SYSTEMS GROUP

VOLUME ONE, NUMBER ONE MARCH 15, 1977

Drew Rogge and Ed Wyman
Co-Editors, Co-Authors and
Chief Cooks and Bottle Washers

P.O. Box 2072
Livermore, CA 94550

Well, here it is! The first ALS-8 SYSTEMS GROUP
Newsletter. So, welcome to the Group, and let us tell you
a little about ourselves. We're like most of you -- small
system hackers. We're not professional writers or editors,
so what you'll see might not be of the highest literary
quality, but we will try to do our best to give you compre-
hensive answers to your questions, along with information
on the ALS-8 system,

You may be wondering about the relationship of the
ALS~8 SYSTEMS GROUP to Processor Technology. So, we'd
like to tell you just how it works. We receive sypport
from Processor Technology in the form of a dollar-for-dollar
(minimum) matching of membership dues, assistance in typing
and mailing of the Newsletter and, of course, the best part
of the relationship: They are our source of information
that enables us to pass along, to you, the whys and where-
fores of the ALS-8.

Those whys and wherefores will consist mainly of:
-~ where the utility subroutines are located
in ALS-8,
-- which registers they use,
-=- any other subroutines they call,
-- what data they require, and

v

-~ where that data needs to be located.

If we have .enouagh time between issues, we will trv
to include, among other thincgs, some routines that will
enhance the editing capabilities of the TXT~-2 Editcr.

Oone of the relatively minor duties of the Newsletter
will be to notify vyou of changes and improvements made
to ALS-8 by Processor Technologv. But more about that in
future newsletters.

In order to make this newsletter the best it can
possibly be, we'll need feedback from you, the user. The
feedback can be suggestions on handlina user supplied
software, standardization of subroutine labels, or just
comments on the contents of the Newsletter itself. Your
comments and suggestions will help determine the contents
of future i1issues, Although the suagestions will be
greatly appreciated, we usually won't have much time
for individual replies.

We are planning to publish as many of the user
supplied programs as space allows. We feel that this
is the most efficient way to distribute these programs,
since listinags are the least expensive and most practical
method.

One thing vou might consider now is if you'd like
your name, address and telephone number included in a
listing of ALS-8 owners. If you do, please drop us a line.

As of now, we plan to publish 10 or 11 issues per
year. That will be very flexible, depending on the amount
of material we receive and, most important, the amount of
time we have.

Well, enough of this kind of stuff. 1It's on to
the kind of things we think you've been waiting for.

MANUAL ERRORS

There are two errors and one ommission in the manual
as it stands now. The maximum terminal width is 118 and
not 12@, as it stated in the manual. Even though the
input input buffer is 12@ bytes long, two bytes need to
be reserved for the carriage return and an end of file
marker.

The item that was left out is an operator in the
form of a “$". This operator is egquivalent to the address
that the next instruction will be assembled at. If we
had an instruction such as:

JNZ $+3
And the next instruction was three bytes in lenath, then

this would skip the next next instruction if the zero
flag was reset while:

JMP $

would not accomplish anything, as it would just pass
control to the next instruction. I suggest that you try
using this operator in a variety of ways, as it can prove
to be a very powerful tool.

PROGRAM ERRORS

Two minor errors have been found in the ALS-8
PROMS. The first one has to do with the °*TERM' command
which sets the length of the input buffer. If input is
made to the end of the system RAM including the custom
command table is cleared. This is because the carriage
return is treated as a character and there is no room
left for it. The best way to get around this error
(until it is corrected) is to set the terminal width to
two more than the width of your input device.

The other error concerns the 'ASC' pseudo-op.

When using a terminal width over 80 and when in the 'FORM!
mode, the closing delimiter of the string is missed by the
assembler. As a result, any comment that is on the same
line will become part of the 'ASC' string. Since there
seem to be a lot of variables that enter into this error
the best way to avoid an error is to use the unformatteé
mode when assembling programs that contain 'ASC' strings.

There is also an error in the TXT-2 Editor PROMS,
If you use a CONTROL-H to delete the last character of a
line that is exactly 64 characters long, the file structure
of the line is altered. This error can be avoided by
replacing the last character with a space when it needs
to be deleted.

The above mentioned errors (term width, 'ASC', and
CTRL-H) have been corrected in the PROMS from serial’number
500 on. For those PROMS before the 500, these errors will
pe corrected during an update service that will be announced
in the next newsletter.

1{+ & > OPERATORS

Also included in this update will be the addition
of the high half and low half operators to the assembler.
These operators allow vou to use either the H or L part o}
a 16 bit value assigned to a label as an eight bit value.
Here's an example:

VDMBASE EQU @CCP@H
MVI A,< VDMBASE

will load the accumulator with @CCH. Where as:

POTTS EQU PEPDFH
MVI E,>POTTS

will load register 'E' with @DFH.

APPLICATION NOTES

Included in this newsletter is a collection of
system application notes and user supplied routines. The
notes are self-explanatory and it is suggested that vou
try some of the functions in the application notes to
become familiar with them.

If we receive questions in the mail about some of
the material contained in the notes, we will expand on
the problem areas in future newsletters. One of the
application notes shows the ALS-8 parameter area.

Included in this area is a 39 BYTE section that
has been reserved for user parameters (D1lAlH thru D1C8H).
If there is enough interest in makina this a global parameter
area for all user supplied software, we will trv to work up
a definition for this area from your suggestions.

We would like to standardize subroutine, systen
oriented custom command, and storage area names in order
to make routines that are distributed among ALS-8 users
as universal as possible. Then the subroutine is in the
ALS-8 PROMS, the label that was used in either the ALS-8
application notes or in the Newsletter should be used.
That way, the label can be entered in the Global Symbol
Table and be called without using a long string of equates
at the end of each program. Any time a subroutine is
needed in a program, try to use one that exists in ALS-8
even if it means having to save a register pair that is
altered by the subroutine. What this all boils down to is:
Let's make our routines as BYTE efficient and as universal
as possible.

Since this is a Systems Group Newsletter, we are
only interested in programs that are related to operating
svstems in general, and ALS-8 in particular. Games such
*LIFE', 'NIM', and °*STAR TREK' are fun, and definitely have

a place in the computer world, but they are not the concern
nor are they the subject matter of this newsletter.

Programs that would be of benefit to members of
this group could be routines, such as WRITE CURRENT FILE
ON CASSETTE, special I/0 drivers, or ones that, in general,
enhance the ALS~8 operating system.

One item that we've thought of is software to be
used with one of the semicommercial type tape transports,
such as the PHI-DECK which would provide mass storage
capability with many of the characteristics of disk. If
anyone has used a high speed tape unit with ALS-8, we
would like to hear about it so that the information can
be passed on the the users group.

Does anvone have a need for some special drivers
or other software in order to make ALS-8 do a particular
job for them? If so, let us know what it is, and we'll
pass the request on through the Newsletter. Someone
else may have already solved the problem.

We hope that the Newsletter will benefit all ALS-8
users, and that we can have a little something for evervone.

Drew and Ed

Title _ASSI Input Drivers Release Date: 9/3/76

) Revision No
Function Level No. B2

Page .1 __of __3

The ASSI command of the ALS-8 allows the assembler of the sys-
tem to produce object code from files stored on mass storage devices
such as disk, cassette or paper tape. While the type of assembly is
generally slower (being I/O bound) it allows larger source programs

than the more convenient memory files.

This note describes the requirements of the input driver used
for the ASSI command. In all cases the term FILE is used in the
context, "a collection of data" and should be interpreted as meaning J
the date for the assembly process.

ASSI INPUT DRIVER SPECIFICATION

ALS-8

Program Development System

(©) 1977 Processor Technology Corporation

Title: ASSL Input Drivers Release Date: 2/3/76
Revision No. £2__
D
Function: Level No. BZ

The ASSI extension of the ALS-8 assembler frees the user from
memory files and allows assemblies from paper tape, cassette, disk
or any other extended storage medium. 1In order for the input driver
to function with the assembler, it must bring in data from the de-
vice on a RECORD by RECORD basis.

This requirement is met by reading lines from the file on a
line by line basis instead of character by character. In other
words, the driver gets one whole line of input instead of one char-

acter as do standard drivers.

These lines are read into a memory location so that the data
can be processed by the assembler. Whether or not the file has line

numbers determines the exact location as follows:

Line numbered lines start at IBUF-5
Non-line numbered lines start at IBUF

where:

IBUF EQU @D1E4H

Each line must be read into the proper memory location on an

incrementing basis and a CR (13 decimal) must terminate the line.

Also, because the assembler performs the assembly in two
passes, some provision must be made for rewinding the file when the
"END" is encountered on each pass.

This "END" for a file must have been preceeded by a valid
"END" pseudo in the source file so the assembler can change its
internal pass indicator. How this end is synchronized to the
actual physical end is dependent on the characteristics of the de-
vice reading the file.

Title: ASSI Input Drivers

Page 2 _of _3

Release Date: _9/3/76

Revision No. @&
Level No. B2

Page _.3__of 3

Function:

Example
The file is on paper tape to be read by a high speed reader.

The format of the tape is such that a leader and trailer of zero's
were punched on the tape before and after the actual file code.

Line numbers are present and the last line of the file is an END

statement.
* .
* SAMPLE ASSI INPUT DRIVER
*
ENTRY LXI H, IBUF-5 FOR LINE NUMBERS
LDA SWCH1 FIRST TIME IN?
ORA A
JNZ ENTRY NO IF NOT ZERO
CALL CHR GET CHARACTER FROM READER
ORA A
Jz ENTRY SCAN PAST LEADING ZEROS
*
STA SWCH1 MAKE IT NON ZERO
JMP GOTON NOW PROCESS THE RECEIVED CHARACTER
*
DLOOP CALL CHR
GOTON ORA A TEST FOR A ZERO
Jz REWIND WE'RE AT THE END IF ZERO
MOV M, A
CPI CR CARRIAGE RETURN?
RZ . RETURN TO ASSEMBLER IF SO
CPI v
JC DLOOP BYPASS ALL CONTROL CHRS
CPI 7FH
Jz DLOOP BYPASS SYSTEM FILL CHRS
INX H
JMP DLOOP

REWIND CALL REWD ROUTINE FOR DEVICE REWIND

MVI A2
STA SWCH1 PRETEND IT'S THE FIRST TIME THROUGH
JMP ENTRY GO SCAN PAST LEADING ZEROS AGAIN

*

* CHR THIS ROUTINE GETS ONE CHARACTER FROM THE

* INPUT DEVICE

CHR EQU $

-

Title _ALS-8 File Structure

Release Date: 2/19/76
Function Revision No. g
Level No. A5

Page _1 _ of _3

The memory files of the ALS-8 System provide a convenient
means of creating and modifying assembly language programs. Small
to medium size programs can be assembled directly to memory and
tested in a guick, efficient manner.

Sometimes, after a system crash the resident file may have
been modified, making it unsuitable for use by the system file
commands.

In order to directly examine and "fix" a file, some knowledge
of the file structure is necessary. Also, special utilities can be
written to search and modify files for higher level editing
operations.

ALS-8 FILE STRUCTURE

ALS-8
Program Development System

@ 1977 Processor Technology Corporation

Title: _ALS-8 File Structure Release Dote: 9/19/76
Revisian No.
Function: Level No. A5

Page 2 _ of _3 __

System memory files are structured on a RECORD basis. That is,
each line in the file is considered to be a RECORD whose length is

contained in the first byte of the RECORD.

Most files used with the system contain assembly language
programs, and in the example that follows this will be the case. The
system itself looks only for a correct record length and correct
record terminators with valid ASCII characters between them. It
makes no assumptions as to file content until an assembly is

attempted.

Each RECORD of a file is structured as follows:

(] owen [15]

Where, RL indicates the number of characters in the

RECORD including the RL and terminator.

13 is a decimal 13 value, (¢D16), as a RECORD
terminator.

DATA is any characters greater than 2016 in
value.

Thus the file line: 5 LDA ABUF entered as a one line file

would be stored in memory as follows:

efelolels] | [efola] Ja[efulrfraju]

Here the RL and terminator are given as decimal while the
DATA is shown as ASCII. When dumped by the system dump command the
RECORD would take the form:

@EEL: 1¢ 30 3@ 3@ 35 28 28 4C 44 41 28 41 42 55 46 @D
g@1l: g1l

Title: ALS-8 File Structure Release Date: _3/19/76
Revision No. 2
. X
Function: Level No. _____AS
Poge .3 __ of .3
Since the file contains only this one RECORD, the RL of the
next RECORD contains a 1. This value indicates the End of File and
must always be present at the end of each file.
It is recommended that an actual file be created and viewed
as a dump. Notice how the line numbers are evident by the string

of Hex values between 3@ and 39 and that the ﬂDH value identifies

the end of each RECORD.

Title _General Purpose System Output Routines Release Date . 10/1/76

. Revision No.
Function Leve! No. K2

Page _1 of _©&

The ALS-8 System contains many routines for outputting data

to the current I/0 driver.

Each of these are described in the following pages along

with the specifications for register usage.

SYSTEM OUTPUT ROUTINES

ALS-8

Program Development System

(©) 1977 Processor Technology Corporation

r

Title: . CRLE Release Date: 10/2/76
Revision No. £
Function: Output a Carriage Return/Linefeed Level No. K2

CRLF EQU @E216H
This routine outputs a CRLF followed by two delete characters.
Output is made to the current output driver and registers A and B

are altered.

One level of stack is used by the routine.

Entry Point: E216

Poge .2 _of &

¢
t
i

Tifle: _.SCRN - String Output Routine

Release Dote: 10/5/76
Revision No. &
Output a String of Characters Level No. K2 =
Page _3 of _6

Function:

SCRN EQU @E38¢H
This routine outputs a string of characters from incrementing
memory until a decimal 13 is found. This string is assumed to be

ASCII in a form suitable for the output device.

On entry, registers H & L should point to the first character

of the string.

Registers A and B are altered on return and H & L will point

to the termination character.

Example

LXI H,MESS POINT TO MESSAGE

CALL SCRN

JMP DO IT
-
-
L]
L]

MESS ASC 'ARE YOU THERE?' THE MESSAGE

DB 13 THE TERMINATOR

SCRN also sets a system parameter XOUT whose use is described

in an additional system bulletin.

Title: ___Pata Output Routines

Function: _Output Values in HEX, OCTAL or DECIMAL

DUMO
HOUT
HOTB
DOUT
oouT
OOTB

Each

EQU
EQU
EQU
EQU
EQU
EQU

PES6FH
#ES577H
PES586H
PE348H
PE353H
PE359H

Release Date:
Revision No.
Level No.

Page 4

of these routines is used to output the binary value in

register A to the current output device as ASCII characters.

every case

DUMO
HOUT
HOTB
DouT
oour
OOTB

Up to two levels

registers A,B and HL are altered.

Output in accord with current mode
Output as Hexadecimal

As above but output a space following

Output as
Output as
Output as

Decimal
Octal
above but with space following

of stack may be used.

In

Title: .ADOUT 16 Bit Value Output

Function:

ADOUT EQU @ES5CH

to the current output driver.

Release Date: _10/5/76
Revision No. _#
Level No. K2

Poge .5 _of _6

This routine outputs the 16 bit value in registers D & E.

The output is made in accord with the system mode and in all cases

1l registers are altered and the stack is used to two levels.

Title: . .BLKO OQutput Spaces

Function:

BLKO EQU @E361H

Release Date:
Revision No.
Leve! No.

Page 6

10/5/76
£

K2
of _&

This routine outputs spaces to the current output driver. On

call the number of spaces should be in register 'C' with zero giving

256 spaces.

Registers A,B and C are altered and the stack is used to one

level.

Title _System Conversion Routines

Function

Binary to ASCII Conversion

Release Date . 10/7/76
Revision No.
Level No. K3
Page L of 2

The following Application Bulletins specify and describe

the system subroutines for convertirg binary values to their
ASCII representation.

SYSTEM BINARY TO ASCII CONVERSION

ALS-8

Program Development System

(© 1977 Processor Technology Corporation

o

Title: Binary to ASCII Conversion Release Date: 10/7/76
Revision No. -8

Function: Level No. K3

2

Page of

BINH EQU PE39¢H
BIND EQU @E3ADH
BINO EQU @E3C8H

BINH Binary to Hexadecimal

BIND Binary to Decimal

BINO Binary to Octal

In each routine the value in Register 'A' is converted to
ASCII characters which are then stored in memory.

Registers A,B and HL are altered by the routines and one
level of the stack is used.

On return, the three byte memory area, HCON, will contain
the ASCII characters on an incrementing MSB to LSB basis. Hex
conversion produces two ASCII characters while both Decimal
and Octal produce three.

2

Title: SEAR String Search and Compare

Function:

Release Date: 11/10/76

Revision No. &

Level No. K4

SEAR EQU @E257H

compare.

PCHL
YMES ASC

DW
NEXT

H,YMES
c,3
SEAR
NEXT

Page 1 __ of

This subroutine checks two character strings for equality.
The strings are pointed to by HL and DE. On call the desired
length of the comparison should be in Register 'C' and on return
DE and HL will point to the next address after the length of the

If the strings are identical the zero flag will be set.

* DE HAVE OTHER ADDRESS

LENGTH OF COMPARE
DO COMPARE

GET FIRST ADDRESS

BRANCH TO YES

1

Title

System Conversion Routines

Function

ASCII to Binary

Relegse Daote: 10/15/76
Revision No. 2

Leve! No. Kl
Page 1 of __3

The following Application Bulletin specifies and describes

the System subroutines for converting ASCII parameters to their

binary values.

In all cases the routine returns with a standard RET and
errors must be handled by the calling program.

Title: System Conversion Routines

Function:

meters to binary values.

SYSTEM ASCII TO BINARY CONVERSION ROUTINES

ALS-8

Program Development System

(©) 1977 Processor Technology Corporation

General Requirements

Release Date: _10/15/76
Revision No. _8 ——
Level No. K1

Page 2 _ of .3

The ALS-8 contains subroutines for conversion of ASCII para-

NAME

EMODE ASCII
ADEC ASCII
AHEX ASCII
AOCT ASCII
EMODE EQU
ADEC EQU
AHEX EQU
AOCT EQU

The following routines are available:

to Current Mode Setting

to Decimal
to Hexadecimal
to Octal

PE2F3H
PEJPAH
@E 2FAH
PE333H

On entry, registers B,C must point to the first ASCII digit

On return, H & L have the converted value,

if an error was detected.

The scan stops when a binary zero is found.

and the routine scans incrementing memory for additional digits.

and carry is set

Title: _System Conversion Routines

Relegse Date 10/15/76
Revision No. £
tevel No. __ K1
Page .3 of ___ 3

Function:

Entry Point: As Specified

Entry Conditions

A H

B High byte pointer L

C Low byte pointer Fiags| S P
D cy AC
E Z

Exit Conditions

A

HHigh order value

B Through scan

L Low order value

C Through scan Flags 1 S P
D cy Bior ac
E Z

Buffer Area used: to

Registers Altered : All

Subroutines catled:

Subroutines levels used:
Stack leve! used:

Coments:

@ 1977 Processor Technology Corporation

Title ALS~8 Parameter Passing

Function

Release Date . 11/1/76
N

Revision No.
Level No. Bl

Page __1 of 5

This bulletin describes the techniques for passing parameters

to commands,

routines or programs external to the ALS-8.

While sufficient information is given for normal usage, the

experienced programmer is also referred to the parameter conversion

bulletins.

PARAMETER PASSING FROM THE ALS-8 SYSTEM

ALS-8
Program Development System

(© 1977 Processor Technology Corporation

Release Date: _11/1/76
Revision No. .#__
Level No. Bl

Page 2 _of_5

Title: _ALS-8 Parameter Passing

Function:

When a command is received by the ALS-8, all parameters given
with the command are stripped off and placed in "buffers" for the
command to use. Whether or not the parameters are required, how
they are interpreted and what function they perform depends strictly
on the command itself. The ALS-8 serves only to locate the parameters
in a specific place and to provide routines to process or convert

the parameters into a usable form.

Name Extension

The syntax requirements of the system require only four char-
acters for command identification. The command itself can use any
additional characters for its own use as with the ASSM, ASSME, ASSMX
and ASSMS commands. With this system command the ALS-8 reacts to
the 'ASSM' while the assembler itself uses the fifth character

within its own code.

ASCII Parameters

In addition to direct name extension the ALS-8 also allows up
to five ASCII characters, enclosed within slashes (/), to be passed.
The system FILE and IODR are examples of ASCII parameter use.

Numeric Values
The system also allows two numeric values to be input with the
command. These may be interpreted as HEX, OCTAL or DECIMAL values

by the external routine.

How to locate these parameters is specified here, and some
techniques for processing them are explained in detail sufficient
for normal operations.

As an example, assume the entry "POTT" were entered as a cus-
tom command along with the address 1f for its execution. Assume
the ALS-8 received the command:

POTTAM /ABCDE/ 1057 AlES

— —
Title: ALS-8 Parameter Passing Release Date: _11/1/76
Revision No. 2
Function: Level No. __ Bl

Poge 3 _of _3

The system would preprocess the parameters and then make a
programatic call to address 1f with the buffers set as follows:

l el of 7| 'I"FAI Ml r—— ALL ASCII CHARACTERS
+1 +2 +3 +4 +5 -
T—IBUF

Al Bl c| D E' ALL ASCII CHARACTERS
L+1 +2 +3 +4
FBUF

Binary values in low byte, high byte format
t_+l +2 +3
BBUF

L2l of s] 7NN #[2] =] s RN
T_ +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13

ABUF All ASCII characters except k\‘ which
indicates a binary zero. " i

With this example the values in the BINARY BUFFER, BBUF,
assume the system MODE was set to hexadecimal. The system, prior
to branching to the command, converted the values to binary and
stored them as such in BBUF as received. If the system mode had
been octal in this case, the first parameter would have been con-
verted to its binary equivalent, but the second would have caused
an error. The error is present because the characters "A" and "E"
are not legal for the octal mode. The system would NOT have gone
to the command in this case. It would have output the error
message "WHAT?" instead.

Release Date: _11/1/76

Title: _ALS~8 Parameter Passing
Revision No. _£

Function: Level No. Bl

If the custom command had wanted the values converted in
accord with the system mode, the LHLD instruction should be used
for direct loading of the values.

LHLD BBUF GETS FIRST PARAMETER
LHLD BBUF+2 GETS SECOND PARAMETER

There are times where a value is always expected as Decimal,
Octal or Hexadecimal. In this case the ASCII values in ABUF can be
converted by using the appropriate ALS-8 conversion routine. The
conventions for these routines require that they be called with
registers B & C pointing to the first ASCII character and that a
binary zero terminate the sequence. (See the corresponding system
bulletin for further information.) 1f we wanted each parameter to

be interpreted as Decimal, the following sequence would be used:

CALL VCHK MAKE SURE THE FIRST IS PRESENT
IXI B,ABUF
CALL ADEC - CONVERT VALUE
JC WHAT CARRY SET MEANS ERROR
SHLD PARAL STORE FIRST
IXI B, ABUF+7
LDAX B GET CHR OF SECOND PARAMETER
ORA a SET FLAGS
Jz WHAT NO PARAMETER
CALL ADEC CONVERT SECOND
Jc WHAT ERROR
-
.
.
*
*

Page % __of _5

M I

Release Date: _L11/1/76

Title: __ALS-8 Parameter Passing

Revision No.
Function: Level No. -
Y) Page 5 of 5

The command name extensions, as in the "AM" added to the exam-

ple command "POTT", are best picked up with a direct LDA instruction.

LDA IBUF+4 GET FIFTH CHR
CPI 's' Is IT S?
JZ SONE GO DO THE "S" PART
CPI ‘A’
JNZ WHAT ONLY A OR S FOR THE EXAMPLE
3
L]
-«
°

The characters in FBUF are used to provide a name for the com-
mand functions that follow. This can be the name of a File or I/0O
Driver as with the ALS-8 Command Set or some other interpretation

as per the requirements of a Custom Command.

A command, GETF, for example, could read a cassette tape until
the specified name was found and then read it into memory locations

starting at the first parameter but not to exceed the second.

Also, a command, Save, could search the file tables for the
file name, pick up the file parameters and then save them on tape.
The name could also indicate the desired I/0 Driver for use with
the command execution. 1In this case the I/O Driver Table would be

searched to find the correct value.

The use of the File and I/0O Driver search is more complex than
parameter passing. Many options are available and fertile minds are

referred to the bulletin describing the available routines.

IBUF EQU @D1E4H INPUT BUFFER
ABUF EQU @D@DFH ASCII BUFFER
FBUF EQU @D@DTH NAME BUFFER
BBUF EQU @DEFH BINARY BUFFER
VCHK EQU PES1CH

WHAT EQU @E7DDH

Title: RAND?2 Eric G. Rawson 11/20/7¢

Function: 15~bit Random Number Generator

Many software algorithms exist for random number generation. Most involve
multiplication and truncation., None generate truly random numbers, but instead
give a finite sequence of numbers {(which may be very long) which then repeats
exactly, over and over. Such numbers are called pseudo-random numbers (PRN).

A good PRN generator gives numbers which are very irregularly positioned within
its given numerical range, and generates all possible numbers within that range
before repeating. For example, a PRN generator having a range of 0.0 to 1.0,
and claiming 6 significant figures, should generate all 106—1 numbers (from
.000,001 to .999,999) before the sequence repeats. Unfortunately, not all
algorithms generate as complete a set of numbers as their precision implies.
The program described here uses a software analogue of the electronic technique
for generating maximal length bit sequences (m-sequences) in the field of data
transmission. An n-bit shift register, whose first bit input is derived from
an exclusive-or of the nth bit and one other suitable bit (often n-1 or n-2)
generates an m-sequence 2"-1 bits long. Not as widely known is the fact that,
in so doing, the n bits in the shift register present a complete set of PRN's.
Each shift generates a new PRN, and the sequence cycles thru all 2"-1 values
before repeating exactly.

In this program (Figure 1) the carry bit is set equal to the parity of bits 1
and 2 of the least significant byte (bit zero is always zero) and RAR operations
effect the required right shift. The resulting sequence is complete but retains
some near-neighbor correlation due to the shift mechanism used. The latter is
eliminated by skipping thru the sequence 23 numbers at a time; this preserves
the sequence length and its irreqularity while eliminating the short-term

correlations.

Figure 2 is a test program which illustrates the use of the program by listing
the first 150 PRN's provided by RAND2.

Figure 3 is a test program which confirms that the seguence is 215—1 (=7FFEH)
values in length, and determines that the execution time per number is V920 usec.
Figure 4 shows a test of the evenness of the distribution of PRN's. The numbers
are sorted and counted in 256 "bins," according to the value the most significant
byte. When the complete seguence is so sorted (count limit = 7FFFH), as shown

in the first execution (Figure 5) each slot contains the regquired GOH values
except the last slot from which word FFFE is missing. 1In the second execution,
only 1/4 of the possible values are sampled (count limit = lFFFH). It is apparent
that the values cluster around the proper average value (ZOH), and range from 11H

to ZEH, confirming the evenness of the number distribution.

0300
0800
0200
0ano
0200
0200
0200
0300
6eoo
os00
0300
0s00
0300
200
agoo0
0300
0300
Qs 00
0200
oz00
0300
0200
0800
02300
0300
0301
1803
0806
0307
0208
0209
020B
0g0C
080F
0310
0211
ng1e
0213
0314
0315
0317
0318
0g19
021C
021F
agao
0g21
og2e

CONT
Loor

cs
06
2R
54
SD
7D
E6
37
ER
3F
7C
1F
67
70
1F
E6
&F
05
ce
2e
EB
c1
c9
ce

PRNUM

17

ce oe

10 08

FE

09 0%
a2 o8

25

0310
0809
ogae

Figure 1.

oS
Bo10
no1s

00zs
0040
0045
Guso

o100
010%
a11o
011s
n1zn
n1ss
130
n1zs
01410
014%
0150
w15S
0150
G185
nivo
01y
0120
0135

010
02730
0150 0235

O 6 6 0 0 0 0 0 0 PO P T OOl

“
I
e
=
[

WEITTEN BY ERIC 5. FAMIOM, 11-20-76

IZ A 1S BIT FIEUDO RANDOM

MUMEEFR ¢FREN) GENEFATOR. ERACH

FEN IS OETRINED FROM THE PREVIOUS

ONE BY SETTING CARRY=FARITY OF EITS

1 AMD & OF THE LEAST SIGNIF. BYTE

¢BIT 0 1S ALWAYS ZERO> AND DOING

TWO PRR‘S ON THE TWQ EYTE WORD.

STEFPING BY 23 REMOYES NERR NEIGHEOR
CORFELATIONS AND STILL %IELDS A FRN

I UMLER 920 MICROSECONDS. FRSTER
EXECUTION CAN BE OETAINED BY REPLACING

&2 IN LINE 145 BY 19+17+12511s OF EVEN 1
FOF WHICH THE CALL TIME DRFOFS TO 110 MICRO

FEANMDE

EC AT THE ©OZT OF INCRERS ING MNEAF-MEIGHEOR
CORRELATIONS. ALL 32VEP 15-EIT FEN’S
“RE GENEFATEDs AND THEN THE CYCLE REFERTS.
FFFECH} DOEZ NOT OCCUR.
TO0 FANDOMISE FROM RUN TO RUNs FESET FRNUR
USING ALS-Z COMMAMD ENTRs FERHAPS UTING THE
DRTE OF TIME. ODD WALWES ARE EGUIVALENT TO
CWALUEY—1, DON‘T USE FFFF(H> OF FFFECH).
FI¥5H B
My I s 22 SET LOOF COUNTER
LHLD FRNUM GET LAST PRN
1oy DsH SAVE IT
Moy EsL
mov RsL
LOOF ANI 3 BET BITE 1.2
ZTC B CHRRY=FARFITY
JFE CONT
[ty
CONT Moy AsH SHIFT H
FAR
Moy H>A
movw Ryl MO L
FRAR
ANI OFEH ZTRIF EIT 0
Moy LA A NEW FEN
DR E
JNZ LOOP DO 23 TIMES
SHLD PENUM RESAVE FRN
XCHG . FUT TO DsE
FOP B
RET
FENUM DWW 25C8H HS 00D RS ANY STARTER

Assembly listing of RAND2,

RASSMX BOOQ

ORQO
0ROO
0R03
QR 0S
[0 11
030,
OEQE
OBOE
OECF
CB10
QE13
OF14
0B1€
QE19
OR1A
OE1D
UR1E
0R21
0B22
0EZ4
) fo]
oRze
(0:359 3

CRTN
LOOF

CD
0E
06
cDp
cs
cD
c1

05
CA
(s8]
as
CcDh
C1

C3
cs
CD
Cc1

06
[04]
ce
Cc3

RANI2

EMELC

RE48
FA3E
BFIC
16FE
FoD4
2czs
AFR4
TE42
CEOE
2E32
SC4ac
E?798
CcsEe
AROC
€62

READY

koo

923
ATF
ER1
SFé

2F7

£444
020&
15BE
3906
20Cé
s02C
C0ER
9252
ES00
02CA

Do

07 OB

16 E2

0R

07

60 EO

OB1D
OBO7
0300

C Es24
8 FCB8A
E B2EOD
& AZ28E
A ADCE
S5A8
SCCA
<
2ESA
844E
ECBE
97SE
9C24
FF9A
C3FC

Figure 2. A

Q00S & TIT3

LIST FIRST 150 NUMBS OF

0010 CALL CRLF
0015 MyI C»y15 LINE CNTR
uozo MVl Es10 WORD CNTR
0nsS LOOP CALL FANDZ
o330 PUSH R
(QE3S] CRLL ARDOUT ALS-2 4HEX
NN POFP E
0045 DR E
00sS0 iz CRTN
noss FLIEH E
Qgen MVl EsZ0H
0085 CRLL OUTF8 ALZ-2 CHAF
nova FOP B
cors Jmp LOOP
ags0 CRTH FLISH E
00s% CRLL CRLF ALS-8 CF +
3050 FOF B
(U Myl Es10 REZET WORD
009% DCR [nd
oinon JNZ LOooP
n1as JMP EORMS DONE
0110 RARNDE EQU 200H
onso
ao?s 0100
00as
E962 6262 82AC FC3C B67C DEAR 7FFé
eB7C ZECO 4746 E41A 7110 5536 C200
73294 47B4 D3I3A 4144 7EIE 8330 01BC
ESBC (862 C2FZ2 D8SC DR4A 9345 22R4
R484 2D03 DA44 9548 FEAN FEF4 TR7E
9E00 SFAE DISE FECC $078 CC2E 6DD4
033C 48FC JE9C €42E Fle8 CEC4 956
A2B2 FOOC F876 CAFA LDS0 FLCC Q07C
13C6 24€A 47C8 EZ1A B16C €416 7623
S1E8 1406 ?7C60 433C (69C B2FA DDAC
SCE4 11C4 2S5E6 E048 D29¢ E6C4 456R
BBAZ SA18 BOOE FA96 EEF8 SCER 178C
692C 4CA2 2A%4 E7D8 ELER 9762 R222
C17E 6FDE EB26 OBEQ 9372 Z884 E9CE
7ESC 1RBE F768 RA6F2 S20A FRSA 4E78

test program which lists the first 150 PRN's

FANDZ2

OuTPUT

OUTFUT

LF ZUEFR

CNTR

RSSMX 4100 RASSMX 3320
4100 0005 & COUN2» COUNT PRN‘S BEF SEQU 3320 0005 & RMAP, COUNT OCCURENCES OF ALL &56 mOST
4100 CD 16 E2 6010 CALL CRLF RES~gRgR f°t§”§Eg§EPE"TS 3320 0010 SIGNIFICANT S EITS. STORE COUNTS IN 3400¢H)
4102 21 60 00 0015 LK1 Hs0 ‘ 3320 0615 TO 34FFCHD .
4106 22 22 08 0020 SHLD PRNUM FRESET PRNUM TO 0000 3326 0020 o
4109 01 60 00 0025 LK1 Bs0 ZEROD COUNTER 3320 21 00 A0 00as LX1 Hs0
410C CD 00 o8 0030 LOODP CALL RAND GET ONE 2323 22 22 08 030 SHLD FRNUM FRESET PFNUM TO 0000
410F 7R 0035 Moy AsD 1S 1T ZERD? 3326 21 00 34 0o3s LK1 Hs3400H
4110 B3 0040 OrRA E 3329 01 FF 7 0040 LXI B»7FFFH SET COUNT LIMIT
4111 CA 18 41 004s J4z DONE IF SO,0UIT a32C 36 00 1e4s PT1 My I Me0 ZERD 2400-34FF
4114 03 6050 INX B 332E 23 00S0 INX H
4115 c3 0C 41 0055 JMP Loop I32F 7 nEs MOy AsL
4118 S0 0060 DOME MOV DsB FRINT COUNT 2330 FE 00 006 ¢ CP1 o
4119 59 0065 mav EsC 3332 ce ac 33 GOES ANz FT1
411R CD SC ES 0070 CALL ADOUT USING ALS-8§ 4HEX OUTFUT SUER 3335 CD 00 08 007 FIZ CALL FANLS
411D C3 60 EO 0grs JMP EORMS RET TO ALS-8 3338 @6 2 My Hs24H FESET H
4120 6020 RANI EQU S00H 323A A MOV Lk ZET L TO MSEYTE OF FRN
4120 0085 FRNUM EQU s22H 333 34 INR M INCFEMENT COUNT
333C CA 48 32 Jz DFLOW MUST NOT EXCEED FF(H>
DONE 4118 0045 323F OF DX E DECR LODOF COUNT
LooP 410C 0055 3340 78 Moy AsB IS LOOP COUNT ZERD?
PRNUM 0822 0020 3341 B1 OFA C
RAND 0800 0030 3342 Ce 35 33 INZ PT2 IF HOTs LOOF
3345 €3 60 EO AMP EOFMS DONEs PET 10 ALS-2
EXEC 4100 l 3348 21 4E 33 U120 OFLOW LXI H>OFMSG
! =30. 234B C3 EO E7 n1e5 AP MESS ALS-3 MI5 RETURN
?FFE }e "f“‘ time =30.2 sec. ‘n““; time per number ¢ 30.1 334E 20 4F 56 45 U130 OFME6 ASC ° DVERFLOW"
READY " 32,767 52 36 4C 4F
correc : 57
count . £ 92,0 see 2357 0D 0135 PE TERMINATOR
22 1= 3358 1140 RANDZ EQU
TFFE = 2 -1 232,767 3358 0145 FENUM EQU
OFLOW 3248 0030
DFMS6 324E 0120
: PRNUM 0322 coz0
Figure 3. This program checks the length of the PRN sequence, and shows that PT1 320 00ES
the execution time per number is :920 Usgec. PT2 3325 0110
FAND2 G200 0070

Figure 4. Checks the evenness of the PRN distribution by sorting into 256 number
"bins." See executions in Fig. 5.

CUSTE ~RMAP-3320

RMAP
READY

DUMP 3400 Z4FF

3400 S0
2410: 80
3420: 80
324320z 30
3440: 80
3450: 20
3460 £0
3470: 80
5480: 50
3490: 50
24R0: &

34R0: &0
Z4C0: B0
24p0: 80
34E0: &0
J4F0: B0

ENTR 332
1F 7

RMRP
RERADY

80
80
80
50

B

20
§0
30
50
50
aa
80
&0
&0
20
80
20
30
80
80
20

20
20
g0

80 ¢

80
g0
30
80

20 &

&0

20
20 ¢

&0
20
g0
20

B0
&80
{0
o
=)
30
20
20
el

o
b=

30 &

20
50
30
S0

S0

DUMP 400 24FF¢¢etecees

WHRT?

DUMP 3400 34FF
22 2B 1D

3400: 28
3410: 21
3420: 1E
3430: 1F
3440: 16
3450: 20
34603 21
3470: 25
3480: 21
3490: 19
34R0: 17
34B0: 2C
34C0:.1C
34D0: 1B
34E0: 1D
34F0: 17

Figure 5,

e
26
1C
29
e0
24
23
21
20
ae
1C
cD
1D
1c
1c
ee

axcept !P?EH is miasing from the topmost bin.

a2s
23
1F
cl
1F
1B
24
19
eo0
29
19
1E
f=C]
22
24

22

@

1F
1C
€3
ae
1c
21
1E
1C
1E
cB
26

1C
1c
20
25
18
co
c7
c1
1B
a7
c1
1D
21
a5
235

23
1D
22
1F
2a
25
26
2R
1R
19
20
1F
19
18
1R
1B

&5
20
1F
c4
21
1E
c4
1D
e3
2R
c4
co
1c
cé
c0
24

80

30
20
g0
20
80
20
g0
g0
2o
20

80

2e
a9
21
1E
1E
21
19
1%
1A
1E
1B
1F
1E
20
1F
1cC

30
30
50
80
=11]
50
=1
S
&0
30
20
20
20
go
s0
0

1F
c4
1E
1E
20
1D
13
24
o)
1R
ze
€3
1D
1F

B0

g0 £

20
€0
20
80
20
S0
20
a0
=11
&0
g0
a0

cv
1E
18
=2 3
=]
1C
c4
24
1P
15
=4
2e
ee
20
20
1E

Execution of RMAP (Fig. 4)
sequence (bottom).

a0

80
g0
&8a

>
=

20
a0
20
a0
20
20
£0
a0
20
20

21
21
17
e7
1E
c4
1E
1F
c0
20
a2
26
cc
21
1D
1€

for a full sequence (top) and a 1/4-length
For the full sequence, all possible even numbers occur,
For the 1l/4-sequence, the

ap

an

1F
1D
20
1€
27
1F
16
ee
e1
16
el
15
21
ee
ae
1E

20
20
20
50
20
S0
S0
€0

=
20 2

a0
20
20
S0
20

S0

1R
1F
16
1D
1F
1F
21
20
1E
a3
1E
&9
24
1C
20
26

30
30
30
a0
20
20
&0
20
=0

=0
S0
&0
z0

20

e5
20
21
21
1F
15
24
<3
1C
c1
4=
1D
19
et
co

24

numbers average 2°n' and range from 11!@l to ZEH'

20
50
8o
30
20
g0
206
20
=0
&0

20
20
&0
20

20

1€
cs
cl
24
=)
1F
=
cu
c3
co
ev
1E
1F
ze
1C

30
20
30
€0
20

g0
|0
30

o
(=1

20

50
80

1D
17
ee
2e
1F
f=4¢]
20
21
16
1C
13
co
=]
25
1R
1C

[E—

The following Video Display Module Driver was submitted by:

900
C?00
C?00
C?00
C?00
C?00
C?00
€200
C901
C904
C?05
C?06
c908
C?0KR
ceon
€210
ce12
C915
918
C919
C?1ER
ce1cC
Cc?1D
C91E
c920
ce23
Cc925
ceoz28
C?2a
C22R
ce2Cc
cez2n
C92E
930
Cc932
C933
€935
C936é
c937
ce38
c939
c93C
C93D
C93E
C93F
C940

ES

40

o
18
20
25
7F
25

ic

3F

no
25
cc
40
an

OF
[of:]

FF

A9

cc

co

co
c?

ce
co

c9

ce

Do

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290

11300
1310

1320
1330
1340
1350
1360
1370
1380

11390

11400

{1410

11420

{1430

:1440

11450

Don Minlitch
29 Hoyt Street
Stamford, CT 06905

X
¥UDM - VIDED DISFLAY MODULE DIRIVER
X
¥ON ENTRY
¥ B=CHARACTER T0O RE OUTFUT
X
COM YIIM
VDM FUSH H
LHLID VIMFT GET NXT CHAR ADDR
MOV ArE
MOV MrA INSERT THE CHAR
CFI CR IS IT CR CHAR
Jz VDIMCR YES
CF1 ‘o IS IT OTHER CTL CHAR
Jc UDMRT YES - IGNORE IT
CPI DEL IS IT DEL CHAR
Jz VIMRT YES - IGNORE IT
JHP VDIMNX GOTO CALC NXT CHAR
VIIMCR MOV AL CALC NXT LINE ADDR
ORI 3FH
MOV LvA
VIIMNX INX H GET NXT CHAR ADDR
MOV ArH
CcFI VDPAG+4 IS IT OFF THE VDM
Jc UDMRT NO
MVI HyVDFAG SET TO START OF vIM
VOMRT SHLD VDMPT SAVE CHAR ADDR
MVI MsCR+80H INSERT CURSOR
DAD H CALC SCREEN OFFSET
DAD H
MOV ArH
INR A
ANI OFH
ouT VDMIO SET SCREEN OFFSET
PUSH B
IN OFFH SEE IF HARDCOFY WANTED
RRC
SBB A
ANA B
MoV BrA
cALL sYSOU COPY CHAR OR NULL
POP B
POP H
MOV AvB
RET . RETURN
VDMPT DK VDPAGE256

Page 1 of 2 N

VDM

VDMCR
VDMNX
VDMFT
VDMRT

SYML
FSW
QUCH
FRME1
CRLF
Z0RNS
CR

ES
DEL
VIIMIO

D3FC

€900
c918

- £91C

€940
C925

0006
LOCF
LOEF
E216
EOL1
ooon
0008
007F
00C8

1120

1170

1080 12460

1140 1160 1240

TIF €800 TOF
FRMC non7z FRMD1
FRME2 DOF1 BUF
SWCH1 DOFD SWCH2
EORMS E0&0 WHAT
LF 0004 HT
EEL 0007 STX
CAN 0018 ESC
VDM €900 SYSIN

Page 2 of 2

€80A INCH pocc
[OEO FRMLOZ2 DOES
D1E4 STACK D12F
DOFE EOR EQE7
E7LD MESS E7EQ
0009 FF 000C
0002 ETX 0003
001R VLFAG o0CcC
noes SYSOU DOAY

The following Utility Routines for use with the ALS-8 were
submitted by:

Bill Gunn
875 West Broadway
Vancouver, B.C. V5z1J9

UTILITY ROUTINES TO BE USED WITH THE ALS-8
CASR, CRSHW, RENUM, INSRT, NUMB

ALL CASSETTE ROUTINES ARE SPECIFICALLY FOR
THE TARBELL CASSETTE INTERFACE

CRASSETTE READS DATA FROM TAFPE & PUTS 1T IN MEMORY
CASK
-AFTER A FILE HAS BEEN INITIALIZED THIS
COMMAND WILL RERD IN A SOURCE FILE AND UPDATE
END OF FILE POINTER (EOFP> AS WELL AS MAXIMUM
LINE NUNBER ¢(MAXL)>

CASR XXXX
-READS DATA FROM CASSETTE AND DUMFS 1T INTO
MEMORY AT SPECIFIED STARTING RDDRESS XXXX
USED IN CONJUNCTION WITH CASHW XXXX ¥v¥vy (1E. FIRST TEST
THO BYTES OF FILE ARE LENGTH-1 OF REMAINING FILE>

CASR XXXX YvYvyy
-THIS COMMAND 1S USED FOR FILES THRT HAVE BEEN
BLASTED ONTO TAPE HWITH NO HEADER INFORMATION.
XXXX 15 THE STARTING ADDRESS TO WHICH THE DATA
WILL BE DUMPED IN MEMORY & Yv¥Y IS THE LENGTH
OF THE DUMF.

IF THE CHECKSUM CARLCULATED DURING THE READ DOES
NOT ARGREE WITH THE CHECKSUM WRITTEN ON THE TRPE
AT THE END OF THE FILE A "READ ERROR" MESSAGE
WILL BE PRINTED ON THE SYSTEM OUTFPUT DEVICE
OTHERWISE R "READ COMPLETE® WILL BE FRINTED

CASW: CASSETTE WRITES DATAR ON TAPE FROM MEMORY

CASKH
-WRITES THE CURRENT SOURCE FILE ONTO CARSSETTE
THE FIRST 4 BYTES WRITTEN ARE THE MAX LINE NO
THE FOLLOWING 2 BYTES ARE THE LENGTH-1 OF THE
FILE.

CASH XXXX yryy
-WRITES AR BLOCK OF DATA FROM MEMORY STARTING AT
ADDRESS XXXX TO ADDRESS wvyvy.

"WRITE COMPLETE" WILL BE WRITTEN ON THE CURRENT
SYSTEM OUTPUT DEVICE UPON COMPLETION OF WRITE
T0 CRSSETTE

Page 1 of 11

RENUM: RENUMBER R SOURCE FILE
RENUM XXXX ¥Yyyy

~THIS ROUTINE RILL RENUMEBER EY ANY GIVEN
INCREMENT. THE INCREMENT MUST EE SFECIFIED
& MAY PUSH R LINE NUMBER FAST THE MAX 9999
VALUE IN WHICH CRSE THE FIFTH [DIGIT 1S DRGFFED
XXXX 1S THE MANDATORY INCREMENT VALUE HWHILE
YYYY 1S THE OFTIONARLLY SPECIFIED FILE LINE
NUMEER THRT RENUMBERING WILL START AT,

THIS ROUTINE 1S GOOD FOR CREATING SFRACE IN VYOUE
SOURCE FOR RDDING OTHER ROUTINES

INSRT: INSERT OR CONCRTENRTE TRO FILES
INSRT /FNAME/ XXXX
~-1F Y0U CREATE YOUR SCURCE IN A MODULRR FORM
AND WISH TO ADD ROUTINES TO A SOURCE BODY
THEN MRKE ONE FILE CURRENT SFECIFYING THE FILE
TO BE INSERTED AS FNAME FOLLOWED EY THE LINE
NO. IN THE CURRENT FILE THE INSERTED FILE KILL
FOLLOKW.

DANGER: 1T°S EASY TO RUN INTC VULNERAELE
MEMORY WITH. THIS COMMAND.

NUMB: AUTOMATIC LINE NUMBERING FOR INFUT MODE

NUME XXXX }
-TH1S ROUTINE WILL CHANGE INPUT DRIVERS TO
ALLON THE AUTOMATIC FRINTING OF A 4 DIGIT
LINE NUMBER FOLLONED BY R SPACE. XXXX WILL BE
THE FIRST LINE NUMBER PRINTED AND EACH
SUCCEEDING LINE NUMBER. INITIATED EY A CARRIAGE
RETURN. WILL BE INCREMENTED EY 8885,

NUMB XXXX yyYvyy .
-SRME RS ABOVE EXCEFT YOU SFECIFY THE INCREMENTING

VRLUE IN yYYY.

A CARRIAGE RETURN AFTER AN RUTOMATIC NUMBER HAS
BEEN PRINTED RESULTS IN THRT NUMBER BEING DELETED
FROM THE FILE

TO EXIT FROM NUMB DO AR CONTROL X AND READY WILL
BE PRINTED.

Page 2 of 11

66186
68280
8038
-L:EY:]
aese
6860
eeve
eeseo
ees%e
8100
e11e
8128
8138
0148
815e@
0160
e1?ve
8186
61%8
62068
8210
8220
8236
62480
8258
8260
8270
a280
az2%0
e3ee
6310
8328
8330
83480
8358
8360
8370
e38e
8390
0460
6410
8420
64380
6448
84580
8468
8470
84880
6490
8500
8518
8528
83538
8540
8558

R EEREEEEEREERREEEEEEREEEEEEEREEFEEEEEERREER

UTILITY ROUTINES TO BE USED WITH THE RLS-§&
ASSEMBLED ON THE ALS-& FPROGRAM DEVELOFMENT SYSTEM
WRITTEN BY: BILL GUNN

€75 WEST BROADKAY
YANCQUYER, B.C v5zZ2 1J9
AREA CODE 684 6&79-8574

AUGUST 16,1976

CASE: CASSETTE (TARBELL> RERD
3 MODES - 1. SFECIFY NO RARGUMENTS, READ SGURCE
2. SPECIFY FIRST ARG, READ BINARY WITH
LENGTH HERDER ON TAFE
3. SPECIFY BOTH ARGS, RERAD EBINARY

CASW: CASSETTE KRITE
2 MODES - 1. SPECIFY NO ARGUMENTS, NWRITE SOURCE
2. SPECIFY FIRST ARG, WRITE BINARY WITH
LENGTH HERDER ON TRPE

RENUM: RENUMBER R SOURCE FILE
2 MODES - 1. SPECIFY FIRST ARG, RENUM FROM THIS
EXISTING LINE NO. &Y INCS OF 8885
2. SPECIFY BOTH ARGS, SEC ARG DEFINES
INC SI12ZE

INSRT: CONCRTENATE OR INSERT FILES INTO ONE ANOTHER
1 MODE - 1. SPECIFY FILE TO INSERT INTO CURRENT
FILE & LINE NO. INSERTED FILE 1S TO

FOLLOW IN CURRENT FILE

NUMB: RUTOMATIC LINE NUMBERING FOR INPUT MODE
2 MODES - 1. SPECIFY FIRST ARG, LINE NO. BEGINS
AT THIS NO. & CONT. WITH INC OF @885
2. SECOND RRG SPECIFYS INC VALUE

CRSSETTE INFUT ROUTINE FOR SOURCE & BINARY

CASR CRLL CRLF

mvl R, 18H RESET INTERFACE
ouT CAsC
CRLL RRG1 ANY ARGUMENTS?

Jz SREAD

CALL ARG2 A SEC. RRG?
JZ HEADER

LHLD BBUF +2

XCHG

LHLD BBUF

JHP IN+1

HERDER CALL LENGT

LHLD BBUF
JHP IN

START ADDR OF BINARY BUFFER

8568 » GET HERE IF NO RRGS PRESENT & READ 4 BYTES OF MAX LN NO

Page 3 of 11

8s57e
CELT)
8590
ecee
8sle
8620
0630
06480
86580
8660
0670
ecee
8690
e7ee
8718
8720
8730
6740
6750
8760
erre
LT
8790
CELT]
88180
8620
8838
8848
8858
886e
8sve
8880
8898
8960
8918
8920
8938
8940
8950
8960
897e
8980
8998
10800
1818
1820
1830
18480
10858
1068
1878
18880
1098
1180
1118
_112@

SRERD LX1 H. MAXL
HY1 B, 4
SRIN CALL LoOP
Moy M. A
INX H
DCR B
JN2Z SRIN
* REARD 2 BYTE LENGTH TO FIX END FILE POINTER

CALL LENGT
LHLD BOFP LORD BEGIN OF FILE POINTER
DRD D ADD LENGTH-1 TO GET
SHLD EOFFP END OF FILE POINTER
LHLD BOFF
IN INX D
LA B, 0
« RERD IN DARTR

LOP CRLL LOOF RERD DRTR FROM CRSSETTE

MOV M, A

RDD B RDD CHECKSUM TO R
"oy B. R

INX H

DCX D

XRA A FINISHED?

CMP [

JNZ LOF

chHp E

JNZ LOF

* REARD IN CHECKSUM BYTE
CALL LOOP

CHFP B

LXI H, MES2
JINZ ERR
LX1 H, MES1

ERR CALL SCRN
JNF EORNS
* INPUT R BYTE FROM CRSSETTE

LOOF IN CRSC
RANI 18H
JIN2Z LOOP
IN CRSD
RET
* GET LENGTH-1 OF FILE

LENST CALL LOOFP

Hov E. R

CALL LOOF
Moy D, R

RET

* CHECK FOR FRESENCE OF FIRST ARG IN RSCII BUFFER
ARG1 LXI H, RBUF

Moy R, M

ORR [}

RET
* CHECK FOR FPRESENCE OF SECOND ARG
RRG2 LX1 H, RBUF +7

Hov A, M

ORRA [}

Page 4 of 11l

1130
1140
1150
1160
1170
1100
1198
1280
12186
122e
1238
1240
1258
1260
127e@
12686
1298
1300
13186
1320
1330
1348
1350
13686
1376
1386
1390
1400
1418
1428
1438
14489
14586
1468
1478
1480
1490
1568
1518
1520
1538
1540
1558
15686
1578
15886
1590
1668
16186
1628
1638
1646
1650
1668
1670

. 1688

[

RET

* CASSETTE WRITE ROUTINE FOR SOURCE & BINARY

*

CASH CALL CRLF
LA D A, 3CH GET START BVYTE
CALL cout
LA D R, BE6H GET SYNC BYTE
CALL cout
* IF THERE IS NOTHING IN RBUF THEN COFY R SOURCE FILE
CALL ARG1
JZ SRCPY
* NOT SOURCE, BETTER HAVE A SECOND ARG
CALL ARGZ
JZ WHA1
LHLD BBUF GET BEGIN OF LOAD FOINTER
LX1 D, BBUF+2 FOINT TO END OF LOAD
JMP HRLNG
SRCPY LXI H. MAXL WRITE 4 BYTES OF MAX LINE NG
Myl B, 4
SROUT MOV R, M
CALL cout
INX H
DCR B
JIN2Z SROUT
LHLD BOFF
LX1 D, EOFP
* FIND LENGTH OF LORD
HWLNG LDARX D
SuB L
mov C,A
CALL court
INX D
LDAX D
SBB H
Moy B, A
CALL court
INX B
LA E. B
* WRITE DATA ONTO TAFE
LOFO Mov R, M
CALL couTt
ADD E RDD CHECKSUM TO A
mov E, A
INX H
DX B
XRR R FINISHED?
CHpP B
JNZ LOPO
CHP [o4
JN2Z LOFO
HoY A, E
CALL couT WRITE CHECKSUM EYTE
LX1 H, MES3
CALL SCRN
JMP EORNS

Page 5 of 11

71690 * WRITE QUT A BYTE TO CASSETTE

1760
1710
1728
1730
1748
1?7580
1768
1?78
1788
1758
1868
1818
1828
1838
1848
1850
1868
1870
1888
1890
1508
1518
1920
1930
19480
1938
19680
1578
1988
1598
20088
2018
2020
2030
2048
2858
2068
2070
20880
2058
2108
2118
2120
2138
21480
2150
21680
2170
2188
2158
2288
2218
2228
2238
2249

couTt FUSH FSN
CLOF IN CRSC RERD CARSSETTE STATUS
ANI 20H
JNZ CLOF
FoOF PSK
ouT CRSD GUTFUT DATA TO CARSSETTE
RET
* MESSRAGE BUFFER
MES ASC “LORD COMFLETE~
DB 13
MESZ ASC “REARD ERROR”
DB 13
MES3 AsC “WRITE COMPLETE”
DB 13

*
* RENUMBER R SOURCE FILE

* ALWAYS PUT INCREMENTING VALUE AS FIRST ARG
*

*

OFTIONALLY

-
RENUM

* BEGIN LN AT

INTLN

2ERO

* S0 START AT

GO

BIAS

ABIN

PUT LINE NO TO START RENUM AT AS SEC. ARG
DEFAULTS T0 FIRST LINE NO. IN FILE

CALL BIAS SUBTRACT RSCII EIAS FROM FIRST ARG
» CHECK IF THERE 1S A SECOND ARG

CALL ARG2

Jz INTLN

LX1 H, ABUF +18

CALL FIND+3

JHF 60

88880

LX1 D, ABUF+7

nyl A, 7 8”

nyl B, 4

STARX D

INX D

DCR B

INZ 2EROD

THE BEGINNING & RENUMEER 1T ALREADY

LHLD BOFP

CALL ENDCK

CALL ADD

CALL LOAD

CALL ADR

Jnp 60
* ROUTINE TO SUBTRACT ASC11 BIARS FRUM NUMEERS

LHLD INCPT

XCHG

nyl E 4

LDAX D

5ul 30H

STAX D

INX D

DCR B

JIN2 ABIN

RET

* ROUTINE TO INCRPMENT LINE NO. DUE TO A CARRY

INC

SUI

18

Page 6 of 1l

‘2256

2260
22780
2280
2290
2308
2318
23280
2338
2348
23580
2368
2378
23880
2398
2400
24180
24280
2438
2440
£458
24680
2470
24B0@
24980
2500
2518
2520
25380
2540
2550
2568
2578
2580
2598
26080
26160
2620
2638
2640
2650
2668
26780
2680
2690
27060
2718
272e
27360
2740
2758
27680
27780
2788
2798
2800

MOoY M. AR
DCX H
MOV AM
INR A
CP1 T9r+q
RC
CALL INC
RET
* 1S THIS THE END 7
ENDCK MOV A, M
CF1 1
RNZ
* YES THIS IS THE END - UFDATE MAX LINE NO
LX1 D, ABUF+18@
LX1 H, MAXL -1
CALL LORD
LXI H, ARBUF SET UF TO LIST
Mv] B, 8
CALL CLERAR
CALL LIST
JMF EORNS
* ROUTINE TO MOVE CONTENTS OF NO. BUFFER TO FILE
LORD nyl B, 4
may A, B
CALL ADR ADD 4 TO ADRESS HEL
LOAD1 LDAX D
nov M, R
DCX D
DCX H
DCR B
JNZ LORD1
nov A M
RET
* ADD INCREMENT TO WORK BUFFER
ADD PUSH H
LHLD INCPT FOINT TO INC YARLUE BUFFER
XCHG
LHLD LINPT POINT TO LINE NO. BUFFER
LS E, 4
FUSH H
ADINC LDAX D
ADD M
CP1 797 +1
CNC INC
novy M, R
IRX D
FOP H
INX H
PUSH H
DCR B
JINZ RDINC
LXI D, ABUF+18
FOFP H
FOF H
RET

* ZERO QUT R BUFFER

Page 7 of 11

72818
2826
28380
28480
2850
28680
2870
2886
2896
29080
2916
2920
2930
2940
2958
2960
2978
2980
2996
3000
30180
3020
30360
30480
38560
30860
30760
3080
36890
3100
31180
3126
3130
3140
3156
3166
3176
31860
3190
3280
3210
3220
3238
3248
3250
3260
32760
3280
3296
3380
33180
3320
3330
3340
3350
33680

CLERR XRAR A
CLER noy " A

DCR B
JNZ CLER
RET

*

* ROUTINE TO CONCATENATE OR INSERT FILES INTO ONE ANCTHER
* FIRST RRG CONTARINS FILE TO BE INSERTED

% SECOND ARG CONTAINS LINE NO. INSERT WILL FOLLOW

*
1

NSRT LXI H, ABUF
CARLL FIND
Moy An
CRLL RDR
DCX H
MYl M, 2

SHLD INSP
* POINT TO FILE TO BE INSERTED AND GET BOFF & EOFF
CALL FSERA

LX1 D, NMLEN
DARD [
LDOAX D
ORR A
Je2 WHR1
CALL LODM
PUSH B
noy A, D
SUB B
noy L, R
Moy A E
SBE C
moy H, A
XCHG
LHLD ECFF
PUSH H
DAD [
SHLD EOFF
FOF]

% CRERTE SFPRCE FOR INSERTION
L1} c.2

CRLL RMOY
* MOVYE FILE TO BE INSERTED INTO SPACE

POP B

novy E.B
nov D.C
LHLD INSF
Myl M, ASCR
INX H

LA 2] c, 1

CARLL Lnoy
*«SET UP TO RENUMBER FILES BY INCR OF 1

XRRA R
LX1 D, ABUF INC VALUE BUFFER POINTER
Myl B, 3
PLACE STARX D .
INX]

Page 8 of 11

/3370
3388
3398
34080
3418
3420
3430
3440
3458
3460
3478
34880
3498
3508
3510
3520
3538
3540
3556
3568
3576
3580
35960
36080
3618
3620
36360
3648
3650
3668
36760
36860
3690
3700
3710
37260
3730
37480
3756
3768
3776
3788
3796
38880
3816
3820
3838
3840
3858
3860
38760
3880
3896
3988
3918
39260

DCR B
JNZ PLACE
INR A
STAX D
INX]
JMP INTLN RENUM COMBINED FILES
x
* ROUTINE TDO PROVIDE AUTOMARTIC LINE NUMBERING
* FIRST ARG DEFINES STRARTING LINE NO
= OFTIONAL SEC ARG DEFINES INC VARLUE - DEFRULTS TO S
* CTRL/X RETURNS YOU TO NORMAL OFERATION
*
NUME CALL CRLF
CAaLL ARG1 CHECK FOR FIRST ARG
J2z WHAL
XRA R SET UF BEGINNING OF LINE FLAG
SThR NFLAG
LX1 H, SRYE STORE NEW LINE NO. & INC VALUE FOINTERS
SHLD INCFT
LX1 H, SRYE+4
SHLD LINPT
ROUTINE TO SAYE ASCII ARG ARBUF & ABUF+7
* ABUF TO REUF+18 1S USED BY ALS-6& DELETE ROQUTINE
LX1 H, RBUF POINT TO INC VARLUE BUFFER
CALL LODH LORD IN BCDE
LX1 H, SAYE+?
CALL STCOM
LX1 H, RBUF+? FPOINT TO INC VALUE
CRLL LODH
LX1 H, SAYE+3 FPOINT TO SRYE BUFFEE
CRLL STOM COPY INC VALUE
cHMpP M CHECK FOR SECOND ARG
Jz INCS
CRLL BIRS SUB ASCI1 BIAS
JNF NEWIN ONWARD WITH PRESCRIBED INC
% INITIALIZE INCREMENT 70 S
INCS LA B, 3
LINC MYl M, 8
INX H
DCR B
JNZ LINC
nyl M. 5
* CHANGE INPUT DRIVER
NEWIN LHLD INFE+1
SHLD JIVE+1
LX1 H. BOOGEE
SHLD INP8+1
JHP SYSE
* START OF NEW INFUT DRIVER
BOOGEE LDAR NFLAG
JN2Z JIVE NOT A NEW LINE THEN JIVE TO SYSTEM INFUT
MYl E, 2+5 ADYANCE CHAR COUNT
PUSH] & SAVYE
Myl A1 SET FLAG TO BE CLERRED BY A CR
STA NFLRG
* PRINT LINE NO

Page 9 of 11

4498 BBUF EQU ODOEFH
‘3938 LK1 D, SAYE+4 FOINT TO LINE NO. EUFFER 45808 INSF EQU ap1CoH
3948 LX1 H, IBUF FOINT TG INFUT STRERM 4518 IBUF EQU OD1E4H
3950 Myl C, 4 4520 EQRMS EQU PEBEBH
3960 VIENW LDAX o 4538 SYSE EQU OEB7EH
3976 moy M, A TO INPUT STREAM 4540 EORNS EQU BEBD1H
39660 MOV B:R SAVE RCC 4558 CRLF EQU PEZ16H
3990 CALL OUTFS 4568 SCRN EQU BE388H
40080 INX H NEXT FLERSE 4578 FSER EQU BEE8RH
4018 INX D 4588 WHA1 Equ BE?DDH
4020 DCR C 4598 FIND Equ BES41H
4038 JN2Z VIEW 4600 ADR EQU BESEBH
4048 * PRINT R SFACE 4618 LMOV EQU BESTEH
4058 Myl [IR 4628 RMOY EQU BES3’9H
408686 MOV M A 4630 LODM EQU BEF82H
40780 Moy B, A 4640 STOM EQu BEZEAH
40860 CALL QUTFE 4658 LI1ST EQU 8ESDBH
40980 INX H 4668 END
4100 CALL RDD ADD INC TO LINE NO.
4110 FOF o CHAR COUNT IN E

4128 * INPUT ROUTINE
4130 JIVE CALL TEMF SYSTEM INFUT ARDORESS TO AFPERER

4140 CFr1 24 CHECK FOR CONTROL X

4158 Jz EXIT

4160 CcrPl ASCR CHECK FOR CR

4170 RNZ

4180 XRR A INITIALIZE START OF LINE FLAG
4190 STAR NFLAG

4290 nov R. B

4210 RET

4220 » RESTORE POINTERS

4238 EXIT LX1 H, ABUF

4240 SHLD INCPT

4250 LX1 H, RBUF+7

4260 SHLD LINPT

4278 JHP EORMS BRCK TO MONITOR & FRINT REARDY
4280 *

4298 * DEFINE CONSTRANTS & STORRGE
4300 RSCR EQU 8DH

4318 NMLEN EQU 00885H

4320 TEMP EQu 0080H

4338 CARSC EQu 6EH

4340 CRSD EQU 6FH

4358 PSHW EQu 6

4360 NFLAG DS 1

4370 SAVE DS &

4380 INCPT DM RBUF

4396 LINPT DN RBUF +7

4400 »

4410 »* RLS-8 ROUTINE RDDRESSES
4429 »

4430 BOFP EQU 0DOeSH
4440 EOFF EQU epearH
4450 MAXL Eau 0DBogH
4460 INPB EQU 8DegCH
. 4476 OUTPB EQU 8DOCFH
4480 RBUF EQU B0BDFH

Page 11 of 11
Page 10 of 11

goie
0828
ge3e
ge4de
0eso
gece
eeve
fege
8es%8
G108
p11e
8120
e13e
8148
8158
p160
eive
8180
8198
0208
p21e
8228
8238
0240
82s5e
8268
82ve
e2c8
8298
8308
83180
83280
f330
8348
B358
8368
e3ve
8360
8398
0400
8418
8428
84380
B4480
84580
84680

The following Page Printer Program for the ALS-8
was submitted by:

Bill Gunn
875 West Broadway
Vancouver, B.C. V5Z1J9

* LR RS S 2L T 2
* * FAGE PRINTER *
* * FOR ALS-8 *
* Ao o o o o ok o b o b o ok o
% THIS PROGRAM 1S TO BE USED FOR HARD COFY QUTFUT
* T8 SET LEFT HAND MARGINS ONCE FOR ENTIRE FRINT oUT
* FAND TO ENCODE SPACES IN AN EFFICIENT MANNER. FRGING
* 1S ALSO ACCOMFLIGHED WITH 5@ LINEG FRINTED FEF
* PAGE. TOF LINE CONTAINS PAGE NUMBER. ROUTINE CAN BE USEL
* AS CUSTOMER COMMAND AS: FRINT 12
* 12 DEFINING THE NUMEER OF SPACES TQ EE LEFT IN THE LEFT
* MARGIN
*
* SET LEFT HAND MARGIN IN COUNTER
PRINT LXI H, AEUF+2 FOINT TO SECOND LAST CHAR IN FARAM EUFF
nov A, M
ORR A ANYTHING THERE?
Jz WHAL NO - FRINT WHAT? & RETURN TO ALS-E

CALL ADECE YES - CONVERT IT INTO EBINARY NO.

STA MARG STORE AS LEFT HAND MARGIN VALUE

XRA A INITIALIZE THE FOLLOWING
* DFLAG CONTRINS SWITCHES FOR TOF OF FAGE EJECT, & CONTROL
* CHAR. FOR SFACING OF NULLS FOR CR

STH DFLAG

STR LNCNT LINE COUNT
STA SAYE LAST CHAR. OUTFUTTED
Myl E, 3 ZERD QUT FIRST X BYTES OF FPAGE NCO. EBUFFEFR
LX1 H, BUFF FOINT TO FAGE NCO. EUFFER
2ERC nov [] ZERD IT
INX H NEXT BYTE
DCR E
JNZ ZERC
Myl M, 7@ INSTHALL AN ASCII ZERO IN THE LAST BYTE

CALL CRLF RESET FRINTER HERD
CALL FGNUM FRINT FIRST FAGE NC
CALL FAGE FOLLOWED EBY P LINE FEEDS
* CHANGE OUTFUT DRIVER
LX1 H, FLY NEW QUTFUT DRIYER ADLDRESS
SHLD OUTFE+1
* SET UP FOR TEXT COMMAND

LX1 H, RTEXT FOINT TO ASCII - TEXTY IN ALS-&
CALL LODNM LOAD ASCI1 CHARS. INTO REG B C D E
LX1 H, IEUF+3 FOINT TO INFUT COMMAND EBUFFEFR

CRLL cTonM STUFF ASCII "TEXT” HERE
CALL ZBUF, ZERD FPARAMETER EBUFFER., AEUF TO REUF+c@
LX1 H, S¥sg+€ ACDDRESS TO EBE USED AFTER THE MEXT FET

Page 1 of 5

‘8478
8488
8498
8588
8518
8520
8538
8540
8558
0568
8578
8580
0598
8608
8618
a6ze
8638
0648
86580
0660
8678
B6EP
86980
87880
6710
8720
ar3e
8748
a7se
87680
arve
0780
avoe
.E-LT
818
8g28
6830
#8480
agse
#6868
@578
@868
0890
agee
89160
@928
89380
8948
@958
28968
2978
#9860
09950
1000
10810
1820

ME E EE 2B

Ly

FUSH H FUT IT ON THE STACK
LX1 H, IEUF+4 FOINT TO JUST AFTER - TENXT
JHF CENTRY ACE A CR & EOF INDICATOR BEFCORE COMF STRINGS

-CENTEY IS A POINT IN THE ALS-& WHERE 1 MAY
CONTINUE AFTER ENTERING A COMMAND VIA THIS FROGRAM

GENERAL DRIVER FOR ¥DM-1 ANC LAX@
SENSE SWITCH & DOWN VDM DRIVER 1S USED
SENSE SWITCH & UP LAZe DRIVER 1% USED

IN SENSE
RAL
JC NOCFY
KAR
RAK
JC BARCC

* STANDARC VIDEG CRIVER (MDM-10

HARDC

STCNT

KEEFHM
*

DEL

* TEST

CALL VIDECG

RET

Mov A E FUT CHAR IN ACC. SO WE CAN LOCK AT IT

CF1 RSCR 1€ 1T A CR™

JNZ CEL NCO - SEE IF 1TSS A DELETE

LUA LNCNT YES - INCREMENT LINE COUNT

INR A

CF1 S10 FRINTEC S1 LINES™

JNZ STCNT NO - STORE LINE COUNT

Myl A, €2H YES - SET FLAGS. IGNORE DELETES & SET TOF OF F

STR DFLAG SAYE FLAGS

JMF ouTe QUTFPUT CARRIAGE RETURN , LINE FEECL & TWO DELETES

STAH LNCNT

LA SAVE GET LAST CHAR FRINTED

CF1 o 1€ 1T A SFACE™

JZ KEEFM YES - HOLD FRINT HEAD WHERE 1T 1S

MY 1 fi, 88H NC - SET FLAS TO IGNORE NEXT TWO DELETE CHAR

STR GFLAG SAYE FLAGS

JHF ouTs

FOF B YES - GET OUT OF CRLF ROUTINE EY FULLING RET
ACDDRESS FROM STACK

MY 1 E,ASLF SKIF THE CR & 0O A LINE FEEC ONLY

CALL ouTe EECARUSE YOU'YE ALREADY SET LEFT MARGIN

MV A, SET UF LAST CHAR FRINTEC AS LEFT MARG READY

STH SAVE STUFF 1T IN SAVE

RET . GET ANCTHER CHARARLCTER TO BE FRINTED

CF1 DELETE CHECK FOR DELETE CHRR TG SET SFACES

JNZ aurte NO -~ THEN QUTFUT IT

FGrR THWO DELTETE CHARR OGUTFUT AFTER A CR

LDA LFLAG GET FLAGS

RAL . IF MOST SIG BIT SET, CUTPUT CELETE AS A NULL

JC ouTe

* BIT NOT SET, USE NEXT TWO CHAR. AS NO. OF SFACES

* LAZB
auTte

INX H FOINT TG CHAR FOLLOWING DELETE CHAFR

CALL ACECE CHAR. WILL EBEE DECIMAL SO CONVERT TG EBINARRY
JMF EUTTER & CUTFUT THAT MANY SFACES

DRIVEF

IN USTH CHECK STATUS

AN1 &eH READY TO OUTFUT™

JZ auTe NO - CHECK AGARIN

Page 2 of 5

18380
1848
ie5e
18680
ieve
188680
ie9e
1iee
1118
1128
1138
1148
1158
1160
1178
1188
1198
1208
1218
1226
1238
1248
1258
12686
i127ve
1288
1298
1388
1318
1328
1338
1348
1358
1368
1378@
13686
1398
1408
1418
14280
1439
1440
1450
1460
1478
1480
1490
1508
1518
1528
1538
1548
1538
1568
1570
1588

FUSH E YES - SAYE IT & WAIT TILL LAX@ CATCHES UF WITH
* IF+<S
L¥I B, HUM LOAD WAIT FACTCR
TIMIT [CR 3
JNZ TIMIT
CCR C
JNZ TIMIT
FOF B FINISHEL WRITING. LETS HAYE THE CHARACTER
moy A, B MOVE IT TO ARCC SO WE CAN GUTFUT IT
ouTt CHRNZ
STA SAVE SAYE IT S0 WE CAN CHECK 1T LARTER
CF1 DELETE MWARS IT A DELETE™
ENZ . NO - EBEAT IT
LDA DFLAG YES - CHECK FOR FLAGS
RAR . AT THE LERST S1G EIT - LAST CHAR A DELETE™
JC LMARG YES - SET MARG, MAYEE TOF OF FAGE
cHe . NO - SET FLAG FOR NEXT TIME - ZND DELETE CHAR
RAL FUT IT IR FLACE
STR DFLAG & STORE IT
RET
* WRIT TILL SENSE SW 15 HAS EEEN TOGGLED EBACK
NOCFY IN SENSE
REAL
JC NOCFY
JHF EORMS EBACK TO ALS-&, REFLACING 1.0 DRIVER & FRINT REA
* SET LEFT MARGIN
LMARG RAR . CHECK FOR NEW PAGE FLAG
JNC LEFT NOT SET THEN SET MARGIN
CALL FRGE GET TO TOF OF NEXT FAGE
STR LNCNT STORE ZEROED LINE COUNT SO YOU CAN [0 A CF
STR DFLAG ZERO FLAG
CARLL PGNUM FRINT PRGE NUMEEF
CRLL FRGE LERYE SOME SPACE &
STA LNCNT INITIRLIZE LINE COUNT
RET
* THE SPRCE GENERATOR

LEFT LDR MARG GET PREYIOUSLY DEFINEL LEFT MARG FOSITICON
BUTTER MOV C,R STUFF NO. OF SFACES IN REG C

CARLL OYER+2 SPACE 1T OUT

STA DFLAG RESET FLAG

RET

* CONVERT TWO ARSCII DEC DIGITS TO EBINARY
* LEAYING THE RESULT IN REG D

RDECB MVI D, 8 INITIALIZE EBINARY COUNT
Myl C.,180 HOMW MANY 185
CALL CONY
INX H NEXT ASCI! DIGIT
MvI C.1 HOW MANY 1°S
CRLL CONY
RET
* CONVERT RSCI1 DECIMRL TO BINRRY

CONY MoV A. M FUT ASCII DIGIT IN ACC

SuUl 787-1 SUBTRACT ASCI] EBIAS

MoV B. R & STORE IN B

MoV R, D . D CONTAINS RESULT COF FPREWIOUS DIGIT CONVERSION
DCR B

Page 3 of 5

1590
1608
161e
1628
1638
1648
1658
1668
1678
1680
1698
1708
171@
1720
1730
1748
1758
1768
177
1788
1798
1gee
1g1e
1820
183e
1848
1858
1868
1878
1880
1898
1988
1918
1928
1938
1948
1958
1968
1978
1980
1990
2088
2818
20820
ze3e
2848
2850
2868
2878
2880
20898
2188
2118
2120
2138

,2148

rZ

RDOD C

MOV 0, A

JMF CONVY+4
* ROUTINE FOR MULTIFL
OYER MY G, 63D

Myl b,

JHF SHOOQT
PRGE Myl c,7

Myl 0, ASLF
SHOOT FUSH E

Moy B, D
SFRCE DCR C

JH SFCED

CALL ouTe

JHF SFACE
SFCED FOF B

XRA A

RET
* INCREMENT & FRINT C
PGNUM LX1 H. BUFF+
DIGIT INR M

may A n

CF1 XAH

JNZ GETOUT

MyI M, "6’

DCX H

nay A M

aRA A

JNZ DIGIT

Myl M, 8

JMF DIGIT
GETOUT CRLL OVER

LX1 H, MSG

CALL SCRN

CALL CRLF

RET
MSG RSC "PRGE "
BUFF [4

Dl 8D2EH
*
* DEFINE CONSTANTS
VIDED EQU BFE77H
ARSLF Equ 8AH
RSCR EQU épH
DELETE EQU 7FH
CHRAN3Z EQU ks
USTAR EQu e
DRY EQu 40H
TEE EQU 88H
OUTFPE EQU @DOCFH
RBUF EQU ereDFH
IBUF EQU BD1E4H
EORNS EQU BEBERH
SYs¢g EQU @EB7EH
CENTRY EQU BE193H

ACl IN AFPROFRIATE EINARY VALUE OF DECIMAL DIGIT
& STORE IN [

E CHRR. OUTFUT
MOYE FAGE NG OVER TCO THE RIGHT
BY INSERTING MULTIFLE SFARCES

SKIF OYER FRFER FERFORATIONS
EY DOING MULTIFLE LINE FEEDS
SAYE FREYIOUS CHARR. TO EBE OUTPUT
FUT CHAR. TO EE QUTFUT IN REG &
NO. OF CHAR. TO QUTFUT IN REG C
TEST FOR SPECIAL CASE OF NC CHAR TO EBE QUTFUT

AGARIN
FINISHED -~ SO RESTORE OR1IG CHAR TO EE QUTFUT
CLEAR ACC

ONTENTS OF FAGE NO. BUFFER

X FOINT TO EN[GF FARGE NO. EUFFER
INCREMENT DIGIT

STUFF IN RCC. TO LOOK AT IT
INCREMENTED DIGIT FAST 97

NO -~ THEN FEINT WHOLE EUFFER

YES - RESET THIS DIGIT FOSITICON TO @
LOOK AT NEXT DIGIT

STUFF IN RCC. TO LOOK AT IT
ANYTHING HERE?

YES — INCREMENT IT

NO - PUT IN ASCII EIRAS

FOSITION PRINTER HERD FOR FRGE NC.
& PRINT PRGE NO

OUTFUT A STRING OF ASCII CHAR TILL CR
OUTFPUT CR, LF & 2 NULLS

A PERIOD FOLLOKWED EBY A CK

Page 4 of 5

2158
21¢e
¢17e
2188
2198
2288
2218
22260
2238
2248
2256
2260
2270
2z2ge
zzsa

CRLF
ZBUF
SCRN
RTEXT
HUM
SENSE
MARG
DFLAG
LNCNT
SAYE
WHA1
LOCM
STOM
ADEC

EQU
EQuU
EQU
Equ
EQU
EQU
bs

bs

239

bs

EQuU
EQU
EQU
Egy
END

BEZ16H
BE2ERH
BE3IBOH
BEZECH
8@a15H
8FFH

1

1

1

1
BETLCH
BEXE2H
BESERH
BEZFAH

Page 5 of 5

The following three programs (Output Driver for TTY, Load
saved Programs and Save Current File on Tape) were submit-
ted by:

Dennis H. Rosenthal

PROGRAM DESCRIPTION:

THE TTY PRE-~DRIVER 1S USED TO CORRECT A DEFICIENCY IN THE 4LS-8
ASSEMBLY. OUTPUT. WHEN LINE OUTPUT EXCEEDS A PREDEFINED LIMIT (72
FOR A TTY) THIS PROGRAM OUTPUTS A CARRAGE RETURN AND LINE-FEED, AND
SPACES OVER TO THE COMMENT AREA OF THE ASSEMBLER LISTING. ALSO
INCLUDED IS A ROUTINE TO KEEP TRACK OF THE NUMBER _OF LINES PRINTED.
WHEN A PRESET LIMIT IS REACHED A PAGE BREAK OCCURS., OUTPUTING A
PAGE NUMBER, LINE SKIPS, AND A LINE OF HYPHENS. A SEPERATE CUSTOM
COMMAND IS INCLUDED (CLRPC) TO MANUALLY RESET PAGE AND LINE COUNT.
THE STANDARD OUTPUT DRIVER 1S BRANCHED TO FROM THIS PROGRAM.

THE OTHER TWO PROGRAMS ARE USED TO SAVE AND RETREIVE PROGRAMS
THAT HAVE BEEN STORED ON CASSETTE TAPE. THEY ALLOV MULTIPLE PROGRAMS
ON ONE TAPE AND ALVAYS WORK WITH THE ALS-8 SYSTEMS CURRENT FILE.
THE PROGRAM NAME 1S ENCLOSED BY °*<' AND *>°', BLTHOUGH ANY_CHARACTERS
COULD HAVE BEEN SELECTED. EXAMPLE: SAVE @ @ <PROG A,8/1/76>.
THE TW0 ZEROS ARE USED TU SATISFY THE PARAMETER CHECKING THAT IS
DONE BY THE ALS~-8 SYSTEM« THE PROGRAMS SEARCH THE INPUT BUFFER AREA
FOR THE CONTROL CHARACTERS AND IF NOT FOUND THEY BRANCH TO °"WHAT'.
THE FILE LOCATION IS TAKEN FROM THE ALS-8 CURRENT FILE POINTER
LOCATED AT D@BSH. IF THE ESCAPE KEY IS PRESSED ON THE ADDRESSED
KEYBOARD, THE PRUGRAMS RETURN CONTROL BACK TO THE SYSTEM .
IMMEDIATELYs AT THE END OF A RESTORE, THE FCHX COMMAND MAY BE USED
TO COMPLETE 'THE FILE IDENTIFICATION TO THE ALS~8 SYSTEM.

. IN ALL THESE PROGRAMS,] CONSIDEBR THE VDM AND ASSOCIATED
KEYBOARD AS THE MASTER OR YSYSIO', WITH THE TTY FOR LISTINGS.
THE PROGRAMS ARE NOT MINIMIZED, AND PERHAPS BETTER USE COULD HAVE
BEEN MADE OF THE SWITCHABLE 1/0 DRIVER OPTIONS.

3Coe
3ces
3cee
3Ccoee
3Cee
3coe
Jcee
3ceo
3coe
3cee
3Coa
3cog
3cCee
3Ceo
3CoQ
3Cee
3cea
3Cee
3Ceo
3Ca1
3C@3
3C@6
3ces
3COA
3Cac
3COF
3Ci2
3C1S
3C1S
3CtS
3C16
3Ct9
3C19
3Ci1C
3C1D
3CIF
3c22
3¢€2s
3c28
3c28
3c28
3C29
3C2B
3C2D
3Ca8
3Cc32
3C3S
3C36

78
FE
Ca
3A
3C
FE
Ca
32
c3

AF
32

3A
3C
FE
CA
32
c3

Ccs
PE
JE
32
a6
cD
Cl
c3

@D
15
BA

4A
28
BA
A9

BA
BC

32
39
BC
A9

32
31
BA
20
Al

19

3C
3C

3C
3C
Do

3C
3C
3C

3C
Do

<]
3C

3c

2010
2920
2030
2040
2050
2260
2070
2080
2090
2100
2110
120
2130
glao
2150
2168
2170
2180
2190
2200
2210
2220
2230
8240
8250
8260
2270
8280
2290
2306
23180
8320
8330
8340
2350
2360
2370
2386
9390
2400
2410
2420
2430
8440
2450
0460
2470
2488

200 28 2 2 3 K 2 3K K K K koK 3 g ok ik koK koK Kok oK kR 8Ok ok ok ok koK

*
*
*
*
*
*
*
*
*
*
*
*
*
*

x

a6 290 3 ke b 2 g o a8 3k 3k ok ok o o o e e afe oKk Kok ok i i ok koK ok koK K Kok R K

THIS PROGRAM WRITTEN WITH THE ALS-8

SYSTEM BY DENNIS H. ROSENTHAL
OUTPUT DRIVER FOR TTY

PRODUCES~FORMATED OUTPUT LISTING
FOR USE WITH THE ASSEMBLER.

LINE CARRY-OVERS ARE SPACED TO MATCH
COMMENT FORMAT. AFTER EVERY "LLIM™
LINES A PAGE BREAK OCCURS WITH PAGE
NUMBER PRINTED AT END OF PAGE AND A
STRING OF HYPHENS AS SEPERATOR.

THE MAXIMUM PAGE NUMBER 1S 99 DECIMAL

A SEPERATE CLEAR COMMAND FOR LINE
AND PAGE COUNTS 1S PROVIDED.

THE STANDARD 1/0 DRIVER 1S USED FOR

ACTUAL CHARACTER OUTPUT

FEEEE SR R SR 3 IR BT R BE B R B 2N 4

START EQU s

MOV A,B
CPI @DH
Jz CCHRC
LDA CCTR
INR A

CPI CLIM
Jz SPLN
STA CCTR
JMP ouT

TEST CHARACTER
CARRAGE RETURN ?

CHARACTER LIMIT ?
SPACE LINE

OUTPUT CHARACTER

a9 e o o e o ok o ook o oo ol ol ook e o e o oo ool O ook e ok KK

CCHRC EQU $ CLEAR CHAR COUNT
XRA A
STA CCTR RESET CHAR COUNT
LNCHK EQU $ CHECK NUMBER OF LINES
LDA LCTR INCREMENT LINE COUNT
INR A
CPl LLIM PAGE LIMIT REACHED ?
Jz PGBRK PAGE BREAK
STA LCTR
JMP ouT OUTPUT CHARACTER
e o e o e o e o e o oo o e o o o oo oo o o o ook O R Ok K
SPLN EQU $ ADD SPACES
PUSH B SAVE B
MVI C,SPLEN NUMBER OF SPACES
MVI A, SPLEN-1
STA CCTR™ SET NEW CHAR COUNT
MVI B,20H SPACES TO BE PRINTED
CaLL PUT OUTPUT SPACES
POP B
JMP LNCHK INCREMENT LINE COUNT

PAGE @1

CLEAR CHARACTER COUNT
INCREMENT CHAR COUNT

i

3C39
3C39
3C39
3C3a
3C3D
3C3E
3C4a0
3ca3

3C46
3C47
3C49
3C4B

JC4AE
3C51
3C54
3C56
3CS59
3CSB
3Cs5D
3c6p
3c62
3C65
3C66
3C67

3C6A
3C6A

3C6A
3C6C
3C6F
3C71
3C74
3C7S
3C76
3C79
3C79

3C79
3C17C
3C7D
3Ce@
3C81
3csge
3C84
3C86
3C89

.C8A

26
cD
26
CcD
@D
cs
c3

3A
3C
32
27
a7
E6
Fé
32
78
(2

BC
23

6A
79

BE

BB

oF

3@
B8

3C

3cC

3ac

3c

3C
3C
3C

3C

3cC

Do

Do

D@

3C

3C

3C

3cC

IS 3 33333 2833313222222 2 222222222223 14

@508 PGBRK EQU H END OF PAGE

6510 XRA A

2520 STA LCTR CLEAR LINE COUNTER

@530 PUSH B

2540 MVI C,@3H SKIP 3 LINES FIRST

@550 CALL CRLF

2560 CALL CONV CONVERT BINARY TO ASCI
1

2570 PUSH H

2580 MVI B, 2@H SPACES

2590 MVI Cc.,27 27 SPACES

06060 CALL PUT OUTPUT SPACES BEFORE ™
PAGE"

8610 LXI H,MSG1

9620 CALL MSG OUTPUT PAGE NUMBER

2630 MVI C,B4H SKIP 4 LINES AFTER

g640 CALL CRLF

2650 MVI B,2DH HYPHEN

2660 MVI C,70 70 HYPHENS

6670 CALL PUT OUTPUT SEPERATOR

2680 MV1 C,5 SKIP 6 LINES LAST

6690 CALL CRLF

@700 POP H

@710 POP B

8720 JMP ouT FINALLY OUTPUT CHARACT

. ER :

G730 *xxkkkkkkkkkrRprrngRkRrRRkpe kR kR kkrkk

8746 CRLF EQU - REG C HOLDS LOOP FACTO
R

6750 MVI B,@DH CARRAGE RETURN

8760 CALL ouT

6770 MV1 B,@AH LINE FEED

6780 CALL ouT

8790 DCR c

6860 RZ

2810 JMP CRLF LOOP BACK

P820 *adxkdkRrkkkRkRRRRRRkRRRRrkkkhRrkk kR kK kkRE

6832 CONV EQU H CONVERTS PAGE COUNT TO
ASCI1

‘9840 LDA PACT . PAGE COUNT

2850 INR A .

0860 STA PGCT SAVE

6870 DAA E

2880 MoV B,A SAVE IN B

2890 ANI BFH FIRST 4 BITS

2900 ORI 30H -MAKE IT ASCI1

2910 STA ASCO

#8920 MOV A.B

#8930 RRC

PAGE @2

3C8B
3C8C
3c8D
3C8E
3C98
3c92
3C9S
3C96
3C96

3C96
3C97
3C98
3C99
3C9A
3C9D
JCSE
3CAl
3CAl
3CAl
3CA4
JCAS
3CA6
3CA9
JCA9
3CA9
JCA9

JCA9
3CAA
JCAD
3CBO
3CBI1
3CBI

3CB7
3CB8
3CB9
JCBA

3CBB
3CBC

JCBD

3CBD
3CBD

3CBD
3CBD

oF

oF
E6
Fé6
32
co

7E
B7
cs
a7
CD
23
Cc3

CD
eD
c8
c3

AF
32
32
c9

59

o0
00
1]
1%}

1]
00

aF
30
B7

A9

96

A9

Al

BB
BC

41

3C

Do

3C

Do

3C

3C
3C

47 45

2940
2950
0960
2978
2980
2998
1600
1010
18620

1930
1040
1850
1060
1070
1080
1090
1108
1110
11208
1130
1140
1150
1168
1178
1180
1190

1200
1210
1220
1230
1240
1259

1260
1270
1280
1298

1300
1318

1328

1330
1340

13860
1368

RRC

RRC

RRC

ANl OFH NEXT 4 BITS

ORI 36H MAKE IT ASCII

STA ASC]

RET
AR R ROk R R R ok R ok ok K ko
MSG EQU H OUTPUTS MESSAGE POINTE

D TO BY HL

MOV AsM TAKE FROM MEMORY

ORA A SET COND CODES

RZ . RETURN 1F ZERO

MOV B,A SAVE IN B

CALL ouT

INX H

JMP MSG
A R Kok KK o ok K ok K K ok ok oK
PUT EQU S OUTPUT REG B C TIMES

CALL ouT OUTPUT TO PRINTER

DCR [

RZ

JMP PUT LOOP BACK

AR KK KA R R K Rk ok K kK Rk
* THIS SECTION SHOULD BE EXECUTED BY A
* A CUSTOM COMMAND SUCH AS CLRPC

CLRPC EQU s RESET CHAR AND LINE CO
UNTERS
XRA A
STA PGCT
STA LCTR
RET

8 3 2 3 20020030 ok e ok e o o o ok e 0 e o o ol ol o o ol ok o ok ok ok ok o ok ok

MSG1 ASC “PAGE “

ASC1 DB %]

ASCO DB %]

DB %] END OF MSG 1

CCTR DB [/ CHAR COUNT VITHIN A LI
NE

PGCT DB 4 PAGE COUNT

LCTR DB %] USED TO SAVE NUMBER OF
LINES

SPLEN EQU 50 NUMBER OF SPACES FOR

' OVERFLOV

CLIM EQU 74 CHAR LIMIT PER LINE

ouT EQU @DPASH STANDARD OUTPUT DRIVE
R *x

LLIM EQU 1] MAX LINES PER PAGE

AR RREEERRRRRE R R R KRRk Rk R Rk Rk

PAGE @3

3CBD

3CBD

ASCO
ASC1
CCHRC
CCTR
CLIM
CLRPC
CONV
CRLF
LCTR
LLIM
LNCHK
MSG
MSG1
ouT
PGBRK
PGCT
PUT
SPLEN
SPLN
START

3CB8
3CB7
3C1s
3CBA
@04A
3CAS
3C79
3C6A
3CBC
@032
3C19
3C96
3CB1

DOAS
3C39
3CBB
3CAl

@03z
3C28
3Ce0

@918
0990
6210
a22e
@240

8560
8550
6330
2350
0480
0620
p610
2279
2360
PB4
2460
0420
9250

1370

1380

0260

p640
0370
1090
0380
2860

0600
0430

coM CLRPC ALSO PUT IN CUST TABLE

a5 3 e 3 e 2 2 o0 a0 3 ok ofe ke i ok ke 3 o o8 o i ok ok i ok ok Kok o ok ok

6310 G440

0690 0810
8520 1220

0720 0760 0780 1070 1120

1210
2670 1150

PAGE 04

3CCo
3CCo
3CCo
3CCo
3CCo
3CCe
3CCo
3CcCa
3CCa
3¢c2
3CCS
3CC7
3CC7
3CC7
3CC7
3CCa
3ccc
3CCC
3CCD
3CCE
3CCF
3cb2
3CD4
3CD7
3CD7
3CD7
3CD7
3CD8
3CDB
3CDB
3CDB
3CDB
3CDB
3CDE
3CDF
3CDF
3CE2
3CE3
3CE6
3CE6
3CE7
3CE7
3CE7
3CE7
3CES8
3CEB
3CED
3CF0O

DB

DB

21

7E
23
éD
o7
FE
c2

2B
22

2A
4E

cD
B9
c2

23

4E
cD
FE
CA
B9

@3
2Cc
a3

E4
32

DD
3C
cc

S1

S1

11

DF

11
3E
F7

3D

D1

E7

3C

3D

3D

3D

3C

3D

3C

e010
0020
2930
0040
2050
0060
0070
ae8e
0090
o100
2110
o120
0130
2140
2158
0160
@170
o180
2190

2200

0218
0220
0230
0240
9259
0260
90279
0289
9290
8308
8310
0320
6330
9340
0350
8360
@370
8380
2398
2420
gale
paze
8430
2440
2450
8468
2470
2480

ook ook ok ok ok ok ok o K Kok oK ok Ak Rk R sk kK
THIS PROGRAM LOADS SAVED PROGRAMS =
DIRECTLY INTO CORE STARTING AT THE =
LOCATION POINTED TO BY THE CURRENT x
FILE POINTER AT "DP@5" *
FILE NAME 15 MATCHED AGAINST ENTRY *
IN INPUT LINE AREA *
LR T T T e T TP T e

IN TAPED CLEAR TAPE REGISTER

CALL CRLF

IN TAPED

*x
*
*
*
*
*

*x

* GET FILE NAME
*

LX1 H,IBUF BUFFER POINTER

MVI C,580 ' MAX SEARCH LENGTH
FNAME EQU $

MOV ALM

INX H

DCR c

Jz VHAT NOT PROPER INPUT

CPI ‘et TEST FOR BEG OF NAME

JNZ FNAME LOOP BACK

* STORE FILE NAME LOCATION

DCX H
SHLD

BACKSPACE ONE
STARTLOC
*

* TRY TO MATCH WITH TAPE
*

MATCH EQU s
LHLD STARTLOC
MOV C.M
MAT! EQU s
caLL TAPE GET DATA
cMP [
JNZ MATI] NO MATCH
MAT2 EQU s
INX H

*

* TEST MIDDLE CHARACTERS
*

MOV C.M

CALL TAPE

CPI > END OF TAPE NAME ?
JZ MAT3

CMP C TEST AGAINST MEMORY

PAGE #1

3CF1

3CF4
3CF7
3CF7
3CF8
3CFB
3CFE
3CFE
3CFE
3CFE
3D@})

3Dal1

3DB4
3D@s
3Dgé6
3D@8
3D@B
3DOE
3D11
3D11

3Dl1

3D11
3D1!
3D13
3D15
3Dp18
3D1A
3DicC
3DIE
3p2l

3pal
3p23
3D25
3pas
3D2A
3peB
3p2C
3pac
3b2¢
3Dp2C
3pac
3D2E
3D31

3D32
3D32
3D32
3D32

ca
c3

B9
c2
CcD

2A

CcD
70
23
FE
ce
21
Cc3

26
CD
Cc9

52

aF
43

E6

DB
11

25

6A

21
o8
TF
IB
6@

@2
g1
11
a3

@D
1]

45

52
4F

3C
3C

3C

3D

D@

3D

3D

E7

3D

EQ

3D

DE

53 54

4s 20
4D 50

2490
6599
2510
6520
6530
6540
0550
6560
65708
@580
2590
gooe
@610
2620
8636
p640
0650
2660
2670
2680
6699
8790
6710
0720
6730
0740
2750
2760
0770
21780
8798
2899
280
2820
2838
@840
2859
2860
2870
088e
2890
0900
2918
2920
2930
0940
0958

Jz
JMP
MAT3 EQU
CMP
JNZ
CALL

* LOAD FILE

LHLD
MAIN EQU
CALL
MOV
INX
cpl
JNZ
LX1
JMP
*
+ GET DATA
*
TAPE EQU
IN
ANI
Jz
IN

TAPE2

IN.
MOV
RET

MAT2 MATCH SO FAR
MATCH NO MATCH

s

c

MATCH NO MATCH !

TAPE REMOVE EXTRA CR

INTO MEMORY

FPTR
$
TAPE
M,B
H

1 TEST FOR END OF FILE
MAIN

H,M5G

MESS

FILE POINTER

FROM TAPE

b3
KBSTAT
MASK1
TAPE2
KBDATA
127
ESC
EORMS
$
TAPES
MASK1
TAPE
TAPED
B,A

RETURN IMMEDIATELY

GET DATA
SAVE

* SEND CR TO VDM

CRLF EQU E
MVI B, ODH
CALL VDM
RET

*

= END OF PROGRAM

*

MS5G ASC

PAGE @2

"RESTORE COMPLETE, FCHK FILE
| ’

ac
2C
48
49
21
3D5g @D
3D5)
3D51
3051
3D53
3D53

CRLF
FNAME
FPTR
MAIN
MASKI1
MAT]
MAT2
MAT3
MATCH
MESS
MSG
START
TAPE
TAPE2

45 54 45
20 46 43
4B 20 46
a4C 45 2@
20

3nac
3cce
D2e@sS
3001
(-1’12}
3CDF
3CE6
3CF7
3CDB
E7EQ
3n32
3n51
3D11
3Dn21

olee
2230
2580
o640
o720
8380
ea9o
2470
2500
0660
8650
e2ge
8368
e73e

goée .. DB @DH
9970 MASK1 EQU 1

998¢ FPTR EQU @DOASH
$99@ STARTLOC DS 2 .
1008 MESS EQU @ETEGH
1010 *

0880

9530

2330 -
6450 0S40 0600 0810

PAGE @3

3Dé6e
3D60
3D60
3D68
3D6@
3Dee
3D60
3D6@
3D60
3D6@
3D60
3D60
3D60
3D63
3D63
3D66
3D68
3D69
3D6A
3D6B
3D6E
3Dn70
3D73
3D74
3n77
3D78
3D79
3D7B
3D7C
3D7C
3D7F
3D82
3Dga
3pg?
3087
3D87
3p87
3D8A
3D8D
3D8D
3DBE
3D8F
3ng2
3093
3D95
3D98
3D9B
3D9B

cD
2A

46
23
cD
78
FE
c2
c3

A6

E4
3C

DD
3C
68

9B

JE

74
9B
oD
9B

A6
s

9B

@1
8D
60

3D

D1

E7

3D

3D

3D
3D

3D

3p
D@

3D

3D
EQ

gele
eoze
ee3e
2040
eose
go6e
oe70
oese
oese
e1o0
o110
2120
2130
el40
o150
@160
o170
o180
a19e
9200
g210
9220
8230
2240
@250
g260
0270
0280
8290
2300
8318
e32e
2330
8340
8350
2360
8370
8380
2390
gaeo
ealo
ga2o
8430
gaa0
64aso
0460
ea7e
0480

¢ 3 2 ok 2 2k ok o ok ok s ok ok ok ok ok ke ok ok ok Ak ook ok ok ke e ok ok o ok A ook ook ok ok
* THIS PROGRAM WRITTEN WITH THE ALS-8 *
* SYSTEM BY DENNIS He ROSENTHAL *
THIS PROGRAM SAVES CURRENT FILE ON TAPEx
*ALONG WITH NAME . NAME 1S ENCLOSED BY *
*THE CHARACTERS ‘< >' . ENTER TWO DUMMY *
* NUMBERS TO SATISFY NORMAL PARAMETER *
* CHECKING . *
3 e 2 3k 3 2 2k 2 2 ok ok ok ke ok ok 3 ok ok ok K a3k K K 2k ok K ok ko ok k ak ok ok ok ok ok koK
2k 2 2k 2k 2 ok o 2K 2K 2k ok o 2K 2 ok 2k ok e 2k ok ok ok ok o ko kK ok ok ok okok ok
* FIRST OUTPUT FILE NAME TO TAPE x
2k 2 2k 2k 23 ok ok 2K 2k 2k o ok k2 ok 2 ok e 2k ok ok o ok ko ok ok ok ok ok R k.

CALL CRLF RETURN CURSOR
* PUT INPUT BUFFER LOC IN H,L

LXI H, 1 BUF
MVI C,60 MAX LENGTH TO SEARCH
F1 MoV AsM
INX H
DCR Cc
Jz WHAT ERROR CONDITION x*
CPI1 tet
JNZ Fl
MOV B,A
F2 CALL OUTN PUT NAME ON TAPE
MOV A)M
INX H
CPI >
MOV B,A
* CONTINUE UNTIL END INDICATOR 1S FOUND
JNZ F2
CALL OUTN
MVI B,@®DH CR
CALL OUTN

o ok ook ok o ook R sk ok ook o ook o ok

* NOW PUT FILE TO TAPE **x

sk o ook ok ook ok ook o ook ok ook o o ok ok K
CALL CRLF

LHLD FPTR GET BEG OF FILE

MAIN EQU $
MoV BoM TRANSFER TO REG
INX H
CALL OUTN TRANSFER TO TAPE
MoV A,B CHECK FOR END OF FILE
CP1 1 END OF FILE 7
JNZ MAIN

JMP EORMS BACK TO SYSTEM
sk Ao Rk koK ok kK ok kK
* SEND REG B TO TAPE *

PAGE #©1

3D9B
3D9B
3D9B
3D9D
3DSF
3DA2
3DA3
3DAS
3DA6
3DA6
3DA6
3DAS
3DA6
3DA8
3DAB
3DAC
3DAC
3DAC
3DAC
3DAC

CRLF
Fl
F2
FPTR
MAIN
MASK1
OUTN

DB
E6
ca
178
D3
c9

26
cD
co

02
9B 3D

@3

@D
@2 DE

3DA6
3D68
3D74
Deos
3D8D
0802
3D9B

2130
0229
2302
9380
6A50
9520
0240

0490
2500
esl1e
0520
6530
0546
6550
8560
6570
2seo
6590
6600
0610
0620
9630
0640
8650
86606
0670
0680

8376

8318

ook bk ko K ok kR Rk
OUTN EQU $

IN TAPES
AN1 MASK1
Jz OUTN
MOV A,B
ouT TAPED
RET

o R oo KR
* SEND CR TO VDM =
KR Kk
CRLF EQU $

MV1 B, 8DH
CALL VDM
RET

MASK! EQU 2

FPTR EQU @DBOSH
L T P T T T ey
* END OF PGM *
AR KA A K KRR R KK R K

9330 G420 06530

PAGE @2 |

