POLY- 88 MICROCOMPUTER SYSTEM
VOLUME II: OPERATION AND SOFTWARE

(© 1976 1IpC

A

B:

TABLE OF CONTENTS

page

Introduction to the POLY 88. ...ttt enrioeennnenns 1
1., Symbol SyStemM. ..ttt iie ettt tnnenesoenenonoanssnnas 2
a. Number system...ioieeie it iieteeeentoeneeneoasaonceess 2

i) Decimal and binary-ceeeeee e et eeneeeeennnennnnns 2

i) Octal and hexadecimal.oee e et in oo e ereernneenns Q

b. ASCII........co.... e et e e e et ec e e e e e e 11

2. Computer TanguUAgesSt e iierontoneenennssonssscsncsenas 12
a. Machine 1anguUage. ..o et ie et itneeeeenenneneennnnans 12

b. Assembly Tanguage..... ..ttt nnnennans 12

c. High level Tanguages . oo vtin it nnnn i ineeean, 14

3, Computer theory . eeee oottt eeeteeeeoeeeeennennanenaeanns 14
a. Address and memory ..o ve ittt ittt onanons 14

b Central processor architecture......coviivvvenn. 17

C. INStrUCtIon Set.vetieeineeeeieeeenseeesononeeenneeens 24

d 1 o ¢ T T oo o 52

) ASCII MOAE . s v vttt ittt ettt e et te et eneeeeeeanens 52

79) Front panel mMode.ee e ee et itneieinneneeenennnenns 53

Operating the SyYStamM. vt e eeeeeeeeeseeeneeneeeennaenn. 60

-

PolyMorphic Systems POLY 88, Vol. II Rev.0.0 P. 1

POLY 88 Microcomputer System Manual
Vol. II: Operation and Software

A: Introduction to the POLY 88.

The POLY 88 system is designed to be, not only a powerful
problem-solver, but also a source of satisfaction and enjoyment.
Sophisticated computer users know that computers are interesting
as well as useful. To derive the greatest possible value, both
practical and aesthetic, from the system, it is important to have
both a ready ability to interact with the computer at the level
of keyboard and screen and a good sense of what is going on inside
the computer at the level of actual electronic events. This
volume is intended to show the user how to operate the system,
and to convey some measure of awareness of what is going on
inside the computer as the user operates it.

You may be quite advanced in your familijarity with computers, or
you may just be getting started. OQur discussion should be under-
standable and helpful to the beginner, yet interesting and worth-
while to the expert. We will be moving quickly through the
fundamental concepts of symbol systems -- binary and hexadecimal
math and ASCII code -- used by computer users, and some useful

"lTanguages," especially assembly language, with which we communi-
cate with computers. Then we will consider how a computer accepts,
stores, and manipulates data to produce results. Then we will be

operating the POLY 88 to see how it works.

If you already have some experience with computers, you will be
mainly interested here in reading about those things that are
unique to the POLY 88 -- its architecture and its monitor. You

will probably just want to skim through Section A.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 2

Section B will give you some hands-on experience with
the POLY 88, while Section C and the appendix present 1in
tabular form the information you will want to refer to often.

If your experience with computers is more limited, you will want

to go through Section A with care. It discusses binary math, etc.

in a way intended to provide some insight into what actually goes
on inside the computer. Computer users should be able to picture
in their minds what the computer is going through in response to
their commands. Indeed, the computer usually performs its opera-.
tions so fast and replies to its operator so promptly that the

operator may have no sense of anything going on between his pushing

a key and the appearance of the response on the screen. This
"lack of sympathy" is undesireable, because it causes operators
to miss much of the aesthetic value of the computer, and in fact

prevents them from making full use of the computer (especially
a micro-computer like the POLY 88).

The relatively inexperienced computer user may find that our
discussion is occasionally hard to follow. He or she will want

to re-read and interpret, refer to other texts, and discuss

the subject with other people. The authors of this text, however,
are determined to make it understandable to the beginner, yet
interesting to those who are more advanced.

1. Symbol Systems

a. Number Systems

i) Decimal and Binary

Binary math is the symbol system that most closely approximates
the actual operations of an electronic digital computer. A
mechanical computer might use devices having ten different
"states," Tike a disc with the digits 0 through 9 around its edge:

=
0
9

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.3

(or discs with ten notches, gears with ten teeth, etc.). The
ten "states" of such a disc would be the ten different digits
that the disc presents to the view of the human user. In fact,
there are such devices, and they might be thought of as being
purely "decimal" in operation -- decimal meaning ten.

We could put several such discs together and have them count

things. Each disc would be geared to the one next to it, so

that when the disc on the right went all the way around once,
through all ten digits from 0 through 9, the gear on the left
would move one “notch" to its next state. '

) Every time this disc
Y\\\\goes all the way around

p%. ‘ once, from 0 through 9...
Tolio!
this gear would move E;-
to the next digit. +
. =
So when the counter had counted nine things, it would read > %%
3 13]

and when it counted one more, it would read:

moved Eﬂ 1’: back to where
one notch 119] it started
.g 171
5 =
An alternative would be to have just one large disc with many
numbers on it -- the numbers 0 to 100, say. But our "decimal

discs," each geared to move one number when the gear to its
right went all the way around once, would be smaller and handier,
and would be able to count very large numbers. In fact, we
increase its capacity to count by a factor of ten every time we
add another disc. A two-disc counter could count from 0 to 99,

while a three-disc counter could count from 0 to 999, and so on.

Actually, this hypothetical counter using decimal discs is a

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.4

mechanical analog of the decimal number system ijtself. Each
disc corresponds to a "place" in a decimal number, and the fact
that we would want each disc to move by one number when the disc
to its right had gone all the way through its ten digits shows
that each “place" in a decimal number represents a power of ten,
with each place being one power higher than the place to its
right.

X X X X

v ~ . 0

X times 10 X times 10%

In the decimal system, this number:
324

means "three hundred and twenty-four" because each digit in the
number represents a power of ten, thus:

2 l g |
f Z—-4 X 10° = 4 x 1 = 4
2 X 10 = 2 X 10 = 20
3 x 102 =

3

3 X 100 = 300

The right-hand place (called the "least significant")

in the number is the 10° or "ten to the zeroeth" place; the
digit occupying that space tells you how many 10%s the number
contains. Since 10° = 1, this position is called the ones

place or ones column., (The zeroeth power of any number is one.)
The 4 occupying this column means "four ones." Moving to the
left, the next place shows 10.l or ten. The 2 occupying this
place means "two tens." The next place (in this case, the "most
significant”) indicates 102, or one hundred. Three hundreds,

two tens, and four ones -- 324, To express numbers involving

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.5

thousands, tens of thousands, etc., we just keep adding places

to the left. The left-most place is always the most significant --
it indicates the highest power of the base. Decimal has ten
different digits -- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 -- and so can
indicate from 0 to 9 ones in the ones column, from 0 to 9 tens

in the tens column, and so forth. Humans, having ten fingers,

find decimal or ten-based counting very natural, and many people
just cannot believe that other bases are better for some purposes.

Nevertheless, the fact is that any value can be used as a base
in a number system. Consider thirty: We say "thirty" and write
30 to represent this quantity. But just as we could use some
other word than "thirty" to represent the quantity, so we could
apply some other number system. Fof instance, the base of the
number system could itself be thirty. That system would work
like this:

X tfmes 303= twenty-seven \‘\ X times 30° = ones
thousands

X times 30 = nine- X times 30 = thirties
hundreds

Thirty includes "no ones" and "one thirty," with no nine-
hundreds, etc. So in a thirty-based system, the value thirty
would be expressed:

one thirty —» 1 0 —-#+——————no Ones

1 21 1

In a number system based on three, thirty would be expressed:

1 0 1 0

(Why?)

Just what number is selected to be the base of a number system
is a matter of convenience. Creatures having ten fingers find

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.6

ten a convenient base. But when you start making devices to
help you in computation, it becomes convenient to use other
bases as well.

Computers use solid-state electronic devices to perform computa-
tions. The simplest, smallest, cheapest solid-state device can
take on just two electronic "states." (Recall that the decimal
disc had ten states -- the ten different positions it would be
in to show each of its ten digits to a viewer.) Such a device
is often thought of as a switch. The switch might offer two

The

possible pathways:
e electricity out this way
electricity out this way

eiectricity in .,//”/'
flip the switch: ~ <

The two stable states of the switch might simply be OPEN and
CLOSED -- OFF and ON. The two states can be called YES and NGO,
or TRUE and FALSE -- or they can be called 1 and 0. This
immediately suggests a number system based on just two digits.
And in fact, since a computer actually performs its operations
by means of many tiny solid-state devices that have two possible
stable states, computers are said to "use binary" in their

operation. In binary each position or column in a number represents

a power of two, rather than a power of ten. This binary number

1 1
Z 1x2°=1x1=1
0 X 2 = X2 =20
1x22=1x4=4
says " 1 one, 0 twos, and 1 four, " or five. In decimal -- 5.
In binary -- 101. (We will continue to use written words

like "one, two, three" to discuss these other systems.) We will
also slash all Ps to distinguish them from 0's, as does the
POLY 88.)

-

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 7

Obviously, binary numbers are usually longer than decimal

numbers. So why use them? Because solid-state electronic devices
find them convenient. To be more exact, the binary system is the
simplest number system that can convey any and all data. The

only simpler system would be to the base one, and that would

not be a "system" at all, but just a tally -- ten marks to
indicate the number ten. The simplicity of binary allows

computer design to be as simple as possible, since the simplest
physical system with more than one stable state has two.

Any quantity can be represented in binary. Just keep adding
powers of two to the left. Binary digits, or "bits," are
frequently grouped in groups of eight:

7 6 5 4 3 2

2 2 2 2 2 2

128's 64 325 16% 8’ 4’ 2% s

~Eight bits is a "byte." The largest number expressible in a
byte, obviously, is 11111111, which is (starting from the right)
one one, one two, one four, one eight, and so forth. In decimal
it would be 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128, or 255.

Larger numbers, of course, are built up from several bytes.

Many computers, the POLY 88 among them, always treat values in
eight-bit bytes. For instance, the POLY 88 stores data in jts
memory in the form of eight-bit bytes. Recall that a binary digit
or bit, which is always either 0 or 1, corresponds to a tiny
solid-state device which is in one or the other of its two stable
states. When you store a data quantity in the POLY 88, you are
actually manipulating the states of many such devices. Let us
call these two states the "zero state” and the "not zero state."
When you store the quantity five in the POLY 88's memory,

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.8

~you affect the state of eight (microscopically small) devices.
Five in binary is 101B, or, as an eight-bit byte, 00000101B. The
eight affected devices will be in this overall state:

| ' | Not ‘ Not
Zero Zero Zero Zero Zero | Zero | Zero |{Zero
State State | State . State | State | tate! State|State

Another way to show the state of the eight affected devices
is:

lololoeloelo|1]0]1

!

This is a very convenient way, because here we have our binary
number 00000101B over-laid onto the representation of the eight
affected devices. We will be using this representation often,
because to get the greatest use and the greatest aesthetic

satisfaction out of your computer, it is important to "think binary"
(at Teast at firét)and visualize the actual events going on.down at th

level of the bi-stable devices. The "memory" of the computer
consists of many, many groups of eight such devices, and can be
thought of as many such rows (bytes) as this:

s o|ofala]1]|a]1]

turned on edge and grouped together T1ike this:

Memory

each Tocation in memory
contains one byte -- eight bits

Binary expresses the actual state of the bj-stable devices or
"flip-flops" that make up the computer's memory. As we will be
discussing Tater, binary also expresses the "vectors” or the
pathways that lead to the bytes that make up the memory.

~

Al N N BN BN BN BN N NS BN BN B B B B B B B

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 9

ii) Octal and Hexadecimal

Though electronic devices find binary convenient, it is cumber-
some for humans. So computer operators use other number systems
that are more like decimal in their compactness, namely "octal,”
based on eight, and "hexadecimal," based on sixteen. Since eight
and sixteen are themselves powers of two, numbers in these
systems are fairly easy to compare with or convert to binary
numbers. Decimal could be used, but it would not convey any
sense of the actual state of operations down at the level of the
solid-state devices, where the abstraction of numbers has its
reality in the form of the electrical state of each device.

Octal uses the digits @ through 7, with each position indicating
up to seven times a power of eight. Hexadecimal is more importanf
for our purposes, since operating the POLY 88 involves its use.
Hexadecimal uses all ten of the familiar digits, plus the first
'six letter of the alphabet: $123456789ABCDEF.

Each position in a hexadecimal number indicates a power of
sixteen, thus:

162 16" 169
Clearly, very large numbers can be compactly expressed in
hexadecimal. This number, for instance:
FG9
Says "no ones, no sixteens, and fifteen two-hundred-fifty-sixes."
In decimal -- 3,8440. (The hex number above would ordinarily be
written FPPH and said "F zero zero hex." We will always put an

H after a hex number and a B after a binary number; a number
with no letter after it is always decimal.)

In binary, by the way, the above hex number is

1111d00ddFEFFIB. There is no sense in which the decimal number
3,840 is the "real" expression of this value. Any binary number up
to four bits can be expressed as one hexadecimal number, thus:

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 10

Binary Hexadecimal Decimal
gPPOE gH ¢
PAPIB 1H 1
@2108 2H 2
gg118 3H 3
21pP8 4H £
P1p18B 5H z
P1198 6H 6
21118 7H 7
19ppPB 8H 8
19918 9H 9
19198 AH 18
19118 BH 11
11008 CH 12
11918 DH 13
11198 _ EH 14
T1118B FH 15

Recall that in the POLY 88, each memory location consits of
eight bi-stable devices, so the contents of any memory location
can be expressed in eight binary digits or bits. This eignt-bit
value can in turn be expressed in two hexadecimal characters.
For instance, if you think of the number 11119PPPB as two
groups: 1111 9PPP@, you see that it equals FP in hex (F@H).

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 11

b. ASCII. Binary numbers can be used (like any numbers) in a

code to express things other than quantities. One code for us to
consider is the American Standard Code for Information Interchange,
or ASCII. ASCII provides a means for putting information into a
computer and getting it out again in a form that makes sense to

the human. In ASCII, the characters the human writes or reads --
upper and lower case letters and the ten digits, plus punctuation
marks -- are all assigned numberijcal values. Every character on a
typewriter keyboard, for dinstance, is assigned a binary equivalent,
When the human strikes a key on the computer's input keyboard, the
keyboard in turn sends to the computer one byte -- an 8-bit binary
number -- corresponding to that key. This is necessary because

the computer itself "understands" nothing but binary; it conducts all
its operations in terms of the bistable state of electronic connectors

e~

ASCII also enables the computer to put out characters that make
sense to the human. If the computer and the human are communicat-
ing strictly by means of a typewriter, the process described above
simply reverses. The human puts in his/her information by striking
the appropriate keys. The keyboard electronics interpret this
according to ASCII code into binary bytes, which are then sent

on to the computer. When the computer completes its operation,

it sends a series of bytes back to the teletype, which interprets
them according to the ASCII code and causes the appropriate keys
to strike. Some bytes correspond to functions other than key
strikes -- carriage shift, carriage return, etc.

The POLY 88 uses a keyboard input and video output. (There is also
a tape input/output. The tape can be recorded according to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.12

ASCII code -- actually in a dual-tone code corresponding to the
binary representations of the ASCII characters.) The human

types into the keyboard his/her.input. The keyboard sends

this input on to the computer in the form of the bytes

assigned to each key by ASCII. When the computer finishes its
operatjons, it sends the information in ASCII to its own video
electronics, where the information is converted into the form that
will cause the appropriate characters to appear on the screen. You
will find a chart showing the ASCII-to-binary code in the appendix.

2. Computer Languages

a. Machine language

As sajd earljer, the data a computer deals with exist in the form

of states of sets of bi-stable devices. Actually, not only data item
but also every operation the computer can perform corresponds to a
binary number. At the most fundamental level of the computer hard-
ware, events take place in the form of changes in the state of
individual devices having two stable states. Therefore, binary
"statements" can exactly "express" what is actually happening

inside the computer.

The heart of a computer is its central processor, usually con-
sisting of one or more integrated circuits or "chips." Built into
the physical structure of these chips are microscopic pathways

and electronic devices that enable the computer to perform its
basic operations. The POLY 88 has one such chip, the Intel 8080A
microprocessor, designed to allow the computer to perform 72
fundamental types of functions. These functions are called
"machine instructions," and together are called the instruction
set. Each instruction corresponds to a binary number, and the

set of all such numbers is called the machine language.

b. Assembly language

Binary exists for the convenience of the computer -- it allows
computer design to be as simple as possible. Hexadecimal and
ASCII are ways that statements which make sense to the human can

wn
B BN BN D N BN Al I BN I BN EE e

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 13

be related to "statements" that "make sense" to the computer,
Assembly Tanguage is a convenience to the human -- it expresses
computer operations in a form that makes sense to him.

Assembly language assigns a word to each instruction. When the
human writes a program, he/she uses assembly language to express
what the computer is supposed to do. For instance, the human
may write down something like this:

INR A

This instruction, which means " INcrement-Register A," causes

the value stored in a certain location to increase by 1. This
instruction can now be converted into a form the computer can

use. Each word in assembly language can also be expressed as a
two-digit hex number (called the "opcode") which represents the
binary instruction actually executed by the machine. (For a

list of all assembly language words --the instruction set--and their
hex equivalents, see the appendix.) The human can now rewrite

his program in hex. The instruction above, for instance,

would be:

HEX ASSEMBLY LANGUAGE
3C INR A

This conversion process is called assembling. Now we can type
our hex directly into the keyboard. From there on, the POLY 88
converts the input into the binary form it requires.

Assembling by hand, by the way, can be avoided. You can program
the computer so that it will convert assembly language to the form
it needs. Such a program is called an assembler. When using an
assembler, you begin by putting the assembler program into the
computer. Then youtype assembly language directly into the key-
board, and the computer interprets that input appropriately.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.14
c. High level languages

There is an even more "human" way to write a program. Operations
which seem to the human to be single steps (like "multiply") may
actually require the computer to obey many instructions. The
human may find it convenient to be able to use symbols that do
not correspond directly to machine instructions. In assembly
lTanguage there is a word or symbol corresponding to every
instruction that the computer will obey in performing its operations.
In a high level language, on the other hand, one word or symbol
may imply many instructions.

When you write your commands for the computer in assembly Tanguage
(and then convert .them to hex, or enter them directly into the
computer by using an assembler), you are thinking in terms of

the actual instructions built into the computer's central processor,
and so you will probably be making the best use of the abilities
of that particular computer. Nevertheless, it can sometimes be

a great convenience to be able to write a program in a high-

level Tanguage, using terms Tike "multiply" that imply many
different instructions and would have to be expressed in several
assembly language terms. The high-level language most appropriate
for small computers 1ike the POLY 88 is called BASIC. To communi-
cate with your computer in BASIC, you would first program it to
convert your statements in BASIC into the appropriate sequence of
.machine instructions.

3. Computer Theory

a. Address and Memory

Any computer works by performing a series of manipulations (or
"program") on data stored in the computer's memory. Computer
memory consists of the state of the thousands or millions of
small, solid-state "flip-flops" or bi-stable devices within it.
The POLY 88 has from 10,000 to half a million such individual
devices in its memory, depending on options.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P, 15

To perform its functions, the computer must be able to Tocate
any one of the data items stored in its memory whenever it is
needed. So the computer must keep track of where it puts each
item. To do so, it assigns an "address" to each item in memory.
In the POLY 88, the memory "bits"™ (each one corresponding to the
state of a single flip-flop) are divided up into bytes of eight
bits each, each byte having its own address. To get to a given
address, the computer searches along a wiring pathway that has
sixteen decisjon points -- sixteen places where the path can
fork to the left or right. A schematic of this pathway would
look, in part, Tike this:

\

We can assign the binary digits @ and 1 to left and right
turns at each decision point. Consider the pathway represented
by the unbroken line:

o ——— 000

o me-=—=ZT_ _ __, 001
=L - . 010
P - ___ 011
em=— 100

- 101

—— i — . 110

- S - __ 111

To follow this pathway, you turn first right, then left, then
right. Defining left as ¢ and right as 1, we can give this
pathway the unique name 1¢1, which means "right-Jleft-right."
Three right turns would be 111; the pathway involving three
left turns would be ¢ggg. A11 the other pathways would have the
designations shown. These binary numbers can be thought of as
the "addresses" to which these pathways lead. Since we have

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 16

either a left or a right turn at each of these decision points,

we have a total of 23 or eight unique pathways in all. You might
have noticed something else interesting. The addresses also turn
out to number the pathways in sequence in binary notation. The
top one, U0J, equals zero. The next one down equals one, the next
one is two, the next one is three, and so forth. The last one,
111, is seven. So all eight pathways are neatly numbered, from
zero through seven. That is what we mean when we say that each
memory address is a unique pathway that can be expressed by a
binary number. Each digit, @ or 1, in the binary number corresponds I
to the state of a bi-stable device that is serving as a "switch”

that turns the pathway to the left or right.

As you can see from the figure above, the total number of different
pathways doubles at every decision point. Since there are 16 such
points in all in the POLY 88, it can store jtems in 2]6 or 65,536
different possible memory locations. Each "location" is actually

a unique pathway, determined by the states of sixteen bi-stable
devices, leading to a unique set of eight binary devices. The
states of these eight devices constitute an item, or part of an
jtem, stored in memory (one byte of memory). So -- 2]6 or 65,000
possible pathways leading to 65,000 locations, each of which can
contain any one of 28 or 256 different binary values.

A1l addressed Jlocations taken together make up the "memory space"
of a computer. Any one address is sometimes called a "vector" in
this space because it "points" to a single byte in memory. The
memory space and address pointer can be depicted Tike this:

Each memory location contains 8 bits --one

byte
65,009 ﬁ
memory i
locations M
A "vector" or Each pathway is i
L pathway leading to expressed as
one location (address) 16 bits--two bytes

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 17

with the bar representing the bytes of 8-bit groups within the
memory, and the large arrow indicating the 16-bit address that
specifies the pathway leading to each memory location.

The items stored in memory can be used in any one of several

ways. An jtem can represent a program instruction to the machine.
Bytes in memory can represent ASCII characters, and thus can enable
the machine to communicate with its human operator. An item can

be a numerical value, to be manipulated in a program--T1ike your
bank balance. In the same way, a pathway leading to these items
can be defined in two ways: as a program pointer (called "program
counter”) when it leads to memory items defined to be instructions;
or as a data pointer when it leads to quantities to be manipulated
by the program. Whether a certain stored item is to be considered
an instruction or a quantity to be manipulated by a program is up
to the operator. The computer does not care either way. In fact,
if the operator accidentally tells the computer to treat a data
quéntity as though it were an instruction, the computer will gladly
do so. To it, anything the program counter points to is an
instruction--whether the operator meant it to be an instruction or
not. And anything the data pointer points to is an item of data

to be manipulated. Trouble sometimes occurs when the operator
accidentally causes the program counter to point to a memory
location that does not contain program. The computer executes the
item as an instruction, and from that point begins to produce
nonsense or "garbage."

b. Central Processor Architecture

A computer consists of memory space, containing stored program
instructions and data to be manipulated in programs, and a central
processing unit, which manipulates data in response to program
instructions. The CPU opens pathways to memory items, takes

items from memory and temporarily stores them, transforms data

by means of mathematical and logical operations, and sends results
out to memory or to an output device.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 18

The organization of a processor is called its "architecture; an
extremely simple computer could work like this:

Memory ‘ ‘ H! , m
data being instruction
accessed being accessed
Central - T — T
Processing]1 l] lll! g] LJ ! ! REEEENE
Unit
Data Pointer Register Program Counter Register

Accumulator ii

Here we have a bar representing a large amount of memory,

with a data pointer pointing to a quantity stored at one
address, and a program counter pointing to a prograﬁ instruction
which tells the CPU what to do. (Don't lose sight of the fact
that these "arrows" that are "pointing"” at bytes of memory are
actually pathways leading to groups of eight bi-stable devices.)
Also, there are some "registers." The data pointer register
contains the two-byte number that corresponds to the memory address
the data pointer is pointing to. The program counter register
states the memory address of the instruction that the CPU is
currently executing. This hypothetical computer performs the
operation pointed to by the program counter, using the data
pointed to by the data pointer. The result of the operation gets
stored in the accumulator. Note that, because the data pointer
and program counter registers hold addresses, they contain two
bytes. When the computer finishes the operation-indicated by
the program counter, the program counter automatically moves to
the next instruction in the program. The program counter may
"jump" on command to a new address at a considerable distance
from the previous location, but for one moment let's visualize
it as just moving one slot to the right at each step. The

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 19

computer then does whatever that instruction tells it to do.
Each time an instruction is completed, the program counter moves
to its next instruction.

The operation of this simple computer can be visualized as
follows. .The program counter points to an instruction that

tells the CPU, "Move data pointer to <address? ." The CPU

opens a line to the slot bearing that address. It also move

the program counter to the next instruction. The next instruction
says, "Take the quantity located in the slot indicated by the

data pointer, and move it to the accumulator." The CPU does so.

Next instruction: "Move the data pointer to (new address> ."
CPU obeys. "Add the quantity in that slot to the quantity in
the accumulator.” CPU does this. "Move the data pointer to
{ new address} ." Obeys. "Take the quantity from the accumulator

and put it in the memory slot that the data pointer is now point-
ing to."

Note that this series of operations involves three quantities

in memory: two quantities that were already in memory, and a
third quantity, the sum of the first two, which is now also stored
in memory.

Now, about those other two CPU registers. Every time the computer
obeyed an instruction, the program counter register changed to
reflect the address of the next instruction. Since we are
visualizing this simple computer as performing a serijes of
instructions in sequence, let us say for the moment that

after each instruction is performed, the value in the program
counter register goes up by 1, to move the program counter one
slot up. (Actual instructions can consist of several bytes and
therefore occupy several consecutive addresses.) We could put an
instruction into the program that says "Jump the program counter
all the way to another part of the program." The value stored

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 20

in the program counter register would change to reflect the address
of the new instruction. The same thing is true of the data pointer

register -- the value in the data pointer register goes up or down as

the data pointer moves to correspond to the memory address of each
accessed memory item.

Why the accumulator? Because a computer performs its operations
by taking one very small step at a time. To take a quantity out
of memory, then take another one from memory and add it to the
first, then put the sum into a new location, takes the computer
three steps. It needs the accumulator to store the results of

intermediate steps.

This simple computer can do anything that any real computer can
do. But because it has just the three basic registers, it dces
everything slowly. To increase the speed of the computer, we
add registers.

The POLY 88 has several additional "working registers.” The
working registers are 1ike the accumulator in that they temporarily
store values being used in computations.

We will add the working registers to our conceptual depiction
of what is called the architecture of the POLY 88:

data bytes program bytes
Memory T
. ?
data pointer ﬁ ﬁ program pointer
H L
B C
D E
A

|
|
|
|
|
|
|
|
|
|
|
|
(l
|
|

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 21

So far, we have the memory space; a data pointer register; a
program counter register; working registers (two pairs, each
one holding one byte); and an accumulator. Let us consider
the working registers.

The working registers, 1ike the accumulator, temporarily store
values the computer 1is using in the course of its operations.
Thus the computer can move a value from memory to any register,
including the accumulator, from any register to any other

register, and from any register to memory. It can perform some
operations on the contents of the accumulator. It can also perform

operations involving the contents of the accumulator and other
registers (add them, for instance).

You have probably noticed that, because we used the letter A to
designate the accumulator, we designate the working registers B, C,

D and E. Each register holds one byte; the registers cgn.a1so be
used in pairs, B with ¢ and D with E, to hold 16 bit quantities. The

register pairs are called "pair B" and "pair D."

You might also note that we are using the letters H and L to
designate the two bytes of the datapointer register pair. This
simply means that the left register contains digits of relatively
high significance, the right register digits of lower significance.
In any number, the significance of digits increases as you move to
the left -- in decimal, tens are more significant than ones,
hundreds are more significant than tens, and so forth. The letters
H and L could apply to any of the register pairs; by convention,

however, only this register pair is described in that way.
There remains just one basic feature of computer architecture
to add: the stack pointer. In order to talk about the stack
pointer, we will have to go a bit deeper into the subject of
programming.

A program is a pre-determined series of instructions for the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 22

computer to follow in solving a specific problem. Recall that

the heart of the computer is its central processing unit, consist-
ing of one or more chips into which are built the electronics
providing for all the logical operations of the computer. This
central processor -lets the computer deal with all the various
‘kinds of problems it is built to deal with. But the central
processor does not tell the computer when to perform any given
operation, or on what, and so it does not enable the computer to
deal with any specific problem. That requires a program.

The fundamental instructions built into the central processor

are called collectively the "instruction set." A program also
consists of instructions, which the user stores in memory. The
computer uses the electronics of the central processor as required
to obey the program instrdctions it encounters in memory.

A very simple program starts out with instruction #1 and moves
along in a straight line through a series of instructions to

the end. But almost no program is that simple. Most programs
incorporate strings of instructions that the computer performs

repeatedly, returning to the beginning of the string and performing

it again until some condition is satisfied. These repeating
strings are called "loops."

Another possibility is a separate part of a program that performs
some specific task that may be called for at several different
times in the execution of the program. The computer moves to that
part of the program whenever it is instructed to, and performs

the instructions it contains; then it returns to the main-stream
program. These repeatable sub-portions of the program are called

"syb-routines."”

Obviously, the terms "loop" and "sub-routine" are not really
mutually exclusijve. A sub-routine could be a loop. The point
is that both terms indicate a departure from the straight-ahead,
left~-foot-right-foot progress of the program.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 23

We can depict a sub-routine in this way:

data program
T - I ¢
Memory I il Ll |

sub~routine sub-routine
IIAII HBII

i

Sub-routines "A" and "B" consist of instructions for operations

that are needed several times in the execution of the program.

Every time sub-routine "A" is needed, the computer comes upon the
instruction "Call sub-routine (first address in A> ." And off

it goes. When it needs "B," the computer comes upon the instruction

"Call sub-routine <{first address in "B">

This is where the stack pointer comes in. Say the program counter
departs from the main-stream program and goes to sub-routine "“A."
The computer performs the sub-routine as required. Now it has to
get back to the right place in the main program. The stack pointer
records the address to which the program counter must return in
order to resume the main-stream program. In the example we are
discussing, this will be the address in the main-siream from

- which the program counter originally departed -- plus three.

Why plus three? Because if the program counter returned from
sub-routine "A" to exactly the same point in the
program from which it departed, it would once again come upon the

instruction "Call first address in "A" ." So back it would go
to the beginning of sub-routine "A". Finished, it would return to
the same instruction -- and go back to "A" again -- and again --

till some merciful human pulled the plug. So when it return from
the subroutine, it must begin at the dinstruction following the

"CALL" (one-byte) and the two-byte address of the sub-routine.-

Now, our example is still very simple. So far it just involves
jumping to either "A" or "B" from the main-stream program, then

PolyMorphic Systems POLY 88, VYol. II Rev. 0.0 P. 2¢

back. But often a program will involve calling & sudb-routine,
then calling from the midst of the sub-routine to another, and

so forth. So the program counter may move from the main-stream
program tc "A," then before finishing "A" it may move toc "B," then
"C," etc. To return, it may have to go ‘rom "C" to "B," then to
"A," then back to the main-stream program. The actual path/a

computer follows to go from question to answer can be very, vary

complicated.

That is why the stack pointer has a stack. The stack pointer keeps
inserting into a portion of memory the addresses that the program
counter has to return to asit finishes with sub-routines. The
first address that goes into this "stack" is the address from

which the program counter departed when it jumped to sub-routine
"A," plus three. If it goes to "B" before it finishes with "A,"
then the next entry in the stack is the address in "A" to which

the program counter must eventually return. The stack pointer
keeps putting these addresses in, in the required order, till it

is necessary to start returning.

To summarize, the computer stores into its memory both data items
and program instructions, in the form of bytes. It takes data
items from memory and puts them into the working registers, where
they can be manipulated. Addresses, or pathways leading to data
bytes and program bytes, are represented in the program counter,
data pointer, and stack pointer registers. These addrasses can
themselves be stored into memory and recalled as required.

C. Instruction Set

At the heart of the POLY 88 is a small "chip," about the size
of the nail of your 1ittle finger, called a central processing
unit or CPU. This integrated circuit, the Intel 8080 A, incorporate

“---'------

many microscopically small solid-state electronic devices that
enable the computer to perform its various operations. Basically,
in fact, all processing is the job of the CPU, while the rest of L
the computer components provide input, output, storage, and access.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 25

We will now take a look at all 72 kinds of operations or
"instructions" the Intel 8080 CPU can perform. First we will
consider some general concepts.

Some of the operations the CPU performs are familiar -- addition
and subtraction, for instance. Others equally important, and in
fact more fundamental, are "logical operations,”" in particular
those called complementation, AND, OR, and XOR (exclusive OR).

COMPLEMENTATION
Addition and subtraction treat binary quantities as quantities --
as numbers built up of one or more digits, to be treated as wholes.
Logical operations, on the other hand, treat the bits of binary
values one at a time. One of them, complementation, simply changes
every # to a 1 and every 1 to a §. These two numbers are
comp]ementary:

10191909

p1P1P111
One of the CPU's operations is "complement”--that is, the CPU can
be told to complement any number, and will respond by changing
every @ to a 1 and every 1 to a §.

TWOS COMPLEMENT

For simplicity of design, the central processor uses addition to
subtract. It does this by converting a number to be subtracted
into its "twos complement," which in effect reverses its sign,
then adding it to the number to be subtracted from.

Let's say that the subtraction problem ijs:

11911901
- 81901991

The number to be subtracted is P1pPIPPl1. To do this, we will
instead add the twos complement of this number, which is in

effect its negative counterpart (in a number of fixed length--here,
eight bits). We begin by constructing its twos complement.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 26

First we complement this number -- invert every bit. It becomes
19119119, That is the "ones complement,” or just the complement
of 21901P81. Then we add 1 to give the twos complement.

18118119
+ 00009001
[@TTQT1T

We can test to see if this is really, in effect, the negative
equivalent of the original number by adding it to the original
number and seeing if the result is zero. In so doing, we will
also see the point of considering only numbers of fixed length.

1991001
+ 19119111

1 ppopoppp
ninth bit /
not considered one byte

part of sum

The fact that we are considering numbers of fixed length means

that the carry out of the most significant place is not considered
part of the sum, so zero can result from the addition of two nonzero
bytes.

Adding 19116111 to 11611901 yields:
11911901
1119111
Carry not

part of sum—e=1 10010009

result

Among binary number of a fixed length of eight bits, there are
256 different possible combinations. These 256 combinations can
be considered to be the positive numbers from ¢ through 255.
Equally well, they can be considred the 256 values from -128

to + 127. In this latter case, the binary expressions for the
values from § to +127 would all be exactly the same as when only

o

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 27

positive numbers are being represented. Then converting all of
these values to their twos complements yields the remaining binary
values which can be considered their negative counterparts. Note
that, in this case, all the positive numbers would begin with a

@ in the most significant place, and all the negative numbers
would begin with a 1.

peoPRRRIB = 1

P11111118B = 127 (decimal)

111111118 = -1 (twos complement of 1)
190900018 = -127 (twos complement of 127D)

Note that ¢ (0000dFEGB) and -128 (1PFIPPEPB) are their own twos
complements. A1l other values have their own unique but dissimilar

twos complement.

The existence of these two sets of values, positive values starting
in every case with a @ and negative values starting in every case
with a 1, means that the most significant bit can be considered

not only part of the value but also the sign of the value. This is
called "signed twos complement notation." The fo]]éwing discussion
of computer operations or "instructions" must be understood in
light of twos complement representation.

LOGICAL OPERATIONS

One logical opération, complementation, treats the bits of a
single binary value. The other logical operations of the CPU
compare the bits of one binary number with the bits of another.
Let's take two binary numbers having just one bit each:

9

Compare these bits.
1

PolyMorphic Systems POLY 88, Vol. Il Rev. 0.0 P, 28

The comparison checks to see if the two bits conform to some
"rule," and leaves a record to indicate whether or not they do
conform. A rule might be: "The two bits are the same." If

they are the same, we can leave a 1 as a record; if they are not
the same, we can leave a #. Note that, in a comparison of two
bits, the first bit can be either a # or a one, and the second
bit can also be a 9 or a 1, so there are 22 or four possible

cases:
P -) 1.
1 e | 1.
1 ~—9 2.
P ~—p | 2.

(Since the rule says nothing about the order of the bits, we
can consider the last two cases-identical.)

A different rule will produce different results for the same
cases. Supposing the rule is " One or the other of the two
digits is a 1." Now the four cases produce:

) ~t—— 0 0.
] 1 1.
| ——= 1.
P 1.

Another way of saying that two bits compare in conformance with
a rule is that the comparison is true. Using false and true
instead of @§ and 1 is very interesting, because it shows how
fundamental these comparisons are to logic, and therefore why
these comparisons are called logical functions.

In the second example above, the rule was that one or the other

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 29

of the two bits {or both) had to be 1. If at least one bit was

1, the result of the comparison was also 1. If neither was 1, the
result of the comparison was @#. Defining @ as false and 1 as
true, we can restate that rule thus: If one bit or the other is

true, then the result is also frue. For brevity:

If A is true OR B is true, then
C is true.

This rule provides a model for a certain kind of logical syllogism -~
the kind in which a certain conclusion always fcllows if either one
of two conditions is met. For instance:

If the batteries are dead, OR the bulb is burned out, the flashlight
will not work.)

Here, either one of the conditions if true is sufficient to make
the conclusion true. There is, of course, another kind of
relationship, in which both one condition AND the second must be
true for the result to be true.

If you have enough money, AND if the store is open, you can buy
what you want.

This AND relationship provides the model for the most famous
syllogism of all: "Al11l men are mortal; Socrates is a man;
therefore Socrates is mortal." Stated 1ike the previous example:
"If all men are mortal, AND if Socrates is a man, then Socrates

is mortal." Note that syllogisms need not assert the truth of

any particular fact, but only offer a model to predict the

"truth relationships" of possibilities. Another way of making

the same syllogism would be:

A1l men mortal? True. AND Socrates a man? True: Socrates mortal?

True.,

PolyMorphic Systems POLY 88 Vol. II REV. 0.0 P. 30
To summarize the AND relationship:

false AND false: false

false AND true : false

true AND false: false

true AND true : true

Defining § as false and 1 as true, we can summarize the AND
relationship in this "truth table":

«
LTI ST LY
—_ . |

AND

v

We have already seen the rule that if one OR the other (or both)
of the two conditions being compared is true, then the result is
true. Here is the OR truth table:

=2
—_—| S
— pd —

OR
One other rule concerns us here: The XOR or "exclusive OR® ruile,
in which one or the other (but not both) conditions must be true

for the result to be true.

For instance, suppose that Mr. Smith employs an equal number of
female and male people:

If Smith hires one female, XOR if Smith hires one male, he will
have an unequal number of female and male employees.-

Here is the XOR truth table:

PolyMorphic Systems POLY 88 Vol. II Rev. 0.0 P.31

As we said before, the POLY 88 CPU compares the bits of two
numbers by means of one of these rules in performing its logical
operations. Here's how two numbers are compared in these ways:

AND
result 19 /)

The top number is compared bit by bit with the number below it,
to see if the upper bit AND the lower bit are 1.

1119919
11911111 OR
11111111

The top number is compared bit by bit with the number below it,
to see if the upper bit OR the Tower bit is 1.

X0OR

_— S
— S~
R [t -
—_
—_ |

|t —
RN -t —
—_ s

The top number is compared bit by bit with the number below it,
to see if the upper bit XOR the lower bit is 1.

BRANCHING

Computers are valuable primarily because they can do repetitive
tasks very rapidly. To be able to repeat the same task a required
number of times, the computer must be able to decide whether it

is to repeat a task or move on. The computer repeats a task

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 32

until some condition is satisfied, then moves on to something
else. If it could not make such a decision, the computer would
have to be told whether to repeat or move on -- the operator
would have to make that decision, and the computer would be far
less useful than it is.

This decision can be -- and is -- divided into two parts: a
test and a branch. The test determines which of two conditions
exists. The test may be of whether two values are equal, or of
whether one value is at least as large as another; it may be of
whether a particular single bit is § or 1, etc. These tests
always involve at least one of the values currently stored in a’
CPU register.

The branch is the point at which the computer moves in one of
two directions. Which way the computer goes depends on the
result of a previous test. We need a way to record the results
of the test for use in the branch. This the computer does by
setting the value of a particular bit to 1 or resetting it to @
to indicate which of two conditions was found to exist. These
bits are called "flags."

These decisions, called conditional branches, always involve
two instructions:

CTEST. Which of two conditions exists? Set a particular flag
to 1 or reset it ‘to ® depending on which condition
exists.

BRANCH. Is a particular flag # or 1? Go on to one or another of
two different instructions depending on the status of
the flag.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p.33

Following a branch instruction, the computer always moves on
either to the next instruction in sequence, or to an address
stated in the branch instruction itself, where it will encounter
another instruction.

In the POLY 88 there are five flags.

CARRY FLAG

When a number is added to the value in the accumulator, the
result may include a carry out of the left-hand bit, the bit of
highest significance. This carry "sets" the carry flag to 1.

accumulator

When an addition does not result in a carry out of the most
significant accumulator bit, the carry flag is 9.

The carry flag can be set to § or 1 by other operations. For
instance, the instructions RAR (rotate accumulator right) and
RAL (rotate accumulator left) affect the carry flag. In RAR,
the least significant bit in the accumulator moves into carry,
the bit that was in carry goes into the most significant place
in the accumulator, and all other accumulator bits move one
place to the right.

RAR [j e AJ | _]

RAL is the opposite of RAR.

The carry flag can be affected by logical operations as well as
addition, subtraction, and rotation.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 34

AUXILIARY CARRY FLAG

3) sets the

A carry out of the "third bit" (fourth place -- 2
auxiliary carry flag:

lator
\‘K_f L J accumu

The auxiliary carry flag cannot be tested directly, and exists
only to enable the DAA instruction for decimal conversion.

SIGN FLAG

The sign flag is set by certain instructions to duplicate the
most significant bit of the value in the affected register.

I;_____ register

Recall from our discussion of twos compiement that the most
significant bit in a register can be interpreted as the sign

of the data quantity when the quantity is considered to be twos
complement.

LERQ FLAG

The zero flag is set to 1 at the end of certain operations if
the byte resulting from the operations is all zeroes; the zero
bit is reset to @ if the result is not zero.

A result that consists of eight zeroes plus a carry out of the
seventh bit sets the zero flag to 1, and also sets the carry flag
to 1.

PARITY FLAG

"Parity" refers to whether the number of 1s in a byte is even or
odd. Byte parity is checked after certain operations. If the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 35

number is even, parity is "even" and the parity flag is set to 1;
if there is an odd number of 1s, parity is "odd" and the parity
flag is reset to 8.

INSTRUCTIONS

Following is a complete 1ist with discussion of all the operations
built into the central processor of the POLY 88. The discussion
divides the operations into groups of related instructions. Each
operation is identified by a "mnemonic" which corresponds to an
instruction in machine language ("opcode”). For a chart showing
all assembly mnemonics and the associated opcodes, see appendix.

CARRY FLAG INSTRUCTIONS. Two instructions affect the carry flag
alone:

CMC (complement carry). Complement the carry flag --
Set it to @ if it is 1 or to 1 if it is @.

STC (set carry). Set the carry bit to 1.

SINGLE REGISTER INSTRUCTIONS. These instructions affect the
contents of one memory address or any one of the CPU registers --
one byte. If memory, the instruction affects the byte addressed
by pair H.

INR (increment register or memory). Increment the affected
register or memory byte by 1 -- add 1 to it.

DCR (decrement register or memory). Decrement regis ter or
memory byte by 1. This instruction is the opposite of INR -- it
is identical to it except that it reduces the affected byte

by 1. A1l flags may be affected.

CMA (complement accumulator). Complement the byte in the
accumulator -- change every 1 to P and § to 1. No flags are
affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 36

DAA (decimal adjust accumulator). Adjust the byte in the
accumulator to form two groups of four bits, each representing
one decimal digit. This instruction is rather complicated,
treating as it does the awkward relationship between binary and
decimal. It is used -- infrequently -- when a decimal output is
desired. DAA adjusts the first four bits and second four bits of
the accumulator byte separately. First, the less significant
four bits of the accumulator byte are compared to 1981 to see if
they are greater than nine. If they are (or if the auxiliary
carry flag is set to 1), then the accumulator is incremented by
six -- which reduces the value of the four bits to nine or less.
Next, if the four more significant bits of the accumulator byte
now represent a number greater than nine (or if the carry flag

is set to 1), then these four bits are incremented by six, so
that they will represent a value of nine or less. Note that
either of these two adjustments may have produced a carry. A
carry out of the four less significant bits sets the auxiliary
carry flag to 1; otherwise, it is reset. A carry out of the
accumulator byte sets the carry flag to 1; otherwise, it retains
its previous value. A1l other flags may be affected.

NO-OPERATION INSTRUCTION:

One instruction results in no operation.

NOP (no operation). Move on to the next instruction in sequence.
No flags are affected.

DATA TRANSFER INSTRUCTIONS:.. .

These instructions transfer data between registers or between
memory and registers.

MOV (move). Move one byte of data from an indicated register
or memory to another individual register or memory. The data also
remains in its original location.

PolyMorphic Systems POLY 88, Vol. Il Rev. 0.0 P. 37

Format example: MOV B,A. "Move the byte in A (accumulator)
into register B." Note that the format states the affected
register first. Data cannot be moved from one memory address
to another in a single operation. Data moved out of memory

is always taken from the location addressed by H & L. No flags

are affected.

STAX (store accumulator). Store the contents of the accumulator
into the memory location addressed by register pair B or pair D,
No flags are affected.

LDAX (load accumulator). Store the contents of the memory
location addressed by the indicated register pair (pair B or
pair D) into the accumulator. No flags are affected.

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS.

These instructions operate on the accumulator using a byte taken
from a register or from memory. Memory is taken from the memory
location addressed by the data pointer (H & L). Results are
left in the accumulator.

ADD (add register or memory to accumulator). Add the byte in
one register or in memory to the value in the accumulator. ADD A
doubles the accumulator. A1l flags may be affected.

ADC (add register or memory and carry flag bit to accumulator).
Add the byte from a specified location, plus the value of the
carry flag, to the value in the accumulator. A1l flags may be
affected.

SUB (subtract register or memory from accumulator). Subtract the
byte in a specified register or memory location from the value in
the accumulator. SUB A subtracts the accumulator from itself,
leaving it (and the carry flag) at zero. A1l flags may be affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 38

SBB (subtract register or memory and carry flag bit -- "borrowf--
from accumulator). Subtract the byte taken from a specified

location, plus the value of the carry flag, from the accumulator.

A11 flags may be affected.

ANA (AND register or memory with accumulator). AND the specified
byte with the accumulator. ANA is often used to zero part of the

accumulator. Carry, zero, sign, and parity flags may be affected.

XRA (XOR register or memory with accumulator). XOR the
specified byte with the value in the accumulator. XRA A

zeroes the accumulator. Then a MOV from A to a register zeroes
that register. ATl flags may be affected.

ORA (OR register or memory with accumulator). OR the specified
byte with the value in the accumulator. This instruction is
often used to set part of the accumulator to 1s. Flags affected:
carry flag is zeroed; zero, sign, and parity flags may be
affected.

CMP (compare register or memory with accumulator). Compare the
specified byte to the contents of the accumulator. In effect,
this determines if the specified byte is smaller than, equal

to, or larger than the accumulator byte. Flags: the zero flag
is 1 if the quantities are equal, and 9§ if they are unequal. The
carry flag is 1 if the register or memory byte is larger than

the accumulator byte, and @ otherwise (but when the two compared
values differ 1in sign, the sense of the carry flag is reversed).
A11 other flags may also be affected.

ROTATE ACCUMULATOR INSTRUCTIONS.

These instructions rotate the contents of the accumulator --

move a bit from one end, and shift the other bits one place.

Rotation can be to the left or to the right, and involves the
carry flag bit (but no other).

-

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 39

RLC (rotate accumulator left and into carry). Move the most
significant bit in the accumulator (left-hand bit) into the

carry flag and into the least significant place in the accumulator.
A11 other bits shift one place to the Teft.

START X plijtiplplrfpls
ROTATE Ole a1 Tolp [11a [+
END g 1111 |p{1]0(1}9p

RRC (rotate accumulator right and into carry). Here, move the
least significant bit from the accumulator into carry and into
the most significant place; the opposite of the instruction

above.

RAL (rotate accumulator left, through carry). Move the most
significant accumulator bit into carry, and the carry flag bit
into the least significant place; shift all other accumulator
bits left. '

START X pllil1iplp 111

ROTATE Lﬁ><-«—§2!|11 plo [1l8[1=

END 0 1l1lofolr o] 1]x

RAR (rotate accumulator right, through carry).
Move the least significant bit to carry, and move carry into the
most significant place; the opposite of the instruction above.

REGISTER PAIR INSTRUCTIONS.

These instructions operate on the register pairs.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 40

PUSH (push data onto stack). Store the value in the specified
register pair into the two bytes of memory addressed by the

stack pointer. Such data is said to be "pushed" onto "the stack.”
The more significant byte goes into address SP-1, the Tless
significant into address SP-2. Indicating PSW (processor staus
word) stores the current accumulator value at SP-1 and a byte
1ncorporating all the flags in SP-2:

always 9 always 9 ——always 1

sign———— l i-‘—_carry

zero flag——" 1 Z%arity

aux. carry

The stack pointer is left pointing to the address where the
second byte has been stored Flags are not affected.

POP (pop data off stack). Store data from the stack into the
indicated register pair. The byte of data at SP is stored into
the less significant register; the byte at SP+1 goes into the
more significant register. If register pair PSW is dndicated,
the byte at SP goes into the accumulator, and the byte at SP+1
provides the bits of the flags. This instruction is the opposite
of the one above.

DAD (double add). Add the two-byte value in the indicated
register pair (B, D, or H) to the two-byte value in pair H, and
leave the result in pair H. Flag affected: carry.

INX (increment extended register pair). Increment the value in
a register pair by 1 -- add 1 to it. No flags are affected.

DCX (decrement extended register pair). The opposite of the
above.

XCHG (exchange registers). Move the value in pair H to pair D
and vice versa. No flags are affected.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 41

XTHL (exchange H & L with stack). Exchange the value in L with

the value in the memory location addressed by the stack pointer and
exchange the value in H with the value in that memory address plus
one (SP + 1). No flags are affected.

SPHL (load SP from H & L). Load the value in register pair H
into the stack pointer register. That value is now the stack
address pointed to by the stack pointer. No flags are affected.

IMMEDIATE INSTRUCTIONS.

These instructions operate on one or two bytes of data, included
in the instruction itself. The data immediately follows the
opcode (hence "immediate").

LXI (Toad extended immediate). Load the indicated register pair
with the two bytes immediately following. The first byte goes
into the lower-order register, the second into the higher-order
register. No flags are affected.

MVI (move immediate). Move the following byte into the specified
register or into the memory location addressed by the data
pointer. This instruction resembles LXI except that it enters only

one byte of data (and therefore can be used to load a memory
location).

No flags are affected.

ADI (add immediate to accumulator). Add the folowing byte to the
value in the accumulator, and leave the result in the accumulator.
A1l flags may be affected.

ACI (add immediate, plus the carry bit, to accumulator).
Add the following byte, plus the value of the carry flag bit,
to the value in the accumulator, and Teave the result in the

polyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.42

accumulator. A1l flags may be affected.

SUI
ing
the
the

SBI

(subtract immediate from accumulator). Subtract the follow-
byte from the value in the accumulator, and leave the result in
accumulator. ATl f]ags‘may be affected. This instruction is
subtraction equivalent of ADI above.

(subtract immediate, and "borrow," from accumulator).

Subtract the byte immediately following, and thne value of the
carry flag bit, from the value in the accumulator, and leave

the

result in the accumulator. This is the subtraction equiva-

lent of ACI above. A1l flags may be affected.

ANI

(AND immediate with accumulator.) AND the byte immediately

following with the value in the accumulator, and leave the
result in the accumulator. Carry, zero, sign, and parity flags

may

XR1I

be affected.

(XOR immediate with accumulator). XOR the byte immedijately

following with the value in the accumulator, and leave the result
in the accumulator. The carry flag is set to @#. Zero, sign, and

parity flags may also be affected.

ORI
ing

(OR immediate with accumulator). OR the byte immediately follow-

with the value in the accumulator, and leave the result in the

accumulator. The carry f]ag is set to @. Zero, sign, and parity
flags may also be affected.

CPI

(compare immediate data with accumulators). Compare the

following byte to the value in the accumulator. The zero flag
is set to 1 if the two values are equal and @ if they are unqual

and

@ if they are unequal. The carry flag is set to 1 if the

immediate data value is Targer than the accumulator value, and
set to P otherwise. (But if the two values differ. in sign, the

e

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.43

sense of the carry flag is reversed.) A1l other flags may be
affected.

DIRECT ADDRESSING INSTRUCTIONS.

These instructions involve the contents of memory addresses; the
addresses are included as part of the instruction. The instruction
states the address "backwards" -- first the Jess significant
address byte, then the more sfgnificant. These instructions do

not affect flags.

STA (store accumulator direct). Store the value in the accumulator
into the memory locatijon addressed in the instruction.

LDA (load accumulator direct). Load the contents of the memory
location addressed in the instruction into the accumulator. No
flags are affected. This instruction is the opposite of STA above.

SHLD (store H and L direct). Store the contents of register pair
H into the memory location addressed in the instruction. No flags
are affected.

LHLD (load accumulator direct). Load the contents of the memory
location addressed by the instruction into the L register, and

the contents of the next higher address into the H register. This
is the opposite of SHLD above.

JUMP INSTRUCTIONS

These instructions cause the computer to "jump" to another part
of a program rather than <continue to perform instructions in
sequence. None of these instructions affects flags.

PCHL (load program counter with H & L). Load the contents of
register H into the more significant byte of the program counter,
and the contents of register L into the less significant byte.
The next instruction executed will be the one now addressed by
the program counter. Note that this instruction does not itself
contain an address. A11 other jump instructions do.

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 44

JMP (jump). Execute the instruction located at the address
given in the instruction, and continue sequentially. This is
called an "unconditional jump." A1l the following jump instruc-

tions are "conditional."

JC (jump if carry). Jump to the instruction addressed by this
instruction if the carry flag is set to 1. If the carry flag
is §, move on to the next instruction in sequence.

JNC (jump if no carry). Jump to the instruction addressed by
this instruction if the carry flag is set to §. If the carry
flag is 1, move on to the next instruction in sequence. This
instruction is the opposite of the above. '

JZ (jump if zero). Jump to the instruction addressed by this
instruction if the zero flag is set to 1. If the zero flag is
set to @, move on to the next instruction in sequence. Compare
to JC. Note that "if zefo " means that the register in question
is all zeroes, so that the zero flag is set to 1.

INZ (jump ifnot zero). Jump to the instruction addressed by
this instruction if the zero flag is set to @. If the zero flag
is set to 1, move on to the next instruction in sequence. This
instruction is the opposite of JZ above. Compare to JNC.

JM (jump if minus). Jump to the instruction addressed by this
instruction if the sign flag is set to 1 ("minus"). If the sign
flag is set to P, move on to the next instruction in sequence.
Compare to JC and JZ above..

JP (jump if plus). Jump to the instruction addressed by this
instruction if the sign flag is set to @ ("plus.") If the sign

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 25

flag is set to 1, move on to the next instruction in sequence.
This instruction is the opposite of JM above. Compare to JNC
and JNZ.

JPE (jump if parity even). Jump to the instruction addressed

by this instruction if the parity flag 1s set to 1 ("even parity").
If it is set to @, move on to the next instruction in sequence.
Compare to JC, JZ, and JM above.

JPO (jump if parity odd). Jump to the instruction addressed by
this instruction if the parity flag is set to @ (“"parity odd").

If the parity flag is 1, move on to the next instruction in
sequence. This instruction is the opposite of JPE above. Compare
to JNC, JNZ, and JP above.

- CALL SUBROUTINE INSTRUCTIONS

Like jump instructions, call instructions cause the computer to

depart from sequential execution of instructions. Also Tike

jump instructions, they usually are "conditional" -- they usually
operate only if some condition is met. And as with jump instructions,
execution of instructions continues in sequence starting with the
instruction at the address called (stated in the call instruction).
The two types of instructions also resemble one another in that

the address included is stated "backwards" -- first the less
significant address byte, then the more significant. Also, these
instructions do not affect flags.

The two kinds of instructions differ in that a call instruction
"pushes" an address onto "the stack" -- namely, the address of
the instruction to which the computer will "return" when it has

fgnizhed the subroutine. See Section A.3. for a discussion of the
stack.

CALL. Go to the instruction addressed by this instruction, and

begin sequential execution there. This is an "unconditional call,'

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 45

and corresponds to an unconditional jump. A1l other call
instructions are conditional, and correspond to the conditional
jump instructions, each triggered by the state of one of the
flags.

CC {(call if carry). Go to the instruction addressed by this
instruction if the carry flag is set to 1. 1If the carry flag
is P, move on to the next instruction in sequence.

CNC (call if no carry). Go to the instruction addressed in this
instruction if the carry flag is set to §. If the carry flag

is 1, move on to the next instruction in sequence. This instruc-
tion is the opposite of CC above.

CZ (call if zero). Go to the instruction addressed by this
instruction if the zero flag is set to 1. 1If the zero flag is 9,
move on to the next instruction in sequence. Compare to CC.

CNZ (call if not zero). Go to the instruction addressed by this
instruction if the zero flag is set to §. If the zero flag is 1,
move on to the next instruction in sequence. This instruction

is the opposite of CZ above. Compare to CNC.

CM (call if minus). Go to the instruction addressed by this
instruction if the sign flag is set to 1 ("minus"). If the sign
flag is P, move on to the next instruction in sequence. Compare
to CC and CZ above.

CP (call if plus). Go to the instruction addressed by this
instruction if the sign flag is set to § ("plus”). If the sign
flag is 1, move on to the next instruction. This instruction is
the opposite of CM above. Compare to CNC and CNZ above.

CPE (call if parity even). Go to the instruction addressed by
this instruction if the parity flag is set to 1 ("even parity").
If the parity flag is @, move on to the next instruction in

)

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 47
sequence. Compare to CC, CZ, and CM above.

CPO (call if parity odd). Go to the instruction addressed in
this instruction if the parity flag is set to §. If the parity
flag is 1, move on to the next instruction. This instruction
is the reverse of CPE above. Compare to CNC, CNZ, and CP above.

RETURN FROM SUBROUTINE INSTRUCTIONS.

These instructions get the computer back from subroutines to the
instruction following the call instruction that caused it to
depart. Specifically, they "pop" an address previously "pushed"
onto "the stack" off of the stack and into the program counter,
causing the computer to next execute the instruction located at
that address. Execution then continues sequentially from there.
Each return instruction is associated with a previous call instruc-
tion, i.e. the program counter always returns eventually to the
point in a program that it previously departed from (to an
instruction following a call instruction). Therefore the number
of returns executed is always equal to the number of calls
executed. (unless the machine halts).

Since these instructions always "pop" addresses in the order

opposite that in which they were "pushed," they can be said
always to operate on the "next available address" in the stack,

so that the address need not be stated in the instruction.

Like "jump" and call instructions, all but one of the return
instructions are conditional upon the state of one of the flags.
Flags are not affected by return instructions.

RET (return). Return to the most recently pushed address.
This is an "unconditional return."

RC (return if carry). Return to the next address on the stack
if the carry flag is §. If the carry flag is 1, move on to the

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P.gsg

next instruction in sequence.

RNC (return if no carry). Return to the next address on the
stack if the carry flag is @. If the carry flag is 1, move on
to the next instruction in sequence. This instruction is the
opposite of RC above.

RZ (return if zero). Return to the next address on the stack
if the zero flag is 1. If the zero flag is @, move on to the
next instruction in sequence. Compare to RC above.

RNZ (return if not zero). Return to the next address on the

stack if the zero flag is p. If the zero flag is 1, move on to

the next instruction in sequence. This instruction is the opposite
of RZ above. Compare to RNC above.

RM (return if minus). Return to the next address on the stack
if the sign flag is 1 ("minus"). If the sign flag is @, move
on to the next instruction in sequence. Compare to RC, RZ above.

RP (return if plus). Return to the next address on the stack

if the sign flag is @ ("plus"). If the sign flag is P, move

on to the next instruction in sequence. This instruction is the
opposite of the instruction above. Compare to RNC, RNZ above.

RPE (return if parity even). Return to the next address on the
stack if the parity flag is 1 ("even parity"). If the parity
flag is @, move on to the next instruction in sequence. Compare
to RC, RZ, RM above.

RPO (return if parity odd). Return to the next address on the
stack if the parity flag is @ ("odd parity"). If the parity
flag is 1, move on to the next instruction"in sequence. This
instruction is the opposite of RPE above. Compare to RNC, RNZ,
RP above.

s

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 P. 49

RESTART INSTRUCTION.

One special instruction, RST, resembles the call instructions in
that it pushes a return address onto the stack and sends the
computer off to another location. The address of the instruction
following the RST instruction sequentially is pushed onto the
stack, so that the computer will eventually return to its point
of departure. Note that the RST instructjon pushes the address
of the instruction following RST -- otherwise the computer would
return to the RST instruction itself and be trapped in an endless
Toop.

RST sends the computer (i.e. the program counter) off to one of
eight pre-determined memory locations, each the first of a
sequence of eight bytes, making up the first sixty-four bytes
of memory.

MEMORY
BYTES etc. through RST 7,
A \ at memory address
I \ 38H. :
RST RST RST
g 1 = 2
(MEM (MEM (MEM
PoH) P8H) 10H)

Actually, the eight bytes associated with each RST can be reached
by means of other kinds of instructions -- jump and call
instructions -- and need not comprise individual routines. In
the POLY 88, all sixty-four of these bytes are used in the
monitor (discussed later).

The CPU executes an RST at one of two times. An RST instruction
may be written into a program, in which case the instruction is

in effect a "call” instruction in shorter form -- one byte
instead of three. More usually, the CPU executes an RST when the
running of a program is interrupted "from the outside". For instance,

Toading onto tape is a very slow process for the POLY 88, which

PolyMorphic Systems POLY 88, Vol. Il Rev. 0.0 P. 50

can output data much faster than the tape recorder can properly
record ijt. So the computer outputs data to the tape on an
interrupt basis -- it occupies itself with other tasks until

the output port electronics indicate that it is time to output
another data jtem to the tape. This forces a restart, which puts
a book marker into the program so the computer will be able to get
back to its point of departure, and sends the program counter off
to a predetermined location to begin execution of a brief routine
that causes the computer to output a data item to the tape.

INTERRUPT FLIP-FLOP INSTRUCTIONS.

Sometimes it is important not to permit interruptions of a program.

For that reason, interrupts can be disabled--input or output
electronics can be prevented from forcing a restart. Whether or
not interrupts are disabled depends upon the state of a single
flip-flop, called the interrupt flip-flop. When the flip-flop

is set to 1, input or output electrcnics can force a restart

until the interrupt flip=flop is reset to @, from which time
interrupts are disabled ti11 the flip-flop 1is once again set to 1.
No flags are affected.

EI (enable interrupt). Set the interrupt flip-flop to 1.
DI (disable interrupt). Reset the interrupt flip-flop to 9.
INPUT/OQUTPUT INSTRUCTIONS.

These instructions cause the computer to input data from or out-
put data to a device external to the computer -- like a keyboard.
To be precise, the instruction causes the CPU to open an input

or output port, which is assumed to provide a connection with
some device. No flags are affected.

IN (input). Load one byte from the designated input port into
the accumulator.

i
8

PolyMorphic Systems POLY 88, Vol. II Rev. 0.0 p. 51

OUT (output). Send the byte in the accumulator out to the
designated output port.

HALT INSTRUCTION.

This instruction brings computer operations to a stop.
first increments the program counter -- adds 1 to it -- so
that the computer will resume with the next instruction.

It

No

flags are affected.

HLT (halt). Increment the program counter, then stop.

o

PolyMorphic Systems Vol.

SYSTEM PHILOSOPHY

The POLY-88 system represents a departure from the usual
it contains, in 1its

microcomputer system organization in that
These

minimal configuration, sevefa} sophisticated I/0 devices.
devices - a keyboard, a memory mapped video dispiay, and a
universé] serial port - are at fixed addresses and are accessed
and controlled in identical ways on every POLY-88. The result
of this standardization is that the power of the elementary
machine can be increased manyfold by the use of dedicated read
only memories (ROMs) resident in the CPU as hardware. The ROM
can assume that the special dedicated devices exist and can use
them. Other systems have no way to know where the devices are
located or even if they exist. The ROM in the POLY-88 CPU is
called the monitor ROM, and is supplied with every POLY-88

system sold. It contains bootstrapping functions, front panel
1/0 device drivers for the self-contained
initialization routines that

simulator functions,

devices, utility programs, and
configure the system when power is supplied or the system is

reset externally.

The ROM also provides another extremely important function:

it sets up conventions for the logical expansion of compatible

software systems that are well engineered from the ground-up.

Unlike the owners of large computers, many microcomputer owners

intend to develop their own software systems. The monitor ROM

allows these systems to share resources such as /0 handlers,
but most importantly,

supervisors or special purpose subsystems,
The standardization

it allows users to share their programs.
of I/0 handling means Polymorphic Systems can publish software

which will run on any POLY-88 immediately, without modification
of sections of the binary program to cope with the various I/0

methods used on each system.

-

PolyMorphic Systems Vol. 2 P. 54

i
i
The standardization does not, however, limit the use of l
the POLY-88 with other types of I/0 devices such as TTY's,
serial CRT's, paper tape reader/punches etc., because the ROM l
allows the standard devices to be re-allocated once the system
is up and running. Any type of 1/0 device can be substituted I
for the standard devices by loading a simple driver routine
for that device and inétalling its address in one of the
monitor's "wormholes"* The wormholes are used to communicate I
between any user program and a standard I/0 device of any type.
Thus, once the driver program is written for the special device I
to be used, it will work for any program that communicates
through the wormholes, and it will work on any POLY-88. The .
wormholes and system standardizationare dealt with in a later
section. l
Another advantage of the dedicated I/0 devices on the
POLY-88 system is reliability. Specifically, the dedicated l
memory mapped video display allows the ROM to generate a
simulated front panel which replaces the usual array of switches l
and light emitting diodes. The hardware front panel used on
most minicomputers and many microcomputers is a rather expensive I
and complex device. It was intended, in minicomputer systems,
to be used only in emergencies or when "bring-up"” (bootstrapping)
the system. Microcomputers, however, since they are frequently l
used for program debugging and are bootstrapped very frequently,
have a tendenlcy to wear out front panel hardware quickly. I
Furthermore, the hardware switches and lights have no access to
the all-important CPU registers in microcomputers as they do '
in minicomputers. ~ The front panel switches on most microcomputers
i
[
J
]

* The term "wormhole" has been used to describe a hypothetical
astronomical situation where a black hole connects to the "other
side" of the universe, When this happens, information can pass
through the wormhole, in only one direction, much as “assumptions

pass down the monitor's wormholes,

PolyMorphic Systems Vol. 2 P. 55

can be used for 1ittle else than examining and loading memory
contents in binary and starting program execution at a certain
address. Some microcomputers use serial output devices with ROM
based monitors for program debugging. These systems have extremely
limited I/0 speed, and therefore result in a tedious interaction
between man and machine that the POLY-88 eliminates by putting

all important information on the screen at all times.

The front panel display of the POLY-88 shows all of the CPU
registers, the "workspace" of the CPU, and a memory "window".
The "workspace" is the areas of memory pointed to by the double
registers, including the program counter and stack pointer. The
workspace display shows, therefore, the program area, stack
area, and data areas pointed to by HL, DE and BC. The memory
"window" is an 8 X 8 block of memory that is displayed, with
addresses, on the bottom of the screen. It can be used to
view a selected area of memory or to point to data areas being
modified. The philosophy behind the front panel display is
that it is best to use the computer's high output capability to
effectively answer all the programmer/debugger's questions
about the machine rather than require him to ask.

Another application of the "anser-the-question-before-it-is-
asked"” philosophy is in the POLY-88 bootstrap tape loader. The
resident ROM contains a complete audio cassette tape loader
which reads absolute binary programs in a sophisticated format
called POLYFORMAT. The files in this format are broken into
short blocks, each with a name and number recorded with it. These
names and numbers are displayed on the dedicated video display
whenever tape is being read. They give the operator an indica-
tion of what file he is reading, where along the length of the
file he is, and whether or not the tape is even being read
properly. . The names and record nubmers effectively make the data
on the cassette visible, so that files can be separated from
each other and located.

PolyMorphic Systems Vol. 2 P. 56

The POLYFORMAT has other advantages also. Its block
structure allows the tape to be stopped in the event of an error
and restarted before the erroneous block. Some recording formats
require a file be read entirely without errors, or the whole
loading must be restarted. The names on the records allow the
computer to jidentify needed data on the tape such as relatively
compiex constructs 1ike subroutines in a library that must be
linked in a relocatable Tinking loader. The names also allow
files to be packed closely together, without time-wasting
leaders. POLYFORMAT includes definitions of several types of
Blocks (or records) such as: absolute binary (for programs),
data (for text.etc.), end (stops load), auto-execute (jumps

into giyen address), and comment (displays a message for operator).

The comment record is another example of the visibility
philosophy. By placing comment records at the beginning and
end of a file, the tape is made even more visible.

USING THE ABSOLUTE TAPE LOADER

The tape loader mode of the monitor may be entered at any
time by resetting the CPU (either by depressing the front panel
reset button or by applying power to the system). When tape
mode is entered, the system video display is cleared and a
small block appears in the upper left corner of the display.
The small block is the cursor symbol used by the display driver
program "DSPLY" which is resident in the monitor ROM with the
Toader. In order to load a POLY FORMAT absolute binary tape,
the Toader needs to know which encoding scheme to use and the
name on the desired file. The encoding scheme can be indicated
by typing either a "B" or a "P" on the system console keyboard,
These stand for BYTE standard, the encoding scheme used in
PolyMorphic published software, and POLY-PHASE, PolyMorphic's
special very high speed encoding scheme. The loader transmits
all necessary configuration information to the 8251 USART and
the 5307 programmable baud rate generator on the CPU card

RN

ENTER oNAME
ahter 4.0 POLYFORMAT TAPE LOADER DISPLAY NAME
OF RECD,
FLOWCHART READ oN
N SCREEN
CLEATU . .
SCREEN y STWCH
SYCH, VP VSART,
READ LEADER
START TO SOM
cHARACTER
INPVUT
CHARACTER
£ROM A
CONSOLE LOAD HEADER
INTO READ
HWEQDER BUFEF,
4 -

S&ETVEP
VSART § BRG
L FOR —

POLYPHASE

3&TUP
VSART 4 BRG6G
L FOR

8Yre sTp»

LOAD
BINARY
PATA /ATO RAM
N AT RADR
LoAD “Einp”
NMAmME INTO
ANAME
FROM coNSOLE
DISPLAY
< comMMENT ON
VIDE O
SYNCH SCREEN

SYNCH

CHREKSUM
Goop ?

DNAME

Dis pLAY
2«
oN VIPECD
SCREEN
DNAME
STOP STOP EXECUTE
USART ApnD USART AND PGM
START < TAPE < TAPE STARTING AT

MOTORS MOTORS RADR

PolyMorphic Systems Vol. 2 P.s7

according to. the encoding specification. It selects the zero
designated mini-card, which should be the audio cassette
interface mini-card being used for the load.

When this is done, the cursor moves down to the next line
and the loader expects a 1 to 8 character file name to be
entered followed by a carriage return. The cassette motor
control line is tupned on, and the tape is read, comparing
the record names found with the name of the desired file. As
records are discovered with the correct name, they are accpeted.
Reading continues until an END or AUTO-EXECUTE type record is
encountered. (See section on tape format). If an END record
is found, the cassette motor control line is turned off and

the loader waits for another encoding specification (B pr P.followed
by file name) or a "continue" command (just a "C" is typed-the old* I

EXECUTE type record is found, the cassette motor is turned off
and the loaded program is executed by jumping to the address
indicated in the AUTO-EXECUTE record. :

Each record encountered, whether it is accepted or not, is
acknowledged by having its name listed, followed by its record
number, on the system console display. Thus if it is desired
to simply examine the contents of a certain cassette tape, the
tape loader can be told to search for an impossible name, such
as no name at all. It will continue indefinitely, searching for
the nonexistent name on a record, each time showing the name
and hexadecimal record number of each record it finds. The
record number 1is recorded in the RCD# field of the record.

Occasionally, while a file is being loaded, a COMMENT type
record will be encountered and the message it contains will be
displayed on the system display. All files should have a
COMMENT record at the beginning for documentary purposes, and
it is the appearance of this COMMENT message on the system
video display that indicates the loader has recognized the
desired file and will load it. COMMENT records are very useful,

*name is used).

PolyMorphic Systems Vol. 2 P. 58

as they can indicate such things as the portion of a large
program that has loaded (the message serves as a flag some
distance down the tape), or that a program has finished

loading and is executing (an AUTO—EXECUTE followed the COMMENT).

A1l mass storage systems must cope with errors in some way,
and magnetic tape is far from an exception. A very long program
has a relatively high probability of loading incorrectly simply
due to noise and other factors which create "soft" or read-only
errors. If the lost data can be re-read, the soft error is
unlikely to occur again, and the loading can continue. The
POLY-FORMAT ailows an erroneous record to be re-read without
starting at the beginning of the file. The record structure of
the POLY-FORMAT is such that each record is completely self-
consistent. This means that if the cassette tape is rewound
beyond the erroneous record and the loader and recorder are
restarted, the loader will find the first complete record (if
it is restarted in the middle of a record) and will reload
records up through the record that was lost. This process may
be repeated until a difficult record loads properly - a very
time consuming proposition if considered with a file structure
which requires restarting of the load at the beginning of the
file. An error is indicated to the operator by a question mark
on the video screen and stopping of the cassette motor. If
the motor control is not being used (some recorders have motor
voltages and polarities inconsistent with the audio cassette motor
control drivers) then the tape will continue to play after the
loader has stopped'at the error. In this case, it may be
necessary to rewind the tape some distance, and it will be
helpful to check the record numbers to find the original spot.
A depression of a C key on the keyboard will resume reading of
the tape. 1If the motor control is being used, it will be
impossible to rewind the tape until the motor control is again

PolyMorphic Systems Vol. 2 P. 59

turned on, and again, this can be done by simply depressing
the C key on the keyboard. The name and format of the file
being loaded is retained and need not be re-entered.

FRONT PANEL MODE

Instead of a hardware front panel, the POLY-88 uses a
program which drives a simulated front panel display onto the
system video terminal. The display, shown in appendix A, is
present whenever the monitor is in the fronf pane] mode, and
is updated each time a command is executed, or the registers
are modified in any way. The display is thus always a
reflection of the contents of the registers and memory at any
instant, just és if it were harwired into the CPU and the
memory address and data busses. Visible in the display are:

*contents of CPU registers: program counter (PC), stack

pointer (SP), .ccumulator (A) and general purpose registers.

*contents of memory areas pointed to by general purpose
registers: program area, stack area, and the areas
pointed to by BC, DE, and HL.

*a moveable memory window which shows 64 contiguous locations
and their addresses.

*the status of the carry, sign and zero flags decoded into
an easy to read form.
The front panel display driver program is complemented by a
command interpreter program. In most cases, a single keystrike
on the system console keyboard will allow the operator to:

*interrupt a running user program to bring up the front panel.
*single-step, run with breakpoints, or return to full speed
execution of the user program.

*move the memory window to a given location.

*enter single bytes or long strings of bytes in hexadecimal
into memory with instant verification of entered data and
easy backup for error correction.

PolyMorphic Systems Vol. 2 P.e6Q.

*trace byte-reversed address pointers in memory by moving
the memory window to the given address.

*move the memory window to point at the program, stack or

data areas currently being used by the user program.

The commands in Appendix B are primitives and should be
used in combination to provide a powerful interactive system
for manipulating memory data and debugging machine language
programs. There is, for example, no command for setting the
contents of any given general register. Instead, there is a
command for pointing the memory modify window at the save area
on the system stack where a given register was stored, This
allows the contents of the register to be modified using the
rest of the commands, such as the Jumbo (J) command, which
allows entry of a full address in its normal byte order instead
of the byte-reversed order of 8080 addresses. Another example
might be using the I (indirect) command after pointing the
window at the register save area on the stack. This will
point the window at the memory area that the register points at.

In other words, if the register was the program counter, a
sequence of "SPI" would leave the window displaying the program
area. The program area could then be modified using the full
power of the front panel commands.

In order to fully introduce each command and its possible
combinations with others, the following text will take the
reader step-by-step through the procedure of loading a simple
program, correcting entry mistakes, checking its logic using the
I command and the X (single-step) command, and finally, running
it.

"USING THE FRONT PANEL MODE

Suppose we wish to construct a simple program in an available
location in RAM. The demonstration we will use is a video
display test which loads each location of VTI memory with the
low-order address byte of each location. This has the effect of

PolyMorphic Systems Vol. 2 P.61

displaying all possible characters and graphics patterns on
the screen in a cyclic group of 256 characters. The display
is thus repeated four times vertically.

The program looks like this in symbolic assembly language:

LXI H,0F800H ;start at top of system screen
LOOP: MoV M,L ;put out each location's low addr byte
INX H ;next location
MOV A,H ;get high addr byte for comparison
CPI OFCH ;is it off the screen yet?
JNZ LOOP ;no - keep going
HLTAGN: HLT syes - 0K, were done, stop.
JMP HLTAGN ;sometimes interrupts break a HLT, so

;go back to the HLT when they do.

In hexadecimal machine code:
21 00 F8 75 23 7C FE FC C2 83 0C 76 C3 8B 0OC
assuming that we want to load it at C80H, which is a free space in
the system RAM. The problem now is to correctly load this hex
into the RAM at that address and then send the CPU off executing
it.

Turn on the POLY-88, and push the front panel reset button.
The machine should have a CPU card with 4.0 monitor installed as
per appendix A, and a video terminal interface card with its
address switches at OF800H, also as per appendix A. The screen
should show only the small cursor block in the upper left
corner. This is the prompt character (actually no prompt char.
per se')*for the tape loader system. Since we want to use the
front panel mode, push the control Z (hold down CTL before and
while pushing Z). Instantly, the front panel display should
appear on the screen. Appendix C shows an example of the front
panel display with an explanation of the various data areas
in it. For now, the part that interests us is the memory
modify window at the bottom. The window is a 64 byte section
of memory which shows, in hex, the Tocations before and after
the "current” window position. The byte actually at the current

window position is indicated by a right-arrow at the left
* but only a cursor symbol.

-

PolyMorphic Systems Vol. 2 P. £2

center of the block. The address of this byte and the leftmost
byte in each row is displayed at the far left of the screen, also
in hex.

Now, to enter the test program into the RAM, we first point

the window at the desired address:
LC80(ret)

where "(ret)" means carriage return (CR on some keyboards, RET
on others). The display should now show 0C80 in the address
next to the arrow. To enter the bytes of our program, we can
simply tvpe the hex for each instruction followed by a space.
When hex is being entered, the termination character for each

byte is interpreted as a valid command. In this case, the
space indicates that the window pointer is to be incremented,
hence each byte goes into a succeeding location. The program

entry looks like this:

21(space)00(space)F8(space)..... 76(space)C3(space)8B8(space)
0C(space) where the "(space)” means, of course, a blank space
from the space bar.

Suppose an error had been made while entering data into
memory. The window may be moved back one location with the
backspace command, control H. The erroneous byte may be
reentered, and after the usual space, the rest of the program
bytes may be entered. If the errbr is detected before a
termination character is typed, it is only necessary to
continue typing in the hex for the correct code until the
Tast two hex characters shown at the bottom of the screen
are correct. The hex input routine used by the command interpreter
shifts hex nybbles into a two byte register from the bottom, so
when it returns to the calling program on receipt of the termina-
tion character, it leaves only the last four nybbles in the

PolyMorphic Systems Vol. 2 P. 63

double register. In the case of hex input to the window location,
only the bottom two nybbles are actually used by the program. Any
previous hex digits are ignored. The use of the Tast hex charac-
ters typed in is built into all the other commands which expect
a hexadecimal input of some kind.

One of the commands which expects a hex input is the J
command. J stands for Jumbo, a mnemonic which indicates a
double word is to be entered at the current window location.
The J command is followed by up to four hex nybbles or characters
and a carriage return, thus:

JF8PP(RET)

The contents of the two locations at and following the window
are modified to contain the "byte-reversed" double word that was
entered. Actually, as mentioned above, only the four last
characters typed in for hex are used, so if an error is made on
entry, Jjust keep typing until all four of the last characters are
perfect. Since the register that the bytes are shifted into is
started out with all zero contents, a small hex number need not
be typed in with leading zeroes (unless, of course, it is being
re-typed after an error), The way to enter an address of 0C80,
then, is to type the J followed by C80 followed by a carriage
return; JC80(ret). One important fact about the J command is
that it does not move the window pointer. The reason for this
is to allow the use of the I command immediately after a J.
Sometimes this combination can be useful.

The I command is the "indirect" operator. It takes the
two bytes at and following the window location and puts them
into the window pointer. It "jumps" to the address currently
shown in the memory at the window pointer. This is a very useful
function for tracing programs that do JMP's or CALL's by placing
the window pointer over the address of the JMP or CALL and
then typing I. It is also immediately after a "J" as a check

PolyMorphic Systems Vol. 2 P. 64

of the address entered. If the address is correct, the window
will show the data that are supposed to be pointed to.

It should be pointed out that the I and J commands work
with double words in memory that are stored in what is known
as "byte-reversed" format. The 8080 puts the high order byte
of an address stored in memory into the high order register
of a pair when POP or LHLD type instructions are executed.

PUSH and SHLD instructions operate similarly. Addresses in

JMP and CALL instructions also follow this rule. Although it
seems logical to arrange addresses this way, it is normal to
enter data into memory incrementing addresses between bytes
entered. This, unfortunately, means that addresses are typed

in low order byte first. Addresses are also displayed back-
wards in the normal representation of data in memory: addresses
increasing to the right. The seemingly backwards storage of
addresses has come to be called "byte-reversed".

Now that the program has been entered correctly, we would
1Tike to run the program. The first thing to do is to set up
the program counter to point at the first instruction of the
program. To do this we will use one of the S commands: SP,
which will point the window at the area on the system stack
where the program counter is stored. Now, of course, the
actual program counter could not be stored on the stack, because
the program which we are running that displays the front panel
and interprets our commands is moving the PC up and down in the
monitor. The program counter we will modify is the one that
will be restored into the "real"” program counter when we want
to execute the program. In other words, as far as we are
concerned, the actual program counter is stored right there in
memory, along with the values of all the other registers. Since
the stack may have any value in it when we preseed control Z,
the locations actually used to store the register values are
unknown. The monitor however, keeps track of these locations

PolyMorphic Systems Vol. 2 P. 65

and will point us at any one we want if we use the S type
of command.

So, to set up the program counter, we point the window at
the proper place on the stack with an SP command, and then do
a J:

SPJC80(ret)

The front panel display at the top of the screen should now
show the 0C80 we just entered in the PC register. The area to
the right of the PC double word shows the memory pointed to by
the PC, which is the program area. It should show part of the
program we have loaded. The arrow at the bottom of the front
panel display points upwards at the actual locations that all
the register pairs point to. The 21 hex that was the first

opcode of our program should be visible above this arrow in the

field next to the PC.

The memory window should also show the new PC value, except

it will be backwards because of the "byte-reversed" address
format. The window should show 80 followed by an 0C. Now,
to check this value, let's see if the PC actually points at
the program. Press I and the window should show the first
instruction again: the 21H. For one last check before we
run the program, type a (ret) and the window will scroll up
one row (8 bytes). We could move backwards one row by typing
line feed (LF). This gets us closer to the address in the JNZ
instruction that we want to test. Space down to the locations
following the JIJNZ (following the C2) and press I. The window
should point at the address we called "LOOP" in the symbolic
assembly program. The instruction at this address was a
MOV M,L, which has hex opcode 7C. The 7C should be 1in the
memory window after the I command is typed.

If this last test works, we are ready to step the program

PolyMorphic Systems Vol. 2 P. 65

through one cycle of its loop to see what happens. The program
counter is still set up to 0C80, so press the single-step command
key, X. The program counter will advance to 0C83 and the HL
register pair will be loaded with F830, the data from the second
two bytes in the LXI H instruction. On the next single-step,

the first byte will be transmitted tb the video screen, but since
the front panel display is replaced on the screen after the byte
the instruction transfers, we do not see anything happen. The
next instruction increments HL to F801. Next, A gets the contents
of‘H, then it is compared with FC hex in the CPI OFCH instruction
(FE FC). Finally, since F8 does not equal FC, and the zero flag
is not set, the JNZ instruction goes back to 0C83 to continue

the Toop.

The program seems to work when single stepping, so the
final test is to execute it at full machine speed. This can be
donc by pressing G. The entire screen should fill with the test
pattern of consecutive ASCII characters and graphics patterns,
in a cyclic replication four times down the screen. The single-
stepping lost the first character in the upper left corner of
the screen, though.

When the test pattern is verified, the front panel mode may
be re-entered as it may be at any time by typing the control-Z.
The front panel will appear, showing the program counter just as
it was, halted at the end of the program on the 76 (HLT)
instruction. The HL pair should have the last screen address
used: FCOOH. |

PolyMorphic Systems Vol. 2 : P. 67

4.0 UTILITY PROGRAMS

In addition to the directly operator-apparent features
of the 4.0 monitor, there are also some software-apparent
features which make I/0 handling and other difficult or routine
operations easy in machine language. Program patching is easy
on the 4.0 monitor becasue the most common patching area for
programs being moved from system to system is in the I/0
section, and the 4.0 monitor contains patch routines for
direct substitution into most programs. These include routines
for transmitting characters from the accumulator to the console
display from the kevboard to the accumulator, and from the USART
port to the accumulator. Several hexadecimal conversion routines
are included which will handle nybble, byte and doubleword
conversions from the keyboard. Other utility functions include
lower to upper case folding of characters input from the keyboard
(lower case characters are converted to upper case before passing
on tc user), screen manipulations such as clear, tab, space and
carriage return, and USART setup programs for Polyphase, Byte
Standard or user defined USART mode.

The following discussion will be found useful to beginning
programmers who wish to use the utility routines to simplify their
programming. Advanced users will want to study the section on
software conventions and methodology in order to make their
complex programs more general , flexible and compatible with
both PolyMorphics published software and other user's software.
The utility programs in the 4.0 monitor, although designed to be
universally available to all users of POLY-88 systems, may
occupy different address areas in later versions of the 4.0
(4.1 etc.). This would make programs written using the
utility programs obsolete, and would require adjustment of the
addresses in all programs that were to be transferred from one
verson to the next. To avoid this mass adjustment of addresses
in user code, PolyMorphics will not publish any version of the
4.0 monitor with the utility routines relocated unless it is
absolutely.necessary to do so. However, the possibility does

PolyMorphic Systems Vol. 2 P. P.68

exist, so it is wise for programmers who intend to use the

utility programs to be aware that this may happen. In any case,
the utility routines are intended only to allow users to construct
small software systems without the need to generate all the
standard utility functions themselves.

The vital utility functions - the I/0 functions - are made
available to all levels of programming without reservation. The
standard character transmission operations are made available
through an ingenious device known as the "wormhole vector", which
puts the I/0 routines at absolutely stnadard positions in the CPU
resident system RAM memory. Thus, no matter what version of '
monitor is being used, or even whether the monitor has been
replaced by a disk operating.system or time-sharing system, the
wormholes in the vector will remain fixed and programs using
them for I1/0 need not be changed. It is possible, then, for
anyone to write programs which will last through many cycles of
monitor or supervisor redesign by simply using the wormholes for
1/0 rather than any fixed-address I1/0 subroutines.

The concept of standardizing the addresses of various
important pieces of information has been extended in 4.0 to
include many things besides the addresses of the character 1/0
handlers. The storage areas for such widely accessible variables
as the present video screen starting, ending and cursor addresses
are defined by the 4.0 in an absolute, fixed manner, so that
any program can modify or examine them with confidence in their
locations. The definition of all the standard locations and
mthods of use of the variables in the system RAM are what give
the POLY-88 its software flexibility (an interesting apparent
contradictioq: the absolute rigidity results in increased
flexibility). The techniques for using the wormholes and other
"system variables" (see glossary for definition of “system
variables" and other terminology used here) are described in
detail in later sections. It is the intention of this section,

PolyMorphic Systems Vol. 2 p. 69

however, to describe the use of the utility functions by
programmers who would rather see their systems work than to
generate a masterpiece of programming generality and portability.

First, let us look at the basic I/0 functions. Almost all
programs need some sort of communication with the keyboard and
system video display. The first two wormholes are defined for
this purpose. Wormhole zero (WHO, pronouned whoo) is the
console input wormhole, while wormhole one (WH1, pronounced
whee) is the console output wormhole. Notice that these wormholes
are defined by their logical rather than their physical function.
Either of them may be changed to operate with any actual physical
console input or output device desired, but as far as the
programmer is concerned, all they do is communicate with the
computer operator through some sort of character-oriented device.
The total effort that must be expended to talk to the operator
is thus, to do a CALL to the appropriate wormhole. The character
will be taken from the accumulator or placed in the accumulator
by the subroutine that the wormhole "contains” (checkout how
the wormholes actually work if you want to, but for now, pretend
each one contains a complete subroutine in its four bytes). All
the wormholes work the same way, by transferring one character
at a time from the accumulator the addresses of all the wormholes

are shown below.

Wormhole Address Logical device accessed (example)
WHO 0C20 console input (generally a VTI keyboard)
WH1 0C24 console output (generally a VTI screen)

WH2 gces system input (binary from a mag.tape)

PolyMorphic Systems Vol. 2 P. 70

WH3 0c2cC system output (binary to a mag tape)

WH4 0C30 aux..syst. input (secondary mag or paper tape)
WH5 0C34 aux. syst. output (secondary tape)

WHG 0C38 text input ("saved" pgm listing from tape)

WH7 0Cc3cC text output (printer or tape for listings)

WH8 0C40 undefined input

WHO 0C44 undefined output

The first three wormholes are loaded by'the monitor wi-h
the proper data to make them act as subroutines when the system
is powered up or when the front panel reset button is pushed.
The subroutines in the monitor are "installed" automatically in
WHO, WH1 and WH2, but the other wormholes, since they require
very complex I/0 handlers, must be installed later, with I/0
rcutines in RAM. The actual routines that the monitor installs
are: the DSPLY program - for driving a PolyMorphics VTI-64 or
32 video display, KI - for getting characters from the keyboard
port of the VTI board, and USRTI - for getting characters from
the 8251 USART on the CPU. As described later, these default
allocations may be changed easily. Let us illustrate the use
of the wormholes with a program which echoes the characters typed
on the VTI keyboard port onto the VTI display:

NEXTCH: CALL WHO ;get a character from console device
CALL WH1 ;put on console display
JMP NEXTCH ;go back for more

Notice that even this simple loop allows complete control of
the video display through the DSPLY routine which recognizes
many of the standard control codes.

PolyMorphic Systems Vol. 2 P. 71

DSPLY, KI and USRTI

More specifically, the codes that DSPLY recognizes are:

ASCII code (hex) keypress function

DEL 7F rubout moves cursor back, deleting char.

CR 0D return skips a line and puts cursor at
left side of screen. "car. ret."

FF 0cC CTL/L clears screen, leaving cursor at
"home" - upper Teft. "form feed”.

VT OB CTL/K moves cursor to "home" position,
in upper left corner."vertical tab".

HT 09 CTL/I skips cursor to next horizontal
position evenly divisible by
eight. "tab" function.

DSPLY also does a little rearranging of the character set given

to it. If the character is a control code, as are several of

the above, it is not printed on the screen. However, if it is

a control code but has a high bit 7 (the top bit) then it»wil]
print as a greek character, but will not work as a control
character. It is thus impossible to use the graphics capability
of the VTI card by transmitting characters to the screen through
DSPLY. Any graphics character comes out as a regular ASCII
character, as if bit 7 were low. Note that DSPLY corrects for
the backwards polarity of bit 7 as the VTI card expects it.
Normally, a high bit 7 will display graphics, and a low bit 7,
ASCII, when bytes are transferred directly to the VTI as if it
were memory. The DSPLY program will take either polarity in

bit 7, and will always generate characters rather than blocks.
The map of the DSPLY input expectations looks like this:

PolyMorphis Systems Vol. 2 P.72

Mapping of DSPLY expected
input codes.

hex
FF
Duplicated ASCII character
codes. (same, with bit 7=1)
Greek character codes.
80
7F
Normal ASCII character
codes.
Normal ASCII control
00 codes. (non-printing)

The other two default wormhole subroutines operate in a more
elementary manner. MNeither the KI nor USRTI wormhole subroutines
map their character codes in any way. KI gets 8 bit characters
from the VTI keyboard without zeroing bit 7. It is possible
using KI to load binmary data or special function codes from an
auxiliary keyboard from the VTI keyboard port. Normal ASCII
characters are expected to have zeroes in bit 7, so, if bit 7
of the keyboard is not grounded, then it should be zeroed by
the software. Bit 7 here means, as usual, the highest bit,
not the next to highest. USRTI operates exactly as KI except
that it fetches bytes from the USART.

To test the USART and a cassette tape system, the following
direct echo loop can be loaded into a free spot in RAM:

/

PolyMorphic Systems Vol. 2 P. 73

LOQP: CALL WHZ2 ;get a byte from USART
CALL WHI1 ;display its ASCII representation on scrn
JMP LOOP ;go back for more

Before this program will work, the USART must be configured

to read from the tape. To do this, reset the system with the
front panel button, and proceed as if a tape were being loaded.
Put in a dummy name and a carriage return. Then bring up the
front panel with a CTL/Z, and run the loop. When the cassette
is played into the USART through an audio-cassette interface,
the characters on the tape will appear on the screen. Many of
the characters will be control codes and will clear the screen
or return the cursor, but some of the patterns on the tape will
be discernible, such as the string of lower casef's that
represent the leader of hexadecimal E6's on a POLYFORMAT record.

PolyMorphic Systems Vol. 2 P. 74
APPENDIX A. INSTALLING 4.0

A number of hardware changes are necessary to convert the
P-88 to 4.0 monitor compatibility. After installing the 4.0
monitor ROM (read only memory) in the right-most ROM socket on
the CPU card, the following points of possible incompatibility

should be checked and corrected as needed:
The system video screen, although it may be moved once
the system is running, is initialized to run at F80Q0 hex.
In order to change the address on the video card, configure
the address selection switch as shown below. The movement
of the video address allows greater expansion of contiguous
program memory.

QLD SWITCHES NEW SWITCHES

2. A short trace labelled "K" on the back of the CPU card

is normally cut for the earlier monitors since they do not

use interrupts from the USART, and this trace connects the
USART interrupt to VI3 (vector interrupt three). This trace
should be reinstalled if it h as been cut by soldering a short
piece of bare wire into the two pads on either end of the
trace as shown in Fig. A.2.

Figure A.2. “"K" TRACE REINSTALLATION

Bottom edge of back of CPU card shown.

-

PolyMorpnic Systems Vol. 2 P. 75

3. The 4,0 monitor uses the 60 Hz real time clock interrupt
which 1s normally not connected for the earlier monitors.

To connect the clock, run an insulated2" jumper wire on the
back of the CPU card from the "A" pad to interrupt pad 1.
The "A™ pad is on the right center of the CPU card

Figure A3. RTC JUMPER

"A" (RTC)

O U

Yl".'

vy

VIl

(looking at the back), however, the "A" is on the front of the
card, next to a 74LS109. Again on the back of the card, vector
interrupt 1 can be found in a group of eight pads arranged in

a horizontal Tine at the bottom right. Interrupt 1 is second
from the right in the upper series of eight.

4

76

Vol.

PolyMorphic Systems

PolyMorphic Systems Vol. 2 P. 77

5, Earlier monitors had keyboard driver routines which zeroed
the high order (bit 7) bit of the data coming from the
keyboard. The 4.0 monitor leaves this bit unchanged when
data is obtained from the keyboard via the keyboard driver
routine. This is so the high order bit may be used for
inputting binary directly through the keyboard or for
increasing the number of valid key codes on the keybcard
to include special functions. An example of this might
be the use of the keyboard driver routine in a text
editing system where a special cursor control keypad
transmits a high bit 7, and the normal keyboard transmits
the normal zero bit 7.

The net effect of this change is that all keyboards must
transmit a zero bit 7. To do this, make sure that this
bit is grounded on the keyboard itself, or ground the

"B" pad on the VTI board. This pad connects to bit 7 of
the input to the 8212 keyboard data latch. It is near

the strobe-polarity jumper pads in the upper right corner
(Tooking frontwise at board). Version 1.0 and later video
cards will all omit the "B" pad, because their keyboards
are expected to supply a zero bit 7.

APPENDIX B. MONITOR COMMANDS

The following 1ist comprises the set of primitive operators
or commands available in the 4.0 monitor in the front panel mode.
Front panel mode may be entered at any time by striking the
control Z key on the system console keyboard, Further commands
on the system console keyboard have effects which are immediately
refiected in the front panel display. When front panel mode 1is
to be exited, the interrupted program may be restarted trans-
parently, since the entire status of the CPU is saved on the
current system stack upon entry to the monitor.

PolyMorphic Systems Vol. 2 P. 78

Key or key sequence Effect

control 2 Interrupt currently executing program.
Front panel mode is entered. Status
of CPU (PC,SP,regs.,Tlags) is saved
on the system stack.

X Execute the next instruction of the
interrupted program and return to
front panel mode to display results.

G Go to the next instruction of the
interrupted program and do not return.

Lxx..xx(CR) Look at address xx..xx with the memory
modify display. The variable-length
address (up to four last hex digits
accepted) is placed into the memory
modify display pointer.

space Move the memory modify display pointer
forward one and redisplay everything.

BX (control H) Move the memory modify display pointer
back one and redisplay everything.

CR (carriage ret.) Move the pointer forward 8 positions.
This nas the effect of scrolling the
display up one line.

SP
SH
SD
SB
SA

PolyMorphic Systems

Key or key sequence

LF (line feed)

xx xx(any command)

Jxx xx(CR)

(Program Counter)
(HL)
(DE)
(BC)
(

D
B
Accumulator/flags)

Vol. 2 P. 79

Effect

Move the pointer back 8 positions.
This has the effect of scrolling the
display down one line.

The last two hex characters before
the command are entered into the
location pointed to by the memory
modify pointer. The command is then
executed.

Jumbo data word (double-word) is ent-
ered in byte-reversed format at and
following the memory modify pointer.
The last four hex characters before
the carriage return are used.

Indirect display. The two bytes at

and following the memory modify pointer
are placed into it in reverse order,

so that if they represent the address
in a JMP instruction, the pointer

will be moved to that address.

Stack modify. The memory modify point-
er is moved to that address on the -
stack where the indicated register

pair was stored on program interrupt.

If the location at the memory modify
pointer is modified, the register
display will show the contents of the
appropriate register as having changed,
and when the G command is executed,
program execution will continue with

the new value. To enter a double-word,
-the J command may be used. A single
byte may be inserted in one register of
a pair by simply entering it for the
lower register and by spacing once over
the Tower register to enter it into

the upper register. Data at the address
pointed to by a register pair may be
modified by using the I command to
move the memory modify pointer to the
appropriate area of memory.

PolyMorphic Systems

Key or key sequence

U (or other illegal
command)

Vol. 2 P. 80

Effect

Update the display. This can be used
to watch dynamically changing events
such as the real time clock counter
being incremented in system memory,
or an I/0 buffer filling.

Tape system is entered. This is the
same tape system entered on power up

or reset from the front panel reset
button, except that the system con-
stants that are initialized by either
of these Jatter entry methods are left
intact. These include the video screen
address, console wormholes and inter-
rupt service routine addresses for

the USART, keyboard and RTC.

A\

PolyMorphic Systems Vol. 2 P. 81

APPENDIX C. FRONT PANEL DISPLAY

Shown on system video screen Explanation of display

PC 008C 0C 0C 7E B7 C2 8B FE 8C PC=008C hex chg Eg hex
SP=0FFA SP

SP OFFA FF 8C 00 FB 7C 2F 31 AO H=0C L=0C (HL) 10

HL 0COC 49 48 D5 10 08 56 Cb6 DA g=88 g=gé é ;

DE 0C51 21 00 88 A7 BA DC OF 1IF A=FF

BC 0000 A0 19 70 31 00 10 06 FF flag byte=86

AF FF86 CNZ t Carry, sign and zero flags are
shown as all high ("CNZ") for
explanatory purposes only, as

1FE3 FF FF FF FF FF FF FF FF this is an impossible condition

1FEB FF FF FF FF FF FF FF FF and does not correspond to the
flag-byte shown. A low flag is

1FF3 FF FF FF FF FF FF FF FF displayed as a blank, eg. " "

1FFB FF FF FF FF FF 01 CA CD means C=5S=7Z=0.

2003 = 00 AA FE 3A 40 21 CE 8F Memory window is displaying data

2008B 76 C2 3C 03 2A 27 0C 3A around 2003 hex. If data is enpered
jt will replace the 00 to the right

2013 26 4F 3A 29 2A 44 0C C9 of the arrow. Addresses increase

201B B9 83 B2 16 FO C8 33 BA from top to bottom and left to
right. Location 2003 contains 00,

2004 contains AA etc.

The display shown above appears on the POLY-88 system console

whenever the monitor is in the front panel mode. It is updated

each time any command is executed, so it always reflects the

contents of the memory and registers accurately.

The top of the screen shows the simulated front panel ditself,

and the bottom shows the memory window. To the right of each

register pair is a display of the locations on either side of
the address in the register pair. The up-arrow near the

middle of the screen points to the actual location that the

register pair points to. This is the location that would be

modified or read if the associated register pair is used as a

pointer (LDAX B, LDAX D, or MOV A,M type of instructions).

Since the A register and the F (flag) byte are never used as

concatenated bytes in an address, they do not have a memory

Dat

PolyMorphic Systems Vol. 2 p. 82

APPENDIX D. POLYFORMAT DEFINITION
The next page shows five examples of POLYFORMAT records,

one of each of the currently defined types. Each record has

the same basic structure as shown below:
SYNCg) /SH/ NAME /RECDn/LN/ADDR LTP/C

(6 76 66,/i6 E6 01 a a a a a a a a r r 1 b b t <
Y

?

v

DATA /CS,

pl

)
d d d d d//d d d d <]

1Y

’\K

Each record consists of a HEADER followed by a possible
DATA field. The fields in the header above have the following
meanings:

field designator purpose/description of field field name
a eight character record name NAME
r record number (0 to 65536) RECD#
1 length of data 1 to 256 bytes LN
b bias address or absolute addr. ADDR
t one of five record types TP
o checksum modulo 256 neg.sum CS
d data bytes binary 8 bits DATA
E6 hexadecimal E6 sync chars. SYNC
01 ASCII "start of header", SOH SH

A1l records begin with the SINC characters
(exactly 16 of them) followed by an ASCII SOH character.
NAME and RECD# are on all types of record, but record
types without data have undefined LN fields. The ADDR
field is defined for absolute binary types and auto-
execute, in which cases it indicates loading or branching

83

Systems Vol.

PolyMorphic

HE# W & 4 d d d 1 H, s4d3dedeyd ‘youks
V3 20 00 00 00 00 €0 02 02 02 02 02 0Z 6V 8V 10 93 93 @ux\\@m 93 93 93|

Fsalar? vee Tooly aoy/ THYN 'vos! ¥30Y37 /
‘paad (ejep auaow ou s3jediput - Burpeo| adey do3s) QN3
adA1

"23X3 ‘J4ppe ‘U3

-03ne ‘oaxa ou yz4d A A A A 4 1 H, s483004RYd ‘ydUKS

3¢ €0 53 £0 00 00 ¢0 02 02 0Z 02 02 02 6v Bv {0 93 93 93/ /43 93 93 93]
sa/a1’ waav/ el gy’ IWYN hos/ ¥30V37 /

Av?w_w ¥agy ut usaib ssasappe 03 dwnf) 31n23X3I-0LNY
‘poad uppe Guoy .
8dA3 peo| $3834q

193fqo Aueuiq "sqe HZAS3 9G6¢ HI#.d4 4 4 d4 d d 1 H, SA330BJURYD "YIuAks
192 62 mm«~mgm €3 (L 00 S3 20 00 00 10 02 02 02 02 0Z 02 6v B8y 10 93 93 @wxymmw 93 93 93]
5o/ viva /sala1/ waav/n17y qoy/ TNV N Ivos/ ¥30v37 /
(3pod 123fqo AueuLq 40y abewl-3u402) AYYNI® 3ILNT10S9Y
*poad
8dA1 buo| .
wd 4 4 1 M, cwwod $83449G HOO#.4 4 4 4 d d 1 H, mmeommeu *Youks
{40 02 02 02 6b 8v 63 10 00 00 S0 00 00 02 02 0Z 02 02 02 €7 ©% 10 93 93 @um \@m 93 93 93
I5y/ viva 7saldi’ rre Tnale aoy/ IWYN hos/ ¥30Y31 /
(peo| buruanp uojedsado 03 wmmwmmsv INIWWO)D
*poadJ
adf, buo| |
W/ L X 3 L. e3Iep S31AQG H/GT# oA 4 A d d 4 1 Ho o sJ4830e4RYD *yoduks
(3V_00 5 85 Sy b5 38 v0 00 00 50 10 /5 0z 02 02 02 02 02 67 8v 10 93 93 93/ £#93 93 93 93)
Y viva “solar’ wee Tnw aou/ JWYN o EILER /

(*239 30afqo 3| qe3ed0(aua‘1xal) ylvya

PolyMorphic Systems Vol.

address respectively. Both RECD# and ADDR are in the standard

8080 byte-reversed format, so that they work with LHLD and SHLD

instructions. In other words,

the most significant byte of the double word. The type field has

the following meanings:

TP (type) field

00H

02H

03H

04H

Record type indicated

2 P. 84

the upper byte in memory contains

ABSOLUTE BINARY. Used for program
storage where data must be reloaded

into .the same place it was copied from
originally. The address of the area

is contained in the ADDR fieid. Data I
is copied starting at this address

for the number of bytes given in the

LN field. l

COMMENT. The data in the data field

is echoed to the system video display I
as a message to the operator. The
checksum on the data may be ignored.

END. This terminates a file. Any
physical device capable of being turned

off is stopped, if it is the device
supplying the data. LN,ADDR fields arel
undefined. No data follows the header.

AUTO-EXECUTE. The address in the ADDR
field is jumped to. LN is undefined
and no data follows the header.

DATA. Information in the DATA field I
is loaded into a buffer somewhere and
used by a program. Data in this

record has no address associated with I
it as object code programs do, hence

the ADDR field is undefined. Data is

8 bits/no parity as is the ABS. format I
and might be ASCII text (bit 7=0) or
relocatable object code etc..Length of
data part of record is c¢iven in LN.

PolyMorphic Systems Vol. 2 P. 85

The length field specifies from 1 to 256 bytes in the data
field, but it is given the following meanings:

LN (length) field ‘Actual data block length (bytes)
1 to 255 1 to 255
0 256

This is so that the'value of the length field corresponds with
the actual number of bytes‘transferred, but also so that the
records may be an even %K block maximum. The seemingly special
case of zero length (0 LN) field for a 256 byte data block is
actually natural, since it represents the overflow condition
(100H with the 1 dropped). It is easy to write program loops
which work with this definition with no special logic to detect
the 256 byte case. |

Checksums are applied to both the header and the data
block separately. The checksum is the negative sum of the
bytes preceding it. When it is added to the preceding bytes
by a loader, the result should be zero. A valid header must
have a correct checksum, or it will be ignored. If a data
block following a valid header has a bad checksum, a checksum
error is generated and loading of the file stops until the
erroneous record can be re-read correctly. Record types with-
out data blocks do not need a second checksum following the
header checksum. Header checksums do not include the SYNC
characters or the SOH character.

Records on a magnetic tape are separated by an inter-
record-gap or IRG of sufficient length that the tape may be
stopped between records and restarted without loss of the next
record. This is to allow controlled l1oading and storing of data
to match the processing sﬁeed of a program, Records may be
stored in immediately successive positions on a tape for the
ABSOLUTE type record if it is not desired to read the data back
slowly under program control. In this case, data can, and
must be loaded back into RAM directly, at full speed.

PolyMorphic Systems Vol. 2 P. 86

APPENDIX G. GLOSSARY OF TERMS

awareness the condition of knowing in a given program
that a certain system variable can and
should be changed to a certain value without
dangerous effects. An assembler, for example,
should change no system variables =~ it is
completely "unaware”. This way, an "aware"
program, called a supervisor, can run the
assembler with the system RAM configured any
way desired. The assemblier could be used
to communicate with any physical device that
the supervisor desires, merely by letting
the supervisor put the address of the
physical device's driver routine into the
appropriate wormhole.

filter program A program which can be installed in a wormhole
by putting its address in that wormhole, and
which performs some intermediate processing
on I/0 information before passing it on to
its intended destination. An example is a
pager for the listing generated by an assembler.
The pager would be installed in a wormhole
by 2 supervisor, and then the assembler would
be callied. The assembler would proceed unaware
that the pager was counting lines and leaving
spaces on each page for a page number that
it generates also. The pager would pass the
paged text listing on down to the physical
device driver routine that was originally
in the wormhole., Filter programs are also
" unaware", as are user programs, Since they
do not know what physical device they are
filtering. They depend on a supervisor to
install them.

ISR or Interrupt

Service Routine A program which executes each time a specific
interrupt of the 7 possible interrupts -
occurs. It usually communicates with a
physical device and moves data between the
device and a buffer area in RAM which is
shared by the ISR and the wormhole program. .
which will transfer the data on to the user.
The ISR also zeroes a flag byte, also in a
shared (thus standardized) location. The
wormhole program simply waits for this flag
to be zeroed, and when it is, it knows that
the data has been placed in the associated

PolyMorphic Systems Vol, 2 p. 87

CASSETTE TAPE FORMAT CRITERIA

Characteristics of the medijum

1.
2.

fixed speed of character transfer

operator cannot visually identify position of tape to
find leaders or identify files

cassettes are long enough for many files

no position control is available other than start/stop
without operator intervention. The operator, however does
not know what is coming from tape, and cannot perform
positioning functions accurately, so he is of limited
value.

Format criteria

Transfer speed regulatable over long term for program
controlled acceptance of data input or output.

Read error recovery--operator assistance acceptable on error
detection, but it must be possible to skip already read
data. This makes direct loading into memory for binary
object code tapes faster since an error does not mean the
entire tape must be reread. Also makes buffered transfers
recoverable because previous data may not be available.

Files identifiable by the machine so that tape libraries
are possible and files may be packed closely together.

Contents of tape should be made visible to operator so
he can scan a tape and find a file or a blank space or
so he will know what portion of a file has loaded etc...

Multiple file types should be avilable for special kinds
of data such as absolute binary object code, which should
be loaded directly into memory, documentation or "comment"
files, which should be displayed for the operator, ASCII
or binary data which is to be operated on by a program of
gome kind and therefore should be transferred through a
uffer. ‘

Synchronous or asynchronous byte format should be usable with
no change in the file format

Any transmission speed should be usable

Format should work on a teletype or floppy disk as well as
cassette tape.

High efficiency in information packing for fast data rate.

PolyMorphic Systems Vol. 2 P, 88

APPENDIX E. MEMORY MAP

Total address space allocation.

0000

0400

0800
0C00

0EOQO
1000

2000

4000

FOO0O

F400

F800

FCOO

FFOO
FFFF

\

%

4.0 monitor ROM (slot 1)

ROM expansion fstot 2)

Onboard (CPU-residentg
ROM and RAM (4K bytes

ROM expansion (slot 3)

System RAM C00 to EOQO,
duplicated EOO to 1000.

System exgansion
area (4K bytes)

Minimal User RAM

area (8K bytes) typical 8K RAM board.

User RAM expansion

Possible video displays
or other mapped 1/0.

Dedicated system video typical VTI/64

display.

Memory mapped I/0
ports.

o

PolyMorphic Systems Vol. 2

CPU resident system RAM.

0COo0

System variable space. Defined

for all systems as reserved for
storage of interrupt, wormhole, and
other shared information.

N A

0C80

ly User program space(in systems
with no other RAM). May be used

pd

s by operating systems for 1/0

drivers, etc., in large systems.

Meeting point between system
programs and stack depends on size
of both - either can expand until
conflict occurs. Big systems usually
move stack to a larger area to allow
more system programs.

OFFF

T\Initial system stack. May be moved
L1~ by large systems which need system
RAM for system functions.

89

PolyMorphic Systems Vol. 2 P. 90
System variables in System RAM.
) }
0C00 - ' |
.3 L]
- TIMER 0Ca8 SCND?2
oco4 ! AUX. ggg;z
TANI oc4c VIDEO scnp3
0C08 - CTL SCRH3
0COA INE%S U 0C50 POS3
U RBUFF 0C52 temp. WINDOW
0Ccoc A
0COE VIDEO gggFF oeod T
0C10 SRAI
SRAZ FNAME
ISR : 0Cs5C TAPE
ADDRS : LOADER
WAKEUP ANAME
0 SRA7
OE;E FVIDEOD 22533 0C64 . RRN
0C66 RLEN
WHO RADR
0C6A RTYPE
WH1
WORM-
< -
HOLE reserved but
>undefined
by 4.0.
WH9
0C48

| 0C80

-

PolyMorphic Systems Vol, 2 P. 91

buffer., When the wormhole program is done,
it de-activates the flag by putting a non-
zero value in it. Interrupts occur at random
times, so they must save the contents of all
CPUregisters and restore them when done,

link program A part of a supervisor program which connects
a filter program to the physical devices
that the filter program replacea. It is
installed in the appropriate wormhole by the
supervisor program before the user program
is executed., When the user program calls
the filtered wormhole, the 1ink program is
executed. The Tink program restores the
wormhole to its original contents and calls
the filter program. The filter program
executes, transferring filtered data to and
from the original source/sink. When it
returns, the 1link program restores its own
address into the wormhole and returns into
the user program. When the user program
is finished, it returns back into the
supervisor program which restores the
original contents of the wormhole which had
the link program address. It is evident
(with thought) that a supervisor program
may act as a link program for a supervisor
above it, and that a link program is a
simple-minded supervisor program.

logical device An imaginary I/0 device which behaves in a
known way for a program which communicates
with it. For example, the unknown device
which communicates with the computer oper-
ator is called the logical console device.

It can be used by an program without regard
to what physical device is actually being
used for communications with the operator
(video display, TTY, graphics CRT, etc....).
This means that the Togical devices must be
standardized: methods of access must be
uniform, and the conceptual function of

each device must be uniform. Standardization
is achieved in the POLY-88 by such means as
the use of wormholes and the declaration of
conventions for allocation of system variables
in the CPU resident RAM memory.

PolyMorphic Systems Vol. 2 P. 92

physical device An actual piece of hardware capable of
performing input or output or both, via
some standard methcd or format. It is
used to describe the difference between
the data sources/sinks that an executing
program is "aware" of (see glossary
definition of "awareness") and the data
sources/sinks that are actually being used.
Programs are normally concerned with "logical
devices" (e.g. "logical tape reader” or
"logical console key board”), whereas the
system and the computer operator are
concerned with the actual physical device
that data is flowing to (e.g. audio
cassette or paper tape reader).

supervisor program Any program which changes the contents of any
wormhole or other system variable in the CPU
resident RAM is acting as a supervisor to
all programs which use the system in the new
context (see dictionary definition of context).
The supervisor is responsible for saving the
0ld contents of the system RAM that it changes,
and for restoring it when its job is done.
It executes a CALL to the ‘"user" program
it is supposed to run. When the user program
is finished, it will return and the superviscr
can restore the system RAM. Supervisor
generally discover how to change the system
RAM by talking to the operator through the
system console.

system variabies Any of the shared storage areas in the CPU
resident RAM memory from COOH to C8O0OH.
System variables are used to "configure" the
system because they control the connections
of physical to logical devices through the
wormholes, the address of current system
video display and system keyboard, the
addresses of auxiliary video displays, the
addresses of the interrupt service routines
for each interrupt, and the status of the
real time clock.

user program A completely unaware program. It is designed
to perform some processing function and so
should be maximally flexible in its 1/0. For
this reason, it does not change any system
variable, but assumes that any system variables
that it references have been set up properiy
by a supervisor before hand. When it is done,
it returns with a RET instruction and the
supervisor that called it restores the system
variables it changed or runs another user progra

PolyMorphic Systems Vol, 2 p. 93

wormholes One of 10 areas in the CPU resident RAM
memory that contain CALL followed by RET
instructions. The address of the CALL 1is
the address of a routine which can fetch
or transmit a single byte from/to a
physical device. Each wormhole is defined
to be the access port for a given logical
device such as the console input, console
output or binary input or output etc..
The wormholes start at 0C20H and go up,
each taking 4 bytes. ¢Each can be called
and will transmit/fetch the character in A.
See Appendix H for details.

wormhole programs A program called by a wormhole which is
supposed to communicate with a logical
device such as the logical console input
device. In an interrupt driven system,
it usually wastes time waiting for a flag
in a known RAM location to indicate that
data is available or can be transmitted to
the physical device currently connected.
When the flag is activated, the transfer takes
place and the wormhole program returns to
the user via the wormhole. The wormhole
program thus guarantees that exactly one
byte will be transmitted before it returns
to the user. No registers other than the
accumulator may be aftfected.

PolyMorphic Systems Vol. 2 P. 94

APPENDIX I

ASCII CONTROL CHARACTER USAGE

cTL

HEX ASCII KEY USE

g8 NUL @ USED TO DETECT BREAK CONDITION

g1 SOH A

g2 STX B

@3 ETX c

4 EOT D

g5 ENQ E

g6 ACK F

g7 BEL G

g8 BS H BACKSPACE

g9 HT I HORIZONTAL TAB

pA LF J LINE FEED (NOT RECOGNIZED BY CRT DRIV.)
g8 VT K VERTICAL TAB - MOVES CURSOR TO HOME POS.
gc FF L FORM FEED - CLEAR SCREEN ON CRT

gD CR M CARRIAGE RETURN - NEWLINE ON CRT

gE SO N

gF SI 0

19 DLE P

11 pCl Q

12 DpC2 R

13 DC3 S

14 DC4 T

15 NAK u

16 SYN V. SYNC CHARACTER - IGNORE EXCEPT AS BCC
17 ETB W

18 CAN X CANCEL LINE

19 EM Y KEYBOARD INTERRUPT

1A SUB Z SAVE CPU STATE & GO TO MONITOR

1B ESC L HALT EXECUTION & RETURN TO INTERPRETER
IC FS N

ID GS |

IE RS r (™

IF US ()

>F DEL RB RUSQOUT - DELETE LAST CHARACTER AND BACKSPACE

I

PolyMorphic Systems Vol,

2

APPENDIX J. VECTOR INTERRUPT SYSTEM

Interrupts on 4.0 vector through the locations from
zero through 38 hex as they do in any 8080 system, however

these locations

push all general

Address table).

in the monitor ROM contain instructions which

registers and jump to an address stored in
the corresponding element in the SRA table (Service Routine

The SRA table

is

in System RAM, so can be

changed by a user supervisor program which wants to install
its own Interrupt Service Routine (ISR) into any of the
vectors. The chart below shows the history of the vectoring

for each of the monitor versions.

address of the SRA table at C10.
but instead an address known as the "wakeup"” address, which

is the jump address for RTC

4.0 fixes permanently the
Note that there is no SRA6,

timeout. The RTC acts like a

piece of hardware wich increments the negative count in
it reaches zero, when the

TIMER (four bytes at C0Q)

routine at the WAKEUP address

until
is jumped to.

RESET)

VECTORED EQUIVALENT INTERRUPT VECTOR

 RESTART ADDRESS ASSIGNED BY
INTERRUPT INSTRUCTION MONIIOR VERSION

2.9 2.2 4.0

VI§ sing.step. RST 7 N A. N.A. C1C (SRA7)
VI1 RTC RST 6 1939 gFFC Cc1A (wakeup)
VI2 KBD RST 5 N.A. N.A. C18(SRAS)
VI3 USART RST 4 1920 PFF9 C16 (SRA4)
V14 RST 3 1918 gFF6 C14 (SRA3)
VIS RST 2 1919 PFF3 C12 (SRA2)
V16 RST 1 1908 PFFP C10(SRA1)
VIi7 (same as RST ﬁ Used to initialize

the system

PolyMorphic Systems Vol. 2 P. 95

The service routine should use the original flag byte and

single byte buffer that KSR (Keyboard Service Routine) used

for the VTI keyboard port. If it does not, the address in the
console input wormhole should be changed to point to a routine
which can communicate with the proper flag and buffer. The flag
and buffer used by KSR is called KBUFF and is located at COC,
with the flag byte at that address, followed by the buffer, The
flag indicates data is valid in the buffer when it is zero,

If it were desired to connect multiple keyboards to the system,
this could be done either by using more interrupt vectors, assign-
ing a separate service routine to each, or it could be done by
doing "polled" I1/0 to determine which keyboard interrupted
through a shared interrupt. Polling requires an interrupt
service routine which can talk separately to each keyboard port
to find the one that interrupted, and then service only that one.
It puts the data obtained into a buffer corresponding to the
interrupting keyboard and activates (zeroes) the corresponding
flag. In a time sharing system, the operating system would

swap addresses into and out of the console input wormhole

(WHO) each time a user's program was restarted. ©Each user's
wormhole would effectively contain a special routine which

would communicate only with the buffer corresponding to his
keyboard.

The monitor provides a routine which reads from the USART,

and which uses another buffer of the same configuration as the
keyboard buffer. It is called RBUFF and is located at COA in
system RAM. When a higher-level program installs routines
which can both read and write through the USART, they should
use the buffers and flags defined in system RAM, just as the
keyboard service routine did with the keyboard buffer, This
way, all wormhole programs which wait for the flags to go to

PolyMorphic Systems Vol, 2 P, 97

zero will work no matter what interrupt service routine
actually changed the flag. The ISR may be handling more than
one device on the particular interrupt that it is installed
in, and may be placing the characters it obtains into a long
buffer (longer than the single byte buffer used to talk to
the wormhole programs), but in any case, if the same flag and
byte-buffer are used, no incompatibilities between ISR and

wormhole program will result.

The key board flag is particularly important, since many
large applications programs may test it to determine whether
a key has been pressed. If different ISR's use different flags,
then these applications programs will not work,

On the subject of standards, the interrupts service
routines all use a standardized register save sequence, which
consists of pushing PSW (accum and flags), then B, D, and H.

Al1 interrupts are forced to use the sequence because it is done
automatically in the ROM befcre the ISR is jumped to. For the
convenience of the ISRs, a section of code in the monitor called
IORET can be used to restore all the registers in the same
sequence, and to enable interrupts before returning to the
interrupting program. A simple jump into the start of IORET
will do the rest. In the monitor, the USART ISR, called USRTSR
falls through into IORET to avoid the need to jump.

There are only seven vector interrupts because the location
that V17 would interrupt through is the same address as RESET
uses, specifically, address 0000. V17 would have the same
effect as resetting the CPU, which of course initializes the
system and brings up the tape loader mode.

Several of the other VI's have been dedicated also.
They are allocated by 4.0 for the single step interrupt, the
system keyboard and the 8251 USART (in addition to the RTC

interrupt mentioned above).

PolyMorphic Systems Vol. 2 P. 98

The single step interrupt is generated by a few
flip-flops on the CPU which count two instructions after
they are activated and then interrupt. This allows the
single stepping feature on the POLY-88 which is so useful
in program debugging. The monitor pops the values of the
registers from their save area on the system stack, leaving
the address to be stepped, activates the single-step hard-
ware, and does a return. The RET instruction is counted by
the hardware as one instruction, then the single instruction
in the user program that gets executed is counted as another
before the interrupt is generated. The interrupt is vectored
to SAVE - an address in the monitor - by SRA7, which is
initialized to contain this address. SAVE then pushes all the
registers back down the stack and returns to the front panel
mode for further operator commands. 4.0 leaves the vector
address of VIO changeable through SRA7 in order to use the
single-stepping feature in more advanced program debugging
systems.

The sytem keyboard interrupt is initially set up fTor a
VTI keyboard port, but by changing the address in SRA5, any
other interrupt serviced physical device service routine may
be installed,

99
PolyMorphic Systems Poly 88

Appendix A

Graphics Capability & Graphics Character Set

1.0 Graphics

The PolyMorphic Systems Video Terminal Interface includes full graphics
display.

When a screen location is part of a graphics display, it is subdivided
into six parts, thus: '

31 9

Each os the six "cells" of the screen Tlocation correspond to one bit in
the byte stored in the screen Tocation. The "zero bit" corresponds to
cell 9, etc.:

7 6 5 4

Graphics: P X selects character
7 6 . . 2

ASCII: 1 selects character

X= don't care, may be 1 or 9

is "on" or "bright," 1 "off" or "dark." Thus, storing 011919198
(6AH) at a screen location produced this graphic at that location:

'(the: The graphics display utilizes the entire screen location, includ-
ing the border area, which is kept dark to provide space around other
characters.)

Graphics Character Set

Graphic (white bright, black dark) 100

08 Og
ecimal?
01 09

02 0A
2 10
03 0B
3 11
04 oc
4 12
05 0D
5 13
06 1}
6 14
07 oF
7 15

i X

20

32-

21
33

22
34

23
35

24
36

25
37

26
38

Con't

ol B CHH M G WM O

28
40

29
41

2A

42

2B
43

2¢C
44

2D
45

. 2E

46

2F
47

30
48

31

32
50

33
51

34
52

35
53

36
54

37
55

2A
58

38
59

3C
60

101

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.08S PAGE 41

FINAL VERSION 4.9 MONITOR NCV 22,1976

w9 we weo

; COPYRIGHT 1976 BY

;s POLYMORPHIC SYSTEMS

;A DIVISION OF

; INTERACTIVE PRODUCTS CCORPCRATION
;737 S. KELLOGG AVE.

;GOLETA, CA 93417

YT kedkkd ik 4.0 MONITOR ddkddhhihkikw

WRITTEN BY D.L.FAIMAN
D.W.SALLUME
R.L.DERAN

s We We wWB we we wg

;POLY-88 RESIDENT MONITCOR ROM VERSION 4.8. RUNS FROM 22
;TO 3FFH IN FIRST CPU ROM SOCKET. FRONT PANEL RESET OR
; THRU ZERO GETS A "POLY-FORMAT" ABSOLUTE TAPE LOADER
sWHICH WILL RUN THE CPU RESIDENT USART TO READ BYTE-STAN
:('B') OR "POLY-PHASE"™ ('P') AUDIO CASSETTE TAPES.
;CONTROL-Z AT ANY TIME ON SYSTEM KBD BRINGS UP FRONT PAN
;DISPLAY WITH MEMORY MODIFY WINDOW IN HEX. COMMANDS THE
;sALLOW MEMORY,REGISTER MCDIFICATION AND SINGLE-STEP/EXEC
;OF INTERRUPTED PGM.

;UTILITY PGMS AVAILABLE FOR USER ARE:

;DSPLY PUTS CHAR ON SYSTEM VIDEO SCRN. RECOGNIZES
ALL STANDARD CTL CHARS AND SCROLLS TEXT UP.
ACCESSIBLE BY CALL TO WORMHOLE 1 (WH1) AT @C24H.

KI GETS CHAR FROM SYSTEM CONSOLE KBD.

ACCESSIBLE BY CALL TO WORMHOLE ZERC (WH3) AT @C2

USRTI GETS CHAR FROM USART BACKGROUND LOAD
TYPE ROUTINE.

HEXO PUTS OUT LOW NIBBLE OF A IN HEX THRU WH1

BYTE PUTS OUT A IN HEX THRU WH1.

DEOUT PUTS OUT D,E IN HEX THRU WHI1.

HEXC GETS A HEX NUMBER UP TO 2 BYTES LONG IN H,L FROM
WH2, ECHOING ON WH1, NON-HEX CHARACTER
TERMINATES INPUT. THE TERM. CHAR IS LEFT IN A.

MOVE TRANSFERS #BYTES IN BC FROM ADDR IN HL TO ADDR I
TERMINATES WITH HL=HL+BC,DE=DE+BC,BC=9.

IORET A SECTION OF CODE THAT TERMINATES AN
INTERRUPT SERVICE ROUTINE BY RESTORING
ALL REGS IN STANDARD ORDER, EI, RET.

TIME EXECUTES 68 TIMES A SECOND AUTOMATICALLY, INCREM
ING POUR BYTE LOCATION CALLED TIMER. 1IF TIMER=0
ALL REGS SAVED AND ROUTINE AT ADDR IN LOCATION
WAKEUP IS JUMPED TO. THIS ROUTINE MAY TERMINATE

WO WE VG NG WP NE VS WO e W WE WO WG WO Ve Ve e We W9 W W

OLY 88 RESIDENT MONITOR VERSICN 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

$1.8S PAGE @2

acen
8cao

9Co4
2CO8

acga

acac
PCOE

9C1la9
2C12
3C14
gCle
acls
acla

8C1lc

gClEe
aC1F

aC29
aCc24
pcas

FFEA
acacC

BY USING IORET.
X2k **SYSTEM RAM ALLOCATION****x%

DEDICATED LOCATIONS.

e me we w9 we wo

ORG aCcaay ;BEGIN OF ONBD RAM
TIMER: DS 4 ; INCREMENTED BY 62HZ CLOCK.
;LOW BYTE=LEAST SIGNIFICANT.
TANI: DS 4 ;TIME AT NEXT INT. USED BY
TBUFF: DS 2 ;USART TRANSMIT BUFFER

; FLAG AND CNE BYTE BUFFER.

;USED BY EXTERNAL DUMPERS.
RBUFF: DS 2 ;USART RECEIVE BUFFER FLAG

;AND ONE BYTE BUFFER.

;USED BY MONITOR TAPE LOADER.

KBUFPF: DS 2 :KBD BUFF~-FULL FLAG AND BUFFER
POS: DS 2 ;CURSOR POSITION FOR DSPLY

: INTERRUPT SERVICE ROUTINE ADDRESS TABLE.

SRal: DS 2 V17T

SRAZ: DS 2 :VI6

SRA3: DS 2 VIS

SRA4: DS 2 +VI4: USART INT.,FIRST INITED SR
SR2aS: DS 2 +VI3: KBD INT.

WAKEUP: DS 2 :ADDRESS JUMPED TO WHEN CLCCK TI

;00T IS IN THIS LOC. IT FUNCTION
;EXACTLY LIKE AN SRA, BUT IS ACT
;JUMPED TO BY THE CLOCK SOFTWARE
;EFPECTIVELY SIMULATES A HARDWAR
SRAT7: Dbs 2 ;SINGLE-STEP INTERRUPT. NORMALLY
' ;AT ITS INITED ADDR WHICH BRINGS
;UP FRONT PANEL DISPLAY. IT CAN
;CHANGED FOR EXTRNAL PGMS TO USE
; DEBUGGING OR FANCY PGMING.
;VIDEO SCREEN ADDRESS PARAMETERS USED IN DSPLY.
;INITED TO F8@93H,FCH, BUT MAY BE CHANGED AFTER
;SYSTEM START UP.
SCEND: DS 1 ;SCREEN END FOR DSPLY.
SCRIM: DS 1 ;SCREEN HOME FOR DISPLAY
;WORMHOLE VECTOR. THIS TABLE IS FULL OF CALL-RETURN PAIR
;WHICH CALL SYSTEM I/O PROGRAMS. THEY MAY BE CHANGED AFT
s INITIALIZATION TO CALL ANY PHYSICAL DEVICE DRIVER IT IS
;DESIRED TO INSTALL. THIS IS NORMALLY DONE WITH LINXK PR
;AS DESCRIBED IN MANUALS. THE FIRST TWO WORMHOLES ARE I
;TO THE SYSTEM CONSOLE KBD AND SYSTEM VIDEO DISPLAY.
;ALL USER I/O SHOULD BE DONE THRU THE WH'S TO INSURE
;COMPATIBILITY WITH ANY SUPERVISOR SYSTEM AND TO ALLOW
;DYNAMIC REASSIGNMENT OF I/0 FOR A FIXED USER OBJECT PGM

WH? : DS 4 ;CONSOLE IN: INITED TO CALL SYS.
WH1: DS 4 ;CONSOLE OUT: INITED TO CALL DSP
WH2: DS 4 ;SYSIN: USED EXTRNLY BY TAPE OR
; INPUT DRIVERS. A CALL GETS BYTE
INITLEN EQU SRA4-$;;LENGTH OF INITILIZED MEMORY
WH3: DS 4 ;SYSOT: USED BY TAPE OR DISK OUT

L

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.9S PAGE 93

ac39
2C34
ac3s

gc3c

gc4o
gC44

aCc4s
aCc49
aC4A

gC4cC
pC4D
8C4E

acsa
aC52

pCsS4
acsc
aCc64
8C66
pCe7
8C69

02420
09090
3293

2046
aaa7
2908
32389
223Aa

316919
C39282

El
E9
FS
CS
DS

sDRIVERS., A CALL OUTPUTS BYTE IN
WH4: DS 4 ;SYSIN2: SECONDARY SYSTEM INPUT.
WHS: DS 4 ;SYSOT2: SECONDARY SYSTEM OQUTPUT
WHG6 DS 4 sREAD: TEXT TYPE INPUT USED

;BY EXTRNL TAPE,DISK,XKBD DRIVERS

WH7: DS 4 ;LIST: TEXT TYPE OQUTPUT TO LINE
;PRINTERS OR TEXT FILES ETC.

WHS8: DS 4 sAUX WH: IN -

WHO: DS 4 sAUX WH: OUT

;VCB BLOCKS TO BE TEMPORARILY SWAPPED FOR SCRHM,SCEND AN
;IN ORDER TO USE DSPLY ON OTHER THAN SYSTEM VIDEO DISPLA
;A LINK PGM DOES SWAPPING, AND IS CALLED FROM WH1 IN-
;STEAD OF DSPLY. IT THEN CALLS DSPLY, AND RESTORES
;CONTENTS OF SCRHM,SCEND AND POS BEFORE RET..

VCB2: : SECONDARY VDO SCRN CONTEXT
SCND2: DS 1

SCRH2: DS 1

POS2: DS 2

VCB3: sTERTIARY VDO SCRN (CTX.
SCND3: DS 1

SCRH3: DS 1l

POS3: DS 2

;s TEMPORARY LOCATIONS USED BY FRONT PANEL MODE.

WINDOW: DS 2 ;MEM. MODIFY WINDQOW POINTER.
SAVPC: DS 2 :USED BY S.S.WHEN STACK UNAVAILA

’
;s TEMPORARY LOCATIONS USED BY TAPE LOADER,

FNAME: DS

8 ; "FIND" NAME FOR TAPE LOADER.
RNAME: DS 8 s READ RECD NAME -FCUND ON TAPE.
RRN: DS 2 ;READ RECD NUMBER.
RLEN: DS 1 s READ RECD LENGTH.
RADRY DS 2 ; READ RECD ADDR (BIAS).
RTYPE: DS 1 ;s READ RECD TYPE,

;FREE ONBOARD RAM ONWARDS.

MONITOR PROGRAM

~o we wo

; VECTOR INTERRUPT LOCATIONS

ORG 2 :
RESET: LXI SP,STACK ;FRNT PANEL RST OR POWER UP GET
JMP RST1 ;RST1 INITS SYST RAM,ENDS IN TAP

* we

;THESE TWO INSTRUCTIONS CAN BE CALLED TO GET THE
;s ADDDRESS OF THE CALLING PROGRAM INTO #,L. THIS
;IS NECESSARY IN WRITING SELF RELOCATING CODE.

.
14

POP H
PCHL

VIé: PUSH PSW ;STANDARD REGISTER PUSH SEQUENCE
PUSH B

PUSH D

POLY 88 RESIDENT MONITOR VERSION 4.9

11/22/76

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.9S PAGE d4

@838 ES PUSH H
9d@C 2a188C LELD SRA1
930F E9 PCHL
2919 £5S VISs: PUSH PSW
pa11 C5 PUSH B
8612 DS PUSH D
@313 ES PUSH H
0914 2a123C LHLD SRA2
3617 E9 PCHL
2318 F5 VIg: PUSH PSW
3819 C5 PUSH B
331A D5 PUSH D
361B ES PUSH H
@21C 2a143C LHLD SRA3
981F E9 PCHL
9828 F5 VI3: PUSH PSW
8321 C5 PUSH B
8822 DS PUSH D
8823 ES PUSH H
8224 2A163C LYLD SRA4
3427 E9 PCHL
8928 F5 VI2: PUSH PSW
8329 C5 PUSH B
@82A DS PUSH D
9928 ES PUSH H
832C 2A184C LHLD SRAS
432F EQ PCHL
3838 FS CLOCK: ©PUSH PSW
331 C5 PUSH B
3832 D5 PUSH D
8233 ES PUSH H
9834 C34999 JMP TIME
2837 08 DB 2
8238 F5 SS: PUSH PSW
2339 CS PUSH B
@33A D5 PUSH D
3338 E3 PUSH H
303C 2alcac LHLD SRA7
#83F E9 PCHL
2349 D338 TIME: ouT 8
9942 21098C LXI H,TIMER
@045 3E04 MVI a,4
8347 34 TIME2: INR M
9848 C26409 JINZ IORET
2048 23 INX B
834C 3D DCR a
034D C24729 JINZ TIME?2
9353 2A1A0C LHLD WAKEUP
8953 E9 PCHL

;USART INTERUPT SERVICE

:ITS ADDRESS IS
2854 prdl USRTSR: 1IN 1
#9256 E602 ANI 2
9058 CA64073 J2 IORET

;GET SERVICE ROUTINE ADDRESS
;GO EXECUTE IT. IT WILL RTRN THR
;SAME AS ABOVE

;THE CLOCK INT ALWAYS GOES TO TH
sTIMER COUNTER ROUTINE,

;ENABLE INT FOR NEXT 62HZ CYCLE
;COUNTER LOCATION

;4 BYTES TO INCR

; INC ONE LOC.

; DONE,STANDARD RETURN

;CNTR IS ZERO,SO INITIATE
;GO TO THE WAKEUP TASK
ROUTINE FOR INPUT

WAKEU

INITED INTO SRAM4.

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 45

9258
895D

2069
9262
2363

p064

2865
2066
2967
9068
2969

206A
2968
@A6E
g06F
3970
9973
2974
2875
29876
8877
20878
8279
ga7¢C

837F
0089
9081
9382
2983
0d18

DB22
219A4C

3694
23
77

El

D1l
Cl
Fl
FB
c9

ES
2143cCecC
7E
B7
C26E29
35
23
7E
El
C9
ES
213a4C
C36EQQ

FS
C5
D3
ES
2A8EQC

IN)
LXI H, RBUFF

;THIS CODE IS SHARED BY ANY SERVICE ROUTINE
;WHICH HAS FOUND A CHARACTER. HL SHOULD HAVE THE
;BUFFER ADDRESS, FLAG FIRST-THEN ONE BYTE BUFF.
;ONLY USED BY INMPUT ISR'S.

IOPUT: MVI M,0 sZERO THE FLAG: WE GOT THE CHAR

INX H +MOVE UP TO DATA BUFFER
MoV M,a ;PUT CHAR IN DATA BUFF

;s FALL THRU TO IORET

IORET: POP H :THIS CODE SECTION CAN BE JUMPED
;sFOR STANDARD SEQ.REG.POPS AND E
: :AS FOR ANY INTERRUPT SERVICE RT
POP D
POP B
POP PSW
EI
RET

;WORMHCLE END OF KBD CHAR FETCH RTNS.
sWHEN CALLED BY WHO,WAITS FOR VALID DATA FLG IN KBUFF,
; THEN RETURNS CHAR FROM KBUFF+1 IN A,

KT1: PUSH =4 sWE CAN ONLY WRECK A, SO SAVE H
LXI B,KBUFF
KIl: MOV AM 1GET FLAG
ORA . ;IS IT ZERO?
JNZ KIl ;NO,TRY AGAIN
DCR M
INX H
MOV aA,M
POP H
RET
USRTI: PUSH H
LXI H,RBUFF
JUP KI1l

*kx*x* YIDEO DISPLAY DRIVER ****%%*

wp wp wo

;DSPLY IS THE FAMOUS "TELETYPE SIMULATOR" WHICH

;DRIVES A POLYMORPHICS VTI AND SCROLLS TEXT WHEN

sTHE SCRN FILLS. IT RECOGNIZES ALL IMPORTANT CONTROL
sCHARACTERS AND USES THE SCRHM,SCEND, AND POS LOCATIONS
;IN SYSTEM RAM WHICH ARE INITIALIZED TO GIVE A SCREEN
;AT @F86¢9H TO QFBFFH ON POWER-UP OR FPRST. AT

;THE SAME TIME, ITS OWN ADDRESS IS PUT IN WH1 FOR THE
;sDEFAULT SYSTEM CONSOLE DISPLAY DRIVER.

DSPLY: PUSH PSW ;A WH PGM MUST SAVE ALL REGS
PUSH B
PUSH D
PUSH H
LHLD POS

CTLX EQU 184 ;ASCII "CAN" CLEARS CUR. LINE

POLY 88 RESIDENT

90886
0938
29388
P08E

pasF

ga7F

2991
2393
9396
83898

6aeD

2998
8a9D
299C

93208
23A1
2908
20a4
2845
2299

23Aa8
2ga9
22aA
29aB
28aC
A9AE
28AF
p9B2
goB3
20B4

8286
paB7
poB8

29B9
a9BC
29BD
2aca

FE18
CcaADga9
118909
D5

367F

FE7F
CAEA409
FE29
D2B493

D68D
CAE627

3C
CAEF29

3C
CAF999

3C

3C

co

7D
E6F8
6F
210839
@9

c9
F689

77
23
c9

3AlE@C
BC

c2pCag
2AlE@C

MONITOR VERSION 4.9
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.9S PAGE 26

RB

CR

FF

TAB

NORM:

CPI
JZ
LXI
PUSH

MVI

EQU

CpI
JZ

CPI
JNC

EQU

SUI
Jz
EQU

INR
Jz
EQU
INR
JZ
EQU

INR
INR
RNZ
MOV
ANI
Mov
LXI
DAD
RET
ORI

MOV
INX
RET

CTLX
CLINE
D,SCRL
D

7FH

RB
RBR
204
NORM

oDH
CR

CRR
@CH

FFR
gBH

od”
o

o0 mtnr'g:b bo = -
@ > o
o]

(S
o}

ferjic 4
>

11/22/76

;ALL DSPLY CHARACTER
sHANDLING SUBROUTINES EXCEPT
;CLINE RETURN TO SCRL TO CHECK
;SCRN OVERFLOW AND SCROLL
;IF NECESSARY.

:BLANR THE CURSOR SO WE
sWON'T HAVE TO LATER.

;USE A GRAPHICS BLANK

s INSTEAD OF A SPACE.

;ASCII "DEL" OR RUBOUT
;BACKSPACE AND DELETE CHAR.

;IF CHAR IS ABOVE 23H, PRINT IT
;ELSE IT'S NOT A NORMAL CHAR,
¢SO TEST IT FOR VALID CTL CODE
sCARRIAGE RETURN. MOVES DOWN

sA LINE, LEFT-ZERGCES CURSCR.

;FORM FEED. CLEARS SCRN, HOMES
;s CURSOR.

s VERTICAL TAB. JUST HOMES CURSOR

;sTAB. MOVES CURSOR RIGHT TC
;NEXT EVEN/8 POSITION.

;IF NOT A TAB, RETURN
;BACKX UP CURSOR TO EVEN/S8

MOV UP 8 POSITIONS

sWE HAVE A PRINTING CHAR, SO MAP
;IT INTO CHAR AREA OF VTI SPACE.
;PUT IT IN REFRESH MEM.

;MOVE UP A POSITION.

;GO TO SCRL.

sSCRL SCROLLS TEXT UP THE SCRN IF NECESSARY,
; THEN FALLS INTO CURP, WHICH RESTORES THE CURSOR
;AND RETURNS TO USER THRU IORET.

SCRL:

Lba
CMP
JNZ

LHLD

SCEND
H
CURP
SCEND

3

P

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 97

pac3 7c MOV A,H
@3C4 95 SUB L
@8CS 54 MOV D,H
08C6 2EA49 MVI L, 4048
23C8 12012 MVI E,?
@9CA 4D MoV C,L
gacB 47 MoV B,A
88CC CD924d1 CALL MOVE
gacr 2B DCX H

CLINE CLEARS THE CURRENT LINE

() 0 ~o we
-
(]
“
(0]

89D@ 3E3F : MVI A,3FH

2002 57 MOV D,A

@803 BS ORA L

P9D4 6F Mov L,A

23DS5S 367F WIPE: MVI M,7FH

23D7 2B DCX 51

2208 15 DCR D

92D9 C2DS29 JNZ WIPE

@9DC 36FF - CURP: MVI M,B8FFHE

A@DE 227E@GC SHLD POS

20E1 C36400 JMP IORET

03E4 2B RBR: DCX H s RUBOUT ROUTINE

03ES C9 RET

Q0E6 914009 CRR: LXI B,64 ;CARRIAGE RETURN RTN.

83E9 7D Mov A,L

9dEA E6CO ANI acen

2BEC 6F MOV L,A

gaED @9 DAD B

@2EE C9 RET

QOEF CDF929 FFR: CALL VTR ;FORM FEED ROUTINE

20F2 367F FFl: MVI M, 7FH

gar4a 23 INX H

@arsS BC CMP H

AOF6 C2F239 JINZ FF1

@2r9 2A1EQC VTR: LHLD SCEND s VERTICAL TAB RTN.

goFC 7D MOV A,L

03FD 2EAQD MV L,9

QOFF C9 RET
;MOVE MOVES -BC BYTES FROM THE AREA STARTING AT
; (HL) TO THE AREA STARTING AT (DE)

2189 7E MOVE: MoV A,M

2191 12 STAX D

8162 13 INX D

8183 23 INX H

0124 @C INR C

0105 C22091 JNZ MOVE

0108 04 INR B

@129 C20991 JINZ MOVE

2laC C9 RET

e

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE @8

218D
81@r
291Aa
2112
9114

2117
211A
211B
g11cC
211D
@l1E
91l1lF
0129

9121
0124
3125
0128
2128
gl2cC
812E

2131
8132

8134
8136
2139
2138

DBF3
2lacec

FElA
C26083

213A30
39
ES
2B
56
2B
5E
D5

CD9233
FB
CDF949
915191
29
369C
017591

29
369A

3E18
CD7F@2
3E9B
CD7F39

; KEYBOARD INTERUPT SERVICE ROUTINE FOR SYSTEM CONSLE
; KEYBOARD AT @F8H. ITS ADDRESS IS INITED INTO SRAS.
;IT WATCHES FOR CTL/Z. 1IF IT FINDS ONE, IT FALLS

; THRU INTO SAVE,

THUS ENTERING FRONT PANEL MODE.

;KBD ADDR IS FIXED BY SCREEN ADDR, WHICH IS @F898H
sSINCE A POLYMORPHIC VTI USES SAME DECODER FOR KBD
;AS FOR VIDEO REFRESH MEMORY.

KSR: IN

LXI
CTLZ EQU
CPI
JNZ

we “o wo

3F8H
H,KBUFF
81aH
CTLZ
IOPUT

k¥*** PRONT PANEL MODE ****xx

;SAVE IS THE ENTRY POINT INTO FRONT PANEL.
;MODE IF REGISTERS HAVE BEEN ALREADY PUSHED IN
;s STANDARD SEQUENCE. IT PUSHES PC AND SP

;ON TOP OF REGISTERS FOR DISP TO USE.

SAVE: LXI
DAD
PUSH
DCX
MOV
DCX
MOV
PUSH

H,18
SPp

H
H
D,M
H
E,M

D

;WARM IS THE ENTRY POINT TO FRONT PANEL MODE
;IF PC AND SP HAVE ALREADY BEEN PUSHED DOWN
;ON TOP OF REGISTERS IN STANDARD SEQUENCE

WARM: CALL
EI
CALL
LXI
DAD
MVI
LXI

DAD
MVI

CLEAR

VTR ;SET HL TO BEGINNING OF SCREEN
B,337 sOFFSET FROM SCREM FOR UPARROW
B
M,9CH ;VTI CODE FOR UPARROW
B,1758 ;OFFSET FROM UPARROW FOR

; RIGHT ARROW
B

M,SAH ;VTI CODE FOR RIGHT ARROW

;DISP IS THE ENTRY POINT TO FRONT PANEL MODE IF
;THE SCREEN ALREADY SHOWS A FRONT PANEL DISPLAY.
:IT DOES NOT CLEAR THE SCREEN, SO WILL NOT
;BLINK WHEN SCREEN IS UPDATED.

DISP: MVI
CALL
MVI
CALL

A,CTLX ;ERASE LAST COMMAND ON SCRN
DSPLY
A,38H
DSPLY

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.8S PAGE 49

d13E 3EQ36 MVI A,b
0140 219099 LXI H,0
2143 39 DAD SP
8144 216DJ1 LXI B,MSG
2147 FS PUSH PSW
3148 37 DISPl: STC

8149 CD7COl CALL FLDSY
@14C CpD7C91 CALL FLDSY
814F CD9733 CALL BLK
8152 SE MOV E,M
2153 23 INX H
3154 56 MOV D,M
8155 23 INX H
8156 CDD183 CALL DECUT
4159 F1 POP PSW
415A 3D DCR A
p15B Ca8741 J2Z FLAGS
815E F5 PUSH PSW
815F C5 PUSH B
8164 EB XCHG

2161 @1FDFF LXI B,-3
8164 29 DAD B
6165 EB XCHG

@166 CD7F@3 CALL HEXOS8
2169 Cl POP B
8l6a C34801 JMP DISP1
016D 58435358 MSG: DB 'PCSPHLDEBCAFCMZ'

0171 484C4445

8175 42434146

8179 434DSA
;FIELD DISPLAY PUTS OUT CHAR IN ADPDR IN B IFF CY SET.
:IFF CY ZERO, PUT BLANK TO VDO DISPLAY.
;IN EITHER CASE, B IS INCREMENTED.

917C FS FLDSY: PUSH PSW
317D D49743 CNC BLK
2182 @A LDAX B
9181 DC7Fr99 cC DSPLY
2184 F1 POP PSW
9185 493 INX B
6186 C9 RET

9187 CD9CE3 FLAGS: CALL TABBER
918A 7B MOV A,E
2188 @F RRC

818C CD7C@al CALL FLDSY
018F @7 RLC

01998 97 RLC

8191 Cp7Cal CALL FLDSY
2194 87 RLC

8195 CD7COl CALL FLDSY

;MMOD PLACES THE MEMORY MODIFY DISPLAY
:ON THE SCREEN WINDOW POINT TO THE BYTE

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.9S PAGE 19

:TO BE MODIFIED

0198 CD8DA3 MMOD: CALL CROUT

2198 CD8D@3 CALL CROUT
219E 2A584C LHLD WINDOW
31A1 GlEOFF LXI B,~-32
91a4 99 DAD B

91AS JEQ2S8 MVI c,8
d1A7 EB XCHG

21a8 CoD183 MMODl: CALL DEOUT
#1aB CD9CH3 CALL TABBER
@1AE 3ETF MVI A,7FH
2189 CD7Fd90 CALL DSPLY
21B3 CD7F23 CALL HEXO8
21B6 @D DCR C

01B7 C2A831 JNZ MMOD1

o we

;COMD CALLS HEXC TO GET HEX NUMBERS TO BE ENTERED INTO M
;THEN EVALUATES THE NON-HEX TERMINATING CHARACTER TO SEE
;IT IS A COMMAND

341BA CDAAG3 COMD: CALL HEXC
@1BD 79 MOV A,C
@1BE B7 ORA A

#1BF C45302 CNZ STORE
p1c2 78 MOV A,B
21C3 213491 LXI #,DISP
91C6 ES pPUSH H

31C7 21E841 LXI H,MTBL
71CA CDDB@1l CALL LOOKUP
91CD 1609 MVI D,0
B1CF D23EQ2 JNC ADDIT
81D2 CDDB@1 CALL LOOKRUP
21DS5 D8 RC

01lD6 21024@2 LXI H,RTN
21D9 19 DAD D

g1DA EO PCHL

LOOKUP COMPARES THE ACCUMULATOR
AGAINST THE ENTRY IN A TABLE
POINTED TO BY HL AND RETURNS WITH
THE BYTE FOLLOWING IT IN E.
;CARRY FLAG SET IF NO MATCH
;TABLE MUST END IN 8FFH, EACH ENTRY IS 2 BYTES

s %8 %o wo we Se

21DB BE LOOKUP: CMP

M
dlpc 23 INX H
21DD SE MOV E,M
21DE C8 R2Z
31DF 23 INX H
31E8 SE MOV E,M
glEl 1C INR E
21E2 C2DBJ1 JINZ LOOKUP
8les 23 INX H

o

PCLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.39S PAGE 11

0l1E6 37 STC

@lE7 C9 RET
;MTBL IS THE TABLE OF COMMANDS FOR
sMEMORY MODIFY

2lE8 24 MTBL: DB v ;SPACE MQVE PQOINTER FORWARD
g1E9 11 DB 17

d1EA 28 DB 8 ; BACKSPACE MOVES BACXWARDS ONE
21EB @F DB 15

81EC @D DB 13 ; RETURN MOVES FWD 8 BYTES
@1ED 18 DB 24

21EE 0A DB 19 ;LINE FEED MOVES BACK 8 BYTES
QlEF 08 DB 8

gl1F8 FF DB -1 ;END OF 1ST HALF TABLE

@lF1 47 DB 'G’ : GO

81lr2 6C DB G-RTN

glF3 53 DB 's? ;SET REGISTER

g1Fr4 7C DB SETR~-RTN

91FS 58 DB 'X! ; EXECUTE (SINGLE STEP)

@1F6 59 DB X-RTN

81F7 49 DB 'T! s INDIRECT

BlF8 49 DB IND-RTN

01F9 54 DB ‘T ; TAPE LCADER

BlFA 14 DB TAPE-RTN

g1FB 4C DB 'L’ ;LOAD MEMORY POINTER

@1rFC 37 DB LOD-RTN

@1FD 4a DB '3’ ; JUMBO - LOAD 2 BYTES

@lFE 2C DB DOUBLE~RTN

@1lFF FF DB -1

;RST1 IS THE INITIALIZATION ROCUTINE
;IT SETS UP THE WORMHOLES USED IN THE
sMONITOR, THEN CHECKS FOR A SECOND ROM
sAND CALLS IT IF IT IS THERE

8229 RTN EQU $;ALL ROUTINES REFERENCE TO HERE
0209 11160C RST1: LXI D,SRA4

0233 21EAQ33 LXI H,INITER

3286 91EAFF LXI B,INITLEN

9299 CpDQ@0ol CALL MOVE s INIT WORMHOLES

023C 3A8004 Lbpa 429H ;GET 1ST BYTE OF 2ND ROM

@28F 3C INR A ;IF IT WAS NOT AQFFH

0210 C40094 CNzZ 4394 ;CALL IT

8213 FB EI ;TURN ON INTERRUPTS

;TAPE IS THE BOOTSTRAP LOADER ROUTINE
;IT EXPECTS TO GET A B,P, OR C OR IT WILL
:WAIT FOR ONE

9214 CD9223 TAPE: CALL CLEAR
2217 CDAl@3 START: CALL LCFLD ;GET A CASE-FOLDED B OR P
821a 4F MOV c,a :SAVE THE B OR P FOR ECHOING.

021B FES@ CrI '‘p! ; POLYPHASE N

POLY 88 RESIDENT MONITOR

821D
0229
0222
3225
8226
2229

822C
B22F
0239
8233
0234
9235
@236

8237
g23a
923D

@23E
2241
8244
9245
8246

2249
224C
924D
924E
B24F
8259

CABAQ2
D642
CAC722
3D
CAF382
C31792

CDAAG3
EB
2A502C
73

23

72

c3

CDAAG3
22593C
c9

2A533C
01lFQAFF
29
19
c33a82

2A598C
SE
23
56
EB
c33a82

* we w8 we

VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.8S PAGE 12

JZ
SUI
JZ
DCR
JzZ
JMP

;DOUBLE GETS A HEX

POLY
IBI
BITE

HEAD
START

11/22/76

;BYTE STANDARD

;CONTINUE
;sNOT A B OR C OR P

NUMBER FROM THE CONSOLE
;AND LOADS IT INTO THE NEXT 2 BYTES IN MEMORY

; (OR A REGISTER) LOW ORDER BYTE FIRST

s J<HEX

DOUBLE:

* we

;LOD LOADS

#> (CR)

CALL
XCHG
LHLD
MOV
INX
MOV
RET

BEXC

WINDOW

M,E
H
M,D

WINDOW WITH THE NUMBER

; FOLLOWING THE L COMMAND
; LKHEX NUMBERD> (CR)

LOD:
SVA:

3
7
.

CALL
SHLD
RET

HEXC

WINDOW

;ADDIT MCVES THE MEMORY POINTER (WNDOW)

;BY FORWARD OR BACKWARDS BY
;THE VALUE IN E (D=0)
;E IS OFFSET BY 16

ADDIT:

LHLD
LXI
DAD
DAD
JIMP

WINDOW

B,-16
B

D
S

’
; IND LOADS THE NEXT 2 BYTES IN MEMORY
; INTO WINDOW

IND:

LHLD
MOV
INX
MOV
XCHG
JMP

WINDOW

E,M
H
D,M

SVW

;STORE STORES THE BYTE IN L (ENTERED
;FROM CONSOLE) INTO MEMORY

.
’

TRY AGAIN

POLY 88 RESIDENT MONITOR VERSION 4.4 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 13

P253 7D STORE: MOV A,L
2254 2A5386C LHLD WINDOW
8257 77 MOV M,A
8258 C9 RET

;X EXECCUTES ONE INSTRUCTION POINTED TO
;BY SAVPC AND RETURNS TO RST7

4259 E1 X: POP g ;2 DUMMY POPS

825Aa E1 POP H sGET PC

@25B 22529C SHLD SAVPC :SAVE IT

@25E E1 POP H

825F E1 POP H ;GET REGISTERS
8263 D1 POP D

8261 C1 POP B

8262 F1 POP PSW

8263 E3 XTHL s RESTORE PC

8264 2A528C LALD SAVPC

@267 E3 XTHL

8268 FB EI

8269 D33C ouT 12 ; ENABLE SINGLE STEP LOGIC
8268 C9 RET ;GO TO USER PGM.

;G ACTS THE SAME AS X BUT DOES NOT
s ENABLE SINGLE STEP LOGIC, AND

; THEREFORE DOES NOT RETURN

;TYPING CTL-Z WILL RETURN FROM THE
s PROGRAM BEING EXECUTED AND SAVE
sALL REGISTERS

:IF A RST7 IS ENCOUNTERED THIS WILL
;ALSO HAPPEN

g26C El1 G: POP H
826D E1 PCP H
226E 22528C SHLD saveC
9271 E1 POP H
2272 E1 POP H
0273 D1 POP D
2274 C1 POP B
9275 F1 POP M
8276 E3 XTHL

8277 2a528C LHLD SAVPC
827a E3 XTHL

827B C9 RET

;SETR POINTS TO ONE OF THE 8388 REGISTERS
sAS SAVED IN MEMORY

;MAY BE USED WITH JUMBO COMMAND TO

:SET A REGISTER PAIR, OR WITH OTHER
;COMMANDS TO SET INDIVIDUAL REGISTERS
;S<P/H/D/B/A>

927C CDAl@3 SETR: CALL LCFLD ;GET REGISTER DESIGNATION
@27p 218r4@2 LXI H,RTAB sAND LOOXK UP POSITION

POLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 14

8282 CpbBJZ1 CALL LOOKUP

9285 D8 RC ;RETURN IF NOT VALID REGISTER
9286 2190299 LXI H,2

9289 54 MOV D,H ;SET D-@

828a 39 DAD SP ;ADD 2 TO STACK POINTER (FOR CAL
9288 19 DAD D ;ADD REG. POSITION

828C C33A32 JMP SVwW ; PUT IN WINDOW

;RTAB IS A TABLE OF THE 898¢ REGISTERS
;AND THEIR RELATIVE POSITIONS AS
;STORED ON THE STACK

028F S50 RTAB: £B ‘p!
2299 29 DB)
2291 48 DB 'H'
2292 24 DB 4
8293 44 DB ‘D!
2294 926 DB 6
8295 42 DB ‘B’
2296 128 DB 8
8297 41 DB 'al
3298 9A DB 10
0299 FF DB -1

¢GET IS USED BY THE LOADER TOC GET
;C BYTES AND STORE THEM AT HL T d4L+C-1

229A AF GET: = XRA A
2298 47 MOV B,A
@29C CDAS532 GET1: CALL TI
d28F 77 MOV M,A ;PUT BYTE IN MEMORY
02A9 23 INX B ;s INCREMENT POINTER
02A1 @D DCR C
22A2 C29CB2 JNZ GET1
;TI GETS A CHARACTER FROM WH2
;AND KEEPS A CHECKSUM IN B
;D IS USED AS A TEMPORARY
@2A5 CD289C TI: CALL WH2
22A8 57 MOV D,A
2229 39 ADD B
322A 47 MOV B,A
p2a8B 7A MOV A,D
@2AC C9 RET

sSETUP PUTS IMMEDIATE BYTES INTO BAUD RATE GEN.,
;AND THEN USART CTL PORT. THE TERM CHAR IS 49H,
;WHICH IS ALSO XMTED TO USART, LEAVING IT IDLING.
;WHEN DONE, JUMPS TO LOC. AFTER

: IMMED BYTES.

32AD E1 SETUP: POP H ;GET ADDR FOLLOWING CALL TO SETU
02AE 7E MOV A,M :GET DATA FOR BRG

o

e

POLY 88 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPCRATION
4.8S PAGE 15

d2AF
281
2282
283
2285
U286
2289

22BA
22BD
923E
@2BF
@2C9

g2C1
gacz
32C3
g2C4
g2Cc7
82CA
g2CB
a2cc
22CD

92CE
02CF
82D2
22D3
22D6
92D9

2208
82DE
22EL
A2E3
Q2ES6
82E7
02ES8
2E9
B92EC
22EE
g2EF
Q2F¢d

D324
23

7B
D331
B7
Cc2B192
ES

CDAD@2
25
AA
43
acC

E&

E6

89
C3CFr92
CDAD@2
26

AA

49

CE

29
21548C
79
CD248C
Cp8Dpa3
9EQ9

Cp2g4cC
CcD240cC
FE@D
CAEC@2
77

23

2D
C2DBA2
3629
23

gD
F2ECQ2

ouT

SET1: INX

MOV
our
ORA
JNZ
PCHL

0P =P In e

ET1

11/22/76

;PUT IN BRG
; NEXT BYTE

; USART PORT

;WAS THAT 00H?

;NO,NEXT BYTE

; JUMP TO THE @@H, EXEC. IT AS A
;CONTINUE

:POLY AND BITE CONTAIN SETUP
:INFORMATION FOR POLYPHASE OR BYTE
:OPERATION OF THE USART

POLY: CALL

DB
DB
DB
DB

DB
DB
DB
JMP

BITE: CALL

DB
DB
DB
DB

DB

NAMER: LXI

;NAMJ GETS THE NAME OF THE FILE

MOV
CALL
CALL
MvI

SETUP
gesy
0AAH
0408
gaca

PE6H
QE6H
P30y
NAMER
SETUP
paen
BAAH
043H
8CEH

993H

H, FNAME
a,C

WH1
CROUT
c,9

;THE NEXT BYTES GOTO BRG AND USA
;TO BRG: SELECT DEV 3, 2428 BAUD
; FAKE SYNCH CHAR IF USART EXPECT
; INTERN. RESET. GETS USART TO MO
;MODE CODE FOR SYNCHBRONOUS, 8 BI
;NO PARITY, INTERN. SYNC, 2 S¥YNC
;FIRST SYNC CHAR. TO SRCH FOR
;2ND SYNC CHAR.

; LEAVE COMMAND AT 998 (IDLE), RT

;TO BRG: SEL. DEV. @, 303 BAUD
;FAKE SYNCH CHAR IF USART EXPECT
;INT. RST. GETS US TC MODE LEVEL
;MODE: ASYNCH., 8 BITS, NO PARIT
;2 STOP BITS, 16X CLOCK SCALING
; FOR NOW CCMMAND IS IDLE

;ECHO THE B OR P

;OUTPUT CR

;TO BE LOADED FROM THE CONSOLE

NAMA: CALL

CALL
CPI1
Jz
MoV
INX
DCR
JN2Z

NAM: MVI

r3
’
3
’
.
’

INX
DCR
JP

WHO
WH1
13
NAM
M,A
H

C
NAMI
M,20H
H

C
NAM

; ECHO CHAR.
;DONE IF CR
;STORE IN MEMORY

;DONE IF 9 CHARACTERS
;PILL OUT WITH BLANKS

HEAD SEARCHES FOR A RECORD HEADER

AND STORES IT AT RNAME

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 16

;COMP THEN COMPARES THE NAME AGAINST
;THE NAME IT IS SEARCHING FOR

:GETS NEXT HEADER IF NOT MATCH

;AFTER DISPLAYING NAME AND RECORD NUMBER
;IF CHECKSUM ERROR GOES TO ERROR

B2F3 214283 HEAD: LXI H,DNAME

@2F6 ES PUSH 51 ;ANYTHING RETURNING AFTER HERE
sWILL DISPLAY THE RECD NAME AND

@2F7 3E96 HEAD6: MVI A,896H ;START USART READING, ENTER SEAR
;IF SYNCHRONOUS, AND START MOTCR

02F9 D301 ouT 1 :TO USART CTL PORT

92FB CD286C CALL WwH2

d2FE FEES6 HEAD7: CPI pE6H ;SYNC CHAR.

8389 C2F732 JNZ HEAD®6 ; RESYNC USART

2383 CD284C CALL WH2

p396 FEQ1 CPI 831K ;SOH CHAR.

2308 C2FE92 JNZ HEAD7

@30B 215C8C = - LXI H, RNAME

@32E OEQE MVI C,14

9310 CDSagd2 CALL GET ;GET BEADER

9313 C278323 JINZ ERROR

2316 215C@C LXI H,RNAME ;COMPARE NAMES

0319 11544C LXI D, FNAME

p31C ©GEQS MVI c,8

831E 1A COMP: LDAX D

@31F BE CMP !

9328 C4d RNZ s NOT MATCH

2321 13 INX D

2322 23 INX H

@323 9D DCR C

9324 C21E83 JNZ COMP ; FALL THRU IF MATCH

9327 2A672C LHLD RADR ;GET LOAD ADDRESS AND

@32A 3A664C LDA RLEN ;LENGTH IN PREPARATION FOR LOADI

832D 4F MOV c,Aa

@32E 3A698C LDA RTYPE ;CHECK RECORD TYPE

3331 B7 ORA A

8332 CA6C23 JZ GETD :DATA, LOAD INTO RAM

9335 3D DCR A

9336 CASFO3 JZ COMNT ;sCOMMENT, DISPLAY IT

8339 3D DCR A

@33A CA7533 Jz STOP ;END OF FILE, STOP TAPE

233D 3D DCR . A

@33E C9 RNZ ;NOT TYPES 0-3, TRY AGAIN

@33F D391 our 1 ;STOP TAPE

2341 E9 PCHL ;AUTO-EXECUTE, GO TO PGM.

sWERE DONE LOOKING AT OR READING A RECD, SO DISPLAY
;s NAME AND RECD# CF LAST SEEN RECD.
0342 @15CacC DNAME: LXI B, RNAME s
8345 1648 MVI D,8
6347 37 DNAM2: STC
@348 CD7CAl CALL FLDSY

POLY 88 RESIDENT MONITOR VERSION 4.8 11/22/76
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S PAGE 17

@34B 15 ECR D

@34C C24743 JINZ DNAM2

@34F CDS733 CALL BLK

4352 2A644C LHLD RRN ;DISPLAY R/N
2355 EB XCHG

@356 CDD183 CALL DEOUT

2359 CD8DA3 CALL CROUT

@35C C3r332 JMP HEAD

;COMNT DISPLAYS COMMENTS ON THE SCREEN

@35F CD284C COMNT: CALL WH2 ;ECHO TAPE ON CRT FOR A COMMENT
8362 CD7r@32 CALL DSPLY

8365 @D DCR c

8366 C25F@3 JNZ = COMNT

2369 C3F782 JMP HEADSG

;GETD GETS DATA AND RETURNS IF CS2 IS GOOD
;OTHERWISE IT STOPS THE TAPE -
;AND PRINTS A& "?2"

836C CD9aG2 GETD: CALL GET

@36F C8 RZ

9370 3E3F ERROR: MVI a,'?!

@372 CD7F99 CALL DSPLY

@375 CD8D@3 STCP: CALL CROUT

2378 AF ‘ XRA A

3379 D321 ouT 1 ;OUTPUT NUL TO STOP USART
237B El pPOP g ;CLEAN UP STACK

@37C C317@2 JMP START

xx UTILITY SUBROUTINES ****x*

o we “o %o

; THESE SUBROUTINES MAY BE USED EXTERNALLY, SO WE WANT
; THEM IN XNOWN LOCATIONS.

;HEXO8 OUTPUTS 8 BYTES FROM THE ADDRESS POINTED
;TC BY D,E LEAVING D,E PONITING TO THE NEXT

; LOCATION IN MEMORY. IT PUTS THE BYTES OUT

;IN HEX WITH A SPACE BETWEEN THEM AND A
;CARRAGE RETURN AT THE END OF THE ULINE.

;D2 IS THE ACTUAL LOOP WHICH HEXO8 USES

;IT PUTS OUT THE NUMBER OF BYTES IN B

; INCRAMENTS D AND THEN PUTS OUT A

;CARRAGE RETURN.

837F 8698 HEXO8: MVI B,8
A381 CD9783 D2: CALL BLK
8384 1A LDAX D
8385 CDDé693 CALL BYTE
9388 13 INX D
2389 25 DCR B

338N C23183 JNZ D2

JLY 88 RESIDENT MONITOR VERSION 4.9 11/22/76
JPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
.95 PAGE 18

238D
@38F
8392
2394
8397
8399
839C
639E

g23al
2324
2346
2337
83a9

33aAa
23AD
233aAE
23B1

3382
@384
8385
2388
03BA
938C
@3BF
83C1
93C3
93C4
33Cs6
93C7
33C3
23C9
A3CA
a3CB
g3ccC
@3CD
J3CE

3E2D
C37F4@9
3E@C
C37F02
3B28
C37Fad
3E@9
C37F93

CD283C
FE60O
D8
D628
CS

210022
4D
cbhAal4d3
47

rE30
D8
CD243C
D629
FEGA
DAC7@3
D697
FEGA
D8
FE10
D9

2C

29

29

29

29

BS

6F
C3AEB3

CRrROUT, CLEAR, BLK, AND TABBER
OUTPUT A CARRIAGE RETURN, FORM FEED, BLANK,
OR HORIZONTAL TAB TO THE CRT DRIVER, RESPECTIVELY

3

!

.
1

3
’

-
’
°
’

ROUT: MVI a,Cr - ; PUT CAR RETRN ON CONSLE DSPLY
JMP DSPLY
CLEAR: MVI A,12 ;CTL-L (FORM FEED)
JMP DSPLY -
BLK: MVI A,' ! ; SPACE
JMP DSPLY
TABBER: MVI A,9 ;CTL-I TAB
JMP DSPLY

;LCFLD (LOWER CASE FOLD). GETS A CHAR FROM WHI.
;IF AN LC CHAR WAS FOLDED, CY=3,ELSE CY=1.
;WATCH RU3OQUTS! THEY'RE FOLDED TO SFH FROM NORMAL 7FH.

LCFLD: CALL WH2 :GET CHAR

-

CPI 26924 ;IF UPPER CASE,FORGET IT

RC ;0C LETTERS ARE LESS THAN 694
SUI 8224 ;FOLD THIS LOWER CASE LETTER CN
RET

sHEXC INPUTS VARIABLE LENGThH HEX FROM WH@, ECHOING ON DS
;TERM CHAR IS ANY NON-HEX CHAR, AND IT IS RETURNED IN B.
;DIGIT COUNT RETURNED IN C.

HEXC: LXI H,0 ;ZERO CONVERSION BUFFER
MOV c,L '
NXNYB: CALL LCFLD ;GET A CASE-FOLDED CHAR FROM WH2
MOV B,A ;SAVE THIS CHAR SO IT CAN BE USE
;IT WAS THE TERM CHAR.
CPI ‘9! ;RETURN IF LESS THAN ASCII 4
RC
CALL WH1 ; ECHO EACH CHAR. VALID OR NOT
SUI ‘g’ ;CHANGE ASCII INTO BINARY 8-15
CPI 18
JC NXNB1
SUI 7
CPI 19
RC ;RETURN IF NOT HEX
CPI 16
RNC sRETURN IF NOT HEX
NXNB1l: INR C ;COUNT # OF HEX CHARACTERS
DAD H ;SHIFT HL
DAD H ;OVER
DAD H :FOR NEXT
DAD H ;DIGIT
oRA L ;OR IN NEW DIGIT
MoV L,A
JMP NXNYB

DEQUT OUTPUTS DE TO THE SCREEN

.
’
.
’

i

POLY 88 RESIDENT

MCONITOR VERSION 4.8 11/22/7¢

COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION
4.0S5 PAGE 19

2301
a3D2
@3D5S

@3D6
a3D7
33D8
23D9
a3caA
2308
23DE

d3DF
23E1
03E3
23E4
A3E6
23E7

1999

83EA
@3EC
@3EE
83F9
a3r2
A3F3
p3F4
@3F7
23F8
@3FB
03FC
A3FF
0329

74
CDD6423
7B

F5S
aF
9F
aF
aF
CDDF@3
Fl

E69F
C692
27
CE40
27
C37F0@9

5429
g9l
6402
1731
FC

F8
CD6AGY
Cc9
CD7r02
c9
CD7899
Cc9

;AS 4 HEX DIGITS

DEOUT: MOV A,D

CALL BYTE

MOV AE
;BYTE OUTPUTS THE ACCUMULATOR
;AS 2 HEX DIGITS TO THE SCREEN
EYTE: PUSH PSW

RRC

RRC

RRC

RRC

CALL HEXO

POP PSW

;HEXO OUTPUTS 1 HEX DIGIT TO
;THE SCREEN - THE UPPER HALF
;OF & IS MASKED WITH ZEROCS

HEXO: ANT 15
ADI 98H
DaA
ACI 498
DAA
JMP DSPLY ;OUTPUT HEX DIGIT AND USE RETURN

pX¥rxxx*x INITIALIZATION PARAMETERS *****x%
;THE FOLLOWING INFORMATIO IS USED ON FPRST OR POC
;TO SETUP THE STARTING SYSTEM CONTEXT.

STACK EQU 91998H ; USED IN AN LXI,SP

; THE FOLLOWING BLOCK IS COPIED DIRECTLY OVER
;SYSTEM RAM STARTING AT SRA4.

INITER: DW USRTSR ;VI3 USART INTERUPT

DW KSR ;VI2: THE STANDARD KBD INT

DW IORET ;WAKEUP: NOTHING FOR NOW

DW SAVE ;VI0: SINGLE STEP INT GOES BACK
DB JFCH ;VIDEO SCRN ENDS AT FCQ@H-1

DB 9F8H ;VIDEO SCRN HOME AT F893H

CALL KI ;WORMHOLE @: INIT TO KBD AT F8H
RET ;STANDARD PART OF ANY WORMHCLE
CALL DSPLY ;WORMHOLE 1: INIT TO VIDEO DSPL
RET

CALL USRTI ;WORMHOLE 2: INIT TO USART AT 9
RET

END

POLY 88 RESIDENT MONITOR VERSION 4.3
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.0S PAGE 29

SYMBOLS SORTED BY NAME

ADDIT
CLINE
CR
CURP
DNAM2
FFP
FNAME
HEAD
HEXO8
IORET
LCFLD
MOVE
NAMER
POS
RBR
RRN
SAVE
SCRH?2
SETR
SRA4
START
TABBE
TIME
VCB2
VI5
WARM
WH4
WHS

223E
2900
da4p
genc
3347
92acC
8C54
@2F3
237F
2064
23al
9109
d2CF
9CQE
29E4
8Co64
8117
9C49
927C
8C1l6
6217
238C
20472
9Cc48
8219
2121
8Cc3d
3C44

BITE
CLOCX
CROUT
D2
DNAME
FF1

G
HEADS6
IND
KBUFF
LOD
MSG
NORM
POS2
RBUFF
RST1
SaveC
SCRH3
SETUP
SRAS
STOP
TANI
TIME?2
VCB3
vIé
WH?Z
WHS
WINDO

82C7
3339
338D
2381
B342
d2F2
a2s6C
22F7
8249
acec
D237
316D
23B4
ac4a
gcaa
0209
0Cs2
8C4D
22AD
gC1l8
2375
PCo4
0947
3C4cC
79238
2Cc29
gC34
8C59

SYMBOLS SORTED BY VALUE

RESET
CR
VI3
TIME?2
KIl
SCRL
CRR
KSR
MSG
COMD
TAPE
ADDIT
SETR
SETUP
NAMA

0024@
23@D
2923
2347
096E
9289
J2ES6
219D
316D
318A
2214
@23E
827C
22AD
22DB

VI6
VIS
VI2
USRTS
USRTI
CLINE
FFR
SAVE
FLDSY
LOOKU
START
IND
RTAB
SET1
NAM

2028
0014a
2928
@254
2978
29D9
JAEF
3117
a17cC
21D8
0217
2249
@28F
0281
32EC

BLK
COMD
CRR
DEOUT
DOUBL
FFR
GET
HEAD7
INITE
KI
LOOKU
MTBL
NXNB1
POS3
RESET
RTAB
SCEND
SCRHM
SRAl
SRA7
STORE
TAPE
TIMER
VIi2
VT
WH1
WHOS
WIPE

TAS
CTLX
CLOCK
IOPUT
DSPLY
WIPE
FF1
WARM
FLAGS
MTBL
DOUBL
STORE
GET
POLY
HEAD

3397
21BA
¢3ES
23D1
822C
43EF
g29A
@2FE
23EA
226A
91DB
@lES
@3C7
2C4E
0922
228F
2C1lE
@ClF
9Cl19
aclc
8253
9214
@Ca?
9928
0298
pC24
3C38
ga3D5

2829
22318
3339
0969
A27F
2@D5
A3r2
9121
2187
31E8
922C
9253
229A
02BA
@2F3

11/22/76

BYTE
COMNT
CTLX
DISP
DSPLY
FLAGS
GET1
HEXC
INITL
KIl
MMOD
NAM
NXNYEB
RADR
RLEN
RTN
SCND2
SCRL
SRA2
SS
SVW
TBUFF
USRTI
VI3
VTR
WH?2
WH7

X

VT
VId
SS
IORET
RB
CURP
VTR
DISP
MMOD
RST1
LOD

GET1
BITE
HEADS

23D6
B35F
2918
2134
397F
2187
g29C
93aa
FFEA
006E
2198
222C
3AE
9Ce67
AC66
2239
9C48
29B9
9C12
2238
223Aa
pceos
2478
9328
83F9
9Ccas
3C3cC
3259

A94¢8
0418
2038
Ad54
397F
99DC
9aF9
2134
2198
2263
3237
0259
829C
a2C7
A2F7

CLEAR
CoMP
CTLZ
DISPLl
ERROR
FLDSY
GETD
HEXO
IoPUT
KSR
MMOD1
NAM?
PCLY
RB
RNAME
RTYPE
SCND3
SET1
SRA3
STACK
TAB
TI
USRTS
vVIig
WAKEU
WH3
WHS

FF
CTLZ
TIME
KI
NORM
RBR
MOVE
DISP1
MMOD1
RTN
SV

G

TI
NAMER
HEAD7

2392
931E
231A
3148
2370
a17c
935C
@307
369
a1eD
g1Aa8
22DB
32BA
837F
gCsC
0Cé9
BC4cC
22B1
3C1l4
1929
0229
@2a5
2954
2018
ACLA
2C2C
2C49

ga2ac
231Aa
90849
836A
2284
A3E4
2199
9148
21A8
6233
223a
226C
B2A5
22CF
22FE

POLY 83 RESIDENT MONITOR VERSION 4.0
COPYRIGHT 1976 INTERACTIVE PRODUCTS CORPORATION

4.0S PAGE 21

CcouMP
ERROR
CLEAR
NXNYB
INITE
KBUFF
SRA4
SCRHM
WH4
WHO
SCND3
SAVPC
RADR

THATS

231E
4370
9392
@3AE
g3EA
pcac
gCls
AC1lF
0C392
9C44
ac4c
8C52
3C67

ALL,

DNAME
STOP
BLK
NXNB1
TIMER
POS
SRAS
WH?
WHS
SCND2
VCB3
FNAME
RTYPE

FOLKS!

8342
8375
@397
@3C7
9Ca9
2CQE
acls
8C29
2C34
gc4s8
ac4c
2Cs54
2C69

DNAM2
HEXOS8
TABBE
DEOUT
TANI
SRAl
WAKEU
WH1
WH6
VCB2
SCRH3
RNAME
STACK

9347
237F
039C
23p1
0Ca4
gclo
aclAa
aca4
8C38
@c4s8
gC4D
ACsC
19093

11/22/76

COMNT
D2
LCFLD
BYTE
TBUFF
SRAZ2
SRA7
WH2
WH7
SCRH2
POS3
RRN
INITL

@35F
2381
23al
@3D6
acas
gclz2
oclc
9C28
@c3c
gCc49
@CA4E
gCce4
FFEA

GETD
CROUT
HEXC
HEXO
RBUFF
SRA3
SCEND
WH3
WHS
POS?2
WINDO
RLEWN

2356C
238D
d3AA
@3DF
2CoA
3Cl4
gC1lE
gcac
9C49
aC4a
3C59
aC66

~12/38/76 SMALL DUMPER DOCUMENTATION
PAGE 1

xxxx gSMALL DUMPER FOR 4.0 ONBOARD RAM x***xx

SMD IS A SIMPLE ABSOLUTE DUMPER WHICE RUNS
ENTIRELY WITHIN THE ONBOARD MONITOR RAM FRCM C6AH TO DO9CH.
ITS STARTING ADDRESS IS C6A HEX. WHEN RUN, IT CLEARS THE
SCREEN AND EXPECTS AN ENCODING SPECIFICATION AND
FILENAME JUST AS THE 4.0 RESIDENT LOADER. AFTER TEESE ARE
INPUT, THE STARTING AND ENDING HEX ADDRESSES ARE INPUT
AS SHOWN IN THE FOLLOWING EXAMPLE WHERE THE SMD IS USED
TO COPY ITSELF:

(SCREEN CLEARED, CURSOR IN UPPER LEFT)

B
SMD

C6A,DSD ({DSD USED FCR SAFETY)

cea

D6A
D&A (THIS LAST IS AN ENDRECORD)

(SCREEN CLEARS AGAIN, READY FOR ANOTHER DUMP)

BEFGRE DATA IS DUMPED, THE CASSETTE RECORDER
SHOULD BE SETUP WITH THE PROPER PLUG IN THE MICROPHONE
JACK. THE BYTE/BIPHASE CASSETTE CARD HAS TWO PLUGS
FOR WRITING -~ ONE FOR BYTE AND ONE FOR BIPHASE. THE
READ PLUG (LABELLED USUALLY "EAR" OR "SPKR") SHOULD NOT BE
PLUGGED IN. SOME CASSETTES DO ODD THINGS WHEN BOTH THE MIC
AND EXTERNAL SPKR JACKS ARE PLUGGED IN. ALSO
MAKE SURE THAT ENOUGH TAPE RUNS BEFORE TYPING THE FINAL
CARRIAGE RETURN ON THE END ADDRESS SPECIFICATION SO THAT
NON-RECORDABLE LEADER GETS A CHANCZ TO PASS 2BY BEFORE
DUMPING STARTS.

THE OCNBOARD DUMPER WAS HAND OPTIMIZED TO
FIT 'INSIDE THE FREE SPACE ON SYSTEM RAM, BUT THE SYSTEM
STACK ALSO RESIDES THERE. THIS MEANS THAT THE STACK
MAY OVERRUN THE DUMPER, ERASING PART OF IT. IF THE
DUMPER HAS BEEN IN RAM WHILE BASIC HAS BEEN RUN ,
FOR EXAMPLE, THE STACK HAS PROBABLY SQUASHED IT
AT SOME TIME, IF THERE IS DOUBT, CHECK THE BYTE
AT DS9°H. IT SHOULD BE A CS9 (RETURN INSTRUCTICN). IF IT
IS NOT, Ok YOU JUST WANT TO MAKE SURE, RELCAD THE DUMPER
JUST BEFORE USING 1IT.

WHEN THE DUMPER IS DUMPING, EACH RECORD WILL RBZ DISPLAYED
AS A HEX NUMBER ON THE SCREEN. THE HIX NUMBER REPRESENTS

2/

{11 W

8/76 SMALL DUMPER DOCUMEINTATION
2

i R

THE ADDRESS OF THE DATA BEING DUMPED ON EACH RECCRD.
THAT ADDRESS IS PUT ON THE HEADER OF THE RECORD SO
THE 4.9 RESIDENT LOADER WILL XNOW WHERE TO PUT IT
WHEN IT IS READ BACK IN.

THE LAST RECORD IS AN "END" TYPE RECORD.
IT IS PUT ON AUTOMATICALLY. IT WILL DISPLAY AS A RECORD
WITH DUMP ADDRESS EQUAL TO THE ADDRESS OF THE RECORD
BEFORE IT. OPTIMIZATION OF THE DUMPER'S CODE REQUIRES
SOME STRANGENESSES SUCH AS THIS, BUT IN ANY CASE, THE
LAST RECORD (DUMP FINISHED) WILL BE SIGNALLED BY THE
SCREEN CLEARING. THIS PUTS THE DUMPER BACK IN ITS
INITIAL MODE, JUST AS IF IT HAD BEEN RESTARTED AT C6AH.
MORE DATA MAY BE DUMPED IF DESIRED.

12/29/76

SMD4.9

8Cc29
8C24
2C16
22AD
83aA
8301
2Ccsa
aCcsA
gCsc
pC64
8ces
gCo67
gce9
BCBA
2C6D
gC79
aC72
BC75
pC78
eC7B
pC7D
gC8od
gC82
acss
8Css
pCe9
gcsa
2css
gcsc
9C8D
@C8E
9C8F
8C92
8C95
AC96

21458D
22168C
3EBC
CD243dC
CcDh28eC
CD243cC
FE42
CcAa928cC
FES5?
c273acC
CDAD@2
@5

AA

49

ac

E6

E6

2@
c39a0C
CDAD®2
a6

AA

8-:80 PM SMALL DUMPER FOR 4.8 - CONBOARD RAM
PAGE 1

; **x**** ONBOARD DUMPER FOR 4.8 ***#*xxx

“s wu

THIS IS A POLYFORMAT DUMPER FOR ABSOLUTE

; DATA WHICH RUNS FROM C6A TO DY9F (OR SO), START ADDRESS
;C6AH. WHEN RUN, IT ACTS LIKE 4.3 MONITOR TAPE LOAD IN
; THE WAY IT ACCEPTS ENCODING SPECIFICATION (B OR P) AND
sFILE NAME. THEN IT EXPECTS TWO HEX NUMBERS FOR

; START AND END DUMP ADDRESSES. EACH RECCORD DUMPED SHCWS
;ADDRESS USED IN HEX ON SCREEN. WHEN DONE, IT PUTS OUT
;AN "END" TYPE RECORD AND CLEARS SCREEN, READY.

;FOR ANOCTHER DUMP.

;ORIGINAL 2.2 DUMPER SYSTEM WRITTEN BY DAVID FAIMAN

: REWRITTEN,DOCUMENTED AND CONVERTED TO ONBOARD FOR 4.9
:BY R.L.DERAN

-
’

WH2 EQU gC28H
wWH1 EQU 9C248
SRA4 EQU 8CleH
SETU?P EQU 9 2ADH
HEXC EQU 93AAH
DEOQOUT EQU @3D1lH
ORG BC5CH=-2
LENGTH: DS 2
WNAME: DS 8
WRN: DS 2
WLEN: DS 1
WADR: DS 2
WTYPE: DS 1
START: LXI H,TISR
SHLD SRA4
STAR2Z: MVI A,0CH :FORM FEED
CALL WH1 :CLEAR SCREEN
CALL WH?
CALL WH1
CPI 'B!
JZ BITE
CPI 'p!
JINZ STAR2
POLY: CALL SETUP
DB @854
DB AAAH
DB p404
DB A8CH
DB gceéed
DB BE6H
DB 9938
JMP NAMER
BITE: CALL SETUP
DB goed
DB 2AaAH

S¥D4. 3

8C97
@ceas
gco9

gcoa
8C9D
acag
gCcaz
@cas
eca?y
gCcas
ACAS
pCcac
9CAD
ACAF
9CB2
gCBS
2CB8
3CBa
3CBD
gCBE
@CBF
pcce
9CC3
BCC4
gccy
gcca
gCccCp
8CD@
gCcDl
8CD4
8CDs
BCD8
gCcDB
8CDC
8CcoD
@CDE
2CDF
9CE@
8CE1
8CE4
8CE7
BCES
8CEC
8CED
BCF@
8CF3

OCF6
@CF9
BCFA
@CFB8
8CFE

PAGE 2

49

v
I

89

2100900
22648C
0EBS
21638C
36280
2B

8D
C2A58C
23
BEBS
CD188@D
CD288C
CD248C
FE@D
caAC3ac
77

23

8D
C2B20C
AF

32694cC

CD182D
CDAAB3
22673C
78
CDh244C
EB
CDAAZ3
CD188D
7D

93

oF

7C

9A

67
225A8C
CDF63C
3E82
32698C
3D
326648C
CD548D
c36Aa6C

21580C
72
B7
Crleép
35

12/29/76

2 S0 se

AMER:

NAM:

MAMB:

DUMPC:

SIZE:

ENDC:

~e “o wo

DUMPR:

g§-:08 PM SMALL DUMPER FOR 4.2 - CNBOARD

840H
DB BCEE
DB 090H

NAMEING ROUTINE .

LXI H,?
SHLD WRN
MVI c,8 ; BLANK NAME FIELD
LXI H,WNAME+7
MVI M,028H
DCX H ; BACKUP E TO WNAME
DCR c

JINZ NAM
INX H

MVI c,8
CALL CRLF
CALL WHS
CALL WH1
CPI BODH ;:CR
JZ DUMPC
MOV M,a
INX H

DCR C

JINZ NAM@
XRA A

STA WTYPE
CALL CRLF
CALL HEXC
SHLD WADR
MOV A,B
CALL WH1
XCHG

CALL HEXC
CALL CRLF
MOV A,L
SUB E

MOV L,A
MOV A,H
SBB D

MOV H,A
SHLD LENGTH
CALL DUMPR
MVI A,2
STA WTYPE
DCR A

STA WLEN
CALL DUMP
JMP START

DUMP DATA RECORDS

LXI H,LENGTH+1
MOV A,M

ORA a

Jz OVER

CCR M

RAM

SMD4.0

QCFF
2D2d
8033
gDAa6
9D8@9
2DoAa
pDAD
9D18
gD11
gD12
2D15

@D13
@DlAa
BD1D

gD1E
gD29
#D21
8022
@D23
pD24
BD25
BD26
2D27
9D2A
3D28
3D2E
9D2F
gD39
@D31

gcas
2D234
gD35
@D38
éD39
gD3A
8D28B
gD 3E
@D3F
BD48d
8D41
8D42
#D43
BD44

PAGE

AF
326606C
CD548D
2A678C
24
22678C
C3r68C
2B
7E
3266@C
C3548D

3E3JD
CD248C
C9

p6092
4F

7E

23

F5

84d

47

Fl
CD346D
9D
€c2216D
78

2F

3C
C3344D

ES
21888C
FS
7E
87
C239¢@D
23
Fl
77
2B
34
El
c9

Ll s

12/29/76 8-:80 PM SMALL DUMPER FOR 4.0 - ON2CARD RAM

CVER:

me ws ws N8 W8 ™o w§

XRA A
STA WLEN
CALL DUMP
LHLD WADR
INR H
SHLD WADR
JMP DUMPR
DCX d
MOV A,M
STA WLEN
JMP DUMP
MVI A,9DH
CALL WH1
RET

ROUTINE TO OUTPUT A RECORD

MVI 8,2 ;CLEAR CHECKSUM
MOV c,a ; FUT LENGTH OF RECORD IN C
MOV A,M

INX H

PUSH PSW

ADD B

MOV B,A

POP PSW

CALL TO

DCR C

JINZ PUTY

MCV A,B

CMA

INR a

JMP TO

TAPE OUTPUT ROUTIME

EQU 0Co8H
PUSH B

LXI 4, TBUFF
PUSH PSW
MOV A,M
ORA a

JNZ TO1
INX H

POP PSW
MOV M,A
DCX H

INR M

POP H

RET

TISR IS A SIMPLE USART READER WHICH WILL
RE-TRANSMIT THE CHARACTER IN TBUFF IF IT HAS NOT
BEEN REPLACED BY THE WORMHOLE ROUTINE. 1IT

DOES NOT CHECK THE FLAG, BECAUSE IT ASSUMES

THAT THE PROGRAM CALLING THE WORMHOLE IS FASTER
THAN THE USART AND SO IT ALWAYS HAS A VALID

SMD4.¢

8D45
gD4s
AD49
@D4C
8D4E
BD4F
@DSd
gDS1
D52
D53

8D54
BD56
pDS38
2D5B
aD5C
8DSF
9D62
8D65S
gD66
@D67
D68
gD63B
8D6D
gDér
8D72
- @D73
D76
8D738

0D7B
8D7D
ap8g
8D83
@D86
8D89
8D8cC
8D38F
gD9g
2D91
8D94
8D97
8D9A
3D9C
0a¢9

AF
32388C
3Aa998C
D389
El

D1l

Cl

Fl

FB

C9

3E21
D391
2a6786C
EB
CbDle3
Cb1388D
21FF8F
2B

7C

B7
Cc2658D
gE40
3EES6
CD343D
gD
C26F@D
3E91
CD34dD

3EQE
215C8C
CD1E®GD
3A668C
2A678C
CDlE@D
21648C
34

AF
CD340D
CD3490D
CD34dD
D301
c9

~e

12/25/76 8-:90 PM SMALL DUMPZR FOR 4.9 - ONBOARD RAV

TISR:

IORET:

) e se w0 me ~o e w0 ~o N

UMP:

DELAY:

DUMPO:

-s we wo

OFF:

XRA
STA
LDa
ouT
POP
POP
pPOP
POP
EI

RET

CHARACTER FOR US TO TAKE.

A
TBUFF
TBUFF+1

DUMP PUTS OUT ONE COMPLETE RECORD.

IT TURNS CN USART AND MOTORS,WAITS A WHILE

FOR AN IRG, PUTS OUT 64 SYNCH CEARACTERS,

DUMPS A RECORD ACCORDING TO THE WRITE CONTROL
BLOCK AT WNAME (IT ALSO PUTS THE WCB

ON THE RECORD AS HEADER), INCREMENTS THE RECORD
NUMBER, STOPS USART AND MOTORS, AND RETURNS.

MVI
ouT
LHLD
XCEG
CALL
CALL
LXI
DCX
MOV
ORA
JNZ
MVI
MVI
CALL
DCR
JINZ
MVTI -
CALL

DUMP

MVI
LXI
CALL
LDA
LHLD
CALL
LXI
INR
XRA

CALL .

CALL
CAaLL
ouT
RET
END

A,021H
1
WADR

DECUT ;DISPLAY THE ADDRESS WE'RE DUMPY

CRLF

H,88FFFH

H

A,H

A

DELAY

c,64

A,0ES6H ;SYNC CHARACTER
TO

c

DUMPY

A,801H ;START OF HEADER
TO

HEADER AND DATA RECCRDS

A,B88EH ;LENGTH OF HEADER RECORD
H,WNAME

BUT

WLEN

WADR

PUT

H,WRN

M

A)
TO ; THESE PUSH OUT LAST BYTES FROM‘
TO :THE USART AND WH BUFFER PIFZLIN
TO ; TURN OFF MOTOR AND TRANSMITTER

1

POLY 88, Vol. I, Errata June 16, 1977 Page E-1
For VTI Rev. 1.2; CPU Rev. 0.3; Backplane Rev. 2.1

1. R14 on the CPU board schematic is incorrectly designated 2.2K --
it should be 1K. This resistor goes from pin 4 of IC9 to +5V.

2. Connection hardware has been provided for keyboard input and
video output. The recommended connector configuraticon for the

keyboard is as follows:

Cannon Jack Dual-in-1ine-socket

O N Oy O BWw N
W 00 ~N O O & W N =

w

10 - 21 ground (10)
22 ground (11)
23 ground (12)
24 optional minus supply (13)
25 +5V supply (14)

3. For Rev. 1.2 VTI only: On page 20, there are two errors. The
color for R17 (2,200 ohms) should be red-red-red. R25 should

be a 3,300 ohm resistor with a color code of orange-orange-red.

4. The stripe down the side of the color coded tantalum capacitor
indicates the positive lead.

5. For VTI card Rev. 1.2: JMP 3 and JMP 6 should NOT be changed

- I IR S BN IR S W BN B B EEEEE .

POLY 88, Vol. I, Errata June 16, 1977 Page E-2

except in rare cases where vertical retrace must be extended. The
display stability will diminish for many monitors if these jumpers

are changed.

6. For VTI card Rev. 1.2: there is an artwork error on the video
board which requires a modification. On the back side of the
board, jumper pins 8 and 9 of IC29 together, with #24 wire and
insulating tubing. Similarly, jumper pins 15 and 16 of ICZ2S
together.

8 and 9 ‘ 15 and 16
\ /

\ | f
egea"a@egggeé’ébeeqi/[f‘/ﬁ [!

,0008006064000006088 —~u

(back)

7. You should not make this modification in a POLY 88. Hence, JMP
2 is not discussed in the manual. The wiring for this modification
depends on the intended use. Most non-POLY 88 applications do not
have vectored interrupt. If you ever use the VTI in a system that
does use the VTI keyboard port with interrupts, cut the PC jumper
and install a jumper as shown below.

Cut trace $Insta]1 jumpér
fomee £ TMP2. &
oJoXe®) O oooo@é;;ﬁo

DO NOT MAKE THIS MODIFICATION IN A POLY 88!

POLY 88, Vol. I, Errata June 16, 1977 Page E-3

8. This erratum offers you a choice. You can make a simpie modifi-
cation if you do not wish to use the status port portions of the
Video Terminal Interface (i.e. you will always use interrupts for
inputting keyboard data). If you will ever use the status port
method of keybcard access, a more tedious modification is neces-

sary. (Modification B)

Note: the POLY 88 does not use the status port facilities;
interrupt usage is more efficient.

Make modification A if you do not want to use the status port
circuitry. Make modification B if you do wish to use the
status port. Make sure the corrections are accurate as major
damage can result from carelessness.

Status Port Elimination-Modification A

Ground pin 1 of IC8 by installing an insulated jumper from pin 1

to pin 8 of IC8 as shown on Page E-4. Adjacent to pin 16 of IC19

is a trace which drops through a plated through hole from the front.
Cut the trace where it attaches to the feed-through hole on the
front of the board. Attach a jumper from pin 1 of IC19 to pin 9

on IC6 as shown on Page E-4.

Status Port Modification-Modification B

PolyMorphic Systems VTI revision 1.2 has been designed for random

access memories (RAMs) with an access time of 300ns. PolyMorphic

Systems has been unable to obtain parts accomodating 300ns access

time. The following changes are recommended to allow reliable use
of the 500ns memory chips. A1l 91L11APC and 21L11-1 memories are

rated at 500ns access.

The modification shown in Figure A accomplishes two tasks: 1) The

Page E- 4

1977

POLY 88, Vol. 1, Errata

June 16,

'pAed 3Yl JO JUOJS BY3 UO NI IY IShW JJPJJ 3UQ 30N 3Sea|d
uoLjeulwl (3 3404 SN3eIS 2°T "AdY IIA

b

POLY 88, Vol. I, Errata June 16, 1977 Page E-5

OR gate (IC20) is used to gate the SYNC+ signal with Ap+instead
of the output from the 8131 address comparator. 2) The inputs

to IC8 at pins 1 and 15 are grounded (the Schmitt trigger gate is
effectively removed from the circuit).

Three cuts (A, B & C) and four jumpers (J1, J2, J3 & J4) are
required for this modification. Refer to Figures A and D. Figure
B shows the circuit prior to modification. Figure C shows the
circuit after change, along with additional control and output

signals for IC8.

Card usage remains the same. Each starting address selection for
the memory-mapped display is associated with four input ports. For
example: 1if the user selects F8PP hex as a starting address, ports
F8, F9, FA and FB are associated with the keyboard.

If your program inputs from an odd port (F9 or FB in the example),
the keyboard status is placed in the accumulator as shown below:

' KD X X X X X X INT

D7 6 5 4 3 2 1 D@

Status Port bit D7 (KD) follows the strobe from the keyboard (or
the inverted strobe on many keyboards). PolyMorphic Systems'
keyboard produces a zero (f) when a key is depressed and a one
(1) when no key is depressed.

Status Port bit D@ (INT) is a zero when a key has been depressed
but not inputted to the CPU. This bit is set to a one when the
.CPU receives the character. Status Port bits K1 through D6 are
not used.

If your program inputs from an even port (F8 or FA for address

POLY 88, Vol. I, Errata June 16, 1977 Page E-6

selection of F8PP hex), the data from the keyboard is placed in

the accumulator.
Procedure (all work is done on the backside of the board):

J1) 1Install insulated jumper between pin 9 of IC6 and pin 13

of IC8.

J2) Install insulated jumper between pin 4 of IC20 and pin 2
of IC8. :

J3) 1Install insulated jumper between 11 of IC17 to pin 2 of
1C20.

J4) Install insulated jumper from pin 1 to pin 8 of IC8.
A) Cut trace leaving pin 4 of IC20.

B) Cut trace leaving pin 9 of IC6.

C) Cut trace leaving pin 2 of IC8.

Figure A

g Page E-7

Errata

June 16,1877

1, Errata

POLY 88, Vol.

[

A L Py mll " w -
A 0 3 4
- (WP L VR TIY
- A “

[ﬁ 3
S) A -
.~ x wa
¥ :.m
3

nr h‘
“wsu
N
2 »
_C ra
[
Ly e .W
- ai'Hea Gfe v
R 11 oW h:l «n
. | “]dn “a
- & " LE]

S Nea (21
Co et .
. ..L_\-..om.m.
A T
N 2. .
s UuG«wqpDOY | ..

AR Ak B 3 bt

AN
TN

POLY 88, Vol. 1, Errata June 16, 1977 Errata Page E-8

9. The real time clock (RTC) runs too fast on some POLY 88's.

To eliminate this problem, install a 0.luF ceramic disc capacitor
from pin 9 to pin 7 in IC 20 (74LS123) of the CPU board. Keep the
leads short in length to avoid shorting them to other circuitry.
Install the capacitor on the rear of the board (DO NOT SOLDER THE
CAPACITOR DIRECTLY TO THE INTEGRATED CIRCUIT CHIP).

Install Cap.

| : Poc+

i
;. |
1 e -—
| ! N
| +- H
W . ! 7l SEen
|
i S &.f_ F|ro
| i L N 73] etk o s pafl FAN
! i 27 b2 B T I e M o - C
| B e . S
4 | 1 4
! RN P Y PO S
[P P N S vao R SN N S S
I - = r
|l =Y S :
| Z.ZN €«
1™ e T :
I i e, < _—
I (e - B
eno{ =8 b
(@ ‘ T T] |
| EEHCN 'y r —
V2> o i | S —=
N L " = e 20 i Iy
119 EE B 1O S ﬁ . : 3 e wmsyraz |
7 N R Y77 H o P
Py Lltes) o el b =l B PR 13 i _<¥cof
KL e - ; ; S
| AT eI .
5 5 —
5 : L
tr V e o e Laa&a s
, h ¥ -
I -
pam L DY TR _.lii
o9 {——1"0x
o+ | T + .
o X5 1 9%
! s ool - SRS { — Jox
c - 0%
3 ~oafd)
WE . i —
W h 74000 (10 «&u L) i SRS -1 N L 3 0 O . . - L A
! o L) P4 v na . b %
_ | s
Y 1wia g
L 1 T
[3
. T K%
saf
STl " gsv e
I sao]
“.\m“_‘w t—ne- 1
. i &
M HREQ -
MR
SRE 203
.5 2
v Mom By
22 6
PV o 4 2]
Dla
) : %A
eanr = -
L
PPN 4 ¥
7 w% i M
| 3
PREPERET R
M L
MO ETES 2 RDUND ‘ "™ - e | =
CTLMLE VA UES SRE v SO LED +
L HEE A gum
=] -] roLYmoRemic
T A8 2SI T6 TEMS
S——— Gabe 213 /el LOGIC DIAGRAM
UGS SN e | SOPE S0 2550y 76
f— =T |dacs MICROCOMPUTER
- B s i 6008 oW T ma | Dt 5.

et Tart o

€ 1976 1.P¢C, 0 O D R, £ 90014

T

pganane g

&
<,
-~
=
-
-
kS
s

A _pz, u&a\

°
vt
u) a——
ety s -
|
ercom "
o) o= -
- 3 — Lo
~ wiom m o= e ¥ osb{~ nM H
™ o) - T~ 3 i - M
- v z SPSTT TR ¥
o 6] o m Sl - e B ¢ M
v 8
- 14 a i H e .
i IDYNIVE M A'D =t SP1TS m
w b HE e k] nm
w el o EII] e Rl W m
[N 1
- " el b
“ nlﬂ. webeg Xbo ay-a DJIDOT FALLISOS 3
— x e
1M (N IPISCLE SiM) IS Sl e FYEEN T 3 voomow 8¢ _.m v h
“(a0) "IN “IE)LEL SIMY) IETL R
U s s m . N
.— :) [] 2, t H __ -0 =
. HEs S g
@ Rl -l k -
—
w ,»-htr i3 u.., =
nd - @ |0 .. ~
e 2 =iy w: MWU o~ =3
B g2 B Fa N LITJL]] U]
a ,....._,‘L : U.. v . - m oo "
3] o w f =0 = Mo m e ow om
g ;- = E .
o = ’ Tt ...h ¥ ... o ZELVLN ZELPSS IDYNIVL 4’V
W u.n na <l a0 w woo. 3 LR o LI iy P
= -
o o wo<@ 0] irdino Tn PR as S AN
10| (11 1102, JRAR Q) InGu1 gBiyy 151BO] safiid = M. o
D E .
A a0 u“ wa $1Ne100 m iaSulsNaNalisl
3 SV, G £ U] Q5 Ll g ¢ 10100 3L WY 1 10t g E 3
Do o o ca<d e 7900 L fou ToLt L = J 31QOub SyL BUAL PIGEUS 51 1NGINO W
L]] » € 2] U3 ‘MO 11 Indus HQEUD Bu) AN N BO} sajiod bt
N T
B~ o e TANZ! . avasyons
v . A In0INe
Gl o o<t o 0TI o A sovxove sy
<
<l #2072] 2] ano w« Ml .
0 <8 umm [Mo [) sens
ﬁ_uﬁi wa <) Eﬂ W»atao e] E .
1 g m oig -
< o] " P v s e Juf af{af{n @ of 3
Y o} o
trzvr] o £6EHL
QM woIIIUN) set 130N sAnNOd sq (@l 0 ta > [] (0] veora
oon] (% o [o
[ol
abL28N
3 AL DS
N ~
~ ~
N
> S
- =3
19YNIVE 4V IOYNIVY 'Y

p,au0y 9 xLpuaddy
sinould diyy 3 XIQN3IddY

APPENDIX B: Chip pinouts

i (4::-:--::@?’?;
; 2y cL—nc.
| FTE TS
~ - . |
D
2 =
—— ol
2) 4 1] [? S [} L]
i p.m’ T vee Qi W - ® ® = @ ==
74393 o & E o o togat e i v
n ade = 5o, 24273
wi jal jnl ju] jwl s s %] - e
e w & %ve [{] 5] 02 == -
A ourrur (2 301 >3 .
B Ja [%).3e @
ano (& [4] croex g-——
S :lb -
-
bad 22
-
s tova logats Jigh rurt W0 Coar revats o Iowr
St ke LY.
T - n - 3 a ey -D
-
-
=
e
i P ASEIGMMENY
R LI LI C L SR L T e ol
e e e © £ e | : ::: ~3on
FIIVD, (0 QITUA. IND. 12 -g..“ ::z:
TIIRLN, (W QIINLA, (M, (WY ":’.‘ as oe = e
Logic Diagram ': :3 :: ::;::
nl Y= PV oD
" QO ergwc e
= "3" wc=ue

WYHOVIQ %3018

a1 I CPILE VORI (60
ER R RTNRL
s ta ®m L B W Wy

E=]

AR LIEY

L))

il

PIZE

-

RUEARUANRRRARN

)
S

BN

" s a
e I
v 0

NOILYHNDIINOD Nid

L3 =Yami [T
o e
LY ma P

] PO Omemmd 12

Ta - v0dts to Or—ed T

AOv3Y O——np T

O ¥

ol ol :4“ o

" wn M=l v o—oy &
" t we s« fMU @
0 i An- bt
" w .cﬂs N Yo &
o o roGa e v O=—rd o1
O it

= ' avundes [0 80.2.0 Y .
i ! N> et Nul g O £T
o N lauﬂz ma il by e
- by D=t S

13 s ID: vUI iy O 80
s M Ou e Py Oreedd &8
2 3 Ty omeri 8L
" N e e - o 8
3 -~ e e)

ton)

.auﬂ 1
-S.ﬂ '
.cn Y
T - EN]

0808
LN

L)

@rensnecan

R

sinould diyy :g

XION3ddY

m
|

Avansier

BF W PACKAGE

NO0.F PACKAGE

[
e S
e
:mlu ;Lm.._ :
. i
i e 1
“.ﬂJ. ._IU..W :
N ST WY B
= Tl
!
i
I

LL

ZLIVIN ZE LY

Istrie

Persitore bgee tes lune

Oet¢

.......

ey & BREIAS BT "Wy o 3t
eI Gae) B DRSS ¥ SRS
Sl M0y W MO TS In) SraiaL ey saryend

AR5 74 p—
P I i iand
pef oy farngtern)

owe

20¥/

IDYXIV LY

~
.3
(=3
[~4
—
o [Ny RwEY)

ROVNIVL Y

sInould diyy :g XIGN3ddy

Lo%L

8. v |U|vh:m
HINN

' | __ =
5 v :

T

Lhenn Jl:. .ao,l)l._:u;u

vr 10w N2 3TN

LSISPLNS LETSTENS
IMIIA $OLF RDYRIVE 171 M 8O INMINEFIVNO N YO £

—

nn N0
T T

IMBIA GOL) IDVYXIVY LT Ie M

IDOVYXIVE M4 MO N T

41081 VOIIUN Bt i30he) sanman

O INIVTNEIVOAO N HO T

M N CTIBOLSTYINS/SOLEIPSNS
1N F180L PLNSIBOLYENS

WON CTIZCLSYINS/ZILSTSNS

E»— £
—qs
—
4t

1K TIZEAVLNSITTL VENS

.?4 o quc.r pd

UAuro vie

e

WUN TIZCS 1P INS/ZES IPENS
NN FIZEPLNEIZEYSNS

IMIIA JOLI FOVXIVL LY M
WO INITNIIVAQ N MO T
808, 'BEIST.

1M N TIBOS TP INS/ROSTIVENS
4N T STRCNE/SZVENS

_
|

I8N TIPOSPINS/ VOSVENS
MmN
N FIP0ININEI YOG

IN TIVOHPLNErPOM s

14N TILOPINS/ LOPENS

}‘m.rrlﬂr_n»r « .t]r

154 ‘N FI00TPN/OOSYINS
(NN P00 TPANSIO0T I PINS

ey

< <<

TUTTTTE

s3noutd diyn

I8 D DY At e
2818 Dm AL AR Al
Stiedm| agt [atar | as
Scredon | age [ager{ a
RLLITE L) ASC ER X 1 Al
2908 2™ AL at A8
D¢ \ORe D AL a4 ats
di06eie | asr Al | oas
0L D AL rLL at
Ma) among | vem | e -7y
1% ia Ay

o) BB et
1 0y A rion emnc 10 NG T - Op
v gy~ O

B NI T

120 e dr D Arwm g

W8S DOGLIW = ¥ 6L JAILYDIN

EGOED >
4160w
ivedm

E Tty

v 1@ 2 01188 druenica-1 0 K0 ¢

..... S | e 6L 1 @1

2125 DOVELDW — YW BIL JAILYDIN

3L A0 0w
300emi Sy

ast
act
90mui S | 4 ke
1 980nei3m 3 Adg

92maide [Awe Adl X3
Ieimaedm | oace ALt An
MO | AfE | At AT

Sty Wit) BOH et
e @) Aeir0n wemmty 10 NG - Op
[LLE TR WV Sy N
STLas) B2 30801 01
01w oY Aamat g

WS DOWELIW ~ YW G0S IALLISO4

€-8 'd

synoutd diysy

et ou
vy
vy e e
Hieang n

1INdK1r a3twwnIaNg

NODITS N LITONOW

¥0LvIND3y 35viI0A

IALLISOS

— e

‘8 X1 QN3ddV

s J

—p
H.D_Cﬁ H
m#_x< S

Otuf
xd (N

RO
" W GENC
2 BLK,
~

_o
viO
BLU,

1N

,,. :.t HIGH LiINE VOLTAGE OR IN SMALL

07

4148 !

Lm

mZmau@

= nr 17
W f ANO
! E \V

INA0O03IaxX) - A -t L

<o 1
m,

ﬂ,\

|
i
i
|
g
!
f
J

— {85 JATC
+-‘-'h-.w.ug
(80

OO

] 75 06 T

e AR RHL TAY

B ARt

2 v

SYSTEMS USE RED AND BRN TAPS INSTEAD
OF GRN AND VIO, RESPECTIVELY,
2. ALL RESITANCE VALUES ARE IN OHMS. o - N o
A SR, [T
T TrARTS 181 T o -
158 OrrnmsE SPICIrnd ICONTRACT wGQ
NSIONS ARE IN INCHES
TOURRANCES AR
TG T e S| TSCHEMATIC
MATCRIAL L J675% Uaop Yorrerte |rofisfzn mo EMA DIAGRAM
ERETS] POLY-88
POWER SUPPLY
NS RIZE | CODL IDENT NO | DRAWING W)
/ ! {C 90021
NEXT ASSY USstD oM
|ﬁmﬂ|ﬂ»ﬂ..uvﬂ§~az D0 NOT SCALE DRAWING ot T - R To T

A@ 15

¢
{f j L
ADDRESS
DECODER DEVICE 1/674Ls14
*‘q E ECT WR'TED—0< i}'—-
E L ENABLE
l7aLs04 @ MWRITES
ON, BOAR ATA BUS
BUS 3 BUS
(DRIVERS [EVBLE e CEIVERS| ENABLE
Dl®_7 DO¢_7
‘/2741_513
E T
SMEMR+ CQYNC+
CORIN+
¢

