BASIC: A MANUAL

Written by

Robin C. Soto, R. T. Martin
and Robert Scott Keeney

PolyMorphic
Systems

460 Werd Drive - Santa Babara Califomic 931 (805) 967-2351

Copyright 1977, Interactive Products Corporation.

ADDENDUM TO BASIC: A MANUAL

This trief addendum rafers only ta the version of 3ASIC available on disk, I
describes the few difierences bvetween PolyMorpnic Systams' tape version of 3ASIC
and disk version of BASIC. If you have a POLY 88 or if for any reascn you will
be using the cassette version of BASIC, you do not need to refar 9 this addendum.

ADDENDUM TO BASIC: A MANUAL

There are several differences between the BASIC used on the
System 88 and the BASIC version 480 described in this manual.
The great majority of the changes reflect the fact that the
BASIC available on the System 88 is designed to be used on a
disk system.

For the most part, the differences in disk-BASIC consist of
additions to BASIC AP@. The information in BASIC: A Manual
therefore applies to the disk-BASIC as well except for one
item; the exclamation symbol (!) may not be used as an abbrev-
iation for the PRINT command in disk-BASIC. This symbol has
Deen reserved for system use.

Several commands used in disk-BASIC are unnecessary in BASIC
AQ8. They are the various file-handling commands and the
commands used to exit from BASIC ("EXEC" and "BYE“).

Section 9, BUILDING BASIC DATA FILES, of the System 88 User's
Manual explains the disk-BASIC file-handling commands in de-
tail. To summarize, they are:

NOTE: 1In the command syntaxes given below, the symbol n refers
to number of the information channel to which the data file

is assigned. When we speak of "syntax" we are referring to

the proper, acceptable form of a statement.

KEYWORDS

CLOSE (see page 68)
Close a éata file. Command syntax: FILE:n,CLOSE

DEF (see page 62)
Use the user-written machine language programs desig-
nated in the DEF command for file-handling routines.
Three hexadecimal addresses are given. Command syntax:
FILE:n,DEF,addrsl,addrs2,addrs3

OPEN (see page 60) _
Open a data file. May be used to create a data file.
Command syntax: FILE:n,OPEN,file mode

POS {see page 61)
Position the reading of data from a data file to a
given data record number. <Command syntax:
FILE:n,POS,record number

W see page 62) _
RE éositgon a file read operation to data record £0.

Command syntax: FILE:n,REW

FILE MODES

ouT (see page 64) _ .
& Data gecords will be read in from the data file,

updated and written back out to the file. Command
syntax: FILE:n,OPEN,INOUT

uT (see page 64)) '
FN Data Eecords will be read in from the data file.

Command syntax: FILE:n,OPEN, INPUT

see page 64)) .
ouT éata gegords will be written into the data file.

Command syntax: FILE:n,OPEN,OUT

DATA TRANSFER

INP {see page 67}
Input one byte of data (one character) from the data
file. Command syntax: INP(n)

INPUT {see page 65)
Input one data record (one line of characters up to a
carriage return), from the data file. Command syntax:
INPUT:n,string and/or numerical variable(s)

ouT {see page 67)
Write one byte of data (one character) or a string of
bytes out to a data file. Command syntax:
OUT n,string or numerical variable(s)+string+expression...

PRINT {see page £6)
Write one data record {one line of characters up to a
carriage return) out to a data file. Command syntax:
PRINT:n,string or numerical variable(s),expressions,
strings...

EXIT COMMANDS

BYE {see page 68)
Exit BASIC and return to the system level (Exec).
211 data files are closed.

EXEC {see page 68)
Recoverable exit from BASIC--after communicating with
Exec vou may resume your oberations in BASIC by tvping
the command "CON" after a svstem prompt. Data files
are not closed.

The two commands used to exit from 3ASIC are "BYE" and "EZXEC."
Both commands cause you to "leave" BASIC and return to the sys-—
tem level (i.e., to communicating with the system Executive).
When vou use the BYE command, vou are trualy leaving BASIC.

Any BASIC program that you might have had in memory is now
gone. Any data files that were open are now closed.

On the other nand, when vou use the EXEL command, even though
you communicate wiith the system Exec (as indicated by the
system prompt, $), you may resume your BASIC operations by
typing "CON" after 2 system prompt. Your BASIC program 1is
still in memory, and vour datz files ar2 still cren.

Details on saving 3ASIC programs 2s disk files, anéd executing
those programs may be found in tie Svstem 338 User's Manual.

4

&

PolyMorphic Systems BASIC

1.

TABLE OF CONTENTS

INTRODUCTION
1.1 Manual Content
1.2 The Examples in This ﬂanua?

GETTING INTO BASIC
2.0 Some BASIC Fundamentals
2.1 The Keyboard and Display

2.1 A. Giving Instructions to BASIC

2.1 B. Carriage Return

2.1 C. Interrupting BASIC

2.1 D. What To Do If You Make A Mistake
2.2 Primary Elements of a BASIC Instruction
2.2 A. Qperators
2.2 B. Arithmetic Operators
2.2 C. Relational Operators
2.2 D. Logical Operators
2.2 E. Operands
2
2
2
2

.2 F. Constants
.2 G. Strings

.2 H. Variables
.2 1. Expressions
Direct Statements

INPUTTING YOUR PROGRAM
3.1 Program Line Numbers
3.2 Multiple Statements Per Line

RUNNING YOUR PROGRAM
4.0 Control Commands
4.1 LIST

4.2 REN (Renumber)
4.3 RUN

2
FoN At e]
E

h

— .
- OO WO W0 0 00 s g

L B
W W o N NN

16
16
17

Polymorphic Systems BASIC

4.4
4.5
4.6
4.7
4.8

Control-Y

CON (Continue)

CLEAR

SCR (Scratch)

Sumnary of Control Commands

PROGRAM STATEMENTS

5.1

5.2

5.3

5.4

5.5

5.6

General Program Statements

5.1 A, REM (Remark}

5.1 B. STOP ‘

5.1 C. Assignment Statements (LET)
Inputting Data

5.2 A. INPUT and INPUTI

5.2 B. DATA and READ

5.2 C. RESTCRE

5.2 D. Single Character Input Functions
INP(D), INP(1}, INP(2)

Qutputting Data

5.3 A. PRINT
5.3 B. Formatting the PRINT Statement
[teration: The FOR-NEXT Loop

5.4 A, Nesting aof FOR-NEXT Loops
Branching Statements

5.5 A. GOTO

5.5 B. ON-GOTO

5.5 C. IF-THEN

5.5 D. ELSE

5.5 E. EXIT

Summary of Program Statements

1

23
23
25
25
25

26
26
26
27
27
28
28
29

3p

31
32
32
33
38
42
a5
45
a5
47
48
49

Polymorphic Systems BASIC

Page

6. FUNCTIONS AND SUBRCUTINES 52
6.1 Intrinsic Functions 52

6.1 A. Regular Intrinsic Functions 52

6.1 B, Intrinsic Functions Directly

Accessing Memory 55

6.1 C. Intrinsic String Functions 56

6.2 User-Defined Functions 57

6.3 Subroutines 59

7. STRINGS AND ARRAYS 51
7.1 Arrays 61

7.2 Strings 62

8. THE PLOT FEATURE 65
9. ERROR MESSAGES GENERATED BY BASIC 66
9.1 Error Messages 66

10. OPTIMIZING YOUR BASIC PROGRAM 71
Appendix A LOADING BASIC AND SAVING AND 74

LOADING A BASIC PROGRAM

Appendix B SAMPLE PROGRAMS 84
Appendix C BASIC CHARACTER SET 105
Appendix D 8089 MACHINE LANGUAGE INTERFACS 102
Appendix E COMMANDS, FUNCTIONS AND XEYWORDS 112

RECOGNIZED BY BASIC
INDE
INDEX 113

i1

PolyMorphic Systems BASIC

Section 1

_;NTRODUCTIOﬂ

You are about to learn a very simple language. You will never speak a
word of BASIC to any human being. But the things you can do with this
language make it possible for you, with the help of your computer's
"brain”, to develop programmed information with a high degree of speed
and reliability.

BASIC was originally developed in 1963 at Dartmouth College by Profes-
sors Kemeny and Kurtz, who conceived of BASIC as a computer language
simple enough to be used by beginners, yet powerful enough to carry
out sophisticated computation.

BASIC is a machine language "interpreter” which the user may devel-
op BASIC proarams. BASIC machine language is "loaded" in the com-
puter. The computer then "understands" programs written in BASIC.

The user takes a problem and a definition of the problem to the compu-
ter and develops a BASIC program. With a BASIC program,.the user de-
fines the problem and the methods for its solution once only, without
having to repeat the process during subsequent computations. The com-
puter, using the program, accumulates, stores and grganizes the needed
information, keeping in mind the ways to solve the problem and the
problem's definition.

A BASIC program is not a static accumulation of words and symbols

{even though a program does accumulate information). A program is a
dynamic process, somewhat like the continually moving parts of mo-
biies. A program is built out of parts which go together to form an
interpenetrating construction. Your BASIC manual is designed with

that principle in mind, by providing the user with a careful davelop-
ment of all the BASIC parts required to begin knowledgeable constructian
of a BASIC prograrn.

PolyMorhhic Systems BASIC

1.1 MANUAL CONTENT

BASIC: A Manual has been written to provide BASIC users at every stage
of programming proficiency with a sufficient and plainly set-forth body

of information. Basic information has been grouped into sections, each
section building upon information provided in previous sections, so

that the novice user may develop, section by section, a coherent sense
of BASIC and its potential. If you do not understand some aspect in

an early section of this manual, it will be clarified by the information
contained in a later section. This manual has also been -designed to
permit quick, complete referencing by the most advanced user. The
manual is arranged in 10 sections with several appendices containing
supplementary material. The next sections are:

Section 2 -- Getting Into BASIC: This section deals with the primary
elements of a BASIC program, such as deletion and correction techniques

and carriage return, and discusses direct statements.

Section 3 -- Inputting Your Program: Section 3 deals with the actual

typing of your BASIC program and provides information on program
line numbers and multiple-statement lines.

Section 4 -- Running Your Program: This section discusses the various

control commands you may use when you run your BASIC program.

Section 5 -- Program Statements: The many types of program statements

you may inciude in your BASIC program are provided in this section.

Section 6 -- Functions and Subroutines: This section discusses func-
tions intrinsic to Poly 88 BASIC, as well as the concept of user-de-
fined functions. Section 6 also deals with the concept of subroutines.

Section 7 -- Strings and Arrays: This section talks about the concept

of strings and arrays and how to use then in BASIC.

™~

PolyMorphic Systems BASIC

Section 8 -- The PLOT Feature: The Poly 88 BASIC PLOT feature is
described and demonstrated in this section.

Section 9 -- Error Messages Generated by BASIC: A list of error

messages generated by BASIC, along with possible causes for those
messages.

Section 10 -- Optimizing Your BASIC Program: This section discusses
ways in which you can speed up your BASIC programs and increase their
efficiency.

Appendix A -- Loading BASIC and Saving and Loading a BASIC Program:
The proper methods for saving and lcading BASIC programs and for
loading BASIC itself.

Appendix B -- Sample Programs: This appendix contains sample
programs which demonstrate various aspects of computer programming
pertinent to your particular Poly 88 system.

Appendix C -~ The BASIC Character Set: The character set for your
Poly 88 BASIC is given in this appendix.

Appendix D -- Interfacing with the Assembler and Memory: This

appendix discusses methods for interfacing BASIC and assembly
programs. It also discusses procedures whereby the user may directly .
access memory.

Appendix £ -- (Commands, Functions and Keywords Recognized by BASIC:

A list of all commands, statements, functions and keywords to be
found in BASIC is given,

|75

PolyMorphic Systems BASIC

1.2 THE EXAMPLES IN THIS MANUAL

The examples in this manual were typed on a Diablo Hy-Type 1620 Ter-
minal linked to a Poly 88 computer. Hence, the examples represent
actual computer printouts and will resemble the characters put out on
the video screen. Try the examples given with each section and many
aspects of BASIC which are not clarified at once in the text may become
clear to you through the actual process of entering-in the examples on
the keyboard.

In most of the examples, "enter" is used across from the first line of
the example. The information located on the line across from "enter”
should be typed in by the user as it appears in the example.

That section of the example marked "output® indicates the computer's
response to the "enter" section. When the "enter” section of the
example has been typed in correctly by the user on the computer's
keyboard, type a "carriage return" at the end of the "enter" sec-
tion of the example, and the "output" will appear on the video
screen. If you make a mistake entering the example, refer to Section
2, page 8.

REM:

You will often see the word REM appear in a program line in the examples.
This word indicates to the computer that a remark is to follow, not an
instruction. Everything on a program line after the word REM will be
ignored by BASIC, except to be reproduced when the program is displayed.
The comments after the REM's appearing in the examples are designed to
help ¢larify the examples for you.

Poly 88 BASIC version A2@. 4761 bytes free.
>RUN

THE EXAMPLES AND THE SAMPLE PROGRAM

LISTINGS SHOWN IN THIS MANUAL WERE

PRODUCED USING A POLY 88 WITH 16K BYTES

OF MEMORY, CASSETTE AND SERIAL INTERFACES,

AND RUNNING POLY 88 BASIC VERSION Ag®@

WITH THE PRINTER DRIVER PROGRAM BPRINT

DRIVING A DIABLC MODEL 1620 TERMINAL.

>

>LIST

182 !"THE EXAMPLES AND THE SAMPLE PROGRAM"

118 !"LISTINGS SHOWN IN THIS MANUAL WERE"

129 !"PRODUCED USING A POLY 88 WITH 16K BYTES"
136 !"OF MEMORY, CASSETTE AND SERIAL INTERFACES,"
149 !"AND RUNNING POLY 88 BASIC VERSION aga"
158 !"WITH THE PRINTER DRIVER PROGRAM BPRINT"
16@ !"DRIVING A DIABLO MODEL 1628 TERMINAL "

8
!
1
!
:
i
i\

PolyMorphic¢ Systems BASIC

Section 2

GETTING INTO BASIC

2.0 SOME BASIC FUNDAMENTALS

Have you loaded BASIC? Appendix A will show you the right way to load BASIC
into your machine, so that the machine will be able to "talk"™ with you in
BASIC. In this process you will make arrangements with the computer and
give it BASIC to store in its "brain".

After BASIC is properly loaded into your maﬁhine, BASIC will display a
message telling you which version of BASIC has been loaded, and will tell
you that it is ready to listen to you by displaying a prompt symbol () at
the left hand side of your monitor screen,

In order to use the examples provided with this manual, the user must be
acquainted with the keyboard and display.

2.1 THE KEYBOARD AND DISPLAY

The computer keyboard works much like a standard typewriter. There is a
shift key on the keyboard which functions like a typewriter shift key.
However, most keyboards have only upper-case letters and the shift key is
used for the symbols on the upper case above the numbers and for some special
symbois.

The character for the keys you depress will appear on the video display.
The space bar functions exactly like a typewriter space bar, save that it
makes one blank space on the screen.

PolyMorphic Systems BASIC

2.1 A. Giving Instructions to BASIC

There are two major ways in which you may give BASIC some simple instruc-
tions. The first of these two methods is called a Direct Statement. BASIC
wi]]‘execute some instructions immediately; this is the case with Direct
Statements. Some eiémples of legal, acceptable forms of these instructions
are provided in Section 3.

An example of a Direct Statement: >
>
enter D>PRINT 3+6
output 9
>
>

Another way of giving BASIC instructions is to give BASIC a program. A
BASIC program consists of a series of statements treated as a unit, BASIC
does not execute these instructions immediately and individually. Instead,
the instructions in a program are executed sequentially when the program
“runs."

To signal BASIC that an instruction is not to be performed immediataly,
but as a part of a program, the instruction must be preceded by a program
line number. Section 3, Inputting Your Program, also provides details re-

garding construction of a program.

>
>

enter >19 PRINT 3+6
>2@ PRINT 34-16
>RUN

Example:

output 9
18
>
>

2.1 B. Carriage Return

To end an instruction to BASIC, type a carriage return (RETURN or RET on

)

Polymorphic Systems BASIC

most keyboards). This tells BASIC it may go ahead and execute your in-
struction (or in the case of a program line) store it for later execution.
BASIC then returns with a prompt, indicating that it is ready for another
instruction.

2.1 C. Interrupting BASIC

To interrupt any process in BASIC, use the Control-Y command. To make a
Control-Y command, hold down the Control key (CTRL) and type Y. If you
were typing a line when you used Control-Y, BASIC will ignore that line
and return with a prompt. If BASIC was in the process of executing an
instruction, it will stop execution and return with a prompt.

2.1 D. What To Do If You Make A Mistake

BASIC has several methods of dealing with mistakes made while inputting an
instruction. The table below summarizes the deletion commands available
in BASIC:

To delete:

Individual characters: Use the DEL or RUBQUT key to back-
space the number of spaces you wish
to delete. Then retype.

Entire words: Hold down the Control key (CTRL) and
type W. This deletes one word at a
time from the current Iine. Then
retype.

Entire line: Hold down the Control key (CTRL) and
type X. This deletes the entire line
that you are typing. A Controil-Y
command may also be used. Control-Y
will cause BASIC to ignore everything
on the current line, although it
will not disappear from the screen
until the program is relisted.

After either of these commands, the
correct line may then be retyped.

PolyMorphic Systems BASIC

2.2 PRIMARY ELEMENTS OF A BASIC INSTRUCTICON

The primary elements of a BASIC instruction consist of operators and
operands. Other elements of BASIC instructions and program lines are
discussed in following sections of this manual.

2.2 A. Operators

Operators consist of symbols used to perform certain operations. These
operations fall into three broad categories: (1) arithmetic, (2) rela-
tional, and (3) logical (or Becolean).

2.2 B. Arithmetic QOperators

BASIC executes arithmetic operations in response to the following symbols,
and, if several are used in the same expression, in the order listed:

Example Symbol Operation

>

>PRINT 973 t Exponentiation. On key-
729 boards without this symbol
; a Shift-N is usad.
>PRINT 7%9 * Multiplicaticn
63

>

>

>

>PRINT 234.56/,8924 / Division
263.43217

>

>

>PRINT 23.89 + 67.68 *t Addition

98.97

>

>

>

>PRINT S5567.9-56.12 - Subtraction
511.78

>

>

PolyMorphic Systems BASIC

The order of execution of multiplication and division, or of addition and
subtraction, within the same expression, is from left to right. Paren-

theses may be used to alter the order of execution. When the parentheses
are used, operations are executed from the innermost parenthesis outward.

Example:

>

>REM SHOW ORDER OF EXPRESSION EVALUATION, AND
SREM EFFECT OF PARENTHESES. NOTE: ORDER OF
>REM OPERATION EXECUTION GIVEN IN TABLE ABOVE.
>PRINT 3+4/7

3.5714286

>REM NOTE THAT DIVISION WAS DONE FIRST AS 1F
>REM WE BAD SAID:

>PRINT 3+(4/7)

3.5714286

>REM SO WE WOULD NEED PARENTHESES TO GET THE
>REM EXPRESSION TO BE:

>PRINT (3+4)/7

1

>REM THE SAME THING HAPPENS WITH THE EXPRESSION:
>PRINT 5-372

-4

SREM IT WAS EXECUTED AS:

>PRINT S5-(372)

-4

>REM THE EXPONENTIATION(") WAS DONE FIRST, INSTEAD OF:
>PRINT (5-3)"2

4

>REM THIS FORCES THE SUBTRACTION TO BE DONE FIRST.

>REM TRY SOME EXAMPLES OF YOUR OWN TO SEE HOW THIS WORKS.

2.2 €. Relational QOperators

BASIC evaluates relational operations in response to the following symbols:

Symbol Operation
s equals
< is less than
> is greater than
<> is not equal to

16

PolyMorphic Systems BASIC

Symbol Operation
5> = is greater than or equal to
= >
sz is less than or equal to

BASIC will evaluate relational operations and respond with a 1 (if true)
or a P (if false).

>
Example: enter D>PRINT 18>9

output 1

>

>
enter >PRINT 757
output 9

>

>
enter >PRINT 144=1272
output 1

>

>

Retational operations may also be used in statements in which the command
executed depends upon the resuit of a test operation.
Example: >

enter >X=-1

>IF X>=0 THEN PRINT X ELSE PRINT "INPUT POSITIVE NUMBER"
INPUT POSITIVE NUMBER

2.2 0. Logical QOperators

BASIC can solve problems in Boolean logic using the following three opera-
tors: AND, OR, and NOT. The result of a Boolean operation is always a

1 (if true) or a P (if false).

?
Example: ~ entsr D>PRINT 1 AND 1
output 1
>
>
enter >PRINT 1 AND 3
output 3
>
b

PolyMorphic Systems BASIC

BASIC wiil also check the validity of a Boolean statement, returning a }
(is true) or a P (if false).

Example: >
enter >PRINT (1 AND l)=(1 AND NOTI1}
output 2
pJ
>

2.2 E. Operands

The dapa upon which BASIC performs operations are called operands. These
operands are given to BASIC either directly, through on-l1ine input, or
indirectly, through program statements., Operands may consist of, (1) con-
stants, {2) strings (3) variaties, or (4) expressions.,

2.2 F. Constants

A constant is a number representing an unvarying guantity. When BASIC
stores a number in memory, it represents it with a maximum of eight digits
plus an exponent. Therefore all numbers larger than eight digits are
rounded off by BASIC. This means that when BASIC adds the two numbers
50900P@ + .009, it will return with the incorrect answer of 5pPP#Pd. In
order to represent numbers larger than 99,999,599 BASIC uses the exponen-
tial notation (or scientific notation) form (number X 1953).

Examples:
3.76E+92 means +3.76 X 197 (+3.76 X 19), or +376
-3.76E+p2 means -3.76 X 1992 (<3.76 X 189), or +376
3.76E-92 means +3.65 X 19'02 (+3.76 X .pl), or +.p376
-3.76E-p2 means -3.76 X 197P2 (.3.76 X .p1), or -.9376

2.2 G. Strings

A string is a group of text characters (blanks may be included) enclosed
by quotation marks. All characters within the quotation marks will be
reproduced literally by BASIC without being processed. A string may be
represented by a string variable which must take the form of an upper case

i2

PolyMorphic Systems BASIC

letter of the alphabet optionally followed by a single digit, followed by
a dollar sign symbol. For example: Al$ = "THIS IS A STRING: Al$ IS ITS
NAME"; “THIS IS A STRING (1+1*(3+SQRT(16}}))T00"

2.2 H. Varijables

A variable is a user-defined name which stands for a constant, an expres-
sion, another variable, a string, an array, or a function. A1l numerical
variable names consist of one or two characters: an upper case letter of

the alphabet optionally followed by a single digit. A string variable

name consists of an upper case letter of the alphabet (optionally followed
by a single digit) followed by a doilar sign symbol ($). The same name

may be used to identify different values as long as the values they identify
are of different types. For example, it is possible to have a numeric
variable Al, a string named Al$, and functions named FNA1l and FNAL$.

These entities have no relationship to one another.

2.2 1. Expressions

An expression is a variable, constant, or function which may stand alone

or in combination when separated by the symbols for arithmetic operators.

Example: s

enter >REM LEGAL EXPRESSIONS
>X=2+1]
>Y=COS {3)
>2=A*S+ {R+C0OS(4) /19)
>S81=1865
>

enter >REM ILLEGAL EXPRESSIONS
>L=R4+XX

output Syntax error

enter >Y2=3C0S (X)

output Syntax error

enter PN=A*5+{(COS(3}+2}-3)

output Syntax error

2.3 DIRECT STATEMENTS

Certain direct statements are acceptable to BASIC for immediate execution.

PolyMorphic Systems BASIC

These statements are not a part of a BASIC program but may be included in
a program as program statements if desired (see Section 5 -- Program
Statements). Direct statements are usually either PRINT statements or
are used in combination with PRINT statements.

Direct statements may be used to: 1) print a text string, 2) evaluate and
print an expression, 3) assign a value to a variable, or 4) directiy
examine the value of a variable during program execution.

A. BASIC will directly print a string given to it in the following
form, PRINT <string>

Example: >
enter >PRINT "THIS IS A STRING"
output THIS IS A STRING
>

8. BASIC may be used to directly evaluate and print expressions,
if the statement takes the form, PRINT <expression>

Example: D
enter >PRINT 3*(56/25)
output 6
>

C. A value may be assigned to a variable, and that value used in a
further direct statement. These statements take the form,
<varjable>a<variable, expression or string>
PRINT <variable, expression or string>

Exampie: >
enter >P=14+4)
>PRINT P42
output 6
>
>

0. A direct statement is often used to directly examine the values
of certain variables during program execution to diagnose a
programming error. It may take the form, PRINT <variabie>, or

14

PolyMerphic Systems BASIC

it may take this form, IF <test condition>, THEN PRINT <string or

variabies.

Exampie: N
enter >18 REM SAMPLE PROGRAM
228 Y=T\X=5\2=X+Y\S5TOP
>30 PRINT “Z AFTER 'STOP'=",2+20
>RUN

output Stop in line 289
enter >>IF Z=12 TBEN PRINT "2 IS OR" ELSE PRINT "QOpPS!"
output 2 IS OK
enter >>CON
output 2 AFTER 'STOP'w 32
>

PolyMorphic Systems BASIC

Section 3
INPUTTING YOUR PROGRAM

Every BASIC program consists of a series of program lines containing pro-
gram statements. BASIC will not accept a line of more than 64 characters.
Each program line is given a program line number so that BASIC will not

try to execute it immediately but will wait until execution of the entire
program is requested by the programmer. At that time BASIC will execute

the program lines in numerical order. This section deals with the actual
typing in of your BASIC program. It contains information about line numbers,
and program lines.

3.1 PROGRAM LINE NUMBERS

Every program line begins with a 1ine number which must be an integer rang-
ing from @ to 65535, inclusive. Any line of text typed to BASIC which be-
gins with a number is processed by the editor as a program line. Blanks
or tabs before the line number are ignored by BASIC, and the first blank
or nondigit that foliows a line number terminates that line number. Lines
do not have to be typed in sequence --they will be performed in ascending
numerical order when the program is executed. When they are listed they
will be listed in numerical order. An error is generated if the line num-
ber is not between § and 65535, if the program line is too long, or if
memory would overflow if BASIC accepted the new line. Error messages are
then generated, and no other action is taken by BASIC on that line.

The techniques for adding, replacing and deleting program lines are listed
below:

A. Adding a new line to a program: Type in a new program line number
followed by your instructions to BASIC. Remember that lines do
not have to be typed in numerical sequence. The new line will be
accepted if the line number is a legal one, and at least one
character follows the line number in the program line.

PolyMorphic Systems BASIC

B. Replacing an existing program line: Type in the program line number
of the program line you wish to replace. Then type the program
statements you want on that program iine. BASIC will replace the
original program line with your new program line of the same
number.

C. Deleting an existing program line: Type the program line number
of the program line you wish to delete. Then hit carriage return.
If a new program line contains only a program line number, BASIC
will delete any pre-existing program line beginning with that same
program 1ine number.

Example: >
enter >19 X=1
>28 Z=2\Y=3
>3¢ PRINT X+Y+3Z
>4@ PRINT X+Y

>RUN
output 6
4
enter >449
>LIST
output 18 X=1
20 Z=2\Y=3
38 PRINT X+Y+2
enter >RUN
output)
>
>

3.2 MULTIPLE STATEMENTS PER LINE

Multiple program statements may appear on a single line if they are separated
by a back-slash {\) {Shift-L, on some keyboards). A line number must

appear only at the beginning of the line. If one program line calls fcr a
jump to another program line, BASIC will be able %o return to the proper
point in that branching program line, even if that branch statement is on

a multiple statement line.*

*"Branching” takes place when you transform proqram execution to ancther
orogram line. 8ranches can be conditional, dependent upon a test condition

17

PolyMorphic Systems BASIC

Example: >
enter >
>118 X=)1\A=X+1\GOSUB 209@0\PRINT A

>

After calling the subroutine at line 2pP@ in response to the GOSUB statement,
BASIC, after finishing the subroutine, will return to the proper point in
line 119; that is, to the PRINT A statement.

or unconditional. Go to section 5, for examples of branching statements.

18

PolyMorphic Systems BASIC

Section 4

RUNNING YOUR PROGRAM

4.0 CONTROL COMMANDS

Now that you have learned how to set up a program, you want to know how
to run it, too. This section discusses the control commands you can use
to run your program.

These commands also directly affect the execution of the BASIC program,
or its representation in memory. The control commands which enabie the
programmer to save and load the BASIC program differ depending on the

method of loading and saving a program, see Appendix A--Loading BASIC,
and Saving and Loading a BASIC program.

4,1 LIST

The 1ist command is used when the programmer wishes to see a BASIC

program listed on the screen. The LIST command may be typed in the following
form:

LIST <optional line number>,<optional line number>

[f the 1ine numbers are not supplied, the entire program is displayed.

If the first line number is provided, the program is listed from that

1ine number to the end of the program. If both line numbers are supplied, the
program is displayed from the first line number given to the second line
number, inclusive. [f both optional line numbers are the same, just that one
line of the program will be displayed.

pod
[Ye]

PotyMorphic Systems BASIC

enter
output

enter
output

>
Examples: enter >18 REM SAMPLE PROGRAM
>15 X=1
>28 Y=2
>25 PRINT X+Y
>
>
> >
>LIST enter >LIST 15,25
19 REM SAMPLE PROGRAM output 15 X=1
15 X=1 20 ¥=2
20 Y=2 25 PRINT X+Y
25 PRINT X+Y >
>
> >
>LIST 29 enter >LIST 15,15
29 Y=2 output 15 X=1
25 PRINT X+Y >
>

An error message will result if you try to list a program line number
greater than the last line of your program.

Example:

>
>
enter >10 REM SAMPLE
>28 X=1
>308 Y=2
>4@ PRINT X+V
>LIST 5@
cutput Line number error
enter >LIST 24,50
cutput Line number error
>

>
20

PolyMorphic Systems BASIC

4.2 REN (Renumber)

After you have made many insertions in a program, the line numbers often
become very unevenly spaced. To renumber your program lines and even out
the differences between line numbers, type REN followed by the optional
beginning value, and then the optional increment value. The command takes
the form, <REN optional beginning value>, <optional increment value>.

All of the program lines will be renumbered by that command. If the first
optional value is not supplied, BASIC will begin the program with a line
number of 10. If the second optional value is not supplied, the program
will be renumbered by an increment of 10. Both of the values supplied must
be positive integers.

Examples: N
> >REN
> >LIST
>19 REM SAMPLE PROGRAM 12 REM SAMPLE PROGRAM
>12 INPUT X 20 INPUT X
>78 PRINT X+1 3@ PRINT X+1
> >
> >
>REN 59 >REN 162,199
>LIST >LIST
S8 REM SAMPLE PROGRAM 186 REM SAMPLE PROGRAM
68 INPUT X 289 INPOT X
79 PRINT X+1 300 PRINT X+1
> >

When you renumber a program, BASIC will automatically renumber the line
numbers referenced within a program line.

Exampie: . ter >18 REM SAMPLE PROGRAM

>2@0 INPUT Z

>38 IF 2>=8 THEN GOTO 532

>43 PRINT "GIVE A POSITIVE 3"\GOTO 29
>58 PRINT "2=",2

enter >REN 33,53
- >LIST
outnut 59 REM SAMPLE PROGRAM
188 INPUT 2Z
158 1f Z>=% THEN GOTO 25¢
288 PRINT "GIVE A POSITIVE #"\GCTO 1997
25@ PRINT "Z=",Z

PolyMorphic Systems BASIC

Caution: If a line number referenced within a program is not 2 valid
line number, it will not be renumbered. However, if you renumber the program,
it might become a valid line number with unpredictable results.

Example: >18 INPUT 2
>20 IF 2>=9 THEN GQSUB 3284

>30 PRINT “TRY AGAIN WITH POSITIVE #"\GOTC 18
>REN 1606¢,1880

>LIST
1688 INPUT 2

2000 IF z>=9 THEN GOSUB 23800
3600 PRINT “TRY AGAIN WITH POSITIVE #*\GOTO 10090

4.3 RUN

To begin execution of your program, type RUN followed by a carriage return,
and BASIC will begin execution at the first line in your program. If you
follow RUN with a line number, BASIC will attempt to begin execution at

that Tline number in the program, and will generate an error message if th
line number does not exist. '

>
Exampie: enter >RUN 5S@0¢
output Line number error
>
If no line number is supplied, BASIC will begin program execution at the

beginning of the program,

NOTE: If you are just learning BASIC, it is not important that you understand
the following paragraph right away. After you have read the entire manual,
and written a few programs, re-read this section.

When you give BASIC the RUN command, a number of things happen before
program execution actually starts. The first thing that is done is to clear
the variable and string areas. This means:
1) that all numeric variables, the first time they are referenced will
have the value zero {although it is not a good programming practice
to assume this)

22

PolyMorphic Systems BASIC

2) that all-strings are set to null (length of zero), and
3) unless initialized by a DIM statement, both strings and vectors
(arrays) will take on the default size of 1§ elements.

Next, the random number generator is reinitialized. This means, that uniess
the random number generator is given a new seed (see section 6.1 on the RND
function for details), the same sequence of random numbers will be generated
every time that program is executed.

The pointer used to access DATA statements for READ (see section 5.2 b on
the DATA and READ statements) is set to the beginning of the program. BASIC
then checks user defined functions (see section6.2) to see if each function
is properly defined, and that each multi-line function has an end. Error
messages may be generated if there are errors in any of the user defined
functions. Then BASIC begins executing the program at either the line
number specified with the RUN command, or at the first line of the program.

4.4 Control-Y

To interrupt the execution of your program, hold down the Control (CTRL)

key on the keyboard, and type Y. The Control-Y command interrupts any
process in BASIC. To continue execution of the program, the continue command,

CON, must be used.

4.5 CON {continue)

The continue command, CON, enables the programmer to continue execution

of a program after an interruption due to a STOP statement in the program,

or a3 Control-Y command used during program 2xecuticn. Type CON after & prompt
to continue. An attempt to use CON when there are no program 1ines, when tne

program has been modified after the interruption, or when {LEAR has been used

to clear variable and sirings, will result in an error message.

23

PolyMorphic Systems BASIC

>
Example: enter >18 REM SAMPLE PROGRAM
>28 X=1\INPUT "Y?--",Y\STOP
>30 PRINT "Y+1=",X+Y
>48 PRINT "Y=",Y
>RUN

output Y?-~-589.45
) Stop in line 2@
>>CON
Y+l= 590.45
Y= 589.45
>

When the CON command is used to continue after a STOP, the program
execution begins at the statement after the STOP statement. When the
CON command is used to continue after an interruption caused by Control-Y
command, program execution is continued after the statement interrupted
unless that statement was an INPUT command. In that case, execution
resumes at that INPUT command.

>

Example: enter >10 REM SAMPLE PROGRAM
>28 X=1\INPUT "Y?--",Y\PRINT "Y+l=",X+Y

>384 PRINT "¥Y=",Y
>RUN o

output Y?--345.6Yy (Control-Y command used here)

Interrupted in line 290
>>CON

Y?--345.67

Y+l= 346.67

Y= 345,67

>

Note that in the above examples a double prompt (>>) appears after an
interruption. This indicates that BASIC can continue execution of the
program. The double prompt will continue to appear until BASIC can no
longer continue execution after modification in the program, use of CLEAR,
etc., at which time it will be replaced with a single prompt (>).

24

PolyMorphic Systems BASIC

4.6 CLEAR

After program execution it is often necessary to "clear" all variables

and strings: that is to reset them to their original initialization within
the program. This avoids any possible cumulative effects of executing a
program more than once. Use of the CLEAR command sets all input variables to
P, and all input strings to a null value.

4.7 SCR {Scratch)

The command SCR, typed after a prompt, erases all information in working
memory; your program and its data.

4.8 Summary of Control Commands

CLEAR Resets all input variable values to ¢ input
strings to null value.

CON Resumes execution of a program after a STOP or an
interruption.

Control-Y Interrupts any procaess in BASIC, including program
execution. Returns a prompt £o the user.

LIST Lists program. Takes the form, LIST <optional
line number>, <optional 1ine number>.

REN Renumbers program lines. Takes the form REN
optional beginning value>, <optional increment value>.

RUN Begins execution of a program either at the beginning
of the program or at the optionatly supplied tine

o number. [t takes the form, RUN <optional line

numoer>.

SCR Erases the program, and anything else typed from

the terminal.

[
L

Polymorphic Systems BASIC

Section 5

PROGRAM STATEMENTS

Program statements are by far the most important part of BASIC. Pro-
gram statements make up the instructions which BASIC will follow when it
executes a program.

This section of your manual covers the statements in BASIC under several
different headings:

1) General program statements

2) Program statements used to input data

3} Program statements used to output data

4) Program statements involved in FOR-NEXT loops

5) Program statements used to alter program execution.

For sample demonstrations of program statements, see Appendix B--
Sample Programs.

5.1 GENERAL PROGRAM STATEMENTS

The three program statements used very commonly throughout any program
are discussed below: 1) REM remark, 2) STOP, and 3) Assignment State-
ments, LET.

5.1 A, REM (remark)

The remark statement allows the programmer to add comments to the pro-
gram without those comments being processed by BASIC. A REM statement

may be placed anywhere on a program line, since everything to the right of
it, including the letters "REM" are ignored by BASIC. BASIC will, how-
ever, print the REM statement when the program is listed. The REM state-
ment, unless it is the first statement on the program line, must be pre-
ceded by a back-slash (\.).

26

PolyMorphic Systems BASIC
5.1 B. S70P

The STOP statement is inserted in a program whenever a permanent or re-
coverable halt is desirable. To continue execution from a STOP, use
the continue command, CON described in section 4.5.

5.1 C. Assignment Statement (LET)

An assignment statement is used to set a variable to a given value or

expression. The usual form is <variable>= <constant, variable or ex-

pression>, for example: A=19. Using this example, the variable "A" is
set equal to 19. The expression on the right can be more compiex. In
any case, the expression on the right is evaluated and assigned to the
variable on the left.

Example: 5

enter >10 aA=1328
>20 B=12
>30 C= A/B+10.2
>46 PRINT C
>RUN

output 128.2
> -

There are two major types of assignment statements; one for numerijcal
variables as in the examples above, and & second type for string varia-
bies.
‘ >
>LIST
enter 18 AS="HOT FUDGE"
29 PRINT AS
38 BS=" SUNDAE "
4¢ PRINT BS
50 PRINT AS+BS

68 PRINT BS+AS
>RUN

Example:

output 40T FUDGL
SUNDAZ
BOT FUDGE SUNDAL
SUNDAE HOT FUDGE
>

PolyMorphic Systems BASIC

The optional keyword, LET, may be used to indicate an assignment statement.
Its use is not encouraged since it is only a mnemonic device and takes up
unnecessary space on a line, The following examples are identical in
meaning.

Example: N

enter D>AsX+]
>LET a=X+1
>

5.2 INPUTTING DATA

The following section discusses the various program statements used to
make data available to the program. Data may be made accessible either
through direct input from the user terminal (INPUT and INPUT1} or in-
directly from the program itseif (DATA, READ, RESTORE).

5.2 A. INPUT and INPUT1

The INPUT and INPUTL statements are used to ask for data from the user
terminal. A question mark is printed by BASIC to prompt the user of
the program,

Example: 5
enter >19 INPUT XS
>28 PRINT "THE WORD IS:".X$

>RUN

output 2?ME
THE WORD IS:ME
>

An optional input string may be used as a prompt to the user, in which
case no guestion mark is printed by BASIC. If more than one variable is
asked for in one input statement, they must be separated by commas.

Example: 5

enter >16 INPUT “GIVE ME TWO NUMBERS--",X,Y
>20 PRINT "THEIR SUM IS: " ,X+Y
>RUN

output GIVE ME TWO NUMBERS--2.5,5.89
THEIR SUM IS: B8.39
>
>

28

PolyMorphic Systems BASIC

The INPUT1 statement acts in the same way as an INPUT statement, except
that the usual carriage return echo is eliminated. This has the effect
of leaving BASIC on the same line as the input, so that the next input
prompt, or message printed by a PRINT statement will appear on the same
line as the first INPUT]1 statement.

Example: ;
enter D>LIST
16 INPUT “YOUR NAME?" ,N$
20 INPUT1 "GIVE TWO NUMBERS--",S,Sl
38 PRINT " HI,", NS
40 PRINT * THE SUM 1S: ",S+S1
>RON

output YOUR NAMEZROBIN
GIVE TWO NUMBERS~-345,78,896.51 HI,ROBIN
THE SUM IS: 1242.29
>
>

5.2 B. DATA and READ

The DATA and READ statements are used to ask for data from within the
program itself. The DATA statement contains within it the actual data
that the program uses during execution. The DATA statement may contain
either string or numerical data. The data must be separated by commas,
and strings must be enclosed by quotation marks. The data in the DATA
statement are read by the READ statement, and must be consistent with
the type of variables (numerical or string) used in the READ statement,
or an error message wiil be generatad.

When the first READ statement in a program is encountered, a pointer is
set to the first piece of data in the first DATA statement in the pro-
gram. Every time a READ variable reads one piece of data, the pointer
advances to the next piece of data. As all data from the Tirst DATA
are read, the pointer advances to the first piece of data in the next
DATA statement, and so on, until all READ variablies have been matched
with data. If there are more data than needed, the remaining unread

data are ignored. If, however, there are fewer data than tnere are

PolyMorphic Systems BASIC

READ variables (that is, the pointer is out of data), an error message
will be generated.

Examples: N

enter >100 READ A,B,C\PRINT "A,B,C: ",A,B,C
>208 READ X,Y,Z\PRINT "X,Y,Z: *,X,Y,2
>300 DATA 1,2,3,10¢
>498 DATA 209,300
>ROW

output A,B,C: 1 2 3
X,Y,2: 1090 298¢ 309
>

>

enter >10 READ A$,BS$,CS$\PRINT AS,BS,CS
>28 PRINT CS$,AS$,BS
>30 DATA " WE "," ARE "," HERE "
>RUN

output WE ARE RERE
HERE WE ARE
>
>

5.2 C. RESTORE

A RESTORE statement allows the programmer to change the order in which
READ statements access DATA statements. Use of the RESTORE statement
enables the programmer to direct a particular READ statement to a parti-
cular DATA statement. The RESTORE statement takes the form, RESTORE
<optional line number>. Without the optional line number, the READ
statements would be directed to begin reading data from the first DATA
statement in the program. With the line number included, the READ
statements would be directed to a DATA statement on that or a following
tine.

Example:

enter >10 READ A,B,C\PRINT "A,B,C: ",A,B,C
>20 RESTORE
>38 READ X,Y,Z\PRINT "X,Y,2: ",X,Y,2
>4@ baTA 1,2,3
>5@6 DATA 108,286,309
>68 DATA 5,6,7

output

30

PolyMorphic Systems BASIC

Example {continued):

>

enter >18 RESTORE 58
>2@0 READ A,B,C\PRINT “A,B,C:",A,B,C
>30 READ X,Y,Z\PRINT "X,¥Y,2:°,%X,¥,2
>40 DATA 1,2,3
>S50 REM READ DIRECTED TO THIS LINE
>60 DATA 100,200,308
>70 DATA 5.,6,7
>RUN

output A,B8,C: 109 200 300
X,Y,Z: 5 6 7
>

5,2 0. Single Character Input Functions INP (P), INP (1), INP (2)

The functions INP (), INP (1), and INP {2) allow the user to test for
characters in the input byffer, and input single characters from the
keyboard. The function INP (f) returns $ if there are no characters
waiting in the input buffer to be read. INP (1) returns the integer
value of the next character from the keyboard buffer, without echoing

it to the screen; INP {2) returns the integer value of the next character

from the keyboard buffer and echoes it to the screen (See appendix C
for decimal values for the character set).

Example: enter 1fg REM DEMONSTRATE INP(8) TESTING FOR INPUT
118 PRINT *YOU HAVE 18 SECONDS TO TYPE COW"
120 PRINT "?*,

130 Z=TIME(3) \ REM RESET CLOCK

149 IF INP{8)>8 THEN 192 \ REM SOMETHING TYPED
152 IF TIME(1)<18%*60 THEN 149

162 REM TOO LONG. COMPLAIN

179 PRINT "...TOO LATE, YOU DIDN'T TYPE COW"
183 GOTC 119

199 INPUT "",AS\ IF AS="COW" THEN 210

268 PRINT "YOU DIDN'T TYPE COW"\ GOTO 118

218 PRINT "THANK YOU.®

>RUN

output YOU HAVE 12 SECONDS TO TY?I COW
?...TO0 LATE, YOU DIDN'T TYPE COW
YOU HAVE 1P SECONDS TO TYPE COW
?FRCG
YOU DIDN'T TYPE COW
YOU HAVE 1€ SECONDS TO TYPE COW
7COW
THANK YOU.
>

31

PolyMorphic Systems BASIC

(Note: characters are stored inside the computer as numbers. See Appendix
C, the BASIC Character Set.) -

Example: 50 peM USE INP(2) TO FIND DECIMAL VALUES OF CHARACTERS
119 PRINT "TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE
120 PRINT =2°,
1380 A=INP(2)\PRINT " IS A DECIMAL",A
149 GOTO 116
>RUN

TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE
?A IS A DECIMAL 65
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

?H IS A DECIMAL 72
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

?7 IS A DECIMAL 55

TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE
? IS A DECIMAL 7

TYPE A CHARACTER, AND I°'LL TELL YOU ITS VALUE

? (Control-Y command used here)

Interrupted in line 139
>2

5.3 OUTPUTTING DATA

There are several ways of changing the format of data output by a pro-
gram. All of these involve the use of PRINT statements. This section
will briefly outline the use of the free-format PRINT statement, the

use of the TAB function in formatting data, and the use of format strings
to set up data formats.

5.3 A, PRINT

The PRINT statement prints out the one or more elements in its print 1ist.
The elements must be separated by commas. If there are no elements in a
print Tist, that is, if the word PRINT is alone on a line, BASIC will
print an empty line. PRINT statements will evaluate and print expres-
sions (including intrinsic functions) and variables. A string in the
print list is printed as given, but without the su?rounding quotation
marks.

Example: >
enter >19 PRINT "RUBBER CHICREN",SQRT(188),2+2
>15 PRINT *“SECOND LINE"
>RUN

output --see next page--

PolyMorphic Systems BASIC
Examplie {continued):

output RUBBER CHICKEN 18 4
SECOND LINE
>

>

enter >18 !"RUBBER CHICREN",SQRT{100),2+2
>15 !1"SECOND LINE" :
>RUN

output RUBBER CHICKEN 19 4
SECOND LINE
>

In order to save space on the program line, the word PRINT may be ab-
previated to an exclamation mark symbol (!}, as in the above example.

I1f the last element in the print list is followed by a comma, & car-
riage return is not printed, and the output of the next PRINT statement
of INPUT statement will appear on the same line as the original PRINT
statement output. If the output of a PRINT statement is too long to
fit on the current monitor output line, it will be continued on the next
1ine with no carriage return being generated. The PRINT statement

may take the form, PRINT <print 1ist>. The print list may contain
strings, variablies or expressions, all separated by commas, with strings
being surrounded by quotation marks.

5.3 B. Formatting the PRINT Statement

If no formatting is specified in a PRINT statement, the data is printed
in the default free-format style. In the free format, all data in the
print list are printed left justified with the prompt symbol, and all
numerical elements are printed and separated by a blank. Unless a
specific format is given by the programmer, BASIC prints all numerical
data in the default format given below.

LJ
Ll

PolyMorphic Systems

8ASIC

The Default Format

(For a discussion of exponential form, or scientific notation,
see Section 2.2 F, Constants),

1.

Numbers less than or equal to eight digits in length

and in non-exponential form will be printed as given.

Example: N

enter D>PRINT 12,34567
output 12,34567
>

Numbers greater than eight digits in length and in
non-exponential form will be rounded off to eight
significant digits and printed in standard exponen-
tial form.

Example: N

enter >PRINT .B88123456789
output 1.2345679E-03
>

Numbers in exponential form less than or equal to
eight digits in length will be printed in non-ex-
ponential form if doing so would result in a number
of eight digits or less. Otherwise, the number is
printed in standard exponential form.

Example: 5

enter >PRINT 123,45E+85
output 12345003
>
enter D>PRINT 123,45E+36
output 1.2345E+88
>
>
enter >PRINT 123.456E-@5
output .0601234%5¢6
>

4. Numbers in exponential form greater than eight digits

in length are rounded off and printed in non-expo-

34

PolyMorphic Systems BASIC

nential form if doing so would result in a number
of eight digits or less. Otherwise the number is
printed in standard exponential form.

Exampie: N

enter D>PRINT 123.4567891E+86
output 1.2345679E+68
b

>
enter >PRINT 123.4567891E+85
output - 12345679
>

188

The TAB function provides a way to space output across the screen. The
TAB statement takes the form PRINT TAB(expression), <print 1ist>. TAB
evaluates the expression within its parentheses and moves over that dis-
tance across the screen before printing the elements in the print list.
The TAB value must be less than 256 and positive.

Example:

enter >1@ PRINT TAB(15),"UNIT ONE",TAB(25),"UNIT TWO",
>29 PRINT TAB(35),"UNIT THREE"
>392 PRINT TAB(19),"A",TAB(29),"8",TAB(39),"C"
>RUN

A B C

¥4

Format Strings

Format strings specify the manner in which numerical data may be out-
putted by a print statement. A format string may appear anywhere in a
PRINT statement after the PRINT command, and must begin with a per cent
symbol (%}. An empty format string will allow data to be printad in fres
format. The form of a PRINT statement with a format string is, PRINT
<optional unformatted print list>, %<optional format characters> <optiocnal
format specification>, <print 1ist to be printed in specified format>,
More .than one format string may appear in a PRINT statement. An exampie
of a PRINT statement containing the format string (S$3I, is the following:

is

PolyMorphic Systems BASIC

PRINT “"ME," %C$3I, 34544567.

A. Format Characters

C Places commas to the left of the decimal point as
needed.

$ Places dollar sign symbol to the left of the value
printed.

z Eliminates trailing zeros.

Sets the format string of which it is an element to
the new default format for printing numerical data.

Example:
>
enter O>PRINT C2,45678987.590000
output $45,678,988
>

The format character, #, sets a new default format. This means that if
the format string %C$# is encountered in a PRINT statement, all unfor-
matted numbers in the program after that statement will be printed in
that format. To restore the default format to the original, free-for-
mat style, the null format string is used (%#,) either with or without

a print 1ist. After the null format string is encountered in a program,
the default format reverts to free format.

Example:

enter 186 IN!"IN NEW DEFAULT FORMAT--"
28 PRINT #$C#¢,9999
30 FOR I=2962 TO 5809 STEP 1000
49 PRINT TAB(30),1,
58 NEXT
68 I\!"RESET TO OLD DEFAULT FORMAT--"
7@ PRINT %%,9999
80 FOR I=2008 TO S600 STEP 10090
99 PRINT TAB(38),I,
160 NEXT
>RON

output IN NEW DEFAULT FORMAT--
$9,999
$2,080 $3,0080 $4,0080 55,08¢
RESET TO OLD DEFAULT FORMAT--
9999
2804 3080 49090 5Q23¢

PolyMorphic Systems BASIC

B. Format Specifications (for numerical data only)

The format specifications (similar to those in FORTRAN)
specify the format in which numbers will be printed on the
screen. In the specifications below:

n = number of spaces in the field in which the data are to
be printed. The left margin of the field is even with
the prompt symbol. n must be less than or equal to 25.
m = number of digits to be placed to the right of the deci-

mal point. (However, if m >8, all digits past the
eighth will be zeros).

1. F-format: The F-format prints numbers right justified in
a field n-characters wide, with m digits to the right of
the decimal point. This specification takes the form,

<n>F<m>.
Example: N
enter D>PRINT $15F5,3798.6788992
output 3798.67899
b4

2. I-Format: The [-format specification prints only integers
(if a non-integer is entered, an error message will be
generated). The numbers are printed right justified in a
field n-characters wide. This specification takes the

form, <n>I,
Example:
>
enter SPRINT %181,2345
output 2345
>
3. E-Format: The E-Format specification prints numbers right

justified in an n-character wide field in scientific nota-
tion with m digits to the right of the decimal point.

PolyMorphic Systems BASIC

Example: 5

enter OPRINT R1PE3,3798.678892
output 3.799E+63
>

Note: The number 3.799E+@3 represents 3.799 X 193.
(For a further discussion of scientific notation,
or exponential form, see Section 2.2 F, Constants).

Example: N
enter D>PRINT 3.799E+83
output 3799
>
In order to avoid format specification errors, it is important
to remember to reserve enough space in the print field by use
of a large enough n so that the number given to the format
specification may be printed. For example, in the example
below, 11 spaces must be reserved in the print field if m = 5.
({significant digit, decimal point, m, and the four characters
E,+,0,2)= 11 spaces); otherwise an error message is generated.

Example:
>
enter D>PRINT %18ES5,234.56
output Format error
enter DPRINT 3%11ES,234.56
output 2.34S60E+82
>

5.4 ITERATION: THE FOR-NEXT LOOP

Often in writing a computer program to solve some problem, we find that
we would like to perform a certain set of statements a number of times
perhaps, for a certain set of arguments.

Let's say that we wanted to print the integer from 1 to 19 inclusive, and
their squares. We could write a BASIC program that would execute this
process, and would look like this:

Example:

>
enter >19@ REM THIS PROGRAM IS A LCOP
>116 J=1
>120 IF J>19 THEN GOTO 169
>13@ PRINT "THE SQUARE OF ",J," = »,J"2
2140 J=J+1

>158 GOTO 128
>16@ PRINT "ENDI™
>RUN

When we run this program, the variable J is set to 1 by line 11ff. We
then see if J is greater than 19. The first time through, J has the
value of 1, so we continue execution with 1ine 13p, where we print the
value of J, and J squared (Jz). Then we add 1 to the current value of
J, and go back to the IF statement on line 128. We "loop" through
lines 129, 139, 149 and 159 until J is incremented by line 149 to the
value 11. Then, when we perform the IF statement on line 129, J is
greater then 1§, so we go to 1ine 169 thus terminating the loop.

This "loop" can be thought of as the combination of a number of elements:

1} The "lgop variable" J, in the example above, which takes on the values
1 through 18 in the loop. '

2} The starting value for the loop variable. In the example, the start-
ing value for J is 1, as set on line 11P.

3) A terminating condition; in the example, the loop will terminate, or
stop, when J is greater than 1§, as detected by the IF statement in line 129.

4) An increment (or decrement) to apple to the loop variable: In the
example on Tine 149, we add 1 to the value of J each time through the
"loop", so that during the process of the computation, J takes on the
values 1,2,3,4,5,6,7,8,9 and 19.

5) A set of statements that are executed repeatedly, also called the
Toop body. In the example, the loop body consists of the single PRINT
statement on line 138.

6) An indicator marking the end of the lcon. In the example, the GCTO

120 statement on line 15Q denotes the end of the loop. When the variable
J exceeds the terminating condition, 12, 2s specitied by the IF test on
Tine 12p, program execution will resume past the end of the loor, at line 16%.

39

PolyMorphic Systems BASIC

We could write out this set of statements each time we wanted to execute

a statement or set of statements repeatedly, but this would be time con-
suming and give us more chances to make programming mistakes. However,
this process of "looping,” or iteration, is done so often, that BASIC has
a shorthand way of specifying this procedure, with more flexibility, using
two statements: FOR and NEXT.

A program equivalent to the one given at the start of this section, but
using FOR and NEXT looks like:

>

>199 REM FOR-NEXT LOOP

>119 FOR J=1 TO 18 STEP 1

>120 PRINT "THE SQUARE OF ",J," = ",J372
2130 NEXT J

>RUN

Let's go through this new program, and identify the same six elements we
did in the previous program:

1) The "loop variable."” In this case, the loop variable is still J,
which appears just after the word FOR on line 119. In general, the
Toop variable immediately follows the word FOR in a FQR statement,
and cannot be a string variable (such as J$; that would be illegal),
or have a subscript (such as D(3); that too would be illegal).

2) The starting value. Above, in the FOR statement, we see "J=1,"
which gives the starting value for the loop, 1, just as in line 119
of the previous program. This starting value can be any expression,
and is evaluated only once, at the beginning of the loop.

3) The terminating condition. We see in the program above, using
FOR and NEXT, on line 119, the characters "TO 19." This gives
the terminating value to test the loop variable (J in this case)
as 1§, Jjust as it did in the IFf statement on line 129 of the other
program. The terminating value, in this case the number 1§, can

be any arbitrary numeric expression. It is important to remember,
however, that this expression is only evaluated CONCE, at the start
of the loop, and not every time through.

4) An increment {or decrement} to apply to the loop variable. In the

other program, this was specified in line 149, where we said J=J+1,
incrementing J by 1 each time. In the FOR statement the increment

46

PolyMorphic Systems BASIC

is specified by the part ¢f the line that says “STEP 1*; defining
the increment to be 1. This number also may be any numeric ex-
pression, and is only evaluated once; at the start of the loop.

5) A set of statements to be executed repeatedly. In the example
using FOR and NEXT, the "loop body" is the single statement on
Tine 129, the PRINT statement.

6) An indicator marking the end of the loop. In the first example,
the "loop body" was the single PRINT statement on line 139. In
the case of the FOR NEXT loop, the FOR and NEXT statements clearly
show what statement or statements will be repeated; that is, any
statements that come between the FOR and the NEXT.

The FOR-NEXT statements, then, define the same process and set of elements
that we identified in the first case. Yet they provide a quicker, more con-
cise way of specifying a sequence of statements to be repeatedly executed.

The FOR-NEXT loop also allows us more flexibility, and "hides" the "house-
keeping” functions required by the loop we had to specify in the initial pro-
gram which used the IF statement. Some of the things the FOR-NEXT loop allows
us to do are:

1} If we do not give an expression "STEP <exp>" where <exp> i$ an
arbitrary numeric expression, a default step of 1 will be used.

2) The values for the initial value, terminating value, and step
size do not have to be integer, or positive. For example, the

statement
19 FOR W=-1 TO -20 STEP -1

would perform some set of statements 200 times, with the variable
W taking the values -1,-2,-3,-4, to -29.

3) The statements in the loop body may be performed zero times, once,
or indefinetely, depending on the conditions and step size chosen.

4) We do not have to specify the variable name on the NEXT statement,
although this is quite helpful for debugging {in fact, specifying
the variable name slows things down!).

Polymorphic Systems BASIC

5.4 A. Nesting of FOR-NEXT ‘Loops

Often we would 1ike to have an iterative (looping) process going on
"inside" of another jterative process. It is perfectly valid to have
one FOR-NEXT loop "inside" another--with the following restriction:
the "inside" loop must be totally contained within the "outer" loop.

Example: N

enter D>LIST
16 REM NESTED LOOPS
29 FOR J=1 TO 18
30 FOR K=1 T0O 18
[:40 PRINT K+(J-1)*16,",",
5¢ NEXT K
68 PRINT
70 NEXT J
>RUN

Output 1' 2; 3; 4' 5; 6' 7; B' 9; 10;
11, 12, 13, 14, 15, 16, 17, 18, 19, 208,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 3%, 39, 49,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, S$3, 54, 55, 56, 57, S8, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 76,
71, 72, 73, 74, 75, 716, 17, 78, 79, 86,
81, 82, 83, 84, 85, 86, 87, 88, 89, 9@,
91, 92, 93, 94, 95, 96, 97, 98, 99, 104,

This program prints a list of numbers from 1 to 199. The “inner" loop,

as shown above, consists of lines 3@, 4P, and 5@, while the "outer"

loop consists of iines 20 and 78. The number of nested loops is restricted
only by the amount of available memory. To see how many FOR-NEXT loops

you may nest on your machine, refer to Sample Program, NEST, in Appendix B.

42

PolyMorphic Systems

BASIC

The following examples show some of the possibilities with FOR NEXT loops;
some of these examples show correct usages, others show errors, and what

BASIC's response will be,

Examples:

enter

output

enter

output

enter

cutput

enter

output

>

>1049
>1149
>124
>1340
>RUN

1,

>

REM NORMAL LOCP

FOR 1=1 TO 18 STEP 1
PRINT I,”,",

NEXT I

2, 3, 4, 5, 6, 7, 8, 9, 18,

188 REM WE DONT NEED TO SPECIFY STEP
105 REM OR NEXT VARIABLE.

112 FOR W=1 TO 1@\PRINT w,",",

115 NEXT

>RUN

1,
b

>148a
>118
>120
>138
>12%
>RUN

.2,

>119
>129
>138
>140
>RUN

1a,

2, 3, 4, 5,6, 7, 8, 9, 18,

REM INITIAL VALUE, STEP, FINAL NON-INTEGRAL
FOR E=,2 TO 1.2 STEP .3

PRINT E,

NEXT E

PRINT E,",",

.5, .8, 1.1,
REM USING NEGATIVE STEP VALUE
FOR E=18 TO 1 STEP -1

PRINT E,",",
NEXT

9!’ 8! 7f 6! S! 4! 3!’ Zf 1!

Polymorphic Systems BASIC

Examples:

enter

output

gnter

output

enter

output

enter

output

enter

output

>

>10 REM NEGATIVE NUMBERS
>15 FOR W=-=1 TO ~-11 STEP ~-1
>20 PRINT W,",",

>25 NEXT

>RUN

-l' -2' ""3' "'4; -5’ '-6; -7f -8' "'g; -10'
>

>

>199 REM FOR NEXT LOOP ALL ON ONE LINE
>119 FOR I=1 TO 18 \ PRINT I,",", \ NEXT
>RUN

l' 2' 3' 4' 5' 6' 7' 8, g' IB’
>

>
>108 REM ERROR-NO NEXT STATEMENT
>118 FOR I=1 TC 108

>RUN

118 FOR I=1 TO 14@4
t

FOR=-NEXT error

>

>188 REM ERROR-WRONG VARIABLE ON NEXT
>11@ FOR J=1 TO 140

>120 NEXT Q

>RUN

129 NEXT Q

]
FOR-NEXT error
>

>

>108 REM ERROR-STRING VARIAELES
>11@ FOR 1§="ONE" TO "THREE"
>128 NEXT

>RUN

118 FOR IS="0ONE" TO "THREE"

*

Type ercor
>

-llf

Polymorphi¢ Systems BASIC
5.5 BRANCHING STATEMENTS

It is often desirable to alter the usual order of program line execution,
Branching statements are those statements which enable BASIC to jump

to other program lines. This jump may be based on the resuit of a test
condition (conditional branching) or simply be a direct branch
(unconditional branching). Most of these statements are frequently

used in combination with one another.

5.5A. GOTQ

The GOTO statement allows the programmer to transfer execution to
another program line. The GQTO statement takes the form, GOTO<line

number:>,

Example:

enter >

>18 REM PRINTS SQUARE ROOT OF X

>2# INPUT1 “"A NUMBER?--",X

>30 PRINT " SQUARE ROOT OF ",X," 1S: ",SQRT(X)
>49 GOTO 19

>RUN

output A NUMBER?--34 SQUARE ROOT OF 34 IS: 5.8389519
A NUMBER?--56 SQUARE ROOT OF 56 IS: 7.4833148

A NUMBER?-- (Control-Y command used here)
Interrupted in line 29
>>

Note that the program above is an infinite Toop, and must be
interrupted with a Control-Y command.

5.5 8. ON-GOTO

The ON-GOTO statement alicws multiple branching from one program line
to many others, depending upon the value of the variable specified.
The ON-GOTO statement takes the form, ON<variable or expression>G0TC
<program line number({s})>. I[f the expression or variable after QN
evaluates to a 1, the first Vine number listed after the GOTO will e

F
in

Polymorphic Systems BASIC

jumped to by BASIC. If the expression evaluates to a 2, the second line
number listed will be taken, and so on. Expressions are truncated to
an integer; 1.1 evaluates to a 1.

Exampie: N

enter >16 FOR X=1 TO 3
»20 ON X GOTO 38,350,790
>30 !*"X EQUALS ONE"
>43 GOTO 8@
>50 1"X EQUALS TWO"
>68 GOTO 890
>78 !"X EQUALS THREE"
>88 NEXT
>RUON

X EQUALS ONE

X EQUALS TWO

X EQUALS THREE
>

Note that in the following example, when X is negative a jump is made
into program line number 2@, when X equal 9 a jump is made to line 4B,
and when X is positive a jump is made to line 6f€.

Example: N

enter >1¢ INPUT X\ON SGN(X)}+2 GOTO 20,49,68
>20 PRINT "LINE 28: X IS NEGATIVE"
>38 GOTO 78
>4 PRINT "LINE 48: X IS ZERO"
>58 GOTO 78

>60 PRINT "LINE 69: X IS POSITIVE"
>78 STOP
>RUN

?-56
LINE 28: X IS NEGATIVE
>RUN

Y]
LINE 48: X IS ZERO
>RUN

2456

EINE 6@: X IS POSITIVE

.1 'I

46

—

Polymorphic Systems BASIC

If the expression after ON is less than 1 or greater than the number of
program line numbers listed after the GOTO, BASIC will generate ar error

message.

Example: 5

enter >LIST
12 FOR X=1 TO 4
20 ON X GOTO 38,40,58
30 !1"YOU'RE CLOSE"\GOTO 64
40 !“YOU'RE WARMER"\GOTO 6@
5S¢ !"YOU'RE HOT!"
68 NEXT
>RUN

YOU'RE CLOSE
YOU 'RE WARMER
YOU'RE HOT!

280 ON X GOTO 30,48,59
*

Qut of bounds error
>

5.5 C. IF-THEN

The IF-THEN statement is used to set up a test condition which must be

met before further instructions within the IF-THEN statement can De
executed. The IF-THEN statement takes the form, IF<test condition>THEN
<leqal IF-THEN clause>. The test condition may compare variable to
variable, variable to expression, string to string, etc. Legal IF-THEN
clauses include: 1) GOSUB<subroutine line number>, 2) RETURN, 3)GOTO

<line number>, 4) PRINT<print 1list>, 5} ON<variable or expression>GOTO
<line number>, 6) STOP, or 7) <variable>=<variable, expression, or string>.

Example:

enter >1p INPUT "WANT TO PLAY? ",AS
>29 IF A$="NO" THEN GOTO 5%
>32@ REM ASSUMES ALL INPUT OTHER THAN 'NO' IS 'YES'
>49 ! "HERE ARE INSTRUCTIONS..."\GOTCO 68
>5@8 '"(0.R. CATCH YOU LATER"

>68 REM END QF PROGRAM
>RUN

output -- see next page

47

Polymorphic Systems BASIC

output WANT TO PLAY? YES

HERE ARE INSTRUCTIONS...
>RUN

WANT TO PLAY? NO
O0.K. CATCH YOU LATER
>

>

>

The IF-THEN statement may perform multipie commands as a resuit of the
test condition. The multiple commands must be written on the IF-THEN
statement program line, and separated by back-slashes (\).

Example: >
">SCR
enter >10 INPUT "GIVE ME A NUMBER--",X

>28 IF X=1 THEN !"RIGHT ANSWER"\!"GO ON!"\GOTO 299
>30 !"X NOT EQUAL TO ONE"
>200 !'*THIS IS THE END!"
>RUN
GIVE ME A NUMBER--3
X NOT EQUAL TO ONE
THIS IS THE END!
>RUN
GIVE ME A NUMBER~--1
RIGHT ANSWER
GO On!
THIS 1S THE END!
>

5.5 D, ELSE

An IF-THEN statment may also optionally include an ELSE statement.
The ELSE statement includes a legal IF-THEN clause, and may also
include another IF-THEN statement. If either the THEN clause or
the ELSE clause is a simple GOTQ, then the word GOTO may be omitted,

Example:

>

enter >18 IF X>3 THEN PRINT "X>3" ELSE GOTO 29%
enter >1@ IF X>3 THEN PRINT "X>3" ELSE 208

>

42

Example: N

enter 2IF l=1 THEN PRINT "ONE™ ELSE PRINT "OOPS!™
output ONE
>
?
enter >1B A$="YES"\X=0
28 IF AS="YES"™ THEN IF X=0 THEN !"GO!" ELSE !“WRONG"
>RUN

GO!
>
>

5.5 £, EXIT

The EXIT statement is identical to a GOTO except that it should be used
when branching out of a FOR-NEXT loop. This is because it terminates
the active FOR loop and reclaims the assocciated internal stack memory.
If an EXIT is not used when branching out of a FOR-NEXT loop, the
internal stack could become full and result in a control stack error
message.

Example;

enter >18 ¥X=3
>28 FOR I=1 TO 1809
>38 FOR J=1 TO 10089
>48 PRINT I,J
>50 IF X=3 THEN EXIT 206
>68 NEXT\NEXT
>296 PRINT "END"
>RUN

11
END
>

>

5.6 SUMMARY OF PROGRAM STATEMENTS

DATA {ontains data for program execution accessed by READ.
Data must be separated by commas, and may te either
numerical or string in type. Strings must be enclosed
in quotation marks.

F
10

Polymorphic Systems BASIC
ELSE Used in conjunction with IF-THEN statement. IF<test
condition>THEN<1egal IF-THEN clause>ELSE<iegal IF-THEN

¢lause or additional IF-THEN statement>.

EXIT Similar to GQTO statement, but should be used when

branching out of a FOR-NEXT loop to avoid stack full
error.

FOR-NEXT Sets up loop within program. Loop is repeatediy
executed until specified terminal value is passed by
variable given in FOR statement. Unless specified,
variable is incremented by +1. FOR<loop variable>=
<initial value>TO<terminal value>STEP<optional step
value>,

GOTO Unconditional branching statement, transferring program
execution to specified 1ine number. GOTO<line number>,

IF-THEN IF<test condition>THEN<legal IF-THEN clause or additional
IF-THEN statement>. Execution of statement after THEN
depends upon fulfillment of test condition.

INPUT Inputs data from user of program. May include optional
input string as & prompt. Otherwise, INPUT prompts
program user with a question mark. INPUT<optional
prompt string>, <string or numerical variable>.

INPUT1 Identical to INPUT except that carriage return echo
(after user input) is eliminated, so that next PRINT
or INPUT statement appears on the same line as original
input.

LET Optional assignment statement. LET<variable>=<variable,
expression, or string>.

50

Polymorphic Systems BASIC

ON-GOTO

PRINT

READ

REM

RESTORE

STGP

A conditional statement allowing a branch to a
specified 1ine number if a test condition is met.
1f the variable or expression equals 1, a branch to
the first line number listed is taken; if the
variable or expression equals 2, a branch to the
second 1ine number listed is taken, and so on.
ON<variable or expression>G0TO<1line number>.

Prints data specified in the print list. The print
1ist may contain elements which are variables, strings,
or expressions, all separated by commas. PRINT will
evaluate and print expressions and variables, and
print literally {(not evaluate) strings. A format
string (Section 5.3 B) or a TAB (Section 5.3 8) may

be included with a PRINT statement to format output.
PRINT<optional format string or TAB{expression}>,
<print Tist>.

Used in combination with a DATA statement to access
the data contained in a DATA statement. READ<variable
list>,

Used to place comments within the program. Must be the
last statement on a program line, and preceded by a
back-slash unless it is the first statement on the line.
REM<comments>.

Used to change the order that a READ statement accesses
data from a DATA statement. May optionally include a
1ine number of a particular DATA statement. Otherwise,
the READ statement folilowing RESTORE is directed to
begin reading data from the first DATA statement in

the program.

BASIC halts execution of a program when it reaches 2
STOP statement.

o
(=]

PolyMorphic Systems BASIC

Section 6

FUNCTIONS AND SUBROUTINES

It is often desirable to perform one section of a program more than
once during the execution of a program. Rather than type this section
over and over at various points throughout the program, BASIC has

some rather ingenious ways of more efficiently structuring your program.
These are: functions and subroutines.

6.1 INTRINSIC FUNCTIONS

Some commonly used functions have been incorporated into BASIC as
intrinsic functions. One of these functions may replace many lines of
program statements. The intrinsic function may be used as part of an
expression (for example, Z=COS(SQRT{X)*75/100)) or may stand alone (for
exampie, PRINT SIN(X)). The intrinsic functions of BASIC are listed
below:

6.1 A. Regular Intrinsic Functions

SQRT{expression) Returns the positive square root of a positive
expression. An expression less than @ will
result in an error message.

EXP(expression) Returns the value of e (2.71828...) raised to
the specified power.

LOG(expression) Returns the natural logarithm (base e} of
the expression.

COS{expression) Returns the cosine of the expression in radians.

Y2

PolyMorphic Systems

SIN{expression)
ABS(expression)

INT{expression)
SGN(expression)

RND(expression)

BASIC

Returns the sine of the expression in radians.
Retyrns the absolute value of the expression.

Returns the nearest integer which is léss than
the expression.

Returns 1, 3, or -1 if the sign of the
expression is +, 0, or -,

Returns a random number greater than § and less
than 1. BASIC generates a sequence of numbers
that are randomly distributed, based on a given -
“seed" value. Where one enters this sequence
when using the RND function depends upon the
expression (seed value) given to the RND function.
The seed value must be greater than or equal to
P but less than 1. If the seed value is 9§ a
point in the sequence of random numbers is chosen
depending upon the last random number produced,
and a random number is produced. The next time
that RND(B) is calleg within the same program,
the next number in the sequence is produced, and
so on. If the seed values are the same the next
time the program is run, an identical sequence
of random numbers will be produced. This is
ifmportant if the programmer wishnes to repeat
exactly a simulation of a random process. A
non-zero seed vaiue will always preduce the

same random number. For example, RND(.1)

always gives .164£625.

£3

PolyMorphic Systems

Example:
>

enter >LIST
REM SIMULATION OF THROWING ONE DIE
Z=RND(TIME{(l)/65536)\ REM RANDOMIZE

FOR I=1 TO 190

D=INT(RND (@) *6)+1\ REM DIE VALUE SUCH THAT 8<D<7
PRINT "YOUR THROW IS",D

-199
119
129
138
149
158
>RUN

YOUR
YOUR
YOUR
YOUR
YOUR
YOUR
YOUR
YOUR

" YOUOR
YOUR
>

NEXT

THROW
THROW
THROW
THROW
THROW
THROW
THROW
THROW
THROW
THROW

BASIC

To completely randomize the RND function
for every use of the program, the following
statement is suggested: RND(TIME{1)/65536).
This provides seed values based upon the
current value of the real time clock.

To produce random numbers greater than number A
and less than number B, the following expression
should be used: (RND(@)*({B-A))+A

The RND function is often used in combination
with the INT function to produce random integers.
The statement INT(RND(P)*6)+1 simulates the roll
of one die, giving numbers between 1 and &
inclusive.

IS
Is
IS
IS
15
IS
IS
IS
IS
1s

LD b d LU= O U N

54

PolyMorphic Systems

TIME (expression)

BASIC

The TIME function returns as its value the 16
bits of the POLY 88 real time clock, which is
incremented every 1/6@th of a second. The
expression in the TIME function must evaluate

to a value greater than or equal to @ and less
than 65536. If the expression does not evalu-
ate to P, the current value of the real time clock
is returned. If the expression is #, the

TIME function returns the current value of the
real time clock and sets the timer to §; this
is useful for recording elapsed times. Since
only 16 bits of the timer are returmed, the
value returned by the TIME function will cycle
every (216)/6@ seconds (1892 seconds = 18.2
minutes). Longer timing periods may be measured
using the PEEK and POKE features to manipulate
the most significant bytes of the real time
clock. See programs in Appendix 8. Sampie
Programs, for examplas.

Example: >
enter > PRINT TIME(1)

output 924
>

6.1 B. intrinsic Functions Qirectly Accessing Memory and the 8389 System

(See Appendix D, Interfacing with the Assembler and Memory, for a full

explanation of the use of these functions). Numbers in intrinsic
functions must be decimal. Therefore, all hexadecimal numbers must be
converted to decimal numbers before using them as arguments in intrinsic

functions.

INP{808D port)

This function allows the programmer to perform
an 8330 IN instruction from the specified port.
Ports @ through 31 (decimal) are reserved for
the system. The statement !INP {89) tells

55

PolyMorphic Systems BASIC

you what value is in the 8pth port of the Poly 88.

FREE(D) IFREE(P) prints the number of bytes available
in memory.
OUT 8@8p port, This instruction allows the programmer to
expression -

perform an 898P QUT instruction to a specified
port. For example, OUT 49,3 performé an QUT
49 instruction with 3 in the 8889 accumulator,
Ports P though 31 (decimal) are reserved for
the system.

POKE memory byte, This function allows the programmer to fill the
expression specified byte in memory with a given expression
value. For example, POKE 3099,J+3 will fill
memory byte 3P@@ with the value J+3. This
function should be used with caution, since
improper use may wipe out portions of BASIC.

PEEK(memory byte) This function allows the programmer to examine
the value being held in the specified memory
byte location. For example, !PEEK(3P0P) will
tell you what value is in memory byte 3P9P.

6.1 C. Intrinsic String Functions

{See Section 7, Strings and Arrays, for a discussion of strings).

LEN(string Returns the number of characters in the specified
variable) string. Example:
enter >18 A35="PICKLE"\PRINT LEN{&
>RUN
output ¢

56 >

PolyMorphic Systems BASIC

VAL(string variable) Returns the numeric value of a numeric
string if the string doesn't contain blanks.

Example:

>
enter >PRINT VAL(®"123%)
output 123
>
STRS(expression) Returns a string with the specified numeric
value. Example: 5
enter D>PRINT STRS (234)
output 234
>
ASC(string variable) Returns the decimal representation of the

ASCII code for the first character in the
string specified. See Appendix C, The
BASIC Character Set, to find the ASCII code

in BASIC.
Example: N
enter >SS="gw
>PRINT ASC(S$)
output 83
>
CHRS(expression) Returns a string specified by the expression.

The expression is a decimal representation
of the ASCII code.

Example: N
enter >PRINT CHRS(83)

output s

>

§.2 USER-DEFINED FUNCTIONS

BASIC allows programmers o define their own multi-line functions or
one-line furctions within a program. The function name begins with the

in

PolyMorphic Systems BASIC

letters FN followed by a legal string or numeric variable name. 1If the
function is a one line function, the definition takes the form,
DEF<FN<legal variable name>{arguments)=<function>. This is a one-line
function, for example: DEF FNA1{A,B)=A+B. The arguments of the
function (A and B) are local to the function definition. That is, their
values are not affected outside of the execution of the fuynction. There-
for, when the function is called upon during program execution, the
arguments of the function cail are substituted in for the dummy arquments
of the function definition. For this reason, the number of arguments

in the function definition must always equal the number of arguments in the
function call, or an error message wil] be generated,

Example:

enter >LIST
19 1“USE CONTROL-Y TO EXIT"
290 DEF FNS1{A,B)=A+B —
38 INPUT! “GIVE 2 NUMBERS--",X,Y
43 !™ THEIR SUM 1S: " ,FNS1({X,Y)
58 1!* THE ABSOLUTE VALUE OF THEIR SUM IS: " ,ABS(FNS1.({X,Y))
68 GOTC 3@
>RUN

output USE CONTROL-Y TO EXIT
GIVE 2 NUMBERS=--4,-56 THEIR SUM IS: =52
THE ABSOLUTE VALUE OF THEIR SUM IS: 52
GIVE 2 NUMBERS--34,78,-567 THEIR SUM IS: <-532.22
THE ABSOLUTE VALUE OF THEIR SUM IS: 532.22

GIVE 2 NUMBERS=-- (Control-Y command used here)
Interrupted in line 38

2

>

If the user-defined function is a multi-line function, the first line of
the function takes the form DEF<FN<legal variable name>(arguments). The
lines following that statement form the definition of the function. The
last line of the function definition must be the statement FNEND, to indi-
cate the end of the definition. A multi-line definition must return a

58

PolyMorphic Systems BASIC

value. This is done by using a RETURN statement with the variable or
constant to be returned. The RETURN statement informs BASIC when exe-
cuting the function that computation is over.

Example: >

enter >10 DEF FNA(X,Y,2)
>20 IF Z=1 THEN RETURN X
238 X=Y*Z+X*3
>4 RETURN X
>58 FNEND
>68 A=1\B=2\C=A+B
>78 PRINT FNA(A,B,C)
>RUN

output 9
>

In the example above, note again that the variable names in the function
definition are local to that definition; when the definition is called
later, the variable names used in the call are completely different fron
those in the function definition. The function definition and call must
only contain the same ﬁumber and type of variables. Functions must be
defined within the program only once, and a definition must exist for
each user-defined function called in a program.

6.3 SUBROUTINES

Subroutines are used in much the same way as user-defined functions.

Their purpose is to allow the programmer to define a section of the pro-
gram which may be used again and again during program execution to per-
form 2 desired function. The GOSUB statement is used to call the subrou-
tine. Execution of the program is transferred to the program line speci-
fied in the GOSUB statement. This line is the beginning of the subroutine.
The end of the subroutine is indicated by a RETURN statement. When BASIC
encounters a RETURN statement, it returns to the program statement after
the GOSUB statement. BASIC then goes on with the rest of the program.

59

PolyMorphic Systems BASIC

Example:

>

enter >18 INPUT1 "GIVE POSITIVE i: ¢
>28 IF X>9 THEN GOSUB 289 ELSE 19
>3@8 REM REST OF PROGRAM
>49 STOP
>50 REM SUBROUTINE NEXT
>208 ! SQUARE ROOT OF YQUR"
>21@ !®"NUMBER 1S: ",SQRT(X)
>229 RETURN
>RON

output GIVE POSITIVE $#: 356 SQUARE ROOT OF YOUR
NUMBER IS: 18.867963
Stop in line 49
>>

Care should be taken that program execution not be allowed to "fall into”
the subroutine. For example, in the above program, if the STOP statement
at line 49 is removed, the subroutine is executed twice -- once when called
in the GOSUB statement, and once when BASIC moves on to line 209 from line
3. This situation results in an error message being generated by BASIC,
since BASIC finds two RETURN statements, but only one GOSUB statement in

the program.
Example:
enter >4@
>LIST
14 INPUT) "GIVE POSITIVE #: ",X
20 IF X>@ THEN GOSUB 200 ELSE 14
390 REM REST OF PROGRAM
S9 REM SUBROUTINE NEXT
208 ' SQUARE ROOT OF YOUR"
216 !"NUMBER IS: ",SQRT(X)
220 RETURN
>RUN

output GIVE POSITIVE #: 569.234 SQUARE ROOT OF YOUR
NUMBER IS: 23.858625
SQUARE ROCT OF YOUR
NUMBER IS: 23.858625

228 RETURN

?
RETURN without GOSUB error

>
60

Section 7

STRINGS AND ARRAYS

Two of the more advanced elements of a BASIC program are strings and
arrays. They have been incorporated into one section in this manual
because, in many ways, & string can be treated in the same manner as
an array. Both strings and arrays consist of a series of elements,
which may be indexed by the use of subscripts.

7.1 ARRAYS

An array is a list of numerical items which may be represented by a le-
gal variable name and indexed by a subscript of that variable. For ex-
ample, the list (1,2,3,4,5) may be represented by the variable X. The
first item in the list would be referenced by subscript B {written X(D)).
Note that subscripts denoting a position in an array begin with §. The
second item would be referenced by the subscript 1 (X(1)), and so on.
The subscripts may, in turn be represented by a variable (X(I)).

>

>LIST
enter 10 REM PRINT QOUT ARRAY IN REVERSE ORDER

20 X(B)=18\X(1)=20\X{2)=30\X(3)=40\X(4)=50

30 FOR 1I=4 TO & STEP -1

40 PRINT X(I)

S¢ NEXT
>RON

Example:

output 5@

48

39

20

19

>

If an array is not assigned a certain length within the program, it is
assumed that it consists of one dimension, and not more than 1P elements.
To reserve more space than this in memory, the dimension statement is
used. This takes the form, DIM<variable array name>{number of items;.
For example, DIM X{5Pf). An array may be dimensioned only once in 2
program. An array may contain more than one dimension. For example,

the following table is a representation of a Z-dimensional array.

61

PotyMorphic Systems BASIC

Array X{1,J): J = i} 1 2 3
1= 9 10 11 12 13

1 14 15 16 17

2 18 19 20 21

3 22 23 24 25

The position X(3,2) contains the number 24. A sample program to print
this array would be:

Exampie: N

enter >18 DIM X(3,3)
2280 FOR 1I=¢ TO 3\FOR J=8 TO 3
>38 READ X(I,J)\PRINT X(I,J),
>49 NEXT\PRINT
>58 NEXT

>60 DATA 18,11,12,13,14,15,16,17,18
>79 DATA 19,20,21,22,23,24,25
>RUN '

output 16 11 12 13
14 15 16 17
18 19 29 21
22 23 24 25
>

Although we are not able to represent more than two dimensions in this
matrix form, more than two dimensions may be assigned to am array. The
number of dimensions is Timited only by available memory space. Each
item in an array takes up five bytes of space.

7.2 STRINGS

A string is a list of characters {such a Tist may also contain blanks)
surrounded by quotation marks. If you put anything in quotation marks,
BASIC will think jt's a string. Quotation marks tell the computer to
reproduce whatever information is contained within the marks. A string
is represented by a string variable, which is any legal variable name,
followed by a dollar sign ($) symbol; such as "AlS."

62

PolyMorphic Systems BASIC

Strings may be dimensioned to a particular length by use of the DIM
statement. Unlike arrays, strings may consist of only cne dimension.

If no length is assigned to the string, room is reserved for only 1P
characters (including blanks). Any string consisting of more than 19
characters is truncated to 1P characters unless a DIM statement is used.
The amount of space reserved by a DIM stateﬁghi'ié'limited only by avail-
able memory space.

The dimension statement for a string takes the form, DIM <string variablie>
(number of charcters). For example, DIM A${3@), reserves space for 3P
characters on the string A$. A string may be dimensioned only once with-
in a program. '

Referencing a string element by use of subscripts differs somewhat from
the method used on arrays. When referencing string elements, subscripts
begin at 1: i.e., the first character of string S$ is S$${1,1).

Example: G&iven string S$:

$3(J) refers to the substring beginning at character position
J through to the end of the string.

5$(J,K) refers to the substring beginning at character position
J through character position K.

$${J,J0) refers to character at position J.

It is possible to concatenate substrings and strings using the additional
symbol, +. [f the conbined strings or substrings are larger than allowed
by the program DIM statements, they will be truncated to fit.

Examples: N

enter >10 REM STRING INDEXING
>28 DIM TS(12)
>30 TS="TACKY-"
>40 ITS(3INI!ITS(2,4)I\ITS(3,3)
>58 TS=TS+TSN\ITS
>RUN

cutput --see next page--

62

PolyMorphic Systems
Example {continued):

output CKY-
ACK
C
TACKY~TACKY~
>

Strings, substrings, and string variables may be used in combination
with LET, READ, DATA, PRINT, IF and INPUT statements. The IF statement
does produce alphabetic comparisons when the relational operators are
used.

>

Example: enter >108 IF 2$+B$S<"SMITH" THEN 30
>

When string variables are used in a INPUT statement, the input must not
be surrounded by quotation marks. When strings are found in DATA state-
ments, they must be surrounded by quotation marks.

64

PoiyMorphic Systems BASIC

Section 8
THE PLOT FEATURE

The PLOT statement allows the BASIC programmer to use graphics
characters to display data. The statement plots data on the video
screen on a 128 by 48 grid. The "origin" of the display grid is the
Tower left hand corner of the screen, and is addressed as point (9,0).
The_X-3xis of the grid runs horizontally across the dispiay (left to

. .)
right), from @ to 127 and the Y-axis of the grid runs vertically up
the display (bottom Eg~t9p) from 2 to 47.

To plot data using the PLOT statement, the following form must be used,
PLOT X,Y,Z. The X is any user-selected variable or expression chosan as
the frzsardinate of the plot and Y is the Y-coordinate of the plot. 7 is
an arbitrary expression -- it will plot the point as a QEiiEE_EEEEMif_E_

is odd, and as a dark spot if Z is even. The X-coordinate and Y-coordinate
must reference points which are actually on the display grid -- for this
reason, they must be greater than 9. [n addition, X must be less

than or equal to 127, and Y must be less than or equal %o 47.

After a point is plotted, the cursor position moves to that point of the
screen. The next PRINT or INPUT statement will then appear at that spot.
This 1s useful for arranging input prompts on the screen, and for formatting
output text.

For demonstration of the PLOT featurs, see Appendix 3 -- Sample Programs.

[]
(%3]

PolyMarphic Systems BASIC

Section 9
ERROR MESSAGES GENERATED BY BASIC

If you make an error using direct statements, BASIC will respond with
a simpie error message. If an error is encountered during execution
of the program statements, BASIC will reprint the program line in which
the error occurred and point to the approximate point in the line contain-
ing the error. An error message will also be printed.

>

Example: enter >Y=3*(SQRT(16)+YCLEPT)
output Syntax errot
>

enter >10 Y=3*(SQRT(16)+YCLEPT)
>RUN

output 19 Y=3*(SQRT(16)+YCLEPT)
a,

Syntax error
>

The error messages that you might receive are listed beiow along with
their possible causes.

9.1 ERROR MESSAGES

Arg mismatch error
Number of arguments in user-defined function definition was not

equal to the number of arguments listed in function call.
Example:

enter 218 DEF FNX(X)=X/100
>28 PRINT FNX(1,2,3)
>RUN

output 28 PRINT FNX(1l,2,3)

t+
-Arg mismatch error
">

66

PolyMorphic Systems BASIC

Bad argument error
May occur if a parameter given to the PLOT function is out of
bounds (for example, if X>127 or Y>47).

Can't continue
BASIC has been asked to continue execution of a program but cannot
do so, either because no program exists, or because the end of the
program has already been reached. BASIC also will not continue
execution if a change is made in the program after am interruption,
or if a CLEAR command has been used. After an interruption, BASIC
indicates that it can continue with a double prompt {>>). If it
cannot continue, BASIC returns after an interruption with a single
prompt (>).

Checksum error
A checksum error is the resylt of a tape loading problem. When
loading BASIC, a question mark may indicate a checksum error. When
loading a BASIC program, a checksum error will be indicated by a
checksum error message. A checksum error indicates either an incor-
rectly loaded program or tape damage of some kind.

Complexity error
An expression is too complex for BASIC to evalyate.

Control stack error
An internal stack has overflowed, possibly through using too many
functions which call upon themselves.

Dimension error
Incorrect dimensioning. For example, redimensioning an array or
string within a program, or using a variable as an argument in a
DiM statement (i.e., DIM X (A}).

67

PolyMorphic Systems BASIC

Division by zero error
An attempt was made to divide a variable or expression by .

Double def error
An attempt was made to define a user-defined function twice within
on program.

Format error
Several causes, all having to do with incorrect outputting of
data. For instance, a format error may occur if an attempt is made
to print out a number in the F-format in a field of greater than 25
spaces. Usual cause -- jncorrect format string.

FOR-NEXT error
Happens if improper nesting of FOR-NEXT loops occurs. Other
possible causes include incorrect Toop index, NEXT variable, STEP
value, loop index initial or terminal value, or mismatched FOR
and NEXT variables.

Function def error
Attempt was made to use an undefined function.

I11egal direct error
Attempt was made to use a statement not acceptable as a direct
statement. For example: (See section 2.2 -- Direct Statements)

>
enter >GOTO 169
output Illegal direct error
>

Input error--retype
An attempt was made to input a string where a number was asked for,
or vice versa.

68

PolyMorphic Systems BASIC

Length error
The last line entered exceeded 64 characters.

Line number error
An attempt was made to reference a non-existent program 1ine.

Memory full error
No more memory space is available. May occur when infinite loop
allowed to run uninterrupted. For example:

>
>RUN

output 18 GOSUB 19
?
Memory full error
>
Missing NEXT error
There are not enough NEXT statements in the program to match the

FOR statements.

Qut of bounds error
Possible causes include a program line number greater tnan acceptable
(>65536), or an attempt to dimension an array larger than memory will
hold (DIM X(509PP)).

Overfiow error
An attempt was made to evaluate an expression too large for BASIC to
represent. For example:

enter ;pnm'r 3710764

output Overflow error

READ error ?
Not enough data in DATA statement, or data was not in proper form
{constants or variables, depending upon type of variable in READ
statement).

69

PolyMorphic Systems BASIC

RETURN without GOSUB error
A RETURN statement was found without an accompanying GOSUB state-
ment in the program.

Subscript error
An attempt was made to use a nonexistent subscript, or a subscript
larger than allowed by DIM statement. For example:

enter >18 DIM X(5)¥\!X(20)
>RUN

output 19 DIM X(5)\!X(20)
- 4
Subscript erroc

Syntax error >
There are many, many possible causes for syntax error. In general,
a syntax error is a typing error (i.e., PRIMPT X). Incorrect form
of program statements is also a cause {i.e., IF X=@ GOTO 20P (no
THEN)).

Type error
An attempt was made to use a string function on a numerical variable
or vice versa. For example, PRINT SQRT (AS), attempts to use a
numerical function on a string variable.

Verify error
This error may occur when verifying a BASIC tape. The error message
indicates that the tape is invalid: the program in memory has been
changed, the tape has been incorrectiy saved, or the tape has been
damaged. '

70

PolyMorphic Systems BASIC

Section 10
OPTIMIZING YOUR BASIC PROGRAM

This section provides some techniques for optimizing BASIC programs;
either making programs more efficient in regard to the time they need
to execute, or in the amount of memory they require. Many of the
techniques described. here reduce execution time as well as the amount
of memory used for a program. The sample program at the end of this
section also shows you how to time program execution using the
real-time clock and how to develop these techniques further.

The first technique is the elimination of extraneous program material.
The keyword LET should be removed from any assignment statements, since
it is not needed. Once the program is running correctly, REM statements
may be removed since they take up memory space, and must be skipped

over during program execution, thus increasing execution time. Variable
names should be removed from NEXT statements, since they increase loop
processing overhead.

The second technique is to pack as much on a program line as possible.
Placing two statements on the same line, rather than on two separate
Tines saves three bytes of memory; each line in memory is composed of
a count byte, two bytes for the line number, the actual program infor-
mation and a carriage return. These four bytes are “"traded" for the
statement separator,” \", when two lines are compressed.

71

PolyMorphic Systems BASIC

Redundant or trivial computation should be removed from FOR-NEXT loops,
and from statements that are repeatedly executed. For example, the
expression 63488+5*64 contains all constants, and may be reduced to the
single constant 638098, eliminating the addition and multiplication as
well as the overhead of converting the string of characters "63488",
“5", and "64" to numeric form for performing the operation. If a
constant such as 63488 is used heavily in the program, it is wise to
assign that constant to a variable for two reasons: it is faster for
BASIC to look up the value of a variable than to convert the string

of characters to a number each time; and if a commonly used number in
the program must be changed, it need only be changed in a single place.

In general, when trying to reduce the amount of memory a program uses,
eliminate everything that is not essential -~ comments, unneeded blanks,
etc. When trying to reduce the execution time of a program, first find
out where the program spends most of its time -- rewriting a section

of a2 program to make it ten times faster will not yield noticeable results
if that section of the program is used only 3% of the time. When the
heavily used sections are identified, optimization can then be accomplished
with some confidence that it will make a positive difference. It should
be noted that an undebugged, untested or incomplete program is not a
good candidate for optimization, since most of the steps outlined above
reduce the ease of comprehension of a program, and increase the diffi-
culty in finding “bugs."

Example: see next page

72

PolyMorphic Systems BASIC

Example: (This example is similar to the sample program TIMER in

Appendix B)

enter

188 REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS
112 REM CALCULATE AVERAGE TIMING OVER' 180 SAMPLES.

120 REM FIRST CALCULATE LOOP OVERHEAD FOR 100 ITERATIONS
139 T=TIME (&)

148 FOR I=) TO 100

158 NEXT

168 T=TIME(1) \ REM TIME FOR 198 ITERATIONS

178 ¢ "LOOP OVEREBEAD IS ABOUT",T/(199*62)," SEC PER ITERATION"
188 T1=T\ REM SAVE THE OVERHEAD TIME.

199 REM NOW TIME OVERHEAD WHEN WE USE "NEXT I"

282 T=TIME (@)

218 FOR I=]1 TO 108

228 NEXT I

238 T=TIME({l)

240 !"VERSUS",T/(108*68)," SEC PER ITERATION FOR NEXT I*
250 REM NOW TIME A=340

26@ T=TIME {8)

278 FOR I=) TO 100

288 A=390

299 NEXT

3800 T=TIME({l)-T1 \ REM SUBTRACT OVERHEAD TQ GET STMT TIME
319 !"A=380 TAKES ABOUT",T/(189*69)," SECONDS TQ DO."
320 REM NOW SET Ba3@d, DO A=8 100 TIMES.

330 B=3g@d

340 T=TIME({9)

350 FOR I=]1 TO 198

3680 A=B

370 NEXT

389 T=TIME(l)-T1 \ REM AGAIN, SUBTRACT LOOP OVERHEAD
396 t*A=B, FOR B=388, TAKES ABOUT",T/(198*69)," SECONDS."
>RUN

output

LOOP OVERHEAD IS ABOUT .8@2 SEC PER ITERATION
VERSUS 2.83333338-03 SEC PER ITERATION FOR NEXT I
A=308 TARES ABOUT 3.1666667E-63 SECONDS TO DO.
?=B, FOR B=380, TAKES ABOUT 2.8333333E-83 SECONDS.

73

PolyMorphic Systems BASIC

Appendix A

LOADING BASIC, AND LOADING AND SAVING A BASIC PROGRAM

I. Using the Superscope C-183A. Cassette Recorder

| a— \

. el

REc “EYEw ST reereTHCT

gL

v AT

= "MON" plug

L goes here

The cassette recorder is used to load BASIC and to save and load a BASIC
program. The volume control should always be set at “8", and the tone
control set at its highest setting, "+5". If the recorder is not powered
by batteries, they should be removed. Whenever the recorder is used, the
cable marked "MON" should be connected to the jack input labeled “ext. sp.".

The cassette recorder has five buttons marked:

record: used simultaneously with the normal speed cue button
(b) to record tapes.

review (4 4): used to rewind tapes.

cue {(pPp}: used to rapidly advance tapes.

cue (P): used to advance tapes at the normal play speed; it is
the play button.

stop/eject: used to stop tape or {when pushed in further) to eject
tape.

74

PolyMorphic Systems BASIC

I1.

Loading BASIC from a Cassette Tape

Turn on the Poly 88 {or if your machine is already on, RESET by
pressing the RESET button).

On the back of your Poly 88 machine is a switch marked "Poly/Byte".
The position of this switch determines the mode of your machine;
“Polyphase" or “Byte". If your BASIC tape is marked "Polyphase", make
sure that this switch is in the "Poly" position; if your tape is
marked “Byte", turn the switch to the "Byte" position. '

The screen will appear blank except for a small white block at the
upper left hand corner of the screen (the cursor).

Y Y
’ P
BASIC
]
Type:

PBASIC (to load BASIC written in "Polyphase" format), or
BBASIC (to 1oad BASIC written in "Byte® format),
followed by carriage return.

Place cassette tape containing BASIC in cassette deck. Rewind tape.
Then push normal speed cue button ().

A message will appear at the top of the monitor screen indicating
which version of BASIC is being loaded (give it a few seconds to appear).
As the tape is loaded, record numbers will appear on the screen along
side the tape name. This wil) indicate that the tape is being loaded
correctly. (For example, BASIC 9091).

After the tape is loaded, BASIC will respond with a message at the top

75

PolyMorphic Systems BASIC

of the screen, again identifying the BASIC version Toaded, and giving
the number of bytes available in memory.

[Poly 88 BASIC version
AQO 5564 bytes free
> 1

H. A BASIC prompt will be printed on the screen indicating that BASIC has
finished loading and is ready for your instructions.

Possible Problems

If a question mark appears instead of a record number when the tape is
being loaded, the tape is not being correctly loaded. Several causes:
volume control too low, interrupted tape, checksum error, damaged tape, etc.
Try again with increased volume.

[TI. Saving and Loading a BASIC Program

A. Loading a BASIC Program

If you are loading a BASIC program from cassette tape, make sure that
BASIC has already been loaded in your machine. Before loading a BASIC
program, do not hit the reset button on your Poly 88 -- that will
cause it to go to the monitor program. In order to execute BASIC
programs, BASIC must already be loaded in your machine.

We will go through the process of loading a BASIC program using a program
from Appendix B, Sampie Programs. These programs have been included on
the cassette tape labeled BASIC Sample Programs. We will assume that you

76

PolyMorphic Systems BASIC
want to run the program named "ROSES".

1. Place the cassette tape labeled BASIC Sampie Programs in the
cassette recorder. Rewind the tape. This tape has been recorded
in "Byte" format. Therefore turn the “Poly/Byte" switch in the
back of your machine to "Byte". (note: a "Byte" tape may be
loaded into your machine even if the BASIC you have loaded into
the Poly 88 is recorded in "Polyphase"}.

2. Type:

LOAD,ROSES,B (this program is loaded in "Byte" format, If
the tape had been saved in "polyphase" format,
you would have typed LOAD,ROSES,P).

Note: a program must be loaded in the same format (“Polyphase" or
"Byte®) in which it was saved, and with the same name it was saved
under. This does not mean that the BASIC program must be in the
same format as the BASIC that you have loaded into the machine.

You may run “Byte" BASIC programs on “Polyphase® BASIC and vice
versa, as long as the "Poly/Byte" switch in the back of the Poly 88
is in the appropriate position for the BASIC program that you are
Toading.

3. Make sure that the only cable connected to the cassette recorder
is the cable labeled "MON” in the jack input labeled "ext. sp.".

Type a carriage return. Depress the normal speed cue button ().
BASIC will respond with the message "Working...."

In the case of the example above, ROSES, you will see the name

of another program appear on the screen (without record numbers)

before you see ROSES appear. This is the program which is on the
cassette tape before the program that you are asking for, ROSES.

77

PolyMorphic Systems BASIC

BASIC skips over:this program, but gives you its name, so that
you know where you are on the cassette tape.

When BASIC reaches the program that you have asked for, the
name of that program will appear along side its record numbers
as they are loaded from the tape.

After all records of the program have been loaded, BASIC will
display a prompt symbol, >, to indicate that it is ready for
new instructions.

4., If at any time you decide that you wish to interrupt the process
of loading a program, use of the Control-Y command will return you
to BASIC. Use of the Control-Y command will erase anything in
working memory and clear all variables and strings, so do not use
it if you have anything on the screen you wish to save. To type
a Control-Y command, hold down the CTRL key and type Y.

B. Running a Program Loaded from Cassette Tape

After a program has been loaded from tape, the program will either go into
regular execution mode or auto-execute mode. If the program has been
recorded in regular execution mode, it will not begin executing until you
type "RUN" and a carriage return after a BASIC prompt; >. 1f the program
has been saved in auto-execute mode, it will begin executing immediately
after loading without further user input.

If, after having correctly loaded your program, BASIC responds without a
prompt, >, you know that the program has not been saved in auto-execute
mode and requires a "RUN" and a carriage return after a prompt in order to
execute. To save your programs in auto-execute mode, see C, Saving a
BASIC Program.

78

PolyMorphic Systems BASIC

After you have finished with one program, and wish to ioad another, you must
type "SCR" after a prompt. This will clear the old program from memory and
ready the memory to receive the new program. You may have only one program
at a time in working memory. Then follow the directions above, specifying
the name of the program you wish.to load. You may interrupt a program at
any time by using the Control-Y command.

Example:

If you loaded ROSES, typed RUN and then a carriage return, ROSES would
begin to run. You then might decide to interrupt its execution by use of
the Control-Y command. After typing SCR, yoh would then be free to load
another program. In the example, the user wanted to see ATAN, which is
located before ROSES on the tape. After the user gives a Control-Y
comnand, interrupting the ROSES program, the user must type LOAD,ATAN,B
and a carriage return. Then the user must rewind the tape to the point
at which ATAN begins on the tape. ATAN is the first program on the tape,
so the tape should be rewound to the beginning, and then started forward
again by pressing the ({or play button on the recorder). Below is a
recreation of what you might see on your screen during this whole process.

>
>LOAD,ROSES, B
Working...

ATAN

ATAN

ATAN

ATAN

ATAN
ROSES 999
ROSES 991
ROSES ¢@2
ROSES 903
ROSES pg4
ROSES

>RUN

(Example continued on following page)

79

PolyMorphic Systems BASIC

SAMPLE PROGRAM ROSES

I WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED
ON THE STARTING NUMBER YOU GIVE ME {>2, PLEASE!).
STARTING N={Control-Y command used here)

Interruption in line 31p

>>SCR
>L0AD,ATAN,B
Working

ATAN PoP
ATAN 9p1
ATAN 992
ATAN P03
ATAN

Possible Problems

"Checksum error” indicates that BASIC is unable to load the cassette
tape program. This may be the restult of an attempt to load the
program in the wrong format (for example, to load a "Byte" program
with the "Poly/Byte"” switch in the back of the machine turned to
"Poly"). It may also be caused by tape damage, an interrupted tape,
incorrect volume and tone c¢ontrol settings, a checksum error, etc.

D. Saving a BASIC Program

Once you have created a BASIC program, you may wish to record--or
save--that program on tape.

1. To save a program, choose a name for your program that is
less than 8 characters long. For example; name your
program POETRY.

2. Attach the "BIPHASE" or "BYTE" cable to the jack input
labeled "aux", depending upon the format you wish to
use for recording your program ("Polyphase” or "Byte"}.
Remember to set the "Poly/Byte” switch on the back of

8C

PolyMorphic Systems BASIC

your Poly 88 to the proper format position.

Type:

SAVE,POETRY,P (to save a program in “Polyphase"
format)

SAVE ,POETRY,B (to save a program in "Byte" format)
Do not hit carriage return.

Rewind the cassette tape, and push down the record and
play button (¥) simultaneously.

When the tape leader disappears and the recording fape
appears in the cassette deck window, hit carriage return.

BASIC will respond kith the message "Working...", and
give the record numbers of the current tape records as
they are recorded on the cassette tape.

After the tape has been successfully recorded, BASIC will
respond with a prompt,>, to indicate that it is ready for
new instructions.

It is possible to save a program in auto-execute mode.

1f saved in this mode, the program will begin executing
immediately after being loaded, without the use of the RUN
command. To save & program in auto-execute form, use

the standard form of the SAVE command (SAVE,NAME,P or B},
but replace the first comma with a semicolon (SAVE;NAME,P
or B).

E. Default Format for SAVE, LOAD and VERIFY

If P or B is not specified in the SAVE, LOAD, or VERIFY commands,
the default format, "Byte is used by BASIC. {See Appendix D).

81

PotyMorphic Systems BASIC

F. Verifying Your Saved BASIC Programs

Let us say that you have written a program named XANADU. You want to
do something etse with your Poly 88 now, so you decide to save the
program on tape for future use. When you save a BASIC program on
cassette tape, you don't actually transfer it te the cassette tape;
it's merely copied onto the tape from memory. After you save the
program on tape, you still have the original program in memory.

You may wish to check the recorded version against the original .
program still in memory to make sure that the recording is gdod.
BASIC provides a way for you to do this; the VERIFY command.

Be careful to use the VERIFY command before any changes are made
to the program still: in memory or before you LOAD another program
(LOAD erases everything in working memory).

Type:
VERIFY,XANADU,P (if the program was saved in "Polyphase”

‘ format)
" VERIFY,XANADYU,B (if the program was saved in "Byte" format),

followed by a carriage return.

Make sure that the "MON" cable is the only cable attached to the
recorder; once again check the "Poly/Byte" switch on the back of
your machine to see if it is in the proper position for your tape.

With the rewound tape in position in the cassette deck, and the
unmodified program still in memory, type the VERIFY command and
depress the play button (P) on the recorder.

If the program read from the tape matches the program in memory
identically, the record. names. and.numbers will. appear on the. screen
as they would for a LOAD command. A prompt symbol should appear

if the tape has been verified.

82

PolyMorphic Systems BASIC

If at any point the program in the Poly 88's memory does- not match
the program read from the tape, a VERIFY error message will result.
The tape will not verify if the program has not been saved correctly,
if there is tape damage, or if the original program has been

changed in memory since it was saved on tape.

G. Interrupting Loading or Saving a BASIC Program

A Controi-Y command may be used to interrupt saving or loading a
program. If used while saving a program, the program on the tape
will probably contain invalid material; if used while Toading a
tape, the equivalent of a SCR command is executed, erasing any
program lines, variable values, etc. in working space memory.

83

PolyMorphic Systems BASIC

Appendix B

SAMPLE PROGRAMS

The cassette tape labeled BASIC SAMPLE PROGRAMS contains 10 programs
which demonstrate some of the capabilities of the Poly 88 BASIC.
These programs of varying compiexity are provided in this manual so
that the novice user can load these programs and see the programs

in execution. The programs in this section were contributed either
by R. T. Martin or S. Tytonida; the listings in this section of the
manual were made from the files on the sample program tape. Where
practical, a sample run of the program is included with the listing,
although most of the programs rely on the use of the video display.

The sample program tape is recorded in “Byte" format. Some of the
programs have been recorded to begin execution automatically, without
further user input after having been loaded. Others require the
user to type RUN after a prompt. To run one of the programs,

follow the directions given in Appendix A for loading programs

from cassette tape. Use one of the program names below.

The names of the 10 sample programs on the tape are:

ATAN
ROSES
ORBIT
PRIMES
RHIST
SORT
CLGCK
NEST
TIMER
FACT

84

PolyMorphic Systems BASIC

Sample Program ATAN

This program was written to demonstrate the use of muiti-line functions,
as well as to provide an algorithm for computing the arctangent. The
approximation utilized by this program is from Approximations for
Digital Computers, by Cecil Hastings, Jr., Princeton University Press,
1955. ATAN is organized for clarity, not for computational speed,
Note that in this program, as in all the sample programs, and any
program that is intended for general use, that the user is informed
as to what is desired by the program as input, and then that input

is validated to some extent., This process of explanation and then
validation is central to the difference bgtween 2 random computer
“program” and a program that is a product,

85

-

>LIST
180 REM SAMPLE PROGRAM “ATAN"

110 REM DEMONSTRATES MULTI~LINE FUNCTIONS,

120 REM AND GIVES AN EXPANSION FOR FINDING ARC-TANGENT OF
139 REM OF AN ANGLE IN RADIANS

149 1"SAMPLE PROGRAM ATAN"

159 i"GIVE ME A POSITIVE NUMBER, AND I WILL TELL YOU WHAT"
168 !“ANGLE IN RADIANS AND DEGREES IT IS THE TANGENT OF,"
178 !1"TO 5 DIGITS OF PRECISION"

186 INPUT “NUMBER = *,X ‘

198 IF X=>@ THEN 210

298 PRINT "MUST BE ZERO OR GREATER, PLEASE!"\GOTO 186

21¢ PRINT “THAT'S THE TANGENT OF*,FNT(X)," RADIANS, OR",
223 PRINT 368*FNT(X)/(2%*3,1415926)," DEGREES."

238 GOTO 189

249 REM FUNCTION FOR COMPUTING ARCTANGENT

258 REM SOURCE IS "APPROXIMATIONS FOR DIGITAL COMPUTERS”
268 REM BY CECIL HASTINGS, JR. PUBLISHED BY PRINCETON

278 REM UNIVERSITY PRESS, 1955.

280 DEF FNT(R)

298 S=(R-1)/(R+1) \REM CONVERT THE RANGE

3008 T=0\T=,99997726*5-.33262347*%(5"3)+.19354346*(5"5)

319 T=T-,11643287*(S"7)+.95265332*(5879)~-.81172128*(S"11)
329 RETURN 3.1415926/4+T

338 FNEND

340 REM NOTE THAT THE COMPUTATION IS NOT OPTIMIZED FOR SPEED,
358 REM BUT TO SHOW THE ALGORITHM AND THE CONSTANTS!

>RUON

SAMPLE PROGRAM ATAN

GIVE ME A POSITIVE NUMBER, AND I WILL TELL YCU WHAT

ANGLE IN RADIANS AND DEGREES IT 1S THE TANGENT OF,

TO S DIGITS OF PRECISION

NUMBER = 1

THAT'S THE TANGENT OF .78539815 RADIANS, OR 44.999999 DEGREES.
NUMBER = 1,733

THAT'S THE TANGENT OF 1.8474356 RADIANS, OR 608.013641 DEGREES.
NUMBER =

Interrupted in line 1880

>>

86

PolyMorphic Systems BASIC

Sample Program ROSES

This program is a "number cruncher”. A number cruncher is a program
that does an extraordinary amount of computation. ROSES is such a
program, For each point displayed on the screen, two sines and a
cosine must be calculated (lines 35p-36p). If 24K or more memory is
available, these values for sin{t) and cos(t) may be precomputed

and saved in an array, thus eliminating a good portion of the
computation. The number of sample points computed is set as variable
K on line 27Pp (1PP as recorded on the tape). This number may be
increased, increasing the intricacy of the pattern, as well as the
time required to "draw" each curve.

Try values of N larger than 199 (or even 19p9), and observe the
results. Try K = 599 and starting N = 83. If you are mathematically
inclined, examine the effect of sampling the rose equation in ¢losed
form. Why is it the case that for N > 1999 we do not see a solid
white screen (for K = 50p), but instead see some very interesting
patterns?

87

108
119
129
130
149
158
169
179
189
198
208
218
228
230
240
2519
2690
270
289"
29¢
309
314
329
330
342
358
360
378
388
>RUN

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

SAMPLE PROGRAM "ROSES"

THIS PROGRAM PLOTS ROSES ON THE VIDEO SCREEN.

THE GENERAL FORM OF THE ROSE, IN POLAR FORM, IS
R=A*SIN{N*T) WHERE A IS THE MAXIMAL RADIUS, AND

T IS THE ANGLE THETA, WHICH GOES FROM 2 TO 2*PI
RADIANS TO GENERATE THE ROSE. TO PLOT THIS FUNCTION
IN THE CARTESIAN COORDINATE SYSTEM, WE USE THE
TRANSFORMATIONS X=R*COS(T)+X1l AND Y=R*SIN(T)+Y1l,
WHERE (X1,Y1l) IS THE COORDINATES OF THE POINT WE
WISH TO CALL THE ORIGIN. THIS GIVES US THE EQUATIONS
X=263.5+44*SIN(N*T) *COS(T), Y=23.5+22*SIN(N*T)*SIN(T)
TO SPEED UP THE COMPUTATION, WE FACTOR QUT THE TERM
SIN(N*T) TO GIVE THE EQUATIONS SHOWN BELOW. NOTE
THAT WE ONLY COMPUTE K POINTS ALONG THE CURVE; THIS
GIVES US AN INTERESTING SAMPLING EFFECT FOR LARGE N.
WE INPUT A STARTING N, AND GENERATE ROSES FOR N
DECREMENTING DOWN TO 2.

K=190\REM CHANGE FOR MORE OR LESS POQINTS
PRINT CHRS (12) ,"SAMPLE PROGRAM ROSES”

1*I

WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED"

!¥"ON THE STARTING NUMBER YOU GIVE ME (>2, PLEASE!)."
INPUT "STARTING N =",L
IF L<2 THEN !"...GREATER TNAH 2, PLEASE!”"\GOTO 318

FOR

N=L TO 2 STEP -1

PRINT CHR$(12) ,\PRINT "N =" ,N\PLOT @,44,90

FOR

T=0 TO 2*3.14159 STEP 2*3,14159/K

SESIN(N*T)\X=63.5+44*S*COS (T)\Y=23.5+22*S*SIN(T)
PLOT X,Y,l1\NEXT
NEXT \ GOTDO 274

88

PolyMorphic Systems BASIC

Sample Program ORBIT

The ORBIT program simulates the motion of two massless particles in motion
about a force center. To describe them as "massless” particles is another
way of stating that they do not interact with one another. They interact
only with the force center.

This program was run with the Poly 88 driving an Advent Corporation pro-
Jjection television system, producting an image approximately five feet across,
and was quite entertaining.

Try changing the value for D on line 280, which controls the accuracy
(step size) of the approximation. Also try altering {slightly, at first)
the initial conditions for the particles, such as the velocity components
set by Vi, V2 and V3, V4.

This program was written on a visit to the Physics Computer Development
Project (PCDP) at the University of California at Irvine. The idea for the
program was suggested by Dr. Richard Ballard, who was interested in seeing
what the Poly 88 would do with another “"number cruncher", such as a very
simple mode} of motion in a force field. Dr. Ballard described the functions
and they were turned into ORBIT.

ORBIT is dedicated to Isaac Newton, who was able to connect the motion of the
planets, to an apple falling from a tree.

89

1900
110
129
139
149
150
162
165
170
189
199
2009
219
220
230
249
258
2680
279

>
>
>

REM
REM
REM
REM
REM
REM
REM
REM

SAMPLE PROGRAM "ORBIT"

DEMONSTRATES PLOT FUNCTION IN DISPLAYING THE

ORBITS OF TWO MASSLESS PARTICLES ABOUT A FORCE CENTER
SIMPLE 2 BODY ORBITAL KINEMATICS PROGRAM

KINEMATICS EQUATIONS BY R. BALLARD, PROGRAMMING

BY R. MARTIN, BASIC UNDERSTANDING AND EXPLANATION

OF MOTION BY I. NEWTON

NOTE: ORGANIZED FOR SPEED, NOT EXECUTION!!!

PRINT CHRS$(12), \ PLOT 6,47,9
PLOT 58,25,0\PRINT CHRS$ (128+14)}\PLOT 8,21,0
X1=3\X2=8\V1=0\V2=_5\T=0\D=.1

D=.5\REM CHANGE D FOR MORE OR LESS ACCURACY IN ORBITS
X3=2\X4=8\V3=9\Vd=-_6

PLOT H,V,08 \ H=10*(X1+5)\V=5* (X2+5)\PLOT &,V,1

PLOT H1,H2,0\H1=10* (X3+5)\R2=5*(X4+5)}\PLOT H1,82,1
X1=X1+Vi*D\X2=X2+V2*D\X3=X3+V3I*D\X4=X4+V4*D
S=X1*X1+X2*X2 \ R=SQRT(S)\S=D/(R*S)\V1iaV1-5#*X1\V2=2V2-5*X2
S1=X3*X3+X4*X4\R1=SQRT(51)\S1=D/(R1*S1)\V3=v3-S1*X3
V4=2v4-51*X4\T=T+D\GOTO 220 ,

>REM DOES NOT DISPLAY WELL ON HYTYPE!!!!

g0

PolyMorphic Systems BASIC

Sample Proqram PRIMES

This program was originally written to fill the need for a program that would
compute continuously for system testing. It simply computes prime numbers,
displaying the last computed number on the screen. In the calculation itself,
we keep in vector N; a list of up to the first 508 primes to use as trial
divisors in testing a number for being prime. If a number does not have a prime
divisor less than or equal to the square root of the number, it is prime. In
the calculation we use L as a pointer into the list of prime divisors in a
manner which alleviates the need to compute the square root for each new
number. This technique was described by Ira Baxter to R. T. Martin in a con-
versation in 1971, Those interested in prime numbers might look at Volumes]
and 2 of The Art of Computer Programming by Donald E. Knuth, published by
Addison-Wesley.

91

100
110
120
138
149
150
160
178
189
198
209
219
220
238
249
250
268
270
288
299
369
3la
320
330
340
354
360
379
388
3990
4900
414
429
430

REM SAMPLE PROGRAM "PRIMES"

REM FIND AND PRINT PRIME NUMBERS.

REM MARCH 1977, S. TYTONIDA

REM THE LIST N IS USED TO HOLD THE FIRST 509 PRIMES-

REM IN TESTING TO SEE IF A NUMBER IS PRIME, WE ONLY NEED
REM TO LOOK FOR FACTORS THAT ARE LESS THAN OR EQUAL TO
REM THE NUMBER; IN FACT, WE ONLY NEED TO CHECK PRIME

REM FACTORS LESS THAN OR EQUAL TO THE SQUARE ROOT OF THE
REM NUMBER. RATHER THAN CALCULATE A SQUARE ROQT EVERY TIME,
REM WE INSTEAD KEEP A POINTER, L, INTO THE LIST OF PAST
REM PRIMES, AND BUMP THAT UP AS NEEDED. NOTE THAT WE ONLY
REM TEST ODD NUMBERS. THE NUMBER WE DISPLAY IN THE MIDDLE
REM OF THE SCREEN IS THE LATEST PRIME, THE NUMBER AT THE
REM BOTTOM IS THE CURRENT TEST BOUND. THE RATHER

REM BAROQUE EXPRESSION (INT(M/N(P))*N(P)-M) GIVES THE
REMAINDER OF DIVIDING THE NUMBER M BY PRIME FACTOR N{(P).
REM IF THE REMAINDER IS ZERQ, THE NUMBER CANNOT BE PRIME,
REM IF NON-ZERQ, WE MUST TEST PRIME FACTORS THRU N(L).
REM IF NONE OF THOSE ARE DIVISORS, WE HAVE A NEW PRIME,
REM AND IF K<500, WE STUFF IT ONTO THE LIST. MY THANKS
REM TO IRA BAXTER FOR EXPLAINING TO ME, MANY MOONS AGO,
REM WHY YOU DON'T NEED TO CALCULATE SQUARE ROQTS EVERY
REM TIME, AND TO THE ANCIENT GREEKS THAT DISCOVERED THE
REM MAGIC AND MADNESS OF PRIME NUMBERS.

REM REMEMBER: (2719937)-1 IS PRIME!

DIM N(588)

PRINT CHRS$(12) ,\PLOT @,47,B8\REM CLEAR SCREEN AND ERASE CURSOR
N(1)=2\ N(2}=3\ N(3)=5

Ka2\L=2\M=5

P=1\IF MO>N(L) "2 THEN L=L+1\GOTO 39¢

IF (INT(M/N(P))=*N{P}-M)=8 THEN M=aM+2\GOTO 350

IF P=>L THEN 420 ELSE P=P+1\GOTQO 492

K=K+1\IF K<508 THEN N(K)=M

PLOT 55,23,@8\PRINT M," IS PRIME!"\PLOT 4,28,2\M=M+2\GOTO 390

92

PolyMorphic Systems BASIC

Sample Program RHIST

This program was written to provide some anaiysis of the random number gen-
erator used in BASIC. It also uses the PLOT feature to produce the histograms
and in positioning the cursor for PRINT statements. We compute the distribu-
tion of the random number generator cumulatively into 100 "buckets,*; the
array A. We then compute the area under this curve, used in determining the
19% points, and the maximum value in a bucket over the set of buckets, which
is used in scaling the histogram bars. This computation is done in lines

199 to 230. We then find the points, or bucket numbers, corresponding to

19% increases in area under the curve.

Note the use of the PLOT statement in line 270 to position the cursor for the
PRINT statement producing a carriage return at the end of the line. As an
optimization, we do not reprint one of these “decile points"” unless it has changed.
The remainder of the program is responsible for updating the histogram bars, and
the scaling of the display. Line 378 computes £he scaled height of the hist-
ogram bar, and then we will shrink it, grow it or leave it alone, depending on
what is needed. The long-term behavior of a good random {pseudo-random) number
generator should produce a relatively flat histogram, and the decile points

along the right edge of the screen should be multiples of 1@, from 19 to 194.

For more anmalysis of random number generators, see Volume 1! of The Art of
Computing Programming by Donald E. Knuth; chapter three of this book is devoted
entirely to random numbers, pseudo-random numbers, and methods of testing and
generating them. The random number generator used in BASIC was provided by

Eric Rawson.

93

1090 REM SAMPLE PROGRAM "RHIST"

119 REM USES THE PLOT FUNCTION AND PRODUCES A HISTOGRAM

128 REM SHOWING THE DISTRIBUTION OF THE RANDOM NUMBER

130 REM GENERATOR, AND PERCENTAGE DISTRIBUTIONS

149 DIM A{10€),Y{(100),0(10)

158 PRINT CHRS$(12) ,\PLOT 0,47,8\REM CLEAR THE SCREEN

160 N=186 \ S=180 \ REM N IS THE SAMPLE SIZE, S IS TOTAL SAMPLES
176 FOR I=1 TO 108\Y(1)=7\NEXT\REM INITIALIZE HISTO BARS

180 PLOT 121,43,0\PRINT "%%3%*\PLOT 0,40,0\REM PRINT DIST. HEADER
199 FOR I=1 TO N\K=INT(180*RND(0))+1I\A(K)=A(K)+1\NEXT

28@ H=-3\M=0\ REM H IS HIGHEST # SEEN, M=SUM

219 REM COMPUTE SUM (AREA UNDER CURVE) AND FIND HIGH VALUE
2260 FOR I=1 TO N\M=M+A (I}\IF A(I)>H THEN B=A(I)

238 NEXT

240 F=.1\G=8\J=1\REM PUT UP DECILE (%3%%)} POINTS

258 FOR I=1 TO N\G=G+A{I)\IF G<F*M THEN 29¢

260 IF Q{J)=I THEN 280\REM THE VALUE HAS NOT CHANGED

278 PLOT 118,3*J+18,0\PRINT I\PLOT &, 3*J+7,0\REM PRINT POINT
289 Q(J]=I\J-J+1\F=F+ 1

29¢ NEXT

360 PLOT 9,3,8\PRINT "N =",S," MAX =",H\PLOT 6,9,3

318 REM NOW PLOT BARS. NOTE THAT WE SCALE, SO THAT THE

320 REM LARGEST BAR IS 39 HIGH. X=2+I+INT((I-1)/18)

3380 REM GENERATES A BLANK SPOT EVERY 18 TO AID IN COUNTING
340 REM THE BARS ON THE SCREEN,

358 REM WE SEE IF A BAR HAS CHANGED, HAS GROWN, OR WHAT, AND
360 REM DO THE RIGHT THING FOR EACH CASE TO OPTIMIZE OUR DRAWING.
378 FOR I=1 TO 188\V=7+INT(39*A(I)/H)\X=2+I+INT((I-1)/18)
3890 IF V=Y (I) THEN 429

390 IF V<Y (I) THEN 41¢@

480 FOR J=Y{I) TO VA\PLOT X,J,l1\NEXT\GOTO 428

418 FOR J=Y(I) TO V STEP -1\PLOT X,J,d\NEXT

420 Y (I)=VANEXT

430 SaS+N\GOTO 194

* >REM ANOTHER PROGRAM THAT DOCES NOT DO WELL ON THE HYTYPE....

VW VWV N WY

94

PolyMorphic Systems

Sample Program SORT

Sort was written to demonstrate two differing methods of sorting, and the
reiative efficiencies involved in each. Sort also demonstrates the utility
of a small, personal computer with the right balance of software features in
computer science education. One of the authors (Martin) feels he learned
more about sorting algorithms and algorithmic analysis by sitting down with
Vol. 11l of Xnuth and the Poly 88, and building sorting algorithms and test-
ing them than he did in one three-month academic quarter of formal classes.

This program also demonstrates the use of PEEK and POKE for examining and
modifying memory locations, especially the video board memory, and the use
of the TIME function for timing processes.

The interested user is directed to Volume I11I of The Art of Computer Programming,
by Doanld Knuth, which is devoted entirely to sorting and serching, rather than
volumes] or II.

(V]
in

109
119
129
130
149
159
160
178
182
199
200
219
229
2380
248
259
260
279
288
294
360
310
320
338
348
352
360
370
380
385
399
480
419
429
430
449
450
4649
4749
488
490
5909
5109
520
530
540
559
56¢
57¢
580
590
639
610

REM SAMPLE PROGRAM "SORT"

REM THIS PROGRAM USES THE PEEK AND POKE FUNCTIONS TO

REM MANIPULATE THE CONTENTS OF THE VIDEO BOARD, AND

REM MORE IMPORTANT, DEMONSTRATES TWO TECHNIQUES OF

REM SORTING INFORMATION: THE VENERABLE BUBBLE SORT,

REM AND THE SIMPLE, BUT VASTLY SUPERIOR "SHELL" SORT.
Z=RND (TIME (1) /65536)\REM RANDOMIZE....

DIM P{256)\REM HOLDS STUFF TO SORT

DIM H(19)\ REM HOLDS INCREMENTS USED BY SHELL SORT

REM CALCULATE INCREMENTS FOR SHELL SORT ALGORITHM

H=4\FOR I=1 TO 10\H(I)=H\H=3*H+1\NEXT

GOSUB 419\REM GENERATE LIST OF STUFF TO SORT

PRINT CBRS$(12),\INPUT “HOW MANY THINGS TQ SORT (2-256)2",N
IF (N>256) OR (N<2) THEN 2206\ REM FILTER ANSWER

PRINT "WHICH SORT DO YOU WANT TO USE:"

PRINT " 1 BUBBLE SORT®

PRINT " 2 SHELL SORT"

INPUT"1 FOR BUBBLE, 2 FOR SHELL : ",M

IF (M<>1) AND (M<>2) THEN 279\REM FILTER ANSWER

INPUT “DO YOU WANT THRE SAME TEST PATTERN (Y OR N)?27,AS$

IF AS="N" THEN GOSUB 416\GOTO 320 -

IF AS<>"Y" THEN 29¢

0=63487\ REM SCREEN ORIGIN (F822 HEX) -1

PRINT CHRS$(12),\PLOT ©,47,0\REM CLEAR THE SCREEN

FOR I=1 TO N\PORE 1+0,P(I)\NEXT\REM FILL SCREEN WITH CRUD
S=TIME (8)\W=0\REM TIME AND NUMBER OF SWAPS

ON M GOTO 449,528

PLOT 0,12,8\PRINT "SORTED ",N," THINGS IN",W," SWAPS, AND",
PRINT TIME(l)/6@," SECONDS."

INPUT "TRY AGAIN (Y OR N)?",AS\IF AS="Y" THEN 229

IF AS<>"N" THEN 385

STOP\GOTO 220\REM GOTO SO THAT °'CON' WILL CONTIRUE PROGRAM.
REM GENERATE NEW PATTERN IN P

PRINT "THINKING...."

FOR I=1 TO 256\P(I)=128+127*RND (8)\NEXT\RETURN

REM BUBBLE SORT. WE WANDER DOWN THE LIST, LOOKING FOR

REM TWO ELEMENTS OUT OF ORDER, AND SWAP 'EM WHEN WE FIND EM.
S=TIME(0)

K=N

Fu@\FOR I=0+]1 TO O+K-1

L=PEEK (I} \MsPEER (I+1)\IF L<=M THEN 5190

F=1\POKE I+1,L\POKE I, M\W=W+1l

NEXT\K=K~1\IF F=2 THEN 378 ELSE 488

REM SHELL SORT. THIS IS FROM KNUTH VOLUME 3, ALGORITHM D.
S=TIME (8)\W=8

FOR O=1 TO 9\IF H(Q+l)>N THEN EXIT 560

NEXT

POR J=Q0 TO 1 STEP -1

F=@\H=H(J)}\FOR I=0+1 TO OQ+N-H

L=PEEK (I)\M=PEER(I+H)}\IF L<=M THEN 600

F=1\POKE I,M\POKE I+H,L\W=W+l

NEXT\IF F>0 THEN 578

NEXT\GOTO 470\REM FINISH WITH BUBBLE

96

PolyMorphic Systems BASIC

Sample Program CLOCK -

This program demonstrates the real-time clock function available in BASIC.
It also uses formatted print in displaying the time (lines 260 and 4¢9),
PEEK, POKE, and OUT. Without redevelopment, CLOCK turns the POLY 88 into
a very expensive, and inaccurate clock. After the program was written, it
was determined that it was not very accurate, loosing two or three minutes
an hour. Solve the problem of this inaccuracy, and in so doing you will
learn about utilization of the time function. It is also a simple matter
to modify the program to display every second.

97

-

>
>LIST

1868 REM SAMPLE PROGRAM "CLOCK"

116 REM THIS PROGRAM DEMONSTRATES THE USE OF THE REAL TIME
128 REM CLOCK AVAILABLE THROUGH THE BASIC "TIME™ FUNCTION
1386 REM IF YOU HAVE AN AI CYBERNETICS MODEL 1268 SPEECH

140 REM SYNTHESIZER AT OUTPUT PORT 254, IT WILL GENERATE
158 REM "“TICX-TOCK" NOISES....

168 REM WRITTEN MARCH 1977 S. TYTONIDA

176 PRINT CHRS$(12),"SAMPLE PROGRAM CLOCK"

188 PRINT “AFTER YOU GIVE ME THE CURRENT TIME IN HOURS AND"
198 PRINT "MINUTES, I WILL BE A CLOCK!"

209 INPUT "WHAT HOUR IS IT (98-23)7?*,H

210 B=INT(H)\IF (H<8) OR (H>23) THEN 204

220 INPUT "WHAT MINUTE DO I START WITH (0-5%8)2?",M

238 M=INT(M)\IF (M<8) OR (M>59) THEN 229

248 S=7 \ REM SECONDS COUNTER

258 PRINT " WHEN YOU BIT RETURN, 1 WILL START BEING A CLOCK AT"
269 PRINT %2I,H,":",M,":",0," O'CLOCK",

279 INPUT "(AIT RETURN TO START)",AS

288 PRINT CHRS(12) ,\PLOT @,47,8

290 K=43 \ REM 'TICK' FOR AI CYBERNETICS BOARD

3904 wW=220\ REM SYMBOL FOR THE CLOCK

319 0=63488+32+8*64\ REM IN THE MIDDLE OF THE SCREEN

320 Z=TIME(Q)

330 IF TIME(l)<62 THEN 330

342 IF K=43 THEN K=47 ELSE K=43

350 IF wW=220 THEN W=175 ELSE wW=229

360 OUT 254,K\POKE O,W\OUT 254,90

378 S=$+1\IF S<>68 THEN 328 ELSE S=0

380 M=M+1\IF M<>60 THEN 400

396 M=A\H=H+1\IF H=24 THEN H={

4090 PLOT 0,47 ,0\PRINT %2I,d,":",M,":",S\PLOT 4,43,0\GOTO 320
>

>

>REM NOT VERY INTERESTING ON A HYTYPE!!!

>

WO W N

98

Polymorphic Systems BASIC

Sample Program NEST

This is a very bizarre program. It was thought up and written while
preparing this manual. The question came up, "Hell; just how many FOR-
NEXT's can you nest in a }6K machine?" This program provides the
answer. Basically, it uses the QUT @ feature of BASIC that allows
characters to be put in BASIC'S input buffer to write a program. The
function on lines 238 to 268, when called with a string argument,

ptaces this string followed by a carriage return into the input buffer.
The problem with having a program add statements to itself is that

once the new statement is entered, execution of the program may not be
continued: it must be completely restarted. For this reason we must
devise some means of keeping track of our progress in the task of adding
statements to the program. On each iteration through the process, we
need to generate a FOR statement, and its accompanying MEXT, and then
the command RUN to start the process over. We keep track of the line
number we generated in the variable L, the letter of the alphabet we

are generating FOR statements with in I, and the number following the
variable in the variable J. The key to the process may be seen in

line 15@; in this line we produce a NEW line 118, with the updated
vaiues for L, I, and J. 1In this manner we can retain some memory of

the program's Jlast "life" in its new incarnation. Lines 108 through
18P generate a new line 119, the FOR and NEXT statements, and the RUN
command in the input buffer, and then the prodram stops. When this
happens, BASIC reads from its buffer, gobbling up the characters we have
placed there. When we generate the desired number of FOR-NEXT pairs,
controlled by the check on I in line 148, we go to the second part of the
program, starting at line 19@. It is the purpose of this part of the
program to DELETE the first part of the program,- delete itself, generate
a PRINT statement at line 5§99, and then run the constructed program, which
consists of FOR-NEXT statements, and one PRINT. If you run this program
and examine the 1ine number on the last FOR statement, you can get the
answer to the question, "How many FOR-NEXT loops can we nest?"

99

>LIST

109

DIM S5(56),A%(11).,BS$(26)

119L= 1836\1= 4\J= 4

129
130
149
158
169
170
180
199
1935
290
21@
228
230
240
250
269
>

>

AS=" €123456789"\B$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
LaL+1\J=J+1I\IF J=12 THEN J=1\I=I+1

IF I=12 THEN 198

Z=FNS ("118L="+STRS (L) +"\I="+STRS (I) +"\J="+STR$ (J))
Z=FNS (STR$ (L) +"FOR *+B$(I,I)}+AS(J,J)+"=1 TO 1")
L=9999-L\Z=FNS (STRS (L) +"NEXT ®+BS(I,I1)+aAS(J,J))

Z2=FNS ("RUN®) \STOP ‘

2=FNS ("118GOTO289") \FOR I=128 TO 178 STEP 10\Z=FNS(STRS$(I))
NEXT\GOTO 188

Z=FNS ("108°) +FNS ("200") +FNS (*190") +FNS (*218") +FNS ("228")
Z=PNS ("5000!“+CHRS (34) +" 1 "+CHRS (34)) +FNS("238") +FNS ("264™)
Z=PNS ("180") +FNS(*110") +FNS ("240%) +FNS (*2508") \GOTO 180
DEF PNS (5$)

S$=S$+CHRS (13)

FOR Sl=1 TO LEN(S$)\OUT 8,ASC(SS(S1,S1))\NEXT\RETURN 8
FNEND ,

>REM WARNING: CLOSE EXAMINATION OF THIS PROGRAM MAY BE
>REM HAZARDOUS TO YOUR MENTAL STATE! ({(S. TYTONIDA}

>
>
>

100

PolyMorphic Systems BASIC

Sample Program TIMER

This program was included to allow the user to time statements (as described

in section 1P of this manual), to demonstrate the use of the TIME function,

and to show that saying NEXT I 1is indeed slower in resuylting program exectuion
than saying simple NEXT. Because even the relatively slow 8089 processor,

and BASIC can execute statements huch faster than the 6@ ticks per second will
allow us to time directly, we must time a known number of these operations, and
calculate the individual times from that. Any software timing process we can
accomplish in BASIC, involves the introduction of overhead*, so we must
measure that overhead and factor it out of the timings we generate. This is
the reason we average over 19p samples, and it should be clear why we would
want to use a larger number, say 1909, for the number of operations to time.

In the timer program shown, how accurate, and repeatable are the results? If
averaging over 1090 samples is better than 199, wouldn't one million samples be
better? How much better?

* (Qverhead time is time taken up by accomplishing things other than that
which want to time.

101

>

>LIST

19 REM SAMPLE PROGRAM TIMER

20 REM THIS PROGRAM ALSO APPEARS AT THE END OF SECTION 10 OF
39 REM THE BASIC MAINJAL. (S. TYTONIDA, MARCH 1977)

120 REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS
119 REM CALCULATE AVERAGE TIMING OVER 188 SAMPLES.

1229 REM FIRST CALCULATE LOOP OVERHEAD FOR 102 ITERATIONS
138 T=TIME(9) ,

148 FOR I=l TO 142

1590 NEXT

168 T=TIME(1) \ REM TIME FOR 184 ITERATIONS OF FOR-NEXT
178 !"LOOP OVERHEAD IS ABOUT",T/(199*69)," SEC PER ITERATION"
188 T1=T \ REM SAVE THAT OVERHEAD NUMBER

199 REM NOW TIME OVERHEAD WHEN WE USE "NEXT I"

208 T=TIME(@)

219 FOR I=1 TO 109

220 NEXT I

230 T=TIME(1)} '

248 !“VERSUS®",T/(1906*6@}," SEC PER ITERATION FOR NEXT I"
258 REM NOW TIME A=3908

268 T=TIME (8)

2786 FOR I=1 TO 180

280 A=340P

298 NEXT

309 T=TIME(1)-T1 \ REM SUBTRACT LOOP OVERHEAD

319 1"A=38Q TAKES ABOUT",T/(180*69),™ SECONDS TO DO."
328 REM NOW SET B=308 AND TIME A=B

338 B=309 ’

340 T=TIME(9)

350 FOR I=1 TO 199

360 A=B

378 NEXT

389 T=TIME(l)-T1 \ REM AGAIN, SUBTRACT OVERHEAD

398 !"A=B, FOR B=3608, TAKES ABOUT",T/(168%*68)," SECONDS."
>RUN

LOOP OVERHEAD IS ABOUT .882 SEC PER ITERATION

VERSUS 2.6666667E~83 SEC PER ITERATION FOR NEXT I

A=388 TAKES ABOUT 3.1666667E-083 SECONDS TO DO.

A=B, FOR B=388, TAKES ABOUT 2.6666667E-083 SECONDS.

>

>REM YOU CAN INSERT YOQUR FAVORITE EXPRESSION IN LINE 368,
>REM AND SEE HOW LONG IT TAKES TO EXECUTE....BON APETIT...
>

>
>
>

102

PolyMorphic Systems BASIC

Sample Program FACT

FACT demonstrates multi-line finctions. The definition for the fac-
torial function occurs on lines 26@ to 28p. What happens when we call
the function with the argument 1? With 2? With an argument greater
than one, the function calls itself, saying, in effect; "I can return
the factorial of three, if you give me the factorial of two". For an
arbitrary number, this calling itself, or recursion, continues until
the function is called with 1 as the argument, in which case it returns
1 to whomever called it,etc.

‘The notion of building the solution to a large problem by finding the
solution to a simpler one is a very important idea in the use of
computers. In fact, the idea of recursion is, to some extent, a more
powerful tool in problem solving than the idea of Toops, or iteration.
With it we can build solutions to larger problems by building programs
that break the problem down into smaller pieces that are easier to solve.
But why the 17?7 The 17 appears because BASIC is not very efficient at
accomplishing recursive functions, and one internal element of BASI(,
called the "control stack”,is rather small. With numbers larger than

17?7 Why don't you change line 20p of the program and find out?

103

>
>LIST

198 REM SAMPLE PROGRAM "FACT"

119 REM THIS PROGRAM DEMONSTRATES RECURSIVE USE OF

126 REM MULTILINE FUNCTIONS IN FINDING FACTORIALS FOR
130 REM SMALL INTEGERS. (S. TYTONIDA, MARCH 1977)

149 !"SAMPLE PROGRAM FACT"

154 !"GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL"
16€¢ !"TELL YOU ITS FACTORIAL."

179 !"(TYPE CONTROL-Y TO STOP)"

182 INPUT "NUMBER IS 7?7 ".X

198 IF {X-INT(X))<>9 THEN 150 \ REM NOT AN INTEGER

288 IF X>16 THEN 1S9O \ REM TOO BIG

2198 IF X<@ THEN !X," FACTORIAL IS UNDEFINED!™\GOTO 189
228 !X," FACTORIAL IS",PFNN(X)}\GOTC 1849

23¢ REM DEFINITION OF FACTORIAL. NOTE THAT THE FUNCTION
242 REM CALLS ITSELF. THIS IS AN EXAMPLE OF A RECURSIVE
258 REM FUNCTION. WE LIMIT TO <17 BECAUSE OF STACK SIZE...
268 DEF FNN({N) ’

278 IF N<2 THEN RETURN 1 ELSE RETURN N*FNN(N-1}

288 FNEND

>RUN

SAMPLE PROGRAM FACT
GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL.
TELL YOU ITS FACTORIAL.
{TYPE CONTRCL-Y TQ STOP)
NUMBER 1S ? 7

7 FACTORIAL IS 58490
NUMBER IS ? -3

-3 FACTORIAL IS UNDEFINED!
NUMBER IS ? 2.2
GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL
TELL YOU ITS FACTORIAL.
(TYPE CONTROL-~Y TO STOP)
NOUMBER IS8 ? 9

§ FACTORIAL IS 3628840
NUMBER IS ?
Interrupted in line 189

>>

>>

>>

>>

>>

104

Polymorphic Systems .BASIC

Appendix C

THE BASIC CHARACTER SET

All characters and symbols in BASIC are stored in the machine as numbers
{the ASCII code}. The following list contains all of the characters in
BASIC and their ASCII code in decimal representation. To print any
character, type PRINT CHR$(the decimal number as given next to the desired
character below).

Example:
énter >LIST
18 PRINT TAB({l10),CHRS(66) ,CHRS(32),CHRS$({65),
20 PRINT CHR$(32),CHRS(83),CHRS(32),CHRS(73),
.38 PRINT CHRS$(32),CHRS(67),CHRS$(13),TAB(11),
'49 PRINT CHRS$(33),CHR$(32),CHRS(33),CHRS(32) ,CHRS (33)
>RUN
output BASIC
LU A
>
Control Characters

NUL -- P DC1 -~ 17

SOH -- 1 pc2 -- 18

STX -- 2 0C3 -- 19

ETX -« 3 DC4 -~ 29

EOT -- 4 NAK -~ 21

ENQ -- 5 SYN -- 22

ACK -- &6 ETB -- 23

BEL -- 7 CAN -- 24

BS -- 8 EM -- 25

HT -- 9 SUB -- 26

LF -- 19 ESC -~ 27

VT -- 11 FS -- 28

FF -- 12 GS -- 29

R --13 RS -- 39

0 -- 14 Us -- 31

SI - 15 sP -~ 32

DLF -~ 16 DEL -- 127

105

BASIC

PolyMorphic Systems

Numbers. and Letters of the Alphabet

86

48
49

f
1
2
3
4
5
6
7
8
9
A
B
c
D
£
F
G

87

88

50
51

89

99
97

52
53

98

99
189
121
1p2
193
194
195
196
197
198

199

-

54
55
56
57
65
66
67
68

6%

d
e

f
g
h

J

k
1

m

79
71

110
111

Q

112
113
114
115

q

s
t

116
117
118
119
129
121
122

79

0

v

-

W

X
Y

-~

Z

106

PolyMorphic Systems

VDX A4 3 ¢ 85 3o a

- 2 ¥ o oG

|

Vo

A -

1]

128
131
134
137
140
143
146
149
152

BASIC

33
34
35
36
37
38
39
ap
4
42
43
44
45
46
47
58
59
60
61
62

Special Symbols

Greek Letters

>> [o B D + + 1 e ot e i r’ l > [- B

€ C O ™M > @ 0

107

129
132
135
138
141
144
147
150

S 5. D 4

E & q o ¢

63
64
91
92
93
94
95
96
123
124
125
126
153
154
155
156
157
158
159

130
133
136
139
142
145
148
151

Appendix D

gp8@ MACHINE LANGUAGE INTERFACE

This section is written for those who understand 8082 machine language
and wish to interface assembly language programs with Poly 88 BASIC.
It will also be of help to those who wish to change the defaults for
certain features in Poly 88 BASIC. For both these purposes, an under-
standing of the Poly 88 front panel mode of operation, for examining
and modifying memory locations is assumed.

D.1 Default modes and flags
The following items are default values present in Poly 88 BASIC
version APP at the (Hexadecimal) locations shown:

Location Contents Description
2p06 1A Character code that when detected, causes entry

to the Poly 88 front panel. The default as
shown is a control-Z. This byte may be changed
to another ASCII character code to change the
front panel entry code, or to #P to disallow
entry te the front panel from BASIC.

2007 19 Interrupt character code for BASIC. Default
is control-Y,

2908 42 Default mode for writing cassette tapes. The
default is the character code "B," for byte.
This may be changed to 5@ (ASCII "P") to make
the default mode Polyphase. Any other contents
of this location will result in a syntax or
other error when the default format is used in a
tape command.

2999 3E This is the ASCII character used by BASIC as the
prompt. If this byte is changed to P8, BASIC
will not prompt the user at the line entry or
program continuation level.

2P50-E FF 49 Address 49FF is the end of BASIC.

2p6p-1 FF 4F Address 4FFF is the starting address used
in searching for the end of memory.

D.2 Changing memory limits,. installing assembly language routines

An example of the proper method for installing assembly language interfaces to
BASIC is given in the documentation for BPRINT, the printer driver for Poly 88
BASIC. The assembly language program should be written to load at address

108

PoiyMorphic Systems BASIC

4APD, past the end of BASIC. The program, in its initialization section, should _
modify locations 2P5D-E, and 2P6P-1 in BASIC. to set up memory limits. Locations
2p50-E should be set to point after the end of the assembly language routine

and any of its resident data. The address stored in 2PSD-E will be used as the
beginning of BASIC data and program storage. If this address is above 4FFF,
location 2P69-1 must be changed to one plus the contents of 2p5D-E, the beginning
location used in scanning for the end of memory that BASIC will use. In this man-
ner, the assembly language routine modifies BASIC in such a way that it exists
immediately following BASIC, and before BASIC program and data storage.

0.3 CALL interface

The CALL function is used to invoke assembly language routine. The format is
either CALL (addr,val) or CALL (addr) where both addr and val are expressions

that must evaiuate to P<=addr<=65535 and @<=val, <=65535. The expression shown as
"addr" is the address of the subroutine to be called. If "val" is present, it is
passed to the subroutine in register pair HL. When the subroutine exits by
issuing a RET, or conditional.return instruction, the value present in register
pair HL will be converted to an integer and passed to the BASIC program as the
value of the call. ‘

0.4 Memory examination and modification --PEEK and POKE

NOTE: modification by use of the POKE statement of areas of memory containing
BASIC, BASIC programs or data, or the system care may result in anamalous program
behavior, possibly resulting in the loss of the program and/or its data.

The PEEK function takes the form PEEK addr, val where addr is an expression
evaluating to the range P<=addr<=65535 as a memory address, and returns the inte-
ger contents of that memory location Using PEEK on areas of the address space
not populated with memory may give anomalous, possibly non-repetitive results.

The POKE statement takes the form POKE addr, val where addr is an expression
evaluating to the range P<=addr<=65535 for the memory address to modify, and
f<=val<=255 for the 8 bit quantity to store at that address. As noted above,

caution should be exercised in the use of the POKE statement.

109

PolyMorphic Systems BASIC

D.5 8@88 IN and OUT

8988 IN and OUT functions may be performed through BASIC using the INP function
and the OUT statement, respectively. The format of the INP function is INP (port),
where P<aport<=255 is the port address. INP{port)} returns as an integer the 8 bit
status resulting from an IN instruction to the desired port. Note that INP(P)
through INP(31) are reserved for system use, and that INP of an undefined port may
give anomalous results. The format of the OUT statement is QUT port,val where
P<=port<=255 is the 8p80 port address as in INP above, and val is the 8 bit value
P<=val<=255 that is sent to the specified post. Note that ports §-31 (decimal)
are reserved for system use, and that issuing an OUT to a system controlled

device or port may result in anomalous bahaviour, possibly resulting in the loss
of the program and/or its data.

D.6 INP{P}. INP(1), ;NP(2), and QUT 9

The calls to INP with port addresses P-2 return data regarding the type-ahead..
INP(D} returns the status of the type-ahead buffer; § if the buffer is empty, and
8 if there is at least one character in the input buffer. INP(1) returns

the next character as an integer (ASCII} valuve, without echoing it to the screen,
and INP(2) returns the next character as an integer and echoes the character

to the screen, The statement OUT f, val places the ASCII character with integer
value val into the input buffer. It should be noted that the attempt to place
characters into the input buffer when it is full will be ignored. Printing a
control-X character will flush the input type-ahead buffer.

D. 7 Re-entering BASIC from Front Panel Display

To reenter BASIC from the front panel dispiay, type: SPJ20@P for "cold
start" (BASIC assumes there is no program in effect); type SPJ2£93 for
“warm start" (BASIC assumes there is a program in the machine); and type
SPJ49CH to "warm start” from "B-print" {Printer Driver”.) Then type
carriage return and "G" to return to BASIC. The above operations set
the program counter to the specified address.

110

PotlyMorphic Systems BASIC

Example:

enter: 1p@
118
128
139
149
159
160
170
188
190
280
2la

>RUN

REM THIS PROGRAM USES OUT ¢ TO LIST AND SCRATCH
REM ITSELF....

REM ALSO DEMONSTRATES USE OF MULTILINE FUNCTIONS
REM AND DUMMY ARGUMENTS,

Z=FNI ("LIST")+FNI ("SCR")

STOP

REM FUNCTION TO STUFF STRING INTO INPUT BUFFER
REM FOLLOWED BY A CARRIAGE RETURN.

DEF FNI (5$)

FOR I=)1 TO LEN({SS$)\C=ASC(SS$(I,I))\oUuT @ C\NEXT
OUT 6,13\RETURN @

FNEND

Stop in line 159

>>LIST

108 REM THIS PROGRAM USES OUT 6 TO LIST AND SCRATCH
114 REM ITSELF....

120 REM ALSO DEMONSTRATES USE OF MULTILINE FUNCTIONS
139 REM AND DUMMY ARGUMENTS.

148 Z=FNI("LIST")+FNI("SCR")

158 STOP

168 REM FUNCTION TO STUFF STRING INTO INPUT BUFFER
170 REM FOLLOWED BY A CARRIAGE RETURN.

180 DEF FNI (SS)

199 FOR I=1 TO LEN(S$)\C=ASC{SS$(1,I))\QUT &,C\NEXT
286 OUT 2,13\RETURN @

218 FNEND

>>SCR

>LIST

>
>

111

PolyMorphic Systems BASIC

Appendix E: COMMANDS, FUNCTIONS AND KEYWORDS RECOGNIZED BY BASIC.

Next to each entry are the page numbers that refer to the manual location
where information about the item may be found.

AND, 11 | LOAD, 77
CLEAR, 25 NEXT, 41

CON (continue), 23 NOT, 11
Control-W, 8 ON, 45
Control-X, 8 OR, 11
Control-Y, 8, 23, 83 PLOT, 65

DATA, 29 PRINT, 32, 33
DIM (dimension), 61, 63 ' READ, 29

DEF {define function), 58 REM (remark), 26
ELSE, 48 REN, 21

EXIT, 49 RESTORE, 30

FN (function name), 58 RETURN, 359, 59
FNEND {function end), 58 RUN, 22

FOR, 40 SAVE, 81
GOSUB, 59 SCR (scratch), 25
G010, 45 STEP, 41

iF, 47 STOP, 27
INPUT, 28 TAB, 35
INPUTL, 28 THEN, 47

LET, 27 70, 40

LIST, 19 VERIFY, 82

INTRINSIC FUNCTIONS, 52

ABS, 83 INT, 53 SGN, 53
ASC, 57 LEN, 56 SIN, 53
CHRE, 57 L0G, 52 SQRT, 52
€os, 52 ouT, 56, 110 STR$, 57
EXP, 52 PEEK, 56, 109 TIME, 55
FREE, 56 POKE, 56, 109 VAL, 57
INP, 31, 55, 110 RND, 53

112

PolyMorphi¢ Systems

Arithmetic operators, 9
addition, 9
division, 9
exponentiation, ¢
multiplication, 9
subtraction, 9

Arrays, 61

Array indexing, 61

Assembly program
interface, 108

Assignment statements, 27

Auto-execute, 81

Back-slash, 17

Blanks, 16

Branching, 17, 45

- Call, 109

Carriage return, 7

Character set, 105

CLEAR, 25

Commenting, 26

Constants, 12

Continue (CON), 23

Control commands, 19
CLEAR, 25
CON, 23
Control-Y, 8, 23, 83
LIST, 18
REN, 21
RUN, 22
SCR, 25

BASIC

INDEX

113

Control commands summary, 25

Correction techniques, 8

Cursor, 75 '

DATA, 29

Defult loading, 81

Default PRINT format, 33

Default FOR-NEXT step value, 41

Defining functions, 58

Detetion, 8

Dimensioning (DIM}, 61, 63

Direct statements, 13

Double prompt, 24

E-Format, 37

ELSE, 48

Error messages, 66

EXIT, 49

Exponential notation, 12

Expression, 13

F-Format, 37

Format characters, 36

Format errors, 38, 68

Format specifications, 37
E-Format, 37
F-Format, 37
I-Format, 27

Format strings, 35

FOR-NEXT loops, 38

FREE, 56

Free format, 33

GOSUB, 59

PolyMorphic Systems BASIC

GOTO, 45

I-Format, 37

[F-Then, 47

INP, 55, 110

INP(P),INP(1), INP(2), 31, 110

INPUT, 28

INPUT1, 28

Input prompt, 28

Intrinsic functions, 52
regular, 52
memory and 8P89 system, 55
string, 56

LET, 27

Line length, 16

LIST, 19

Loading BASIC, 75

Loading programs, 76

Logical (Boolean) operators, 1l
AND, 11
NOT, 11
O0R, 11

Loops, 38

Loop variable, 39

Multi-tine user-defined
functions, 57

Multiple IF-THEN commands, 48

Multiple statement line, 17

Nesting loops, 42

Null format string, 35

Null PRINT, 32

114

ON-GOTO, 45
Operands, 12
Operators, 9
QuT, 56, 110
PEEK, 56, 109
PLOT, 65
POKE, 56, 109
PRINT, 32

abbreviation, 33
PRINT formatting, 33
Print list, 33
Program display, 19
Program execution, 22
Program line numbers, 16
Program line addition, 16
Program iine deletion, 17
Program 1ine replacement, 17
Program statements, 26

DATA, 29

ELSE, 48

EXIT, 49

FOR-NEXT, 38

G010, 45

IF-THEN, 47

INPUT, 28

INPUTY, 28

LET, 27

ON-GOTO, 4%

PRINT, 32

READ, 29

PolyMorphic Systems BASIC

REM, 26

RESTORE, 30

STOP, 27

program statements summary, 49
Prompt symbol, 6 -
Random number generator (RND), 53
READ, 29
Real time clock (TIME), 55
Relational operators, 10
Remark (REM), 26
Renumber (REN), 21
Resetting default PRINT format,.36
RESTORE, 30
RETURN

subroutine, 59

user-defined function, 59
RND, 53
Round-off precision, 12
RUN, 22
Saving programs, 80
Scientific notation, 12
Scratch (SCR), 25

STEP, 40
Step value, 40
sTop, 27
String, 12, 62
String concatenation, 63
String indexing, 59
Subroutines, 59
Subroutine errors, 60, 70
Subscripts, 63
Substrings, 63
Summary of all commands,
functions and keywords in BASIC, 112
TAB, 35 '
TIME, 55
Type-ahead buffer, 110
Typing mistakes, 8
User-defined functions, 57
Variables, 13
numerical, 13
string, 12, 13
Verify, 82

