BASIC: A MANUAL

Written by

Robin C. Soto, R. T. Martin
and Robert Scott Keeney

PolyMorphic
Systems

460 Ward Drive - Santa Barbara Califomia 93 (805) 967-2351

Copyright 1977, Interactive Products Corporation.

ADDENDUM TO BASIC: A MANUAL

This brief addendum refers only to the version of BASIC available on disk. It
describes the few differences between PolyMorphic Systems® tape version of BASIC
and disk version of BASIC. 1If you have a POLY 88 or if for any reason you will
be using the cassette version of BASIC, you do not need to refer to this addendum.

ADDENDUM TO BASIC: A MANUAL

There are several differences between the BASIC used on the .
System 88 and the BASIC version AP®@ described in this manual.
The great majority of the changes reflect the fact that the
BASIC available on the System 88 is designed to be used on a
disk system.

For the most part, the differences in disk-BASIC consist of
additions to BASIC A6f. The information in BASIC: A Manual
therefore applies to the disk-BASIC as well except for one
item; the exclamation symbol (!} may not be used as an abbrev-
iation for the PRINT command in disk-BASIC. This symbol has
been reserved for system use.

Several commands used in disk-BASIC are unnecessary in BASIC
APB. They are the various file-handling commands and the
commands used to exit from BASIC ("EXEC" and "BYE").

Section 9, BUILDING BASIC DATA FILES, of the System 88 User's
Manual explains the disk-BASIC file-handling commands in de-
tail. To summarize, they are:

NOTE: 1In the command syntaxes given below, the symbol n refers
to number of the information channel to which the data file

is assigned. When we speak of "syntax" we are referring to

the proper, acceptable form of a statement.

KEYWORDS

CLOSE {see page 60)
Close a data file. Command syntax: FILE:n,CLOSE

DEF {see page 62)
Use the user-written machine language programs desig-
nated in the DEF command for file-handling routines.
Three hexadecimal addresses are given. Command syntax:
FILE:n,DEF,addrsl,addrs2,addrs3

OPEN (see page 69)
Open a data file. May be used to create a data file.
Command syntax: FILE:n,OPEN,file mode

POS {see page 61)
Position the reading of data from a data file to a
given data record number. Command syntax:
FILE:n,POS,record number

PolyMorphic Systems BASIC
TABLE OF CONTENTS

1. INTRODUCTION
1.1 Manual Content
1.2 The Examples in This ﬂanua1

2. GETTING INTC BASIC
2.0 Some BASIC Fundamentals
2.1 The Keyboard and Display
2.1 A. Giving Instructions to BASIC
2.1 B. Carriage Return “
2.1 €. Interrupting BASIC
2.1 D. What To Do If You Make A Mistake
2.2 Primary Elements of a BASIC Instruction
2.2 A. Operators

2.2 B. Arithmetic Operators
2.2 €. Relational Operators
2.2 D. Logical Operators
2.2 E. Operands

2.2 F. Constants

2.2 G, Strings

2.2 H. Variables

2.2 1. Expressions
Direct Statements

3. INPUTTING YOUR PROGRAM
3.1 Program Line Numbers
3.2 Multiple Statements Per Line

4, RUNNING YQUR PROGRAM
4.0 Control Commands

4.1 LIST
4.2 REN (Renumber)
4.3 RUN

Page

BN =

[, T

WO W 00 00~ Oy

b

1
12
12
12
13
13
13

16
16
17

19
19
19
27
22

Polymorphic Systems BASIC

4.4
4.5
4.6
4.7
4.8

Control-Y

CON {Continue)

CLEAR

SCR (Scratch)

Summary of Control Commands

PROGRAM STATEMENTS

5.1

5.2

5.3

5.4

5.5

5.6

General Program Statements

5.1 A. REM (Remark)

5.1 B. STOP ‘

5.1 C. Assignment Statements {LET)
Inputting Data

5.2 A, INPUT and INPUT1

$.2 B. DATA and READ,

§.2 C. RESTORE

5.2 D. Single Character Input Functions
INP(P), INP(1), INP(2)

Qutputting Data

5.3 A. PRINT
5.3 B, Formatting the PRINT Statement
Iteration: The FOR-NEXT Loop

5.4 A. Nesting of FOR-NEXT Loops
Branching Statements

5.5 A. GOTO

5.5 B. ON-GOTO

5.5 C. IF-THEN

5.5 B. ELSE

5.5 E. EXIT

Summary of Program Statements

19

Page

23
23
25
25
25

26
26
26
27
27
28
28
29
3p

31
32
32
33
38
42
45
45
45
47
48
. 49
49

Polymorphic Systems BASIC

6. FUNCTIONS AND SUBROUTINES
6.1 Intrinsic Functions
6.1 A, Regular Intrinsic Functions
6.1 B. Intrinsic Functions Directly
Accessing Memory
6.1C. Intrinsic String Functions
6.2 User-Defined Functions
6.3 Subroutines
7. STRINGS AND ARRAYS
7.1 Arrays
7.2 Strings
8. THE PLOT FEATURE
9. ERROR MESSAGES GENERATED BY BASIC
9.1 Error Messages
10. OPTIMIZING YOUR BASIC PROGRAM
Appendix A LOADING BASIC AND SAVING AND
LOADING A BASIC PROGRAM
Appendix B SAMPLE PROGRAMS
Appendix C BASIC CHARACTER SET
Appendix D 8P8P MACHINE LANGUAGE INTERFACE
Appendix E COMMANDS, FUNCTIONS AND KEYWORDS
RECOGNIZED BY BASIC
INDEX

Page

52
52
52

55
56
57
59
61
01
62
65

66
66

71

74

84
105

108

112

113

PolyMorphic Systems BASIC

Section 1

~ INTRODUCTION

You are about to learn a very simple Tanguage. You will never speak a
word of BASIC to any human beiﬁg. But the things you can do with this
language make it possible for you, with the help of your computer's
"brain", to develop programmed information with a high degree of speed
and reliability.

BASIC was originally developed in 1963 at Uartmouth College by Profes-
sors Kemeny and Kurtz, who conceived of BASIC as a computer language
simple enough to be used by beginners, yet powerful enough to carry
out sophisticated computation.

BASIC is a machine language “"interpreter" which the user may devel-
op BASIC programs. BASIC machine language is "loaded" in the com-
puter. The computer then "understands" programs written in BASIC.

The user takes a problem and a definition of the problem to the compu-
ter and develops a BASIC program. With a BASIC program,.the user de-
fines the problem and the methods for its solution once only, without
having to repeat the process during subsequent computations. The com-
puter, using the program, accumulates, stores and organizes the needed
information, keeping in mind the ways to solve the problem and the
problem's definition.

A BASIC program is not a static accumulation of words and symbols
(even though a program does accumulate information). A program is a
dynamic process, somewhat like the continually moving parts of mo-
biles. A program is built out of parts which go together to form an
interpenetrating construction. Your BASIC manual is designed with
that principle in mind, by providing the user with a careful develop-

ment of all the BASIC parts required to begin knowledgeable construction

of a BASIC program.

PolyMorhhic Systems BASIC

1.1 MANUAL CONTENT

BASIC: A Manual has been written to provide BASIC users at every stage
of programming proficiency with a sufficient and plainiy set-forth body

of information. Basic information has been grouped into sections, each
section building upon information provided in previous sections, so

that the novice user may develop, section by section, a coherent sense
ofIBASIC and its potential. If you do not understand some aspect in

an early section of this manual, it will be clarified by the information
contained in a later section. This manual has also been -designed to
permit quick, complete referencing by the most advanced user. The
manual is arranged in 10 sections with several appendices containing
suppiementary material. The next sections are:

Section 2 -- Getting Into BASIC: This section deals with the primary
elements of a BASIC program, such as deletion and correction techniques
and carriage return, and discusses direct statements.

Section 3 -- Inputting Your Program: Section 3 deals with the actual

typing of your BASIC program and provides information on program
1ine numbers and multiple-statement 1ines.

Section 4 -- Running Your Program: This section discusses the various

control commands you may use when you run your BASIC program.

Section 5 -- Program Statements: The many types of program statements

you may include in your BASIC program are provided in this section.

Section 6 -- Functions and Subroutines: This section discusses func-

tions intrinsic to Poly 88 BASIC, as well as the concept of user-de-
fined functions. Section 6 also deals with the concept of subroutines.

Section 7 -- Strings and Arrays: This section talks about the concept
of strings and arrays and how to use then in BASIC.

PolyMorphic Systems BASIC

Section 8 -- The PLOT Feature: The Poly 88 BASIC PLOT feature is
described and demonstrated in this section.

Section 9 -- Error Messages Generated by BASIC: A list of error
messages generated by BASIC, along with possible causes. for those
messages.

Section 10 -- Qptimizing Your BASIC Program: This section discusses
ways in which you can speed up your BASIC programs and increase their
efficiency.

Appendix A -- Loading BASIC and Saving and Loading a BASIC Program:
The proper methods for saving and lcading BASIC programs and for
loading BASIC itself.

Appendix B -- Sample Programs: This appendix contains sample
programs which demonstrate various aspects of computer programming
pertinent to your particular Poly 88 system.

Appendix €¢ -- The BASIC Character Set: The character set for your
Poly 88 BASIC is given in this appendix.

Appendix D -- Interfacing with the Assembler and Memory: This
appendix discusses methods for interfacing BASIC and assembly
programs. It also discusses procedures whereby the user may directly
access memory.

Appendix E -- Commands, Functions and Keywords Recognized by BASIC:

A 1ist of all commands, statements, functions and keywords to be
found in BASIC is given.

PolyMorphic Systems BASIC

1.2 THE EXAMPLES IN THIS MARNUAL

The examples in this manual were typed on a Diablo Hy-Type 1620 Ter-
minal linked to a Poly 88 computer. Hence, the examples represent
actual computer printouts and will resemble thé characters put out on
the video screen. Try the examples given with each section and many
aspects of BASIC which are not clarified at once in the text may become
clear to you through the actual process of entering-in the examples on
the keyboard. -

In most of the examples, "enter" is used across from the first line of
the example. The information located on the line across from “enter®
should be typed in by the user as it appears in the example.

That section of the example marked "output" indicates the computer's
response to the "enter" section. When the "enter" section of the
example has been typed in correctly by the user on the computer's
keyboard, type a "carriage return” at the end of the "enter" sec-
tion of the example, and the "output" will appear on the video
screen. If you make a mistake entering the example, refer to Section
2, page 8. ‘

REM:

You will often see the word REM appear in a program line in the examples.
This word indicates to the computer that a remark is to follow, not an
instruction. Everything on a program line after the word REM will be
ignored by BASIC, except to be reproduced when the program is displayed.
The comments after the REM's appearing in the examples are designed to
help clarify the examples for you.

Poly 88 BASIC version AP6B. 4761 bytes free.
>RUN

THE EXAMPLES AND THE SAMPLE PROGRAM
LISTINGS SHOWN IN THIS MANUAL WERE
PRODUCED USING A POLY B8 WITH 16K BYTES

OF MEMORY, CASSETTE AND SERIAL INTERFACES,
AND RUNNING POLY 88 BASIC VERSION A84

WITH THE PRINTER DRIVER PROGRAM BPRINT
DRIVING A DIABLO MODEL 1628 TERMINAL.

>

>LIST

100 !™THE EXAMPLES AND THE SAMPLE PROGRAM"
116 '"LISTINGS SHOWN IN THIS MANUAL WERE"

128 !"PRODUCED USING A POLY 88 WITH 16K BYTES"
139 !™OF MEMORY, CASSETTE AND SERIAL INTERFACES,"
149 !™AND RUNNING POLY 88 BASIC VERSION Aga"

1580 !"WITH THE PRINTER DRIVER PROGRAM BPRINT"

160 !"DRIVING A DIABLO MODEL 16280 TERMINAL, "

PolyMorphic Systems BASIC

Section 2

GETTING INTO BASIC

2.0 SOME BASIC FUNDAMENTALS

Have you loaded BASIC? Appendix A will show you the right way to icad BASIC
into your machine, so that the machine will be able to "talk” with you in
BASIC. In this process you will make arrangements with the computer and
give it BASIC to store in its "brain".

After BASIC is properly loaded into your machine, BASIC will display a
message telling you which version of BASIC has been loaded, and will tell
you that it is ready to listen to you by displaying a prompt symbol (>} at
the left hand side of your monitor screen.

In order to use the examples provided with this manual, the user must be
acquainted with the keyboard and display.

2.1 THE KEYBOARD AND DISPLAY

The computer keyboard works much 1ike a standard typewriter. There js a
shift key on the keyboard which functions like a typewriter shift key.
However, most keyboards have only upper-case letters and the shift key is
used for the symbols on the upper case above the numbers and for some special

symbols.

The character for the keys you depress will appear on the video display.
The space bar functions exactly like a typewriter space: bar; save that it
makes one blank space on the screen.

PolyMorphic Systems BASIC

2.1 A. Giving Instructions to BASIC

There are two major ways in which you may give BASIC some simple instruc-
tions. The first of these two methods is called a Direct Statement. BASIC
will'execute some instructions immediately; this is the case with Direct
Statements. Some examples of legal, acceptable forms of these instructions
are provided in Section 3.

An example of a Direct Statement: >
>
enter D>PRINT 3+6
output 9
>
>

Another way of giving BASIC instructions is to give BASIC a program. A
BASIC program consists of a series of statements treated as a unit. BASIC
does not execute these instructions immediately and individually. Instead,
the instructions in a program are executed sequentially when the program
"runs. "

To signal BASIC that an instruction is not to be performed immediately,
but as a part of a program, the instruction must be preceded by a program
1ine number. Section 3, Inputting Your Program, also provides details re-
garding construction of a program.

Example: ;
enter >18 PRINT 3+6
+ >28 PRINT 34-16

>RUN

output 9

18
>
>
2.1 8. Carriage Return

To end an instruction to BASIC, type a carriage return (RETURN or RET on

Poliymorphic Systems BASIC

most keyboards). This tells BASIC it may go ahead and execute your in-
struction {or in the case of a program line) store it for later execution.
BASIC then returns with a prompt, indicating that it is ready for another
instruction..

2.1 C. Interrupting BASIC

To interrupt any process in BASIC, use the Control-Y command. To make a
Controi-Y command, hold down the Control key {CTRL) and type Y. If you
were typing a line when you used Control-Y, BASIC wilil ignore that line
and return with a prompt. If BASIC was in the process of executing an
instruction, it will stop execution and return with a prompt.

2.1 D. What To Do If You Make A Mistake

BASIC has several methods of dealing with mistakes made while inputting an .
instruction. The tabie below summarizes the deletion commands available
in BASIC:

To delete:

Individual characters: Use the DEL or RUBOUT key to back-
space the number of spaces you wish
to delete. Then retype.

Entire words: Hold down the Control key (CTRL) and
type W. This deletes one word at a
time from the current line. Then
retype.

Entire Tine: Hold down the Control key (CTRL) and
type X. This deletes the entire line
that you are typing. A Control-Y
command may also be used. Control-Y
will cause BASIC to ignore everything
on the current line, although it
will not disappear from the screen
until the program is relisted.
After either of these commands, the .
correct 1ine may then be retyped.

PolyMorphic Systems BASIC

2.2 PRIMARY ELEMENTS OF A BASIC INSTRUCTION
The primary elements of a BASIC instruction consist of operators and

operands. Other el ements of BASIC instructions and program lines are
discussed in foilowing sections of this manual.

2.2 A. Operators
Operators consist of symbols used to perform certain operations. These

operations fall into three broad categories: (1) arithmetic, (2) rela-
tional, and (3) logical (or Boolean).

2.2 B. Arithmetic Operators

BASIC executes arithmetic operations in response to the following symbols,
and, if several are used in the same expression, in the order listed:

Example Symbol Operation

S _

>PRINT 973 + Exponentiation. On key-
729 boards without this symbol
; a Shift-N is used.
>EG>I§1NT 7*9 * Multiplication

>

>

.>

>PRINT 234.,56/.8904 / Division
263.43217

>

>

>PRINT 23.89 + 67.68 + Addition

90.97

>

>

>

>PRINT 567.9-56.12 - Subtraction
511.78

>

>

PolyMorphic Systems BASIC

The order of execution of multiplication and division, or of addition and .
subtraction, within the same expression, is from left to right. Paren-
theses may be used to alter the order of execution. When the parentheses

are used, operations are executed from the innermost parenthesis outward.

Example:

>
>REM SHOW ORDER OF EXPRESSION EVALUATION, AND
>REM EFFECT OF PARENTHESES. NOTE: ORDER OF
>REM OPERATION EXECUTION GIVEN IN TABLE ABOVE.
>PRINT 3+4/7

3.5714286
>REM NOTE THAT DIVISION WAS DONE FIRST AS IF
>REM WE HAD SAID:
>PRINT 3+{(4/7)

3.5714286
>REM' SO WE WOULD. NEED PARENTHESES TO- GET THB. -
>REM EXPRESSION TO BE:
>PRINT (3+4)/7

1
>REM THE SAME THING HAPPENS WITH THE EXPRESSION: . ,
>PRINT 5-372

-4 ®
>REM IT WAS EXECUTED AS:
>PRINT 5-(372)

-4
>REM THE EXPONENTIATION{(") WAS DONE FIRST, INSTEAD OF:
>PRINT (5-3)"2

4

>REM THIS FORCES THE SUBTRACTION TO BE DONE FIRST.
>REM TRY SOME EXAMPLES OF YOUR OWN TO SEE HOW THIS WORKS.

2.2 C. Relational Operators

BASIC evaluates relational operations in response to the following symbols:

Symbol Operation
= equals
< is less than
> is greater than
<> is not equal .to .

10

PolyMorphic Systems BASIC

Symbo1l Operation
> = is greater than or equal to
= >
<= is less than or equal to

BASIC will evaluate relational operations and respond with a 1 {if true)
or a P (if false).

>
Example: enter >PRINT 10>0

output 1

>

>
enter >PRINT 7>7
output 9

>

>
enter >PRINT 144=12"2
output 1

>

>

Relational operations may also be used in statements in which the command
executed depends upon the result of a test operation.

Example: >
enter >Xe==1

>IF X>=0 THEN PRINT X ELSE PRINT "INPUT POSITIVE NUMBER"™
INPUT POSITIVE NUMBER

2.2 D, Logical Operators

BASIC can solve problems in Boolean logic using the following three opera-
tors: AND, OR, and NOT. The result of a Boolean operation is always a
1 (if true) or a @ (if false).

>
Example: ' enter >PRINT 1 AND 1
output 1
>
>
enter >PRINT 1 AND @
output 2
>
>

11

PolyMorphic Systems BASIC

BASIC will also check the validity of a Booglean statement, returning a 1
(is true) or a P (if false).

Example: >
: enter >PRINT (1 AND 1)=(1 AND NOT1)
output o
) .
>

2.2 E. Operands

The data upon which BASIC performs operations are calied operands. These
operands are given to BASIC either directly, through on-iine input, or

indirectly, through program statements. Operands may consist of, (1) con-
stants, (2) strings {(3) variables, or (4) expressions.,

2.2 F. Constants

A constant is a number representing an unvarying quantity. When BASIC
stores a number in memory, it represents it with a maximum of eight digits
plus an exponent. Therefore all numbers larger than eight digits are
rounded off by BASIC. This means that when BASIC adds the two numbers
5090008 + .009, it will return with the incorrect answer of 5099ppPP. In
order to represent numbers larger than 99,999,999 BASIC uses the exponen-
tial notation (or scientific notation) form (number X 1963).

Examples:
3.76E+02 means +3.76 X 1992 (+3.76 X 1Pp), or +376
-3.76E+p2 means -3.76 X 1992 (-3.76 X 109), or +376
3.76E-92 means +3.65 X 19°%2 (+3.76 X .p1), or +.9376
-3.76E-P2 means -3.76 X 197 P2 (-3.76 X .p1), or -.P376

2.2 G. Strings

A string'is a group of text characters (blanks may be included) enclosed
by quotation marks. All characters within the quotation marks will be
reproduced 1iterally by BASIC without being processed. A string may be
represented by a string variable which must take the form of an upper case

12

PolyMorphic Systems BASIC

letter of the alphabet optionally followed by a single digit, followed by
a dollar sign symbol. For example: Al$ = "THIS IS A STRING: Al$ IS ITS
NAME"; "THIS IS A STRING (1+1*{3+SQRT(16)))T00D"

2.2 H. Variables

A variable is a user-defined name which stands for a constant, an expres-
sion, another varijable, a string, an array, or a function. A1l numerical
variable names consist of one or two characters: an upper case letter of

the alphabet optionally followed by a singie digit. A string variable

name consists of an upper case letter of the alphabet (optionally followed
by a single digit) followed by a dollar sign symbol ($). The same name

may be used to identify different values as long as the values they identify
are of different types. For example, it is possible to have a numeric
variable Al, a string named Al$, and functions named FNAl and FNA1S$.

These entities have no relationship to one another.

2.2 1. Expressions

An expression is a variable, constant, or function which may stand alone

or in combination when separated by the symbols for arithmetic operators.

Example: 5

enter >REM LEGAL EXPRESSIONS

>X=A+1
>Y=COS (3}
>%=A*54+ (R+COS(4) /18)
>81=185
>

enter >REM ILLEGAL EXPRESSIONS
>L=A4+XX

output Syntax error

enter >Y2=3C0S8 (X)

output Syntax error

enter PN=A*5+(COS(3)+2}-3)

output SY¥ntax error

2.3 DIRECT STATEMENTS

Certain direct statements are acceptable to BASIC for immediate execution.

i3

4

PolyMorphic Systems BASIC

These statements are not a part of a BASIC program but may be included in .
a program as program statements if desired (see Section 5 -- Program
Statements). Direct statements are usually either PRINT statements or

are used in combination with PRINT statements.

Direct statements may be used to: 1) print a text string, 2) evaluate and
print an expression, 3) assign a value to a variable, or 4) directly
examine the value of a variable during program execution.

A. BASIC will directly print a string given to it in the following
form, PRINT <string>
Example: >
enter >PRINT "THIS IS A STRING"

output THIS IS A STRING
>

B. BASIC may be used to directly evaluate and print expressions,

if the statement takes the form, PRINT <expression> .
Example:) >
enter J>PRINT 3*(50/25)
output 6
p

C. A value may be assigned to a variable, and that value used in a
further direct statement. These statements take the form,
<variable>=<variable, expression or string>
PRINT <variabie, expression or string>

Example: >
enter >P=1+43
>PRINT P+2

output 6
>
>

0. A direct statement is often used to directly examine the values
of certain variables during program execution to diagnose a

programming error. It may take the form, PRINT <variable>, or

14

PolyMorphic Systems BASIC

it may take this form, IF <test condition>, THEN PRINT «<string or
variables.

Example: N ,

enter >1¢ REM SAMPLE PROGRAM
20 Y=T\X=S5\Z=X+Y\STOP
>30 PRINT "Z AFTER 'STOP'=",2+20
>RUN

output Stop in line 28

enter >>IF 2=12 THEN PRINT "2 IS OK™ ELSE PRINT "“QOPS:!:*
output Z IS OK
enter >>CON
output Z AFTER *'STOP'= 32
>

15

PolyMorphic Systems BASIC

Section 3
INPUTTING YOUR PROGRAM

Every BASIC program consists of a series of program lines containing pro-
gram statements. BASIC will not accept a line of more than 64 characters.
Each program 1ine is given a program line number so that BASIC will not

try to execute it immediately but will wait until execution of the entire
program is requested by the programmer. At that time BASIC will execute

the program lines in numerical order. This section deals with the actual
typing in of your BASIC program. It contains information about line numbers,
and program lines.

3.1 PROGRAM LINE NUMBERS

Every program line begins with a 1ine number which must be an integer rang-
ing from § to 65535, inclusive. Any line of text typed to BASIC which be-
gins with a number is processed by the editor as a program Tine. Blanks . -
or tabs before the 1ine number are ignored by BASIC, and the first blank
or nondigit that foilows a Tine number terminates that 1ine number. Lines
do not have to be typed in sequence --they will be performed in ascending
numerical order when the program is executed. When they are listed they
will be listed in numerical order. An error is generated if the line num-
ber is not between @ and 65535, if the program line is tooc long, or if
memory would overflow if BASIC accepted the new line. Error messages are
then generated, and no other action js taken by BASIC on that line.

The techniques for adding, replacing and deleting program lines are listed
below:

A. Adding a new line to a program: Type in a new program line number
followed by your instructions to BASIC. Remember that lines do
not have _to be typed in numerical sequence. The new line will be
accepted if the line number is a legal one, and at least one
character follows the lire number in the program line. .

16

LS

PolyMorphic Systems BASIC

3.2

B.

Replacing an existing program line: Type in the program line number
of the program line you wish to replace. Then type the program
statements you want on that program line. BASIC will replace the
original program line with your new program line of the same

number.

Deleting an existing program line: Type the program line number
of the program line you wish to delete. Then hit carriage return.
If a new program line contains only a program 1ine number, BASIC
will delete any pre-existing program line beginning with that same
program iine number.

Example: >
enter >19 X=1
220 Z=2\Y=3
>30 PRINT X+Y+2Z
>4¢ PRINT X+Y
>RUN

output 6
4
enter- >4¢0
>LIST
output 18 X=1
28 Z=2\¥Y=3
" 38 PRINT X+Y+Z
enter >RUN

output 6
>
>

MULTIPLE STATEMENTS PER LINE

Multiple program statements may appear on a single line if they are separated
by a back-slash (\) (Shift-L, on some keyboards). A line number must

appear only at the beginning of the line. If one program line calls for a
jump to another program line, BASIC will be able to return to the proper
point in that branching program 1ine, even if that branch statement is on

a multiple statement line.*

*"Branching" takes place when you transform program execution to another
program line. Branches can be conditional, dependent upon a test condition

17

PolyMorphic Systems BASIC

Example :. > .

enter >
119 X=1\A=X+1\GOSUB 2080\PRINT A
>
After calling the subroutine at line.28P@ in response to the GOSUB statement,
BASIC, after finishing the subroutine, will return to the proper point in
line 11p; that is, to the PRINT A statement.

or unconditional. Go to section 5, for examples of branching statements.

18

PolyMorphic Systems BASIC

Section 4

RUNNING YOUR PROGRAM

4.0 CONTROL COMMANDS

Now that you have learned how to set up a program, you want to know how
to run it, too. This section discusses the control commands you can use
to run your program.

These commands also directly affect the execution of the BASIC program,
or its representation in memory. The control commands which enablie the
programmer to save and load the BASIC program differ depending on the

method of loading and saving a program, see Appendix A--Loading BASIC,
and Saving and Loading a BASIC program.

4.1 LIST

The 1ist command is used when the programmer wishes to see a BASIC

program Jisted on the screen. The LIST command may be typed in the following
form:

LIST <optional 1ine number>,<optional 1ine number>

IT the 1ine numbers are not supplied, the entire program is displayed.

If the first line number is provided, the program is listed from that

Tine number to the end of the program. If both 1ine numbers are supplied, the
program is displayed from the first 1ine number given to the second line
number, inclusive. If both optional line numbers are the same, just that one
line of the program will be displayed.

19

PolyMorphic Systems BASIC

> : l"'

Examples: enter >18 REM SAMPLE PROGRAM

>15 X=1
>20 Y=2
>25 PRINT X+Y
>
>
> >
enter >LIST enter >LIST 15,25
output 19 REM SAMPLE PROGRAM output 15 X=1
15 X=] 20 Y=2
20 Y=2 25 PRINT X+Y
25 PRINT X+Y >
>
> >
enter >LIST 20 enter >LIST 15,15
output 20 ¥Y=2 output 15 X=1
25 PRINT X+Y >
>

An error message will result if you try to list a program 1ine number
greater than the last line of your program.

>
Example: >
enter >1¢ REM SAMPLE
>28 X=1
>38 ¥y=2
>40 PRINT X+Y
>LIST 58
output Line number error
enter >LIST 20,59
output Line number error
>
>

20

PolyMorphic Systems BASIC

4.2 REN {Renumber)

After you have made many insertions in a program, the line numbers often
become very unevenly spaced. To renumber your program lines and even out
the differences between line numbers, type REN followed by the optional
beginning value, and then the optional increment value. The command takes
the form, <REN optional beginning value>, <gptional increment value>.

A1l of the program lines will be renumbered by that command. If the first
optional value is not supplied, BASIC will begin the program with a line
number of 10. If the second optional value is not supplied, the program
will be renumbered by an increment of 10. Both of the values supplied must
be positive integers.

Examples: 5
> >REN
> >LIsST

>19 REM SAMPLE PROGRAM
>12 INPUT X
>78 PRINT X+1

12 REM SAMPLE PROGRAM
28 INPUT X
38 PRINT X+1

> >

> >

>REN 50 >REN 108,108

>LIST >LIST

58 REM SAMPLE PROGRAM 108 REM SAMPLE PROGRAM
68 INPUT X 208 INPUT X

70 PRINT X+1 3809 PRINT X+1

> >

Example:

When you renumber a program, BASIC will automatically renumber the line
numbers referenced within a program line.

enter >18 REM SAMPLE PROGRAM
>28 INPUT 2

>36 IF 2>=6 THEN GOTC 5@

>43 PRINT

"GIVE A POSITIVE #"\GOTO 28

>58 PRINT "2=",2

enter >REN 58,50

>LIST

output 58 REM SAMPLE PROGRAM

190. INPUT. Z

150 IF 2>=8 THEN GOTO 258 |
208 PRINT "GIVE A POSITIVE £"\GOTO 160
258 PRINT “Z=",3

21

PolyMorphic Systems BASIC

Caution: If a line number referenced within a program js not a valid
line number, it will not be renumbered. However, if you renumber the program,
it might become a valid line number with unpredictable results.

Example: >18 INPUT 2
>20 1IF Z>=0 THEN GOSUB 3804

>3@ PRINT "TRY AGAIN WITH POSITIVE #"\GOTO 1%
>REN 1008,16¢88

>LIST
1880 INPUT 2
20006 IF Z>=0 THEN GOSUB 30880

3960 PRINT “"TRY AGAIN WITH POSITIVE #"\GOTO 1060

4.3 RUN

To begin execution of your program, type RUN followed by a carriage return,
and BASIC will begin execution at the first Tine in your program. If you
follow RUN with a line number, BASIC will attempt to begin execution at

that 1ine number in the program, and will generate an error message if tr.
line number does not exist.

>
Example: enter >RUN 5000
output Line number error
>
If no Tine number is supplied, BASIC will begin program execution at the

beginning of the program.

NOTE: 1If you are just learning BASIC, it is not important that you understand
the following paragraph right away. After you have read the entire manual,
and written a few programs, re-read this section.

When you give BASIC the RUN command, a number of things happen before
program execution actually starts. The first thing that is done is to clear
the variable and string areas. This means;
1) that all numeric variables, the first time they are referenced will
have the value zero {although it is not a good programming practice.
to assume this)

22

PolyMorphic Systems BASIC

2) that all-strings are set to null (length of zero), and
3) unless initialized by a DIM statement, both strings and vectors
{arrays) will take on the default size of 1§ elements.

Next, the random number generator is reinitialized. This means, that unless
the random number generator is given a new seed (see section 6.1 on the RND
function for details), the same sequence of random numbers will be generated
every time that program is executed.

The pointer used to access DATA statements for READ (see section 5.2 b on
the DATA and READ statements) is set to the beginning of the program. BASIC
then checks user defined functions (see section 6.2) to see if each function
is properly defined, and that each multi-Tine function has an end. Error
messages may be generated if there are errvors in any of the user defined
functions. Then BASIC begins executing the program at either the line
number specified with the RUN command, or at the first line of the program.

4.4 Control-Y :

To interrupt the execution of your program, hold down the Control (CTRL)

key on the keyboard, and type Y. The Controi-Y command interrupts any
process in BASIC. To continue execution of the program, the continue command,

CON, must be used.

4,5 CON (continue)

The continue command, CON, enables the programmer to continue execution

of a program after an interruption due to a STOP statement in the program,

or a Control-Y command used during program execution. Type CON after a prompt
to continue. An attempt to use CON when there are no program lines, when the
program has been modified after the interruption, or when CLEAR has been used
to clear variable and strings, will result in an error message.

23

PolyMorphic Systems BASIC

>
Example: enter >18 REM SAMPLE PROGRAM
>28 X=1\INPUT "Y?--",Y\STOP
>38 PRINT “Y+1=",X+Y
>48 PRINT “Y=",Y
>RUN

output Y?--589.45
' Stop in line 20
>>CON
Y+1l= 598.45
Y= 589.45
>

When the CON command is used to continue after a STOP, the program
execution begins at the statement after the STOP statement. When the
CON command is used to continue after an interruption caused by Control-Y
command, program execution is continued after the statement i'nterrupted
unless that statement was an INPUT command. In that case, execution .
resumes at that INPUT command.

>

Example: enter >1€ REM SAMPLE PROGRAM
>26 X=1\INPUT "Y2--",Y\PRINT "Y+l1l=",X+Y

>3@ PRINT "Y=",Y
>RUN '

output Y?--345.6Y (Control-Y comngn_d used here)

Interrupted in line 20
>>CON

Y?--345.67

Y+l= 346.67

Y= 345.67

>

Note that in the above examples a double prompt {>>) appears after an
interruption. This indicates that BASIC can continue execution of the
program. The double prompt will continue to appear until BASIC can no
longer continue execution after modification in the program, use of CLEAR,’
etc., at which time it will be replaced with a single prompt (>).

24

PolyMorphic Systems BASIC

4.6 CLEAR

After program execution it is often necessary to "clear" all variables

and strings: that is to reset them to their original initialization within
the program. This avoids any possible cumulative effects of executing a
program more than once. Use of the CLEAR command sets all input varijables to
P, and all input strings to a null value,

4,7 SCR (Scratch)

The command SCR, typed after a prompt, erases all information in working
.memory; your program and its data.

4.8 Summary of Control Commands

CLEAR Resets all input variable values to ¢ input
strings to null value.

CON Resumes execution of a program after a STOP or an
interruption.

Control-Y Interrupts any process in BASIC, including program

execution. Returns a prompt to the user.

LIST Lists program. Takes the form, LIST <optional
1ine number>, <optional 1ine number>,

REN Renumbers program lines. Takes the form REN
optional beginning value>, <optional increment value>.

RUN Begins execution of a program either at the beginning
of the program or at the optionally suppiied line
number. It takes the form, RUN <optional line
number>.

SCR Erases the program, and anything else typed from
the terminal.

Polymorphic Systems BASIC

Section 5 ' .

PROGRAM_STATEMENTS

Program statements are by far the most important part of BASIC. Pro-
gram statements make up the instructions which BASIC will follow when it
executes a program,

This section of your manual covers the statements in BASIC under several
different headings:

1} General program statements

2) Program statements used to input data

3) Program statements used to output data

4) Program statements involved in FOR-NEXT loops

5} Program statements used to alter program execution.

For sample demonstrations of program statements, see Appendix B--
Sampie Programs.

5.1 GENERAL PROGRAM STATEMENTS . .

The three program statements used very commonly throughout any program
are discussed below: 1)} REM remark, 2) STOP, and 3) Assignment State-
ments, LET.

5.1 A, REM {remark)

The remark statement allows the programmer to add comments to the pro-
gram without those comments being processed by BASIC. A REM statement
may be placed anywhere on a program line, since everything to the right of
it, including the letters "REM" are ignored by BASIC. BASIC will, how-
ever, print the REM statement when the program is listed. The REM state-
ment, unless it is the first statement on the program line, must be pre-
ceded by a back-slash (™).

26

PolyMorphic Systems BASIC
5.1 8. STOP

The STOP statement is inserted in a program whenever a permanent or re-
coverable halt is desirable. To continue execution from a STOP, use
the continue command, CON described in section 4.5.

5.1 C. Assignment Statement (LET)

An assignment statement is used to set a variable to a given value or
expression. The usual form is <variable>»= <constant, varijable or ex-
pression>, for example: A=19., Using this example, the variable "A" is
set equal to 19. The expression on the right can be more complex. In
any case, the expression on the right is evaluated and assigned to the
variable on the left.

Example: 5

enter 218 A=1320
>28 B=12
>30 C= A/B+10.2
>49 PRINT C
>RUN

' output 128.2
> -

There are two major types of assignment statements; one for numerical

variables as in the examples above, and a second type for string varia-

biles.
' >

>LIST

enter 160 AS="HOT FUDGE"
280 PRINT AS
30 BS=" SUNDAE "
40 PRINT BS$
5¢ PRINT AS+BS
60 PRINT BS+AS
>RUN

Example:

output HOT FUDGE
SUNDAE
HOT FUDGE SUNDAE
SUNDAE HOT FUDGE
>

27

PolyMorphic Systems BASIC

The optional keyword, LET, may be used to indicate an assignment statement. .
Its use is not encouraged since it is only a mnemonic device and takes up
unnecessary space on a line. The following examples are identical in
meaning. |

Example: >

enter >AsX+1
>LET Az=X+1
>

5.2 INPUTTING DATA

The following section discusses the various program statements used to’
make data available to the program. Data may be made accessible either
through direct input from the user terminal {INPUT and INPUT1) or in-
directly from the program itself (DATA, READ, RESTORE).

5.2 A, INPUT and INPUT1

The INPUT and INPUT1 statements are used to ask for data from the user

terminal. A question mark is printed by BASIC to prompt the user of .

the program.
Example: N

enter >14 INPUT X$

>28 PRINT "THE WORD 1S:",XS$S
>RUN

output ?ME
THE WORD IS:ME
>

An optional input string may be used as a prompt to the user, in which
case no question mark is printed by BASIC. If more than one variable is
asked for in one input statement, they must be separated by commas.

Example: 5

enter >18 INPUT "GIVE ME TWO NUMBERS--",X,Y
>28 PRINT "THEIR SUM IS: ",X+Y
>RUN

output GIVE ME TWO NUMBERS--2.5,5.89

THEIR SUM IS: 8.39 .
>
5

28

PolyMorphic Systems BASIC

The INPUT! statement acts in the same way as an INPUT statement, except
that the usual carriage return echo is eliminated. This has the effect
of leaving BASIC on the same line as the input, so that the next input

prompt, or message printed by a PRINT statement will appear on the same
line as the first INPUT1 statement. ' ‘

>
. P
enter >LIST
18 INPUT “YOUR NAME?",N$ _
28 INPUT1 "GIVE TWO NUMBERS~--",S8,S81
380 PRINT * HI,",NS
40 PRINT * THE SUM IS: ",S+S1
>RUN :

Example:

output YOUR NAME?ROBIN
GIVE TWO NUMBERS~-345,78,896.51 HI,ROBIN
THE SUM IS: 1242.29 .
>
>

5.2 B. DATA and READ

The DATA and READ statements are used to ask for data from within the
program itself. The DATA statement contains within it the actual data
that the program uses during execution. The DATA statement may contain
either string or numerical data. The data must be separated by commas,
and strings must be enclosed by quotation marks. The data in the DATA
statement are read by the READ statement, and must be consistent with
the type of variables (numerical or string) used in the READ statement,
or an error message will be generated.

When the first READ statement in a program is encountered, a pointer is
set to the first piece of data in the first DATA statement in the pro-
gram. Every time a READ variable reads one piece of data, the pointer
advances to the next piece of data. As all data from the first DATA

are read, the pointer advances to the first piece of data in the next
DATA statement, and so on, until all READ variables have been matched
with data. If there are more data than needed, the remaining unread
data are ignored. 1If, however, there are fewer data than there are

29

PolyMorphic Systems BASIC

READ variables (that is, the pointer is out of data), an error message
will be generated.

Examples: >

enter >1060 READ A,B,C\PRINT "A,B,C: ",A,B,C
>290 READ X,Y,Z\PRINT "X,Y¥,2: ",X,Y,2
>30¢ DATA 1,2,3,180
>480 DATA 200,360

>RUN

output A,B,C: 1 2 3
X,Y,2: 100 200 309
>
> .

enter >10 READ AS,BS$,CS\PRINT AS,BS$,CS
>28 PRINT C$,AS$,BS
>30 DATA " WE "," ARE "," HERE "
>RUN

output WE - ARE HERE
HERE WE ARE
>
>

5.2 C. RESTORE

A RESTORE statement allows the programmer to change the order in which
READ statements access DATA statements. Use of the RESTORE statement
enables the programmer to direct a particular READ statement to a parti-
cular DATA statement. The RESTORE statement takes the form, RESTORE
<optional line number>. Without the opticnal 1ine number, the READ
statements would be directed to begin reading data from the first DATA
statement in the program. With the line number included, the READ

statements would be directed to a DATA statement on that or a following
line.

Example: 5

enter >18 READ A,B,C\PRINT "A,B,C: ",A,B,C
>280 RESTOCRE
>38 READ X,Y,Z\PRINT "X,Y,2: ",X.Y,Z
>48 DATA 1,2,3
>58 DATA 16@,b280,3@0
>68 DATA 5,6,7
>RUN

output Aa,B,C: 1
X,¥,z2: 1
>

2 3
2 3

30

PolyMorphic Systems BASIC

Exampie (continued):

>

enter >1P RESTORE 59
>20 READ A,B,C\PRINT “A,B,C:',A,B,C
>30 READ X,Y,Z\PRINT “X,¥,2:%,X,Y,2
>40 DATA 1,2,3
>58 REM READ DIRECTED TO THIS LINE
>60 DATA 108,200,300
>78 DATA 5,6,7
>RUN

output A,B,C: 198 200 3900
Z: 5 6 7

5.2 D. Single Character Input Functions INP (B), INP (1), INP (2)

The functions INP (@), INP (1), and INP (2) allow the user to test for
characters in the input buffer, and input single characters from the
keyboard. The function INP {P) returns @ if there are no characters
waiting in the input buffer to be read. INP (1) returns the integer
value of the next character from the keyboard buffer, without echoing

it to the screen; INP (2} returns the integer value of the next character

from the keyboard buffer and echces it to the screen (See appendix C
for decimal values for the character set}.

Example: enter 1¢¢ REM DEMONSTRATE INP(#) TESTING FOR INPUT
119 PRINT "YOU HAVE 10 SECONDS TO TYPE COW"
120 PRINT "?%,

-139 Z=TIME(®) \ REM RESET CLOCK

142 IF INP(@)>0 THEN 198 \ REM SOMETHING TYPED
159 IF TIME(1)<18*68 THEN 149

169 REM TOO LONG. COMPLAIN

1786 PRINT "...TOO LATE, YOU DIDN'T TYPE COW"
188 GOTO 116

199 INPUT "",AS\ IF A$="COW" THEN 210

283 PRINT "YOU DIDN'T TYPE COW"\ GOTO 118

210 PRINT "THANK YOU.®

>RUN

output YOU HAVE 16 SECONDS TO TYPE COW
?...TOO LATE, YOU DIDN'T TYPE COW
YOU HAVE 18 SECONDS TO TYPE COW
?FROG
YOU DIDN'T TYPE COW
YOU HAVE 18 SECONDS TO TYPE COW
2COW
THANK YOU.
>

31

PolyMorphic Systems BASIC

(Note: characters are stored inside the computer as numbers. See Appendix
C, the BASIC Character Set.)

Example: 1p4 RpMm USE INP(2) TO FIND DECIMAL VALUES OF CHARACTERS
118 PRINT "TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

120 PRINT "?",

1390 A=INP(2)\PRINT " IS A DECIMAL",A
140 GOTO 118

>RUN

TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

?A IS A DECIMAL 65
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

?H IS A DECIMAL 72
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

27 IS A DECIMAL 55
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

? IS A DECIMAL 7
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALUE

? (Control-Y command used here) -

Interrupted in line 138
>2>

5.3 OUTPUTTING DATA

There are several ways of changing the format of data output by a pro-
gram. All of these involve the use of PRINT statements. This section
will briefly outline the use of the free-format PRINT statement, the

use of the TAB function in formatting data, and the use of format strings
to set up data formats.

5.3 A. PRINT

The PRINT statement prints out the one or more elements in its print list.
The elements must be separated by commas. If there are no elements in a
print 1ist, that is, if the word PRINT is alone on a line, BASIC will
print an empty line. PRINT statements will evaluate and print expres-
sions (including intrinsic functions) and variables. A string in the
print list is printed as given, but without the su}rounding quotation
marks.

Example: >
enter >18 PRINT "RUBBER CHICKEN",SQRT(100),2+2
>15 PRINT "SECOND LINE"
>RUN

output --see next page--
32

PolyMorphic Systems BASIC
Exampie (continued):

output RUBBER CHICKEN 10 4

SECOND LINE
>

>

enter >18 1"RUBBER CHICREN",SQRT(160),2+2
>15 1"SECOND LINE"
>RUN :

output RUBBER CEICKEN 10 4
SECOND LINE
>

In order to save space on the program line, the word PRINT may be ab-
breviated to an exclamation mark symbol {!), as in the above example.

If the last element in the print list is followed by a comma, a car-
riage return is not printed, and the output of the next PRINT statement
of INPUT statement will appear on the same line as the original PRINT
statement output. If the output of a PRINT statement is too long to
fit on the current monitor ocutput line, it will be continued on the next
line with no carriage return being generated. The PRINT statement

may take the form, PRINT <print list>. The print 1ist may contain
strings, variables or expressions, all separated by commas, with strings
being surrounded by quotation marks.

5.3 B. Formatting the PRINT Statement

If no formatting is specified in a PRINT statement, the data is printed
in the default free-format style. In the free format, all data in the
print list are printed left justified with the prompt symbol, and all
numerical elements are printed and separated by a blank. Unless a
specific format is given by the programmer, BASIC prints all numerical
data in the default format given below.

33

PolyMorphic Systems BASIC

The Default Format

(For a discussion of exponential form, or scientific notation,
see Section 2.2 F, Constants)}.

1. Numbers less than or equal to eight djgits in length
and in non-exponential form will be printed as given.

Example: 5

enter >PRINT 12,34567
output 12.34567
>

2. Numbers greater than eight digits in length and in
non-exponential form will be rounded off to eight
significant digits and printed in standard exponen-
tial form.

Exampie: >

enter D>PRINT .88123456789
ocutput 1.2345679E-063

> . :
3. Numbers in exponential form less than or equal to .
eight digits in length will be printed in non-ex-
ponential form if doing so would result in a number
of eight digits or less. Otherwise, the number is
printed in standard exponential form.

Example: 5

enter >PRINT 123.45E+05
ocutput 123450609
>
enter >PRINT 123,45E+06
output 1,2345E+068
>
>
enter >PRINT 123.456E-05
output .B3123456
>

4, Numbers in exponential form greater than eight digits
in length are rounded off and printed in non-expo-

34

PolyMorphic Systems BASIC

nential form if doing so would result in a number
of eight digits or less. Otherwise the number is
printed in standard exponential form.

Example: N

enter J>PRINT 123,4567891E+86
output 1.2345679E+08
>
enter D>PRINT 123.4567891E+065
output 12345679
>

148

The TAB function provides a way to space output across the screen. The
TAB statement takes the form PRINT TAB(expression), <print list>. TAB
evaluates the expression within its parentheses and moves over that dis-
tance across the screen before printing the elements in the print 1ist.
The TAB value must be Tless than 256 and positive.

Example:

enter >12 PRINT TAB(15),"UNIT ONE",TAB(25),"UNIT TWO",
>29 PRINT TAB(35),"UNIT THREE"

>30 PRINT TAB(19),"A",TAB(29),"B",TAB{(39),"C"
>RUN

output UNIT ONE UNIT TWO UNIT THREE
' A B C

~Format Strings

Format strings specify the manner in which numerical data may be out-
putted by a print statement. A format string may appear anywhere in a
PRINT statement after the PRINT command, and must begin with a per cent
symbol (%). An empty format string will allow data to be printed in free
format. The form of a PRINT statement with a format string is, PRINT
<optional unformatted print list>, Z<optional format characters> <optional
format specification>, <print 1ist to be printed in specified format>.
More than one format string may appear in a PRINT statement. An example
of a PRINT statement containing the format string C$3I, is the following:

35

PolyMorphic Systems BASIC

PRINT “ME," %C3$31, 34544567.

The format character, #, sets a new default format.
the format string %C$# is encountered in a PRINT statement, all unfor-

A. Format Characters

C Places commas to the left of the decimal point as

needed.

$ Places dollar sign symbol to the left of the value
printed.

Z Eiiminates trailing zeros.

Sets the format string of which it is an element to
the new default format for printing numerical data.

Example:
>
enter >PRINT $%C$Z,45678987.590008
output X $45,678,988
>

matted numbers in the program after that statement will be printed in

that format.

a print list.

the default ' format reverts to free format.

enter

output

Example:

13 !\!"IN NEW DEFAULT FORMAT--"
20 PRINT %5C#,9999

3¢ FOR I=20006 TO 5060 STEP 1099
48 PRINT TAB(30)},1I,

50 NEXT

60 !\!"RESET TO OLD DEFAULT FORMAT--"
76 PRINT %4#,9999

80 FOR I=2869 TO SP09 STEP 1260
99 PRINT TAB(38),1I,

188 NEXT

>RUN

IN NEW DEFAULT FORMAT--
$9,999

This means that if

To restore the default format to the original, free-for-
mat style, the null format string is used (%#,) either with or without
After the null format string is encountered in a program,

$2,0080 $3,080 54,000 $5,080

RESET TO OLD DEFAULT FORMAT--

9999
2000 3008 4800 S800

>
1A

PolyMorphic Systems BASIC

Format Specifications {for numerical data only)

The format specifications (similar to those in FORTRAN)
specify the format in which numbers will be printed on the
screen, In the specifications below:

n = number of spaces in the field in which the data are to
be printed. The 1éft margin of the field is even with
the prompt symbol. n must be less than or equal to 25.
m = number of digits to be placed to the right of the deci-

mal point. (However, if m >8, all digits past the
eighth will be zeros).

F-format: The F-format prints numbers right justified in

a field n-characters wide, with m digits to the right of
the decimal point. This specification takes the form,
<n>F<m>.

Example: N
enter >PRINT %15F5,3798,6788992
output 3798.67890
. >

I-Format: The I-format specification prints only integers

(if a non-integer is entered, an error message will be
generated}. The numbers are printed right justified in a
field n-characters wide. This specification takes the
form, <n>I. '

Example:
>
enter >PRINT %181,2345
output 2345
>

E-Format: The E-Format specification prints numbers right

justified in an n-character wide field in scientific nota-
tion with m digits to the right of the decimal point.

37

PolyMorphic Systems BASIC

Example: 5

enter >PRINT $10E3,3798.678892
output 3.799E+03
>

Note: The number 3.799E+#3 represents 3.799 X lﬂs.
(For a further discussion of scientific notation,
or exponential form, see Section 2.2 F, Constants).

Example: ;
enter >PRINT 3.799E+63
output - 3799
>

In order to avoid format specification errors, it is important
to remember to reserve enough space in the print field by use
of a large enough n so that the number given to the format
specification may be printed. For example, in the exampie
below, 11 spaces must be reserved in the print field if m = 5.
({significant digit, decimal point, m, and the four characters
E,+,0,2)= 11 spaces); otherwise an error message is generated.

Example: .
5 .
enter D>PRINT $10ES5,234.56
output Format error

enter >PRINT $11E5,2324.56
output 2.3456PE+02
>

5.4 ITERATION: THE FOR-NEXT LOOP

Often in writing a computer program to solve some problem, we find that
we would like to perform a certain set of statements a number of times
perhaps, for a certain set of arguments.

Let's say that we wanted to print the integer from 1 to 1P inclusive, and

their squares. We could write a BASIC program that would execute this
process, and would look. like this:.

38

Example:

>
enter >1880 REM THIS PROGRAM IS A LOOP
>118 J=1
>126- IF J>18 THEN GOTO 160
>130 PRINT “THE SQUARE OF ",J," = " ,J"2
>146 J=J+1

>150 GOTOC 126
>16d PRINT "END!"
>RUN

When we run this program, the variable J is set to 1 by line 119. We
then see if J is greater than 1. The first time through, J has the
value of 1, so we continue execution with line 13p, where we print the
value of J, and J squared (Jz). Then we add 1 to the current value of
J, and go back to the IF statement on line 12f. We "loop" through
Tines 120, 138, 149 and 150 until J is incremented by Tine 149 to the
value 11. Then, when we perform the IF statement on i{ine 129, J is
greater then 1#, so we go to Tine 16§ thus terminating the locop.

This "loop" can be thought of as the combination of a number of elements:

1) The "loop variable" J, in the example'above, which takes on the values
1 through 19 in the loop.

2} The starting value for the loop variable. In the example, the start-
ing value for J is 1, as set on line 11P.

3) A terminating condition; in the example, the loop will terminate, or
stop, when J is greater than 1P, as detected by the IF statement in 1line 12p.

4} An increment (or decrement) to apple to the loop variable: In the
example on line 149, we add 1 to the value of J each time through the
"Toop", so that during the process of the computation, J takes on the
values 1,2,3,4,5,6,7,8,9 and 1.

5) A set of statements that are executed repeatedly, also called the

loop body. In the example, the loop body consists of the single PRINT
statement on line 130, - : ‘

6) An indicator marking the end of the loop. In the example, the GOTO

12 statement on line 15@ denotes the end of the loop. When the variable

J exceeds the terminating condition, 1P, as specified by the IF test on

line 128, program execution will resume past the end of the loop, at line 16p.

39

PolyMorphic Systems BASIC
We could write out this set of statements each time we wanted to execute
a statement or set of statements repeatedly, but this would be time con-

suming and give us more chances to make programming mistakes. However,
this process of "looping,” or iteration, is done so often, that BASIC has
a shorthand way of specifying this procedure, with more flexibility, using
two statements: FOR and NEXT.

A program equivalent to the one given at the start of this section, but
using FOR and NEXT looks like: '

>
>1866 REM FOR-NEXT LOOP

>116 FOR J=1 TO 16 STEP 1

>129 PRINT “THE SQUARE OF ",J," = ",J"2
>136 NEXT J

>RUN

Let's go through this new program, and identify the same six elements we

did in the previous program:

1)

2)

3)

4)

The "loop variable." In this case, the loop variable is still J,
which appears just after the word FOR on line 118. In general, the
loop variable immediately follows the word FOR in a FOR statement,

and cannot be a string variable (such as J$; that would be illegal),

or have a subscript (such as D(3}; that too would be illegal}.

The starting value. Above, in the FOR statement, we see "J=1,"
which gives the starting value for the loop, 1, just as in line 11§
of the previous program. This starting value can be any expression,
and is evaluated only once, at the beginning of the loop.

The terminating condition. We see in the program above, using

FOR and NEXT, on line 119, the characters "70 1P0." This gives

the terminating value to test the loop variable (J in this case)

as 1§, Jjust as it did in the IF statement on line 12p of the other
program. The terminating value, in this case the number 18, can

be any arbitrary numeric expression. It is important to remember,

. however, that this expression is onily evajuated ONCE, at the start

of the loop, and not every time through.

An increment {or decrement) to apply to the loop variable. In the

other program, this was specified in line 140, where we said J=J+1,
incrementing J by 1 each time. 1In the FOR statement the increment

40

PolyMorphic Systems BASIC

iS'specif{ed by the part of the line that says "“STEP 1"; defining
the increment to be 1. This number alsoc may be any numeric ex-
pression, and is only evaluated once; at the start of the loop.

5) A set of statements to be executed repeatediy. In the example
using FOR and NEXT, the “loop body" is the single statement on
line 129, the PRINT statement.

6) An indicator marking the end of the loop. In the first example,
the "loop body" was the single PRINT statement on line 139. In
the case of the FOR NEXT loop, the FOR and NEXT statements clearly
show what statement or statements will be repeated; that is, any
statements that come between the FOR and the NEXT.

The FOR-NEXT statements, then, define the same process and set of elements
that we identified in the first case. Yet they provide a quicker, more con-
cise way of specifying a sequence of statements to be repeatedly executed.

The FOR-NEXT loop also allows us more flexibility, and "hides" the "house-
keeping”" functions required by the loop we had to specify in the initial pro-
gram which used the IF statement. Some of the things the FOR-NEXT loop allows
us to do are:

1) If we do not give an expression "STEP <exp>" where <exp> is an
arbitrary numeric expression, a default step of 1 wiil be used.

2) The values for the initial value, terminating value, and step
size do not have to be integer, or positive. For example, the

statement
199 FOR W=-1 TO.-2@ STEP -1

would perform some set of statements 20 times, with the variable
W taking the values -1,-2,-3,-4, to -20.

3) The statements in the loop body may be performed zero times, once,
or indefinetely, depending on the conditions and step size chosen.

4) We do not have to specify the variable name on the NEXT statement,
although this is quite helpful for debugging (in fact, specifying
the variable name slows things down!).

41

Polymorphic Systems BASIC

5.4 A. Nesting of FOR-NEXT ‘Loops

Often we would like to have an iterative (looping) process going on
"inside" of another iterative process. It is perfectly valid to have
one FOR-NEXT loop "inside" another--with the following restriction:
the "inside" loop must be totally contained within the "outer" loop.

Example: 5

enter >LIST

14 REM NESTED LOOPS
28 FOR J=1 TO 18
[:39 FOR K=1 TO 18

4¢ PRINT K+ (J-1)*1@,",",
58 NEXT K

68 PRINT

78 NEXT J

>RUN

output 1, 2, 3, 4, 5, 6, 7, 8, 9, 19,
i1, 12, 13, 14, 15, 16, 17, 18, 19, 28,
2, 22, 23, 24, 25, 26, 27, 28, 29, 38,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 58,
sl, 52, 53, 54, 55, 56, 57, 58, 59, 68,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 88,
81, 82, 83, 84, 85, 86, 87, 88, 89, 99,
91, 92, 93, %4, 95, 96, 97, 98, 99, 100,

This program prints a 1ist of numbers from 1 to 188. The “inner® loop,

as shown above, consists of lines 30, 48, and 58, while the "outer"

loop consists of lines 2P and 78. The number of nested loops is restricted
only by the amount of available memory. To see how many FOR-NEXT loops

you may nest on your machine, ‘refer to Sample Program, NEST, in Appendix B.

42

PolyMorphic Systems BASIC

The following exampies show some of the possibilities with FOR NEXT loops:
some of these examples show correct usages, others show errors, and what

BASIC's response will be.

Examples:

>

enter >188 REM NORMAL LOOP
>119 FOR I=1 TO 18 STEP 1
>128 PRINT I,".,",
>138 NEXT 1
>RUN

output i, 2, 3, 4, 5, 6, 7, 8, 9, 18,
>,
enter 108 REM WE DONT NEED TO SPECIFY STEP
185 REM OR NEXT VARIABLE.
1189 FOR W=1 TO 1#8\PRINT W®,",",
115 NEXT
>RUN

output l, 2, 3, 4, 5, 6, 7, 8, 9, 18,
> .

enter >104 REM INITIAL VALUE, STEP, FINAL NON-INTEGRAL
>118 FOR E=.2 TO 1.2 STEP .3
>120 PRINT E,
>138 NEXT E
>128 PRINT E,",",
>RUN

output .2, .5, .8, 1.1,

>
enter >110 REM USING NEGATIVE STEP VALUE
>129 FOR E=16 TC 1 STEP -1
>130 PRINT E,",",
>148 NEXT
>RUN

output 14, 9, 8, 7, 6, 5, 4, 3, 2, 1,
>

43

Polymorphic Systems BASIC

Examples:

enter

output

enter

output

enter

output

enter

output

enter

output

>

>18 REM NEGATIVE NUMBERS
>15 FOR W=-1 TO -11 STEP -1
>2@ PRINT W,",",

>25 NEXT
>RUN
-1(-2’ -3' -4' -5; -6; -7.' -8' -9' -10'

>

> :
>186 REM FOR NEXT LOOP ALL ON ONE LINE
>116 FOR I=1 TO 18 \ PRINT I,",", \ NEXT
>RUN

1, 2, 3, 4, 5, 6, 7, 8, 9, 19,
>

> :
>186 REM ERROR-NC NEXT STATEMENT
>118 FOR I=1 TO 166

>RUN

118 FOR I=1 TC 1@4a
T

FOR-NEXT error

>

>189 REM ERROR-WRONG VARIABLE ON NEXT
>119 FOR J=1 TO 1090

>128 NEXT Q

>RUN

1290 NEXT Q
T
FOR-NEXT error
> .
>
>188 REM ERROR-STRING VARIABLES
>11@ FOR I$="ONE" TO "THREE"
>128 NEXT
>RUN

11¢ FOR I$="ONE" TO "THREE"

Type error
>

-11'

Polymorphic Systems BASIC
5.5 BRANCHING STATEMENTS

It is often desirable to alter the usual order of program line execution.
Branching statements are those statements which enable BASIC to jump

to other program lines. This jump may be based on the result of a test
condition (conditional branching) or simply be a direct branch
(unconditicnal branching). Most of these statements are frequently

used in combination with one another.

5.5A. GOTO

The GOTO statement allows the programmer to transfer execution to
another program line. The GOTO statement takes the form, GOTO<]ine
number>,

‘Example:

enter

>1@ REM PRINTS SQUARE ROOT OF X

>29 INPUT1 "A NUMBER?--",X

>32@ PRINT " SQUARE ROOT OF ",X," IS: ",SQRT(X)
>49 GOTO 192

>RUN

output A NUMBER?--34 SQUARE ROOT OF 34 IS: 5.8389519
A NUMBER?--56 SQUARE ROOT OF 56 IS: 7.4833148

A NUMBER?-- (Control-Y command used here)
Interrupted in line 20
>>

Note that the program above is an infinite loop, and must be
interrupted with a Control-Y command.

5.5 B. ON-GOTO

The ON-GOTC statement aliows multiple branching from one program line
to many others, depending upon the value of the variable specified.
The ON-GOTO statement takes the form, ON<variable or expression>GOTO
<program 1ine number(s)>. If the expression or variable after ON
evaluates to a 1, the first line number listed after the GOTO will be

45

Polymorphic Systems

jumped to by BASIC.

number listed will be taken, and so on.

an integer; 1.1 evalu

BASIC

If the expression evaluates to a 2, the second line

ates to a 1.

Examplie: 5
enter >18 FOR X=1 TO 3

>28 ON X GOTO 30,58,70
>36 1"X EQUALS ONE"
>40 GOTO 80
>50 1*X EQUALS TWO"
>68 GOTO 89
>70 1*X EQUALS THREE"
>89 NEXT
>RUN

X EQUALS ONE
X EQUALS TWO
X EQUALS THREE

>

Note that in the following example, when X is negative a jump is made
into program line number 2@, when X equal § a jump is made to line 49,

and when X is positiv

Example: N

enter >19
>20
>30
>4P
>58
>6d
>78
>RUN

?2-56
LINE
>RUN

29
LINE
>RUN

2456
LINE
>

(See Section 6, Functions and Subroutines for an explanation of the

SGN function.)

e a2 jump is made to line 69.

INPUT X\ON SGN(X)+2 GOTO 20,40,60
PRINT "LINE 28: X IS NEGATIVE"
GOTO 79

PRINT "LINE 40: X IS ZERO"

GOTO 74

PRINT "LINE 68: X IS POSITIVE"
STOP

28: X IS NEGATIVE

40: X IS ZERD

6€8: X IS POSITIVE

46

Expressions are truncated to

Polymorphic Systems BASIC

If the expression after ON is less than 1 or greater than the number of
program line numbers listed after the GOTO, BASIC will generate an error
message. '

Example: N

enter >LIST
18 FOR X=1 TO 4
20 ON X GOTO 38,490,580
36 1"YOU'RE CLOSE"\GOTO 69
49 1“YOU'RE WARMER"\GOTO 68
50 !"YOU'RE HOT!"
60 NEXT
>RUN

YOU'RE CLOSE
YOU'RE WARMER
YOU*RE HOT!

28 ON X GOTO 398,42,50
1-

Qut of bounds error
>

5.5 C. IF-THEN

The IF-THEN statement is used to set up a test condition which must be

met before further instructions within the IF-THEN statement can be
executed. The IF-THEN statement takes the form, IF<test condition>THEN
<legal IF-THEN clause>. The test condition may compare variable to
variable, variable to expression, string to string, etc. Legal IF-THEN
clauses include: 1) GOSUB<subroutine line number>, 2) RETURN, 3)GOTO
<1ine number>, 4) PRINT<print 1ist>, 5) ON<variable or expression>GOTO
<iine number>, 6) STOP, or 7) <variable>=<variable, expression, or string>.

Example:

enter >1pg INPUT "WANT TO PLAY? ",AS
>28 IF AS$="NO" THEN GOTO S8
>3@ REM ASSUMES ALL INPUT OTHER THAN 'NO* IS 'YES®
>4¢ !"HERE ARE INSTRUCTIONS..."\GOTO 68
>58¢ I®0.K, CATCH YOU LATER"
>60 REM END OF PROGRAM
>RUN

output -- see next page

47

Polymorphic Systems BASIC

cutput WANT TO PLAY? YES

HERE ARE. INSTRUCTIONS...
>RUN

WANT TO PLAY? NO

0.K. CATCH YOU LATER.
CY

>

>

The IF-THEN statement may parform multiple commands as a result of the
test condition. The multiple commands must be written on the IF-THEN
statement program line, and separated by back-s]ashes\(\\).

Example:

>

‘>SCR

enter -

>16 INPUT "GIVE ME A NUMBER--",X

>28 IF X=1 THEN !"RIGHT ANSWER"\]"GO ON!"\GOTO 209
>36 1"X NOT EQUAL TO ONE"

>209 !"THIS IS THE END!"

>RUN

GIVE ME A NUMBER--3
X NOT EQUAL TO ONE
THIS IS THE END!
>RUN

GIVE ME A NUMBER--1
RIGET ANSWER

GO ON!

THIS IS THE END!

>

5.5 D. ELSE

An IF-THEN statment may also optionally include an ELSE statement.
The ELSE statement includes a legal IF-THEN clause, and may also
include another IF-THEN statement. If either the THEN clause or
the ELSE clause is a simple GOTO, then the word GOTO may be omitted.

Example:

>

enter >10 IF X>3 THEN PRINT "X>3" ELSE GOTO 299
enter >19 IF X>3 THEN PRINT "X>3" ELSE 200

>

48

Example: N

enter >IF 1=1 THEN PRINT "ONE" ELSE PRINT "OCPS!"
output ONE
>
>
enter >10 AS="YES"\X=0 _
520 1F A$="YES" THEN IF X=0 THEN 1"GO!" ELSE !"WRONG"
>RUN

GO!
>
>

5.5 E. EXIT

The EXIT statement is identical to a GOTO except that it should be used
when branching out of a FOR-NEXT loop. This is because it terminates
the active FOR loop and reclaims the associated internal stack memory.
If an EXIT is not used when branching out of a FOR-NEXT loop, the

internal stack could become full and result in a control stack error
message.

Example;

enter >18 ¥%=3
>28 FOR I=1 TO 1900
>389 FOR J=]1 TO 19082
>48 PRINT I,J
>5¢ IF X=3 THEN EXIT 280
>60 NEXT\NEXT
>288 PRINT "END"
>RON

11
END
>
>

5.6 SUMMARY OF PROGRAM STATEMENTS
DATA Contains data for program execution accessed by READ.

Data must be separated by commas, and may be either

numerical or string in type. Strings must be enclosed
in quotation marks.

49

Polymorphic Systems BASIC
ELSE Used in conjunction with IF-THEN statement. IF<test ‘l'
condition>THEN<Tegal IF-THEN clause>ELSE<legal IF-THEN

clause or additional IF-THEN statement>.

EXIT Similar to GOTO statement, but should be used when

branching out of a FOR-NEXT loop to avoid stack full
error.

FOR-NEXT Sets up loop within program. Loop is repeatedly
executed unti) specified terminal value is passed by
variable given in FOR statement. Unless specified,
variable is incremented by +1. FOR<1oop: variable>=
<initial value>TO<terminal value>STEP<optional step
value>,

GOTG Unconditional branching statement, transferring program
execution to specified line number. GOTO<line number>. .

IF-THEN {F<test condition>THEN<legail IF-THEN clause or additional
' IF-THEN statement>. Execution of statement after THEN
depends upon fulfillment of test condition.

INPUT Inputs data from user of program. May include optional
input string as a prompt. Otherwise, INPUT prompts
program user with a question mark. INPUT<optional
prompt string>, <string or numerical variable>.

INPUT1 Identical to INPUT except that carriage return echo
(after user input) is eliminated, so that next PRINT
or INPUT statement appears on the same line as original
input.

LET Optional assignment statement. LET<variable>=<variable, 'I'
expression, or string>.

50

Polymorphic Systems BASIC

ON-GOTO

PRINT

READ

REM

RESTORE

STOP

A conditional statement allowing a branch to a
specified 1ine number if a test condition is met.
If the variable or expression equals 1, a branch to
the first Tine number listed is taken; if the
variable or expression equals 2, a branch to the
second line number listed is taken, and so on.
ON<variable or expression>G0T0<line number>.

Prints data specified in the print list. The print
list may contain elements which are variabies, strings,
or expressions, all separated by commas. PRINT will
evaluate and print expressions and variables, and
print Titerally (not evaluate) strings. A format
string (Section 5.3 B) or a TAB (Section 5.3 B) may

be included with a PRINT statement to format output.
PRINT<optional format string or TAB(expression)>,
<print list>.

Used in combination with a DATA statement to access
the data contained in a DATA statement. READ<variable
Tist>.

Used to place comments within the program. Must be the
last statement on a program line, and preceded by a
back-slash unless it is the first statement on the line.
REM<comments>.

‘Used to change the order that a READ statement accesses

data from a DATA statement. May optionally include a
1ine number of a. particular DATA statement. Otherwise,
the READ statement following RESTORE is directed to
begin reading data from the first DATA statement in
the program.

BASIC halts execution of a program when it reaches a
STOP statement.
51

PolyMorphic Systems BASIC

Section 6

FUNCTIONS AND SUBRGUTINES

It is often desirable to perform one section of a program more than
once during the execution of a program. Rather than type this section
over and over at various points throughout the program, BASIC has

some rather ingenious ways of more efficiently structuring your program.
These are: functions and subroutines.

6.1 INTRINSIC FUNCTIONS

Some commonly used functions have been incorporated into BASIC as
intrinsic functions. One of these functions may replace many lines of
program statements. The intrinsic function may be used as part of an
expression {for example, Z=COS{SQRT{X)}*75/100}) or may stand alone (for
example, PRINT SIN{(X)). The intrinsic functions of BASIC are listed
below:

6.1 A. Regular Intrinsic Functions

SQRT{expression) -Returns the positive square root of a positive
expression. An expression less than P will
result in an error message.

EXP{expression) Returns the value of e (2.71828...) raised to
the specified power.

LOG({expression) Returns the natural logarithm {base e) of
the expression.

C0S{expression} Returns the cosine of the expression in radians.
52

PolyMorphic Systems

SIN{expression)
ABS{expression)

INT(expression)
SGN{expression)

RND{expression)

BASIC

Returns the sine of the expression in radians.
Returns the absolute value of the expression.

Returns the nearest integer which is 1éss than
the expression.

Returns 1, 0, or -1 if the sign of the
expression is +, 0, or -.

Returns a random number greater than 9 and less
than 1. BASIC generates a sequence of numbers
that are randomly distributed, based on a given '
“seed" value. Where one enters this sequence
when using the RND function depends upon the
expression {seed value) given to the RND function.
The seed value must -be greater than or equal to

P but less than 1. If the seed value is 8 a
point in the sequence of random numbers is chosen
depending upon the last random number produced,
and a random number is produced. The next time
that RND(P) is called within the same program,
the next number in. the sequence is produced, and
so on. If the seed values are the same the next
time the program is run, an identical seguence

of random numbers will be produced. This is
important if the programmer wishes to repeat

~exactly a simulation of a random process. A

non-zero seed value will always produce the
same random number. For example, RND(.1)
always gives .1640625,

53

PolyMorphic Systems BASIC

To compietely randomize the RND function
for every use of the program, the following
statement is suggested: RND{TIME(1)/65536).
This provides seed values based upon the
current value of the real time clock.

To produce random numbers greater than number A
‘and less than number B, the following expression
should be used: (RND(@)*(B-A))+A

The RND. function is often used in combination
with the INT function to produce random integers.
The statement INT(RND{(@)*6)+1 simulates the roll
of one die, giving numbers between 1 and 6
inclusive.

Example;

>
enter >LIST
-183 REM SIMULATION OF THROWING ONE DIE
110 Z=RND(TIME(1}/65536)\ REM RANDOMIZE
129 FOR I=1 TO 1@
138 D=INT(RND(8)*6)+1\ REM DIE VALUE SUCH THAT £<D<7
149 PRINT "YQOUR THROW IS®,D
158 NEXT
>RUN

YOUR THROW IS
YOUR TEROW IS
YOUR THROW IS
YOUR THROW 1S
YOUR THROW IS
YOUR: THROW 18
YOUR THROW 1S
YOUR THROW IS

" YOUR THROW IS
YOUR THROW IS
>

L B b AR R

54

PolyMorphic Systems

TIME (expression)’

BASIC

The TIME function returns as its value the 16
bits of the POLY 88 real time clock, which is
incremented every 1/6@th of a second. The
expression in the TIME function must evaluate

to a value greater than or equal to @ and less
than 65536. If the expression does not evalu-
ate to @, the current value of the real time clock
is returned. If the expression is P, the

TIME function returns the current value of the
real time clock and sets the timer to §; this
is useful for recording elapsed times. Since
only 16 bits of the timer are returned, the
value returmed by the TIME function will cycle
every (216)/6@ seconds (1§92 seconds = 18.2
minutes). Longer timing periods may be measured
using the PEEK and POKE features to manipulate
the most significant bytes of the real time
clock. See programs in Appendix B. Sample
Programs, for examples.

Example: >
enter > PRINT TIME(1)

output 924
>

6.1 B. Intrinsic Functions Directly Accessing Memory and the &J8P System

(See Appendix D, Interfacing with the Assembler and Memory, for a full

explanation of the use of these functions). Numbers in intrinsic
functions must be decimal. Therefore, all hexadecimal numbers must be
converted to decimal numbers before using them as arguments in intrinsic

functions.

INP(8089 port)

This function allows the programmer to perform
an 8080 IN instruction from the specified port.
Ports P through 31 (decimal) are reserved for
the system. The statement !INP (8@) tells

55

PolyMorphic Systems

FREE(D)

QUT 808P port,
expression

POKE memory byte,
expression

PEEK(memory . byte)

BASIC

you what value is in the 8pth port of the Poly 88.

IFREE(P) prints the number of bytes available
in memory.

This instruction allows the programmer to
perform an 8P8P OUT instruction fb a specified
port. For example, OUT 49,3 performs an OUT
4P instruction with 3 in the 808p accumulator.
Ports @ though 31 (decimal) are reserved for
the system.

This function allows the programmer to fill the
specified byte in memory with a given expression

value. For example, POKE 3p9P,J+3 will fill .
memory byte 38£9 with the value J+3. This

function should be used with caution, since -

improper use may wipe out portions of BASIC.

This function allows the programmer to examine
the value being held in the specified memory
byte location. For example, !PEEK(399P) will
telt you what value is in memory byte 39£0.

6.1 C. Intrinsic String Functions

(See Section 7, Strings and Arrays, for a discussion of strings).

LEN{string
variable)

Returns the number of characters in the specified

string. Exampie: s

enter >16 A3§$="PICKLE"\PRINT LEN(a{)
>RUN - '

output ¢
56 >

PolyMorphic Systems

VAL(string variable)

STR$(expression)

ASC(string variable)

CHR$(expression)

6.2 USER-DEFINED FUNCTIONS

BASIC

Returns the numeric value of a numeric
string if the string doesn't contain blanks.

Example: s
enter >PRINT VAL("123")
output 123
>

Returns a string with the specified numeric
value. Exampie:

>
enter D>PRINT STRS (234)
output 234

>

Returns the decimal representation of the
ASCII code for the first character in the
string specified. See Appendix C, The
BASIC Character Set, to find the ASCII code

in BASIC.

Example: 5
enter >58=mgn
>PRINT ASC(SS$)
output 83
>

Returns a string specified by the expression.

The expression is a decimal representation

of the ASCI! code.
Example:

>
enter >PRINT CHRS$ (83)
output s

>

BASIC allows programmers to define their own multi-line functions or

one-line functions within a program. The function name begins with the

57

PolyMorphic Systems BASIC

letters FN followed by a legal string or numeric variable name. If the
function is a one line function, the definition takes the form,
DEF<FN<legal variable name>{arguments)=<function>. This is a one-line
function, for example: DEF FNA1{A,B)=A+B. The arguments of the

function (A and B) are local to the function definition. That is, their
values are not affected outside of the execution of the function. There-
for, when the function is called upon during program execution, the
arguments of the function call. are substituted in for the dummy arguments
of the function definition. For this reason, the number of arguments

in the function definition must always equal the number of arguments in the
function call, or an error message will be generated, .

Example:

enter >LIST
18 1"USE CONTROL-Y TO EXIT"
. 28 DEF FPNS1(A,B)=A+B .
3p INPUT1 "GIVE 2 NUMBERS~-",X,Y
40 '* THEIR SUM ISs: " ,FNS1(X,Y)
50 ! THE ABSOLUTE VALUE OF THEIR SUM 1IS: “,ABS(FNS1({X,Y))
68 GOTO 3@
>RUN

output . USE CONTROL-Y TO EXIT
GIVE 2 NUMBERS--4,-56 THEIR SUM IS: =32
THE ABSOLUTE VALUE OF THEIR SUM IS: 52
GIVE 2 NUMBERS~--34.78,-567 THEIR SUM 1IS: -532.22
THE ABSOLUTE VALUE OF THEIR SUM Is: 532,22

GIVE 2 NUMBERS=-- {Control-Y command used here)
Interrupted in line 34

>>

>>

If the user-defined function is a multi-line function, the first line of
the function takes the form DEF<FN<legal variable name>{arguments)}. The
Tines following that statement form the definition of the function. The
last line of the function definition must be the statement FNEND, to indi-
cate the end of the definition. A multi-line definition must return a

58

PolyMorphic Systems BASIC

value. This is done by using a RETURN statement with the variable or
constant to be returned.. The RETURN.statement informs. BASIC when exe-
cuting the function that computation is over.

Example: 2

enter 318 DEF FNA({X,Y,Z)
220 IF 2Z=1 THEN RETURN X
>30 X=Y*Z+X*3
>40 RETURN X
>50 FNEND
>68 A=1\B=2\C=A+B
>70 PRINT FNA(A,B,C)
>RUN

output 9
>

In the example above, note again that the variable names in the function
definition are local to that definition; when the definition is calted
later, the variabie names used in the call are completely different fron
those in the function definition. The function definition and call must
only contain the same number and type of variables. Functions must be
defined within the program only once, and a definition must exist for
each user-defined function calied in a program.

6.3 SUBROUTINES

Subroutines are used in much the same way as user-défined functions.

Their purpose is to allow the programmer to define a section of the pro-
gram which may be used again and again during program execution to per-
form a desired function. The GOSUB statement is used to call the subrou-
tine. Execution of the program is transferred to the program line speci-
fied in the GOSUB statement. This line is the beginning of the subroutine.
The end of the subroutine is indicated by a RETURN statement. When BASIC
encounters a RETURN statement, it returns to the program statement after
the GOSUB statement. BASIC then goes on with the rest of the program.

59

PolyMorphic Systems BASIC

Example:

>

enter >18 INPUT]1 "GIVE POSITIVE #: ".X
220 IF X>0 THEN GOSUB 209 ELSE 192
>30 REM REST OF PROGRAM
>40 STOP
>50 REM SUBROUTINE NEXT
2280 !'" SQUARE ROOT OF YOQUR"
>2186 !"NUMBER IS: ",SQRT(X)
>228% RETURN
>RUN

output GIVE POSITIVE $: 356 SQUARE ROOT OF YOUR
NUMBER IS: 18.867963
Stop in line 46
>V

Care should be taken that program execution not be aliowed to “fall into"

the subroutine. For example, in the above program, if the STOP statement .
at line 4P is removed, the subroutine is executed twice -- once when cailed

in the GOSUB statement, and once when BASIC moves on to line 22§ from line

3p. This situation results in an error message being generated by BASIC,

since BASIC finds two RETURN statements, but only one GOSUB statement in

the program.
Exampie:
enter >49
>LIST
18 INPUT1 "GIVE POSITIVE #: ",X
28 IF X>0 THEN GOSUB 200 ELSE 149
38 REM REST OF PROGRAM
S6 REM SUBROUTINE NEXT
208 ! SQUARE ROOT OF YOUR"
219 !{"NUMBER IS: ",SQRT(X)
228 RETURN
>RUN

output GIVE POSITIVE #: 569.234 SQUARE ROOT OF YOUR
NUMBER IS: 23.858625
SQUARE ROOT OF YOUR
NUMBER 'IS: 23.858625

228 RETURN

*
RETURN without GOSUR error

>
60

Section 7

STRINGS AND ARRAYS

Two of the more advanced elements of a BASIC program are strings and
arrays. They have been incorporated into one section in this manual
because, in many ways, @ string can be treated in the same manner as
an array. Both strings and arrays consist of a series of elements,
which may be indexed by the use of subscripts.

7.1 ARRAYS

An array is a list of numerical items which may be represented by a le-
gal variable name and indexed by a subscript of that variable. For ex-
ample, the 1ist (1,2,3,4,5) may be represented by. the variable X. The
first item in the 1ist would be referenced by subscript § (written X(2)).
Note that subscripts denoting a position in an array begin with p. The
second item would be referenced by the subscript 1 (X(1)), and so on.

The subscripts may, in turn be represented by a variable (X(I)).

>
>LIST
enter 10 REM PRINT OUT ARRAY IN REVERSE ORDER
20 X(B)=10\X(1)=28\X(2)=3B\X(3)=48\X(4)=58
30 FOR I=4 TO 0 STEP -1
40 PRINT X (1)
580 NEXT
>RUN

Example:

output 5¢

40

30

29

19

>

If an array i1s not assigned a certain length within the program, it is
assumed that it consists of one dimension, and not more than 1P elements.
To reserve more space than this in memory, the dimension statement is
used. This takes the form, DIM<variable array name>{number of items}.
For example, DIM X(59P). An array may be dimensioned only once in a
program. An array may contain more than one dimension. For example,

the following table is a representation of a 2-dimensional array.

61

PolyMorphic Systems BASIC

Array X(I,J): d = i) 1 2 3

1= 9 1 11 12 13
1 1“4 15 16 17
2 18 19 20 21
3 22 23 26 25

The position X(3,2) contains the number 24. A sampie program to print
this array would be:

Example: N

enter >18 DIM X(3,3)
>20 FOR I=f TO 3\FOR J=6 TO 3
>38 READ X({(I,J)\PRINT X(I,J),
>40 NEXT\PRINT
>58 NEXT
>68 DATA 164,11,12,13,14,15,16,17,18
>79 DATA 19,20,21,22,23,24,25
>RUN '

output 16 11 12 13
14 15 16 17
18 19 29 21
22 23 24 25

Although we are not able to represent more than two dimensions in this
matrix form, more than two dimensions may be assigned to an array. The
number of dimensions is limited only by available memory space. Each
item 1in an array takes up five bytes of space.

7.2 STRINGS

A string is a 1ist of characters (such a 1ist may also contain blanks)
surrounded by quotation marks., If you put anything in quotation marks,
BASIC will think it's a string. Quotation marks tell the computer to
reproduce whatever information is contained within the marks. A string
is represented by a string variable, which is any legal variable name,
followed by a dollar sign ($) symbol; such as "Al$."

62

PolyMorphic Systems BASIC

Strings may be dimensioned to a particular length by use of the DIM
statement. Unlike arrays, strings may consist of only one dimension.

If no length is assigned to the string, room is reserved for only 1P
characters (including blanks). Any string consisting of more than 1§
characters is truncated to 1P characters unless a DIM statement is used.
The amount of space reserved by a DIM stafement is limited only by avail-
able memory space.

The dimension statement for a string takes the form, DIM <string variable>
(number of charcters). For example, DIM A$(39), reserves space for 3P
characters on the string A$. A string may be dimensioned only once with-
in a program.

Referencing a stiring element by use of subscripts differs somewhat from
the method used on arrays. When referencing string elements, subscripts
begin at 1: i.e., the first character of string S$ is S$(1,1).

Example: Given string S$:

$$(J) refers to the substring beginning at character position
J through to the end of the string.

$$(J,K) refers to the substring beginning at character position
J through character position K.

S$(J,J) refers to character at position J.

It is possible to concatenate substrings and strings using the additional
symbol, +. If the conbined strings or substrings are larger than allowed
by the program DIM statements, they will be truncated to fit.

Examples: S

enter >10 REM STRING INDEXING
>28 DIM TS$(12)
>38 TS$="TACKY-"
>40 ITS(3)NITS{(2,4)\!T$(3,3)
>50 TS$=TS+TS\ITS
>RUN

output -~-see next page--

63

PolyMorphic Systems
Example (continued}:

output CKY-
ACK
C
TACKY-TACKY-
>

Strings, substrings, and string variables may be used in combination
with LET, READ, DATA, PRINT, IF and INPUT statements. The IF statement
does produce alphabetic comparisons when the relational operators are
used.

>
Example: enter >100 IF 2Z$+B$S<"SMITH" THEN 50
>

When string variables are used in a INPUT statement, the input must not
be surrounded by quotation marks. When strings are found in DATA state-
ments, they must be surrounded by quotation marks.

64

PolyMorphic Systems BASIC

Section 8
THE PLOT FEATURE

The PLOT statement allows the BASIC programmer to use graphics
characters to display data. The statement plots data on the video
screen on a 128 by 48 grid. The "origin” of the display grid is the
Tower Yeft hand corner of the screen, and is addressed as point (2,9).
The X-axis of the grid runs horizontally across the display (left to
right), from P to 127 and the Y-axis of the grid runs vertically up
the display (bottom to top) from g to 47.

To plot data using the PLOT statement, the following form must be used,
PLOT X,Y,Z. The X is any user-selected variable or expression chosen as
the X-coordinate of the plot and Y is the Y-coordinate of the plot. Z is
an arbitrary expression -- it will plot the point as a bright spot if Z
is odd, and as a dark spot if Z is even. The X-coordinate and Y-coordinate _
must reference points which are actually on the display grid -- for this
reason, they must be greater than 9. In addition, X must be less

than or equal to 127, and Y must be less than or equal to 47.

After a point is plotted, the cursor position moves to that point of the
screen. The next PRINT or INPUT statement will then appear at that spot.
This is useful for arranging input prompts on the screen, and for formatting
output text.

For demonstration of the PLOT feature, see Appendix B -- Sample Programs.

PolyMorphic Systems BASIC

Section 9
ERROR MESSAGES GENERATED BY BASIC

If you make an error-using direct statements, BASIC will respond with
a simple error message. If an error is encountered during execution
of the program statements, BASIC will reprint the program line in which
the error occurred and point to the approximate point in the line contain-
ing the error. An error message will also be printed.

>

Example: enter >Y=3* (SQRT (16)+YCLEPT)
output Syntax error
>

enter >10 ¥Y=3*(SQRT(16)+YCLEPT)
>RUN

output 19 Y=3*(SQRT(16)+YCLEPT)

T
Syntax error

> ®

The error messages that you might receive are listed below along with
their possible causes.

9.1 ERROR MESSAGES

Arg mismatch error

Number of arguments in user-defined function definition was not
equal to the number of arguments listed in function call.
Example:

enter >16 DEF FNX(X)=X/160
>28 PRINT FNX(1,2,3)
>RUN

output 2@ PRINT FNX(1,2,3)

1
-Arg mismatch error
Y

66

PolyMorphic Systems BASIC

Bad argument error
May occur if a parameter given to the PLOT function is out of
bounds (for example, if X>127 or Y>47).

Can't continue
BASIC has been asked to continue execution of a program but cannot
do so, either because no program exists, or because the end of the
program has already been reached. BASIC also will not continue
execution if a change is made in the program after an interruption,
or if a CLEAR command has been used. After an interruption, BASIC
indicates that it can continue with a double prompt (>>). If it
cannot continue, BASIC returns after an interruption with a single
prompt {(>}.

Checksum error
A checksum error is the result of a tape loading problem. When
loading BASIC, a question mark may indicate a checksum error. When
loading a BASIC program, a checksum error will be indicated by a
checksum error message. A checksum error indicates either an incor-
rectly loaded program or tape damage of some kind.

Complexity error
An expression is too complex for BASIC to evaluate.

Control stack error
An internal stack has overflowed, possibly through using too many
functions which call upon themselves.

Dimension error
Incorrect dimensioning. For example, redimensioning an array or

string within a program, or using a variable as an argument in a
DIM statement (i.e., DIM X (A)).

67

PoliyMorphic Systems BASIC

Division by zero error
An attempt was made to divide a variable or expression by 8.

Double def error _
An attempt was made to define a user-defined function twice within
on program.

Format error
Several causes, all having to do with incorrect outputting of
data. For instance, a format error may occur if an attempt is made
to print out a number in the F-format in a field of greater than 25
spaces. Usual cause -~ incorrect format string.

FOR-NEXT error
Happens if improper nesting of FOR-NEXT Toops occurs. Other
possiblie causes include incorrect loop index, NEXT variable, STEP
value, loop index initial or terminal value, or mismatched FOR
and NEXT variables.

Function def error
' Attempt was made to use an undefined function.

I11egal direct error
Attempt was made to use a statement not acceptable as a direct
statement. For example: (See section 2.2 -- Direct Statements)

>

enter >GOTO 148

output Illegal direct error
>

Input error--retype
An attempt was made to input a string where a number was asked for,
or vice versa.

68

PolyMorphic Systems BASIC

Length error
The Jast line entered exceeded 64 characters.

Line number error
An attempt was made to reference a non-existent program line.

Memory full error
No more memory space is available. May occur when infinite loop
allowed to run uninterrupted. For example:

>
enter)10 GOSUB 10
>RON

output 18 GOSUB 182
-r
Memory full error
>
Missing NEXT error
There are not enough NEXT statements in the program to match the

FOR statements.

Qut of bounds error
Possible causes include a program l1ine number greater than acceptable
(>65536), or an attempt to dimension an array larger than memory will
hold (DIM X(50pP8}).

Overflow error
An attempt was made to evaluate an expression too large for BASIC to
represent. For exampie:

pd
enter O>PRINT 3*168°64
output Overflow error

READ error >
Not enough data in DATA statement, or data was not in proper form
(constants or variables, depending upon type of variable in READ
statement).
69

PolyMorphic Systems BASIC

RETURN without GOSUB error
A RETURN statement was found without an accompanying GOSUB state-
ment in the program.

Subscript error
An attempt was made to use a nonexistent subscript, or a subscript
larger than allowed by DIM statement. For example:

enter >10 DIM X(5)\!X(28)
>RUN

output 1@ DIM X(SI\tX(28)
. 4
Subscript error

Syntax error >
There are many, many possible causes for syntax error. In general,
a syntax error is a typing error (i.e., PRIMPT X). Incorrect form
of program statements is also a cause (i.e., IF X=0 60TO 202 (no
THEN)).

Type error
An attempt was made to use a string function on a numerical variable
or vice versa. For example, PRINT SQRT (A$), attempts to use a
numerical function on a string variabie.

Verify error
This error may occur when verifying a BASIC tape. The error message
indicates that the tape is invalid: the program in memory has been

changed, the tape has been incorrectly saved, or the tape has been
damaged. '

70

PolyMorphic Systems BASIC

Section 10
OPTIMIZING YOUR BASIC PROGRAM

This section provides some technigues for optimizing BASIC programs;
either making programs more efficient in regard to the time they need
to execute, or in the amount of memory they require. Many of the
techniques described here reduce execution time as well as the amount
of memory used for a program., The sample program at the end of this
section also shows you how to time program execution using the
real-time clock and how to develop these technigues further.

The first technique is the elimination of extraneous program material.
The keyword LET should be removed from any assignment statements, since
it is not needed. Once the program is running correctly, REM statements
may be removed since they take up memory space, and must be skipped

over during program execution, thus increasing execution time. Variable
names should be removed from NEXT statements, since they increase loop
processing overhead.

The second technique is to pack as much on a program line as possib?e;
Placing two statements on the same line, rather than on two separate
lines saves three bytes of memory; each 1ine in memory is composed of
a count byte, two bytes for the line number, the actual program infor-
mation and a carriage return. These four bytes are "traded" for the
statement separator,™ \|", when two lines are compressed.

71

PolyMorphic Systems BASIC .

Redundant or trivial computation should be removed from FOR-NEXT loops,
and from statements that are repeatedly executed. For example, the
expression 63488+5*64 contains all constants, and may be. reduced to the
single constant 638Pp8, eliminating the addition and multiplication as
well as the overhead of converting the string of characters "63488",
"5", and “64" to numeric form for performing the operation. If a
constant such as 63488 is used heavily in the program, it is wise to
assign that constant to a variable for two reasons: it is faster for
BASIC to look up the value of a variable than to convert the string

of characters to a number each time; and if a commonly used number in
the program must be changed, it need only be changed in a single place.

In general, when trying to reduce the amount of memory a program uses,
eliminate everything that is not essential ~-- comments, unneeded blanks, .
etc. When trying to reduce the execution time of a program, first find
out where the program spends most of its time -- rewriting a section

of a program to make it ten times faster will not yield noticeable results
if that section of the program is used only 3% of the time. When the
heavily used sections are identified, optimization can then be accomplished
with some confidence that it will make a positive difference. It should

be noted that an undebugged, untested or fncomp]ete program is not a

good candidate for optimization, since most of the steps outlined above
reduce the ease of comprehension of a program, and increase the diffi-
culty in finding “bugs."

Example: see next page

72

PolyMorphic Systems BASIC

Example: (This example is similar to the sample program TIMER in
Appendix B)

enter

189 REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS
119 REM CALCULATE AVERAGE TIMING OVER'160 SAMPLES.

128 REM FIRST CALCULATE LOOP OVERHEAD FOR 188 ITERATIONS
1390 T=TIME (@)

149 FOR I=1 TO 190

1590 NEXT

162 T=TIME{(l) \ REM TIME FOR 108 ITERATIONS

176 ! "LOOP OVERHEAD IS ABOUT",T/(108%*60)," SEC PER ITERATION"
188 T1=T\ REM SAVE THE OVERHEAD TIME.

198 REM NOW TIME OVERHEAD WHEN WE USE "NEXT I"

209 T=TIME (@)

218 FOR I=1 TO 1060

228 NEXT I

230 T=TIME (1}

249 !"VERSUS",T/(168*68)," SEC PER ITERATION FOR NEXT I"
250 REM NOW TIME A=3040

260 T=TIME(2)

278 FOR I=1 TO 1904

288 A=300

299 NEXT _

398 T=TIME(1)-T1 \ REM SUBTRACT OVERHEAD TO GET STMT TIME
319 1"A=380 TAKES ABOUT",T/(188*60)," SECONDS TO DO."
320 REM NOW SET B=396, DO A=B 180 TIMES.

330 B=360

340 T=TIME(®)

356 FOR I=1 TO 189

368 A=B

378 NEXT

380 T=TIME(1)-T1 \ REM AGAIN, SUBTRACT LOOP OVERHEAD
33¢ t"A=B, FOR B=304, TAKES ABOUT",T/{160*686)," SECONDS."
>RUN

output

LOOP OVERHEAD IS ABOUT .802 SEC PER ITERATION
VERSUS 2.8333333E~-83 SEC PER ITERATION FOR NEXT I
A=3P9 TAKES ABOUT 3.1666667E-83 SECONDS TO DO.

A=B, FOR B=13086, TARES ABOUT 2.8333333E-83 SECONDS.
>

73

PolyMorphic Systems BASIC

Appendix A

LOADING BASIC, AND LOADING AND SAVING A BASIC PROGRAM

I. Using the Superscope C-1@3A. Cassette Recorder

\

STOP/ETECT

REViEW <de——

H MON" p'l ug
goes here

The cassette recorder is used to load BASIC and to save and load a BASIC
program. The volume control should always be set at "8", and the tone
control set at its highest setting, "+5". If the recorder is not powered
by batteries, they should be removed. Whenever the recorder is used, the
cable marked “MON® should be connected to the jack input labeled "ext. sp.".

The cassette recorder has five buttons marked:

record: used simultaneously with the normal speed cue button
(») to record tapes.

review (44): used to rewind tapes.

cue (pb): used to rapidly advance tapes.

cue (Pp): used to advance tapes at the normal play speed; it is
the play button.

stop/eject: used to stop tape or (when pushed in further) to eject
tape.

74

PolyMorphic Systems BASIC

I1. Lloading BASIC from a Cassette Tape

A. Turn on the Poly 88 {or if your machine is aiready on, RESET by
pressing the RESET button).

B. On the back of your Poly 88 machine is a switch marked "Poly/Byte”.
The position of this switch determines the mode of your machine;
“Polyphase"” or "Byte". If your BASIC tape is marked "Polyphase™, make
sure that this switch is in the "Poly" position; if your tape is
marked "Byte", turn the switch to the "Byte" position. '

€. The screen will appear blank except for a small white block at the
upper left hand corner of the screen {the cursor).

y '
' p
BASIC
]
B. Type:

PBASIC {to load BASIC written in "Polyphase" format}, or
BBASIC {to load BASIC written in "Byte" format),
followed by carriage return.

E. Place cassette tape containing BASIC in cassette deck. Rewind tape.
Then push normal speed cue button (P).

F. A message will appear at the top of the monitor screen indicating
which version of BASIC is being loaded (give it a few seconds to appear).
As the tape is loaded, record numbers will appear on the screen along
side the tape name. This will indicate that the tape is being loaded
correctly. (For example, BASIC 99P1).

G. After the tape is loaded, BASIC will respond with a message at the top

75

PolyMorphic Systems BASIC

of the screen, again identifying the BASIC version loaded, and giving
the number of bytes available in memory.

(" Poly 88 BASIC version
AQQ 5664 bytes free
> 1

H. A BASIC prompt will be printed on the screen indicating that BASIC has
finished loading and is ready for your instructions.

Possible Problems

If a question mark appears instead of a record number when the tape is

being loaded, the tape is not being correctly loaded. Several causes:
volume control too low, interrupted tape, checksum error, damaged tape, etc.
Try again with increased volume.

II1. Saving and Loading a BASIC Program

A. Loading a BASIC Program

If you are loading a BASIC program from cassette tape, make sure that
BASIC has already been loaded in your machine. Before loading a BASIC
program, do not hit the reset button on your Poly 88 -- that will
cause it to go to the monitor program. In order to execute BASIC
programs, BASIC must already be loaded in your machine.

We will go through the process of loading a BASIC program using a program
from Appendix B, Sample Programs. These programs have been included on
the cassette tape labeled BASIC Sample Programs. We will assume that you

76

PolyMorphic Systems BASIC

want to run the program named "ROSES".

Place the cassette tape labeled BASIC Sample Programs in the
cassette recorder. Rewind the tape. This tape has been recorded
in "Byte" format. Therefore turn the “Poly/Byte" switch in the
back of your machine to "Byte". (note: a "Byte" tape may be
loaded into your machine even if the BASIC you have loaded into
the Poly 88 is recorded in "Polyphase").

Type:

LOAD,ROSES,B (this program is loaded in "Byte" format. If
the tape had been saved in “Polyphase" format,
you would have typed LOAD,ROSES,P).

Note: a program must be loaded in the same format ("Polyphase" or
"Byte") in which it was saved, and with the same name it was saved
under. This does not mean that the BASIC program must be in the
same format as the BASIC that you have loaded into the machine.

You may run "Byte" BASIC programs on "Polyphase" BASIC and vice
versa, as iong as the "Poly/Byte" switch in the back of the Poly 88
is in the appropriate position for the BASIC program that you are
loading.

Make sure that the only cable connected to the cassette recorder
is the cable labeled "MON" in the jack input labeled "ext. sp.".

Type a carriage return. Depress the normal speed cue button (B).
BASIC will respond with the message "Working...."

In the case of the example above, ROSES, you will see the name

of another program appear on the screen {without record numbers)

before you see ROSES appear. This is the program which is on the
cassette tape before the program that you are asking for, ROSES.

77

PolyMorphic Systems BASIC
BASIC skips over:this program, but gives you its name, so that
you know where you are on the cassette tape.

When BASIC reaches the program that you have asked for, the
name of that program will appear along side its record numbers
as they are loaded from the tape.

After all records of the program have been loaded, BASIC will
display a prompt symbol, >, to indicate that it is ready for
new instructions.

4. If at any time you decide that you'wish to interrupt the process
of loading a program, use of the Control-Y command will return you
to BASIC. Use of the Control-Y command will erase anything in
working memory and clear all variables and strings, so do not use
it if you have anything on the screen you wish to save. To type .
a Control-Y command, hold down the CTRL key and type Y.

B. Running a Program lcaded from Cassette Tape

After a program has been loaded from tape, the program will either go into
regular execution mode or auto-execute mode. If the program has been
recorded in regular execution mode, it will not begin executing until you
type "RUN" and a carriage return after a BASIC prompt; >. If the program
has been saved in auto-execute mode, it will begin executing immediately
after loading without further user input.

1f, after having correctly loaded your program, BASIC responds without a
prompt, >, you know that the program has not been saved in auto-execute
mode and requires a "RUN" and a carriage return after a prompt in order to
execute. To save your programs in auto-execute mode, see C, Saving a
BASIC Program.

78

PolyMorphic Systems BASIC

After you have finished with one program, and wish to load another, you must
type "SCR" after a prompt. This will clear the old program from memory and
ready the memory to receive the new program. You may have only one program
at a time in working memory. Then follow the directions above, specifying
the name of the program you wish.to load. You may interrupt a program at
any time by using the Control-Y command.

Example:

If you loaded ROSES, typed RUN and then a carriage return, ROSES would
begin to run. You then might decide to interrupt its execution by use of
the Control-Y command. After typing SCR, you would then be free to load
another program. In the example, the user wanted to see ATAN, which is
located before ROSES on the tape. After the user gives a Control-Y
command, interrupting the ROSES program, the user must type LOAD,ATAN,B
and a carriage return. Then the user must rewind the tape to the point
at which ATAN begins on the tape. ATAN is the first program on the tape,
so the tape should be rewound to the beginning, and then started forward
again by pressing the (or play button on the recorder)}. Below is a
recreation of what you might see on your screen during this whole process.

>
>L0AD,ROSES,B
Working. ..

ATAN
ATAN
ATAN
ATAN
ATAN
ROSES 999
ROSES pP1
ROSES 992
ROSES P93
ROSES p@4
ROSES

>RUN

(Example continued on following page)

79

PolyMorphic Systems BASIC

SAMPLE PROGRAM ROSES

I WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED
ON THE STARTING NUMBER YQU GIVE ME (>2, PLEASE!).
STARTING N=(Control-Y command used here)

Interruption in line 319

>>SCR
>LO0AD,ATAN,B
Working

ATAN p0p
ATAN 991
ATAN pp2
ATAN 883
ATAN

Possible Problems

“Checksum error" indicates that BASIC is unable to load the cassette »
tape program. This may be the restuit of an attempt to load the

program in the wrong format (for example, to load a "“Byte” program

with the "Poly/Byte” switch in the back of the machine turned to

"Poly"). It may alsc be caused by tape damage, an interrupted tape,

incorrect volume and tone controil settings, a checksum error, etc.

D. Saving a BASIC Program

Once you have c¢reated a BASIC program, you may wish to record--or
save--that program on tape.

1. To save a program, choose a name for your program that is
less than 8 characters long. . For example;. name your
program POETRY.

2. Attach the "BIPHASE" or “BYTE" cable to the jack input
labeled "aux™, depending upon the format you wish to
use for recording your program ("Polyphase* or "Byte").
Remember to set the "Poly/Byte" switch on the back of

80

PolyMorphic Systems BASIC

your Poly 88 to the proper format position.
3. Type:

SAVE,POETRY,P (to save a program in "Polyphase”
format)

SAVE ,POETRY,B (to save a program in "Byte" format)
Do not hit carriage return.

4. Rewind the cassette tape, and push down the record and
play button (v) simultaneously.

5. When the tape leader disappears and the recording tape
appears in the cassette deck window, hit carriage return,

6. BASIC will respond with the message "Working...", and
give the record numbers of the current tape records as
they are recorded on the cassette tape.

7. After the tape has been successfully recorded, BASIC will
respond with a prompt,>, to indicate that it is ready for
new instructions.

8. It is possible to save a program in auto-execute mode.
If saved in this mode, the program will begin executing
immediately after being loaded, without the use of the RUN
command. To save a program in auto-execute form, use
the standard form of the SAVE command (SAVE,NAME,P or B},
but replace the first comma with a semicolon (SAVE;NAME,P
or B).

E. Default Format for SAVE, LOAD and VERIFY

If P or B is not specified in the SAVE, LOAD, or VERIFY commands,
the default format, “Bs#e is used by BASIC. (See Appendix D).

,ﬁ%477¢ﬁ555;

=

81

PolyMorphic Systems BASIC

F. Verifying Your Saved BASIC Programs

Let us say that you have written a program named XANADU. You want to
do something else with your Poly 88 now, so you decide to save the.
program on tape for future use. When you save a BASIC program on
cassette tape, you don't actually transfer it to the cassette tape;
it's merely copied onto the tape from memory. After you save the
program on tape, you still have the original program in memory.

You may wish to check the recorded version against the original
program still in memory to make sure that the recording is gdod.
BASIC provides a way for you to do this; the VERIFY command.

Be careful to use the VERIFY¥ command before any changes are made
to the program still: in memory or before you LOAD another program
(LOAD erases everything in working memory).

Type:

VERIFY,XANADU,P (if the program was saved in "Polyphase”
. format)
* VERIFY,XANADY,B { if the program was saved in "Byte" format),

followed by a carriage return.

Make sure that the "MON" cable is the only cabie attached to the
recarder; once again check the "Poly/Byte" switch on the back of
your machine to see if it is in the proper position for your tape.

With the rewound tape in position in the cassette deck, and the
unmodified program still in memory, type the VERIFY command and
depress the play button (P) on.the.recorder..

If the program read from the tape matches the program in memory
identically, the record.names.and.numbers will appear.on the:screen
as they would for a LOAD command. A prompt symbol should appear

if the tape has been verified.

82

PolyMorphic Systems BASIC

If at any point the program in.the Poly 88's memory does- not match
the program read from the tape, a VERIFY error message will result.
The tape will not verify if the program has not been saved correctly,
if there is tape damage, or.if the original program has been

changed in memory since it was saved on tape.

G. Interrupting Loading or Saving a BASIC Program

A Control-Y command may be used to interrupt saving or 1oadiqg a
program. If used while saving a program, the program on the tape
will probably contain invalid material; if used while loading a
tape, the equivaient of a SCR command is executed, erasing any
program lines, variable values, etc. in working space memory.

83

PolyMorphic Systems BASIC

Appendix B

SAMPLE PROGRAMS

The cassette tape labeled BASIC SAMPLE PROGRAMS contains 10 programs
which demonstrate some of the capabilities of the Poly 88 BASIC. '
These programs of varying complexity are provided in this manual so
that the novice user can load these programs and see the programs

in execution. The programs in this section were contributed either
by R. T. Martin or S. Tytonida; the listings in this section of the
manual were made from the files on the sample program tape. Where
practical, a sample run of the program is included with the Tisting,
although most of the programs rely on the use of the video display.

‘The sample program tape is recorded in "Byte" format. Some of the
programs have been recorded to begin execution automatically, without
further user input after having been loaded. Others require the
user to type RUN after a prompt. To run one of the programs,

follow the directions given in Appendix A for loading programs

from cassette tape. Use one of the program names below.

The names of the 10 sample programs on the tape are:

ATAN
ROSES
ORBIT
PRIMES
RHIST
SORT
CLOCK
NEST
TIMER
FACT

84

PolyMorphic Systems BASIC

Sample Program ATAN

This program was written to demonstrate the use of multi-line functions,
as well as to provide an algorithm for computing the arctangent. The
approximation utilized by this program is from Approximations for
Digital Computers, by Cecil Hastings, Jr., Princeton University Press,
1955. ATAN is organized for clarity, not for computational speed.
Note that in this program, as in all the sample programs, and any
program that is intended for general use, that the user is informed

as to what is desired by the program as input, and then that input

is validated to some extent. This process of explanation and then
validation is central to the difference between a random computer
"program” and a program that is a product.

85

>LIST

162 REM SAMPLE PROGRAM "ATAN"

119 REM DEMONSTRATES MULTI-LINE FUNCTIONS,

128 REM AND GIVES AN EXPANSION FOR FINDING ARC-TANGENT OF
138 REM OF AN ANGLE IN RADIANS

149 1"SAMPLE PROGRAM ATAN"

150 1"GIVE ME A POSITIVE NUMBER, AND I WILL TELL YOU WHAT"
169 {"ANGLE IN RADIANS AND DEGREES IT IS THE TANGENT OF,”
179 !"TO 5 DIGITS OF PRECISION"

180 INPUT “"NUMBER = ",X .

199 IF X=>0 THEN 21@

200 PRINT "MUST BE ZERO OR GREATER, PLEASE!"\GOTO 188

21@ PRINT "THAT'S THE TANGENT OF“,FNT(X),"” RADIANS, OR",
220 PRINT 368*FNT(X)/{2*3.1415926)," DEGREES."

238 GOTO 184

248 REM FUNCTION FOR COMPUTING ARCTANGENT

259 REM SOURCE IS "APPROXIMATIONS FOR DIGITAL COMPUTERS"
268 REM BY CECIL HASTINGS, JR. PUBLISHED BY PRINCETON

272 REM UNIVERSITY PRESS, 1955,

288 DEF FNT(R))

290 S=(R-1)/(R+1) \REM CONVERT THE RANGE

308 T=8\T=.99997726*S5-.33262347*(573)+.19354346*(S"5)

318 T=T-,11643287*(S"7)+.95265332*(5"9)-.0812172128*(S"11)
320 RETURN 3.1415926/4+T

338 FNEND

348 REM NOTE THAT THE COMPUTATION IS NOT OPTIMIZED FOR SPEED,
358 REM BUT TO SHOW THE ALGORITHM AND THE CONSTANTS!

>RUN

SAMPLE PROGRAM ATAN

GIVE ME A POSITIVE NUMBER, AND I WILL TELL YOU WHAT

ANGLE IN RADIANS AND DEGREES IT IS THE TANGENT OF,

TO S5 DIGITS OF PRECISION

NUMBER = 1

THAT'S THE TANGENT OF ,78539815 RADIANS, OR 44.999999 DEGREES.
NUMBER = 1,733

THAT'S THE TANGENT OF 1.08474356 RADIANS, OR 68.913641 DEGREES.
NUMBER =

Interrupted in line 189

>>

86

PolyMorphic Systems BASIC

Sample Program ROSES

This program is a "number cruncher”". A number cruncher is a program
that does an extraordinary amount of computation. ROSES is such a
program. For each point displayed on the screen, two sines and a
cosine must be calculated (Tines 35p-368). If 24K or more memory is
available, these values for sin{t) and cos(t) may be precomputed

and saved in an array, thus eliminating a good portion of the
computation. The number of sample points computed is set as variable
K on line 27Pp (1PP as recorded on the tape). This number may be
increased, increasing the intricacy of the pattern, as well as the
time required to "draw" each curve.

Try values of N larger than 12 (or even 199p), and observe the

results. Try K = 50p and starting N = 83. If you are mathematically

inclined, examine the effect of sampling the rose equation ‘in closed

form. Why is it the case that for N > 1PPP we do not see a solid .
white screen (for K = 5p@8), but instead see some very interesting

patterns?

87

16¢ REM SAMPLE PROGRAM “"ROSES"

112 REM THIS PROGRAM PLOTS ROSES ON THE VIDEO SCREEN.

120 REM THE GENERAL FORM OF THE ROSE, IN POLAR FORM, IS

130 REM R=A*SIN(N*T) WHERE A IS THE MAXIMAL RADIUS, AND

149 REM T IS THE ANGLE THETA, WHICH GOES FROM 8 TO 2*PI

150 REM RADIANS TO GENERATE THE ROSE. TO PLOT THIS FUNCTION

160 REM IN THE CARTESIAN COORDINATE SYSTEM, WE USE THE

178 REM TRANSFORMATIONS X=R*COS(T)+Xl AND Y=R*SIN(T)+Yl,

180 REM WHERE (X1,Yl) IS THE COORDINATES OF THE POINT WE

192 REM WISH TO CALL THE ORIGIN. THIS GIVES US THE EQUATIONS
2809 REM X=63,5+44*SIN(N*T)}*COS (T), Y=23.5+22*SIN(N*T)*SIN(T)
218 REM TO SPEED UP THE COMPUTATION, WE FACTOR QUT THE TERM

229 REM SIN(N*T) TO GIVE THE EQUATIONS SHOWN BELOW. NOTE

230 REM THAT WE ONLY COMPUTE K POINTS ALONG THE CURVE; THIS

240 REM GIVES US AN INTERESTING SAMPLING EFFECT FOR LARGE N.
2590 REM WE INPUT A STARTING N, AND GENERATE ROSES FOR N

260 REM DECREMENTING DOWN TO 2.

278 K=186\REM CHANGE FOR MORE OR LESS POINTS

289 PRINT CHR$(12),"SAMPLE PROGRAM ROSES"

290 {"I WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED"

300 !"ON THE STARTING NUMBER YOU GIVE ME (>2, PLEASE!}."

319 INPUT "STARTING N =",L

320 IF L<2 THEN !*...GREATER TNAH 2, PLEASE!"\GOTO 31¢

330 FOR N=L TO 2 STEP -1

349 PRINT CHRS$(12) ,\PRINT "N =",N\PLOT ©,44,0

3580 FOR T=f TO 2*3,14159 STEP 2*3,14159/K

360 S=SIN(N*T)\X=63,5+44*S*COS{T)\Y=23.5+22*3S*SIN(T)

378 PLOT X,Y,l\NEXT

388 NEXT \ GOTO 274

>RUN

88

PolyMorphic Systems BASIC

Sample Program CQRBIT

The ORBIT program simulates the motion of two massless particles in motion
about a force center. To describe them as "massless" particles is another
way of stating that they do not interact with one another. Theéy interact
only with the force center.

This program was run with the Poly 88 driving an Advent Corporation pro-
Jection television system, producting an image approximately five feet across,
and was quite entertaining.

Try changing the value for D on line 2PP, which controls the accuracy
(step size) of the approximation. Also try altering {slightly, at first)
the initial conditions for the particles, such as the velocity componerits
set by VI, V2 and V3, V4.

This program was written on a visit to the Physics Computer Development ‘I’
Project (PCDP) at the University of California at Irvine. The idea for the

program was suggested by Dr. Richard Ballard, who was interested in seeing

what the Poly 88 would do with another "number cruncher”, such as a very

simple model of motion in a force field. Dr. Ballard described the functions

and they were turned into ORBIT.

ORBIT is dedicated to lsaac Newton, who was able to connect the motion of the
planets, to an apple falling from a tree.

8%

198 REM SAMPLE PROGRAM "ORBIT"

114 REM DEMONSTRATES PLOT FUNCTION IN DISPLAYING THE

120 REM ORBITS OF TWO MASSLESS PARTICLES ABOUT A FORCE CENTER
130 REM SIMPLE 2 BODY ORBITAL KINEMATICS PROGRAM

149 REM KINEMATICS EQUATIONS BY R. BALLARD, PROGRAMMING
150 REM BY R, MARTIN, BASIC UNDERSTANDING AND EXPLANATION
168 REM OF MOTION BY I. NEWTON

165 REM NOTE: ORGANIZED FOR SPEED, NOT EXECUTION!!!

179 PRINT CHR$(12), \ PLOT 0,47,0

18¢ PLOT 50,25,@8\PRINT CHRS(1284+14)\PLOT 0,21,0

199 X1=3\X2=0\V1=98\V2=.5\T=0\D=.1

208 D=_.S\REM CHANGE D FOR MORE OR LESS ACCURACY IN ORBITS
218 X3=2\X4=0\V3=\V4=-.6

226 PLOT H,V,8 \ H=19* (X1+5)\V=5* (X2+5)\PLOT H4,V,1

239 PLOT H1,H2,9\H1=10* (X3+S)\H2=5* (X4+5}\PLOT H1,H2,1
240 X1=X14+V1*D\X2=X2+V2*D\X3=X3+V3I*D\X4=X44+V4*D '
250 S=X1*X1+X2*X2 \ R=SQRT(S)\S=D/(R*S)\V1=V1-S*X1\V2=V2-5*X2
268 S1=X3*X3+X4*X4\R1=SORT{S1)\S1=D/(R1*S1)\V3=V3-S1*X3
278 V4=V4-S1*X4\T=T+D\GOTO 229 ‘

>REM DOES NOT DISPLAY WELL ON HYTYPE!!!!

>

>

>

90

PolyMorphic Systems BASIC

Sample Program PRIMES

This program was originally written to fill1 the need for a program that would
compute continuously .for system testing. It simply computes prime numbers,
displaying the last computed number on the screen. In the calculation itself,
we keep in vector N; a 1ist of up to the first 509 primes to use as trial
divisors in testing a number for being prime. If a number does not have a prime
divisor less than or equal to the square root of the number, it is prime. In
the calculation we use L as a pointer into the 1ist of prime divisors in a
manner which alleviates the need to compute the square root for each new
number. This technique was described by Ira Baxter to R. T. Martin in a con-
versation in 1971. Those interested in prime numbers might look at Volumes 1
and 2 of The Art of Computer Programming by Donald E. Knuth, published by
Addison-Wesley.

91

190
110
12¢
139
149
1506
160
178
180
199
292
210
228
239
249
258
260
270
289
2989
390
314
328
339
340
350
369
378
380
396
1090
410
429
439

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

SAMPLE PROGRAM "PRIMES"

FIND AND PRINT PRIME NUMBERS.

MARCH 1977, S. TYTONIDA

THE LIST N IS USED TO HOLD THE FIRST 560 PRIMES-

IN TESTING TO SEE IF A NUMBER IS PRIME, WE ONLY NEED
TO LOOK FOR FACTORS THAT ARE LESS THAN OR EQUAL TO
THE NUMBER; IN FACT, WE ONLY NEED TO CHECK PRIME
FACTORS LESS THAN OR EQUAL TO THE SQUARE ROOT OF THE
NUMBER. RATHER THAN CALCULATE A SQUARE ROOT EVERY TIME,
WE INSTEAD KEEP A POINTER, L, INTO THE LIST OF PAST
PRIMES, AND BUMP THAT UP AS NEEDED. NOTE THAT WE ONLY
TEST ODD NUMBERS. THE NUMBER WE DISPLAY IN THE MIDDLE
OF THE SCREEN IS THE LATEST PRIME, THE NUMBER AT THE
BOTTOM IS THE CURRENT TEST BOUND, THE RATHER

BAROQUE EXPRESSION (INT(M/N(P))*N(P)-M) GIVES THE

REMAINDER OF DIVIDING THE NUMBER M BY PRIME FACTOR N(P).

REM
REM
REM
REM
REM
REM
REM
REM
REM
DIM

IF THE REMAINDER IS ZERC, THE NUMBER CANNOT BE PRIME.
IF NON-ZERO, WE MUST TEST PRIME FACTORS THRU N({L}.

IF NONE OF THOSE ARE DIVISORS, WE HAVE A NEW PRIME,
AND IF K<568, WE STUFF 1IT ONTO THE LIST. MY THANKS

TO IRA BAXTER FOR EXPLAINING TO ME, MANY MOONS AGO,
WHY YOU DON'T NEED TO CALCULATE SQUARE ROOTS EVERY
TIME, AND TO THE ANCIENT GREEKS THAT DISCOVERED THE
MAGIC AND MADNESS OF PRIME NUMBERS.

REMEMBER: (2719937)-1 IS PRIME!

N(500)

PRINT CHR$(12) ,\PLOT 0,47,8\REM CLEAR SCREEN AND ERASE CURSOR
N(1)=2\ N(2)=3\ N(3)=5

K=2\L=2\M=5

P=1\IF M>N (L) "2 THEN L=L+1\GOTO 390

IF {(INT(M/N(P)})*N{(P)-M)=0 THEN M=M+2\GOTO 39¢

IF P=>L THEN 428 ELSE P=P+1\GOTO 469

E=K+1\IF K<580 THEN N (K)=M

PLOT S$5,23,8\PRINT M," IS PRIME!"\PLOT 6,20,0\M=M+2\GOTO 399

92

PolyMorphic Systems BASIC

Sample Program RHIST .

This program was written to provide some analysis of the random number gen-
erator used in BASIC. It also uses the PLOT feature to produce the histograms
and in positioning the cursor for PRINT statements. We compute the distribu-
tion of the random number generator cumulatively into 100 "buckets,"; the
array A. We then compute the area under this curve, used in determining the
10% points, and the maximum value in a bucket over the set of buckets, which
is used in scaling the histogram bars. This computation is done in lines

19¢ to 23@. We then find the points, or bucket numbers, corresponding to

19% increases in area under the curve.

Note the use of the PLOT statement in line 2780 to position the cursor for the

PRINT statement producing a carriage return at the end of the line. As an
optimization, we do not reprint one of these “decile points" unless it has changed.
The remainder of the program is responsible for updating the histogram bars, and

the scating of the display. Line 370 computes t\he scaled height of the hist- .
ogram bar, and then we will shrink it, grow it or leave it alone, depending on

what is needed. The long-term behavior of a good random {pseudo-random) number
generator should produce a relatively flat histogram, and the decile points

along the right edge of the screen should be multipies of 18, from 12 to 1080.

For more analysis of random number generators, see Voiume II of The Art of
Computing Programming by Donald E. Knuth; chapter three of this book is devoted
entirely to random numbers, pseudo-random numbers, and methods of testing and
generating them. The random number generator used in BASIC was provided by

Eric Rawson.

93

199
1148
120
132
149
150
1680
178
189
199
200
219
229
238
240
259
268
278
280
299
3g8
31¢
329
330
349
350
3680
378
388
398
499
410
420
430

REM SAMPLE PROGRAM ®"RHIST"

REM USES THE PLOT FUNCTION AND PRODUCES A HISTOGRAM

REM SHOWING THE DISTRIBUTION OF THE RANDOM NUMBER

REM GENERATOR, AND PERCENTAGE DISTRIBUTIONS

DIM A(108),Y(1608),0(198) -

PRINT CHRS$(12),\PLOT 0,47,8\REM CLEAR THE SCREEN

N=10¢ \ S=160 \ REM N IS THE SAMPLE SIZE, S IS TOTAL SAMPLES
FOR I=1 TO 188\Y(I)=7\NEXT\REM INITIALIZE HISTO BARS
PLOT 121,43,8\PRINT "$3%"\PLOT #,40,8\REM PRINT DIST. HEADER
FOR I=1 TO N\K=INT (188*RND(8))+1\A(K)=A(K)+1\NEXT
H=-3\M=0\ REM H IS HIGHEST # SEEN, M=SUM

REM COMPUTE SUM (AREA UNDER CURVE) AND FIND HIGH VALUE
FOR I=1 TO N\M=M+A(I)\IF A(I)>H THEN H=A(I)

NEXT

F=,1\G=8\J=1\REM PUT UP DECILE (%%8%) POINTS

FOR I=1 TO N\G=G+A (I)\IF G<F*M THEN 298

IF Q(J)=1 THEN 288\REM THE VALUE HAS NOT CHANGED

PLOT 118,3*J+18,0\PRINT I\PLOT #,3*J+7,0\REM PRINT POINT
0(3)=I\J=J+1\F=F+.1

NEXT

PLOT #,3,0\PRINT "N =",S," MAX =",H\PLOT 0,9,0

REM NOW PLOT BARS. NOTE THAT WE SCALE, SO THAT THE

REM LARGEST BAR IS 39 HIGH., X=2+I+INT((I-1)/18)

REM GENERATES A BLANK SPOT EVERY 18 TO AID IN COUNTING
REM THE BARS ON THE SCREEN.

REM WE SEE IF A BAR HAS CHANGED, HAS GROWN, OR WHAT, AND
REM DO THE RIGHT THING FOR EACH CASE TO OPTIMIZE OUR DRAWING.
FOR I=1 TO 160\V=7+INT(39*A(I)/H)\X=2+I+INT((I~1)/18)

IF V=Y (I) THEN 428

IF V<Y(I) THEN 410

FOR J=Y(I) TO VA\PLOT X,J,1\NEXT\GOTO 428

FOR J=Y(I) TO V STEP -1\PLOT X,J,@\NEXT

Y (I)=V\NEXT

S=S+N\GOTO 19¢

>REM ANOTHER PROGRAM THAT DOES NOT DO WELL ON THE HYTYPE....

VVVVVVYV

94

PolyMorphic Systems

Sample Program SORT

Sort was written to demonstrate two differing methods of sorting, and the
relative efficiencies involved in each. Sort also demonstrates the utility
of a small, personal computer with the right balance of software features in
computer science education. One of the authors (Martin) feels he learned
more about sorting algorithms and algorithmic analysis by sitting down with
Vol. I1I of Knuth and the Poly 88, and building sorting algorithms and test-
ing them than he did in one three-month academic quarter of formal classes.

This program aiso demonstrates the use of PEEK and POKE for examining and
modifying memory locations, especially the video board memory, and the use
of the TIME function for timing processes.

The interested user is directed to Volume III of The Art of Computer Programming,
by Doanid Knuth, which is devoted entirely to sorting and serching, rather than
volumes I or II. .

95

198
110
1208
130
148
1508
160
1790
180
199
200
219
220
230
240
258
260
278
28¢
299
399
319
329
339
340
359
360
379
380
383
399
408
418
429
43¢0
449
450
469
470
489
490
599
510
528
539
540
559
569
578
.580
599
688
616

REM SAMPLE PROGRAM "“SORT"

REM THIS PROGRAM USES THE PEEK AND POKE PUNCTIONS TO

REM MANIPULATE THE CONTENTS OF THE VIDEO BOARD, AND

REM MORE IMPORTANT, DEMONSTRATES TWO TECHNIQUES OF

REM SORTING INFORMATION: THE VENERABLE BUBBLE SORT,

REM AND THE SIMPLE, BUT VASTLY SUPERIOR “SHELL"™ SORT.
2=RND (TIME(1) /65536)\REM RANDOMIZE....

DIM P(256)\REM HOLDS STUFF TO SORT

DIM H(19)\ REM HOLDS INCREMENTS USED BY SHELL SORT

REM CALCULATE INCREMENTS FOR SHELL SORT ALGORITEM

H=4\FOR I=1 TO 16\H(I)=H\H=3*H+1\NEXT

GOSUB 419\REM GENERATE LIST OF STUFF TO SORT

PRINT CHR$(12),\INPUT "HOW MANY THINGS TO SORT (2-256)2?",N
IF (N>256) OR (N<2) THEN 229\ REM FILTER ANSWER

PRINT "WHICH SORT DO YOU WANT TO USE:"

PRINT " 1 BUBBLE SORT"

PRINT " 2 SHELL SORT"

INPUT"1 FOR BUBBLE, 2 FOR SHELL : “,M

IF (M<>1) AND (M<>2) THEN 279\REM FILTER ANSWER

INPUT "DO YOU WANT THE SAME TEST PATTERN (Y OR N)?2%,AS$

IF AS="N" THEN GOSUB 416\GOTC 328 -

IF AS<O"Y" THEN 294

0=63487\ REM SCREEN ORIGIN (F802 HEX) -1

PRINT CHR$(12),\PLOT 9,47,P2\REM CLEAR THE SCREEN

FOR I=1 TO N\POKE I+0,P(I)\NEXT\REM FILL SCREEN WITH CRUD
S=TIME (8)\W=8\REM TIME AND NUMBER OF SWAPS

ON M GOTO 446,520 ,

PLOT ©,12,8\PRINT "SORTED ",N," THINGS IN",W," SWAPS, AND",
PRINT TIME(l)/68," SECONDS."

INPUT "TRY AGAIN (Y OR N)?",AS\IF AS="Y" THEN 229

IF AS<>"N" THEN 385

STOP\GOTO 220\REM GOTO SO THAT 'CON' WILL CONTINUE PROGRAM.
REM GENERATE NEW PATTERN IN P

PRINT "THINKING...."

FOR I=1 TO 256\P(I)=128+127*RND (8)\NEXT\RETURN

REM BUBBLE SORT. WE WANDER DOWN THE LIST, LOORING FOR
REM TWO ELEMENTS OQUT OF ORDER, AND SWAP 'EM WHEN WE FIND EM.
S=TIME (@)

K=N

FP=8\FOR I=0+1 TO 0O+K-1

L=PEEK (I)\M=PEER(I+1)\IF L<=M THEN 510

F=1\POKE I+l,L\POKE I,M\W=W+1

NEXT\K=K-1\IF F=0 THEN 379 ELSE 4849

REM SHELL SORT. THIS IS FROM KNUTH VOLUME 3, ALGORITHM D.
S=TIME (8)\W=0

FOR Q=1 TO S\IF H(Q+1)>N THEN EXIT 560

NEXT

FOR J=Q TO 1 STEP -1

F=8\HB=H{(J)\FOR I=0+1 TO O+N-H

L=PEEK (I)}\M=PEEK(I+H)\IF L<=M THEN 608¢

F=1\POKE I,M\POKE I+H,L\W=W+1l

NEXT\IF F>0 THEN 570

NEXT\GOTO 479\REM FINISH WITH BUBBLE

96

PolyMorphic Systems BASIC

Sample Program CLOCK -

This program demonstrates the real-time clock function available in BASIC.
It also uses formatted print in displaying the time (lines 267 and 49p),
PEEK, POKE, and OUT. Without redevelopment, CLOCK turns the POLY 88 into
a very expensive, and inaccurate clock. After the program was written; it
was determined that it was not very accurate, loosing two or three minutes
an hour. Solve the probiem of this inaccuracy, and in so doing you will
learn about utilization of the time function. It is also a simple matter
to modify the program to display every second.

97

-
>

>LIST

198 REM SAMPLE PROGRAM "CLOCK"

116 REM THIS PROGRAM DEMONSTRATES THE USE OF THE REAL TIME
120 REM CLOCK AVAILABLE THROUGH THE BASIC "TIME"™ FUNCTION
1380 REM IF YOU HAVE AN Al CYBERNETICS MODEL 1009 SPEECH

149 REM SYNTHESIZER AT QUTPUT PORT 254, IT WILL GENERATE
150 REM "TICK-TOCK" NOISES....

160 REM WRITTEN MARCH 1977 S. TYTONIDA

178 PRINT CHR$(12),"SAMPLE PROGRAM CLOCK"

1880 PRINT "AFTER YOU GIVE ME THE CURRENT TIME IN HOURS AND"
192 PRINT "MINUTES, I WILL BE A CLOCK!"

280 INPUT "WHAT HOUR IS IT (8-23)72",H

210 H=INT(B)\IF (H<@) OR (H>23) THEN 288

220 INPUT "WHAT MINUTE DO I START WITH (0-59)7?",M

238 M=INT(M}\IF (M<@8) OR (M>S59) THEN 228

249 S=0 \ REM SECONDS COUNTER

259 PRINT " WHEN YOU HIT RETURN, I WILL START BEING A CLOCK AT"
260 PRINT %2I,H,":",M,":",8," O'CLOCK", '

278 INPUT *(HIT RETURN TO START)",AS

288 PRINT CHR$(12),\PLOT 9,47,8

298 K=43 \\ REM '"TICK' FOR Al CYBERNETICS BOARD

398 W=220\ REM SYMBOL FOR THE CLOCK

3190 0=63488+32+8*64\ REM IN THE MIDDLE OF THE SCREEN

320 Z=TIME(@)

338 IF TIME(1)<60 THEN 330

348 IF K=43 THEN K=47 ELSE K=43

350 IF W=220 THEN W=175 ELSE W=220

3680 OUT 254,K\POKE O,W\OUT 254,0

370 S=S+1\IF S<>6@ THEN 328 ELSE S=8

3840 M=M+1I\IF M<>68 THEN 40¢

399 M=9\H=H+1\1IF H=24 THEN H=0

496 PLOT 6,47,9\PRINT %2I,H,":",M,":",S\PLOT @,43,08\G0T0 322
>

>

>REM NOT VERY INTERESTING ON A HYTYPE!!!

VoV VWV Y

98

>

Polymorphic Systems BASIC

Sample Program NEST

This is a very bizarre program. It was thought up and written while
preparing this manual. The question came up, "Ne11; Just how many FOR-
NEXT's can you nest in a 16K machine?” This program provides the
answer. Basically, it uses the OUT @ feature of BASIC that allows
characters to be put in BASIC's input buffer to write a program. The
function on lines 239 to 26§, when catled with a string argument,

places this string followed by a carriage return into the input buffer.
The problem with having a program add statements to itself is that

once the new statement is entered, execution of the program may not be
continued: it must be completely restarted. For this reason we must
devise some means of keeping track of our progress in the task of adding
statements to the program. On each iteration through the process, we
need to generate a FOR statement, and its accompanying NEXT, and then
the command RUN to start the process over. We keep track of the line
number we generated in the variable L, the letter of the alphabet we

are generating FOR statements with in I, and the number following the
variable in the variable J. The key to the process may be seen in

1ine 15@; in this line we produce a NEW Tine 110, with the updated
values for L, I, and J. In this manner we can retain some memory of

the program's last "life" in its new incarnation. Lines 1#9 through
189 generate a new line 119, the FOR and NEXT statements, and the RUN
command in the input buffer, and then the program stops. When this
happens, BASIC reads from its buffer, gobbling up the characters we have
placed there. When we generate the desired number of FOR-NEXT pairs,
controlled by the check on 1 in 1ine 1489, we go to the second part of the
program, startinglat line 198. 1t is the purpose of this part of the
program to DELETE the first part of the program,:-delete itself, generate
a PRINT statement at line 5@¢9f, and then run the constructed program, which
consists of FOR-NEXT statements, and one PRINT. If you run this program
and examine the line number-on- the:last FOR statement, you can get the
answer to the question, "How many FOR-NEXT loops can we nest?”

>LIST
b

189

DIM S$5(58),A$(11),BS(26)

116L= 1936\I= 4\J= 4

12¢
138
148
158
1690
170
189
199
195
298
218
228
230
2408
2508
260
>

>

AS=" 0123456789"\B$="ABCDEFGRIJKLMNOPQRSTUVWXYZ"
L=L+1\J=J+1\1IF J=12 THEN J=1\I=I+1

IF I=12 THEN 198

Z=FNS ("118L="+STRS$ (L) +"\I="+STRS (I) +"\JI="+STR$ (J))
Z=FNS (STR$ (L) +"FOR "“+B$ (I,I)+AS$(J,J)+"=1 TO 1")
L=9999-L\Z=FNS (STRS (L) +"NEXT "+B$(I,I)+AS$(J,J})

Z=FNS ("RUN")}\STCP

Z=FNS("110GOTO208G")\FOR I=120 TO 178 STEP 18\Z=FNS(STRS$(I})
NEXT\GOTO 184

Z=FNS("100")+FNS ("200")+FNS("190")+FNS("210")+FNS("228")
Z=PNS("5000!"+CHRS (34)+"!"+CHRS (34)) +FNS("238") +FNS("268")
Z=FNS("188")}+FNS("110")+FNS("248"}+FNS("258")\GOTO 1840
DEF FPNS(S$)}

S$=S$+CHRS (13)

FOR S8l1l=1 TO LEN(S$)\OUT 8,ASC(S$(S1,51)) \NEXT\RETURN @
FNEND .

>REM WARNING: CLOSE EXAMINATION OF THIS PROGRAM MAY BE
>REM HAZARDOUS TO YOUR MENTAL STATE! (S. TYTONIDA)

>
>

y

100

PolyMorphic Systems BASIC

Sample Program TIMER | ' .

This program was included to allow the user to time statements (as described

in section 1P of this manual), to demonstrate the use of the TIME function,

and to show that saying NEXT I is indeed slower in resulting program exectuion
than saying simple NEXT. Because even the relatively slow 8980 processor,

and BASIC can execute statements much faster than the 6 ticks per second will
allow us to time directly, we must time a known number of these operations, and
calculate the individual times from that. Any software timing process we can
accomplish in BASIC, involves the introduction of overhead*, so we must
measure that overhead and factor it out of the timings we generate. This is
the reason we average over 19f samples, and it should be clear why we would
want to use a larger number, say 1908, for the number of operations to time.

In the timer program shown, how accurate, and repeatabie are the results? 1If
averaging over 1009 samples is better than 100, wouldn't one million samples be
better? How much better?

* QOverhead time is time taken up by accomplishing things other than that
which want to time.

101

-

>

>LIST

12 REM SAMPLE PROGRAM TIMER

20 REM THIS PROGRAM ALSO APPEARS AT THE END OF SECTION 18 OF
3@ REM THE BASIC MAIUAL, (S. TYTONIDA, MARCH 1877)

160
119
128
138
1449
150
l68
178
189

REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS
REM CALCULATE AVERAGE TIMING OVER 188 SAMPLES.
REM FIRST CALCULATE LOOP OVERHEAD FOR 188 ITERATIONS

T=TIME (8}

FOR I=1 TO 16¢

NEXT

T=TIME(1) \ REM TIME FOR 1906 ITERATIONS OF FOR-NEXT

'"LOOP OVERHEAD IS ABOUT",T/(108*68)," SEC PER ITERATION"
T1=T \ REM SAVE THAT OVERHEAD NUMBER

199 REM NOW TIME OVERHEAD WHEN WE USE “"NEXT I*

200 T=TIME(Q)

210 FOR I=1 TO 189

228 NEXT 1

2380 T=TIME (1} :

246 1"VERSUS",T/(1060%*68)," SEC PER ITERATION FOR NEXT I"
250 REM NOW TIME A=300

268 T=TIME(@)

276 FOR I=1 TO 100

280 A=380

298¢ NEXT

3e8 T=TIME(1)-T1 \ REM SUBTRACT LOOP OVERHEAD

319 t"a=399 TAKES ABOUT",T/(166*69)," SECONDS TO DO."
329 REM NOW SET B=360 AND TIME A=B

338 B=390)

340 T=TIME(B)

354 FOR I=1 TO 189

362 A=B

370 NEXT

388 T=TIME(1)-T1 \ REM AGAIN, SUBTRACT OVERHEAD

398 1"A=B, FOR B=360, TAKES ABOUT",T/(108*68)," SECONDS."
>RUN

LOOP OVERHEAD IS ABOUT .#82 SEC PER ITERATION
VERSUS 2.6666667E~83 SEC PER ITERATION FOR NEXT I
A=300 TAKES ABOUT 3.1666667E~83 SECONDS TO DO.

A=B,

>

FOR B=308, TAKES ABOUT 2.6666667E-83 SECONDS.

>REM YOU CAN INSERT YOUR FAVORITE EXPRESSION IN LINE 369,
>REM AND SEE HOW LONG IT TAKES TO EXECUTE....BON APETIT...

>

>
>
>

102

PolyMorphic Systems BASIC

Samplie Program FACT

FACT demonstrates multi-line finctions. The definition for the fac-
torial function occurs on lines 269 to 28f. What happens when we call
the function with the argument 1?7 With 2? With an argument greater
than one, the function calls itself, saying, in effect; "I can return
the factorial of three, if you give me the factorial of two". For an
arbitrary number, this calling itself, or recursion, continues until
the function is called with 1 as the argument, in which case it returns
1 to whomever caliled it,etc.

The notion of building the solution to a large problem by finding the
solution to a simpler one is a very important idea in the use of
computers. In fact, the idea of recursion is, to some extent, a more
powerful tool in problem solving than the idea of loops, or iteration.
With it we can build solutions to larger problems by building programs

that break the problem down into smaller pieces that are easier to solve.

But why the 177 The 17 appears because BASIC is not very efficient at
accomplishing recursive functions, and one internal element of BASIC,
called the "control stack",is rather small. With numbers larger than

17?7 Why don’'t you change line 2p9 of the program and find out?

143

>

>LIST

162 REM SAMPLE PROGRAM “FACT"

112 REM THIS PROGRAM DEMONSTRATES RECURSIVE USE OF

1280 REM MULTILINE FUNCTIONS IN FINDING FACTORIALS FOR
138 REM SMALL INTEGERS. (S. TYTONIDA, MARCH 1977)

14¢ !"SAMPLE PROGRAM FACT"

158 !"GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL"
164 !™"TELL YOU ITS FACTORIAL."

1796 !" (TYPE CONTROL-Y TO STOP)"

180 INPUT "NUMBER IS ? *,X

192 IF (X-INT(X))}<>0 THEN 158 \ REM NOT AN INTEGER

209 IF X>16 THEN 158 \ REM TOO BIG

218 IF X<# THEN !X," FACTORIAL IS UNDEFINED!"\GOTO lBﬂ
228 !X," FACTORIAL IS",FNN(X)\GOTO 188

230 REM DEFINITION OF FACTORIAL. NOTE THAT THE FUNCTION
240 REM CALLS ITSELF. THIS IS AN EXAMPLE OF A RECURSIVE
250 REM FUNCTION. WE LIMIT TO <17 BBCAUSE OF STACK SIZE...
260 DEF FNN({N)

279 IF N<2 THEN RETURN 1 ELSE RETURN N*FNN (N-1)

28f FNEND

>RUN

SAMPLE PROGRAM FACT
GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL.
TELL YOU IT5 FACTORIAL.
(TYPE CONTROL-Y TO STOP)
NUMBER IS ? 7

7 FACTORIAL IS 5940
NUMBER IS ? -3

-3 FACTORIAL IS UNDEFINED!
NUMBER IS ? 2.2
GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL
TELL YOU ITS FACTORIAL.
{TYPE CONTROL=-Y TO STOP}
NUMBER IS 2?2 9

3 FACTORIAL IS 362889
NUMBER IS ?

Interrupted in line 189

b

>>

>>

>>

b

104

Polymorphic Systems BASIC

Appendix C

THE- BASIC CHARACTER SET

All characters and symbols in BASIC are stored in the machine as numbers
(the ASCII code). The following 1ist contains all of the characters in
BASIC and their ASCII code in decimal representation. To print any
character, type PRINT CHR$(the decimal number as given next to the desired
character below).

Example:

enter >LIST
16 PRINT TAR(1l0),CHRS(66),CHRS$(32),CHRS(65),
2@ PRINT CHRS$ (32) ,CHRS$ (83) ,CHR$(32),CHR$ (73},
39 PRINT CHRS$ (32),CHR$(67),CHR$(13),TAB(11),
48 PRINT CHRS$ (33),CHR$(32),CHR$(33),CHRS ({32),CHRS (33)
>RUN

output BASIC

, 11 , | ®

Control Characters

L - P DCl -- 17
SOH -- 1 DC2 -- 18
STX -- 2 DC3 -- 19
ETX -- 3 DC4 -- 29
EOT -- 4 NAK -- 21
ENQ -- 5 SYN -- 22
ACK -- 6 ETB -- 23
BEL -- 7 CAN -- 24
BS -- 8 EM -- 25
HT - 9 SUB -- 26
LF -- 1p ESC -- 27
VT -- 11 FS -- 28
FF —- 12 GS -- 29
CR == 13 RS -- 3p
SO -- 14 us -- 31
SI -- 15 SP -~ 32
DLF -- 16 DEL -- 127

105

BASIC

PolyMorphic Systems

Numbers and Letters of the Alphabet

86

48
49
50

87

88

51

52

53

5
6
7

54
85
56

199
191

8
9

A

57
65
66
67

192
193
194

f

B
c

h

195
196
197

1‘
J

68

D
E

69
79

E
G
H

198
199

1

71

72

110
111

73
74
75
76
77

1
J

)

112
113
114

K

q
r

L
M

115

s

78
79
89
81

N
0
p
Q

116
117

u

118

119.

w.

R -- 82

S
T

129
121

83

84
—-- 85

122

U .

106

PolyMorphic Systems BASIC

Special Symbols

! -- 33 ? -- 63
" - 34 @ -- 64
-- 35 [-- 91
$4 - 36 A\ - g2
% -- 37] -- 93
& -- 38 ~ .- 94
' - 39 — - 95
(-- 49 S -- 96
) - 4 { -- 123
* e 42 : -~ 124
+ -- 43 S} -- 125
- -- 484 v o-- 126
- == 45 ~— == 153
. -~ 48 > =~ 154
/ -- 47 « -- 155 D
-- 58 + -- 156
-~ 59 + -~- 157
< - 6P T -- 158
= .- 61 A -- 159
> -~ 62
Greek Letters
a -- 128 B —- 129 Y -- 130
§ -- 131 € -- 132 z -- 133
M - 134 © -- 135 v -~ 136
K -= 137 A -~ 138 u -~ 139
v == 140 E -- 141 o -- 142
T -~ 143 p -- 144 o -- 145
T - 146 v o-- 147 ¢ -- 148
X =- 149 ¥ ~-- 150 w =-- 151 .
Q -- 152

107

Appendix D

8p89 MACHINE LANGUAGE INTERFACE

This section is written for those who understand 8@8p machine language
and wish to interface assembly language programs with Poly 88 BASIC.
It will also be of help to those who wish to change the defaults for
certain features in Poly 88 BASIC., For both these purposes, an under-
standing of the Poly 88 front panel mode of operation, for examining
and modifying memory Jocations is assumed.

D.1 Default modes and flags

The following items are default values present in Poly 88 BASIC’
version APP at the (Hexadecimal) locations shown:

Location Contents Description

20p6 1A Character code that when detected, causes entry
to the Poly 88 front panel. The default as
shown is a control-Z. This byte may be changed
to another ASCII character code to change the
front panel entry code, or to PP to disailow
entry to the front panel from BASIC.

2007 19 Interrupt character code for BASIC. Default
is control-Y.

2908 42 Default mode for writing cassette tapes. The
default is the character code "B," for byte.
This may be changed to 5§ (ASCII "P") to make
the default mode Polyphase. Any other contents
of this location will result in a syntax or
other error when the default format is used in a
tape command.

2009 3E This is the ASCII character used by BASIC as the
prompt. If this byte is changed to §p, BASIC
will not prompt the user at the line entry or
program continuation level.

2p5D-E FF 49 Address 49FF is the end of BASIC.

2p60-1 - FF 4F Address 4FFF is the starting address used
in searching for the end of memory.

D.2 Changing memory ‘limits,. installing assembly language routines

An example of the proper method for installing assembly language interfaces to
BASIC is given in the documentation for BPRINT, the printer driver for Poly 88
BASIC. The assembly language program should be written to load at address -

108

PolyMorphic Systems BASIC

4APpP, past the end of BASIC. The program, in its initialization section, shou]d.
modify locations 2p5D-E, and 2060-1 in BASIC. to set up memory timits. Locations
2p5D-E should be set to point after the end of the assembly language routine

and any of its resident data. The address stored in 2P5D-E will be used as the
beginning of BASIC data and program storage. If this address is above 4FFF,
Jocation 2P6Q-1 must be changed to one plus the contents of 2@5D-E, the beginning
location used in scanning for the end of memory that BASIC will use. In this man-
ner, the assembly language routine modifies BASIC in such a way that it exists
immediately following BASIC, and before BASIC program and data storage.

D.3 CALL interface

The CALL function is used to invoke assembly language routine. The format is
~either CALL (addr,val) or CALL {addr) where both addr and val are expressions

that must evaluate to @<=addr<=65535 and P<=val, <=65535. The expression shown as
"addr" is the address of the subroutine to be called. If "val" is present, it is
passed to the subroutine in register pair HL. When the subroutine exits by .
issuing a RET, or conditional.return instruction, the value present in register
pair HL will be converted to an integer and passed to the BASIC program as the
value of the call. ‘

D.4 Memory examination and modifiéation —-PéEK and PQKE

NOTE: modification by use of the POKE statement of areas of memory containing
BASIC, BASIC programs or data, or the system core may result in anamalous program
behayior, possibly resulting in the loss of the program and/or its data.

The PEEK function takes the form PEEK addr, val where addr is an expression
evaluating to the range f<=addr<=65535 as a memory address, and returns the inte-
ger contents of that memory Tocation Using PEEK on areas of the address space

not populated with memory may give anomalous, possibly non-repetitive results.

The POKE statement takes the form POKE addr, val where addr is an expression
evajuating to the range P<=addr<=65535 for the memory address to modify, and
P<=val<=255 for the 8 bit quantity to store at that address. As noted above, .

caution should be exercised in the use of the POKE statement.

109

PolyMorphic Systems BASIC

D.5 - 8p8Q IN and OUT

8980 IN and OUT functions may be performed through BASIC using the INP function
and the OUT statement, respectively. The format of the INP function is INP (port),
where P<=port<=255 is the port address. INP(port) returns as an. integer the 8 bit
status resulting from an IN instruction to the desired port. Note that INP(9)
through INP(31) are reserved for system use, and that INP of an undefined port may
give anomalous results. The format of the OUT statement is OUT port,val where
p<=port<=255 is the 8p8P port address as in INP above, and val is the 8 bit value
P<=val<=255 that is sent to the specified post. Note that ports P-31 (decimal)
are reserved for system use, and that issuing an OUT to a system controlled

device or port may result in anomaious bahaviour, possibly resulting in the loss
of the program and/or its data.

D.6 INP(P}, INP(1), ;NP(Z), and OUT 9

The calls to INP with port addresses $-2 return data regarding the type-ahead..
INP(P) returns the status of the type-aheéd buffer; B if the buffer is empty, and
8 if there is at least one character in the input buffer. INP(1) returns

the next character as an integer {(ASCII) value, without echoing it to the screen,
and INP(2) returns the next character as an integer and echoes the character

to the screen. The statement OUT @, val places the ASCII character with integer
value val into the input buffer. It should be noted that the attempt to place
characters into the input buffer when it is full will be ignored. Printing a
control-~X character will flush the input type-ahead buffer.

D. 7 Re-entering BASIC from Front Panel Display

To reenter BASIC from the front panel display, type: SPJ2PPP for "cold
start” (BASIC assumes there is no program in effect}; type SPJ2P@3 for
“warm start" (BASIC assumes there is a program in the machine); and type
SPJ49CH to “warm start" from "B-print" {(Printer Driver”.)} Then type
carriage return and "G" to return to BASIC. The above operations set
the program counter to the specified address.

110

PolyMorphic Systems BASIC

Example:

enter: 189 REM THIS PROGRAM USES OUT 8 TO LIST AND SCRATCH
118 REM ITSELF....
129 REM ALSO DEMONSTRATES USE OF MULTILINE FUNCTIONS
139 REM AND DUMMY ARGUMENTS.
140 Z=FNI("LIST")+FNI{("SCR")
158 STOP
168 REM FUNCTION TO STUFF STRING INTO INPUT BUFFER
176 REM FOLLOWED BY A CARRIAGE RETURN.
182 DEF FNI (S§)
19¢ FOR I=1 TO LEN(SS$)\C=ASC(SS$(I,I})\OUT ﬂ CA\NEXT
260 OUT @,13\RETURN ¢
21@ FNEND
>RUN

Stop in line 15¢

>>LIST

102 REM THIS PROGRAM USES OUT € TO LIST AND SCRATCH
112 REM ITSELF....

129 REM ALSO DEMONSTRATES USE OF MULTILINE FUNCTIONS
132 REM AND DUMMY ARGUMENTS.

149 Z=FNI("LIST")}+FNI("SCR"}

15¢ sSTOP .
168 REM FUNCTION TO STUFF STRING INTO INPUT BUFFER

176 REM FOLLOWED BY A CARRIAGE RETURN.

1880 DEF FNI({S5$)

192 FOR I=1 TO LEN(S$)\C=ASC(SS(I,.I}))\oUuT 0,C\NEXT

200 OUT 8,13\RETURN @

212 FNEND

>»8CR

>LI1IST

>

>

111

PolyMorphic Systems BASIC

Appendix E: COMMANDS, FUNCTIONS AND KEYWORDS RECOGNIZED BY BASIC.

Next to each entry are the page numbers that refer to the manual location
where information about the item may be found.

AND, 11 LOAD, 77
CLEAR, 25 NEXT, 41

CON {continue), 23 NOT, 11
Control-W, 8 | ON, 45
Controil-X, B OR, 11
Control-Y, 8, 23, 83 PLOT, 65

DATA, 28 PRINT, 32, 33
DIM (dimension), 61, 63 READ, 29

DEF (define function), 58 REM (remark), 26
ELSE, 48 REN, 21

EXIT, 49 RESTORE, 30

FN {function name), 58 RETURN, 59, 59
FNEND (function end), 58 RUN, 22

FOR, 40 SAVE, 81
G0SuUB, 59 ‘SCR (scratch), 25
GOTO, 45 STEP, 41

IF, 47 sTop, 27
INPUT, 28 TAB, 35
INPUT1, 28 THEN, 47

LET, 27 70, 40

LIST, 19

INTRINSIC FUNCTIONS, 52

YERIFY, 82

ABS, 53 INT, 53 SGN, 53
ASC, 57 LEN, 56 SIN, 53
CHR$, 57 LOG, 52 SQRT, 52
cos, 52 QuT, 56, 110 STR$, 57
EXP, 52 PEEK, 56, 109 TIME, 55
FREE, 56 POKE, 56, 109° VAL, &7

INP, 31, 55, 110

RND, 53

112

FULYrITpNnIC JYSTEms BASIL

APPENDIX F:

CONFIGURING THE NORTH STAR FLOATING POINT CARD

PolyMorphic Systems provides several versions of BASIC that can
be used with the floating point arithmetic processor card avail-
able from North Star Computers, Inc., If your version of BASIC

is intended for use with the North Star floating point card, it
is so labeled.

The floating point card speeds up BASIC arithmetic operations

by a factor of from two to thirty, depending upon the complexity

of the function involved. & floating point addition (eight-digit
precision) will execute twice as fast. The SIN function {(eight

digits) will execute thirty times faster.

The PolyMorphic BASIC versions intended for use with floating
point hardware and other PolyMorphic BASIC versions are com-
pletely compatible with each other; programs written with one
BASIC c¢an be run with the other with no modifications. After
you have installed the North Star card, you can run either kind
of BASIC in your computer.

To use the North Star floating point card (FPB-2) with Poly-
Morphic's BASIC, you must first install several jumpers on the
North Star card.

ADDRESS SELECTION

There are six pads labeled 12, 13, 14, G, and H on the card.
See the FPB manual section on address selection for their loca-
tion. Wire the card for addresses 1F00 to 1FFF as follows:

1. Jumper pad 12 to pad G.
2. Jumper pad 13 to pad H.
3. Jumper pad 14 to pad H.
4. Jumper pad 15 to pad H.

PHLDA JUMPER

On the back of the FPB card, connect a jumper from IC3A pin 2
to IC3A pin 7. See the North Star FPB documentation for pin
locations.

. The floating point card is now ready for installation into your
System 8810 or System 8813 and into a POLY 88 that has been
modlfled as described below. See the POLY 88 or System 88
User's Manual for installation instructions.

POLY 88 CPU CARD MODIFICATIONS

The central processor card in the POLY 88 may have to be modi-
fied for use with the North Star card. If this modification

has not already been performed, remove the CPU card and modify
it in accordance with the modification drawing (CPU Modification
-SM1 & WAIT} attached. Then re-install the CPU card.

113

PolyMorphic Systems BASIC

INDEX

Arithmetic operators, 9
addition, 9
division, 9
exponentiation, 9
multiplication, 9
subtraction, 9

Arrays, 61

Array indexing, 61

Assembly program
interface, 108

Assignment statements, 27

Auto-execute, 81

Back-stash, 17

Blanks, 16

Branching, 17, 45

Call, 109

Carriage return, 7

Character set, 105

CLEAR, 25

Commenting, 26

Constants, 12

Continue (CON}, 23

Control commands, 19
CLEAR, 25
CON, 23
Control-Y, 8, 23, 83
LIST, 19
REN, 21
RUN, 22
SCR, 25

114

Control commands summary, 25

Correction techniques, 8

Cursor, 75

DATA, 29

Defult loading, 81

Default PRINT format, 33

Default FOR-NEXT step value, 41

Defining functions, 58

Deletion, 8

Dimensioning (DIM), 61, 63

Direct statements, 13

Double prompt, 24

E-Format, 37

ELSE, 48

Error messages, 66

EXIT, 49

Exponential notation, 12

Expression, 13

F-Format, 37

Format characters, 36

Format errors, 38, 68

Format specifications, 37
E-Format, 37
F-Format, 37
I-Format, 27

Format strings, 35

FOR-NEXT loops, 38

FREE, 56

Free format, 33

GOSUB, 59

PolyMorphic Systems BASIC

GOTQ, 45

I-Format, 37

IF-Then, 47

INP, 55, 110

INP(®),INP(1)}, INP(2)}, 31, 110

INPUT, 28

INPUTL, 28

Input prompt, 28

Intrinsic functions, 52
regular, 52
memory and 8088 system, 55
string, 56

LET, 27

Line length, 16

LIST, 19

Loading BASIC, 75

Loading programs, 76

Logical (Boolean} operators, 11
AND, 11
NOT, 11
OR, 11

Loops, 38

Loop variable, 39

Multi-1ine user-defined
functions, 57

Muitiple IF-THEN commands, 48

Multiple statement line, 17

Nesting loops, 42

Null format string, 35

Null PRINT, 32

115

ON-GOTO, 45
Operands, 12
Operators, 9
QuT, 56, 110
PEEK, 56, 109
PLOT, 65
POKE, 56, 109
PRINT, 32

abbreviation, 33
PRINT formatting, 33
Print list, 33
Program display, 19
Program execution, 22
Program 1ine numbers, 16
Program 1ine addition, 16
Program line deletion, 17
Program 1ine repiacement, 17
Program statements, 26

DATA, 29

ELSE, 48

EXIT, 49

FOR-NEXT, 38

GOTO, 45

IF-THEN, 47

INPUT, 28

INPUT1, 28

LET, 27

ON-GOTO, 45

PRINT, 32

READ, 29

PolyMorphic Systems BASIC

REM, 26

RESTORE, 30

SToP, 27

program statements summary, 4
Prompt symbol, 6
Random number generator (RND), 53
READ, 29
Real time clock (TIME), 55
Relational operators, 10
Remark (REM), 26
Renumber (REN), 21
Resetting default PRINT format, 36
RESTORE, 30
RETURN

subroutine, 59

user-defined function, 59
RND, 53
Round-off precision, 12
RUN, 22
Saving programs, 80
Scientific notation, 12
Scratch (SCR), 25

9

116

STEP, 40

Step value, 40

STOP, 27

String, 12, 62

String concatenation, 63

String indexing, 59

Subroutines, 59

Subroutine errors, 60, 70

Subscripts, 63

Substrings, 63

Summary of all commands,
functions and keywords in BASIC, 112

TAB, 35

TIME, 55

Type-ahead buffer, 110

Typing mistakes, 8

User-defined functions, 57

Variables, 13
numerical, 13
string, 12, 13

Verify, 82

BASIC PRINTER DRIVER

@ Interactive Products Comporation, 1977

PolyMorphic
. Systems

Goleta Califomia, 93047

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

Section O INTRODUCTION TO BPRINT MANUAL

This manual describes the use and operation of a driver
for interfacing serial printers to Poly 88 BASIC.
Section 1 provides instruction for the immediate use of
BPRINT.

Section 2 contains indepth information regarding BPRINT
use and installation. |

A program listing for hooking BASIC to HyTypes and
DecWriters follows Section 2.

Using the Poly 88 BASIC Printer Driver ‘
Copyright Interactive Products Corporation, 1977

Section 1 SUMMARY FOR IMMEDIATE USE OF BPRINT

Make certain the printer is correctiy attached to the
printer interface, that it is "on" and not on “LOCAL™.
It must be ready fo on-line operation.

1.1 Loading BPRINT

BPRINT must be used only with Poly 11K BASIC version

APP and later. Load BASIC {(instructions are in your

BASIC manual). Stop the cassette tape (BPRINT is on

the same side of the tape as BASIC). Hit reset button

on the front panel. Type B or P (depending upon the format
of your BASIC TAPE)}, type BPRINT, hit carriage return, and
restart the tape. After BPRINT has loaded, BASIC

will return to the monitor screen. Be careful if you

load BPRINT after BASIC has been running for a while.
Loading BPRINT erases any BASIC programs that you

might have had lgaded in memory. You start " fresh" with
BASIC, as if you had just loaded it.

1.2 BASIC Commands for operating the Printer

To: Type:
Enable the printer PRINT CHR$(17)
Disable the printer PRINT CHR${(19)
Disabie the keyboard PRINT CHR$(2p)
Enabie the keyboard PRINT CHR$ (18)
Note: Printer must be enabled before
keyboard can be enabled.

+9C0

Using the Poly 88 BASIC Printer Drive
Copyright Interactive Products Corporation,1977

1.3 Modifying the Baud Rate Used by BPRINT -

BPRINT has been set up to work for printers operating

at a baud rate of 3PP (HyType or DecWriter, for example).
This is the most comﬁon baud rate used by printers. If
your printer uses a different baud rate, a change must

be made in the BPRINT program. This can easily be done,
either from the front panel mode, or from BASIC. After
determining the baud rate used by your printer, refer

to the enclosed table. Find the baud rate you need.

Look at its equivalent in the Hexadecimal coliumn. Use

this mumber to replace the oid baud rate number, 16 hexa-
decimal.

~For instance, if you wish to change the baud rate from
39f baud to 1209 baud, look up 1299 baud. Its equiva-
lent hexadecimal number is 19. Therefore the hexidecimal
19 will replace the old baud rate.

A. Changing the Baud Rate from the Front Panel

Using the example abové, we will change the baud rate
from 399 to 1209.

1) Load BASIC and BPRINT
2) Type Control-Z to get to the front panel.
3} Type L4A98 followed by a carriage return, to get to
memory location 4A98 (whose contents set the
baud rate).
4} Type the number 19, followed by a space.
5) Type SPJ49CP, to get to the start address of
BASIC when hooked in with BPRINT.
6) Hit a carriage return, and then tupe G. You
will now be back in BASIC.

Using the Poly 88 BASIC Printer Drive
Copyright Interactive Products Corporation, 1977

B. Changing the Baud Rate from BASIC.

Again, using the example above, we will change the baud
rate from 3909 to 12PP.
1) Load BASIC and BPRINT,
2) After a BASIC prompt, type:
PGKE 19096,25
3} You will now be ready to continue on in BASIC.

The POKE function allows you to directly input a num-

ber into memory. As BASIC deals only with decimal num-
bers, the memory location 4A98 {a hexidecimal number) is
converted to its decimal representation, 19996. You must
then convert the hex number representing the baud rate to
a decimal number (see enclosed table). The number 25 in
the exampie above is the decimal representation of the
hexidecimal nymber 19 used in the previous example. To
check this memory location you may use the BASIC function
PEEK (see your BASIC manual for an explanation of this
function).

1.4 Restarting BASIC

" If you should need to restart BASIC {for instance, to
return from front panel mode), use the address 49CP,
instead of the usual BASIC start address of 2P9p, if
BPRINT is. to be used again. When in the front panel mode,
restart BASIC by typing SPJ4SCP. Then hit a carriage
return and type G.

Using the Poly 88 Printer Drive
Copyright Interactive Products Corporation, 1977

Baud Rate Replacement Numbers

BAUD. RATE TABLE

Decimal
17
i8
18

———)

20
21
22
23
24
25
26
27
28
29
30
31

Hexadecimal

11
12
13

14

15
16
17
18
19
1A
18
ic
1D
1E
1F

Baud Rate

5P
75
11p
134.5
150
39D
699
Sop
120p
1899
2490
3609
4899
7209
9699

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corportation, 1977

Section 2 THE PQLY 88 BASIC PRINTER DRIVER

Section 2 describes the use and operation of a driver
for interfacing serial printers to Poly 88 BASIC. This
driver is applicable ONLY to Poly 88 BASIC versions A99
and later. The driver program, in conjunction with a
Poly 88 printer interface card, and Poly 88 BASIC,
provides the ability to print and 1ist on the serial
device, and also use the keyboard on that serial device.
The driver program is set up for 3PP baud devices,

such as the HyType, or DecWriter, but may be changed

for use with 119 baud devices.

2.1 1Installing the Printer Driver

To 1oad the printer driver, BASIC must first be Toaded.
When BASIC has started, and has printed its version mes-
sage, the printer driver may be Toaded. Hit reset on the

- front panel, and make sure the printer device is attached
to the Poly 88, and is powered on. Now load the driver,

by typing B or P, depending on the type of tape you have,
followed by BPRINT {(the normal tape booting procedure).
This tape will auto-start, and you will see the BASIC
herald one again. At this time, the driver is initfal-
ized, and you may load your BASIC program. HNote that after
performing its initialization, the printer driver "cold
starts" BASIC. This means that any program you had loaded
is erased. You will also notice that the number of free
bytes available has decreased about 500 bytes, this is the
space taken up by the printer driver and the printer buffer..
If the message "Nuts!" is displayed on the screen, rather
than BASIC restarting, you have tried to use the driver
with an eariier version of BASIC, or BASIC was not loaded.

-6

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

BASIC must be loaded before loading the printer driver and
BASIC version A@P or later must be used because of the
“floating patch" - it dynamically hooks itself into BASIC.

2.2 Using the Printer (and its Keyboard, if Any)

The printer driver is "attached" to the character output
path in the system; it handies each character that is out-
put to the video screen. The functions of starting and
stopping printing, enabling and disabling the keyboard on
the serial device, are all done by sending control codes
to the video screen through the printer driver. These
control codes and their functions are:

Name Value Function performed
XON,DCl,ct1-Q 11H/17 Enable the printer
‘XOFF,DC3,ct1-R 13H/19 Disable the printer
TAPE,.DC4,ct1-S 12H/18 Enable the keyhoard
TAPE,DC4,ct1-T 14H/29 Disable the keyboard

After an XON is sent to the screen, all characters sent to
the screen by BASIC {(excluding graphics characters used

by PLOT, or characters placed on the screen through POKE
to modify memory) will also be sent to the printer. Send-
ing XOFF stops this process. Because the printer device
is much slower than the screen, the characters that are

to be printed are first placed in a 256 byte buffer. This
buffering allows the screen to proceed at a higher speed
until the buffer fills. This also means that you may send
the XOFF to the printer, and it may keep printing for

a while because of the characters remaining in the buffer.
Sending a DCZ2 to the screen enables the keyhocard on the
serial device (if one exists). From that time, any keys
struck on the keyboard before a DC4 is sent to the. screen,
will appear to the system just as if they were sent by the

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

normal keyboard on the Poly 88 (NOTE: this INCLUDES con-
trol-Y AND control-Z). Because of the type-ahead buffer-
ing done by BASIC, some characters may be present in the
buffer when the DC4 is sent. These characters may be
deleted either by typing PRINT CHR$(24). Control-X is
18H, or 24 in decimal.

2.3 Using Tapes

Once the printer driver has been installed, a certain
amount of care must be used in loading and saving files
on cassettes., Because the serial printer interface and
the cassette interface run on the same channel, only
one may be operational at a time. For this reason,

THE PRINTER AND THE PRINTER KEYBOARD MUST

BE DISABLED BEFORE USING CASSETTES IN BASIC.

THIS MAY BE DONE BY THE DIRECT BASIC STATEMENT

PRINT CHR$(19), CHRS$(29)
Faiture to do this will result in a period of normal,
polite behavior, resulting in a sudden and indiscrete
stop when the printer buffer fills up. If this happens
BASIC must be restarted 1in a special way to again initial-
ize the printer driver.

2.4 Restarting BASIC with the Printer Driver

If Basic becomes "wedged", or must be restarted, it should
be restarted at address 49CP INSTEAD of 2PP9 if the printer
driver is to be used again. Restarting BASIC at 2p99

or 20P3 after the front panel RESET button has been used
will NOT RECONNECT THE PRINTER DRIVER. Again, when the
system is restarted at 49CP, BASIC is COLD STARTED, CLEAR -
ING THE PROGRAM.

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

The printer interface is composed of three distinct
sections:

l)initialization. |

2)interrupting processing

3)character interception.
The initialization section, starting with the label
START in the accompanying assembly Tisting, verifies
that the proper version of BASIC is loaded, modifies
the starting memory 1imit it BASIC, and attaches itself to
wormhole 1, the character output wormhole. In this manner,
all calls to that wormhole will be vectored through the
entry point Tabeled COUT. As characters are sent to worm-
hole 1, they are examined by COUT. If the character is
among XON, XOFF, DC2, or DC4, we transfer to the special
processing routine that handles that character. If we
see a XON, we go to CXON to set up the interrupt handler
and the buffer pointers. TISR is set up as the inter-
rupt processing routine to be called when we get an inter-
rupt from the 8251 USART. The ocutput flag, OFLG is set
non-zero to indicate that characters are to be buffered.
The ring buffeyr insertion and removal pointers (TPP and
TGP for put and Get) are set, and the USART is started
after calling the monitor SETUP routine to define the
USART mode. Note that this processing is done with the
interrupts DISABLED. This is because the pointers TPP
and P are "interrupt alterable", that is, they are altered
at the interrupt level. If we did not disable the interrupts
at the start of CXON, once we set the address of our inter-
rupt routine, TISR into TINT, the USART c¢ould interrupt us,
with TPP and TGP having undefined contents (with unde-
fined results!)., 1If the character was not a special one,
we test the flag OFLG:-to see if the printer is enabled.

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

If the flag is zero, we are not enabled, and we go to

CEXIT to return through the normal wormhole processing.

If we are buffering characters for the printer, (OFLG
non-zero}, we transfer to CCR if the character is a car-
riage return, and to POKE if it is not,{(both actions buffer
the character} and then we exit.

Because the video driver in ROM performs the equivalent
"line feed"” action when given a carriage return, we

must process carriage returns specially. CCR outputs
the carriage return, and a number of padding characters
(for DecWriter delay and such), and then outputs a line
feed to the buffer. POKE is called to place characters
into the ring buffer. We disable interrupts, as we are
going to use TPP and TGP, which can be altered by TISR,
which runs at the interrupt level. If there is room in
the buffer, we place the character in it, and update the
pointer (TPP). 1If there is no room, we go to HANG to
énable interrupts and wait. We will wait in this manner
until we have room in the buffer for the character,.

This is the reason the front panel Tlight flashes on and off
when driving the printer. The buffer fills up, and we
start waiting for an empty sliot to put the character in.
We enter TISR as a result of an interrupt from the 8251
USART. If it is an interrupt caused by a keyboard char-
acter, we test the flag IFLG, and if it is non-zero, we
get the character from the USART, and jump into BASIC

to process it. If IFLG is zero, we "drop it on the floor".
When we detect that the transmitter buffer is empty

(the pointer TTP and TGP are equal), we will "give it

a fish" - feed it a DEL code. Otherwise, we take the
next character from the buffer, update the pointers,

and send it to the USART.(The ring is on buffer on a 256
byte boundary, to simplify the coding.) TPP is used as

-10-

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

the "“put" pointer, for inserting characters. TCP

is used as the "get" pointer. When these pointers are
‘equal, the buffer is empty. If they are equal after one has
been decremented {and checked for wrap-around)}, then

the buffer is fuil. This need only be checked by the inser-
tion vroutine,

2.6 Special Problems

When driving a terminal such as the HyType, which does not
require padding character following the carriage return,

the routine PAD may be eliminated. One way of accom-
plishing this is to modify the first byte of PAD from a

3E to a C9; éhanging the MV1l into a RET instruction. Making
this change eliminates the padding characters from being
placed in the buffer. If other than a 3PP baud device

is used, the bytes following the call to SETUP (location
4A98 in the listing) must be changed to denote the new

speed and parity format for the device.

Special thanks go to R. Hustvedt for explaining the tech-
niques used in dynamic patches.

=11~

PolyMorphic Systems Using the POLY 88 Printer Driver

Driver for hooking BASIC to Hytvpes and Decwriters.

Device is to be loaded AFTER starting BASIC. Hooks int .
interrupts, wormholes, and BASIC. Send it an XON, and

that time until you send it an XOFF, all characters

sent to the screen thru wormhole V' will appear on the

Send it a DC2 (TAPE), and any keystrokes on the thing”’
keyboard will be plotzed into the keyboard buffer. Thi
stopped by sending a DC4 (not TAPE) to the screen.

e s il B e R e b B B B e

2000 . BGO EQU 2000H $ stert BASIC
200E BTXT EQU 200ER s version text iIn BASIC
205D BMLL EQU 205DH s lower memory limit in DASIC
2068 BKB EQU 206BH # BASIC keyboard interruopt rowuti
¥ .
Q24D SETUP EQU 2ADH s usart setup code in rom
0064 IORET EQU 64H 3 Interrupt return point.
0Cl1é6 TINT EQU OC1l6H 3 USART interrupt vector
QCz24 WH1 EQU oC24d i wormhole | for output
4 i
000D CR =Qu QDH 3 carriage return
000A LF EQu QOAH 3 line feed
007F - JUNK EQU TFA i Junk padding code sent
Q011 XOH EQU 11H 3 printer on .
001 3 XOFF =EQU 13H 3 printer off code
Q012 DC2 EQU 12H s keyboard on
0ot 4 DC4 EQU 1 4H $ keyboard off code
49C0 CODE EQU 49C0H i above BASIC
4800 BUF EQu 48004
4C00 HMEND EQU BUF+256 5 256 byte buffer
1
49C0 ORG CODE
49C0O C32044 up START i startup code~check and hool in
H
i Interrupt service routine. e just got z2n interrupt
i from the stinking 3251.
1
49C3 DBO1 TISR: IH 1 $ what does the thing want
49C5 IF RAR
49C6 DADE49 JC WRT i Jjmpn/wants a character.
49C9 1IF RAR
49CA D26400 JiiC IORET $ Jmp/just harassing us.
*
+ USART has a character, If IFLG is nonzero, foist off o
i BASIC’s keyboard interrunt logic, otherwise dron it.
L]
49CD 3A1C4A LA 1FLG
49D0 B7 O A
49D1 CAD949 JZ DROP 3 Jjmp/dropn it on the floor.
49D4 DBOO I 4] _
49D6 C358B20 Jip S4B 3 lean off into BASIC!
4909 D200 DROP: N 0 i get the character
49DC C36400 JitP INDRET 3 and snolit.

82%1 wants a character to sen’ ou:.

-+ W ge

49DE
49FE |
49E4
49ES
'4958
49EQ
49EA
492D
49EE
49F |
490F3

49F 6
49F8

49rB
49FF
4A03
4A07
4A0B
4A0F

4A12
JsAts

4A18
4A1A
4A1C
4A1D
4A1E

4A20
4421

4424
4A27
4729
45270
AA2E
4A2E
4A2F
4A30
4A31

4A34
4A37

2ATA4A
3A1B4A
BD
CAF649
1E

2D
C2EE49
2D

221 A4A
D300
C36400

3E7F
C3EE49

506F6C79
20383820
42415349
43207665
T273696F

6E2041

4E757473
2100

F3

210E20
11FR42

0E17
1A

BE

C2504A

23

13

oD

C2294A

21034C
225D20

/5] A d) AT
MRT: LHLD TGP LA

WRT1: SHLD TGP

save pointer

LDA TPP
CHKP L s anything in buffer?
JZ FISH 3 jman/nope, give it a fish,
MoV ALl i get chr from buffer
DCR L $ dink pointer
JNZ RTH i Jmp/no wrap
DCR L i reset ptr.
L)
H
H

0OuT 0 shove chr out the door
JNP- I0RET and split.
3 .
s It wants a chr; we don’t have one- give it a fish.
;
FISH: MVI A, JUMK
JIs ART1 s Take that!
’ :
s Text we search for
H
TEXT: DB “Poly 88 BASIC version A/
’
§ Cripe text
; .
NUTS: DB MNutst’,0
3
$ Various flags and such.
;
TPP: psS 2 3 buffer put pointer
TGP DS 2 i buffer get pointer
IFLG: DS 1 $ input orocess flag
OFLG: DS 1 $ outnut process tTlag
HORM: Ds 2 5 old wormhole contents

Startun code. Check for the proper version of BASIC.

H
3
START: DI

E L L 1]

e kg A

LXI H,8TXT

LXI DLTEXT

VI C,23 3 pointers and lenath to checlk
: LDAX D

CiiP A $ is this the right version?

JHZ HOPE $ jmp/none, 1 auit.

11X I

X .

DCR C

JHz CL

lHow diddle memory limits in BASIC

LXI AL UENT
SHLD 3L 7 oole!l
clear the flanms feor inont and outout

2

4A3A
4A30
4A3E

4741
4A44
4747
4A4A

4A4D

4A50
4A53
4A54
4A55
4A58
4A5B
4A5C

4ASF
4460
4761

4A62
4A63
4464
4767
AA68
4A65
4A6C
AAGF
4AT0
4A73
4AT4
4ATT
AATA
4ATR
4ATC

4A7D
SATF
4A81
4AG4
4ACH5
4AE2

43D

PolyMorphic Systems

AF
321C4A
321D4A

2A250C
22 1E4A
21CF44
22250C

€30020

211244
7E
B7
CAB34A
CD240C
23
C3534A

FB
76
Fi

F5
F3
2ZA184A
77
3ATA4A
2D
C2704A
2D

3ATA4L

ED
CABF4A
22134A
F1
F3
Ce

3E7F
08 0A
CD624A
05

C2T 144

c?

() a0 we s

- e WAy

L LA T 1]

T TR T I 1Y

NOPE:

-

Ay

'—l‘
-

o s we W we

ANG?

¥
POKE:

POKET ¢

X0t

buffer is full,

Using the POLY 88 Printer Driver

XRA A
5TA IFLG
STA OFLG
Steal the wormhole for printing on the screen
LHELD MHI+]
SHLD HORM 3 old contents
LXI H,COUT 3§ out thing
SHLD AH1+1 $ hoo% it up.
Start up BASIC
JuP 8G0 $ scratech offecss

Cripe - this is not the rigﬁt version of B3BASIC

LXI H,HUTS

nov AL

ORA A

JZ NL $ spin when thru!
CALL WHI

IiX. by |

JIP NL

=1
ALT
POP

wait

..0
“
e A

PUSH PSH
DI

LHLD TPP
MOV HeA
LDA
DCR
JiZ
DCR
LDA
o8P
JZ
SHLD
POP
=0

RET

5ave

- i

poke

)

=
im

9]
o

see 1

L]

,.
0

cHLLD U

N
MM

L L D]

POKE puts the thing in A in the buffer. Hote that if t
it will hang you out to drv.

for an interrunt alreadv,

get chr baclk.

this,

don’t bug me, I’/m busy.

into buffer

f buffer is rull.

imn/vun, must wait.

if not, set nointer
oget thino bceck

let th= world intriit-e,
and solit.

sends ont 10 JUIK characters.

YT A JUNEL . T
MV 310 e W
CALL POIE wo
olos 3

Jiz PADL

RET

CAYT handles X! to start the

T 4

o
L
LT T

arinter.

o F R AT pray b ow e wb W et b LR | Wil 70 P il il ¥ =l

4ABA DS PUSH B

4A8B C5 PUSH 8
4ABC 21C349 LXI A, TISR
4A8F 22160C SHLD TINT 3 make sure we have interrupts.
47092 321D4A STA OFLG 3 set flaa non~zero, disable
'4A95 CDADO2 CALL SETUP s set up USART
A4A98 16AA40DA D5 1 6H,0AAH, 40i{, 0DAH, O
4A9C OO " X ,'-: I_,i\ \I I‘? H ie LN A
4A9D Ct POP c R ' @ : =Ty
4A9E DI POP D L ECh
4A9F 21 FF4B LXI H, BUF+255
4AA2 22184A SHLD TPP
4AA5 221 A4A SHLD TGP i set up buffer pointers
4AA8 3E27 vl A,27H
4AAA D301 0oUT] s start JSAERT running
b
i CEXIT is the central exit logic
3
4AAC FI CEXIT: POP psh
4AAD 2A1EZA LALD VIORM
4ABC E3 XTHL
4AB1 FB El
4AB2 C9 RET
H
i+ CXOFF handles X0OFF sent to us.
H
44AB3 AF CXOFF: XRA A
4AB4 321D4A STA OFLG
4AB7 C3ACA4A JHP CEXIT
H
. s CDC¥2 is for DC2, to start Xkeyboard un.
4ABA AF CDC4: XRA A 3 entry to turn off keyboard
4ABB 321C4A cDC2: STA IFLG
4AABE C3AC4A JHP CEXIT
3 CCR processes a carriage return.
H
4AC1 CDho24A CCR: CALL POKE

4AC4 CD7D4A CALL PAD i cr and nuff padding
4ACT 3EOA HVI A,LF

4AC9 CDG624A CALL POKE v and a line fTeed,
4ACC C3AC4A JP CEXIT

COUT is the entry point for chr omntnut.
MOTE! we can/t lzave anvithina changed!

() e = we we

4ACF E5 OUT: PUSH H
4ADO F5 PUSH pPsi
4AD1 FE11I CPI XOH
4AD3 CAB944A Jz CXOt
4AD6 FEI3 CPi XOFF
4ADE CAR34A JZ CXOFE
4ADB FEI2 CPI Dcz
ADD CARD4A JZ CDhC2
4AEQ FEl14 CPI NC4
4A=2 CABA4A JZ ChC4
AAES 3AI1D4A LDa OFLG
LAEZ DB7 A do we o9r dont we?

-y Y

A
AAED CTrACAA JZ CEXIT

A

imn/vwe don’t.

PolyMorphic Systems Using the POLY 88 Printer Driver

Coﬁyright Interactive Products Corporation,1977

4AEC FI POP psul

4AED F5 PUSH PSi

4AEE FEOD CPI CR

4AFO CAC14A JZ CCR i jmp/go do CR if needed,

4AF3 CD624A CALL POKE i jmp/just buffer -~

4AFS6 C3AC4HA J CEXIT i if not special, buffer and spl

That’s all, folks!

wy =iy e

0000 =D

see page 62) .
REH éosit?og a file read operation to data record #8.

Command syntax: FILE:n,REW

FILE MODES

OUT see page 64)))
IN éata ?egords will be read in from the data file,

updated and written back out to the file. Command
syntax: FILE:n,OPEN, INOUT

INPDT (see page 64)) .
Data Eecords will be read in from the data file.

Command syntax: FILE:n,OPEN, INPUT

see page 64) _)
OUT. éata gegords will be written into the data file.

Command syntax: FILE:n,OPEN,OUT

DATA TRANSFER

INP (see page 67)
Input one byte of data (one character) from the data
file., Command syntax: INP(n)

INPDT {see page 65)
Input one data record (one line of characters up to a
carriage return}), from the data file. Command syntax:
INPUT:n,string and/or numerical variable(s)

ouT {(see page 67)
Write one byte of data (one character) or a string of
bytes out to a data file. Command syntax:
OUT n,string or numerical variable(s)+string+expression...

PRINT (see page 66)
Write one data record {(one line of characters up to a
carriage return) out to a data file. Command syntax:
PRINT:n,string or numerical variable(s),expressions,
strings...

EXIT COMMANDS

BYE (see page 68)
Exit BASIC and return to the system level (Exec).
All data files are closed.

EXEC {see page 68)
Recoverable exit from BASIC--after communicating with
Exec you may resume your operations in BASIC by typing
the command "CON" after a system prompt. Data files
are not closed.

The two commands used to exit from BASIC are "BYE" and "EXEC."
Both commands cause you to "leave" BASIC and return to the sys-
tem level (i.e., to communicating with the system Executive).
When you use the BYE command, you are truly leaving BASIC.

Any BASIC program that you might have had in memory 1is now
gone. Any data files that were open are now closed.

On the other hand, when you use the EXEC command, even though
you communicate with the system Exec (as indicated by the
system prompt, $), you may resume your BASIC operations by
typing "CON" after a system prompt. Your BASIC program is
still in memory, and your data files are still open.

Details con saving BASIC programs as disk files, and executing
those programs may be found in the System 88 User's Manual.

P

