lll.l.l...‘......l..l..al3

Non=linkable FL1e DpELons «eeesses sosevneewietwssesll

501 fLOCATE II..l..ll..’..l..'l..I.lll..“..'llzl'
5.2 ;ACTUAL a..lo-to-c'loo..onooooltactnoo-.tola
5.3 /XLINK 0l.........l.l..ll...llll.l..a.....ls

Linkable File Options..ﬂl..I.'II'......‘...‘....'-IG

JIDENT teeeacssoosasccasesesssssccnnsoancasld
[PROCID e vwima oo ssesnssessueassesetselb
JCOMMOR uvvuswevwwensvsses srsveissessobas bl
TETTERN wnmomom oo s e 666 58 S wis s e #0568 v 17
FINTERE wwwwwesnmamenissesswmeasservavuge Ll
VENERTD imoas:vionionon o ierio it an aoaiod w56 i m W o L

OOy OV v
)

. .

(= RV, T o B WL N

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

A = LINKER Error MessageSeesssssssssssasssald

B

= Pre_Defined Symbols....................23

COM File Format.-.-..........-...--.-..24

LINKER Examples.-......................26

Using LINKER with Z80 ASSemblera.......29

_Date and Tim@seeeesses o.a.o..oloooolluooc3l

LINKER Version 1&2 DifferenceSeceeesses32

)

s

By

CDL Z80 LINKER User’s Manual Page 2
Introduction

1 Introduction

LINKER is a CDL wutility program that can bind together
individually compiled modules of a program into a single
file that may be loaded and executed by the operating
system. INTEL HEX and CDL REL files may be created as well.
LINKER is available in versions for the CP/M (*) and TPM (*)
operating systems, and requires a Z80 processor with at
least 32K of memory and a floppy diskette drive.

There are many advantages to the practice of linking
together separately compiled modules instead of working with
a single, large program. A large program may be decomposed
into small modules which may be edited and compiled more
quickly. For example, to correct a bug, the programmer need
only re-compile the affected modules and re-link the
program, instead of re~compiling the entire program.
Generally, the linking process is faster than compilation.

It often happens that a routine is used in several
programs, a special I/O routine or COSINE function, for
example. Instead of copying the source code for this
routine into each program, it may be compiled once and then
linked in wherever it may be required. Furthermore, using
LINKER, routines written in different languages may be
combined into a single program. The programmer can
gradually build up a library of general purpose routines,
and avoid the useless effort of solving the same programming
problems over and over again.

Using a linkage editor eases the problems encountered

~ when several programmers mnust work together on a large

program. Once the programming problem has been broken down
into separate modules, each programmer may work relatively
independently.

CDL’s Z80 Macro Assembler and FORTRAN can produce
"libraries", or files containing more than one separately
compiled module. LINKER offers methods for including all or
only some of the modules in a library into the program.

LINKER is a two—-pass linkage editor. That 1is, each of
the input modules is read twice. Since the output file is
built up on disk, LINKER has the ability to create 60K
programs that completely fill the address space of the
machine, unlike other linkage editors which require that the
output file share memory space with them and their tables.
It is even possible to use a small machine to create
programs intended for execution on a larger one.

CDL Z80 LINKER User’s Manual Page 3
Introduction

The remainder of this guide describes how to use LINKER.
An overview of LINKER concepts and operation is offered in
section 2. The input format to LINKER is defined in section
3. Subsequent sections describe options which cause LINKER
to deviate from the standard linkage edit process.

(*) CP/M is a trademark of Digital Research and TPM is a
trademark of Computer Design Labs.

2 Overview of LINKER Concepts

LINKER accepts as input '"relocatable" or REL files. The
term "relocatable" refers to the fact that the machine code
in these files may be "relocated" by the 1linkage editor;
that is, the code can be made to execute at any memory
address in the computer. Thus, the programmer is freed from
having to choose memory locations himself, and the same code
can be loaded at different addresses in different programs.
Each REL file may contain one or more separately compiled
MODULEs. Files containing many modules concatenated
together are referred to as LIBRARYs.

Each module has a name. In Z80 Assembler, the .IDENT
pseudo operation is wused to declare the module name. Its
use is highly recommended, as the default module name is
" MAIN.", and duplicate module names in a program are not
allowed. FORTRAN assigns module names automatically.

Each module is made up of SEGMENTs (also called
"relocation bases"). Segments are the basic units of code
and/or data involved in the linkage edit. After LINKER is
aware of what modules are to be included in the program, it
assigns memory addresses to each segment in each module.
Any code in each segment 1s relocated so that it will
execute at the address to which it is assigned.

Several kinds of segments may be contained in a module.
The main code segment, usually containing all of the
executable code in the module, has the same name as the
module itself. The main data segment of each module also
has the same name as the module, preceded by a quote (").
For example, a module named ARCTAN would contain a code
segment named ARCTAN and a data segment named ‘ARCTAN.

All of the other segments 1in each module are common
areas, usually containing only data, which may be shared by
other modules. One of these segments is named ".BLNK.", and
is referred to as the '"unlabeled common". This 1is the
common block that will be created by FORTRAN when the
programmer doesn’t supply a specific name for a common
block. All of the other common blocks have names specified
by the programmer.

One of the major features of the linkage edit process is
that each separately compiled module may access code and
data defined in other modules. An INTERNAL symbol 1is one
whose address is available to modules other than the one in
which it is defined. Symbols which are not INTERNAL are

CDL Z80 LINKER User’s Manual Page 4
Overview

invisible to other modules. An EXTERNAL symbol is one which
is used in a module, but is actually an INTERNAL symbol in
another module. All EXTERNAL references must be satisfied
by INTERNAL declarations in another module, with two
exceptions: symbols may be explicitly defined wusing the
/DEFINE option (section 4.4), and some symbols are
pre-defined by LINKER (see Appendix B)

An ENTRY point 1is an INTERNAL symbol which comes into
play in library search mode. In this mode of operation only
those 1library modules Thaving ENTRY ©points which are
referenced as EXTERNAL symbols by one or more already linked
modules are included in the program (see section 4.3).

el T3

3

CDL Z80 LINKER User’s Manual Page 5
LINKER Input Format

3 LINKER Input Format

MODULE, SEGMENT, and SYMBOL identifiers

An identifier is a sequence of 1letters, numbers, or
special characters, except for the following:

")sls =

Normally, an identifier consists of no more than six
characters. However, an identifier for the .DATA. segment
of a module (as discussed in the previous section) is
preceded by a quote (’).

Identifiers may not contain blanks. Lower case letters,
when used, are automatically translated into upper case.
The first character of an identifier may not be a number 0 -
9. The following are examples of valid identifiers:

PROG5A
SORT-3
“SORT-3 (a .DATA. segment name)
FOO$$$

The following are not valid identifiers:

34ABC begins with a number

CHECKERS - too many characters

NIM A contains a space

PROG/1 - contains an illegal character

FILE NAME

e ————————

A file name has the following format (with brackets []
indicating optional portions):

[device:]name[.type]

The "device:" indicates on what disk drive the file
resides. If present, it must be one of "A" through "P". If
omitted, the logged-in disk is assumed. If LINKER can’t
locate an input file on the specified disk, it will try
drive A.

The file "name" is required, and must consist of no more
than eight characters from the character set given above for
identifiers, except that the characters <>.:[]_ may not be
used .

The ".type" indicates what the type of the file is. It
may consist of no more than 3 characters, from the same set
of characters allowable in the file "name".

The following are examples of legal file names:

CDL Z80 LINKER User’s Manual Page 6
LINKER Input Format

PROG1.REL

PROG2

A:CHESS.COM

The following are incorrectly formed file names:

Q:FILE.REL - invalid drive name

PROG. 1.2 - contains 2 periods

CHESS.PROG - file type is too long
16 BIT VALUE

——————— e ———

A 16 bit value may be expressed as a literal or as a
number. A literal is one or two characters enclosed in
quotes, for example: "VI1",.

A number may be expressed in several different bases, as
shown in the table below. A radix character immediately

following the number indicates which number system is being
used :

Base Radix Valid Digits Valid Range
hex H 0-9 , A-F 0 - OFFFF
decimal ‘ 0-9 0 - 65535
octal 0 0-7 0 - 177777
binary B 0 and 1 16 digits

If the trailing radix character is omitted, "H" (hex) is
assumed. All numbers must begin with a numeric digit (0-9).
A preceding minus sign indicates a negative number. In this
case, a two’s complement representation is used.

The following are examples of 16 bit values:

14170 - an octal number

OC1B5 - a hex number

=55, - a negative decimal number
AN - a one character literal
11B = 11 binary

The following are not valid 16 bit values:

100000. - decimal number too large
960 - invalid octal digit

""AB - missing closing quote

cl1e¢2 - does not begin with a digit

L]

—=F =¥

)

= =9 = D@D

s

—

}?

CDL Z80 LINKER User’s Manual Page 7
LINKER Input Format

INITIATING LINKER

LINKER may be used interactively, or input may be given
as 1t is executed:

LINKER <comm§nds> {er>

where <{cr> means to press the RETURN key. This means that
LINKER may used in a SUBMIT file.

To use LINKER in the interactive mode, simply enter
LINKER <cr>

on the console. LINKER will read commands from the console,
prompting with an asterisk "*", All input 1s stored
uninspected until a carriage return is typed. The standard
line editing features of CP/M (rubout, CTL-U, CTL-C, CTL-E,
etc.) are available.

A disk file containing all or only part of a command may
be inserted into the input at any point by preceding the
disk file name with an "@", The default file type is
".LNK". These disk files may not contain further "@"
specifications. The most common use of this feature is to
prepare a file containing a complete command; then,

LINKER @<{file name> <cr>

links the program. Usually, these ".LNK" files may be
prepared once for a given program and used over and over
again, greatly simplifying the whole process.

All LINKER commands have the same format, regardless of
whether the interactive mode is used. Commands are
separated by a semi-colon ";". LINKER terminates when it
receives the "Q" command (quit). For example,

{command> ; <command> ; <command> j Q

LINKER also terminates when input provided with its
execution is exhausted.

If an error is found, the current input line is echoed
with two question marks inserted after the point at which
the error was detected. This is followed by an error
message (see Appendix A). The command must then be
re—entered.

All input is free format. Blank lines are ignored, and
a command may extend to any number of lines. All lower case
letters are automatically translated to upper case.
Comments may be included with input from any source by using
an asterisk "*", When an asterisk 1is encountered, all
remaining characters on the same line are ignored.

CDL Z80 LINKER User’s Manual Page 8
LINKER Input Format

If a CTLC 1is typed while LINKER 4is running, it will
quit and return to the operating system. If CTL-E is typed,
the current command is aborted, and LINKER will prompt for
more input if it is being used interactively.

3.1 Command Syntax

Each command to LINKER 1links one program, and is of the
format:

[<output file> =]
<{input file 1>, <input file 2>, ... , <input file m>
/<option 1> /<option 2> ... /<option m>

LINKER links together appropriate modules from the input
files to create the output file, under control of any
options present. If the program is linked successfully, its
name is printed on the console, along with the address of
the highest byte used in the program and the program size
rounded up to the nearest K (1K = 1024 bytes).

3.2 Output File

The output file is the file which will contain the
linked program. The file type indicates what kind of file

is to be produced. If given, it must be one of the
following:

COM - Absolute binary core-image file, ready to be
loaded and executed by the operating system.

HEX - INTEL "hex" format file (see Appendix E of the
CDL Z80 Macro Assembler User’s Manual).

REL - CDL standard relocatable object file. With
this file type, the input files are in effect
merged together to create another linkable
file which could serve as input to another
linkage edit. See section 6 for details. The
/XLINK option may be wused to create a
non—linkable relocatable file.

If the .{type> is not given, ".COM" is assumed. The output
file replaces any existing file of the same name.

Examples:
B :PROG1 - A .COM file for PROGl is placed
on disk B.
PROG2,.HEX - An INTEL "hex" file for PROG2

is placed on the
currently logged—in disk.

If the output file name (and following equal sign) are
omitted, the name of the first dinput file is wused for the
output file, and a type of .COM is assumed.

CDL Z80 LINKER User’s Manual Page 9
LINKER Input Format

3.3 Input Files

Each <input file> may contain either a single compiled
module, or may be a library containing many compiled
modules. Normally, all modules contained in each <input
file> will be included in the output file, but this default
action may be overriddem as explained below. The <{input
file>s must contain all modules that are to be included in
the output file, unless the /SEARCH option is used.

If the file type is not given, ".REL" is assumed. Of
course, all files must contain only compiled, relocatable
object modules, in either ASCII or binary format.

A module selection clause may optionally be added
immediately after each input file name, to indicate that
only some of the modules within the file are to be linked.
It has two possible formats:

(INCLUDE <module 1>, <module 2>, ... <module n>)

which causes only the named <{module>s to be included in the
output file, and

(EXCLUDE <module 1>, <module 2>, ... <module n>)

which causes all modules in the library EXCEPT the listed
ones to be included in the output file.

CDL Z80 LINKER User’s Manual Page 10
General Purpose Options

3 General Purpose Options

This and the following sections describe options that
may be specified to alter the linkage edit process. While
those of the following sections may be wused only with
certain output file types, these may always be used.

4,1 /MAIN

This option specifies the main module of the program.
When a .COM file 1is created, execution of the program will
begin at the starting address defined for the main module.
For other types of files, the starting address is written at

the end of the file (see Appendix E of the CDL Z80 Macro
Assmbler User’s Manual).

The format of this option is:
/MAIN <module name>

The main module must have a defined starting address. This
is done in 280 Assembler by supplying a 1label with the
".END" pseudo op. FORTRAN automatically supplies a starting
address.

If the /MAIN option is omitted, LINKER 1looks for a
global symbol named .MAIN. and wuses this for the starting
address if found. If not, the first module encountered in
the input files which has a defined starting address is
assumed to be the main module of the program. It is error
if no such module can be found.

4,2 /MAP Option

The /MAP Option may be used to obtain various reports on
the list device which describe the results of the linkage
edit. Reports can be selected that show the memory
addresses assigned by LINKER to the segments and symbols in
the linked program, or that describe the modules that were
included.

The format of the /MAP option is:
/MAP <flag 1> <flag 2> ... <flag w

The <flag>s select the desired reports, as follows:

G = Global symbols (i.e. all internal symbols of all
loaded modules). The symbols are listed in
alphabetical order, with their assigned addresses.
The address shown is the address that will be used
for all references to this symbol. This may not
be the same as the address where the symbol is
loaded, if the /ACTUAL option is used.

oy ey W

CDL Z80 LINKER User’s Manual Page 11
General Purpose Options

S — Segments. All of the program segments are listed
in alphabetical order, and the assigned address
and size is given for each. If the segment is to
be relocated so that it will execute at an address
different from its assigned one, via the /ACTUAL
option, this address is given also.

A - All. This option combines the information given
by the S and G flags. All segments are listed, in
order of ascending memory address. Each segment
is followed by all of the global symbols contained
within that segment, again listed by ascending
memory address. Symbols created via the /DEFINE
option or automatically supplied by LINKER listed
separately.

M - Modules. Each module is listed, along with its ID
number, version and revision number, and date and
time assembled. This information 1is available
only for CDL Z80 Macro Assembler modules, and is
created by using the .PROGID pseudo op in those
programs.

E = External Symbols. This option may be used only
when a 1linkable REL file 1is being created.
External symbols and their assigned relocation
base numbers are printed in alphabetical order.

If no <{flag>s are given, /MAP A is assumed. When a REL
file is created, the memory map reflects the fact the
addresses are no longer absolute, but are relative to a
relocation base number. Relocation base 1 is the .PROG.
segment, and is indicated by a single quote (’) following
the address. Relocation base 2 is the .DATA. segment, and
is indicated by a double quote (") following the address.
Other bases are used for common blocks and external symbols,
and are indicated by a ":nn" following the address, where

"nn" is the base number.

Symbols in the A report are given with the segment they
were defined within. Addresses relative to that segment are
indicated with a single quote, while addresses of absolute
symbols have nothing following them.

If a REL file is created with the /XLINK option, all
relocatable quantities are relative to relocation base 1,
and are indicated as such by a following quote. All of
these conventions are similar to those wused in CDL’s Z80
Macro Assembler.

CDL Z80 LINKER User’s Manual Page 12
General Purpose Options

4.3 /SEARCH Option

This option causes library files to be searched in order
to satisfy external references which remain unresolved after
all modules contained in the input files have been linked.
Note that /EXTERN symbols are not searched for. The format
of the option 1is:

/SEARCH <library 1>, <library 2>, ... <library n>

Each {library> has the same syntax as regular input files,
and INCLUDE or EXCLUDE clauses may be used.

A module in a library is loaded when one or more of its
ENTRY points (see section 2) are referred to by other
modules, but have not yet been defined anywhere. As long as
undefined symbols exist, all specified libraries are
searched iteratively in the order given, until a complete
pass over the libraries yields no new modules to be loaded.
That is, if loading a 1library module creates new unresolved

symbols, all of the 1libraries may be searched again in an
attempt to find them.

When FORTRAN modules are included in a program, the
FORTRAN library "LIBRARYS.REL" is automatically added to the
end of the 1list of 1libraries to be searched. It must be
present on the logged-in disk or on drive A. This library
is designed to be searched in a single pass, and error #31
(see Appendix A) may result if an additional pass must be
made over it. Therefore, it may necessary to design any
other libraries that are to be searched so that only a
single pass is required to pick up all needed modules.

4.4 [DEFINE Option

This option may be used to give values to symbols which
are not defined by any module in the program. These defined
symbols are then used to resolve EXTERNAL references made by
the program modules.

The syntax of this option is:

/DEFINE <symbol 1> = <value 1>,
<{symbol 2> = <value 2>,

{symbol n> = <value n>

Each symbol is given a 16 bit wvalue. This value could
represent a constant, or an absolute address.

The following is an example.of /DEFINE usage:

/DEFINE CONST1=1238., FLAGS = 10110011B, COUNT = OC1D4,
VRSION = "Al"

There are some symbols which are pre-defined by LINKER.
A list of them is given in Appendix B.

CDL Z80 LINKER User’s Manual Page 13
General Purpose Options

4.5 /ASCII

HEX and REL files may be created in two formats: INTEL
HEX and binary. In INTEL HEX format, the entire file is in
printable ASCII with all hex characters expanded to 2 ASCII
characters, and carriage return and line feed characters
inserted periodically, enabling one to print these files on
a console or printer. However, the INTEL format required
much more diskette space, and is normally used only for
serial devices such as paper tape and cassette.

HEX files are created in INTEL HEX format by default.
REL files are created in binary format by default, but the
/ASCII option may be used to force an INTEL file to be
built. It has no arguments.

Complete information on the format of HEX and binary
files may be obtained in appendix E of CDL’s Z80 Macro
Assembler User’s Manual.

4,6 /BINARY

This option is the converse of the /ASCII option above,
and forces HEX and REL files to be created in binary format.
This is the default for REL files.

4.7 /NOLOAD

This option is used when one or more modules are to be
included in the linkage edit, but none of the code and data
contained in them are to be written to the output file.
That 1s, the internal symbols of these modules are defined,
and space assigned for all segments, but a hole is left in
the output file. The format is:

+«NOLOAD <module>, <module>, ... ,{module>

The purpose of this option is to provide a primitive overlay
capability. One linkage edit is wused to create the main
program, with all overlayed modules deleted via the /NOLOAD
option. Separate files for each overlay are created by
using /NOLOAD on the main program. Thus, the program files
are kept small, but all inter-module symbol references are
maintained. At run time, an overlay loader in the main
program reads in the overlay files as required.

CDL Z80 LINKER User’s Manual Page 14
Non-relocatable File Optionus

5 Nomrelocatable File Options

The options of this section may be used only in COM, HEX
or REL files with the /XLINK option set.

5.1 /LOCATE Option

Normally, LINKER assigns memory addresses sequentially
to segments as they are encountered in the input files.
This option may be wused to specify the absolute memory
address where a segment is to be located instead of allowing
LINKER to choose it. It is useful for accomplishing actions
such as locating a common block segment in a video refresh
memory area.

The format is:

]

/LOCATE <segment-1> = <address=1>,
{segment-2> = <address-2>,

{segment-n> = <address-w>

LINKER will assign each segment at the given 16 bit
address, and will avoid assigning other segments to the same
memory area. However, no check 1is made to see if two
segments are LOCATEd so that they overlap. Also, if a
segmented is LOCATEd too low in memory, an error #46 may
occur during pass 2 (see Appendix A). If a segment is
located too high in memory, error #79 may occur.

A "/LOCATE .DATA. = <address>" will concatenate all of
the data segments from each module and treat them as a
single segment to be assigned to the given address.

A "/LOCATE .PROG. = <address>" will concatenate all of
the main code segments of each module, and assign them to
the given address if possible. If a 1locate of .DATA. is
done as well, the program 1is divided into code and data
areas (as long as the programmer creates pure .PROG.
segments). If not, all of the program segments, code and
data, are loaded beginning at the given address.

LOCATEs of individual segments always override a LOCATE
to .PROG. or .DATA.

5.2 /ACTUAL

As discussed in section 2, each program segment is
normally relocated to execute at the memory address at which
it is to be loaded. Using this option, however, a segment
may be relocated so that it will execute at a different
address (presumably, the segment will be moved at run time
to the correct location).

r

s | O

r
i

CDL Z80 LINKER User’s Manual Page 15
Nomrelocatable File Options

The format is:

/ACTUAL <segment=1> = <address=1>,
<{segment-2> = <address-2>,

{segment-n> = {address—n>

Each segment, which will be 1loaded wherever it would
normally be loaded, will be relocated to execute at the
given address. All references from other segments into them
will also be relocated.

If an ACTUAL of .PROG. is done, all .PROG. segments are
assigned sequential execution addresses starting with the
given one. An ACTUAL of .DATA. has the same result with the
.DATA. segments. ACTUALs of individual segments override
these global ACTUALS.

5.3 /XLINK

Normally, when an output file type of REL is specified,
a linkable file 1is produced as described in the following
section. When this option 1is wused, however, the linkage
information is not placed into the output file, creating a
nomrlinkable wvariant of a REL file which is still
relocatable. This file format is recognized by CDL’s ZAPPLE
monitor, a simple nonr—disk operating system. CDL’s
interactive debuggers, DEBUG I and II, also recognize this
file format. Each of these programs offer the ability to
load the REL file at any address in memory, unlike a COM
file which is always loaded at address 100 hex.

/XLINK has no arguments, and may be wused only when the
output file type 1is REL. All segments are merged together
and assigned relocatable addresses beginning with =zero
(unless overridden by the /LOCATE or /ACTUAL options).
Relocatable addresses are indicated in the memory map
reports by following them with a single quote (’).

CDL 7Z80 LINKER User’s Manual Page 16
Linkable File Options

6 Linkable File Options

The options of this section are provided to assist in -

the creation of a linkable output file. That is, the output
file will be indistinguishable from an ordinary linkable
file produced by CDL’s Z80 Macro Assmbler, and may be used
as input to a subsequent linkage edit. In effect, the input
REL files are '"merged" together to create an output REL
file.

To accomplish this, the output file type must be .REL,
and the /XLINK option must not be used (it causes a
relocatable but nomlinkable file to be produced).

When a linkable file is created, the following actions
occur by default:

1 A11 .PROG. segments of all modules are concatenated
together to produce the .PROG. segment of the output
module.

2 A1l .DATA. segments and common blocks are concatenated
together to produce the .DATA. segment of the output
module. The .BLNK. common, however, 1is output by itself.
Other commons are output by themselves only when included
in the /COMMON options.

3 On the memory map, .PROG. segments are given addresses
relative to relocation base 1, .DATA. segments to
relocation base 2, and the .BLNK. common to relocation
base 3. Commons mentioned in the /COMMON option, and
external symbols created with the /EXTERN option, are
assigned higher relocation base numbers.

The following options are used to create internal, entry
and external symbols, create common blocks, and define
other parts of the linkable output file. They are similar
in their action to the similarly named pseudo operations
provided by the Z80 Macro Assembler.

6.1 /IDENT

This option is wused to create the output module name.
The format is:

/IDENT <module>
If omitted, a module name of .MAIN. is assumed.
6.2 /PROGID
This option is used to define the program identification
information which is listed in the M report in the memory

map. The format is:

/PROGID <name> [,{version> [,{revision>]]

CDL Z80 LINKER User’s Manual Page 17
Linkable File Options

with optional input indicated by brackets []. The <name)> is
a 6 character identifier, and the <version> and <{revision>
are values lying in the range 0 - 255. The <name> defaults
to blanks, and the version and revision numbers default to
zero.

6.3 /COMMON

As explained above, common blocks are normally merged in
with the .DATA. segments when a linkable output file is
created, and are then invisible to other modules the output
file may ultimately be linked with. The /COMMON option is
used to force common blocks to remain separate and linkable
in future linkage edits. The format is:

/COMMON <segment>, <{segment>, ..., <{segment>
6.4 /EXTERN

This option 1is wused to create external symbols, or
symbols that are not defined by any modules in the linkage
edit. Of course, these symbols will have to eventually be
defined when the output module becomes input to a subsequent
linkage edit. The format is:

. /EXTERN <symbol>, <symbol>, ... , <symbol>

All symbols which are not /EXTERNs must be defined by some
module in the program, must be /DEFINEd symbols, or must be
one of the special symbols automatically defined by LINKER.

6.5 /INTERN

This option is used to define those symbols which will
be global in the output file. All other symbols will be
invisible to other modules when the output module is used in
a subsequent linkage edit. The format is:

/INTERN <symbol>, <symbol>, ... ,{symbol>
6.6 /ENTRY

The /ENTRY option is used to create entry symbols in the
output file. Entry symbols are just 1like /INTERN symbols,
but they are also sensitive to library search mode. That
is, if the output module were to be part of a library search
in a subsequent linkage edit, the module would be included
if the /ENTRY symbol was undefined but needed by other
modules.

The format is:

/ENTRY <symbol>, <symbol>, ... <symbol>

CDL Z80 LINKER User’s Manual . Page 18
Error messages

APPENDIX A - LINKER Error Messages

A few LINKER error conditions are indicated by a short
message which should be self-explanatory. For the rest, an
error number is given which may be looked up in the table
below. In the case of a syntax error, the input line
containing the error is echoed, with two question marks "??"
following the point where the error was detected. Other
errors may be flagged as occurring in PASS 1 or PASS 2.

Many of the error messages involve a problem with a disk
file. In this case, the name of the disk file is given, as
well as a byte offset (in hex) indicating the position in
the file where the error was detected.

Errors marked as '"diagnostic" indicate that a bug in
LINKER has occurred through no mistake on the user’s part.
Try running LINKER again, in case the error was a temporary
hardware failure. If the error persists, please collect the
relevant information (error message, LINKER version, input
files, etc.) and write the manager of Technical Services at

Computer Design Labs
342 Columbus Ave.
Trenton, N. J. 08629

Error Codes

1 - Expecting equal sign.

2 - Expecting "/" or ";". The command parser has reached
the end of the input files, and is trying to read the
options.

3 - Bad option name. See sections 3.4 and following.

4 - Option not implemented. The version of LINKER you are
using does not contain this option yet.

5 -— Expecting an identifier. See Section 3 for an
explaination of correct identifier format.

6 — Invalid options for output file type. You used /ACTUAL
or /LOCATE in a linkable REL file, or /INTERN, /DEFINE,
/EXTERN, etc. in a non-linkable file.

7 = Wrong digits in number. Which digits are wvalid
depends, of course, on the radix vyou are wusing. See
Section 3.

8 = Number or literal too large. All numbers and literals
must be able to fit into 16 bits. See section 3.

"

s (R -

—

-

—

h-j

CDL Z80 LINKER User’s Manual Page 19
Error messages

9 -

10

11

12 -

13

14

15 =

16

1l

18

20

30

31

Token too large. The string of characters you entered
at this point is too long to possibly be any kind of
valid input.
Expecting "device:" or "file" name. A proper file name
should appear in the input at this point (see section
3, file name format).

Invalid "device:" specifier. Valid device specifiers
are "A:" through "P:".

Invalid file name. A file name must consist of no more

than eight characters from the proper character set
(see section 3, file name format).

Invalid file type. A file type must consist of no more
than three characters. An output file may only have
types HEX, COM or REL.

Expecting 16-bit wvalue. A number or literal must
appear in the input at this point.

Incorrect INCLUDE or EXCLUDE format. Either you did
not give one of the key words INCLUDE or EXCLUDE, or
there is an incorrect module ID, or the closing right
parenthesis ")" is missing.

+.DATA. may not be wused in the /COMMON option. All
.DATA. files are merged together when a linkable REL
file is created.

"@" inside @ file. Disk files containing commands and
used via an "@" may not contain further "@"
specifications.

Expecting byte value. The value wused by this option
must lie in the range 0 — 255 (or =128 = 127 in signed
interpretation). That is, it must be possible to
represent the value in 8 bits.

Insufficient memory. There was not enough free memory
available for LINKER to use for its symbol and segment
tables. Therefore, the program could not be linked.

(diagnostic) Relocation base was undefined.

Duplicate segment. The indicated segment appears more
than once in the input modules. Did you remember to
use the .IDENT pseudo op in Z80 Assembler programs?
Another way this error can occur 1is if FORTRAN IV is
being used and multiple /SEARCH passes are made over
LIBRARYS.REL. See section 4.4.

CDL Z80 LINKER User’s Manual Page 20
Error messages

32 - (diagnostic) Segment not found.

33

34

35

36
37

40

41

42

43

44

45

46

47

(diagnostic) End of segment table.

Undefined segment. A segment which you referred to in
the /LOCATE or /ACTUAL options was never encountered in
the input files.

(diagnostic) Segment was defined twice.
(diagnostic) Undefined segment address.

Too many external bases. You have too many external
symbols (/EXTERN option) and common blocks (/COMMON
option) defined. The maximum total of both allowed is
251

Can’t close output file. Is the disk write protected?

Output file too large. The output file exceeded the
maximum file size allowed on your system.

No space for output file. There is not enough space on
the disk to hold the output file.

No directory space. The disk upon which the output file
is to be placed already contains the maximum number of
files allowed.

Protection failure. A previous version of the output
file is already on the disk and can’t be deleted
because it is protected.

Can’t open output file. This error may be caused by a
full directory, or by a protection failure.

Loading below 100H in .COM file. A .COM file is
organized so that the beginning of the file corresponds
to memory address 100H, since the operating system
always loads a .COM file at this address (see Appendix
C). Thus, nothing may be 1loaded below this address.
This error may be caused by a /LOCATE to an address
below 100H. Also, you may have done a .LOC to an
address below 100H in a Z80 Macro Assember program.

Invalid external byte reference. In the 2Z80 Macro
Assmbler module named, you made an extermnal byte
reference (whose relocation base number is supplied) to
a nomrabsolute symbol. External byte references may be
made only to symbols defined with an absolute address
having a high order byte equal to 0 or OFFH (i.e. a
hyte value in the range 0-255 or -128 - 127).

el) God e e el e

—

» R (e

CDL Z80 LINKER User’s Manual Page 21
Error messages

49

50

51

53

54

35

56

57

58

60

61
62

64

65
66
67

70

(diagnostic) Too many files opened, or too many buffers
allocated.

Expecting module record. The input file was supposed
to contain a module record at this point, but did not.
This error often occurs when there 1is trash at the end
of the previous module in a library file.

Invalid record type. The input file contained an
incorrect .REL record type at the indicated offset.

Undefined symbols exist. All of the listed symbols

will have to either be made INTERNAL symbols of some
module, or defined via the /DEFINE option, or named in
the /EXTERN option.

Missing starting address. You did not use the /MAIN
option, symbol .MAIN. did not exist, and none of the
program modules had a defined starting address.

The main module (as given by the /MAIN option) has no
defined starting address. Be sure to give a starting
address with the JEND pseudo op in 280 Assembler
programs.

The main module (as given by the /MAIN option) was

never encountered in the input files; therefore, no
starting address could be determined.

Can’t recognize module. There is garbage in the input
file at this point. Are you sure this file is a valid
REL file? If all else fails, try re-compiling.

Can’t process FORTRAN. The version of LINKER you are
using can’t link FORTRAN modules.

Duplicate input file. Each input or 1library file can
appear only once in a command.

(diagnostic) End of input file table.

(diagnostic) Module not included or excluded.

FORTRAN symbol number out of range. This and the
following two errors usually indicate a smashed FORTRAN
.REL file. Try re-compiling.

Bad FORTRAN relocation base type.

Bad FORTRAN op code.

(diagnostic) Fortran code loader failed.

Duplicate symbol. The indicated global symbol is
defined in more than one module.

CDL Z80 LINKER User’s Manual Page 22
Error messages

71
72

73

74

75

76

79

80

81

82

83

85

87

(diagnostic) Symbol not found.

(diagnostic) End of symbol table.

Symbol is self defined. You defined the given symbol
relative to a symbol in another module, and that symbol
to yet another symbol, and so on, until the original
symbol was reached again. Thus, a circular chain was
created, with no symbol actually ever being defined.

«MAIN. was an absolute symbol. The starting address of
a program must be relative to the main module of the
program, not an absolute address.

The starting address of the main module was an external
symbol to that module. That is not allowed! The
starting address must be inside the main module.

/EXTERN, /INTERN or /ENTRY conflict. The same symbol

can not be an /EXTERN and also be an /INTERN or /ENTRY.
The first is undefined in the output module, while the
second is defined.

Program won’t fit into memory. This program won’t fit
into the address space of a 16-bit micro—computer.
Either it 1is simply too large, or you created large
wasted areas of memory by using the /LOCATE option.

Expecting carriage return. The indicated input file
was supposed to have a carriage return at the given
location, but did not. Are you sure this 1is a valid
+REL file? Try re-compiling the program if all else
fails.

Expecting line-feed in input file.

Expecting ASCII character. The dinput file did not
contain a valid ASCII character where it was supposed
to'

Bad Checksum. 280 Assembler ".REL" files contain
checksum bytes after each record which are used to
validate the data that is read from them. A checksum
error usually indicates a file that 1s corrupted with
errors: try re-compiling. This error is just a
warning: LINKER will attempt to continue with the
linkage edit.

End of input file. The end of the indicated file was
reached unexpectedly. Did you use a file copying
program on it which assumes that a "Z is the end of the
file? This typically results in the truncation of
binary REL files. Try re-compiling.

Empty input file. The indicated input file was totally
empty, except perhaps for some filler characters.

s |

=

— e B T3

o oy o

o

CDL Z80 LINKER User’s Manual Page 23
Pre-Defined Symbols

Appendix B - Pre-Defined Symbols

There are a few global symbols which are pre-defined by
LINKER before the 1linkage edit hegins. They are listed
below. The user should not attempt to define these symbols
himself, as a duplicate symbol error (code #70) will result.
Future versions of LINKER may have more of these symbols.
They will be of the form .XXXX., so the use of symbols of
this form should be avoided.

Pre-Defined Symbols

.END. - This symbol has as its value the address of
the first free byte in memory above the
program. It is wuseful when the programmer
wishes to make use of free memory at
execution time. When a /LOCATE .DATA. is
done (i.e. data segments are being assigned
to a separate memory location), .END. is set
to the address of the first free byte above
the data area.

-.FREE. = This symbol points to a word which contains
the value of .END. .FREE. 1is 1located at
address 10C hex, in the initialization area
for COM files (see Appendix D). It 1is not
created for other types of files.

If FORTRAN modules are included in the program, many
other symbols will be defined via modules brought in from
LIBRARYS.REL. The reader 1is referred to the CDL’s SSS
FORTRAN User’s Manual for details.

CDL Z80 LINKER User’s Manual Page 24
COM File Format

Appendix C - COM File Format

COM files created by LINKER are constructed so as to
appear as shown in figure 1 when loaded into memory by the
operating system. The operating system assumes that all
programs will begin execution at address 100H., LINKER
therefore places a a 16 byte initialization routine at this
address which sets up a stack and jumps to the starting
address of the program. This area also contains .,FREE., and
other fields which are used by FORTRAN, or which may be
defined in later versions of LINKER. A 3 byte patch area is
included for debugging purposes. This initialization code
is not created for any other kind of output file. See
Appendix E in the CDL Z80 Macro Assembler User’s Manual for
the format of HEX and REL files.

100H =—> | LSPD 6 |
| .DBUG.: NOP [
| NOP |
| NOP [
| JUMP .MAIN. |
| .WORD O |
| .FREE.: WORD LEND.|
| |
110H =—=> | |
| segment 1 |
| |
| |
I |
| segment 2 |
| |
| |
| .MAIN,: |
| |
| I
| |
| segment N |
| |
| I
| |
| . BLNK. |
| |
| |
«END,~==> | |
Figure 1

e =

=N

s o« (I s T e G e T e 2

|

{

o Rt

CDL Z80 LINKER User’s Manual Page 25
COM File Format

If the initialization routine is not wanted, the /LOCATE
option may be used to locate a segment at 100H, overwriting
it. Hopefully, this segment would contain the first
executable instructions of the program at the very front.

Of course, the program segments may be located anywhere
in memory above 100H, by using the /LOCATE option. Notice
that the unlabeled common .BLNK. 1is always located at the
end of the program (or at the end of the data area if a
/LOCATE .DATA. is done). Symbol .END. points to the first
byte following this. Whenever FORTRAN is used, module
.EMUL. (the emulator) is loaded from LIBRARYS.REL, and it
will be loaded on a page (256 byte) boundry due to an
efficiency trick which makes use of this fact.

CDL Z80 LINKER User’s Manual Page 26
Examples

Appendix D - LINKER Examples

e e e e e e

Suppose you have a program consisting of just one
module, contained in file TEST.REL. To produce a file
TEST.COM to execute, just type:

LINKER TEST <cr>

Recall that the name of the output file defaults to the name
of the first input file (the only input file in this case).
This is a simple link, with no memory map or other options.
The module must have a defined starting address, and no
external symbols.

Suppose a program has been created consisting of three
modules: MODl, MOD2, and MOD3. Each of these modules exists

in separate disk files, called MOD1.REL, MOD2.REL and
MOD3.REL. MODl is the module where execution 1is to begin.
To create a COM file ready for execution, execute LINKER,
and in response to the prompt, enter the following command:

PROG.COM = MOD1, MOD2, MOD3
/MAP M A
/MAIN MOD;

Two memory map reports will be obtained on the printer.
When LINKER has finished, enter Q (followed by a carriage
return) to terminate it.

Example 3

Suppose that it 1is desired to add an I/0 driver for a
line printer to the system. The I/0O driver is to be loaded
high up in memory, so that it will not interefere with
normal user programs. When executed as a normal program,
the driver is to automatically load itself into the correct
address and stay there until the computer 1is powered off.
This is easily accomplished by using some of LINKER's
special options.

The program will consist of two modules: the driver
itself, and a 1loader module. Suppose that the printer is
interfaced through a single port, number 90. An input from
this port gives the printer status: a zero indicates that
the printer is ready to accept another character, while
anything else indicates that the printer is not ready (power
off, out of paper, etc.). Characters are printed by writing
them to port 90. The driver is wused by calling it with a
character to be printed in the A register. The following
Z80 assembler code makes up the driver module:

e

f

£ 2

(==

i

CDL Z80 LINKER User’s Manual Page 27
Examples

.IDENT DRIVER
.ENTRY PRINT

PRINT: MOV C,A ;SAVE CHARACTER
«WT: 1IN 90H ;WAIT FOR READY
CPI 0
JRNZ « JWT
MOV A,C ;RESTORE CHARACTER
ouT 90H ;OUTPUT IT
RET
.END

A module is produced with a single entry point, PRINT.
Next, the loader module:

.IDENT LOADER
« EXTERN LODADR

START: LXI D, BEGIN ;BC:=DRIVER SIZE
LXT H, END
CMP A
DSBC D
MOV B,H
MOV 1 5
»
LXI H, BEGIN MOVE DRIVER TO
LXI D, LODADR ;CORRECT ADDRESS
LDIR
]
JMP 0 ;RETURN TO
BEGIN: ;OPERATING SYSTEM

]

.LOC « BLNK.
END:

.RELOC

.END START

The LOADER module computes the size of the driver and
moves it to LODADR, which is an externally defined symbol.
Notice that LOADER has a defined starting address of START.

Now for the LINKER input. The following LINKER command is
placed into a file called PRINTER.LNK:

PRINTER.COM =
LOADER, DRIVER
/ACTUAL DRIVER = OF800
/DEFINE LODADR = 0F800
/MAP
/MAIN LOADER

Finally, after assembling LOADER and DRIVER, typing:
LINKER @PRINTER

causes the desired program, PRINTER.COM, to be created.
LODADR is the main module, and gains control when printer is

CDL Z80 LINKER User’s Manual Page 28
Examples

executed, at 1label START. Since DRIVER follows LOADER in
memory, label BEGIN points to the beginning of DRIVER.
Since common .BLNK. 1is always loaded at the end of the
program, label END points to the end of DRIVER. Thus,
LOADER is able to find DRIVER and move it to LODADR, which
1s defined to be OF800 hex. Although DRIVER is not actually
loaded at OF800 hex at linkage edit time, it is designed to
execute at that address via the /ACTUAL option.

If at a later time it is desired to 1load the printer
driver at a different address, this may be accomplished by
simply changing LODADR and the /ACTUAL value in PRINTER.LNK,
and running LINKER again. Neither of the modules would have
to be re-assembled. Also, DRIVER could be made larger and
more sophisticated (for example, by adding a "printer not
ready" message) without having to make any changes to
LOADER.

[

e 2

-

e |

J

ol igem

-

Mo R ey

=

s

| %

CDL Z80 LINKER User’s Manual Page 29
Z80 Assembler Hints i

Appendix D - Using LINKER with Z80 Assembler

This appendix is a list of hints which may be of help in
setting up Z80 Assembler modules for use with LINKER.

SYMBOLS

e e e e

Internal and External symbols are created by using the
« INTERN and .EXTERN pseudo operations. .ENTRY is used to
create entry-point symbols.

e

When assembling a module for use with LINKER, do not use
the .PABS or .XLINK switches. Do use the .PREL and .LINK
switches (these are defaults). You may use the .PHEX switch
to get an ASCII .REL file, but using .PBIN (the default)
will result in a savings of disk space.

MODULE NAME

e e e e e e

Always use the JIDENT operation to give each module a
unique name. If you don’t, the module will have name .MAIN.
Each module in a program must have a unique name.

.LOC Pseudo Op

Do not use the .LOC pseudo op with a number, but only
with an external symbol (see the COMMON BLOCKS discussion
below) or a symbol defined relative to that module. If you
want to load something at an absolute memory address, make
it a separate module or common block, and use the /LOCATE
option of LINKER to put it where you want it. Each line of
code on your assembly listing should have a quote (’) after
its address. If it doesn’t, you are probably doing
something wrong.

STARTING ADDRESS

A label should be supplied with the .END pseudo op to
define the starting address of the main module of the
program. Then use the /MAIN option of LINKER to indicate
the main module. Make sure that the starting symbol is
defined in that module. It MAY NOT be an absolute symbol.
Alternatively, make the starting address .MAIN., and declare
.MAIN. as .INTERN (FORTRAN does this automatically).

LIBRARIES

Libraries may be created by using the .PRGEND switch.
This results in the creation of a new module starting at
that point. Alternatively, individual REL files may be
concatenated into a single file by most file copy utility
programs. One has to be careful, however, that ~Z is used
as an end of file condition for /ASCII files, but physical
end of file 1is wused for /BINARY files. FORTRAN and Z80
Assembler modules, and binary and ASCII modules may be mixed
together in a library.

CDL Z80 LINKER User’s Manual Page 30
Z80 Assembler Hints

MEMORY MAP

If the M report of the memory map is wanted, use the
«PROGID pseudo op to define the program name, version
number, and revision number.

COMMON BLOCKS

To make a common block, declare the common block name to
be an .EXTERN in each module that must reference it. The
common should not be declared .INTERN by any module. Then,
use .LOC to define the common. For example,

.EXTERN TABLE

.LOC TABLE

A: JWORD 5

B: ~ JBLKB 10

C: .ASCIT "ABCDEFG"
.RELOC

declares a common named TABLE consisting of A, a word, B, 10
bytes long, and C, an ASCII string. Remember that FORTRAN
will name a common .BLNK. if the programmer does not give it
a name.

DATA AREA

Objects are placed into the data segment of a module by
preceding them with a .LOC .DATA. The programmer may .LOC
.DATA. over and over again in the program: each definition
is added on to the end of the previous ones. For example:

.LOC «DATA.

FO0O: «WORD 0
BAR: « BYTE 55H
-RELOC

.LOC «DATA.
PTR: «WORD TABLE
TABLE: .BLKW 100

. RELOC

reserves space for four variables in the data segment.
LINKER can be instructed to 1load the data segments and
common blocks in a separate area of memory using the /LOCATE
option.

b

B

(—

———

CDL Z80 LINKER User’s Manual Page 31
Date and Time

Appendix F - Date and Time

The date and time are required by LINKER when a
linkable file is created. In the CP/M (*) version, the
operator is asked to enter the date and time on the console,
in the form MM/DD/YY HH:MM. All spaces should be filled in
underneath the prompt message exactly as shown.

In the TPM version, LINKER will attempt to obtain the
date and time through a special system call provided by TPM,
and will request them from the operator only if they appear
to be invalid. The operator can avoid this occurance by
using the SET-TIME utility program before executing LINKER.

(*) CP/M is a trademark of Digital Research and TPM is a
trademark of Computer Design Labs

CDL Z80 LINKER User’s Manual Page 32
Version 1&2 Differences

Appendix G - LINKER Version 1&2 Differences

This is the second version of LINKER. Many new
features have been added:

- The /ASCII and /BINARY options allow more control over
what kind of files may be created.

- The /NOLOAD and /XLINK options were added.

- The /ACTUAL option was expanded to provide the capability
of /ACTUALing all .PROG. and .DATA. segments as a group.

= The ability to create relocatable and 1linkable files was
added, along with the /IDENT, /PROGID, /COMMON, /EXTERN,
/INTERN and /ENTRY options.

= A new disk driver module minimizes floppy diskette drive
head movement, greatly increasing execution speed. Large
FORTRAN programs will 1link up to two or three times as
fast.

Several bugs were fixed:

= Empty .BLNK. or .DATA. segments caused an error #30 in the
first version. This problem has been corrected.

= An error #30 was caused when an internal symbol of a
module was defined relative to an external symbol in
another module. This problem has been corrected as well,
and chains of up to 256 symbol definitions may be created.

For the most part, version 2 is upward compatible with
version l. An exception is that the initialization code
created for COM files (see Appendix C) is no longer created
for HEX and REL files, it being assumed that these files are
not being created for standard execution under the operating
system.

P

A T eyt e =

[

