System 88
System Programmer’s

© Gude

PolyMorphic
Systems

460 Ward Drive Santa Barbara Cdlifomia @31 (805) 267-2351

L)

This manual 1is PolyMorphic Systems part number 818133,
Copyright 1981, Interactive Products Corporation. It is to be
used in conjunction with thﬁ following System Programmer Disks.

For Single User: .
5" SSsSD. 82011¢ -
5" DSDD. 820268
8" SSDD. 820269

For TwinSystem: :
S" DSDD. 820266
8" SSDD. 820267

» The information in this manual relates to system software
released under Version 6, Exec/94 and BASIC C@3, with the
following system disk part numbers:

For Single User:

820190 Rev P 5" 8S8SD
820260 Rev B 5" DSDD
820258 Rev B 8" SSDD
For TwinSystem: | . i)
8206263 Rev B 5" DSDD

820261 Rev B 8" SSDD

This manual was prepared by R.T. Martin, B.F. Smith, F.E.
Anderson and D.K. Moe.

Many thanks to C.A. Thompson for his careful proofreading of this
manual.

s)

Copyright 1981, Interactive Products Corporation
468 Ward Drive
Santa Barbara, CA 93111
All Rights Reserved

LIMITED WARRANTY AND LIMIT OF LIABILITY

Interactive Products Corporation (dba PolyMorphic Systems) makes
No Warranty, express or implied, concerning the applicability of
this program to any specific purpose. It is solely the
purchaser's responsibility to determine 1its suitability for a
particular purpose. Interactive Products Corporation accepts no
liability for 1loss or damage resulting from the use of this
software beyond refunding the original purchase price.

THIS STATEMENT OF LIMITED LIABILITY IS . IN LIEU OF ALL OTHER
WARRANTIES OR GUARANTEES, EXPRESS °~ OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

System 88 System Programmer's Guide

Table of Contents

Section 0.

Introduction to the System 88 System Programmer's Guide.......1l
Purpose of this Manual...ciceeecoecesescesccosccscconssacal
The Disk Accompanying this Manual...cccccoececcscscccccacsl
Sections of this Manual..ececeecscoocscccscsccsscscecssnsoal
AcknowledgemenNtS eeeeosceceasossosasssosassoscsasasocsscscssacsld

Section 1.
Summary of "Undocumented Commands” ..ceeecececcceccosnssssccacscesd
SeL SY S eecsososassocsosssssscsccsassssscsossosssosnssssascsocssscccsd
DUMP ceaecoccocososossaosssosocessasosssossssossscsosssscacsoassssssad
SNiffuoeceeacscecctsososcaacacscocccnsososacesoscscosascsscsscsocnocccssd
DISPLAY . vesacscccsosessssscosssscssaansascecssssssecsascssasssssd
SET eeescesasassssssasssasscsssssssasscscscsssssssosscccscsssd
L2 L
YAKeeoooooooaeaeaooasoossosscsssosssscscasscsocsanssosonssssocsasceed
6

porfavornooc.o.Qcoo-o.ooooo-ooooo.ococooooc.oo.oo-o.oo.oo

Section 2.

The System 88 File SYSteMeceseesescosccscssvssocsossscancsssnaosl
DiSKSeeeeeoesseeoosoasssassoeoosssssssoscsscsoosossssssssascsssel
FileSeeetsostseesssaacososasoscsaoosassscsscssosscssccsncosccsscoscs/
File Directory EntrieS.cceccecesccoceccosccccasccasarasscssl
The Disk DirectorieS..cecececcesccssccccocssoscoscsesscssosscceell
The Initialized DiSK..eeeooossosoosssocccccsscscscccnsssscsll
Allocating File and Directory SpPacCe.ccesceccovececsssrsosoll
Updating the Disk Directory..eeecsceccscccccccoscncsscecssll
Get File Identifier (Gfid).eeeceeeecceescccesccacsscocasaseel’

Section 3.
System 88 ArchitectuUre.iiceeecessccresccesscscccsacoscssoscosaseld
Memory Map....O..O'.'.I....'.....'...I....l..'....'.'000029

Equates..aoo..oo.oooooonqnou.co.-.lccocn..00..0....9|0.03Z

Macros.....ooocoonooo.oo.ono.ocnocoo.ooo-o.ooc.oc..oooo037

Data AreaSlO ® & 9 @ ® 0 0 6 6 0 0 9 O & O 0 9O WO O OO OO O 0 e GO SO0 OO N e 0o .56
Service VeCtOrS.icesesococoocssscscscscscsscsscsscosancssasscssellb
overlays.ﬂ..'..Q'.I........O."I.DI00100000000500000000164

Section 4.

Utilities for the System Programmer scceccecececceoscoccsocsccscssl’3
Error Message Editor (EMEDIT) .cccsooeocccscsccossccascesassl7d
SuperZap (SZAP) ccecseecccavssccscocsssaonsosossscsssssossscssall8
Super CopY (SCOPY) ceeccecvscsscssoscososccssessesssoscasoeslB6
File Utility (FUTIL) ¢ceccececccaccscoscsacscscscssasosscsssscccel87
Debugger (RDB) cevecsescscocccacssossaccscssncssnocsssscasl89
Authorization (AUth.OV) ..ecceceoscoesocsassccscssssaceeselOd
Directory Space (SPACE) ceveeeceaosscccsossnssssasoanceoscsslO8
Command File Pause (WAIT).ceesocccccsssosscscascsscsccccseldB
Change Symbol File (TWID) ieeesocosceaosssascscccsssscssoseald8
Compare FilesS (COMPARE) ceecescocooscsoasocsssscscssoscssscsseld8
Compare DisksS (COMP-DISK) eeeescooosccsoosscsccosoasssnssaeldB
Initialize Directory (CLEAN) cicecccccossscsccoacssssasssasld9

System 88 System Programmer's Guide
Table of Contents

Undelete File (ARISE)'..0........'..Q.....0.0l....l'...lgg
Copy Subdirectory Files (DIRCOPY) cececosssacsscosvesssssld9
Recover Lost File (RECOVER) ccooscceascsocosassssscsscesesldf

Section 5. .
-The System 88 Printer Driver.ceceecececcecesocscscsccoscesccesealll

Section 6.

System 88 EIrror MeSSAJEeS.ceccccscsscscososcsscscsccsscccccossnsseelldd
EMSg eOVeieeeooescscccecccccssoscscscssassososncosossoscsssascsoeelldS
Berr OV .eeeeeeoeoeccecococsscosnsssscscsncsnsssssssnosccoess2B5

Section 7.
Sample System OVerlayecesscecoscosscssaccssosososcsccssossascnseesldll
Emsg.ov..'.00.....O.Q...................".0..0#...'...213

Section 8.

System 88 BOOt SEQUENCEecsseccccsccccscsotccccsocscosssasesesll?
Single USerliecceesscccossscscocsssscsscsscscssssnssssacncssesllld
TWin USEerl.eeceeossosososcassscacsossssscssssnasssassssosssseeldldl

Section 9. .
System 88 Interrupts, I/0 Ports and User Switching..........227

Section 19.
System 88 Volume ManNagel ..ecesecccccssccsscccccssassasnscsssasscsslll

Section 11.

Implementation of CP/M on the SyStem 88..u.eeuseeeesssesasas.243

Section 12.
System 88 Symbol Tables (EXeC/94) .ccececossccssancccsascsseasldd?

Section 13.
Disk I/o Assembly Codeo..o.ooooo.oc....'c0...0...........-..251

Section 14. .
Sample Assembly Progra@Meccccccscceacsccssccsscscsccscssscscedldd

Index..occaotoonnool..o...n.o-oo.oo.....o.-oc.ooo.cooau.oo..269

System 88 System Programmer's Guide
Section 4 Page 1

Section @
Introduction to the System 88 System Programmer's Guide

This is the System Programmer's Guide for the System 88. It

-provides a detailed description of the features and capabilities

of the sixth release of the System 88 software (Exec versions 94
and later) .

Purpose of This Manual

The purpose of this manual is to help the systems developer
build and tailor products based on the System 88. Using system
facilities ©provided at the machine language level requires a
detailed functional description. To make best use of this
manual, you should be experienced with assembly language program
development and in particular with the 8080 microprocessor. We
assume that you have knowledge of and experience with general

systems organization and data structures.

This manual is NOT for the novice!

This manual was written by the designer of the ©System 88
software. In preparing this manual, a difficult choice was made
between the desire to protect the proprietary nature of the
system and the wish to provide the systems programmer with the
information needed to make best use of system facilities, The
writer of this manual hopes that the proprietary nature of this
manual and its contents will be respected; the only effective
recourse against promiscuous duplication and release. of this
material is to stop making it available at all.

The Disk Accompanying This Manual
The disk included with this manual is a complete System Disk

and includes a number of programs for use by the systems
programmer.

Sections of This Manual

Section ¢ is the introduction to the System Programmer's
Guide.
Section 1 contains the summary of the undocumented system

commands.
Section 2 describes the System 88 file system. It describes

in detail the structure and allocation of file and
directory space.

*‘Introduction *

_ System 88 System Programmer's Guide
Section @ _ Page 2

Section 3 describes the data areas of the system; the second
part of Section 3 describes utilities and
primitives available to the assembly 1language
programmer. Of particular interest and importance
is the section on overlays.

Section 4 describes utility programs provided for the
systems programmer: EMEDIT, ©SZAP, FUTIL, SCOPY,
Auth, the Debugger, SPACE, WAIT, TWID, COMPARE,
COMP-DISK, CLEAN, ARISE, DIRCOPY, and RECOVER.

Section 5 discusses the System 88 printer driver and its
interface with the system.

Section 6 lists System 88 error messages.

Section 7 gives a listing of a sample system overlay.

Section 8 describes in detail the system boot process.

Section 9 describes the interrupt and input/output ©port
structure of the System 88.

Section 19 describes the operation of the Volume Manager.

Section 11 describes how CP/M is implemented on the System
88. ;

Section 12 lists the system symbol tables for the Single and
Twin Systems. .

Section 13 lists the assembly language routines for doing

Section 14 lists a sample assembly language program that does
disk 1/0.

NOTE: Many of the discussions in this manual are, of necessity,,
closely interrelated. These discussions often refer to items
defined in Section 3. 1If an item is unclear, look through the
rest of the manual for more information on it or similar topics.

Acknowledgements

The System 88 operating system was designed and written by
R.T. Martin. Processors and utilities, as well as able
assistance, were provided by Robin Soto, Larry Deran, Frank
Anderson, Lennie Araki, Glenn McComb, Brian Smith, and Don Moe.
The System 88 hardware was designed by John Stephenson. The
packaging and cabinetry were designed by Ron Sanchez.

* Introduction *

>

System 88 System Programmer's Guide
Section @ Page 3

Credit is also due to many people at Scientific Data
Systems/Xerox, especially Ed Bryan, Richard Hustvedt, John
Collins, and Mike Macfarlane. Many of the design philosophies
behind the System 88 come from the BPM/BTM - UTS - CP/V lineage

of systems innovated at SDS/Xerox.

* Introduction *

Section]

System 88 System Programmer's Guide

* Introduction *

Page 4

System 88 System Programmer's Guide
Section 1 Page S

Section 1
Summary of "Undocumented"™ Commands

The System 88 recognizes a number of commands that are not
documented in the System 88 User's Guide. They are not
documented because of their complexity or because they have
limited application in general wuse of the system. The manual
discusses these commands in more detail later; this section is a
single-source reference to these "undocumented" commands. These
commands are interpreted by the Exec.

SetSys Command

The SetSys command requests a directory name from the user,
then marks every file in that directory a system file (including
deleted files). See the section on functions, provided by the
Dfnl overlay. The system must be in the ENABLED mode to use this
command from Exec.

DUMP Command

The DUMP command is used to display the contents of memory
on the screen and printer. The format of the DUMP command is:

DUMP Addrl Addr2 Comment

where Addrl and Addr2 are the beginning and ending addresses of
the area of memory to dump, and Comment is a comment string that
is placed at the top of the dump. See the section on functions
provided by the Dfn3 overlay.

Sniff Command

The Sniff command accepts a disk number as an argument in
the same format as the LIST or DIR commands (e.g. Sniff 4). 1If
you give no argument to the Sniff command, the System Residence
(SYSRES) device is used. The Sniff command reads each sector of
the disk from the last sector in use to the beginning of the
disk. If an error occurs while Sniff reads a sector, the error
code and the number of the problem sector are displayed on the
screen. See the section on functions provided by the Dfn2
overlay.

DISPLAY Command

The DISPLAY command displays on the screen the top memory
address in the system (MEMTOP), the wild card path, and the last

* Undocumented Commands *

System 88 System Programmer's Guide
Section 1 Page 6

error code reported in the system (ERROR).
The remaining undocumented commands are for TwinSystem only.

SET Command

The SET command requests allocation of a device on a
permanent basis in the mode requested in the set command. See
Section 3 on the Devlock for details on the system cell changes.

SET WAIT Command

The WAIT command instructs the devlock facility to wait for
a device rather than return reporting an error 'That device 1is
busy!' This 1is a very dangerous command as it may lead to
deadlock where each user has something the other user needs and
neither one 1is going to give up what it has. Both users WAIT
forever and very little is accomplished on the system. This
command is invoked as follows: .
SET WAIT ON

or
SET WAIT OFF

SET YAK Command

.The YAK command puts the TwinSystem into a very talkative
mode. Each time any device allocation is done, a short message
appears on the screen describing what happened. 1Its main use was
in debugging the Twin as it was built. This is useful to get a
feel for all that is going on in device allocation. This command
is invoked as follows:

SET YAK ON
or
SET YAK OFF

‘porfavor' Command

The porfavor command requests the other user to perform some
action. It is only available in ENABLED mode. If the other user
is in Exec waiting for a command, it will do the command
specified after porfavor. For example,

porfavor list 3

If the other wuser 1is not at the Exec level waiting for a
command, the message 'User is busy!' will be displayed.

* Undocumented Commands *

_ System 88 System Programmer's Guide
Section 2 Page 7

Section 2
The System 88 File System

The System 88 file system combines versatility with internal
simplicity for reliability and ease of use.

A file system consists of file names and extensions. These
names and their extensions, together with certain control data,
form file directory entries (FDEs). The FDEs and directory
management information form the directory on each disk. The
directory is first created by the system INIT command, which
writes 2zeros on the disk (thus performing a simple surface test)
and then writes out an empty disk directory. The system LIST,
DLIST, and DIR commands display the disk directory to the user.
The DELETE, UNDELETE, RENAME, SAVE, DNAME, and PACK commands, and
the Gfid service modify the directory and FDEs. In addition, the
experienced systems programmer may use the system utility program
SZAP to manipulate the disk and its contents (see Section 4,
Utility Programs).

Disks

The system treats each disk as a sequential collection of
256 byte sectors of data. Data transfers to and from a disk are
made in multiples of one sector blocks by the Dio utility. (See
Section 3, System Service Vectors, Dio, page 122).

The first four sectors of each disk (9, 1, 2, and 3) contain
the main file directory for the disk. The system deals with a
generalized disk address; Dio breaks this generalized disk
address into the proper track and sector required for the device.

Files

A file 1is a group of contiguous sectors on a disk,
accessible through and defined by a file directory entry (FDE) in
a disk directory for the device. A file must be totally
contained on a single disk, and files may not overlap or share
sectors. The 1internal format of the file is determined by the
programs that read and write the file.

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 8

File Directory Entries (FDEs)

The File Directory Entry (FDE) defines a file on the disk.
" The FDE contains all the information required to locate, access,
and delimit the file data on the disk. Since the file name in
-the FDE is of variable length, the FDE itself is also of variable
length. The FDE consists of the following information (in this
order within the FDE):

Flag byte (8 bits)

File name (variable length)

File extension (16 bits)

FDA - Starting disk address (16 bits)
DNS - File length in sectors (16 bits)
LA - File load address (16 bits)

Z_SA - File start address (16 bits)

W NN S ~

The FDE format (in a slightly modified form) is used by the
system Gfid utility for looking up and entering file names into
the directory.

FDE Flag Byte

The first byte of the FDE contains three one bit flags (D,
S, and N) and five bits for the file name length:

Bt R e e R s
:D:S:N:...L.....: => Length of file name
T R Sk Bt e 2

t 3 e > New file (2@H-bit)
¢ e > System file (40H-bit)
Fom e > Deleted file (8@fH-bit)

The 8@H bit (D above), if set, indicates that the file has
been deleted. 1If this bit is set in an FDE, that FDE will not be
examined 1in the file lookup procedure and will not be displayed
by the system LIST command. FDEs marked deleted are returned to
normal status by the UNDELETE command or the ARISE program. The
space taken up by deleted files, both in the directory area and
on the disk, is reclaimed by the system PACK command.

The 4¢H bit (8 above), 1f set, denotes a "System" file.
System commands such as DELETE, RENAME, TYPE, and PRINT check
this bit. A file marked by the System bit may not be deleted,
renamed, edited, or displayed by PRINT or TYPE.

The 20H bit (N above) denotes a "new" file. When a file |is
created or changed, 1its corresponding FDE is marked with the
"new" bit to make it eligible for saving by the system file
maintenance processor, BACKUP, which then clears the new bit.

* System 88 File System *

>

System 88 System Programmer's Guide
Section 2 Page 9

Any combination of the above three bits is allowed.

The last five bits of the flag byte give the length of the
file name that follows the flag byte. This restricts the file

name to 31 characters or less (a file name must be at least one

“character long). Note that the file name length DOES NOT include

the two character extension.

FDE File Name

The file name follows the FDE flag byte and 1is the only
variable 1length entry in the FDE. The number of bytes used by
the file name is contained in the lower five bits of the FDE flag
byte. File names usually consist of seven bit ASCII characters,
although programs may generate file names consisting of arbitrary
eight bit quantities that cannot be entered from the keyboard.
When a file name is displayed on the screen, control characters
(ASCII 0@ to 1lFH) appear as Greek characters.

FDE Extension

The FDE file extension 1is a sixteen bit (two character)
field that follows the file name. The extension identifies the
type of file. The bytes appear in the extension in the same
order in which they would be typed, rather than the "“standard
8080" byte reversed form. For example, the extension "GO" would
appear in memory in the FDE as the character "G" followed by "O".
Any sixteen bit value may be used as an extension. A number of
extensions are predefined and recognized by the system (as the
system expands, this list may also expand):

Extension Use

DX Sub-Directory

GO Runnable machine code file

ov System overlay

BS BASIC source program

DT BASIC data file i

TX Text (e.g., assembly language source
file) :

SY Symbol table file

RL Relocatable machine code file

ED Editor key definition library

FM Form File

FVv Form Values File

FW Form Work File

Z0 Onboard code for DSDD Controllers

DD Device Driver for Hard Disk

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 10

FDE FDA - First Disk Address

FDA is a sixteen bit field 1in the FDE containing the
‘starting disk address for the file.

-FDE DNS - File Size in Sectors

DNS 1is a sixteen bit field in the FDE that contains the
number of sectors in the file.

FDE LA - File Load Address

For runnable machine code files (extension .GO or .0OV), LA
contains the sixteen bit load address for the program. When the
file is loaded into memory by the system Runr service, it is read
into memory starting at the address contained 1in LA. For
non-runnable files, the LA field in the FDE contains zero. Runr
will not 1load or execute any machine code file with a load
address of zero, since there is read only memory at 1location 00
in the System 88. For relocatable files LA contains the offset
to the relocation bit map.

FDE SA - File Start Address

For runnable machine code files (extension .GO or .0V), SA
gives the sixteen bit starting execution address. 1If the FDA LA
field is zero, indicating a non-runnable file, this field may be
used for other purposes.

The Disk Directories

The disk directory 1is the collection of FDEs and control
data used to allocate and retrieve files. The main directory
appears 1in sectors @, 1, 2, and 3 of each initialized disk. The
system INIT command is used to set up the 1initial directory
structure on a disk. Since the directory is a fixed 1024 bytes
in length, the number of FDEs it may contain is 1limited and

depends on the length of the file names in the individual FDEs.

The directory consists of the following fixed fields (beginning
with the first byte of the directory), followed by a list of file
directory entries (FDEs):

Displacement Name Description
(in bytes)

] Dck 8 bit directory checksum
1 Dname 8 byte disk name (main directory only)
9 Nf Number of files in directory
¢BH Nfa Next free directory address
gDH Nda Next free disk address (main dir. only)
gFH e Start of FDE list

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 11

In addition to the main directory it is possible to have
sub-directories on a disk. Sub-directories look exactly like the
main directory except that the disk name and Nda are zeros. A
sub-directory is a file on the disk Jjust 1like any other file
except that it is a 1list of other files on the disk. A
-sub-directory has an FDE in the directory of which it is a part
listing its name with a '.DX' extension. The SA and LA are
always #1941 and the file is 4 sectors. Sub-directories are
created automatically by Gfid when a new file 1is created
specifying a non-existent sub-directory. For more details see
the description of Gfid in section 3.

Since the directory resides in memory in the SBUF1l area, the
offsets given above are in hexadecimal from SBUF1.

Filename length versus number of files

The directory on each disk is 1024 bytes. The directory
header takes up the £first fifteen bytes (decimal) of the
directory, leaving 1009 bytes for ' FDEs. Each FDE has -eleven
bytes of control data and the varying length name. The table
below shows the relation between file name length and the maximum
number of files with that name length that fit in the directory.

Table 2.1 Filename length vs. Number of files

Name Max imum number
Length of files N
1 84
5 63
19 48
15 38
20 32
25 28
31 24

Dck - Directory checksum

Byte # of the directory contains an eight bit checksum
computed by the Ckdr service. This checksum is the eight bit sum
of the remaining 1923 bytes of the directory, and provides more
security in handling the disk directory. When a directory is
read into memory, the Ckdr routine is called to calculate the
checksum, which is compared to byte @8 of the directory. If the
checksums do not match, the directory 1is considered destrovyed,
and a @3FFH error results. Whenever the system updates the
directory in memory, it also updates the directory checksum.

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 12

Dname - Disk Name

The disk name is in an eight character field following the
disk directory checksum. The INIT and DNAME commands store the
disk name in the directory, and the LIST, DLIST, and DIR commands
-display the disk name at the top of the directory listing. Dname
is empty 1in sub-directories since the filename of the directory
is used as its name.

Nf - Number of files in the directory

Nf is a sixteen bit field containing the total number of
files in the directory. This count includes deleted and
undeleted files. It is used as a secondary sanity check of the
directory structure and is displayed by the system LIST, DLIST,
and DIR commands in directory listings.

Nfa - Next FDE Address

Nfa is a sixteen bit pointer to the first free byte after
the FDE chain in the directory. Note that this pointer assumes
that the directory is residing in SBUF1l. When the disk |is
initialized, Nfa is set to SBYERI+#FH.) When a file is entered
into the directory, it is entered at the/address pointed to by
Nfa, and then Nfa is updated to point past the newly entered FDE.
Nfa is also used to check the space remalnlng in the directory;

it may not exceed SBUF1+1#423. o
| | Just SBu] +ﬂ
Nda - Next Disk Address D00 H

Nda contains the sixteen bit disk address of the first free
sector on the disk. Nda exists only in the main directory of a
disk. Since files are allocated sequentially, Nda is also the
number of sectors in use on the disk. When the disk 1is
initialized, Nda 1is set to 4; this points to the location
directly after the directory on the disk. Thus the LIST command
on an empty disk displays: "4 sectors in use." When a new file
is entered by Gfid in a sub-directory, Nda is updated in the main
directory to reflect that additional space in use on the disk.

The Initialized Disk

The user must 1initialize disks prior to their use. The
initialization process fills the disk with zeroes, which performs
a simple surface check. Then INIT writes the initial directory
to sectors @, 1, 2, and 3 of the disk. The wuser specifies the
name of the disk in the INIT process. Nf, the number of files on
the initialized disk, is set to sixteen bits of @0. Nfa, the
next FDE address, 1is set to SBUF1+gFH. Nda is set to 4, the
first free sector on the disk. The remainder of the directory
area is set to zero, the checksum computed by calling Ckdr and

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 13

stored in Dck, and the directory written to the disk.
Allocating File and Directory Space

The system allocates space on the disk sequentiélly for

-files and FDEs. Nda always points to the first sector past the

used area of the disk; Nfa always points past the end of the last
FDE in the directory. When a file is written to a disk, the data
is written starting at the disk address contained in Nda in the
main directory. When the FDE is entered into a directory, it |is
stored at Nfa, and Nfa is updated to point past the new entry.
Nda is updated in the main directory by adding the =size of the
file Jjust entered. (This information is found in the DNS field
of the FDE.) This means that space in the directory and the disk
is allocated sequentially and contiguously.

Files may not overlap, and the order of FDEs 1in the
directory corresponds to the order of the files on the disk.
When files are deleted, the corresponding FDE is marked deleted,
but the space in the directory (and the data area of the disk) is
not reclaimed until the PACK command is used.

Updating the Disk Directory

The Gfid system service has been provided to update the disk
directory. We STRONGLY encourage you to make use of this service
and NOT to write programs that update the directory unless
absolutely necessary. An improperly updated directory can cause
an immediate catastrophe, or the disaster may be postponed until
the disk is PACKed or new files are entered on it.

Updating the disk directory in memory (in the - SBUF1 area)
involves the system <cells NFCK, NFDIR, and PATH, described in
Section 3, and the system routine Ckdr, described in Section 3.
Ckdr computes the checksum of the directory in the SBUF1l area.
NFCK is a copy of that checksum. NFDIR is the drive number of
the directory currently in SBUF1l. The 8¢H bit of NFDIR if set
indicates that the Directory is a subdirectory and the path name
of the subdirectory is at PATH. If you MUST update the directory
without using the Gfid service, you may use the following
procedure:

1) Disable interrupts and compare the drive number desired
with the contents of NFDIR and PATH. If the proper
directory is in memory, go to step 3.

2) Force the directory into SBUF1l by calling the Gfid Look
service to look up a file that does not exist, such as
the file with the single byte name @@gH. If Look
returns any error code other than @#300¢H, the directory
is unreadable.

* System 88 File System *

Section 2

3)

4)

5)

6)

7).

System 88 System Programmer's Guide

With the interrupts disabled, call Ckdr to compute the
directory checksum. This returned checksum must match
the contents of NFCK and of byte 80 of the directory.
If it does not match, load ¢3FFH into DE and jump to
the -system Error routine, since the directory |is
destroyed.

Update the directory with the interrupts disabled, and
do it carefully.

Call Ckdr to recompute the directory checksum. Store
the checksum in NFCK and in byte 80 of the directory

(SBUF1).

Call Dio to write four sectors to disk address @0
(memory address SBUFl) to the device number in NFDIR.
In the TwinSystem you may call the Gfid Updir service.

If any errors are returned by Dio, store @FFH into

NFDIR and NFCK to prevent the damaged directory from
being used, and jump to Error to process the error.

* System 88 File System *

Page 14

System 88 System Programmer's Guide
Section 2 Page 15

Get File Identifier (Gfid)

A Brief History of Look.

Look was originally (and still is) a system service to 1look
up a file using a file descriptor block or lookup block. Look
returns with DE pointing at the FDE in the directory. Gfid wused
Look to 1look up files after it had parsed the input text into a
file descriptor block. With the advent of the sub-directory,
Look was not designed to handle the extended directory file
descriptor block. Since Look was very fast and in ROM, it was
retained as it existed to do special very speedy lookups of
things in base directories using the original file descriptor
block. Gfid, however, still needed something with which to look
up files that were listed in sub-directories instead of in the
main directory. Thus was born ‘'look'. Now there was a function
in Gfid that would do the same thing Look used to do but would do
it in sub-directories tool Much too simple, so we called it
'*look' so it «could forever be <confused with Look. In the
following discussion references to 'look' mean the one in Gfid
unless specifically stated that it is ©Look 1in the ROMS. The
'look! in Gfid is called internally by both the
Get-file—identifier and the Enter/Replace functions. 'look! is
also available as a function of Gfid to be called with an
extended directory file descriptor block just as the Look in the
ROMS does with the original file descriptor block.

NOTE: There is a file on the disk included with this manual
called GFID-DEMO.GO which can be used to observe the
effects of various options in using Gfid. GFID-DEMO
will be wuseful in understanding the following
discussion.

Original File Descriptor Block
The original file descriptor block built by Gfid consists of

one byte containing the specified drive number and an extension
presence tag followed by a directory FDE.

* System 88 File System: GEfid *

System 88 System Programmer's Guide
Section 2 Page 16

Extended Directory File Descriptor Block é;’

The extended directory file descriptor block mentioned above
looks like this:

First byte drive number and extension flag
Second byte overall length byte ~=~w—ceemceee——- +
Third byte first file length byte~——ee—e—w-- + |
L] I I
. first file name o
. b
. first file extension {~———--eee-- + |
. second byte of extension |
. second file length byte-—-—=——-= + |
. |
. second file name | |
L2 l l
. second file extensionde—————c—ac—t-=+
. second byte of extension
. FDA File disk address (2 bytes)
. DNS Number of sectors (2 bytes)
. LA Load address (2 bytes)
. SA Start address (2 bytes)

Here are a few examples of this structure. Use GFID-DEMO
with the Parse option or use the 'look' option with a non-exisent

file to create your own examples. (?,
Text to parse Resulting lookup block

<2<Gfid.ov @2 95 @04 Gfidov

<9<TRIX<KUTILS<SCOPY.GO @9 15 064 TRIXDX @05 UTILSDX @5 SCOPYGO

Dfnl.oOV #1 95 @4 DEfnlOV (SYSRES is drive 1)
<4<I<KU<KB<KF<DEEP.GO 84 11 @1 IDX @1 UDX @1 FDX 04 DEEPGO

As you may have noticed, if the above blocks are viewed as
original file descriptor blocks, the length byte once masked to
length only (remove NEW, SYS, and DELETED bits) will point at the
final extension just as the old type did. '

Gfid, Gover, and Ovrto
In the single user system Gfid is an overlay called Gfid.oOV.

On the TwinSystem, Gfid 1is a resident system service. For
compatibility, the gfid MACRO is provided in SYSTEM.SY (See the

section on System Macros). There is a Gfid overlay on the
TwinSystem disk that is available so that an overlay call will
still work. GFID-DEMO uses the overlay so that even Twin users

can see the effect of the overlay mechanism on the variables set
by Gfid.

* System 88 File System: Gfid * d)

System 88 System Programmer's Guide
Section 2 Page 17

If Gfid is <called wusing the Ovrto function, when Gfid
returns the overlay mechanism will cause the previously resident
overlay to be loaded back in. When that happens a base directory
will be loaded to look up the overlay name and much of what Gfid
set in the way of system cells may be changed. DirAddr is
"guaranteed to be correct but the information in NFDIR, PATH, and
SBUF1 will be for the lookup of the overlay, not for the 1lookup
that Gfid did. 1In the Twin, the information provided by Gfid is
preserved if Gfid is called wusing the macro provided 1in the
SYSTEM.SY file or just using:

CALL Gfid

In the single user system the information can be preserved
by using the Gover service instead of the Ovrto service. Gover
will generally be faster anyway. Of course, if you are in an
overlay you must use Ovrto. The effects of the difference in
these <calls can be seen by using alternately the Gover and Ovrto
functions in GFID-DEMO.

Gfid Functions
The Gfid (Get-file-identifier) service provides the assembly

language user with the following functions selected by the lower
four bits of A:

A and @FH Function
@ Get file identifier
1 Enter/Replace FDE
2 Look up a file
3 Update directory on disk (Twin only!)

The function performed depends upon the parameter byte
passed to Gfid in the A register. All functions return any error
codes in DE with the carry bit in the PSW set.

* System 88 File System: Gfid *

Section 2

System 88 System Programmer's Guide
Page 18

Get-file-identifier Function

Registers

HL:

' DE:

BC:

Registers
HL:

DE:

BC:
A
FLG:

on entry:

If the 8¢H bit 1is set in A, HL points to a prompt

string to be used by Rlwe in prompting the user (see

RLWE in Section 3). 1If the 80H bit is not set in A, HL

points to the text buffer to be examined in parsing the

file descriptor. Note: this address MUST NOT be in the

overlay area (2000H-27FFH) on the single user or if the

Twin uses Gfid.ov.

Points to the 44 byte area used to build the file

descriptor (described above). Note that this area is

first set to zero by Gfid.

If the 20H bit 1in A is set, BC contains the default

extension to use 1if the wuser does not specify an

extension.

Flag bits, as follows:

80H: If set, read from user (via Rlwe) into an internal
buffer, using the string pointed to by HL as a
prompt string.
If clear, use HL as a pointer to the text to parse
into the file identifier. .

40H: If set, look up the resulting file. 1If the file
exists, create an original file descriptor block
at the address pointed to by DE. If an @300H
error (file does not exist) is returned, return an
extended directory file descriptor block with NFA
from the main directory 1in the FDA slot of the
FDE.
If clear, Jjust parse the file name into an
extended directory file descriptor block.

20H: If set, use the contents of BC as the default
extension if the user does not specify one.

1FH: These bits MUST be zero for the
get-file-identifier function.

on exit:

Points to the ending delimiter symbol 1in the text
buffer.

If carry bit set in PSW, DE contains an error
code/subcode; if carry 1is not set and 'look' was
requested (i.e., 40H bit set in A on entry), then DE
points to the FDE address in the directory. IMPORTANT
NOTE: Because of the overlay mechanism, the directory
in the ©SBUF1 area on return from Gfid MAY NOT BE FROM
THE DISK CONTAINING THE DESIRED FILE (see Gfid, Gover,
and Ovrto above).

junk

junk

Carry bit set 1if errors detected; clear if not. 1If

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 19

*look! (40H in A) was specified and the carry bit is
set, the zero flag reset indicates that error was on a
directory lookup rather then the file lookup.

Description:

The Get-file-identifier function of Gfid relieves the
assembly 1language programmer of the burden of parsing a
generalized file identifier. This function is used extensively
within the disk system itself by commands such as SAVE, DELETE,
RENAME, COPY, PRINT, and TYPE.

You can either pass Gfid a text buffer to scan (useful where
more than one file identifier may appear on a single line, as in
the case of DELETE or RENAME) or request that Gfid read a
specification from the user. If you direct Gfid to read a file
specification directly from the user, you must supply Gfid with
the address of a prompt string (as in the case of the system SAVE
code) . In either case, Gfid scans the appropriate text and
attempts- to parse it into a valid file —identifier. - -Gfid - will
then look wup the file identified if directed to do so by a set
40H bit in the PSW.

The file descriptor block is assumed to be 44 bytes long in
order to contain maximum 1length file names, The block is
initially zeroed by Gfid. 1If no extension was given by the user
in the input to Gfid, the 8@H bit of this initial byte (pointed
to by DE on entry to Gfid) will be set. If you requested that
Gfid look up the file (and the file exists), the buffer specified
by DE will contain the drive number of the file plus an extension
presence flag followed by the FDE copied from the directory
(original file descriptor block). If the file was found, the
file descriptor block now contains no information about the
pathname for the file. Other system cells are available with the
needed information. On return from a call to Gfid with 'look'
specified, DirAddr contains the address of the directory that has
the FDE of the last file found. 1If the 80H bit in NFDIR is set,
the system cell PATH contains the directory names used to get to
the directory of the file. The structure of PATH is similar to
the lookup block. A length of name byte is followed by the name
plus DX. This is repeated for each directory used in the path to
the file. See the PATH printed by GFID-DEMO for examples. PATH
is terminated by a zero byte.

If the file did not exist, 'look' will report a 0300H error
and the buffer specified by DE will contain an extended directory
file description block. Then the FDA slot in the file
description block will contain the first free disk address on the
specified device. Thus, if the user wants to create a new output
file, the returned @30@H error code 1indicates that the file
specified does not currently exist. In that case, the block

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 20

contains the first disk address to write to. The file descriptor
block built by Gfid 1is designed to be easily read by the
Gfid/Enter function (the function that creates file directory
entries (FDEs)) and 'look', the Gfid file lookup function.

Special Note on Using the Get-file-identifier Service:

As mentioned in the register contents descriptions above, on
the single user system or if the TwinSystem calls the Gfid
overlay, you MUST NOT pass addresses in the HL and DE register
pairs that are within the overlay area (200@0H-27FFH). Doing so
will cause anomalous behavior.

Looking up the file processing <?> as drive selector

Gfid processes the wild card device selector <?> in a file
name. If Look was not specified in the call to Gfid, a 09509H
error is generated. Note that if the error 1is returned, the
“filename has NOT been scanned into the lookup block. When <?> is
recognized as the device selector, the disk drives in the system
are searched for the file in the following manner:

1) Set drive number to SYSRES

2) If drive is zero go to 4.

3) Convert drive number to ASCII character, and store
into string where ? was found. Look up file. If no
errors are returned by Look, go to 5. .

4) Increment drive number. If drive = SYSRES, put ? back
into string and return. If drive number = 10 then set
drive number to #. Go to 2.

5) Store ASCII code for drive number at DEFPATH.

Note <carefully that the input string is modified. 1If the
user gives Gfid the string <?>Bessel, and file Bessel.BS is found
on drive 2, the string <2>Bessel will be in the user's buffer,
and the FDE for file <2>Bessel will be returned in the 1lookup
block. If the file 1is not found on any drive, the string
<?>Bessel will not be changed and the procedure for handling a
0308 error will be followed. Note that ANY error returned by
Look causes Gfid to examine the next drive or stop the process.
Also, note that SYSRES 1is examined first, and then the drive
number is incremented to maxdrive (9) and then back to drive 1
until SYSRES is again reached.

Processing of <#> as drive selector

Gfid also ©processes the special symbol # as a drive
selector, in coordination with the <?> process. Each time a <?>
lookup succeeds, the drive number is bound to the variable #.
Thus, if a <?> lookup finds its file on drive 2, a subsequent <#>
lookup will search drive 2. The value bound to the # variable is

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 21

displayed by the Exec DISPLAY command and may be set by the Exec
command. The combination of <?> and <#> is very wuseful in
command files. For example, the Exec command

Asmb <?>Source <#>0Object

will search all the drives in the system for a file called
Source.TX and will produce the object file Object.GO on the same
drive the source file was found on. The # symbol is also legal
with the commands LIST, PACK, DIR, and UNDELETE. This method of
drive searching only searches the main directory of each drive.

The Exec # command may be used to set # to a pathname rather
than just a drive number. For example, typing:.

<4<sp
DISP

will result in the display

Top of RAM is DDFF
Wild card path: 4<sp.
Last error: 0000

The # symbol can now be used to perform operations in the sp
sub-directory on drive 4. You can see the usefulness of this
feature when the files vyou want to deal with are nested 5
sub-directories deep. '

Interaction of default extension and user extension

When "~ Gfid goes to Look up the file, the following procedure
is used:

1) If no extension was passed to Gfid, and no default
extension was given in BC, the Look is done with
8dH+drive number passed to Look, allowing a match on
any file with the same name. The 80H bit is returned
in byte # of the 1lookup block, indicating that no
extension was given by the user.

2) If no extension was passed to Gfid, but a default

- extension was passed in BC, the Look is done with the
default extension, passing only the drive number to
Look in A, requiring an exact match. The 8@¢H bit is
returned in byte # of the lookup block, indicating that
no extension was given by the user.

3) If an extension was passed to Gfid, and no default.

extension was passed 1in BC, Look requires an exact
match, using the user-supplied extension. The 8¢H bit

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 22

is not set in byte @ of the returned 1lookup block,
indicating the user supplied an extension.

4) If the user supplies an extension, and a default
extension was passed in BC, the user-supplied extension
is wused in the Look, which follows the procedure given
in (3) above.

Note that the 8fH-bit in byte @ of the returned 1lookup
block, 1if set, indicates that the USER did not specify an
extension. If the file was looked up by Gfid, an extension is
present in the returned lookup block. If the 80H bit is returned
set, this extension will match the default, if one was passed to
Gfid. If no default extension was passed in BC, and the 80H bit
is returned set, then the extension returned from the Look is
from the first matching file on the drive. 1If no extension is
supplied by the user, and no default extension is passed 1in BC,
and the file is not found, the file descriptor block extension is
‘two nulls!! - ' o ' ‘

Termination characters and character scanning:

When Gfid parses the text buffer, it skips 1leading spaces:

-and tabs. A file specification is delimited by a comma, plus
sign, space, tab, or carriage return. The extension is separated
from the file name by a dot. If no drive specification is given
by the user, the drive number in SYSRES is assumed.

If vyou are invoking Gfid to scan multiple file
specifications on a single 1line, note that the scan pointer
passed in HL must be incremented past a comma or plus sign
delimiter, since Gfid will not skip these characters.

Error Codes Returned by Get-file-identifier:

@500 Invalid disk number specified

#9501 Name longer than 31 characters

3502 Extension longer than 2 characters
@593 Zero length name given

@509 <?> specified, but Look not requested

If Gfid is invoked requesting Look, then @3XX errors may be
returned by Look and Dio (see Section 3, System Service Vectors).

* System 88 File System: Gfid *

©

Section 2

System 88 System Programmer's Guide
‘ Page 23

Examples of Get-file-identifier Use:

WMo We We We Wws “we W

Sample coding showing use of Gfid to get a file
identifier. We want to get an input file

from the user using .TX as a default extension,

and have Gfid look it up for us. OOPS is our error
bailout point.

BUF DS 44 ; Wwhere to put the body

Prompt DB 'Input file is:',®

(4

Doit LXI H,Prompt ; the prompt to use
LXI D,BUF ; put stuff here. '
LXI B,'TX' ; default extension
MVI A, JEQH ; read, look, ext.
gfid ; call gfid macro.
JcC 00PS ; no good. Complain.

e W W W

We now have drive # in BUF, FDE starting at BUF+l
We need to pick up FDA and NSCTR, and start reading.

Enter/Replace FDE Function

Régisters
HL:

FLG:

Registers
HL:
DE:

BC:
A
FLG:

on entry:
Points to file block built by Gfid (Get-file-identifier
function) or file block in same format as a block built
by Gfid. First byte of block contains disk drive
number; this byte is followed by the FDE that is to be
entered in the directory.
unused

"
1H to enter new file into directory; 8lH to replace
existing FDE (File Directory Entry); @ClH to replace
exiting FDE and clear "new" bit (used by BACKUP).
unused

on exit:

junk

If carry set 1in PSW, error code/subcode in register;
else junk.

junk

junk

If carry set, DE contains error code/subcode.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 24

Description:

MOST IMPORTANT NOTE:

The Enter/Replace function will accept either the
original file descriptor block or the extended
directory file descriptor block. However, if the
original file descriptor block is used, the file to be
entered or replaced must be in the same directory as
the last file looked up by Gfid. 1If the original file
descriptor block is used Gfid assumes that the value of
DirAddr is the correct address of the directory to be
entered into. The safest ways to use the Enter/Replace
function are to either just parse the file name and
pass the resulting extended directory file descriptor
to Gfid or to call Gfid 'look' function without using
Ovrto to look up the file and then call it again
immediately to do the Enter/Replace.

. ~The .Gfid Enter/Replace function allows you to enter or
replace FDEs (File Directory Entries) in disk directories. The
file block passed to the Gfid/Enter or Gfid/Replace functions |is
the same block returned by the Gfid/Get-file identifier function,
or 1is in the same format as a file block built by
Gfid/Get—-file-identifier. The Gfid Enter/Replace functions are
selected by a set 1lH-bit in A. The Replace function 1is chosen
over the Enter function if the 8¢H-bit is set in. A,

_ The Enter function creates a new file directory entry (a new
FDE) in a specified directory. No undeleted files with the same
name and extension as the new file can exist on the disk, or a
0505 error code (file already exists) will be returned. The
Replace function replaces the FDE for an existing file with a new
FDE for that file. If the file that you specify does not exist,
a B398 error (file does not exist) will be returned. The Replace
function CANNOT be used to change file names or extensions, but
all other attributes within the FDE may be modified (such as
deleted or system status, load and start addresses, etc.).
Caution! Do not change the starting disk address (FDA) in the
FDE. The PACK command assumes that the sequential ordering of
- FDEs in the directory corresponds to the sequential ordering of
disk sectors in the files on the disk.

* System 88 File System: Gfid *

©

System 88 System Programmer's Guide
Section 2 Page 25

Brror Codes Returned by Gfid/Enter or Gfid/Replace:

Enter:
@505H File already exists
#504H Directory full (file not entered)

Replace:
P300H File does not exist

Since both Enter and Replace functions work with the
directory, @3XX or @1XX errors may be reported as the result of
data transfer errors.

Example of Replace Function Use:

The following routine demonstrates the use of the
Gfid/Get-file-identifier and Gfid/Replace FDE functions for
setting “the "system" bit for specified files. It also
demonstrates the use of CMPTR for accessing arguments on the
command 1line. Once the program is assembled, it is invoked to
"twiddle" a file by giving the program name, and the name of the
file to "twiddle." It also demonstrates the ease of reporting
errors by invoking the Emsg overlay.

Example showing Gfid use to tweak system bit
in FDE's....

we we we we

REFS SYSTEM
REF
i
CR EQU PDH
TAB EQU 9
FF EQU gCH
ORG USER
IDNT $,$; set up LA and SA
H
JMP Start
JMP Start
;
ISON db 'System Bit Now On!' ,CR,0
ISOFF db 'System Bit Now Off!',CR,O
H
; The code.
H
Start = LHLD CMPTR ; point to arg ’
LXI D,BUF ; buffer area

* System 88 File System: Gfid *

Section 2

o- s we

S N v [0 we wo ~o

System 88 System Programmer's Guide
Page 26

MVI A, 40H ; look up the file.
gfid ; call appropriate gfid
Jc 00PS ; something wrong!
LXI H,BUF+1
MOV A,M ; get tags byte
XRI 40H ;s toggle sys bit
MOV M,A
DCX H : point at block start
MVI A,81H ; tell 'em to replace
gfid
JC o0oPS ; hoPe....
LXI H, ISON ; point at on message
LDA BUF+1 ; get flag byte
ANI 40H ; check system bit
JNZ Msg ; return printing on
LXI H, ISOFF ; it's off
JMP Msg ; return printing off

Error reporting- kick Emsg to squeal on this thing!

OoPS CALL Gover

DB '"Emsg' ; Process the error.
MVI A,CR ; doesn't do a CR!
JMP WH1 ; return doing CR.
The buffer for the file block

UF EQU $; file buffer

The End

END

Look Function

“Registers
HL:

DE:
BC:
Az
FLG:

Registers
HL:
DE:

on entry: ‘
Points to file block built by Gfid (Get-file-identifier
function) or file block in same format as a block built
by Gfid. First byte of block contains disk drive
number; this byte is followed by the FDE that is to be
entered in the directory.
unused

"

2
unused

on exit:

junk
If carry set _in PSW, error code/subcode in register;

* System 88 File System: Gfid *

System 88 System Programmer's Guide

Section 2 Page 27
else DE points to FDE in SBUF1 (Remember about Ovrto).

BC: junk

A: junk

PLG: If carry Set, DE contains error code/subcode, and ZERO
indicates whether error was on a directory or the file.

Description:

MOST IMPORTANT NOTE:

The "Iook" function will accept either
the original file descriptor block or the
extended directory file descriptor block.
However, if the original file descriptor
block is used, the file to be looked up must
be in the same directory as the last file
looked up by Gfid or it will not be found.
If the original file descriptor block is used
Gfid assumes that the value of DirAddr is the
correct address of the directory to be
examined. The safest ways to use the lookup
function are to either just parse the file
name and pass the resulting extended
directory file descriptor to Gfid or to call
Gfid get-file-identifer function with ‘'look'
specified (40H bit in A).

'look' determines which type of file descriptor has been
passed to it and loads the appropriate directory. ('look' uses
DirAddr if passed an original file descriptor block and the path
information in the file descriptor block if passed an extended
directory file descriptor.) The function then scans the
directory for the filename specified and if it finds it, sets DE
to the address of the FDE in the directory. If the file is not
found, 'look' returns CARRY and error code in DE. If passed an
extended directory file descriptor, and CARRY is returned, the
zero flag will be reset if the error occurred on a directory look
up instead of the file 1look up. 1In other words, if all the
directories specified in the file descriptor block were found but
the file wasn't, ‘'look' will return CARRY and ZERO. This is
useful in verifying that the directory specified was in fact
found even though 'look' was given a file that did not exist in
that directory.

Updir Function

Registers on entry:
HL: unused
DE: unused
BC: unused
A: 3

FLG: unused

* Syétem 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 28

Registers on exit:
HL: Jjunk
DE: 1If carry set 1in PSW, error code/subcode in register;
else junk. '
BC: Jjunk
A: junk
FLG: If carry set, DE contains error code/subcode.

Description:

MOST IMPORTANT NOTE:

The Updir function depends on the
accuracy of DirAddr and NFDIR to provide its
service. The directory at SBUF1 will be
written to DirAddr on NFDIR so the directory
that is in the directory area should have
been 1loaded by looking up a file in that
directory without using Ovrto.

Updir checksums the area at SBUF1l, stores the checksum at
NFCHK, gets the drive number from NFDIR, and writes 4 sectors at
disk address DirAddr from memory address SBUF1. After updating
the directory, it checks the other user's NFDIR and if it is on
the same disk, invalidates it so the other user will not use an
incorrect directory.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 3 Page 29

Section 3

System 88 Architecture

'Memoty Map of the System 88

The 8080A central processor can address 64K (K=1024) bytes
of memory. This address space is segmented into the following

regions on the System 88 disk system:

Locations 0@0@0H~@BFFH System ROM

Locations @C@@H-@DFFH System Stack and Wormholes
Locations QE@@H-@FFFH System Stack and Wormholes
Locations 19@@H-17FFH 8" Controller Data area.
Locations 1800H-1BFFH Video board RAM

Locations 1C@@H-1EFFH 5" DD Controller Ram

Locations 1F@@H-1FDFH Reserved for expansion
Locations 1FE@H-1FEFH 8" Controller Control Area
Locations 1FF@H-1FFFH NorthStar floating point board
Locations 200@¢H-FFFFH Disk system RAM

The RAM area from 2008 onward is wused differently in the
Single and Twin systems. In the Twin system all shared code is
in the area from E@J@@H-FFFFH. Below is a functional 1listing of
the major components and their locations in both single and twin:

Overlay Area Single and Twin: 200@H-27FFH

Directory Area Single and Twin: 28g0H-2BFFH

Reserved System Area Single and Twin: 2C@@H-2EFFH

Printer Driver Single: 2F@QH-31FFH Twin: FC@@-FFFFH

User Area Single: 32@9H-FFFFH Twin: 2F@@-DDFFH

Stack Area Single: C80H-FFFH Twin: DE@@H-DFFFH
Shared Area Single: n/a Twin: E@@@H-FFFFH

In using system routines or data areas in assembly language
programs, it is a good idea to use REF statements to define
symbol values from the symbol file SYSTEM.SY rather than using an
EQU with the value given in this manual. If system symbol values
change from version to version, those programs using REFs require
only reassembly, where those using EQUs require a great deal of
editing. The use of REF also forces commonality in names of
system routines and data areas.

* System Memory Map *

Section

Thi

equates found in

systems.

3

S sect

System 88 System Programmer's Guide

ion of
the

SYSTEM EQUATES

Page 390

the System Programmer's Guide details the

SYSTEM

file for both

single

and

Twin

Unless otherwise noted, a symbol appears in both single
and Twin system files with the same value.

UNLESS OTHERWISE NOTED,

SYMBOL

BRGEN
cmd £
DBARF
DEVMASK
EERR

EIC
excl
fupd
KBD
mung

PHANTOM
rd
USERS
Version
wlock

wrt

PAGE
31
32
35
33
35

36
32
32
34
32

33
32
31
34
32

32

ALL VALUES ARE IN HEXADECIMAL

Single Twin
004
0081
9229 0029
g0GF poor
2040 2040
go80 po80
2097
2004
ga18
Bea5
9060
0002
gag1 0002
2081
2006
0003

* Sgystem Equates *

System 88 System Programmer's Guide

Section 3) Page 31
Symbol name: USERS

Single value: p001

-Twin value: p0082

Description:

USERS is defined as 1 or 2 primarily for use in conditional
assembly in building the system. For example, in the IMAGE code,
on a TwinSystem we must have exclusive use of the drive, and must
call Devlock to get this. So, USERS is used as follows:

IF USERS=2
MOV c,a ; get exclusive
CALL Devlock ; on this unit
Jc Oops ; we didn't get it!
ENDIF

Symbol name: BRGEN

Twin value: ge804

See Also: PHANTOM, BRG

Description:

BRGEN defines the output port address of the baud rate
generator in the system. It is used in the Twin core and in the
printer driver to access the baud rate generator.

VERY IMPORTANT NOTE: Do not send any data out BRGEN or

modify BRG, as a "crash"™ of the Twin System will be the
result.

* System Equates *

System 88 System Programmer's Guide

Section 3 Page 32

Symbol name: cmd £

Twin value: 2001

Symbol name: rd

Twin value: 2062

Symbol name: wrt

Twin value: 6003

Symbol name: fupd

Twin value: 0304

Symbol name: mung

Twin value: 2005

Symbol name: wlock

Twin value: 0g06

_Symbol name: excl

Twin value: 0087

See Also: Devlock, Dio, sett, clrt, setp, clrp,
devlock

Description:

These equates define the access classes for the TwinSystem
device manager, Devlock. They stand for, in order, command file
read, read, write, file update, directory mung, write lock, and
exclusive. Directory mung is known as "dirmod" in the SET
command . The access class is passed in B to the Devlock system
service; see the Devlock service for details, as well as the
sett, clrt, setp, clrt, and devlock macros.

In use, read and write access is requested automatically by
Dio; when Dio detects a write to sector @000 of a volume, it
requests mung access rather than write. BASIC is the sole user
of file update access to prevent both users from opening INOUT
files on the same drive. Exclusive is used by services such as
INIT, PACK, and IMAGE for the destination drive. Directory mung
is wused by all services that may alter a directory, such as
DELETE, RENAME, and creating files through the editor, assembler,
or BASIC.

* System Equates *

8

System 88 System Programmer's Guide

Section 3 Page 33
Symbol name: PHANTOM

Twin value: 260

See Also: BRG, BRGEN, PMASK, Giveup

Description:

PHANTOM defines the bits in the baud rate generator that
accomplish switching between users. The bits defined by PHANTOM
cause switching of memory from one user to the other. As the
baud rate dgenerator on the CPU cannot be read, a copy of its
current contents is kept in BRG. V

VERY IMPORTANT NOTE: Do not send any data out BRGEN or
modify BRG, as a "crash®" of the Twin System will be the
probable result.

Symbol name: DEVMASK
Value: g00F
Description:

DEVMASK is the device mask used for restricting unit numbers
passed to Dio, Note that in previous versions of the system,
this mask was effectively 7, restricting device numbers to Dio to
the range 1 through 7. With this change, the range is 1 through

F. Note that only 1 through 7 are defined in the Single User, and
1 through 9 in the TwinSystem.

* System Equates *

System 88 System Programmer's Guide

Section 3 Page 34
Symbol name: KBD

Single value: 2018

See Also: SCRHM

Description:

KBD defines the address of the keyboard port in the system.
It is also shifted over 8 bits to give the video board address in
the single user system. It is not defined in the Twin, as it |is
not a good idea to go accessing the keyboard directly, because it
may latch up the keyboard interrupt handlers. Rather than using
KBD to get the address of the video display, use the contents of
SCRHM to get the upper eight bits of this address.

Symbol name: Version
Single value: pa81

Description:

Version is the version number of the CPU board ROMS this
system was assembled with. ‘;,

* System Equates * , ‘)

System 88 System Programmer's Guide

Section 3 Page 36
Symbol name: EIC
Value: 2080

See Also: EFLGl, SBRK, PVEC, Ovrto, Gover

Description:

EIC is set in EFLGl to indicate that the Exec is in control.
This is used to mask out “Y interrupts. It is also set by other
system services that would rather not be interrupted by “Y. It
is cleared automatically by the overlay services Ovrto and Gover
when they enter an overlay.

* Syétem Equates *

System 88 System Programmer's Guide

Section 3 . Page 35
Symbol name: DBARF
Value: 0020

See Also: EFLG1
Description:
DBARF is a bit set by Exec in EFLGl to tell Emsg and other

parts of the system not to quit on errors,., This bit gets set as
the result of recognizing a question mark (?) at the start of a

command to the Exec. Its action is to suppress the calling of

Killi by Emsg and other error reporting services.

The Init code <checks DBARF before <calling Killi, This
allows the INIT command to be run from a command file if it is
preceded by a question mark:

LDA EFLG1 : see if we quit on
ANI DBARF ; command files
Ccz Killi ; yup, don't want ‘em
Symbol name: EERR
Value: . Bo4D
See Also: " Err, ERROR, EFLG1)

Description:

EERR is set in EFLGl by the root Err service to tell the
Exec that it has an error code stored in ERROR to process. 1If,
when Err is called, EERR is already set in EFLGl, the system
takes an error halt, as it was unable to process the previous
error. See the description of Err for more information.

*'System Equates *

System 88 System Programmer's Guide
Section 3 Page 37

SYSTEM MACROS

This section of the System Programmer's Guide details the
assembler macros found 1in the SYSTEM file for both single and
Twin systems. Unless otherwise noted, a macro appears in both
single and Twin system files with the same definition.

Those unfamiliar with macros should look through the Macro
88 User's Guide, or other literature on macro processing. The
sample overlay shown 1later in this volume uses a number of the
macros shown here.

* System MACROS *

Section 3

MACROS

ALIGN
clrp
clrt
db
dequ

devlock
dw
enter
gfid
giveup

gover
ioret
leave
lock
overlay

overto
print
ralign
rddef
rds

rorg
setp
sett
show
unlock

userpgm
vcb
vect
verdate

System 88 System Programmer's Guide

PAGE Single

Twin

51
49
39

48
41

43
53 *
50

44

43
44

46
45
52
51
52

52
49
39
45
44

47

49
42

* System MACROS *

* * b * * * % ok & * * % % % % * ok * F % * % % % %

* * * *

Page 38

System 88 System Programmer's Guide
Section 3 Page 39

Symbol name: clrt

Twin Macro:

clrt MACRO
#L PUSH B
MVI B,EgH+#1
CALL QEPF6FH
POP B
ENDM
See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,

sett, clrp, setp
Description:

The c¢lrt macro 1is wused to clear a temporary device
allocation through Devlock on the TwinSystem. It takes as its
one parameter the device access code, one of (cmdf, rd, wrt,
fupd, mung, wlock, excl). BC 1is preserved over the call to
Devlock, and the device number for Devlock is expected to be in
C. An absolute hex address is used in the macro expansion because
the Devlock service vector is not expected to move. Although it
does eliminate the need for a separate REF statement, it is a
questionable practice; using the symbolic name and requiring the
REF would be more easily understood.

Symbol name: . sett

Twin Macro:

sett MACRO
#L PUSH B
MVI B, 0AGH+#1
CALL PE@6FH
POP B
ENDM
See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,

clrt, clrp, setp

Description:

The sett macro 1is wused to set (get) a temporary device
allocation through Devlock on the TwinSystem. It takes as its
one parameter the device access code, one of (cmdf, rd, wrt,
fupd, mung, wlock, excl). BC 1is preserved over the call to
Devlock, and the device number for Devlock is expected to be in
c.

* System MACROS *

Section 3

through Devlock on the TwinSystem.
the device access code,
BC is preserved over the call to Devlock,

excl).

System 88 System Programmer's Guide
Page 490

Symbol name: clrp
Twin Macro:
clrp MACRO
#L PUSH B
MVI B,0COH+#1
CALL PE@6FH
POP B
ENDM
See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
sett, clrt, setp
Description:

.. The clrp macro 1is used ¢to <clear a permanent device
allocation through Devlock on the TwinSystem. It takes as its
one parameter the device access code, one of (cmdf, rd, wrt,
fupd, mung, wlock, excl). BC 1is preserved over the «call to
Devlock, and the device number for Devlock is expected to be in
C.

Symbol name: setp ./a
Twin Macro: '
setp MACRO
#L PUSH B
MVI B,80H+#1
CALL PE@6FH
POP B
ENDM
See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
: clrt, sett, clrp
Description:
The setp macro is used to set a permanent device allocation

It takes as its one parameter
one of (cmdf, rd, wrt, fupd, mung, wlock,
and the device

number for Devlock is expected to be in C.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 41

Symbol name: devlock

Twin Macro:

devlock MACRO

#L PUSH B
MVI B,+#1
CALL GEQ6FH
POP B
ENDM
See Also: Devlock

Description:

The devlock macro is used to call the Devlock service in the
TwinSystem. Its one argument is the access code, one of (cmdf,
rd, wrt, fupd, mung, wlock, excl) which is loaded into B. C is
expected to contain the device number, and BC is preserved over
the call. This macro is used in code that has been changed from
the single user system to the Twin by placing it before a call to
Dio to get some special access. An absolute hex address is used
in the macro expansion because the Devlock service vector is not
expected to move. Although it does eliminate the need for a
separate REF statement, it is a questionable practice; using the
symbolic name and requiring- the REF would be more easily
understood.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 42

Symbol name: vecb

Twin Macro:

vch MACRO

$L DB $1+0,#2+0, #3+0
DW $4+0, #5+0 , §6+0, #7+0, #8+0
ENDM

‘Description:

The vcb macro is used internally in the system to set up the
control tables for disk devices. As there are no hooks in that
part of the system allowing user access, it will not be described
further.

Symbol name: verdate

Twin Macro:

verdate MACRO
#L DB v7/22/88 RTM'
ENDM

Description: . ’ %

The verdate macro expands into the c¢reation date for the
TwinSystem resident.

* System MACROS * 4)

System 88 System Programmer's Guide
Section 3 Page 43

Symbol name: leave

Twin Macro:

leave MACRO

#L PUSH H
LXI H,#1
CALL Leave
POP H
ENDM
See Also: Leave, Enter, enter

Description:
The leave macro is used to call the Leave service, which
leaves the «critical region defined by the semaphore address

defined by the argument to the macro. The semaphore address must
be in memory accessible by both users.

Symbol name: enter

Twin Macro:

enter MACRO

#L PUSH H
LXI H,#1l
CALL Enter
POP H
ENDM
See Also: Leave, Enter, leave

Description:

The enter macro 1is wused to 1invoke the Enter service,
requesting entry into a critical section defined and protected by
the semaphore address given as the argument. The semaphore
address must be in memory accessable by both users. If the
semaphore is «currently held, the wuser 1is blocked until the
semaphore is released.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 44

Symbol name: unlock
Twin Macro:

unlock MACRO

$L CALL Unlock
ENDM
See Also: Unlock, Lock, lock

Description:

The unlock macro invokes the Unlock service, which allows
switching between users to take place again. This service and
the Lock service should be used for extremely short periods of

time, and with caution, as careless use will <cause performance

degradation or system failure.

Symbol name: lock

Twin Macro:

lock MACRO
#L CALL Lock
ENDM ' .
See Also: Lock, Unlock, unlock

Description:

The 1lock macro calls the Lock service, which locks the
current user in the Twin against switching. This service and the
Unlock service should be wused for extremely short periods of
time, and with caution, as careless use 'will cause performance
degradation or system failure.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 45

Symbol name: print

Twin Macro:

print MACRO

$L CALL Print
DB *A,0
. ENDM
See Also: Print, Show, show

Description:
This service prints the text supplied as the argument on the
system printer through WH7. Note that the macro supplies a zero

terminating byte, so that multiline text cannot be printed using
this macro. :

Symbol name: show

Twin Macro:

show MACRO
#L CALL Show '
DB #A,0
ENDM
See Also: Print, Show, print

Desbription:
This macro displays the text passed as the argument on the

display screen. Note that a terminating zero byte is supplied by
the macro.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 46

Symbol name: gover

Twin Macro:

gover MACRO

#L EQU $
IF NOT NULL({#2]
MVI A, #2
ENDIF
CALL Gover
DB "1
IF NOT NULLI{#3]
JC #3
ENDIF
ENDM

Symbol name: overto

Twin Macro:

overto MACRO

#L EQU $,
: IF NOT NULL[#2]
MVI A, #2 .
ENDIF
CALL Ovrto B
DB T#1?
IF NOT NULL[#3]
JcC $#3
ENDIF
ENDM
See Also: Gover, Ovrto, gover

Description:

These macros are used to invoke overlays in a fairly general
manner. The first argument is mandatory, and is the 4 character
overlay name, without quotes., 1If the second argument is present,
it is loaded into A as a function code. 1If the third argument is
present, it is used as the address to Jjump to 1if the overlay
returns with the Carry bit set in PSW. The differences between
the Gover and Ovrto are described 1in the section on system
services; briefly, Ovrto "remembers" the overlay currently in the
overlay area and restores it on returning, and Gover does not.

* System MACROS *

. System 88 System Programmer's Guide '
Section 3 Page 47

Symbol name: userpgm

Twin Macro:

userpgm MACRO

ORG USER
IDNT $,$
JMP $+6
JMP $2
LXI H,0
DAD SP
SHLD ESP
IF NOT NULL[#3]
CALL Show
DB #3,0DH, 9
ENDIF
JMP #1
ESP -DW a

ENDM

See Also: Show, USER

Description:

This macro is wused to generate a program header for user
programs. The first argument is mandatory, and is the starting
address of the program. The second argument is also mandatory,
and is the reentry address in the program. The third argument is
optional, and if present is expected to be a text string enclosed
in quotes. This string is displayed on the screen when the
program begins execution. The entry stack pointer is also stored
in ESP for use in error recovery and stack limit checking in the
program.

* System MACRQS *

System 88 System Programmer's Guide
Section 3 Page 48

Symbol name: dequ

Twin Macro:

dequ MACRO

#L EQU #1
DEF #L
ENDM

Description:
The dequ macro is used as a shorthand to equate a symbol to

a value and define that symbol. It is used in building the
system symbol files, and in BASIC.

* System MACROS * ' \)

System 88 System Programmer's Guide
Section 3 _ Page 49

Symbol name: vect

Twin Macro:

vect MACRO

#L EQU rpc
DEF #L

rpc SET rpc+3
ENDM

Description:

The vect macro is used in the TwinSystem to define the jump
vectors starting at E@@@H. The symbol given is equated to the
value of rpc, and the symbol defined. Then rpc is incremented by
3 to account for the JMP instruction that will be generated 1in
the eventual code.

This macro is used in the following manner in generating the
symbol file for the TwinSystem:

rpc SET "PEQOOH

Cold -vect ; 08 cold start
Warm vect ; @3 warm start
Msg vect ; 06 display msg

This defines the symbol Cold with value E@@@H, Warm with
value E@@3H, and Msg with value E@@6H, while not generating any
code.

* System MACROS *

Section 3

System 88 System Programmer's Guide

Symbol name : ioret
Twin Macro:
ioret MACRO
#L JMP 404
ENDM
See Also: Ioret

Description:

Page 540

This macro expands into a call to Ioret, to return from an
interrupt or to return to an environment placed on the stack. An
absolute hex address is used as the code for Ioret is in ROM.

Symbol name: giveup
Twin Macro:
giveup MACRO
L CALL Giveup
ENDM
See Also: Giveup

Description:

The giveup macro expands into a call to Giveup, which gives
up the processor in the TwinSystem.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 51

Symbol name: ALIGN
Twin Macro:

ALIGN MACRO
ORG ($+#1) AND NOT ($1-1)
#L EQU $
ENDM

Description:

The ALIGN macro 1is used to force the assembler's program
counter ($) to the specified boundary. For example, ALIGN 10@¢H
forces the program counter to the next page boundary (lower 8
address bits all zero). Note that it is a bad programming
practice to assume that the area from the current location
counter to the ALIGNed area contains zeros.

Symbol name: rddef

Twin Macro:

rddef MACRO

#L EQU rpc
DEF #L
rpc SET #l+rpc
. ENDM
See Also: rds, rorg, ralign

Description:

The rddef macro is used to define a symbol and calculate
space for it while not generating any code. It is used
extensively in generating the symbol file for the TwinSystem.

The following example shows use of the rddef and dequ macros
in generating the TwinSystem symbol file:

rpc rorg 200@H Stuff starts here

LYY

OVRLY rddef 2048 2K for overlay

~e we

OVENT dequ OVRLY+4 overlay entry point
SBUF1 rddef 1024 ; directory area
CBUF rddef 256 ; command file buffer

* System MACROS *

System 88 System Programmer's Guide

Section 3 Page 52
Symbol name: ralign 9
Twin Macro:

ralign MACRO

rpc SET (rpc+#1) AND NOT (#1-1)

#L EQU rpc

ENDM

See Also: rddef, rds, rorg
Description:

The ralign macro is used with the rddef and rds macros to

force

Symbol name:
Twin Macro:
rds
#L
rpc
See Also:
Description:

The rds
rpc.

the pseudo-location counter

rpc to the specified boundary.

rds
MACRO
EQU rpc
SET #l+rpc
ENDM
rorg, rddef, ralign ’

macro is used to advance the pseudo-location counter

It is used in building the TwinSystem symbol file.

Symbol name: rorg
Twin Macro:
rorg MACRO
#L EQuU #1
rpc SET #1
ENDM
See Also: rddef, rds, ralign
Description:
The rorg macro 1is wused with the rddef, rds, and ralign

macros to force the pseudo-location counter rpc
starting value.

to a specified
See the example given for the rddef macro.

* System MACRQS *

@

System 88 System Programmer's Guide
Section 3 , Page 53

Symbol name: gfid

Single Macro:

gfid MACRO
IF USERS=2
#L CALL Gfid
ELSEIF $>2800H
#L CALL Ovrto
DB 'Gfid!
ELSE
#L CALL OVGFID
ENDIF
ENDM

Twin Macro:

gfid MACRO '
$#L CALL Gfid
ENDM
See Also: USERS, Gfid, OVRLY, EIC, Ovrto, Gover

Description:

The gfid macro expands into a call to the Gfid service on
single and Twin systems. On the Twin system, Gfid is a resident
service, so it is called directly. On the single user system,
Gfid 1is an overlay, and so must be invoked differently if the
macro is expanded from within the overlay area (program counter
between 200¢H and 28¢@H). The OVGFID routine called in single
user overlays disconnects “Y by pushing the contents of PVEC onto
the stack and pointing PVEC at Ioret. When Gfid returns, the
original contents of PVEC are restored. This is done to correct
a timing window in the processing of “Y in the single user system
when overlays are fetched (see description of Ovrto for details).

* System MACROS *

System 88 System Programmer's Guide

Section 3 Page 54
Symbol name: overlay

Macro:

overlay MACRO

ORG OVRLY

IDNT $,$

DB #1

IF NOT NULL(#2]
JIMP 42

ENDIF

ENDM

Description:

The overlay macro expands into the header for an overlay.
The first mandatory argument is the overlay name in quotes. .The
second argument, which is optional, expands into a jump to the
address given.

* System MACROS * \4)

©

System 88 System Programmer's Guide

Section 3 : Page 55
Symbol name: db
Macro:
db MACRO
#L DB #A
| ENDM
Symbol name: dw

Twin Macro:

dw MACRO
#L DW #A
ENDM

Description:

The dw and db macros are used mainly to suppress the display
of generated code from long data lists. 1If MACLIST @ is included
in the assembly source file, macro expansions are not 1listed.
So, when the dw or db macro is used instead of the DW or DB
statements, no generated code is displayed in the listing.

* System MACROS *

System 88 System Programmer's Guide

Section 3 Page 56

SYSTEM DATA AREAS

This section details data areas used by the single and Twin
systems. Many symbols appear in both single and Twin systems,
but have differing addresses in each. As in the descriptions for
system equates and service vectors, references are made to other
interacting items in the system.

UNLESS SPECIFICALLY STATED, ALL VALUES ARE IN HEXADECIMAL

5

* System DATA Areas * ,“)

System 88 System Programmer's Guide

Section 3 Page 57
@ SYMBOL PAGE Single Twin
BHA - 74 EdSF
BOOTVOL 88 2D92
BRG 82 gC68
BUGS 193 2DFC 2EB4
BUSIES 85 gCeE 9C6E
CBUF 63 2C00 2C029
CMDA 65 2D8C 2E82
CMDD 64 2D89 2E7F
CMDF 63 2D88 2E7E
CMDN 65 2D8E 2E84
CMDP 64 2D8A 2E80
CMND 96 2D49 2E3C
CMPTR 96 2DC7 2E7C
Command 81 gc4ac
DEFPATH . 99 : 2E27 2D80
DioA 84 : 2C66 gC66
DioBsy 85 @cec gCe6C
DioDn 84 pC6B gC6B
DioDrv 84 gC69 gC69
DioHL 84 9Ce67 gCe67
DiraAddr 93 2EQ2 2EA7
e DONT 79 2D 90 2ES8E
N DRVADTAB 83 @C7E @C7E
EFLG1 162 2DC9 2EB@
EFLG2 192 2DCA 2EB1l
ERROR 104 2DO9A 2EB7
EXECSP 92 2DAF 2EBD
FILE 92 2DCB 2EBF
GFLOCK 75 EQ7E
I0IP 83 @C62
JOBST 193 2D9E 2EB2
KBEX 70 2D86 2E 38
KBIG 67 2D84 2E 36
KBIP 67 2D82 2E34
KBMODE 1 71 _ 2E3A
KBMODE 2 71 2E3B
KBUF 66 2Doo 2DCo
LERR 104 2D9C 2EB9
LOCK 100 2E8F
LUSER 123 2DC6 2EB3

(* System DATA Areas *

Section 3

SYMBOL

MemAdd
MEMTOP
MTO
MUNG1
MUNG2

MUNG 3
MUNG4
MUNGP
NDRIVES
NFA

NFCK
NFDIR
ONCE
ovsC
_ OVDE

OVENT
OVHL
OVMEM
OVNM
OVPSW

OVRLY
Pagesl
PATH
PMASK
POS

PVEC
SBRK
SBUF1
SBUF2
SBUF3

SBUF4
SCEND
SCHR
SCREEN
SCRHM

SINT
SRA1
SRA2
SRA3
SRA4

System 88 System Programmer's Guide

PAGE
81
92
89
95
95

95
95
88
89
11

94
94
191
72
72

86
72
100
72
72

86
81
99
74
99

76
76
87
87
87

87
98
78
86
98

89
60
60
60
60

Single Twin
gC49
2D84 2EBB
2DA2
2DA7 2E9F
2DA9 2EAl
2DAB 2EA3
2DAD 2EAS
2D o0
2DOF 2EAQ
2E00 2EAD
2DA1 2EAC
2DA0 2EAB
2DC5 2EAF
2DC1 2E9B
2DBF 2E99
2004 2004
2DBD 2E97
2E53
2DB6 2E90
2DC3 2E9D
2000 2000
@C4B
2E 04 2D49g
E@5D
9CQoE 2E QA
2D93 2E87
2D91 2E86
2809 2800
2909
2200
2B0¢g
@C1lE 2E@8
2D98 2E8C
1800
gC1F 2E09
2DB3
gC1lg gC1lg
gC1l2 @Cl2
gC1l4 pC1l4
#C1l6 gC16

* System DATA Areas *

Page 58

System 88 System Programmer's Guide

Section 3 Page 59
b SYMBOL PAGE _ Single Twin
SRAS 61 gCc1s gCcls
SRA7 195 gclc 2EEC
SRA7I 61 gclc
STACK 85 19000
SUWHS8 62 gCc4ao
SYSRES 93 2D92 2EAA
TIMER 91 gCceo 2EQ2
UBRK 77 2D97 2E8B
UCHR 78 2D99 2E8D
USER 73 3200 2F 00
uUsp 9¢ 2E00
USRNAME 99 - 2EEE
USTATS 75 2DB1 EGSE
UTIME - 91 2E 02
UVEC 77 2D95 2E89
VCBTAB 83 BC63 8C63
VERLOC 80 2439
WAKEUP 97 gC1lA 2E06
WHICH 83 pCcel
WHS ' 62 BC40 2E2C

% XTIMER 80 _ 6ceo

(| ' * System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 690
Symbol name: SRA1
Value: gclo

Description:
SRA1 contains the address of the interrupt handler for
memory parity interrupts generated by new memory boards such as

the 48K memory used in the Twin. This location should not be
modified by the user.

Symbol name: SRA2
Value: gclz
‘Description:
SRA2 is the service vector for sector pulse interrupts from

the 5" SSSD disk controller. It should not be modified by the
user. :

Symbol name: SRA3

! e
Value: 0Cl4 , ‘J’
Description:

SRA3 is reserved for future use by the PolyNet interface.

Symbol name: SRA4
Value: gC16
Description:

SRA4 contains the address of the interrupt service routine
for the USART. Caution should be wused 1in handling of this
interrupt by user programs. In the TwinSystem, this interrupt is

best 1left to the system, as the USART baud rate generator latch
controls user switching.

* System DATA Areas * .)

System 88 System Programmer's Guide

Section 3 Page 61
Symbol name: SRAS

Value: gCcls

Description:

SRAS5 contains the address of the keyboard interrupt service
routine. This location should not be modified by the wuser in
either single or Twin systems.

Symbol name: SRA7I
Twin value: gc1c
Description:

SRA7I is the TwinSystem symbol for the single step interrupt
vector. In the TwinSystem, each user has a separate copy of
SRA7, and the system vectors the common SRA7I fielded interrupt

through the proper user's SRA7 vector. This allows each user to
use the front panel code at the same time.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 62
Symbol name: -~ WH8

Single value: gCc4o

-Twin value: 2E2C

Symbol name: SUWHS

Twin value: 8C40

See Also: Ticker, WAKEUP

Description:

WH8 is used as an interrupt service vector. It contains the
address of the routine to be entered when the real time clock
interrupts. In the single user system, it is connected to the
normal clock processing logic. In the TwinSystem, it Iis
connected to Ticker, the TwinSystem clock handler. TwinSystem
WH8 is not used. WH8 should not be modified by the user, as the
real time clock is fundamental to the operation of the system.
The WAKEUP vector is provided for use of the real time clock by
user programs. The coding for the clock interrupt handler in ROM
is essentially:

Clock PUSH PSW
PUSH B
PUSH D
PUSH H ; std save sequence
LHLD WHS8 ; get vector
PCHL ; go do it.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 63
Symbol name: - CBUF

Value: 2C 00

See Also: CMDD, CMDF, CMDP, CMDN, BASIC

Description:

CBUF is the 256 byte buffer used to hold the current sector
of a command file.

BASIC also makes use of CBUF. When running programs, if
BASIC detects that command files are not in wuse, by CMDF
containing zero, it wuses CBUF to hold its line number cache.
This cache is a list of 32 bit entries (64 in number, to give 256
bytes), consisting of 16 bits of BASIC line number followed by 16
bits of memory address for the start of the program 1line. An

entry is placed in the cache by Findln only when it is searched

for as the result of a GOTO, GOSUB, or similar statement. This
makes a 64 entry cache quite effective. When the cache fills up,
new entries are placed in the cache treating it as a «circular
list. This wuse of a line number cache greatly speeds up line
number searches in BASIC, since BASIC normally searches for
target line numbers by starting at the beginning of the program
text and scanning forward line by line.

Symbol name: CMDF
Single value: 2D88
Twin value: 2E7E

See Also: Killi, DBARF, CMDD, CMDN, CMDP, CBUF
Description:

CMDF is a single byte flag used to indicate that characters
are being read from a command file. 1If CMDF is zero, command
file mode is not active, and requests for characters through WH@
are satisfied from the keyboard buffer. If CMDF is nonzero,
character requests through WH@ are satisfied £from the command
file buffer CBUF. CMDF is set nonzero by the Exec in setting up
a command file, and set to =zero by either Killi 1in killing
command files, or by the command file code itself when end of
file is detected on the command file.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 64
Symbol name: CMDD

Single value: 2D 89

“Twin value: 2E7F

See Also: CMDN, Devlock, cmdf, Killi

Description:

CMDD is used to hold the drive number for the active command
file. It is set by the Exec in starting up a command file.

In the TwinSystem, each time a sector is read from the drive
noted by CMDD 1into CBUF, permanent command file read access
(cmdf) is requested through Devlock. This permanent command file
read access is cleared when end of file is reached on the command
file, or through calling Killi and aborting command files.

Symbol name: CMDP
sinéle value: 2D8A
Twin value: 2E80
See Also: CBUF, CMDA

Description:

CMDP is the 16 bit pointer into the command file buffer
CBUF, and points to the next character to remove from the buffer.
When the pointer points to CBUF+10@H, another sector must be read
from the disk; the drive number is in CMDD and the disk address
is in CMDA. When a command file is set up by the Exec, CMDP |is
initialized to CBUF+106H, so that the first character requested
through WH@ causes the first sector of the command file to be
read into CBUF.

* System DATA Areas *

0

System 88 System Programmer's Guide

Section 3 Page 65
Symbol name: CMDA

Single value: 2D8C

“Twin value: 2E82

See Also: cBUr, CMDD, CMDP, CMDF

Description:

CMDA is the 16 bit disk address of the next sector to read
from the disk. It 1is initialized by the Exec to the starting
disk address of the command file, and incremented after each new
sector is read from the disk.

For Exec/90 and later systems, CMDA will be properly
adjusted by PACK if the disk <containing the <currently active
command file is PACKed. On earlier systems, this is not done,
with the result that the next sector read, after the -disk "is
shuffled by PACK, may no longer be the next sector of the
original command file!

Symbol name: CMDN
Single value: 2D8E
Twin value: * 2E84
See Also: CMDF, cmdf, Devlock

Description:

CMDN is the 16 bit number of sectors remaining 1in the
command file. It is set by the Exec to the number of sectors in
the command file, and decremented after each sector 1is read.
When a new sector 1is needed, and CMDN is zero, CMDF is set to
zero to disable command files, as end of file has been hit. On
the TwinSystem, permanent command file read (cmdf) 1is also
cleared for the drive.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 66
Symbol name: KBUF

Single value: 2D @0

-Twin value: 2DCP

See Also: KBIP, KBIG, Killi, Flush

Description:

KBUF is the address of the 64 byte keyboard ring buffer. As
keyboard characters are picked up, they are placed in the ring
buffer wuntil the buffer fills. Once the buffer is full, new
characters are dropped on the floor.

* System DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide

Section 3 Page 67
Symbol name: KBIP

Single value: 2D82

-Twin value: 2E 34

Symbol name: KBIG

Single value: 2D84

Twin value: 2E 36

See Also: KBUF, Killi, Flush, KBEX

Description:

KBIP and KBIG are the keyboard ring buffer "put" and "get"
pointers. They are altered at the interrupt level. They should
not be modified by the user at any time. They may be examined to
see if there are characters in the ring buffer by code such as
the following, which is extracted from BASIC's INP(@#) function:

DI ; don't bug me!

LHLD KBIP ;: get put pointer

LDA KBIG ; and 1sb of get

EI ; allow ints again

CMP L ; see if equal

LXI H, 0 ; assume so, return @
JZ AINP1 ; jmp/empty, return @
INR L ; else return 1, we've
JMP AINP1 ; got something there.

The above code returns a @@ in HL if there are no characters
in the ring buffer, and a 1 in HL if there are. This 1is
determined by comparing the put and get pointers. Since these
pointers are altered at the interrupt level, interrupts must be
disabled while they are fetched to insure that both are correct.
If both pointers are the same, the buffer is empty.

Here is the code used to put a character into the ring
buffer. It is <copied from the keyboard interrupt service code
for the TwinSystem, the character to be placed in the buffer is
in C, and the interrupts are disabled:

LHLD KBIP ; Put pointer

MOV M,C ; poke into buffer

DCR L ' ; dink pointer

MVI A, (KBUF~-1) AND @FFH

CMP L ; did we wrap around?

JNZ Kbil ; jmp/nope

MVI L, (KBUF+63) AND @FFH ; reset if so

* System DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide

Section 3 Page 68
Kbil LDA KBIG ; see if we're full
CMP L
Jz Kbxx ; Jjmp/yup, drop on floor!
SHLD KBIP ;: else update put ptr
JMP Kbxx ; and split

The ring buffer put pointer is 1loaded, and the character
stored into the ring buffer. The put poninter is decremented and
checked for wraparound. The ring buffer get pointer is 1loaded
and compared to the put pointer. If they are equal, we have 63
characters in the ring buffer; it is full. We exit without
storing the updated put pointer. Once the buffer fills, incoming
characters are stored on top of the last character in the buffer.
If the buffer is not full, we store the updated put pointer and

exit.

Here is the code that removes characters from the ring
buffer, again taken from the TwinSystem. Cin is hooked up to
WH@. Note the checks for command files (CMDF) and the wuse of

giveup:

restore saved thing
wait for a while

Cwt POP H
giveup

e W

; Try to get a chr!

Cin LDA CMDF ; see if command files active
ORA A
JIN2Z Cfin ; Jjmp/yup, go check over there
DI ; don't bug me!
PUSH H ; save ‘HL on the stack
LHLD KBIG ; get pointer
LDA KBIP ; put pointer
CMP L ; anything there?
JZ Cwt ; jmp/nope, go wait & try again
MOV A,M ; pick up chr
PUSH PSW ; stash on stack
DCR L ; dink ptr
MVI A, (KBUF~1) AND OFFH
CMP L
JINZ Cinl ; jmp/didn't wrap around
MVI L, (KBUF+63) AND Q@FFH
Cinl SHLD KBIG ; save. new pointer
POP PSW ; restore chr
EI ; allow interrupts
LHLD KBEX ; get tail end handler address
XTHL ; Swap onto stack, get HL back
RET ; return thru post processor

* System DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide
Section 3 Page 69

This routine is entered at Cin from WH@. First, the check
for command files being active 1is made, and control |is
transferred to the command file get routine (Cfin) if so. Then
interrupts are disabled and HL 1is pushed onto the stack.
Interrupts are disabled because KBIP and KBIG may be altered at

-the interrupt level. HL 1is pushed so we do not alter any

registers but A and PSW. If the get and put pointers are equal,
the buffer is empty; we go to Cwt where HL is restored, and we
give up the processor. When control is returned to our task, we
try -again falling into Cin. If the buffer had something in it,
we load the character, decrement the pointer mod ring size, and
store the updated pointer. Control is returned to the caller of
Cin/WH@ by going through the routine pointed to by KBEX. This is
usually Fold, Flip, or Jjust a RET instruction. KBEX can be
pointed to custom routines for special purposes.

These routines show the interaction of KBIP, KBIG, and KBUF.
KBIG and KBIP are initially set up by calling Killi, which resets
them and marks the ring buffer clear. Note also the use of KBEX,

which is 'used to include post processing routines such as Flip

and Fold.

* System DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide

Section 3 Page 70
Symbol name: KBEX

Single value: 2D86

-Twin value: 2E38

See Also: KBUF, KBIG, KBIP, Flip, Fold

Description:

KBEX holds the address of the character input postprocessing
routine. The code pointed to by KBEX 1is executed for each
character read through WH@. KBEX is initialized to point to a
RET instruction. The Exec Flip and Fold commands point KBEX at
routines Flip and Fold. The routine connected to KBEX must not
modify registers BC, DE, or HL. See KBIP and KBIG for the code
involving KBEX.

* 8ys£em DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide

Section 3 Page 71
Symbol name: KBMODE 1

Twin value: | 2E3A

"Symbol name: KBMODE 2

Twin value: 2E 3B

See Also: PHANTOM, SET SKM command

Description:

KBMODE1 and KBMODE2 are used in the Twin to control single
keyboard mode, which is enabled by the Exec command SET SKM ON.
When active, this mode allows both users to be controlled from a
single keyboard. As KBMODEl and KBMODE2 are in per-user memory,
SKM is enabled on a per-user basis. That 1is, if wuser 1 has
enabled ©SKM, user 1 can type into user 1 or user 2, but for user
2 to type into user 1, user 2 must also enable SKM.

Single keyboard mode (SKM) when enabled is controlled by the
I and II function keys on Keyboard III, (on Keyboard II, “ =1 =
1C hex and "] = II = 1D hex). When SKM 1is active, these
character codes will not be seen by programs; they are trapped

within the keyboard handler.

If KBMODEl is zero, SKM is disabled. KBMODEl nonzero means
that SKM is active, and KBMODE2 has @@ to indicate the characters
go to user 1, and PHANTOM if the characters go to user 2.

Note that since WordMaster II depends on the use of the I

and II function keys, it disables SKM by storing a zero in
KBMODE 1.

* System DATA Areas * Keyboard Processing *

System 88 System Programmer's Guide

Section 3 Page 72
Symbol name: " OVNM
Single value: 2DB6
-Twin value: 2E99
See Also: Ovrto, Gover

Description:

OVNM 1is a 6 byte area wused internally by the system in
overlay fetch processing. It contains the name of the target
overlay, followed by the extension OV for Look to find. It
should not be used or modified by the user.

Symbol name: OVHL
single value: '2DBD
Twin value: 2E97
Symbol name: OVDE
Single value: 2DBF
Twin value: 2E99
Symbol name: OVBC
Single value: ' 2DC1
Twin value: 2E9B
Symbol name: OVPSW
Single value: 2DC3
Twin value: 2E9D

Description: |
OVHL, OVDE, OVBC, and OVPSW are temporaries used in overlay

processing to hold the contents of the registers. They should
not be used or modified by the user.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 73
Symbol name: USER
Single value: 3200
“Twin value: 2F 00

Description:

USER 1is the start of the user memory area. All user
programs are assumed to start here. Program start addresses are
assumed to be equal to USER if the Exec START command is to work,
and program reentry addresses are assumed to be USER+3 for the
Exec REENTER command to work.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 ' Page 74
Symbol name: PMASK

Twin value: E@5D

See Also: BHA, PHANTOM, SET SOLO command

Description:

PMASK is the processor switch mask in the TwinSystem. If
PMASK contains 0@, then the system is either running as a single
user, on single user hardware, or is running in SOLO mode as the
result of the SET SOLO command. If PMASK is zero as the result
of the SET SOLO command, the 2¢H bit in BHA will be set, allowing
PMASK to be reset to PHANTOM when the SET TWIN command is given.

Altering PMASK is an excellent way of blowing up the
TwinSystem and probably the quickest.

Symbbi hame: o BHA
Twin value: E@SF
See Also: Devlock, SET YAK, SET SOLO commands

Description:

BHA contains a number of flag bits used in the TwinSystem.
The currently allocated bits are:

80H YAK enabled. 1If the 8¢H bit in BHA is set, device
allocations through Devlock will be reported on the video
screen for both users. This 1is enabled by the Exec
command SET YAK ON and disabled by the Exec command SET
YAK OFF as well as by modifying the bit directly.

49H Two users. The 40H bit is used in the processing of the
SET SOLO command. It is set during SET SOLO to indicate
that ©before solo mode was started, two users were
running. This bit should not be altered by the user.

20H WAIT mode., Setting the 2¢H bit in BHA enables device
WAIT mode. This is normally set by the Exec command SET
WAIT ON and disabled by SET WAIT OFF Exec command. See
the description of Devlock for more details. This bit
can be turned on and off by user programs, as long as
other bits are not affected.

1FH These bits are reserved for future use in the TwinSystem.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 75
Symbol name: USTATS

Single value: 2DB1

-Twin value: E@5E

Description:

USTATS contains the current status of the USART maintained
by the system printer driver. 1It is not normally modified by
user programs. On the TwinSystem especially, any modifications
should be done with extreme care and an understanding of the
printer driver and user switching.

Symbol name: GFLOCK
Twinuyalue: E@7E
See Also: Gfid

Description:
GFLOCK is the semaphore for Gfid. It should not be modified

by the user under any circumstances, as a complete failure of the
file system may result,

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 76
Symbol name: SBRK

Single value: 2D91

-Twin value: 2E86

See Also: PVEC, DONT, EIC, EFLG1l, GFLOCK

Description:

SBRK 1is the single byte flag set nonzero when a "Y is
recognized at the keyboard interrupt level. It 1is the user's
responsibility to <clear SBRK. Note that SBRK is set nonzero by
Yy if the “Y action is masked by DONT (or GFLOCK in the Twin),
but is not set if EIC is set in EFLGl; see the coding for escape
characters and the other descriptions for details.

'S?ﬁbol name : | PVEC

Single value: 2D93

Twin value: 2E87

See Also: SBRK, DONT, EIC, EFLGl, GFLOCK, Ioret, Iexec

Description:

PVEC contains the address of the routine to enter as the
result of a Y being received from the keyboard. The action of
“Y is masked by DONT, EIC set 1in EFLGl, and GFLOCK on the
TwinSystem. The routine is expected to return by executing a JIMP
Ioret., All registers except SP may be altered, as the
environment of the interrupted program is on the stack. PVEC is
initialized in the Exec to point to Iexec, which runs the Exec
overlay as the result of a "Y interrupt. 1If the action of “Y is
masked by EIC in EFLGl, DONT, or GFLOCK, SBRK will still be set
nonzero. For example, BASIC points PVEC at Ioret, and checks the
state of SBRK at the top of its interpretation loop to see 1if a
“Y has been hit.

When wusing PVEC or UVEC in a program, it is a good practice
to save the old values of these vectors and restore them upon
exiting the program. The user should not assume that PVEC or
UVEC are initialized, or that SBRK or UBRK contain zero.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 77
Symbol name: UVEC

Single value: 2D95

“Twin value: 2E89

See Also: UCHR, UBRK, DONT, GFLOCK

Description:

UVEC contains the address of the routine to enter as the
result of receiving the character contained in UCHR at the
keyboard interrupt level. This action 1is masked by DONT and
GFLOCK on the TwinSystem. The routine is expected to return by
executing a JMP lIoret. All registers except SP may be altered,
as the environment of the interrupted program is on the stack.
UVEC is initialized in the Exec to point to Ioret. If the action
is masked by DONT, or GFLOCK, UBRK will still be set nonzero.

When using PVEC or UVEC in a program, it is a good ©practice
to save the o0ld wvalues of these vectors and restore them upon
exiting the program. The user should not assume that PVEC or
UVEC are initialized, or that SBRK or UBRK contain zero.

Symbol name: UBRK
Single value: 2D97
Twin value: 2E8B
See Also: UVEC, UCHR, DONT, GFLOCK

Description:

UBRK 1is a single byte flag set nonzero at the keyboard
interrupt level when the character in UCHR is recognized. It |is
the wuser's responsibility to clear UBRK. Note that UBRK is set
nonzero even if the action of UVEC is masked by DONT.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 78
Symbol name: SCHR

Single value: 2D98

-Twin value: 2E8C

See Also: DONT, GFLOCK, Fpanel

Description:

SCHR contains the character that will cause activation of
the front panel code when the character 1is recognized at the
keyboard interrupt level., It is set to zero by the Exec DISABLE
command, and in the boot process. It is set to “Z by the Exec
ENABLE command. The contents of SCHR is used throughout the
system to determine if the system is in ENABLEd or DISABLEd mode.

Symbol name: ~ UCBR

Single value: 2D99

Twin value: 2E8D

See Also: UVEC, UBRK, DONT, GFLOCK, KBMODE1l, KBMODE1l

Description:

UCHR contains the character that will cause the program to
interrupt to the routine pointed at by UVEC when recognized at
the keyboard interrupt 1level. Additionally, UBRK will be set
nonzero when this character is recognized. Good programming
practice and common sense dictate that UVEC be set up before UCHR
is initialized.

At the keyboard interrupt 1level when checking for an
interrupt character, the system first checks for “Y. Then the
character is compared to SCHR, the system enable character.
After this check, the character is compared to UCHR.
Additionally in the TwinSystem, if single keyboard mode |is
enabled (SKM, see KBMODEl and KBMODE2), checks for function keys
I and II are made prior to checking for “Y. This means that UCHR
should not be set to Y, the contents of SCHR (usually "“Z), or in
the TwinSystem, function codes I or II. If UCHR is set to one of
these wvalues, that character will most likely never be seen, as
it is intercepted before the test for UCHR is made.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 79
Symbol name: DONT

Single value: 2D99

-Twin value: 2E8E

See Also: PVEC, SBRK, UVEC, UCHR, UBRK, SCHR, Dio

Description:

DONT 1is the single byte interlock set and reset by Dio that
disables action by interrupt characters "Y and the contents of
UCHR and SCHR. It is set nonzero at the start of an I/0

operation and cleared when the operation completes. Program
interruptions may be blocked by non-I/0 programs by setting DONT
nonzero. If a program doing 1I/0 wishes to block out

interruptions, it should point PVEC and UVEC at Ioret, and set
SCHR to zero. Programs should not disable interrupts by using a

‘DI (disable "interrupts) instruction ~for other than very short

(less than .05 seconds) <critical sections, as this severely
affects overall performance, especially typeahead and printer

buffering, and is very detrimental on the TwinSystem.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 80
Symbol name: VERLOC
Single value: 2439

Description:

VERLOC is the location in ROM of the ROM version number. It
is not included in the TwinSystem, as the TwinSystem will not
boot on other than version 81 ROMS.

Symbol name: XTIMER
Twin value: oC0o0
Description:

XTIMER 1is the internal name in the Twin for the clock area
in CPU board RAM. Separate copies of TIMER are Kkept for each
user in the Twin.

* System DATA Areas *

System 88 System Programmer's Guide _
Section 3 Page 81

Note: The following three symbols are used in the operation of
the 5" DSDD disk controller. See the hardware reference manual
for the 5" DSDD disk controller for more detail. The user Iis
-cautioned against modifying these cells while the system is in
operation as it may cause system failure.

Symbol name: MemAdd

Single value: gC49

Description:

MemAdd is a temporary used by the DDSD 5" controller code to
hold the memory address involved in the data transfer. It should
not be modified by the user.

- Symbol name: = Pagesl
Single value: gC4B
Description:

Pagesl is a temporary used by the DSDD 5" controller code to
hold the number of pages remaining in this I/0 transfer. It
should not be modified by the user.

Symbol name: Command
Single value: pCc4c
Description:
Command is a temporary used by the DSDD 5" controller code

to hold the current I/0 command. It should not be modified by
the user.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 82
Symbol name: BRG '
Twin value: gCceg

See Also: BRGEN, Giveup, PHANTOM

Description:

BRG is used to hold the contents of the CPU board baud rate
generator latch, since this latch on the CPU- is not readable.
The bits defined by PHANTOM determine if this user is named user
1 or user 2. The code in the Exec that does this for enabled mode

prompting is:

IF USERS=2 ; only for twin

LDA BRG

_ANI = .. PHANTOM 4 Who are we?

MVI A,'1! ; assume user 1

Jz Erda

INR A ; must be user 2!
Erda CALL WH1

* System DATA Areas *)

System 88 System Programmer's Guide

Section 3 Page 83
Symbol name: WHICH

Twin value: pCo61l
Description:
WHICH was used in the Twin to point to the current wuser.

This cell is still used by some internal functions, but its
contents cannot and should not be depended on.

Symbol name: I0IP
Twin value: gCo62
Description:
7 I0OIP was used by the Twin to mark I/O in progress “for ~each
user. While it is no longer used for that purpose, it is still
used by some system functions, and as such should not be used.
Symbol name: VCBTAB
Value: ‘@C63
Description:

VCBTAB contains the address of the active volume control
_ block tables that define disks to the I1/0 system. This location
should not be modified by the user.
Symbol name: DRVADTAB
Value: @C7E
Description:

DRVADTAB contains the address of the driver address table,

used by the Volume Manager to locate the physical device drivers.
This location should not be modified by the user.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 84
Symbol name: DioA
Value: gCce66

Description:
DioA is a temporary used 1in Dio processing to hold the

contents of the A register. It should not be modified by the
user.

Symbol name: DioHL
Value: gce7
Description:
DioHL is a tempotafy used 1in Dib procéssing'to hold the
contents of HL. It should not be modified by the user.
Symbol name: | DioDrv
Value: gCco69

Description:) : ﬁ,’

DioDrv is a temporary used in Dio processing to hold the
address of the disk driver to call when access to the attached
controller has been granted. It should not be modified by the
user.

Symbol name: DioDn
Value: gcéB
Description:

Diobn 1is a temporary used in Dio processing to hold the
translated drive number for passing to the driver routine. It
should not be modified by the user.

* System DATA Areas * ‘)

System 88 System Programmer's Guide

Section 3 Page 85
Symbol name: DioBsy

Value: pCce6C

Description:
DioBsy is a temporary used in Dio processing to hold the

address of the <controller semaphore for this drive. It should
not be modified by the user.

Symbol name: BUSIES
Value: gCeE
Description:

" BUSIES is the start of a 16 byte area used for controller
semaphores by the Dio code. This area should not be modified by
the user.

Symbol name: STACK
Single value: 1000
Description:
STACK is the 1initial stack pointer wvalue 1loaded during
system boot. It should not be used to reset the stack in the

Twin! If the stack must be reset in the TwinSystem, it should be
reset to the value present at the start of program execution!

* Sgystem DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 86
Symbol name: ‘ SCREEN

Single value: 1800

See Also: SCRHM

Description:
SCREEN is the address of the video display in memory. While

this address 1is accurate, a better technique 1is to use the
contents of SCRHM as the high order byte of the video display.

Symbol name: OVRLY

value: 2000

See Also: ovrto, Gover, OVENT, overlay

Description:

OVRLY is the start of the 2K byte system overlay area.
Users wishing to make use of this area should read and understand
the section of the System Programmer's Guide relating to
overlays.

Symbol name: OVENT
Value: 2004
See Also: Ovrto, Gover, OVRLY, overlay

Description:

OVENT 1is the start ;address for <code in overlays. All
overlays must either have code or a JMP instruction at this
location, as that 1is where they are entered by the overlay
manager .

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 87
Symbol name: SBUF1

Value: 2800

Description:

SBUF1 1is the address of the 1K byte file directory. The
contents of this area is detailed in the separate section on the

file system.

Symbol name: SBUF2
Single value: 2900
Symbol name: SBUF3
Single value: 2700
~Symbol name: ~~ 'SBUF4
Single value: 2B 0@

Description:

SBUF2, SBUF3, and SBUF4 are single user symbols for the
second, third, and fourth pages of the file directory area.
These symbols are not used, but the entire 1K directory area is.
These symbols are excess baggage, and maybe we'll delete them
from the file someday.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 . Page 88
Symbol name: MUNGP

Twin value: 2D @0
Description:

MUNGP is the address of a 64 byte system scratch area. It
should not be modified by user programs.

Symbol name: BOOTVOL
Twin value: 2D92
Description:

... ..BOOTVOL . in . the TwinSystem holds .the drive number of the
system disk. It is used throughout the Twin 1in <checking the
system drive, such as in the INIT code to detect attempts at
initializing the system disk. Note that BOOTVOL is in per-user
memory; each user has a separate copy of BOOTVOL as each user may
have a different disk drive as system residence.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 990
Symbol name: usp

Twin value: 2E00

See Also: Giveup

Description:

USP holds the user's SP while the other user 1is running.
This location ESPECIALLY should not be modified by the user!

Symbol name: USRNAME
Twin value: 2EEE
--——Description: m—— T I E—

USRNAME is a 16 byte area that was originally intended to
hold the user name in the TwinSystem. Parts of this area are
used in the Twin, so this area should not be modified by the user
program. '

* System DATA Areas * .

System 88 System Programmer's Guide

Section 3 Page 89
Symbol name: MTO
Single value: 2DA2

Description:

MTO is the motor time-out counter for the 5" SSSD disk
controller code. As 5" SSSD disks are not supported on the Twin,
this byte is unused.

Symbol name: SINT
Single value: 2DB3

Description:

~ o SINT T isT the oni-séctor bailout vector used by the 5" SSSD

disk controller code. As 5" SSSD disks are not supported by the
Twin, this word is unused.

Symbol name: NDRIVES
Single value: 2D9F
Twin value: 2EA9
See Also: DEFPATH

Description:
NDRIVES was used in earlier versions (pre Exec/78) to hold

the drive number resulting from a <?> search. It is unused, as
its function has been expanded and replaced by DEFPATH.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 91
Symbol name: TIMER

Single value: 8Co9

-Twin value: 2E@2

See Also: WAKEUP

Description: /ﬂm@ﬂ[e/

TIMER is the address of a four byte area that is decremented-
on each real time clock tick (60Hz line clock). Note that BOTH
user's clocks are decremented in the Twin even if one user has
the processor locked through use of the Lock service, or the user
is blocked waiting for a system semaphore.

Symbol name: UTIME
Twin value: 2E@2

Description:

UTIME is the same thing as TIMER. Originally there were two
separate timer cells per user in the Twin.

* System DATA Areas *

System 88 System Programmer's Guide :
Section 3 Page 92

Symbol name: MEMTOP
Single value: 2D8g
-Twin value: 2EBB
See Also: Runr

Description:

MEMTOP contains the 16 bit address of the last good location
of memory. It is set as part of the boot process. Programs
should not assume that the 1low order byte of the last good
address is FF. Also, programs that alter MEMTOP should return it
to 1its previous contents when the program exits. The Exec
DISPLAY command displays the contents of MEMTOP. Note that the
Runr service does not check MEMTOP when loading a program into
—memory. -Thus, Runr may overwrite existing information, or load a
program into nonexistent memory.

Symbol name: EXECSP
Single value: 2DAF
Twin value: 2EBD

Description: 7Aa

EXECSP 1is wused to hold the 16 bit value of the stack
pointer. This is used by the Exec in preventing stack overflow.

Symbol name: FILE
Single value: 2DCB
Twin value: 2EBF

Description:
FILE is a 44 byte area used for holding file control blocks.

It is used by system functions, but may be wused by the user
program.

* System DATA Areas * ,)

System 88 System Programmer's Guide

Section 3 , Page 93
Symbol name: Diraddr

Single value: 2E @2

-“Twin value: 2EA7

Description:
DirAddr contains the 16 bit sector address of the directory

currently in SBUF1. It is set by Gfid, and should not be
modified by the user program.

Symbol name: SYSRES

Single value: 2D92
Twin value: 2EAA

"Description:

SYSRES is the byte containing the drive number of the system
drive. Since it 1is in per-user memory in the TwinSystem, each
user may be running off a different system drive, as long as both
users are running exactly the same version of the TwinSystem.
This location should not be modified by the user program.

* SYstem DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 94
Symbol name: NFDIR

Single value: 2DAQ

-Twin value: 2EAB

See Also: NFCK, Diraddr, SBUF1l, Gfid, Look

Description:

NFDIR is the byte containing the drive number of the
directory currently in SBUFl. Both 8¢ and FF in NFDIR indicate
the contents of SBUF1l, DirAddr, and NFCK are invalid. 1If the 88H
bit of NFDIR is set, then the directory 1in SBUF1l |is a
subdirectory, and its disk address is contained in Diraddr. This
byte is set and updated by Look and Gfid.

Symbol name: NFCK
Single value: 2DA1
Twin value: 2EAC
See Also: SBUF1, Ckdr

Description:

NFCK contains the single byte checksum of the directory in
SBUF1 as computed by Ckdr. This byte is expected to match the
first byte of the directory area. It is wupdated by Look and
Gfid.

* System DATA Areas *

©

Section 3

Symbol name:
Single value:
Twin value:

Symbol name:

Single value:
Twin value:

Symbol name:
Single value:
Twin value:

Symbol name:
Single value:
Twin value:

Description:

the system,

System 88 System Programmer's Guide

MUNG1
2DAa7
2E9F

MUNG2
2DA9
2EA]
MUNG3
2DAB
2EA3
MUNG 4

2DAD
2EAS

They should not be altered by user programs.

* System DATA Areas ¥

MUNG1 through MUNG4 are scratch locations used internally in

Page 95

System 88 System Programmer's Guide

Section 3 Page 96
Symbol name: CMND

Single value: 2D4g

-Twin value: 2E3C

See Also: CMPTR, ONCE

Description:

CMND is the 64 byte Exec command buffer. Before reading
commands, the Exec fills the buffer with carriage returns (@D).
CMPTR, the Exec's command pointer, usually points into CMND for
overlays and other system components to pick up arguments and
filenames.

Note that when the Exec is invoked, if the 4¢0H bit in ONCE

_~is mnot~set,; the Exec assumes that a command is already in CMND

for it to process, and so does not prompt or read from the |user.
This 1is the mechanism used to start the INITIAL (or INITIAL]1 or
INITIAL2) file, and is also used by C@2 BASIC to pass an exit
command string to the Exec. So, for a program to force the Exec
to execute a command, the command text delimited by a «carriage
return should be placed in CMND, and the 40H bit (and ONLY that
bit) turned off in ONCE. When the Exec gains control, it will
interpret and perform that command.

Symbol name: CMPTR
Single value: 2DC7
Twin value: 2E7C
See Also: CMND

Description:

CMPTR 1is the 16 bit pointer set by the Exec to point after
the command name in the command line. It wusually points into
CMND. CMPTR is wused by system functions and programs such as
BASIC to scan for filenames and flags on the command line.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 97
Symbol name: WAKEUP
Single value: @gC 1A
“Twin value: 2E 06
See Also: TIMER
\ \Q/
Description: i cremen

WAKEUP contains the address of the routine to call when the
four byte TIMER area is decremented to zero. On the single user
system, this routine 1is JMP'd to at the interrupt level; it is
expected (hoped) to return by JMPing to TIoret. On the
TwinSystem, an interrupt environment 1is built onto the user's
stack, and the routine pointed to by WAKEUP will be executed the
next time that user is run. As with the single user system, when

the WAKEUP routine completes, it should JMP to Ioret.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 98
Symbol name: SCEND

Single value: gC1lE

-Twin value: 2E@8

Description:

SCEND contains the high byte of the video screen ending
address. It is modified by some programs to "protect" four 1line
chunks of the screen. It is also ignored by the Editor and the
graphics functions in BASIC, so care must be exercised 1in its
manipulation.

Symbol name: SCRHM
_.Single value: = @BCIlF . a .
Twin value: 2E @9

Description:

SCRHM contains the high byte of the video display starting
address. It may be modified by user programs, but with caution.
While the Editor and the graphics functions in BASIC use the
contents of this cell to determine the starting address of the
video display, both assume that the video display always has 1K
bytes available starting at this address. Catastrophic system
failure can result from incrementing this address to protect the
top four lines of the display screen and then using the PLOT and
. DRAW functions in BASIC; they will alter memory used as parameter
passing and control for the DSDD 5" and MS disk controllers!

* System DATA Areas *

Q

System 88 System Programmer's Guide

Section 3 Page 99
Symbol name: POS

Single value: PCOE

“Twin value: 2E9A

See Also: vti, WH1

Description:

POS points to the cursor on the video screen. It is updated
by the video display driver, vti, which is usually called via

WH1,

Symbol name: PATH

Single value: 2E 04
T Twin value:s T T 2D40

See Also: Gfid, NFDIR, SBUF1

Description:

PATH 1is the 64 (decimal) byte pathname holder used by Gfid
to determine the path to the current subdirectory in SBUF1 if the
e '89H bit is set in NFDIR. It should not be modified by user-

programs.

Symbol name: DEFPATH
Single value: 2E 27
Twin value: 2D89
See Also: Gfid

Description: -

DEFPATH is the 43 (decimal) byte area used to hold the
default path associated with "#". It is set by the Exec "#"
command, as well as by <?< searches in the Exec and Gfid. The
default path specification in DEFPATH is terminated by an 8¢H
byte. An opening bracket, either "<" or ">" is deleted 1in the
processing of the default path specifier.

(‘ . * System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 1¢0
Symbol name: OVMEM
Single value: 2E53 -

Description:

OVMEM marks the start of the overlay scratch area in the
single wuser system. From this point to 2F@gH may be used by
overlays, but is not protected by other overlays. User written
overlays may make use of this area but cannot expect it to go
unmodified if system overlays are invoked; this includes the

Exec.

Symbol name: LOCK
__Twin value: _2B8F ,]
See Also: vti, Lock, lock, Unlock, unlock

Description:

LOCK 1is a single byte flag used to inhibit time slicing in
the TwinSystem. Normally, the TwinSystem switches between users
680 times a second as the result of real time clock interrupts.
If the contents of LOCK are nonzero, this switching is inhibited.
While switching between users is inhibited, keyboard characters
are still accepted from the other user's keyboard and placed in
the typeahead buffer. LOCK is set by Vvti, the screen driver, and
by the Editor to prevent switching while screen wupdating and
screen scrolling 1is in progress. 1If used, it should be set and
reset using the lock and unlock macros, or by calling the Lock
and Unlock system services. It should be used only for short
periods of time, as 1its effect on the system can be quite
noticeable.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 101
Symbol name: NFA
Single value: 2E00
-Twin value: 2EAD

Description:

NFA in the single user system contains a disk address used
by Gfid, wusually in the creation of subdirectories. It should
not be modified by the user. 1In the TwinSystem, this is in Gfid
local storage and is not globally defined.

Symbol name: ONCE

Single value: 2DC5

Twin value: , ; 2EAF

See Also: CMND, Boot process description

Description:

ONCE 1is the flag byte used to sequence the system boot
process. The 40H bit in ONCE tells the Exec if it is to read a
command into CMND or parse the string already there. See CMND
for information on this interaction. The remaining bits of ONCE
should not be modified by the user.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 182
Symbol name: EFLG1

Single value: 2DC9

-Twin value: 2EB@

See Also: EIC, EERR, DBARF, SBRK

Description:

EFLGl is a flag byte kept by the Exec. The 8¢H bit is EIC,
Exec in control. This is set while the Exec is running, and
disables “Y. See descriptions of EIC and SBRK for more
information. The 20H bit is DBARF, which inhibits the call to
Killi in Emsg when errors are reported; see DBARF for more
information. The 40H bit is EERR which tells the Exec it has an
error code in ERROR to process; see EERR, ERROR, and Err for more

information. The remaining bits (1FH) are used for default

device number and other tags used in command processing.

Symbol name: EFLG2
Single value: 2DCA

Twin value: 2EB1
Descriptioni -

EFLG2 is a byte of flags used by the Exec in scanning and
processing the wuser command 1line. The 1¢H bit, if set, notes
that there is something loaded into memory. This is the bit that
the Exec wuses in disabled mode to determine what to do with the
REENTER command. If the 19H bit is set in EFLG2, REENTER |is
allowed in disabled mode. 1If the 106H bit is not set, the Exec
doesn't think there is anything in user memory to run, and it
doesn't allow the REENTER command. If a user program does not
wish to honor the REENTER command in disabled mode, it may clear
the 1¢H bit in ‘EFLG2, although placing a RET instruction at
USER+3 would be more effective.

* System DATA Areas *

>

System 88 System Programmer's Guide

Section 3 Page 103
Symbol name: JOBST

Single value: 2DYE

-Twin value: 2EB2

Symbol name: LUSER

Single value: 2DC6

Twin value: 2EB3

Description:

JOBSTS and LUSER are each single byte flags used internally
in the Exec in command processing. While the Exec 1is not
running, they may be used by the program. Programs should not
expect them to be undisturbed when the Exec runs, however.

Symbol name: BUGS
Single value: 2DFC
Twin value: 2EB4

Description:

BUGS is a three byte area used to count up soft 1902, 103,
and 104 errors from the 5" SSSD disk controller. These counts
each have a maximum value of FF; that 1is, they will not be
incremented from FF to #0. 1In systems prior to Exec/98, these
counters were displayed by the DISPLAY and SQUEAL commands. Due
to 1lack of room in the Exec, the SQUEAL command and the display
of these cells is no longer supported. Additionally, these cells
are not clocked by errors on 8" drives or 5" DSDD drives.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 104
Symbol name: ERROR

Single value: - 2D9%A

“Twin value: 2EB7

See Also: EERR, LERR, Err

Description:

ERROR is the 16 bit error code last reported to the system.
ERROR is updated either by the Emsg overlay, called with the
error code in DE, or by a IJMP Err with the error code in DE.

Symbol name: LERR

- 8ingle values: L 2D9C .
Twin value: 2EB9
See Also: EERR, ERROR, Err

Description:

LERR is a 16 bit error code. Depending on how the last
error was reported, it may contain the same code as ERROR, or it
may contain the code of the error reported previous to the one in
ERROR. It is updated by Err in the root and by Emsg.

* System DATA Areas *

System 88 System Programmer's Guide

Section 3 Page 185
Symbol name: SRA7
Single value: © BCc1c
-Twin value: 2EEC

Description:

SRA7 contains the address of the service routine for RST 7
and single step interrupts. 1In the TwinSystem, it is in per user
memory so that each user may have separate control over this
interrupt for such wuses as debugging. This interrupt |is
generated either by triggering the single step 1logic, or by
executing a RST 7 instruction (FFH). This FF pattern will occur
when an instruction is fetched from nonexistent memory.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 166

SYSTEM SERVICE VECTORS AND ROUTINES

The following section details the resident services provided
by the single and Twin systems. Some services are only provided
in one wversion of the system; some are provided in both. Some
services are supplied in both systems but with different
spellings (DEOUT and Deout).

REGISTERS - For each service, entry and exit registers are
described where applicable, as is the state of the interrupt

_system on_return. If registers are not specified in the

description, it is safe to assume that they are neither used nor
modified. If a register on exit 1is described as containing
"junk", its contents should not be depended on- even if they seenm
useful; as there is NO promise made that the next version of the
system will return the same Jjunk!

INTERRUPTS - For each service, the state of the interrupt system
when the service completes is given. If nothing is stated about
interrupts in the description, interrupts are not modified during
execution of the service. Depending on the path taken in the
service, interrupts may or may not be altered. For example 1in
WH@, 1f the character returned is from the keyboard, interrupts
will always be enabled on return. If the character was taken
from the command file buffer and no read was required, the
interrupts are unchanged from their state on entry to WHg. As
part of good design and programming practice, interrupts should
be disabled only when absolutely necessary, and for the minimal
number of instructions required to complete a critical section.
The usual reason for disabling interrupts 1is to protect data
areas that may be altered by code executing at the interrupt
" level, or to block out interrupts themselves.

As with any system functions, care should be exercised 1in
debugging and experimenting with assembly language programs,
especially in the TwinSystem. Causing a system failure while the
other wuser 1is in the process of packing a disk may be hazardous
to your health!

* System Service Vectors *

e

Section 3

System 88 System Programmer's Guide

SYMBOL PAGE
Byte 151
Ckdr 119
Cold 115
DEOUT 151
Deout 151
Devlock 157
Dhalt 121
Dio 122
Enter 155
Err 13¢
Fd fp 163
Flip 118
Flipem 143
Flush 117
Fold 118
Gdfp 163
Gfid 148
Giveup 143
gLook 121
e Gover 131
- Iexec 140
Ioret 160
Killi 117
Leave 156
Lock 153
Look 134
Mfos 120
Move 161l
Moven lel
Msg 116
Mtos 120
Ovrto 131
Pmsg 116
Print 142
Rlgc 121

* System Service Vectors *

Single Twin
EgSA
9433 E@2D
EQ20
@3D1
g3D1 E@45
EG6F
9409
0406 2E30
EQ4E
g40F E@8C
E@75
#42D E@2A
_ E@39
g41TE—ESIB—
g42A E@27
ED72
E@42
E@3C
E@7B
@415 E@g12
8436 EQ30
go64 E066
p41B E@18
E@51
E@48
421 EG1lE
E063
E@6C
E@69
g4acC Edg6
E@60@
@412 EOOF
EJ@9
E236
2430

Page 107

Section 3

SYMBOL PAGE
Rlwe 139
Rtn 133
Runr 137
Show 141
SUWHO 128
SUWH1 128
SUWH2 129
SUWH3 129
SUWH4 129
SUWHS 129
SUWH6 129
SUWH7 129
SUWH9 - 129
Ticker 145
Unlock 154
vmgr 162
vti 111
Warm 115
WH® 199
WH1 111
WH2 113
WH3 113
WH4 113
WH5 114
WH6 114
WH7 114
WHO 122

Single

System 88 System Programmer's Guide

Twin

0427
g418
p424

EQ024
Ed1S
E@21
E@33
gC20

aC 24
gC28
gcacC
pC30
pC34

aC38
@C3C
gC44

2403
8C 20
pC24

gC 28
pc2cC
@gC 30
gC 34
@C 38

gpC3C
" pC44

*¥ System Service Vectors *

E@3F
E@4B

E@54
E@57
E@@3
2EBC
2E10Q

2E14
2E18
2E1C
2E20
2E24

2E28
2E390

Page 108

System 88 System Programmer's Guide

Section 3 Page 109
Symbol name: WH@
Single value: gC 29
"Twin value: ; 2E8C
Entry: WHO takes no inputs
Exit:
A: Character from keyboard or command file
INT: not modified/enabled
See Also: KBEX, Flip, Fold, KBUF, KBIP, KBIG,

CBUF, CMDF, CMDD, CMDN, CMDP, CMDA,
Killi, Flush, DBARF

Description:

WHP is called to Treturn & character from the user: —The —

character is returned either from the keyboard ring buffer (see
KBUF, KBIP, KBIG) or from the command file buffer (see CBUF,
CMDF). A request to read a character past the end of a currently
active command file causes the system to switch automatically
back to the keyboard for input. The character returned in A is
not echoed to the screen; this must be done by the program. WH@
is initialized by the boot process to point to Cin (label not
defined in the single user system).

If command files are not active, and a character is not
present in the keyboard buffer, the system waits until a
character is available. 1In the single user system, the processor
enables interrupts, halts to wait for an interrupt, and then
checks again for a character. In the TwinSystem, Giveup is
called to give up the processor (see description of KBIP for this
code) . ‘

If the character returned is from the keyboard buffer, or a
disk read was required to bring in command file data, the
interrupts are returned enabled. 1If the character is returned
from the command file buffer (CBUF) and a read is not required,
the interrupt system is unaltered. BAny errors in attempting to
read from the command file cause control to be transferred to
Err, essentially aborting the program; restart may be difficult.

The character removed from either the command file buffer or
the keyboard buffer 1is passed through the routine connected to
KBEX; this is commonly a null routine, but may also be either
Flip or Fold, or a user specified routine.

As the result of invoking Killi or Flush, the contents of

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide
Section 3 Page 110

the keyboard typeahead buffer may be flushed. Killi also aborts
command files if in progress.

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide

Section 3 Page 111
Symbol name: WH1
Single value: gc24
“Twin value: 2E10
Symbol name: vti
Twin value: E@57
Entry:
A: character to be displayed on screen
Exit: All registers and interrupts unchanged.
See Also: SCRHM, SCEND, POS, Vti, Lock, Unlock

Description:

WHI 1s called to display a character on the video screen.
It is initialized by the system boot process to point to the
video display driver (vti in the TwinSystem, no separate label
for the single user system). Certain character wvalues have
special effects when displayed. They are:

Code Name - Action

@9H HT Tab cursor

gBH VT - Move cursor to top of screen

gCH FF - Clear screen and move cursor to top
@DH CR = Move cursor to start of next line
18H CAN - Erase remainder of line

7FH DEL - Move cursor left one position

Values less than 20H not appearing in the above list are
ignored. Note that displaying a character may cause the screen
to scroll up a line, destroying the information in the top line
of the screen.

The display driver €finds the starting and ending page
address of the screen by examining SCRHM and SCEND. On exit from
the display driver, POS contains the address of the cursor within
the video display.

Iin the TwinSystem, and 1in ROMs version 81 and later, the
screen driver does not alter the state of the interrupt system.
Earlier versions of the ROMs always enabled interrupts.

In the TwinSystem, erasing lines, clearing the screen, or
scrolling the screen is done with the task protected against

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide
Section 3 Page 112

slicing by first calling the Lock service. This prevents the
screen from being left partially updated. The Unlock service is
called as part of exiting the screen driver (Vti) and WH1l, even
if Lock was not «called; this means that a program wishing to

remain locked against slicing may not use any service that may
-call WH1.

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide

Section 3 Page 113
Symbol name: WH2
Single value: gc2s
"Twin value: 2E 14

Description:

WH2 has no specific meaning in the system. In the
TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems.

Symbol name: WH3
Single value: gcac

Twin value: 2E18

Descriptions:

WH3 has no specific meaning in the system. In the
TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems,

Symbol name: WH4
Single value: @C30
Twin value: 2E1C

Description:
WH4 has no specific meaning in the system. In the

TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems,

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide

Section 3 Page 114
Symbol name: WHS
Single value: @Cc34
Twin value: 2E20
Symbol name: WH6
Single value: pC 38
Twin value: 2E24
Symbol name: WH7"
Single value: gCc3cC
Twin value: 2E28

Description:

WH5, WH6, and WH7 are used with the printer and printer
driver. See the section on the printer driver for details. In
—___ _both the single and Twin systems, if the Prnt overlay is not
present, these wormholes are initialized with a STC/RET pair.

* System Service Vectors * Wormholes * ~)

System 88 System Programmer's Guide

Section 3 Page 115
Symbol name: Cold
Twin value: E@G9

Description:

Cold is the cold start location in the TwinSystem. Once the
Twin has completed its boot process, it is turned 1into a JMP
P008, which if executed, will cold start the system. It should
not be called, since it is the equivalent of pushing the Load
button!

Symbol name: Warm
Single value: 2403
. Twin value: . Eg@3
Entry: No inputs

Exit: Does not return

Description:

Warm 1is called to warm start a user. The stack pointer is
reinitialized and the Exec reloaded by calling Gover. Here |is
the coding for Warm from the TwinSystem resident:

Warm LXI SP,0E0B80H ; reset stack
CALL Gover
DB 'Exec’ ; Go run the Exec
JMP Warm ; do that again.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 116
Symbol name: Msg
Single value: g4a8C
Twin value: EQ@6
-Entry:
HL: Address of text string delimited by 00 byte
Exit:
HL: Points to 00 byte
A: 71

Description:

Msg displays the message pointed to by HL on the screen by
calling WH1 with each character and incrementing HL until a 00
byte is encountered. Here is the coding for Msg:

Msg MOV A,M ; get chr .
ORA A ; done yet?
RZ ; return if so
CALL WH1 ; display
INX H :
JMP Msg ; do another one.
Symbol name: Pmsg
Twin value: . E@@9
Entry:
HL: Address of text string delimited by 08 byte
Exit:
HL: Points to 80 byte
A: Y]

Description:

Pmsg prints the message pointed to by HL on the printer by
calling WH7 with each character and incrementing HL until a @8
byte is encountered. Here is the coding for Pmsg:

Pmsg MOV A,M : get chr
ORA A ; done yet?
RZ ; return if so
CALL WH7 ; display
INX H
JMP Pmsg ; do another one.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 _ Page 117
Ssymbol name: Killi
Single value: g41B
Twin value: Ep18
"Entry: No inputs
Exit:
Az Junk
PSW: - Junk
INT: Disabled
See Also: CMDF, DBARF, Err, SBRK, UBRK

Devlock, CMDD, cmdf (TwinSystem only)

Symbol name: Flush
. .. 8Single value: .. @4lE
————Twin value: — EgIB-
Entry: No inputs
Exit:
INT: Disabled
See Also: Interrupt Character Processing

KBIG, KBIP, KBUF

Description:

Killi is called to kill typeahead and abort command files if
in progress. Flush is called to just kill typeahead; it is |used
by Killi after command files have been taken care of. When Killi
is called, it <checks CMDF to see if command files are in
progress.If the contents of CMDF are nonzero, the text "(Cmdf
Abort)" is displayed on the screen by calling Msg, and CMDF |is
set to #f. On the TwinSystem, permanent command file read access
to the command file device specified by CMDD is released.

If CMDF contained zero, or if Flush was called, typeahead is
cancelled by 1initializing KBIP and KBIG to KBUF+63 (decimal).
This processing is done with the interrupts DISABLED, and both
Killi and Flush return with interrupts DISABLED.

Flush is . also <called as part of the system initialization

sequence in both single and Twin systems to initialize KBIP and
KBIG pointers.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 . Page 118
Symbol name: Fold
Single value: g42A
Twin value: E@G27
-Entry:
A: Ascii character
Exit:
- A Upper case Ascili character
PSW: See code for Flip and Fold
Symbol name: Flip
‘Single value: 942D
Twin value: EDQ2A
Entry:
: A: Ascii Character e
Exit:
A Flipped alphabetic character
See Also: KBEX

Description:

Fold and Flip are post processing routines hooked up to
KBEX, wusually as the result of the Exec Fold and Flip commands.
Fold causes all lower case alphabetic characters (a-2) to be
folded to upper case (A-Z). Flip causes the case of alphabetic
characters only to be inverted, for example a 1lower case "a"
becomes "A"™, and "A" becomes "a". Here is the coding for Flip
and Fold:

Flip CPI Al
RC ; split if not interesting
CPI1 'Z'+1
JM Flil ; jmp/flop upper to lower
Fold CPI 'al :
RC ; split if not a-z, A-Z
CPI '2'+1
RNC ; split- not interesting
; Flip upper and lower case
Flil XRI 20H ; do the dirty work.
RET ; and split,

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 119
Symbol name: Ckdr
Single value: 9433
“Twin value: E@2D
Entry: No inputs
Exit:
A: Single byte checksum of directory area
See Also: SBUF1l, NFCK, Look, Gfid

Description:

Ckdr 1is <called to <compute the checksum of the directory
currently in SBUF1l. This checksum is used to validate the disk
directory. Here is thé coding for Ckdr:

Ckdr PUSH
PUSH
LXI
XRA

Ckdrl ADD
INX
MOV
MOV
CPI
MOV
JNZ
POP
POP
RET

save DE and HL
start here
with 099

+SBUF1+1

—-e ™o wp

A
’H
BUF/256 ; <-- watch this one!
D
kd

ToQrQruUmxpraoox

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 120
Symbol name: Mtos
Twin value: EQ60
Entry:
HL: Destination addr in other user
DE: Source addr in this user
BC: # bytes to move (positive)
Exit:
HL: Dest addr + count + 1
DE: Source addr + count + 1
BC: 0000
A (1]}
INT: Disabled
Symbol name: Mfos - - I
Twin value: E063
Entry:
HL: Destination address in this user
DE: Source address in other user
BC: # bytes to move (positive)
Exit:
HL: Dest addr + count + 1
DE: Source addr + count + 1
BC: 0008
A: 20
INT: Disabled

Description:

Mtos and Mfos are move to other space and move from other
space. In the TwinSystem, they are used in moving blocks of
memory from one user space to the other. Interrupts are disabled
for the duration of the transfer between users, and interrupts
are returned disabled. Extreme care should be used with these
services.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 121
Symbol name: Dhalt

Single value: 2409

Description:

Dhalt was provided in old 5" SSSD systems for shutting down
the 5" disk drives. It is no longer supported and should not be
called.

Symbol name: Rlgc
Single value: 9430

Description:

systems. It should not be used by user programs, and is not used
by the system. The definition is not present in the TwinSystem.

Symbdél name: gLook
Twin value: E@7B)
Description:

gLook is an internal entry to the Look process used by
TwinSystem initialization. It should not be called by the user,
as it bypasses file system interlocks.

* System Service Vectors *

Rigc—is an-internal—entry into Riwedefined—in—single—user —

System 88 System Programmer's Guide

Section 3 Page 122
Symbol name: WH9
Single value: gC44
"Twin value: 2E30
Symbol name: Dio
Single value: : 0406
Twin value: 2E 30
Entry:
HL: Disk address
DE: Memory address
BC: B: Command: @=write, l=read, 5=disk size
C: Unit number: 1-F
A Number of sectors, 1 <= # <= 255 (decimal)
PSWe unused s e
Exit:
HL: Disk size if B=5 on entry, else Jjunk
DE: If carry bit set in PSW, error code
If carry bit not set, junk
BC: junk
A: junk
PSW: Carry bit set if error, clear otherwise _ ;?’
All other flags unknown :
INT: Enabled/unchanged
See Also: DONT, Devlock, MEMTOP, Giveup

Error conditions:

The error codes reported by Dio are reported in DE, with Carry
set in PSW:

g191 Bad parameters passed to Dio: A=0; invalid command in
B; invalid drive in C; disk "address in HL, or disk
address in HL plus number of sectors to be transferred
is greater than the number of sectors on the disk.

#1892 The sector preamble 1is bad. This indicates a
non-initialized disk or a serious error with the
hardware or with the contents of the disk.

#1903 Incorrect sector checksum on data read from the disk.

9104 A verify operation finds that the contents of memory

and the contents of the specified sector (or sectors)
do not match.

* System Service Vectors * Dio - Disk I/0 * ‘)

System 88 System Programmer's Guide
Section 3 Page 123

§105 An attempt was made to write on a write-protected disk.
No data will be transferred to the disk.

196 This error occurs when the system does not receive
sector interrupts from the selected drive. Several
conditions may cause this: no drive on the system with
the specified drive number (e.g., you tried to access
drive 9 on a one drive system); there is no disk in the
drive specified; the door on the drive specified is
open; the disk is inserted wrong.

@187 No controller present for that drive. An attempt was
made to access a DSDD 5" drive with no DSDD controller
in the system, or an MS drive with no MS controller in
the system. Note that it takes approximately 3 seconds
to detect this error, during which the system cannot be
interrupted. ‘

@128 Transfer error. . An error occurred in the transfer of

This may be caused by bad main memory or a problem with
the 5" DSDD controller.

9189 No such drive. The drive requested does not exist on
either the 5" DSDD or MS controllers.

#19B Seek error. This error is reported by the DSDD 5"
controller in attempting to position to the requested
track on the disk. It 1indicates an 1improperly
initialized disk or a problem with the DSDD controller.

#18X (9188 - @l18F) These error codes 1indicate that the
controller in question has failed. Detailed
information on these error codes is contained in the MS
and DSDD controller Theory of Operations manuals.

@1C2 That device is busy. (TwinSystem only) The type of
access requested was denied by the device interlock
mechanism (see Devlock) because of the operation being
done by the other user in the system.

Description:

Dio 1is the central system service routine for transferring
data to and from disk, and verifying those transfers. Call Dio
with the register contents outlined above. Think of the disk as
a set of sectors; Dio worries about tracks and track position.
Each sector contains 256 (decimal) bytes. Each write operation
is automatically verified by comparing the data written on the
disk with the contents of memory.

* System Service Vectors * Dio - Disk I/0 *

data fromthe DSDD 5" controller—boa *andwmain—memoryTW*ww~“——4

System 88 System Programmer's Guide

Section 3 Page 124
Dio does not check MEMTOP to see that the transfer requested {:;’
is to wvalid memory; these checks must be made by the user <

program. This is especially important in the TwinSystem; user
programs must be careful not to modify memory above DFFFH.

NOTE: The Hard Disk volume manager, if
present filters all calls to Dio (See section
19, Volume Manager).

* System Service Vectors * Dio - Disk I/0 * ,)

System 88 System Programmer's Guide
Section 3 Page 125

Single User Dio

In the single user system, Dio is called through the normal
ROM vector (406H) . CPU board ROMs version 81 and later wvector
this through WH9 to support user written disk device drivers.

-While 1I/0 1is 1in ©progress, DONT is set nonzero to inhibit the

action of interrupt characters (see DONT for details). DONT is
cleared on I/0 completion. ‘Note that earlier version ROMs may
not correctly support the disk size function (B=5); earlier ROMs
may return with an error code of 101 (invalid code), or return an
incorrect result. The following code is used by the system to
return disk size when the ROM version is not known:

LXI H,l1FEEH ; bad disk address
MVI B,5 ; disk size function
MVI a,l1 ; read 1 from drive in C
LXI D,d ; memory address 00
PUSH B

CALL Dio ; see what it says
POP B 7 preserve—BCover—call
JNC Gotsize ; got size in HL!
MOV A,C
CPI 4 small or big drives?

H
LXI H, 350 ; small ones are 350 sectors
JC Gotsize ; if < 4, small ones.

For MS drives, we must force the head to load to set the
single/double side flag correctly.

-
’
.
’

LXI H,1FEEH ; illegal address

MVI B,1

MoV A,B ; read 1 sector (or try tol)
CALL Dio

LXI H,2464 ; single size flag

LDA 1FEEH ; single/double flag

ORA A

JINZ Gotsize ; jmp/single size

DAD H : double is twice as much.

Gotsize

Of course, the above code does not properly handle double
side single density 5" drives (not supported by PolyMorphic
Systems) . The easiest way around having to use code like this is
to upgrade the machine to CPU ROMs version 81 or later!

* System Service Vectors * Dio - Disk I/0 *

System 88 System Programmer's Guide
Section 3 Page 126

TwinSystem Dio

Disk I/O0 in the TwinSystem 1is more complex than in the

single user system. Disk I/O follows these basic steps:

1. If the contents of A (¥ of sectors to transfer) is less
than or equal to CHUNK, go to step 4.

2. Save registers on stack; set A to CHUNK size for device
to do CHUNK number of sectors. Call step 4; 1if it
returns with C set, unwind stack and return the error
code in DE.

3. Restore registers from stack. Subtract CHUNK from A,
add CHUNK * 256 to DE, go to step 1.

4. Check for device number in C between 1 and F inclusive,
and command in B between 1 nd F inclusive. Return

AYraY —ocodoe—10)— 3 € of 4l
P /guu

v ~heo
error—code I r—eltner—cne

5. Call Devlock to get permission to access the device
specified in C. If the operation requested is a read,
get temporary read access. If the operation is a
write, get temporary write access. If the operation is
a write to sector @006, get mung access. If Devlock
returns with an error, return that error code. Note

_ that 1if WAIT mode is enabled (see BHA and Devlock for
details), the program may wait at this step until the
device is available.

6. Wait for the device semaphore to indicate the device is
available.

7. With interrupts disabled, set DONT nonzero and set the
device semaphore to indicate the device is busy.

8. Enable interrupts and call the device driver (note that
DONT has been set nonzero).

9. With interrupts disabled, clear DONT and the device
semaphore; return enabling interrupts through Giveup,
giving up the processor, and returning any error code
returned by the device driver.

This process shows a number of key features of disk I/0 on
the TwinSystem. Steps 1 through 3 break up large (> optimum for
device) 1I/0 requests into CHUNK sector pieces. Large requests
are done CHUNK sectors at a time; when each CHUNK is completed,
the device controller is released and the other user allowed to
run. Breaking up large transfers in this manner allows one user

* System Service Vectors * Dio - Disk I/O *

System 88 System Programmer's Guide
Section 3 Page 127

o to do large operations (such as IMAGE and COPY of 1large files)
while allowing the other wuser to access that device, or other
devices on the same controller. If 1large operations were not
broken wup, all devices on the controller would be locked out
until the operation completed, which could take a while (such as
-a 48K byte write to an MS). Eight sectors is optimum on the 8"
controller, 20 (a full track) on the 5", and 127 for the hard

disk.

The call to Devlock in step 5 provides a built in level of
security for device accesses. Note that a write request to a
write locked device returns a @91C2, device busy, if WAIT mode is
not enabled, and if WAIT mode is enabled, it waits wuntil the
write can be done.

The semaphore referred to in step 6 is specified on a per
controller basis. This means that on TwinSystems with both 8"
and 5" intelligent controllers, I/0 operations can be in progress
. for both users on different drive types at the same time. This ,
——————providesa substantial—performance—improvement—when—the-system—is ———
on a 5" DSDD drive and main file storage is on 8" MS disks,

When the transfer completes, Dio returns through Giveup ¢to
allow the other user to execute. This balances out performance,
and since the device semaphore was released, insures the other
can use the controller or device if it is waiting for it.

‘, * System Service Vectors * Dio - Disk I/0 *

System 88 System Programmer's Guide

Section 3 Page 128
s\ﬁ’
Symbol name: SUWHS
Twin value: gc2o
-Symbol name: SUWH1
Twin value: ‘ pC24
See Also: WH@, WH1

Description:

On the TwinSystem, single user wormholes @ and 1 are
connected to their Twin counterparts; this is done primarily so
that the Msg service may be used from the CPU ROMs. Programmers
should always use the symbols WH@# and WH1.

* System Service Vectors * . 4)

System 88 System Programmer's Guide

Section 3 Page 129
Symbol name: SUWH2
Twin value: @gC 28
-Symbol name: SUWH3
Twin value: gcac
Symbol name: SUWH4
Twin value: gCc 39
Symbol name: SUWHS
Twin value: gC34
Symbol name: SUWHG6
Twin value: gC3s8
Symbol name: SUWH7
Twin value: . = . . BC3C.
Symbol name: SUWH9
Twin value: pC 44

Description:

On the TwinSystem, single user wormholes 2, 3, 4, 5, 6, 7,
and 9 are pointed to the single user abort routine. This is done
to trap out attempts to run programs assembled for single user
systems on the Twin. Since many system addresses have changed
between the single and Twin systems, these programs will not
execute properly, and may destroy the system. If one of these
single user wormholes are called, the message

Single user trap- Reboot!

is displayed on the offending user's screen, and that user |is
stopped. The other user in the Twin may be unaffected, but the
system should be rebooted as soon ~_as it is possible, or
convenient, as system memory and pointers may have been damaged
before the errant program was trapped.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 _ Page 130
Symbol name: Err
Single value: g40F
Twin value: EgacC
-Entry:
DE: Error code to process
Exit:

Through Warm
See Also: EERR, EFLGl, Killi, Warm, ERROR, LERR
Description:

Err 1is <called with an error code/subcode pair in DE. The

typeahead buffer is flushed, and command file mode is aborted 1if

active. (ThlS is done by calllng Kllli)

If the flag bit EERR in EFLGl is set, we have an error
condition arising from an attempt to report a previously reported
error: we are in serious trouble, because that flag should have
been cleared (by the Exec). The code/subcode in ERROR is
displayed on the screen in the form: .

(Error xxvyy)
where xx 1is the <code in D and yy is the subcode in E, After

displaying the error code, the system HALTS. The Emsg overlay is
responsible for <clearing the EERR bit in EFLGl. User written

Emsg handlers must remember to clear this bit, or a system panic

halt will result.

If EERR in EFLGl is not set, Err sets it, so that when Exec
begins execution it knows that it has an error to process. Err
then stores the code/subcode in the system cell ERROR. We then
jump to Warm to warmstart the system. The Exec, after doing its
cleanup, will see the EERR flag set in EFLGl and invoke the
system error message handler, Emsg, to process the error code.
If a message is present in the error writer, the message will be
displayed; if no message is present, the text

?No message found for error xxyy

will be displayed, where xx and yy are the error code and the
error subcode contained in DE.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 131
Symbol name: ovrto

Single value: 9412

-Twin value: EQQF

Entry: All registers passed to target overlay
Exit: All registers returned from overlay

Symbol name: Gover

Single value: 2415

Twin value: EQ12

Entry: All registers passed to target overlay
ExiEr Al registers returned from target overlay

See Also: Runr, Dio, Look, EFLGl, SYSRES, OVRLY, OVENT
Description:

ovrto and Gover provide the mechanisms for invoking system
functions'by name and for extending the available system services
in a powerful manner. These facilities are the cornerstones on
which the System 88 disk operating system is built.

Use Ovrto or Gover to 1invoke a function that is in an
overlay. (See below for the differences between Ovrto and
Gover,) The overlay desired may or may not be in memory before
you invoke it. Both the entering and exiting register contents
are defined by the overlay invoked. Common system conventions
for overlays that process more than one function suggest that the
function code be passed in A, The invocation of an overlay takes
the form of the example below (assuming that the registers have
already been set up to hold the proper contents):

CALL Ovrto
DB 'DEnl?’

Overlay names are defined to be four bytes long, and the
overlay name must follow the call to Gover or Ovrto. If the
overlay named is not currently in memory, it is read into memory
from the SYSRES device by calling Runr. We enter at the overlay
start address, OVENT. We will return from the function to the
byte following the text of the overlay name in the Ovrto or Gover
call.

* System Service Vectors * Overlay Processing *

System 88 System Programmer's Guide
Section 3 Page 132

As part of the overlay 1load procedure, EIC in EFLGl |is
cleared. There is an important difference in this between single
and Twin systems that results in a timing window with respect to
Y. In the single user system, EIC in EFLGl is cleared before
calling Look to find the destination overlay. This 1leaves a
-"window" where “Y 1is not disabled by EIC from the time Look is
called until 1interrupts are disabled prior to entering the
overlay. 1In the TwinSystem, this overlay does not exist; EIC, if
set in EFLGl is not cleared until after the target overlay 1is
loaded and interrupts are disabled.

In looking for an overlay, the system calls Runr to find a
file on the SYSRES disk with the name specified after the call to
Ovrto or Gover and the extension OV. If the file is not found or
is not runnable, Err is called to process the error. If the file
is found, Runr reads it into memory at the load address specified
in the file; we do NOT check to see that this 1is OVRLY! The
overlay, when 1loaded, is entered at OVENT. The overlay name in
_locations OVRLY _through OVNENT+3 is _used by the system_ to

"remember" what overlay is in memory for the Ovrto service.
Differences between Ovrto and Gover:

Both Ovrto and Gover invoke a function in an overlay, which
may not be in memory at the time, and both return control to the
program just after the overlay name following the call to Ovrto
or Gover. The only difference between Ovrto and Gover 1is that
Ovrto "remembers" the overlay currently in the overldy area and
restores that overlay before returning to the caller, while Gover
does not. Both Ovrto and Gover are "super subroutine" calls;

they can call subroutines that do not have to be in memory at the

time. Ovrto can be wused from WITHIN one overlay to call a
function in another overlay, since the original overlay |is
restored after the called overlay completes 1its processing.
Gover does not "remember" or restore the overlay currently in the
overlay area, and so it can only be used from programs outside
the overlay area.

Error conditions:
If an error occurs in invoking an overlay, the error code/
subcode 1is passed to Err, which reports the error and warmstarts

the system. Any errors reported within the overlay are handled
by that overlay.

* System Service Vectors * Overlay Processing *

System 88 System Programmer's Guide

Section 3 Page 133
Symbol name: Rtn
Single value: 418
"Twin value: . E@15

Entry: From overlay
Exit: Same as entry

Description:

Rtn is the entry point used by the system for returning from
an Ovrto call. On entry to Rtn, the stack has on it the name of
the old overlay (to be restored), which was pushed from OVRLY and

OVRLY+2.

‘Under some circumstances -in overlays, it may be necessary to

&

use this entry. For example, BASIC provides a number of commonly
used service routines in its resident (above USER) portion that
are called by overlays. 1In some cases these resident routines
may call functions in other overlays. So, some overlay routines
must call services in the BASIC resident ‘“remembering"™ their
overlay name. Here's what the code looks like; assume we're in
an overlay and calling service PFIXE in the resident:

Pfixe SHLD HLtemp ; stash HL
LHLD OVRLY
PUSH H ; first 2 chrs of our name
LHLD OVRLY+2
PUSH H ; last 2 chrs of name
LXI H,Rtn
PUSH H ; make sure we're here!
LHLD HLtemp ; HL back again
JMP PFIXE
In the overlay, to use resident service PFIXE, the
intermediate routine Pfixe 1is called. Since Pfixe was called,
there is a return address on the stack. The overlay name |is

pushed onto the stack, then the address of Rtn, and PFIXE JMPed
to. When PFIXE returns, it returns to Rtn, which unwinds the
overlay name from the stack, insures that overlay is in memory,
and then returns to the address on the top of the stack. All
registers are preserved.

* System Service Vectors * Overlay Processing *

System 88 System Programmer's Guide

Section 3 Page 134
Symbol name: Look
Single value: 421
-Twin value: EGLlE
Entry:
HL: Address of lookup block. HL points to a byte

containing the length of the file name (from
1 to 31 bytes) followed by the text for the
name and the two byte extension (if present).

9

DE: unused
BC: "
A: Drive number of disk to search for the file
(1-9). If the 80¢H bit is set, then the
extension is not checked and a match will occur
on edgqual names.
T PSW: - unused T
Exit:
HL: unchanged
DE: If carry is set in PSW, DE contains error code
resulting from Look; If carry not set, register
contains FDE directory address.
BC: junk
A: junk ' e
PSW: Carry is set on error; clear otherwise. 1,,’
See Also: Dio, Ckdr, SBUF1l, NFCK, NFDIR, GFLOCK, Gfid

Error Conditions:

error

in D
Look

Error codes are returned in DE with C set in PSW. If an

is returned from Dio in reading in the directory, the code
is changed from a 1 to a 3; thus error 109 becomes 309.
specific error codes are:

i
#30@ The file requested was not found.

@3FF The disk directory 1is destroyed. The directory
checksum computed by Ckdr does not match the checksum
stored in the first byte of the directory. all
information on the disk is probably lost. 1If an error
other than @300 1is reported, NFDIR is set to 80 to
invalidate the data currently held 1in SBUF1l, the
directory area.

* System Service Vectors * Look *

System 88 System Programmer's Guide
Section 3 Page 135

Description:

Look looks up files in the main directory on a disk. It |is
called with HL pointing to a "lookup block," which consists of
the length of the file name (1 <= length <= 31), the text of the
‘name, and the extension (if present). A contains the number of
the drive to search, and the 80H bit of A 1is wused to indicate
whether or not the extension has to match. Note that Look only
searches the root directory for the file; it does not search
subdirectories, Gfid must be used for that purpose. If the file
is found in the directory, Look returns the address of the FDE
(File Directory Entry) within the directory in DE. If for some
reason the file is not found or an error occurs when reading the
directory, the error code is passed back to the caller with the
carry bit in the PSW set. An example of a 1lookup block and
coding to look up file GRONK.BC on disk 2 would be:

i
Txt - - DB . - 5,'GRONKBC" - - - - ames .- . . S s
i

LXI H,Txt

MVI A,2

CALL Look

Jc Oops

Description of the Look process:

Look first checks to see if the directory to be searched is
resident in the SBUF1l area; system cell NFDIR contains the drive
number of the disk whose directory is in the directory area of
memory.

If the proper directory is not in memory, Dio is called to
read the directory (sectors @-3) from the specified disk into
SBUF1l; errors reported from Dio are passed back to the «caller
with the code in D changed to @3 (error #0143 becomes @383, etc.).

When the proper directory 1is in SBUF1l, its <checksum |is
computed by calling Ckdr, stored in cell NFCK, and compared to
the first byte of the directory. If this checksum does not match
that first byte, we consider the directory destroyed and return
to the user reporting an @g3FF error. If the directory checksum
is good, we mark NFDIR with the directory number and scan the
directory for the specified file, skipping those files marked
deleted. 1If we come to the end of the directory before finding a
match, we report an 9300 error. If the 80H bit was passed in A,
noting not to check the extension, Look will report a match on
the first file in the directory with the specified name.

In the TwinSystem, Look must aquire the file system
semaphore GFLOCK before examining the directory (either in memory

* System Service Vectors * Look *

System 88 System Programmer's Guide

Section 3 _Page 136
or read from disk). This insures that only one user at a time is ::’
accessing the file system. <

* System Service Vectors * Look * 4)

System 88 System Programmer's Guide -

Section 3 : Page 137
' Symbol name: " Runr
Single value: 9424
"Twin value: Ef21
Entry:
HL: Address of lookup block (see Look for
description).
DE: unused
BC: "
Az Drive number to search; 8¢H bit set if extension
does not have to match.
PSW: unused
Exit:
HL: If carry is clear, reglster holds start address
... ..from FDE. . .
DE: If carry is set, reglster hoIds error code,
else it holds junk.
BC: junk
A: junk
PSW: Carry is set if error; clear otherwise.
See Also: Dio, Look, MEMTOP

Error Conditions:

Error codes are returned in DE with C set in PSW if an error
has occurred. Runr calls Look and Dio, and so <can return any
error code dgenerated by these services. Look specific error
codes are:

2801 No load or start address. The load address field of
the file descriptor block 1is zero. This usually
indicates a text file. Note that a start address of
pog@ is valid.

Description:

Runr 1is called pointing to a "lookup block" (see Look for
description) and a drive number. Runr attempts to £find the
program identified in the main directory of the drive specified
and load it into memory. 1If it is successful, it returns the
start address of the file in HL. 1If unsuccessful, Runr returns
an error code/subcode in DE.

Runr first calls Look with register contents the same as on

entry to Runr. Runr returns if Look returns with the carry set,
thus passing any Look errors to the caller of Runr. If the file

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 138

asked for exists, the FDE (File Directory Entry) is examined for
a load address (LA). If the load address is 0000, we report a
201H error, since the file is not runable. 1If the 1load address
is nonzero, we call Dio to read the file into the memory address
given as LA in the FDE. Any Dio errors are passed to the caller.
-If no errors occur during the read, Runr returns with the start
address from the FDE in HL, and the carry flag in the PSW |is
clear. Note that although calling Runr does not automatically
execute the desired program, the program is loaded into memory,
possibly overwriting the routine calling Runr. If no extension
was given on the file passed to Runr, Look will match on the
first file on the specified disk with the given name--~ which may
not be a "runnable" file. For example, if disk 2 has files
"Flange.TX" and "Flange.GO" appearing in that order, telling Runr
to run file "Flange" without specifying an extension will return
a 201H error, as Look will f£find file Flange.TX, rather than
Flange.GO.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 139
Symbol name: Rlwe
Single value: 9427
‘Twin value: Eg24
Entry:
HL: Address of user buffer to read into.
DE: Prompt string terminated by @¢ byte.
BC: C: Maximum number of characters to read.

B: If 0, echo termination character.
If 1, do not eqho termination character.

Exit:
HL: Points to last character in buffer.
DE: junk
BC: B: Length of line read.
. C: junk
Az termination character
PSW: junk
See Also: WH@, WH1, CBUF, CMDF, Msg, Killi

Description:

Rlwe 1is wused to read an input line. It provides an input
prompt by using Msg (see Msg in this section) to output to . the
screen the string pointed to by DE. Rlwe then reads in
characters (allowing editing of those characters) into the user
buffer pointed to by HL. C contains the maximum buffer size, and
B contains a flag that controls echoing of the termination
character. Characters are read into the user buffer until one of
the following conditions is met: 1) the buffer is £full; 2) the
user enters a carriage return (CR). Rlwe returns with HL
pointing at the termination character in the Dbuffer, the
termination character in A, and the line length in B.

Editing functions supported by Rlwe:
Single characters are deleted in Rlwe by use of the DEL key
({DELETE). Delete words by using Control-W. A word is defined as

a sequence of contiguous characters a-z, A-Z,0-9. Delete an
entire line by using Control-X.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 149
Ssymbol name: Iexec

Single value: 2436

-Twin value: EG30

Entry: No inputs

Exit: May return to environment on stack

See Also: PVEC, EIC, DONT, SBRK

Description:

Iexec 1is usually connected to PVEC, and causes the Exec to
be run when Y is hit. The coding for Iexec is as follows:

- Texec ~ CALL ovrto
DB 'Exec!'
JMP Ioret

When Iexec is entered, the Exec overlay is loaded into the
overlay area and run. If the "CONTINUE" command is given to the
Exec, it returns, which will restore the overlay present before
“Y was hit, and return through Ioret, which will restore
registers and continue execution of the program.

Note that this technique is fairly powerful; a program can
be running, possibly wusing its own custom overlays. It is
interrupted and the Exec run. From this, disks can be 1listed,
files deleted or typed; any command issued that does not alter
user memory or cause the system to warmstart, and the program can
be continued.

* System Service Vectors #*

Section 3

Symbol name:
Twin value:
Entry:

Exit:

See Also:

Description:

System 88 System Programmer's Guide

Show

E@33

Page 141

No register inputs

Az)]
PSW:
WH1l, show,

Z set

Print, print

Show is called to display the text following the Show call
on the screen, until a 00 byte is hit. Program execution resumes

with the g8 byte.

Text is displayed through WH1. Here is the

code for Show:

Show
Showl

Show2

XTHL
MOV
ORA
Jz
CALL
INX
JMP

XTHL
RET

Show2
WH1

H
Showl

~e

s we

~e

save HL, get RA

done?
jmp/yup

get HL back

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 142

Symbol name: Print
Twin value: E@36
Entry: No register inputs
Exit:

A 09

PSW: Z set
See Also: WH7, print

Description:

Print is called to print the text following the Print call,
until a @0 byte is hit. Program execution resumes with the 20

_byte. Text is displayed through WH7. ~ Here is the code for

Print:

Print XTHL ; save HL, get RA
Printl MOV A,M
ORA A ; done?
Jz Show2 ; Jmp/yup
CALL WH7
INX H =
JMP Printl . ’

* System Service Vectors * _ .)

System 88 System Programmer's Guide

Section 3 Page 143
Symbol name: Flipem

Twin value: E@39
Entry: Internal vector, do not call
See Also: Ticker, PMASK
Description:
Flipem is an internal service that flips from one wuser to

the other in the TwinSystem. It should not be called or used
directly. See the following description of Giveup for details.

Symbol name: Giveup

Twin value: E®W3C

Entry: No inputs
Exit:
INT: Enabled, no registers modified
6 See Also: PMASK, PHANTOM, BRG, BRGEN, LOCK, giveup
Ticker, USP, Ioret

Description:

Giveup is called to give up the processor, either by calling
Giveup, or by wusing the giveup macro. It saves the user's
registers on the stack, saves the stack pointer, flips to the
other user, and 1loads that wuser's environment, and starts
executing that user. Let's look at the code in detail:

Giveup DI
PUSH PSW ; std save sequence
PUSH B
PUSH D
PUSH H
XRA A
STA LOCK ; insure not locked!

Flipem flips to the other process. We first stash the
stack pointer at USP, and then flip the PHANTOM bit of
the baud rate generator, load the new SP from USP, and
return thru Joret to load the new environment.

we wme wo Wo

Flipem DI

‘~ * System Service Vectors * TwinSystem User Switching *

System 88 System Programmer's Guide

Section 3 Page 144

LXI H,0 ; assume regs stashed!
DAD SpP
SHLD usp ; save SP, user now parked!

Flipl LDA PMASK ; get flip mask
MOV B,A
LDA BRG ; current BRG contents
XRA . B ; £lip the magic bit
OuT BRGEN ; We are the other guy now!
STA BRG ; mark it done
LHLD USP
SPHL : load new SP
JMP " Ioret ; go to it!

This code is very important; it's the <core of the

TwinSystem. When we enter at Giveup, we already have a PC on the
stack from whoever called Giveup. We then push the registers on
the stack; this forms the "environment" that Ioret will restore
-—~when-—we- -return to - this user. ~ We clear LOCK, as the user is

giving up the processor, and fall into Flipem.

The first thing Flipem does is to save the user's stack
pointer. This - is done with the interrupts disabled so that
nothing can be modified. With the user's stack pointer stored at
USSP, the user is now "parked". We have saved all the information
necessary to restart the user later on. Note carefully that USP,
as well as the stack, is kept in the 48K board that is switched
with the user. We pick up the contents of PMASK, which contains
PHANTOM 1if we are running two users, and @¢ if we are running in
solo mode or on a single user system. We pick wup the current
baud rate generator —contents, and flip the bits set in PMASK.
Doing the OUT BRGEN causes the PHANTOM line on the backplane to
change, assuming we're running two users. We have now selected
the other user. We store the new baud rate generator contents
(BRG is in system common memory, in CPU board RAM). The new
stack pointer is loaded from USP (the new user's). When we Jjump
to Ioret, it unwinds the registers from the new user's stack, and
continues executing that user's code.

* System Service Vectors * TwinSystem User Switching *

System 88 System Programmer's Guide

Section 3 Page 145
Symbol name: Ticker

—Twin value: E@3F

Entry: From RTC interrupt via SUWHS8

Exit: Through Ioret |

See Also: USP, UTIME, WAKEUP, PMASK, BRG

BRGEN, LOCK, Flipem, Lock, Unlock

Description:

Ticker 1is the TwinSystem c¢lock server. It is connected
through SUWH8 and is entered on every RTC interrupt, 60 per
second. Its basic purpose 1is to cause the switching between

-users.to—.share....the...CPU.. It has _the _subsidiary tasks of

©

incrementing user <clocKs, posting the WAREUP 1iInterrupt, and
enforcing the processor lock via LOCK. Let's look at the code
and then discuss it; we are entered via the PCHL in the interrupt
code with interrupts disabled and all registers pushed onto the
stack:

Ticker OUT 8 ; reenable interrupt
LHLD XTIMER
INX H) ; bump 8C00 clock
SHLD XTIMER ; for everybody to see
Tickg LXI H,0
MOV B,L ; mark diddling current user
DAD Sp _
SHLD Usp ; user now parked!
Tickl LXI H,UTIME ; user timer
MVI C,4 ; 4 bytes long
Tick2 INR M
JNZ Tick3 ; jmp/not time yet.
INX H ; bump next cell
DCR C ; did we hit all g@?
JINZ Tick2 ; jmp/not yet.

User clock went to 90¢0. Build environment to invoke
WAKEUP routine next time we run 'em.

we %o

LHLD usp : pick up SP

SPHL ; and insure loaded
LHLD WAKEUP ; vector

PUSH H ; new PC

PUSH PSW

* System Service Vectors * TwinSystem User Switching *

. System 88 System Programmer's Guide

Section 3 Page 146
PUSH B
PUSH D : reg contents don't matter
PUSH H
LXI H, o
DAD SP ; save updated SP,
SHLD usp ; all done.

End of clock processing. See if we've diddled both
clocks, and split thru Ioret when we have. B will be

nonzero if we've. done both users.

Tick3 MOV A,B
ORA A ; done both yet?
JNZ Tick4 ; jmp/yup
LDA PMASK
ORA A ; anybody else to do?
Jz Tick4 ; Jjmp/nope!
MOV B,A ; remember doing other guy
LDA - BRG -
XRA B
ouT BRGEN ; Fkkkk SWAP *hkkkk
JMP Tickl ; go do other guy.
Tick4 LDA BRG .
ouT BRGEN ; insure mapped to first one
LXI H, LOCK
MOV A,M ; software lock set? ~
Jz Flipl ; jmp/not locked, flip 'em a
MVI M, 2 ; mark quantum overrun
LHLD UsSp ; get stack back
SPHL
JMP Ioret ; and let 'em run some more!

If you understand this code, Giveup, and Flipem, vyou
understand how the TwinSystem runs two users. When we are
entered from the RTC vector, we reset the clock interrupt and
bump the clock kept at @#C@FH. The user's PC and registers are
already on the stack; we save the SP in USP to "park" him. From
Tick@ through Tick3 we wuse the B register to note if we are
working on the current user (B contains 08) or the other user (B
contains PHANTOM) .

The general 1idea in the remainder of the code is to bump
both user's timers. If a user's timer increments to all zero, we
want to schedule the specified WAKEUP routine to be called the
next time the user is run. Note that in the single user systen,
we just jump to the WAKEUP routine directly from the interrupt
level. This would adversely affect performance in the Twin.

The first 7 lines of code at Tickl take care of incrementing

* System Service Vectors * TwinSystem User Switching *

@

System 88 System Programmer's Guide
Section 3 Page 147

the user's clock. Note the clock is kept in per-user memory (in
the 48K board) so each user has his own copy, at the same
address. If the clock doesn't go to all zero, we go to Tick3.
If the clock does go to all zero, we fall into the second chunk
of code. The first thing we do is load the user's stack pointer;
-we may -not have the correct one from switching users in Tick3.
We then build an environment on the stack to take the user to the
WAKEUP specified routine the next time the user is run, and
update USP.

At Tick3 we check to see if we have "diddled" both user's
clocks, 1f there are two users. If we have done both users, we
go off to Tick4 to check the software lock. If we only have one
user, we go to Flipl to continue running that user. Note that we
do this through Flipl to insure the hardware and the BRG are set
up properly, rather than going directly to Ioret. If we haven't
done both users, we flip to the other user, setting B nonzero for
the next time we come through Tick3. Note that we don't update

©

- -BRG;-this- swap is only temporary.while we update_the other user's

clock.

At Tick4, we have updated clocks for both users. If the
software lock is not set, we go to Flipl to £flip to the other
user. If the software 1lock was set, we change it to indicate
that the locked user ran over a clock tick. When the user <calls
the Unlock system service, Unlock will Giveup as a result. Since
the processor is software locked, we restore the wuser's stack,
and go to Ioret to continue execution. .

* System Service Vectors * TwinSystem User Switching *

Section 3

Symbol name:
-Twin value:

Entry:
A and 0

WN =S

System 88 System Programmer's Guide
Page 148

Gfid

Ep42

FH Function
Get file identifier
Enter/replace FDE
Look up a file
Update directory (TwinSystem only)

The registers on entry contain:

HL:

Points to either the prompt string to use in
reading from the user (Via RLWE) or the address of

“the- - text -buffer to examine. -

g;,

DE:

BC:
A: 80@H

40H

20H

Return:

HL:
DE:

BC:
A(PSW) :

Errors:

Enter FDE:

HL:

Points to the buffer that is used to return the
file specification in form suitable for feeding to
LOOK.

May contain the default extension to use 1f the
user does not give one.

if set, read (RLWE) from the user, prompting with
the MSG -> by HL.

if set, LOOK the file up. 1If it exists, copy the
FDE to the buffer -> (DE)+l, thus returning FDa,
NSCTR, LA, SA. If an 0300 error is returned from
LOOK, return NFA from directory in the FDE slot in
the buffer -> (DE)+1.

If set, use the extension in BC if the wuser does
not specify one.

Points to the ending delimiter in the text buffer.
If C set in PSW, error code. 1If not, FDE address
if LOOK was requested, else junk.

Junk

C set if error, clear if not.

0500 Invalid disk #%

2501 Name longer than 31 characters
9502 Extension longer than 2 characters
2503 Name zero length

Points to a file block as built by get file

* System Service Vectors *

>

.

System 88 System Programmer's Guide
Section 3 Page 149

function. First byte has disk #, next byte has
flags and name length, etc.

A: 80H If set, replace an existing FDE with the one
pointed to by HL, else enter a new one at the end
of the disk. ‘

40H If set and 8PH set, replace existing FDE and
clear "new" bit.

Returns:

A(PSW): If C set, then DE has error code/subcode. If C
not set, then registers scrambled.

Errors:
@504 Directory is full

Update directory: uses NFDIR, DirAddr, SBUF1l information

‘See Also: = GFLOCK, NFDIR, NFCK, SBUF1l, Dio .

Description:
Single User Gfid

In the single user system, Gfid is an overlay (Gfid.ov).
Gfid provides three main services: Get and parse file identifier,
Enter or replace directory entry, and Look up a file. The Look
function ©provided by Gfid differs from the resident Look service
in that it accepts full pathnames involving subdirectories and
the resident service does not.

TwinSystem Gfid

Gfid in the TwinSystem 1is a resident service. For
compatibility, a Gfid overlay is provided; it just jumps to the
resident service vector. On the Twin, the file system and Gfid
is considered a "critical section", only one user may be running
that code at a time. For this reason, entry into Gfid or into
Look on the Twin is controlled by the GFLOCK semaphore.

If the user requests that Gfid read a line from the user in
the Get function (A AND @FH =0), the line is read before the
semaphore is acquired.

Some system functions, such as RENAME, DELETE, and UNDELETE,
modify the contents of directories. In the Twin, Gfid has an
additional command for updating a directory. Gfid looks at the
contents of NFDIR and DirAddr when this command is given. 1If
NFDIR does not have the 8¢H bit set, the directory in SBUF1l is a
root level directory; its disk address is 0¢90d. If the 80¢H bit
in NFDIR is set, this is a subdirectory and DirAddr has its disk

* System Service Vectors *

.

System 88 System Programmer's Guide
Section 3 Page 150

address. Gfid computes and updates the checksum of the directory
in SBUF1 and writes it to the disk.

TwinSystem Gfid - Invalidating Directories

- In the TwinSystem, each user has a directory area. So, when
Gfid updates any directory on disk, it must see if the other user
has a copy of that directory. If the user does, this copy is now
invalid; Gfid sets NFDIR for that user to #6. This is why Look
and Grfid are protected by the GFLOCK semaphore; so that only one
user at a time may modify directories. This is also why 1looking
into the directory area is not a good idea; programs should use
Gfid to get file information.

NOTE: For more information on Gfid, see Section 2 on the file
system.

* System Service Vectors *

-Symbol

Section 3

Symbol
Single

name :
value:

name:
Single value:
Twin value:

Entry:
DE:

Exit:
A:

See Also:

Description:

System 88 System Programmer's Guide

DEOUT
g3D1

Deout
23D1
E@45

Page 151

16 bit value to display on screen

Last ASCII character output

Byte, WHI1

~Deout (or DEOUT) is called—to aisplay the contents of the DE-
This is done by calling Byte

registers on
with the D and
Symbol name:

Twin value:

Entry:

A:
Exit:

A
See Also:

Description:

Byte displays the byte in A in
are displayed by calling WHI.

characters

the screen 1in hex.
E registers.

Byte

E@5A

Hex byte to display

Last ASCII character displayed

Deout, WH1

code for Deout and Byte:

Deout MOV A,D
CALL Byte
MOV A,E
Byte PUSH PSW
RRC
RRC
RRC
RRC
CALL Bytel

~s we wo .

hex

display D
then E
save it

top 4 bits

on the screen. The
Here is the TwinSystem

* System Service Vectors *

Section 3

Bytel

System 88 System Programmer's Guide

POP
ANI
ADI
DAA
ACI
DAA
JMP

PSW ; then bottom 4 bits
gFH ; just 4 bits at a time
9gH

40H

WH1

Page 152

* System Service Vectors ¥

System 88 System Programmer's Guide

Section 3 Page 153
Symbol name: Lock

Twin value: E@48

Entry: No inputs

Exit: All registers and interrupts unchanged

See Also: LOCK, Ticker, Lock, Unlock, Vti, WAKEUP

Description:

Lock is called to lock the processor against the normal time
slicing done by Ticker as a result of real time clock interrupts.
It is used, for example, by the screen driver (Vti) and the
editor to prevent slicing while updating and scrolling the

..screen. Using Lock prevents switching to the other user for

normal processing, interrupt character processing, WAKEUP
processing, or I/0 completion processing. Only character
typeahead 1is performed, although environments may be stacked for
interrupt characters and WAKEUP events. That Lock blocks 1I/0
completion processing is important to understand. Let's say user
1l requests a read from drive 4. The read is started, and wuser 1
gives up the processor. Then user 2 calls Lock to lock the
processor. User 2 cannot access drive 4 (or 5, 6, or 7 on a
normal MS configuration), as user 1 still has an I/O operation
uncompleted. If user 2 tries to access drive 4, the system will
deadlock. So, Lock should be used sparingly!

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 154
Symbol name: Unlock

Twin value: E@4B

Entry: No inputs

Exit:
As junk
PSW: junk
INT: Enabled/unchanged
See Also: LOCK, Giveup, Ticker, Lock, lock, unlock

Description:

Unlock is called to remove the processor lock set by the
~Lock -system-service -or the lock macro. It may be called-directly

5

or through the unlock macro. It may also be called 1if the
processor was not locked. When called, the software lock is
cleared. 1If the real time clock did not tick while the processor
was locked, control is returned directly to the user. 1If the
processor was locked over a clock tick, Giveup is called to give
up the processor before returning to the user. See the coding
for Ticker and Giveup for details.,

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 155
Symbol name: Enter
Twin value: EQ4E
Entry:
HL: Address of semaphore
Exit:
A 00
PSW: Z set
INT: Disabled
See Also: Gfid, glLook, enter, Giveup, Leave

GFLOCK, Interrupt character processing

Description:

Enter 1is used to enter a critical code séction protected by
the semaphore byte pointed to by HL. The semaphore must be in
shared memory (i.e. not between 2000H and DFFFH), although this
is not validated by the Enter code. Here is the code for Enter:

Enterw CALL Giveup ; wait a while

‘ Enter DI

Mov A,M ; get value

ORA A

JINZ Enterw ; wait till it goes 00
LDA BRG

ORI 80H ; insure nonzero

MOV M,A ; mark we have it

XRA A

RET ;s return to user

Note very carefully what Enter does and does not do. It does not
check to insure that the semaphore is in shared memory. It does
not insure that we do not already have the semaphore. It does
not insure that the semaphore starts out zero. It just waits
till the semaphore byte goes to zero, then marks it taken and
returns with interrupts disabled. The semaphore is set with 80H
ORed with the user tag primarily for use with GFLOCK inhibiting
the action of interrupt characters. See the coding example for
Interrupt Character Processing in the TwinSystem for details.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 156
9
Symbol name: Leave
Twin value: E@g51
>Entry:
HL: Address of semaphore
Exit:

Registers unchanged, interrupts enabled
See Also:’ Enter, enter, leave
Description:
Leave 1is called to leave the critical section marked by the

semaphore byte pointed to by HL, <clearing the semaphore. It
returns-with interrupts enabled. The semaphore -is not checked to

see if the user calling Leave currently owns the semaphore.

* System Service Vectors * ;4)

System 88 System Programmer's Guide

Section 3 Page 157
Symbol name: Devlock
Twin value: EQ6F
Entry:
C: Device number, @-F
B: Command, as high and low nybbles:
B AND QF@H:
80 Set permanent allocation
90 Initialize
Ap Set temp allocation
B@ Invalid command
Co Clear permanent allocation
DO Invalid command
Ed Clear temp allocation
B . F@ Reset_to permanent allocations
B AND @FH:
1 cmdf - Command file read
2 rd - Read
3 wrt - Write
4 fupd -~ File update
5 mung - Dir mung/file create/
rename *¥
e 6 wlock - Write lock
7 excl - Exclusive use
Exit:
' DE: Error code if C set in PSW
PSW: C set on error, C clear otherwise
INT: Disabled/unchanged
See Also: BHA, Giveup, Dio, DONT, SBRK,

cmdf, rd, wrt, fupd, mung, lock, excl,
sett, setp, clrt, clrp, devlock

The interlock mechanism arbitrates device access between
users in the TwinSystem. Its main purpose is to keep users from
stomping each other, or otherwise getting in each other's way.
Device @@ is the printer; devices 1 through 7 correspond to disk
drives 1 through 7. Devices 8 through F are for expansion; device
codes C-F may be used by user programs wishing to use Devlock.

Devlock is called directly by Dio before performing any disk
operation; it is also called by printer functions to allocate the
printer. Devlock is called by system programs to get other
classes of device access; for example, PACK attempts to get

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 158

exclusive use of the disk to pack. Devlock is also called by the i;,
Exec SET command. \

The access classes are shown above, and are defined. as
symbols cmdf, rd, wrt, fupd, mung, wlock, and excl. The access
-class is combined with a command in the B register, and the
device number in the C register, for Devlock to use.

Devlock uses a set of lists indexed by device number. Each
user has two lists: one for temporary allocations, and one for
permanent allocations. Any allocation set in the permanent list
is also set in the temporary list.

Clear Allocation

The clear allocation commands, <c¢lear permanent (CoH) and
clear temporary (EPH), simply clear the allocation class
specified. 1If the allocation had not been granted, the service
————returns.—— Note-—that —clear - -permanent—also clears ‘the-temporary

allocation of that class for the device.
Grant Allocation

In granting an allocation, through set temporary (A@H) or
set permanent (8¢H) commands, a number of steps are taken.
First, if the system is running on single wuser hardware (PMASK
contains @@ and the 4¢H bit in BHA is clear), the allocation is
granted. Next, a check is made to see 1if the allocation has a
already been granted, and we return 1if so. If not already
granted and this is a permanent request, we see if the allocation
is set 1in the temporary list. If it is, we set it in permanent
and return.

If the permission was not already present in one of the
lists, we 1look to see 1if it is implied by an already granted
permission, either permanent or temporary. For example, write
permission implies command file and read permission. Exclusive
use implies all permissions. So, if the access is implied by an
already granted permission, we set that in the proper list and
return.

* System Service Vectors * ,)

8

System 88 System Programmer's Guide
Section 3 Page 159

If the permission was neither already set nor implied, we
must check the other user's tables to see if that user has been
granted an access that excludes our request. Based on the

-numeric values of the access classes specified above and by the

equates, the permission matrix looks like this:

= granted <~= CURRENT STATE -->

X = denied 7} 1 2 3 4 5 6 7
s T D K St 5
R 1 I | | | I I I P X |
E 2 | | | | | i I | X |
Q 3 | I I | I I | X | X |
u 4 | | [| [X | I X | X |
E 5 | | | | | X | X | X |
S 6 | I | I X | X | X | I X |
T 7 | l X I X I X I X |1 X1 X |X|
oot Snchenints st osesni St ettt shontuntntt ettt

|
|
|
|

If there 1is no conflict, the permission bit is set in the
tables and we return. If there is a conflict, our action 1is
determined by the contents of PMASK and BHA, 1If PMASK contains
g9, indicating we are in SOLO mode (we checked for strict single
user earlier), this means that the other user holds the device,
and we have shut that user off; we abort with a 01C2 error
(device busy). If PMASK is nonzero, denoting Twin operation, we
examine the 20H bit of BHA. This bit is set in response to the
Exec command SET WAIT ON. If this bit is clear, WAIT mode is not
enabled; we return the @1C2 error to the requesting wuser; the
device is busy.

WAIT Mode

If WAIT mode 1is enabled, we set DONT nonzero to inhibit
interrupt character action. SBRK 1is tested to see if its

contents are nonzero. If SBRKs contents are nonzero, we clear
DONT and return reporting the @1C2 error; “Y has been hit by the
user., If SBRK contains zero, we unwind the saved registers from

the stack, give up the processor, and reenter' Devlock to try
again.,

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 160
D

Symbol name: Ioret
Single value: 0064
Twin value: EG66
Entry: No inputs
Exit:

INT: Enabled, registers returned from stack.

Description:

Ioret is jumped to to return to an environment on the stack,
usually pushed as the result of an interrupt, or time slicing on
the TwinSystem. Here is the coding for Ioret:

Ioret POP
POP
POP
POP :
EI ; let in interrupts
RET

oo m

* System Service Vectors * ,)

System 88 System Programmer's Guide

Section 3 ' Page 161
Symbol name: Moven
Twin value: E069
Entry:
HL: Source address
DE: Destination address
BC: ~ # bytes to move
Exit:
HL: Source + count + 1
DE: Dest + count + 1
B: Checksum of data transferred
C: g9
Az junk
_ Symbol. name: ; . . Move
Twin value: Eg6C
Entry:
HL: Source address
DE: Destination address
BC: $# bytes to move (positive)
Exit: °
HL: Source + count + 1
DE: Dest + count + 1
C: 00 _
B: Checksum of data transferred

Description:

Moven and Move are block move routines available in the
TwinSystem. They differ only in that Moven takes the number of
bytes to move in BC as a negative number, and Move uses a
positive number. The move routine uses what is known as an
"unrolled loop", and is very fast, especially for large blocks of
data. It 1is wused internally for scrolling the screen and
transferring data to and from the disk controller buffers.

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 162
Symbol name: vmgr

Twin value: E@54

Description:

Vmgr is a service routine used internally in the system as
part of the disk I/0 mechanism. It should not be called by the
user,

* System Service Vectors *

System 88 System Programmer's Guide

Section 3 Page 163
&)

Symbol name: Gdfp

Twin value: E@72

Entry: No inputs

Exit: Interrupts enabled

See Also: Devlock, BHA, TwinSystem printer driver

Symbol name: Fdfp

Twin value: E@75

Entry: No inputs

Exit: Interrupts enabled

See Also: Devlock, BHA, printer driver

¢« .

Description:

Gdfp and Fdfp are called to get and free the printer in the
TwinSystem. When the printer driver 1is initialized, wormholes
WHS, WH6, and WH7 are initialized by Fdfp to contain calls to
Gdfp. When a program calls WH5, 6, or 7, Gdfp 1is 1invoked. It
attempts to get temporary exclusive use of device @08 through
Devlock; device @@ is the printer. 1If Devlock returns with C set
in PSW, we jump to Err to abort and report the error. Note that
if wait mode was enabled (see Devlock and BHA), the wuser will
wait wuntil the printer 1is available. Once the printer is
available, the wormholes are connected to the printer driver, and
the ©proper wormhole invoked. Gdfp can also be called from the
user program to insure the printer is connected.

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 164

SYSTEM OVERLAYS

The internal structure and flexibility of the System 88 disk
system is based on the overlay mechanism. This section describes
the internal structure of overlays in the System 88 and the
-facilities provided to the assembly language programmer by the
various system overlays. These discussions assume that you have
perused the descriptions of Gover and Ovrto (the overlay 1linkage
facilities) .

The overlay area in System 88 memory is from 2600H (OVRLY)
to 27FFH; overlays are therefore assembled for this area of
memory and do not exceed 2K bytes in size. Overlay names are
four characters long and may not contain blanks, tabs, or other
control characters. The first four bytes of the overlay (OVRLY
to OVRLY+3) must contain the overlay name, which must match the
file name. The file name and the internal name must match so
that Ovrto can "remember" the current overlay. When an overlay
"y .__: :l[[’ R Y — .- R - B :,,G‘oy_, - —— - e gy o g .
contents of the registers are unchanged from the call to Gover or
Ovrto.

When writing overlays, the 2K byte space reserved for
overlays may be used in any manner you choose. Overlays are
assumed to be "pure" <code, code that does not modify itself.
Portions of the overlay area may be used by the overlay itself
for buffers or data. Remember that such data is lost if another
overlay is invoked. Arguments may not be passed to other
overlays through the overlay area itself.

When entered at OVENT, interrupts are disabled and the EIC
(Exec in Control) bit in EFLGl is not set. 1If the overlay wishes
to process Control-Y interrupts from the user, PVEC should be set
accordingly. Note that if 1) the user types a Control-Y, 2) the
EIC bit 1is not set, and 3) your program did not set PVEC, then
the overlay area will be overwritten by the Exec overlay (brought
in as a response to the Control-¥). 1If the user then gives the
Exec a CONTINUE command, the previous overlay will be restored
from disk and reentered at the point where it was interrupted
with the original register contents but without any data stored
in the overlay area.

The overlays provided as part of the standard disk system
are protected from abuse (deletion, renaming, etc.) by having
the system bit set in the FDE for each. You may set the system
bit in the FDE (or clear it) using the Szap utility described in
Section 4 of this manual, or the "Tweak" program listed in
section 2. You must use either Szap or the Gfid replace function
described 1later in this section. This degree of difficulty
encourages caution and planning, and discourages thoughtless
experimenting.

* Overlays *

9

38

System 88 System Programmer's Guide
Section 3 Page 165

For an example of an overlay, refer to the 1listing of the
system error message writer overlay, Emsg, given in Section 7.

* Qverlays *

System 88 System Programmer's Guide
Section 3 Page 166

System Overlays

As shipped, the single and Twin systems have a number of
overlays that perform system functions. Some of the functions
-provided by the overlays may be invoked by the user. Each
overlay will be discussed, with the functions it provides.

Overlay Function

Exec .0V System executive Command processing

Emsg .0V Error message display

Dfnl.OV Disk functions

Dfn2.0V Disk functions

DEn3.0V Disk functions

Gfid.ov Get/enter file services

Prnt .0V Printer functions

Pack.OV Pack a disk

B D% o b § 2 WL O)V 400 o o Rdditor functions -

Mfun .0V Misc functions (Twin only)

Berr .0V BASIC error reporting

Bfun.OV BASIC functions

Bslv.OV BASIC program save/load

Bdir .0V BASIC direct commands

Xref .0V BASIC cross reference

Amsg .0V Assembler error reporting 9

vmgr .0V Volume Manager

Note that the overlays used by BASIC, the assembler, Editor,

and printer are for a specific version. Overlays from one
version of BASIC may not be used by another version. If such a
mix is attempted, disaster will be the result. Since the

overlays on the system disk are marked as system files, the user
can't meddle with them. This problem can only be caused by a
systems programmer!

The overlay functions described are for the Exec/94 release
of the system, and may not correspond to previous versions of the
system. This is especially true when dealing with Dfnl, Dfn2,
and Dfn3. In producing the TwinSystem, functions performed in
these overlays were shuffled around to meet the 2K byte size
constraint. Also, some functions were reduced or eliminated
entirely.

Some overlays are driven from the function code passed in A,

Most overlays do not check to see that this value is within the
expected range. A bogus function code will cause bogus results.

* Overlays *

I .‘

Section 3

System 88 System Programmer's Guide
Page 167

Exec.0V is central to the operation of the system. It

parses user

commands and initiates their execution. It also

processes errors reported through Err, and is the default handler

-for control

Y ("Y) as set through Iexec. The Exec also plays an

important role in the system boot sequence.

Emsg.QV is the system error message handler. When invoked

with an erro
screen. No
return; this
Emsg is se
Emedit.

r code in DE, it displays the appropriate text on the
te that the text does not terminate with a carriage

must be supplied by the user program, if needed.
t up for use with the system error message editor,

Dfnl.OV provides the following functions, based on the
function code passed in A:

oo Code . ——Command/Function .

NOAUTHB WD H®

Unused

IMAGE

INIT

Unused

RENAME

SetsSys

Unused '
Unused

The IMAGE, INIT, and SetSys functions all request

information

from the user (via reads through Rlwe and WH@), so

they are not particularly useful as callable functions. The
command string for RENAME is pointed to by CMPTR, so this

always retur
indication

" function may be invoked by the user program. The overlay will

n to the calling program, but does not give any
of error or success to the caller. The overlay takes

control of PVEC and may not restore it before returning.

Dfn2.0V provides the following functions, based on the
function code passed in A:

Code

SN aaUdes Wwo ™R

Command/Function

LIST
DELETE
UNDELETE
Unused
Unused
Sniff
Unused
DIR

* QOverlays *

. System 88 System Programmer's Guide
Section 3 Page 168

8 boot
9 DLIST

The LIST, DIR, and DLIST commands pick up their argument
using CMPTR. Note that LIST and DLIST stop after each 15 lines
.of display, requesting a character from WH@ before continuing.
DELETE, UNDELETE, ©Sniff, and boot also expect CMPTR to be
pointing to their arguments. The boot command should be used
with extreme caution on the TwinSystem; both system disks must be
the same revision (of the TwinSystem). The overlay will always
return to the calling program, but does not give any indication
of error or success to the caller. The overlay takes control of
PVEC and may not restore it before returning.

Dfn3.0V provides the following functions, based on the
function code passed in A:

Code Command/Function

%) Unused

1 Memory Dump Function
2 DUMP command in Exec.
3 COPY

4 DNAME

5 PRINT

6 TYPE

7 SAVE

The Memory Dump function of Dfn3 1is called with the
registers as follows:

HL: Starting address of the memory area to dump to the
printer.

DE: Ending address of area to dump.

BC: The address of a string to be printed at the top of
the memory dump, terminated by a CR and a 00 byte.

A: 1 (To select the memory dump function in Dfn3.)

On exit from the overlay all registers contain junk.

Dump dumps the selected memory area specified by the
contents of HL and DE to the printer. The string pointed to by
BC 1is printed along with the memory limits as the first line of
the memory dump. This string should be terminated by a carriage
return and a zero (08) byte. Dump first outpust the memory
limits to the printer, then begins dumping memory in hexadecimal
form, sixteen bytes per line. After a line is printed, the next
sixteen bytes are examined to see if they are identical to the
previous 16 bytes. If they are identical, this 16 byte area is
not printed, as it is a duplication of the preceding area.

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 169

The DUMP Exec command does the same thing as the Dump Memory
function directly from Exec. The form of the command is:

DUMP ADR1 ADR2 COMMENT

‘This command is valid only in the ENABLED mode. ADR1 and ADR2

are the beginning and ending memory limits, and COMMENT is any
string of characters up to a carriage return that is displayed on
the header line of the dump.

The SAVE command requests input from the wuser, and is
probably not useful as a callable function. PRINT, TYPE, and
COPY all wuse CMPTR to retrieve arguments. DNAME requests input
directly from the user. The overlay will always return to the
calling ©program, but does not give any indication of error or
success to the caller. The overlay takes control of PVEC and may
not restore it before returning.

- Gfid- OV is-_responsible for - -parsing file names, entering

files 1into directories, and replacing file entries in
directories. For more information on Gfid, see the descriptions
in the sections on the file system and system service vectors.
In the TwinSystem, the Gfid overlay just jumps to the resident
service vector. :

Prnt .0V handles printer setup and modification. See the
sectidn on the printer for more information.

Pack.QOV is called to pack a disk. It assumes that user
memory has been set to zero by the Exec. It uses CMPTR to locate
the text of the drive to pack. This function should not be
invoked by the user.

Efun .0V provides services to the -editor. It has no
functions that can be used by other programs.

Mfun .0V appears only on the TwinSystem. It contains
miscellaneous routines and functions used in the Twin. It
provides the following functions, based on the function code
passed in A:

Code Command/Function
0 SET
1 Porfavor
2 ziffle

The ziffle command uses CMPTR to retrieve its argument. The
argument is expected to be a file name followed by a space and
the seed string. The seed string may £ill the remainder of the
line, just as long as you can remember it. The file is encrypted

* Qverlays *

System 88 System Programmer's Guide
Section 3 Page 170

in place, one sector at a time, so the process should not be
interrupted. Porfavor and SET also use CMPTR to retrieve
arguments. The overlay will always return to the calling
program, but does not give any indication of error or success to
the caller. The overlay takes control of PVEC and may not
-restore it before returning.

Amsg .0V is the Macro-88 Assembler error message handler. It
has no functions that can be used by other programs.

Vmgr .OV handles the hard disk volume allocation. Refer to
section 1¢ for more information.

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 171

BASIC Overlays

The descriptions that follow are for BASIC version C@3.

‘With the exception of Berr, the overlays for BASIC do not provide

user callable functions. These overlays are used to reduce the

-amount of memory BASIC needs to run. They assume that the BASIC

resident 1is in memory, and they call functions provided in this
resident, as well as modify data areas defined by the resident.
This is why switching components between versions won't work, and
why it's hard to use these overlays other than with BASIC.

Bdir .0V contains "direct" commands, as well as <c¢old start
and Treenter <code. The direct commands are: LIST, DELETE,
RENUMBER, DIGITS, and program line entry.

Xref .0V contains the cross reference generator for BASIC.

Berr .OV contains the error processing and recovery code for

________BASIC. __Note that the first part of error processing, including

UN ERROR statéﬁéﬁfg““Ts“haﬁatéa“by“thé‘BRSTC—YESTdent————Tf——Berr
is <called with an error code in DE and a 5 in A, it will display
the corresponding error message on the screen. All other
function codes in A rely on internal functions or data in BASIC
and should not be invoked by the user. Berr is set up to work
with the system error message editor, Emedit.

Bslv.0OV provides SAVE, LOAD, SAVEF, SAVEP, CHAIN, and LINK
functions.

Bfun .0V provides many of BASIC's internal functions; this
overlay 1s resident most of the time when a BASIC program is
running. It performs graphics functions (PLOT, DRAW), scientific
functions (MOD, EXP, ©SIN, CO0S, SINH, COSH, SQRT, ~, LOG, TAN,
TANH, ATAN, ASIN, LOG1lg), matrix functions (SUM, PROD, MAX, MIN,
MEAN, STD), as well as INP and OUT.

BASIC can be run with from 6 to 26 digits of precision.
This means that the scientific functions must be implemented in a
manner that will give full accuracy over a wide range. For this
reason, power series expansions are used for most functions, with
terms being generated until the point is reached where subsequent
terms will not add to the accuracy of the result. SQRT uses a
modified Newtonian iterative approximation. The number of
iterations is determined by the number of digits precision.
Expressions of the form X"Y are evaluated by repeated
multiplication for Y an integer 1less than 160 (decimal) ,
otherwise a log expansion is used.

* Overlays *

System 88 System Programmer's
Section 3

Guide
Page 172

&

* Qverlays *

9

@

Section 4

System 88 System Programmer's Guide

Section 4
Utilities for the System Programmer

Section 4 describes the utilities for the System 88,

these programs is on the disk included with this manual.
programs included are the following:

Page 173

Each
The

EMEDIT an editor for error message overlays. This program
allows the systems builder to tailor system error

messages to the end user and to add new messages
use by applications systems.

for

SZAP a program used for examining and manipulating the

contents of disks and memory. SZAP is a powerful
meant for use by experienced programmers.

tool

SCOPY a program used for copying a large number of files at
one time or copying a new version of a program over th

old version.

FUTIL a file utility program used to create a command
to copy entire directories or parts of directories.

RDB a debugger for machine language programs.

file

Auth.OV may be installed on a user's system disk to inhibit

access by unauthorized personnel.

SPACE diéplays the number of bytes remaining in
directory named on the command line.

WAIT allows é pause during command file execution.
TWID displays the contents of a symbol table file.
COMPARE compares two files.

COMP-DISK compares two disks.

CLEAN reinitializes the root directory on a disk.
ARISE undeletes a selected deleted file.

DIRCOPY copies all files within a directory, 1including
subdirectories within it.

the

the

RECOVER recovers a file from a disk with a bad directory.

* Utilities *

System 88 System Programmer's Guide
Section 4 Page 174

EMEDIT - An Editor for Error Message Overlays

EMEDIT allows the system programmer to examine and modify
error message overlays in the System 88. Using EMEDIT, you can
view messages in an error message overlay, delete or add
.messages, list the messages to the system printer, or replace
existing messages.

Restrictions

EMEDIT will edit only system error message overlays. This
means the name of the file to be edited must be exactly four
characters long. The load and start addresses in the £file must
be 200@6H. Location 2¢007H in the overlay is expected to contain a
pointer to the body of messages within the overlay (see Section
7). In addition, EMEDIT must be invoked in the enabled mode. If
invoked in disabled mode, EMEDIT returns to the Exec. At this
time, the error message overlays on the disk are Emsg.O0V,

9

—————Berr-0V;—and—AmsgL0Vs S ——— o

Using EMEDIT

The user invokes EMEDIT when the system is in the enabled
mode. EMEDIT then displays its version number and command list
on the screen. Give commands to EMEDIT by typing a command
character, in either upper or lower case (EMEDIT folds lower case
to upper case). The command characters are:

Character Command

Add message
Delete message
Edit error file
Replace message
View messages
Exit

Sort

List messages

CfNX<BVEOP

If EMEDIT does not recognize the character typed as a 1legal
command character, EMEDIT again displays the command list on the
screen.

* Utilities * EMEDIT *

—————escape—(ESC) —character —followed—by —a—~carriage return {(CR)-is

System 88 System Programmer's Guide
Section 4 Page 175

Adding messages to the text: The A Command

In response to the A command, EMEDIT prompts the user for
the error code to add by displaying the text

Add error code:

and accepts a hexadecimal number followed by a carriage return.
Lower case letters are folded to upper case, and the conversion
stops when a character not in the set a-f, A-F, 0-9 |is
encountered. This number 1is the number under which the new
message will be stored. Any existing messages in the file with
that code will be deleted. EMEDIT then displays:

Terminate new message with ESC-CR

on the screen, and prompts the user for lines of input with the
prompt character <. Input is accepted until a line ending with an

detected. This terminates processing in the Add command. If no
file has been opened for editing by using the E command, the
error text

No file open for editing~ use E first
is displayed on the screen. If the added text would force the
overlay over the maximum size of 2K bytes, EMEDIT displays the
message:

Message truncated-Overlay is fulll
EMEDIT truncates the added text and terminates the Add command.

Deleting a Message: The D Command

The D command is used to delete messages from the file. The
user is prompted with

Delete error code:

and a hexadecimal number 1is input by the user for the message
code to delete. TIf the message is not found, the text

I can't find that message
is displayed. 1If no file has been opened for editing, the text
No file open for editing- use E first

is displayed and the command terminated.

* Utilities * EMEDIT *

System 88 System Programmer's Guide
Section 4 Page 176

Opening a File for Editing: The E Command

After typing E to invoke the Edit command, EMEDIT prompts
with

Edit file name:

and waits for the user to enter the name of the error message
overlay to edit (followed by a carriage return). The file is
validated, as described in the section on Restrictions. Any
errors in looking up the file are reported to the user and
terminate the command. If the file does not look like an error
message overlay, the text

That's not an error message overlay!
is displayed and the command terminated. If another file was

open for editing at the time the E command was given, that file

dsk i f modifivations—havebeen —

made.)

Replacing a Message: The R Command

The R command is similar to the A command for adding a
message, but it assumes that there is a message with that code
already in the file. The user is first prompted with the text

Replace error code: .

and the user inputs the error code. If no message with that code
is found within the overlay text, the message

I can't find that message.
is displayed on the screen and the command terminates. If the
message exists, it is deleted, and the A (Add) command invoked to
add the message. '

Viewing the Contents of the File: The V Command

The V command displays the messages 1in the file on the
screen, The display stops at the end of each page, and a dot |is
displayed. The user may type either the single character x or X
to abort the display at that point, or any other character to
continue the display. The error codes and texts are displayed in
their order of appearance in the file. Messages added with the A
(Add) or R (Replace) commands will appear at the end of the file.

If no file is open for input, the message

No file open for editing- use E first

* Utilities * EMEDIT *

System 88 System Programmer's Guide
Section 4 Page 177

is displayed and the response to the command aborted.

Listing messages to the system printer: The L Command

The L command lists all error messages in the currently open
"file to the system printer. An error message results if no file
is currently open for editing. The error messages are listed in
the same format as produced by the V (View) command.

Exiting the program: The X Command

If no file was open for input when the X command was given,
or no modifications had been made to the file currently open,
EMEDIT returns to the Exec. If the currently open file was
modified by use of the D (Delete), A (Add), or R (Replace)
commands, the new file will be written to disk. If the file has
not increased in size, the new contents will be written over the
old file on the disk. 1If the file has increased in size, the old
——————copy—of=thefile—is deleted(even—if—it—is—asystem file)y;anda————
new copy of the file is created on the disk.

Editing BASIC Error Messages

The error messages for BASIC are 1in the error message
overlay Berr.OV. To save space 1in the overlay, if the last
character in a message is the letter e, this will be expanded to
the word "error." This expansion turns the string "Syntax e" in

G the Berr file into the string "Syntax errror" on the screen when.
the error is reported from BASIC. The user be aware of inserting
messages ‘into the Berr file that end in the single character e.

Suggestions for using EMEDIT

When adding new error codes to the system, write them down
and add them to the User's Guide, as well as to the System
Programmer's Guide and any applications documents. Make error
messages clear, giving as much information about what caused the
error as possible, and use good grammar. Be cautious in
inserting obscene error messages- if a disk containing such error
messages accidentally gets released or sent to customers, it can
cause a lot of trouble!

‘ * Utilities * EMEDIT *

System 88 System Programmer's Guide
Section 4 Page 178

utility - SZAP 9

SZAP (SuperZap) is a utility .program that allows the
experienced system programmer to examine and modify the contents
of both system RAM and disk storage. SZAP is a powerful tool
-.when used correctly and is capable of destroying the contents of
disks and main memory when used incorrectly.

SZAP allows the system programmer to display a selected 256
byte page of main memory or a selected disk sector. SZAP
displays the page in hexadecimal form, with an optional character
display. The wuser may move an editing cursor through the
selected page by using the cursor controls and so display the
previous or next page of memory or disk. To modify data present
in the display, the programmer enters either hexadecimal bytes or
character strings. Additionally, SZAP can zero the contents of
the page from the cursor to the end of the page in response to a
single keystroke. SZAP makes modifications to main memory pages

—————as the user enters the new data. A modified disk page —(sector)
is written to the disk when a request is made to display another
page or to exit the program. The programmer may disable error
checking and reporting when modifying the disk; this allows the
systems programmer to attempt to reconstruct damaged disk
directories and the 1like. :

Running SZAP

The user must be in the enabled mode to execute SZAP. 1If 9
the user tries to invoke SZAP when in the disabled mode, SZAP
immediately returns control to Exec. When SZAP begins execution,
the Control-Y vector is set to force exiting of the program (that
is, a control-Y will cause you to exit from SZAP). SZAP displays
a command summary and the version number. SZAP then waits for
the device selection, ":" and a drive number or 4 for memory.

A SZAP command is either a single character or a hexadecimal
number. (The single character commands appear below.) A number
alone is an implicit command to SZAP to place that byte at the
cursor position in the page that is displayed on the screen. A
hexadecimal number is terminated by a space, whether it appears
as the default data entry command or as a command argument.

* Utilities * SZAP * “)

&

System 88 System Programmer's Guide
Section 4 . ' Page 179

The command characters recognized by version 2.3 of SZAP (and
their associated functions) are:

Character Function
Control-E Exit after updating disk
Control-Y Exit without updating disk
' Begin text entry (single quote)
ESC Toggle text display mode
ESC Terminate text entry (escape)
:n Select device n for display
/n Select page n for display
I Display indirect
! Toggle error check on disk data
transfers
Control C Checksums 4 sectors.
A Zero data from cursor to end of page
RET (Carriage return) Display next page
LE (Line feed) Display previous page

e

(n = a hexadecimal number)

SZAP folds lower case letters to upper case when accepting
commands or hexadecimal numbers as input.

The four cursor control arrows have the following functions:

Cursor

Arrow Function
UP Move to beginning of previous line
DOWN Move to beginning of next line
LEFT Move cursor left one byte
RIGHT Move cursor right one byte

SZAP displays the preceding page if the wuser moves UP or
LEFT from the top of the screen display; it displays the next
page if the user moves DOWN or RIGHT £from the bottom of the
display. The cursor appears in the upper left hand corner (byte
g9) of a new page display.

Exiting SZAP: Control-E

To exit from SZAP the user types a Control-E. Any modified
disk pages not yet written out will be written to the selected
disk drive. Once the user exits SZAP, SZAP may not be restarted
or reentered by way of the system commands START and REENTER.
The user must re-invoke SZAP to use it again.

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 _ Page 189

Hexadecimal Data Entry

Entering a hexadecimal number is an implicit command to SZAP
to store the least significant eight bits of that number in the
location pointed to by the cursor. The number is delimited by a
-space. Once the space has been entered, the selected byte |is
updated and the cursor moved to the right (the next location in
the page). Typing errors are corrected by simply typing enough
characters so that the least significant eight bits (the last two
digits) of the number are correct. The strings 2, 9A@2, and
3E@P2 all store the eight bit hexadecimal gquantity 02,

Text Entry: The ' Command

A single quote symbol places SZAP in the text entry mode.
All characters typed from that point on, with the exception of
Control-Y and ESC (escape), will be entered into successive
locations 1in the displayed page. This includes control

characters SuchH as_carriage return_and_cursor_control keysl ESC

(escape) is used to terminate the text entry mode. To terminate
text entry and exit from SZAP, the user types an ESC/ Control-E.

Toggling the Text Display: The ESC Command

The user may display the page in text form on the right
portion of the screen. The ESC command enables or disables this
display. When the text display is enabled, the frame address is
not displayed, and those characters in the range &0 to 7F
hexadecimal are displayed in their normal ASCII form; the values
80H through FFH display as blanks. NOTE: SZAP will not display
the contents of the screen properly if you try to display the
video board itself!

Selecting the Device: The : Command

The command character : (colon) followed by a hexadecimal
number selects the device to be displayed and edited. Device
zero denotes main machine memory, device 1 is disk drive 1, and
so on. If the page currently on display represents a disk page
that has been modified, that page will be written out to the
proper device before the : command is processed. When a disk is
edited, the frame number displayed in the upper right corner of
the screen consists of the device number and a four digit
hexadecimal number representing the sector address. (Note: the
frame address does not appear when the text display is enabled.)
When a disk is selected, sector 00 is automatically displayed on
the screen as the current page.

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 Page 181

Selecting the Displayed Page: The / Command

To display a particular page of the device being edited, the
user types /nnnn, where nnnn 1is a hexadecimal number. This
number selects the desired page. When device #@ (main memory) is
-being edited, only the upper eight bits (the two most significant
digits) of the last four digits of the number are used to select
the page to be displayed. When the user is editing a disk (by
using the : command), SZAP uses the entire number as a sector
address. In either case, the number is terminated by a space.
Typing errors are corrected by entering more digits, since only
the last four hexadecimal digits of the number are wused. For
example, -suppose the user enters /12345678. If a disk is being
edited, sector number 5678H will be displayed (or at least SZAP
will try to do so!). If main memory is being edited, as selected
by "device" @, memory starting at location 56@0H will be
displayed.

—— ——Display Indirect: The I Command

The I command uses the sixteen bit address pointed to by the
cursor in the frame currently being displayed as the new frame to
display. This - number is treated in standard 8688 fashion, less
significant byte first. If the user executes the I command while
the cursor is pointing to the two bytes containing the number 3D
@1, sector 13DH is displayed (if a disk is being edited). If
main memory is being edited, page 100H is displayed. 1If the page
currently on display is a modified disk sector, that sector will
be written out to the disk before the next sector is displayed.

Disabling Disk Error Reporting: The ! Command
WARNING: THIS IS DANGEROUS!

The ! command toggles a flag that enables or disables SZAP
disk error detection and reporting. When the user inputs the !
command, this flag is displayed on the screen following the frame
address. | A value of 0000 indicates that errors will be reported;
a value of FFFF indicates that errors will be ignored. 1It is
sometimes useful to disable error detection and reporting when
attempting to recover destroyed or unreadable disk directories.
Although useful, this feature is dangerous-- use with extreme
caution!

SZAP Display of Error Conditions

When SZAP encounters an error such as a disk transfer error,
it clears the text display flag and displays the error code on
the screen to the right of the frame address. The error code
displayed is the one reported by the systemstores the checksum in
the first byte of the clirrent sector. Since SZAP has no way of

* Utilities * SzZApP *

System 88 System Programmer's Guide
Section 4 . Page 182

knowing when a sub-directory is being modified, it is the users
responsibility to use this command after modifying a
sub-directory so that it will be properly’ checksummed when
checked by Gfid. If a sub-directory 1is modified and not
checksummed, the first access of that sub-directory will report
-one of your favorite error messages -- Disk Directory Destroyed!
When this happens use SZAP again and checksum the sub-directory
using the °C command. Main directories are automatically
checksummed .

Zeroing the Page: The Z Command

The Z command =zeroes the contents of the page on display
from the cursor position to the end of the page. The previous
contents of the page are lost. If the user accidentally gives
this command while viewing a memory page, that page of memory is
zeroed and the previous contents of that page are lost beyond
recovery. If the user gives this command by accident while

————displaying —a —disk page;—the two ways to-prevent-—the (partially}————
zeroed sector from being written to the disk are to RESET THE
SYSTEM by pushing the Load button (and be more careful from then
on) or to type Control-Y to abort to Exec without wupdating the
disk.

Displaying the Next Page: The RETURN Command

To display the next page, the user types a carriage return -
(CR or RETURN). If a disk is being edited, the next sector on 9
the disk is displayed. If main memory is being edited, the next

256 byte page is displayed.

Displaying the Previous Page: The LINE FEED Command

The previous page will be displayed when a LINE FEED (LF) is
typed.

Cursor Movement Using the Cursor Keys

!
The four arrow keys at the right of the keyboard are used to
move the cursor up, down, left, and right within the page on
display. Their wuse may also cause the previous or next page to
be displayed if they are used to move off the top or bottom of
the frame being displayed. The left and right arrows move the
cursor left or right one byte. The up arrow moves the cursor
either to the beginning of the current line or to the beginning
of the previous line. The down arrow moves the <cursor to the
beginning of the next display 1line. The cursor keys in
combination with LINE FEED and RETURN allow the user to move the
cursor forward or backward one byte, one line (sixteen bytes), or
one page (256 bytes).

* Utilities * SZAP *)

System 88 System Programmer's Guide
Section 4 Page 183

b Attempting to Reconstruct Directories

NOTE: A complete understanding of Section 2 of this manual
is necessary, but may not be sufficient, in attempting
to reconstruct a damaged disk directory. Making backup
copies of important disks on a regular basis 1is much
easier than trying to reconstruct a damaged directory.

When SZAP is instructed to read disk sectors @, 1, 2, or 3
of a disk device (the directory sectors), one sector is read into
the internal editing buffer. When another sector is selected or
any other event takes place that would cause that updated sector
to be written out to the disk as part of the directory, SZAP
follows the following procedure:

1) Each of the directory sectors @, 1, 2, and 3 of the
selected device are read into the system directory one
sector at a time. This means that four individual calls
to Dio are made to read the directory, each requesting
one sector, rather than one c¢all to Dio regquestingfour————

sectors.

2) The sector updated by SZAP is copied to its correct place
in the directory area.

3) The directory checksum is recomputed and stored in both
.9 the directory_header and NFCK (see Section 3).

4) The four directory sectors are written out by one call to
Dio.

If a disk directory 1is unreadable because of a checksum
error on one of its sectors or some similar error, the £following
procedure is suggested, BUT NOT GUARANTEED:

1) Try reading the disk directory on other drives in the
system.

2) Image the disk onto a scratch disk, and try to read that
disk on other drives,.

3) If (1) and (2) have not succeeded, use SZAP to examine
the first four sectors of the disk to determine what type
of problem exists and which sector or sectors are
affected. You can also use Sniff to <check for hard
errors.

4)y If the system can read sectors @ through 3, chances are
some program has gone wild and stomped the directory. 1In
this case, the directory may be carefully reconstructed
by hand, one sector at a time.

‘ * Utilities * SZAP *

Section

5)

6)

System 88 System Programmer's Guide
4 Page 184

If a checksum or preamble error has occurred, making one
or more sectors of the directory unreadable, the !
command may be used to disable error checking. You can
then read the offending sector into memory, correct it by
hand, and then write it back to disk. After this is
done, use the ! command again to enable error checking.
Re-examine the directory sectors to determine if there is
a hard media error or if the error has been covered up.

After the disk has been "fixed" by performing (4), (5).,
or other procedures, the important files on it should be
INDIVIDUALLY copied to other disks, and then the
offending disk should be re-initialized by using the INIT
command. This 1is wvery important, especially 1if a
directory was '~ rebuilt by hand! Such a reconstructed
directory may have subtle errors in it that are not
immediately apparent but that will cause a catastrophe
the first time a file is deleted, the disk is packed, or

a-new file is-created on-the-disk.

Morals on Reconstructing Directories

The following suggestions are made in the hope you will
never need this section and the trauma that accompanies it:

l)

2)

Perform preventative maintenance on your system on a
regulatly scheduled basis. This should consist of
running the memory test, cleaning the heads on disk
drives, etc.

Log hard disk errors, such as checksum errors and
preamble errors, recording both the name of the disk and
the offending drive. This information may help in

" tracking down a bad drive, compatibility problems between

3)
4)

drives, or bad media.
If possible, write-protect system disks.

Keep write-protected backup disks. The more important
the contents of a disk is, the more often it should be

backed up. When making backup copies, use a SET of disks

for backup, and rotate the usage of the backup disks so
that you write over the oldest backup copy each time.
After making a backup copy, "Sniff" the disk, or use some
other procedure to verify that the backup 1is good.
Backup disks should be write- protected and stored away
from other disks.

The general moral of this section is to treat your system

like a

"real computer." Regularly scheduled and performed

preventive maintenance <can detect problems before they cause

* Utilities * SZApP *

System 88 System Programmer's Guide
Section 4 Page 185

system leaves you less

trouble. Regular backup of the file
measures take

vulnerable if disaster does strike. Preventative
time and use up disks, but can minimize losses.

* Utilities * SZAPpP *

System 88 System Programmer's Guide
Section 4 Page 186

Utility Program SCOPY

SCOPY allows a user to copy files over old files (if they
fit) and to «copy files without using Dfn3 which avoids overlay
swapping in the single user system and therfore speeds up the
copying process. System files may be copied without resetting
the system bit. SCOPY accepts commands in two formats. 1In order
to copy one file, you can type the command in the format:

SCOPY pathnamel pathname2 {anychar}

where pathnamel is the source file, pathname2 is the destination,
and the optional anychar is any printing character. If anychar
is present, SCOPY will copy pathnamel over the already existing
. pathname2 if the file pathname2 is the same-size or-smaller—than— ———
pathnamel. If pathname2 1is larger, so that it will not fit in
the former space, SCOPY will give the error 'What?'. 1In order to
copy more than one file, type

SCOPY

The program will display its version number and the prompt

' | SCOPY ' | -

You can then enter sets of pathnames followed by an optional
anychar as above. SCOPY will copy the files specified and again
prompt for another set of filenames. In order to end the process
type RETURN. Errors shown by SCOPY are prefixed by T:, F:, or

:, where x 1is the drive number that caused the error. T:
specifies the To or destination disk and F: specifies the From or
source disk.

: SCOPY is used in the command file created by FUTIL to do the
actual copying of the files.

* Utilities * SCOPY *

System 88 System Programmer's Guide
Section 4 Page 187

Utility Program FUTIL

FUTIL 1is a BASIC program that allows the user to copy,
delete, or move some or all of the files in a directory. FUTIL
_works by generating a command file called 'foo'. FUTIL first
asks the user for the volume number of the source disk. This 1is
the drive number of the disk from which you wish to copy, delete
or move files and must be in the range 1-9. The disk specified
is then read, and each file is displayed on the screen as it is
found. Next all of the directories found are displayed on the
screen and the prompt:

M(ove), C(opy), D(elete), N(ew source) or E(xit)?

is displayed. Respond with the one character corresponding to
the task you wish to perform and a RETURN.

Move will copy files from one directory to another and then

delete—the—eoriginal—files+—After move—is—selected;—FUTIL—will—
display the source volume number and wait for the user to specify

~a subdirectory if desired. To move files from the main directory

simply press RETURN. FUTIL will then ask for the Destination
Directory. Type a legal pathname including all necessary angle

brackets such as:

Source: <1< Destination: <2<TRIXK

The final angle bracket is not necessary but is allowed. FUTIL
will then ask:

Copy all or part? (a or p):

If all files are to be copied, enter a, otherwise enter p. If p
is entered FUTIL will ask:

move <1<Exec.0V to <2<TRIX<Exec.0V? (Y, n, x):

'y' will cause the file to be entered into the command file. 'n'
will cause the file to be skipped. 'x' will cause FUTIL to stop
asking about any more files in the directory. FUTIL will ask for
each file in the source directory until all have been done or the
user types 'x'., FUTIL will then return to the options dquestion
to allow moving of another directory or any of the other options.

Copy will copy files from one directory to another in much
the same manner as move.

Delete will delete files from the source directory.

New source will read another volume for copying. Keep in
mind that when the command file is executed the volumes specified

* Utilities * FUTIL *

System 88 System Programmer's Guide
Section 4 Page 188

must be in place as they were when the command file was
generated. There is no time for disk shuffling.

Exit causes the command file to be closed and asks if the
user. wants to run the command file now. If so the file will be
.run immediately. Otherwise, the file can be run by typing 'foo’'.
'‘foo'! can also be edited to change the action taken when it |is
run. For instance, Delete can be specified to FUTIL and instead
of running the command file, the user may edit foo and change
DELETE to PRINT and insert PAGE between each of the commands and
have a command file to print all the files in a directory.

FUTIL is provided in an unprotected and untokenized format
so that the user can play with it and add features if desired.

* Utilities * FUTIL *

System 88 System Programmer's Guide
Section 4 Page 189

b Debugger

'RDB' is the debugger for PolyMorphic Systems System 88
computers. It represents a significant improvement in features
and human engineering over the "front panel" for debugging
-assembly 1language programs. This short note describes the
facilities available in this debugger, but is not a course in
assembly language debugging or programming. It is strictly a
note on debugging aids. ' :

Using the debugger

The debugger desired is invoked by typing its name, RDB. It
then prints 1its herald and exits. The user may then start any
other program or set of programs. The debugger is initially
entered by typing Control-U on the keyboard.

The debugger 1is a relocatable program. that must be loaded
___prior to loading the program to be debugged. It locates itself

JjUSt below MemTop and resets MemTop accordingly.

Warnings on the use of the debugger

The programmer should not use RST 1 or -RST 7 instructions,
and should not use interrupt level 1. The debugger assumes contol
over these interrupt 1levels as well as interrupt level 7. The
user should not single-step through the monitor root, especially

‘9 those portions dealing with disk I/0 and overlays. Breakpoints
must be very carefully set in overlays. They won't work if the
overlay is swapped out and reloaded.

Debugger Display

The debugger displays in the upper left corner the current
values of the 8P, HL, DE, and BC registers with the four bytes
pointed to by them. The A and PSW registers are shown with the
status of the C, 2, M, PE, and AC flags.

The left side shows the next 9 instructions to be executed
with their addresses., The first corresponds to the program
counter.

Debugger Commands

The commands to the debugger are one character, optionally
preceded by a 16 bit hexadecimal number.

(* Utilities * Debugger *

System 88 System Programmer's Guide
Section 4 Page 190

G Go Q

The G command is used to continue program execution from the
current value in PC,.

X Single step

The X command causes a single instruction to be executed.
Note that if this is a DI instruction, a sequence of instructions
may be executed before control is returned to the debugger. The
argument, if present, is ignored.

I Indirect Display

The I command indirectly sets the window address. If in the
numeric display mode, the window will display the the address
presently pointed to in byte reversed form. If in the
instruction display mode, the window is set to the address
———————containedone byte past—the current—window—positions—This—ts——
handy for JMP or CALL instructions.

J Temporary breakpoint

The J command puts in a temporary breakpoint at the
instruction following the current one to be executed. When
single stepping a program and encountering a CALL ####, the J
will execute the subroutine and return to the debugger when the g
subroutine returns. If a normal breakpoint is encountered before %
the temporary, the temporary one is lost.

M Move data

The M command moves a block of data. When prompted, enter
the starting address of the source, the ending address of the
source and the starting address of the destination. If no
starting address 1is given, the move is aborted. Note that data
cannot be moved on top of itself.

0] Output

The O command sends a byte of data to an output port.

Q Quit

The Q command restores MEMTOP, sets UVEC to point to TIoret,
and UCHR to #, and warm starts the Exec. If a BASIC program is

expected to continue functioning, don't Quit the debugger, Jjust
remove the breakpoints and Go.

* Utilities * Debugger * ,)

System 88 System Programmer's Guide
Section 4 Page 191

R Restore screen

The R command restores the screen display until any other
key is pressed.

S Search

The S command searches for a string of up to 16 numbers.,
Enter ## ## ## where each number is terminated by a space. The
last byte is terminated by RETURN. Enter the starting address
and press RETURN. The window will point to the match. "C" will
continue to the next match. The string will always be found at
least once since it is saved in a buffer in the debugger.

T Set MEMTOP
The T command allows the changing of MEMTOP. Enter the

value of the desired MEMTOP and press space. If no number or
zero is given, MEMTOP is not changed. '

v View

The V command sets the window address if preceded by a
number . Otherwise it advances the window address either 8 or 64
bytes for instruction or number mode, respectively.

W Warm start Exec ‘

The W command sets PC to @4@3H and does a GO.

yA Fill memory

The Z command will fill hemory with a byte from a starting
address to an ending address. If no byte is given the fill is
aborted. Note the distinction with the ;Z command.

Arrows Move window pointer

The arrow keys move the window pointer:

Up Up 8 lines in instruction mode. Up 1 1line (8
bytes) in the number mode.

Down Down 1 1line (8 bytes) in the number mode. 1If in
the instruction mode, it may show trash as it
can't disassemble backwards.

Left Left one byte 1in the number mode. Up 1 line in
. the instruction mode.

Right Right one byte in number mode. In the instruction

* Utilities * Debugger *

System 88 System Programmer's Guide
Section 4 Page 192

mode, it may show trash as it <can't disassemble
backwards.

XXXX! Set breakpoint
The ! command sets a breakpoint at the location specified.
Up to 8 breakpoints may be active at any time. The instruction

breakpoints, and the instuction on which the stop will occur are
displayed in the upper right portion of the screen while the
debugger is active. If the address given is already
breakpointed, no action is taken. Care should be exercised 1in
setting breakpoints in the overlay or other system areas.

% Clear breakpoints
The % command clears all instruction breakpoints, and the

instruction breakpoint display on the screen disappears. No
facilities are provided for clearing only one breakpoint. All

Q

breakpointsare—cleared at once.

KXXX 2 Modify register pair

The : command allows the user to modify the contents of
general register pairs (no facilities are provided for changing a
single register). The various commands are:

XXXX:P Set PC
XXXX :H Set HL
XXXX:D Set DE
XXXX :B Set BC
XXXX A Set A, PSW

NOTE: No facility is provided for changing SP.
xxxx;I Display in instruction format

The ;I command sets the display block format to the
instruction mode. The contents of the memory area set by the V
command will be displayed as instruction (see also ;N, ;Z, V).
If an argument is given, it will be used as the display start
location. If no argument is given, the current diplay 1location
will be used.

xxxx;N Display in numeric format

The ;N command sets the display block format to numeric.
The contents of the memory area set by the V command will be

displayed in hexidecimal, with the ASCII character equivalents of
these memory locations displayed to the right of the numeric
display. Arguments are the same as the ;I command.

* ytilities * Debugger *

System 88 System Programmer's Guide
Section 4 Page 193

xXxx;P Display input port mode

The ;P command sets the window to display the input ports
selected. Note this mode will not display ports 18H through 1BH,
as these are the single step ports.

;2 Clear display block

The ;Z command clears the memory block display. This speeds
up the display.

XKXXXV View memory

The V command, 1in conjunction with the ;I and ;N commands
allows the user to diplay a selected block of memory in either
numeric/character, or instruction format. If an argument is
given with the V command, that location will become the start of
the display, using the current format. If no argument is given,
the locations following the currently displayed block will be

displayed~
. Entering hexadecimal data

The . command initiates the entry of hexadecimal, 8 bit data
into the memory block shown by the VvV, ;I and ;N commands. After
the . has Dbeen recognized, hexadecimal data is input from the
keyboard and the 1least significant 8 bits are stored in
successive locations. Data input is terminated by ESC. The data
byte (if any) preceeding the ESC is not stored into memory. Any
non-hexadecimal character terminates an 8 bit quantity, displays
the stored data, and increments the pointer. The entry pointer
is reset by the V, ;N or ;I commands. The arrow keys may be used
to move to a specific memory byte.

' Enter text

The ' command allows the user to enter text into the memory
block displayed by the V, ;I or ;N commands. After the ' is
recognized, text is accepted from the keyboard and stored into
successive memory locations until an ESC is entered. The text is
echoed to the screen with control characters displayed as special
symbols. The arrow keys may be used to move to a specific memory
byte.

* Utilities * Debugger *

System 88 System Programmer's Guide
Section\4' Page 194

Authorization Overlay - Auth.OV

The Auth overlay is an optional component of the System 88
that requires users to give an authorized name and password
before using the system. Systems containing Exec versions number
-52 or later perform this authorization process if the Auth
overlay 1is ©present on the system disk. This authorization
process is not meant to be "totally secure," or to totally
prevent unauthorized use of the system; it IS meant to make
unauthorized use of the system difficult.

Signing Onto the System

The system checks for the Auth overlay during every system
boot. If the overlay is on the system disk, the system invokes
it with a function code of 00, which it passes to Auth in the
Accumulator. The function <c¢ode of @90 tells Auth to ask for a
user name and password. Auth prompts the user to enter his or

o

author1zed names. If the name is present, Auth then prompts the
user to enter a password. The password does not echo to the
screen as the user enters it; instead, question marks appear. If
Auth does not find the name on its authorization list, or if the
password is wrong, it displays an error message to the user; the
system then goes into a 1loop after disabling interrupts and
zeroing part of memory. At that point the user must re-boot the
system to try again.

The user name may be up to sixty characters long, and must
be terminated by a carriage return. When processing the
password, Auth reads up to sixty characters terminated by a
carriage return; however, it uses only the first sixteen in the
validation ©process, If the password contains less than sixteen
characters, Auth automatically appends nulls to £fill it out to
that 1length. The initial greeting message, the password request
message, and the failure message are in the system error message
writer, Emsg. The systems programmer may use the EMEDIT utility
described in Section 4.1 to tailor these messages.

The Exec Auth Command

With the authorization processor, a new command, Auth, is
added. This command, which must be given in the enabled mode,
allows the system user to add, delete, and list authorized users,
as well as change passwords for users.

* Utilities * Auth.ov *

®

System 88 System Programmer's Guide
Section 4 Page 195

The commands to Auth are single characters, as follows:

Command Character Auth Function

X Exit Auth, warm-starting the system
A Add user to authorization list

D Delete user from list

C " Change password for user

L List names of authorized users

Commands that modify the authorization 1list (Add, Delete,
and Change) cause the system to re~-write the overlay to the
system disk at the time the command is processed; therefore, the
disk must not be write-protected when these commands are given.

Exiting Auth: The X Command

The X command causes Auth to exit, warm-starting the system.

Adding Users: The A Command

The A command is used to add users to the authorization
list. Auth first asks for the user name. If this name already
appears in the user list, Auth gives an error message and aborts
the A command. If the name does not appear on the list, Auth
requests the password. The password echoes to the screen as a
sequence of question marks (?). The name and password are
entered onto the user list, and the overlay is written back to
the disk.

Deleting Users: The D Command

The D command is used to remove a user name from the list.
The user is first asked for the name, which must be on the 1list,
or an error message results. The user is then asked for the
password. This must match the password in the file, or an error
message 1is given, and the name is not removed from the list. 1If
the password matches, the name is removed and the overlay
re-written to the disk.

Changing Passwords: The C Command

The C command is used to change a user's password. The user
is first prompted for a name, which must appear on the
authorization 1list or an error message is generated. The old
password must then be entered, and must match that currently in
the file. A new password is then asked for; it replaces the old
password in the file, which is then re-written to disk.

* Ytilities * Auth.ovV *

System 88 System Programmer's Guide
Section 4 Page 196

Listing User Names: The L Command

The L command displays the list of authorized users on the
screen. Passwords are not displayed.

-Installing Auth on the System 88

To install the authorization checker, copy the file Auth.GO
from the disk included with the System Programmer's Guide to the
desired system disk as file Auth.OV. Note that for Auth to be
used, the Exec on the system must be version 52 or later. Using
the Exec Auth command, authorize one or more users. No users are
authorized in the file as it is shipped. The SZAP utility may be
used to set the system bit (see Section 2) on the Auth.0V file to
insure it is not deleted, or the SetSys command may be used (see
Section 3) to make all files on the system disk system files. 1If
the Exec 1is version 52 or later and the Auth.OV file resides on
the system disk, whenever the system is booted, the user must

— —enter a name—and—password before—thesystem—may be—useds

How Auth Connects to the Exec

In the initialization process, before the Exec looks for the
INITIAL file, it checks to see if the file Auth.OV exists on the
system disk. If this file exists, it is called by an Ovrto (see
Section 3) with a function code of 99 in A. The Auth overlay
"disconnects" PVEC and UVEC and sets the system in disabled mode
by clearing SCHR to pravent it from being interrupted by the
user., If the user is authorized, the Auth overlay returns. If
the user is not authorized, the remainder of the overlay area is
zeroed, and the system hangs. :

User-Written Auth Overlays

For more security, or for other reasons, the systems user
may want to provide a custom Auth overlay. This overlay should
be written to conform to the conventions described for overlays
in this manual. As noted before, since Auth is called very early
in the boot process, MEMTOP has not been set, so no system
services that depend on this cell should be used. The user
written Auth overlay should recognize two function codes passed
in the A register:

Code in A Auth Function
290 Verify user authorization
g1 Exec Auth command given

* Utilities * Auth.OoV *

System 88 System Programmer's Guide
Section 4 Page 197

Storage of Names and Passwords in Auth

The list of authorized user names and passwords is stored as
part of the Auth overlay. The password associated with each name
is stored 1in an encrypted form. The encryption wused |is
"‘simple-minded and is present as a hindrance 1in obtaining the
passwords of others rather than as absolute security. In the
validation process or in validating a password for the C (change)
or D (delete) commands, the password entered by the user is
encrypted and compared to the encrypted entry within Auth. This
insures that the "clear text" of the password is not left in
memory for very long.

"I forgot my password," or, How to Break Auth
All that is required to "break" Auth is a system disk that

does not have Auth connected and a system with more than one disk
drive. The "unprotected" system may be booted and used to delete

the —copy of -Auth from the protected systemdisk. If the copy of

Auth is marked a system file, protecting it from deletion and
renaming, Szap or a similar program may be used to clear the
system bit and then delete Auth. A different method is .to copy
everything from the protected system disk except Auth.

Once wusers are authorized, those authorizations may not be
changed or removed without knowing the associated passwords. = A
new, "clean" copy of Auth may be installed, without any
authorizations, and then user names. added. It should be possible
for the persistent wuser to break the encryption used on the
passwords, but no details on the algorithm used will be given
here.

Suggestions for Using Auth

User names may be as 1long as desired, up to sixty
characters. A password should be easy for the user to remember.
A password that is quick and easy to type is desirable if others
are going to be watching you type your password.

Remember: if you forget your password, it is very difficult
to recover. To be effective at a computer installation, all
system disks should have Auth on them, including backup disks.
The Auth processor is NOT meant to provide "absolute" security
from unauthorized use of the system; it 1is meant to hinder
unauthorized use.

* Jtilities * Auth.0OV *

System 88 System Programmer's Guide
Section 4 Page 198

Utility Program SPACE

This utility displays the number of bytes remaining in a
directory. It is invoked as follows:

SPACE ¢
for the main directory on unit #4

SPACE 5<TRIX
for the TRIX subdirectory in wunit #5. 1If no disk number is
given, the space remaining in the SysRes disk directory will be
displayed.
Utility Program WAIT

This wutility may be called in a command file to cause the

——————execntion of the command—file to panse. Tt displays —the —word

"Waiting...", until the operator presses a key.

utility Program TWID

This utility 1is used to view, change, and print the values
in an Assembler Symbol Table File. Since it operates in a manner
similar to Emedit, the error message .editor, refer to its
instructions.

Utility Program COMPARE
This utility compare two files, byte by byte, that are
specified on the command line. 1If there are any mismatches, it
displays the byte count from the start of the file and the two
bytes that differ. It is invoked as follows:
COMPARE Filenamel Filename2

It asks iwhether the comparison is to be sent to the printer in
addition to the screen.

Utility Program COMP-DISK
This utility compares two disks and can be called after a
disk 1image to verify the copy. It is invoked with only its name

and it prompts for the source and destination disks. If the
disks are not the lildentical, the program displays "Verify error!"

* Miscellaneous Utilities *

System 88 System Programmer's Guide
Section 4 Page 199

Utility Program CLEAN

This utility reinitializes the main directory of a disk. It
can only be called from the ENABLEd mode of Exec. The number of
the disk unit must be on the command line. The SysRes disk
‘cannot be "Cleaned".

Utility Program ARISE

This utility resets the delete bit on a file entry in a
directory, restoring the file to active status. The program is
used in conjunction with the Exec command DLIST to determine
which copy of the deleted file is to be undeleted. It is invoked
as follows:

ARISE Filename N

where N is a decimal number corresponding to the file entry
desired. If the same filename already exists in the directory,

an error message results,

Utility Program DIRCOPY
This utility copies all files within a directory to another
directory, and all of 1its subdirectories. It is invoked as
follows:
For main directories on unit 4 to unit 5:
DIRCOPY 4 5 *
is essentially an IMAGE and PACK in one operation.
For SubDirectories Subl to Sub2:
DIRCOPY <d<Subl <d<sub2 *
where the optional "*" means replace the file if presently in the
directory, "d" is the option disk unit number. Many combinations
are possible, ie. copying from a main to subdirectory, from two
subdirectories, etc. :
If the "*" is not on the command line and a file with the
same name and extension exists in the destination directory, the

program will pause saying:

Output file already exists!
Should I delete it? (Y or N)

If the answer is "N", then it asks:

* Miscellaneous Utilities *

System 88 System Programmer's Guide
Section 4 ‘ Page 200

OK, give me a new name for the file I'm backing up.
Filename:

If the answer is "Y", then it replaces the file with the one from
the source directory. :

The replace function is performed as follows: If the files
have the same sector length, the source file is written over the
destination file on the disk. If the files don't have the same
sector length, the destination file is marked deleted and the
source file 1is copied onto the destination disk at the next
available disk address.

If the destination disk becomes full, the message:

Destination disk is full. 1Insert new disk,
then press RETURN to continue.

>

current directory belng processed.,

If the primary function being performed is a backup of a
complete disk rather than a general subdirectory copy, the
program BACKUP supplied on the system disk should be used. It
checks the "New" bit of each file and resets it after a
successful copy, thus not repeating the copying process with the
first file of the directory endlessly. BACKUP otherwise operates
identically to DIRCOPY.

Utility Program RECOVER

This wutility 1is wused to recover a file that is on a disk,
but not accessible due to a "crashed" directory, or past the
"known" area of the disk., Use SZAP to locate the file starting
and ending disk addresses. Then invoke the program by name. It
asks the following questions:

Enter Disk Drive Number: S

Enter Starting Sector Number: 38C

Enter Ending Sector Number: 31A

Enter Program Load Address: 3200

Enter Program Start Address: 3200

Enter New Filename with Extension: <4<SUB<FILENAME.GO

A typical response by the user is in bold face.

* Miscellaneous Utilities *

System 88 System Programmer's Guide
Section S Page 201

Section 5
The System 88 Printer Driver

) The printer driver is an integral component of the System

88. It provides an interface between the printer and Exec
commands, BASIC programs, the formatter, and user programs. The
goal of this section is to describe the System 88 Printer Overlay
and show how the system interfaces to it. With this information,
users may write routines to interrogate or setup the printer
dynamically from user programs.

Prnt .0V Overlay

These are the function codes that can be passed in A to the
Prnt overlay and conditions for other registers if applicable.

- £ 11T 4= gnae d an dm o 2o
P =g e v g gy = tJI. A1 CCL
2 = Printer command. HL points at string which is printer
name or command. e
3 = Turn off logging.
4 = Turn on logging. -5
5 = Show page parameters on screen.,
6 = Set page parameters from keyboard.
7 =

Set page parameters from registers.
B lines per page.

C = characters per line.

D = top margin.

E = bottom margin. (line number from bottom of page)
H = edge offset.

8 = Get page parameters into registers. Registers returned
same as 7, except for E, which is the number of the
last printing line.

Wormhole 5

Wormhole 5 filters TAB, LF, VTAB, FF, and CR.
LF checks for top and bottom margin.

CR does only CR, no line feed.

VTAB does form feed if NOT at top of form.
FF does form feed.

All of the above actions are taken according to the <current

printer specifications as to margins and understanding of TAB's
and FF's.

* Printer Driver *

System 88 System Programmer's Guide
Section 5 Page 282

If the following characters are sent to WHS5 they will return
the following information in A:

8gH = current line number.

81H = current character position.
82H = lines per page.

83H = characters per 1line.

The address for Wormhole 5 is @C34H for the Single user and
2E20H for the Twin. In BASIC the address is obtained as follows:

188 X=PEEK(2)+28 \ REM X=Address of WHS

Serial I/0 Driver - Sio.PS

The standard system loads the code in the Sio.PS file into

theprinter driver block skarting ataddress 300FH 1n-the Single—

User or FD@PH in the Twin. This code actually handles the
interrupt level processing of characters to and from the serial
printer.

Direct entry to Sio.PS

There are occasions when an applications program needs to
send escape code sequences directly to the printer without having 9
them trapped and/or modified by the printer driver. This may be :
accomplished by calling directly the serial I/0 driver code.

For assembly programs, load the character to be sent into
the A register, set B to 1 and call either 3g00H for the single
user or FD@@AH for the twin.

For BASIC applications, either of two methods may be used.
The first copies the assembly method, as follows:

1900 IF PEEK(5)=0 THEN X=12288 ELSE X=64768\ REM Select User
119 Z=CALL(X,A,256)\ REM Send ASCII code in A
12¢9 RETURN

The other method defines a special device driver attached to
file channel 3, as follows:

10 REM Buffers for assembly code
20 DIM A$(1l:10)\A=MEM(AS)

39 DIM Al1$(1:1)\A1=MEM(AlS)

40 DIM U$(l:2)

50 REM Determine user

60 US=CHRS$ (0)

* Printer Driver *)

System 88 System Programmer's Guide
Section 5 _ Page 203

70 IF PEEK(5)=0 THEN US$=U$+CHRS$ (48) ELSE US$=U$+CHRS$ (253)
80 REM Load assembly vector code .

99 A$=CHR$ (120)+CHRS (6)+CHRS$ (1)+CHRS$ (195)+U$

109 Al1$=CHR$(201) \ REM Return code

114 REM Define Special File Channel, Output only

129 FILE:3,DEF,Al,A,Al

To send characters through this device driver, merely do the
following:

200 PRINT:3,CHRS$(27),CHRS$(13),CHRS(5)
This sends an Escape, Carriage Return, Ctrl-E to the printer.

Additional information on the System 88 Printer Driver |is
contained in the System 88 User's Manual, Appendix H.

* Printer Driver *

Section 5

System 88 System Programmer's Guide

Page 204

* Printer Driver *

1

System 88 System Programmer's Guide
Section 6 Page 205

Section 6
Error Messages

This section contains a list of the System 88 error messages
in numerical order. The first section 1is the Emsg.OV error
messages. The second section is the Berr.OV error messages.

Emsg Error Messages

The following error messages are generated by the Emsg error
message writer:

Messages with error code 81 are generated by
Dio as a result of either bad parameters
passed for disk transfer or an error in
attempting the disk transfer.

Error code 0101
DIO says: Bad parameters!

Error code 0162
Hard error! Preamble bad!

Error code 9103
Checksum error!

Error code 9104
Verify error!

Error code $165
Write protected!

Error code 8106

No disk in drive, or door open!
i

Error code 9107

No controller for that device.

Error code (198
DIO says: Data transfer error!

Error code 9189
No such drive.

Error code @l10B
Seek error!

* Error Messages *

System 88 System Programmer's Guide

Section 6 Page 206
Error code @118 (Single user only!) 9
System PROMS must be version 74 or later! S

Error code 01lll
I can't do that to the System drive!

Error code 9112 _
I can't, too much data for destination disk.

Error code @91C@ (Twin only!)
Nothing assigned to that channel!

Error code #1C2 (Twin only!)
That device is busy.

Error codes @lD@ to P1D6 are issued by the
Volume Manager.

- te—@iDd S

That unit is already connected.

Error code 91D1
That volume is already connected.

Error code @1D2
I can't find that volume.

Error code @1D3 .)

No volumes available

Error code @g1D4
Only 1 volume on that device.

Error code @1D5
No device driver.

Error code 01D6
Device definition block bad.

Error codes @2 are issued by the Exec.

Error code #4201
I can't run that file

Error code 0282
Nothing to run!

Error code 8203
DONT what?

* Error Messages *)

System 88 System Programmer's Guide

Section 6

Error code 0204
What?

Error code ©205

I don't know what to do with that file

Error code 9206
I don't have enough memory to do that!

Error code 08287 _
I can only pack entire disks.

Error code 9208 (Twin only!)
You need a video display to do that!

Error code 9209 ({(Twin only!)
That disk is not a Two User System Disk!

Error codes @3 -are issued by Look.

Page

207

Error code @300
I can't find that file

Error code 0391
I can't access that device!

Error code 6382
Preamble error - directory unreadable!

Error code 0383
Checksum error - directory unreadable!

Error code 9306
No disk in drive, or door open!

Error code ¢387
No controller

Error code 2399
No such drive!

Error code 030B
Seek Error!

Error code §3C2 (Twin only!)
That device is busy.

Error code @3FF
Disk directory destroyed!

* Error Messages *

System 88 System Programmer's Guide
Section 6

Error codes @5, 06 and 07 are issued by Gfid,
the text editor, and the assembler.

Error code 0500
Bad disk identifier

Error code @501
Name too long

Error code 0502
Illegal extension

Error code @503
Name null or weird!

Error code 504
The directory is full

Page 208

®

E¥ror code @535

I can't write: the disk is full

Error code @506
I can't rename across directories: use copy

Error code 6587
No new extension given

Error code @508
I can't do that to a system file!

Error code @509
"¢?<" is not allowed here

Error code 856C
I can't copy directories

Error code 0600
That file already exists

Error code 0641
That file does not exist

Error code ¢701
Output file not specified

Error code 9782
Output file already exists

Error code 87063
Input file not specified

* Error Messages *

System 88 System Programmer's Guide
Section 6 Page 209

Error code 0784
I can't edit that file!

Error code 8785
Input file does not exist

Error code 8706
I can't have two OUTPUT files open on the same drive!

Error code 8787
That drive already has an output file opened to it!

Error codes @9 are issued by the Prnt.OV.

Error code @901
Printer has not been defined

Error code 3982
That printer has already been defined

Error code 0983
Please specify a printer name!

Error code 0984
I can't change that!

The following codes are the result of
catastrophic system failure. -

Error code @D@0
I can't find that overlay!

Error code DEAD
SYSTEM FAILURE: CHECKSUM CHANGED!

Berr .0V Error messages

The following messages are denerated by Berr, the BASIC
error message writer. Remember that if a Berr message ends in e,
the e will be expanded to "error" when displayed.

Error code 0490
Syntax e

Error code 0401
Syntax e

Error code 0482
Subscript e

* Error Messages *

System 88 System Programmer's Guide
Section 6 Page 2190

Error code 0483
Bad argument e

Error code 0404
Dimension e

Error code 0405
Function definition e

Error code 0406
Out of bounds e

Error code 9407
Type e

Error code 0408
Format e

T T ErYor _code 409

I can't find that line

Error code @40A
FOR-NEXT e '

Error code @040B
RETURN without GOSUB

Error code 0406C
DPivision by zero

Error code 940D
Function definition e

Error code @40E
Missing matching NEXT

Error code @44F
Read e

Error code 0410
Oops...BASIC goofed!

Error code @411
Oops...BASIC goofed!

Error code @412
Input e

Error code 0413
Out of memory

* Error Messages ¥*

System 88 System Programmer's Guide

Section 6

Error code 9414
I can't do that directly

Error code @415

Argument mismatch e

Error code ©416
Length e

Error code @417
Overflow e

Error code @41A
Can't continue!

Error code (41B
That's not a BASIC file!

——— Error-code—@41C

Page 211

Nothing to save!

Error code 641D
That channel not open!

Error code @41E .
That channel not open for input

Error code B41F
That channel not open for output

Error code 9428
End of file on that channel

Error code 0421

That program is for a different version of BASIC!

Error code @422

That program must be saved in tokenized format

Error code 0423

That record is past the end of the file

Error code @424

I can only do that to a disk file

Error code 9425
End of file on that channel

Error code 9426
Type error on READ

* Error Messages *

System 88 System Programmer's Guide
Section 6 Page 212

Error code 9427 'Z:,
That's not a BASIC data file 23

Error code 2428
MAT subscript e

Error code 9429
I can't do that to a protected file!

Error code @430
Too many digits for hardware!

Error code 9431
Renumbering e

Error code 0432
The minimum allowable precision is 6.

Error code @433

The maximum allowable precision is 26.

Error code 0440
«ees LOAD interrupted

Error code @4FF
I can't do that to an OUT file

* Error Messages *)

System Programmer's Guide
Section 7 Page 213

Section 7
Sample System Overlay

The following assembly 1listing gives a sample of the form

"that a system overlay takes. The assembly listing for Emsg.OV,

the system error message overlay shows the use of macros in the
assembler, the REFS and REF statement, and conditional assembly
for single and Twin systems. Using the REF statement makes the
program easier to update if a system symbol changes; re-assembly
is all that 1is required. For error message overlays, note the
pointer at OVRLY+7, which points to the start of the text. This
pointer 1is wused by the error message editor, Emedit, to access
the text.

The error message handler.

Last updated: :

20087

2009
20047
2008

bit in EFLG1

16/17/79 RTM Two user system

12/28/79 RTM Disaster recovery!

2/26/8¢ RTM Interlock msg

4/15/88 RTM Preserves all regs.

7/286/88 BFS Integrate 1 and 2 users
sources.

#1/22/81 BFS Rip out Auth put in HD
errors.

@2/83/81 BFS Changed drive to unit
in 1D@H.

We are invoked with the error code expected in DE.
We put it into ERROR, moving the previous contents
to LERR first, and then look for a message associated
with that error number, and spits it out. If we don't
find the text, we display an "I don't know" and split.

WO WE W Ne We Me NE M W N Ne W W We WE We Wp W W We We

MACLIST 0
REFS SYSTEM
REF

+ overlay 'Emsg',GO

8720 DW ETXT pointer for error message

editor

~e wo

; And away we gO0....

F5 GO PUSH PSW
CS PUSH B
D5 PUSH D

* Sample System Overlay *

7/18/79-RTM——— Added support for DBARF — — —

System 88 System Programmer's Guide

Section 7 Page 214
208C ES PUSH H Q
200D 3AC92D LDA EFLG1 |
2010 E62¢0 ANI DBARF : do we flush input?
2812 CC1Bg4 CZ Killi ; Yes, and abort
' ;command files
2015 - 2A9A2D Gol LHLD ERROR
2018 229C2D SHLD LERR ; move over, please
201B EB XCHG ; new one
201C 229A2D SHLD ERROR : plotz.
201F 3AC92D LDA EFLG1
2022 Fo64¢9 ORI EERR
2024 EEA40 XRI EERR : clear it.
2026 32C92D STA EFLG1 ; for recovery.
: Convert 306-30B to 106-10B to save text space.
2029 7C MOV A,H ; Check high byte for 3.
202A FE®B3 CPI 3 :
R X/, %o J AR ako 1 Y 6/] /, M | \ I A Conkt P Donttt_convert "
202F 7D MOV A,L ; it's a candidate check more.
2030 FE@6 CPI 6
2032 DA3C20 Jc Cont : less than 6
2035 FE@C CPI fCH
2037 D23C29 JNC Cont ; greater than 0BH
203A 2681 MVI H,1 ; change to 1
.283C 118720 Cont LXI D,ETXT ; start of the text %
283F EB XCHG o
; We now search the text. It is in the form code,sub
: followed by the message, followed by zero. The end
; of the list is an FF byte.
2049 7E EFND MOV A,M
2¢41 FEFF CPI PFFH ; end hit?
2043 CA7B20 JZ Nope ; jmp/yup, no such msg.
2046 BA CMP D ; is this the one, then?
2047 C25120 JNZ EFN1 ; jmp/nope. ‘
204A 23 INX H
204B 7E MOV A,M
204C BB CMP E ; this the one?
204D CA5C20 JZ Yup ; Jjmp/yes, go print it
20580 2B DCX H
2851 23 EFN1 INX H
2052 23 EFN2 INX H
253 7E MOV A,M
2854 B7 ORA A
2055 C€25220 JINZ EFN2
2058 23 INX H ; point past the stinker.
2059 C34020 JMP EFND ; find this one's end.

* Sample System Overlay * 4)

Section 7

@

205C
205D

2060

2063
2067
206B
206F
2073
2077
2078
207E
2081
2084

23
CDoC g4

C36400

3F204E6F
206D6573
73616765
20666F 72
20657272
6F722000
216329
CDgCo4
CDD163
C36400

.
[

Yu

’

NT

No

System 88 System Programmer's Guide

Page 215
Found it.
P INX H ; point past subcode, dummy...
CALL Msg ; display it
JMP Ioret ; split
Didn't find it.
db '? No message for error ',0
pe LXI H,NT
CALL Msg , :
‘CALL Deout ; print the code on the way out.
JMP Ioret

‘IEE§P87

FFFF

0009

4+t

+
3

++
23

.
!

m

ET

8383333383883

833

Now comes the text. Macros make life simple...

MACRO .
DB (#1H SHR 8 AND @FFH) ,(#1H AND QFFH)
DB #2,0

ENDM

XT DS]

191,'DIO says: Bad parameters!'

102,'Hard error! Preamble bad!’

103,'Checksum error!'’

104,'Verify errorl'’

185,'Write protected!’

196,"'No disk in drive, or door open!'

127,'No controller for that device.'

198, 'Data transfer error!'

169,'No such drive.'

10B,'Seek errorl!'’
IF USERS=1

119,'System PROMS must be version 74 or later!'
ENDIF

111,'I can''t do that to the System drive!'’

112,'I can''t, too much data for destination disk.'!
IF USERS=2

1C@,'Nothing assigned to that channell’

1C2,'That device is busy.'
ENDIF

@1Dx are Volume Manager errors.

* Sample System Overlay *

Section 7

0000

++++++
ssgs3s

+++++++
Sss3338

m

/303080

++ + +

+
3

++++ A+t
333ps8B33333

+ 4+
33

+ 4+ +++
333333

83938

3

System 88 System Programmer's Guide

Page 216

1D@,*'That unit is already connected.!
1D1,'That volume is already connected.'
1D2,'I can''t find that volume.'
1D3,'No volumes available.' '
1D4,'0Only 1 volume on that device.'
1b5,'No device driver.'

1D6,'Device definition block bad.'

201,'I can''t run that file!
2@2,'Nothing to run!'
204,'What?!
295,'I don''t know what to do with that file!
206,'I don''t have enough memory to do that!'
207,'I can only pack entire disks.'
IF USERS=2
208,'You need a video display to do that!'

D

k_is nor a Two _Ssey Systrem Digki?

ENDIF

300,'I can''t £ind that file'
301,'I can''t access that device!'’
302,'Preamble error - directory unreadable!’
383,'Checksum error - directory unreadable!'
IF USERS=2
3C2,'That device is busy.'
ENDIF i
3FF,'Disk directory destroyed!'’

500,'Bad disk identifier'

5¢1,'Name too long'

502,'Illegal extension'

5¢3,'Name null or weird!'

504,'The directory is full'

505,'I can''t write: the disk is full'
506,'I can''t rename across directories: use copy'
587,'No new extension given'

5¢08,'I can''t do that to a system filel'
509,'"<?>" is not allowed here'’

5S@C,'I can''t copy directories'’

600,'That file already exists'
601,'That file does not exist!'

7081, '0Output file not specified’

782,'0utput file already exists'

783,'Input file not specified’

704,'I can''t edit that file!!

785,'Input file does not exist!

706,'I can''t have two OUTPUT files open on !

* Sample System Overlay *

System 88 System Programmer's Guide
Section 7 Page 217

n 'the same drive!l'
787,'That drive already has an output file '
'opened to it!!

+
E]

901,'Printer has not been defined’

+ m

+ m 992,'That printer has already been defined’
+ m 903,'Please specify a printer namel'

+ m 904,'I can''t change that!'

+ m @D@F,'I can''t find that overlay!'

+ m ODEAD,'SYSTEM FAILURE: CHECKSUM CHANGED!'

; BEnd of stuff for now.

271F FFFF DW -1 ; insurance....
2800 ORG 2800H
END
— Error total = 2

Macros defined in this assembly:

db gfid m overlay
Labels defined in this assembly:

GJGS : 2DFC BUSIES @gC6E CBUF 2Cg@g CMDA 2D8C
CMDD 2D89 CMDF 2D88 CMDN 2D8E CMDP 2D8A
CMND 2D4¢9 CMPTR 2DC7 Ckdr @433 Command @gc4c
Cont 203C DBARF 93020 DEFPATH 2E27 DEOUT g3Dh1
DEVMASK P0@F DONT 2D94 DRVADTAB @C7E Deout @3D1
Dhalt 2409 Dio #4096 DioA gC66 DioBsy gCcec
DioDn @gC6B DioDrv #C69 DioHL @gC67 DiraAddr 2E@2
EERR 9040 EFLG1 2DC9 EFLG2 2DCA EFN1 2051
EFN2 29052 EFND 2040 EIC @988 ERROR 2D9A
ETXT 2087 EXECSP 2DAF Err @40F FILE 2DCB
Flip #42D Flush g41E Fold @42A GO 2009
Gol 2015 Gover g415 Iexec @436 Ioret 2864
JOBST 2D9E KBD @218 KBEX 2D86 KBIG 2D84
KBIP 2D82 KBUF 2D@P Killi @41B LERR 2DoC
LUSER 2DC6 Look @421 MEMTOP 2D89 MTO 2DA2
MUNG1 2DA7 MUNG2 2DA9 MUNG3 2DAB MUNG4 2DAD
MéemAdd #C49 Msg 340C NDRIVES 2D9F NFA 2E 00
NFCK 2DA1 NFDIR 2DA@ NT 2063 Nope 207B
ONCE 2DC5 OVBC 2DC1 OVDE 2DBF OVENT 2004
OVHL 2DBD OVMEM 2E53 OVNM 2DB6 OVPSW 2DC3
OVRLY . 2098 Ovrto @412 PATH 2E@4 POS @CQgE
PVEC 2D93 Pagesl gC4B Rlgc @430 Rlwe 8427
Rtn #418 Runr @424 SBRK 2D91 SBUF1 2800
SBUF 2 29009 SBUF3 2A00 SBUF4 2B@@ SCEND @C1lE

‘. * Sample System Overlay *

Section 7

SCHR
SRA1
SRAS
TIMER
USERS
VERLOC
WH1
WHS5
WH9

2D98
gC19
gC18
gC o9
pog1
0439
pC 24
gC34
gC 44

System 88 System Programmer's Guide

SCREEN
SRA2
SRA7
UBRK
USTATS
version
WH2
WH6
warm

1800
pCcl2
gC1c
2D97
2DB1
9081
pC28
gC38
9403

SCRHM
SRA3
STACK
UCHR
UVEC
WAKEUP
WH3
WH7
Yup

gC1F
gC1l4
1000
2D99
2D95
gC1lAa
gcac
gc3c
205C

SINT
SRA4
SYSRES
USER
VCBTAB
WHE
WH4
WHS8

2DB3
gCl6
2D92
3200
aCe63
@c2g
eC30
gC49

Page 218

>

* Sample System Overlay *

System 88 System Programmer's Guide
Section 8 Page 219

Section 8
The System 88 Boot Sequence

This section describes in detail the boot sequence for
single and Twin systems. The boot sequence followed by the
System 88 is different from that wusually found in disk based
computer systems. Traditionally, the boot segquence usually
involves reading a track from a predefined disk and disk address
into memory and Jjumping to it. This function is provided by a
small ROM.

When System 88 boots, rather than loading a predetermined

number oOL Sectors from a disKk, 1t selects the bost volume, and
looks at the file directory on that volume to run an overlay
named Exec. This provides flexibility; the Exec overlay does not
have to be the first thing on the disk, and systems can be
customized by providing an overlay on the disk called Exec. But,
this appreoach also requires quite a bit of resident code; the
system has to be able to do not only disk I/O, but also interpret
file directories, and perform overlay linkages.

The TwinSystem gets around the ROMs by 1loading the system
code into high memory (EgPPH to FFFFH) at boot time.
Essentially, this is done by having the Exec run a file called
Boot .2U on the TwinSystem disk.

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 220

Single User Boot Sequence

The boot process in the System 88 is fairly complex; by the
time the System 88 first "talks" to the user, it has exercised
the file lookup mechanism, the overlay mechanism, CPU card and
-main machine memory, the disk controller and disk. Part of this
process is handled by code in the system ROM, and ‘the remainder
is done by the Exec. ROM based initialization is discussed
first.

Differences In Rom Versions

The discussions that follow are based on version 81 root
roms. Earlier versions may do things in a different manner, such
as searching for the system drive, and what wormholes and
interrupts are initialized.

Initialization Done by the Disk System Roms

!:;’

The disk system ROMS are entered at system reset. The
interrupt system is disabled. The stack pointer 1is reset to
19060H, and the screen pointers used by the video driver in ROM
are set to reflect the video board at location 18¢0H. The disk
controller 1is then initialized. Memory from 2000H to 31FF is
then set to 2ero. This initializes various system cells, "cleans
out" the overlay and directory areas, and rewrites the parity bit
for memory boards with that feature. The interrupt handlers UVEC
and PVEC are initialized ¢to ©point to Ioret. The keyboard

interrupt is conected to the keyboard handler in the disk system -

ROMS, and the input wormhole, WH@, is set. Wormholes 8 and 9 are
set to provide the real time clock vector and the disk 1I1I/0
vector; the parity interrupt handler is connected to SRAl. A
form feed is output to clear the video screen.

Selecting Sysres

To select the system drive (SYSRES), the ROM <c¢ode first
tests location 1FEFH, to detect the MS controller. If the
controller is present, Look is called to find Exec on drive 4. If
it 1is found, SYSRES is set to 4 and we boot off the 8" disk. If
the controller did not exist, reported errors, or the disk did
not have Exec on it, we set SYSRES to 1 and attempt to boot from
that drive. Note that the call to Look to find Exec on drive 4
just looks for Exec with no extension specified. This may cause
trouble if the disk in drive 4 at boot time has Exec.TX on it.
The system will try to boot from this disk and fail.

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 221

Loading the Exec Overlay

After selecting SYSRES and clearing the screen, we fall into
Warm. Warm first resets the stack pointer, then does a Gover
call to overlay Exec. Since we set 2000H to 31FFH to =zero, the
-overlay 1is not found 1in memory; Gover calls Runr to load file
Exec .0V from the SYSRES device. Runr calls Look to find this
file, and since NFDIR and the directory area have been cleared,
Look reads the directory from the SYSRES device. If all goes
well, the file Exec.0V 1is read from the SYSRES device into
memory, and the overlay 1is entered at OVENT with interrupts
DISABLED., It is in the first I/0 to the disk that interrupts are
enabled for the first time in the boot sequence.

Initialization Done by the Exec

The Exec is entered DISABLED by the Gover call at Warm. It
sets the EIC bit in Eflgl, to disable Control-Y action when the

interrupts are enabled later. A check is made for the EERR bit

in EFLGI, which notes an error present in ERROR for the Exec to
process. The ROM part of the boot process cleared EFLGl and also
cleared ONCE. Since the ONCE flag is zero, the Exec calls its
initialization routine.

The first thing done is to Look up the file Auth.OV on the
SYSRES device. If the overlay exists, it is invoked via Ovrto.
Note that the first thing Exec did when it was entered was to set
EIC in EFLG1l, disabling Control-Y., SCHR was cleared by the ROM
part of the boot, disabling front panel entry. Auth 1is entered
with interrupts disabled, and the first thing it does is to "lock
all the doors" so it cannot be interrupted! 1If Auth returns from
the Ovrto to the Exec, the user is authorized.

If Auth.0OV did not exist, or returned, Exec then stores a
@C9H (a RET instruction) into WHS, WH6, and WH7, the printer
wormholes., Exec then Looks up file Prnt.OV on the SYSRES device.
If it exists, it is invoked via Ovrto with a function code of 41
(initialize default).

After setting up the printer, Exec looks for any file named
INITIAL on the SYSRES device. If an INITIAL file is found, the
string "INITIAL" followed by a carriage return is moved into the
Exec command buffer and an internal flag set to inhibit reading a
command from the user.

Nothing is displayed on the screen if "INITIAL" was set in
the command buffer, so that the first thing the user sees will be
controlled by the INITIAL program or.command file; otherwise the

Exec version number message is displayed.

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 222

Since the ONCE flag has not been set to note the completion
of the boot process, Exec scans for the end of user memory. Exec
starts the scan at USER (320¢H). The code used to scan for the
-end of memory is: '

Q

Mscan LXI H,USER
Mscl MoV A,M
CMA ; flip
MOV M,A
CMP M ; see if it flipped over
JNZ Msc2 ; Jmp/nope, found the end.
CMA ; flop _
MOV M,A ; put it back like we found it
CMP M : See if that worked.
INX H
JZ Mscl ; jmp/look at next one.
LN AN [29
Msc2 DCX H ; last good spot
SHLD MEMTOP ; remember that.

Note that this look also rewrites all of memory, setting up
the parity bit on memory boards so equipped. Parity was
rewritten for memory from 2600H to 31FFH by the CPU memory scan.
If this rewrite was not done, a fetch from memory could generate
a parity error, as the parity was not properly set up.

If the INITIAL text was not loaded into the command buffer,
the address stored in MEMTOP is displayed on the screen. If the
text was put into the command buffer, the user is not prompted
for input. If the text was not loaded into the buffer, the user
is prompted and a command line read. After this, ONCE is set to
BFFH to note the completion (at 1last!) of the boot process.
Note that the INITIAL file is handled in such a way that it seems
to the Exec that the user typed INITIAL as a command. Calling
the INITIAL program is special-cased; the program is entered with
EIC set in EFLG1l to disable Control-Y. This allows the program
to set wup exit and interrupt control without being harassed by
the user. Other than in the special case of invoking the program
INITIAL at boot time, the Exec always enters a program with EIC
cleared in EFLG1l and PVEC set to Iexec in the disk system ROM.

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 223

TwinSystem Boot Sequence

Since the Twin uses the same CPU ROMs as the single user
system, its boot sequence is the same, up to the point where the
Exec 1is entered. The ROM code goes through the same steps in
finding and loading Exec.OV from the boot disk, and enter the
Exec at OVENT. What the ROMs don't know is that they've loaded
the TwinSystem Exec; there's still a good bit of - initialization
to be done! ‘

The Twin Exec distinguishes between system boot and a normal
Exec entry by looking at single user wormhole @ (SUWHO). If
SUWH@® contains @CDH (a CALL opcode), the TwinSystem has not been
initialized; the Exec jumps to a special routine. If the system
does not have RAM at E@@@H, an error message is displayed on the
__ screen and the system halts; we don't have enough memory to run
the Twin. IT thére was RAM at PEWUPUH, SYSRES Tz voplied—into———
SUWH1. Then, the single user Runr service 1is called to 1load
Boot .2U from the system disk. Any errors are reported by calling
single user Err. 1If Boot.2U loads, it is entered at 1its start
address.

Initialization by Boot.2U

E The initialization code 1in Boot.2U 1is at the end of the
module; currently it starts at EF@@PH. This area is wused after
the system is initialized to hold Gfid. This is important for
two reasons.

First, the initialization code can be as long and as complex
as needed (up to 3K or so), as it is thrown away after it is
used. Second, because Gfid is loaded over the 1init code, the
init services cannot use Gfid! When the resident (Boot.2U) is
loaded, the Gfid vector is connected to a small routine that uses
Runr to load Gfid into memory.

Note that Boot.2U is entered with interrupts disabled. They
stay that way for a while.

The first thing Boot.2U checks in initialization is that the
CPU ROMs are version 81 or 1later. The Twin cannot run with
earlier version ROMs, as they do not have the WH8 hook needed to
steal the real time clock.

Next, the upper 8K (E@B@PH to FFFFH) is rewritten to correct
the parity bit. Then, the resident portion of Boot.2U (from
EQGPH to EEFFH) is checksummed. This insures that the code has
not been modified, and that it was loaded into good memory. If

‘»" * Boot Sequence *

System 88 System Programmer's Guide
Section 8 . Page 224

the checksum test fails, an error message is displayed and the
system halts (with interrupts disabled).

After the checksum test, the interrupt vectors and single
user wormholes are set up. This changes SUWH@ from a CDH to C3H;

-the next time the Twin Exec gets control, it will think the

system has been set up. Then, the PHANTOM line 1is switched on
and off to see if we have one or two users in the system. This
is done by putting a pattern in 1low memory (2800H), flipping
PHANTOM, and 1looking to see if the pattern is there. If it is,
we must be running on a single user system (56K, no PHANTOM
line). 1If the pattern isn't there, we must be on a Twin with two
48K boards connected to PHANTOM. PMASK is 'set accordingly; @@
for single user systems, and PHANTOM for a Twin.

At this point, we are ready to perform per-user setup for
either one or two users in the system. Before this is done, we

modify the JMPp lnstruction at Cold (EﬂﬂﬁH) to be a JMP 0000. 1If

Per-User Setup

The per-user setup code is called to initialize the user's
memory space, wormholes, and stack. It is called with the user's
address space selected (using PHANTOM and the BRG), so that the
one routine is used for setting up both users in a Twin. First,
memory from 2000H to EFFFH is rewritten to «correct the parity
bit. Then, the area from USP through KBEX is loaded. After data
is copied into this area, it is checked. If it did not copy
correctly, we assume that user memory is bad and we halt the
system with an error message displayed on the proper wuser's
screen. The area following KBEX, to USER is then zeroed, and a
memory error declared if this memory does not go to =zero. The
user's SYSRES, PVEC, UVEC, and ©SRA7 are then set up, and WH1
called to clear the screen. Note that we are still disabled!

At this point, the initial environment 1is built onto the
user's stack. Later on when the system is "turned loose" for
normal operation, the user will be placed in operation by Flipem
jumping to Ioret to load the environment from the stack. So, we
build an environment onto the stack with the PC value E@03H,
Warm. So, when the user is placed in execution, the Exec will be
loaded. USP is updated after this environment is built.

Common Setup

After initializing one or both users by calling PerUser, we
still have a few things to do. We still can't run as a full
system yet, and can't allow user timeslicing, so we save the
computed value for PMASK, and store a #@ in PMASK to prevent
slicing. Note that interrupts are still disabled at this point.

* Boot Sequence *

J

System 88 System Programmer's Guide
Section 8 . Page 225

We first try to initialize the printer. 1In the TwinSystem,
the printer driver itself lives in system common memory (FCO@H),
as it is directly connected to the USART interrupt. Look is
called to find Prnt.OV on the SYSRES disk. Note that during this
call to Look, interrupts are enabled for the first time since the

"Exec was entered. If the file exists, we call it with a Gover

and a function code of 1 in A (initialize default).

After the printer, we try to load the cache code (Cache.ZO)
for the 8" disk controller. If this file eéxists, we try to feed
it to the 8" controller, which may or may not be there.

Twin Startup

At this point in time, both users have been set up; memory
has been rewritten to set up the parity bit. Both screens have
been cleared. The printer driver and cache functions have been
initialized. The wormholes (single and per user) and interrupt

___ vectors have been initialized, FEach user's stack has been set up

to contain a dummy environment to take the user to Warm.
Assuming we've got both users, we're currently mapped and running
as user 1. Since we've been doing setup, user 1 has a valid
directory in SBUF1l. We've not run as user 2 yet, so user 2 does
not have a valid directory .in its SBUF1l.

We're ready to turn things loose. So, PMASK is restored to
its earlier computed value, and we jump to Ticker to start system
operation. ‘ .

Return of the Twin Exec!

At Ticker, we park this user (user 1l). Note that Ticker
assumes that an environment is already on the stack; it's the
environment we put there in the peruser setup code. We get to
Flipem, where we flip to the other wuser (user 2), 1load that
user's environment through Ioret, and go to the stacked PC. This
puts us back at Warm, but this time it's the Twin's Warm (E@@3H)
rather than the single user Warm (403H). Now user 2 needs to get
the Exec. It goes through the same sequence as usual; the
overlay isn't in memory, so it must be loaded. Look has to call
Dio to load in the directory from SYSRES. About the time we get
to Dio as user 2, we either get a clock tick that causes us to
switch users, or we start the read to the SYSRES disk, and Giveup
waiting for the read to complete. From this point on, we'll just
look at what one of the Execs does. The user switching code
works, so we can pay attention to other things.

Here we are back in the Twin Exec again. SUWHZ doesn't have
a CDH in it, so we have done system initialization. ONCE
contains zero, so we have to do our part of initialization.
MEMTOP is set to DDFFH; we know how much memory we have. The

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 226

stack runs from DFFF down to DE@@; this is more space for the
stack than 1in the single user system. We then force in Gfid by
calling it to find the Exec on the system disk. We .are in big
trouble if this fails!

After forcing in Gfid, we look for the Auth overlay, and
call that if it exists to perform user authorization.

We then look at BRG to see if we are user 1 or user 2, and
try o find the appropriate INITIAL file, either INITIALl or

INITIAL2., If that file exists, we move its name into CMND so we
will do it. 1If not, we look for INITIAL and if found do that.

Note that Boot . 2U already took care of printer
initialization for us.

»

* Boot Sequence *

System 88 System Programmer's Guide
Section 9 _ Page 227

Section 9
System 88 Interrupts, Input/Output Ports, and Switching

The System 88 is interrupt-driven. Tasks such as disk input
-and output are initiated by interrupts. The keyboard generates
interrupts, as does the real-time clock. This section of the
System Programmer's Guide gives an overview of the interrupt
system and the input/output port structure of the System 88 as it
affects the system programmer.

Interrupts: The Interrupt Environment and Ioret

In the 8080 processor as implemented on the PolyMorphic
Systems CPU card, response to interrupts is indistinguishable
from the execution of RST instructions. Both cases will be
referred to as interrupts except where the distinction |is
important. When an interrupt occurs with interrupts enabled, the

processor pushes the address of the next instruction onto the

system stack—and—jumps toone—of the-interrupt——vector—}ocations
defined in the monitor root. (See appendix, Listing of the 4.0
Monitor.) The interrupt receiver <code in the root pushes
registers PSW, B, D, and H onto the system stack, in that order.
This is called the interrupt environment. The monitor code then
loads the new program counter value from the corresponding
interrupt vector and transfers control to it. Note that the
receiver 1is entered with the environment on the stack and

interrupts disabled. After completing 1its processing, the
service routine jumps to Ioret in the monitor root to restore the
interrupt environment, enable interrupts, and resume the

interrupted task.

A Moral for Interrupt Level Code

There is a very simple moral for the design and
implementation of code running at the interrupt 1level: keep it
simple, keep it fast, and keep it disabled. The first part of
the moral comes from common sense and the difficulty of debugging
code entered as the result of an interrupt. As for the second
part, the faster the code executing at the interrupt 1level, the
more time 1is 1left for other processing, and also the more
interrupts may be handled within a given ©period. Interrupt
handling code should be kept disabled (especially.in a system
with more than one kind of interrupt) to ©prevent the following
scenario. An interrupt occurs, and during its processing, the
interrupt handler enables the interrupts. An interrupt of a
different type occurs and is processed. The original interrupt
handler is reentered, and another interrupt of that type occurs.
This scenario, if it continues, causes system failures in one of
two ways (usuallyl).

In the first failure mode, the system stack overflows as

* Interrupts, I/0 Ports, and Switching *

System 88 System Programmer's Guide
Section 9 Page 228

interrupt environments are pushed onto the stack faster than they
are removed. The stack grows, and grows, and then either marches
over system data, causing a failure in some other part of the
system, or drows into read-only-memory. When the environment
"pushed" into ROM is restored, it will probably not be «correct.
-On the System 88, the "blown stack" failure usually makes itself
known by marching repeating patterns over the video screen.

The usual cause of failure other than "blown stack" is the
"non-reentrant” handler. Let's say that a particular interrupt
handler was coded (ignoring the moral above!) in such a way that
it enabled interrupts and used some fixed temporary storage
locations. During processing of an interrupt, it enables and
gets re-entered by an interrupt of the same type. This interrupt
is processed, CHANGING the temporary locations wused by the
interrupt handler. Then the handler is reentered at its point of
interruption with registers restored, but its temporary locations
modified. From here, things usually get quite confused and quite

®

——————hard—te predict!
AR

In summary, if the interrupt 1level <c¢ode 1is kept simplé,
fast, and disabled, it will work. Interrupts and interrupt
systems allow computers to process randomly timed asynchronous
events with a minimum of software overhead. 1It is the opinion of
the designer of the System 88 software that some people are
opposed to interrupt-driven systems because they don't understand
interrupts and are not capable of the careful design and
implementation required for interrupt processing.

Table 1: INTERRUPT LEVELS, RST's, VECTORS, AND FUNCTIONS

INT VECTOR FUNCTION
LVL RST ADDR IN SYSTEM 88

7 2 cscee System Reset-~ no vector

6 1 AC10H Not used

5 2 #C12H Single density disk controller
4 3 pC14H Not used

3 4 B#C16H (UISR) USART interrupt (See Note 1!)
2 5 @C1l8H Keyboard interrupt

1 6 8C1AH Real time clock interrupt

2 7 @gC1CH Single step interrupt

Note 1l: Before diddling with the USART, read section 5.

* Interrupts, I/0 Ports, and Switching *

8

System 88 System Programmer's Guide
Section 9 Page 229

Table 2: SYSTEM 88 INPUT AND OUTPUT PORTS

PORT 1/0 FUNCTION
(HEX)

) I/0 USART data (See Note 1!)

1 1/0 USART control (See Note 1!)
4-7 0 Baud rate, device and user selection
8-B 0 Real time clock reset
8-B I ROM on for CP/M (See note 3)
C-F o} Single step trigger
C-F I ROM off for CP/M (See note 3)

18 I Keyboard data

20-2F I/0 Single density disk controller

Note 1l: Before diddling with the USART, read section 5!

Discussion of Table 1

Table 1 1lists interrupt 1levels, RST instruction codes,
vector addresses, and interrupt functions defined in the System
88. The INT LVL column corresponds to the vectored interrupt
(VI) numbers on the CPU board and the bus. In the next column is
the equivalent RST instruction code. The address given under
VECTOR ADDR is the address of the 16-bit vector location used by
the monitor root (see appendix). The function of the interrupt
is also given. Proper operation of the System 88 requires that
those interrupt levels used by the system are not modified. For
example, the disk transfer 1logic makes use of the system
real-time clock. 1Interrupt levels 6 (RST 1) and 4 (RST 3) are
not used PRESENTLY in the System 88 (use with caution). Remember
that any code operating at the interrupt 1level 1is effectively
part of the operating system. For more information on the exact
processing of interrupts, refer to the monitor 1listing in the
appendix.

Discussion of Table 2

Table 2 gives a sketchy description of dedicated input and
output ports used by the System 88. Further information on these
ports may be obtained from the hardware manual associated with
the specific board, and may (possibly) be inferred £from the
listing of the monitor root 1in the appendix. As with system
interrupts, the proper operation of the System 88 depends on
these control ports and on the fact that the operating system is
the only code manipulating them. Other ©programs fiddling with
system ports will most likely cause the system to become confused
and fail.

* Interrupts, I/0 Ports, and Switching *

System 88 System Programmer's Guide
Section 9 Page 230

Twin System User Switching: The Baud Rate Generator Latch

The baud rate port is used for three purposes in the System
88. The baud rate latch 1is a six bit 1latch. The least
significant four bits are used to select the baud rate. Bit 4
"(19H) is used to select a device on the mini cards (printer
interface and cassette interface). The device selected by bit 4
corresponds to the § or 1 jumper on the mini card. Bit 5 is used
to select wuser 1 or 2 on the Twin. The output of bit 5 of the
BRG latch is connected to pin 67 of the bus which controls the
switching of memory boards and video boards. 1In early versions
of the CPU board bit 5 of the BRG latch was controlled by bit 6
of the 8080. Later versions use bit 5. The system software, in
order to <cover all the bases, uses both bits (60H) when
attempting to set bit 5 of the BRG. This is for information
only! Almost any attempt at changing the BRG latch is guaranteed
to put you into binary oblivion.

sing
U\.!d.ll‘j

Following 1is the single user interrupt character processing
code extracted from the CPU ROMs. It is entered at the interrupt
level, with interrupts disabled. We enter at KBSB 1if the
character was a Y, at KBSP for "2, and at KBUB for the character
contained 1in SCHR. Note that characters from command files do
not follow this path, and cannot cause these interrupts.

KBSB LDA EFLG1 ; is the Exec running?-
ANI EIC
JINZ Ioret ; Jjmp/don't do it!
INR A
STA SBRK ; set Y flag non-zero
LHLD PVEC ; here's where we go
KBEV LDA DONT : so do we or don't we?
ORA A
JINZ Toret ; jmp/we dont, something happening
CALL Killi ; abort command files and flush
PCHL ; follow the yellow brick road...
KBUB LHLD UVEC ; vector for UCHR int
STA UBRK ; set flag nonzero
JMP KBEV ; go to it.
KBSP LXI H,PANEL ; front panel code
JMP KBEV ; go to it.

This code shows the interactions and uses of the various
character interrupt cells. DONT completely masks these interrupt
characters if its contents is nonzero. EIC set 1in EFLGl masks
‘Y. For both “Y and the user character SCHR, flag bytes are set
nonzero even if the resulting interrupt is masked by DONT.

* Interrupts, I/O Ports, and Switching *

1

System 88 System Programmer's Guide
Section 9 Page 231

Things become a 1little more complex 1in the TwinSystem.
Where control is transferred to the interrupt routine directly
from the interrupt service routine in the single user system, we
must stack the desired interrupt environment to be run the next
time this wuser 1is run. Additionally, character interrupts are
-masked out 1f the user is currently in Gfid, noted by possession
of the GFLOCK semaphore. As in the single user code, Kbsb is
entered for Y, Kbub for SCHR, and Kbsp for “Z.

Handle processing of interrupt characters. When we have
one, we build a phony environment on the user's stack
after picking up USP, and update USP so that we'll enter
the code the next time we run the user.

e we we we

Kbsb LDA EFLG1 .
ANI EIC : is the Exec running?
JINZ Kbxx ; jmp/don't do it!
INR A
STA SBRK ; mark we got a Y
—EHED—PVEC——3—where—ts—the—wizard?®®
Kbev LDA DONT ; do we or don't we do it?
ORA A
JINZ Kbxx ; jmp/better not, something doing

; Let's see if Gfid is locked. If it is, and we've got an

; interrupt from the user that has it locked, ignore 'em!

LDA GFLOCK
ORA A ; locked it is?
JZ - Kbxy ; jmp/no
ANI PHANTOM ; by which user locked?
JZ Kbug ; by user 8
Kbul LDA BRG ; user 1 has lock
XRA B ; does user 1 want goose?
Jz Kbxy ; Jjmp/no, allow goose!
JMP Kbxx ; locked, ignore goosel!l
Kbug LDA BRG
: XRA B ; does user # want goose?
JNZ Kbxy ; jmp/nope, allow it
JMP Kbxx : ignore goose for locked user

; Load user's stack pointer so we can build interrupt

’

; environment on right stack, kill typeahead.

Kbxy XCHG ; addr to DE
LHLD Usp ; get user stack pointe
SPHL ; and load it in
PUSH D ;: the PC
LXI H,Killi ; but go through Killi first!
PUSH H ; first PC

* Interrupts, I/0 Ports, and Switching *

System 88 System Programmer's Guide

Section 9 Page 232

LXI H,0 19
PUSH PSW : PSW =
PUSH B ; BC
PUSH D ; DE
PUSH H ; HL
DAD SP ; and update saved SP in USP
SHLD USP
JMP Kbxx ; then split.,

Kbub LHLD UVEC ; Wwhere do we go from here?
STA UBRK ; Set user break has occurred
JMP Kbev ; go do it.

Kbsp LXI H,Fpanel ; where we would like to go
JMP Kbev : Zoom off...

The above <code 1is straightforward, Jjust 1littered with
————detailss—Themain difference from—the single—user —is—that—we ————

don't want to compromise system performance by entering the
user's interrupt routine from the interrupt level. Especially if
Killi must abort a command file; this displays text on the
screen, and can cause the entire display to scroll, which takes a
good bit of processor time. This problem is solved by adding
another interrupt environment to the stack, containing not only
the address specified 1in the proper vector, but Killi as well.
When we pick up the resulting environment to run the user again, _/9
we'll first call Killi, and Killi will return to the routine :
specified in the interrupt wvector.

* Interrupts, I/0 Ports, and Switching * \4>

System 88 System Programmer's Guide
Section 1@ Page 233

Section 10
Volume Manager

Introduction

This 1is a description of what the volume manager is, how it
works, and how to talk to it. The volume manager allows the
System 88 to better allocate its non-volatile storage resources
(e.g. floppy disks, hard disks, magnetic tape, bubble memory).

History

In the beginning the number and type of non-volatile storage
resources that could be connected to the System 88 and addressed
through the system's DIO utility was limited to three 5.25 inch
single sided single density floppy disks. There was no way,
aside from rewriting the system, to connect any other devices to

devices 1, 2, and 3. The code which drove these devices resided
in ROM, and there were no vectors in RAM which could be used to
filter calls to DIO.

As the system became more widely accepted €for use 1in
business applications a need was realized for more storage. This
need was filled with the System 88/MS which could handle an
additional four 8 inch double or single sided floppy disks. Once
again the system was rewritten and the device drivers were burned
into ROM with no RAM vectors, effectively casting it in brass and
precluding any possible <changes or additions to the device
drivers. These drives were permanently allocated as devices 4,
‘5, 6, and 7.

Shortly after the introduction of the MS it was discovered
that with a few minor alterations the double density controller
which was previously used to run the 8 inch drives could be used
to run the new 5 inch double sided drives. These new drives,
which were just becoming available, would allow us to quadruple
the storage on five inch diskettes.

At this point it was becoming apparent to the designers of
the System 88 that as new and different physical devices became
available, we would want to be able to connect them to our
computer. For this reason, when the system was rewritten again
to handle the new drives, the DIO calls were vectored through a
location in RAM so they could easily be changed. These new
drives replaced the single density drives (devices 1, 2, and 3)
in the device addressing. Another function was added to DIO
which would return the number of sectors on any physical device
when called.

* Yolume Manager *

m+——The-—drives —wWere —also —permanently —addressed as

System 88 System Programmer's Guide

Section 10 Page 234
Now we come to the present. Technology has struck again
with Winchester fixed disks. It 1is desirable to enhance our

product line with these new devices. However, they present ¢two
rather tough problems to the system software. The first of these
.is that the system only understands a single digit device number
(1-9) and most of these (1-7) are already used up. The second
problem is that the system is unable to address the entire fixed
disk. Re-writing the operating system to fix these limitations
would be a major undertaking and would obsolete much of the
already developed applications software. 1In addition, handling
devices of this size would be very unwieldy for the current
system. The solution to these problems is a volume manager.

Definition

What do we mean by the phrase "volume manager"? It is
easier to understand if you can think of the file specifier (e.g.

— <4 <HELLO)—as—a—legical "velume'-number—follewed by-a—path name

rather than a physical drive number followed by a path name. The
physical drive "4" may correspond to the logical volume <4<, but
does not necessarily have to.

Physical devices may contain more than one volume. For
example, we may decide to set up a hard disk so that different
areas on it appear to the system as volumes <6<, <7<, and <8<.
The volume manager is responsible for mapping logical volume
numbers onto physical devices. It figures out which physical
device the volume is on, and where on that device it resides.

In the System 88 the volume manager resides as a filter on
the input of the DIO function. Instead of having the system talk
directly to the physical device drivers, it talks to the volume
manager. The volume manager then translates the system calls and
feeds them to the actual device drivers. This is the only part
of the volume manager which the end user sees, but is by no means
the only function of the volume manager code.

The volume manager 1is actually five programs. The first
program is the filter on the input of DIO which we Jjust
discussed. The second program is the "Vmgr" overlay which allows
you to connect and disconnect both volumes and physical devices
to the system. The third program is called "Device-Configure".
It allows a physical device to be broken up into logical volumes
of any size, and then encodes that information onto the device.
The fourth is VLIST, that lists how the volumes are <currently
assigned. The 1last program is called "Volume-Default" and is
used to configure the default setup of your system.

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 235

How It Works

Resident Code

The volume manager 1is essentially a table driven device.
-When the system (with the volume manager connected) is passed a
request for DIO the volume control block for the volume specified
is indexed. Information from the block is used to translate the
parameters passed to DIO to the parameters which the device
drivers need. There is a volume control block for each of the
nine volumes which the system can access. Each volume control
block contains the following information:

Offset Size Use
@ 2 "Busy" semaphore address
2 2 Device driver address
4 2 Parameter area address
6 2 Volume 8ize
8 3 Offset from physical @8 on device
B I Physical drive number
C 1 Volume status

The "Busy" semaphore address is the location in memory where
the flag is kept which indicates whether the controller for that
device is in the process of doing 1I/0. This 1is necessary so
that, in the TwinSystem, one user does not try to initiate an I/0
while the other user is in the process of "doing one.

The device driver address is the location in memory which is
called in order to do the actual Disk I/0 after the parameters
have been translated by the volume manager.

The parameter area address is the location in memory where
the physical disk address 1is passed to the device driver. 1If
this field in the volume control block is 00060 then the physical
address is passed in HL. This is needed is in order to handle
devices which have physical address capabilities 1larger than
GFFFFH. '

The wvolume size contains the number of sectors that the
volume contains for volumes with fixed sizes. An example of a
volume with a fixed size would be one of the volumes on a hard
disk. If the number contained is @808 then the volume size is
variable, and the device driver must be called for the size. An
example of this would be an MS which can contain either a single
or a double sided diskette.

The offset from physical 4 is the amount which must be added

to the disk address to access the correct area on the physical
device,

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 236

The physical drive number is the physical address which must
be passed to the device driver in order to access the device.

The volume status tells us if there is a device plugged onto
the other end of this volume. If this byte is @ then the volume
-is not in use. Non-zero status tells us there is a device mapped
onto this volume. Other codes are reserved for future wuse such
as read-only or other protective status.

CAUTION: These volume control tables are
sacred! They are not designed to be written
into. If you want to re-configure the system
use the Vmgr overlay. That's what it's there
for., Any tampering with these tables is
likely to cause a disastrous loss of data on
your disk.

vmgr Overlay

The function of the "Vmgr" overlay is to set up the tables
in the resident portion of the code in a way that nothing gets
stomped on. There are five function codes which can be passed to
the overlay. They are:)

Code Function
OH Initialize I/0 drivers and VCB tables
10H Return a pointer to the specified VCB in HL
11H Connect a volume
12H Get device definition block
13H Disconnect a volume

Commands are passed to the overlay in the A register.

The initialize function (command #) is called by the System
88 executive when the system is reset. There are two sets of
things that the overlay must initialize. The first set 1is the
device driver(s) and the second is the default hookups for the
volume control table. The initialization of the device drivers
is done differently for single and twin systems.

Single User Driver Initialization

The first thing the overlay does is look for a file on the
disk called "Driver.DD". This file contains the hard disk
driver, any other device drivers the user may have, and the
volume manager filter. 1If the file does not exist, "vmgr" will
return with an error code of @1D5H (No device driver). No other
initialization will be done in this case.

If the file exists, it will be relocatably-loaded to Jjust

* Volume Manager *

a
¥
N

System 88 System Programmer's Guide
Section 18 Page 237

below the top of RAM, and executed. This execution will perform
the initialization of the device driver itself., After the device
initialization is performed, the program Jjumps to the volume
contreol block initialization code.

"TwinSystem Driver Initialization

In the TwinSystem initialization the overlay also looks for
a file called "Driver.DD". THIS IS NOT THE SAME AS A SINGLE USER
Driver.DD FILE. This file only contains any optional device
drivers. This file is also not relocatable, but has a fixed load
and start address of FA@GPH., If the file exists and looks OK, it
will be 1loaded and executed. This execution does driver
initialization. When the driver code returns the routine will
jump to the volume control block initialization code.

If no "Driver.DD" file exists, device initialization will be
skipped, and it will jump directly to the volume control block

initialization code. No _error code will be returned in this

case.

Volume Control Block Initialization

The last thing the initialization function does is to set up
the volume control blocks with their initial wvalues. It does
this by repetitively calling the connect function with the
default values that the user has set up for his nine volumes.
Any errors encountered during these hookups will be reported back
to the Exec.

The return a pointer function (command 10H) takes the volume
number which is passed in register C and points HL to that volume
control block. The volume control block contents are defined
earlier in this discussion.

The connect function (command 11H) can be invoked in two
ways. It can either be called to hook up a named volume, or it
can be called to hook up the next available volume on a physical
device. To invoke the command, the overlay is called with the
volume number 1in C, and the physical device number 1in B.
Optionally, a string of 8 characters may be pointed to by HL when

" hooking up a named device. 1If HL = g (no name pointed to) then

it will be assumed that the wuser wants to connect the next
available volume on that physical device.

* Volume Manager *

System 88 System Programmer's Guide
Section 19 Page 238

There are five possible errors that the "Vmgr" can return
when trying to hook up a device. They are:

@g1DPH: That drive is already connected.

@1D1H: That volume is already connected.

P1D2H: I can't find that volume. (for named volumes)
@1D3H: No volumes available. (for unnamed volumes)
@#1D4H: That device has no volumes defined.

@1D5H: No device driver.,

The volume manager will not connect a new volume while an
0ld volume is connected to the requested number. In addition it
will not duplicate any volumes. For example, volumes <4< and <5<
would not be allowed to point at the same spot on one physical
device. If the volume manager allowed this the system interlocks
would not work, and files would be scrambled. :

9

In order to allow different volume sizes on a physical
device and not foul up the pointers to different volumes on that
device, each volume~separable device has information regarding
its configuration encoded on the device. This information is
stored on the first physical sector of the device. This sector
is not accessible wvia system calls to DIO. The volume manager
uses this information when connecting a volume to assure that the
pointers to different areas of the physical device remain secure.

The read device definition block command (12H) makes this
information available to the user. The register setup for this
command is: B contains the physical device number of the device
being interogated; HL points to the memory area where the device
definition block is to be placed. The format of the device
definition block is as follows:

Size Value Definition
1 1-19 Number of logical volumes
contained on this device.

* The following is a sample entry. This entry is
repeated for each logical volume contained here.

2 190-65535 Volume size
3 @- (dsize-100) Offset from physical 4@
8 ASCII chars. Volume name

The disconnect volume (13H) function is passed the volume
number in C. Before the volume is disconnected, it checks to see
if the volume is busy. This will assure that one user does not
disconnect a volume while the other user is using it. The only

* Volume Manager *

System 88 System Programmer's Guide
Section 19 Page 239

Q—) error that this function can return 1is @1C2H: That device is
busy.

Device-Configure Program

The purpose of the device configuration program is to set up
the device definition block on a physical device. The device
definition block was discussed in the previous section. When the
program is run it first comes up and warns the invoker that it is
about to zero the data on the entire device. It then asks him
for a device number. The selected device is then formatted with
error mapping enabled.

After the initialization is complete the program begins
.asking the user for volume names and sizes, This process |is
terminated in one of three ways. It will terminate when there is
no more room for a volume, when the maximum number of volumes
(19) has been reached, or when the user answers the size question

— with a null (just hits return). At that point the program —will

construct the device definition block and write it to the first
physical sector of the device.

Volume-Default Program

The volume default program sets up the default definitions
for volume hookup which the "Vmgr" overlay uses on

g initialization.

NOTE: This program modifies the "Vvmgr" overlay to
accomplish its task. This means that each system disk
which is used on the system can have a different set of
default wvalues for volume hookup. This should not be
confused with the Drive Configure program which
permanently sets up a physical device. Care should be
taken that you make all system disks with volumes
defaulted compatible with the physical device setups
which the program will be connected to.

When the program is invoked it will ask you, sequentially
for each volume number 1-9, what physical device vyou want
connected to that volume. If that device has more than one
logical volume on it the program will then display a list of the
volume names for your selection. If you don't select a name the
program will «connect the next available logical volume on that
device.

After you have made your selections for all the volume
mapping the program will ask you which volume you wish your
system to "boot" from. When the program has all this information
it will rewrite the last sector of the "vVmgr" overlay back out to

(* Volume Manager *

System 88 System Programmer's Guide
Section 190 Page 2490

the disk with the new information in it. This works in much the
same way as the printer driver's "Setup" works.

Connecting New Device Drivers

If the system programmer wishes to connect new devices and
their associated software drivers (e.g. cartridge tape drives,
other hard disk types, etc.) to the system, a mechanism has been
provided in the volume manager code to allow this. The mechanism
is different for the single user system and for the TwinSystem.

In either system, when the "vmgr" overlay 1is asked to
connect a new volume to the system it gets information from the
resident portion of the volume manager as to where the memory
locations are that it needs to hook up the driver. The table
contains twenty entries which correspond to the twenty physical
devices which are possible to connect to the system. The entries
in the table are the existence flag, the type flag, and locatlons

flag. This table is called the driver definition table. Entries
in the table are organized as folows:

Size Offset Definition

1] Existence Flag

2 1 Busy Flag Address

2 3 Device Driver Address
2 5 Parameter Area Address

The existence flag tells the "Vmgr" overlay whether a device
driver exists for the physical device. If none exists, then the
overlay will refuse to connect a volume to it.

The busy flag address is the one byte flag in memory where
the TwinSystem can look to see if the device driver 1is being
used. It 1is necessary to have these flags on a per-controller
basis to aveid I/0 collisions and their consequent destruction of
data.

The device driver address is the address in memory where the
code exists, which will do transfers of data from physical sector
numbers. The format of the parameters passed to the driver code
will be the same as for DIO with the possible exception of the
disk address. For devices which are incapable of being divided
into logical volumes, the disk address will be passed in HL just
as it is in DIO. On devices which are capable of being divided,
the disk address will be placed 1in the three byte buffer in
memory which is pointed to by the next table entry. This memory
address will also be passed in HL to the device driver.

The parameter area address 1is the three byte buffer in

* Volume Manager *

System 88 System Programmer's Guide
Section 19 Page 241

memory where the physical disk address 1is passed to device
drivers which are capable of having disk addresses larger than
65535 (@FFFFH). These are also the devices which can be broken
up 1into 1logical volumes. 1If the device is not of this type the
entry in the table for this field will be 4.

The base of the table just described is pointed to by the
system variable DRVADTAB which can be referenced in the SYSTEM.SY
symbol table file.

Single User Device Driver Addition

In order to add a device driver to the single user system
you must modify the device driver software in the "Driver.DD"
program. This modification entails adding your driver code to
the code which is already there, adding the initialization code
for your driver to the initialization <code already there, and
making entries into the driver definition table which specify the

variables for your driver. The driver definition table for the

single user system is part of the "Driver .DD™ file which is being
modified.

A source disk and listing for the "Driver.DD" file for a
single user system is available from PolyMorphic Systems.

TwinSystem Device Driver Addition

In order to add device drivers to the TwinSystem you must
write the "Driver .DD" program yourself. This program should be
assembled to run at FAQ@gH. The initialization code for your
device should be jumped to by a vector at the beginning of the
code. One of the tasks which must be performed by vyour
initialization routine is to insert the appropriate addresses and
flags into the driver definition table. The size of the driver
code which you can add to the TwinSystem is 11m1ted to 1/2 K (two
sectors) .

Your driver will be automatically 1loaded 1into the
appropriate slot in memory when the initialize code is fed to the
"Vmgr" overlay by the system executive., You can even have the
volume tables defaulted to it.

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 242

D

* Volume Manager * : q)

O

DRUADTABR —> drwver defiaihen +able (‘olu,sica[dxﬁm‘ﬁ'aws}

20 extries of+ (& | evistauce -/-‘lc (Ariver cocte ews‘i‘a«'e)
a) 2 éus Fle wess (Z/o cullision lo/weqﬁa..)

A3 2 clwz'ce. rver addess (Dis sh Ie)
£ 2 Parameter arca adé/reSS (&= net a/wszé/e>

Volome ~Divisible devicez Dio calls will set HL % param. addsess
[M(.w's{é(e 2 H’L— ADUS ,04751@/ J‘edsr /‘lum‘e/‘ //u. blo

(/C@T/HS —> Vo(om Co«“/a(6lock */aé(e_ (/o-J('c-J assl;.}nm'llss

q 2'1747"5 0"((¢) 2 éOJ 7£/¢ 44//455 ? Ce/l'e/ 1@»\ é’éd‘ﬁ(

@ 2 dewce_ Hjver address /Uﬁv cornect !

g : “@ 2 /oqnme/rf— aree addies s
(oledd Fram %) 2 Velume size (B méans ask dev. dn‘ue:—)
bbG ‘:ﬁ.ﬂj ® 3 ofsel fram /347: QP on ALevice

(® / /04 s Aevice #
© [velome sttvs (FE =t vse, ®2= Ao+>

bel/[a, Mh,%o‘n 5Ac4,-‘ / é7)[¢ , # 07[Va/cwes o aéw'ce (ﬂl/o/)

ol efres of <
@) 2 Velme Sze (1¢0. 65S3S)
@ 3 ofset £ phys 08 (&... [dsice- Iosb
+ (s) & w[oM Nname_ CA‘SC113
a»
Eﬁ?/‘e’/ of/-,\ Sectr— Y A C/ew‘cc.]

System 88 System Programmer's Guide
Section 11 Page 243

Section 11

CP/M Implementation on the System 88

_.CP/M Switching: The CP/M Line.

CP/M requires RAM at address @-2000H where all the System 88
ROM and controllers and video board live. 1In order to have the
RAM available, a "soft-switch" was created which turns off the
CPU ROM and RAM, the controllers, and the video board, and
changes the address of the 8K RAM board at E@@OH to #. When CP/M
needs to access a controller or the video board the CBIOS uses
port 8 to allow access and then uses port @CH to switch back.
Bus pin 16 is used for this switching and is called CPM~ (read as
"CPM Not").

All I1/0 in CP/M is done through code called the BIOS (Basic
I/0 System). This code along with the modified System 88 printer

—————driver—is—the—heart—of Polyls—impltementation—oftE€P/ M+ The—code

is written to be both easily understood and modified although
some words of caution must be mentioned here.

When CP/M runs, it takes over the entire machine. It grabs
all the Poly SRA vectors (to handle interrupt processing when
doing I/0). The coding for the ISRs which are installed at @0@8@H
in the bottom 8K was written to reduce stack nesting during
interrrupt processing to the absolute minimum (2 bytes, namely
the return addr). The interrupt service routines share an
internal temporary stack called IntStack so therefore do not
enable interrupts during the middle of an ISR.

To accomplish automatic booting of CP/M a System 88
directory is left 1in sectors @-3 of all CP/M disks. This
directory has the strangeness of having an Exec.0OV in sector 1 of
the directory. This was done to save space for the 5"
single-~density disks which only have 350 sectors. The directory
is created by the CP/M program INIT.COM. Note that the directory
is completely full (NFDA is SBUF1+4+3FFH) and that the disk is also
full (NFA is Dsize). The directory is also inconsistent (NFDA
does not coincide with the first zero byte) which will guarantee
that the disk cannot be touched by the System 88 (Exec/93 or
later). The Exec.OV program is very simple, it simply calls the
ROMs to "Runr" Boot.GO on the SYSRES drive and 1if the first
instruction is C3H (a JMP), it blindly leaps into it. The code
it jumps to is the program Boot.TX. This code 1is contained on
the CP/M "boot track" and is a minimal BIOS which calls the ROMs
to do its disk I/0. The code looks on the CP/M file structure
using standard CP/M BDOS functions and 1initializes the MS
controller by loading CACHE.S88 and gets the real BIOS into
memory by loading BIOS.S88. It moves this real BIOS on top of
itself and jumps to it.

* CP/M Implementation *

System 88 System Programmer's Guide
Section 11 Page 244

The code which it jumps to is finally the real BIOS. Up to

this point we have used the Root Roms to do all of the disk 1I/O

(which ©possibly writes all over RAM between 2800H and 2C@@H).

The final BIOS contains a driver for the single density disks

_(both the North Star read/write and Poly 5" SSSD), but still
calls the ROMs for 8" MS and 5" DD disk I/O.

Disk Structure

The disks' I/0 routines were written to make them appear as
IBM 3740 disks with no sector skewing. Thus when a file is
looked at with SZAP, the bytes are contiguous.

The disks are mapped in CP/M because the BDOS written by
Digital Research assumes you will alway boot off of logical drive
@ while this system boots off of either 1 or 4. The mapping is
described 1in the addendum to the CP/M manuals published by

—_ pigital Research.

The console I/0 routines came partially from the Root ROM

code, with several enhancements. The keyboard routines have
basically remained unchanged, and unlike most CP/Ms this one has
typeahead. The console out (display driver), however, has been

almost entirely rewritten and enhanced to include cursor movement
and direct cursor positioning character codes as well as a flash
facility. Normally the cursor doesn't flash but when it appears
on top- of a non-blank character -it alternates between the
character and the ever-famous brick. Note: systems with the old
ROMs (not one-size fits all) ‘may exhibit irregular cursor flash
rates. :

CP/M is not supported on the hard disk.

Special Copy Program - PCOPY.COM

A special program, PCOPY.COM, was developed to allow copying
of files to/from the Poly directory structure from/to the CP/M
directory structure. It runs under CP/M and 1is operated as
follows:

A>PCOPY B:FILENAME.TXT

CP/M <--> Poly Xfer vl1.8 (91/19/81)
From Poly or CP/M (P or C)? P

Enter Poly Filename: <2<SUB<FILE.TX
Is this correct? (Y/N) Y
Working...please wait.

Success! Finished.

where the bold portions are the user responses.

* CP/M Implementation *

System 88 System Programmer's Guide
Section 11 Page 245

The 'FILENAME.TXT' on the command line is the CP/M filename.
The direction of the copy is determined by the 'P' or 'C' answer.

NOTE: Care should be exercised in the case of copying to the CP/M
disk, as any file with the same name will replaced. '

Note: CP/M is a trademark of Digital Research,

* CP/M Implementation *

System 88 System Programmer's Guide
Section 11 Page 246

9

* CP/M Implementation * .)

System 88 System Programmer's Guide
Section 12 Page 247

Section 12
Exec/94 System Symbol Tables
The following are the values contained in the SYSTEM.SY
-files for both Single and Twin User systems. They are listed in
both alphabetical order and value order.
Single User Macro Definitions:

db gfid overlay

Single User Labels in Alphabetical Order:

BUGS ' 2DFC BUSIES @C6E CBUF 2C@3 CMDA 2D8C
CMDD 2D89 CMDF 2D88 CMDN 2D8E CMDP 2D8A
CMND 2D49 CMPTR 2DC7 Ckdr 433 Command gc4c
DBARF @320 DEFPATH 2E27 DEOUT @3D1 DEVMASK 200F
DONT 2D99 DRVADTAB PC7E Deout 93D1 Dhalt 2489
Div g436—DbioA ge66—DioBsy ge66—Piobn gEe6B
DioDrv P#C69 DioHL @Ce67 Diraddr 2EP2 EERR 0040
EFLG1 2DC9 EFLG2 2DCA EIC 9680 ERROR 2D9A
EXECSP 2DAF Err #40F FILE 2DCB Flip 942D
Flush P§41E Fold @42A Gover @415 Iexec #4336
Ioret @d6d4 JOBST 2D9E KBD @218 KBEX 2D86
KBIG 2D84 KBIP 2D82 KBUF 2DP9 KRilli 241B
LERR 2D9C LUSER 2DC6 Look @421 MEMTOP 2D 8@
MTO 2DA2 MUNG1 2DA7 MUNG2 2DA9 MUNG3 2DAB
MUNG4 2DAD MemAdd @gC49 Msg @43C NDRIVES 2DSF
NFA 2E@8 NFCK 2DA1 NFDIR 2DAJ ONCE 2DCS
OVBC 2DC1 OVDE 2DBF OVENT 2004 OVHL 2DBD
OVMEM 2E53 OVNM 2DB6 OVPSW 2DC3 OVRLY 2000
Oovrto 9412 PATH 2E@4 POS @COE PVEC 2D93
Pagesl @C4B Rlgc #6430 Rlwe #427 Rtn g418
Runr g424 SBRK 2D91 SBUF1 28008 SBUF2 2900
SBUF3 2A00 SBUF4 2B0@ SCEND @C1lE SCHR 2D98
SCREEN 1808 SCRHM @C1lF SINT 2DB3 SRAl gClo
SRA2 @Cl2 SRA3 @C1l4 SRA4 #Cl6 SRAS aCc1ls8
SRA7 #C1C STACK 1000 SYSRES 2D92 TIMER aC oo
UBRK 2D97 UCHR 2D99 USER 3203 USERS 08031
USTATS 2DB1 UVEC 2D95 VCBTAB pC63 VERLOC 9439
Version 9381 WAKEUP PC1lA WHO gC20 WH1 gC24
WH2 gC28 WH3 gC2C WH4 @gC30 WHS gC 34
WH6 @C 38 WH7 @C3C WHS gC 40 WHO gCc a4
Warm 2403

* System Symbol Table *

System 88 System Programmer's Guide

Twin User Macro Definitions:

ALIGN clrp clrt db
dequ : devlock dw enter
gfid giveup gover ioret
leave lock overlay overto
print ralign rddef rds
rorg setp sett show
unlock userpgm vcb vect
verdate

* System Symbol Table *

Section 12 Page 248
Single User Labels sorted by Value:
USERS @391 DEVMASK @@BF KBD #0818 DBARF 0020
EERR @043 Ioret g@64 EIC 2980 Version 2981
Deout @3D1 DEOUT @3D1 Warm 9403 Dio 0406
-Dhalt @409 Msg #40C Err G49F Ovrto 2412
Gover @415 Rtn p418 Killi §41B Flush g41E
Look #421 Runr g424 Rlwe 3427 Fold 242A
Flip #42D Rlgc 2439 Ckdr §433 Iexec 2436
VERLOC 9439 TIMER gC @@ POS gC@E SRAL gCclo
SRA2 @C1l2 SRA3 @Cl4 SRA4 pClé SRAS gC1s
WAKEUP @C1A SRA7 @C1C SCEND gClE SCRHM gC1F
WHY 9C20 WH1 @C24 WH2 pC28 WH3 gCc2C
WH4 @C 38 WHS @C34 WHo #C38 WH7 BC3C
WHS 9pC48 WHO @C44 MemAdd gC49 Pagesl gCc4B
Command gCc4C VCBTAB gC63 DioA PpC66 DioHL gCc67
DioDrv @C69 DioDn @C6B DioBsy PC6C BUSIES @C6E
DRVADTAB @CT7E STACK 1393 SCREEN 1808 OVRLY 2000
OVENT 2004 SBUFY— 280 ¢ SBUF2 ofg—SBUF3—— 2200
SBUF4 2B@3 CBUF 2C@0 KBUF 2D@@ CMND 2D49
MEMTOP 2D88 KBIP 2D82 KBIG 2D84 KBEX 2D 86
CMDF 2D88 CMDD 2D89 CMDP 2D8A CMDA 2D8C
CMDN . 2D8E DONT 2D9@ SBRK 2D91 SYSRES 2D92
PVEC 2D93 UVEC 2D95 UBRK 2D97 SCHR 2D98
UCHR 2D99 ERROR 2D9A LERR 2D9C JOBST 2D9E
NDRIVES 2D9F NFDIR 2DA @ NFCK 2DA1 MTO 2DA2
MUNG1 2DA7 MUNG2 2DA9 MUNG3 2DAB MUNG4 2DAD
EXECSP 2DAF USTATS - 2DB1 SINT 2DB3 OVNM 2DB6
OVHL 2DBD OVDE 2DBF OVBC 2DC1 OVPSW 2DC3
ONCE 2DCS LUSER 2DC6 CMPTR 2DC7 EFLG1 2DC9
EFLG2 2DCA FILE 2DCB BUGS 2DFC NFA 2E 00
Diraddr 2E02 PATH 2E@4 DEFPATH 2E27 OVMEM 2E53
USER 3200

System 88 System Programmer's Guide

Section 12 Page 249
Twin User Labels in Alphabetical Order:
BHA E@5F BOOTVOL 2D92 BRG @C60 BRGEN goad4a
BUGS 2EB4 BUSIES gC6E Byte E@S5A CBUF 2C 00
CHUNK 2EFE CMDA 2E82 CMDD 2E7F CMDF 2E7E
"CMDN 2E84 CMDP 2E88 CMND 2E3C CMPTR 2E7C
Ckdr EG2D Cold E00@ DBARF §92@ DEFPATH 2D8¢g
DEVMASK @0OQF DONT 2E8E DRVADTAB @C7E Deout EB45
Devlock EQ6F Dio 2E30 DioA PC66 DioBsy gcecC
DioDn @C6B DioDrv @C69 DioHL @C67 DiraAddr 2EA7
EERR pg4@ EFLG1 2EB@ EFLG2 2EB1 EIC p089
ERROR 2EB7 EXECSP 2EBD Enter E@4E Err EG3C
FILE 2EBF Fdfp E@75 Flip E@2A Flipem E@39
Flush E@G1B Fold E@27 Fpanel E@78 GFLOCK EG7E
Gdfp E@72 Gfid E@42 Giveup E@3C Gover E@12
I0IP @C62 Iexec E@308 Ioret E@66 JOBST 2EB2
KBEX 2E38 KBIG 2E36 KBIP 2E34 KBMODE1 2E3A
KBMODE 2 2E3B KBUF 2DCP Killi E@18 LERR 2EB9
——————LOCK— 2E8F LUSER——2EB3-Leave-—E@#51-Lock—— E@48—
Look EG1E MEMTOP 2EBB MUNG1 2E9F MUNG2 2EAL
MUNG3 2EA3 MUNGA4 2EAS5 MUNGP 2D23 Mfos EG63
Move E@6C Moven E@69 Msg E@96 Mtos EG60Q
NDRIVES 2EA9 NFA 2EAD NFCK 2EAC NFDIR 2EAB
ONCE 2EAF OVBC 2E9B OVDE 2E99 OVENT 2004
OVHL 2E97 OVNM 2E98 OVPSW 2E9D OVRLY 2009
Ovrto EGJF PATH 2D4G PHANTOM @060 PMASK E@5D
POS 2EQA PVEC 2E87 Pmsg E@@9 Print EQ36
Rlwe Ef#24 Rtn E@15 Runr. E@#21 SBRK 2E86
SBUF1 280@ SCEND 2E@8 SCHR 2E8C SCRHM 2E@9
SRA1l gClP SRA2 #Cl2 SRA3 @Cl4 SRAA4 gC1l6
SRAS gC1l8 SRA7 2EEC SRA7I @#ClC SUWH@ gC29
SUWH1 @C24 SUWH2 @C28 SUWH3 @C2C SUWH4 gC30
SUWHS @C34 SUWHG6 gC38 SUWH7 @gC3C SUWHS gCc4a9
SUWH9 @#C44 SYSRES 2EAA Show E@33 TIMER 2E0Q2
Ticker E@3F UBRK 2E8B UCHR 2E8D USER 2F 09
USERS g@o2 USP 2EQ® USRNAME 2EEE USTATS E@SE
UTIME 2EQP2 UVEC 2E89 Unlock E@4B VCBTAB #C63
vmgr E@54 vti ‘E@57 WAKEUP 2E@6 WHQ 2EQC
WH1 2E16 WH2 2E14 WH3 2E18 WHA4 2E1C
WHS 2E20 WH6 2E24 WH7 2E28 WHS8 2E2C
WHY 2E30 WHICH AC61 Warm E@93 XTIMER gCog
cmd £ 9031 excl g0@7 fupd @034 glook E@7B
mung 2005 rd 9862 wlock 2006 wrt @003

* System Symbol Table *

System 88 System Programmer's Guide

Section 12 Page 250
Twin User Labels sorted by Value: ’
cmd £ gg01 rd @@02 USERS go@2 wrt 0003
fupd @904 BRGEN p@#4 mung @885 wlock P26
excl @007 DEVMASK @0@F DBARF 99208 EERR 2040
‘PHANTOM go60 EIC 0680 XTIMER PCg@d SRAl pC1l9
SRA2 gCl2 SRA3 PCl4 SRA4 #C1l6 SRAS gCcis
SRA7I PC1C SUWHO PC2@ SUWH1 PC24 SUWH2 pC28
SUWH3 @C2C SUWH4 @C39 SUWHS gC34 SUWH6 gC38
SUWH7 @C3C SUWHS gC44 SUWHO @C44 BRG pC6o
WHICH gC6l1 IOIP @C62 VCBTAB gC63 DioA gce6
DioHL @C67 DioDrv #C69 DioDn PC6B DioBsy gcecC
BUSIES @§C6E DRVADTAB @gC7E OVRLY 2008 OVENT 2004
SBUF1 2800 CBUF 2C08 MUNGP 2D@@ PATH 2D44
DEFPATH 2D8¢ BOOTVOL 2D92 KBUF 2DC@ usPp 2500
UTIME 2E@2 TIMER 2E02 WAKEUP 2E@6 SCEND 2E08
SCRHM 2E@9 POS 2EQA WHO 2EQC WH1 2E19
WH2 2E14 WH3 2E18 WH4 2E1C WHS 2E20
— W 224 WHF— 2B 28— WH8——— 2B 2C--WHO——— 2538
Dio 2E30 KBIP 2E34 KBIG 2E36 KBEX 2E38
KBMODE 1 2E3A KBMODE?2 2E3B CMND 2E3C CMPTR 2E7C
CMDF 2E7E CMDD 2E7F CMDP 2E80 CMDA 2E82
CMDN 2E84 SBRK 2E86 PVEC 2E87 UVEC 2E89
UBRK 2E8B SCHR 2E8C UCHR 2E8D DONT 2E8E
LOCK 2E8F OVNM 2E9¢9 OVHL 2E97 OVDE 2E99
OVBC 2E9B OVPSW 2E9D MUNG1 2E9F MUNG2 2EAl
MUNG3 2EA3 MUNG4 2EA5 DiraAddr 2EA7 NDRIVES 2EA9 %
SYSRES 2EAA NFDIR 2EAB NFCK 2EAC NFA 2EAD ,
ONCE 2EAF EFLG1 2EB@ EFLG2 2EB1 JOBST 2EB2
LUSER 2EB3 BUGS - 2EB4 ERROR 2EB7 LERR 2EB9
MEMTOP 2EBB EXECSP 2EBD FILE 2EBF SRA7 2EEC
USRNAME 2EEE CHUNK 2EFE USER 2F@6 Cold EQ09Q
Warm Eg93 Msg E@d6 Pmsg Ef99 Err E@gC
Ovrto EGOF Gover E@12 Rtn E@15 Killi EZ18
Flush E@1B Look E@1lE Runr E@21 Rlwe E@g24
Fold E@27 Flip E@2A Ckdr EB2D Iexec EG30
Show E@33 Print E@36 Flipem E@39 Giveup E@3C
Ticker E@3F Gfid E@42 Deout E@45 Lock Eg48
Unlock E@4B Enter E@G4E Leave E@#51 Vmgr E@54
vti E@57 Byte E@5A PMASK E@G5D USTATS EQ5E
BHA E@SF Mtos EG60 Mfos E@63 Ioret E@66
Moven E@69 Move EG6C Devlock E@6F Gdfp E@G72
Fdfp E@75 Fpanel E@78 gLook E@7B GFLOCK EQ7E

* System Symbol Table *)

System 88 Programmer's Guide
Page 251

Section 13
Section 13
Disk I/0 in Assembly Programs

The code in this section is the disk I/O code used to open
-input and output files, and to read and write on the disk.

[THL TR T T

*kkkk DISK I/0 **xk*%

Read from HL buffer to get file names to open for

both input and output (respectively).
PEN CALL NXTC ;:read command line
JINZ OPEN ;Scan to delimiter
XRA A ;clear input/output file flags
STA INFLG
STA OTFLG
CALL . OPIN ;Open_input _file
Jc Err :Ret/ error - mail out,
MOV A,M :1s next character a CR
CPI CR
RZ ;Output file is optional.
LXI B,'GO’ ;Default extension.
CALL OPOUT ;Open output file.
JC Err
RET
; .
: Open an input file. Read from buffer at HL to get
: filename.
’
OPIN SHLD FSTPTR ;Save ptr
MVI A,CR
DCX H
CMP M ;We looking at CR yet?
JzZ ER@783 ;Yes - error.
INX H
LXI D, IFDE ;Input Filei Dir Entry buffer
MVI A,40H -
gfid ;call Gfid with Macro
JC ER@705 :can't find input file
MVI A,1l
STA INFLG ;set input flag
PUSH H ;Save ptr to input
LXI H, IFDE+1 ;—=—=> input FDE
LXI D,3 ;set DE to 3 to add length
MOV A,M ;get path name length byte
ANI 1FH ;mask off Sys, Del, New bits
ADD E ;add it in
MOV E,A

* Disk I/0 in Assembly Programs *

System 88 Programmer's Guide

Section 13 Page 252
DAD D ;=-> FDA slot in FDE)
SHLD IFDP ;save Input File Disk Pointer. v
LXI D,IFDA ;In File Disk Address
MVI B,4
OPLP MOV A/M
- STAX D ;copy disk address & length
INX H
INX D
DCR B
JNZ OPLP :Copy PDE good stuff.
LHLD IFDA :Initialize REWIND variables.
SHLD REW1 ;disk address
LHLD INBS ;£ile length
SHLD REW2 ;jsector counter
LXI H, INBUF+0FFH ;disk buffer
SHLD IPTR ;input pointer
POP H ;Restore H to ptr
RET
’
: Open an output file. BC=Default Extension.
;i Skip the first char, assuming it is a delimiter.
[
OPOUT MVI A,CR
CMP M
INX H :HL-> 2nd FD if there
INZ TWOF DS ;jmp/ two FD'S given
LHLD FSTPTR ;-=> First FD in buffer. a
TWOFDS LXI D,OFDE :Setup for Gfid
MVI A, 60H ;Lookup function.
gfid ;call Gfid with Macro.
;Default EXT passed in BC as
;a parameter by caller.
JNC ER@G702 ;If already there, report.
PUSH H
LXI H,0300H ;Must get a 300H error
CALL DCMP ;normally.
POP H
JNZ FAIL ;If not 30@H, ret CARRY.

; For two user systems only, get MUNG access to device.

IF USERS=2

LDA OF DE

ANI 15 : device #

MOV C,A

sett mung ; see if we can MUNG it
JC FAIL ; crap out if we can't
ENDIF

MVI A,l

* Disk I/0 in Assembly Programs *)

System 88 Programmer's Guide

Section 13 Page 253
“‘) STA OTFLG
. LXI H,OFDE+1 ;==> output FDE
LXI D,3
MOV A, M
ANI 1FH ;mask name length
ADD E .
MOV E,A
DAD D :==> FDA in putput FDE
SHLD OFDP ;Save pointer
LXI D,OFDA
MOV A,M
STAX D
INX H
INX D
MOV A,M
STAX D ;copy FDA
LXI H,?
SHLD ONBS ;Clear output number sectors.
LXT H,OTBUF
SHLD OPTR :Clear output buffer pointer.
RET
’
; Get a character from disk input file.
GETC "CALL GETBYTE ;Get a binary byte.
RC ;1f empty f£ile, ret CARRY.
F) ORA A ;Skip zeroes, .
up JZ GETC
STC _
CcMC ;Ret NO CARRY.
RET
[
GETBYTE LDA INFLG
ORA A
JZ ERG703 ;No input file.
PUSH B
PUSH D
PUSH H
LHLD IPTR
INR L ;Bump bottom byte (!!!1!RLD).
Jz GTBUF ;jmp/ £il1l1 tank
SHLD IPTR
GTGNG - MOV A,M
GOAWY POP H
POP D
POP B
RET
GTBUF LHLD INBS ;Sector counter.
MOV A,H

* Disk I/0 in Assembly Programs *

Section 13

System 88 Programmer's Guide

Page 254

ORA L

JINZ GTBF1 ;jmp/ more out there.
sTC

JMP GOAWY ;Ret CARRY on EQOF.
DCX H

SHLD INBS ;bump sector ctr,
LHLD IFDA

INX H

SHLD IFDA ;Inc disk address.
DCX H

LDA IFDE

ANT 15 ;Unit #

MOV C,A

MVI A,l ;i1 sector

LXI D, INBUF

MOV B,A ; Read

CALL Dio

Fe Err +0eps~

LXI H, INBUF

SHLD IPTR ;Reset ptr

JMP GTGNG

Put a character to

PUSH
PUSH
PUSH
MOV
PUSH
LDA
ORA
JZ
LHLD
MOV
INR
SHLD
JNZ
LHLD
LDA
ANI
MOV
LXI
MVI
MVI
CALL
Jc
LHLD
INX
SHLD

B

D
H

B,A
B
OTFLG
a
PTAWY
OPTR
M,B

L
OPTR
PTAWY
OF DA
OF DE
15

D,OTBUF
A,l

B,0

Dio

Err
OFDA

OFDA

the output file.

;Is there an output file?
;Jmp/ nope.

:jmp/ not full
;output disk address

;:Unit number

;in C.

;Flush out buff.

;Tell Dio to move 1 sector.
;Write command.

;Oops!

;Inc output disk address.

* Disk I/O in Assembly Programs *

System 88 Programmer's Guide

Section 13 Page 255
‘,) LHLD ONBS
s INX H
SHLD ONBS ;and output file sector ctr.
XRA A ;Set zero flag.
r
"PTAWY POP B
MOV A,B ;Save A but not flags.
POP H
POP D
POP B
RET
14
; Rewind the input file.
!
REWIND PUSH H
LHLD REW1
SHLD IFDA
LHLD REW2
SHLD ——INBS
LXI H, INBUF+0FFH
SHLD IPTR
POP H
RET
I
; Close output file.
] SHUT LDA OTFLG
‘l\,’ ° ORA A
RZ ;Ignore if no output file.
LHLD OPTR ;Clear rest of buffer.
DCR L
INR L :5et Z according to L.
Jz SHUT 3 ;If already full, quit.
SHUT 2 XRA A
CALL PUTC ;Put zeroes until full.
JNZ SHUT 2
SHUT3 LDA OFDE+1 ;Get name length.
ANI 31 ;Leave only name length.
ORI 20H ;Set the 'new' bit.
STA OFDE+1
LHLD OFDP ;==>FDA slot
INX H
INX H ;=—> NBS slot
LXI D, ONBS :==> source block
MVI B,6
SHTLP LDAX D ;Move NBS, LA & SA to FDE.
MOV M,A
INX H
INX D
DCR B
‘~ * Disk I/O in Assembly Programs *

Section 13

JNZ

~e

LXI
MVI

gfid
JcC

IF
LDA
ANI
MOV
clrt
JC
ENDIF
’

RET

System 88 Programmer's Guide
Page 256

SHTLP ’

H, OFDE
A,l

:ENTER function

;call Gfid with Macro
Err

USERS=2 ;for two user

OF DE ;clear mung access
15

cC,A

mung

Err

.
’
—_— 3 Disk T /0-ufillities~

14

NXTC MOV
INX
CPI
RZ
CPI
RZ
CPI
RZ
CPI
RET

i
H
i
E

A’M
H
CR

TAB

Disk I/0 errors.

RO792 MVI E,2 ;** Qutput file already exists *%*
DB 21H

ER@703 MVI E,;3 :** No input file specified **
DB 21H

ER@G785 MVI E,5 :** Input file does not exist **
MVI D,@87H
STC ;Return waving the flag.
RET

i

; Error processing

i

FAIL JMP Err

H

; Data Area

7 .

INFLG DS 1 ;input file flag

OTFLG DS 1 ;output file flag

* Disk I/O in Assembly Programs * . J)

System 88 Programmer's Guide
Section 13 Page

FSTPTR DS 2 ;pointer save location

r

; For Input File

IFDE DS 44 ;dir entry buffer

IFDP DS 2 ;disk pointer

"IFDA DS 2 :disk address

INBS DS 2 ;sector length

IPTR DS 2 ;read pointer

REW1 DS 2 ;rewind pointer disk address
REW2 DS 2 ;rewind pointer sector counter
INBUF Ds 256 :disk sector buffer

’
; For OQutput File
OFDE DS 44 ;dir entry buffer

257

OFDP DS 2 ;disk pointer
OF DA DS 2 ;disk address
ONBS DS 2 ;Sector length
OFLA DS 2 ; load address
OFSA PS 2 +Sstart—address
OPTR DS 2 ;read pointer
OTBUF DS 256 ;disk sector buffer
i
END

* Disk I/0 in Assembly Programs *

System 88 Programmer's Guide
Section 13 Page 258

9

* Disk I/0 in Assembly Programs *)

System 88 System Programmer's Guide
Section 14 Page 259

Section 14
Sample Assembly Program

The following program is a sample of an assembly 1language
‘program that does disk I/0. This particular program is included
on the system programmer's disk as RECOVER.GO. Refer to Section
4, Utilities for the System Programmer, for instructions on this
program.

;***
. % *
’
¥ RECOVER *
i * *
* Version 1.0 Donald Moe *
Y 23/99/81 *
i * *
;+* Copyright (c¢) 1981, Interactive Products *
;¥ Corporation dba PolyMorphic Systems *
:* 468 Ward Dr., Santa Barbara, CA. 93111 *
« K *
;***
;
REFS SYSTEM ;get system symbol file
REF Y
, ;
200D CR EQU 13
H
MACLIST @
;
emsg MACRO
#L CALL Gover
db 'Emsg’
ENDM
H
msg MACRO
#L LXI H,#1
CALL Msg
ENDM
MACLIST @ ;suppress listing of
;macro expansions
3200 ORG USER
3200 IDNT $,8$
;
3209 C3F833 JMP START
3283 C3F833 JMP START

* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide

Section 14 Page 260
; D
+Hello db 'File Recovery Program. ' L
_ db 'Version 3/5/81',0
+Msg@ db CR,'Enter Disk Drive Number: ',@
+Hexmsg db - CR,'Enter the following numbers'
db ' in Hexadecimal.',®
+Msgl db CR,'Enter Starting Sector'
db ' Number: ',0
+Msg2 db CR,'Enter Ending Sector'
db ' Number: ',0
+Msg3 db CR,'Enter Program Load'
db ' Address: ',0
+Msg4 db CR,'Enter Program Start'
db ' Address: ',0
+Msg5 db CR,'Enter New Filename with'
db ' Extension: ',8@
+Msg6 db 'Working...please stand by.'
db CR,0
4= i L
db ' Another (Y/N)? ',0
+Msg8 db ‘At Sector: ',0
+Errmsg db CR,'* * Illegal answer.'
db ' Reenter. * *',0g
+Quterr db '* % Qutput file already'
db ' exists., * *' ¢
+Sectmsg db CR,'* * Starting sector greater'
db ' than Ending sector. * *',g _/)
+Busy db '* * Qutput device busy., * *',g f
+START msg Hello :;sign on
33FE AF XRA A ;clear output flag
33FF 32BE35 STA OTFLG .
’
; ask for drive number
3492 112C32 MSG@ LXI D,Msg@ ;drive number message
34065 @QEGS MVI c,5 ;£ive chars
3407 CD@A35 CALL NUMB :get drive number
349A 7D MOV A,L ;put into A
349B B7 ORA A ;is it zero
34p9C CA1l1434 JZ MSG@1 ;yep/ not legal
349F FEQA CPI1 19 ;is it less than 19
3411 DA1734 JC MSG@2 ;nope/ not legal
3414 C38B34 MSG o1 JMP MSGERR ;display error message
3417 32C735 MSG@2 STA DRIVE ;save it
’
+ msg Hexmsg ;display hex message
; ask for starting sector number
3429 117432 MSG1 LXI D,Msgl ;start sect # msg
3423 QE@6 MVI C,6 :six chars
3425 CD@A35 CALL NUMB ;get sector number

* Sample Assembly Program - RECQVER *

System 88 System Programmer's Guide

Section 14 Page 261
3428 22€835 SHLD STSECT ;save it
; ask for ending sector number
342B 119432 MSG2 LXI D,Msg2 ;end sect # msg
342E QE@Z6 MVI c,6
‘3430 CD@A35 CALL NUMB ;get sector number
3433 22CA35 SHLD ENSECT ;save it
;check for start <= end sector number
3436 EB XCHG ;put endsect into DE
3437 2AC835 LHLD STSECT ;get start sector
343A EB XCHG ;swapem back
343B CD4135 CALL DCMP scompare them
343E D24A34 JNC MSG3 ;no carry => Ok
’
+ msg Sectmsg ;display error message
3447 C32034 JMP MSG1 ;go try again
7 ——for—file-Load -Address
344A 11B232 MSG3 LXI D,Msg3 ;load addr message
344D (QE@6 MVI c,6
344F CD@A35 CALL NUMB
3452 22FE35 SHLD LOADADR ;save it
’
; ask for file Start Address
3455 11D@32 MSG4 LXI D,Msg4 ;start addr message
3458 QE@6 MVI C,6
345A CD@A3S CALL NUMB
345D 2200836 SHLD STADR ;Save it
; ask for new filename through Gfid
3460 21EF32 MSG5 LXI H,Msg5 ;filename prompt
3463 11CC35 LXI D,OFDE ;buffer
3466 015854 LXI B,'TX' ;default extension TX
3469 3EE@ MVI A,8E@H ;read from user,
; look it up,
; default extension
+ gfid :call Gfid
3472 D29434 JINC MSGERR1 ;file already there
3475 210003 LXI H,388H ;check for 300 error
3478 CD4135 .CALL DCMP ;compare them
347B CAA634 Jz READIT ;yep/ Ok
+ emsg ;call Emsg
3485 DAQF04 Jc Err ;1f error now, abort
3488 C36034 JMP MSG5 :loop back
; Illegal answer message
+MSGERR msg Errmsg
3491 (C3p234 JMP -MSG@
; Output file exists message
* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide

Section 14 Page 262
+MSGERR1 msg Quterr
349A C36034 JMP MSGS5
14
; Device busy message
+FAIL msg Busy
"34A3 C36034 JMP MSGS
’
; Now we have the file looked up, and the
; sector numbers and addresses determined.
; Let's now start reading it.
’
+READIT msg Msg6 ;put out working message
+ msg Msg8 ;display "at sector"
34B2 CD4735 CALL OUTSET ;setup output indexes
34B5 DA9D34 JC FAIL ;if carry, device busy
34B8 2ACA35 LHLD ENSECT ;get ending sector
34BB EB XCHG ;swap into DE
34BC 2AC835 LHLD STSECT ;get start sector
A = EY LJJ - LD r LU Il 41
34C@ DS PUSH D
34C1 CDF@34 CALL SECTDISP ;show sector
34C4 CD6635 CALL GETIN ;get sector
34C7 .CD7735 CALL PUTOUT ;put it out
34CA Dl POP D
34CB E1 POP H
34CC CD4135 CALL DCMP ;compare them
34CF 23 . INX H ;increment sector number
34D@ C2BF34 JINZ READLP ;loop until done
34D3 CD9C35 CALL SHUT ;close output file
']
34D6 113933 AGAIN LXI D,Msg7 ;display end message
34D9 21BF35 LXI H,RLWEBUF ;buffer
34DC 010200 LXI B,@2 ;2 chars, echo CR
34DF CD27@4 CALL Rlwe ;read from user
34E2 11BF35 LXI D,RLWEBUF ;point to buffer
34E5 CD3935 CALL LCFLD ;convert to upper case
34E8 FES59 CPI 'y! ;yes
34EA CAF833 JZ START
34ED C308304 JMP Warm ;else no
’
; Show current sector being processed
34F 90 SECTDISP
34F@ ES PUSH H ijsave regs
34F1 D5 PUSH D
34F2 3E20 MVI A,' ! ;pPut out space
34F4 CD24gC CALL WH1
34F7 EB XCHG ;put sector number into
DE
34F8 CDD1g@3 CALL Deout ;display it
34FB 2AQEQC LHLD POS jget cursor location
34FE 367F MVI M,127 sblank it

* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide

Section 14 Page 263
3509 11FBFF LXI D,-5 sback up 5

35¢3 19 DAD D

3504 228E@C SHLD POS ;reset for next pass

3597 D1 POP D

3598 E1 POP H

3509 C9 RET

Hex input routines

NUMB reads a hex number using Rlwe

N6 me N w6 we we we we we

On Entry: DE points to prompt string
C number of chars to read, max
On Exit: HL contains hex number
35¢A 21BF35 UMB LXI H,RLWEBUF ;where to put chars
356D @601 MVI B,1 ;don't echo term char
350F CD2704 CALL Rlwe sread from user
3512—11BF35 LT b REWEBUF —peint—at buffer

.
’

fall into conversion

HEXC converts a variable length hex number in

el TER TR U

RLWEBUF

3515 210000 EXC LXI H,0? ;zero conversion buffer
3518 4D MoV ¢,L
3519 CD3935 NXNYB CALL LCFLD ;get case-folded char
351C 47 MOV B,A -ssave it
351D FE30 CPI g’ ;return if less than '9!
351F D8 RC
3529 D639 SUI 'ge ;convert to binary
3522 FE@GA CPI 10
3524 DA2F35 JcC NXNB 1
3527 D6@7 SuI 7
3529 FE@A CPI 19
352B D8 RC ;return if not hex
352C FE19 CPI 16
352E D@ RNC s;return if not hex
352F @C NXNB1 INR C ;incr count of chars
3530 29 DAD H ;shift over result
3531 29 DAD H
3532 29 DAD H
3533 29 DAD H
3534 B5S ORA L ;or in next digit
3535 6F MOV L,A
3536 C31935 JMP NXNYB

’
3539 1A LCFLD LDAX D ;get next char
353A 13 INX D ;bump pointer
353B FE60 CPI @60H ;if upper case, skip it

* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide

Section 14 Page 264
353D D8 RC ’
353E D629 SUI 20H ;fo0ld it to upper N
3546 C9 RET
; Compare DE to HL for equality
“3541 7C DCMP MOV A,H
3542 BaA CMP D
3543 Co RNZ
3544 7D MoV A,L
3545 BB CMP E
3546 C9 , RET

kkkkk DISK I/0 *kkkk

i
’
H
H
; For two user systems only, get MUNG access to
i
0

: device.
3547 UTSET
— 3988 I YSERS=2
LDA OFDE
ANT 15 ; device #
MOV C,A
sett mung ; see if we can MUNG it
RC ; if carry, we can't
ENDIF
3547 21CD35 LXI H,OFDE+1 ;--> output FDE) : _9
354A 1106306 - LXI D,3 ' ‘
354D 7JE MOV A,M
354E EG61F ANI 1FH ;mask name length
3558 83 ADD E
3551 5F MOV E,A
3552 19 DAD D ;=—> FDA in output FDE
3553 22F835 SHLD OFDP ;Save FDE pointer
3556 11FA35 LXI D, OFDA
3559 7E MOV A,M
355A 12 STAX D
355B 23 INX H
355C 13 INX D
355D 7E MOV A,M
355E 12 - STAX D ;copy FDA
355F 2100600 LXI H,0
3562 22FC35 SHLD ONBS :Clear number sectors.
3565 C9 RET
; get next sector from input disk
; HL has sector number to read
3566 3AC735 GETIN LDA DRIVE ;Unit #
3569 4F v MOV Cc,A
356A 3EQ1 MVI a,l ;11 sector
356C 110436 LXI D,OTBUF ;buffer to read into

* Sample Assembly Program - RECOVER * 4)

System 88 System

Programmer's Guide

Section 14 Page 265
") 356F 47 MOV B,A ;Read
— 3579 CDg604 CALL Dio ;do disk I/0
3573 DAQF0@4 JC Err ;0ops.
3576 C9 " RET
[
; Put a sector to the output file.
’
3577 2AFA35 PUTOUT LHLD OFDA ;output disk address
357A 3ACC35 LDA OFDE
357D EG6OF ANI 15 ;Unit number
357F AF MOV C,A ;:in C.
35880 110436 LXI D,O0TBUF ;Flush out buff.
3583 3E#1 MVI A,1l ;do 1 sector
3585 0600 MVI B,0 ;Write command.
3587 CD@684 CALL Dio
358A DAQF@g4 JC Err ;Oops!
358D 2AFA35 LHLD OFDA
35948 23 INX H
3591 22FA3S SHLD QF DA rincdisk—addresss
3594 2AFC35 LHLD ONBS
3597 23 - INX H
3598 22FC35 SHLD ONBS ;put file sector ctr.
359B C9 RET
’
; Close output file.
’
‘2) 359C 2AF835 SHUT LHLD OFDP ;-=>FDA slot
359F 23 INX H
35a0 23 INX H ;==> NBS slot
35A1 11FC35 LXI D,ONBS ;--> source block
35a4 P696 MVI B, 6
35A6 1A SHTLP LDAX D ;Move NBS, LA & SA
;to FDE.
35A7 77 MOV M,A
35A8 23 INX ‘H
35a9 13 INX D
35aA @5 DCR B
35AB C2A635 JNZ SHTLP
14
35AE 21CC35 LXI H, OFDE
35B1 3E@1 MVI A,l
+ gfid ;ENTER it
35BA DAQF@4 Jc Err
14
0000 IF USERS=2 ;for two user system
LDA OFDE ;clear mung access
ANI 15
MOV C,A
‘clrt mung
JcC Err ;if carry, we can't
ENDIF

* Sample Assembly Program - RECOVER *

System 88 System Programm

er's Guide

Section 14 Page 266
35BD C9 RET ;’
; L
;
;
; Data Area
) i
35BE OTFLG DS 1 ;output file flag
35BF RLWEBUF DS 8 ;input buffer for Rlwe
H
; For Input File
35C7 DRIVE DS 1 ;drive number
35C8 STSECT DS 2 ;starting sector number
35CA ENSECT DS 2 s;ending sector number
;: For Output File
35CC OFDE DS 44 :dir entry buffer
35F8 OFDP DS 2 ;disk pointer
35FA OF DA DS 2 ;disk address
— 35FC—————ONBS—DS 2 reector—length
35FE LOADADR DS 2 ;file load address
3600 STADR DS 2 ;file start address
3682 OPTR DS 2 ;read pointer
3604 OTBUF EQU $;disk sector buffer
;
3764 end EQU OTBUF+256
;
END ;:)
Error total = /]

‘Macros defined in this assembly:

db emsg gfid msg
overlay

Labels defined in this assembly:
AGAIN 34D6 BUGS 2DFC BUSIES
CBUF 2C@0 CMDA 2D8C CMDD
CMDN 2D8E CMDP 2D8A CMND
CR g@@D Ckdr $433 Command
DCMP 3541 DEFPATH 2E27 DEOUT
DONT 2D9@ DRIVE 35C7 DRVADTAB
Phalt g409 Dio @406 Dioa
DioDn @C6B DioDrv @C69 DioHL
EERR @040 EFLG1 2DC9 EFLG2
ENSECT 35CA ERROR 2D9%A EXECSP
Errmsg 3361 FAIL 349D FILE
Flush §41E Fold g42A GETIN

Sample Assembly

Program - RECOVER *

@C6E Busy 33DC
2D89 CMDF 2D88
2D4¢ CMPTR 2DC7
@C4C DBARF 9020
#3D1 DEVMASK PP0F
@C7E Deout @3D1
PC66 DioBsy pcCe6C
gC67 DirAddr 2E02
2DCA EIC 0080
2DAF Err g4gF
2DCB Flip #42D
3566 Gover 9415

Section 14

HEXC
Ioret
KBIG
LCFLD
Look

‘MSG g2

MSG4
MTO
MUNG 4
Msgl
Msg5
NDRIVES
NUMB

OF DE
OPTR
OvVBC

OVMEM

I FL ALY

3515
064
2D84
3539
2421
3417
3455

2DA2
2DAD

3274
32EF
2D9F
350A
35CC
3602
2DC1
2ES53

System 88 System

Hello
JOBST
KBIP
LERR
MEMTOP
MSG1
MSGS
MUNG1
MemAdd
Msg2
Msg6
NFA
NXNB 1
OF DP
OTBUF
OVDE
OVNM

3206
2DYE
2D82
2D9C
2D8g
3429
3460
2DA7
pC49
3294
3314
2E00
352F
35F8
3684
2DBF
2DB6
g412

READLP
Rtn
SBUF2
SCHR
SHTLP
SRA2
SRA7
STSECT
UBRK
USTATS
Version
WH2
WH6
Warm

RLWEBUF
Runr
SBUF3
SCREEN
SHUT
SRA3
STACK
SYSRES
UCHR
UVEC
WAKEUP
WH3
WH7
end

35BF
p424
2A00
1800
359C
pC14
1000
2D92
2D99
2D95
gcla
gc2c
agc3c
3704

Programmer's Guide

Page 267

Hexmsg 3247 Iexec #4336
KBD #2318 KBEX 2D86
KBUF 2D@@ Killi g41B
LOADADR 35FE LUSER 2DC6
MSG@ 3402 MSGOl 3414
MSG2 342B MSG3 344A
MSGERR 348B MSGERR1 3494
MUNG 2 2DA9 MUNG3 2DAB
Msg 840C Msgg 322C
Msg3 32B2 Msg4 32D@
Msg7 3330 Msg8 3355
NFCK 2DA1 NFDIR 2DAD
NXNYB 3519 OFDA 35FA
ONBS 35FC ONCE 2DC5
OTFLG 35BE OUTSET 3547
OVENT 29064 OVHL 2DBD
OVPSW 2DC3 OVRLY 2000
PATH 2EB4 POS gCoE

T @C4R READTT 34A6
Rlgc g43¢ Rlwe 9427
SBRK 2D91 SBUF1 2800
SBUF4 2B@9 SCEND @gC1lE
SCRHM @gClF SECTDISP 34F0
SINT 2DB3 SRAl gClg
SRA4 gCl6 SRAS gCc1s
STADR 36009 START 33F8
Sectmsg 33A7 TIMER gCcog
USER 3200 USERS G001
VCBTAB @C63 VERLOC @439
WH@ gC28 WHI1 gC24
WH4 @C30 WHS gC 34
WHS8 PC49 WHO - gC44

* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide
Section 14 Page 268

3

* Sample Assembly Program - RECOVER * ~)

Index

System 88 System Programmer's Guide

Page 269

INDEX

ALIGN ¢ ceococcesosscscsacsscnascssssscssssssosscsosscssoscscsdl
Allocating SpPaCeeececccsscssssncsssscssssssssosesssscall
ArchiteCtuUre.ccecccesscscocessososasssosssasonccssnossasocsncssld
BARISE .. cceesscssssssssssasossascscssscsscssscscsnasesseld9
AUth .OV.ieeeeoassessocsocsssscsasososossccssssscacsncssssscelld

BASIC OverlayS.cceececocsccccosssscsssscsnscscssssnoassslll
BAIir.OV.ieeeeeooocosoosssoosassonasssnansnssssl?l
Berr.OV.eeeoeesoooossccsssscsasconssaocasl/7l, 209
BEfUN .OV.eeseooececocoossccocsssosaansnanonssssl7l
BS1lV.OV.eeoooooceooaoossosoasscncossanncsanssscacsessl7l
Xref eOVeeeceeeoossossscoscocsssssscsccosssnsscseslll

2 5 Y

Boot SeqUENCEe.cseccsscscscsscssossccscsscsnssossossssccscesdld
Single USer.cececsccecsesescscocsccaccscsccseedlll

Twinq¥qum 223

BOOTVOL..Qoo...oooo.'...'c'.Qotooooo0'0-000000000000088

BRGeceooooooosescooosossoocososscsasscsscscosncscccsocccsscsall
BRGEN:eeoeecocaacocoossaccassoscsscscososcssccnsocsscccssssssll
BUGS.cecoesecsascsceocoscoososossssncsecsasscscsascosssaselld3
BUSIES ececeoeaceccccccsssacsscsssscccssoscscssscsonscssseedd

Byte..QCOOQ..IQI'.O..'.....Q'l..O...lll..l.l.......0151

CBUF cececcococassooncsassocssssosssscsossscssosscssssscsssseedDI
CKhkAr eeecooeccoscssscosascssossasscscscsscscsscsosasasossaasseslld
CLEAN. coeoesosscosscacscsscscssasssceascsnssncsssacsssseld9
ClrPoececsccecscoscscssascosossoasssacsosascssscsonossascscncseessidl
Clrteceecescosceascccsossososcsacsscassosanscssasscsscscsdd
CMDA . oecenooocscoscssosososcsssosssoscssscsacscsososcscsnsesbD
CMDD.ceoescococscsascscscnsanoscsasssscasassoscsscsscsscsesbd
CMDF o eoocoococasccasasasocscascscsoscsasacssacscscsssscsscoscesbdDI
CMAf.ceccoscccsooscsoosnosscsscssosscsosscsssasacssascsscsosacacesc3l
CMDN.:coocooooscasocsacsasscaoscsasnacsesnscossascsosccacscssesbd
CMDP.cececsoosccscascscascsnsscscscsscnsscasassssoscssassccsesbdd
CMND.coeoososccsasoooscsscsacscssscsscssascscosscssscnecsldl
CMPTR.coososococoocsscsssossoscscscsssasosscscsscsoccsasacedl
CoOld.ieeccvesccoossoosscssossssacscssasscsnoscscssscasssaslld
CommMand.eoeecoscccoscosccsoscsacscossocscscocoossososccsoscsasceeldl
COMPARE . cvoccceoocacsassccsssoccscsssscscocscncsscssscccesssldB
COMP=DISK. ceecocccccccssasocssocsssasoscsnscssscsescscselIdB
CP/M ImplementatioN.cecceacscccsscsacocssacsaccssccssesdd3

DATA AREAS..Qoo.'oaooo-n.ocooo.00090000000000;000000056

QD eeveccooscceccecocosossscssocoscossossancsassscsssansaeabdd
DBARF . coeeececacescesossasscocccacsssssscssasasesscscaceaedd
Debugger (RDB) seeeeceeceossoscsaonscosscscsscnscscsecsslB89
DEFPATH . cseeeaesannscesasssssssasssnssssssscnsenssnsssd9
DEOUT ¢ ecoeovsvosvececocococscoccascssoscsosnoscassasasssssceldl

* Tndex *

Index

System 88 System Programmer's Guide

Page 270

DEOUt e e ovvsavenosossccsassssnssascssossoscsnsssssssssescasldl
deQU e eccocovsoscosssccossocassccoassssassssassoccssnssessiB
Device CONfigUre.cceeeecesccaosccsssssoscncsssscsessa239
DEV1OCKeeeeooeessooooonasossscsaosasscsscosscsscsoscsssnssesld?
Clear AllocatioON.eccsssccesscosscasesossccssesld8
Grant AllocatioN.cecesocoscccccssocossscocseaslb8
devV]oCKeeeceeooosooessoseaoscsoscsossosssosasossascsscascsedl
DEVMASK e eooeosevoooosoososcsscscscsosssscsescsscsssnossccsosssse I3
Dhalt eeeecoecseccoccesosassccassooesscssossosonssscsoscsoalll
DiOcecoocsococascsecsasssososesossoscacscssoscsscsossssasssssocell?
Assembly Cod@.ccececccccccssasssancsssenesss2bl
DiSK=I/0cececcosccooossosscccsnonossosssassccseell?
Error CodeSceeeccecsossccsossososssosnscssscsscecasll?
Single USereecscecccescsccsscsccsonsncccsaocsssel2d
TWwinSySteMeeeosoosoooosocccccscsscsssssscsascasllB
DiOA. e ceeeosaososscascscsoscssoncssscsscssssscssscsccsssascssassld
DiOBSYasoeeccceccccccsocoosvscocccacssssosncsosccccsssssocscseldd

Dioanoonooo-ono.oo..'0.0.o....cco...o.-o.ooo...o....84

D)

= = oA
AU LIIN o0 9 ¢ ¢ 0:3 0090000 a0 oeoveasp % e 80 00 e o 8 9 p oo 0 080 e e e R

DiOHLcoeoeacoscescsocescescsooncoossscsacsscoscncscsaacsccasscedd
DirAddr ececcescocccsccoscoasccscacscoscssssacsscsssasssceldl
DIRCOPY cecccecocsocceassoscccscosscoscsosancssososscscscacsessld9
Directory CheckSUM.sceeccsscvecacsscasoscccasesossscoccsll
Disk DirectorieS.cecceccececcccccessscacssccaccscsssccascelld
Disk NaM@eeeoesoasoososoossosscsocsscascssscoccsscassoseel?
DiSKSeeoeooeesaosocssassccscsscssocssscssnncosscscscacsscel
DISPLAY cecasosoocsasoscooscsocsasososscssososcscscscnscsaeld
DNAMEe.scosocooconsocscosscscsoncsncsscssescsossosssosnssccssoscscoscell
DONT .o eeoeococcosansosssssssssssossassoscsssannaanses?d
DRVADTAB:eeccoscsooascscssoscscsscoscsescsssscsscasscnssseldl
DUMP . o cocecosscoacocsscenossoscsoscscssosscsscssosssscsscasssceshd

dw....’.oonoo..o.c..o...o.o.ooooooooo.lo.o.oo.o'.coouoss

EERRQ..OQ!O..'.Q...OQ...oooooono.00.-0....0.........035
EFLGl....-oooo.oo.-.ooco..o.oc.ooiol..'..onoolnocoo.lgz
EFLGZ......'I".I.........0'....C....O...I..........lgz

EIC'...I'...0...0..Q.l..0000.00..00.0.'....0."....'.36

EMEDIT .cscoccccccccsosocosadacosscsocsnsoscnssacscccscocelld
EMSgeOVescocooecscsooossncscscscocsoscsccccascsseeesd5, 213
Enter.ccccecsccccssccsascsossssssasososscsossosssssascsssssldDb
= 0 o Y X |
EQUATESecscecccocasscsscscsscsoscosssocsasosssscscsscsossscssesell
) g < 1
ERROR::soscoccsocooscscsancscsosossscscscscaascasascscscoeelld
Error MeSSa8geS cecsccscccccssoscssosscscsscscsssssocsosseslDD

eXCIo..loooooooo..a..oo.oo.oono.'o.o..o.uo.clooooooo.32

EXECSPQO..0...0'...'..'....00..00...l.‘...o...l.o..'lgz

Fdfp.o.no-;..o.ooooooo'.ccooccoooooo.ooco.oo.l.oo...l63

FILE-...............o.oooo.laoocc.o...'o-oco--oﬁc..oocgz

File Descriptor BloCK.ieeeeoesecesoscassssascasosscosnssld

* Tndex *

System 88 System Programmer's Guide
Index Page 271

File Directory Entries.c.ececsccccscsaccecccsasccccnceed

; EXtensSioNeeeeeecccoscesoscccocscsoncsccsssccocanscseed

First Disk Address (FDA) eceececccaccsoscscasnsaslld

Flag Byt@oeeeeeecsocossesssccscssoscsccsssssanccsael

File NamM@.veeeoooacooecsoosssacossnsacsscassaseed

File SiZe (DNS)eeseoessccocovsscncssscsccsscsssll

Load Address (LA) ceeccesoscsccccscccsscscscscascall

Name Length..cieeeessccscsccscscssscsoacsnacasll

Start AddressS (SA)eececsccscsssoscscssocosccsesll

File SySteMeceecesccocscossocccsosossssossssssocasosnscscacsscasl

Files-ol'-.oo...lcll..o.ooo...u.o.ooooooo.o00000.00..'7

FPlipPiceseccocearocassocsccacrossscsscscessscasscscsscsssll8
Flipem..cccesseceoosccoasscossssscccsscascccssccsanassossldd
FluSheoeeoecoocacascasasassosasscscsoscssosscoosscsscosssscsosll?
FOldecoeeeoooooacsosnascsaossccssssacscsssscsccsoasscsasassessall8
fUPAecececsoscoocssooscoscosssssnsssoscccscssascscscsscasecsell

FUTIL..0.o..o..ol..oo.ou0Ooo0.00.00!.000.'0.........187

- Gdfp... e o6 seceeenssaosssesssecscsnsssecalbld 0000000

Get Fil® Tdentifie€r..ccecevoccvsccscesscccscscos-ld, 148
DescCriptioneeeccceececcsccccccccssccccsososnssecscsssld
Enter/Replace USE€.ceseoccscessocscsssoccsaanscssldl

Error CodeS..cccececsccscccnscascsasssesasal2, 25
EXampPleS.ceeceeosceccsccscoscsosccsscsansaasnsslld, 25
Extended File Descriptor BloCK.:..eecosssesoosslb
Extension InteractioN.eccceccccccssssscesssasasll

G FUNCEiONS .ceeecoscecssncscsssassscccancoscaceol?
HiStOry.eeeoeooooocossossssocoasssccsosoesasssld

Look FUNCtioN.seceocecoccscscsscsccccsocsscccscesld
MBCYOceceeacoscossocsssorescscoscsacsscscsccasscsddl
Original File Descriptor BloCK.ecececssoecosaaalb
Register SetUpPicccecccscccscccccsccccsesosasssl8

Single USereeeeecescssccsoccccsccsscsssssssassssssldd

System Symbol ccccoccecsccccnsssccssccccecsessldB
Termination CharacterSeccecccsccccccscscseanssl
TWinSySteMeeeeeeeecocoososssascsososcscssccscesldd
TwinSystem - Invalidating Directories.......150

Updir FUNCtioN.cicesecoeseccsssccsscasccssasslB

<?> ProcesSSiNgececesscccsccccsscsssssassssscsssll

<#> Processing.ceecececccocccasccoscancscssscsccesld
gfideeeececececeeesesessccssccsassssssonosscssesscncncesdl
GFID-DEMO:cccecccsccsacoscsoossosscncscsosocsoscsnsosssnsscsscsell
GFLOCK.eeocoeoooscoacooosonoasesosssosasscsassosnessessoscsseld
GlVeUPceeosoosevsssassaossssssssosesosaassscscsscscacsssscessld3

giveupo'looouoo.ooco.-ooo..oooo.to...l.too-.uocoo..losg

8.

gLOok.........Q...k.IO..00...C0.0.0.'.'.....0'.00....121
Govef..ooo.....................oo-......-.........o-l.?)l

govero'oiilooonoo'00oooooo.onoonooo.ooonooooola.o.o..46

IexeC..-...-....-.....-..............o-..o-.........146

Index-.oo--......-............c.oo--...........o....269

‘\, , * Index *

System 88 System Programmer's Guide
Index Page 272

Initialized DiSK.eseeoeeesoooossacoassocsacconssosnnsasasll ’
INTERRUPT CHARACTER PROCESSING.eccoscscecccacsccsccee3f o
Interrupts, I/0 Ports & Switching.eeeeseececscaceeeea?
IntroducCtionN.eeceeecsccocosseesssssssocccsnccssssscassl

TOIP e coosocscoscoscsasaconsssscsssossscssosssossscsocscseeldl

IOrEet ceoeocecosoccoccnossosccsoscscsossocsascscscsosscscsseseelbl

ioreto-aO.lQo'....oocaon..ao0-..0...oo'o'no.oioo.ooo.osg
JOBST.............I'.l.....'..I...l.l....'......'...lG3

KBDI..........O....'.l....l..Q...l..........00000000034
KBEX......’...........l.....'.....'...........'......7@
KBIG.O.....IO....l...'.....00...............00'......67

KBIP..Ql.......l...l.‘...o.....'...0.'0.......0.00000067

KBMODE leceooooeoosooososassascsosonseccoscssscssssasssoscssosell
KBMODE 2ececcocossoocsssosassesososcoossccsoscscecaacsossncsccell
KBUF ¢ ocococcosooocasossssscscssossssccosncsssscscsnossacsasasbO
Keyboard ProcesSSinNgeccccceccscccscoscccososcccscsssssssssesbb
—————M'Hm_ﬁﬂwwmﬂ—‘ﬁw—

LEAVE ceoossososessassncscsosscscsocssonscssscsscscssscasaslDb
leavVeececocooceccoscscsasccasscsoccscsossasscsccancssscccsscsecsidl
LERR:sesoeocosoeacsccsoscscsccsacsvsacseossenonesncscsscssaceslld
LOCKecoocooooosooososasossososososcsososnscssssncssscsscsssoscescelll
LOCKeeoooossoosaoseoososaoosscsososssssssacsscscscsacssscesselB3
1OCK:ooooooaocooscscoascsasssscsccsscsscsacsossscsnsnccsaoceosdd

LOOK e oo aeasaocooeonnanaeaneansasscsasancsnsaasasessl3d %

LUSER-.oa.oco,oo.....o.'oln.oolo.ot..'o'oc.coonoq...lg3

MACROS . eoeesacesoansocovseaascssssassossscsscsassoscscocese3’
MemAdd coeececcscsccoccscscsascsscssscccccscssscscsescccsdl
Memory MapPeecesosececcconcccsnssssssoccccsossssscccsacscld
MEMTOP .o eccsococossscscsssososcosccnsssnocsosascssnsnssosaasedl
MEOS .eeseecscscnccoscocoscoasossssscsnccscsnsssscsccccsll
MOVEe.cocosccesecsoccosscscacsssoccasoososncessosasccoscssccscelOl
MOVEeN ecoococosoocoosnsoscscasosscsscsscsccsosnsscsscscssceelbl
MSQeeececoesoccscccsoccscnosnccsconososonsososcsosonscscacsollb
MTOcecococcooosoososoossosacnscscasonsososccsacscassossccssssedd
MEOS . ceecococsvceoscrcsosccsosscccsscsccsscssscsacscscssscsccseelll
MUNG ceoocoscocosossosscsosocssocsososososcsssscsscsncsccscsanccscseld
MUNGl. oocoocsooococeossosoccooscsoscssccsscscsssosossssccacId
MUNG2.oceoccooococsccscosscscscosososscsssscscssscsscscsesID
MUNG3.oceecoooseosccccsscssascsscscoscscoscscscssscsscsccsscesdD
MUNG4.:coeooococsscocscscscscsoscscscscsssssnacsacsossscsessesdd

MUNGP..OC'...O....onooco.on-...ooo.o.o...nooo0000000088

Nda'o..olooo.oooo'-oo'..-olooo..ooo.ol..o.oo00'00000012
NDRIVES...-ooo.ooco..ooo.n-o.oo..oooootloooooo.00000089
Nf.oooo.olcoooo.o-0.0cooooo.'o'oooo.oooooo0000000000012

.NFAQ.....'.'...‘.....Q........Q........."'0....12’ lgl

NFCK...Q.......Ooaolooo.ooooooooooco..n..oooo0000000.94

* Index *)

Index

System 88 System Programmer's Guide

Page 273

NFDIR..Q...Il..................Q’..'.l.O.....I.Oll'..94

ONCE . ccescsoossseososcassosssssosnsssocssscscssscssscsccsslfl
OVBC e eosoeoacosnsososascsscscascnasosncssoosssssoscscsnsscsesll
OVDE . coececoocaccosscocsssascsosanosscsonvnacsosossosssasccsoscssccscll
OVENT ¢ ccceeecceoosocsscssassosssosososscscsessscssoscssssscscldb
OVErla@yYeceosoesosoccoesoossscsscssossccssossssoessascssessebd
Overlay ProcessSinNg.cecceccsscecssccscsscocssssscsssscsasl3l
OVEerlaySeceeesoesossossscscoscssossossosssascssssassssscssecsslbd
OVEIEOD cuceceesaosssssossssssssassoscsescsssssscssoscsocnsesdh
OVHL eoseoocescosocscosnssscacsssancscsossacssoscsncanossccsell
OVMEM ., e coeocctasccacsasscccasacsssscsscscsscscssasacsesellD
OVNM:coooooevoooonoassoscosossssassssscscscscsosscssoscsssssssnesll
OVPSW.tooeocasesooascsassosascsoasocacssoscscsscscsososccssscselld
OVRLY ¢ecvoveacccsscoccsasscsoccssscncsacosssssscsccancsccceclD

ovrto.-0.000..0.0....aoQoo..o.ooo.ooo.oo.oo.lo.oo.'.131

Pagesloccooooo.ooono..-oo-o...o..co.o—ooo.o'....o'..losl

DAL . 9_9
Clillle a @ o0 00606606060 6 060 @ 66 6606606660836 0 06 9 0 08 ® 0 s & oW —o

PCOPY .COM.voccesoscoasscsscsonscscscsssossossscscsscssasceaslddd
PHANTOM: cocoooosoosoocscosassosscscsoncssescsascsasoscssassesd33
PMASK.: e eoooecssoocossasacssosssossssscsssccsossccsoscsnscscceld
PMSg eecoscoscasascacesscssasnsassoacsscsscsosscsssacsaacselll
POTrfAVOr cececeeesosscoecsesasossccccsosscsccssssccsscssssad
POScceesaccencososasssassascsosscsassscsscsscsossscsssssccascesedd
PrinNtecceecceeeevosesosssososssoosconcssssssasncsssssscasseeld
Printeecececeeseescecccssscsnsososconcccesessssssssosocccessidd
Printer Driver.ccecececcccossossccossccssscsosscsocsscolBl

PvEC.........-.--......conocoo..oon..o.oqo.o.ooo...o.76

FaligNoeeoeeoecosoncooccssoesassosssosscncnooscssscasosnscscasbd?
FAeeoooeaocoocaosososassasossesosnsososnossascssossscsosascssscsasee3l
RDBeceoooossoososcosncscsossossasssosscssoscsnscsssassosseslB8
rddef .icceccccccccoccsccascoscssosovecasaccsossosascscsssoceadl
FAS eeoeasoaoossscsosoacscscsosnssoassancscsscssocssosssscssscscsend
RECOVER:eccceosoccecssncsscsoscscsossnococcssoscsccscssscscccesldd
RlgC .csecececcosososcscscscocscsasccososossonscsossoscscseelll
RlWE oesooooeosscosossccoossoscsassoscecscscsccssosasnssecassel3d
FOFJ eeoooososocsoscoescacoscsossasnosscssnssssanscssscsscasccscsdd
RENceeeoeosooscooossasscscacscscnossssossosncssscacsnossscelll

Runraoccacoioo'o.ototoooooo...oo.o‘.o.co'00.0.0.....137

Sample Assembly Progra@mMececessccceccsccscssceccocsosossssssldd
Sample System OvVerlay.:ceececccescccscccssosncscsassansslll
SBRK:tceoesoocecsccacsossccnscososnscocassonssscssscsasesnell
SBUF leccecocosssocccscsccscsosososasncsscsosossossssscscsconcsseeld?
SBUF Z2ecreocceocoosscsaccsosscsoscsssssoscsssosscsscscccceeld?
SBUF3cceceocsceccecsssscsoosscososcssssosscscsosssasacnccecesld?
SBUF4 .. ceecoesecscsasccccccsassassacsssscssscccasosssssceel7
SCEND:cevooocoososcsaseccossonsosvoscsossssacssacassoncasssdB

SCHR-....................o.ooooocoooo000000050000000078

* Index *

Index

System 88 System Programmer's Guide

Page 274

SCOPY v occcesossosccncssososnsoncsnsssssscssscsosssssossossassesl85
SCREEN e s ceoososcosescsssscsossccsssossacssosssossascssssscseldb
SCRHM. s s coocvsscscceccscsasccscsscsssossossosscssssnscccacssedl
SERVICE VECTORS.ceecoscaccossscccssscssososossoscsoccsoesel6
SET eeoeacssocsonscososssscssoososnscscssssosssscsscsssosscssssssb
SEtEPeeocessosessassesssosssoccssssesscecnssscscscssccccesil
St OY S eeecoscsosccsossosensscsscssssssccssssscscsoscscsaseeed
SEEEL ceeesssavsccssssoscssscsssscsssssssssnanssosnssscenssdd
SNOWeeoooeccesscscsasscascssccsancsosncsssossscesscscsssesldl
ShOW.eeoeoscecsceocssoscocsoancsoscssssssscssoscassssoasassscscdd
SINT .ceocoscosoococssccesscosscssnessassssnsssacsssseseld
SNiffoeseecocscccsoncsossososscssosssssscsssnscssscssssosscsscasced
SPACE . e cesccesocsoossasssacssasssscscsssosocancsscscssnacsscsld8
SRAl.ccoccoosassosascascsaccosssnsssssosnssscssscassocnsscssebl
SRA2eccoscocscoscssocssssccsossonsesscsascccssssascssasccssbl
SRA3.ecocscsocossvsoscnocsossoossssscssssscosscscssascssossscssdl
SRA4.cccevoscscccscsessossoscsorssassossssscsasccsssascssscbl

SRAS...IOvooonoI...'ooooooooooocoo.olo.l..oco.oo.oo.osl

%ﬁmwwmw%

SRAT7IL ceercacconscsscsscsoscssoscscsssasscscsssossosssssaascssbl
STACK. e eoctoscsoscosssosccssocssossssssscscsssscsscssscssccssdd
SUWH@ e e sscooccsssosccssscoscscosnscoossssacssscsssccsscesel28
SUWH]l.coeocoooosascocsccscossososocsssssnssosacsossasscssacscell8
SUWH 2. s ecoccososoccocsocscsocscsoscscosoassoscsanassocsssscsesll?
SUWH3:.veeooecocsoacasosscsosoncsscoscassosscsscssscsscscesalld
SUWHAd., ceocooccoconccssccccsoososossscscssasscnsascscscsascel29
SUWHS ., cocecoeccascsssosscososscsscscscscsasossosscsosscascelld
SUWHG . oooceoccooscscccoascssososcssvsscsssascsssosscsosssssesesll
SUWH7 oo ecoeeooconcsacascsocscsacssocscassocnsosscsccsascceasl29
SUWHSB.: e ococsovsosoosoonscsssccsscsossssccsascassonssscssscb?
SUWHO . ccceseococcsccoscsscocssoocascscscscacssossssscsnssncscesl?29
Symbol TableSecciieeceeccrososcscesssscnsssassosssaanesadd?
SYSRES .cecescsasscaocasscacscssaosacsscascsssscscsssscsscascscscsdl
SYSTEM BOOT SEQUENCE .ceesooccecoscososcsocsacscssccesldl®
SYSTEM DATA AREAS..ccecccecsesesssscsccssnssnssssscsosnssdd
SYSTEM EQUATES.cccocececcsscccsacscssosscsscssnsocccsseass3l
SYSTEM ERROR MESSAGES:ccescsescsvcscococcsoscssosnsnscessldD
SYSTEM INTERRUPTS, I/0 PORTS & SWITCHINGeeeecocooseel227
SYSTEM MACROS.cccoscocceccscscscscassccsoccsccsscscnsoccscsocsll
SYSTEM OVERLAYS .. eecoccccvssscscssccocsocscscanosssccsceslbd
AMSTeOV.eeecosooacsccsscassoscsscsossssassncscsccelll
BAir .OVieeoesveosasoosscesossesscssacnsesnscasssl?l
Berr . OVeceeosocsocoesocscoceancscnsccsssossscosscsssal?l
BfUN .OV.ceoeaoossosccccossccccssossoncssssssocall
BSlVeOVieeooooosocsoccossosscscssaosscsosscasonsealZl
DEfNl.eOVieeecrooosesssasscsscsssssssosssssscssslb?
DEfN2.0V.ieeseeceosocccossscccosssssenssaseselb?
DEN3.0Veeeevoocoesosocssssosscscsscsssscseseseesl68
Efun .OV.ceeeececcoesocaocsosososssassacsasssnsasl69
EMSG.0Veteeeeoeecoesccaccocaanosccacananeaseelb?
EX@C.OV.eeeoeoooosoencosscscsossocscosnsassnssscslB7

* Index *

Index

SYSTEM
SYSTEM
SYSTEM
SYSTEM

SZAP..'l.o..o......o...".o..o.oo.aoooob

System 88 System Programmer's Guide
Page 275

GE1deOV.ieeeeooocsosasococsasososcsssonosssacsscsslb9

MEUN cOVeeoooooosoescscccssososscsssscscnccasossecelbd

PACKeOVeeteeoeoosoosccnosssoncascessasonsanscseslb?d

PNt eOVeiceesocsccscvsoocoscccsssssorssscsccsssseelb9

VMY cOVeeeesooooocscscaccsssascsssnscocecoeell?@, 233

Xref eOVeeeesceenvsaccacoscosososcossscssnscsanssoslll

PRINTER DRIVER:ceossccccssoccesscsccsscossscnsealfl
SERVICE VECTORS & ROUTINES.ccocoocecsccacsosellb
SYMBOL TABLES.csoecssscseccssocsoncssscsanassosscesld?
VOLUME MANAGER.:cescosccascocscscaasssssnssnssosal3l
Connecting New DriverS.iecescececscccccssocccees240

Single USer.eeeececcsescscscesooncosscssesldl

TWin US@receeccsccoccocecnssccssoncssssldl

Control Block InitializatioN.ececcecocccoaasa23’

Device Configure.cececescsccccesccccsascsescessl39

Error CodeS ecececescsocccacosassscsscssaasascsel38

Volume Defaulteceececccccsscccansassonossscsnscsl3d

cecesssenscsal78B

Termination CharacterS.cseecececcessccssces

Ticker..Qo..o'..o..oooo-occooo.oooo.00.0

TwIDQ.-oooncoocno.olooooo'oo.oo...oo.oo.

oo.no'c..i.aozz

00000000000145

00000000000198

TIMER..0..Q....'...A..I...I..ODOO.O.IQOOO....0...0'0..91

TwinSystem User Switching.eceeececeecoccos

oooooo...c023g

UBRK..Q..o...c.ooooo.oo.-oooo.oo.oo..o..ooooo..c'.o0077

UCHR:eoocoecsooocoscssosssscsssnscscosssoscsoesscssocssscsasccsss/8
UNlOCKoeeoesooaosococvossossscasscsscsosssosscssssascsssseldd
UN]OCK.eeeoesoosoosscccssascsaosncsscososssansosssasccsscesssdd
Updating Directoryececccececssccccccosscscscscsssasccnseeall
USER.evoecccccovocecsacssosasossssssccsoscsosscsnossnsssasecccell

userpgmocolconoooooaoooon...o.oo..oo.o'.o...o.c.'.ooo47

USERSa-o.o.o..o.o-ooooco-nonloo.0-.0..-0.00..0....0..31

USP«.....-O.on.oo.'oooco.o'.oo.o.nc.oo..'ooo...o'.i.ogg
USRNAMEO...O.anocoo..no.o.oococlono.o.oo.cooo.'o.l.oogg

USTATS..ooo...Ooo.o.o.c.oooo'...ooo'ono..oo.oco.l..l.75

UTILITIES.....0..0..0.".....'Q.....I..Q

A Y
ARISE.ceeeececcosocscsccccccossososscnsssssccessl9
AUth . OV.ieeeeeeeeeccceecsccccossccocscscssseelld
CLEAN.ccececececscasssoscocasassssssssssesscsseld9
COMPARE . cceceteeeccnosococccscsnssssosesecceeslO8
COMP=DISKeesooeesooccococossocsasscscssssncsscseldB
DIRCOPY ceceeoccccccccocsoocossnsassssssssnassssld9
EMEDIT .. ceeeeeceococecososssssnocnassossossnsnssssl7d
FUTIL.eeceeeoececooccocscsccssasaasoasssosocesslB7
RDB....... ceeescbecectsseecsassssascnasencessl89
RECOVER: ceeeeeeecatsocacocsccosscsnssococcccssssB
SCOPY eeeeeeeooacosasccacseocnsonceanssscsssceslB86"
SPACE.cteeeecoececcacsoscsscosssscccscccsnssnsseld8
SZAP.ceecceestssoocccoscerosssasssssasnsaseeeal?8 .
TWID.:eeoeooooocooossesoscssccncsesssacscsssccncsslId8

* Index *

Index

System 88 System Programmer's Guide

Page 276

wAIT.'Q...O.'.l.'0...QI..'...I'..O..'......Olge
UTIME"OQ.".O0.0..'...'...".......'...'...I.l.......gl

UVEC.'0.00Q....oo.o-qo..oo'o..t.oo.'.o.’....'.'oo.oo'77

VCDh eeoooooncooasosasocsosossososscascsscsnscsssssosascssonceedl
VCBTAB e eeoeoscoososescsossscossscssoscscssosasosasssossocsssocscaesl3
VECEL ceeeancoscscccsscsosanasnssosnosssosscsssssassascsscecsdd
Verdate iceeeesscesscovsssccsoscsssnscssccscccoscsscccsseld?
VERLOC . ccosccasocescscoscsscsososscscsoscsscssnscssasssasscssell
VerSioONeeeeeessococccsossoosssccsossocossscssscsescscsssscseld
VMY coeococoasscsosocsssascsssscsssssccsscosscncslb2, 236
Volume MaNnager cccsoosvescsssosssosoccsosasaccsscacssesl233

vti..........l....'..'..O.C......I.CI..Q.'.........'lll

wAITol.oolcooo..noooo.ol.....oooooo...’.lool..ooc'G' 159
WAIT.GO- CREEE B B A B B B B A I 2X R B B B B R R B N R Y I 2K K 2R BB I I B R BRI 0198
WAKEUP...-........................-............ ¢ 2o 0 0097

warm.o-QQOIoo'Ocooolo.o....oooooooo..o.o....-o'o'..olls

e
. | 4

Tal

WLlOCK.:eeoocooooooosneossscsoscsaacsacsosaosscsscaascassanscsas3l

WOrMhOleS eseecescscocsossosscosososososcssososscsasanscscssesellY
WH et ceoeoecesosansssosssncsassssasssscsnasseslB9
WHl..veeeoooooooaooocoscsoosososssocsssassnssslll
WHZ2. o eeeooooooesonassoancoscosncscsoososnoscocssssasealll
WH3.eeeoeoocooooaosoocasossoncncsoscoscsososscsosaaelll
WHE. . ooeeoooeoooooooscasosscsososcsosssscsasssasossall3
WH . eeeeeeceosancacsasscsacssansascsnsasseasslld, 201
WHG eoeoooeeooocsacsosoosososososscsosscscssosseselld
WH7 e eeooooosossesosesaocoscscoscsscsosascscscocsasaslld
WHB. e evoooooososososcososscascsooososcsoscscscacscesb?
WHO e eeeooooovoooocoocscsoacsoscsoassssosassesesell?

wrt.--........-...-.oaloono....occ.ooc.nu..coo.aco..o32
XTIMEROOQQOQDOOOQQOOQQOco.aco...ono.'olo.o'..o..o.ooo8g

YAK....O..O.Q.IQ......ooo.o.no..o.loo..o.o..co000000006

* Tndex *

