

SECTION I

INTRODUCTION _and

GENERAL INFORMATION

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION I

1.1 INTRODUCTION

This manual supplies the information needed to assemble, test
and use the ALS-8 Firmware Module. We suggest that you first scan
the entire manual before starting assembly. Then make sure you have
all the parts and components listed in the "Parts List" (Table 2-1)
in Section II. When: assembling the module, follow the instructions
in the order given.

Should you encounter any problem during assembly, call on us
for help if necessary. If your completed module does not work prop-
erly, recheck your assembly step by step. Most problems stem from
poor soldering, backward installed components, and/or installing the
wrong component. Once you are satisfied that the module is correctly
assembled, feel free to ask for our help.

1.2 GENERAL INFORMATION
1.2.1 ALS-8 Firmware Module Dascription

The ALS-8 Firmware Module is a highly versatile resident as-
sembler that provides "turn-on-the-switch" ability to instantly
develop and run programs. Up to six assembly language source pro-
grams can be stored in memory as named files and called at will to
be listed, edited or assembled by line number. Files can also be
stored in any external storage device for later assembly from any
input device you select.

Features of the ALS-8 include labels, comments, expressions
and constants, aloag with relative symbolic addressing. Symbolic
addressing includes the ability to chain common symbols from one
program to another, regardless of when the other program was assem-
bled. The ALS-8 also has the ability to dynamically adjust the
system's I/O (input/output) handling configuration under program
control. And up to 20 custom commands can be entered and called in
exactly the same way as the standard resident commands. In combi-
nation, all of these features allow the ALS-8 to be customized in
your system to meet your needs.

Additional capabilities can be added to the ALS-8 with the
Processor Technology SIM-1 Interpretive Simulator and TXT-2 Text
Editing Firmware. The SIM-l--which allows 8080 programs to be sim-
ulated on an Altair, IMSAI or Intellec computer--adds a powerful
debugging capability. TXT-2 provides full text editing capability
to your system: single characters, complete lines and portions of
lines can be inserted, deleted and moved.

The ALS-8 is plug-in compatible with the Altair 8800 bus.
It requires +7.5 to +10 V dc at 600 mA (max.) operating power. The
memory capacity is 5120 bytes in EPROM (hex address E@@@ - F3FF).
Worst case access and cycle times are one microsecond.

I-1

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION I

1.2.2 Receiving Inspection

When your module arrives, examine the shipping container for
signs of possible damage to the contents during transit. Then in-
spect the contents for damage. (We suggest you save the shipping
materials for use in returning the module to Processor Technology
should it become necessary to do so.) If your ALS-8 kit is damaged,

please write to us at once describing the condition so that we. can
take appropriate action.

1.2.3 Warranty Information

In brief, the parts supplied with the module, as well as the
assembled module, are warranted against defects in materials and
workmanship for a period of 6 months after the date of purchase.
Refer to Appendix I for the complete "Statement of Warranty".

1.2.4 Replacement Parts

Order replacement parts by component nomenclature (e.g.,

DM8131) and/or a complete description (e.g., 6.8 ohm, % watt, 5%
resistor).

1.2.5 Factory Service

In addition to in-warranty service, Processor Technology also
provides factory repair service on out-of-warranty products. Before
returning the product to Processor Technology, first obtain author-
ization to do so by writing us a letter describing the problem. When

you receive our authorization to return the product, proceed as
follows:

l. Write a description of the problem.

2. Pack the product with the description in a container
suitable to the method of shipment.

3. Ship prepaid to Processor Technology Corporation,
6200 Hollis Street, Emeryville, CA 94608.

The product will be repaired as soon as possible after re-
ceipt and return shipped to you prepaid.

SECTION IT

ASSEMBLY

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION II

2.1 PARTS AND COMPONENTS

Check all parts and components against the "Parts List"
(Table 2-1 on Page II-2). If you have difficulty in identifying any
parts by sight, refer to Figure 2-1 on Page II-3.

2.2 ASSEMBLY TIPS

1. Scan Sections II and III in their entirety before you
start to assemble your ALS-8 Firmware Module.

2. In assembling your ALS-8, you will be following a step-
by-step assembly procedure. Follow the instructions in the order
given.

3. Assembly steps and component installations are preceded
by a set of parentheses. Check off each installation and step as
you complete them. This will minimize the chances of omitting a
step or component.

4. When installing components, make use of the assembly aids
that are incorporated on the ALS-8 PC board and the assembly drawing:
(These aids are designed to assist you in correctly installing the
components.)

a. The circuit reference (R3, Cl0 and IC20, for exam-
ple) for each component is silk screened on the PC
board near the location of its installation.

b. Both the circuit reference and value or nomenclature
(1.5K and 7400, for example) for each component are
included on the assembly drawing near the location
of its installation.

5. To simplify reading resistor values after installation,
install resistors so that the color codes read from left-to-right
and top-to-bottom as appropriate (board orientation as defined in
Paragraph 2.5).

6. Install disc capacitors as close to the board as possible.

7. Should you encounter any problem during assembly, call on
us for help if needed.
2.3 ASSEMBLY PRECAUTIONS
2.3.1 Handling MOS Integrated Circuits

The memory ICs used in the ALS-8 are MOS devices. They can be
damaged by static electricity discharge. Always handle MOS ICs so

I1-1

PROCESSOR TECHNOLOGY CORPORATION

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE

SECTION II

Table 2-1.

ALS-8 Firmware Module Parts List.

INTEGRATED CIRCUITS

1 1LM741C (IC29)

74LS175 (ICc27, 28)

1 ALS-8 PC Board (8KPROM-34)
1 Heat Sink
6 1l4-pin DIP Sockets
6 16-pin DIP Sockets
16 24-pin DIP Sockets
23 Augat Pins on Carriers
1 Mica Insulator (for Q3)
1 Length Solder

1 74Ls00 (ICl7) 74367,8097 or 8T97 (IC24,25)
3 74LS08 (Ic21,22,23) 8836 or 8T380 (IC26)
1 7418136 (I1Cl8) 10 s6834 (ICl through 10)
2 74Ls138 (Icl9,20)
REGULATORS TRANSISTORS
1 340T-5.0 or 7805UC (IC30) 2 2N2907 (Ql1, 2)
1 2N6107 (Q3)
RESISTORS CAPACITORS
1 1 ohm, % watt, 5% 23 0.1 ufd, disc ceramic
1 100 ohm, % watt, 5% 2 1 ufd, tantalum, dipped
2 2.2 Kohm, % watt, 5% 3 15 ufd, tantalum, dipped
or
1.5 Kohm, % watt, 5%
1 1.69Kohm, % watt, 1%
or
1691 ohm, % watt, 1%
1 4.02Kohm, % watt, 1%
MISCELLANEQUS

1 Length #22 Bare Wire

1 Length #22 Insulated Wire
3 6-32 Screws

1l 6-32 Teflon Screw

4 6-32 Lockwashers

4 6-32 Nuts

1 Manual

IT-2

ALS-8 FIRMWARE MODULE SECTION II
Ceramic Disc
Capacitor Qii\\
\c
€
8 c Transistor

vl TO-18 Package (Metal Can)

Transistor

TO-92 Package (Plastic)

ey

4 Posm\sc (+) Lenp

Mylar Tubular

Capacitor Dipped Tantalum

Electrolytic Capacitor

Regulator IC or
Power Transistor (T0-220)

Electrolytic
Capacitor
(vertical mount)

Metal Film 1%
Precision Resistor

NOte: PIN 1 tnAN BE INDICATED
RE GJ-0 BY CORNER DOT oR
D\-\\' / < GuUT-0uUY .
"'N')
2200 o

Dual Inline Package (DIP) IC Socket
(8,14,16,24 or 40 pins)

Carbon Film Resistor
5% (gold), 10% (silver)

Figure 2-1. Identification of components.

II-3

4

g
]
[
3

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION II

that no discharge will flow through the IC. Also, avo%d unnecessary
handling and wear cotton--rather than synthetic--clothing when you
do handle these ICs.
2.3.2 Soldering **IMPORTANT**

l. Use a low-wattage iron, 25 watts maximum.

2. Solder neatly and quickly as possible.

3. DO NOT press top of iron on pad or trace. This can cause
the pad or trace to "lift" off the board and permanently damage 1it.

4, Use only 60-40 rosin-core solder. NEVER use acid-core
solder or externally applied fluxes.

5. The ALS-8 uses a circuit board with plated-through holes.
Solder flow through to the component (front) side of the board can
produce solder bridges. Check for such bridges after each component
is installed.

6. The ALS-8 circuit board has an integral solder mask (a
lacquer coating) that shields selected areas on the board. This mask
minimizes the chances of creating solder shorts during assembly.

7. Additional pointers on soldering are provided in Appendix
IIT of this manual.

2.3.3 Installing and Removing ALS-8

NEVER install the ALS-8 in, or remove it from, the computer
with the power on. To do so can damage the board.

2.3.4 1Installing and Removing Integrated Circuits

NEVER install or remove integrated circuits with power applied
to the ALS-8.

2.3.5 Use of Clip Leads

. NEVER attach clip leads to the top edge of the board when
power is applied. To do so will short the +8 V dc, -16 V dc and
possibly the +5 V dc busses to one another.

2.4 REQUIRED TOOLS, EQUIPMENT AND MATERIALS

The following tools, equipment and materials are recommended
for assembling the ALS-8 Firmware Module:

1. Needle nose pliers

I1-4

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION II

2. Diagonal cutters
3. Controlled heat soldering iron, 25 watts
4. 60-40 rosin-core solder (supplied)

5. Volt-ohm meter

2.5 ORIENTATION

The heat sink area (large foil area) will be located in the
upper righthand corner of the board when the edge connector is po-
sitioned at the bottom of the board. In this position, the front
(component) side of the board is facing up. Subsequent position
references assume this orientation.

2.6 ASSEMBLY PROCEDURE
Refer to assembly drawing in Section IV.
CAUTION

THIS DEVICE USES MOS MEMORY INTEGRATED
CIRCUITS (ICl - 10) WHICH CAN BE DAM-
AGED BY STATIC ELECTRICITY DISCHARGES.
HANDLE THESE IC's SO THAT NO DISCHARGE
FLOWS THROUGH THE IC. AVOID UNNECES-
SARY HANDLING AND WEAR COTTON, RATHER
THAN SYNTHETIC, CLOTHING WHEN HANDLING
THESE IC's. (STATIC CHARGE PROBLEMS ARE
MUCH WORSE IN LOW HUMIDITY ENVIRONMENTS.)

() Step 1. Check circuit board to insure that the -16-volt bus,
+8-volt bus and +5-volt bus are not shorted to ground. Using
an ohmmeter, make the following measurements:

() =16-volt Bus Test. Measure between edge connector pin
52 (second bottom--or back--pin from left end of the
connector) and pin 50 or 100 (right end of connector).
There should be no continuity.

() #8-volt Bus Test. Measure between edge connector pin 1
or 51 (left end of connector) and pin 50 or 100. There
should be no continuity.

() +5-volt Bus Test. Measure between positive mounting pad
for Cl4 and pin 50 or 100 of the edge connector. There
should be no continuity.

II-5

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION IT .

(

(

(

(

)

)

)

() 16-8-5 Volt Bus Tests. Measure between edge connector
" pins 1 or 51 and 52, between edge connector pins 1 or 51
and the positive mounting pad for C14, and between edge
connector pin 52 and the positive mounting pad for Cl4.
There should be no continuity in any of these three mea-
surements.

If you measure continuity in any of the preceding tests, the
PC board is defective. Return it to Processor Technology for
replacement. If none of the measurements show continuity,
proceed to Step 2.

Step 2. Install heat sink. Position the large, black heat
sink (flat side to board) over the square foil area in the
upper right corner of the PC board. Orient the sink so that
the two triangles of mounting holes are under the triangular
cut-outs in the sink. Using two 6-32 screws, lockwashers and
nuts, attach heat sink to board. Insert screws from back
(solder) side of board.

Step 3. Install IC30 (340T-5.0 or 7805UC). Position IC30 on
heat sink and observe how the leads must be bent to fit the
mounting holes. Note that the center lead (3) must be bent
down at a point approximately 0.2 inches further from the body
than the other leads. Bend the leads so that no contact is
made with the heat sink when IC30 is flat against the sink and
its mounting hole is aligned with the hole in the sink. Fasten
IC30 to sink using 6-32 screw, lockwasher and nut. Insert
icrgw from back (solder) side of board. Solder and trim the
eads.

SFeg 4. Install Q3 (2N6107). Place mica insulator on heat
sink so that its holes are aligned with the mounting holes in
the PC board. Position Q3, with its identifying nomenclature
up, over the mica insulator and observe how the leads must be
bent to fit the mounting holes as well as the holes in the
mica insulator. Note that the center lead must be bent down
at a point approximately 0.2 inches further from the body than
the other leads. Bend the leads so that no contact will be
made with the heat sink when Q3 and the mica insulator are
flat against the sink when Q3's mounting hole is aligned with
the hole in the heat sink and PC board. Place mica insulator
between Q3 and the heat sink and fasten Q3 to the sink using
the 6-32 Teflon screw and a 6-32 lockwasher and nut. Insert
icrgw from back (solder) side of board. Solder and trim the
eads.

) Step 5. 1Install Ql and Q2 (2N2907) in their indicated loca-

?ions. The emitter lead on each (lead closest to tab on can)
is oriented to the top and the base lead is oriented toward
the left. Start leads into mounting holes and push straight
down on transistor until it is stopped by the leads. Solder
and trim.

II-6

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE

SECTION IT

() Step 6. Install the five tantalum capacitors in the follow-
Take care to observe the proper values and

ing locations.
orientations.

LOCATION

C5
C6
Cll
Cc1l3
Ccl4

PN AN AN N N

VALUE (ufd)

1
15
15
15

1

ORIENTATION
"+" lead top
"+" lead right
"+" lead top
"+" lead top
"+" lead left

Check capacitors for correct value and
leads outward on solder (back) side of

trim.

orientation, bend
board, solder and

() Step 7. Install all disc capacitors in numerical order in

the indicated locations.
bend leads outward on solder (back)

and trim.

NOTE

Insert, pull down snug to board,

side of board, solder

Disc capacitor leads are usually coated
with wax during the manufacturing pro-

cess.

mounting holes,
clear the holes of any wax.

and install.

LOCATION

Ccl
c2
C3
c4
c7
Cc8
C9
C1l0
Cl2
Cl1l5
cleé
cl7
Cc18
Cl9
Cc20
c21
c22
Cc23

PN SN SN SN SN SN SN SN PN TN SN PN PN SN PN AN N
Nl N e e e N e N e N N S N N N St Nt N

VALUE (ufd)

[] [] . . [] (] . [] [] L] . . [] [] [] [] []
el e e e e e

olooNoNoNoNoNojoNoNoNooNoNoNoNoN®)

After inserting leads through
remove capacitor and

Reinsert

TYPE

Disc Ceramic

(Continued on Page II-8.)

I1-7

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

SECTION II

() Step_7. (Continued)

LOCATION VALUE (ufd) TYPE
() cz4 0.1 Disc Ceramic
() c25 0.1 " "
() c26 0.1 " "
() 027 O.l " n
() czs8 0.1 " "

() Step 8. 1Install all resistors in numerical order in the in-

dicatgd locations. Bend leads to fit distance between the
mounting holes, insert, pull down snug to board, bend leads
outward on solder (back) side of board, solder and trim.

LOCATION VALUE (ohms) COLOR CODE
() R1 1 brown-black-gold
() R2 4.02K metal film
() R3 1.69K (or 1691) metal film
() R4 100 brown-black-brown
() RS 2.2K (or 1.5K) red-red-red*
() R6 2.2K (or 1.5K) red-red-red*

*brown-green-red if 1.5K ohm

() Step 9. 1Install Augat pins as follows:

NOTE

You will find it helpful to hold the
board between two objects so that it
stands on one edge.

() Area A. Cut one Augat pin carrier across the short di-
mensiqn to obtain 12-pin carrier (6 pins per side). With
the pins still attached, insert them in the 12 mounting
holes in Area A from the component (front) side of board.
Solder pins from solder (back) side of board so that the
sqlder "wicks up" to the front side. (This will hold the
pins firmly in place.) Remove the carrier.

() Area B. Remove three pins from carrier and insert them
into mounting holes L, C and R in Area B from front (com-
ponent) side of board. Solder pins from back (solder)
side of board as you did the Area A pins. Then insert a
component lead into one pin and reheat solder. Use lead
to adjust pin until it is perpendicular to board.

Alloy solder to cool while holding the pin as steady as
possible. Repeat this procedure with the other two pins.

IT-8

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

SECTION II

() Step 9. (Continued)

(

(

(

(

NOTE

If the cooled solder is mottled or
crystalized, a "cold joint" is indi-
cated, and the solder should be
reheated.

Check each installation in Area B for cold joints and
solder bridges

() Area D. Remove six pins from carrier and install them
in the six mounting holes in Area D. Use the same tech-
nigque as you used to install the pins in Area B. Check
for cold joints and solder bridges.

NOTE

There is no Area C on the 8KPROM-34
PC board.

() Area E. Remove remaining two pins from carrier and in-
stall them in Area E. Use the same technique you used to
install the pins in Area B. Check for cold joints and
solder bridges.

) Step 10. Fill feed-through hole located in heat sink foil to

the right and below Cl3 with solder.

) Step 11. Using #22 bare wire, install jumpers in Areas A, B,

D and E according to your selection of the options that are
described in Section III.

) Step 12. 1Install DIP sockets. Install each socket in the

indicated location with its end notch oriented as shown on
the PC board and assembly drawing. Take care not to create
solder bridges between the pins and/or traces.

LOCATION TYPE SOCKET
() ICl through 16 24 pin
() IC17 and 18 14 pin
() IC1l9 and 20 16 pin
() IC21, 22 and 23 14 pin
() Ic24 and 25 16 pin
() 1ICc26 14 pin
() IC27 and 28 16 pin

) Step 13. Install IC29 (LM741C) in the indicated location.

Pay careful attention to the proper orientation.

(Step 13 continued on Page II-10.)

II-9

ALS-8 FIRMWARE MODULE

(

(

(

PROCESSOR TECHNOLOGY CORPORATION

SECTION II

) Step 13. (Continued)

NOTE

A dot on the assembly drawing indicates
the location of pin 1 of the IC.

Check fqr proper orientation and load IC29 (refer to "Loading
DIP Devices" in Appendix III). Avoid creating solder bridges
between pins and/or traces.

) Step 14. Check regulator operation. This check is made to

prevent potential damage to the IC's from incorrect voltages.

() Install ALS-8 in computer. (The use of a Processor
Technology EXB Extender Board is recommended.)

CAUTION

NEVER INSTALL OR REMOVE ALS-8 WITH POWER
ON. TO DO SO CAN DAMAGE THE MODULE.

() Turn power on and make the following voltage measurements:

MEASUREMENT POINT VOLTAGE
Positive lead of Cl4 +5 V dc 5%
-12 V dc Is%

Negative lead of C5

() If either voltage is incorrect, determine and correct the

cause before proceeding. Especially check for solder shorts;

If voltages are correct, go on to Step 15.

) Step 15. 1Install the following IC's in the indicated loca-

tions. Pay careful attention to the proper orientation.
NOTE

Pin 1 is indicated by a dot on the PC
board and assembly drawing.

IC NO. TYPE
() Ic17 74LS00

() ICcl8 74LS136

() 1Cc19 7415138

() Ic20 7415138

() Icz21 741508

() 1C22 741L,S08

(Continued on Page II-11.)

I1-10

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION II

(

(

(

(

) Step 15. (Continued)

IC NO. TYPE

() IC23 74Ls08

() Ic24 74367, 8097 or 8T97
() 1IC25 74367, 8097 or 8T97
() Icz26 8836 or 8T380

() 1ICc27 74LS175

() IC28 74Ls175

) Step 16. 1Install ICl through ICl0 in numerical order in

their respective locations. Pay careful attention to the
proper orientation.

ICl through ICl0 (Type S6834) are MOS devices. Refer to the
CAUTION on Page II-5.

NOTE

ICll through ICl16 are not supplied
with the basic ALS-8. They are sup-
plied, three each, with the SIM-1
and TXT-2 options.

If you did not receive the SIM-1 or TXT-2 options with your
ALS-8, skip Step 17 and proceed to Step 18.

) Step 17. 1If you received the SIM-1 or TXT-2 options, install

the following IC's in their indicated locations. Pay careful
attention to the proper orientation.

OPTION ’ INSTALL IC TYPE
SIM-1 ICcll, 12 and 13 S6834
TXT-2 ICcl4, 15 and 16 sS6834

IC1ll through ICl6 are MOS devices. Refer to the CAUTION on
Page II-5.

) Step 18. Your ALS-8 is now ready to use for developing and

running programs.

I1I-11

SECTION IIT

4]
5
Z (@)
8 :
H
(&)
: 2
L
@ W
=
8 e
-
X ©
&y]
) %)
=
<

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION III

3.1 START-UP/RUN OPTIONS

There are two ways to start up and run the ALS-8 program,
manual and semi-automatic.

1. Manual Operation. Manual operation is performed by exam-
ining location E@@@ (hex) from the computer front panel
and flipping the computer RUN switch.

2. Semi-automatic Operation. Semi-automatic operation is
performed by simply flipping the computer RUN switch
immediately after power is turned on.

Normally, semi-automatic operation is preferred for its sim-
plicity and operator convenience. Hardware modifications in some
systems, however, may be needed. If you select the semi~-automatic
option, follow the instructions in Paragraph 3.3.

If you select the manual option, or if the ALS-8 is to be
used in the Processor Technology Sol Terminal Computer System, fol-
low the instructions in Paragraph 3.2.

NOTE

The Processor Technology Sol Terminal
Computer System incorporates fully auto-
matic start-up circuitry. If you intend
to use your ALS-8 in a Sol system, con-
nact the ALS-8 for manual start-up as
described in Paragraph 3.2.

3.2 MANUAL OPERATION
3.2.1 ALS-8 Jumper Selection
Use the following jumper selection instructions in conjunc-

tion with the illustrations provided and the assembly drawing in
Section IV.

1. Address Location (Area A)

ult The jumper arrangement in

<< Area A determines the address
) location for the ALS-8.
0

Select address location E@@g@

to FFFF (hex) by installing

jumpers (#22 bare wire is

recommended) between Al3 and

#, Al4d and @ and Al5 and @

Figure 3-1. Area A jumpers, pins in Area A as shown in
manual operation. Figure 3-1.

o e __» Al3

o
l 1

AREA

> OR_ P Al

IIT-1

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

SECTION IIT

PRESET (Area B)

The jumper arrangement in
Area B determines whether
the power-up PRESET connec-
tion on the ALS-8 is enabled
or disabled.

Disable power-up PRESET by

installing a jumper (#22 bare f

wire is recommended) between

the C and L pins in Area B as 4

shown in Figure 3-2.

Wait States (Area D)

The jumper arrangement in
Area D determines the number
of wait states (1,2,3 or 4).

In an 8080 system operating
at 2MHz clock frequency, the
ALS-8 should normally be
jumpered for one wait state.
Select one wait state by in-
stalling a jumper (#22 bare
wire is recommended) between
the 1 and W pins in Area D
as shown in Figure 3-3.

PHANTOM (Area E)

2.
AREA B
R o
c)
L
Figure 3-2. Area B jumper,
. manual operation.
NOTE
There is no Area C on the 8KPROM-34
PC board.
3.
40 30| arEa D
WO%
Oo 1
Figure 3-3. Area D jumper, man- 4.
ual or semiautomatic
operation.

3.2.2 Operating Procedure

DO NOT install a jumper in
Area E.

_ The ALS-8 requires at least 2048 bytes of unprotected read/
write (RAM) memory at locations D@@@ - D7FF (hex). 4096 bytes from
DA@P to DFFF (hex), however, are recommended.

To manually initialize and run the ALS-8 program:

1. Examine E@@@ (hex) from computer front panel.

2. Flip the computer RUN switch.

IT1T-2

ALS-8 FIRMWARE MODULE

PROCESSOR TECHNOLOGY CORPORATION

SECTION III

3.3 SEMI-AUTOMATIC OPERATION

3.3.1 ALS-8 Jumper Selection

Use

the following jumper selection instructions in conjunc-—

tion with the illustrations provided and the assembly drawing in
Section IV.

C‘Al3

o o
0 1

AREA

1. Address lLocation (Area A)
< n
< 2
S The jumper arrangement in
Area A determines the address
location for the ALS-8.
o o o o
0O 1 o0 1 ‘ .
Select address location E@g@g
A to FFFF (hex) with PHANTOM

Figure 3-4.

recognition by installing
jumpers in Area A (#22 bare
wire is recommended) as shown
in Figure 3-4.

Area A jumpers,
semi-automatic
operation.

PRESET (Area B)

The jumper arrangement in Area B determines whether the
power-up PRESET connection on the ALS-8 is enabled or
disabled.

If your ALS-8 is to be used in a Processor Technology Sol
Terminal Computer System or an IMSAI 8080, disable power-
up PRESET by installing a jumper (#22 bare wire is recom-
mended) between the C and L pins in Area B. (See Figure

3-5(a).)

If your ALS-8 is to be used in an Altair 8800, enable
power-up PRESET by installing a jumper (#22 bare wire is
recommended) between the C and R pins in Area B. (See
Figure 3-5(b).) With this jumper installed, a power on
clear (POC) pulls PRESET low.

AREA B AREA B
R o R
c e
L) L o
(a) (b)

Figure 3-5. Area B jumper, semi-automatic operation.

ITI-3

PROCESSOR TECHNOLOGY CORPORATION 4 3 PROCESSOR TECHNOLOGY CORPORATION

| ALS-8 FIRMWARE MODULE SECTION III ALS-8 FIRMWARE MODULE SECTION III
i
: NOTE
There is no Area C on the 8KPROM-34
PC board. 3
. 2 To Pin 3 of IC39
3. Wait States (Area D) ﬁ 74L.S00
The jumper arrangement in Area D determines the number of € 74230
wait states (1, 2, 3 or 4). : .
(70) PROT
In an 8080 system operating at a 2MHz clock frequency, ICc4l
the ALS-8 should normally be jumpered for one wait state.
, Select one wait state by installing a jumper (#22 bare
wire is recommended) between the 1 and W pins in Area D.
(See Figure 3-3 on Page III-2.)
4. PHANTOM (Area E)
2 4 May have to be changed
The Area E jumper arrangement determines whether the PHANTOM 3 3 to 470 ohms
output from the ALS-8 on Bus Pin 67 is enabled or disabled. § 2
2 3 '100 ohms o4l
Ic4l
AREA E (20) UNPROT L
Enable PHANTOM by install-
ing a jumper (#22 bare wire c 7 0.1 uf
is recommended) between the 3 :I:
two pins in Area E as shown - ‘ =
in Figure 3-6. i -
Figure 3-6. Area E jumper, (99) pocC
semi-automatic 4 1IN270%
operation. 1
3.3.2 Hard Modificati i *Add 1IN270 germanium diode to IC41 circuit (lower left corner of
<3 atrdware Modilications 3 4KRA PC board) as shown to enable memory to come up unprotected
- RAM Memory. The ALS-8 requires at least 2048 bytes of read/ ; ; after power is turned on.
write (RAM) memory at locations D@@@ - D7FF (hex). 4096 bytes from 3
D@@P to DFFF (hex), however, are recommended. This memory must come : NOTE: REVISION E AND ABOVE 4KRA MEMORY

up unprotected immediately after power is turned on. And if it is to

be used at address zero, it must be capable of recognizing the PHANTOM
signal supplied by the ALS-8 on Bus Pin 67.

BOARDS DO NOT REQUIRE THIS MODIFICATION.

Recent Processor Technology 4KRA and all of our 8KRA Static b Figure 3-7.
Read/Write Memory Modules incorporate power-up initialization cir- 3

cuitry to determine whether they come up in the protected or unpro-

tected mode. Earlier 4KRA memories (prior to Revision E) can be

modified as shown in Figure 3-7 to come up unprotected.

Power on unprotected mode modification for early
(before Revision E) 4KRA memories.

Later versions of Processor Technology 4KRA and all of our
8KRA memories incorporate the PHANTOM disable capability. Instruc-

tions for enabling this capability are provided in the 4KRA and 8KRA
Assembly and Test Instructions.

IT1I-4

III-5

Mot

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE SECTION ITII

Computer. The computer must come up in the stopped state im-
mediately after power is turned on. The Altair 8800 front panel can
be modified as shown in Figure 3-8 to meet this requirement. Figure
3-9 shows how to modify the IMSAI 8080 front panel for the same
purpose.

3.3.3 Operating Procedure

To initialize and run the ALS-8 program in the semi-automatic
mode, simply flip the computer RUN switch.

+5v
DO5
RUN
R2 7404 74110
STOP |
—0 Oo— ICV ICS
@2
IN270%* PsSYNC
(99) POC

*Add 1N270 germanium diode (DO NOT SUBSTITUTE) to front panel
clrcult as shown to insure computer comes up in stopped state
after power is turned on.

Figure 3-8. Altair 8800 front panel modification.

ITT-6

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE

+5Vv

R14

7404
1K 74107
11 10 8
Ulo J
g2 — C U22
$ K
RUN
+5v)
““{}__’ — g
Q@ sTop -
R15
1K 741510
10
11
5] ULl
1IN270% ‘
(99) Poc
PSYNC DO5
(76) (37)

SECTION III

*Add 1IN270 germanium diode (DO NOT SUBSTITUTE) to front panel
circuit as shown to insure computer comes up in stopped state

after power is turned on.

Figure 3-9. IMSAI 8080 front panel modification.

III-7

SECTION IV

DRAWINGS

ALS-8 FIRMWARE MODULE

* ORIENT TAB AS SHOWN
5

w ({3‘ i ! !
i i | i A 7 f‘(..; V
! ity (e {iii o b

g . ' - ~HHl & I=liiﬂ' 1iti ﬂi‘%fi}{l‘{‘l‘?\

i ' ~ TR l! #i!g it .} !L}'ll

Kffzgl TN RN IIN! ALL lc'I< : "G- 76 BY PROC }/ CLH/L}J @ ka.l
", ALS:- 8 PENDING / z

e

1 : r
S8KPROM -34
DISK fc}g i
CAPACITOR | heot fr;q' ek ’%z’mw
-~ assembly

TH SchadT

*
- 74367 or 8097
or
T4L508 s —¢ T . B 8797
4 ’ ’ - -
ot 1617|1819 |z0j21(2223(24 | 16{17]18 [19|20(21|22(2324 101718 |19]20[21(22|23)24 \ef17)18]1e) - o 17 Ji¢ o 202 22 {73 |24 Mw 18 19 |20j21 22)23|24 1
y|2rezez2zio il 876543210 H97b;4az|od D 7543210 81543210 & -y 2N G5] b1
PROG ADR 1 Rk g7 7 " e W 8% -~
4] i 50834 ! :7\,_3‘ see3q4 APR[T T, ;‘7;’6 56834 APR[] U proe o834 A7% [Tl :'V%G $683 Ao zczs b |
Al baTa ICI pata IC2 D DaTa I1C3 Arx KA s 3C7 oara IC8 TG os
— __ — — .
2l 51 23456 3¢ce ‘7‘0\1545@7::7 2l o7 2345 vCE 2| Sz 345 7 CE L2345 vy 1c25 <
AL z| 3/ 45| o 7|8 o] li5 z|3|4[8 6 7/8({9] [iI5 z[34| 5| | 7[8] o] [15 $ &7 CF 1_37_57—779,; MR EPERERE . y
3 R n bl/{7 —<a1] P12
1 » lcz
A3 - - . —— 11 gj:‘ 5 ‘ ,
41 g = - = *ﬂj 10179 DI 3
- . = —— 8 — 1c25
A4 41 I
== Eas _“
As 1
4 - -
S ! ,
- +5v
2345l el 7i8[9] |15 2| 34]5¢|78]3] |5 2|3]4[s5|e|7[s0] | _7]," ,J” 2lslalslelalalsl Is AERE e
- 301 23456 7cE 1 2345 L7ce|l0 B[0123245 w7eE]l 218l =0 L3 [0 2345 67="T0
A7 I 14 DATA CATA — Po7Z8lio 2] 012345 b7Ce CE
m 1629 R/W R/ 14 - PATA Y 14 CATA
B 1 56634 56834 S A 41 e P4 RIW “oeB34
9 12 Pwr e _1c10 AVK(|£ rRoe zen *4”“ - 14 Apm [2vgll | pros ’::T:’ ADR [112Y, ‘! FROG ICiG ADR |-i2V
AB @ 1013} §7b5432vo 876543210 87065432 0 ‘J‘ol_'ia-,b;q;z'o‘_ 876543210 |
© 1 il 6 ‘b|‘7 R EE ”’I” 181920 7122/ 29) 24 NP ro] 17)18]19[z0] 2 [z2]e3]24] 16]17] 8] 19]z0]zi[z2[z3]2d
74,508 1 3 — X
Y
Py
PY
* Py
741568 7| 9]i0| 1] 12] 17| 4] 5] 7 g]ﬂﬁubz ;114 15| 45y
' 7¢5432 0 9| 7w5437_1¢ﬁ
A 34> ez 74L5138 IC20 628 74Lsi38 1C19 6
ABC Gl G2A ABC G1a G1B
1 JEE o 49 1]23 47 59
a0 !
+5v
Az 1c18 o
T4L-S130 z2k
Ai3 2, 5

A5

SMEMR 7 2 8 Ici7 +5v . migiasenes
g 74560 8 a

4
+
w
<
[}
v
A

74LS 130

wsv 000 , .
| LM340 +&v
Foo< ')) T 8797 sy e . I
e 2Nz9 cz2,c4 c7 l 1230 R +3v
‘] °7 €9,Cle + t e
8797 a ALYAE) I"/‘F T C.Vm T ':l/;F 55 en
e | e {2
[55> | 1z < Caw'car U GNP
PCC 93 - -c28
a.yrl+ L %4 g ‘o105
Gz 73 e L ci,cace e |
Z>— llNL" 8te7 S [o
L cw,c2l
PSYNC T > Tond 7.¢ - <:|
R g‘*j’fo L 15pF
! T
i <
PHANTOM (7> =~ |
[E AR
AREAE
| 8K EROM BOARD/8K PROM-34
| ScALE: AFPROVED BY: oRAWN BY | (TO
i oare: O7 -2 -7k ROBERT M., MARSH nevisee 574
g FPROCESSOR TECHNOLOGY
! ALS_ 3 DRAWING NUNBER
Py p— ——

J— ———— 9 —
— ’ > v E==
74L508 . y— * Sa— am— o
4 Tie[7]18]19 [zofzi]22]23]24 [1e[17]18 a]z0(z1[z2]23[24 10 v7]18 |19[20]21]22|23124 [ie]i7]i819[z0]21[22]2324 16]17]1e)19 2ofeilz2lea]zg

ag [73 "’ 3 87654321 0 [a7b743110ﬂ 8765432, 0 | 876543210 || 87 b54 32 10

5 u Ao [Plg ! avr [e peog Ple 1) oroe [l proe

| 14| PROS s0034 1 14 :/RWU‘ 56834 Vil % sessa ApR T T4 e ses3a ATRIT Dl (R sLp3y ADR

Al H [zcaz)2 3] Data I¢! 3 pata 12 % Data I1C3 13 paTa IC4 oara Tes

s — — — e __ —a 2

7 L2l 57232506 7¢CE Z) 6T z3a5672E 2 0V 2345 vicE 2l 5T z234a507¢CE 2| 672345 vycE

: o 7

2 | z| 3 4|5 o 7|8| 2| |15 2| 3|48 6789 |15 z| 3| 4| 5| b 7/8{9 |5 2|2 4|5 6 7|82 |15 L§4557ﬂ9 15
AL H [|rcez)

3 :

5

4

2)
Ad [Bo> [zeaz

=

]
A5 29> 1023)2 I S —
- [DE i
- : 1
P
Ab (B> [_|1c23 2| 3] 4| 5|6 78] 9] |5 2| 3|a|5(0{7|8]9| |15 2]3]4!5]6|7]8] 9] |i5 z}45b7&\3 5 2| 3] 4| 5| o| 7] 8|a| |15
5 301 234506 7CE]0 13 1 2345 LT7CE|C Bl 0123245 0T7cE|I0 3] 012345 0T7¢e|® Bl o1 2345 7510
iz — _
4 DATA 4 — PATA 14 — DATA 14 — DPATA |4 PATA
AT '—H 1c23) RI® ®IW s34 RI% “su83 RIW TLea RIw 834
] eroe 9;’(_5934 2or [Vl proe 3o APR([TE proe 3 apr v, |\£ PROG “%%% apr [‘: o6 s?c’\) a0k |-
e | 2| —m |t 2| —mmm— | —_— — 7 4
‘9 [} 1z e7b54;zLoLl 876543210 87543210 876543210 | 87b54;z|o-'
A8 ﬂ> - 1> 1o} 7] 18] 19[2021[22]23[24] Ih—[ﬂ 18|19|20] 21|22|23|24| 1o |17] 18] 19| 20| 21| 22{ 23|24 e 71181 19]20lz1 [22]22] 4] 16| 17(18 (19 |20|21|22)23] 24
|
74L508 s ry i —

714L538

Az [33>— cie .

b
74L5130b zZ7ZK

A%

—

A5 A\ v
L
SMEMR 7 2y 8
gL D=
-

[B5>—

A4 @7 — Q) >u |
2>
(47>

— _6, 74151306
+ 5V | [e]
bigee
! |
L__ 1
AREA A 1cze
883,
PoBIN (18> D;
_ 4 12
Pcc " z et
i3
@2 Z5>— Dm 741508
+
PSYNC [T > = 3
I
8e3w
v
74175
——— - 2
PHANTOM (07> r—o oO—
|
AREA E

B4XS¢ PRINTED ON NO. 000H- 10 CLEARPRINT

ik

IT

IIT

Iv

APPENDICES

Warranty Information
8080 Operating Code

Loading DIP Devices
and Soldering Tips

Standard Color Code for
Resistors and Capacitors

APPENDIX I

PROCESSOR TECHNOLOGY CORPORATION, in recognition of its
responsibility to provide quality components and adequate instruction for their
proper assembly, warrants its products as follows:

All components sold by Processor Technology Corporation are purchased
through normal factory distribution and any part which fails because of defects
in workmanship or material will be replaced at no charge for a period of 3 months
for kits, and one year for assembled modules, following the date of purchase.

The defective part must be returned postpaid to Processor Technology Corporation
within the warranty period.

Any malfunctioning module, purchased as a kit and returned to Processor
Technology within the warranty 3 month period, which in the judgement of
PTCO has been assembled with care and not subjected to electrical or mechanical
abuse, will be restored to proper operating condition and returned, regardless
of cause of malfunction, with a minimal charge to cover postage and handling.

Any modules purchased as a kit and returned to PTCO which in the
judgement of PTCO are not covered by the above conditions will be repaired
and returned at a cost'‘commensurate with the work required. In no case will this
charge exceed $20.00 without prior notification and approval of the owner.

Any modules, purchased as assembled units are guaranteed to meet
specifications in effect at the time of manufacture for a period of at least one
year following purchase. These modules are additionally guaranteed against
defects in materials or workmanship for the same one year period. All warranted
factory assembled units returned to PTCO postpaid will be repaired and returned
without charge.

This warranty is made in lieu of all other warranties expressed or implied
and is limited in any case to the repair or replacement of the module involved.

Dt

Processor Technol Corporation
6200 Hollis Street'og Y
Emeryville CA 94608

e m VI A e

aoeds
®

45
35
as
o1
as
4€
3t
ace
ot
8t
ve
4e
E4
ae
¢
ac
ve
62
82
L2
92
14
ve
%4
44
(%4
(074
ov

sigoeIRYD

Vs
65
8S
LS
9S
SS
14°]
€S
[4°)
1S
0s
E 14
3v
ay
ov
ay
A4
6v
214
FA4
14
14
144
(74
ta4

(34

CO0OOWULOI_H¥Yu3SZ0a0C0FI>3X>N

6¢
8¢
LE
9€
S€
ve
€€
ce
3

ot
Bunuugd

OrNMITOLONOO®

378VL HI0SVY-X3H

sseippe 1q 91 = JpY

1no 8Ny 4z
300N LV QL
283 4l

vi

440-X €1
3dvi 2I
NO-X L1

4o ao
WHO4 00

IA 80

41 vo

avi 60
mM38 L0
NN 00
Bunuug-uoN

378V4 11I0SV-X3H

L 1iSH

8a 1dD
vy WO
13

Y Ar
THdS

WY

9 1iSY

8a 180
MSd HSNd
vy do
e}

v dr
MSd dOd
dY

[-11 X1ON3ddv

> USIO 007
uoypiodion) ABojouyda| Josss0id

S 1iSH

8a 1= ¢
v 3dD
OHOX

pv 3dr
THOd

3dY

v 1iSH

8a INY
H HSNd

v 0dOo
IHLX

pvy odr
H dOd
Odd

€ 1SH

8a 189S
pvy 20
8a NI
v or
oH

¢ 1sd

8a NS
a HSNd

pv ONO
8d 1no
pv ONP
a dod
ONd

I 1SH

83 1oV
Y VO
Iy Z0
zr

i34

2y

8a

vy
pv
ey

0

ABojoupay

JOSSI00IUd

‘Auenb ejep 1g 91 € 0}
sejenjeas jey) uoissaidxe ewwieNebo) Jo JueiSUOd = 91

1SY
1av

g HSNd

[¢1]

DOOWILNSICOOOWISIZCON0OOWIT HZTCODODOWI I3

ZNDO
drf

ZNr
dOd
ZNY
dWD
dWO
dWO
dWD
dWO
dWD
dWO
dWO
vHO
vHO
vdO
VHO
vHO
vdoO
vdO
vdO
vaXx
X
vHX
vHX
vyX
vHXx
vHX
vdXx
VNV
VYNV
VYNV
VNV
YNV
VYNV
VNV
YNV

L0
90

Y0
€0
20
0]
02
49
34
as
o8
a8
va
68
8g
L8
98
S8

€8

3]

v
3v
av
ov
av
vv
6v
8v
A4
v
SvY
144
£v

v
ov

DOOWT U3CNMOOWTIT JUFTCO0OWI U2 COOVOOWIIZL

aas
a8s
88s
g8s
a4as
a4as
a4as
ags
ans
ans
ans
ans
ans
anc
ans
ans
oav
oqav
oav
oav
oav
oav
oav
oav
Qaav
aav
aav
aagv
aav
aav
aav
aav
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW

26

16
06
38
38
as
o8
a8
ve
68
88
L8
98
S8
v8
£8
c8
18
08
44
EY
az
oL
as
VL
6L
84

V'

TW
H'W
IN
aw
o'W
an
v

AOW

17H
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AON
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW

LL
9L
SL
ve
€L
el
(V3
0L
4
39
as
29
a9
V3
69
89
49
99
S9
v9
€2
29

19
E}
=5
3¢
as

as
VS
6S
85
LS
95
SS
vS
€S
2s
IS

20
80
v'g
we
Rk: |
H'd
39
asg

a'g

8Q'v

dS
1oy

ER)

8A'W

ds
Y
910'dS

841

,_
H
Py
H

Anuendb ejep jiq g ue 0}
sajen|eAs jeyl uoissaidxa onawylue/edibo| 10 ‘jueisuod = gQg

AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
AOW
OWD

WA
"oa

HNI
X24a

val
ava

Q1S
INW
d0da
YNi
XNI
V1S
X7

VWO
INW
"0a
YNl
X0Qa
a7
ava

4v
3r
av
o
av
124
6y
214
Va4
9t
Sy
144
%7
t44
84
or
4€
3¢
ace
ol
ae
vE
6¢€
8t
9t
St
14
€€
AN
L€
[¢]%
42
E
ae
o4
ac
ve
62
8c

wva

80'H IAW

H H0Q

H BNI

H XNI

PY AIHS
9IQ'H X7

Hvy
80’3 AW
3 d0a
3 HNI
a xoda
a xval
a ava

vk
1AW
g doa
g uNI
g XNI
Q XviS
X1

Odd
1AW
O d"od
O uNI
g8 Xx0da
g Xval
8 ava

joRlc!
1AW
8 d0a

g8 4Nl

g8 XNI

8 XVviS
918 X3
dON

Fx4
9c
14
ve
[%4
2c
¥4
0¢
4
Bl
al
di
vi
61
81
Ll
91
Gi
vi
et
2l
L
o]}
40

ao
20
a0
Vo0
60
80
L0
90
S0
0
€0
20
10

Hex

Octal
‘ Binary

ASCIl

oecra

CONSTANT

DEFINITION
08DH
1AH
105D
105
720
72Q
110118
001108
‘TEST
A B

A8 XRA B
A9 XRA C
AA XRA D
AB XRA E
AC XRA H
AD XRA L
AE XRA M
AF XRA A
B0 ORA B
ORA C
B2 ORA D
B3 ORA E
B4 ORA H
B85 ORA L
B6 ORA M

B1

ACCUMULATOR™
ADD C
ADD D
ADD E
ADD H

85 ADD L

86 ADD M
ADD A

88 ADC B

89 ADC C

8A ADC D

88 ADC E

8C ADC H

8D ADC L

8E ADC M

80 ADD B
82
83
84
87

81

MOVE (cont)
58 MOV EB
59 MOV EC
5A MOV ED
58 MOV EE
5C MOV EH
50D MOV E.L
S5 MOV EM
MOV E.A
60 MOV HB
61 MOV HC
62 MOV HD
63 MOV HE
64 MOV HH
65 MOV HL
66 MOV HM

ROTATE"
RLC
RRC
RAL
RAR
CONTROL
00 NOP
76 HLT

07
OF
17
1F
F3 DI
FB EI

7

1

RESTART
C7 RST 0O
CF RST
D7 RST 2
DF RST 3
RST 4
EF RST 5
RST 6
RST
STACK OPS

E7
F7
FF

RETURN

C9 RET

CO RNZ

C8 Rz

D0 RNC

D8 RC

EO RPO

E8 RPE
RM

IMMEDIAYE

FO RP
F8
LOAD

} Adr

CALL
CD CALL
CNZ
CcC Cz
D4 CNC
DC CC
€4 CPO
EC CPE
CcP
FC CM
Acc
IMMEDIATE™

Ca
Fa

>Adv

)

JPO
PCHL

JNC
EA JPE

INZ
DA JC

JUMP
C3 JUMP
(o¥4

CA JZ
D2

E2

F2 JP
FA M /
E9

MOVE
IMMEDIATE

PROCESSOR TECHNOLOGY CORPORATION

2 2 O~ N TN OO0
e g LubbhbhbED APPENDIX III
< S DNDPEDLHODOOB
& <P 3
& % <ooowroskT
g LOADING DIP (DUAL IN-LINE PACKAGE) DEVICES
z o ¥ E Most DIP devices have their leads spread so that they can not be dropped straight into the board.
< @VOWIZgq g - = 3 They must be “walked in”’ using the following procedure:
[o ©o [l<]
g $25558¢s¢S 2 8 2 & &8s N (1) Orient the device properly. Pin 1 is indicated by a small embossed dot on the top surface of
COLOOOLOO) E ©oo & § the device at one corner. Pins are numbered counterclockwise from pin 1.
1] <
5 3253224y 2 $238 883 O w (2) Insert the pins on one side of the device into their holes on the printed circuit card. Do not
@ §2 press the pins all the way in, but stop when they are just starting to emerge from the opposite
g3 side of the card.
<« DOOWILS<C MOOWILSC DOOWI LS« E §§ (3) Exert a sideways pressure on the pins at the other side of the device by pressing against them
Q UCCUUEND spoo@mUDE SSSSSSSS ; En H yvhere thgy are'still. wide beloyv the bend. Bring this row of pins. into aligmpent with its holes
Q 2203033 29D LO 22222252 in the printed circuit card and insert them an equal distance, until they begin to emerge.
L SrNoINes RIIVQOWLE STYVILER 5;: : (4) Press the device straight down until i.t seats on th.e points where the pi.ns widfen. . .
(5) Turn the card over and select two pins at opposite corners of the device. Using a fingernail or
a pair of long-nose pliers, push these pins outwards until they are bent at a 45 degree angle to
< mOOQWIS<e BOOWIL: < MOOWILZS< the surface of the card. This will secure the device until it is soldered.
T Jdddd-dddd 222222;2 << << LA %
3 33323333 233333 i2 23323333 ¢
35 33333333 333333 '3 33333333 3 SOLDERING TIPS
©
-~ £
T 8338888 RrvRTEe k RRIPRRANEK 3 (1) Use a low-wattage iron — 25 watts is good. Larger irons run the risk of burning the
@ printed-circuit board. Don’t try to use a soldering gun, they are too hot.
(]
BOUOWI S< MOOWILZS< DOOWI 43« & (2) Use a small pointed tip and keep it clean. Keep a damp piece of sponge by the iron and wipe
cooesd@d®@ OUUOVLVOU 60Cco0O0000 ¥ the tip on it after each use.
33333333 33333333 33333333 E v (3) Use 60-40 rosin-core solder ONLY. DO NOT use acid-core solder or externally applied fluxes.
w 22222332 33223222 23322233 Egg Use the smallest diameter solder you can get.
Q - - 29 £ B . . .
2 O9TYTILLS IV9OYY 85333885 T 8 NOTE: DO NOT press the top of the iron on the pad or trace. This will cause the trace to
:g § > “lift” off of the board which will result in permanent damage.
5 52 & o | | . | .
oo T § ocozx? 5 88 T ﬁ g (4) In soldering, wipe the tip, apply a light coating of new solder to it, and apply the tip to both
ITTCT oo 0 Qs g 2 L_,’. parts of the joint, that is, both the component lead and the printed-circuit pad. Apply the
Qo298 33858 Ea < 53303 e 5 2 82 § solder against the lead and pad being heated, but not directly to the tip of the iron. Thus,
eaaa adda xo o 00w § o= o when the solder melts the rest of the joint will be hot enough for the solder to ‘‘take." (i.e.,
S88L Cowr & 5 DR&EBY Z2 38 & form a capillary film).
© 1 (5) Apply solder for a second or two, then remove the solder and keep the iron Lip on the joint.
o The rosin will bubble out. Allow about three or four bubbles, but don’t keep the tip applied
. . _a B a R 59 for more than ten seconds.
DOIWN aToITw ¥ @oo<< mo<<2 4 o o
< Looo S xxqg xXx9 . 3 {6) Solder should follow the contours of the original joint. A blob or lump may well be a solder
X X x X s - -¥ @ §§ gé f—:g;, Ie- T bridge, where enough solder has been built upon one conductor to overflow and ‘*‘take’ on
g 2 ‘ ; the adjacent conductor. Due to capillary action, these solder bridges look very neat, but they
c-am 8zezg S $<&% goly £ are a constant source of trouble when boards of a high trace density are being soldered.
§ Inspect each integrated circuit and component after soldering for bridges.
7]
. § \ {(7) To remove solder bridges, it is best to use a vacuum ‘‘solder puller’ if one is available. If not,
8 ooowI_LS< ©OISH 3 N the bridge can be reheated with the iron and the excess solder “‘pulled’’ with the tip along the
— E Lo crocca xxxx 2 ~ printed circuit traces until the lump of solder becomes thin enough to break the bridge.
““““ ga £ 98898988 898y g % Braid-ty Id hich causes the solder to “wick up’” away from the joint whe
QRR8ZTEY uw 38388888 8886 Eag raid-type solder remover, which ca p’’ away from the jomnt when
oW oW owew 9 o TE s applied to melted solder, may also be used.
G080 dwe o S8r2gilgs 83¢%g3 Egi
8 gz o
o~ e N
% o= O
OOOWT 43« - @OOWTIJ =g DOoTH ‘E:g
z 2c @
5553535553 S TCCITCTCT xxXxX 5o =
55555555 W z2zzzzzzz 222z S° &
Cwowgwygw 2 29703939 noma AIII-1 © Processor Technology Corp.

PROCESSOR TECHNOLOGY CORPORATION

ALS-8 FIRMWARE MODULE

STANDARD COLOR CODE FOR RESISTORS AND CAPACITORS

APPENDIX IV

COLOR SIGNIFICANT DECIMAL TOLERANCE | VOLTAGE
FIGURE MULTIPLIER (%) RATING*
Black 0] 1 -
Brown 1 10 100
Red 2 100 200
Orange 3 1,000 300
Yellow 4 10,000 400
Green 5 100,000 500
Blue 6 1,000,000 600
Violet 7 10,000,000 700
Gray 8 100, 000, 000 800
White 9 1,000,000,000 900
Gold - 0.1 5 1000
Silver - 0.01 10 2000
No Color - -— 20 500

*Applies to capacitors only.

ATIV-1

i
(r
i
P
‘1
4
H

. icati Notes
Title System Application 7

Function

System Application Notes

Release Date :
Revision No.

7/1/76
—aT

Level No.
Page 1

of

2

System Application Notes will be issued on a regular basis

to members of the ALS-8 Systems Group. These notes will cover a

broad spectrum of information, and it is the purpose of this note

to specify the classification system used for the information

catagories covered.

GUIDE TO SYSTEMS APPLICATION NOTES

ALS-8

Program Development System

(©) 1976 Processor Technology Corporation

icati 4 7/2/76
Title: __System Application Notes Release Date: _7/2/76 e System Start Up Release Date: /2776

Revision No. ® f Revision No. _ 0
Level No. Al 1’ Function Level No. _A2

Page 2 of] ! Page 1 of _3

Function:

System Application Notes will be issued with an alphabetic
letters designating the level of information, followed by a number
indicating the correct sequence within that level.

From time to time notes may be re-issued containing revised
information. These notes containing the lower revision number
should be discarded with the latter one being filed in its place.

At the present time the following characters have been assigned | ;3 SYSTEM START UP

to the levels indicated.

System Familiarization
Advanced System Techniques
General Operating Notes

Programming Techniques

Support Utility specification/description
System subroutine specification/description
Support Program description

System Parameter Specification
ALS-8 ENTRIES

A
B
C
D
J
K
L
R
Z

Notes, scratches and misdirected miscellany

ALS-8

Program Development System

@ 1976 Processor Technology Corporation

Title: _System Start Up Release Date: _7/2/76 \
Revision No. _9 1
inn, Level No. A2
Function:

Page 2 of 3

The circuit board which holds the ALS-8 system contains
circuitry which will normally start-up as well as address the
computer for running the ALS-8. This start up address represents
the first byte of the system located at EP@9Q.

This address is only "one'" of the ALS-8 start-up points and
each different point performs a given function.

Within the ALS-8 certain parameters require initialization
prior to operation of the system. Of these, the I/0 driver code,
which is moved from PROM to RAM is most important. This code is
moved "fresh" into ram following entry to EQQQ.

The terminal width, MODE and STAB parameters are also reset
after entry at this point.

An alternate point, address E@6Q, does no initialization but

only restores the driver to SYSIO and prints the "READY" message.

] System Start U
Title: y P

Function:

The third direct entry point is use

function is required the operator should

power is first applied. (EXEC E@24)

In summary:

EQ24

custom command and system symbol table values. Because this

Release Dgté%/ 76

Revision No. @
Level No. __A2
Page 3 of __3

d to zero the file,

EXEC this address when

USE

Use when power is first
applied or after a major
program crash.

Use after a minor crash to
reinitialize the RAM I/0
drivers. Following this the
File, IODR, CUST, and symbol
Table can be examined for
possible affects.

Use to return to the ALS-8
after an operational program
has gone into an endless loop
or halted.

I

Tite _CUST and EXEC Release Date : _ﬂ—7/2/76

i i ; Revision No.
Function Further Explanation prior to bulletin Level No. A3

Page 1 of _1

CUST and EXEC at first seem to have the same effect but
a closer examination will indicate the CUSTOM command is able to
retrieve and use all of the parameter passing of the ALS-8
system.

How to pick up these parameters is a complex operation
determined even by the requirements of the routine picking them
up. Further bulletins will describe each type of parameter in

detail and how to use them with custom commands.

CUST OR EXEC?

ALS-8

Program Development System

@ 1976 Processor Technology Corporation

System Application Notes Release Date : 7/1/76

Revision No. D
Level No. Al

Page 1 of _2

Title

Function

System Application Notes

System Application Notes will be issued on a regular basis
to members of the ALS-8 Systems Group. These notes will cover a
broad spectrum of information, and it is the purpose of this note
to specify the classification system used for the information

catagories covered.

GUIDE TO SYSTEMS APPLICATION NOTES

ALS-8

| B Program Development System

@ 1976 Processor Technology Corporation

Title:

Revision No.
Level No. Al

System Application Notes Release Date: 7/2/76

Function:

Page 2 of _2

System Appiication Notes will be issued with an alphabetic
letters designating the level of information, followed by a number
indicating the correct sequence within that level.

From time to time notes may be re-issued containing revised
information. These notes containing the lower revision number
should be discarded with the latter one being filed in its place.

At the present time the following characters have been assigned

to the levels indicated.

System Familiarization

Advanced System Techniques

General Operating Notes

Programming Techniques

Support Utility specification/description
System subroutine specification/description
Support Program description

System Parameter Specification

A
B
C
D
J
K
L
R
YA

Notes, scratches and misdirected miscellany

- i 7/6/76
Title ALS-8 1/0 System Driver Release Date: —/

, iliarization Revision No. @
Function System Familiar s A4

Page 1 4

ALS-8 I/0 System Driver

This System Application Bulletin describes the operation
of the SYSIO driver associated with the ALS-8 executive. Sufficient
information is given to allow '"'system start-up" under conditions

where the standard input device is not available.

I/0 DRIVER

ALS-8

Program Development System

@ 1976 Processor Technology Corporation

e AL>5-8 L/0 System Driver Release Date: 7/6/76 | Title. _ ALS-8 1/0 System Driver Release Date: /8776 3
Title: e ' | ' Revision No. —_ @ !
E:\\/I:wlzo Ne. Tﬁ— ‘, o Level No. A4 ‘

Function: : ' Function: P 3 of 4 |
unction: Page _2 of 4 age |

. . . |

The ALS-8 executive make use of a SYSTEM driver palr known A. If a version of the non standard driver is in memory two j

by the name "SYSIO". The operating code for this pair of drivers !

addresses must be changed for the system to recognize the new .%
11 as the name is stored in the PROM di the ALS-8 system.
as weil a holding the ystem driver as the SYSIO...
When the initialization procedure is run the executive moves

this code into random access memory for use by the system. The For Input:
initialization procedure also places the driver name, "SYSIO", The driver address should be placed in the following memory
in the I/0 driver table as well as the address associated with locations using the standard Intel format of low byte, high byte.
the drivers just loaded.

Address Present Value
At this time this is the only driver known to the system —;;;;—_ 08
and it will loop waiting for input from the operator. If a pro- DOCE -
perly implemented input device is available the operator can - 98
then change the SYSIO driver to any other specification desirable D095 Do

as long as the corresponding drivers are available.

i is not available but a known
If a standard input device is not available the system operator If a standard output driver is

i i i i address should be
can manually, via the computer front panel, change either the driver driver already exists in memory the driver ad

code or driver addresses to correspond to his device. Once this placed in the following double byte memory locations.

is done the all normal system operations can begin. D@DP A9
D@D1 D@
D@96 A9

DP97 D@

. -8 I/0 Syst i
Title: ALS-8 1/0 System Driver Release Date: M
Revision No. g
. A -
Function: Level No.4 —
Page of 098 0001 # -
D039 hono # b S
p0938 0003 * ALS-8 SYSTEM I/0 DRIVERS
D098 0004 *
If th . .] po9ad 0008 #*
the available input or output devices are compatible D098 0006 * : ' _
,) D098 0007 * INPUT DRIVER ,
with the system drivers but use different status bits or port D098 0008 # Sk
p0o98 CD A4 DO 0009 INP8 CALL STAT GET STATUS
numbers the system operator can change the driver code to DO9B CA 98 DO 0010 Jz INP8 LOOP UNTIL AVAILABLE
DOQE 0011 # _
correspond to his requirements. .) . . DOYE DB 01 0012 IN 'UDATA GET DATA FROM INPUT PORT
P d s. A listing of this code is provided . DOAO E6 TF 0013 ANI 127 STRIP OFF PARITY.
e s s . , £ DOA2 47 001l MOV B, 2 R
here to aid in implementing the changes necessary. . E- poa3 c9 0015 RET
Th . . DOAY 0016 #
e user 1s cautioned however, that the system will restore DOAN-DB QO 0017 STAT 1IN USTA -
. _ DOA6 E6 40 0018 ANT - DAV TEST FOR DATA AVAILABLE
the standard I/0 driver any time E@QPQ or E@24 is executed. In . b DOAS C9 0019 RET
: E DOA9 ' 0020 #
addition, the simulator and VDM drivers assume that the standard : 1 gg:g 882; : OUTPUT DRIVER
system driver i . DOAQ CD AU DO 0023 QUTP CALI STAT GET INPUT STATUS
Y s available. DOAC CA B8 DO 0024 Jz NOCHR JUMP IF NO INPUT HAS BEEN RECEIVED
DOAF DB 01 0025 IN UDATA. GET CHARACTER
DOB1 E6 7F 0026 ANI 127
DOB3 FE 1B 0027 CPI1 ESC IS IT AN ESCAPE?
DOB5 CA 60 EO 0028 Jz EORMS 1IF SO CHANGE DRIVER AND OUTPUT "“READY"
DOB8 DB Q00 0029 NOCHR IN USTA
DOBA E6 80 0030 ANI TBE IS PORT READY .FOR QUTPUT?
DOBC CA B8 DO 0031 JZ NOCHR .
DOBE_78 0032 TRUT
DOCO D3 01 0033 ouT UDATA
DOC2 C9 0034 RET
DOC3 0035 #
bOC3 0036 UDATA EQU 1 DATA PORT NUMBER
DOC3 0037 USTA EQU 0 STATUS PORT NUMBER
DOC3 0038 DAV EQU UOH DATA AVAILABLE AT BIT 6
DOC3 0039 TBE EQU 80H TRANSMITTER BUFFER EMPTY AT BIT 7
DOC3 0040 ESC EQU 1BH ESCAPE CHARACTER
DOC3 Q041 *
bOC3 0042 *
DAV 0040 001B INP8 D098 NOCHR _ DOBS
ouTP8 DOA9 DOAY TBE 0080 UDATA 0001
USTA 0000

Subroutine or Command Returns |
Title Release Date : 7/2/76

. To describe system return conditions Revision No. _ 0
Function Level No. .Cl

Page __1 of 4

Subroutine and Command Returns

e

Returning to ALS-8

ALS-8

Program Development System

(©) 1976 Processor Technology Corporation

Subroutine and command returns

Title: Release Date: _7/2/76 ', Title: Subroutine and Command Returns Release Dme?/Z_/ZG_
' Revision No. T—0 1 ' Revision No. 1
. : Level No. . Level No. Ccl
Function: Page 2 of 4 Function:

Page _3 of _4

When used with either EXEC or a custom command the ALS-8 exits

SWCH 2 is tested if SWCH 1 is zero. This parameter is

with a normal 8080 calling sequence. If normal stack operations called the '"'driver hold request'. If SWCH 2 is non zero on

are used within the routine a RET instruction will return directly return the executive will not switch back to the system driver

to the ALS-8 instruction. The stack used by the system will allow and no message will be given.

sixteen levels of external stack operations without affecting the If both switches indicate § the executive will change back

system's global area. to the systems driver but will output only a CRLF.

Two parameters are passed tothe external routine each time a

command is given. These parameters are known symbolically as SWCH 1 ADDRESS

and SWCH 2. If they are non-zero on return they will affect the SWCH 1 DOFD

response of the executive in a-determined way. DPFE

SWCH 1 is tested first by the executive and if non zero its

effect cancels that of the second parameter. Any external routine or program can also return to the

SWCH 1 is called the "outgoing switch" and if it is non-zero system by JMP ing to one of the following locations.

on return the executive will change back to the system driver

ADDRESS SYMBOLIC NAME

and output the '"READY" message. E@B7 EOR

E@D1 EORNS

EP60 EORMS

E7DD WHAT

E7EQ

Title: Subroutine and command returns

Function:

NAME

EOR

EORNS

EORMS

WHAT

MESS

712/ 763
Release Date:
Revision No. —_9

Level No. Cl
Page 4 of __4

FUNCTION

Perform parameter tests
as per standard RET.

Return to system leaving
I/0 driver set.

Return to system, switching
to system driver and output-
ting ""READY'" message.

Return to system, switching
to system drivers and out-
putting "WHAT'" message.

Return to system, switching
to system drivers, and out-
putting message addressed

by H + L. Message must end 1}
with a @ODH Byte. (13 decimal):

ALS-3 PROGRAM DEVELOPMENT SYSTEM
0000 N 000 30000 003600 0

TEMPORARY OPERATORS MANUAL
CHAPTER I

The ALS-8 is a single terminal operating s stem designed
for use with "38080" based micro-computers. The system software
is contained on a printed circuit board in programable read-only
memory. Tnis same board also has circuitry which will normally
start the operating system once the computer is turned on. This
configuration, called a "turnkey system", eliminates the start-
up procedure usually required from the computer’s front panel
switches. The fact that the ALS-8 program is always stored in
menory, regardless of power conditions, eliminates the system
load, or "bootstrapping" normally needed by small machines.

In this manual the name "ALS-8" will refer not only
to the circuit board but also the operating system program
contained on the board. The manual will describe the many
capabilities of the ALS-8 and now they are used. Chapter
Two also decribes the hardware requirements needed for running
an ALS-3.

The ALS-8 is a personalized operating system which
attempts to maximize convenience in program development
without over-controlling the machine. Operating systems,
even the large computer variety, can be guilty of "over-
control" when design assumptions become user restrictions.
The ALS-8 has assumptions incorporated into its design as
must any program, but the ALS-8 allows access to "para-
meters" which can redefine these assumptions. 1In this way
various input/output devices or memory configurations can
be accommodated. Another personalized feature allows the
user to expand the ALS-8 by adding his own functions to it.
Eacnh o the initial operating system functions resides in
its own section of the ALS-8 memory and is activated by a
command word or “key word" sent from the terminal.
Additional functions only nave to be given a memory start
address and a nane tor the associated command. The new
function is executed whenever the ALS-8 sees the custom
command name associated with that function.

The ALS-8 relies heavily on the concept of parameters
in its internal design and its command interpretation. The
fundamental idea is contained in the observation that two
similar tasks difrering by some element should be a single
task which modifies its operation based on the value of this
"element." A simple example of this concept is the ALS-8
output tormatting routine. A number of printing terminals
are available which could be interfaced to the computer con-
taining the ALS-8, and these terminals often vary in the
width of paper tney accept. Some standard widths are 72,

80, 110, and 132 characters per line. It is conceivable

then that a separate ALS-8 package could be written to handle
the specific terminal attacihed to its computer. The para-
meter principle suggests instead that a single ALS-8 be made
with provision for defining or redefining this parameter, the
terminal widtn. Tnis is, in fact, exactly what is done. Be-
'ore printing, thne output routine checks this value to see how
it should format the output line. The ALS-8 has several such
parameters whicn it uses to control its various {unctions.

1

This concept of parameters is carried into the command
structure in much the same way. While interpreting a command,
the ALS-8 checks for an optional list of "arguments", which
could be one or two numbers, and for a name enclosed in slash
marks (/). These values are stored in the order found and if
the function chosen by the command name needs this information
for its own functioning, it retrieves it from a predetermined
location in memory. The only appreciable difference between
arguments and parameters is that arguments are temporarily
stored and only for the current command, while parameters
describe conditions which may be of interest to many functions.
Parameters also keep their values until explicitly redefined.
Using the features which arise from this principle, the user can
tailor the operating system to his own personal requirements.

The ALS-8 contains an assembler, file handling routines,
editing, and management functions. The functions within these
logigally distinet sections of the operating system can be
combined in many ways to aid in the writing and debugging of
programs. The text for a program, and often times data, is
written from the terminal onto a "file" in memory where it can
be examined, altered, added to, or saved for later. The ALS-8
resident asembler can convert the program text on such a file
into the numeric machine language required by the CPU. This
machine language is then stored by the assembler at some user
designated memory location where it can be run. Up to six of
these files can be managed at one time by the ALS-8.

. A very important aspect of the ALS-8 in program development
is the fact that any user program has access to all the ALS-8
functions and support routines. For many problems this means
that half the program is written, debugged, and ready as soon as
Fhe computer is powered up. All the user’'s program must do is
is call the already existing routines. Naturally the user
program has to be aware of the conventions and assumptions
associated with the routines it calls, but it is far simpler

and much faster to learn these than to write such routines from
scra?ch each time a particular function is needed. Later
sections of this manual deal with this feature in more detail.

Another important design feature of the ALS-8 is its
ability to maintain and effectively use a SYSTEM SYMBOL TABLE.
The user, through the appropriate commands, can enter and de-
lete names in this list or "table." These names carry only
an associated number with them which is usually interpreted
as a memory address. Tnis table is accessible to the
assembler and any other function (user program) which cares
to reference it. This can be used quite effectively to link
together programs written at different times. The address
(or valug) of a certain quantity does not have to be known
at the time that a program is being assembled. That program

can, instead, contain code which looks for this value in the
symbol table.

CHAPTER 2

MEMORY AND PROGRAM STRUCTURE OF THE ALS-8

A structural description of the ALS-8 is given here to
define the minimum hardware requirements and to outline the
principles behind its construction so that the fullest ad-
vantage may be made of the features available. The program
ALS-8 is distributed on the printed circuit board mentioned
in the first section and it is this board that defines some of

he hardware constraints. The program itself could be used on
any 8030 based computer which has retained the 64K addressing
scheme of the 8080 chip. The circuit board, however, restricts
the present ALS-8 to computers having a connector with the
correct mechanical and electrical characteristics available.

The circuit board also determines the location in memory
for the program. The board itself is capable of holding 8K
bytes of PROM of which the ALS-8 takes over half. This memory
page is hardwired on the board to reside in the last 8K page of
memory so that it addresses from E000 hex to FFFF hex. The
program itself also has memory requirements, the software
assumes that at least 1K of random access memory (RAM) resides
in memory starting at location D000 hex.

While this memory configuration is enough to let the ALS-3
operate, it is insufficient for most programming requirements.
It is strongly suggested that a separate memory be provided in
the low part of memory, preferably starting at 0000 to serve as
the user’s free space for putting programs, files, and data.
This is suggested because there is very little free space
around the D000 RAM; in fact, it is also suggested that the
system RAM board be 4K (from DOOO to DFFF).

The ALS-8 is very flexible with regard to peripheral
devices, but it does make some initial assumptions about the
terminal which constitute a hardware requirement. Devices
attached to any 8080 based computer identify themselves to the
computer with a number called a "device code." There are 256
posible codes for input devices and 256 for output devices. As
initialized, it is assumed than the keyboard is input device
code 1 and that the print mechanism is output device 1. It is
also assumed that the computer, or the ALS-8 in this case, can
retrieve status information about the terminal from input device
0, the most significant bit, 10000000, represents the busy
status of the output device and the next lower bit, 01000000,
has the busy status of keyboard. The terminal printer is busy
when its bit is 0, and data is assumed available from the key-
board when its bit is 1. Tnis I/0 driver is in the System RAM
area and can be changed by the user following system initiali-
zation but since this convention is assumed by a good deal of
the software written for 3080 based computers it is suggested
that it be followed.

The ALS-8 keeps a great deal of information in the system
RAM area and, to use the ALS-8 to its fullest, the reader should
learn now this information is used. 1n the following dis-
cussion on the system RAM area, it will be assumed that the 4K
space reserved for it is actually filled with memory. The
reasons will become clear as the discussion progresses.

2

The first block of information in this area occupies
addresses D000 to D25C and is called the System Global Area.
Parameters defining or describing I/0 devices, program status,
and other information are stored nere. Immediately following
this is the Custom Command Table which contains a list of names
defined by the user with the CUSTE command which will be
described in some detail later. Each entry in this table is
paired with an address given when the command was defined. When
the user types out one of these custom names, the ALS-8 realizes
it isn’t a name from its own command set. It then searches this
custom table, picks up the corresponding address and performs
a subroutine jump (call) to that address. This table ends at
D2FF which leaves room for 22 custom names.

The System Symbol Table follows the custom commands and
continues out to DFFF where the ALS-8 software starts. This
table, like the Custom Command Table, contains names and
corresponding sixteen bit numbers which are usually thought of
as addresses. This is used most often by the ALS-8 resident
assembler but it is open for use to any user routine which cares
to access it. It allows user routines to be parametrized so
that the routine can access information not available at the
time it is written and assembled. This is especially useful
for connecting programs and subroutines written at much
different times. Note that systems having only 1K board at
D000 will be restricting this System Symbol Table to the area
D300 to D377, only sixty-four bytes of memory. This severely
limits the usefulness of this feature.

It was suggested earlier that RAM be placed in the low
part of memory space for the user. This is suggested to mini-
mize congestion and the possible memory conflicts arising
between the system and user software. 1In keeping with this
philosophy, special user written routines designed to handle I/O
devices should be stored somewhere in the system. These
routines, called I/0 drivers, can be put anywhere but should
probably be located in the RAM Just under the EQ00 start of the
ALS-8 program until they are put in more permanent form. This
still gives the System Symbol Table as nmuch room as possible
while maintaining the system/user separation. The following
diagram summarizes the memory map described so far and shows the
suggested locations for the Video Display Module and optional
memory.

INSERT DIAGRAM

DFFF

P4oC

el

1/0 DRIVERS
(OPTIONAL)

!

SYSTEM SYMBOL TABLE

CUsToM cOMMAND TABLE

SYSTEM GLOBAL AREA

SIMULATOR

AlLs-8 AFPPROXIMATE
8K SIZE OF ALS-8

FF§0M BOARD 1

SYSTEM RAM
AREA

M

-~ 2K PROM BOARD

A

o VIDEODISPLAY AR

MODULE

IK MEMORY BOARP

— e e e =]

>S

/r
USER'S FILE
AND PROGRAM

AREA

FOOO

ECOO

booo

ccoo

o000

The separation of system space from user space results in
an upward progression of address values for user memory and a
downward progression for system memory. Future products have
assumed that this policy has been carried out and that the
Video Display Module (VDM), for instance is located just below
the D000 start of system-RAM. This VDM should then start at
location CCO0 hexidecimal. The presence of the VDM in the
C000=-CFFF block means that no 4X board could be placed there.
It is, however, suited to a 2K PROM board and perhaps a 1K
memory board, should it become important to fill up this space
completely. The space from 9000 all the way to BFFF has been
marked as the best location for further extensions of the
System. As I/0 drivers, loaders and other user software is
developed it is suggested that they be placed in PROM in the
C000 to CTFF block. Future software packages will assume this
memory structure.

The program structure of the ALS-8 is most easily described
with the aid of the following diagram. The conceptual parts to
the program are shown as parts of a heirarchy not completely un-
like the structure of a government or a business. 1In such a
diagram, it is assumed that the higher levels are able to
command the lower levels but not the other way around. In the
program sense then, the top most level can call on any of the
routines below as subordinates. It is assumed also in this
diagram that routines on the same level may call each other as
needed. —=

ALS
EXBECUTIVE EXECUTIVE LEVEL

1
| J v l | 3 l

ASBM MODE cusT FUNCTION LEVEL

(COMMANDS)
f__"____—_ﬁl____——_,__—l
| S 2
| I |
| SUPPORT (O |

LEVEL I
| | I
. - - -
GENERAL SUPPORT 1/©0 PRIVERS

The top level, the executive level in this diagram, repre-
sents the control center. It is this section which controls the
communications with the terminal, decides which funtion is to
be executed, and reports on errors to the user. Each block on
the function level corresponds to a command from the ALS-8
commnand set. These routines, for efficieny sake, make heavy
use of the support routines on the next level making the
overall package much smaller. These support routines have been
divided into two parts, general support and I/0 drivers. The
I/0 drivers are support routines which handle the transfer of
data to or from external devices. They are logically distinct
from the general support routines beause only the drivers
handle I/0 and because the ALS-8 allows the user to define his
own routines as drivers thereby adding to this part of the
system. Each new driver added usually nas charge of just a
single device. Tney could be used, as will be described in the

S

chapter on I/0 drivers, to control high speed paper tape
readers, cassette recorders, or printers. The custom commands
also add to the structure diagram but do so on the function
level. They too can make use of all the general support, I/0
drivers, or other function level blocks to minimize their own
size and complexity. Other complete, self-contained programs
may be considered custom functions (like BASIC or FOCAL) and
this interaction with support routines or drivers is only a
convenience, not a requirement.

It is important to realize that many of the decisions
madg by the ALS-8 in choosing support routines or drivers for
a given task depend on status information kept in the system
RAM area. Although there may be quite a number of I/O driver
routines identified to the system, only one input driver and
one.output driver are considered current at any one time and
thelr'identities are kept in this memory area. Similarly,
certain parameters will influence the flow of control through
the program structure.

CHAPTER III - TALKING TO THE ALS-8

The command set recognized by the ALS-8 can be naturally
divided into five catagories; MEMORY, FILE, EDITING, I/0 and
SYSTEM commands. The memory commands are used to enter data
into memory or examine the contents of a section of memory.
Usually these data transfers are between memory and the key-
board and printer of the terminal, but with proper equipment
and drivers, the memory commands become a means of saving and
restoring programs. The file commands verify, relocate, and
manage up to six files of information in memory while the edit
commands manipulate the contents of the files. The category
of system commands includes all the commands which define system
parameters, symbols, and drivers. It also contains commands
which execute the assembler, the optional simulator, or any user
designated location(s) in memory. Tne following table lists
the command names in their respective categories. The names
marked with an asterisk are commands used only by the optional
VDM Editor or Simulator software packages.

MEMORY FILE EDIT SYSTEM

ENTR FILE DELT IODR
DUMP FILES EDIT (%) SWCH
FCHK LIST MODE
FMOV TEXT ASSI
FIND (%) RNUM ASSM
EXEC
SIMU (%)
AUTO (%)
SYML
SYMLE
SYMLD
STAB
CUST
TERM
FORM
NFOR

The above list represents the default command set
recognized by the ALS-8 executive routine. Individual ALS-38
functions, while operating, will recognize other lines as inputse.
The ENTR command, for example, takes control of the terminal and
expects to receive numeric input data to place in memory. This
function must be given a special character signifying the end of
input before it will return control to the ALS-8 executive. The
ENTR function will not recognize entries from the executive’s
command set. An error message is output to the terminal when an
entry line is unrecognizable.

Other than custom commands which have been briefly covered,
the ALS-8 executive does recognize a command line type not shown
in the command set list. Lines beginning with a number are
assumed to be line entries to a file of information stored in
memory. Files are a very powerful feature of the ALS-8 which
will be thoroughly covered in Chapter V. For the moment, it
suffices to note that they contain text, usually program text
for the assembler, and that they normally sequence their

7

contents by line numbers. The text you are now reading however,
is an example of a text file without line numbers using the
optional TXT-2 extension to the ALS-8.

' A number of the executive commands accept "arguments" as
modifiers for the associated function. The ALS-8 executive
allows.a.maximum of two numeric values and one ASCII argument
as modifiers to a command. How the arguments are used, if they
are used at all, depends on the command chosen. In use, the
arguments a?e,interpreted by the order in which they appear.
Commands u§1n@ an ASCII argument will expect it to be the first
argument given. The ASCII argument, usually a name in one of
@he many tables used by the ALS-8 also has the requirement that
it must be enclosed in slash marks (/). The following example
shows a number of commands as they might appear with arguments.

ASSM 2000

ASSM 2000 3000

FILE /FNAME/ 100

DUMP 101 110

CUSTE /HACF/307

IODR /TAPES/ DF00 DF80

' Most of the ALS-8 functions contain logic to handle
}nstances whege an argument has been omitted. In such
instances, a efault rule peculiar to the command and

in question will be applied. Tne "ASSM" command shownagguﬁﬁgt
examples above can be used with one or two arguments. The
cowmanq starts the assembler which begins by checking for a
pa}r.ot arguments. It interprets the first argument as the
origin (ORG) address for the program being assembled. The
second argument specifies the starting address for the
assembler s binary output (machine instructions). If this
sgcond.argument is missing, the assembler will take the value
given in the first argument for both arguments. The assembler
hgs no provision for defaulting two arguments so it will

signal an error if the ASSM command is given with no arguments.
Default rules for all executive commands will be given in the
detgilgd Qescription of these commands in the upcoming chapters.
Again it is mentioned that the user functions aitached to éustom
commands nave full use of the argument handling support

routines; the treatment of default conditions i
i
to the programmer. s naturally up

Finally, it must be noted that there are some minor rules
t9 be observgd in the use of command inputs with arguments. The
ALS-8 executive needs to separate the characters belonging to
the command from those of the arguments. Similarly, it needs
to segarate arguments from one another. The requirement is
therefore put on the userto put at least one blank after the
command word and at least one blank between a pair of numeric
argu@epts. The slash at the end of an ASCII name argument is
sufflglent to separate the name from any following numbers.
Numeric arguments may follow an ASCII argument with no separs-

ting blanks as long as the argume i ;
slash nmark. B nt was terminated with a

Responses from the ALS-8 in general d '
epend upon the command
cho§en. For the standard ALS-8 command set, the user is
?é:azscgssurgd Zg aAEesgonse; if a response is not a normal duty
mmand , e S-8 executive will send n !
to the user’s terminal. 8 che word TABADY!

CHAPTER IV - MEMORY RELATED COMMANDS

The simplest commands in the ALS-8 repertoire are the
memory related commands, ENTR and DUMP. They provide a means
of changing and examining memory locations directly from the
users terminal. The output printing format of the DUMP com-
mand has been made compatible with input format requirements
of the ENTR command. This permits these commands to be used
for saving programs on a mass storage device and returning it to
memory at a later time. This feature will be covered here and

in the chapter on I1/0 drivers.

The ENTR command requires a single argument defining the
starting address for the data to be entered. The command starts
the corresponding ENTR function which assumes control of the
user’s selected input device until receiving the character "/"
signifying the end of the input stream. The actual input to the
ENTR function is a list of values, each betweeen 0 and 255
decimal in magnitude. These values must be listed in the order
they are to be placed in memory and each must be separated from
adjacent values by at least one blank. The following shows
typical sequences using this command. Note that the input list
may use any number of lines up to the "/" mark.

ENTR 100

20 303 55 40
16 12

107 200 303 100 O
/

READY

ENTR 2001

101 200 /
READY

ENTR 3

o 1/

READY

The argument and input list can be in octal, as shown above
or in hexidecimal depending on the current mode parameter set
by the system class command MODE. The MODE command affects the
operation of other ALS-8 commands, not just memory commands. It
takes a single decimal argument, 8 or 16, which is stored in
the system parameter defining the base for command inputs. If
any inputs are received which are impossible to decode with the
current base, a "WHAT?" will be sent to the user’s terminal.
The ALS-8 initializes this parameter at start time to 16 and
this value is changed only with MODE. The following shows
possible errors associated with the MODE parameter.

MODE 16
ENTR 156000 (Octal address)
WHAT?

MODE 8
ENTR CCOD (Hex address)
WHAT?

L
o

R .

MODE 16

ENTR BF2

52 49 EE 4F 52 F6 43 50
5 A0 O 84 E4

43 2 303 22

WHAT?

In the last of the examples the values u
A \ p to the error are
properly stored by the ENTR function. The corrected input will
have to restart at the place of the error,

An added feature of the ENTR command is tha
storage address may be changed during input withguthﬁasgszezg
stop the process and restart with a new argument. The "present
storage address" always starts with the value given by the
at@ached argument to ENTR and the first input value is put in
this location; inputs are placed in successive locations. The
user has an opportunity at the start of each input line to re-
Qetlne this current address. If the first value is followed
immediately by a colon (:), it is treated as a new address
rather_than a memory value. While this seems only a minor
conven}ence,‘it becomes the key to making the output of DUMP
compatible with ENTR input. The following shows the first
example of this chapter re-written using this feature.

MODE 8

ENTR 100

2 303 55 40 16 12 107 200
303 100 0

2001: 101 200

3: 0 37/

READY

The DUMP command displays the contents of i
at the address specified in the first argument ngoggnfiigzigg
to the address specified by the second. As with ENTR, both the
arguments and the output follow the base parameter seé by MODE
The DUMP command can also be used with just a single argument;.

in this case it types out only the locati . r
first argument. Y ion specified in the

The lines output by the DUMP command each i

currept address followed by a colon. The remaisgzgto;ltgetgine
fontalns the pex;decimal or octal contents of the memory
oggziions‘beglnn%ng with the printing address. 1In either the
oc eacgrlgigideglmal mode? the DUMP.command puts sixteen values
ENTR. ehoon . ecagsg this output is formulated properly for
direétl zsers with a pape? tape punch can save the output
air stagdggd :Eg gnd re-read it later with ENTR. In this case
other devices wiIl iégug?ivﬁgigguidegi ngdi re. Sosrana on

. a i
shows a simple example of DUMP in Ehe hexig;Z§;Zi mgg:.follow1ng

DUMP 40 52

0040: 0A D8 D6 07 C9 DB 00 _
0050: £6 75 og E6 45 00 DC 01 D3 02 F8 CF

CHAPTER V - FILES AND FILE COMMANDS

The ALS-8 relies very heavily on the use of files; for they
represent a very powerful way of managing data in text form.
A file is a sequence of information stored in user designated
memory. The information is broken into "lines" which are dupli-
cates of the terminal input lines which define them. Each
line, both as it is input and as it is stored in memory, starts
with a line number defining its position in the file relative to
other lines. VLines with the lower line numbers are at the start
or "top", of the file while higher numbered lines have positions
farther "down" in the file. The lines do not have to be
entered in numeric order by the line numbers. The ALS-8 will
reposition other lines to make sure the proper order is kept
internally. Once in memory, files can be renumbered using the
RNUM command.

Files are known to the ALS-8 by name and up to six files
can be defined and managed at any one time. File names may
have up to five characters. Rather than having each file-
related command specify which file is to be operated on, the
ALS-8 has the user define "Current File." Using the FILE
command the user can specify which of his defined files is to
be considered "current." All file operations will apply to
this file until the Current File is redefined with the FILE

command.

To create a file the user must give a name for the file
and a starting address for it. This is done by using the FILE
command with an ASCII argument for the FILE NAME and a numeric
argument as the START ADDRESS for that file. In this way, the
FILE command can be used to create a new file as well as make
an already existing file current. File names are kept in the
system RAM area in a table called the "File Name Table."
These names can also be removed from this list of defined files
by using the FILE command; a numeric argument of zero erases
the name from the table but does not affect the memory con-
taining that file. These file parameters may be restored later
with the FCHK command thereby allowing the user to actually have
more than six files of information in memory at one time. The
ALS-8 does not, however, keep track of more than six. The
following shows three short files being created. Note that the
FILE command used with no arguments returns a message to the
terminal defining the Current File, its start and end addresses.

FILE/ONE/ 100

ONE 100 100 (RETURNED BY ALS-8)

1l This is the first line of file ONE.
26 THIS IS THE SECOND.

29 Line 3

FILE /TWO/ 200

TWwo 200 200

/1

FILE /THREE/ 6Al

THREE 6A1 6A1
10 Dear John,

12 Pay me or I won't be
14 your friend.

15 See you soon,
17 Igor

FILE /TWO/

TWO 2)0 200

1300 File Two gets this line.
1984 UPPER CASE OK.

1000 lower case ok.

2710 End TWO

FILE

TWO 0200 20cC0

This example points out a number of requirements and
features omitted in the discussion so far. Line numbers, for
instance, are normally followed by a blank but this is not
required by the editor functions. The example also illustrates
the fact that line numbers do not have to be absolutely consecu-

tive numbers. File line numbers are always decimal and must lie
in the range 0 to 9999,

A filey, "TWO" in the example, can be entered into the File
Name Table and saved during the definition of "THREE" although

it is empty. Later it can be made the current file and infor-
mation can be entered into it.

Files naturally have a length as well as a start location
and the user must be careful that, in adding text to a file,
he does not accidently write file information over a program
or another file. The ALS-8 assumes that the user knows where
file information and programs are located. To help the user
manage his files, the ALS-8 provides three file related
commands: FILES (different from FILE), FMOV, and FCHK.-

The FILES command produces a listing of the files in the
File Name Table. This listing includes the start and end
addresses for the files so it is a simple matter for the user
to spot and avoid memory conflicts. Should a memory conflict
threaten, the current file can be moved to a different location
in memory with the FMOV command. FMOV requires only a single
argument defining the destination address for the Current File.

This argument may not be zero, but no other restrictions are
placed on it.

The last of the file related commands is FCHK which
verifies the internal structure of the Current File and updates
the file end address if necessary. If for any reason the file
is not properly formatted in memory, FCHK will send the message
"fILE ERR" to the terminal. This command can be very useful in
restoring files. Earlier it was mentioned that the contents of
a file were not affected by removing the file’s name from the
list of defined files. Assuming that Subsequent operations have

I

ile’s information
not altered the memory contents for that file’'s infor ’
FCHK can return it to an active, useful status. §1m1}arly, the
contents of a previously saved file could be ENTR ed into memory
and reactivated with FCHK. The following example shows some
typical uses of FCHK.

FILE /COPY/ 700 define a file name. Leave empty.

COPY 700 700

FILE /0LD/ 600 define file "OLD". store program in it.
OLD 600 600

10 WAIT 1IN 377

15 CMP A

20 JZ WAIT

25 RET

§0 END

FMOV 700 move OLD to start of COPY.

OLD 700 736

FILES

OLD 700 736 OLD is O0>K>

COPY 700 1700 '

FILE /70LD/ O delete OLD from list.

FILES check defined files.

COPY 700 700 only COPY. thought to be empty.
FILE /COPY/ make it the current file.

COPY 700 700

FCHK redefine end address.

COPY 700 736

FILES

COPY 700 736 ‘

FILE /NEW/600 data from OLD still 600 to 636.
FILES

NEW 600 600
COPY 700 736

FCHK examine file starting at 600.
NEW 600 636 .

FILE check Current File, YNEW".
NEW 600 636 contents recovered.

13

CHAPTER VI - EDIT COMMANDS

The ALS-8 contains a number of editing commands designed
to manipulate the contents of a file. All of these commands
operate on the Current File so the user is cautioned to check
the status, and perhaps identity, of the Current File before
using these functions. This, as described in the last
chapter, can be done with the FILE command. All the EDIT
commands use decimal line numbers as arguments where required.
(NOTE: These commands are separate from the optional VDM EDITOR
package, TXT-2, sold by Processor Technology.)

‘ Tne EDITjcommand set contains two commands designed to print
the contents’of the Current File: LIST and TEXT. The LIST
command outputs the Current File ordered by increasing line
number. It accepts up to two arguments defining the start and
stop line number for the printing. If only one argument is
g@ven, the LIST function assumes that it is only to print the
single line identified by the first argument. When both argu-
ments are omitted the entire file is printed. The following

example exercises these options. (Examples show formatted
output.)

FILE /XMPL/ 1A2B

0 WAIT EI

10 JMP WAIT+1

20 * THIS SETS INTERUPT AND WAITS

24 END

LIST 10 50

0010 JMP WAIT+1

0020 * THIS SETS INTERUPT AND WAITS
0024 END

LIST 0

0000 WAIT EI

LIST

0000 WAIT EI

0010 JMP WAIT + 1

0020 * THIS SETS INTERUPT AND WAITS
0024 END

. The TE{T command is very much like LIST; the only
QLfferenge 1s that its output omits the line numbers. This
feature is generally used for files containing regular text
as opposed to program code. This allows letters, notices
or papers to be printed without line numbers. Since the ﬁser
?gsthpec1ry line numbers for arguments in edit commands, the
The f‘E)l(T command obeys the argument conventions used for LIST.

e following shows the last example reprinted using TEXT.

TEXT

WAIT EI
JMp WAIT+1

* THIS SETS INTERUPT AND WAITS
END

'y

The ALS-8 system RAM has two parameters pertaining to LIST
and TEXT, the formatting flag and the terminal width parameter.
"fFormatting" refers to the spacing or layout of the printed
results from the two functions. A formatting "flag" parameter
is a word in system RAM which tells LIST or TEXT whether or not
they should rearrange the contents of each line in a form
expecially suited to assembly language output. This parameter
is controlled by two system commands, FORM and NFOR, which
indicate "formatting" and "no formatting" respectively.
Naturally a file not containing a program is more readable
when not formatted. The FORM and NFOR commands require no
arguments and the parameter set by them remains in effect
until explicitly reset by the user.

The terminal width parameter, set by the command TERM,
contains an integer which represents the line width for the
current output device measured in characters. This parameter
has no influence on LIST or TEXT when the formatting feature is
suppressed. When formatting output for either output command,
the terminal width value determines the extent of formatting.
When it is less than 80 minimum formatting is performed, while
above 80 the maximum takes place. Terminal Width also controls
the maximum length of input lines as well as the acceptable line
length during FCHK.

The DELT command allows the user to delete a line or group
of lines from the Current File. It accepts one or two argu-
ments identifying the first and last line numbers of the group
to be deleted from the file. When used with only one argument,
DELT assumes that it is only to delete the single line desig-
nated by the first argument. The ALS-8 executive, however,
rejects line numbers input with no follwing characters and this
is a simpler way of deleting a single line. Thus line 40 in the
following can be deleted with "DELT 40" or simply 40 followed by
a carriage return.

FORM

FILE

A 0280 02AF
LIST 36 44

0036 DUP LXI H,O

0039 DAD SP
0040 SHLD HOLD
0044 RET

DELT 40

LIST 36 44

0036 DUP LXI H,O
0039 DAD SP
0044 RET

The last command in the edit set is RNUM which renumbers
a file given a start line number and increment. When finished
the Current File’s line numbers will begin with this first

15

number and all adjacent line numbers will differ by the value
of the second argument. If thne second argument is omitted, the
RNUM function will use five as the increment. The largest value
allowed for this increment is twenty-five. The RNUM function
also will change the increment to one if the line numbers exceed
9000. The example below shows a small program being renumbered.

CHAPTER VII - I/0 DRIVERS AND COMMANDS

The term "1I/0 driver" refers to a routine used to transfer
textual data between the ALS-8 routines (or user routines) and
an associated input or output device. 1Its basic duties are to
interpret a request for data transfer from some calling routine

LIST

and to translate it into a sequence of reads or writes suited
0025 INSTAT IN TTS to the conventions assumed by the electronics of the external
0030 ANI DR device. This relieves the calling routine from the responsi-
0035 JZ INSTAT bility of handling separate conventions for many devices.

Conceputally, an ALS-8 routine can ask for data in the same way
from any input device or send data to any output device in the
same way. It must formulate the request and simply choose the
routine to handle the request and the device.

RNUM 8000 10
TEST 1000 1030

LIST

The ALS-8 has a table of driver routines in its system RAM
8000 INSTAT IN TTS area and a parameter identifying the current pair of drivers
8010 ANI DR (input and output). When and A#SL-8 function requires input or
8020 JZ INSTAT output of a character, it uses this parameter to choose the

proper driver. The table for these routines contains a name
and pair of addresses for each entry. The IODR command nandles
entries to and deletions from this table as well as defining
the "current" driver and printing out the table’s contents.
Used with a name argument of one to five characters and two
numeric arguments obeying the current value of MODE, the IODR
commnand will enter the name and addresses into the table. If
used with no arguments at all, IODR prints the contents of the
table. Since drivers are selected as pairs, special functions
can be implemented such as read from high speed paper' tape both
with, and without, printout. Entries can be deleted by using
IODR with the entry name as an argument followed by a single
zero argument. The example shows IODR being used in these ways.

IODR /TAPES/ DFO0O0 DF40

TAPES DFO00 DFU0
IODR /TVIWT/ DF80 DFCO

TVTWT DF80 DFCO

I0DR
] SYSIO E200 E240
1 TAPES DFOO DF#0
i TVTWT DF80 DFCO
1 IODR /TVIWT/ O
i
§ I0DR
(SYSIO E200 E240

TAPES DF00 DF40

SYSIO, shown in the above, is the default I/0 driver which
handles the main terminal. It remains the current driver until
another driver from the list is explicitly defined by IODR in
yet another form; IODR with just a name argument. Making a

¥ B o e

6
: 17

driver "current" assumes that the corresponding routines are
loaded and ready for use because the subsequent ALS-8 commands
will have switched to using those addresses for I1/0. Assuming
that "TAPES" in these examples represents drivers for a cassette
recording unit, data could be loaded into memory with the
following:

IODR /TAPES/

ENTR 200

(the ENTR function will retrieve data from the cassette
and not the terminal keyboard)

The discussion on drivers so far has covered only the basic
duties of drivers. Because the system only has to know where
the routine starts, the programmer has an enormous amount of
flexibility. The driver is a program capable of handling any
number of devices in a single call if desired. It has access
to system parameters and tables so it can check status words
or find file information. When used with functions like ENTR,
the driver can accept data in whatever form the device will
provide it and then reformat it so that the necessary address
and colon are appended to the start of each line. There is
also no restriction that more than one driver can’t be assigned
to a single device. One line printer driver might simply echo
the data given to it on the page. Another driver in the list
might count lines so it can automatically skip the paper folds
and print headings at page tops. Similarly, a set of drivers
could exist for comunication with the VDM as within the TXT-2
extension package.

These capabilities are further enhanced by the fact that
any user program has access to the driver list. It can, if
desired, ignore the 'current" driver pair, search the table
for a s¢fcif'ic name, retrieve the corresponding addresses and
begin using those routines. To write such a program, the user
must know the addresses of the table, the parameter identifying
the current driver, and the ALS-8 routines which search tables.
The conventions for the routines and memory storage must also
be learned but the enormous flexibility compensates for the
trouble.

18

CHAPTER VII - SYSTEM COMMANDS

The commands described in this chapter cover a wide
range of functions. ASSM, ASSI, and their derivatives assemble
a program and load the resultant machine instructions into a
designated section of memory. CUST and its derivatives,
CUSTE and CUSTD, manipulate the Custom Command Table stored in
system RAM. SYML, SYMLE and SYMLD are like the CUST set except
that they manage the System Symbol Table in the system RAM.
Other commands in this group define 1/0 drivers, set systen
parameters, and execute routines starting at user defined
addressees.

All of the commands related to the ALS-8 resident asembler
accept one or two arguments. Tne first argument defines the
origin for the program while the second, if given, specifies
the start address for the machine language output of the
assembler. If only one arguement is given the asembler uses
it for both the program origin and the start address for the
binary form of the program. The binary machine language output
by the assembler is known as "object code;" it is the only form
executable by the 8080 CPU. The program text by contrast is
not executable but much more readable for humans and is called
"source code."

The set of assembler related commands ASSM, ASSME, ASSMX,
ASSMS, ASSI, ASSIE, ASSIX, ASSIS all produce assembled object
code programs for the program source code. Each has, however,
its own option associated with it. Tne fourtlt 1ind, where
applicable, the fifth character in these command names are
used to select the options to be used on a particular assembly
run. Tne fourth character, M or I, divides the group into two
sets of four commands. These sets differ in the source they
use for program text. The M group uses the Current File as its
source; whereas, the I group reads the source program through
the CURRENT INPUT DRIVER. The fifth character of the assembly
command names control options for the assembler output listing.
If ommitted, as in ASSM or ASSI, the listing is a one output
line per source line printout identifying errors, addresses,
and machine language values produced from the progranm’s
instructions. An E suffix suppresses all printout except for
those lines containing errors. S and X suffixes list the
contents of the symbol table immediately following the program
source listing. The X option adds cross reference information
between program symbol names and the line numbers they occured
in. The output listing of the assembler is formatted depending
on the parameter defining terminal widthawo 7Tae “Form"” SwrecH.

The CUST command prints out the current contents in the
Custom Command Table. The custom names must be four or five
characters and are considered unique to only four characters.
When a custom name is given to the ALS-8 as a command, this
address is retrieved from the table and the ALS-8 passes
control to this address (as a subroutine call). Entries to this
table are made with the CUSTE command which requires an ASCII
argument to be used as the new name and an address to be called
for tne command. The address argument follows the base set by
the last MODE command. CUSTD deletes custom names from the

19

i

table. It requires only the sin
: gle name argument. Users
cautioned that the twenty-two custom name limit is their rzie

of entries exceeds the table’s boundry.

Custom commands can be attached t i

- n O any kind of program.
T?e FOCAL and BASIC software packagess both load stagtigg i
:imgddrgfihzsro sidtSey cannot be in the machine at the same

ne. cou e loaded, though, and its n
as a custom command. Both software ; ame.entered
. packages come with a

?rogr:m which must be EﬂTR ed first; this program loads Iﬁ?gﬁt
ormat paper tapes. This loader is then started and the paper

tape dat# is stored i . : :
sequence. 1n memory. The following outlines such a

MODE 16
ENTR 1800

(type in i i NTE
) yp hexicdecimal for INTEL paper tape loader)

CUSTE /LOAD/ 1800
LOAD

(start - i
Ropar paper tape-when done reading restart ALS-8 at E060)
CUSTE /FOCAL/ 0

CUST

LOAD 1800 FOCAL o

FOCAL

* (this is the ready asterisk from FOCAL)

and SizEDSZgggzngzmbgiMEabigkiscmanaged with the SYML, SYMLE,
ike CUST, only prints out t
tents of the table, SYMLE and Sj , Te hamen
_ ; . SYMLD enter and delet
their associated values from th SYNLE requiran.
€ symbol table. SYMLE requi
a name argument of five letters or less i ity
:) and a numeric argu t
representing the symbol’s value SYMLD i tion
of symbol names from the table : napdles canipcstiion
; and, like CUST, requires onl
;gglga?: ar%ument.. Unlike the custom table, éhe gystem Symgol
locaciss gilo;:szzlgteg much gy a maximum length. Its physical
. r ust over 3K of memory and it i
;Egongglvable that this could be overrun? The use? 2;i Put
t;bfgslgslg §et a maximgm length of his own Dy setting up other
rivers in this 3K expanse. The example here éhows

two important s; i ;
Table. Symbol names being entered into the System Symbol

SYMLE /SP/ 6
SYMLE /PSW/ 6
SYML
SP . © PSWG6
30E (End of Table address printed following listing)

The symbols shown in th
] € example above are nee
resident assembler for programs which access the BOggdSEZcihe

Pointer, "SP", or the Program Status Word, "PSW". The

Y recognize single letter register

‘ Tne_user can define the
program ne writes or enter them once

resident assembler can onl
names like B, C, D, E, H, L an
SP and PSW symbols in each opong A

sponsibility to watch as the ALS-8 does not warn when the number

in the System Symbol Table for all the assemblies he performs.
The assembler produces a table for the symbols it finds in a
program and this table, inaccessible to the user, is called

the Assembly Symbol Table. It is created from scratch for each
assembly. If the program instructions make reference to a
symbol which has been given no value in the program itself, the
assembler will try to fetch the value from the system’s table.
It is a great convenience then to be able to define symbols
once in this System Symbol Table rather than each time in a
program. This makes programs both shorter and more versatile
as single changes in the symbol table values can affect the
origins, parameters, or subroutine connections for a number

of programs.

The ALS-8 allows the user the freedom of specifying where
the Assembly Symbol Table should start in memory. The STAB
command defines this location from an argument which obeys the
current MODE value. This start location must be defined before
the first assembly is made and it is suggested that this table
be placed at D700 hexidecimal. This puts it well into the
system RAM area leaving over 1K for the System Symbol Table.
It also leaves over 2K for the assembly Symbol Table which is
sufficient for all but the largest programs; this assumes
naturally that the area between D700 and E000 is not full of
I/0 driver routines (see Chapter II). The following might be
used to start an assembly.

STAB D700
ASSM 1A0

The loaded output of the assembler, the object code, can
be executed without having to make an entry in the Custom
Command Table., The EXEC command generates a subroutine call
to the address specified by its argument. When finished, the
program at this location only has to generate a return with the
8080 RET assembly instruction and control will return to the
ALS-8 executive. The argument to the EXEC command naturally
follows the number type specitfied by the MODE parameter. 1In
an earlier example, the name "FOCAL" was entered into the
Custom Command Table with an associated address of zero.

When "FOCAL" was given as a command the address 0 was given
control by the ALS-8. This could also have been done by giving
the command EXEC O".

In the event that a program does not automatically return
to the ALS-8, it will be necessary to stop the machine from the
front panel, set the address switches to E060 and hit the RESET,
EXAMINE, RUN switches. FOCAL, BASIC, and INTEL LOADER are
examples or programs which normally do not have an ALS-8
return. If a user program goes awry the same procedures can be
used to restart the ALS-8. The user may want to check his files
and data to ascertain whether or not they have been damaged by
the errant program.

al

CHAPTER IX - COMMAND SUMMARY

This chapter contains a summar of the - i
the order-they were presented. Theyreader i:Lsdsigggm:gd:o;f
sult earllgr chapters for any details omitted here. Followin
chapters will cover the ALS-8 assembly language instruction &
set. The descriptions given here use the convention of en-
closing an argument in parentheses when it is optional.
Arguments will be signified by lower case names suggestive of

their use; "addrl" for in i
. stance, will be an
senting an address. ’ argument repre=

ENTR addr

~ This command reads numeric data from i

dylyer and stores it in consecutive memorytggcgzgg:gtstggggn
w1tn.the address specified by the argument. The data ma ¥
continue for ‘any number of lines; the function will retuin
cgntrol to the ALS-8 executive only when it encounters a
Sogzgeﬁ/). At tpe beginning of every line, the current address
polnt ('gan getgnanged by specifying a new value followed by a
coLon :). Bo .the data apd addresses are interpreted in

or hexidecimal according to the currently defined MODE.

The length of any input lin - ..
of terminal widtn. © 1s limited by the current value

DUMP addrl (addr2)

o adg?i:scggggng"disgiays the contents of memory from "addrl"

ra2v, only one argument is given, only th
cogtents of address "addrl" are displayed. The aréumenZs aﬁd
printed results obey the number base set by MODE.

MODE base

The argument "base" for this
_argl _ command sets an ALS-8 para-

?sger which is used'ln converting binary data to readablg form.
foe g;gggen§ 1s decimal and must be either 3 for octal or 16
o add:ésgg;miiil gél ?%S—? grguments representing memory data

: . ,allected by this command. Argument ici
sgggéf{ sett}ng termlnal width or line nunmber willgalway: gglcn

nal. Initially the ALS-8 assumes a mode of 16.

FILE COMMANDS

The FILE command
own distinect function.
form. All name argument

hasrmany different forms each with its
THe following describes each partuclar
S may be one to five characters long.

FILE

This form will print the na i i
start address and end address. ne of the current file, its

FILE /fname/

This will search through the current list of file names for
ifname". When found, this file will be marked as the current
file and all subsequent file operations will be made on it. If
not found, the error message "WHAT" is sent to the terminal.

FILE /fname/ addr

This enters a file name, "tname", into the list of names
kept in the file table. The argument sets both the start and
stop addresses associated with the name. If the file already
exists in the table an error message FCON is output to the
SYSIO output device. The file "fname" always becomes the
Current File. Address "addr" must not be zero.

FILE /fname/ 0

File "fname" is removed from the file table and forgotten.
There wil be no Current File when this command is finished.

FILES

The FILES command uses no arguments. It lists the names,
start and end addresses for all the files known by the ALS-8.
This command does not affect the status of the Current File.

FCHK

This command checks the structure of the Current File. It
begins at the start address contained in the file table and con-
tinues until it finds an end of file mark (0l hexidecimal) or
an error. An error is signaled with the message "FILE ERR."
followed by the address of the error. The location of the end
of file mark becomes the end adress of the Current File. Using
FCHK files may be input directly into memory from magnetic tape
or disc and recreated.

FMOV addr

The Current File is moved by this function to memory
locations starting at "addr". The start and end address values
associated with the file are also changed. The copy remains the
Current File and an FCHK is automaticaly performed. If the file
was inadvertently moved to a location without memory a new file
can be created at the old address and the contents recovered

using the FCHK command.

While there is no restriction prohibiting a file from being
moved to an address contained by tne original, the user should
note that only the copy will have a valid structure after such

a move.

Text can be input to a rile by simply specifying the line
number and contents for that line. The line number is an

a3

S T

—— e A& A 10 1

vrank. II' the file contains a line w{th thgglg:g: gzmggﬁ the
new data is gntered in place of the old. The contents of’any
f}le can be interpreted as text or as assembly language source
L;pes intended for the assembler are composed of distinct fielés
which are separaped by groups of blanks. These fields can be
repositioned during printout by an automatic formatting feature
Sggggolled by the TERM, FORM, and NFOR commands. The TERMINAL
Wi thep?gizéter also controls the maximum length of lines input

TERM width

The ALS-3 parameter representin i i i
o g terminal width is
tblglai%g set tg 80. The user can, however, reset this at any
tlm W tbe TERM command. The decimal argument "width" con-
ains the size of the terminal line. This influences not only

output formatting, but also in i P! ;
‘ put line len
The maximum value for TERM is 120. BLR for files (FCHO).

FORM

This command sets a parameter i
_ d n the system RAM for ¢
ALS-8 which specifies whether or not printed listings of wne
assembler source or files are to be formatted.

NFOR

This deactivates the formatti i
» ; _the ng feature described
above. The ALS-8 is lnitialized toothe non-formatted state.

LIST 1linel (line2)

.Tpis is used to print out contents of i
39e01f1eq lipe nunbers. When only one argu;egtlfsbﬁggsentgge
81nglg line identified by "linel" is printed. Line numéers
and line ngmber arguments are always decimal numbers This
commapd pr%nts the contents of each line following tﬁe corre-~
ipondlng line numbgr. (When using the optional VDM EDITOR
he LIST command will list files entered without line numbers.)

TEXT 1linel (line2)

to "lE;ES"LISE’ this command prints file contents from "linel"
at the sta;‘ ; does not, however, print out the line numbers
copy. Both TEXT and LIST contain tne SSSful feature for letter
: . contain the forn i i

1s controlled by FORM, NFOR, and TERM. atting routine which

DELT linel (line2)

DELT removes a line or seri i
. . . les of lines from the
ﬁiiﬁeggart}ng.it line number "linel" and continuing tggggigt
. n 1ts single argument form onl] i 1
1 : !) Yy the line s -
fied by "linel" is deleted; it is usuélly easier to deizgé

single lines, however by typing th :
. e ;
just a carriage return. yplng line number followed oy

Y

RNUM 1line# (increment)

RNUM renumbers the Current File so that its first line
number will be "line#" and each successive line number will be
greater than the last by the quantity defined in "increment."

If "increment" is omitted, RNUM will use a default increment of

five. The largest allowable value for the increment is twenty-

five and, regardless of increment value at the outset, RNUM will
use an increment of one after the line numbers reach 9000.

RNUM ends by calling FCHK thereby checking the file after renum-

bering.

ASSEMBLER COMMANDS

The ALS-8 resident assembler is activated with different
options from the eight commands sumarized below. Each requires
an origin which is used as the address from which the routine
nust eventually be run. The second argument to eacn of these
commands is the start address for the storage of the assembled
program. A program "origin" and "load point" nust agree if it
is to be run rather than temporarily stored. The variations
in the commands mainly affect listing length and input source.

ASSM origin (load address)

This form assembles from source contained on the Current
File. If the "load address" argument is omitted, the assembler
will load at the address given by "origin." A full listing of

the assembly and errors is written to the current output driver.

ASSME origin (load address)

This 1is the same as ASSM except that only lines con-
taining errors are listed.

ASSMS origin (load address)

This form produces a full listing and adds a listing of
the assembler’s symbol table to the end. The current values,
usually addresses, of the symbols are also given.

ASSMX origin (load address)

This is a further expansion of ASSMS in that the symbol
table listing provided at the end is cross referenced to file
line numbers. The summary for each symbol then contains its
name, value, and a list of locations which used it.

The four remaining assembler commands ASSI, AS3IE, ASSIS,
ASSIX are similar to the four commands just listed except for
the source of the assembly language code. These four use the
I/0 driver selected oy I0DR for reading the program source.

A special driver is required for this use and the user is
referred to the AL3-8 Specification sheet outlining the
requirements of this driver.

as

i
"

'AééI origin (load address) assemble with f isti

1g1 ull listing.
AS§IE origin (load address) assemble. list only erro?g.
ASEIS origin (load address) assemble. list with symbol table
ASSIX origin (load address) assemble. list with cross

reference table.

STAB address

This command sets the startin i

g location for the
Asngbler Symbol stle. This address is not initialized to a
usable yalue So this command must be called before an
assemblies are attempted. d

CUST

This will print out the conte
C nts of the Custom Command
gzbleéd Each output }1ne will contain name and address pairs
g addresses are printed according to the base by MODE and éhe
end address of the table is printed following the list of names.

CUSTE /cname/ address

Tnis will enter the name, " ", 1
i . y ""cname into the Custom Cor

gapli w;th its a53001steq address valué. If this name alrggggd
Tﬁésns 1n the table, it 1S merely given a new associated value.

© name may be four or five characters long, but it is only
Xn;giinﬁg g?ug. Ehui "HEART" is the same custom name as "HEAR."

L T Wenty-two such names is permitted eaci iri .

eight bytes of table Space The tabl o beyond D3og

. C . € must not go be
or interference with the System Symbol Table wil% reszig? 0300

CUTSTD /cnane/

This del s
Table. etes the specified name from the Custom Command

EXEC addr

The EXEC command performs a subroutine call to the address

Specified by "addpr." The a i
number convention set by Moggsment, Peing an address, oveys the

SYML

The vz?tzsci?gzng }1sts the contents of the System Symbol Table

addreasacs 1 ed in the qame/value pair are assumed to be

agresse y as such, w;ll follow the current MODE for type
1€S can be one to five characters in length. The end)

address of the table i i ¥ ; :
and values. © 1S printed following the list of names

SYMLE /sname/ addr

SYMLE is used to enter a i i
into the Syster Symbol Temhe name and its corresponding value

A6

SYMLD /sname/

This will delete the symbol, '"sname", from thne System
Symbol Table.

I/0 DRIVER COMMANDS

There are only two names in the I/0 driver command set but
one, IODR, has many forms. The following summarizes its
functions and describes the other command, SWCH.

IODR /dname/ 1in out

This form of IODR enters the name "dname" into the I/0
driver table with the two addresses, "in" and "out."” When this
driver pair becomes active, the ALS-8 functions will try to read
text data through a routine located at the address "in." Simi-
larly, output from these functions will be sent to the routine
assumed to be at address "out." This form of the command does
not activate this driver pair, only defines it. If address "in"
is zero, followed by a proper output address, the current
SYSIO input driver will be assigned as the input driver. Also,
if the output driver address is zero the current SYSIO output
driver will be assigned. If the output address is omitted,
after being preceeded by a valid input address, a special
output address will be assigned to allow no output. (BIT BUCKET)

IODR /dname/ O

This will remove the driver pair "dname", from the table.
A maximum of six driver pairs can be defined in the I/0 driver

table at any one time.

IODR

Used without arguments, this command prints out the con-
tents of the I/0 driver table. Eacn line of the printed sunmary
contains the name, the input driver address, and the output

driver address.

I0ODR /dname/

This informs the ALS-8 that the default system driver,
SYSIO0, is to be used for one more command line. The driver
pair, "dname", is then used until an ALS-8 command returns
control to the executive. This one command delay enables the
user to cnoose an ALS-3 function from his terminal before
switchning control to the new drivers. SY3IO, the terminal
driver pair, is automatically reactivated at the conclusion
of the ALS-8 function or under error conditions.

A7

SWCH

when used‘after the above form of IODR, the new drivers
are activated for use by the ALS-8 executive, not an ALS-8

function. Tne executive then will read a command and any

associated data with these drivers before returning to SYSIO.

L8

CHAPTER X - THE ALS-8 ASSEMBLER

The resident assembler is perhaps the strongest feature of
the ALS-8. It is a program designed to convert the text for a
program into the binary machine code form of a program. The
textual representation, called "source code," is very readable
by humans but only binary form is executable by the computer
hardware. 1In typical use the source program is written onto a
file and edited. This is then assembled with one of the ASSM
commands and the resultant binary, or "object code," is stored
in memory. There it can be used as a driver, a custom command,
or a program to be run by the EXEC command.

A source program written in assembly language is inter-
preted by the assembler on a line by line basis. Since files
are also line structured, they become a natural storage area
for program source. (The ASSI command series insures that
ALS-8 files are not the only storage medium for programs.)

Each line of the program must conform to certain rules in
order to be assembled correctly. An asterisk at the start of a
line identifies the line as being a comment and its contents are
not subject to the rules of the assembly language. Lines
without an asterisk are "statements" and these can be divided
into as many as four separate parts called "fields." Each field
has an entirely different function to the assembler. The first,
the "label field," gives a symbolic name to that line which can
be referenced by any statement in the programs. The label must
start with an alphabetic character in column 1 of the line
(after any file line numbers). It may be any number of con-
tinuous characters though the assembler will ignore all
characters beyond the fifth. This means that the label names
"pridge," "bridg," and "bridget" will all represent the same
label. All fields are separated from one another by one or
more blanks.

STATEMENTS may contain either symbolic 8080 machine instruc-
tions or pseudo-ops. The four fields of each statment, NAME
OPERATION, OPERAND and COMMENT are scanned left to right by
the assembler. The assembler requires at least one blank

NAME OPERATION OPERAND COMMENT

between each field for identification. For automatic formatting
however, the comment field must be preceeded by at least TWO
BLANKS. Instructions which use only the operation field as does
RZ should be followed by a "dummy" operand if comments are to

be used with the statement. Blanks in the following example are
shown as dashes "=-" for clarity.

RZ-.--COMMENTS ADDED AFTER TWO SPACES

CONSTANTS
2233222233

The ALS-8 Assembler allows the use of constants within the
operand field. Both nexidecimal and decimal as well as octal

Q9

constants may be used. When using either octal or hexidecimal
the value should be followed by a "Q" or "H" to indicate OCTAL
gnd HEX respectively. When a value does not include a following
identifier it defaults to DECIMAL but a "“p" may be used for
clarity when desired.

MVI A,128 Move 128 decimal to register A.
LXI H,2FH Move 2F hexidecimal to registers H&L.
MVI B,40Q Move 40 octal to register B.

JMP OFFH Jump to address FF hexidecimal.

As shown by the last example, all constants must begin with
a numeric quantity. When hexidecimal values begin with the
letters A-F they should be preceeded by the numeric value zero.

EXPRESSIONS
BEERERERREREEEN

An expression is a sequence of one or more SYMBOLS, CONSTANTS
or other expressions separated by arithmetic operators. The
ALS-8 Assembler allows the use of four primary operators. ADDI-
TION (+?, SUBTRACTION (-), MULTIPLICATION (*), and DIVISION (/).
Expressions are scanned left to right with no precedence given
to any operator. Calculations are made using 16 bit arithmetic
(modulo 65536) and overflow of values is allowed. Single byte
values for immediate instructions (as with MVI A) must evaluate

to a value between -256 to +255 or an assembler error will
result.

MVI A,255D/10H
LDA POTTS/256%0FSET
LXI SP,30%24+STACK

ASSEMBLER ERROR INDICATIONS
WA A I R I Y R

The following error flags are output by the assembler when
the error occurs. As determined by the type of error, some of

the flags are output during pass ;
assembly. g P one to indicate an invalid

O -- OPCODE ERROR The symbol found in the operation
field was not recognized as a
valid 8080 instruction or pseudo
operation of the assembler.

L -- LABEL ERROR The symbol found in the name

name field contains improper

characters.

D -- DUPLICATE LABEL Two labels with the same name
within the assembly.

X
|
1

MISSING LABEL Instrgction requiring a label
doesn’t have symbol in name field

V. -~ VALUE ERROR Expression in operand field is

ouside range required.

30

U -- UNDEFINED SYMBOL Name given for operand cannot be
found in symbol tables.

S -~ SYNTAX ERROR Syntax of statement does not
follow the requirements of the
assembler.

R -- REGISTER ERROR False name given to register.

A -- ARGUMENT ERROR Argument for operand improper.

Since the label field is optional, the assembler must have
a convention for identifying the second type of field, the
operation field, when the label is missing. The operation
field must, for this reason, be preceded by at least two blanks
when it starts a line. The contents of this field will be a
two, three, or four letter mnemonic chosen from the assembly
language set. This mnemonic defines the general instruction to
be assembled and it uses, where necessary, the third field, the
"operand", to modify or complete the instruction. An "ADD" in
the operation field tells the assembler that one of the 8080
registers is to be added to the 8080 accumulator.

The fourth possible field is the comment field which, as
its name implies, is reserved for comments. The assembler,
then, disregards anything after the third field. In statements
which have no operand field, it is a good idea to preceed the
comment With a period followed by two blanks. Since no operand
is required the period has no affect and the listing will be
properly formatted. Most of the examples in this chapter are
listed as though they were formatted and printed by the TEXT
command. The example below shows how a sample program file
might actually be input and exist in memory. Blanks are
written as "-" to show their significance; File line numbers

are also shown.

3-%*_-THIS-SUBROUTINE-SHIFTS-(H,L)-CIRCULAR-LEFT
5-LUP-XRA-A--CLEAR-THE-CARRY
8--CMP-B--SEE-IF-SHIFT-COUNT-DOWN
13--RZ-.--RETURN~-TO-CALLING-ROUTINE
14--DCR-B--DECREMENT-COUNT
16--MVI-A,80H--TEST-MSB-OF=HL
22--ANA-H--COMMENTS-OPTIONAL
24--DAD-H--SHIFT-LEFT
26--JZ-LUP--IF-MSB-WAS-ZERO
29--INX-H-~CIRCULAR-BIT-IN
35--JMP-LUP

40--END

The above illustrates the fact that "column 1" of each
program statement line must be separated from the file line
by at least one blank. When printed with the TEXT function
the above becomes:

* THIS SUBROUTINE SHIFTS (H,L) CIRCULAR LEFT

LUP XRA A CLEAR THE CARRY
CMP B SEE IF SHIFT COUNT DONE
RZ . RETURN TO CALLING ROUTINE
DCR B DECREMENT COUNT

31

MVI A,80H TEST MSB OF H,L

ANA H COMMENTS OPTIONAL
DAD H SHIFT LEFT .

JZ LupP IF MSB WAS ZERO
INX H CIRCULAR BIT IN
JMP LUP

END

Instructions in the assembly language manipulate seven
8-bit registers, a 16-bit program counter called "PC", memory,
I/0 devices, apd a 16-bit stack pointer "SP". Both the
assembler and the hardware use a number convention for identi-
fying these registers. The numbers 0,1,2,3,4,5, and 7 each
represent one of th 8-bit registers. Depending on the instruc-
tion, a 6 can represent memory, the stack pointer, or a special
program status word, "PSW". Many of the instructions assume a
destination register for the results they generate and many will
also make assumptions on one of their input operands. Addition,
for example, is handled by the ADD instruction in the assembly
language and it assumes that the contents of register 7, called
the accumulator, will be added to an eight bit quantity from
memory (6) or the registers (1 through 5). Its result always
goes to register 7. The operand for this register is a number
specifying which 8-bit value is to be added to register 7. This
operand appears in the operand field for the instruction as
shown.

LABL ADD 7 DOUBLE THE ACCUMULATOR
ADD 0 ADD IN REGISTER O

XAD ADD 3 ADD IN REGISTER 3
ADD 6 ADD IN VALUE FROM MEMORY

The assembler us2s a pair of tables, the Assembler Symbol
Table and the System Symbol Table, to find number values
associated with a symbol name. Label names from the label field
are stored into the Assembler Symbol Table along with the
addresses they represent in the object code. Assembling the
short example above would have added the names "LABL" and "XAD"
to this table. The assembler always has eight entires in this
table, B,C,D,E,H,L,M, and A, for which it has the values 0
through 7. These are the names given to the registers and the
assembler will replace one of these names found in an instruc-

tion with the appropriate register number. The last example
could be rewritten:

LABL ADD A DOUBLE THE ACCUMULATOR
ADD B ADD IN REGISTER B

XAD ADD E ADD IN REGISTER E
ADD M ADD IN VALUE FROM MEMORY

A number of the 3080 operations use pairs of registers for
1§-b1t operands and, for these operations, register B is paired
w1§h c, P with E, H with L, and the program status word PSW is
paired with A. B, D, H, and PSW are the high order bytes in
these values. Tne instruction DAD, for instance, performs a
"double add" between the (H,L) pair and the (B,C) or (D,E) pair.
the result is stored again in (H,L). For these instructions,
the pair is designated the name of the most significant byte so
the possible DAD instructions are:

3

LonTow

P

'h are quivalent to:

ANAENO

that 6, which could represent memory, SP, or PSW, is
.he DAD instruction hardware to mean the stack pointer.
* "DAD PSW" are equivalent to "DAD 6" and will then be
r the hardware as "add SP to (H,L)." Note also the the
.8t of register names does not include PSW or SP.

be entered into either the System Symbol Table with
executive command or into the Assembler Symbol Table
QU assembler instruction (to be described). The

will first try to fetch a value for a symbol from its
and, failing, will then try the System Symbol Table.

iber of the 8080 instructions are "conditionals"

1at the full operation is performed only if a con-
met. The program status word, PSW, uses five of its
B to represent the testable conditions. Tnese bits

| Sign, Zero, Aux, Parity, and Carry, and they reflect
of the accumulator after certain instructions. The
ificant bit of the accumulator is copied to Sign by
istructions. Similarly, certain instructions will set
}it (to 1) when the accumulator contains a zero value
'reset (to 0) when A is non-zero. Parity is set to 1
itains an odd number of binary 1°s and is reset when

» Carry bit’ s function is most easily described with
rtual aid of a ninth bit on the accumulator. Some

yns will put the opposite (0 for 1; 1 for 0) of the

ie into Carry; others will copy carry into Carry.

' is again reminded that some instructions do not

* values in PSW regardless of the contents of A.

1S taken by each instruction concerning the PSW con-
'S Wwill be given with the description of each

mn.

le upcoming instruction summary, two types of
instructions will be described: executable

ms and "pseudo-ops." The executable instructions
assembly statements which must be converted into
'ect form for eventual execution by the CPU.

iy or pseudo-operations, have the appearance of other
.atements but do not produce object code for the CPU.
ley are used to pass information to the assembler

self. "ORG" for instance, is used with its operand
the "current address counter® for that position in the
'ing assembled. "END," another pseudo-op, signals the

- assembly language source code; the assembler will not
d or interpret lines beyond the line containing "END."

33

MVI A,80H TEST MSB OF H,L

ANA H COMMENTS OPTIONAL
DAD H SHIFT LEFT

JZ LUP IF MSB WAS ZERO
INX H CIRCULAR BIT 1IN
JMP LUP

END

Instructions in the assembly language manipulat
8-bit registers, a 16-bit program counter called "PC
I/0 devices, apd a 16-bit stack pointer "SP". Both
assembler and the hardware use a number convention f
fying these registers. The numbers 0,1,2,3,4,5, and
represent one of th 8-bit registers. Depending on t
.tion, a 6 can represent memory, the stack pointer, ¢
program status word, "PSW". Many of the instruction
destination register for the results they generate a
also make assumptions on one of their input operands
for example, is handled by the ADD instruction in th
language and it assumes that the contents of registe
the accumulator, will be added to an eight bit quant
memory (6) or the registers (1 through 5). 1Its resu
goes to register 7. The operand for this register i
specifying which 8-bit value is to be added to regis
ogerand appears in the operand field for the instruc
shown.

LABL ADD 7 DOUBLE THE ACCUMULATOR
ADD 0 ADD IN REGISTER 0

XAD ADD 3 ADD IN REGISTER 3
ADD 6 ADD IN VALUE FROM MEMORY

The assembler us2s a pair of tables, the Assemt
Table and the System Symbol Table, to find number v:
associated with a symbol name. Label names from the
are stored into the Assembler Symbol Table along wit
addresses they represent in the object code. Assemt
short example above would have added the names "LAB]
to this table. The assembler always has eight enti:
table, B,C,D,E,H,L,M, and A, for which it has the v:
through 7. These are the names given to the regist«
agsembler will replace one of these names found in :
tion with the appropriate register number. The 1lasf
could be rewritten:

LABL ADD A DOUBLE THE ACCUMULATOR
ADD B ADD IN REGISTER B

XAD ADD E ADD IN REGISTER E
ADD M ADD IN VALUE FROM MEMORY

A number of the 3080 operations use pairs of r
l@-blt operands and, for these operations, register
w1§h c, p with E, H with L, and the program status
paired with A. B, D, H, and PSW are the high order
these values. Tne instruction DAD, for instance, p
"double add" between the (H,L) pair and the (B,C5 o
the result is stored again in (H,L). For these ins
the pair is designated the name of the most signifi
the possible DAD instructions are:

3

e

DAD B
DAD D
DAD H
DAD H
DAD SP

which are quivalent to:

DAD 0
DAD 2
DAD 4
DAD 6

Note that 6, which could represent memory, SP, or PSW, is
taken by the DAD instruction hardware to mean the stack pointer.
"DAD M" or "DAD PSW" are equivalent to "DAD 6" and will then be
treated by the hardware as "add SP to (H,L)." Note also the the
default list of register names does not include PSW or SP.

These may be entered into either the System Symbol Table with
the SYMLE executive command or into the Assembler Symbol Table
with the EQU assembler instruction (to be described). The
assembler will first try to fetcn a value for a symbol from its
own table and, failing, will then try the System Symbol Table.

A number of the 8080 instructions are "conditionals"
meaning that the full operation is performed only if a con-
dition is met. The program status word, PSW, uses five of its
eight bits to represent the testable conditions. Tnese bits
are called Sign, Zero, Aux, Parity, and Carry, and they reflect
the state of the accumulator after certain instructions. The
more significant bit of the accumulator is copied to Sign by
certain instructions. Similarly, certain instructions will set
the Zero bit (to 1) when the accumulator contains a zero value
and it is reset (to 0) when A is non-zero. Parity is set to 1
when A contains an odd number of binary 1°s and is reset when
even. Tne Carry bit’s function is most easily described with
the conceptual aid of a ninth bit on the accumulator. Some
instructions will put the opposite (0 for 1; 1 for 0) of the
carry value into Carry; others will copy carry into Carry.

The reader is again reminded that some instructions do not
affect the values in PSW regardless of the contents of A.

The actions taken by each instruction concerning the PSW con-
dition bits will be given with the description of each
instruction.

In the upcoming instruction summary, two types of
assembler instructions will be described: executable
instructions and "pseudo-ops." The executable instructions
are those assembly statements which must be converted into
binary object form for eventual execution by the CPU.
Pseudo-ops, or pseudo-operations, have the appearance of other
program statements but do not produce object code for the CPU.
Instead they are used to pass information to the assembler
program itself. "ORG" for instance, is used with its operand
to define the "current address counter" for that position in the
program being assembled. "END," another pseudo-op, signals the
end or the assembly language source code; the assembler will not
try to read or interpret lines beyond the line containing "END."

33

ASSEMBLY LANGUAGE INSTRUCTIONS

This section describes the assembly language instructions
and their function ordered by increasing complexity. An
alphabetically ordered summary will be given later with the
object codes generated for each instruction. 1In the following
description, optional fields will be enclosed in parentheses
and operands for the instructions will be represented by a short
lower case mnemonic. The operand "reg" represents any constant,
symbol, or expression with a value from zero to seven. This
value is used to select one of the seven registers or memory:

B, ¢, D, E, H, L, M, A. Operand "addr" can be an expression,
constant, or symbol which gives a value to be used as a 16-bit
argument, usually an address. A numeric argument is repre-
sented by "const 8" and "const;" values supplied for "const 8"
must be 8 bits or less in magnitude.

The following three instructions provide the most direct
means of trangferring 8-bit data from register to register,
memory to register, or register to memory. There is no single

instruction to transfer from one memory location directly to
another.

(label) LDA addr - LOAD Accumulator

This instruction fetches a byte from the memory location

specified by "addr". This value is then stored in A. PSW is
not affected.

(label) Mov dreg, sreg - move register to register

This instruction moves the contents of the source register,
"sreg", to the destination register, "dreg". B, C, D, E, H
L, M, and A (0 through 7) are legal values for "sreg" ané "éreg"
except that both may not specify memory (M). When either "sreg"
or "dreg"-specify memory, the CPU uses the contents of the
(H,L) register pair as the address of the memory byte to fethc
vasyore. Tne contents of the source register are not affected.
PSW is also not affected by the instruction.

MOV M,E move contents of E into memory
. location specified by (H,L).
MOVER MQV E,B copy B into E d L)
MOV C,M load C from memory

(lable) STA addr - STORE accumulator

STA trapsfers the contents of the accumulator to the
memory location specified by "addr". PSW is unaffected.

Arithmetic, logical, and comparison operatio
handled by eight instructions. Each of thgse opegzt?gss is
assumed to take place between the accumulator and a register
(or memory location) specified in the operand field. All
except CMP, produce an 8-bit result which is placed in thé
accunulator. The program status word bits in PSW are all
affected by any of these instructions.

34

(label) ADD reg - ADD register to accumulator

The value in register "reg" is added to the accumulator
and PSW is updated. PSW "Carry" is set to 1 if the arithmetic
produces an overflow from the most significant bit (MSB).

(label) SuUB reg - Subtract register from A

This instruction subtracts the value specified by "reg"
and placed the result in A. The PSW carry bit is set to 1 if
a borrow was necessary during the subtraction; the actual ninth
bit carry, discussed earlier, would actually be zero in a
borrow situation. This is an example of carry being inverted
for storage in Carry.

(label) ADC reg - Add the specified register and
Carry to the accumulator

The specified register and the current contents of Carry
are added to A and the result is placed in A. This is used
primarily in '"multiple precision" additions in which a number
is actually contained in several (usually adjacent) memory
locations. Such an addition starts at the low order end of the
two numbers with the Carry bit reset to zero. Successive
additions with ADC on more significant bytes in the numbers are
corrected for overflow from the last (less significant)
addition.

(label) SBB reg - Subtract with borrow from A

This is the multiple precision form of SUB. It subtracts
the Carry (borrow) from A as well as the value in "reg". This
is actually done by adding the Carry bit to the value in "reg"
befpre the subtraction is made. The PSW status bits are updated
after the subtraction.

35

(label) ANA reg - logically AND reg and A

This function performs a "logical and" (a boolean multi-
plication) on the contents of 'reg' and the accumulator. Con-
ceptually this operation is performed independently on each bit
position of the two operands (A and "reg"). The correspondig
bit position in the result is set to 1 if and only if both of
the operand bits are 1°s. 00110011 and 01010101 will leave the
value 00010001 in A. The Carry bit is always reset; other
status bits are set or reset according to the result.

(label) ORA reg - logically OR reg and A

This instruction performs a bit-wise '"logical or" (boolean)
add) on the accumulator and the specified. Each bit of the
result is set to 1 if either of the corresponding operand bits
is 1. 00110011 OR 01010101 will produce 01110111 for a result.
The Carry bit is always reset to zero. Other status bits are
set as dictated by the properties of the result.

(label) XRA reg - logical EXCLUSIVE OR reg and A

XRA is a bit-wise logical "exclusive-0OR" function for the
operands, A and '"reg". Each bit of the result will be 1 if one
and only one of the corresponding operand bits is 1. The
operand values 00110011 and 01010101 produce an "exclusive-OQOR"
result in the accumulator of 01100110. PSW status bits are
handled as in ANA, ORA. This function is often used to clear
the accumulator and Carry with an "XRA A".

(label) CMP reg - Comapare reg to A

This instruction performs thne internal subtraction A-'"reg"
but does not store tne result. It is used to set the PSW status
bits. "CMP A" is often used to update the status bits when the
value in A has been fetched from memory. Note that the Carry
bit conventions will follow a seven bit signed compare and that
zero is greater than 255. For a tull 8 bit compare the SUSB
instruction snould pe used.

. There are eight instructions much like the register opera-
tions described above and they are called the Immediate Instruc-
tions. They differ from register operations in that a register
(or memory) value is not used as an operand. Instead the
operands are the accumulator, as before, and an eight bit value
which is given in the operand field of the instruction. This
operand value may be the result of an expression, the value of
a symbol, or a constant, so long as the magnitude of the value
does not exceed eight bits. As with register operations all
PSW bits are affected by these instructions.

(label) ADI constd - add value of const8 to A
The 8-bit value of "const8" is added to the accumulator.

as in ADD, its register operation counterpart, all PSW bits are
at'ffected.

36

(label) SUIl const8 - subtract immediate from A

The immediate value is subtracted from A. PSW bits,
including Carry, follow conventions of SUB.

(label) ACI const8 - add value and Carry to A

"Const8" and the Carry bit are added to A. PSW is afrfected.

(label) SBI const8 - subtract immediate with borrow

This instruction subtracts Carry bit and immediate value.

(label) ANI const8 - AND the immediate with A.

ANI periorms a logical AND on the immediate value and the
accumulator. It is often used to isolate certain bits in A for
testing. THe logical operation is described in ANA.

(label) ORI constd - immediate OR with A

This function performs a logical OR on the immediate Value

and register A.

(label) XRI constd - immediate exclusive OR on A

This produces an exclusive-0R result from A and the value
ffollowing. See XnA.

(label) cel constd - compare immediate with A

The CPI 1instruction performs a signed, seven bit, compare

of register A and the immediate value following.

Tnere are several other commands which affect the contents
of the 8 bit registers. They have been separated since they
behave differently with respect ot the program status word, PSW.
Note that these instructions affect some condition bits and not
others.

(label) MVI reg,const8 -move value into register

This instruction is similar in some ways to the immediate
instructions thouzn it does not afiect the PSW. The 8-bit value
of "const8" is moved into the specified register.

(label) INR reg - lincrement register

The register specified by 'reg" is incremented by one and
all the PSw bits EXCePT CARRY are updated.

37

(label) DCR reg - decrement register

The register, or memory location addressed by the H & L
registers, is decremented by 1. As with INR all PSW bits except
carry are aftfected.

(label) CHA - complement the accumulator
Thi§ instﬁugtion reverses each bit of the accumulator. 1°s
become 0°s and 0's become 1°s. The PSW is not affected.

There are four instructions used to shift the contents of
of accumulator. Each of these instructions shifts the contents
only one place left or right depending on the particular
instruction. None of the shipts affect any PSW bits except
carry. Tne direction "right" or "left" in these descriptions
assumes that the more significant bits of the accumulator lie
to the left.

(label) RLC - rotate left, through carry

This is a circular left shift in which the carry bit
receives the bit value shifted rrom the most significant bit.
of' the accumulator. This same value shifted into carry is also
shifted into the least significant bit of A. 01101110 becomes
11011100 after the shit't and the Carry bit is left as O.
Anotner shift of this value gives 1011001 and a Carry value of
1.

(label) RRC - rotate right, through carry.

This snift is a right shift similar to RLC except the
least significant bit is shifted to Carry and the MSB position.

(label) RAL - 9 bit shift left.

This function shifts the accumulator one place left. The
most significant bit is snifted into Carry as in RLC, but the
old value of Carry is shifted into the low end of the reg A.
Shifting 01101110 with a value of 1 in Carryproduces 11011101

and a Carry of 0. Asecond shift of this data produces 10111010
and a Carry of 1.

(label) RAR - 9 bit right shirft

The accumulator contents are snifted one place right with

th least signiricant bit being sent to Carry and the old value
ot carry oeing shifted into the MSB of the accumulator.

38

(label) LDAX negbd - 1load A from menory

The accumulator is loaded with the value from memory whose
address is obtained from the register pairs (B,C) or (D,E). The
operand, '"negbd", can then only equal "B" or "D".

(label) STAX negbd - store A into memory

The contents of A are stored in memory at the address given
by the (B,C) or (D,E) register pairs. The pair is chosen by the
operand "negbd" which may only be "B" or "D".

The 8080 is also equipped with a full set of “transfer in-
structions! which have the ability to alter the flow of a pro-
gram through execution. There are three categories of trans-
fers: "jumps", "subroutine related instructions", and "interrupt
transters”. Of the ten jump instructions, only two are "uncon-
ditional transfers" meaning that the execution sequence of the
progran is always altered by them. The "conditional transfers",
on the other hand, examine the status word PSW to see if the
proposed jump is to be made. If the condition bits of the
PSW do no meet the requirements of the instruction, no transfer
is made and the program will resume execution at the next
instruction in menory.

UNCONDITIONAL TRANSFERS
(label) JUMP addr

This instruction always transfers control to the address
in memory specified by the operand field, "addr". The next
instruction to be executed will be the one starting at this
address.

(label) PCHL

This performs the same function as tne JUMP instruction except
the address for the transfer is taken from the H and L pair of
registers and not the operand field. Generally this instruction
is used to brancn to a routine in memory whose address nas been
located in a table. It could be used to branch to a computed
address but any small errors in the calculation could produce
some nmysterious bugs.

CONDITIONAL TRANSFERS
(label) JZ addr

Ji exanmines the status bit "ZERO'" of the PSW and transfers
to tne address "addr" it this bit is set to 1. This 1 in the
ZERO bit represents a zero value in a register at the last time
the condition bits were set by an instruction. Most of the
instructions atfecting the PSW ref'lect the status of the
accumulator, register A, thougn a few (INK DCR) will cnange the
ZtRO bit and otners when thneir result goes to any of the
registers.

T]

(label) JNZ addr
This instruction also examines the ZERO bit of the PSW but

it transfers when the last pertinent result was a non-zero
value. A non-zero result resets the ZERO status bit to 0.

(label) JP addr

. J? egamines the SIGN bit within the PSW and transfers when
this bit is zero. A zero for the SIGN bit represents a positive
value for the last pertinent operation.

(label) JM addr
JM examines the SIGN bit and transfers when it represents a

negative value (minus) for the last result.

(label) Je addr - jump if CARRY

Tnis instruction jumps if the CARRY bit has been set on the

last operation. For addition operations, a jump is made if the
sum ot tne two operands has exceeded the limit of 8-bit numbers.
The overflow bit is stored in the PSW bit, CARRY. Subtractions
requiring a "borrow" will also set this CARRY.

(label) JNC addr - jump if no CARRY

A jump to the address, '"addr", is made if the last
operation did not produce a CARRY.

(label) JPE addr - Jjump if PARITY even

The PARITY bit of the PSW is "even" when the number of bits
set to 1 in the result is even. Tnis instruction transtfers to
"addr" when tnis condition exists.

(label) JPO addr -jump if PARITY odd

{PU transters to tne address Yaddr' when the PARITY bit in
the PSW represents a result with odd parity. Parity is

gengrally used to verii'y data transmitted from an external
device.

CARRY BIT INSTRUCTIONS

There are two special instructions which manipulate only
tne status of the CARRY bit in the PSW. Tnese will affect all
CARRY related conditionals as well as the addition, sub-
traction, and shift instructions which use CARRY. These two

instructions are frequently used to return a simple status
condition {rom a subroutine.

(label) STC - set CARRY (to 1)

This instruction sets the value of CARRY to 1. ©No otner
condition bits are affected by this command.
Ko

(label) CcMC - complement CARRY

CMC reverses (complements) the current value of CARRY.
If CARRY equaled 1, this instruction will change it to a 0.
It CARRY was 0, CMC changes it to a 1.

SUBROUTINE TRANSFERS

A transfer to a subroutine is made with one of the CALL
instructions described oelow. When a CALL instruction is made,
two addresses become important. The "transfer address", the
address of the subroutine being called, is contained in the
operand field of the CALL instruction. Program control will be
transferred to this address immediately following the call.

As the call is being made, however, a "return address" is com-
puted and stored on the next position of the stack. When the
subroutine is finished it can execute one of the RETURN in-
structions which will fetch this address from the stack (pop
the stack) and a jump will be made to this address. This
return address represents the location of the instruction
immediately following the call instruction which gave control
to the subroutine. Subroutine calls within subroutines store
their return addresses at successive stack locations so the
corresponding return instructions can properly locate their
return addresses.

As with the jump instructions, both tne CALL and RETURN
operations are divided into unconditionals and conditionals
with the same suffix convention as used with JUMPS.

(label) .CALL addr - call tne subroutine at "addr"

This instruction pertorms an unconditional subroutine call
to the address specified by the operand '"addr".

(label) RET - return to address found on
stack
ReT pops a value oftf the stack which it uses as a transfer
address for a jump. JSince it always retrieves its "operand"

f'rom the stack, it does not need anything in the operand [ield.
This return is unconditional.

SUSROUTINZ CONDITIONAL INSTRUCTIOS
The reader is reminded that only certain instructions
influence the condition bits of the PSW (program status word).
A full description is given at the beginning of this chapter.
(label) Cz addr - call if last result equaled O
This instruction calls tne routine located at address

rtaddr" it tne ZERO pbit of the PSW is set to 1 representing a
zero result in the last operation.

(label) CNZ addr - cal . if last result was non-
Zero

A call is made if the last PSW related operation produced
a non-zero result.
4/

(label) ce addr - call if result positive
] .This instruction examines the status of the SIGN bit

yltpln the PSW gnd performs a subroutine call if this bit

indicates a positive result from the last instruction.

(label) CcH ‘addr - call if negative result

(minus)

CHM calls the routine at address if the SIGN bit is set

representing a negative result from the last PSW related
instruction.

(label) CC addr - call if CARRY

CcC calls'the Subroutine at "addr" if the CARRY bit has been
set'tg 1. CARRY is set to 1 when there is a carry from an
addltlpn, a borrow from a subtraction, or there is a bit 1 pro-
duced by one of the shift or Carry instructions.

(label) CNC addr - call if no CARRY

o This instruction calls the subroutine at address "addr"
11" the CARRY bit is zero.

(label) CPE addr - call if PARITY even

‘This instruction calls "addr" ir the PARITY bit was reset
by the last PSW related operation. "Resetting" PARITY is
equivalent Fo making it a zero. Even parity for a result indi-
cates that it contained an even number of binary 1°s (and 07s).

(label) CPO addr - call if PARITY =1,"parity

odd"

_ Tne subroutine call is made if the PARITY bit of the PSW
1s set to 1l indicating "odd parity".

(label) RZ - return if last result was zero

A ?eturn I'ronm subroutine is made if the last result re-
corded in the PSW was a zero.

(label) RiZ - return ir last result was

non-zero

This instruction returns from th i if
Y) € present su
last result was non-zero. pres proutine it the

(label) RP - return if positive

A return, using the address pulled off the staci i
. ackKk, 1s made
if the last result had a zero sign (was positive). ’

4

(label) RM - return if minus

This returns from tne routine if the last result was minus.

(label) RC - return ir CARRY (=1)

This instruction pertiforms a subroutine return if the PSW
bit CARRY is set to 1. CARRY is set by the Carry instructions,
siif'ts, additions with overflow, or subtractions with borrows.

(label) RNC - return ir no CARRY (=0)

"RNC returns if there was no CARRY generated from the last
instruction. See tihe above instruction.

(label) RPE - return if PARITY even

A return is executed if the value of the PARITY bit is 0 y
indicating even parity in the last operation.

(label) rRPO - return if PARITY odd

A return is nade for PARITY of 1 indicating an odd parity.

Another instruction, RST, also performs transfers but it 1is
rarely used as sucin. It will be described later witn tne
interrupt related instructions.

1o0-8IT OPERATIONS

A number of the 8030 functions can perfrom arithmetic
operations on l6-bit values stored in register pairs. Tne B
and C registers form a pair as do D,E and d,L; the Stack
Pointer, 5P, is used as a fourth possible operand for these
instructions. WNone of these instructions atfrect any of thne
condition bits.

(label) LHLD addr -load d4,L with the values at "addr”
This instruction moves two bytes from memory into the H,L

register pair. The operand, "addr", identifies the address of

the byte to be transfered to the L register and the next

memory address is used for H.

(label) SHLD addr -store H,L into memory at '"addr"

The contents of tne L register are moved to the address

speciried by "addr" and the contents of the i register are moved
to memory location ™"addr+l".

Y3

(label) LXI rp,const -store 16-bit constant in pair "rp"

. The register pair "rp" is given a 16-bit value as deter-
mined by the second operand, “const". Numerically the operand
“pp" mgst equl 0,2,4,6 which are generally represented by the
symbolic names B,D,H, SP. Either operand may be an expression
acceptable to tne assembler which will produce a register pair
integer or a 16-bit value for tnose operand positions.

(label) INX rp - increment register pair "rp"

This instruction adds one to the register pair specified by
the gperand “rp". No condition bits are affected even if
carries are produced internally for the operation.

(label) DCX rp - decrement register pair "rp"
DCX subtracts one from the register pair "rp". As with

INX apd the other 16-bit instructions, none of the condition
bits in P3W are affected.

(label) DAD rp - add rp to H,L

. This perrorms a 16-bit add oetween the operand register
pair, ?rp", and the H,L registers; the result is stored in the
H,L pair. Tne operand can be B,C ("B"), D,E ("D"), H,L ("H'),
or S°p.

(label) XCHG - exchange the contents orf D,E
with H,L

SCHG swaps the contents of the D,E register pair with the
contents ol the H,L pair.

STACK OPERATIONS

The "stack" is an area in memory identified and manipulated
throggn the 16-bit address held in tne "Stack Pointer™, SP. As
previously described, it is used by the subroutine related
instructions, "CALL" and "ReT" (and their conditional relatives)
;n operation, a 16-bit value, an address for the subroutine
1nstruct;ons, is sent to tow memory locations identified Dy the
address 1n the 5P. The specific locations chosen are 3SP-1 for
Fpe ”Qost significant" byte and SP-2 tor the lower order byte.
I'ne 5P contents are tnen decremented by two to be ready for the
ngxt stack operation. Such an operation 1is called a "pusih™ and
the reverse operation where data is removed from the stack is
kpown as a "pop". Note that the pointer moves "down" in memory
Wwith successive pushes and noves "up" f'or pops.

. The operations about to be described give the programmer
direct contro} or' the stack and its pointer. The stack can be
a very versatile data storage area tor particular applications
out thg programmer must be careful that the data stored in the’
§tacx 1s not confused with the return addresses stored there
from subroutine calls.

vy

Two of the stack instructions use a register pair operand
which will be denoted by "rp" in the following. This operand
identifies 8,C , D,& , H,L , and PSW,A. 1In the last case, the
Program Status Word is placed at location SP-1 and the accumu-
lator is placed at SP-2 ror stack pushes. This form of saving
the PSW is necessary ror interrupt handling or some subroutine
calling sequences.

(label) PUSH rp - push contents of rp onto stack

The contents orf the register pair "rp" is placed on the
stacvk and the poiinter, SP, is decremented by 2. Numeri-
cally "rp" nmust be 0,2,4,6 which represent the pairs, B,C D,E
H,L and PSw,A.

(label) POP rp - pop data from stack into rp
Data is remnoved from tne stack and placed into the
registers identified by the operand "rp". The ordering of the
bytes taken from the stack follows the same rules used for PUSH.
The pointer SP is incremented by 2 at the end of the operation.

(label) SPHL - move H,L contents into 3P

The contents of the H,L pair is moved into the stack
pointer destroying its previous contents. This provides a con-
venient way of changing the SP during a program thereby allowing
two or more stacks to exist at one (one data, one subroutine
control, etc.). The SP is usually initialized by the LXI
instructions.

(label) XTHL - exchange SP and H,L contents

The contents of the H,L register pair and the SP are
swapped. The most frequent uses are outlined above in the SPHL
description.

INPUT/0UTPJT INSTRUCTIONS

The two input/output instructions for the 8080, IN and OUT,
both operate on the accumulator contents. Tne operand field is
used to define a '"device code'" which identif'ies the external
device which is to produce or receive an J-bit value. Tnis
device number can be nay nunmnber between 0 and 377 octal. Eacn
device attached to the computer nas sucn a number assigned at
the time it is wired to the macnine and the device code given
in the I/0 command must equal that of the device before it
will respond. Reading a non-existent device number with the 1IN
instruction will put an octal 377 in the accumulator.

(label) IN dev - read device number "dev"

The external device with input device number "dev" will
return an 3-bit value which is stored in the accuulator. None
ol' the P3W condition bits are atfected. The default input
device [or the ALS-9 is assumed to beld device 1 and its status
(busy or idle) is accessible through input device 0.

45

(lapel) OUT dev - send contents of A to device

Ildevll

' The contents of the accumulator A are sent to the output
device numbered "dev". The ALS-8 assumes by default
that an output device 1 exists and that its condition can be
checked also through input device zero.

INTERRUPT RELATED INSTRUCTIONS

. The 8080 is prepared to accpet signals from external
devices whic can alter its program flow. This is invaluable
for handling certain types of sporadic or slow devices. It can
allow the CPU to work on aprogram without worrying
constantly about the status of devices. This is accomplished
with the aid of the "Interrupt Enable Flag'", also Xnow as
"IN?E". When this rlag is on, "enabled", a device can force
an lnterrupt which initiates a sequence of events in the com-
putgr. Tne "INTE" flag is immediately disable to keep other
devices from confusing things while the first interrupt is being
hgndled. The CPU is then required ot take an instruction
(b-bi?s only) from the interrupting device, execute it and then
copntlnue. Special hardware can pe attached to the computer
yhlch will cause the CPU to jump to any predetermnined location
1n memory. Without this special "vetor interrupt" hardware, the
pormal convetnion has the interrupting device issue a Restart
1nst?uction which is a subroutine like jump to one of eight
possible memory locations: 0, 10,20,30,40,50,60,70 octal. At
the location specified by the vector hardware or the restart,
tnere should be a subroutine capable of handling the interrupt
condition. The restart instruction ("RST") pusnes a return
address onto the stack so the program which was operating can be

properly resumed with an RET instruction executed in the inter-
rupt routine.

(label) g1 - enable interrupts

_ This instrgction enables the interrupt rlag, "INTE".
Dev;ces attemptlng to interrupt while this flag is disabled will
be }gnored by the CPU and its related nardware, INTE is auto-
matically diabled when an interrupt occurs.

(label) DI - disable interrupts

i This disables the interrupt 'lag preventing any devices
f'rom altering program flow with an interrupt. The computer is
in pne disabled state when the front panel switch "RESET" is
activated. For machines with no interrupting devices, the

INTE.ligut onLthe front panel can be used by these instructions
to signal certain progranm states like "program done" or "error®.

(label) RST n - call routine at location n¥*3
Ihls transfer instruction generates a subroutine call to
ap_aduress which is computed from the operand "a". The operand
wn}ch nust itself be between 0 and 7 in magnitude, is nulti- ’
plleq by 8 to produce one of the following addresses: 0,10,20
30,40,50,60,70 octal. The subroutine call is then made to éhié

e

address with the return address being stored on the stack as in
any other subroutine call. An "RET" in the subroutine located
oy the RST will return control to an address pulled from the
stack. Devices using this instruction during interrupt put

the d-bit equivalent of this instruction on the data lines for
the CPU to execute.

(label) HLT - halt the CPU and wait for

: interrupt

The CPJU is completely stopped by this instruction and can

only be reactivated by an interrupt. Should the interrupt
f'lag nappen to be disabled at the time this instruction exe-
cutes, the whole machine must be reset from the front panel.
The halt conditions is reflected in the front panel light
marked "HLTA".

VARIABLE STORAGE AND THZ NO OP

The instructions presented so far represent operations or
functions within the 8080 hardware. The ALS-3 assembler con-
verts the textual form of these instructions into a binary forn ;
which will be executed by the hardware. Tne assembler also
recognizes a number of instructions whicn do not produce
"executable" code. In general, this class of assembler in-
structions defines storage arrangements, addresses, or con-
tents for the program under construction. These instructions
are called "Pseudo-ops" (being "false" in the sense that they
don’t produce executable code).

An instruction, the NOP, generates a binary instruction
of zero which is ignored by the execution hardware. It 1is
sometimes used in programs to "pad'" areas of code where changes
are expected to be made via the front panel. The versatility
of the ALS-3 makes this unnecessary, but the instruction can
still be used to generate zero bytes for variable storage. As
will be shown, there are instructions from the pseudo-op set
whicih can allocate blocks of memory for variables nmuch nore
easily than successive NOP’ s.
(label) NOP - do nothing. (reserve this space) |

This assemlby language instruction corresponds to an
operation code (binary) of zero which is ignored by the CPU
when executed.

(label) D3 anount - reserve an "anount'" of menory
This pseudo-op reserves a number of successive menory }

locations starting at the current position in the progran.

The number of memory locations is determined by the operand

"amount" which can be any l6-bit number, or equivalent ex-

pression. The contents of tnese locations is not defined.

(label) DB n - define contents for single byte

This instruction reserves a single menory location and
def'ines ror it a value as determined by the operand "an". Thne
value of tne operand must not exceed eight bits.

Y7 |

(label) DWwW n - define word and contents (16-=b)

The operand for this instruction is. evaluated as a 16-bit
quantity and stored in two memory locations. The least sig-
nificant byte or the quantity is stored at the "current
address" and the most significant is stored below it.

(label) ASC #string# - put character string in nemory

This puts a string of characters intc successive memory
locations starting at the current location and continuing until
the entire string has been put in memory. The special symbols
i# at either end of the above example are called "delimiters";
tney define the beginning and end of the Ascii character string.
The assembler uses the first non-blank character found after
the mnemonic "ASC" as the delimiter. The string is defined
as starting immediately after the first delimiter and ending
just before the second occurence of the delimiter. Characters
to the rigiht of the second delimiter are assumed to be comments.
A carriage return will act as the second delimiter in cases
where it is omitted. When formatting is used, the string must
not contain two or more successive spaces within the first
four characters.

(label) JRG n - define the origin

This instruction, used without a label, defines the
"current address" value ror the assembler. The next assenbled
instruction (producing executable code) will be converted to
binary with the assumptio that it is to be loaded and executed
at this address. Tne "current address" value is increased for
each instruction by the number of memory locations used by
tnat instruction. Tne ORG instruction may be used at any time
to redetfine this pointer.

(label) EQU n - assign value n to symbol “"label"

The symbol in the label field for tais instruction is
entered into the assembler’s symbol table with the 16-bit value
found in the operand field. note that both the label field and
and operand t'ield arc required ior this instruction.

(label) CoM n -put value and symbol in Systen

Table

The lavel field symbol is entered into the System Symbol
Table along with the value obtained from the operand tield.
As with the E£QU instruction, both of these fields are required.
This is equivalent in every respect to the system command
"Symle'.

NLST - Suppress printed output of
assembly listing

This instruction sets a 1'lag in the assembler which will

HE

suppress the printing listing from this line until that flag
is reset by the LST instruction. WNeither NLST or LST may have a
label field.

LST - begin assenbly listing

This reactivates the listing feature which will remain on
until turned off by NLST. If the listing feature is already
active when this instruction is encountered, it is sinply
ignored. Neither NLST or LST affect memory position or con-
tents in any way.

END - marks the end of the program

This instruction is a signal to the assembler that no more
statements are to be assembled from the current device or file
being assenbled. For programs being assembled from a file in
memory, this instruction is not necessary as tne end of file
mark performs the same function.

H7

SIMULATOR EXTENSION PACKAGE
HRRBRRRRRRRBRER AR ERRRRRRRR RN RER

Temporary Operation Manual

The SIM-1 Extension Package for the ALS-8 is a program
designed to "run" 8080 machine language in the same manner as
the 8080 computer running the simulator program. Because the
Simulator is an operating program, the user has full control of
the "run" allowing powerful program debugging as well as a
direct view of the computers operation. Since each instruction,
as well as its effects can be viewed on a single step basis, the
Simulator represents an ideal "teaching" machine for 8080 Micro-
Computer operation. ’

By using the Simulator commands the user can modify or
display storage, set simulated 8080 flags and registers, perform
or test input and output operations, set and reset breakpoints
and realtime run addresses as well as trace program flow.

The Simulator is entered from the ALS-8 by giving the SIMU
command. On entry the program does a carriage return/linefeed
on the last selected output device, followed by an asterisk
prompt. The last selected MODE also remains in effect and is
used by the Simulator.

After giving the prompt the simulator is ready to receive a
command indicating the operation desired. Some commands, such
as "run" (G for go), start operation of the software computer.
Prior to running the program however certain commands allow the
operator to set the PROGRAM COUNTER or REGISTERS in order to
set the proper conditions for the simulation prior to the simu-
lated computer start-up.

SET COMMANDS
RREBRRRRRRER RN

P address(H,Q,D) --SET PROGRAM COUNTER

Set program counter to the value of
"address". Conversion of the parameter
is determined by the last selected "MODE"
or by the following, optional, parameter.

S regx=value (regy=value..) --SET REGISTER VALUE

Set register"x,y.." to "value". Where
value given according to MODE or following
parameter (H-HEX,Q-OCTAL,D-DECIMAL).
Multiple assigments per line are allowed
however each register name must be
followed by the equal sign and then the
selected value. The next register name
must then be preceeded by a space. Valid
register names are A,B,C,D,E,H,L with "S"
and "F" used to indicate the Stack Pointer
and Flags (PSW) respectively.

All commands can be used any time the Simulator has given
a prompt. While running, the program checks the front panel
switches as well as the SYSIO input port for display and/or
break indicators. Control "X" causes the Simulator to stop
running and return to the command mode.

The two high-order sense switches determine the display
mode of the simulator as it simulates the running program. If
no breakpoint has been set these switches are interpreted as
follows:

SWITCHES DISPLAY MODE

RRNRRNRNEN RRRE R RN R RN RN R RN R R RN R RN RN RN RN RRRRRS
7 6

0 0 SINGLE STEP MODE

Execute one instruction and display on
current output device. If C/X is input
to the System input driver then return to
the command mode. If any other character
is received then execute and display one
more instruction.

0 1 CONTINUOUS RUN (With Display)
Execute and display each instruction
until receiving C/X.

1 0 Execute and display one instruction then
return to the command mode.

1 1 Force return to command mode from any
Simulator condition.

The output display from the Simulator indicates the current
status of the software 8080 as well as the current conditions of
the program. The display is initialized to follow the last

MODE setting but may be changed to decimal by giving a simulator
mode command.

The display consists of the current location of the program
counter followed by the FLAGS as set by the last instruction
executed. These are then followed by each of the registers and
the current memory location pointed to by the H & L registers.
The stack pointer and instruction just executed then end the
display. This is illustrated below:

PPPP CZSPI AA BB CC DD EE HH LL MM SSSS B1 B2 B3

Where: PPPP -is the address of the simulated instruction. The
display shows results following execution of the
instruction.

- Carry Flag (0 or 1)
- Zero Flag

Sign Flag

- Parity Flag

- Interdigit Carry Flag

HoWLNO
|

AA - Accumulator (reg A)
BB - Register B

cc -
DD -
EE -
HH -
LL -

CIEmoQ

MM -~ Memory contents pointed to by HL.
SSSS - Current address of the Stack Pointer.

B1 - Current instruction
B2 - Byte two of the instruction (if used)
B3 - Byte three of the instruction (if used)

In addition to this display the operator may dump selected
memory locations or enter data to memory locations using the
DUMP and ENTR commands.

D address (address) This command dumps the contents
of address to address following the
conventions of the ALS-8 dump command.

E address Enter data to memory following ALS-8
ENTR conventions.

The GO command starts the simulator at the current value of
the program counter. It is used to initially start simulation
as well as continuing after stopping.

G Go-- Start simulation

X Exit-- Return to ALS-8.

At this point the user is advised to write a short program
and assemble it to a known location in memory. After obtaining

a listing the Simulator commands described so far should be
used in actual practice.

BREAKPOINTS AND "REAL TIME RUN" ADDRESSES

Running a simulation with the display on is normally used
only through the problem areas of the program. In order to
reach these areas, or to test values during a program loop, a
BREAKPOINT is set to stop simulation and display only at the
address given by the breakpoint. The breakpoint is not cleared
at gach display so program loops may be checked repeatedly by
giving a new GO command following each display. Also, if single
step operation is again desired, the breakpoint should be
cleared prior to giving the GO command.

B address -- SET BREAKPOINT

Breakpoint is set to "address" and the
simulator will display each time the
program reaches this address.

CB ~- CLEAR BREAKPOINT

The sense switches are interpreted as follows when a
breakpoint is set:

SWITCHES DISPLAY MODE

HRREERENRN T 0000300 0000000 060000 300 0000000606 00N

7 6

0 0 Execute program until breakpoint is reached,
display current status and return to command
mode after giving prompt. '

0 1 Same as above.

1 0 Execute only one instruction and return to
command mode.

1 1 Unconditional return to command mode.

Some sub-routines require a speed of operation beyond that
of the Simulator. 1In order to meet this requirement the Real
Time mode of operation should be used. If the real time address
is that of a 8080 CALL instruction the simulator will make a
REAL TIME CALL to that location, effectively giving up control.

The subroutine must end with a valid 8080 RETURN instruction
in order for the Simulator to return in control.

R address -- SET REALTIME RUN ADDRESS

CR -- CLEAR REALTIME RUN ADDRESS

INPUT INSTRUCTIONS
i I 2 TR I Y 'L

. During simulation input operations can be performed in three
91fferent modes, SIMULATED, REALTIME and PRE-SET. Each method
1s used depending on the information needed by the user.

o
i
\

SIMULATED

If an input instruction is encountered during the simulation
for a port defined as SIMULATED, the Simulator will stop and
obtain input values from the operator. The following informa-
tion is printed prior to receiving input:

INPUT PORT n=

Where "n" equals the port given in the program being run by
the simulator. The simulator stops to the right of the equals
sign and waits for input from the operator. Since input goes
to the accumulator the value input must lie in the range 0-255.

REALTIME INPUT

If an input instruction is encountered during the simulation
for a port defined as REALTIME the simulator will obtain the
required input directly from the indicated port. This operation
is identical to the standard 8080 obtaining input.

PRE-SET INPUT

The preset option allows any input port to have a value
preset between 0 and 255.

OUTPUT INSTRUCTIONS
22222 SZ S22 Y

Program output, during simulation, can take one of three
forms for any desired output port. These options, SIMULATED,
ASCII or REALTIME are selected depending on the information
required by the user.

SIMULATED

If a output instruction is encountered during simulation for
an output port defined as SIMULATED the Simulator will indicate
that an output has occured to the indicated port. This includes
both the port number and output value as indicated below. (No
actual output to the port occurs.)

QUTPUT PORT n=NN
Where "n" equals the port number and NN equal the value that
would have been sent to the port.

ASCII OUTPUT

The ASCII output option is similar to Simulated output except
the value "NN" is output as an ASCII character. If the value
is a Control Character its output is identical to Simulated
operation.

REALTIME OUTPUT or hexidecimal usually presents the proper information required

by the operator. The Simulator has one additional display mode,

As implied, REALTIME OUTPUT sends the value to the indicated DECIMAL, which can be selected at any time during simulation.

port just as though the actual 8080 was operating.

This mode command "M" will select Decimal output if it is
followed by the value 10. (20 if entry mode was octal.) Any
other value following the command will return to the default
condition of entry.

INPUT/OUTPUT COMMANDS
RRBBRRRRRERBRRR R NN NN

IC portn SET SIMULATED INPUT PORT

OPTIONAL SIMULATOR ENTRY POINT
ERERRERERR RN R RN RN RN R RN RRR RN

Set "portn" to SIMULATED mode.
(All ports are in this mode on first ‘
entry to the simulator) { Often, during simulator operation, it is desireable to
‘ return to the ALS-8. 1In order to return to the simulator
without clearing I/0 port definitions it is required that

IS portn value SET PRESET PORT f the command SIMU followed by any non-blank character be used.
| SIMUS is recommended. This allows the exact conditions on
Set "portn" to PRESET "value" 1 exit to be restored upon re-entry.
IR portn SET REALTIME PORT f OTHER SIM-1 EXTENSION FUNCTIONS

EERNRRBRBERE R AR RN R RERRRRE RS
Set "portn" to realtime mode.
AUTO COMMAND

CI Clear all input port assignments and ; Every ALS-8 contains code to recognize commands other
set all to simulated mode.] than the standard set. Auto is one such command whose actual
' operating code is contained in the SIM-1 Extension Package.
(Making it rather dangerous for those without it to use the AUTO

oc ort S ' command.) In use the AUTO command allows input to standard

p n SET SIMULATED OUTPUT PORT ALS-8 files with the AUTO code adding the line numbers.
Set "portn" to Simulated. All ports
are initialized to this mode on entry -
to the simulator. § COMMAND FORM: AUTO (n)

When used without the optional parameter "n" the AUTO
command will start sequencing line numbers beginning at one and

OA portn SET ASCII OUTPUT PORT f incrementing by one for each additional line. If the optional
" " 1 parameter is included then line numbers will begin one beyond
Set "portn" to simulated ASCII output.] the last line in the current file. The parameter "n" can be

any value between 0 and 7 with no significance placed on what
the value is. Return from the driver to the standard ALS-8 is
- A made by depressing the "ESC" key as the first character of a
OR portn SET REALTIME OUTPUT PORT tide. (Note if there are NO LINES IN A FILE do not use the
. optional parameter.)
Define "portn" as realtime port.
As a note of interest the code comprising the AUTO comaand
represents a special I/0 driver implemented to preprocess input
co) ; from the selected I/0 driver. This of course is a driver on top
CLEAR ALL OUTPUT DEFINITIONS 1 of a driver but then the ALS-8 was designed for such nonsense.

DISPLAY MODE ~
222122222222 ‘

The display mode of the Simulator is normally determined by
the ALS-8 MODE on entry to simulation. This being either octal

TXT-2 EXTENSION PACKAGE
RERBERRRBRRRRRRRRRBRRRBRRRERRR S

PRELIMINARY OPERATORS MANUAL

The TXT-2, an optional extension to the ALS-8, opens a new
dimension to the powerful file operation and management of the
ALS-8. In addition to an EDITOR the TXT-2 also contains a VDM
output driver and the FIND command. Code for one additional
function is also within the package though the name of the
command is not known to the ALS-8 (a minor matter). The use
of these commands will be described following the description
and operating proceedure of the EDITOR.

EDITOR
REBERERRERR

The TXT-2 converts the contents of the "current" ALS-8 file
into a contiguous display on the VDM screen. Single letter
control character commands allow cursor, as well as direct file
line movement, on the screen. Since all file operations are
direct and the contents of the file are always displayed on the
screen, editing becomes a simple matter either with or without
file line numbers.

Upon entry, the EDITOR program takes control of the current
ALS-8 File and displays the file contents (or lack there of) on
the screen sixteen lines at a time. Command keys are provided
to roll through the file or to position the cursor over any
character within the file. (Even in a position where none exist)
Also provided are controls to insert and delete characters, or
lines as required by the result desired.

As with all memory files, a file beginning and end address
exist. The TXT-2 EDITOR also has one additional parameter, a
value indicating the end of assigned memory. This parameter can
be given any value and is used to prevent a file from growing
beyond assigned bounds.

The editor is entered by using the EDIT command of the
ALS-8. The current file is displayed on the screen and if there
are less than sixteen lines, a number of fill characters. As
lines are added these fill characters disappear off the bottom
of the screen.

Since a file must first exist, the user must create or
select a file prior to entering the editor. The ALS-8 FILE
command is used for these operations.

In the explanation that follows the user is urged to try
each command on an actual file. No words can describe the
visual effect each operation performs on the screen. For best
"learning" results the file should have, or be given, at least
thirty-two lines.

Prior to using the editor the end of assigned memory para-
meter should be set to a known value. The parameter can be set
to a null value by giving the command EXEC FFED (HEX). This
nulifies the proper operation of the parameter and a further
explanation will cover the correct usage later in the manual.

CONTROL/ M (Carriage Return) scroll up and insert one line

garriage return scrolls up one line and inserts a blank
line in the file. The cursor is moved to the first character
position of the new line.

OTHER COMMANDS
232222222 E Y

CONTROL/ F exit command

On EXIT the editor clears the screen and does an FCHK on
tpe file prior to returning to the ALS-8 executive. For long
files some delay may be experienced (about 1/2 second) before
receiving the "READY" message.

CONTROL/ Y repeat command

The repeat command requires two keystrokes following the
command. The first represents the command or character to be
repeated, while the second is the number of repeat increments.

The repeat increment is offset by an ASCII bias to allow
the numbers 1-9 to represent their actual values. All other

characters have an equivalent value as determined by their ASCII
representation.

CONTROL/Y==ww- >> COMMAND OR CHARACTER=====-- >>V# OF REPEATS

OTHER FUNCTIONS PROVIDED BY THE EXTENSION PACKAGE

FIND
B 060030600 000

As was mentioned the TXT-2 extension also contains code
for the ALS-8 FIND COMMAND. Tnis command gets an input string

from the user and prints all occurances of the string within the
current file.

After receiving the FIND command, followed by a carriage
return, a colon (:) prompt will print on the current output
device. At this point the desired string is input, once again
followed by a carriage return. Following this all occurances of
the string will print out on the current output driver.

ESET COMMAND
12322332,

The VDM EDITOR uses a parameter to limit the maximum
address the file may reach. Code has been included within the
TXT-2 to set this value but no corresponding command has been
provided. The standard ALS-8 CUST command can be used to insert
this command if the following sequence is executed:

CUSTE /ESET/ FFED

After this the command ESET, followed by and address, will
set the parameter to the value of the address given. It should
be noted that the file may reach but not exceed this value.

VDM DRIVER

Also included in the TXT-2 package is a driver to allow the
ALS-8 to use the VDM as an output device. This driver is in
PROM allowing access at all times. The address for the driver
is FE77 (hex) and the IODR command is used to enter the name in
the DRIVER TABLE. For use as a stand-by driver the following
sequence is reccomended.

IODR /VDM/ input address FET7

The driver may also be made the SYSTEM DRIVER by using
the following sequence:

IODR /SYSIO0/ 0 FETT7

The standard terminal output driver can then be assigned as
a hard-copy supplemental driver by using the following:

IODR /PNTR/ O DOA9

The VDM driver is especially suited to commanding the ALS-8
and it is reccomended that it be changed to the SYSIO driver
right after system initialization. The following special keys
are implemented in the driver.

CONTROL/ 2 clear screen
A turn cursor on or off
S set display speed prior to operation

The display speed command will output the message: SPEED?
on the VDM screen whenever it is given. The user should respond
with a value between 1 and 9 indicating the display speed
desired. A value of 1 represents aprox 2000 lines per second,
while 9 is rather slow at 3 characters per second.

The speed may also be changed any time during output by
pressing the corresponding key between 1 and 9. The display
can also be stopped by depressing the "space bar". Once stopped
any character other than speed values or another space bar will
continue the output at the same speed. The space bar will allow
one character to be printed for each sequential space character
received.

During all output operations with either the standard ALS-8
terminal driver or with the VDM driver, a test for the ESC
character is made. If received, all output will be discontinued
and a return made to the SYSIO driver with a "READY" message.

