NorthSiarCompulersing.
. 2547 Ninth Strest
Berkelay, Ca. 94710

North Star
System Software Manual

Copyright © 1979, North Star Computers, Inc.

SOFT-DOC

PREFACE

This manual describes all the system software that is included
with a North Star HORIZON computer or Micro Disk System. Use of
the North Star Disk Operating System (DOS), Monitor, and BASIC
are described in three of the major sections of this manual. The
first major section, GETTING STARTED, describes the initial
procedure required to begin using the North Star software,

The table of contents for all the major sections of this manual
follows this preface. Two indexes for the BASIC section appear
at the very end of the manual. If you receive errata sheets for
this manual, be sure to incorporate all the corrections into the
manual, or attach the errata sheets to the manual.

This manual applies to North Star system software diskettes
stamped “RELEASE 5" or "RELEASE 5.X" where X is a digit
indicating the update number. If you are working with earlier
releases of North Star software, you should order a copy of the
most recent release to take full advantage of all the features
described in this manuval. This manual covers both single-density
and double-density versions of the North Star software. .
Differences between single- and double- den51ty versions are
noted in the text. -

Other software available for your North Star system-is not
described here. For example, North Star Pascal and. the North
Star Software Exchange diskettes are not described-here. Consult
a North Star Catalog, Newsletter, or your local computer dealer
for up-to-date descriptions of available North Star.software.

Every effort has been made to ensure the accuracy of the material
presented here. Nevertheless, experience shows that some textual
errors always go undetected. If you find any errors, or have
some suggestions on how to improve this manual,:please contact
North Star at the following address: '

NORTH STAR COMPUTERS, INC.
ATTN SOPTWARE DOCOMENTATION
2547 NINTE STREET

BERKELEY CA 947108

— NORTH STAR SYSTEM SOFTWARE MANUAL -~

II.

III.

TABLE OF CONTENTS

GETTING STARTED

BC

Dt
B'

GO
HC

J.

INTRODUCTION

DISK DRIVES AND DISKETTES

LIST OF SYSTEM SOFTWARE PROGRAMS

RAM ALLOCATION

PERSONALIZING THE DOS FOR INPUT/QUTPUT
SYSTEM START-UP :

PERSONALIZING A NEW DISKETTE FROM AND COLD DISKETTE
INSTALLING THE INPUT/OUTPUT ROUTINES
HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES
CREATING THE WORKING DISKETTE

HARDWARE TESTING

THE RORTH STAR DISK OPERATING SYSTEM (DOS)

a.
B.
C.
D.
E.
F.
G.
H.

INTRODUCTION

ABOUT FILES

COMMANDS

SYSTEM START-UP

DISK ERRORS

DOS LIBRARY ROUTINES

"ADDITIONAL DOS PERSONALIZATION

DOS ENTRY POINTS AND FLAGS
UTILITIES

DT (DISK TEST)

CF (COPY FILE)

CD (COPY DISK)

CO (COMPACT)

THE NORTH STAR MONITOR

A,
B.
C.
D.
E.

INTRODUCTION

COMMAND FORMAT

COMMANDS

HARDWARE REQUIREMENTS
PERSONALIZING THE MONITOR
EXAMPLE

- TABLE OF CONTENTS -

Iv.

TABLE OF CONTENTS (Continued)

THE NORTH STAR BASIC SYSTEM

A.

B.

D.
E.

G-

INTRODUCTICH

BECOMING FAMILIAR WITH BASIC

1. LOADING BASIC. s eveenesses sreesaceresB=1

2. COMMUNICATING WITH BASIC..... ieasee.B=2

3, ENTERING & BASIC PROGRAM...v¢ccese..B-B

4, SOME BASIC CONCEPTS ..t inervansnseonse B-9

COMMANDS

1. PROGRAM DEVELOPMENT AND MAINTENANCE
LIST. e ewssans Y o
DELveeesoneen e s e aseaen bt esaas e aen Cc-2
SCR. vt v vs Wesasaansanrnn Csesassenen c-3
REN....... . fr et e cisrrve e .. C=4
AUTO. et s s vssnacaa . cererrrar e e .C-6

2. PROGRAM MAINTENANCE ON DISK
CAT . v e eenas s e e s et asanaanen s eeasas LC=7
SAVE. Ceeaaaanenaas et s et C-8
NGAVE .. v v v it atsans t s e st e s e R
LOAD . t s e nassnstaserssssaacsnssns vea. =18
APPEND....vc... e eaaeeanan e c-11

3. EXECUTION CONTROL
RUN. . es s v s s ssssnansssssnsssssnnsners C-12
CONTROL~C, THE PANIC BUTTON..+vven Cc-13
CONT .. s v it vt s uraanaasn O a2 A

4, MISCELLANEOUS COMMANDS
PSIZE . o e v e et eooavsnssnsonnssassosns C-16
MEMSET .. v s s s ssasnassnsonsssvraresnse c-17
LINE (STATEMENT) ¢ cecevseinesesanann C-18

e BYE . ittt et tnseeensassne s sssinsnsens C-20

USING NUMBERS
USING ARRAYS
USING STRINGS
THREE IMPORTANT STATEMENTS

DIMOI00.0t0ltl.0bl..l...l.l.'..tt."!c-G_l

REMuteeeivnnnanann P I e

LET.veeveenscenn D ¢ 1

INPUT AND OUTPUT

1. STATEMENT: PRINT.......... crensanesH-L

2. PORMATTED PRINTING.....e:ennres eeasH=3

3. STATEMENT: INPUT..... seeeaeann e
STATEMENT: INPUTl.....sc0venvn. eses H=11

4. MULTIPLE I/0 DEVICES....vve0ere....H=12

- TABLE OF CONTENTS -

Iv.

TABLE OF CONTENTS {(Continugd)

THE NORTH STAR BASIC SYSTEM (Continued)

I.

STORING DATA WITHIN THE PROGRAM TEXT
STATEMENTS :

DATA. .t uveerevenencnns R £ |
READ . vuueranossnnnnnnanse tenaeas veeesa I-2
RESTORE.. . v ovnvvennnnnnens IS £X

PROGRAM CONTROL

1. EXECUTION AND CONTROL FLOW....v00... J-1

2. STATEMENTS:
GOTO. e isvnnennan et e et J-2
IF ... THEN ... ELSE...ieesinevaeresd=3
ON ... GOTO..tieennnannensasnansasas J-4
STOP..c.vonenen. B
2]] e

3. THE FOR-NEXT LOOP
DISCUSSION......... O, B4
STATEMENTS :
FOR. ¢ e e evtovasasannesaraanansasnnan J-12
NEXT e suonnonensssooasonanssneneensad=13
EXIT e ouvenecneanoosncrunssonsansesad=1d

4, SUBROUTINES
DISCUSSION. ... veininusnversnansasad=15
STATEMENTS:

GOBUB. st vi bt rasrrannenrasenvenned—17
RETURN. . i vvcaeerieerenansssronaesresad=1B

FUNCTIONS

1. DISCUSSION
BUILT-IN FUNCTIONS.... . csvsenaer-saK=1
USER-FUNCTIONS. . s vervvsvnarssvses. K-8

2. STATEMENTS:

DEF.Cl.ll.‘.‘ttnllt.ltalln.l..l.t!.K-lz
RETURN.«-...-..ou.o..o.ooouooooooooK_13
FNEND-........Q..CC,.oooooooo-ooooox-l4

DATA FILES

1. DISCUSSION..evuveveansnonsasesrenassbml

2. STATEMENTS:
CREATE .« cavvunvnncnnennnennn ieeeeaa L=1D
DESTROY e« e evavnnnenaenrovoarasesesabmll
OPEN .+ vvvnusnnennnaaecssesoncnasoeslm12
CLOSE . eeevonernneesansonoensasasnssliml3
READ$. cvovrenenns R AT
WRETE# + e v sveereeaeonnaennnnasencss =16

- TABLE QF CONTENTS -

TABLE OF CONTENTS (Continued)

Iv. THE NORTH STAR BASIC SYSTEM (Continued)

M. ADVANCED FEATURES

DISCUSSION--.----...-. --------- o-oooM"G
STATEMENT: CHAIN.....civoets sesssaaa M-8
4., ERROR TRAPPING AND RECOVERY
DISCUSSION. et uveetrsonocnanas N
STATEMENT: ERRSET...... se s taseneas M=-11
5. THE LINE EDITOR......... vesa s e . M-13
N. COMPATIBILITY WITH OTHER BASICS
1. STRING HANDLING.....vevuevedioseonsoN=1
2., INPUT TRANSLATION......iusena ereenaaN=2
3. NORTH STAR'S BCD ARITHMETIC.........N-2
4, IF ... THEN EVALUATION.. . cvveracsass N=-3
0. MISCELLANEOUS TOPICS
1, SPECIAL ENTRY POINTS.......... veaea0O-1
2. PERSONALIZING BASIC....eovavonaun ae Q=2
3. NON-STANDARD VERSIONS OF BASIC.....0-12
APPENDICES:
1. SAMPLE PROGRAMS
2. ERROR MESSAGES
3. IMPLEMENTATION NOTES
4. DECIMAL-HEX-BINARY-ASCII CONVERSION TABLE
5. BASIC TOPICS INDEX
6. BASIC KEYWORD INDEX

1. TWO ADVANCED STATEMENTS
FILL.,...cc.s. trrrrasaneers seraarasn.M=1
OUTo-o-oooocoovoooaoo- oooo ooooooocoM"'3

2. MACHINE LANGUAGE SUBROUTINES........M-d
3. AUTOMATIC PROGRAM SEQUENCING........M-6

- TABLE OF CONTENTS -

GETTING STARTED

INTRODUCTION

This part of the manual provides the information and orocedures
required to make initial use of the North Star svstem software.

This

A

material should be referenced at any of the following times:

You are about to use an assembled HORIZOW computer or MICRUC
DISK System for the first time.

You have just finished assempling and checking a HORIZON or
MICRO DISK System from Kkit.

You are about to use a new release system software diskette
for the first time.

The sections that follow provide:

A,

B.

Information on the disk drives and how to use them.

Itemization of the system software provided with North Star

disk systems.

Procedures for personalizing the DOS software to make
possible input/output communication with your computer’s
console terminal.

Procedures for testing your computer’s RAM memory and disk
system for correct and reliable operation,

These sections should be read carefully and the specified
procedures should be followed in the order given.

DISK DRIVES BAND DISKETTES

Your North Star HORIZON or MICRO DISK S5ystem equipped computer
includes capability for storing large amounts of data and program
information on "floppy" diskettes. There may be up to four
floppy disk drives connected to your computer through one disk -
controller board (only three drives for single density
controllers). Looking at the front of a disk drive, you will see
a small red LED indicatecr lamp, a slot running through the center
of the face, and hinged door at the center, perpendicular to the
slot. When the door is closed, no diskette may be inserted into
the disk drive. Opening the door permits the withdrawal of the
diskette and insertion, through the slot, of another diskette.
Wwhen the LED light is on, it indicates that that drive is active.
The disk system incorporates an automatic shut off feature which
will turn off the drive motor (s} when not in use to save wear on
pboth diskettes and disk drives,

DESCRIPTION OF DISKETTES

A diskette is a magnetically coated, thin plastic disk which is
permanently sealed within a sguare protective jacket. The label
on the jacket should be in the upper left cornher as you are
looking at the diskette., There are three holes in the front face
of the jacket. The large hole in the middle allows the disk
drive spindle to clamp directly onto the diskette in order to
gpin it around. Data is stored onto and retrieved from diskette
much as with a phonograph record, except that, for a diskette,
the needle is a magnetic record/playback head. The small. round
hole to the lower right of the diskette is called the sector
detect hole and is of no importance to this discussion. The
large oblong hole at the bottom and the correspoending hole on the
flip side expose the diskette s magnetic surface for the
record/playback heads. The little square notch in the upper
right corner of the diskette is a write protect notch. If you
cover this notch with an adhesive tab, then the disk drive will
be inhibited from writing over the information stored on the
diskette. It will be read-only until the write protect tab is
removed at which time both reading and writing ¢f the diskette
will be possible.

INSERTION OF DISKETTES

When you insert the diskette into the disk drive, be sure that
you are holding the label edge of the diskette, and that it
slides all the way in. oblong hole first, with the label facing
away from the drive’s LED indicator. In a HORIZON, the write
protect notch should be at the top. In a horizontally oriented
disk drive the notch should be at the left. After the diskette
is inserted, make sure the door on the drive is locked into the
closed position before you attempt to use the diskette.

- GETTING STARTED - A-1

DISK DRIVES AND DISKEITES (Confinued)

CARE OF DISKETTES

Diskettes are delicate and should be handled with great care.

Always observe the following rules in the handling and storing of
diskettes,

1. Never direétly touch the magnetic surfaces of a diskette.
z. Never bend or fold a disketfe.

3. Keep a diskette in its protective envelope when not in use.
4, Never expose a diskette to heat, X-ray or other radiation,

magnetic fields, moisture, or dust.

- GETTING STARTED - A=2

LIST OF SYSTEM SOFTWARE PROGRAMS

The following pregrams are included on a North Star system
software dickette:

bos - The Disk Operating System program.

co Utility program for compacting a diskette and optionally
converting a diskette to double density.

CD Copy diskette utility program.

CF Copy file utility program.

DT Disk test utility program.

BASIC The BASIC language system program with software

arithmetic.

FPBASIC The BASIC language system program set up for use with
the hardware floating peoint bhoard.

M2D0d The Monitor program with origin'ZDbB (hex). (M2A00 if

single density diskette)

M5788 The Monitor program with origin 5780 (hex) and built-in
HORIZON input/output routines.

M6700 The Monitor program with origin 6700 (hex).

Megee The Monitor program with origin 8.

MF4D0 The Monitor program with origin F468 {(hex).

= GETTING STARTED - B-1

RAM ALLOCATION

(;/ The following table shows how the 64K byte RAM address space is
allocated for the standard version system software and hardware.
All addresses are given in hexadecimal notation. The minimum
memory configquration reguires 16K of RAM in the address range
208B-5FFF (hex) .

STHGLE DENSITY DOUBLE DENSITY PROGRAMS

2089~-29FF 2800~2CFF DOS

2AED-5FFF * 2DPA-5FFF * BASIC, FPBASIC

"AGB-31FF 2DBB~34FF Monitor MZAGG, MZDOY
2RBB-3AFF 2D90-47FF Utilities CO, CD, CF, DT
57¢0-5FFF 57808~5FFF Monitor M5780

6766-6EFF 6780-6EFF Monitor ME700

ESGG-EBFF E80Q-EBFF Disk Controller
EFFO-EFfFF ** EFFA-EFFF **% Floating Point Board
F460-FBFF F400-FBFF Monitor MF400

The upper limit of BASIC can be set by the user with the

MEMSET command.

It is initially set to SFFP.

** Some floating point boards are configured to use DFF@-DFFF.

- GETTING STARTED - c-1

PERSONALIZING THE DOS FOR INPUT/OUTPUT

3efore the North Star system software can be used, input/output
routines may have to be installed in the DOS program to allow
communication of the DOS with the console terminal of your
computer system, This is called “personalizing” the input/output
routines of the DUS. Just exactly what steps need to be taken
depends on the combination of software and hardware to be used in
your system,

A,

o

You have a HORIZON computer and the console terminal is
connected to the standard serial interface. In this case,
the DOS on the system software diskette supplied with the
HORIZON is already personalized and ready to use, Skip to
the SYSTEM START-UP section. After the system is
successfully started, proceed directly to the CREATING THE
WORKING DISKETTE section.

You have a HORIZGN or other computer and you have a system
software digskette which has specific input/output routines
installed that match the input/output configuration of vyour
hardware. You are ready to proceed without the need for any
additional personalizing of the diskette. Skip to the
SYSTEM START-UP section. After the system is successfully
started, proceed directly to the CREATING THE WORKING
DISKETTE section. Personalized system software diskettes
tor the more common input/output configuations are
available. Consult the North Star Product Catalog and your
dealer. .

You have an unpersonalized system software diskette but also
have a different system software diskette which is already
personalized for your system. This situation might occur if
you have just received a new release of the system software
(unpersonalized) and wish to start using it on your already
running North Star system. Proceed directly to the
PERSONALIZING A NEW DISKETTE FROM AN OLD DISKETTE section.

You have an unpersonalized system software diskette and will
install the input/output routines yourself. The MICRO DISK
System is supplied with such an unpersonalized diskette.
This personalization procedure is not possible unless your
computer system includes some capability, such as a front
panel or ROM monitor, for loading the input/ouput routines
into RAM memory. PFurthermore, this procedure is not simple,
It reguires an understanding of the computer’s input/output
interfaces, hexadecimal numbers, and machine language
programming, If all these requirements are met, then
proceed directly to the INSTALLING INPUT/QUTPUT ROUTINES
section.

~ GETTING STARTED -~ - D-1

C

PERSONALIZING THE DOS FOR INPUT/OUTPUTh(Continued)

E. You have a HORIZON computer but will not use the standard
serial interface for connecting your consocle terminal. In
this case follow the procedure described in step D.

Alsec, if at any time you wish to add input/output devices to the

system or modify the existing routines, you must follow the
procedure described in step D.

- GETTING STARTED =~ n-2

|

SYSTEM START-UP

Start-ur of a HORIZON computer is very simple., Pirst, load a ‘
system software diskette into drive #1. Then. turn on the

computer power. The HORIZON will automatically start the disk
bootstrap program which will turn on the disk drive and load the

DOS into RAM from the disk. If the computer hardware is properly
configured, then the system should display a DOS command prompt

{* or +} and the system will be ready to use. To do a system

cstart-up when the power is already on, depress and release the

recet switch.

In a computer system other than a HORIZON which has a North Star
HIZRO DISK System installed in it. start-up the system as
follows. First, with no diskette loaded into any disk drives,
turn on the computer and disk drive power. In some computer
systems, turning the power on or off while a diskette is loaded
into a drive may damage the information stored on the diskette.
nitn the power on, load the system software diskette (already
rersonalized) in drive #1, and then cause the computer to start
axecuting at address EB8O(hex). A front panel. ROM monitor. or
auto-jump feature can be used to start the computer at tnis
address. At this point the DOS software should load as described
above,

If after performing the system start-up seguence, you don’'t get

any output on you terminal, it may be because the baud rate '
setting of the terminal does not match the baud rate setting of ‘
the serial interface, or it may be because of some other fault in

the hardware configuration (such as improperly addressed RAM

boards} . or it may be some problem with the input/output
personalization routines. All these possibilities should be

carefully examined. If typing a key causes that character to be
¢isplayed twice, it is probably because the terminal is in half

duplex mode rather than full duplex mode. If some computer

cperations, such as the DOS list command (LI), terminate

prematurely, this may be a result of an incorrectly written

control-C input/output routine. Other problems may be a result

cf typing lower case characters for commands instead of upper

case,

- GETTING STARTED - E-1

PERSONALIZING A NEW DISKETTE FROM AN OLD DISKETTE

1f it is desired to persocnalize a new system software diskette
using the same personalized input/ouptt routines that already
exist on an old diskette, then the tollowing procedure can be
used to incorporate the 0ld routines into the new software. The
new diskette may be unpersconalized or it may have input/output
routines that you wish to replace. The following listing gives
the DOS and HMonitor commands which should be exactly followed to
copy successfully the input/output routines. The DOS command
prompt will be * instead of + if a single density DOS is used.
The computer must include 16K of RAM starting at 2¢886(hex}. It
is assumed that the system software has standard origin at

2068 (hex}.

Using an o0ld diskette, do a system start-up sequence, then:
+LEF DO3 40080 Load cowny of old DOS

Next, remove the o0ld diskette and insert a new diskette 1in drive #1.

+LF DOS 0008 Load copy of new DBGS

+GO M2DEP GO M2AQ0 if new diskette is single dengity
>MM 490806.,100 5806 Move I/Q routines from old .to new DOS

. (See helow.)

>MM 489D ,C 564D Move jumps from old to new DOS

the third command in the above sequence will vary. depending upon
the nature of the source and destination diskettes, To transfer
old I/0 personalization from Release 1, 2, 3, or 4 to Release 5
dual-density DOS, use: :

>MM- 4900,190 5809

as above. To transfer I/0Q personalization between copies of the
Release 5 DOS, use:

>MM 4800,1¢00 5869

To transfer I/0 personalization between copies of single-density
DOS., Release 4 or earlier, use:

>MM 4906,100 5909

If the 0ld DOS has additional personalization, copy it now.

A copy of the new DOS with the old input/ouput routines installed
now resides at address 5888 (hex) in RAM. Proceed to the CREATING

THE WORKING DISKETTE section for directions on how to make 2
diskette which includes this DOS.

- GETTING STARTED - F-1

INSTALLING THRE INPUT/OUTPUT ROUTINES

The DOS is designed to be able to interface to any conceivable
terminal input/output configuration. There are four routines
required by the DOS: character input (CIN)}, character output
(COUT) ., control-C detect (CONTC), and terminal initialization
(PINIT). 1In the standard version of the DOS, the input/output
routines are located in the 256 byte region from 2948 to

Z9FF (hex) .

CIn

The purpose of CIN is to obtain a single character of input from
an input device and to return the value of that character in the
accumulator. When CIN is called, the accumulator will contain a
device number. This value, in the range B to 7, specifies from
which of eight possible input devices the single character cof
input is to be obtained. Device B is always assumed to be the
console terminal. Devices 1 to 7 may be assigned to any other
input devices in the system. CIN may be written sc¢ that it
ignores the device number in the accumulator if there is only one
input device in the system. CIN must do a RET to the calling
routine when the input character is ready in the accumulator.

The accumulator is the only register.which may be modified by the
CIN routine. If the input routine is complex enough to require
the use of other registers, their values when CIN is called must
be saved, and then restored before CIN returns.

COUT

This routine sends a single character of output information to an
output device, The character to be output is provided to COUT in
the B-register, and the output device number is provided in the
accumulator. When COUT has finished sending the output character
to the appropriate device, the character itself must be in the
accumulator as well as the B-register, and the routine must do a
RET back to the calling routine. No registers, other than the
accumulator, may be modified by the action of the COUT routine.

CONTC

Thie routine detects if a control-C has been typed on the console
terminal, No information is passed to the routine in any of the
registers, and no registers need be saved or restored by CONTC.
They are all available for unrestricted use by the routine. 1If a
control-C has been typed, the routine should set the Zero flag.
1f no character has been typed or if the character typed was not
a control-C, then the Zero flag should instead be c¢leared. As
soon as the Zero flag is given its proper value, CONTC must do a
RET. CONTC should not wait for a character to be typed. If no
character has been typed, it should do & RET immediately after
clearing the Zero flag.

- GETTING STARTED - G-1

INSTALLING THE INPUT/CUPUT ROUTINES-@Continued)

TINIT

Many terminals require a special initialization procedure to pe
followed immediately after they are turned on for use. For
example, a video display controller may reguire that the screen
be cleared before the screen is used for the first time after
power on. Also, the interface electronics (such as the HORIZON
standard serial interface) may require initialization after
power-on or reset. The TINIT routine is called once by the DOS
right after the bootstrap load and should contain any
instructions which implement this one time initialization for all
input/outnut devices used in your system. Since many terminals
do not need to be initialized, you may not need to use TINIT.
TINIT may freely use all registers., without having to save or
restore any. The TINIT routine should do a RET when finished.

STEP BY STEP PROCEDURE

In order to personalize the DOS with input/ouput routines for
vour hardware configuration, perform the following steps:

1. Write your input/ouput routines carefully following all the
rules specified in the above input/output routine
descriptions and the DOS ENTRY POINTS AND FLAGS section of
the DOS part of this manual. As examples of correct
input/output routines, the following section shows the
input/ouput routines for the HORIZON.

2, Perform a system start-up sequence using the unpersonalized
system software diskette, In an unpersenalized diskette,
each of the input/ouput routines is set up to merely do a
jump to self instruction. Thus, when vou first perform a
system start-up seguence, the DOS will end up in a jumnp to
self locp in TINIT, and the unpersonalized DOS will now be
loaded inte RAM starting at address 2080 (hex).

3. Using the computer front panel or ROM monitor, stop the
computer and load your input/ouput routines into RAM in the
region from 2968 to 29FF (hex).

4. Once the input/output routines have been put into computer
memory, you must modify the DOS jump table so that it
contains the starting addresses of each of the routines.
This jump table occurs from address 200D to 2818 (hex). This
region is 12 bytes long. Each successive 3 byte section
within it consists of an 8880/288 JMP instruction {C3 hex)
followed by the two byte starting address (low order byte
first) of one of the four rdutines, The following table
shows how the region from 289D to 20618 (hex) would be
modified to recognize CIN, COUT, CONTC, and TINIT if the
starting addresses for these routines were 2908, 2929, 2948,
and 2968{hex), respectively.

- GETTING STARTED - G-2

INSTALLING THE INPUT/OUPUT ROUTINES (Continued)

SEFORE AFTER ‘
address Contents bddress Contents
280D C3 BD 20 2008D C3 28 29 {(for COUT)
2019 C3 18 20 2019 C3 0@ 29 {for CIN)
2013 C3 13 20 2913 C3 62 29 {for TIRIT)
2916 C3 16 28 2016 €3 49 29 (for CONTC)

fote that if TINIT is not reguired, the byte at 2813 {hex}
should be changed to a RET instruction {C9 hex).

If you used a front panel to modify the DOS, then the stack
cointer has not been changed. So continue with execution of
the new TIKIT routine by causing the computer to begin
execution at address 2813 {hex). If you used a. ROM monitor
to modify the DOS, then the stack pointer mav have heen
changed but the console terminal has been initializea by the
monitor. S0 continue by causing the computer to begin
cxecution at address 2828(hex), the DOS continue entry
peint. You should see a DOS command prompt {(* or +) on your
terminal. If you don’t, this means that the input/output
rovtines are faulty or a mistake was made in following the
above perscnalization steps.

Copy the personalized DOS at 28898 to 5000 (hex) by tvping the ‘
following commands: _

+LF DOS 5060

+GO M2D@Q GO 2AB9 if single density DOS
>MM 2@88D.C 580D

>MM 2990,1060,5800

(If the DOS at 50B€H is not Release 5 dual-density, use:
YMM 2900,1606 5980

as the last command in the above sequence, replacing the one
listed.)

Proceed directly to the CREATING THE WORKING DISKEITE
section, .

- GETTING STARTED - G-3

----------m----n---------I----II.IIII-----W

2908
o 2908
2940
2900
2908
2902
2905
2907
2904
2904
298¢
290E
2911
2913
2015
2916
2916
2918
291A
291D
291F
2921
2022
2922
2922
2924
O 2926
2929
2928
292¢C
292E
2930
2931
2933
2934
2934
2934
2936
2939
2938
293E
293E
2940
2942
2945
2046
29438
2949
294B
294D
2950

{ 295

2953

FE@2
CA2229
FEA@1
Cals29

DBE 3
E6D 2
CABAZ29
DBB2
E67F
€9

DB@S
E6@2
C&1629
DB9 4
E6TF
C9

DBB6
E6@2
Ca222%
begp
]
3E38
b3@é
Fl
E67F
C9

FE@1
Ca4929
FE@2
C25429

BB#3
E601
CA3E29
78
D3g2
c9
DBO5
E6d1
CR4929
78
D384
)

HORIZON PERSONALIZED INPUT/Oﬁ%PUT ROUTINES

*

*I/0 ROUTINES FOR STANDARD HORIZON COMPUTER

* IN RELEASE 4 DOS

*

CIN CPI 2 CHECK FOR DEVICE 2 POSSIBILITY
J% CIN2 JUMP IF PARALLEL PORT SPECIFIED
CPI 1 CHECK FOR DEVICE 1 POSSIBILITY |
Jz CINL JUMP IF SECOND SERIAL PORT SPECIFIED

*ASSUME PORT @ (STANDARD SERIAL PORT) DESIRED

CING IN 3 INPUT FIRST SERIAL PORT STATUS
ANT 2 MASK INPUT STATUS BIT
Jz CIN® LOOP IF NO CHARACTER
IN 2 | INPUT THE CHARACTER
ANI 7FH MASK OFF EARITY BIT
RET RETURN WITH CHARACTR IN A

CINl IN 5
ANI 2
Jz CIN1
IN 4
ANI 7FH
RET

*SAMPLE PARALLEL INPUT CODE

CIN2 IN 6 READ MOTHERBOARD STATUS
ANI 2 MASK TO GET THE PI FLAG
JZ CIN2 - NO INPUT TYPED YET
IN @ READ DATA FROM KEYBOARD
PUSH PSW SAVE THE CHARACTER
MVI A,30H
OUT 6 RESET PI FLAG
POP PSW |
ANI 7FH
RET

COUT CPI 1
J2 COUTL SECOND SERIAL PORT OUTFUT
CPI 2
Jz COUT2 PARALLEL OPORT QUTPUT

*ASSUME STANDARD SERIAL PORT OUTPUT

Coud 1IN 3 INPUT FIRST SERIAL PORT STATUS
ANI 1 MASK OUTPUT STATUS BIT
Jz COoup LOOP IF NOT READY TO OUTPUT
MOV A,B MOVE CHARACTER TO A
ouT 2 OUTPUT THE CHARACTER
RET

couTl IN 5
ANTI 1
JZ COUTL
MOV A,B
ouT 4
RET

- GETTING STARTED - : H-1

2954
2954
2956
2958
2958
295¢C
295E
2960
2962
2963
2964
2964
2966
2968
2964
2968
2960
296F
2971
2972
2973
2973
2973
2973
2373
2676
2978
2979
2974
297D
297F
2988
2983
2984
2985
2986
2989
298A
298D
298E
2990
2993
2996
2596
2996
2996
2996
2998
2994
2993
299A
2998
299D

HORIZON PERSONALIZED INPUT/QUTPUT ROUTINES (Continued)

DBG6
EG#1
Cha5429
78
Digd
3E20
D3g6
78

9

DEW 3
E502
EEGZ
o
DY 2
E6TF
FEB3
37
c9

219840
16E4
7c

BA
C28329
Co04
67
Ch9629
7E

77

2C
c28329
24
CA9629
7C
E6@3
C28329
C37829

3E4]
D3Ce

%3
D306
D396

OuT 9C8H MEMORY BOARD OUTPUT PORT
* NOw INITIALIZE MOTHERBOARD AND SET UP BOTH SERIAL PORTS °
. XRA A ZERO ACC

QUT 6 INITIALIZE MOTHERBOARD

ouT 6 EXTRA

*SAMPLE FARALLEL OUTPUT ROUTIWNE ‘
COUT2 IN 6 READ MOTEHERBOARD STATUS
ANY 1 MASK TQ GET THE PO FLAG
JZ COUT2 PRINTER NOT YET READY
MOV A,B GET CHARACTER T0 ACC
ouT 9 OUTPUT TO PRINTER
MVI A,28H
ouT 6 RESET PO FLAG
MOV A,B CHARACTER EXPECTED IN ACC On RETURN
RET '
CONTC IN 3 INFUT SERIAL PORT STATUS
ANI 2 MASK IRPUT STATUS BIT)
XRYI 2 SET Z-FLAG ONLY IF CHARACTER i
RNZ RETURN TF nNO CHARACTER TYPED 5
IN 2 INPUY THE CHARACTER
ANI 7FH MASK OFF PARITY BIT
CPI 3 SEE IFP CHARACTER IS CONTROL-C
5TC TELL SOFTWARE A CHAR wAS TYPED (OPTIONAL)

RET RETURN WITH Z-FLAG PROPERLY SET

* .
*TINIT FIRST REWRITES ALL KAM TO SET PARITY CORRECT

TINI'T LXI H,8 PREPARE TO CYCLE THROUGH RAM o
MVI D,BADDR/256 SET UP TO SKIP DISK REGION ‘ ?
TINKL MOV A,R MOVE CURRENT BLOCK NUMBEK TO A
CMP D CHECK IF DISK BLOCK ;
JINZ TINCP CONTINUE IF NOT DISK BLOCK :
ADI 4 ADD 1K TO RAM ADDRESS
MOV H,A PUT UPDATED ADDRESS BACK TO HIL
JZ TINU MAKE SURE NOT DONE IF NON-STANDARD
TINCP MOV A,M READ BYTE FROM RAM
MOV M,A RESTORE IT WITH CORRECT PARITY
INR L INCREMENT LOW ORDER ADDRESS BYTE
JNZ TINCP LOOP IF NOT AT END OF 256 BLOCK
INR H INCREMENT BLOCK NUMBER
JZ TINU DONE IF WE ARE BACK TO ZERO
MOV A, H BLOCK NUMBER TO A
ANI 3 MASK LOW ORDER 2 BITS
JNZ TINCP CONTINUE If NOT AT END OF 1K BLOCK
JMP TINKL BRANCH TQ MAIN LOOP '

*

*NOW THAT ALL BYTES HAVE CORRECT PARITY, ENABLE PARITY LOGI

* (IF YOU DON T HAVE KAM-16-A WITH PARTITY, THIS IS A NOP)
*

TINU MVI A,41H ENABLE PARITY CODRDE

- GETTING STARTED - H-2

__.-_-------------------ﬁ-—-—-—-—-—-—-—-—-—-—-—

299F
28A1
28A3
29A5
29A7
2949
29AB
294D
284F
29B1
Z29B3
29B3
29B3
23885
2887
29B9
28BB
298C

HORIZON PERSONALIZED INPUT/OUTPUT ROUTINES (Continued)
. ’ h

D366
D386
3ECE
D303
3ECE
D3@5
3E37
D303
3E37
D385

DRa2
oB04
3JE36
D386
C9

ouT
ouT
MVI
QuT
MVI
eouT
MVI
ouT
MVI
our

N
O
3
5

")
wl
=€I

e G U W O G
Lt =
[} [}
s =1
m

IN 2

IN 4

MVI A,321
ouT 6

RET

EXTRA
EXTRA
2 B8TOPS, 16xCLOCK, 8 BITS, NO PAKRITY

. SEND TO FIRST SERIAL PORT

SAME CODE AS FIRST PORT
SECOND PORT _

CMD: RTS, ER, RXF, DTR, TXEN
FIRST PORT

SAME CODE AS rIRST PORT
SECOND PORT

CLEAR STANDARD SERIAL PORT INPUT BUFFE]
CLEAR SECOND SERIAL PORT INPUT BUFFER

RESET PI FLAG {FOR PARALLEL PORT)

= GETTING STARTED - H-3

CHEATING THE WORKING DISKETTE

Zefore using the system scftware it should be copied to a
diskette other than the factory supplied system software
diskette. This diskette, called the WORKING DISKETTE, will be
the one used on a daily basis., After this procedure is finished,
the factory diskette should be retired to a safe place for
storage with the write protect tab installed. If the working
diskette should ever be accidentally destroyed, the factory
giskette can then be used to create a new working diskette,

ihere are two different procedures for creating the working
diskette depending on whether your computer has one or two disk
srives. The procedure with two disk drives is much simpler and
chould be used 1f at all possible.

Tw0O DISK DRIVE PROCEDURE

Load the factory diskette with the write protect tab installed in
drive #1 and a blank diskette (to become the working diskette)
with no write protect tab in drive #2, Then perform the
following DOS command:

+G0O CD 1 2

This will copy the complete contents of the factory diskette onto
the working diskette. If the factory diskette was already
cersonalized for your system, then you are done., However, if you
personalized the DOS input/output routines before coming to this
section, then the personalized DOS is at 58¢8(bex) in RAM and
chould be copied to the working diskette with the following
command:

+SF DOS.2 5000
Now you are done and the working diskette is ready to use.
SINGLE DISK DRIVE PROCEDURE

Load the factory diskette with write protect tab installed in
drive #1 and perform the following DOS commands:

+RD ¢ 4900 8 Read file directory into RAM
+L1 List file directory on factory diskette

Now remove the factory diskette and load the diskette to become
the working diskette with the write protect tab removed in drive
£l 2nd perform the following commands:

- IX Initialize working diskette
=WE @ 4pea B Write file directory onto diskette
+ET List file directory

ite listed file directory on the working diskette should be

= GETTING STARTED - I-1

N

CREATING THE WORKING DISKETIE (Continued)
'

identical to the listed file directory on the factory diskette,
(_/ If you personalized the DUS input/output routines before coming
' to this section, then the personalized DOS is at 58980 (hex) in RAM
and should be copied to the working diskette with the following
command :

+SF DOS 5000

Now, for each file on the factory diskette, verform a sequence
like the following which copies the DOS file:

Load factory diskette in drive #1
+LF DOS 2B0082
Load working diskette in drive $1
+SF DOS 2DB0

The DOS file should not be copied if a personalized DOS was
already copied to the diskette from RAM. After repeating the
above sequence once for each file, the factory diskette will pe
completely copied to the working diskette, You are done and the
working diskette 15 ready to use.

.REGULAR BACKUP PROCEDURES

It is an inescapable fact that any user of a computer will make

frequent mistakes in the instructions given to the computer.
(ff Most of these mistakes will be easily corrected. However., a few j
will cause major loss of information stored on diskettes. For i
example, to cite an extreme but plausible case., suppose you have {
spent an entire month typing a data base into your computer and
it is stored on a single diskette. You now wigsh to initialize a
new diskette and type an IN command to the DOS. It is not until
the command is completed that you realize that you forgot to load
the new diskette in the disk drive and that you have just
initialized the diskette which held the results of one month’s
work. This kind of disaster can be avoided by faithfully
following these two rules:

1. Always keep a write protect tab on a diskette unless you are
. about to write on the diskette.

2. Always make a backup copy of any file you have just changed
in any significant way.

The copy disk and copy file utility programs make the backup
procedure easy.

Important files or diskettes should be stored in a more permanent
way. For example, a copy of the personalized working diskette
should be retired to safe storage and be recovered only if the
normal working diskette is destrovyed.

- GETTING STARTED - ' I-2 3

HARDWARE TESTING

It is extremely important that, you test the hardware of your
computer system thoroughly using the following procedure, before
ssing the computer for any serious work. These procedures should
identify any faults or intermittent failures in the computer’s
kAM and disk system, These procedures should be repeated
regularly in order to maintain system integrity and reliability.

M TEST PROCEDURE

A Failure of the RAM may be the cause of almost any type of
zroblem you may encounter while using your computer. Therefore,
‘yeauent testing of the RAM is very important. The RAM is tested
with the TM command of the Monitor program, The test repeatedly
writes a pattern of data into the region of RAM being tested and
~ren reads the pattern to check that the correct pattern 1is
iné=2ed in the RAM, Since the test modifies the region of RAM it
1z testing, it is not possible to test the area where the test
rrogram itself resides. Therefore, the test procedure must be
ione in two steps, the first testing the last part of RAM with a
wcnitor program that resides in the first part of RAM and the
szcond testing the first part of RAM with a Monitor program that
resides in the last part of RAM, Start by performing a system
start-up seguence and type the following command to start the
monitor:

H

+E0 M2D00 : M2A80 if a single density diskette

with standard memory addressing, a computer with 16K of RAM will
rave memory in the range 2080-5FFF(hex)., 32K in the range 2000-
JFFF (hex), and 48K in the range 2080-DFFF (hex). Test the last
part of this region with a command like the following which will
test the last BK of a 16K memory.

>TM 4B6@8-SFFE 1

The test may run for several minutes with no apparent signs of
life on the terminal. You can determine whether or not the test
is s5till running by typing a control-C to stop the test. If the
est was still running, the monitor will prompt you for another
ommand with another (>). If nothing happens when you type the
control-C, then something is wrong. If the test is allowed to
run to completion, it will print the message PASS COMPLETED on
the terminal and then start another pasgss. The program should be
zllowed to run for several hours to perform a thorough test.

T
-
Z

- GETTING STARTED - J-1

HARDWARE TESTING {Continu%ﬁ}

If in the course of its operation the test detects an error in
the memory it is testing, it will display on the terminal an
error message of the form:

XXXX Yy READ A4S zz

The numbers xxxx. yy, and zz are hexadecimal. They represent the
address of, the expected contents of, and the actual contents of
the byte in RAM where the error was detected. 1If zz is always
FF, then there may not be any RAM board addressed to the area
being tested. Another possible cause of errors is an address
conflict, for example an attempt to share the same area of memory
between a RAM board and a memory mapped device, such as the disk
controller or a fleoating point board. or another RAM board,

After the test has run successfully for several hours, perform
the following commands to do a similar test on the first part of
RAM:

»>08 Return to DOS from the Monitor
+GO M5708 Load Monitor into last part of RAM
>IM 2000-3FFF @

The M5708 Monitor has its own set of input/ocutput routines since
“the RAM test will overwrite the input/output routines in the DOS
at 2000 (hex). 1Initially. the M5700 routines are personalized for
use with a HORIZON. If your machine has some other hardware
configuration, then the M5708 input/output routines must be
changed to match your DOS routines. See the Monitor section of
this manual for details. After the MS760 test has run
successfully for several hours, type a control-C to stop the test
and type the following command to return to the DOS.

>IL
DISK TEST PROCEDURE

In order to check for proper operation of the disk controller and
disk drive(s), a DOS disk test program (DT} has been provided.
This utility will repeatedly write a changing pattern to a
specified drive and then attempt to read it back. Refer to the
UTILITIES section of the DOS part of this manual for details on
operation of the DT utility.

If each drive in your system will pass & disk test for 15
minutes, then your disk subsystem is in good operational order.
If an error occurs, this may mean one of several things:

1. The digkette is improperly mounted, has a write protect tab,
or has a "bad spot" which will not properly record data. If
other diskettes pass the disk test, then the problem is with
the diskette.

- GETTING STARTED - J=-2

HARDWARE TESTING (Continued)

The disk drives are improperly connected to the system. For
example, the cable connection has not been made correctly.
power is not properly applied to the drives, or the drive
configuration has not been done properly.

There is a hardware problem in the controller or drive. 1If
your computer memory is operational, and your copy of DOS
and DT have not been improperly modified, and the problem is
not 1 or 2 above, then there may be a hardware problem in
your disk controller or disk drive. 1In a multiple drive
system, you can attempt to isolate the problem by testing
soth drives to determine if the problem is witn an
individual drive or not.

~ GETTING STARTED - J-3

North Star
DISK OPERATING SYSTEM

Version 2

INTRODUCTION

The North Star DOS (Disk Operating System) was designed and
implemented by staff members of North Star Computers, Inc. for
use in conjunction with the North Star MICRO DISK SYSTEM, and
HCRIZON computer system. The DOS permits a user to issue various
"“commands" from a terminal for maintaining and using files on
diskette. The DOS also provides “library routines" which may be
called from user software., These library routines will primarily
be of interest to users who will be developing their own system
software, as opposed to those users who will primarily use
application systems such as BASIC.

Versions of the North Star DOS are available for both single-~
density and double-density North Star disk systems. The DOS for
single~density systems is different from the DOS for double-
density systems. When reading this manual, if you have a single-
density system, then ingore all references to double-density’
capabilities.

The DOS occupies 3.25K (D@@ hex) bytes of RAM in double-density
systems and 2.5K (A@@ hex) bytes of RAM in single-density
systems, including 256 bytes of RAM for input/output routines.
No buffet area outside the DOS is required for any of the DOS
commands. The origin of the DOS is 2089 {hex) in both standard
versions.

The North Star DOS is intended for use only with the North Star
MICRO DISK SYSTEM and HORIZON computer, and no license is granted
for ‘any other use, Improved copies of the DOS, as they become
available, may be obtained for a nominal charge.

Before the DOS can be used with a specific computer
configuration, the instructicns in the GETTING STARTED section of
this manual must be followed.

W

ABOUT FILES

DISK ADDRESSES

Fach diskette consists of 35 concentric TRACKS, and each track is
subdivided into 10 SECTORS. A disk sector can hold either 512
bytes of double-density information or 256 bytes of single-
density information. For purposes of discussion, a FILE BLOCK is
defined to be a unit of information egual to 256 bytes. A sector
can therefore contain two file blocks in double-density, or one
file block in single-density. Every sector on the disk is
identified by a unique DISK ADDRESS - an integer from f through
349. For example, sector 3 of track 27 has disk address of 273,
Track @ is the “outermost" track, and track 34 is the "innermost”
track.

FILES

The primary DOS function is to permxt the creation, deletlon and
vse of files on diskettes., A file is an integral number of file
hlocks of data and occupies seguentiazl disk sectors. For
sxample, a particular file might occupy disk addresses 17 through
95 on a diskette loaded in drive #2. Note that files must always
pegin on sector boundaries, and that double-density files must
always contain an even number of file blocks.

The first four sectors on each diskette contain a FILE DIRECTORY
which specifies a symbolic name, base address, length, type, and
data-density information for each file on that diskette. The
gymholic name may be up to 8 characters long, and may include any
characters except blank and comma., The length of a single-
density file may be up to 346 blocks, and a double-density file
may extend to 692 blocks. A directory may contain as many as 64
entries in single-density and 128 entries in double-density. No
two files in a directory may have the same name, but it is
possible for files of the same name to be in directories of
diskettes loaded simultaneously on separate drives in a muliple
di=sk grive system.

FILE TYPES

One byte in the file directory entry for each file specifies the
"type" of the file. Depending on the specific type, additional
bytes in the entry may have special meaning. Only four of the
127 possible file types have been assigned to date:

tvpe @ - Default type. All new files are assigned type B8 until
explicitly changed.

tvpe 1 - Machine language program. This file type identifies a

machine language program (object code) that may be
executed directly from the DOS with the GO command.

- NORTH STAR DOS - a-1

C

ABOUT FILES (Continued) .

type 2 - BASIC program. This type of file is used to identify a
BASIC program that can be LOADed or SAVEd from BASIC,.

type 3 - BASIC data file. This type of file is the standard
type for data files read and written by BASIC programs.

FILE DIRECTORY STRUCTURE

The file directory occupies disk addresses {sectors) @ though 3.
Each block in the directory holds thirty~two (sixteen in single-
density systems) lé-byte entries. The symbolic name of the entry
uses the first 8 bytes of an entry. An empty entry is an entry
with 8 blanks (26 hex). Following the symbolic name in an entry,
the disk address (2 bytes), the file size (two bytes) and the
type (1 byte) follow. The last three bytes of an entry are type
dependent., 1In particular, for a type 1 file (GO file), the two
bytes following the type byte contain the go-address, and for a
type 2 file (BASIC program) the byte following the type byte
specifies how many file blocks of the file actually contain valid
data.

File directory entry:

bytes 8-7 symbolic name of entry

bytes 8-9 disk address

bytes 18-11 number of blocks in file

byte 12 file type (high bit is 1 if double-density)

bytes 13-15 type-dependent information

- NORTH STAR DOS - A-2

COMMAND3

Instructions are issued to the DOS from the terminal by typing ‘
COMMANDS. The command format is a 2-letter mnemoni¢ followed by

any reguired arguments, Arguments are separated from the command
nnemonic and from each other by a single blank. A command must

be terminated by a carriage return before the DOS takes any

zction. If a typing error occurs during typing of a command, an
at-sign(@) or control-N may be typed to permit re-typing of the

command. Also, an underline, left-arrow, control-Q, or control-H

may be typed to erase the previously typed character.

when a file name is reguired as a command argument, the disk
frive number (in a multiple drive system) may be specified by
irmediately following the file name with *,1*, *,2", ",3", or
»,4". Drive #4 four may be specified only in double-density
svstems., Otherwise, drive #l1 is assumed. Some sample file names
are:

ABC TEST1234,3 BASIC,1

Commands may be typed whenever the prompt character (* for
single- den91ty DOS and + for double- den51ty DOS) appears at the
left margin of the terminal.

LI <optional device specification> <optional drive number>

This command will list the entire contents of the directory on ‘
the diskette loaded in the specified drive. If no drive is
specified, then drive #1 is assumed, For each file, its
symboli¢c name, starting disk address, length, data density
{single or double), and type will be printed. For type 1
files, the go-address will also be printed. To prematurely
terminate a listing, a control-C may be typed. If output to a
device other than the console terminal is desired, then the
desired output device number may be specified by typing a #
character followed by the device number. The device number
must correspond to a device that has been interfaced to the
system in both hardware and by adding the appropriate
personalized input/output routine,

CR <file name> <length> <optional start address> <optional density>

This command will create a new file on the drive indicated by

the file name. The length argument specifies the number of
256-byte blocks, If no starting address is given, then the

file will start after the "last® {innermost) file currently
allocated on the diskette. Otherwise, the supplied starting
address will be used. The optional density specification is a
single letter, "“S" or "D", signifying that the file should be
created in single or double density, respectively. 1If no

density choice is specified, double-density is assumed. No .
density specification may be made with the single-density dl
version of the DOS. The CR command will only create a file

- NORTH STAR DOS - B-1

DE

TY

GO

JP

COMMANDS (Continued) %

directory entry - no accessing of the file itself will be
done.

<file name>

This command -will delete an existing file directory entry on
the indicated drive. No actual accessing of the file blocks
will be done. The DE command, in conjunction with the CR
command, may be used to change the length of a file on the
disk. If this is done, note that the type and type-dependent
information will have to be re-entered.

<file name> <file type> <optional go-address>

This command is used to change the type of the specified file
on the indicated drive. If type 1 is specified, then the
third argument must be supplied to specify the “go-address”.

<file name>

This command is used to load the specified file into RAM from
the indicated drive and begin execution. The GO command may
be used only with type 1 files. The GO command will read the
entire file into RAM beginning at the go-address, and then
jump to the go-address. Therefore, the first byte of the file
must be the entry point of the program. The GO command sets
the HL register pair to a value which points to the remainder
of the command line (any characters typed after the file name)
as stored in the DOS command buffer in memory. In this way,
it is possible to send arguments to a program through the
command string. The maximum length of a DOS command line is
20 characters,

The library routines of DOS are all included in the region of
DOS preceding address 2240 (hex). For Release 5 dual-density
DOS, command and I/0 processing are handled by code from

2AP0 {hex)-2CFF(hex). It is possible to GO to a file with a
GO-address in the range 2266 (hex)-2CFF{hex}. However, upon
return or re-entry to the DOS, the DOS routines in that region
will have been overwritten, and no command processing will be
possible. Instead, the Release 5 dual-density DOS will print
the message:

RE-BOOT

and await an input character from the console terminal. After
a system softwae diskette is loaded and a character is typed,
the DOS will be re-booted from the disk.

<hex RAM gddress>

This command will cause the computer to jump to the specified

= NORTH STAR DOS - B-2

LF

pard

ot ey

e

IN

COMMANDS (Continued)

RAM address. It provides a way of executing programs which
exist in the address space of the computer. Do not confuse
this command with the GO command. However, like the GO
command, JP sets the HL register pair to point to the
remainder of the command string.

<file name> <hex RAM address>

r «file name> <hex RAM address>

These commands may be used to load ot save a disk file to or
from RAM. The entire contents of the file will be read to or
written from the area starting with the specified RAM address.

<disk address> <hex RAM address> <# of blocks> <optional density>
<disk address> <hex RAM address> <# of blocks> <optional density>

These commands may be used te read or write a specified drive
directly to or from RAM, The WR and RD commands should be
used with great care, as typing errors can have catastrophic

=zffects. The disk address may optionally be followed by ",1",

"2, ",3" or ",4" to indicate a particular drive. Otherwicse,
drive #1 is assumed. Drive #4 may not be specified in single-
density systems. The amount of data to transfer is specified
as 256-byte file blocks., The optional density specification
is & single letter, either "S8" for single-density or "D" for
double-density, If the density specification is omitted,
double-density is assumed. (The single-density DOS, however,
will ignore this argument.) Note that a method of copying one
diskette to another in a single drive system would involve
repeated use of the RD and WR commands.

<optional drive number> <optional density>

This command is used to initialize each new diskette to be
used in the system. The IN command writes each block on the
specified drive with ASCII blank characters (20 hex)}. The
optional density argument, "S8" or "D", may be used to specify
whether the diskette should be initialized in single or double
density format. If this argument is omitted, the diskette
will be initialized to double-density. (The single-density
version of the DCS will ignore the density specification.)
This procedure initializes the directory and also guarantees
that no "hard disk error” can result from access to an
uninitialized file block. The IN command takes about 15
eeconds. WNeedless to say, one should make sure that the
rroper diskette i1s loaded before issuing the IN command. Note
that an initialized diskette does not contain a copy of the
238, The IN command does not require any buffer area outside
£ the DOS memory area.

-~ NORTH STAR DOS - B-3

R

DISK SY¥STEM START-UP "

L,» After power-on, or when it is desired to re-start the disk
system, the 8886 or 280 computer must be forced to begin
execution at the PROM bootstrap program starting address (E8{0
hex in the standard version). The PROM bootstrap program will
read a sector from drive #1, disk address 4 into RAM at the DOS
starting address. (2000 hex in the standard version}). After
reading in the sector, the bootstrap will branch to the DOS
starting address. The program in the first block of the DOS will
proceed to read in the remaining sectors of the DOS from disk
starting at address 5. Then the DOS will print the prompt
character {* or +} and await a command from the terminal.

Gnce the DOS has been started, it is no longer necessary to leave
the diskette in drive 1. The DOS is fully resident in RAM, and
makes no disk accesses unless asked to do so. Furthermore, the
DOS does not maintain any copies of the diskette file directory
in RAM between commands. Thus it is possible, for example, to
obtain listings of the file directories of several diskettes by
inserting them cne at a time and then issuing the LI command.
Alsco, it is possible to copy one diskette to another in a single
drive system by repeatedly exchanging diskettes and doing the
appropriate seguence of RD and WR commands or LF and SF commands.

- NORTH 8TAR DOS - c-1

W

DISK ERRORS

uost disk operations are tried 18 times by the DOS before ‘
reporting failure. Upon failure, an error message of the
fcllowing form is printed on the console terminal:

DISK ERROR TYPE: X DRIVE: vy SECTOR: zzz

where x=the error type,
v=the drive number on which the error occurred, and
zzz=the disk address at which the error occurred.

“=z error types have the follewing meanings:

o 53YNC BYTE NOT FOUND: Indicates badly written data on the
diskette, or a diskette not properly loaded into the drive, or
an attempt to read an uninitialized diskette.

% CRC COMPARE ERROR: Indicates badly written data.

: VERIFY COMPARE ERROR: Indicates data on disk does not compare
with RAM in a verify operation,.

4 NO INDEX PULSE: Indicates wrong type of diskette or badly
loaded diskette.

5 DENSITY MISMATCH: Indicates single-density data found where
doukle-density data was expected or visa vera, : '

4 WRITE PROTECT: Indicates a write operation was attempted to a
write protected diskette.

If the DOS prints a guestion-mark(?) in response to a command,
this indicates illegal form for the command or an illegal
argument value.

- NORTH STAR DOS - D-1

C

DCS LIBRARY ROUTINES -

This section describes how user machine language software may
interface to the DOS for the accessing of disk files.

The DOS ENTRY POINTS AND FLAGS section shows the entry points for
each of the routines to be described here. The exact interfacing
requirements are described in that section., The DOS5 uses the
stack pointer existent at call time, and some of the DOS library
routines may reguire as much as 39 bytes of stack storage. Note
that the DCS may be re-entered without using the bootstrap PROM.
Now follows a discussion of each library routine.

DLOCK
This routine searches for a specified file name in the
directory of the indicated disk drive. 1If the specified
name begins with a blank, then an “empty" file directory
entry is looked up. On failure to find the reqguested entry,
HL is set to the value of the first free disk address on the
indicated drive following the last file on the diskette.
The file name must be in the correct syntax.

On success, HL contains a pointer into a buffer in DOS RAM

that has a copy of the sought entry. The pointer addresses
the first byte following the symbolic name (i.e., byte 8).

Also, on return, the ACC specifies the disk drive which was
determined from the name passed as argument.

DWRIT
This routine is used to write back to diskette an updated
file directory entry which was previously found using DLOOK.
No disk activity may occur between the DLOOK and the DWRIT
call.

LCOM
This routine may be used to issue an arbitrary disk read or
write command. On a read request, DCOM will try 1€ times
for a successful read before giving up and branching to
HDERR. DCOM will fail return if the supplied arguments are
ocut of bounds. However, great care should be used to avoid
calling DCOM with incorrect arguments.

DosS
This is an entry point to the DOS command processor. It can
be used to return control £o a loaded DOS without reguiring
a PROM bootstrap load.

DOSERR _
When a control-C is typed at the console terminal during a
diskette directory listing, orf when DOS is passed a file
name which is syntactically incorrect, DOS branches to the
JMP instruction stored at this location. If left _
unmodified, the DOSERR JMP transfers control back to a DOS
error-handling routine. Modifying the address contained in

- NORTH STAR DOS .~ E~1

|

DOS LIBRARY ROUTINES {(Continued)

this JMP instruction will allow a user s application program
to retain control under the above-named error conditions.

HDERR
HDERR branches to DOS code that prints an error message and
then enters the DOS command processor. DOS branches to
ADERR whenever a read attempt fails despite 1@ retries. For
your software to retain control in the event of a hard disk
error, it must modify the address of the HDERR JWMP
instruction (e.g., LXI H,ADPR; SHLD HDERR+1), The stack is
set to the stack pointer value before the call to DCOM. BHL
is set to the disk address at which the error was
Jiscovered. [Note: Software for dealing with hard disk
errors is notoriously difficult. It is suggested that due
to the expected low fregqguency ¢f hard disk errors, for most
applications the existing HDERR action will be sufficient.
Hard disk errors will result primarily from careless use
{e.g. forgetting to initialize a diskette, or from removing
a diskette while writing is in progress}). Hard disk errors
can also result from power failure during writing, or from a
hardware system failure,] -

LIST
This routine will list the file directory of the specified
drive. The listing format will be exactly the same as the
listing format obtained with the DOS LI command.

OFTEN
This routine is called at least once every 40 milliseconds
when DCOM has been called to perform disk operations. 1In
the delivered copy of DOS, this routine simply does a RET.
However, OFTEN may be personalized to a routine to poll for
input/output reguests or to enable and disable interrupts.
The OFTEN routine may execute as long as is needed, and disk
activity will continue when the QFTEN routine returns.
OFTEN must preserve all registers except the accumulator and
may only use two bytes of stack space. Note that OFTEN will
oe called at bootstrap load time, even before the 2980
personalization block is loaded.

Note: Here is a procedure for c¢reating a new file using the above
rovtines: First use DLOOK to search for the desired new name

- if DLOOK succeeds then a file of that name aready exists and
cshould not be created, On failure, HL will have the disk address
wnich should be used as the starting address of the new file,
Next, use DLOOK to find an empty directory entry by looking up a
2lank name. If this call to DLOOK fails, then the directory
fails. On success, use the pointer inm HL to copy the new file
nzme into the directory entry, and copy in the disk address and
lengch and type information. Finally, call DWRIT to copy the new
Sirecrory entry back to the disk.

- NORTH STAR DOS - _ E-2

ADDITIONAL DOS PERSONALIZATION

The primary type of personalization that can be done to the DOS
is the insertion of input/output routines that allow
communication of the DOS and other system software with a
particular hardware configuration. Input/output routine
personalization is described in detail in the GETTING STARTED
section of this manual. There are a number of other types of

personalization that can be done to the DOS that are described in
this section.

READ AFTER WRITE CHECK

If the read after write check cption is turned on, then 2 read
and verify operation is performed after every disk write
operation which checks that the data written on the disk by the
write operation matches what is in RAM, With this option turned
on, write cperations will be slower, but read operations will be
the same speed. It is strongly recommended that the read after
write option be turned on unless the application requires great
speed of disk access. The read after write option is turned on
if the byte value at address 2¢2B(hex) of the standard version of
DOS is non-zerc and turned off if zero.

PAGE SI1ZE

The output of some devices, such as CRT's and video displays,. canh
only display a fixed size page of information at one time. 1If
the page size option is enabled, then the file directory listing
which is output by the LI command or the LIST library routine
will stop after a page of information has been ocutput and will
not display the next page until the user indicates he wishes to
proceed by typing the return key. The page size option only
affects the operation of the console terminal (device ##), If
the byte value at address 2033(hex) of the standard version of
POS is zero, then the page size option is turned off and output
will be continuous without stopping. If the value is non-zero,
then the value is the number of lines on a page and the ocutput
will stop after that many less one lines of output have been
displayed. The last line on the page will reguest the user to
type return to continue. Initially, the page size option is on
and set for a page size of 24 lines.

AUTOMATIC START

If the antomatic start option is turned on, then a single command
which is stored in the DOS input buffer is auvtomatically executed
immediately after a DOS bootstrap operation. This feature, for
example, allows for the automatic loading and running of a
program such as BASIC upon system start-up. Initially, the
automatic start option is turned off. To turn on the option, the
byte value at address 2030{hex)} of the standard version of DOS
should be set to zero. Initially, the value is one.
Additionally,. the input buffer must be setup to contain the

- NCRTH STAR DOS - _ F-1

ADDITIONAL DOS PERSONALIZATION (Continued}

command which should be automatically executed. The two
addresses 28031 and 2832(hex) contain the low order and high order
hyte, respectively, of the address of the input buffer within the
DOS. .The input buffer should be lcaded with the ASCII values of
+he successive characters of the desired command., The last
~haracter of the loaded command must be a return (6D hex).

EXAMPLE PERSONALIZATION

7ne following listing shows an example procedure which will
spdify the version of DOS on a diskette so that the read after
“rite option is turned on, the page size option ils turned on and
she page size is set to 24 lines, and the automatic start option
ic turned on and the automatic start command is set to be "GO
BASTIC".

Lozd the diskette to be modified in drive #1

+L.F DOS 4490 Load DOS into RAM _

+30 M2DER Load and run the Monitor

»PM 4A2B 1 Turn on read after write dption
>TM 4833 247 Set page size to 24 lines

>FM 4830 ¢ Turn on automatic start option
>DH 4831,2 Determine input buffer address
402D: 31 27 Addregs is 2731, for example

>FM 4731 "G Load input buffer with "GO BASIC”
»FM 4732 "o

SEM 4733 % 0

>FM 4734 “B"
>FM 4735 A"

>FM 4736 "8”

>FM 4737 “I”

>FM 4738 "C*

>FM 4739 D Put return code at end of command

>08 Return to DOS

+SF DOS 4069 Save modified DQOS back on the diskette

- NORTH STAR DOS - F=2

(Mf L)

0000
0600
0000
2008
2087
2807
2007
2007
2007
2008
260A
206A
2004
290D
200D
268D
208D
200D
200D
206D
2818
2810
2610
{2010
20180
2018
2613
2013
2013
2013
2013
2016
2616
2616
2816
2016
2016
2016
2616
2016
2019

C9

C30600

C3ap2o

C31820

€3132p

C31628

DOS ENTRY POINTS AND FLAGS

*

*NORTH STAR DISK OPERATING SYSTEM
*

ORG 2000H STANDARD VERSION ORIGIN VALUE
DS 7 THESE CELLS ARE RESERVED
*
*THE OFTEN ROUTINE IS CALLED FREQUENTLY DURING USE OF DCOM
*BC, DE, AND HL MUST BE PRESERVED BY OFTEN.
*ONLY TWO STACK BYTES ARE AVAILABLE. .
OFTEN RET CHANGE TO JMP INSTRUCTION
DS 2 IF ADDING YOUR OWN OFTEN ROUTINE
*
*THIS NEXT EMTRY IS USED BY THE BOOT PROM TO ENTER THE DOS
START JMP 9 ¢ IS NOT THE REAL ADDRESS
*
*THIS IS THE CHARACTER OUTPUT ROUTINE
*THE CHARACTER TO BE OUTPUT MUST BE IN THE B REGISTER.
*DEVICE NUMBER MAY BE SUPPLIED IN ACC, IF DESIRED.
*ON RETURN THE CHARACTER MUST ALSO BE IN THE ACC.
*ONLY THE ACC AND FLAGS MAY B MODIFIED
COUT JMP COUT YOUR ROUTINE MUST DO A RET
*

*THIS IS THE CHARACTER INPUT ROUTINE.

~*DEVICE NUMBER MAY BE SUPPLIED IN ACC, IF DESIRED.

*THE 7-BIT ASCII CODE MUST BE RETURNED IN THE ACC.
*ONLY THE ACC AND FLAGS MAY BE MODIFIED.

CIN JMP CIN YOUR ROUTINE MUST DO A RET

*

*THIS IS THE TERMINAL INITIALIZATION ROUTINE
*ALL REGISTERS MAY BE USED.

*IF NOT NEEDED, MERELY PATCH IN A RET.

TINIT JMP TINIT

*

*THIS ROUTINE DETECTS & CONTROL-C

*IF Z IS SET ON RETURN, THAT MEANS A CONTRQOL-C WAS TYPED.
*OTHERWISE, IF NO CHARACTER WAS TYPED OR A CHARACTER OTHER
* THAN CONTROL-C WAS TYPED, Z MUST NOT BE SET.

*CONTC SHOULD RETURN IMMEDIATELY IF NO CHAR WAS TYPED,

* NOT WAIT FOR A CHARACTER AND THEN RETURN.

*ALL REGISTERS MAY BE USED.

CONTC JMP CONTC

*

- NORTH STAR DOS - G-1

c3edoe

=000

C3p869

C30080

5 C36000

c3ecan

ag

ci6a6¢

DOS ENTRY POINTS AND FLAGS {Continued)

*DOS LIBRARY ROUTINE ENTRY POINTS, ETC.
%

*THIS ADDRESS IS BRANCHED TO ON HARD DISK ERRORS ‘
HDERR JMP 0 @ IS NOT THE REAL ADDRESS

*

*THIS IS THE FILE DIRECTORY LOOKUP ROUTINE

*ACC MUST CONTAIN THE DEFAULT UNIT NUMBER (NORMALLY 1}
*JL=POINTER TO LEGAL FILE NAME IN RAM, WITH OPTIONAL DRIVE

* SPECIFICATICN FOLLOWED BY EITHER A BLANK OR CARRIAGE RETURN.
*UNIT NUMBER DETERMINED FROM NAME IS ALWAYS RETURNED IN ACC.
*FAILURE IF CARRY SET. ON FAILURE, HL=FIRST FREE DISK ADDRESS
*ON SUCCESS, HL HAS A PQINTER TO THE EIGAT BYTE OF A COPY

*OF THE DOS ENTRY IN RAM

DLOOK JMP @ @ IS5 WNOT THE REAL ADDRESS

x

*PHIS ROUTINE WILL WRITE A DIRECTORY ENTRY BACK TC DISK
*NO ARGS ARE NEEDED. MUST FOLLOW DLOOK.

DWRIT JMP @ @ IS NOT THE REAL ADDRESS

*

*THIS ROUTINE MAY BE USED TO ISSUE A DISK COMMAND

*ACC=NUMBER QOF BLOCKS ' _
*B=COMMAND {@=WRITE, 1=READ, 2=VERIFY, -1=SING INIT, -2=DBL IRNTI
*C=UNIT NUMBER, BIT 7=DOUBLE DENSITY BIT

*DE=STARTING RAM ADDRESS, HL=STARTING DISK ADDRESS

*RETURN WITH CARRY SET MEANS ARGUMENTS WERE ILLEGAL

DCOM JMP @ f IS NOT THE REAL ADDRESS

*

*THIS ROUTINE MAY BE USED TO LIST A FILE DIRECTORY ‘
*ACC=DISK UNIT, L=0UTPUT DEVICE NUMBER FOR LISTING

LIST JMP @ g IS NOT THE REAL ADDRESS

*

*THIS ADDRESS IS AN ENTRY POINT TO THE LOADED DOS

*ENTRY HERE WILL RESET THE STACK PTR, AND NOT CALL TINIT
B0Cs JMP 8 @ 1S NOT THE REAL ADDRESS

*

*THIS NEXT BYTE IS A FLAG USED BY DOS.

*IF #, THEN READ-AFTER-WRITE CHECK IS NOT DOWE,

*IF 1, THEN READ-AFTER-WRITE CHECK IS DONE.

RWCHK DB @

*

*THIS ADDRESS BRANCHED TQ CON CONTROL-C DURING LIST OR
*FILE NAME ERROR DURING DLOOK

DOSERR JMP @ NOT REALLY @

*

*THIS BYTE IS SET TO DENSITY AFTER DLOOK CALLS

*@@H IF SINGLE DENSITY, 80H IF DOUBLE DENSITY

DEN DS 1

*

*AUTO START FLAG. NORMALLY 1 - SET TO & FOR TURNKEY STARTUP
AUTOS DB 1

*

*NEXT TWO BYTES IDENTIFY THE LOCATION OF THE DOS INPUT BUFFER
DW 8 NOT REALLY @ 4

*

*NEXT BYTE SPECIFIES VIDEQ TERMINAL LINE COUNT. IF &, THEN

*NO PAGING OF THE LIST COMMAND WILL BE DONE

PAGES DB 24 INITIALIZED FOR 24 LINE TERMINAL
*

C

UTILITIES -

There are four operations which may be considered as part of the
DOS but are actually implemented as GO files. The operations,
and their corresponding GO file names are:

DT -~ Disk Test,
CF Copy File.
CD - Copy Disk.
CO - Compact disk and convert to double=-density.

Complete descriptions of the utilities follow. Some of the
arguments to the utilities can be listed on the command line
where "GO" is typed. For example

+GO BT 1

may obe typed to the DOS. This tells the DT utility which drive
is to be tested. Any arguments which vou do not supply to the

utility on the GO command line are explicitly requested by the

utility.

The origin in memory of each of the utilities ljes just after the
end of DOS (24888 in single-density systems and 2D@@H.in double-
density systems). Each of the utilities teguires a 5K buffer
area {2.5K in single-density systemg). The amount of RAM
required by a utility may be computed by adding the buffer size
to the size of the utility on diskette, Because the utilities
load at the same address as the standard version of BASIC and
many other applications programg, vyou should be careful that no
programs or data be overwritten and therefore lost as a result of
using a utility.

You may wish to use a utility to operate on a diskette different
than the diskette that holds the utility program. In this case,
you must change diskettes after the utility has been locaded into
RAM. Each of the utilities allows a different diskette to be
loaded before actually beginning its operation. Diskettes can be
switched any time after the utility makes its first request for
input. Do not answer that request until the switch, if any, has
been madel

In the following expanded descriptions of the utilities, any
references to double-density capability refer only to versions of
the wvtilities for use on double-density systems.

Typical user-computer interaction at the terminal is given ag
EXAMPLES for each of the utilities, 1In these examples, note that
the DOS prompt given is a plus-sign (+). However, single-density
versions of the DOS generate an asterisk (*) as prompt. In
examples, the symbol <CR> comes immediately after the user’s
responses to indicate that a line of user input must always be
terminated by striking the RETURN key. '

- NORTH STAR DOS - B-1

UTILITIES (Continued)

T - Dhigk Test.

The Disk Test utility tests the specified drive and the diskette
loaded in that drive. The following cycle is continuously
repeated:

a) The entire diskette is written with data, starting at sector
f. An incrementing pattern is used. If the read after write
check is enabled (see DOS section ADDITIONAL DOS
FERSONALIZATION) , then each track is verified immediately
after it is written.

mna data on the entire diskette is verified, starting at
sector §. If any sector cannot be read or contains data
Aifferent than what was written, an error messgae is printed
on the console terminal and the test stops.

¢} If no errors have been detected by this point, the message
Fn8S COMPLETED.
is printed on the console terminail.

T~ terminate a disk test, type control-C. A diskette used for a
Gigk test does not emerge from the test containing the
information which was previocusly on it. Alsco, a diskette which
wee used for a disk test must be initialized before it is
subseguently used for data storage.

EXLMPLES

+GO DT<CR>

DRIVE NUMBER: 2<CR>

SINGLE{S) OR DOUBLE{D) DENSITY TEST? D<CR>

LOAD DISKETTE AND PRESS RETURN TQ BEGIN TEST.<CR>
FASS COMPLETE,

PASS COMPLETE.

FASS COMPLETE.

CONTROL-C STOP User types control-C here.

+

+GO DT 2 D<CR>
"LOAD DISKETTE AND PRESS RETURN TO BEGIN TEST.<CR>
DISK ERROR TYPE 3 DRIVE 2 SECTOR 352

-

- NORTH STAR DOS - H-2

_____._...n-...-.----u..uu---------------------I.III'II

UTILITIES (Continued) *

(_ CF - Copy File.

The Copy File utility copies the contents and type information
from a source file to a destination file. The destination file
may be a file which already exists, but if it does not, it is
created automatically. If the destination file already exicts it
must be at least as large as the source file (in 256-byte file
blocks). Whether the destination file exists or not, CF asks if
the destination file should be written in double or single
density. The source and destination files may be on different
diskettes loaded on different drives, or they may be on the same
diskette.

If any sectors in a source file are recorded in a density
different than the density specified in the directory entry, the
CF utility treats those sectors as sectors full of blanks at the
specified density. No change is made to the source file,
however.

Note that versions of the CF utility delivered for single-density
systems only provide single-density operation.

EXAMPLES

+GO CF<CR>
(_/ FROM FILE: TEST<CR>
TO FILE: PROGRAM,2<CR>
EXISTING FILE. SINGLE(S} OR DOUBLE{D) DENSITY? D<CR>
COPY COMFLETED.
+

+G0 CF ABC ABCl<CR>

NEW FILE. . SINGLE(S) OR DOUBLE(D) DENSITY? S<CR>
COPY COMPLETED.

+

- NORTH STAR DOS- - H-3

UTILITIES (Continued)

¢D - Copy Disk.

The Copy Disk utility copies the entire contents of a diskette
loaded on one specified drive to a diskette loaded in another
specified drive. The source diskette may contain single-density
infoermation, double-density information, or a combination of the
two, After the copy is completed, the destination diskette will
contain all the same information as the source diskette, and each
sector will be recorded in the same density as the source. 1If
any information on the source diskette is impossible to read, the
copy terminates. The copy operation can be retried after the bad
gector has baen rewritten.

EXAMPLES

+GC CD<CR>

COPY PROM DRIVE: 1<CR>

0 DRIVE: Z<CR>

LUAD DISKETTES AND PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED,

+

+G0 CD 2 3<CR>
LOAD DISKETTES ANP PRESS RETURN TO BEGIN COPY.<CR>
COPY COMPLETED.

+

— NORTH STAR DOS - H-4

UTILITIES (Continued} ®

CC - Compact.

The Compact utility is used to “compact" the file space on a
diskette. Any unused disk space between existing files is
eliminated by moving the files toward track 6. Thus, the CO
utility can be 'used to reclaim disk space after files have been
~deleted or shortened, or in case files were created in such a way
ag to leave gaps of disk space between them.

The CO utility also provides a second, opticonal function which
converts a diskette to double-density format. That is, as a
result of running CO, the diskette file directory will be
recorded in double-density, and all files that were previously
single-density files will become double-density files. Each pair
aof single-density file blocks (256-bytes per block) is stored in
one double-density sector (512 bytes).

Before actually beginning to move files on the diskette, CO
checks the file directory for any "overlapping® files.
Overlapping files are any files which include at least one sector
in common. Overlapping files can only be created when the
optional <disk address> argument is used with the DOS CR command,
"or by applications programs which create such files. If any
overlapping files are discovered by the CO check, the file names
are printed on the consocle terminal and the user is given the
opportunity to abort the compaction. If overlapping files exist,
the compaction may yield unpredictable results. (NOTE: The
special case of a file with disk address beginning at 6 is
ignored by this check, and by the compaction process.)

A compaction can take from 1 to 30 seconds.
EXAMPLES

+GO CO<KCR>

LOAD DISKETTE AND SPECIFY DRIVE #: 1<CR>
CONVERT TC DOUBLE DENSITY? Y<CR>
COMPACTION COMPLETED.

+

+G0O €O 3<CR>

CONVERT TO DOUBLE DENSITY? Y<CR>

THE FOLLOWING FILES HAVE CONFLICTS

DATAL

TEST123 :
FROCEED WITH COMPACT IN PRESENCE OF CONFLICTS? N<CR>
-+

- NORTH STAR DOS - H-5

North Star Monitor
Version 2

hy Thos Sumner

INTRODUCTION

7na North Star Monitor is a program which provides the user with

‘ertain maintenance and debugging functions which would normally

srovided in a limited way on systems which include a control

The Monitor is intended to be used in conjunction with

orth Star Disk Operating System {DOS). ©No license is

“ded for use of the Monitor in systems.without a North Star
an

troller board.

e -

[ST
i

."'e

3ol
[

m rr n

2 e
iex

("r t‘ 1T

Commands to the Monitor are entered via the console using a
format consistent with the DUS commands., The console is defined
t0o be the terminal with which the DOS normally communicates

- communication ig done using the DOS I/0 routines. When the
Monitor is in COMMAND MODE, i,e., is ready to accept a command,
it will print a > at the beginning of a line on the conscle.
Command editing facilities compatible with the North Star BASIC
editing features are included in the Monitor.

The following list summarizes the commands available:

CM - Compare memory block contents

FM - Fill memory block

MM - Move memcory block contents

SM - Search memory block

TH¥ - Test memory block

DH - Display memory hexadecimal

DA - Digplay memory with ASCII interpretation
DS - Display memory and substitute values

JP - Jump to program '

08 - Return control to the DOS

IL - Perform initial load from bootstrap PROM
UD - Assign output device number for the Monitor
ID - Assign input device number for the Monitor

4 detailed description of each command appears in a later section
below, All printed output from the Monitor is formatted to fit
into sixty-four character lines.

W

INTRODUCTION o

THE NORTH STAR BASIC SYSTEM
Yersion 6

by Jim Merritt

ABOUT NORTH STAR BASIC

North Star BASIC was created by Dr. Charles A. Grant and Dr.
Mark Greenberg of North Star Computers, Inc. This manual
describes version 6, an extended disk BASIC intended for use
with the North Star HORIZON computer or MICRO DISK SYSTEM.
Version 6 includes many features especially designed to
facilitate scientific, business, and industrial applications
programming. Of special note are North Star BASIC s
facilities for programmed error handling, automatic program
sequencing (CHAINing), formatted output, sophisticated
string handling, and machine language subroutine interface.
Both single line and multiple line user-function definitions
are supported, as well as multiple~dimension numeric arrays,
and complete disk file handling capabilities. Data files
may be accessed sequentially, randomly, or on a byte by byte

(“; bagsis. North Star BASIC combines all these "extras" with
the usual features found in any reasonable implementation of
BASIC, to yield a unique development tool which promotes the
writing of powerful BASIC programs. Special design features
ease the task of "converting" programs written for other
BASIC systems so that they will run under North Star BASIC.
BASIC is also supplied in a version which uses the North
Star Hardware Floating Point Board (FPB-A). The two
versions, Floating Point and Non-Floating Point, are
identical in features and operation but the FPB version
executes arithmetic operations faster.

The North Star Version 6 BASIC software is intended for use
only with the North Star HORIZON computer or MICRO DISK
SYSTEM, and no license is granted for any other use.
Improved copies of Version 6, as they become available, may
be obtained for a nominal charge.

HOW THIS MANUAL IS ARRANGED
This manual attempts to meet the needs of both the novice
programmer, with little or no BASIC background, and the
experienced BASIC programmer, who needs only know the
particular characteristics of North Star BASIC.

(;/ For the expert, individual STATEMENTS, COMMANDS, and other
specific language features are covered in their own brief

- NORTH STAR BASIC - a-1

INTRODUCTION (Continued}

exposition sections. Each exposition consists of the
following:

SYNTAX GUIDE: This includes one or more brief models which
define the form of the STATEMENT or COMMAND within
North Star’ s BASIC syntax.

ACTION: This tells what happens whéen the STATEMENT or
COMMAND is used.

EXAMPLES (or EXAMPLE PROGRAMS): These show the STATEMENT or
COMMAND in typical use. When the feature may take a
variety of forms, an attempt has been made to provide
ceveral representative examples. Freguently, the
feature is illustrated in the context of a sample
program Or program segment.

REMARES: Whenever necessary, this section is included te
provide further information about the feature’'s use,

ERROR MESSAGES: Improper formation or usage of a language
feature will result in a BASIC error condition which
will lead to both the termination of the program or
COMMAND being processed, as well as an ERROR MESSAGE
sent to you. Wherever applicable, the common ERROR
MESSAGES associated with improper use of a given
feature, as well as their probable causes, are given in
the ERROR MESSAGES section for that feature. Note that
common error messages which apply generally to all
STATEMENTS and COMMANDS are described in APPENDIX 2.

SEE ALSO: Here you will find cross references to relevant
manual sections, study of which may help you more fully
understand a given feature.

The manual includes several appendices in the back, two of
which provide thorough indexing of all topics and features
in the manual. Other appendices contain charts, tables, and
detailed information useful to the practicing programmer.

For the beginner, there are many DISCUSSION sections, which
explain the underlying concepts and capabilities of North
Star BASIC. Programming methodology and strategy are also
‘examined in these sections. This is not to say that the
DISCUSSION sections should be ignored by experienced
programmers. On the contrary, experts will £ind much useful
information in these sections.

DISCUSSION and exposition sections have been interspersed
throughout the manual. Furthermore, an attempt has been
made to organize the manual so that elementary material is
presented first, while more advanced features and concepts

- NORTH STAR BASIC - A-2

(-;

INTRODUCTION {Continued)

e

are treated later, This has been done to facilitate the
beginner s likely "cover to cover* approach to manual

reading. While the manual is not intended as a course in

BASIC programming, a thorough front to back study of it will

vield much knowledge of programming in general, and

programming in North Star BASIC in particular, Those who

arc absolute beginners in the field are referred to the
introductory computer and programming texts at local

libraries, book stores, and computer retail stores., If you
desire instruction on the fundamentals of programming and
cemputers, choose one such book and use it as a primer to

this manual.

Pinally, for all users, APPENDIX 1 contains many sample

programe which illustrate the typical integration of North

Star STATEMENTs and other features and capabilities into
finished software.

- NORTH STAR BASIC -~

M |

BECOMING FAMILIAR WITH BASIC

DISCUSSION: LOADING BASIC ‘

The procedure for loading and executing the North
Star Disk Operating System (DOS), as well as for
informing the software about your terminal type and
memory ability, is described in the DOS section of
the NORTH STAR SYSTEM SOFTWARE MANUAL.

Once the North Star DOS is loaded into RAM memory and
is operating on your computer, initiating BASIC is
very simple.

First, make sure that a diskette with BASIC on it is
correctly seated in your #1 drive (your only drive,
if you have just one!). Then, simply type

GO BASIC

in response to the DOS prompt. Don’'t forget to
strike the RETURN key after typing GO BASIC! HNorth
Star BASIC will respond after apout 2 seconds of
disk-drive activity by typing READY. You are now
"in" BASIC, and are ready to proceed.

- NORTH STAR BASIC - B-1

C

BECOMING FAMILIAR WITH BASIC (Contanued)

DISCUSSION: COMMUNICATING WITH BASIC

This section assumes that you have gone through the
steps necessary to start a session with BASIC (see
DISCUSSION: LOADING BASIC), and have received a READY
message, indicating that BASIC is waiting to perform
directly (if it can) whatever instruction you give.
In order to make most efficient use of your sessiorns
with BASIC, you need to know several things about
communicating with the system.

You will type to the system using its primary
input/outvut {1/0) device, cailed the CONSOLE
TERMINAL. This device will include eitner & printing
mechanism or a video screen., as well as a keyboard,
similar to that found on a typical electric
typewriter., On a computer kevboard, however. there
are a few symbols and extra keys which may be new to
vyou., Nokte the position of "extra" keys, especilally
the ones marked "CONTROL" (eor "CNTL". or something
similar), SHIFT., RETURN (or CARRIAGE RETURN) and also
at-sign (&) and underline (_}, respectively.

Finally, locate the "UPPER CASE" or "ALPHA LOCK" key.
(Lf your kevboard does not have lower case
capability, you need not worry about this last key.)

BASIC USES UPPER CASE

BASIC reguires that instruction words given to it be
typed in upper case {capital) letters. For terminals
that generate lower case letters, it is necessary to
force the terminal to give upper case whenever a.
letter Key is struck., (This is so you won 't have to
hold down the SHIFT key every time you want to type a
capital letter!) Find the mechanism which disables
the generation of lower case letters from your
terminal (sometimes called "UPPER CASE"™ or "ALPHA
LOCK"}, and use it. (Throughout this discussion,
please refer to your terminal’s own operating manual
in order to learn how to find and use any special
mechanisms or special- kKeys mentioned here.)

TYPING TO BASIC
Try typing some nonsense to the system:
THX 1138
Be sure to strike the RETURN key after you finish
typing a line to BASIC. This is the signal for BASIC

to accept and process what you’'ve typed. 1If you fail
to strike the RETURN key, BASIC will patiently wait

- NORTH S5TAR BASIC - B~2

e —————— =1

BECOMING FAMILIAR WITH BASIC {(Continued)

forever for you to type more! (Striking KETURN is
the same thing as saying "over" to a partner in a
two-way radio conversation; it assures that each
party gets the full transmission from the other, and
that each waits for the proper time to speak.,) Your
memotry may be jogged once or twice later in this
manual about the necessity of that RETURN signal,
however. for the most part. it will be assumed that
vou'll remember to end each line to BASIC by striking
the RETURN Kkey. (The notation <CR> may also be used
to indicate the striking of the RETURN key,
especially in examples.)

BASIC should respond to your gibberish with the
message:

SYNTAX ERROR

In general, "SYNTAX ERROR" is BASIC s way of saying
"I don’'t understand you”. It usually means that you
typed the right thing incorrectly, or (as in this
case) the wrong thing altogether. This is an example
of an ERROR MESSAGE. Such messages are sent to you
in order to alert you to any difficulties which BASIC
encounters as it attempts to carry out your
instructions, The error message should provide a
clue as to the nature of the problem., and imply- the
possible steps you might use to correct it.
(Correcting computer problems is called “debugging".
A problem itself is known as a "bug".) '

Let “s type something which BASIC will understand:
PRINT 3/2 <Ck>

(Rememher that the <CR>» means to strike the RETURN
key!l)

You sheould get the answer 1.5 on the termineal.

What happens 1f you make a mistake in your typing?
If you catch your error before striking RETURN, you
can do one of two things to correct the mistake:

1) You can erase characters, one by one, until you
have erasged the erronecus one(s}, then retype the
rest of the line from that point. In standard
versions of BASIC as shipped from the factory, vou
should strike the underline (_} key to erase the
last character typed. (This character sometimes
appears as a left arrow on older terminals.) An
underline will appear on the terminal to help you

— NORTH STAR BASIC - - B-3

e ==
BECOMING FAMILIAR WITH BASIC {Coni}nued)

keep count of how many characters you have erased
in this fashion. You can strike the underline key
as many times as it takesgs you to "back up" to and
erase the mistake. For example, if you typed

PRONT

you would strike the underline key 3 times. First
the T would be erased, then the N, and finally the
erroneous 0. You would see

PRONT
on the terminal as evidence of this, Now type
INT

to finish the word. On the terminal, it will look
like

PRONT __INT

but when you strike the RETURN key, BASIC will
know that this is what you really mean:

PRINT

If you have a CRT (video) terminal, you may wish
to use the backspvace key to "back over" the
characters you erase, then retype over them,
North Star BASIC permits this.

2) Using the one-character erase provided by the
underline key is fine when the error is only one
or, at most, a few characters back, but what
happens when you type in a very long line and
discover a mistake in the first part of it? To
cancel a whole line before the <CR> has been
struck, just type an at-sign (8). The terminal
will automatically move to the next line, where
you may begin typing afresh.

PRINR "AN EARLY ERRORR {this line cancelled}
PRINT "ALL OK"

North Star BASIC provides more sophisticated ways to
correct your typing errors, in the form of a LINE
EDITOR. After learning a little more about BASIC and
programming, see DISCUSSION: THE LINE EDITOR for
further details.

- NORTH STAR BASIC - B~4

BECCMING FAMILTIAR WITH BASIC (Continued)

CONTROL. CHARACTERS

The purpose of the “CONTROL" or "CNTL" key is similar
to that of the SHIFT key. However, whereas SHIFT
causesg upper case letters and punctuation to be
generated when it is held down during typing. the
CONTROL key, when held down during typing, causes
generation of a new, largely invisible set of
characters which are unigue to computer terminals.
These are the CONTROL CHARACTERS. For the most part,
there is a control character "alphabet" from a to 2.
You will find that many characters are useful in
North Star BASIC, especially control-C, tne “FANIC
BUTTON", whose purpose and function iIs described in
its own DISCUSSION section. Try using control-C now.
Hiold down the CONTROL key and then type € at the same
time (then let up on both, of course.} VYou should
get the message:

STOP

The reason why this happens is explained elsewhere.
Note that many control characters {(such as control-P)
are ignored by BASIC. BASIC rings the terminal’s
bell (or beeps its beeper) when it ignores a
character. Only certain control characters are
significant to BASIC; other sections (especially that
concerning the LINE EDITOR) specify which ones.

For those whose video terminals do not include an
explicit "backspace" key, as mentioned earlier in
this discussion, note that control-H is a substitute
for "backspace",

-~ WORTH STAR BASIC - B-5

(_ DISCUSSION:

BECOMING FAMILIAR WITH BASIC (Contapued}

ENTERING A BASIC PROGRAM

The rules for entering a new BASIC program at the
console terminal are described in this secticn. An
annotated example of a program-entry session follows
the description of the rules.

& PROGRAM is a sequence of legal BASIC statements.
One or more statements may be entered at a time on a
PROGRAM LINE. This program line must be preceded by
a LINE NUMBER., an integer in the range 8 to 65535.

Wwhen entering program lines, you signal the computer
to accept a newly-entered line by strikng the RETURN
kevy.

1} If the line number of the newly-entered line
doesn’t match 2 line number in any existing
program line, then the line is simply ADDED to the
program.

2) If the line number of the newly-entered line
duplicates that of an existing line, the new line
REPLACES the o0ld line of that number.

3) If the RETURN key is struck immediately after
typing only a line number, and the line number
corresponds to that of an existing program line,
that line is DELETED from the program. .

4) Typing in the command SCR (with no line number)
results in the immediate erasure of the entire
current program.

5) To store a program onto diskette for the very
first time, the NSAVE command is used. Updating
the program afterwards is accomplished with the
SAVE command,

The RUN command causes BASIC to begin executing the
current program. This session also includes use of
the LIST and CAT commands, which print a LISTing of
the current program, and a CATalog of the names of
programs and other files on a diskette, respectively,
to the terminal., Note that commands are typed in
without line numbers, and are executed immediately.

Further details on the PRINT statement, and the CAT,
LIST, NSAVE, SAVE, SCR, and RUN commands ate
available in later sections of this manual,

The content of the following dialogue between person

- NORTH STAR BASIC - B-6

KEADY

W

BECOMING FAMILIAK WITH BASIC (Continued)

and computer (in the left~hand column} has oeen ‘
chosen to illustrate the simple rules for entering a
BASIC program and saving it on diskette.

You are invited to take the programmer ‘s role in the
“script". The lines which you type into the system
always have the syvmbol <CR> at the end. This is to
remind you to strike the RETURN key after typing each
line of input. All the other lines in the "script"
are BASIC's responses to you. To help you better
understand what is going on with each new line in the
dialogue, comments are provided in the right-hand
column. These are NOT part of the program, and you
ghould not attempt to type anything from that ceolumn
to BASIC,

{Comments}

READY BASIC is READY to work with you.
SCR<CR> Erases ahy previous program,
READY BASIC s response to your SCK.
LIST<CR> You want to see the current program,
There is none,

READY BASIC ends its program LISTing.
138 PRINT 6/4<CEk> You enter 2 program lines {note ,
28 PRINT “WELCOME TO BASIC"<CR> required line numbers}. ‘
5 PRINT "FIRST PROGRAM"<ICR> This line is out of sequence,
LISTI<CR> Check to see what you ve done,
5 PRINT "“FIRST PROGRAM® Program LISTS out. HNote that
19 PRINT 6/4 BASIC has put program lines in
29 PRINT "WELCOME TQ BASICH proper seguence,
READY
RUN<CR> Now, RUN the program and see results!
FIRST PROGRAM Note that guotes aren’'t printed.

1.5 Note that you get RESULT of 6/4,
WELCOME TO BASIC Again, no guotes,
READY
18<CR> Typing the line number erases line,
LIST<CR>
5 PRINT "FIRST PROGRAM™ Line 14 is now gone.
20 PRINT "WELCOME TO BASIC"
READY

30 PRINT 2+2<CR> A new line, 38, is added.
L1IST<CR>

5 PRINT "FIRST PROGRAM"
4P PRINT "WELCOME TO BASIC®
380 PRINT 242

New line 38 is put in its proper place. .

- NORTH STAR BASIC - _ _ B~7

BECOMING FAMILIAR WITH BASIC (Continued)

HUR<CRY

FIRST PrROGRAM
ABELCOME TO BASBIC
pil

RLADY

IARTCCRY

LOs 4 19

HASIC g 50
KEADY

noAYE FIRSTCCR>

RTADY
St < CRy
SUD 4

5A5IC 2 509
FIRST 34 4
READY

i PRINT 2-2<CR>

TISTICREY

5 PRIRT
29 PRINT
i PRINT 2-2
KEADY

NSAVE FIRSTLCER>
ARG ERROR

RELDY

SAVE FIRSTCCR>
EEADY

S5CR<Ck>

KEADY

LIST<CR>

READY

LOAD FIRST<CR>
READY

LIST<CR>

Do-

1 2pag

1 2Deg

"FIKST PROGRAM"
"WELCOME TO BASIC"

3 PRINT “"FIRST PROGRAM"

28 PRINT
3% PRINT 2-2
READY
RUNCCR>

FIRST PROGRAM

WELCOME TO BASIC
¢

KREADY

"WELCOME TO BASIC"

e

See how the modified program RUNs.

Again, you get result; here, of 2+2

Get iisting of programs on diskette.
Depending on whicn diskette you use,
you may get a different CATalog.

Save the program into new file "FIRST",

Now, check to see that it’'s there.

It has been added to the diskette.

Replace line 3¥. Current program
is now DIFFERENT from cone on disk.

LISTing verifies that an addition
has been made. (Though we do 1t
for explanation, you need not
LIST after every change.)
Attempt to update the disk file.
NSAVE is WRONG command to update. -
Use it only once for each program file.
From then on, use SAVE.
Note that, with save, update is OK.
Erase the current program,

Verify that it is gone.

Now, get it back from diskette!

Wwhen writing programs, SAVE often to
be sure that disk file holds
most current version!

Note that the program in “FIRST"
has been retrieved. If it had not
peen on a disk file, it would have
had to have been retyped after SCR.

Verify that it RUNS.

And now, move onward!

- NORTH STAR BASIC - ' B-8

DISCUSSION:

BECOMING FAMILIAR WITH BASIC (Continuved)

SOME BASIC CONCEPTS

The North Star BASIC system has two modes of
operation:

DIRECT MODE, in which lines typed to the system
are executed without delay;

PROGRAM MODE in which the system executes
instructions which have been stored previously
in the form of a PROGRAM.

Pricr to learning how to work with BASIC in these
modes, you must understand certain conceots and
terminology, which are explained in this section.

A COMMAND is a special type of instruction which may
be executed only in direct mode, never as part of a
program, Commands generally provide services which
are not meaningful c¢r useful while a program is
RUNning. .

For example, the command LIST generates a listing of
the program currently in the BASIC program/data area
of memory. (This is called the CURRENT PROGRAM.) It
is a rare application which requires a program to
list itself, and s¢ the LIST function is a command.
Each command is described in detail in its own
section of the manual.

NOTE: The following paragraph uses advanced
terminology which is defined elsewhere in the manual.

String and numeric arguments to commands may only be
literals. The use of other types of expressions as
argquments is not allowed. Moreover, disk file names
in commands are not quoted. These restrictions on
argqument representation are the biggest difference
between commands and direct statements, which will be
discussed later.

A STATEMENT ig a BASIC instruction which may be used
as part of a PROGRAM, Typical among statements are
PRINT, which causes information to be output to a
terminal, and REM, which "does nothing", but provides
a way for the programmer to insert REMarks about the
workings of the program into the program itself.

Statements begin with a KEYWORD from which the
statement derives its name., (PRINT is both a keyword
and a statement name.) The Keyword may be followed
by ARGUMENTs and other keywords, An argument is a

- NORTH STAR BASIC = B-%

T SR

BECOMING FAMILIAR WITH BASIC (Continued)
=

piece of information on which the statement operates,
or which 1s used to modify the operation of the
statement. For example, the string literal "HI" is
the argument of the following statement:

PRINT "HI"

A BASIC program is structured as a seguence of LINEs,
each containing one or more statements, A line
starts with a LINE NUMBER, wnich is an INTEGER (that
15, a whole number) in the range ¥ to 65535, A
statement follows the line number, and the
combination is called a PROGRAM LINE, A typical line
is

78 PRINT "THIS IS ONE STATEMENT."

more than one statement mavy exist on a program line,
as long as individual statements on that line are
separated by a backslash (\} character. Here is an
example of a multiple-statement program line with
three statements:

835 A= @ \ B = @ \ REM INITIALIZE A AND B

Many statements may be executed in direct mode in
order to get immediate results. This is accomplished
bv typing a statement without preceding it with a
line number. Such a statement is called a DIRECT
STATEMENT, and is executed as soon as it has been
completely typed (indicated by striking the RETURN
key). PRINT is such a statement. If, for example,
you type '

PRINT 343

into BASIC, you will immediately get bhack 6 on the
terminal, This ability to use PRINT in direct mode,
and therefore immediately generate the results of
arithmetic expressions is sometimes called
“calculator mode". As long as you put the keyword
PRINT in front of numeric expressions, you may use
your computer as a powerful desk-type calculator.
This will have no effect on the current program.

Direct statements should not be confused with
commands. A direct statement differs from a command
in that it may also be executed as part of a progranm,
by being included on a program line, whereas a
command may only be executed in direct mode. Each
command and statement has its own rules as to what
constitutes its proper form and when it can be used

- NORTH STAR BASIC - B-13

BECOMING FAMILIAR WI'tH BASIC (Continued)

correctiy.

M

The following statements may be executed as direct

statements:

DIM IF...THEN,..ELSE
If...THEN FILL

PRINT ouT

LET CREATE
RESTORE DESTROY

- NORTH STAR BASIC -

OPEN
CLOSE
READ#

wrRITE#
CHATIN

(,f COMMAND ;@

aCTION:

(,' EXAMPLES:

REMARKS::

ZRROR
MESSAGES:

COMMANDS

LIST

LIST <line number interval>

LIST <device number expression>

LIST <device number expression>, <line number interval>

Printe the text of the current program. The optional
device expression is formed by following a cross-
hatch (#) with a single digit from @ to 7,
corresponding to an active output device. If no
device is given, device #8 (the console terminal) is
assumed., If the line number interval is specified,
only the program lines numbered within that interval
will be LISTed. The interval is formed as follows:

<single line number> -- only the specified line
number will be LISTed.
<single line number>, =-- all lines from the

specified line number to the end of the program
will be LISTed.

<line number>, <line number> ~-- all program lines
from the first specified line number to the second
will be LISTed.

If no interval is given, the entire program will be

LISTed.

LIST _

LIST 1624

LIST 3§,

LIST 160,200
LIST #1

LIST #3,30,704

The 2nd line number in the interval (if given)

- should be greater than or equal to the first.

For the convenience of users with CRT screens, the
program listing may automatically be "paged“. Refer
to PISCUSSION: PERSONALIZING BASIC for details.

LINE NUMBER ERROR
One or both of the lines specified in the line number
interval do not exist within the current program.

OUT COF BOUNDS ERROR

One or both of the line numbers specified in the line
number interval do not.lie in the range 6 to 85535,

- NORTH STAR BASIC - c-1

COMMAND:;

ACTION:

EXAMPLES:

REMARKS :

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

DEL <line number>, <line number>

All program lines within the given interval are
DELeted from the current program. The second line
number must be strictly greater than the first.

DEL 18,29
DEL 1806,1675

DEL is used to DELete whole blocks of program

lines at one time. If it is desired to remove only
one line, just type the appropriate line number,
followed immediately by striking the RETURN key.

All variables are cleared as a result of DEL (or any
other command which modifies the current progranmj.

Unless the DELeted lines have been SAVEd as part of a
program on diskette, they will be permanently lost
and will have to be re-entered manually if needed
later. - -

ARG ERROR
The second line number in the interval is not gqreater
than the first,

LINE NUMBER ERROR
One or both of the lines specified in the line number
interval do not exist within the current program.

OUT OF BOUNDS ERROR

One or both of the line numbers specified in the line
number interval are less than @ or greater than
65535,

DISCUSSION: COMMUNICATING WITH BASIC
COMMAND: SCR

- NORTH STAR BASIC - c-2

(_ COMMAND:

ACTION:

CAAMPLE:

FEMARKS :

ERROR
MESSAGES:

SEE BRLSO:

_

P —————————

COMMANDS (Continued) .

SCR

SCR erases (SCRatches) the current program and any
existing variables from the user workspace.

SCR

SCR is used to c¢lear the workspace prior to entering
a4 new program.,

Only the current program is affected. Any copies of
the program existing on diskette remain unaltered.

Unless a copy of the program exists on diskette or
some other storage medium, the only way it can be
retrieved after SCR is to retype it by hand.
Therefore, it is important to make coplies of the
program on diskette before using SCR, if that
program, or parts of it, will be usged later.

None.

COMMAND: SAVE
COMMAND: NSAVE
COMMAND: LOAD
COMMAND: DESTROY
COMMAND: DEL

- NORTH STAR BASIC - C-3

COMMAND :

ACTICHN:

EXAMPLES:

REMARKS :

COMMANDS (Continued)

REN
REN <line number>
REN <line number>, <increment valued

The entire current program is RENumbered. The first
line in the program is given the line number
specified in the REN command (19 if no line number is
specified). If a line number is given, then an
optional increment value may be added to the command,
All line numbers will automatically be separated by
the given increment value (10, if no increment is
specified). The increment value, if used, must be an
integer, from 1 to 32767.

EEN
REN 1004d
REN 1840é,100

After the command

REN 188 S
program A will be changed'to program B:
program A

1 REM READS AND PRINTS DATA

Z REM IN LINE 1488

3 READ %

19 IF Z<® THEN 2009

76 PRINT Z \ GOTO 3

19048 DATA 1,2,3,-1

3668 REM LIRE 2600 HASN T YET BEEN WRITTEN

program B

128 REM READS AND PRINTS DATA

116 REM IN LINE 1840

128 READ 2

130 IF Z<¢ THEN 20006

148 PRINT 2 \ GOTQO 128

159 DATA 1:2r3:-l

166 REM LINE 20038 HASN'T YET BEEN WRITTEN

RENumbering is usually done to produce a uniform
increment value between statement numbers so that
inserting new statements becomes more convenient.

It is not possible to specify an increment value
without giving a line number as well, but a line
number may be specified without an accempanying

increment value, in which case the increment is

- NCORTH STAR BASIC - C-4

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

assumed to be 14.

Note that, while program references to line numbers
{such as those found in GOTO, GOSUB, RESTORE, and
similar statements) are modified to reflect the
program’s new line number structure, references to
line numbers in REM statements remain unchanged.

If a GOTO, GOSUB, RESTORE, or similar statement in
the original program references a non-existent line
number, that reference will remain unaltered after a
RENumber ing operation,

(If any of the following errors occurs, no
RENumbering is performed.)

OUT OF BOUNDS ERRCR
This error is produced in any of the following
situations:

1) The line number specified in the command is
greater than 65535;

2) The increment value is greater than 32767, or less
than 1; '

3} The combination of starting line number andg
increment value would result in a program where
some line numbers would necessarily be greater
than 65535.

ARG ERROR

The line number or the increment value specified is
not a positive integer, or the two values are not
separated by a comma.

COMMAND: AUTO

- NORTH STAR BASIC - C-5

COMMANDS (Continued)

COMMAND: ADTQ
AUTO <initial line number>
AUTO <initial line number>, <increment value>

ACTION: Initiates automatic line numbering mode, in which
BASIC will automatically generate new line numbers
for successive lines of program text. The specified
line number will be the first line number used in
auto-mode. Each successive automatically-supplied
line number will be incremented from the last by the
specified increment value. The increment value must
be an integer in the range of 1 to 65535. An
increment value may not be supplied unless an initial
line number is also provided. When an initial line
number or increment value is not given, it is assumed

to be 18.
EXAMPLES: AUTO
AUTO 409

AUTO 10460 ,1640
REMARKS: In automatic line numbering mode, a new line number
will be printed at the start of every line.

Avto-mode will persist until one of the following
occurs:

a}) a carriage return is typed immediately after the
line number;

b) a line without a line number is typed (by using
the North Star BASIC line-editing capabilities to
delete the line number from the beginning of the
line);

¢) the next automatically-generated line number would
be greater than 65535.

Note that if the “automatic" line numbers overlap
existing lines in the current program, the existing
lines will be REPLACED by the new ones.

ERROR
MESSAGES: OUT OF BOUNDS ERROR
Either the initial line number, the increment value,
or both are gresater than 65535 or less than @.

ARG ERROR
Either the initial line number, the increment value,
or both are negative, or non-integers.

SEE BLSG: COMMAND: REN

- NORTH STAR BASIC - C-6

—

(_ comManp:

ECTION:

EXAMPLES:

REMARKS:

ERROR

MESSAGES ¢

SEE ALSO:

COMMANDS (Continued) '

CAT

CAT <drive number>

CAT <output device expression>

CAT <output device expressiony, <drive number>

A catalog listing of the files on the diskette

loaded in the specified disk drive is printed on the
specified output device., The output device
expression must consist of a cross-hatch (#) followed
by a gingle digit from ¢ to 7. The drive number must
be a single digit from 1 to 4. If the output device
expression is omitted, the catalog listing is sent to
the console terminal (device #83}. If the drive
number isn't specified, it is assumed to be drive $1.

CAT {drive #1°s catalog to consolel
CAT 3 {drive $3°s catalog to consocle]}
CAT #1 {drive #1 s catalog to device #1}
CAT 2,3 {drive #3°s catalog to device #2}

The listing produced is identical to that
obtained through use of the DOS LI command,

Like the program LISTing, the CATalog may be “paged”,
but this is a function of the DOS rather than of
BASIC. See the DOS section of this manual for
details.

The user should be sure that the output device
expressions and/or drive numbers (when specified)
refer to existing devices and drives, respectively.

HARD DISK ERROR
This error occurs under the following circumstances:

1} The specified drive is not installed in the
system.

2) The power to the specified drive is not on.

3) The diskette is not properly seated within the
specified drive (drive door is open, etc.).

4} There is no directory on the diskette in the
specified drive.

5} The directory on diskette has been destroyed.

FILE ERROR
The drive number specified is greater than 4.

pOS section of this manual.

~ HNORTH STAR BASIC - c-7

COMMAND :

ACTION:

EXAMPLES:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

COMMANDS {(Continued)

SAVE <file named>

The current program is permanently SAVEd into an
existing BASIC program (type 2) file on diskette.

SAVE PROG {PROG is on diskette in drive #1}
SAVE TEST7,2 {TEST7 is on diskette in drive #2}

The specified file must be of sufficient size
to hold the program for the SAVE to be successful,

It is possible to SAVE the null program onto a
program file. (This can be accomplished by using the
SCRatch command immediately prior to SAVE.) This
effectively "erases" any program which was previously
stored in that file.

SAVE doesn’t change the current program/data space in
any way, so it is possible to use the CONT command
after SAVE should one be performed during a program
interruption caused by control-€ or the STOP
statement. .

OUT OF BOUNDS ERROR
The current program is tcoo big to fit in the
specified file.

FILE ERROR

The specified file name is improper. It

a) is too long;

b) contains illegal characters {i.e. comma or blank]) ;
c) specifies an illegal drive number.

The FILE ERRQOR also occurs when the diskette in the
specified drive is write protected.

BRG ERROR
The specified file does not exist.

TYPE ERROR
The specified file is not a BASIC program (type 2)
file.

HARD DISK ERROR
Refer to COMMAND: CAT.

COMMAND: NSAVE

COMMAND : LOAD
posS section of this manual.

~ NORTE STAR BASIC - c-§

C

COMMAND

ACTION:

LYAMPLES:

-

P

it

WRES:

7
N3

ERROR

MESSAGES:

SEE ALSO:

COMMANDS (Continued)

NSAVE <file name>
NSAVE <file name> <file size>

The specified BASIC program file is created on
diskette to the desired size in file blocks, and the
current program is SAVEd into it. If no file size is
specified, three file blocks are added to the actual
size of the current program, and the resulting number
is taken as the file size. The density of the file
created is set to be the same density as that of the
file directory on the diskette.

NSAVE PROGRAM
NSAVE GREEN,2Z2 25
NSAVE MPG,3
NSAVE BIGPROG 50

NSAVE 1is merely a special form of the SAVE command,
and is used to SAVE a program for which a diskette
file does not yet exist.

A FILE BLOCK is 256 bytes of information. Note that
in double-density format, two file blocks are stored
on each disk sector. 1In single-density format, a

file block and a disk sector are eguivalent in size.

When doing an NSAVE, the size specified in creating
the file should allow for the eventual expansion of
the program. When a program becomes too large to be
SAVEd in a file, then a longer file will have to be
used.

An attempted NSAVE may result in any of the errors
possible when using SAVE. The following are unique
to NSAVE:

ARG ERROR

In addition to its causes under SAVE, an ARG ERROR
may also occur during an NSAVE if the specified file
already exists on diskette.

FILE ERROR

In addition to its causes under SAVE, a FILE ERROR
may occur during an NSAVE if there is not room enough
on the diskette for the new program file.

COMMAND: SAVE
COMMAND: PSIZE

- NORTH STAR BASIC - C-9

COMMAND ¢«

LCTION:

EXAMPLES:

REMARES:

ERROER

MESSAGES:

SEE ALSO:

COMMANDS {Continued)

LOAD <file name>

The BASIC program contained in the specified file is
LO&Ded into the program/data area and becomes the
current program.

LOAD PROG3 {load from Arive $1}
LOAD TESTS, 2 {load from drive #2}

The specified file must be of type 2.

The successful LOAD command performs a SCRatch of the
program/data area before LOADIng the program.

TOO LARGE COR NO PROGRAM ERROR .

Either the program in the specified file is too big
to fit in the program/data area, or the file does not
contain a valid BASIC program. In either case, a
SCRatch of the program/data area occurs, (See
COMMAND: MEMSET and DISCUSSICN: -PERSONALIZING BASIC
for information on how to increase the size of
BASIC s program/data area in order to avoid this
error.}

HARD DISK ERROR

Refer to COMMAND: CAT. Depending on the point during
the LOAD operation at which such an error occurs, a
memory SCRatch may be performed.

If an attempted LOAD results in any of the following
errors, no change in the program/data area occurs.
Specifically, all variables will retain their values,
the current program will remain, and, if the abortive
LGAD occurs during a program whose execution has been
interrupted by control-C or the execution of a STOP
statement, the CONT command may still be used to
resume program execution.

FILE ERROR
See COMMAND: SAVE

ARG ERROR
See COMMAND: SAVE

TYPE ERROR
See COMMARND: SAVE

COMMAND: SAVE
COMMAND: SCR

- NORTH STAR BASIC - C-10

COMMANDS (Continued) w

(_/ COMMAND: APPEND <file name>
RCTION: APPENDs the BARSIC program in the specified

diskette file to the end of the current program.

{(The lowest line number in the specified program must
be greater than the largest line number in the
current program in order for an APPEND to be

successful.)

CXAMPLES: APPEND MYPROG
APPEND TESTER, 2

“DMARKS: If there is no current program, APPEND acts like
LOAD.

A successful APPEND will always clear all variables
in the program/data area.

ZRROR

MESSAGES: LINE NUMBER ERROR
The lowest number in the program to APPEND is less
than ¢r egual to the highest number in the current
program.

. TOO LARGE OR NC PROGRAM ERROR
L,, Either there is not a valid BASIC program in the
specified file, or the program which would result
from the APPEND operation is too large to fit into
available memory. 1In the latter case, the current
program remains unmodified.

Please refer to COMMAND: LOAD ‘and COMMAND: SAVE for
details on the following errors which may also occur
during an attempted APPEND:

HARD DISK ERROR
FILE ERROR

ARG ERROR

TYPE ERROR

-~ NORTH STAR BASIC - c-11

COMMAKD:

ACTION:

EXAMPLES:

REMARKS:

ERRCER
MESSAGES:

SEE ALSO:

COMMANDS {Continued)

RUN <line number> ‘

RUN initiates execution of the current program.

If the optional line number is included, execution
begins at that program line; otherwise, if no line
number is specified, execution begins at the first
line in the program.

RUN
RUN 108

Any variables which were assigned values before

RUN is used are cleared prior to starting the
program. This means that all numeric variables ate
reset to @; existing strings and arrays are
destroyed, and will be initialized to spaces and
zeroes, respectively, if and when created during the
execution of the current program. Note that any
variables set in direct mode before the RUN will also
be cleared as a result of the RUN command.

NG PROGRAM ERROR .
RUN was used before entering or LOADing a program.

LINE NUMBER ERROR
The optional line number included as part of the RUN ‘
command is not in the current program. .

ARG ERROR
The optional argument is not a legal line number,

COMMAND: CONT
STATEMENT: CHAIN

-~ NORTH STAR BASIC - C-12

(_ DISCUSSION:

M

COMMANDS (Continued)

CONTROL-C, THE PANIC BUTTON

Occasionally, you may desire to interrupt a program’s
execution at some random point while it is RUNning.
This may be because vou wish to repair a program
error, or because you do not want program execution
to continue to completion.,

Your "“PANIC BUTTON" is "control-C". This "“stop
everything” signal is sent to the computer whenever
you hold down the "control" key then press the “C¢
key at the same time on vyour console terminal.

If a program is RUNning, the currently executing
statement will finish, and the message

STOP IN LINE XXXXX

will be printed on the terminal, where XXXX¥X will
actually be the line number where execution stopped.

If you are LISTing a program when control-C is
pushed, the line being listed will be completed, and
the message

STOP
will be sent to the console terminal,
Whenever you use contrel-C, you will be returned to

BASIC's direct mode, where you are free to examine
the program and variables.

.Perhaps you may someday "PANIC"-out of a long-running

program because you fear that it is caught in an
*endless" loop. However, upon examination of the

- program and its variables, you discover that the

program is operating correctly, but just takes a long
time to finish. 1In this and similar instances, you
may use the CONT command to resume execution at the
point where the program was interrupted by control~C.

(You may not use CONT if, during the interruption,
yvou modify any part of the program text.)

BASIC may he instructed to ignore the control-C
signal. This is accomplished by changing certain
internal data in the BASIC interpreter itself, a
procedure desc¢ribed in DISCUSSION: PERSONALIZING
BASIC. Because it involves modification to BASIC and
alse makes it impossible to stop an improperly-
written "runaway"” program without scmehow stopping

- NORTH S5TAR BASIC - C-13

SEE ALSO:

e T T NI

COMMANDS (Continued)

enabled until your program is fully debugged.

the computer altogether, you should leave control-C ‘ [
[

COMMAND: CONT

STATEMENT: STCP

DISCUSSION: SOME BASIC CONCEPTS
DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC -

C-14

(J COMMAND :

ACTION:

EXAMPLE
- PROGRAM:

REMARKS :

ERROR

MESSAGES :

SEE ALSO:

C

COMMANDS (Continued)

CONT

CONT causes execution of a previously RUNning BASIC
program to CONTinue after the execution of a STOP
statement or after a control-C interruption.
Normally, execution will continue at the program
statement immediately following the last statement
executed. (See REMARKS, below, for exceptions to
this rule.)

12 PRINT "THIS LINE PRINTED AFTER RUN"
28 8TOP
38 PRINT “THIS LINE PRINTED AFTER CONT"

CONT may not be used if the previously running
program has stopped because of an error or the
execution of an END statement. Also, CONT may not be
used if any modification has been made to any line of
the current program since the interruption occurred.
It is possible to use direct statements during the
interruption caused by STOP or control-C, for
example, to examine or change variable values. After
doing s0, you may use CONT to CONTinue with the
program.

If the stop was caused by control-C interrupticn
during the execution of an INPUT statement, then

execution will continue at the beginning of that
INPUT statement.

CONTINUE ERROR
This error occurs because of one of the following
four reasons:

1) The program has stopped because it executed an END
statement.

2) It has stopped because of a program error.

3) The program has been changed between the time it
stopped and the time you typed CONT.

4) The current program has not yet been RUN.

DISCUSSION: CONTROL-C, THE PANIC BUTTON
STATEMENT: STOP

- NORTH STAR BASIC - _ c-15

b

COMMAND

ACTION:

EXAMPLE:

REMARKS :

ERROR

SEE ALSO:

MESSAGES:

COMMANDS (Continued)

PSIZE ‘

The size of the current program in file blocks
is printed on the conscle terminal.

PSIZE

The PSIZE command may be used to determine how many
file blocks on diskette will be required to store the
current program. This figure is helpful in creating
new program files, and in using the NSAVE command.
The approximate number of bytes in the BASIC program
may be calculated by multiplying the number obtained

through PSIZE by 256 (the number of bytes in a file
block) .

None.

COMMAND: NSAVE

- NORTH STAR BASIC - C-16

LJ‘ COMMAND :

ACTION:

EXAMPLES:

REMARKS:

C

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

MEMSET <memory address>

The upper bound of the program/data memory region
available to BASIC is changed to the specified
address, which must be an integer constant in the
range of & to 65535.

MEMSET 24575 {last memory cell is SFFFEH}
MEMSET 32767 {last cell is 7FFFH}
MEMSET 44959 {last cell is 9FFFH}

Note that the address specified in a MEMSET command
is expressed as a decimal (base 18} number.
addresses in microcomputer memory are commonly given
in HEXADECIMAL ({base 16} notation. If the desired
upper memory bound is known only in hexadecimal, it
will be necessary to convert the number into decimal
before using MEMSET. (See APPENDIX 1: SAMPLE
PROGRAMS for a routine which performs this
conversion.) :

All variables in the program/déta‘area are cleared
after MEMSET, but any currént program remains intact.

MEMSET also modifies the copy of BASIC in RAM so

that, if any copies of it are made, they will assume
the new memory configuration when executed.

ARG ERROR
The memory address specified as upper bound does not
contain usabkle memory.

OUT OF BOUNDS ERROR

1) The address is larger than 65535,

2) If there is a current program, the specified upper
bound would lead to a program/data area too small
to hold it.

3) If there is no current program, the specified
upper bound implies elimination of the
program/data area altogether.

DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - C-17

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

COMMANDS (Continued)

LINE <numeric expression)
LINE #<device expression>, <numeric expr.> ‘

The line length for the specified I/0 device is
changed to the value of the numeric expression, which
must be an integer from 1@ to 132. The device
expréssion must be numeric, and evaluate to an
integer from @ to 7. If no device expression is
specified, the desired device is assumed to be #0
{the conscle terminal).

1@ LINE 132

70 LINE L(X)+49
256 LINE #3.,B

909 LINE #D(Q), 64

A fixed-length input/output line is a necessity because
BASIC must keep track of the current PRINT position

on the terminal or s¢reen in order for the TAB

function to work correctly. Use of the LINE

statement allows the user or programmer to adjust

this line length to the regquirements of a particularx
terminal device. For example, many video=display
boards provide for 32 or 64-character lines, while
integrated terminals usually have 88 character-

positions to a line. Printer units have line lengths ‘

ranging from 40 to 132 characters.

Different line lengths may be in effect for different
terminals at any one time.

If a line of output information is longer than the
current line length for the given device, the line
will be "split®” at the line length boundary and the
rest of the output will be c¢ontinued on the next
line. (A carriage return is automatically generated
by BASIC to advance the rest of the output to the
next line.)

If an attempt is made to INPUT more characters than
are allowed on one line, a "LENGTH ERROR" occurs.

LINE may be used as a direct statement.

Line lengths set by a LINE statement remain in effect
until the session with BASIC is terminated. A line
length of 132, for example, will remain in effect
even after the program which set it has ENDed.

when BASIC “"comes up", the initial length of device
¢ (the console terminal) is B@® characters. The

initial value for each of the seven other possible .

18

5]
b

- NORTH STAR BASIC -

ERROR
MESSAGES:

SEE ALSO:

COMMANDS (Continued)

system I/0 devices is also B86. These initial values
may be changed using procedures which are covered in
DISCUSSION: PERSONALIZING BASIC.

OUT OF BOUNDS ERROR
The device number or line length specified in the
LINE statement is out of range,

DISCUSSION: FUNCTIONS {built-in: TAB)
STATEMENT: INPUT

STATEMENT: INPUTI

DISCUSSION: PERSONALIZING BASIC

- NORTH STAR BASIC - c-19

COMMAND:

ACTION:

EXAMPLE :

REMARKS

ERROR

MESSAGES:

STE ALSO:

__

COMMANDS (Continued) bt

BYE qd

The current session with BASIC is terminated, and
control returns to the DOS.

BYE -

The BYE command does not affect BASIC s program/
data area in any way -- the current program and any
data associated with it remain intact. It is
possible to return to BASIC and resume work with the
current program later, provided that the memory
containing BASIC and its program/data area is not
disturbed in the meantime.

None.

DISCUSSICN: SPECIAL ENTRY POINTS

- NORTH STAR BASIC - _ c-20

B

(_ DIscussIon:

USING NUMBERS

USING NUMBERS

This section describes numbers and how to use them in
conjunctien with the standard version of North Star
BASIC., Those with non-standard versions of BASIC
should read the section called DISCUSSION: NON-
STANDARD VERSIONS OF BASIC which providaes extra
information applicable to their individual
situations.

CONBTANTS

Numbers are represented within BASIC programs much as
they are written in everyday usage. Here are some
numbers as they might be written in a typical BASIC
program:

8 347 -33.333 L.B6176 1.083
- -8 123.4567 -.3 9.2

Numbers such as these are called NUMERIC CONSTANTS.

Constants may also be written in SCIENTIFIC NOTATIOR
{also called EXPONENTIAL FORMAT or E~FORMAT). This
is a way to represent very small or very large
numbers without having to deal with leading or
trailing zeroes which can make a number seem
uncomfortably long., Here are the same numbers as in
the examples above, but written in scientific
notation:

BE+0¢ 3.47E+92 -3.3333E+81 1,76E~03 1.803E+00
l1e-81 QE+08 1.234567E482 -35-01 2E-21

A number in scientific notation has a MANTISSA part
and an EXPONENT part. These are separated by the
letter E, which may be read as "times 10 to the power
of". <Thus, 1.76E-#3 would be read as “1.76 times 19
to the power of -3",

PRECISION

Numbers in the standard version of North Star BASIC
are stored with 8-digit precision. Other precisions
are available —-- see DISCUSSION: NON-STANDARD
VEKSIONS OF BASIC for details. North Star BASIC uses
the most accurate form of microcomputer arithmetic
available: Binary-Coded-Decimal (BCD) —-- see
DISCUSSION: COMPATIBILITY WITH OTHER BASICS. All
arithmetic operations are rounded to 8 digits in the
standard version of North Star BASIC -- e.g., the sum
of .12345678 and .$11111111 would be rounded to

- NORTH STAR BASIC - p-1

USING NUMBERS (Continued)

.13456789, since .134567891 requires 9 digits.

EXAMPLE: FRACTIONS. What is the decimal
representation of 2/3? &n endless string of 6°'s
after the decimal point is the only correct answer.
However, when doing decimal arithmetic. both people
and computers round off the long fraction to a
reasonably accurate (but not completely accurate)
number. BASIC, for example, will round 2/3 to
.66666667, Notice that the total number of digits is
now 8. It is impossible to get a more accurate
representation of 2/3 in standard North Star BASIC.
The fraction 1/2, on the other hand, needs only a
eingle digit (.5) to represent it exactly!

EXAMPLE: MIXED DECIMAL FPRACTIONS WITH LARGE WHOLE
PARTS. Eight-digit precision alsc means that the
number 1234.56789 must be rounded before it can be
handled by the machine., HNorth Star BASIC will round
this to 1234,567%, MNotice that the least-important,
rightmost digit is rounded. -This is BASIC s standard
rounding procedure, and insures that the rounded
nunmber remains as close to the original value as
possible,

Business users should note that the largest dollars-
and-cents figure which may be exactly represented by
8 digits (without rounding cents to dimes or dollars)
is $999,999.99 For applications where dollars-and-
cents amounts larger than this must be handled, you
should obtain a special version of BASIC {with
greater precision}.

EXAMPLE: A VERY LARGE NUMBER. The number 987654321
will be rounded to 987654328, and, henceforth will
normally be PRINTed in scientific notation by BASIC
as 9.8765432E+B8, As you can see, the “eight-digit-
rule” is followed in this conversion. even thougn
scientific notation is invoked in order to correctly
represent the number. The last (%th) digit is
"dropped”, but scientific notation representation
insures that a @ will be "remembered" for the ninth-
digit in order to maintain proper place values for
the remaining digits. Notice that, because of this
effect, BASIC considers 987654320, 987654321, and
987654322 to be equal to one-another because they
differ only in their (ignored) ninth digits.

EXAMPLE: A VERY SMALL NUMBER The number .00080000123
will not be rounded by North Star BASIC, but
.00BP000D123456789 will be rounded. To see why,
think of the two numbers as expressed in scientific

- NORTH STAR BASIC - D-2

USING NUMBERS (Continued) w

notation. The first becomes 1.23E-0¢9. The mantissa
(which is the only component of an E-format number
that is affected by precision) is only 3 digits long
-- well within the 8 allowed. The second number
converts to 1.23456789F-09, with a 9-digit mantissa
which is too many digits. The number will be rounded
to 1.2345679E-99. (Note that scientific notation is
a more compact way to write these very small
numbers.) Finally, if you added 1 to either number,
it would be rounded to become exactly 1. Check the
E-format versions for the clear reason. This time,
vou 'll come up with 1.00090000123E+08 and
1.0000000612345679E+80. Both mantissas exceed §
digits in length. ERounding them to 8 digits leaves
only the number 1 for each.

RANGE

& number may be positive, negative, or zero.
Fositive and negative numbers in standard (8-digit)
precision North Star BASIC can range in magnltuoe
from lE-64 to 9.9999999E+62,

If you type a numeri¢ constant into BASIC which is
too large for BASIC to handle, a SYNTAX ERROR will
occur. If a number which is toco small is tvped in,
it will be rounded down to zero.

VARIABLES

In BASIC, as in most other programming languages, a
NUMERIC VARIABLE is considered to be a place (in
computer memory) where a numeric VALUE may be held.
it is, in effect, a "storage place" which may be
occupied by any one numeric value at any time. If a
new number is put in a variable, that number totally
replaces the previous value which the variable held.

All numeric variables are given initial values of
zero until given different values in explicit LET
statements,

Variables are given NAMES, and a variable name is
used to refer to the variable and/or its contents
when writing programs.

Numeric variable names in North Star BASIC consist of
a single capital letter, or a single capital letter
followed by a single digit from B to 9. Here are
some legal North Star BASIC variable names:

A B7 €3 Z Q N8B PP

- NORTH STAR BASIC - D-3

JSING NUMBERS (Continued)

Because these variables may contain only one value,
they are called "simple" variables.

OPERATORS

Operators are used in BASIC as they are in regular
arithmetic =-- to combine two numeric values
(operands) or to modify one operand in certain pre-
defined ways. Three classes of operators,
arithmetic, relational, and boolean are usad with
numbers. Each class will be examined geparately:

ARITHMETIC GPERATORS

These operators correspond to those used in common
mathematic expressions:

OPERATOR FUNCTION - EXAMPLE
T {or 7} exponentiation 972=81
* multiplicatioé J 5%1.5=7.5
/ division 3/2=1.5
- subtraction 3.2-2=1,2
+ additicn 7.9+2.1=10
- negation -3, =27

RELATIONAL OPERATORS

The relational operators are used t¢ compare pairs of
numeri¢ values., The numeric result of a relational
comparison is either 1 (which stands for "true") or B
{"false"). Usually, relational comparisons are
emploved as conditions for IF...THEN statements ({See
STATEMENT: 1F). For example, at a certain point in a
program, it might be desired to assign the value of
18 to the variable T if the value of X is greater
than 18, The comparison (X>10) would be used as

IF X>1@ THEN T=1@

The IF statement will assign 10 to T based on the
truth or falsehood of the relational comparison at
the time the statement is executed. The following
chart presents the relational operators available in
North Star BASIC:

- NORTH STAR BASIC - b-4

USING NUMBERS (Continueds

OPERATOR RELATION EXAMPLES
> greater than {6>1)=1 {true)
{2>3)=0 (false)

< less than (9<8)=0 (false)
(1<3)=1 (true) .

<= less than or egual to (5<=51=l
{3<¢=5)=1

(6<=5)=0

>= greater than or egual to (8Br=T7) =]
(Ir=7)=1

(6>=7)=0

= equal to (9=9) =1
(9=7)=9

<> not egual to {4<5>5) =1
{(2<>2)=0

BOOLEAN OPERATORS

The boolean coperators (AND, OR and NOT) may be used
to combine or otherwise modify relational
(true/false) expressions so as to provide for complex
logical evaluaticn. Furthermore, any numeric values
may be the objects of a boolean operation: all non-
zero values will be treated as "true" (1), while 8
will be treated as "false". The result of a boclean
operation is either "true" (1} or "false" {8). The
table below summarizes the effects cof the boolean
operators. <Al> and <A2> stand for operands.

OPERATOR EXPLANATION EXAMPLES
<Al>» AND <A2> 1If both <Al> (3>5 aND 2<3)}=0
and <A2> are (3>2 AND @<=8)=1

true (non-zero), (2=3 AND 2>-1)=0

the AND operation
is "true" {1), else
it is "falece” (@).

<Al> OR <A2> 1If at least one (3>% OR 2<3)=1
argument is true, {3>2 OR B<=0)=1
then the OR oper- {2=3 OR 8<-1)=0

ation is true,
If both are false,
the OR is false.

- NORTH STAR BASIC - b-5

USING NUMBERS (Continued)

NOT <Al> Negates the boolean NOT 7=48
value of the argument. HOT #=1

If <al> is non- NOT ({3>5)=1

zero {true}, the NOT {3<5}=8

NOT operation is
false. If <al>=@
then NOT <&l> is true.

EXPRESSIONS

Any valid combination of numeric¢ constants, numeric
variable names, operators, function calls, and arrav-—
element names is a NUMERIC EXPRESSION. (See
DISCUOSSION: FUNCTIONS and DISCUSSION: USING ARKAYS
for complete details concerning “"function calls® and

"array-element names", These are two advanced
features of North Star BASIC which are not covered in
this introductory section.} A single constant, 3.14,

or variable name, A, is an expression all by itself.
In contrast, long constructs such as

(NOT (3+ (SQRT (X*Y) /M3-47)/8)12
are also numeric expressions,
EXAMPLES OF LEGAL NUMERIC EXPRESSIONS

3.14
4344
((X+2)T(Q-R))*SQRT (2)

EXAMPLES OF ILLEGAL NUMERIC EXPRESSIONS

438,000.33 (REASON: CONSTANTS CANNOT CONTAIN COMMAS)
7%*Y (REASON: TWO OPERATORS IN A ROW ARE NOT ALLOWED)
((3*ABS(A))+4 (REASON: IMPROPER PARENTHESES NESTING)

ORDER OF EVALUATION OF OPERATORS

Is 7+3%2 equal to 29 or 13? This depends on whether
the addition or multiplication is performed first.
For purposes of determining the order of evaluation
of operators, each operator is said to have a certain
PRECEDENCE. The rule for the order of evaluation is
as follows: Higher precedence operators are
evaluated first, and operators of egual precedence
are evaluated left-to-right. OPERATQRS ENCLOSED IN
PARENTHESES ARE EVALUATED BEFORE CPERATORS NOT
ENCLOSED IN PARENTHESES. When there are parentheses
within other parentheses, operators within the
innermost parentheses are evaluated first. The
operators are listed below in order of decreasing

- NORTH STAR BASIC = D-6

s ——————————— e NIRRT

USING NUMBEERS (Continued)

i~
precedence -- that is, operators which are higher in
L/' the list have higher precedence than those toward the

bottom of the list. Operators on the same line have
equal precedence.

NOT, unary minus (-, negates a number)
T (exponentiation)
*,/ (multiplication and division)

+,- {addition and subtraction)
=,4,>,¢<> ,<=,>= (relationals)
AND

OR

Thus, 7+3*%2 1s equal to 13, but ({7+3}*2 is 28. Also,
3*8/2 is 12, -5+4 is -1 (the "-" is & unacy minus
here), and (l=2 OR 3=1} is 6.

~ NORTH STAR BASIC - ' 5-7

USING ARRAYS

DISCUSSION: USING ARRAYS
INDEXING AND SUBSCRIPTING

An ARRAY is an ordered collection of numeric
variables. The entire array, as a whole, has a
single variable name, and all the variables (called
ELEMENTS) in the array share that name, much as the
members of a typical family share the same surname.
An individual element in an array is identified by
its unigue INDEX NUMBER, which denotes its position
in the ordering of the array elements. For the
convenience of both those who prefer counting from
zero and those who prefer counting from one, an extra
element, the “zero element", is included in each
array. For example, a "S5@-element array", having a
maximum index number of 58, actually has 51 elements,
indexed @, 1, 2, ... , 49, 58.

To represent a given array element in a numeric
expression, you must follow the name of the array
with a subscript -- the index number of the desired
element enclosed in parentheses. For example, the
zero-element of array A would be written as A(9), the
eighth element as A(B), etc.

The index in a subscript may take the form of any ‘
numeric expression -- it need not merely be a
constant. Therefore, if the simple variable I
contains the value of 4, then A(I) will represent the
same element as A(4). Care should be taken, however,
to make sure that any expression used as an array
index will not evaluate to a negative number or a
number greater than the maximum index of the given
array. If either of these things happens, an OUT OF
BOUNDS ERROR will occur. If the index evaulates to a
non-integer, BASIC will TRUNCATE the value to an
integer. {Truncation involves throwing away the
fractional part of a number and keeping only the
whole part. The number 3.6 would be truncated to the
whole number 3. Note that this is not the same as
rounding.)

Note that the simple variable A and an array A may
co-exist in the same program without in any way
affecting each other. Arrays and simple variables
with the same names are separate, distinct entities.
BASIC does not confuse the two, since a simple
variable name will never be followed by a subscript,
while the name of an array must ALWAYS be followed by
one.

- NORTH STAR BASIC - E~1

USING ARRAYS {Continued)

(_/ MULTIPLE-DIMENSION ARRAYS

Arrays which reguire only one index may be thought of
as single "rows" of variables. BASIC also permits
the definition of arrays which use more than one
index in their subscripts. The addition of each new
index to an array is said to add another "dimension"
to the array, and an array with n indices is called
an "n-dimensienal® array. When using more than one
index to reference a single element, the indices must
be separated by commas. Remember that each index is
allowed to be a numeric exprescsion.

To acrcess the third element in the fifth row of a
two-dimensional array M, for example, you write
M{5,3). Assuming M has a maximum row number of X and
a greatest column index of Y, the following
statements will list the contents of each element in
the array in an appropriate tabuolar format:

18 FOR I=@ TO X
20 FOR J=0 TO Y

25 REM Print next element w/no <CR>
34 PRINT TAB(I*15),M(I1,J),

35 REM Each column of numbers

36 REM is 15 spaces wide.

C 3@ NEXT

45 REM Print <CR> hefore starting nesxt row.
5@ PRINT
63 NEXT

Space for arrays is reserved by the programmer using
the DIM statement. A DIM statement specifies how
many dimensions an array will have, and what the
maximum index will be in each dimension,

12 DIM X(¢1880), Y{2,3), Z2(12,16,18)

The above defines an array X consisting of elements
indexed from @ to 1069 {1801 elements altogether}), a
two-dimensional array Y with maximum row index of 2
and maximum column index of 3, and a three-~
dimensional array Z with dimensions of 18, 14, and
18. In keeping with the “zero-element® convenience
feature mentioned above, each array dimesnion
includes a zero-element, so that array Z above
actually contains 11 elements, instead of 1@, in each
dimension, indexed from & to 16.

when more than one dimension is specified, the

. maximum indices must be separated by commas. Commas
(, must also separate array declarations when more than

- NORTH STAR RBASIC - ' E-2

ISING ARRAYS (Continued)

one occurs in a single DIM statement,

The maximum index for any dimension in an array
declaration may also be given in the form of a
numeric expression. If the variable Q contains the
valve 10, then the following DIM statement will
result in the creation of the same arrays as the
previously given one:

16 DIM X(Q*Q*Q), Y(Q/5,3), Z2{(,18,S0RT(Q*Q))

An array may have any number of dimensions, but
arrays with many dimensions tend to take up huge
amounts of memory space. Consider that an array F,
declared as F(16,1¢,1¢,10), will result in the
reservation of 14,641 variable spaces in memory!
(This correcponds to 11*11*11*11, not 18*1{*10*1@

-=- remember the @~element in each dimensicon!) Each
element of the array takes up several bytes, and
chances are this particular array would be too large
to fit in the memory of your computer.

Whenever there is not enough memory available in the
program/data area to hold an array, a MEMORY FULL
ERROR occurs.

DEFAULT DIMENSIONS

All arrays of more than one dimension and most one-
dimension arrays must be declared in DIM statements
before being used. However, it is not necessary to
declare a one-dimensional array of maximum index 18
or less. Any array which is used without first being
declared in a DIM statement is automatically created
by BASIC t0 be one-dimensional, and of maximum index
14. 1f you desire a specific maximum index greater
or smaller than 18, however, you must use a DIM
statement to create the array. An attempt to
reference an element in a multi-dimensional array
before the array has been dimensioned in a DIM
statement will fail, causing an OUT OF BOUNDS ERROR.
When dimensioned, an array is automaticaly :
initialized so that all of its elements contain the
value @&.

ARRAYS MAY NOT BE RE-DIMENSIONED

No matter how created, either by an explicit
declaration in a DIM statement or automatically, by
BASIC, no array may be re-dimensioned in another DIM
statement later during program execution,
Specifically, this means that the size of arrays may

- NORTH STAR BASIC - E-3

B ===,

USING ARRAYS {Continued) |

(m/ not grow or shrink during the RUN of a program, Any
attempt to "re-dimension®” an existing array will
result in a DIMENSION ERROR.

ARRAY REFERENCES IN NUMERIC EXPRESSIONS

As mentioned in the chapter on USING NUMBERS, array
elements may be used in numeriec expression, since
they are perfectly legal variable names., Here are
some examples of array elements used in expressions:

1# X=SQRT(Q(3,5}+ABS{(B))
60 PRINT M(F(aA,B),L{A,B))
98 N(A)= N(A+]1)/2

SFE ALSO: DISCUSSION: USING NUMBERS
STATEMENT: DIM

- NORTH STAR BASIC - E-4

USING STRINGS

DISCUSSIOUN: USING STRINGS

A STRING is a seguence of letters and/or other
characters. For example, the following are strings:

HELLO NG;34* ABC123
THE DATE IS 7/7/78

STRING CONSTANTS

Strings enclosed in guotation marks are called STRING
CONSTANTS. ©Note that the guotation marks themselves
are not part of the string, but serve only to mark
its houndaries for convenient recognition bv both
human beings and machines. The following are
examples of BASIC string constants:

"HELLO" "NG;34%" "ABClZ23"
“THE DATE IS8 7/7/78" :

THE NULL STRING -

The string represented by two consecutive quotes ("")
contains no characters, and is called the NULL
STRING.

STRING VARIABLES

Just as numbers may be held in numeric variables, so
can strings be held in STRING VARIABLES. String
variables are named similarly to numeric variables,
and differ only in that a deollar-sign ($) is added to
the name to denote the type of the variable as
string. Thus, a legal string variable name consists
of a single capital letter (A-Z) followed by a
dollar-sign, or a capital letter and a single digit
(8-9), followed by a dollar sign.

Examples of legal string variable names:
AS Q7s 238 RS
DIMENSIONING STRING VARIABLES

Before they can be used to hold string values in a
program, string variables must be DIMENSIONED.
DIMensioning a string causes BASIC to reserve memory
space to hold the value of a string. To dimension a
string, the string name must be included in a DIM
statement, along with its MAXIMUM LENGTH in
characters, before it is used to store a string value
in a program. (For the proper method of doing this,

-~ NORTH STAR BASIC - . F-1

USING STRINGS ‘(Continued)

L

see STATEMENT: DIM.) If you use a string variabdble
without having first declared it in a DIM statement.
BASIC will automatically dimension it to a maximum
length of 19 characters. Once created, strings may
not be re-dimensioned in a program.

A string variaple may contain any string whose length
is less than or eaual to the dimension of the string.
The CURRENT LENGTH of the variable is the length, in
characters, of the value it contains. Thus, if AS 1is
dimensioned to a maximum length of 26 characters, it
may hold the entire alphabet (current length = 26
characters), the string "CaPv" (current length = 3},
or even the null string (current lengtn = 0},

Immediately after being dimensioned, a string is
initialized to contain all blanks. Tnus, if A$ is
dimensioned to be 26 characters long, it initially
contains a string of 26 blanks.

SUBSTRINGS

The programmer can access parts of a string

~- smaller segments consisting of one -or more
consecutive characters from within the string. Such
‘& segment is called a SUBSTRING.

Substrings of string variables are represented by
SUBSTRING NOTATION -- adding a 3SUBSTRING INTERVAL, in
parentheses, to the variable name. For example.
assume that AS holds the string value "ABCDE".
(Unless otherwise stated, this will be the permanent
value of A$ throughout the discussion.) To recresent
its substring "CD", you would write A$(3.4), which
‘specifies a substring consisting of the 3rd through
the 4th characters of 2%, A${(3,3) would yield the
value of "C", and A$(2,5) would represent "ECDE",

Either or both of the numeric values in & substring
interval may be represented by any numeric
expression, as long as each expression evaluates to a
value greater than or equal to 1 and less than or
egual to the current number of characters in the
string. Whenever any of the numeric values in a
substring interval are non-integer, BASIC ignores the
fractional parts. Thus, 5.6 is taken as 5, and 1.23
igs taken as 1. If A=3 and B=4 then AS$(A,B} would pe
the same as AS(3,4), or "CD". 1f B is more than 5,
or B is less than 1, AS${A,B) would not be allowed,
causing an OUT OF BOUNDS ERROR. This error will also
occur if the value of the first expression is greater
than the value of the second. Therefore, a backwards

- NORTH 5TAR BASIC - F-2

USING STRINGS (Continued)

substring such as A$(4,2) is illegal. ‘
THE OPEN-ENDED SUBSTRING

A special form of substring notation is used to
reference & substring consisting of all the
characters from a given starting position in the
string through its end. OPEN-ENDED SUBSTRING
NOTATION uses only one numeric expression, which
specifies the starting position within the string.
and which must be greater than or equal to 1 and less
than or equal to the length of the original string.
For example, A$(3) stands for “CDE". Note that the
value of AS as a whole is the same as the value of
the open~ended substring AS({1l). AS(5) and A$(5.5)
are the same as well, since the 5t&h character is the
last character in A$. Use of open-ended substring
notation eliminates the need, in certain situations,
to know the current length of the original string.

STRING OPERATIONS: CONCATENATION - -

One operation may be perfofmed on strings:
CONCATENATION, symbolized by the “plus* operator (+).
This is not to be confused with numeric addition.

front to back, rather like coupling raiirocad cars
together. For example, "CAR"+"LOAD" represents the
same value as "CARLOAD". Any string value may be
concatenated with any other string value to yield a
third value which consists of the two linked
together., AS$(2.3)+AS(2) yields the value “BCBCDE".
(Remember that A$ has held "ABCDE" throughout this
discussion.) Concatenation operations can be
"chained", such as in

AS(1l,1)+AS$(3,3)+AS(3,3)+AS(5)+AS(4)+" MEANS YIELD"
which gives the value "ACCEDE MEANS YIELD".

STRING FUNCTIONS
BASIC includes certain built-in FUNCTIONS which
return useful string values, It is also possible to
define single-line and multiple-line user-functions
which return string values. See DISCUSSION:
FUNCTIONS for more detailed information.

STRING EXPRESSIONS
string function, or a quoted string literal. The

- NORTH STAR BASIC - _ F-3

Instead, concatenation is the joining of two strings, , ‘

& STRING EXPRESSION is a string variable, substring, ‘l

USING STRINGS (Continued) .

concatenation of two string values is also a string
expression, Long, involved compound expressions may
be formed by combining one or more of the elements
mentioned above. For example:

AS
F$+|I '2"
AF (1. X)+CHR$ (97) +A5+"GO FOR BROKE"+FNSS (25)

The built-in string functions (e.,g. CHR$) and the
user-defined string functions (e.g. FNS$} will be
discussed later.

STRING COMPAKRISORS

String values may be compared using the comparison
operators = , > , < , <= , »>= , and <> . BASIC
compares string values using the following rules:

1} Two string values are eguzl only if they have the
same number of characters, and have matching
characters in each character position.

2} Strings are compared charé&cter bylcharacter, left
to right, until a difference occurs or one of the
strings ends.

3) If a difference exists, and the ASCII value of the
tirst different character in the first string is
less than that of the corresponding character in
the second string, then the first string is “less
than" the second string. If the character in -the
first string is greater than its counterpart in
the second string, then the first string is
"greater than" the second,.

4) If one of the strings ends before a difference is
found, the shorter string is considered to be
“less than" the larger one.

5) As a consequence of rule #4. the null string is
always less than a non-null string.

When using strings composed solely of alphabetic
characters of the same case (either upper or lower,
but not both), thisz scheme corresponds to comparsion
by "dictionary order". where an "entry" is considered
to be “less than" another if it comes before the
other in the dictionary. and “greater” than the other

if it comes after. Thug "bird" is less than {comes
before) "tree", and "zerc" 1s greater than {(comes
after) "aardvark". The difference between string

- NORTH STAR BASIC - F-4

USING STRINGS (Continued)

alphabetic order lies solely in the fact that the
ASCII character set, used to define "alphabetic"
order in BASIC. has 128 "letters” as opposed to our
usual 26, To give you a better idea of this expanded
"alphabetic order”, here are some samples of string
comparisons, Use the five rules above and the tapls
of ASCII codes in APPENDIX 4: DECIMAL-BEX-BINARY-
ASCIT CONVERSION TABLE to check the following
examples:

“Z" > “COCOA" 128 < 75"
123" < 124" "AB " > "aABY
"123" < “ABC“ “ABL" > "ABGL"
“ABC" < uabcﬂ i , ") " ! "
"ABC" > "AB"

NOTE: The logical operaters AND, OR ané NOT may not
be used to combine the effects of two or more string
comparisons in an IF statement. These three
oreraters may be used in numeric comparisons only.

ASSIGNMENT TU STRINGS AND SUBSTRINGS
Any legal string expression may be assigned to a
of substring notation), as in the following examples:

AszucATtl
P7${1,3)="DOG"

(In the second example, note that the first three
characters of Q7% will become "DOG"., Any characters
in 7% past the third will not be changed.)

If a string value is assigned to a string variable
which has been dimensioned to be too small to hold
the entire value, its rightmost characters are
discarded until the resulting truncated value wilil
fit in the variable. Similarly, if an assigned value
is too big to fit in a substring interval, it is
truncated to the proper length. As an illustration,
try RUNning the following program:

189 REM Demonstration of automatic

2@ REM string truncation in assignment.
190 DIM L5{13)

110 LS="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

1286 PRINT L$

139 L8(2,3)="12345"

- NORTH STAK BASIC - F-5

comparisons in BASIC and reqgular word-comparsion by ‘

string variable or any part of a variable (by the use ‘

149 PRINT L$ ' a

=

USING STRINGS (Continued)

(_/ The output of the program looks like this:

ARBCDEFGHIJKLM
AYZDEFGHIJKLM

The value shown on the first line of output is &
result of the assignment statement in program line
11a. Although the attempt was made to assign the
entire alphabet to L$, only the first 13 characters
fit, due to the dimension declared for L$ in line
108. The rest of the alphabet was discarded.

The second output line shows the value produced by
the assignment in line 138. The assignment asks tnat
a five character string value be squeezed into a two-
character interval, which is not possible. BAs a
result, BASIC assigned only the first two characters
of "12345%", or "12" to the substring, ignoring the
rest.

Wwhen assigning to a substring interval, if the value
assigned is smaller in length than the substring
interval, any remaining characters in that interval
are not modified, as in the following example
program:

L/ 18 REM More substring asslgnment.
20 DIM LS(13)
380 L$="ABCDEFGHIJKLM"
4 PRINT L$
SO L$(5,9)="12345"
63 PRINT LS
78 L$(5,9)="abc”
80 PRINT L$

Here are the three output lines produced by the
program:

ABCDEFGHIJKLM
ABCD12345JKLM
ABCDabc45JKLM

In the assignment of line 58, "12345" exactly fit the
substring L${(5,9). However, in line 76, "abc" was
two characters short, so only the first three
characters of the substring, characters 5 through 7,
were modified, '

It is alsc possible to use the open-ended substring
form to specify a substring interval into which &
- value is to be assigned. For example, L$(5) is .taken
(.J to specify the same interwval as L$(5,LEN(LS$)).

m
H
oy

- NORTH STAR BASIC -

—M

USING STRINGS {Continued)

(LEN(L$) stands for the current length of LS.) In ‘
the substring assignment example ahove, exactly the

same results would have been obtained if the

substring interval expressions in the string

assignment statements had been replaced by open-ended
substring expressions.

Assignment of the null string to any substring
specified by regular or open-ended substring notation
causes no change in the string.

MAXIMUM LENGTH VS, CURRENT LENGTH

The maximum length of a string variable is the
maximum number of characters which it can hold. HNS$,
dimensioned to 58, can hold up to 58 characters at
once, but no more. On the other hand, a string’s
CURRENT length t(as determined by the LEN function) is
the number of characters which the variable actually
does contain at any one time. Thus, if M$ centains
"CAT", its current length is 3, despite the fact that
its maximum length is 54. As long as M$="CAT", BASIC
statements and string expressions may not access anvy
character positions in M$ beyond the third. while
M$="CAT", the character positions beyond the third

is illegal. But, if MS is changed to “STICK"“, then
its current length becomes 5, and MS$(3,5}) is allowed.
However, it is always incorrect to reference a
character position beyond the maximum length of the
string. In this example of M$, the substring
reference M$(49,60) will always be illegal, since M$
can never grow larger than 50 characters in length,
and therefore, the character positions from 51 to 68
will never exist,

CHARACTER SET IN BASIC

Up to now, "character” has been used in its intuitive
sense, as a digit, letter or punctuation character
which may be typed in by a user or printed on a
terminal, 1In fact, the BASIC character set includes.
"invisible” control characters and the many
"undefined characters" which may be represented as
byte (8-bit) values. Altogether, BASIC’s character
set includes 256 values. The first 128 of them (2 to
127) correspond to the 128 characters of the
international ASCII standard. The remaining 128
characters (128 to 255) are generally undefined on
most terminals, but are available to the North Star

string function CHRS$ may be used to represent any

- NORTH STAR BASIC - Fe7

simply do not exist, and a reference such as M3(3,5) ‘

BASIC programmer as a convenience., The built-in ‘I

SEE ALBO:

USING STRINGS (Continued)

charactet which cannot be typed or printed, nNote
that CHBRS$(34) may be used to represent a quote-mark.

1% AS$="HI THERE"

20 PRINT AS$

30 A$=CHRS (34)+AS+CHRS (34)

40 REM Above puts guote-marks in AS
58 PRINT AS

When RUN, the above program produces these results:

HI THERE
“HI THERE"

DISCUSSION: FUNCTIONS

DISCUSSION: USING NUMBERS (EXPRESSIONS)

STATEMENT: DIM :

APPENDIX 4: DECIMAL-HEX-~BINARY-ASCII CONVERSION TABLE

- NORTH STAR BASIC =~ F-8

W

STATEMENT :

ACTION:

EXAMPLES:

REMARKS:

ERRCR
MESSAGES:

THREE IMPORTANT STATEMENT

DIM <list of array or string size declarations?

Reserves program/data area memory space for strings
and arrays as specified in the declarations.

18 DIM AS(30),0(190),2(5,2)
69 DIM X7(%X.Y), X8{X X,X)
76 DIM C5(108*3)

A DIM statement automatically initializes the
variables declared in it. After a DIM statement is
executed, the length of any string declared in it is
equal to the declared size and all character
positions are filled with spaces. (For example,
after executing line 18 above, AS will be a 30-
character string filled with spaces.) All elements
of any array declared in a DIM statement will be
initialized to zero.

When declaring strings, the single numeric expression
enclosed in parentheses specifies the maximum number
of characters which the string variable may hold. &
declaration for a single array may contain several
numeric expressions within the parentheses, each
denoting the maximum index value in each "dimension®

0f the array. Thus, after execution of the DIM

statements in lines 16 and 60 above, Q will be a one-
dimensional array with a maximum index of 1088, % will
be a two-dimensional array with 5 rows and 2 columns,
and X8 will be a three-dimensional array with a
maximum index of X in any of its three dimensions.

If a string or array is referenced ih any statement
without having been declared in a prior DIM
statement, it is automatically created, initialized,
and dimensioned by BASIC, strings to a maximum length
of 18, and arrays to one dimension and maximum index
of 19.

Whether "dimensioned" explicitly through a DIM
statement or implicitly through first reference to a
previously non-existent variable, a string or array
may not be "re-dimensioned" {declared in a DIM
statement executed later in time during the same RUN
of a program). Any attempt to do so will lead to a
DIMENSION ERROR. (For the same reason, a DIM
statement itself may not be repeated during the
executicn of a program.)

MEMORY FULL ERROR
Not enough program/data area memory is available to

-~ NORTH STAR BASIC - G-1

SEE

ALSG:

THREE IMPORTANT STATEMENTS {(Continued)

hold one or more of the variables declared in the DIM

statement responsible for the error., See APPENDIX 3:
IMPLEMENTATION NQTES for details of memory
allocation.

DIMENSION ERROR
An attempt was made to re-dimension a string or an
array which already exists,

DISCUSSION: USING STRINGS
DISUCSSION: USING ARRAYS

- NCORTH STAR BASIC - G-2

STATEMENT:
ACTION:

EXAMPLES:

REMARRKS ¢

ERROR
MESSAGES:

THREE IMPORTANT STATEMENTS (Continued)

REM <optional line of any text>
None. REM statements are ignored by BASIC.

14 REM THE REM STATEMENT IS USED TO

20 REM INSERT COMMENTS IN A PROGRAM.

30 REM FOR EXAMPLE --

35 REM

48 N=G-W \ REM NET GETS GROSS LESS WITHHOLDING
45 REM

78 REM Lower case letters are ok in REMs.

As can be seen from example line 468, a REM may be
included on the same line as other BASIC statements,
however, it must always be the last statement on a
line. The reason for this is, all text after the REM
reserved word on a line is treated as a comment and
is ignored by BASIC. Therefore, any statements which
appear after a REM on the same line will not be
executed.

As with other North Star BASIC statements, the

characters “:*, ";", "[", and "]" are translated to
"\", ".", "({", and ")", respectively, within REM
text.

None.

- NORTH STAR BASIC - G-3

M

STATEMENT:

SCTION:

EXAMPLES:

ERROR

MESSAGES:

SEE ALSO:

M

THREE IMPORTANT STATEMENTS (Continued) ’

LET <numeri¢ variable> = <numeric expression>

LET <string/substring wvariable> = <string expression>
{numeri¢ variable> = <numeric expression>
(string/substring variable> = <string expression>

The value of the expression on the right hand side of
the egual-siqgn is assigned to the variable named on
the left side. The reserved-word LET is optional,
and may be omitted.

190 X=%+1

58 LET A{X)=6

35 LET Q=SQRT(X)+Y

26 B$="HELLO THERE"

61 M$(2,11)=FNNS$(“415-549-(G858")
150 LET Z$=STRS(Q)+2${1,2)+"BOX"

BASIC permits conly one assignment per LET statement.
However, several assiagnments may be made on one line,
as in:

16 A=6 \ B=0 \ C=0

Note, in line 10 above, the apparent mathematical
impossibility of X=X+1. However, as an assignment,
this makes sense -- the right-hand expression is
evaluated with the current value of X, and the result
obtained . then becomes X's new current value., X=X+N
has the effect of increasing the value 0of X by HN.

(It is sometimes easier to understand assignment if
one resists reading LET statements as "(Q eoguals Q+1",
for example, and says instead, "Q gets O+1", or "2
becomes M+173".)

Only single variazble names are legal on the left side
of an assignment (LET) statement. Also, it is
impossible to assign entire arrays with a single LET
statement. Each individual element of an array must
be assigned separately.

TYPE ERROR

The type of the expréssion on the right =gide is not-
the same as the type of the variable on the left
side. It is illegal to assign a string value to a
numeric variable, or a numeriec value to a string
variable.

LISCUSSION: USING NUMBERS

BISCUSSION: USING STRINGS
PISCUSSION: USING ARRAYS

- NORTH STAR BASIC - G-4

STATEMENT ¢

ACTION:

EXAMPLES:

REMAKKS:

INPUOYT AND QUTPUT -

PRINT

PRINT <list of string and/or numeric expressions®
PRINT "<device expression>

FRINT #<dev., exp.>, <string/numeric expr. list>

The data indicated in the QUTPUT DATA LIST is
printed on the specified output device. After the
entire list is printed, the print-head or cursor of
the terminal is moved to the start of the next line.
If there is no output list, only a pblank line is
printed. If no device is gpecified, output is
printed con device #6, the console terminal. The
device expression consists of 2 numeric expressicn
which evaluates tc¢ an integer from 8 to 7,
corresponding to a connected output device. A piece
of "data information® in the output list consists of
any string or numeric expression. PRINT formatting
expressgions may also be included in the output list.
See DISCUSSION: FORMATIED PRINTING for complete
details. FElements in the ocutput data list must be
separated by commas. FEiements in the zame list will
be printed on the same output line. Information
which cannot fit on one output line will be continued
on the next,

1f a comma follows the output list, the print-tead or

cursor will not be moved to the next line, so
suboseguent output will appear on the same line.

PRINT

PRINT "“THE ANSWER IS5: ",
PRINT A,B,C.,47

PRINT 4D

PRINT #9Q.A,8,"HELLO",C(3),08%

Here is a sample program, designed to demonstrate the
action of the PRINT statement as described above,
Try it:

14 A=3

28 B=4

3¢ PRINT "A EQUALS".A,
49 PRINT * B EQUALS",B
58 END

When this program is RUN, the following shauld appear
on your terminal:

A EQUALS 3 B EQUALS 4
The exclamation point (!) may be used as an

abbreviation for the keyword PRINT. Thus, the

- NORTH STAR BASIC - H-1

INPUT AND QUTPUT (Continued)

statemeﬁt
PRINT "STRING"
is the same as
I"STRING®

Thigs i especially convenient when using the PRINT
statement in direct mode.

Hote that the comma (as separator in the PRINT ocutput
list) performs the same function as the semi-cclon in
many other versions of BASIC. 7To obtain output
"tabbing", use the TAB function, as described in
DISCUSSION: FUNCITIONS (built-in, TAB).

DISCUSSION: FORMATIED PRINTING

DISCUSSION: MULTIPLE I/0 DEVICES
STATEMENT: LINE

- NORTH STAR BASIC - h-2

DISCUSSTON:

INBUT AND OUTPUT (continued,l

FOGRMATTED PRINTING

MOTE: Read DISCUSSION: USING NUMBERS and STATEMENT:
PRINT before beginning this section!

REGULAR AND E-FORMAT NUMBER PRINTING

WHAT

Normally, BASIC will !"choose” between "regular" form
and exponential/scientific form for the most
appropriate method to PRINT a numeric value. BASIC
chooses the methods which will result in the most
concise printed fiqure, Hote that a space before
each "reqular" number is automatically printed,

3.1415%
.7319
-8.63
-.04

When a numeric value is too large or tec small to
PRINT in regular form, BASIC will automatically use
E~-FORMAT. E-format consists of a space, a minus sign
if the number is negative, the first digit of the
mantissa, a decimal point (if there ‘are any digits
left in the mantissa), any other mantissa digits, an
“E" (to denote the beginning of the exponent}, a oplus
or minus sign to denocte the sign of the exponent, and
the two digits of the exponent itself { -- the first
digit may be @). Here are some numbers in E-format:

1.4873749E+14
-2E~-B9
-5.4128376E+13

when BASIC chooses the format of printed values, the
PRINT statement is in "FREE FORMAT" -- i.e., BASIC 1is
free to PRINT the values using the most concise
format. Sometimes, however you may want certain
values to be printed only in E~format, or only with
two decimal places, or only as integers (with no
decimal points). In other words, you may want to
determine the format under which these numbers will
be printed, as opposed to letting the computer
choose. To do this, BASIC permits you te include
numeric "format specifications” within the output
lists of PRINT statements. These format
specifications always begin with a per-cent sign (%).

IS A FORMATTED NUMBER?

B programmer-formatted (as opposed to a free-
formatted) number always takes up exactly a given

- NORTH STAR BABIC - H-3

INPUT AND QUYPUT {Continued)

number of spaces on the printed line. This 1s called
the PIELD WIDTH. The field width is defined by the
programmer in the format specification, and must
reserve enough character positions in the printed
line to hold all the characters in the number as
printed. & field width of &, for example, is too
small to accommodate the number 1234.56, because 7
character positions are actually reguired -- six for
the digits, and one for the decimal peoint! B&Also
remember to leave room for plus or minus signs Lf
they might occur in the number, as well as the letter
“g£v, if E-format is being used to display a number in
scientific notation, If the specified field isn’'t
wide enough to PRINT a given number, then a FORMNAT
ERROR will occur when an attempt is made to PRIKT the
numoer using that format.

The next few examples will make use of "I-FURHAL" toO
illustrate some general points about BASIC s
formatting mechanism. Only numpers with integer
values may be printed using I-format- ‘The I-format
specification consists of the per-cent sign (%), 2
number, and the capital letter "I", as in the
following:

%31

The number given specifies the number of column
positions on the printed line which will be reszerved
to hold the number. The %3I format specification,
for example., reguires that any number printed
according to it must be an integer, and must fit in
three character positicns. Therefore, 8, positive
numbers from 1 to 999, and negative numbers from -1
to -99 may be printed under this format. Remember
that the negative-sign counts as taking a character
position.

When printing a programmer formatted number, BASIC
does not automatically insert leading spaces toc Keep
the number from “bumping up against" previously .
printed information on the same line, as it does 1in
free—-format. The statement

PRINT "OOPS",%31,349
results in

00PS349

on the terminal. 1In order to separate your formatted
cutput from other output, you may elect to PRINT

-~ NORTH STAR BASIC - H-4

M

INPUT AND OUTPUT (Continusd) w»

explicit spaces before {and after) the number, use ‘

the TAB function, or specify a field width large
enough to ovrovide at least one blank space between
the number and previocus information on the line.

RIGHT JUSTIFICATICN

All programmer formatted numbers are automatically
right justified within their PRINT fields. That 1is,
the number is printed s¢ that, in a field which is n
character positions wide, the last character in the
printed number occurs in the n-th (rightmost}
character position of the field, and spaces fill to
the left. The foilowing numbers are right justified:

349

1234

7.3

8.42
-2118.37
l.61

Note that, when right justified numbers having the
same number of digits after the decimal point are
printed one above the other, the decimal points will

be printed using I-format, but are included in this
example because BASIC s decimal-point format, to be
discussed soon, also right justifies,)

The statement

PRINT "HERE IS A GAP:",%l@I:é
produces the output

HERE IS A GAP: 2

because the field, specified as 18 positions in
width, is more than large enough for the l-digit
number 2.

DECIMAL PLACES

In the case of floating-point and E-format numbers,
you may also decide how many decimal places are to be
displayed when a formatted number is printed. For
example, the floating point format $7F2 will put
numbers from -999,%% to 9999,%9 in “"dollars-and-
cents" form, with only two digits to the right of the

decimal point: .

- NORTH STAR BASIC - H-5

"line up". (Note that decimal-point numbers cannot ‘

INPUT AND OQUWRUT (Continued)

-3B2.63
51.40
987.12
1234.56

(The field is 7 nositions wide.)

Note that, if the number is an integer, zerces are
used to £fill the decimal positions., Suppression of
those "trailing zeroes" will be discussed later.

If & number to be printed has more decimal places
than the format specification indicates, the value
orinted is the number rounded to the indicated number
of digits.

Here are the allowable formats:

{(in the following, n and m stand for integer
constants)

model name/cffect

nim F-format:
Each subseguent numeric value in the PRINT list
will be printed in an n-character field, right
justified, with m digits to the right of the
decimal point.

nl I-format:
Each subseguent numeric value in the PRINT list
will be printed in an n-character field, right
justified, provided they are integers (have no
fractional part). If a value to be printed
under this format is non-integer, a FORMAT ERROR
will occur.

nEm E-format:
Subsequent numeric values in the PRINT list will
be printed in scientific notation in an n-
character field, right justified., with m digits
to the right of the mantissa decimal point.

a format specification which consists only of a
percent-sign specifies a return to free format.

All numeric values in a PRINT-list are printed using
the new format specification until a subsecuent
format specification appears in the list, or until
the end of the data/format list itself. Note that
the printing of numbers in subsequent PRINT

- NORTH STAR BASIC - H-6

INPUT AWND OUTPUT (Continued) -

statements will not usually be affected by format
specifications in previously-executed PRINTs. In _ ‘
particular, fcor the two lines:

16 PRINT %3I,A,B.C
28 PRINT D

All wvalues in line 18 will pe printed according to
the %$3I format, but D {in line 20) will be printed
using free format., The format specification in line
13 can affect only values which line 18 itself
prints.

DEFAULT FORMAT VS. CURRENT FORMAT

BASIC keeps track of two format specifications: the
CURRENT FORMAT and the DEFAULT FORMAT. Each numeric
value in a PRINT output list is printed using the
current format. At the beginning of each PRINT
statement, the value of the current format is made
eguivalent to that of the default format.

Thereafter, the current format is changed each time a
format specification occurs in the PRINT cutput list.
The default format is set initially to free-format,
and may be changed by using the cross-hatch (3}
-format character in a format specification as
described below. ‘

OTHER FORMAT CHARACTERS

Certain other FORMAT CHARACTERS may be used to modify
the effects of a format—-specification. Several of
these characters may be combined in one format
specification, if vou wish. All format CHARACTERS in
‘a format specification must come after the % and
before the format specification itself, Here are the
characters:

Z Trailing zeroes after the decimal point are
suppressed; spaces will be printed instead.

The format specification after this character
will become the default format. Also, number-
to-string conversion is done using the defauit
format (see DISCUSSION: FUNCTIONS, built-in,
STRS). HNote that %¢ will force free format to
be the default format. This is useful in cases
where you have made another format the default,
and would like to return to free-format.

C Commas will be placed to the left of the decimal
point as needed to group each seguence of three ‘

- NORTH STAR BASIC - H-7

s ——

INPUT AND OUTPUT (Continued)

digits -- e.g. 1,234,567. (note that the "C"
cption is not effective with E-format
specifications.)

§ A dollar sign will be placed to the left of the
value when it is printed.

Caution! When using C or $ with a format
specification, you must be sure that the field width
specifies enough character positions to c¢ontain the
longest number you intend to PRINT in that format,
plus any dollar sign, plus any maximum amount of
commas which may be inserted by the machine, For
instance, the statement

PRIRT %C9FZ, D
will yield the output
$3,478.92
when D=3478.92, but will result Iinm a FORMAT ERRUR 1if
0D=197843., The number should be printed as
$1987.,843.08, but this requires the field width to be
at least 11,

EXAMPLES:

FORMAT VALUE QUTPUT

$8F2 19.355 19.36
$$6F2 45,12 §45.12

$C9T lgapeoe 1,000,000
$C8I lapeoay FORMAT ERROR
$10E3 472 +4,720E+02
$216B3 472 +4.72E+B2
$3C11f2 201758.88 $261,758.88

- NORTH STAK BASIC -

STATEMENT:

ACTION:

EXAMPLES:

REMARKS:

INPUT AND OUTPUT {(Continued)
: W

INPUT <list of varizbles>

INPUT <string ccnstant>, <var. list> ‘
INPUT #<device expression>, <var. list>

INPUT #<dev. expr.>, <string const.>. <var. list>

User -input of string or numeric¢ constant data is
"requested" and accepted from the terminal named by
the device expression. If there is no device
expression, the console, device #0., is assumed. The
device expression must be a numeric expression which
evaluates to an integer from @ to 7. The data
provided by the user is assigned to the variables
named in the INPUT statement’ s varianle list. If no
string constant is specified, input is "prompted” by
a gquestion-mark {sent to the terminal before input-
data is accepted). 1If a string constant is given,
however, this string is sent to the terminal as
prompt, instead. The user strikes the KRETURN key
when finished providing data-input.

10 INPUT A,B.,QS

76 INPUT “YQUR NAME: " ,N§

35 INPUT #3,X.Y

3¢ INPUT #X,"COMMAND: *,CS$(5,9)

19 INPUT "®,X N\ REM No prompt is given at all,.

INPUT may not be used in direct mode,

INPUT will "wait" forever for user-response, URtil
the RETURN key is struck.

String constants entered by the user in response to
INPUT should not be guoted. (If quotes are typed,
they will become part of the string.)

If an INPUT statement reguires several consecutive
numeric data-~items to be given by the user, it is
possible to put them all on one line, as long as they
are ceparated from one-another by commas, For
example, a proper response to an IKPUT statement
which asks for three numbers is:

123, 456, 789 <CR>

However, since carriage-reéturns must terminate the
INPUT of a string, the "comma-method” is not suitable
for inputting several consecutive strings. To INPUT
more than one string value on one line of the
terminal, successive INPUT! statements must be used.

(See STATEMENT: INPUTI.)

- NORTH STAR BASIC ~ ' H-9

ERROR
MESSAGES:

" INPUT AND OQUTPUT (Continued)

10 illustrate proper user-response to an INPUT
statement, assume that example line 18 is executed.
& guestion-mark (?) will appear on the terminal.

?

This iIndicates that the computer is watiting for
INPUT, and the knowledgable user might type in the
following:

2, 3, WEASEL<CR>

{<CR>», of course, signifies striking the RETURN key.)
Atter KRETURN is struck, A wilil ne set to 2, B to 3,
and Q$ to the string value “"WEASEL".

A single carriage-return (representing no input} is
acceptable when the next item in the variable list is
a string, In this case, the string will pe set null.
However, valid numeric input must be supplied for
numeric items in a variable list -- an INPUT ERROR
will occur if this isn’t done.

Note that the line editor may be used to modify the
user ‘s iInput line before <CR» is struck.

When too few data items are typed before RETURN is
struck, BASIC will type a double-guestion-mark (77?)
as auxilliary prompt, and awailt further INPUT for the
given variable list, It will repeat this step as
long as necessary until all variables named in the
variable list have been assigned values typed in from
the terminal,

Note that the INPUT statements and the puilt-in INP
function are not the same.

LENGTH ERROR
The line of data-input is too long.

INPUT ERROR =-— PLEASE RETYPE

A numeric value was reguired by the INPUT statement,
but a non-numeric value was supplied by the user.

The user is automatically given a chance to rectify
the mistake by retyping all data elements required by
the INPUT statement.

DISCUSSION: USING NUMBERS

DISCUSSION: CONTROL-C, THE PANIC BUTTON
DISCUSSION: FUNCTIONS (built-in, INP}
STATEMENT: INPUTI

- NORTH STAR BASIC - 8~18

STATEMENT:

ACTION:

EXaMPLES:

REMAKKS :

ERROE

MESSAGES:

INPUT AND OUTPUT (Continued),

INPUTL <list of variables>

INPUT]1 <string constant>, <var. list>

INPUT]1 #<device expression>, <var. list>

INPUT] #<dev. expr.>, <string const.>, <var. list>

Exactly the same as STATEMENT: INPUT, except that
when the user strikes the KETURN key to terminate an
input line, no carriage-return is ecnced to the
terminal, Subseguent input or output will occur on
the same line.

58 INPUT] Z,W.B7,A(3)
2% INPUT1 #D(Q}, "GUBESS? ".G
See STATEMENT: INPUT

See STATEMENT: INPUT

1]

NCRTH STAR BASIC - H

(_/ GISCUSSION:

INPUT AND QUTPUT (Continued)

MULTIPLE I/0Q DEVICES

A computer system may include several input/output
(I/0) devices, such as a video terminal, printer,.
graphics display, etc. North Star BASIC provides a
convenient means for BASIC programs to make use of up
to 8 separate 1/0Q devices. A unigue integer numoer
from B to 7 is assigned to each one. Device #0 must
correspond te your main communication link to your
computer -- also known as the console terminal., It
is generally a teletype-style or a CRT (video)
terminal . When your copy of D0OS has been
cersonalized to handle multiple I/0 devicas, your
BASIC programs will be able to access the many I/0
devices through the PRINT and INPUT statements. (See
DOS section of this manual, chapter on
"PERSONALIZATION" for details.)

A PRINT, INPUT, INPUT1 or LINE statement accommodates
an optional DEVICE EXPRESSICON, which consists of a
cross-hatch (%) . followed by a numeric expression
which evaluates to an integer number from @ to 7.
This expression indicates the device desired for
input or output, If used in any of these statements,
the device expression must be the first thing after
the statement ‘s keyword. Here are some examples:

PRINT #1, "TEST"
PRINT #0Q,X,B.7

PRINT #D+3, "CRAZY'.Q
PRINT #D7(X)

INPOT 4B, L3
INPUT #7, "COMMAND: ",C$

LINE #1., 132
LINE 4D, L

If the device expression is omitted, it is assumed to
be @ (the console}.

As a final example, assume that device #0 is the)
console terminal, device 1 is a remote printer, and
device 2 is a remote CRT., The following program
causes a different message to be printed on each of
the three devices:

10 REM Multiple I/0 demonstration,

26 PRINT "THIS MESSAGE GOES TO THE CONSOLE."

39 PRINT 49,"THIS ONE DOES, TOO."

4 PRINT #1,"“THIS WILL GO TO THE REMOTE PRINTER"
S PRINT #2,"THIS SHOWS UP ON THE REMUTE CRT"

- NORTH STAR BASIC - H-12

RS R E R R SRR AR R -------—-------‘.

INPUT AND OUTPUT {(Continuedy

The PRINT/INPUT device expression, characterized bv a ‘
cross-hatch, should not be confused with the PRINT
statement ‘s format specification, which begins with a
per-cent sign (%),

SEE ALSO: STATEMENT: PRINT
STATEMENT: INWPUT
STATEMENT: INPUT1

DOS section of this manual, chapter on PEKSONALIZATION

- NORTH STAR BASIC - H-13

(_j

STATEMENT:

ACTION:

EXAMPLES:

LEMARKS:

ERROR

MESSAGES:

SEE ALSO:

STORING DATA WITHIN THE PROGRAM TEXT

DATA <list of c¢onstants>

The string and numeric constant values included in
the list are stored as data and may be accessed, in
order, by the BASIC program of which they are a part.
if a list contains more than one constant, each
constant must be separated from the next by a comma.

1966 DATA "STRING DATA", "NUMBER IS NEXT".2
20 DATA 15 '
115 pata 2, 7, 25, "HI", @

The DATA statement provides a way to store information
within the text of a BASIC program. This data may be
accessed by a RUNning program when a READ statement

is executed, :

DATA statements may be placed anywhere in the
program, and are ignored by BASIC except when an
attempt is made to access the information they
contain. In other words, DATA statements are non-
executable.

SYNTAX ERROR

An improperly-formed constant was placed in a DATA
statement (i.e, a string without the opening or
closing quote mark) and this results in a SYNTAX
ERROR when a READ statement attempts to access this
constant.

STATEMENT: READ
STATEMENT: RESTORE

- NORTH STAR BASIC - I-1

L

TATEMENT:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

ERROR
MESSAGES:

STORING DATA WITHIN THE PROGRAM TEXT JContinued)

READ <list of variables)> ‘

For each variable in the variable list, the next
sequentially-available DATA element from the
program’s DATA statements is assigned to that
variable,

5 REM Example of READ
1@ READ &,B

20 READ C(3}.,0%

38 PRINT A,B, C{3), Q8%
A® READ X

5¢ PRINT X

60 DATA 1,2,3,” HI",4

Running this program vields the output:

1 2 3 HI
4

The variable and the corresponding constant in a
DATA statement must be ¢f the same type (i.e., a
numeric constant may only be READ into a numeric
variable, and a string-constant into a string S :
variable). '

A special internal "pointer" allows BASIC to keep
track of the "current" data element. When a program
is RUN, this pointer is initially set to to the first
data element in the program’s first DATA statement,
or to "END OF DATA" if there are no DATA statements
in the program.

When a data value is READ into a variable, the data
peinter moves to the next element in the DATA
statement, If there is no more data in the
statement, the pointer is moved to the first element
in the next DATA statement which occurs in the
program. This process continues until there are no
more DATA statements, at which time the pointer is
set to "END OF DATA". After this happens, should a
READ be attempted, it will result in a program error.
Unless a RESTORE statement is executed, each data
item may be READ once and only once, in the order in
which it appears in the program text.

READ ERROR

Either an attempt was made to read data once the "END

OF DATA" condition .occurred (without the execution of

an intervening RESTORE)}, or the value was not of the ‘l

- NORTH STAR BASIC - 1-2

TI— e ——————————eenil

STORING DATA WITHIN THE PROGRAM TEXT (Continued)

(, same type as the variable to which it was to be
: assigned.
SEE ALSO: STATEMENT: DATA

STATEMENT: RESTORE

- NORTH STAR BASIC - 1-3

STORING DATA WITHIM THE PROGRAM TEXTw(Continved)

STATEMENT:

ACTICN:

EXAMPLE
'PROGRAM:

REMARKS :

ERROR .
MESSAGES:

SEE ALSC:

RESTORE
RESTORE <line number>

The "pointer" to the next data item to be READ is
moved to the first item in the first DATA statement
in the pregram text. If a line number is specified,
the pointer is moved to the first data item in the
DATA statement at {or the first DATA statement
cccurring after) the given line,

5 REM Example of RESTORE
1@ READ A \ PRINT A

28 RESTORE

380 READ A \ PRINT &

4¢ RESTORE 748

S0 READ A \ PRINT &

60 DATA 1,2,3.,4

70 DATA 5,6,7,8

Running the above program produces the output:
1
1
5

RESTORE provides a means by which the same
information in DATA statements may be READ more than
once by a program. RESTORE makes it possible to
*recycle" data (as shown in lines 18 to 32 in the
example program), or "skip around" the data (as in
lines 40 and 58). .

The RUN command causes an automatic RESTORE (to the
first DATA statement}.
Same as STATEMENT: GOTCQ

STATEMENT: READ
STATEMENT: DATA

- NORTH STAR BASIC - I-4

S e

(_ DIsucssiOw:

PROGRAM CONTROL

EABCUTION AKD CONTROL FLOW

The action specified by each statement in a BASIC
program is performed when that statement is
"executed", In BASIC, statements are usually
executed in a seqguential fashion, one after the
other. BASIC scans a program and executes its
statements as vou would read the program listing:
from lines with lower numbers to lines with greater
numbers, and, if there is more than one statement on
a line, from the leftmost statement to the rigntmost
staztement on that line.

The order of statement execution {alsc called CUNTRUL
FLOW) may be altered through the use of several
epecial BASIC statements: GUTO, IF...THEN, FCR.,
WEXT, EXIT, GOSUB, RETURN, and Qi&...GOTO. FEach of
these CONTROL STATEMENTS is described in greater
detail in its own section of this manual.

A control statement forcges BASIC fto treat the line
number it specifies or the program location it
implies as the location of the next statement to
execute. Unless another control statement is
encountered, BASIC will return to seguential
execution at the new location.

In BASIC programs, the natural flow of control is -
cften diverted, in order to achieve savings in
program execution time and storage requirements. For
example, repetition of program lines, a powerful
space-saver, may be accomplished by using IF...THEN
and GOTO statements. A common repetitive "looping"
technigque uses the statements FOR and NEXT (and,
occacionally, the EXIT statement as well). Often,
the program must make a choice on which of several
alternative instruction blocks is to be executed
next, based on a given condition. IF...THEN
statements are used to evaluate the conditions and
route contrel to the appropriate parts of the
program. In certain situations, the ON...GOTO
statement may be used in this capacity. Finally,
GOSUB and RETURN are used to implement subroutines,
which allow a programmer to substitute single GOSUB
statements for entire large program segments,
provided the segments ({subroutines) are defined
e¢lsewhere in the program text.

~ NOKTH STAR BASIC - J-1

M‘

STATEMENT:

ACTION:

E-XAMPLE
PROGRAM:

REMARKS:

EREOR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL {Continueds

GOTO <line number>

A GOTO statement causes an immediate "jump” to the

specified line, instead of proceeding with the normal

sequence of statement execution. Regular seguential

execution resumes at the specified line.

18 PRINT "THIS PRINTS FIRST"
2@ GOTO 490

30 PRINT “"THIS NEVER PRINTS"
35 PRINT "THIS PRINTS THIRD"
37 ERND

42 PRINT "THIS PRINTS SECOND"
50 GOTO 35

There may be no blank between GO and T0.
GOT0O is a single BASIC keyword.

Note that a <{line number> must be a numeric integer

constant. It may not be a variable or complex
expression. '

LINE NUMBER ERROR

The specified line does not exist within the BASIC

program.

ouUT OF BOUNDS ERROR

The line number specified in the GOTO statement is
larger than 65535. {NOTE: This error occurs as s00n

as the erroneous line is typed!)
DISCUSSION: EXECUTION AND CONTROL FLOW

STATEMENT: EXIT
STATEMENT: ON ... GOTO

~ NORTH STAR BASIC -

STATEMENT :

aCTION:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CUNTROL (Continued)

IF <logical expression> THEN <statement>
IF <log. expr.> THEN <statement> ELSE <statement>

When the logical expression is true, the statement
after the word THEN is executed. When the condition
iz false, the statement after ELSE {if it is used) is
executed. If no ELSE is specified, and the condition
is false, the IF statement is ignored and execution
continues with the next statement in sequential
crder. A single line number may be placed after THEN
or ELSE, and is eguivalent to (and shorthand for) a
GOTO statement referencing that line number.

10 IF ¥=5 THEN l4¢d@

160 IF A$="CLYDE" THEN PRINT "HI" ELSE PRINT "BAD PW"
75 IF Q(7)<>3 AND W TREN GOSUB 110 ELSE LET X=15

239 IF A$="HI™ THEN IF 83="THERE" THEN PRINT "YES? ",
899 IF Z THEN ERD

Cnly the THEN or ELSE part of an IF statement
(never both) will be executed for each time the IF
statement itself is executed,

The statement after THEN or ELSE may itself be an IF
statement. Such multiple IFs are said to be WESTED.
There is, of course, a rather small practical limit
as to how deeply IFs may be nested, since the whole
statement must fit on one line.

IF statements do not usually cause error messages

in and of themselves, Errors which cccur during the
execution of an IF statement may usually be
attributed to the type of statement used in either
its THEN or ELSE clause, or the mis-formation of the
logical expression., Check the section on the
appropriate type of statement or feature to track
down the cause of each individual error.

DISCUSSION: USING NUMBERS (relational and

boolean operators)
STATEMENT: GOTO

- NORTH STAR BASIC - J=-3

.

STATEMENT:

ACTION:

EXAMPLES:

KEMARKS:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continued)

ON <numeric expression> GOTO <list of line numberg> ‘

The numeric expression is used to choose a single
number from the list ¢of line numbers. Then, as with
GOTO, execution is immediately transferred to the
line with the chosen number.

10 ON C GOTO 148, 200, 300, 460
1B5 On X-10 G010 19, 20, 30, 4@, 54, 58, 72

The numeric expression must evaluate to a guantity
greater or equal to 1. There may be as many line
numbers in an ON...GOTO statement as will fit on &z
program line.

The first line number in the list will be chosen if
the expression evaluates to 1, the second if it
reduces to 2, the twentieth if it eguals 26, and sc
on. For example, in statement 1P above, if the value
6f C is 3, then the result will be the same as GOTO
396. bn ON,.,.GOTO statement with N line numners in
its list will work for integer values from 1 to N.

SYNTAX ERROR . . :

This can happen with ON...GOTO because the numeric ‘
expression, when truncated, evaluated to an integer

less than 1 or greater than the number of line

numbers in the list.

TYPE ERROR
The expression specified was not a numeric
expression.

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR ;
See STATEMENT: GOTO ' b

STATEMENT: GOTO

- NORTH STRR BASIC - J-4

A

C

STATEMENT @

RCTION:
EXAMPLLE:

REMARKS:

ERROR
MESSAGES:

SEE ALSO:

PRUGRAEM CONTROL (Continued)

STop

This statement causes program execution to stop.
A message is sent to the console terminal, indicating
the point in the program where the stop 0OCCuUrs.

28 STOP

STOP is generally used during program development

to provide temporary breakpoints at known spots
during the execution of the program. Execution of &
STOP returns the computer to DIRECT MODE, at which
time LET and PRINT may be used as direct statements
in order to change and examine, respectively, the
values of variables within the program.

1f CORT is used to resume program execution after
5T0P, any variables modified in direct mode during
the interruption will retain the new values as the
program resumes, '

Frogram text may also be listed ddring the breakpoint
provided by STOP, but, if you intend to continue with
the program using the CONT command, you must be
careful not to change any of the program text (edit,
insert, or delete program lines) during the interim.
I1f you do, CONT will not work, and you will be forced
to KUN the program all over again.

None.
STATEMENT : END
COMMAND : CONT

DISCUSSIGN: CONTROL C, THE PANIC BUTTON
DISCUSSION: SOME BASIC CONCEPTS

- NORTH STAR BASIC - J~5

---u--nﬂ-h---h--ﬂ.-I----------u—------—-—-nm--!‘

STATEMENT:

ACTION:

EXAMPLE
PROGRAM:

REMARKS:

EERROR
MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continuedy

END

Terminates program execution.

1% REM PRINT "2+42=",P
24 END

END is similar to STOP, except that you can t CONTinue
after an END, nor is any message sent to the console
terminal. END causes the end of program execution

and a return to DIRECT MODE. It is useful when you
want to terminate program execution at some point in
the midst of the program.

If normal seguential execution extends past the last
statement (the end of the listing) before an EKD is
executed, END will be assumed as the "last"
statement. Therefore, you are not reguired to use
END as the last statement in the program.

None.

‘STATEMENT: STOP

- NORTH ST&R BASIC - J=6

‘AL EInCUSSION: |

PROGRAM CONTROL (Continued)

THE POK-NEXT LOOP

B0DY OF THE LOOP
; BASIC includes facilities for the FOR-NEXT loop
(namely the statements FOR and WEXT) in order to
provide tor repetition of any arbitrary block of
BASIC statements. The block to be repeated (also
called the BODY of the loop}, symbolized here as
{BODY}, is "sandwiched" between a FOR statement and a
HEXT statement.
EXAMPLE #1
18 FOR I=1 TO 18
{BODY}
99 NEXT
138 REM More program statements.
In EXAMPLE #1, the statements represented by 1BODY|
will be reveated 10 times unless.specific action is
taken within the body to terminate repetition prior
to the completion of the 18th cycle (for exanple. see
the paragraphs on EXIT, below).
'(ﬂ, THE COWTROL VARIABLE AND THE LIMIYT VALUE

In line 18, I, a numeric variable, is called the -
CORTROL VARIABLE of the loop. By using I as a
counter, BASIC will be able to know when to guit
repeating {(BODY}. 1In the example, the first time
{BODY} is executed, I will be set to 1 (the INITIAL
value, as specified in the POR statement). After
that, whenever execution proceeds through {BODY} and
reaches the NEXT statement in line 99, I will be
increased by 1. At such times, BASIC will compare I
against 19 (the LIMIT value set in line 14). If I is
less than or egual to the limit value, executicen
returns once more to the start of {BODY}, and the
cycle begins again. On the other hand, if I is
greater than the limit value, then repetition ceases,
and execution continues beyond the NEXT statement {(in
the case of EXAMPLE #1, at line 1@8).

THE OPTIONAL STEP VALUE

In the example, I was increased by 1 after every
repetition of the body. It is often useful for the
value of the control variable to be increased by a
different amount than 1 each time, or perhaps it
ghould even be decreased! This is accomplished by
adding a STEP clause to the FOR statement,

- NOHKRTH STAR BASIC - 3=7

e i —————vreereesssseii

PROGRAM CONTROL (Continued)

EXAMPLE #2

14 FOR J=1 70 1@ STEP 2
{BODY}
99 NEXT

EXAMPLE #3

18 FPOR K{3)=5 TO 1 STEP -1
{BODY}
99 NEXT

EXAMPLE #2 will repeat {BODY} five times, witn
successive values of J being 1, 3, 5, 7, =snd 9. J is
increased by 2 after each iteration.

In EXAMPLE 3, {BODY} is slsc repeated 5 times, put
the value of K(3) will decrease by 1 for eacn
iteration.

If the STEP clause is not used in a FOR, then the
step value is always assumed to be 1.

Note that, when the step value is positive, the

initial value must be less than or egual to the limit

value. When the step value is negative, the initial
value must be greater than or equal to the limit., If
these rules are not followed, {BODY}! will never be
executed, as in the next example:

EXAMPLE #4

194 FOR Q=5 TO 1

28 PRINT "THIS LINE WILL NEVER BE EXECUTED"
99 NEXT

188 PRINT "PAST THE LOOP"

RUNning the above program yields only the message
PAST THE LOQP

on your terminal., In this case, line 20 is the body,
but even before 1t can be executed, BASIC sees that
the value of Q is greater than 1, and that, with an
implied step of 1, Q will never acgquire the limit
value of 1, so it does not execute the body at zll,
and jumps down to line 168 to continue execution,

The initial, limit, and step value expressions in a

FOR statement need not be integer in nature. Thus,
it is possible to have a loop such as

~ NORTH STAR BASIC -~ J-8

PROGRAM CONTROL (Continued}

EXAMPLE #5

18 FOR I=.1 TO 1@.5 STEP .1
{BODY]
99 NEXT
198 REM Above loop will repeat 103 times.

Because I is a regular BASIC variable, its value may
be compared with others or changed outrignt during
repetition, using the IfF and LET statements,
respectively. <Changing the value of the control
variable, however, shcould be done with great care,
and is an advanced technique not recommended for the
seginning programmer. It is not possible to change
the initial, limit, or step values of the loop during
iteration. They are permanently set for the given
loop when its FOR statement is first executed, (It
ie suggested that the control variable not be used in
the LIMIT or STEP expressions.)

FOR-1.OOP NESTING

FOR loops may be executed while other FOR loops ate
already in progress. This is called NESTING of FOR
loops.

EXAMPLE #6

190 FOR I=0¢ TO 9
28 FOR J=8 TO 9

32 PRINT I.,J
40 NEXT
5B NEXT

In EXAMPLE #6, the loop controlled by J is the body
of the loop controlled by I, The statements from 20
to 40 will be repeated 16 times (as I goes from 0 to
9}, but these statements in themselves comprise a
loop which will also repeat 10 times. The net effect
is that, for every change in J, line 30 will have
been executed once, but for every change in I it will
have been repeated 18 times, As a result of EXAMPLE
#6, line 36, the body of the inner loop, will be '
repeated 14 times 18, or 189, times. The following
is a sample of the output generated:

{see next pagel}

- NORTH STAR BASIC - J-9

M -

L)

9
9
9

7
8
9

PROGRAM CONTROL (Continued)

TN S
. A

etc.

FOR loops may be nested to any arbitrary depth.

However

» there must always be a NEXT to match each

FOR. Also, a different variable must be used to

control

each nested loop.

THE OPTIONAL CONTROL VARIABLE IN NEXT

The control variable of a loop may ontionally be
specified in the NEXT statement which ends that loop.

EXAMPLE
1@
28
39

40
59

same as

USING EXIT

control

will be

used by

#7

FOR I=1 TO 16
FOR J=1 T0Q 18
PRINT I.J . ’
REXT I
NEXT J ‘

Inclusion of the control variaple in the NEXT
statement is useful in clarifying the program text
(determining which NEXT goes with which FOkK). If the
optional control variable is specified in the NEXT
statement, BASIC will perform a syntax check during
program execution and will cause a program error if
the control variable specified in the REXT is not the

that specified in the matching FOR.

& FCR loop may bhe terminated before all the specified
repetitions have been performed if an EXIT statement
is executed. EXIT is used to transfer program

to a line outside the loop ~—- that is, before

the loop s FOR statement or after its NEXT. EXIT is

like a GOTQO, in that it causes a transfer of control

to the specified line number, but it alsc tells BASIC
to end the current FOR loop -- no more repetitions

necesgsary. BASIC uses memory storage to

remember information about the FOR loop while it is
repeating. EXIT tells BASIC to release the memory

the current loop. If it is not used to jump ‘
out of a POR loop, then subseguent loops may not

t

~ NORTH STAR BASIC_— J-19

SEE ALSO:

PROGRAM CONTROL ({Continued)

execute correctly.

EXAMPLE 8

18 REM Assume a l@-element array A.

28 REM The following searches b from

30 REM element 1 to 18 for the first

49 REM nonzero element. The index of

56 REM this element will be N. If all

6% REM elements are @, N will also be 9.

78 REM A FOR-loop is used for the scan,

75 REM and EXIT stops scan if nonzero found.
76 REM

86 FOR N=1 TO 1@

a9 IF A{(N}<>B THEN EXIT 1390

11p NEXT

128 N=9 \ REM By this point, & is all zeroes.
130 REM By this point, N contains

148 REM correct index or zero.

EXITING FRCOM NESTED LOOFS . .

Several nested loops may all be terminated
prematurely at once using EXIT, but a separate EXIT
statement must be used for each embedded loop. For
example, if execution is proceeding at line 70 in the
inner loop of a two-deep nest (similar to EXAMPLE
4#6), and it is desired to go to line 668, outside -the
cutermost loop, the following example represents an
efficient method of doing so using the EXIT
statement:

EXAMPLE #9

70 EXIT 71
71 EXIT 668

STATEMENT: FOR

STATEMENT: NEXT
STATEMENT: EXIT

- NORTH STAR BASIC - J-11

R |

STATEMENT :

ACTION:

EXAMPLES :

KEMARKS :

ERROR
MESSAGES:

SEE ALSOQ:

PROGRAM CONTRUL (Continueds

FOR <control variable> <initial wvalue> T¢ <limit value» ‘
FCR <control variable> <initial value>
TO <limit value> STEP <step value>

Begins a FOR-REXT loop.

13 FOR J=1 TO 10 \ REM Will cause 18 iterations,
25 FOR Q{7)=3 TO 1 N\ KEM Wo looping will occur.
4% FOR A=B*7 TQO SQRT (X}

50 FOR X=.1 TO 1.3 S?TEP .1

93 FOR J=3 TO 1 STEP -1

70 FOR I=19+J TO 1088+ STEP D({X)

For a complete description of the FUR-NEXT loop,
see DISCUSSION: THE FOR-NEXT LOOP.

The INITIAL, LIMIT, and optional STEP values may be
any numeric expressions.

1f the initial value is greater than the limit value
and step is positive, or 1if initial value is less
than the limit and step is negative, the body of the
loop will not be executed.

MISSING NEXT ERROR ‘

BASIC could not find a NEXT statement to associate
with the PFOR.

DISCUSSION: THE FOR-NEXT LOOP

STATEMENT: NEXT
STATEMENT: EXI?T

- NORTH STAR BASIC - J-12

ER

L/ STATHEMENT:

JATION:

L nAMFLES:

1
el

11
LN

ExROR

fESSAGES:

SEE ALSO:

C

PROGRAM CONTROL {(Continued)

NEXT
NEXT <numeric wvariable>

Terminates execution of the loop which starts with
the matching FOR statement. For a complete
description of FOR-NEXT loops, see DISCUSSION: THE
FOR-NEXT LOOP.

I1f the optional numeric variable name is specified as
part of the NEXT statement, a check is made to match
that variable name against the control variable
specified in the corresponding FOR statement.

KREXT
NEXT Q
NEXT A{1l)

It should be noted that the "check variable” in

the WEXT statement, while optional in North Star
BASIC, is reguired in almost every other dialect of
the BASIC language. The use of NEXT without the
check variable can speed program execution.

Upon normal completion of a FOR-NEXT loop, the
control variable will contain tne first valus that
exceeds the limit. To illustrate, here is an example
proegram:

18 FOR K=1 10 5 STEP 2
280 NEXT K
38 PRINT K

When RUN, the above generates the following output:
7

Note that NEXT should not be used as the THEN or ELSE
part of an IF statement.

CONTROL STACK ERROK

An attempt was made to execute a NEXT statement with
no FOR loop in effect. Also, this error occurs when
the variable specified in the NEXT statement doesn’t
match the control variable specified in the previous
FOR statement. This usually means that loops are
improperly nested.

STATEMENT: FOR
DISCUSSION: THE FOR-NEXT LOOP

13

o
1

- NORTH STAR BASIC -

___--------------n-*----------U-.--------'-"." .

I
_ . !
PROGRAN CONTROL (Continueds . i

STATEMENT: EXIT <line number> 4
ACI'ION: Terminates execution of the currently-running \
POR-NEXT loop and transfers execution to the
specified line.

EXAMPLE: 20 EXIT 95

REMARKS: EXIT is a special form of GOTC, and is used for
roughly the same purpoese as GOTU -- to transfer

pvrogram execution from one point to ancther. The
only difference is that EXIT should be used only to
"jump" from some point within an active FOR-NEXT lcop
to a point outside the loop. Wwhen "jumping" from
point to point within a FOR loop, or when no loop is
active, GOIU should be used,

FEach use of an EXIT statement terminateg only the
current FOR-NEXT loop. See DISCUSSION: THE FOR-NEXT
LOOP for the correct method of EXITing from nested
loops.

ERROR
MESSAGES: CONTROL STACK ERROR
EXIT was used when no FOR-loop was being executed.

LINE NUMBER ERROR '
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

SEE ALSO: DISCUSSICON: THE FOR~-NEXT LOGP
STATEMENT: NEXT
STATEMENT: FOR
STATEMENT: GOTO

|
'i
i

14

- NORTH STAR RASIC - _ J

i

DisCUSSIuN:

PROGRAM CONTROL (Continued)

SUBRQUTINES

when writing programs, you will often find that you

need to repeat what amounts to essentially the same

sequence of statements at various separate locations
in the program text. For example, your program may

require the user to answer "yes" or "no" teo certain

guestions. After writing the program, you £ind that
cequences similar to that below occur several times

in the text: '

18 REM Get yesS or no answer.

15 REM Keeps trying till ¥ or N ans given.
20 INPUT "PLEASE ANSWER YES OK wO: ",A%

3p IF AS="" THEN 20\REM No ans given.

40 A$=AS$(l.,1)

30 IF AS="Y" THEN 7VO\REM OK ans -

60 IF AS<>"N" THEN 28\REM Not = Y either.
70 REM At this point, ans was Y or N.

It is gertainly troublesome for you (and a waste of
program space besides) to type the same sequence of
statements over and over again. If you reguired
several such answers at one point in the program, of
course, vou could use a loop to repeat the statements
as often as necessary. However, the problem is
different when vyou must perform the same actions in
different parts of the program.

A very nice solution to this problem inveolves writing
just one copy of the segment at one point in the
program, then somehow telling BASIC to “re-execute”
that part whenever necessary., That is, at those
points in the program where you need to get a yes or
no answer, BASIC would "jump over" to the part of the
program which gets the answer, then "return" to the
original point to continue on with whatever should
happen after the answer has been obtained.

In this situation, the "answer" segment would be
called a SUBROUTINE. This subroutine would be
“invoked" (or “called")} from other parts of the
program to perform its single, important task,

North Star BASIC makes available two special
statements which provide subroutine capability.

(Both are described in detail in their own sections.)
The first is GOSUB, which is used to call a
subroutine, The GOSUB keyword is followed by a line
number, which tells BASIC where the subroutine beginsg
in the program text. BASIC reacts to a GOUSUB by
transferring execution to the gpecified line number,

~ NORTH STAR BASIC - J-15

PROGKAN CONTROL [Cdntinuedl

while "remembering"” the point where the subroutine
was called. (The action of the GOTQO is similar, but
no calling location is remembered, which makes GOTO
unsuitable for subroutine c¢alling.) when the
subroutine is finished, BASIC uses the "remembered”
location to return to the point in the program
immediately after the subroutine was called. BASIC
knows when a subroutine is finished only when it
executes a RETURN statement. RETURN merely says to
BASIC, "go back te the calling point now". It is not
necessary to make RETURN the last physical statement
in a subroutine, though 1t turns out that, in
practice, this usually happens.

The "answer" program segment above may bée turned into
a legal BASIC subroutine merely by replacing the last
REM statement with RETURN, and translating the
appropriate line numbers:

1488 REM Subroutine example.

1618 REM Get yes or no answer in AS

1215 REM Keeps trying till ¥ or N &ns given.
1429 INPUT "PLEASE ANSWEK YES CR NO: ",A$
1838 IF AS$="" THEN 1028\REM NO ans given.
1¢49 1$=A5(1,1)\REM Examine lst char only.
1056 IF A$="Y" THEN 187@\REM OK ans.

1663 IF AS<>"N" THEN 1828\REM Not = ¥ either.
1870 RETURN

The subroutine may now bhe called at any point in the
prodram where it is desired to retrieve a yes or no
answer. Here is an example., showing how the
subroutine at line 1808 would be called:

40 PRINT "“Are you over 6 feet tall?"

50 GOSUB 18608 \ REM Collect answer in A$
69 REM More program statements.

- NORTH STAR BASIC - J-16

(STATEMENT:

ACTTON:

LaanPLE

ERUGERN

ERROE

MESSARGES:

SEE ALSG:

PROGRAM CONTROL (Continued)

GOSUB <line number>

The location of the statement immediately after

the GOSUB statement is "remenmbered” by BASIC, and
program execution jumps to the specified line. GOSUB
is used te execute a seguence of statements, called a
SUBROUTINE, elsewhere in the program. Execution will
resume at the “remembered" location if a RETURN
statement is executed as part of the subroutine.

10 REM Tllustration of subroutines.
28 PRINT "READY TO CALL SUBROUTINE”
30 GosuUB 1d0¢

40 PRINT "WE ARE BACK!"

3¢ ERD

This example assumes that there also exzists a
subroutine beginning at line 18608 which sends the
message YNOW IN THE SUBROUTINE" to the terminal. 1f
so, RUNning the program produces the following
resuits:

READY TO CALL SUBROUTINE
NOW IN THE SUBRCOUTINE
WE ARE BACK

A subroutine may be called while another is in
progress. The only limit on this "subroutine
nesting" is the amcount of memory available during
program execution. ("Remembering" the location of
the "return" point takes memory space.)

LINE NUMBER ERROR
See STATEMENT: GOTO

OUT OF BOUNDS ERROR
See STATEMENT: GOTO

STATEMENT: RETURN

STATEMENT: GOTO
DISCUSSION: SUBROUTINES

~ NORTH STAR BASIC -

M

STATEMENT:

ACTICN:

EXAMPLE:

REMARKS:

ERROR

MESSAGES:

SEE ALSO:

PROGRAM CONTROL (Continueg)

RETURN

T¢ conclude a subroutine, RETURN is used to cause
program execution to resume immediately after the
GOSUB statement which c¢alled the subroutine.

1999 RETURN

There are two versions of the RETURN statement

in North Star BASIC. This vercsion is for use with
subroutines only. Another is uvsed with user-
functionsg., See Chapter K, FUNCTIONS, for details on
that version of RETURN.

CGNTKOL STACK ERRUR

The RETURN statement was executed when no GOSUB was
currentlv active.

STATEMENT : GOSUB
DISCUSSION: SUBROUTINES

- NORTH STAR BASIC - J-18

C

FUNCTIONS

5ISCUSSION: FUNCTIONS
BUILT-IN FUNCTIONS

When you want to compute the cosine or the sauare
root of a number within your program, how can you do
this? Of course, it's always possible to write a
subroutine in BASIC to compute the cosine or sguare
root of an arbitrary number, but doing so consumes
vour time, is likely to slow down your program if the
particular computation is needed often, and certainly
enlarges the program.

RASIC includes built-in FUNCTIONS, twe of which
handle cosine and sguare root calculations,
respectively. The other available bnilt-in functions
compute many different values, both numeric and
string, which programmers often need, and whose
availability makes the task of writing efficient
programs easier. :

When writing a program, if you neéd the cosine ¢f 2,
write COS(Q). If you want .the square root of 39, use
SORT(9). The function can be used in a program
wherever the actual number can. COS{6) stands for
(and can be used in place of) the number 1. Writing
SORT(9) is the same as writing 3.

ARGUMENTS

The value in parentheses in a function call is. called
an ARGUMENT to the function. The function will use
the value(s) of the specified argument{s) to generate
the function value. SQRT{4), for example, uses the
numeric value 4 to generate its sguare root, 2.

2ll functions in North Star BASIC reguire at least
one argument, and some may require more. If a
function reguires more than one argument, it will
expect them to be separated by commas to form an
ARGUMENT LIST within the parentheses.

Expressions can be used as arguments. COS(2*7)
represents the same number as C05(14). If the

variable A contains the number 14, then CCS(A) also
is the same as C0O5(14).

Functions can be used in expressions. Thus, the
statement

A=2*3QRT (180)

- NORTH STAR BRSIC - K-1

M

FUNCTIONS {(Continued)

would put the value of 28 in A.

Because expressions can be arguments, and functions
can be expressions, functions can be used as
arguments. COS(SQRT(108)/18-1) is the same as
COS(9) .

You must supply functions with the exact number and
types of arguments they require, in exactly the order
required, or else when the program runs and the
erroneous function call is found, BASIC will halt
execution and complain of a SYNTAX ERRCR. Such an
error will occur, for example, if you attempt to use
SQRT{"HI") in a program or direct statement. The
SQRT function wants a numeric argument, and "HI" is a
string (see DISCUSSION: USING STRINGS). (C0S(2,3)
causes a SYNTAX ERROR becuase the C0OS function wants
only one numeric argument.

The following pages contain a list and description of
all the functions built-into North Star BASIC. Each
function description includes the name of the
function, the order of expected arquments, as well as
the type (numeric or string) and purposge of each. A
shert paragraph describes the value represented by
the function as well as how the arguments relate to
that valuve.

FUNCTIONS USEFUL IN MATHEMATIC OPERATIONS

ABS {<numeric expression>)
Returns the absolute value of the numeric expression.
AB5{3)=3, ABS(-3)=3, and ABS(8)=8.

SGN (<numeric expression>)
Returns 1, 8, or -1, indicating whether the <numeric
expression> is positive, zero-valued, or negative,
respectively. B8GN(18)=1, SGN(8)=0, and SGN{-3.2)=-1.

INT (<numeric expression>)
Returns the greatest integer value less than or equal
to the value of the argqument. INT(3)=3, INT(3.9}=3,
and INT(-3.5)=-4.

LOG (<numeric expression>)
Returns an approximation to the natural logarithm of
the value of the <numeric expression>. If LOG is
called with an argument value less than or equal to
zero a program error will occur. LOG(1)=4@,
LOG{7)=1.9459102), and LOG(.1}=-2.30825851

- NORTH S5TAR BASIC - K-2

FUNCTIONS (Continued)

EXP(<numeric expression>)
Returne an approximation to the value of e raised to
the power of the pumeric expression. EXP{B)=1,
EXP{2)=7.2890562, EXP(-2.3625851)=.1, and
EXP{1l)=2.7182817

SQRT (<numeric expression})
Returns an approximation to the positive sguare root
of the numeric expression, A program error will
occur if this function isg called with a negative
argument., SQRT(6)=0, SORT(10)=3.1622776, and
SORT(.3)=.54772256

SlN(<numeric expression>)
This function computes an approximation to the
trigonometric sine of the value ¢f the numeric
expression. The expression must specify an angle in
radians. (Ncte that 2 * pi radians = 368 degrees.)
SIN(A)=0, SIN(3.1415926/2)=1.

TR (7numeric expression®) .
C0S computes an approximation to the trigonometric
cesine of the value of the numeric expression, which
must specify an angle in radians. C0S(@)=1,
COS5(3.1415926/2)=0.

AT (<numeric expression>)
The ATN function computes an approximation to ths |
trigonometric arctangent functien. The angle value
returned is expressed in radians. ATN(5)=1.3734207,
ATN(1.7)=1.8398722.

FUNCTIONS USEFUL IN STRING OPERATIONS

LEN(<string name>)
Returns the current length of the string held in the
string variable named as the argument, TIf AS="CAT"
then LEM(A$) will be equal to 3. If AS holds the
null string, then LEN{AS) will return 0.

CHRS {(<numeric expression>}
The CHRS$ function returns a one-~character string as
its value. The arqument value (in decimal) specifies
the ASCII character code for the character to bhe
returned in the string. Note that the argument to
CHRS can be any integer in the range of @ to 255.
CHRS (65)="A", CHR$(97)="a", CHR$(32)=" " (space), and
20 on.

aSCi<string constant, string variable, or substring reference>)

Returns a numeric value -- the numeric ASCII code of
the first character contained in the argument. The

- NORTH STAR BASIC - K-3

M

FUNCTIONS (Continued) ™

argument must not be the null string. ASC{"B“)=66, ‘
ASC{"CLUNK")=67. {Note that CHRS and ASC are inverse
functions.)

VAL(<string expression>)
Converts the value of the string expression to a
number and returns that number as its vatue., If the
expression doesn’t evaluate to a legal numeric
constant, then a program error occurs. Leading
blanks are igneored., VAL{("123")=(the number) 123.
VAL("B06000")=6., VAL("abcde"), VAL(" "y, and
VAL("") will cause errors, Note that if any non-
numeric characters follow the numeric constant which
is at the beginning of the string expression, they
will be ignored. For example, VAL{"123XYZ")=]123, hut
VAL("XY¥Z123") causes an error.

STRS (<numeric expression>)
This is the inverse function of VAL -- it converts
the numeric value of its argument inte a string
tepresentation of that number, and returns that
string as the function value. The format of the
string depends upon the default format as specified
in a PRINT statement (i.e., free~format if no
previous PRINT statement has specified a default
format}). See STATEMENT: PRINT and DISCUSSION: PRINT ‘
FORMATTING for further details.

FUNCTIONS USEFUL FOR SPECIALIZED INPUT

INCHARS (<numeric expression>)
This function will await the typing of a single
character at the input device specified by number in
the numeric expression. The character will be
returned as a single character string. Contrel
characters as well as printing characters will be
returned. Control-C will be returned only if
control-C program—-interruption has beesn disabled.
(See DISCUSSION: CONTROL-C, THE PANIC BUTTON.) The
character will not be echoed by BASIC (printed on the
terminal when its key is pressed). Assuming device 0
is the system conscle and device 1 is a remote
terminal, then INCHARS (@) will return a single
character typed at the conscle, and INCRERARS (1) will
return one character typed at the remote location.
The following short program will fetch an individual
character from the console terminal and will echo it
on that terminal’s screen, printer, etc:

18 T$=INCHAPRS({B) “\ REM Get the character
29 PRINT T%, \ REM and echo it. ‘

- NORTH STAR BASIC - K~-4

“

FUNCTIONS (Continued)

INP{<numeric expression»)

This function performs an 8882 or Z88 IN instruction
from the input port specified by the argument value.
The numeric value returned by the function is the

- contents of the accumulator (in the range of B to
255) after the IN instruction. Note that INP will
not wait for valid data, as do INCHARS, INPUT, and
INPUT1, but instead fetches whatever byte value
exists at the input port, whether or not that value
represents useful data.

FUNCTIONS USED IN MANIPULATING DISK FILES

TYP(<numeric expression’>)
This function returns as its value a number which
indicates the type (numeric = 2, string = 1, end-of-
file = #) of the next data item in the open disk file
with open file number given by the value of the
function's argument. See DISCUSSION: DATA FILES for
details. .

FILE(<string expression>))
Returns a number corresponding to the type of the
file specified by the <string expression>, which must
evaluate to a legal disk file name as defined in
DISCUSSION: DATA FILES. 1If the argument is not a

legal file name, or is not the name of a disk file on.

a currently loaded diskette, then the value -1 is
returned. Assuming that “"ABC* is the name of a BASIC
program file on a disk in drive 2, then FILE("ABC,2")
will return the wvalue 2. FILE("DOS"} will return a @
if the diskette in drive 1 is a system diskette.

MISCELLANEQUS FUNCTIONS

RND (<numeri¢ expression>)
This function returns a pseudo-random numeric value
between @ and 1. The number generated is dependent
upon the previous number generated by the function.
The very first number in the seguence is called the
“seed", or starting value. If the value of the
argument is negative, BASIC selects a random seed
{based upon the status of the disk system), and
computes the value of the function from it. (The
“randomizing" effects of using RND with a negative
argument are enhanced if user-input is redguested
between the last disk access and the "negative” call
to RND.) If the argument evaluates to @, the
previously computed value is used to generate another
pseudo-randem value in the sequence. If the argument
reduces to a value between @ and 1, this number is

- NORTH STAR BASIC - K-5

T R

PUNCTIONS (Continued) -

used as the new seed, the sequence is restarted, and
the first value generated from the new seed isg
returned as the valve of the function. The following
program will set a random seed and then print 10
pseudo-random values:

18 J=RND(-1)

2@ FOR J=1 TO 19
38 PRINT RND(4)
48 NEXT

EX2M{<numeric expression>)
The EXAM function returns the contents of the
computer memory byte addressed by the value of the
<numeric expresgsion>. The argument should evazluate
to an integer from # to 65535. The value returned
will be numeric, an integer from 4 to 255,

FREE (<numeric expression>)
Returns the current total number of bytes remaining
in the BASIC memory for additional user-program or
data. Free storage, as this memory area is called,
is also used for internal "bookkeeping" storage and
storage of temporary values used by BASIC, such as
string values during c¢oncatenation. The argument .
value, as long as it is numeric, is ignored, and most
programmers use @.

TAB(<numeric expression>) '
This function can only be used in a PRINT statement.
Use of the TAB function will cause the cursor or
print-head of the output device specified in the .
PRINT statement to advance to the character position
specified as argument to TAB. BASIC accomplishes

* this by printing the appropriate number of spaces.
The first character position on a line is the @th
position, all others being numbered sequentially from
. If the cursor or print-head is past the specified
position, then it will not move at all.

CALL(<numeri¢ expression>) .

CALL{<numeric expression>, <numeric¢ expression>)
CALL permits BASIC programs to use machine-language
subroutines. The value returned is an integer from 8
to 65535, which represents the value in the HL
register-pair when the machine-language subroutine
returns control to BASIC. The first argument to CALL
ie a numeric value from @ to 65535 which represents
the decimal value of the memory address where the
machine-language subroutine begins. The optional
second argument, also an integer value from £ to
65535, will be passed to the machine~language routine

- NORTH STAR BASIC - K-6

FUNCTIONS (Continued)

b in the DE register pair. For more information on
CALL and the use of machine-language subroutines in
general, see DISCUSSION: MACHINE LANGUAGE

SUBROUTINES.

- NORTH STAR BASIC -

—ﬂ----.-..----'---------------.---.--‘-----.'

FUNCTIONS (Continued) *»

USER-FUNCTIONS ‘

Functions may be written in Neorth Star BASIC as part
of a BASIC program, They are accessible (3ust as
built-in functions are) to any part of the program.
These USER-FUNCTIONS can return either string or
numeric values, and can accept as many string and/or
numeric arguments as are necessary to compute the
function value.

FUNCTION NAMES

User—-functions take names of the following form: the
two letters FN followed immediately by a regular
string or numeric variable name, as in FNX, FNQ7,
FNAS, FMNZ3S, et¢. The type of the variable-name part
of the function name determines the type of the value
that the function returns. FHNX, therefore, is a
numeric user-function, while FNAS returns a string
value. Note that user-function names are separate
ahd distinct from variable names. In particular, the
values returned by FNAS (for example}, will not
affect the value stored in variable- AS, nor will
assignment to AS$ change the value that FNAS returns.

SINGLE-LINE FUNCTIONS 4

A user~-function can be defined by a single line, or
may reguire many lines to define. For example, the
following is a one-line user~function:

16 DEF FNR(V,P)=INT((V*18TF}+.5)/(19TP)

FNR, as defined in the DEF statement above, will
return as its value V rounded-up to the P-th decimal
place. For example, FNR(3.1415,2) makes V stand for
3.1415, and P for 2. The value returned will be
3.14.

PASSING VALUES TO USER-FUNCTIONS

4 DEF statement must include a list of string and/or
numeric¢ variable names, called PARABMETERS to the
function. This parameter list is enclosed in
parentheses following the function name. For
example, in the following DEF statement, X$, Y, and 2
are parameters to function FNW:

S@ DEF FNW(X$,Y,Z)=LEN(X$)+¥+2Z

A FUNCTION CALL must include a list of string and/cr ‘
numeric expressions. This expression list is

- NORTH STAR BASIC - _ K-8

M |

FURCTIONS (Continued)

enclosed in parentheses following the function name.
Wwhen a function is called, the values of the
expressions in the expression list are assigned, one-
by-one, left-to-right, to the corresponding variables
in the parameter list of the called function. After
this assignment process, the variables named in the
parameter list will contain the corresponding values
from the expression list and can be used in the body
of the function in computing the function value.

The number of expressions in the function call’s

expression list must match the type of the

corresponding parameter in the parameter list., If

the types or number of parameters in the function

definition do not match the types or number of :
expressions in the function call, an ARGUMENT ' i
MISMATCH ERROR or a SYNTAX ERROR will occur.

NUMERIC PARAMETERS

At function call time, before-each numeric variable
in the parameter list is assigned its value from the
expression list, the value of the variable is saved
by BASIC. When function execution is completed, the
saved values of the numeric variables from the :
parameter list are restored as the values of those i
yvariables, Thus, the values of the numeric variables |
from the parameter list after the function call is ;
completed remain the same as before the function was
called. This means that the numeric parameters of a
function may be thought of as separate variables when
used during function execution.

Try the following:

1@ DEF FNX({B)=B*3
20 B=2 \ PRINT B
3@ PRINT FNX(3)
4¢ PRINT B

B prints-out as 2 before as well as after FNX is
called, even though B=3 during the evaluation of FNX
because of the B-value of 3 supplied in parentheses
in the function call.

STRING PARAMETERS

Unlike those of numeric parameters, the values of
string parameters of a function are not saved at
function call time. Thus, after function execution
is completed, those variables will retain the most
recent values they acguired during functicn

- NORTH STAR BASIC - K-9

M

FUNCTIONS (Continued) w

axecution. Note that the assignment of string
expressions to string parameters at function call
time follows the same rules as assignment to string
variables in LET statements. In particular, if the
string parameter has not been DIMensioned as a string
variable before the function call, it will
automatically be DIMensioned to maximum length of 18.

To contrast the treatment of string and numeric
parameters at function call time, try this program:

18 DEF FNQ(X,X$)=ASC(XS$)+X
20 X=7 \ X§="FIRST"

36 PRINT Xs$,X

44 PRINT FNQ(1,"NEXT")

58 PRINT X$%$.,X

Note that, although the value of the numeric variable
X is saved while the name of X is used for an
argument to FNQ, the same is not true for XS. After
the function is evsluated, X$ still retains the value
it was assigned during its use as FNQ argument.

MUOLTI-LINE USER-FUNCTIONS

The second type of user~function, the multiple-line
function, permits a value to be computed and RETURNed
by a set of one or more BASIC statements, as opposed
to the single expression of the single-line function.
The coperation and purpose of multi-line functions
therefore closely parallels that of subroutines,
However, multi-line functions permit the easy passing
of arguments, and the return of a single, computed
result value.

The definition of a multi-line function employs the
DEF statement, but without the “value eguation®
necessary to single-line function definitions. The
DEF statement which begins a multi~line function
contains only the keyword DEF, the name of the
function, and the list of its parameters:

1® DEF FNM{X, M)

The statements which compute the function value
follow this line. When the value has been computed,
a special version of the RETURN statement causes
function execution to cease, and specifies the valve
to be RETURNed as the function value. Finally, to
signal the physical end of the function definition
itself, the FNEND statement is used. As an example,
add to the definition of FNM (started in line 14,

~ NORTH STAR BASIC - K-16

SOME

SEE aLS50:

==

FUNCTIONS (Continued)

above) so that it becomes a function which RETURNs
the value of ¥ modulo M, that is, the remainder
generated when X is divided by M:

1@ DEF FNM(X,M)

20 IF M<=0 OR M<>INT (M) THEN 40

30 RETURN ABS(X)- (INT(ABS(X)/M)*M)

40 PRINT "ERROR IN MODULO“ \ RETURN -1
50 FNEND

In general, multi-line functions {as opposed to
single-line ones) are needed when the algorithm which
computes the function value is too complex to fi: on
one line as a single expression.

FINAL NOTES

Functions cannot be defined within other functions.
One definition must finish before another ¢an hegin.
In particular, a "FUNCTION DEF ERROR" will occur if
you forget to include the FNEND which must conclude
every multi-line function definition, then, later in
the program text, attempt to define another function.

211 user-functions must have at least one (1)
parameter. It is not necessary to use the parameter
in computation, but it must be a part cf the
definition, nevertheless,

It is not possible to pass entire numeric arrays as
arguments to user~functions, but individual elcements
of arrays, like simple variables, are allowed. Thus,
FNQ{A(3),"GAIL") is a proper call of the function
given as example above.

User-functions cannot be called in direct mode. If
you use a statement in direct mcde which includes an
expression with a call to a user-function in it, vou
will get an "ILLEGAL DIRECT ERROR".

STATEMENT: DEF

STATEMENT: RETURN (CHAPTER K)
STATEMENT: FNEND

- NORTH STAR BASIC - K-11

FUNCTIONS (Continued)

STATEMENT: DEF <function named>(<parameter list>)=<expression>
DEF <function name> (<parameter list>)

ACTION: The first form defines a single-line user-function,
numeric or string. When evaluated, the single-line
function returns the value of the expression on the
right side of the egual sign. The type of the
expression must match the type of the function name,
string or numeric.

The second form begins the definition of a multi-line
user~function. The function value in this case is
determined by the expression in the RETURN statement
used in the body of the function definition itself.
The type of the expression in any RETURN statement in
the function bedy must be of the same type as the
function name.

A user-function name consists of the letters FN
followed by a string or numeric variable name (such
as FNAS, FNQ7, etc.}.

EXAMPLES: {single-line)
76 DEF FNH(X,Y)=SQRT((XT2)+(¥T2)) \ REM Hypotenuse
45 DEF FNUS{L$)=CHRS (ASC{LS$}~32}) \ REM Low to upp case

{(multi-line)
114 DEF FNQ(A,B,C)
589 DEF FNA7S(AS,4A,M)

REMARKS : The addition of the FN prefix distinguishes function
names from variable names. FNA and variable A are
not the same, nor even necessarily related,

If a DEF statement is encountered during progranm
execution, then execution will skip forward to the
first statement after the definition. Function
definitions may be located anywhere in the program
text. PFunction definition occurs before program
execution begins.

ERROR
MESSAGES: FUNCTION DEF ERROR
an {apparently) single-line function was defined
improperly, or an attempt was made to define a
function within the definition ¢f & multi-~line
function. '

SEE ALSO: DISCUSSION: FUNCTIONS (user-functions)

STATEMENT: RETURN (CHAFTER K)
STATEMENT: ENEND

- NORTH STAR BASIC - K=-12

A

STATEMENT:

ACTION:

ERROR

a3
]
i

HMES

[k el =
ShGE

o1

S

FUNCTIONS (Continued)

RETURN <siring or numeric expression>

The evaluation of the multiple-line user-function
currently in progress terminates. The function value
becomes the value of the expression in the RETURN
gtatement.

1¢ RETURN F$+",2"

28 RETURN A

65 RETURN X+3

99 RETURN “CONSTANT"

To not confuse this form of the RETURN statement witn
that which is used for subroutines. Improper
utilization of this form to conclude a subroutine, or
of the subroutine form to terminate a multi-line
user~function will result in a SYNTAX ERROR.

The value RETURNed by a multi-line function must be
of the same type as the function name. String
functions may not RETURN numeric values, and numeric
functions may not RETURN string values.

SYNTREX ERRCR
The RETURN expression doesn’ t match the function

type.

DISCUSSION: FUNCTIONS {user~functions)
STATEMENT: FHREND

STATEMENT: DEF

STATEMENT: RETURN (CBAPTER J)

- NORTH STAR BASIC - K-13

STATEMENT:

ACTION:

EXaMPLE

FUNCTION:

RCVARKS

ERROR
NES5AGES:

SEE ALSO:

FUNCTIONS (Continued)

FNEND

FNEND marks the end of the segment of program

text which constitutes a multiple-line user-function
definition,.

18 DEF FNF(X) \ REM Compute factorial.

15 X=INT(ABS(X)) \ REM Eliminate bad arguments.

20 IF X=f OR ¥=) THEN RETURN 1 ELSE RETURN FNF{X-1)*X
386 FNEND

The FNEND statement should nst be confused
with the RETURN statement used to end multi-line
user-function execution.

The FNEND statement may not appear on the same
program line as a DEF statement.

CONTRCL STACK ERROR

The FNEND statement is not supposed to be executed.
This error results when an FNEND statement is
executed. ’

FUNCTION DEF ERROR

The FNEND statement is on the same line as a3 DEF
statement, or an FNEND statement exists which cannot
be matched with a corresponding DEF statement.

DISUCSSION: FUNCTIONS (user-functions)

STATEMENT: DEF
STATEMENT: RETURN (CHAPTER K)

- NORTH STAR BASIC ~ K-14

'L/ DIsCUSsI0N:

FILE

DATA FILES

DAVA FILES

bata is stored on diskette in FILES. & file is a
section of storage space on the diskette which is
reserved for data storage use by giving it a FILE
NAME and three other attributes: a LENGIH (or SIZE),
a TYPE, and an INFORKMATION DENSITY. You can list
this information for each file on diskette by u=sing
the CAT command. Each CATalog listing is ¢of the
following format:

NAME LOC 51zZE TYPE DENSITY TDI
tor example, the listing
PRUGL 73 29 2 D

genotes a file named “PROG1"™, starting &t cector 73
on tnhe diskette, with a size of Z@ 256-bvie disk
olocks, and of type 2. The "D" at the ernd of the
C4Talog listing signifies that the information storad
in the "PROGL" file 1s stored in double-density
format. If a file ig stored in single-density. an
"$" will appear in this position instead. (The "type
degendent information", or TDL, is not shown in this
example, is rarely used, and will not occur in any of
our examples.) Al} this file information ig stored
in a special place on tne diskette (the first four
sectors, B to 3) called the DIRECTORY.

NAMES

The WAME of a file consists of a series of not more
than 8 printable characters. (The "printable
characters" include the upper and lower case
zlrhabets, the digits @ tc 9, and the varicus
punctuaticon symbols.) &ny characters may be used in
any order, with the exception of the space and the
comma. The space may not be used anywhere within a
file name. The comma may only be used in a specific
situation, which will be discussed in a moment. The
name of a file must be unique on a diskette —-- that
is, two or more files may not share the same file
name on the same diskette, For example, only cne
file on a diskette may have the name FILEl. However,
it should be noted that the upper and lower case sets
of letters are considered to be separate and distinct
with respect to the names of files, so FILEl ancd
ftilel are not the same file name, and may be used o
name different files on the same diskette. A& DRIVE
KNUMBER SUFFIX mav be added to the name of & file to
indicate that the desired file 1s located on 3

oy

- NORTH STAR BAZSIC - L-1

et et

FILE

FILE

DATA FILES (Continued)
' ™

diskette In a specific drive, which resolves any
possinle contusion between files of the same name ©on
different diskettes. The drive-suifix is formed by
following the name of the file with a comma, and then
a single digit, corresponding to the selected drive,
I1f, for example, the file “PROG" isgs on the diskette
in drive #2, the proper way to write its name is
"PROG,2". File "POP" in drive #3 would be called .
"POP.3". 1I1f no suffix is given, then the system
assumes that the file is on the diskette in drive #1.
The file names "SYNONYM" and "SYNONYM,2" refer to
separate files on different diskettes.

A FILE NAME is an unambiguous reference to a specific
file, and so specifies not only the file’'s name on
diskette, but also the drive in which it is located.
Thus, a FILE NAME consists of an actual name of no
more than 8 printable characters plus an optiocnal
drive-suffix (which is assumed to reference drive #1
if omitted). A file name is a string value.
Statements which reguire file names as arguments will
accept any string expression, as long as it evaluates
to a legal file name.

S1ZES ([LENGTHS)

The size of a file is specified in FILE BLOCKs., A
file block is 256 bytes of information. 1In the
directory CATalog listing, the size of a file is
given in file blocks.

In a double~-density system, each file must have an
even number of file blocks, because file space on
diskette is allocated in terms of SECTORS. Two file
blocks will fit in one sector of a double-density
system. In single-density systems, a disk block is
the same as a sector.

Each file in North Star BASIC occupies a contiguous
section of disk storage. A file may be any number of
file blocks in length, provided that there is
sufficient contiguous storage space for it on the
diskette,

TYPES

Every file has a type, which can be used to classify
a file according to how it is used., For example, the
North Star convention is that a type 2 file always
holds a program written in BASIC. A file of type 3
is used to store data used by BASIC programs, A type
1 file should contain an executable machine language

- NORTH STAR BASIC -) L-2

e e — Ii

DATA rILES {Continued)

- program, such as the BASIC interpreter itself.

-{_/ These, however, are only 3 of the 128 pessible type
designations (from 9 to 127). You are free to use
the others as you wish, to signify special types of
file contents which are meaningful for vyou. Ffor
example, you could write a special business program *
and arbitrarily declare that all data files relating
to it would be of type 7. Facilities within North
Star BASIC allow you to determine a file’s type when
accessing or creating it,.

CREATING FILES

A4 file must e created, and space reserved for it.
before it may be used to store data., fThe CKEATE
staztement may be used to create a flle of any tvype or
length, on a diskette in any disk drive. The density
of the file created is set to be the same as the
gensity of the file directory on the diskette, Once
created, the file’'s size in file blocks is fixed.

The amount of information in that file can never
exceed the allocated space. T

OPENING FILES

i Before you can access a data file, you must associate
o its file name with a FILE NUMBER using the OPEN
statement. From that point on, use the designated
file number when referring to the file., FPor example,
suppose "ACCT" is OPENed as file #2. Then, all BASIC
statements in vour program which are intended to
access "ACCT" should refer to file #2, instead of the
actual file name. :

CLOSING FILES

When you are finished using a tile, the CLOSE
statement will free the file number associated with
the file so that another file may be OPENed with that
number .

Closing a file also causes any information which is
part of the file but -which is temporarily stored in-
RAM memory to be written to the file on diskette.

1f your program requires manual "swapping” of several
diskettes in and out of cne drive, it is essential
that all files on a given diskette be CLOSEd before
it is dismounted from the drive. This is to ensure
that all the latest changes in the files c¢ontents
- are actually transferred to the diskette. Hore
{_/ importantiy, it ensuresz that no subseguent WRITE

- NORTH STAR BASIC - L-3

M

DATA FILES (Continued) w

activity intended for these files will occur on the
wrong diskette. '

TYPES OF DATA ELEMENTS IN FILES

DATA

Three types of data may be stored in BASIC data
files: NUMBEKS, STRINGS, and separate BYTES. Each
type of item takes up a certain amount of space on
the file when it is stored. Numbers always take up a
fixed amount of space. This space is sufficient to
held any numeric value., Strings can take up variable
amounts of space, depending upon the current lengin
of the string when it is written to a file. Sepzarate
byte values reguire only one byte of disk storage
space to store. Each element of byte information
containg a binary integer value from & to 255.

BASIC writes strings and numbers to data f£iles using
a certain well-defined formats, Consequently, it is
easy for BASIC to "recognize" string and numeric data
when a file is READ. Bytes, however. cannot be so
identified. The programmer must always know when
byte data will be encountered during file reading and
writing. If such knowledge is not available to a
file READiIng program, it may be impossible for that

" program to make sense of a file s contents.

ACCESS
READ# AND WRITE#

The two statements which permit input from a file and
output to a file are READ4 and WRITE#. READ# inputs
data from a file and assigns it to variables as
specified by the programmer. WRITE# overwrites any
previocusly existing information at a given point in
the file with new information, also as specified by
the programmer. (See STATEMENT: READ# and STATEMENT:
WRITE# for specific details.) READ# and WRITEH may
be used to access string, numeric, or byte~valued
information in SEQUENTIAL or RANDOM fashion. The
rest of this DISCUSSION examines these data-access
methods.

SEQUENTIAL ACCESS

The simplest files corsist of seguences of data
values (all string, zll numeric, all byte, or
combinations of these). This means that the first
data value is located at the start of the file, and
succeeding values follow immediately afterward, one
after another, BASIC autcmatically places a special

- NORTH STAR BASIC - L-4

————

paTA FILES (Continued)

gnd-of-file mark {called an ENDWARK) after the last
value in a seguential file. This facilitates later
KEADIng of the file, because the ENDMARK may act as a
signal to the program to quit READiIng, lest a program
arror occur when an attempt is made to READ (or READ
mwast) the ENDMARK.

A check for the ENDMARK can be made with the built-in
TYP function. TYP, when supplied with the numper of
an open file as argument, returns the numeric code
tor the type of the next element to pe READ from that
file:

TYPFE NEXT VALUE
@ ENDMAKK
1 string
2 number
Therefore, 1if the value of TYP(1l} is 8, then the =nd
of file #1 nhas been reached, and no more READIna frcom

that £ile should be attempted. The TYP function alse
permits a mrogram to know whether to READ a string or
numeric value next, since the types for tnose data
elements are also returned. This is important,
pecause a program which tries to READ a numeric value
into a string variable, or a string value into 2
numeric variable will generate a TYPE ERROR. With
thig in mind, here is a program which READs an
existing seguential data file whese contents include
an unknown seaguence cf intermixed string and numeric
values, then PRINTs the contents to the console
terminal:

18 REM Report contents of seguential

20. REM data file of unknown structure.

25 REM Agsume no string bigger than 58@ chars.
39 DIM S$(588) ,F35(18)

48 REM 5% will hold string values read,
5@ REM F3 will hold file name, and

69 REM N will hold numbers read.

78 INPUT "TYPE NAME OF FILE TO READ: ".FS
8@ OPEN #1.FS

99 IF TYP(l)=0 THEN 240

106 REM Above is ENDMARK check.

118 IF TYP(l}=2 THEN 190

120 REM Above checks 1if number is next --
1386 REM if not, string is next.

149 REM READ/PRINT string.

159 READ #1,5S5

168 PRINT S$

170 REM Go back for more data.

- NORTH STAR BASIC =- L-5

DATA FILES (Continued) w

186 GUTO 9B

19¢ REM READ/PRINT number.
200 READ 41.N

218 PRINT N

220 REM Get more data,

. 238 GOTO 90

24@ REM No more data.

250 PRINT "** gND OF FILE **"
260 CLOSE #1

2790 EKD

The feollowing sample program WRITEs the numbhers 1 to
10 to existing data file "DaATT", then RLADE them nock
and PRINTs them on the terminal. HNote that, after
writing, the file is CLOSEd and re=0OPENed in orvder to
begin READing at the start, since the last-exec.ited
WKRITE statement leaves BASIC "lcoking" &t the
ENDMARK.

19 REM WRITE 18 numbhers to file
20 REM and READ them back again.
30 REM First, WRIYTE “em!

48 OQPEN #1, "DAT7"

50 FPOR I=1 TO 149

60 WRITE #1,1

78 NEXT

8¢ CLOSE #1

98 REM Now, READ and PEINT.

160 OPEN #1.,"DAT7"

118 IF TYP(1l)=8 THEN 178

1260 REM Abcove checks for ENDMARK.
138 READ $#1,I '

143 PRINT I

158 KEM Now back for next number.
1680 GOTO 116

178 REM Quit.

188 PRINT “** END OF FILE **"

1¢8 CLOSE %1

208 END

APPENDING TO SEQUENTIAL FILES.

To add new data to the end of an existing seguential
file, it is necessary to READ to the ENDMARK before
beginning to WRITE. If the sequential file "DaT7"
already contains the numbers 1 to 1, then the
following program will add the numbers 11 to 28 to
its end.

10 REM Add 11-20 to DAT7 file.

26 QPEN $1,"DAT7"
.36 REM Now READ tc ENDMARK.

- NORTH STAR BASIC - L-6

DATE FILES (Continued)

43 IF TYP(1l)=0 THEN 70
S§ READ #1,N

68 GOTO 4D

79 REM How add the numbers,
88 FOR I=11 TC 26

g9 WRITE #1,I

106 NEXT

116 REM Quit.

128 PRINT “DONE*

139 CLOSE #1

149 END

SEQUENTIAL BYTE ACCESS

Files may alsoc e accessed at the byte-py-byte level
simply by using the ampersand character (&) to prefix
variables into which values will be KREAD, or to
prefix expressions to be written:

12 REM READ a byte value, then WRITE one.
2@ REM Assumes file #1 is OFEN,

3% READ %1, &X . -

4B REM Byte goes into X.

50 WRITE #1,&65

60 REM Byte value 65 goes to file #l.

Only numeric expressions and varlables may be given
the &-prefix. Byte values are integers in the range
2-255%, and naturally, since BASIC automatically
converts from decimal t¢ 2inary and back, each
consumes only one byte of file storage space. You
should be sure that any value you intend to WRITE as
a bvte to a file lies in the legal byte range.

Note than an ENDMARK will always be written after the
last data item in a WRITE statement, whether or not
that last item is a bvte-value. To disable writing
of the ENDMARK, use the NOENDMARK option in vour
WRITE statements.

RANDOM DATA ACCESS

BASIC keeps track of where it is supposed to READ and
WRITE next in an open file by maintaining a FILE
POINTER for it. This pointer specifies the number of
bvtes from the start of the file to the current
KEAD/WRITE position, This number is called a RANDUM
FILE ADDRESS. VWhen a file is OPENed, its file
pointer is set to @, meaning that the first data
access will happen at the start of the file. You can
change the value of the pointer, and so access file
data beginning =zt zny point In a file. This is

- NORTH STAK BASIC - L-7

T ——

M—

DATA FILES (Continued) -

called “random access" and is one of the auickest
means of storing and retrieving data in files because
it is not necessary to READ all the data items in a
file in order to get to the one you want. B8y
changing the file pointer to reference the location

of the data-item you seek, you c¢an READ or WRITE it
immediately.

A RANDOM ADDRESS EXPREESSION 1s added to a READ# or
WRITE# statement in arder to0 access data randomly.
The random address expression 1s a numeric expression
folloewing a vercent sign (for example: %R*5). The

expression must evaluate tc an integer from 2 to the
value

SIZE*256-1

where SIZE represents the size of the file in disk-
Blocks. If an address-expression is ever negative or
greater than the limit given by the above formulz, a
program error will occur.

In order to use random access, you must be able to
determine the necessary random address of the
particular piece of data you want. The easiest way -
to do this is to reguire that all items in the file
be of the same type or size. For example, a file
intended for random access might consist of all
numbers, or all 1f-character strings. Alternately. a
random access file might contain 18d records of 62
bytes each. Each record might consist of 4 numbers
in a row, plus a string of length 44,

How was the figure of 62 bytes for the record size
computed? In order to find out how much disk storage
space a group of items will reguire, you must add-up
all the actuval sizes of each of the elements. Refer
to APPENDIX 3¢+ IMPLEMENTATION NOTES, for information
on computing the storage-sizes for strings and
numbers.

Knowing exactly how long each element ot record is,
you can treat the entire file as a huge array of
items or records, computing the random address of the
Xth item in the file with the following expression:

(X~1)*R
where R is the size of an individual record or item,
given in bytes. Add a per-cent sign in front of this

expression, and you have a legal random address
expression! To illustrate, given a file of strings,

— NORTH STAR BASIC - L-§

SEE RLSO:

Dals FILES {Continued)

the storage length of each being 42 bytes, then the
first string would occur at address B, which is (1-
1y*42, The S58th string occurs at random address (5@-
1)%42 = 49*%42 = 2458.

Random access records may easily be updated in place,
althouqgh vou must still use NQENDMARK to aveid the
writing of an ENDMARK after rewriting the record.
(The extra ENDMARK could contaminate the data in the
next record!)

Here is a program which accesses any element of a
random access file of 1890 strings, each of which 1is
250 cnaracters long:

19 REM Random string access.

20 OPEN #%1,"RANDSTR"

30 DIM RS (25@)

49 R=250+2

S8 REM R is size of one item —-- see

55 REM implementation notes for details.
66 INPUT "WHICH STRING (1-i¢®p, @ TO QuUiTi? “,I
7¢ IF I=0 THEN 13¢

88 IF I<1 OR I>1080 THEN 68

85 REM Check for out of range item number.
98 READ #1 %({I-1)*R.R$

199 PRINT "STRING #",I,": ",R3

114 PRINT

12@ GOTO 64

138 PRINT "QUIT"

144 CLOSE 41

156 END

Byte values may also be accessed randomly using these
same technigues, provided that the ampersand is
employed to specify byte access,.

STATEMENT: OPEN

STATEMENT: CLOSE

STATEMENT: READ#

STATEMENT: WRITE#

STATEMENT: CREATE

STATEMENT: DESTROY

DISCUSSION: FUNCTIONS (built-in: TYP, FILE)

- NORTH STAR BASIC - L-9

M

STATEMENT

ACTION:

EXANPLES:

ERKGR
MESSAGES:

SEE ALSQO:

DATA FILES (Continued)

CREATE <file name>, <file size>»
CREATE <file name>, <file size>, <file type>

A new file of the specified name, size and type

is created on diskette., The file size and (if
present) the file type must be numeric expressions
which evaluate to non-negative integer quantities.
The file size refers to the number of 25&é-byte blocks
the file will ¢ontain and can be no more than the
number of free file blocks remaining at the end of
the diskette, The file type must be no greater than
127. If no type is specified, type 3 (BASIC data
file} is assumed, The file name may be any string
expression whose value constitutes a legal file name
(see DISCUSSION: DATA FILES). +The density of the
file created is set tc be the same as the density of
the file directory on the specified diskette.

CREATE "SAMPLE",25
CREATE "DATA,2",100,19
CREATE FS$+D3,5.,T

CREATE merely reserves disk space in the directory
under the given file name -- no information of any
kind is actually written into a file when it is

-CREATEG.

FILE ERROR

Either the file name is illegal, or there is not
enough room on the diskette to hold a file of the
indicated size.

3UT OF BOUNDS ERROR

The file type specified is not in the range # to 127,
or the specified file size is out of legal size
range.

HARD DISK ERROR
See COMMAND: SAVE

DISCUSSION: DATA FILES

STATEMENT: DESTROY
DISCUSSION: FUNCTIONS (built-in: FILE)

- NORTH E&TAR BASIC - L-19

e MR

(STATERENT:
ACTION:

LEANFLES!:

HErslas

OATA FILES {Continued)

DESTROY <file name>

The file specified by the the file name is removed
from its diskette. The "file name" may be any string
expression whose value is a legal file name. (5ee
DISCUSSION: DATA FILES.)

DESTROY "“VICTIM"
DESTROY FS4",2"
DESTREOY "TEMP"+DS$ (1.1}

The DESTROY statement ig eguivalent to the DE command

it the DOS,

FILE BEROR
The file name is illegal, or the named file <oeg nct
exX18t. :

HARD DISK ERROR
See COMMAND: SAVE

DISCUSSION: DATA FILES
STATEMENT: CREATE

~ NOKRTH STAR BASIC - L-11

M

STATEMENT:

ACTION:

EXNAMPLES:

REMARES:

ERROR

SEE ALSO:

MESSAGES:

DATA FILEsS (Continued) %

OPEN #<file number expression»>, <file name> ‘
OPEN #<file no. expr.>, <file name>, <size variable>
OPEN #<file no. expr.> %<type expression»>, <file name>
OPEN #<file number expression> %<type expression>,
<file name>», <size wvariable>

The diskette file with the qiven name is assigned
the specified file number. Until the ifile is CLOSEG,
it may be referenced by using the file number. +ihe
file number expression must evaluate to an integer
frem @ to 7. If the optional type expression 1is
omitted, the named file must be of type 3 (BASIC data
file) for the OPEN to be successful., The CFEN will
succeed if and only if the file is ¢of the given type,
The type expression must evaluate to an integer from
8 to 127, The file name may be any string expression
and must evaluate to a legal file name as specified
in DISCUSSICN: DATA FILeS, If the optional size
variaple is used, the size of the successfully OPExed
file, given in 256-byte disk blocks, will be assignead
to the specified numeric variaple.

OPEN $1,"DATAY
OPEN #7%4,"CUSTLIST"+DS
OFEN #P%T,F$,8

An active file-number must be “freed" by a CLUSE
statement before it may be re-used in a BASIC program
(used again in an OPEN statement).

A RUN, END, SCR, LOAD or CHAIN will close all open
files.

TYFE ERRCR

The named file is not of the type specified in the
OPEN statement {(type 3, if no type i3 explicitly
cpecified).

FILE ERROR

This is caused by three conditions:

1} The file number is already assigned to a file.

2) The file name has been formed incorrectly.

3} The named file does not exist on the diskette in
the specified drive.

QUT OF BOUNDE ERROR
The file number or type value 1g out cf range.

DISCUSSION: DATA FILES

STATEMENT: CLOSE _ .

- NORTH STAR BASIC - L-12

PRSI

(ShalbRBENTS

ACTION:

ERROR

MESSAGES:

DATA FILES {(Continued)

CLOSE #<file number expression>

Prevents further access to the file with the
specified file number. Also guarantees that RAM
buffer space for the file is written to the file on
diskette if necessary.

CLOSE #1
CLOSE #A*2
CLOSE #B7(3)

Files should be CLOSEd as soon as there is no longer

anv need to READ from or WRITE to them, This insures
tnat any changes made to the files wi1ll be permanent,
mecause the buffer is written out, if necessary, when
a CLOSE occurs.

The "zuffer-flushing" action of the CLOBE statement,

winere accumulated data is actually written to the

diskette file, will also occur under the fcllowing

circumstances: .

a) The file pointer is changed to address a byte
location in another file block.

b} An END or CHAIN statement is executed.

cl A STCOP statement is executed or a control-C
interruption occurs.

d) The program halts because of a program error.

Only the execution of CLOSE, ERD, or CHAIN
statements, however, will disassociate the diskette
file from its file number. BDuring an interruption
caused by STOP, control-C, or & program error, any
files OPENed within the program remain OPEN, and may
be accessed in direct mode.

FILE ERROR

The file number expression did not evaluate to an
integer from @ to 7, or the diskette is write-
protected.

STATEMENT: OQPEN
DISCUSSION: DATA FILES

- NORTH STAR BASIC -

————— .

STATEMENT :

ACTION:

EXAMFPLES:

REMARKS:

ERROR
MESSAGES:

DATA FILES (Continued) w

READ #<file number expression>, <variapble list> ‘
READ #<file no. expr.> $<randcm address>, <var. list>

For each variable in the list, the next seguential
data value from the specified diskette file is
obtained, and assigned to the variable. KREADing of
values may commence at a specified point in the file
(x-many BYTE positions from the start) 1f the randonm
address is used. The address specification consists
of a per-cent sign (%) followed by a numeric
expression which evaluates to an integer between 9
and the last legal byte address within the file. The
file number is a numeric expression of integer value
from 8 to 7. Any numeric variable in the list may be
prefixed with an ampersand (&) which instructs BASIC
to READ the next byte of data and assign its decimzl
value {interpreted as an integer from v o 255) to
the variable.

READ #2, A.B.C

READ $3,0Q,&B7,AS

READ $FP%L.,&X,&Y¥,52

READ #G$FNL{(I)+3,R8,25,K9

BASIC maintains a "pointer" into each open file,

When the file is OPENed, the pointer iz set to the ‘

peginning of the file, this pointing to the first
byte of the first value in the file. Each time a
value is assigned to a variable, the tile “pointer”
moves past that value, and points te the first byte
of the next value in the file.

Use of the optional random address expression resets
the file pointer to the specified byte address in the
file, before READing begins.

TYPE EREOR

The types of the variable and the value to be
assigned to it 4o not match, For example, this will
occur if an attempt is made to READ a string value
into a numeric¢ variable. A TYPE ERROR also occurs
when an attempt is made to READ more data than is
included in the file (READing the ENDMARK}. This
error will also occur if use of random~accessing
results in the file pointer being g2t to, for
example, the "middle" of & string or numeric value in
the file. '

OUT OF BOUNDS ERROR

Either or both of the following conditions has : ‘l
occurred: '

- NORTH STAR BASIC - _ L-14

SEE ALSO:

CATA FILES {Continued)

"1} The random access address is less than 8 or

greater than (the file size in blocks)*256-1.

2} The file number is less than ¢ or greater than 7.

DISCUSS10ON: DATA FILES
STATEMENT: WRITE#

- NWORTH STAR BASIC -

W

STATEMENT:

ACTION:

EXAMPLES:

KEMARKS 1

DATA FILES {Continued) =

WRITE #<file number>, <expression list>
WRITE #<file no.> %<random address>, <expr. list>

Each value in the expression list is written to the
digkette file to which the file number refers. If
there is more than one value in the expression list,
the values are written seguentially (one-after-
another) in the order listed. After all tnh= values
in a WRITE statement’'s expression list have been
written to the specified file, an ENDMARK is writtzn
after the last item. Note that after any wWRITE
cperation which WRITEs an ENDMARK, the file pointer
will point to the ENDMARK just written. In this way,
new data placed at the end of the file will overwrite
0ld ENDMARKs, and the result is that there is azlways
ohly one ENDMARK in a file after proper sequential
access, The programmer may opt to suppress the
writing of the ENDMARK by using the reserved-word
NOENDMARK as the last item in the WRITE statement.
Writing may begin at any arbitrary point in the file
if the random address, an offset (calculated in
bytes) from the start of the file, is included. Both
the file number ana the random address may be any
valid numeric expressions, so long as the file number

_evaluates to an integer from @ to 7 (corresponding to

an opened file), and the random address is &an integer
between @ and the last byte address in the file. Aany
numeric expression in the expression list may bhe
prefixed with an ampersand (&) character. This
signals BASIC to convert the value to a single byte
and WRITE it to the file. (Any value sco prefixed
must evaluate to an integer from € to 255.)

30 WRITE #1,A,B.CS

7% WRITE #F, "HI THERE",Q,X7 (B} ,NOENDMARK
88 WRITE §#€%P,RS

33 WRITE #X, &Bl,sB2,&l

26 WRITE $#3%2 (M), &E, NOENDMARK

3@ WRITE #2%{(R-1)*3,%X5.Y$,25%

Even when & is used to cause writing of individual
bytes, an ENDMARK is still written after the values
in the expression list. Thus

WRITE #1.&8B
will result in the writing of two bytes, the byte-
value of B8 and the EKNDMARK. When the intention is to

write only a single byte using a single WRITE
statement, the NOENDMARK optiocn should be exercised,

- NORTH 5TA&R BASIC - _ L-1l6

T

C

LR

MESSAGES:

2560

DALA FILES (Continued)

FILE ERRKOR
The diskette containing the specified file is write-
protected.

OUT GF BOUNDS ERROR
Either or both of the following conditions has
occurred:

1) The random access address is less than @ or
greater than the file’s highest permissible random
address.

= Zf & to 7.

23 Thne file number is not within tie rare

i

18]

DISCUSSI0ON: DATA FILES
STATEMENT : READ#

STATEMENT: OPEN

STATEMENT: CLOSE

aFPENDIX 3: IMPLEMENTATION NCOTES

17

c
1

- NORTH STAR BASIC -

M

STATEMENT :

ACTION:

EXAMPLES:

REMARKS:

ADVANCED FEATURES

FILL <memory address>, <byvte wvalue>

The byte value is placed in the RAM memory cell with
the specified address. A byte value is a numeric
expression which evaluates to an integer from ¢ to
255, The memory address must be a numeric expression
egqual to an integer from ¢ to 65535.

FILL M+S5,0

FILL (2*16T3)+(13*1672)+(1*16T1)+(3*1670),16
FILL FNC("2D13"),16

FILL 65535,B

FILL 166,31

The FILL statement allows the user to change
specific bytes in RAM memory, and so is useful in the
following applications (as well as many others):

1} Personalizing BASIC.

2} Loading user-defined machine language routines in
free memory.

3) Putting parameters to machine-language user-
functions in free memory.

4} Manipulating video-display memory for custom
graphics applications.

Note that both the memory address and the byte value

must be in decimal (base 1@) form, and BASIC will
convert them to binary when FILL is executed., North
Star BASIC does not accept hexadecimal (base 16)
numbers. If you wish to use "hex" when specifying
addresses of byte valuves, you should make use of a
hex-to-decimal conversion function. Refer to
DISCUSSION: FUNCTIONS for an explanation of user-
functions, as well as APPENDIX l: SAMPLE PROGRAMS for
a user—-function written at North Star to perform the
conversion.

If either the byte- or address- values reduce to non-
integers, the fractional portion is eliminated
{TRUNCATED} and the remaining whole portion is used.

I1f, after truncation, the byte value is greater than
255, only it's remainder, when divided by 256 (in
other words, the value-modulo 256) is used. (For
example, 257 module 256 =1 -- FILL X, 257 would put a
l-byte in the address represented by X.) No similar
provision is made for the memory address, however.

- NCRTH STAR BASIC - M-1

ERROR

MESSAGES:

' 1
o
o

----.n---------------n------------‘.

'BDVANCED FEATURES (Continued)

CAUTION: FILL may reference an address at which no
memory cell exists or even an address within DOS,
BASIC, or the program/data area. Thus, PILL gives
the programmer power to make some very bad mistakes,

OUT OF BOUNDS ERROR
1} The byte value or the memory address {or both) is
less than zero.

2} The memory address is greater than 65535,
DISCUSSTION: PERSONALIZING BASIC
D15CUSSION: FUNCTIONS (built-in: EXAM; user-functions)

DISCUSSION: MACHINE LANGUAGE SUBROUTINES
BPPENDIX 1: SAMPLE PROGRAMS

- NORTH STAR BASIC - M-2

M_‘

ADVANCED FEATURES (Continutd)

STATEMENT: OQUT <port number>, <byte value> _ ‘

ACTION: The byte value is sent to the indicated 8080 or Z-80
output port. Both port number and byte values must
be numeric expressions which evaluate tce integers
from @ to 255.

EXAMPLES: ouT 2,65
ouT P.,B
OuUT P7+1,ASC{"6"}

DEMARKS: Both the port number and the byte value must be
decimal (base 18) numbers. (Refer to STATEMENT: FILL
for further elaboration on this.)

Freguently it is necessary to determine whether or

not a given cutput port is ready to receive data, by
examining a special input port (calied a STATUS PORT)

for evidence of a ready signal. (The built-in

function INP may be used to facilitate this.,) In

such circumstances, a pregram should wait until the

ready signal is given before executing an OUT

statement. This process of waiting and OUTing is

called "handshaking”. 1If OUT is used before the . :
signal is received, the byte value may be lost bhefore
arriving at its proper output destination. The CUT ‘
statement does not provide its own handshaking -- it

is the programmer s responsibility to determine

whether or not handshaking logic is necessary when
communicating with a particular output oort, and to
implement it with the approvriate statements if so.

The PRINT and QUT statements do very different things
and should not be confused with each other.

ERROR
MESSAGES: QUT QF BQUNDS ERROR
One or both of the values specified lies outside the
range of @ to 255.

SEE ALSO: DISCUSSION: FUNCTIONS (built-in: INP)
STATEMENT: FILL

- NORTH STAR BASIC - M-3

C

LISCUSSION:

ADVANCED FEATURES (Continued)

MACHINE LANGUAGE SUBROUTINES (CALL)

Worth Star BASIC provides a method through which you
may "link" your BASIC programs to machine language
subroutines which you have written to perform certain
tasks.

A machine language routine must lie outside of the
computer memory area reserved for the DOS, BASIC, and
BASIC s program/data area. (You may restrict this
area, and thus leave room for machine languags
routines in high memory, through use of the MEMSET
command, for example.)

Machine language routines are accessed through <he
built-in BASIC function named CALL. CALL takes at
least one argument, the numeric address in computer
memory (an integer from 0 to 65535) where vour
machine language routine begins. An optional second
argument, alsc a numeric expression in the above
range, can be communicated to your routine in the D &
L register pair. The value will 'be truncated to an
integer if it has a fractional part. MNegative
arguments are not allowed. All registers may be used
by your machine language routines -- BASIC will have
already preserved any operating information which it
will need later.

When your routine is finished, it should execute a
RET (return) instruction, which will allow BASIC to
resume control and continue with the execution of the
BASIC program. If the machine language routine uses
the stack, then it should use its own stack area.
The stack area and stack pointer used by the BASIC
interpreter should not be modified by the machine
language routine. The number returned as CALL s
function-value will be the decimal representation of
the contents of the H & L register palir whenever the
machine language routine terminates. Thus, it is
possible to communicate a single numeric value to
your routine from BASIC, and collect a single value
from the routine when it returns.

Here are the models for proper formaticn of the CALL
function—-call:

CALL(<addregs expressicn>}
CALL (<address exprescion>, <argument expression’)

For an example of CALL in use, let’'s suppose there

sxists a machine language routine at address GEGHI,
=rid thet it will rsguire the optional argument wvalue.

- WORTH STAR BASIC - M-4

SEE ALSO:

ADVANCED FEATURES (Continu®d)

The following line effects a transfer to that ‘
routine, passing the value of variable & as argument

in the D & E registers as & positive, lA-hit binary
integer:

18 Q=CALL(60@6¢,3)

If, in this instance, the binary value of 578 is in
the H & L register-pair when the machine language
routine returnsg, then the variable ¢ will be set to
578 when BASIC resumes control.

Note that CALL looks like, and acts as a numeric
function. CALL may be a part of any numeric
expression in BASIC, and may be used anywhere any
other numeri¢ function might be used. HNote that tne
following:

50 CALL({M,A)
is in error -- CALL is not g statement.

Below are some more examples of CALL in use. In one-
argument instances of CALL, no specific argument)
value is sent to the machine language routine in the

D & E register-pair, however, the CALL function ‘
always returns a value: whatever is in the B & L pair

upon return to BASIC.

208 PRINT CALL{A(3)) ,A$

57@ X=CALL(R+1024,G)

468 Q(CALL(43625,Y))=M

25 DEF FNM(G,D)=CALL{56868,G*256+D)
1436 F=CALL(S,ASC(S5%}))

Using machine language routines correctly is
difficult and should only be attempted by expreienced
programmers, and only then if no other alternative is
available.

STATEMENT: FILL

STATEMENT: PRINT

DISCUSSION: MULTIPLE I/0 DEVICES
DISCUSSION: FUNCTIONS

- NORTH STAR BASIC - M=-5

>

DLISCUSSION:

ADVANCED FEATURES (Continued)

CHAINING (AUTOMATIC PROGRAM SEQUENCING)

Through use of the CHAIN statement (discussed in
detail under STATEMENT: CHAIN), one program may cause
another to be automatically LOADed and RUN,
eliminating the need for the user to initiate and
supervise such activities from the keyboard. Thus, a
sequence of programs may operate virtually unattended
for long periods {unless, of course, one or more of
the programs reguires interactive data-input or
various diskettes need to be swapped in and out of
the drives). There are two situations when CHAINing
is most effectively used:

1) You desire to use several separate programs as a
complete software “"system” where each program can
automatically transfer to another program whenever
necessary.

2} & program may be too large to fit into the
avalilable program/data area, but can be broken up
into separate, self-contained modules which CHAIN
between themselves to accomplish the desired task.

CUMMUNICATION BETWEEN CHAINED PROGRAMS

211 variables are cleared by a successful CHAIN
operation, so variables which are shared by one oOr
more modules must be "restored" at the start of each
module.,

It is freguently necessary for a CHAINed program to
accept information from the module which precedes it
or pass data to the program to which it will CHAIN.
Several methods may be used to accomplish program-to-
program communication. The two most commonly-used
ones are described below.

A data file may be shared between two programs, and
thus provide for communication between them. This
file might be a common data-base (of invoices,
cuctomer names, calendar items, switchboard messages,
etc.), in which case-each separate module would infer
the action it should take by examining the current
state of the file. Programs may use files to
communicate in a more direct fashion if actual
variables are shared between them: program A would
WRITE the values of those variables intoc a file in a
certain order, and then would CHBIN to program B,
which would READ them back in the same order.

The second method for inter-program communication

- NORTH STAR BASIC - M-6

ADVANCED FEATURES (Continuaﬁ}

involves storing the appropriate data in otherwise
unused RAM memory, outside the program/data area,
where it will survive the SCRatch which is implicit
in a CHAIN., There are a good many techniaues for
utilizing RAM memory in this way -- most involve the
use of the EXAM function and the FILL statement.

“TESTING THE WATER" FOR A SAFE CHAIN

If the file specified in a CHAIN statement does not
exist, is not of type 2, or dces not hold a valid
BASIC program, the CHAIN operation will fail. It is
not easily possible to check an alleged “program”
stored on diskette to be certain that it is in
perfect conditieon, but the built-in FILE functioen may
ve used to determine if a given program file exists
and is of type 2 before an attempt is made to CHAIW
to it. Use of the ERRSET statement may also help in
such situations.

STATEMENT: CHAIN

DISCUSSION: DATA FILES

STATEMENT: READ#

STATEMENT: WRITE#

STATEMENT: FILL

DISCUSSION: FUNCTIONS {built in: EXAM, FILE)
STATEMENT: ERRSET

DISCUSSION: ERROR TRAPPING AND RECOVERY

- NORTH STAR BASIC =~ M-7

(J{ STATEMERT:

ACTION:

ERROR

MESSAGES:

SEE ALSO:

ADVANCED FEATURES {Continued)

CHAIN <program file name>

The BASIC program contained in the specified file is
automatically LOADed into the program/data area from
diskette (replacing any current program), then
automatically begins RUNning at the lowest numbered
program line. The program file name must be a string
expression which evaluates to a legal BASIC program
(type 2) file name as described in DISCUSSION: DATA
FILES.

1¢ CHAIN "PROG, 2"
120 CHAIN P$+D3
73 CHAIN "PROG"+NS (X, ,X)+",2"

CHAIN makes possible the automatic seguencing of 2 or
more programs, freeing the operator from-the task of
having to LOAD and RUN each naw program as the
previcus one ENDs. A CHAIN statement in program A,
for example, may automatically initiate program B; =&
CHAIN in B may lead to C, and so on.

After a successful CHAIN, any previous program and
data are cleared. &1l files currently open in the
calling program are automatically CLOSEd.
Communication between CHBAINed programs may be
facilitated by the use of common data files, or by
uze of EXAM and FILL.

Because CHAIN is a direct statement, it may be used
instead of the LOAD-RUN sequence for manual program
initiation. However, remember that the file name in
a CHAIN statement is a string expression, and that
string constants must always be enclosed by double
guotes (e.g¢g.: CHAIN "PROG" is legal, but CHAIN PROG
is not).

Same as COMMAND: LOAD
DISCUSSION: CHAINING

COMMAND: LOAD
COMMAND: RUN

- NORTH STAR BASIC - M-8

e

DISCUSSION:

ADVANCED FEATURES (Continged)

ERROR TRAPPING AND RECOVERY

Normally, when a program error occurs while a BASIC
program is RUNning, BASIC automatically terminates
the execution of the program and issues an error
message. This is to aid the programmer in finding
and correcting the error. For many possible end-user
applications, a BASIC program should operate in the
presence of errors rather than terminate execution
and print an error message. The program should
detect the error condition, and then take corrective
action without requiring the user te debug and re-
execute the program. Certain kindes of errors
tesulting from incorrect input, improper diskette
handling, or inconsistent data might be too difficult
or time-consuming to anticipate and detect using
regular BASIC statements.

To make convenient ERROR~-RECOVERY UNDER PROGRAM
CONTROL possible, North Star BASIC includes the
special ERRSET statement., With this statement, the
programmer specifies a line number which references
the first statement of an ERROR-RECOVERY ROUTINE,
which exists somewhere in the program. Once an
ERRSET has specified the desired error-recovery
routine, any program error which cccurs during
program execution will cause an immediate "GOTO" to
that routine. (This is called TRAPPING THE ERROR.)
The BASIC statements in the error-recovery routine
determine the action to take under error conditions.
A good routine will also include statements which
attempt to correc¢t the error condition. For example,
if a user was told to insert a diskette into a drive,
and then the computer detects a hard disk error when
it attempts to open a file on the diskette, either
the diskette has been inserted incorrectly, or the
data on it is invalid. A good error-recovery routine
might give the user a chance to re-insert the
diskette.

The programmer must also specify two variable names
in the ERRSET statement along with the line number of
the start of the error-recovery routine, for example:

16 ERRSET 18408.,L,E

When an error is trapped, the line number of the
statement where the error occurred is assigned as the
value of the first variable, and a numeric code,
corresponding te the type of the error, is assigned
to the second variable, By examining the value of
these two variables, the program can determine not

- NORTH STAR BASIC - M-9

SEE ALSO:

ADVANCED FEATURES (Continued)

only what caused the error-condition, but where in

the program it occurred, and with this knowledge,
decide what to do about the error. HNorth Star BASIC
program etrors and their codes are listed in APPENDIX
2.

Note that if the error-handling routine in a program

is written to make any decisions based on the number

of the line in which the error occurs, it may be very
unwise to RENumber the program.

Whan an error—-trap occurs, any subroutines, user-
functions, and FOR-NEXT loops which were active at
the “trap” are still active. Thus, it is possible to
execute a GOTO statement back to the point where the
error occurred; or to the statement immediately after
that point, and continue the execution of the program
after the error-conditicn has been handled.

Frror-trapping is disabled automatically after each
"trap". After error recovery .isz complete, another
ERRSET statement can be executed to resume error-
trapping mode. '

When the program no longer reqguires the use of
BASIC s error—-trapping feature, errcor-trapping can be
disabled explicitly by executing the ERRSET statement
with no arguments -- for example:

146 ERRSET

Unless the control-C program-interruption feature is
disabled (as mentioned in DISCUSSION: CONTROL-C, and
DISCUSSION: PERSONALIZING BASIC) a trappable “program
error" will occur every time control-C is pressed
while the program is RUNning in error-trapping mode.
If you do not wish for control-=C to be treated as an
"error”, then the control-C feature must be disabled.

STATEMENT: ERRSET

APPENDIX 1: SAMPLE PROGRAMS
APPENDIX 2: ERROR MESSAGES

- NORTH STAR BASIC - M-10

w . |
ADVARCED FEATURES (Continugﬂl

STATEMENT: ERRSET <line number>», <numeric wvariable>», <numeric var.,> ‘I
ERRSET

ACTION: Following the execution of an ERRSET statement which
specifies a line number and two variables, the
occurrence of a program error or a contrel-C (unless
disabled) will cause an automatic GOTO to the
specified line number. The line numher where the
error occurred is assigned to the first variable, and
a numeric error code corresponding to the type of
error is assigned to the second. Thig process is an
ERROR-TRAP. After a trap, further {raws are disabled
until a subseguent ERRSET is executed. Execution of
an ERRSET statement with nc line number or variable
specifications disables error-trapping.

EXAMPLES: 19 ERRSET 16g8, L, E
28 ERRSET 570,E(8) ,E{(1)
30 ERRSET

1
T

MAERKS: The use of ERRSET makes possible programs which always
retain control even under error conditions. This is
useful when writing software intended for use by
persons who are unfamiliar with the North Star System
or computers in general. Programs written for such
users may effectively "take care of themselves®, ‘

After a trap has occurred or trapping has ctherwise
been disabled, ancther ERRSET statement must be
executed to resume trapping mode.

When trapping is disabled, a program error causes
immediate termination of the program, followed by an
error message printed to the console.

ERRSET may not be used in direct mode -- error
trapping does not function in direct mode. A pregram
with error trapping enabled will retain that mode
after a STOP interruption, but trapping will not
resume until program execution CONTinues.

Not &ll errors are trappable with ERRSET. Refer to
APPERDIX 2. Those errors without error codes are not
trapped. Note that it is possible to trap the action
of the control-C panic button as an “error". 1In
trapping mode, control-C will always cause a

trappable "error" unless the panic-button feature has
been disabled {a process described in DISCUSSION:
PERSONALIZING BASIC).

The subroutine, function, and FOR-NEXT c¢alling '
histories of a program remain intact after an error- .

- NORTH STAR BASIC - M=-11

C

ERROR

MESSAGES:

SEE ALSG:

ADVANCED FEATURES

{Continued)

trap occurs, providing the programmer with a chance

to recover from the error, if possible.

Same as STATEMENT: GOTOQ.

DISCUSSION:
APPENDIX 2:
DISCUSSION:
DISCUSSION:

ERROR TRAPPING
ERROR MESSAGES
PERSONALIZING BASIC

CONTRQL-C, THE PANIC BUTTON

- NORTH STAR BASIC -

M~1Zz

M

ADVANCED FEATURES'(Continued}

DISCUSSION: THE LINE EDITOR
INTRODUCTION TO THE EDITOCR

Anyone whoe has used the North Star BASIC system for
any length of time is already aware of the "delete-
character" function performed by the underline, -
RUB/DEL, and backspace keys, as well as the “cancel-
line" function of the at-sign (8) key. These are two
features of the larger LINE EDITOR, which zllows you
to modify, guickly and efficiently, lines of
information which you type into North Star BASIC.
Mostly, people use the line editor to change or
correct program text, a line at a time. However, the
editor may also be used on commands and responses to
INPUT or INPUT] statements. Because the program-
development aspect of the editor is by far the most
important to the average BASIC user, this purpose
will be emphasized here,

The character-delete and line-cancel functions of the
editor permit instantanecous correction of typing
errors as they are made during the entry of a line.
The editor alsc allows the correction and
modification of program lines which have already been ’
typed into the system. For example, after SCRatching
the program/data area, type the fellowing PRINT
statement into BASIC:

1@ PRINT “TOTAL RECEIPTS TC DATE: ",Tl

As soon as you strike the RETURN, and this line
becomes part of your current program, pretend that
you have made a mistake: the wvariable to be printed
should actually be T2, not Tl. 1In BASICs without a
line editor facility, you would be forced to retype
the entire line in order to correct the one erroneous
character. However, North Star BASIC always
"remembers” the last line vou type to it. This, for
discussion purposes, will be called the OLD LINE. As
a rule of thumb, whenever you strike the RETURN to
terminate a line of input to BASIC, that line
immediately becomes the old line. (There is one
exception to this rule, which will be discussed in a
moment.) Utilizing the higher functions of the line
editor, you can convert the 0ld line into a correct
NEW LINE which will then replace its predecessor in
the program. For now, to prove to yourself that
BASIC indeed "remembers" the old line, type control-
G. Notice that the line you just typed reappears.
The cursor or print-head on your terminal will sit
just at the end of the line, Ry striking control-G

- NGORTH STAR BASIC - M-13

ADVANCED FEATURES (Continued)

before typing anything else, you have instructed the
line editor to take the old line from the beginning
to the end, and treat it as a new line of input,
copying the line to the terminal as it does so. 1In
effect, by using just one control-character, you have
“retyped® the old line. If you now strike RETURN,
the new line will replace line 10 =-- but since the
new line is identical to the o0ld, no net improvement
will result: T1 should still be changed to T2.
However, suppose you strike the underline key. HNow,
the last character in the new line (the 1 that should
be a 2) is erased, and you may type the correct cne.
I1f you strike RETURN at this point, the correct line
will replace its faulty predecessor. To correct the
reasonably long line 18, all that was required was to
strike four keys: control-G, underline, the "2" key,
and RETUERN.

{When one is used to such a procedure, it is much
faster and less tedious than retyping the whole line,
although, for this introductory example, you probably
spent more time being careful, reading directions,
and observing results, than you would if vou had just
retyped the whole thing to start with. Practice with
the editor -- your speed will improve tremendously.
Even after just an hour or so of experience with the
editor, you will note a gratifying increase in your
efficiency when entering and modifying BASIC '
programs.,)

Now, try another example. Realize that, as soon as
you strike the RETURN key to end the new line, it
became the old line, and you may now use the editor
on it. Type

20

{ard don’t strike RETURN!). Now strike control-G.
You should see the following on your terminal.

26 PRINT “TOTAL RECEIPTS TO DATE: ",T2

I1f you strike RETURN, & new line 2@ will be added to
your current program. Its contents will be identical
to the contents of line 1. What you have done 1is
create a completelv new line by combining newly-typed
information with part of the old line. When you
typed the line number 28, you were typing over the
first two characters of the old line. When you
pressed control-G, the line editor knew to copy only
the remaining part of the old line to the new line.
The first two characters of the old line were

— NORTH STAR BASIC - M-14

T N e |

ADVANCED FEATURES (Contir®ed;

discarded in favor of your new information. Suppose
that there had been no third character in the old
line ~- that it was only, say, one or two characters
long itself. Then, there would have been nothing for
the control-G function to copy to the new line. 1In
this case, as in others where the editor cannot
comply with your wishes, it rings the bell {or beeps
the beeper) on your terminal.

THE EDIT COMMAND

LINE

So far, all that has heen shown is only how the n:s
recently typed line may be modified or used to crez
a new line. What if, after typing line 26 in the
example above, vou want to go back and modify line 18
again? This time, line 28 would be the old line

-— not line 18. The editor would still want #o work
with line 28. To surmount thisg problem, vou can
force BASIC to treat line 10 as the old line, &y
using the EDIT commzand as follows:

L
te

EDIT 190

This forces the line editor to replace the "natural”
(most recently typed) old line with the program line
you specify. In this example, line 18 would become
the old line, ({Note that, if vou type in other
commands besides EDIT, the command line itself
becomes the 0ld line. The EDIT command, however, is
the one exception to the “rule of thumb” mentioned
earlier. When you strike RETURN after typing the
EDIT command, the command line is discarded, and the
program line specified becomes the 0ld line instead.)

Notice that there is no obvious response to the EDIT
command -- the cursor or print-head simply moves to
the start of the next line., However, if you strike
contrel-G, you will see that line 18 has indeed
become the o0ld line, since it is immediately printed
on the terminal. Using the EDIT command, you can
force any program line to be the 0l1ld line, and thus
you can modify any part of your program, or <reate
tetally new lines by taking information from a '
"forced" ©ld line, and combining it, under a new line
number, with newly-typed information. The following
discusses all the special functions of the line
editor, as well as some theory behind the editor’s
operation.

EDITCR SPECIFICS AND FUNCTIONS

Assume that you have just strike RETURN to entar the

= NORTH STAR BASIC - M-15

i v ——————=

RDVANCED PEATURES (Continued)

(_/ above line 1@ into your program. Line 1# is now the
0ld line., BASIC is waiting for you to type (0or use
editor commande to help form) a new line. At this
stage, the 0ld line is stored in BASIC s memory, znd
two “pointers” are kept: one to the current
character position in the old line (the OL pointer),
and the other to the current character position in
the new Jine being typed (the NL pointer). Before
vou start typing the new line, both these pointers
are set at the starts of their respective lines. (1t
is obvicus that the new line pointer is set t¢ the
start of the new line, since vou haven't typed
anything new yet!) Most ¢of the editor functions are
most completely explained with reference to these
addal pointers.

Tyeing a normal character (not a control-character
editing command) in the absence of any other =diting
fenction will result in both peointers being advanced
one position. The typed character is added o the
new line, and the cld line nointer now Doints Lo the
next character in the 0ld line. In the seguence
above, for example, when you typed 20 to start the
new program line, the NL pointer ended up pointing
just beyond the € in 2¢, while the OL pointer was
(i, cskipped past the 18 in the o0ld line, and pointed at
the space just beyond the line number.

BEFORE:
{old line) 1@ PRINT etc....
T OL pointer

(new line)
T HNL pointer -- next char typed goes here

ATTER:
(0ld line) 18 PRINT etc....
T OL pointer

{new line)} 20
T NL pointer -- next char goes here

Here are the editing functions, along with the
control-character commands which invcke them:

Contreol=G: COPY REST OF QLD LINE TO ERD OF NEW LINE
Copy all the characters from the OL pointer character
position through the end of the o0ld .line over to the
new line, starting at the NL pointer character
position., If the OL pointer already points past the
(-j end of the old line, no characters will be copied,
and the bell will ring.

-~ NORTH STAR BASIC =~ M-18&

______----..-----------u-------—-—h--- ——

ADVANCED FEATURES (Cantilnuel)

Control-A: COFY ONE CHARACTER FRCOM OLD LINE ‘
The character in the o0ld line pointed to by the OL
pointer is copied to the new line at the character
position designated by the NL pointer. As a result, ;
both pointers will be advanced by one position. If E
there is no character to copy, the bell rings.
Repeated use of the control-A command will eventually
give the same result s one contrel-G commang.

Control-Q: BACK-UP ONE CHARACTER !
This erases the last character of the new line, and P
decrements both the OL and NL pointers by one. If ﬁi
either pointer is already pointing to the beginning .
of its }line, the bell is rung. An underline is H
printed on the terminal to denote the erasure of a !
single character. Typing the underline, DEL/RUB, or .
backspace (control-H) keys will alsoc give the same
result as control~Q,

Control-2: ERASE ONE CHARACTER FROM OLD LINE
This command advances the OL pointer by one position,
without copying anything to the new line or advancing
the NL pointer. This effectively "erases" the P
skipped character from the old line so that it cennot |
be copied to the new line. A per c¢ent sign (%) is i
printed to the terminal to indicate the action of ‘ i
this command. If the OL pointer is already at the

end of the o0ld line, then the command is rejected and 5
the bell is rung.

- Control-D: COPY UP TO SPECIFIED CHARACTER .
A second character (called the SEARCH CHARACTER) must i
be typed before this command is executed. The result ;
is that the contents of the old line frem the current i
OL pointer position will be copied to the new line
(starting at the NL pcinter position) up to (but not
including) the first old-line occurrence of the |
search character. If the search character cannot be
found in the 0l1d line, no characters are copied to
the new line, and the bell is rung. For example, try |
typing

12 PRINT "HERE IS A TEST LINE" ' !

i
|
to BASIC, striking RETURN afterwards so that it]
becomes the old line. Now, strike control-D and then
capital-S. Notice that neither the control character
nor the letter S appear on the terminal, but. the
following is seen instead:

1% PRINT "HERE 1 ‘

- NORTH STAR BASIC- - _ M-17

[N A B

ADVANCED FEATURES (Continued) .

The old line has been copied to the new line up to

(ﬁ/ (but not including) the first instance of capital-S
in the old line., (To copy over the rest of the line,
of course, use control-G.)

Control-Y: SWITCH SPECIAL INSERT MODE ON AND OFF.
If insert mode is on, control-Y will turn it off, and
if it is off, the same command will turn it on.
Insert mode statrts out by being "off” at the
beginning of every new line. When insert mode is
off, typing normal {non-control) characters advances
the DL as well as the NL pointer (so that the new
material may "type over the old line"). When ingert
sodes is on, however, typing normal characters will
rot advance the OL pointer (although the WL pointer
is necessarily advanced). The result of all this is
that insert mode may be used to insert some new
material in the middle of the o0ld line., (An example
will be given in a moment.) When insert mode goes
on, a left angle-bracket (<) appears on the terminal.
hen it goes off, a right angle-bracket (>} is
printed. (Note that these characters do not become
part of the new line itself ~~ they are printed on
the terminal only to signal to you the current status
of insert mode.) While normal typing will not
advance the 0L pointer during insert mode, editing
Qﬂ, commands which are supposed to change the value of
the OL pointer will continue to d¢ so. For example,
typing control-G during insert mode will still copy
the rest of the o0ld line over to the new lire and
advance the QL pointer to the end of the old line.
To get the feel of insert mode, and the on-off actioen
of control-¥, set up an old line by typing the
following:

19 PRINT "TEST LINE"
Now, usSe the control-D command twice, to “speed" you
to a point just after the guote-mark at the beginning
of the string literal. (To accomplish this, strike
four keys: control-b, T, contrcl-D again, and T
again.) Here is what you should see on the terminal:

10 PRINT *
Now, strike control-Y, which gives you this:

19 PRINT "<

Type the words

(_/ - HERE IS &

- NORTH STAR BASIC - M-18

ADVANCED FEATURES (Continu®d)

and then a space. Then strike control-Y again. The il
terminal should now look like:

18 PRINT "<HERE IS A >

By geing into insert mode temporarily, vou avoided
typing over and so obliterating any vart of the 614
line. So, if you now strike control-G, everything
which came after the first quote in the 0ld lins will
be copied to the new line:

18 PRINT “<HERE IS A >TEST LINE"

If vou strike RETURN at this point, the new lins 17
will replace the o0ld, and the net effect will bhe that
the new material will have been inserted between the
first quote-mark and the subseguent T of the old. To
see this net effect, strike contreol-G again and
follow it with a RETURN.

Control-N: CANCEL AND RE-EDIT NEW LINE
This command cancels the partially-completed new line
and permits another new-line to be entered. The
canceled new line becomes the 0ld line for subsequent .
editing. An at-siqgn (@) is printed and advancement
to the next terminal line occurs when this command is ‘
typed. The at-sign itself may be typed instead of
control-N to achieve the same results. After the
cancel is executed, both OL and NL peinters are reset
to the start of their respective lines,.

SEE ALSO: DISCUSSION: COMMUNICATING WITH BASIC

-~ NORTH STAR BASIC - ¥-19

---------II-----.------------.-----I-I---‘.

CONPATIBILITY

(u/DISQUjSIQN: COMPATIBILITY wiTh OTHER BASICS

This secticon provides some information which may pe
useful to you if you are attempting to convert
programs into North Star BASIC from otner versions of
BASIC,

STRING HRNDLIRG

The operations and functions used to access strings
and substrings often differ widely between different
versiong of the BASIC language. DISCUSSION: C(SING
STRINGS details the system implemented in North Star
BAS1C, where substring access it zchleved through
ztring-name subscrivting. However, some BASIC
gystems use the so-calle¢ "MID-LEFT-RIGHTY
convention, where access to substrings is made
possible by the three bhuilt-in string functions XILS,
LEFTS, and RIGHTS. Programs which use this method of
gsupstring access will have to pe modified to reflect
Korth Star string ¢onventions, In general:

UTHER BASICS - NORTH S3TAER BASIC
LEFPTS (X3.,1L) is the same as X$(1.,L)
(_, KIGHTS (XS, R) is the same as XS (LEN(XS)-R+1)
MIDS (X$,L,N) ig the saTe as XS (L.L+n-1)

STRING TABLES

Some versions of BASIC implement arrays of strings
with the syntax which is used for substring
referencing in North Star BASIC. An array of strings
may be achieved in North Star BASIC by partitioning a
string variable into fixed-lengtn substrings. For
example, an array of N strings, each of maximum
length L would be DIMensioned as:

1@ DIM AS${N*L)

and the Jth string element (where J extends from 9 to :
N-1)} would be accessed using: |

AS (J*L+1, {I+1)*L)
STRING DECLARATIONS
In North Star BASIC, all strings longer than 18)
characters must be explicitly declared in a program s
DIMension statements. Strings may be dimensioned to

: any length desired, to the limit of available
(_z computer memory. Some other HASICs do not reguire

~ NORTH STAR BASIC - H-1

W

COMPATIBILITY (Continued

that string variables be dimensioned hefore use, hut
may set a small upper limit on the maximum lengtn of
strings which may be used in & program.

INPUT TRANSLATICN

Certain characters, when they are typed into Horgn
Star BASIC, are automatically translated into otner
characters. This is done to help minimize the effort
of converting programs written for other SaSIC
systems into North Star BASIC. This conversion is
not verformed upon text within guoted strings. The
fcllowing chart summarizes the translation process,

{ pecomes {
} becomes)

fcolon) becomes % (backelash)
; [semi-colon) becomes . lcomma!l

Thus, the line input as
18 PRINT AS{3,4}; : LET AS{3,4)="dL"

becomes

18 PRINT AS$(3,4}), \ LET A$({3,4)="HI"
HNORTH STAR'S BCD ARITHMETIC

North Star BASIC uses the BCD (binary coded decimal)
system for implementing floating-point arithmetic ({(as
cpposed to bipary inteqer arithmetic in some BASICs,
and straight binary floating methods in others.)

Within the limits of its precision (8-digits in the
standard version}, North Star BASIC s BCD method is
the most accurate method of arithmetic computation
avallable on microcomputers today. Other fleating-
point arithmetic metheds exhibit "binary-conversion-
error"” which introduces strange and sometimes
frustrating inaccuracies into numeric computations
because of an internal c¢onversion of numbers from
decimal (base 18) to binary (base 2).

It is impossible, using straight binary methods. to
represent with complete accuracy many common and
precise decimal fractions, such as .1! You might
assume that 18*.1 = 1. Using North Star s accurate
BCD arithmetic, it always does, However, under other
metheds, 18*.]1 fregquently does net egual exactly 1!

- NORTH STAR BASIC - h-2

T ————
- COMPATIBILITY (Continued)

Tk EVALUATION

Gther BASICs handle the results of IF ... THEN
evaluation differently than North Star BASIC when the
IF statement precedes others on a multiple-statement
program line, In North Star BASIC, when the IF
conditjon is FALSE, the THEN part is skipped and
execution continues with the following statement in
the program text. The "following” statement may come
ztter the IF statement on the same program line, or,
when the IF i1s at the end of a program line, the
firs:t statement on the next line is used as the
"following®” statement, Thus, the program:

19 &
24 B
36 IF BA<>D THEN A=7 \ B=
48 PRINT B8

b

will vield

7 - .
as output. In contrast, other BASICs may ignore the
rest of line 20 when the IF c¢ondition is found to be
FALSE, and will skip ahead to the following program
line., bypassing the assignment to B in line 3¢ so
tnat the cutput becomes:

9

with these other BASICs, execution always skips to
the following pregram line when the condition in an
IF statement is FALSE. The remainder of the line, if
any, 1is executed only when the condition evaluates to
TRUE.,

- BORTH STAR BASIC - =3

DiSCUSSION:

SEE ALSO:

MISCELLANEQUS TOPICS w

SPECIAL ENTRY POINTS

KNOTE: The following discussion concerns advanced
topics and presupposes a working knowledge of the
North Star DOS and a grasp of memory addressing in
hexadecimal (base 16) notation. Please he sure that
you ‘are familiar with these topics before reading
further in this section.

The following is a list of BASIC s entry pointe, and
the results of re-entty to BASIC via sach. ({The
abbreviation ORG stands for the starting address of
your BASIC -- for those whose EBASIC starts at 2D06H,
the actual entry point addresses are given in
varentheges next to the general models.)

CGRG + @0H (2D@8n)
BASIC is initialized. An automatic SCRatch of the
program/data area is performed, erasing any 3ASIC
program and/er datz which might have existed in
that area of RAM. Wote that this is the entry
point used by the GO BASIC command in the DOS3.

CRG 4+ B4H (2D0@48)

Any previously existing program is retained, but .
any variables and/or cther data associated with it
are erased.

ORG + 14H (2D148) '
The BASIC system resumes, with all program, data,
and program executicn history left intact. Thus,
you may interrupt a BASIC program with control-C,
exit BASIC with BYE, use the DOS, re-enter BASIC
at ORG + 14H, and use the CONT command t¢ resume
BASIC program execution exactly where it left off.
{(This assumes, of course, that your use of the DOS
causes no change in BASIC s memory region.}

DISCUSSICN: PERSONALIZING BASIC

- NORTH STAR BASIC - 0-1

.

M1ISCELLANEQGUS TOPICS (Continued)

FERSONALIZING BASIC

You may change certain of BASIC s internal features
80 that system operation is more convenient for vou
and/or better fits your perticular computer’s
capabilities. For example, the limits of the memory
area used by BASIC may be enlarged or constricted,
leaving more or less space for user programs and
data. These changes are accomplished through the
modification of information stored in various memory
iccations within the BASIC interpreter itself.

In general, modifications of these "persconalization
bytes" are best handled through use of BASIC s rIil
statement, and, occasionally, the built-in EXAM
function. What follows is a complete, step-by-sten
precedure which vou may use to “personalize® BASIT in
vour computer svestem, If you want the changes made
to ke permanent, be sure to follow ALL of the steps
{from A to E}. If you want only temporary
modification, which will endure vntil the end of the
current session of BASIC, then.dec.only step <.
omitting all the rest.

4. Test your system’s memory by using the MONITOR
memory=-test function to be sure that vou will not
be making a copy of BASIC from bad memory. 1In
patrticular, the area where BASIC and DOS regide
should be tested thoroughly.

B. At this point, you should make sure that the DOS
is coperational, and that you are in its COMMAND
mode (signified by the DOS prompt). MNow, put your
write-protected, original system software diskette
(supplied by North Star) in drive #l and then type

GO BASIC<CR>
When BASIC responds with READY, go to step C.

C. Now you are ready to make the varicus
modifications to BASIC. In order to do so, follow
the sub-steps here in exactly the order given. If
you do not wish to make one or more of the '
individual changes listed, then simply skip it,
but DOK'T MIX UP THE ORDER OF THE STEPS! In any
case, you must always do step %2 before attempting
any higher-numbered steps.

1. MEMORY SIZE

Initially, the standard version of BASIC
doesn’t leave much room for your BASIC

- NORTH STALR BASIC - 0-2

---—------n-q------—------m--i.

MISCELLANEOUS TOPICS (Continugg)

program/data area -~ BASIC is made to “"assume"
that you have only 16,384 bytes of working
memory. The DOS and BASIC itself take up most
of this. 1In order for you to write and RUN
reasonably large programs, you must have more
memory beyond the 16,384~bvte (16K} limit.
‘Moreover, you must inform BASIC of the extra
memory availability using the MEMSET command.
See COMMAND: MEMSET for detailed information an
the use of this command. You may use MEMSET to
enlarge or shrink the program/data area that
BASIC is allowed to use. Simply determine the
address (in decimal) of the highest memorv-cell
you want BASIC to be able to use, and employ
that number as the argument to the MEMSET
command. For example, if your memory extends
all the way to 48K (49151 in decimal) and Vo
want BASIC to use all that’s available thers,
type

MEMSET 49151

(The argument to MEMSET is, among other things,
translated to binary, and put into bytes
ORG+09H and ORG+18H, where "ORG" is BASIC s
ORIGIN (starting address} in your system,
ususally 2DA@#H. In the standard version of
BASIC, then, these addresses are 2D89H and
2DBAH, respectively. The standard default
high-address for the program/data area is
SFFFH.)

2, SETTING A VARIABLE TO BASIC S ORIGIN
For many of the following steps, the FILL
statement is used to modify memory locations
within BASIC., In the examples to be given
here, it will be assumed that the numeric
variable S has been set to the decimal number
corresponding to the address in memory where
your copy of BASIC starts. If you have a
version of BASIC which starts at "2D€8"“ in
hexadecimal, then use 11528 for BASIC s origin.
Otherwise, if your BASIC starts somewhere else,
determine the decimal (base 16) eguivalent of
the origin, and use that number, Set € in a
direct-mode assignment statement. For example,
for standard versions of BASIC, type

S$=1152¢
3. LINE LENGTH
~ See STATEMENT: LINE for a description of the

- NORTH STAR BASIC - C-3

e ————— N1

MiSCELLAKEOUS TOPICS (Continued) ‘

significance of the input/output line length in
BASIC. The standard version assumes that the
console terminal has a line-~width of 89
characters., TIf the actual per-line capacity of
your terminal is smallexr or larger than this,
set variable L to the appropriate line length
for your terminal. If that is €4, for
instance, then type

L=64
Once L is set, then type
FILL 5+14, L

VIDEO PAGING

If vou have z video (CRT} terminal, it is
desirable for BASIC to send only one "screen-
page" at a time when providing 2 precgram
L1STing to you on the video screen, and then
wait for you to "ask" for the next page. 1If
you have a printing terminal, which gives you
Gutput on paper, you won't need paging. Set
variable P to the appropriste value for vour
terminal. For herdcopy (printing) terminals,
where you don’t want paging, type

e

P=0

and for video screens, set P to the number of
lines which your screen can display at one
time. The standard version of BASIC assumes
that your terminal has a video screen capable
of showing 24 lineg at a time. If this is so,
then you don’t need to make any modification at
all, and may skip this step. Otherwise, once
the appropriate value of P is set, type

FILL S5+19, P

{Note that, if you direct BASIC to page its
LISTings, it will give you P-1 lines of
program, then, at -the bottom of the screen, at
the Pth line, it will PRINT

PRESS RETURN TO CONTINUE

To get ancther page of LISTing, strike the

RETURN key. If vou'd like to terminate the
LISTing at this point, press control-C.}

- NORTH STaR BASIC - C-4

M

MISCELLANEOUS TOPICS (Continued)

5.

=

"BACKSPACE" CHARACTER

In the standard, unmodified version of BASIC,
when you press the underline, control-g,
backspace (control-H), or RUB/DEL key to delete
the last character typed, BASIC types an
underline (ASCII character 95) back at you to
confirm the deletion. It is possible to change

"this "deletion confirmation” character to any

other one you wish. Set variable D to the
decimal ASCII value of the desired character.
(If you don’t know its ASCII value, use the
table provided in APPENDIX 4.) For exemple,
the ASCII value of the backspace character is
8, so0 to set D appropriately, type

D=8
Then, having set D, type
FILL &§+Z232, D

Changing the "deletion confirmatiocn" character
to backspace is most useful when your terminsl
is a standard CRT model. However, not all use
ASCII-8 &s a backspace ~- consult the manuval
for your specific terminal or videc screen in
order to get the exac¢t character which causes
backspacing on 1it.

CONTROL-C INHIBIT

For some applications, you may wish to keep the
user from being able to interrupt & program by
striking (whether accidentally or on purpose)
the control-C "PANIC BUTTON". 1If, for any
reason you wish to disable the control-C
feature, make sure that S8 is set to the
starting address of your BASIC and type

FILL S+24, 1
To re-eznable the feature, type
FILL S+24, 0 |

The standard copy of BASIC assumes that
control-C interruptions are allowed. Note that
control-C can be turned on and off during the
execution of a program, if desired, using these
same methods.

- NORTH STAR BASIC - . O-5

---------y---n--------n-----ll
NISCELLANEOUS TOPICS (Continued)

NON-STANDARD BOOTSTRAP PROM

If vyour system uses & non-standard bootstrap
disk-controller PROM, then you must convert the
first two digits of the 4-digit hexedecimal
zddress for your special PROM into decimal,
then assign that value to a variable, say B.
For example, if your PROM starts at FCEBH, you
weculd take the two-digit hex number FC and
convert it to its decimal eguivalent, 252.
(You may use the table in APPENDIX 4 for this
cecnversion.) Then, you would type

B=252
Once B hzs been set properly, type
FILL S+16, B

Note that if you have a non-standard PROM and
fail to make this modification, the RND
function will not work properly when given =&
negative argument. -

SHRINKING BaSIC

There are many applications which do neot use
the special mathematical functions SIN, COS,
BTN, LOG, and EXP, but do reguire as much free
memory as they can get! To release extra
memory into the program/data area, you can
"chop" these functions out of BASIC by
performing the modification described here.
First, as you look at the table below, realize
that these functions must be removed starting
at ATN and continuing up through the function
you select (which might itself be ATN, meaning
a deletion of only one function). It is
impossible, for instance, to remove the LOG
function but keep SIN and COS. If you choose
to remove through LOG, then SIN, C0S, and ATHN
will also be erased. Bearing this in mind, you
can indicate your choice by setting wvariable C
to a specific value, as shown ip this table:

to remove functions

from ATN through ... gset C to
ATN 1
SIN-COS 2
LOG 3
EXP 4

To 1llustrate, suppose vyou wish to eradicate

- NORTH S5TAR BASIC ~ O~6

w
MISCELLANEOUS TOPICS (Continuad)

all of the listed functions. Then you should ‘
type

C=4
. When C is set to the desired value, then type

FILL S5+6, EXAM(S+24+(C*2)-1)
FILL S+7, EXAM{S+24+(C*2})

Note that, after this modification has been
made, any attempt to use the erzsed functions
will lead tc a system crash. (The
exponentiation operator, 7, makes freguent uce
of the EXP function, so if you delete EXP,
don't use 1, either.)

9. PERSONALIZING FPB-BASIC FOR DIFFERENT FLOATING
POINT BCARD ADDRESSES

Note: Skip this section unless you are
personalizing a version of FPB-BASIC.

The North Star Hardware Floating Point Board
(FPB-A) is accessed like computer memory, and
has a set of addresses zs does a memory bhoard. ‘
All the FPB-A addresses have the same high
byte: 239 (EFH) for the standard board. The
North Star FPB-A manual tells how to change the
high byte, in order to re-address the board.

If you find it necessary to re-~address your
FPB-A, you will also have to personalize BASIC
so that it will use the board st the new set of
addresses. The following procedure should be
done BEFORE you actually change the addresses
of the board itself:

Simply determine what the decimal eguivalent of
the board s new high byte is, and set variable
F to it. (You may f£ind APPENDIX 4 useful in
performing any necessary conversion from
hexadecimal to decimal.} To illustrate, assume
you wish to change the high byte from 239 (EFH)
to 223 (DFH). Then type

F=223

when F has been assigned the decimal value of
the board’ s new high byte, type

FILL S+33, F ‘

- NORTH STAR BASIC - 0-7

e —_ =

MISCELLANEOUS TOPICS (Continued) '

How, haeving finished 211 personalization, use
the methods described in this DISCUSSION to
save a copy of your new FPB-BASIC on diskette.
Shut down the computer system and change the
board’ s addresses. When vou re-activate and
re-boot the system, execute the new copy of
FPB-BASIC. From now on, every time this new
copy of FPB-BASIC is executed, it will "re=-
personalize" itself to use the FPB-A board at
the new address. Older coples of FPB-BASIC,
which have not been modified in the above
fashion, will f2il to work with the re-
addressed FPB-A.

D. Type BYE in ocrder to return to the DO3S. Mount an
initialized diskette, for example, a diskette
which contains only a personalized copy of DOS
{not your original, write-protected diskette), in
drive #1, and perform the follaowing DOS commands:

CR BALSIC <size of BASIC file on master d&isk>
TY B&SIC 1 <origin in hex of your BASIC>
S5F BASIC <origin in hex ©f BASIC>

If vou have the standard version of BASIC, then
the above simplifies to the following actuel
commands:

CR BASIC 52
TY BASIC 1 2D@60O
SF BASIC Z2D@0

E. Now type
GO BASIC

to test your personalized copy and make sure that
2ll the modifications have been made correctly.

If not, get back into DOS and return to step A.
The new copy of BASIC may now be used as your
"personalized" master copy, and the disk
containing it should be write-protected for this
reascn. Then, when you need another copy of this
personalized BASIC, you need only copy it to
another diskette.

TUBNKEY STARTUP QF BASIC
Using methods similar to the personalizaticn proceoss

above, you can configure a copy of BASIC so that a
BASIC program begins zutomstically as soon as BASIC

- NORTH STAR BASIC - o-5

M

MISCELLANEODS TOPICS (Contimisd)

itself is "up and running". This 1s especially
desirable when you want to create &n "automatic"
software system intended for use by persons who are
unfamiliar with BASIC or DOS operation.

HOW TO CREATE A TURNKEY VERSICN OF BASIC:

1) Mount a diskette with 2 copy of BASIC on it in
drive #1. Type

GO BASIC

Z) If you desire different “"perscralizztion" than
that already existing in this copy of BaSIC, gc
through the personslization procedure described in
step C {(above).

1) BEnter or LOAD the desired BASIC program into the
system.

4) Repeat substep 2 of Personzlization Step £ to =&t
€ to the starting address aof BASIC.

5) Type
PSIZE

Add the number printed to the size of the BASIC
interpreter itself. {This is the filesize of
BASIC as listed in the diskette directory. Assume
5@ for now.} Set variable X to the number you

get. If the PSIZE is 20, for example, add 50 to
get 7@, then type
X=70

6} Set string variable F$ to the name you wish to
give to this turnkey system. 1f, for instance,

the “"auvtomatic"™ BASIC program is named “SALES",
then you might want to call the turnkey system

"SALESBAS". Then, type
F$="SALESBAS"

and go on.

7} Mount a diskette with enough room on it to hold a
file of sige X in drive #1. Then type

CREATE F5,X%

~ NORTH STAR BASIC =~ O-

W3

e =S

MISCCLLARECUS TGPICS (Continued) .

gy Type
FILL 8+15, B

and finelly type BYE, which will put you back in
the DOS, 1In the DOS, you will need to save the
turnkey system on the file you have created, and
must specify BASIC s starting address by using the
TY (TYpe) command. Here are two models for what
¥ou must type in the DOS:

SF <name of file> <BASIC’'s origin>
Y <name of file> 1 <BASIC ¢ crigin>

1f "SALESBAS"™ 1t taken as an example, you might
type

SF SALESBAS 2D@8
TY SALESBAS 1 2D68

97 Now Lype
GO <file name>

to test the new version of BASIC. In the example
here, you would type:

GO SALESBAS

Your BASIC program should start up without the
need for a LOAD, RUN, or CHAIN.

2 CHART FOR READY-REFERENCE

The following chart contains summary information
about each of the "personalization bytes" discussed
in this section. The addresses are given relative teo
the start of BASIC (the "ORG +" form), and, for those
whose BASIC starts at 11528 (2DOBH), the actuel
addresses in decimal and hex are also given.

ORG+56 & ORG+7 (11526 & 11527 or 2DB6 & 2DB7) [ENDBAS]
These two locations contain the low and high bytes, :
respectively, of the last address taken up by the
BASIC interpreter itself, and may be modified to
contain a lowsr address in order to "shrink® BASIC.

ORG+9 & ORG+16 (11529-11538 or 2DO9KH-ZDOANH) fHIGHMEM)
Contains lower and upper bytes, respectively, of
highest address in RAM which BASIC may use _for
rrogram/data area. B8Btandard value: 255 and 95
respectively {corresponding to SFFFH).

]

- NORTH STAR BASIC - 0-18 .

MISCELLANEQUS TOFICS fContin%pd)

CRG+14 (11534 or 2DBEH) [LINE}
Initial line length. Standard value: B¢

ORG+15 (11535 or 2DYFH) [AUTOS)

Controls turnkey auto-start. Zero-byte means auto~-
start engeged. Standatd value: 1 (no turnkey
operation).

ORG+16 (11536 or 2D1PH) [BOOTPROM]
Corresponds to first two hex-digits in bootstrzp PROM
address for your system. Standard value: 224 ({ESH)

ORG+19 (11539 or 2bl3H) |PAGES]

Controls paging-mode for program L1STings. If paging
is desired, this should c¢ontain the number of lines
in a terminal "“page". A zero~valve means no pzaging
will occur. Standard value: 24

ORG+23 (11543 or 2017H}) ([DELECHO]

Character to be "echoed” in response to a single-
character deletion. Standard value: 95 {corresponds
to underline character).

ORG+24 {11544 or 2D18H) [PANICOK]

Controls use of control-C for BASIC program
“interruption. If this byte is 8, control-C causes
interruptions., When the value is non-zero, control-C
interruptions are disabled. Standard value: 0

ORG+33 (11553 or 2D21H) {FPBADDR]

Specifies the high-order byte of the ficating point
board addresses. This byte is present only in
hardware floating point versions of BASIC.

11

- NORTH STAR BASIC -~ O

QJJDISCUSSION:

LiOUT

DIFFE

MISCELLANEQUS TOPICS {Continued)

NON-STANDARD VERSIONS OF BASIC

NOTE: This discussion assumes some sophistication on
the part of the reader, particularly an understanding
of the term "precision* and how it relates to numbers
and arithmetic in BASIC. A knowledge of computer
remory addressing and the hexadecimal numbering
system is also helpful. Readers unfamiliar with
theze topics should study other sections in this
manual, namely DISCUSSION: USING NUMBERS and APPENDIX
4: DECIMAL-HEXADECIMAL-BINARY-ASCII CONVERSION
TABLE.

HON-S5STANDARD VERSIONS OF BASIC

The standard version of BASIC beginsgs at address 1156
(2D36H) in memory, provides 8 digits of arithmetic
vrecision in its representation of numbers, and does
arithmetic with the help of special software routinss
written directly into the BASIC interpreter itself.
BASIC is available, however, beginning at other

addresses in memory. (From now ¢on; the starting
address of your copy of BASIC, whatever it is, will
be called its ORG, for “origin".) Moreover, BASIC is

available with 6, 18, 12, and 14 digits of numeric
precision, as well as the standard 8 digits. North
Strar manufactures a Hardware Floating Point Board
which will perform arithmetic with any of the above
precisions far faster than eguivalent microcomputer
software routines. A version of BASIC is avalilable
which is designed to use the power of this board, and
which, as a result, does not include the same
arithmetic routines found in standard BASIC, since
their functions are duplicated more efficiently in
the circuitry of the board itself.

Any combination of these three optionsg (different
origin, different precision, and FPB arithmetic) may
be ordered in a special, NON-STANDARD version of
BASIC for a nominal fee. This séction discusses the
explicit details and the ramifications of the
differences between these special BASICs and the
standard BASIC. .

RENT ORIGIN

BASIC may be “re-located" to begin at any of the
sixty-four 1224-byte address boundaries in memory.

It is, of course, advisable to avoid certain areas of
memory, most notably those which contain the DOS and
the bootstrap PRGM. If you have any other system
software (such as special I/0 routines in PROM, etc.)

- NORTH STAR BASIC - O-12

e ———

M

DIFFERENT PRECISIONS

SEE ALS50:

MISCELLANEOUS TOPICS {(Contiwued)

which must exist in a certain region of memory, you ‘
should also avoid re-locating BASIC into these areas
as yvou avoid the DOS and North Star PROM regions.

Within RAM and in diskette data files, numeric
elements of differing precision will take different
amounts of storage space. Standard 8 digit numbers
reguire 5 bytes, for example, while 14 digit numhers
require 8 bytes.

Because of this size difference between numbers of
different precisions, it is not possible for & BASIC
program which is operating under a BASIC of precicion
X to READ numeric elements from data files created
under a BASIC of precision Y using the READ}
statement in normal fashion. That is,

READ §#1,a

under 8 digit BASIC will not return a correct value
if used to retrieve a numeric element created under
14 digit BASIC, It is possible to read "foreign”

files such as these by accepting data byte-by-byte i
and reconstructing appropriate values, making ‘ b
allowances for difference in precisions. B

FLOATING POINT BOARD (FPB) BASICS

Versions of BASIC which use the North Star FPB to

perform arithmetic typically operate much faster than

those which use software to do the same calculations.
Moreover, FPB BASICs are somewhat smaller than i
software-arithmetic versions. Depending upon the

precision required, an FPB BASIC is approximately 758

bytes smaller than the correspending version which

does arithmetic with software. Except for the |
increased speed of computation which is realized with b
Hardware Floating Point vergions of BASIC, there is :
no operational difference between FPB and non-FPB
BASICs. In particular, BASIC programs written under
an FPB system will run without modification (although
more slowly} on a non-FPB system, as long as the
numeric precisions are the same, and other i
considerations are equal. However, FPB BASIC |?
interpreters themselves will not operate correctly in
computers which do not include the Floating Point
Board. :

APPENDIX 3: IMPLEMENTATION NOTES ‘

13

- NORTH STAR BASIC - o

The

Each hag

APEZIDLY

1

M

SAamMPLE PROGRANMS

tollowing are sample programs written in North Star BASIC,
been fully tested and thoroughly debugged., and is

guaranteed to run on any version of North Star BASIC. Release 4
or later, which has at least 8-digit precision and has not been
strivcned of trigonometric and exponential functions.,

193¢
183
118

R
143
4.

136
146G
145
15¢
155
164
566
516
1%

520

16
116
126
126
140

1GE
-

1$¢

FRINT & sine wave vertically on the page

=51k {(J)
S=INT(30*T)
PEINT TAB(ZG+3},"*"

AT

[

ZEM Input a string and check that it is 2 legal integer.

REM

LIM A3

(72)

FRINT \ INPUT “TYPE AN INTEGER: ",AS5
IF LEN{AS})=0 OR LEN(B$) > 8 THEN GOTC 5060

FOR Jd=

1 TO LEN(AS)

IF A$(J3,Jy < "B" THEN 589
IF AS(J,d) > "9" THEN 568

NEXT J

PRINT "THE INTEGER IS GK:",VAL({AS)

GOTO 115

EEM Case not ok

PRINT "NOT & POSITIVE INTEGER WITH AT LEAST ONE"
PRINT "DIGIT AND NO MORE THAN & DIGITS. TRY AGRAIN."

GOTO 115

HEM
REM
REM

FCOR J=

PRINT
PRINT
FRIRT
FRINT
NERXT

212F18, KND

Print = table of formatted values.

1 TG 148
£31,3,
$6F3,SIN(J),37F4,C08 (J},
$18E3,EXE(J),
(@)

- NORTH STak BASIC - Al-1

M

160
110
120
125
126
127
1209
149
158
le@
178
188

=g

270

16
=z

208
365
210
320
336
348
358
366
464
485
41¢
415
£2¢
4349
441
45¢
568
518
520
53

SAMPLE PROGRAMS (Continde:d)

REM Construct a file containing numeric squares,
REM and then use random access to compute sguares ‘
REM of typed input wvalues,

REM Program assumes file "SQTABLE" exists and will

REM fail if it doesn’t.

REM Both sequential and random access are used here.

QFEN #8B,"SQTABLE"

FOR J=6 TC 598

WRITE 4@, Jf2

NEXT

INFPUT "X=",X

IF X<@ OR X>58@ OR X<>INT(X) THEN END

READ #6%5*X,X2 %\ REM Each number takes 5 bytes in file.

PRIRT "X SQUARED:",X2 .

GOTO 170

REM Various ntility functions which may be handy _ ‘
REM in writing programs.

REM

DEF FNCl(X) N\ REM Returns ARCCUS({X) in radians.

REEM ¥ must lie in range -1 ... 1

IF X=-1 THEN RETURN 3.1415926 %\ EREM ARCCOS8(-1)=PI

IF X=p THEN RETURN 3.1415%Z6/2 \ REM ARCCCS(#)=PI/2
RETURN ATN (SQRT (1-XT2})/X} N\ REM Al} other cases of X
FNEND

REM

REM

DEF EFNS1(X) \ REM Returns ARCSIN(X) in radians.

REM X must lie in range -1 ... 1

IF ABS{X)=1 THEN RETURN X*{3.1415926/2)

REM ARCSIN(+\= 1) = 4\~ PI/2

RETURN ATN{X/SQRT (1-XT2})) \ REM All other cases of X
FNEND

REM

REM

DEF FNB({B,E)=INF(B/2TP}/2<>INT({INT(B/2TP)/2)

REM Returns the Pth bit in byte B -- 6 or 1

REM

REM

~ NQRTH STAR BASIC -

b
s
|
b

---------------n-u---—-----d-

SAMPLE PRUGRAMS (Continued)

& LEF END(HS)

S KEH Converts nex sf{ring 1in HS to decimal value
& kbl znd revurns that. Error condition occurs
bopEm 1L H$ 1s null or contains non-hex aoigics.
z *** {jszs variables T, E, and C without

rescvoring them at return!

LEet™ THER 675
JEOL=LEN(RE) TO 1 STEP -1
ASCILRS(E,L}))

(C < a3C(*e")}y SR (C > ASC("F")) THENK EX11 875
o0 k= ABC(MAMYY AND (T <= ASC("S9")) THEN (C=C-4t
i e {0 »= RESC{"A")) AND (C <= ASC({"F")) THER C=C-5%
G! IT LU » ABC(TS“Y}) AND {(C < ASC{"A")) THEN EXIT &7°%
GGU L=T=C" (16T (LEN {HS)-E))
E65 ILNT ..
€76 RETURN T
675 FRINT "BAD HEX NUMBER"
6ol RETUEN -1
EEE FREND
E€0 BEN
£¢3 REBEM
TCH DEF FXBS{D)
TELT O REM Given decimal value D, returns string vzlue
Tl REM corresponding to hex form of D.
715 REM Negative arguments are turned positive,

716 REM non-integer numbers are truncated.

728 REM Uses variables H1$, D2, H, and I without
725 REM resteoring them upon return.

734 D=INT{BBS{D)) \ Blg=""

7325 H=INT{LOG(D)/LOG({16)+.5)

740 FOR I=H TO 6 STEP -1

7a5 SZ=INT(B/(16T1))

720 IF £2 »= 10 THEN H1S$=H1S+CHRS{ASC("A"}+D2-18)
755 iF D2 < 10 THBEN H1$=H1S$+CHR$(ASC("E")+D2)
76é D=D-(D2*(16T1)}

765 NEXT

& RELTURN HL1S$

5 FNEWD

TRD REW

7E

TR TIE s
[R R o o Y

- NORTH STAR BASIC - kl-3

M

SAEMPLE PROGRAMS (Continuec

14 PRINT "QUICKSORKT-A TEST PRCGRAM -- WUMEERS"

1l PRINT "VERSICON 1.0 -- 3/28/78"

12 PRINT "NORTH STAR COMPUTERS, INC."

15 REM Sorts array & of N numbers into ascending order.

26 REM lUses the array-partitioning scheme as
3C REM explained in section 2.2.6 (pp. 76-82) of
3% REM Kirth, ALGORITHMS + DATA STRUCTURES = PROGRANS
it REM (Prentice-Hazll - 1%76).
S REM The guicksert mirrors Wirth's non=-recurcsive
6 REM version (program 2.11, p. 86), and includss
7@ REM the modifications suggested in the text =--
5¢ REM
i REM a) Comparand X is selected at random (line 1638}
1%6 REM to avoeid Quicksort's poor worst-case hehavior.
ild REM
1Z0% EEM b) The size of the stack which holds accumulaied
13¢ EREM partitioning information has been limited to
135 REM log2(N) by incorporation of the program segmant
-14@ REM on page 82, (See Wirth, Fig. 2.16, this
150 REM cerresponds to lines 16%6~1160 here.)
168 EEM
178 REM Note that the stack array, 89, is declared in
180 REM a DIM statement (line 218) before the Quicksort
158 REM routine is called, and the random-number
1G5 REM gensrator is "randomized" at tihis time also.
268 N=18086 \ REM Sort N numbers
210 DIM A(N), S9{INT(LOG(N)/LOG{2)+1),2}.
215 REM A is main array, §9 is stack.
220 Q=RND(-1) \ REM Randomize PRN generator.
238 FGR Q=1 TO NNA(Q)=RND(@)\NEXT
235 REM BAbove fills A with random numbers.
240 FOR Q=1 TC N\PRINT A(Q)\NEXT \ REM Verify randomness.
25@ PRINT "BEGIN SORT"
Z66 GOSUB 1066
276 PRINT "END SORT"
289 FOR Q=1 TO N\PRINT A (Q)\NEXT % REM Show sorted array.
299 END
1988 REM BEGIN Quicksort in North Star BASIC
1@l REM Relies on existence of N, and arrays 359 and A
16p2 REM Uses L, R, 1, J, X, 5, and W without
183 REM restoring them.
1218 =1 \ REM S5 is stackpointer. '
1015 89(1,1)=1 N\ S%{1,2)=N \ REM 5% is pre-DIMmed stack.
1626 L=85%(S,1) \ R=39{(5,2) \ 8=8-1
1325 REM L and R are left and right partition boundaries.
1838 I=L N\ J=R N\ X=A(INT(RND(B)* (R-L}+.5)+L} \ ! "sort",
1049 TP A(I) >= ¥ THEN 1650 \ I=I+1 \ GOTC 1049
1858 IF X »= A(J) THEN l@ed \ J=3~1 \ GCTO 1859

- NORTH STAR BASIC -

160
1074
1680
1450
111@
1120
1i3¢

[

el et e et p—

1
N

T

fad b = bl
<3 R U s
L e

e

()

"
1 b= G -
[}

I U e el = I
[}

i
&+l

o

.
:
"
;
:
F

[P Y

<

‘J
N

o

I
u

_l---n----.---—-—----------nu----Il

SAMPLE PROGEAMS (Continued)
THEN 1686
A{I)Y=A{J}
J 'THEW 1049
= R-] THEN 114§

R THEK 11290

S9(S5,1)=1 \ 8%(5,2)=R
TO 1176

J THEN 1166
58(5,1)=L N\ 8%(5,2)

NOA{Iy=w N I=I41 N J=d-1

J

THEN 1020
TREN 1826
RETURN N REM END Quicksort.

- NORTH STAR BASIC -

Al-5

LI e g B

T

-1

bt

ia

[N By T i

=¥

EoR L i S TR Y O R B S T IR T 5 T 5l

N I |

1636
16685
igle
1015
1626
130
1e35

Lh
LI
a1 =

SAMPLE PROGRAMS (COntinuedd

PPOUICKSGRT~-R TEST PROGRAM —-- STRINGSORDT™

I"YERSION 1.8 -- RELEASE DATE: 3/26/78"

I"NORTH STAR COMPFUTERS, INC."

REM Generates N strings cf length G7, each contzining rzndam
REM characters. Strings held in "super string” R1S.

REM Uses same algorithm as numeric Quicksort-3 program abow
REM except that this has bean moagified to zort oirings vein
HEM North Star substring conventions and user-functions,
REM Many of the variable names have been charged, kit sort
REM 1is the same.

G7=1B\N=50

CIM REA(GT),KS(G7),Q05(G7),R1I$(GTF*N)

CIM UB(INT({LUG(N) /LOG{2)+.5),2) N\ REM UE ic =
WEB=RMD(-1) N\ REM randomize the random numbhor ge
BEF FNX(X)=(X~1)*G7+1

DEF FNY(Y)=Y*GY

REM FhX and FNY are pointers to individual substrings of
REM simulated array RI1S.

REM Below fills R1S with random strings.

FOR I=1 TO N

Qs(l,1)=":"

FOR J=2 T0 G7-1

03{3,J)=CHRS{INT{RND{@)*25+.5)+65)

[Y]

NEXT J
Q$(G7,G7)="*"\R1§ (FNX(I) ,FNY(I))=0$
1%31,1," ",Q8%

NEXT I

l"CREATION PHASE ERDED -- SORTING BEGINS"
GOSUB 1806 N\ REM Quicksorts RIS

!"SORTING PHASE ENDED -- RESULTANT ARRAY:"
FOR I=1 TO N
£%31,1," ",RIS(FNX(I),FNY(I}),

IF I=N THEN 336

IF I/15<>INT{(1/15} THEN 236NINPUT "",XS$\GOTC 240

! '\ REM Above line and this are for output paging.
NEXT I

ERD

REM Quicksort of R1$, using FNX and FNY to point
REM to substrings.

N8=1\U8(1,1)=1\UB(1l,2)=N

REM N8 is stack pointer.

L=0& (N8, 1}\R=U8 (N8, 2)\N8=NE-1
1=LM\J=R\ZB8=INT((R-L)*RND (@) +.3)+L\1".",

KS$=R1S$ (FNX{Z8),FNY(Z8)}

IF RIS(FNX{I),FNY{I})>=KS$ THEN 1O5B\I=I+2\GOTC 140
IF KS»>=R1S(ENX(J),FNY(J)) THEN 1468 \J=J=-1\GCTC l&5b

- NOETH STAR BASIC - Al-6

SAMPLE PROGRAMS (Continued)

I>3 THER 1090

R1$(FNX(I),FNY(I})
C(ENX(I),FNY(I))=R1S{FNX(J),FNY(J)}
S (FNX(J),FNY (J))=R$\1=I+1\J=J~1
1<=J THEN 1046
J-
i

")’) 4 1|

Ly>=R-1I THEN 1158
>=FK THEN 114¢
E+INUE (NE,1)=I\UE(NB,2)=R

Lr L= THEW 1176
WE=REFINGE (NE, 1) =L\NUB (N8, 2)=J

e R OTHENR 1230
»B THEN 10208

- NOURTH STAR BASIC -

--------------n--------u----

AY-7

M—

[]

DN e 5 h 10 03

Sl Sl el S TR N e B A O I = L B N I C P

|t ot
i
]

[
Lot
fes]

148
145

150

160

139

| 1900
| 1613
1015

10628

1030

1640

1999

2000

2081

2005

2019

2999

3800

3018

3620

3930

3046

3050

3060

3678

3680

| 3650

SAMPLE PROGRANMS {COncinueQJ

REM Test program for sctring search

REM Version 1.6 -- 11/01,78

REM North Star Computers, Inc.

B=186€ \ REM Maximum length of any string used in prog:Iam
DIM A1S{B),a2$(B} \ REM These will hold argumentcs to FuS.
DIM MS (B} ,NS{(88)

MS=CHRS (3}

REM Control-C’s will separate names in master list.

REM M$ is main string, N$ is one name, F$ is nzme to find.

REM Test program will input names (or arbitrary strings),
REM rejecting duplications, and adding new ones to eng
REM ¢f master list.

GCSUB 180G \ REM Give directions.

GCsSUB 28608 % REM Get a name, put in NS.

IF NS="" THEN 168 \ REM N$ will be null if time to quit.
F=FNS (M$,CHRS {(3) +N$+CHRS$ (3))

GCSUB 3208 \ REM Add N$ to M$ if P=8, Otherwise, advise
REM usger that it is already in the main string.

GCTC 1l1@

PRINT "QUIT"

END

PRINT "This program compiles a list of names which"
PRINT "you type in from the keyboard. Duplications"
PRINT "are caught and rejected. Be sure to stiike"
PRINT "the RETURN key after typing every name."

PRINT. "Striking RETURN alone when I ask for a name"
PRINT "will guit the program."

RETURN ’

REM Get a name, put in HS.

REM N$ will be null if time to quit,

PRINT

INPUT "Name (just strike <CR> to quit): ",N$

RETURN

REEM Add NS to MS if P=§, Otherwise, advise user

REM that it's already in the main string.

REM Add-n=w-name fails if no more room in M$

IF P=¢ THEN 306060

PRINT "*** Already in main string!"

GOTO 3999 .

REM Now, check to see if addirion is physically possible.
IF LEN(M$)+LEN(NS$S)+1 <= B THEN 2116

PRINT "*** No room in main string to add., Add ra2jected.”
GOTC 3999

- NORTH ST&R BASIC - a4l-8

om0

s b ol Cad Lad Tad Lk

A N B B BN A PR N I o)
Ty O LY T D

RIS BE Y S i S B

[

T
=

i

Ly

LA I % [SN Y

Loy N LA T

i O

[T

LS U R
R

k.
DAL A e T

LSLEE oo T it
LUGIIESE UG L TR L Rh)

i

—M

SAMPLE PROGHAMS (Continued) .

REM how, REALLY zdd string and separator to main string.
ME=MS+NS+CBRS (3)

PRINT "<",N5,"> : added."”

FETURHN

DET FNS{A1S5,22%5)]

REN Us2s variable T without preserving it.

REFN Looks for A2% in AlS, Value returned is

KEM first character position in A1$ where A2%

is found. Zero is returned if A25 not found.
EN(AZSY> LEN({ALS) THEN 4090

AZ25 longer than AlS, can't be contalnog 1y ELE
=" THEN 4090

1 string is not substring of any non-null stving.
n dewn the string untill a2 match is found.

TO LEN{A1S)-LEN(A23)+1

iT,T+LEN(A25)-1Y=A2% THEN EXIT 4g9%

el
=

Tt

S o e §|

T
[I R Bt T s B
o

=

by T
-t

=
e
=
o

LA g]

b E
T
I ¥

— e

)

FETLRN BN REM A2S neot in AlS

RETURN T - -
¢ T iz char position in AlS where H25%
KEM iz firgt found.

PMEND

1
pNe]

- NORTH STAKR BASIC - Al

T

1@
28
36
44
5g
0o
78
Lo
Se
95
126
1ie
12¢
125
156
146
15¢€
166
178
199
1668
lala
1a2¢
136
1635
140
1654
18649
1864
1p65
167u
1875
1988
1p9¢
11168
1128
1¢9¢
2088
2014
2028
2030
2040
205¢
2851
2864
2e7¢
2999
3008

SAMPLE PROGRANS (Continued),

REM Magic Sguares Program

FEM Version 1.0 -- 11/81/78

REM North Star Computers, Inc.

REM *** Demonstrates Array Handling in BASIC #*#%
REM

REM Global Variables Used --

REM 5 -- number of elements in one =ide of cguare

REM M -- flag, ¢ if square not magic, nonzerc 1f magic
REM A -- array which holds the suspected square

REM

REM Main routine.

GOSUB 1666 \ REM Give Directions.

GCOSUB 28806

REM Get DIM of side from user, and DIM &,

REM Lenath of one side of sguare now in 8.

GOSURBR 360@ \ REM Have user fill array elements,
GOSUB 4¢80 \ REM Determine if sguare is magic.

KEM M is nonzero if square is magic.

GOSUB 5669 \ REM Report results to user.

END \ REM End of main routine.

REM Give directions for this program to the user,
PRINT "*#*** North Star Magic Squares Program ****"
PRINT

ERINT "A magic square ig a grid of numbers iIn which"
PRINT "all the rows, 2all the columns, and both"
PRINT "diazgonals add up to the same number."

PRINT "This program tests fo see if a given square"
FRINT "“of numbers is magic."

PRINT

PRINT "You may choose to input a sqguare of up"
PRINT "to 5x5 numbers.. I will tell you whether"
PRINT "or not the square you give me is a magic"
PRINT "sguare. Please be sure to type your"

PRINT "answers to me when I ask., Conclude each™
PRINT "response by striking the RETURN key."

FRINT

RETURN

REM Get DIM of side, 8, from user. Use 5 to DIM A.
BPRINT

INPUT "Type the length of one side: " .8

IF S»=1 AND § <= 5 AND S=INT(S) THEN 2070

PRINT "*%* BAD INPUT"

PRINT "Your answer must be an integer from”

PRINT "1 to 5. Please Try a2gain.”

GOTO 2918

DIM A{S-1,5-1) \ REM f-element is used Lo sava space.
RETURN _

REM Have user fill array elements, and re-~display

— NORTH STAR BASIC - A1-19

30¢s
G100
3620
3621
3638
3040
048
3856
3060
3676
A

ifen

™

BT AT e Ll DO B e v
TOOTY D B 0T ST L) T AT T i T

L b Ak L Ul e Lk L 0 B3 Pk s
T2 R WD Rt RS R R

[N
[)
b b3
o

4040
4950
4118
4138
4143
4158
4155
41€d
4178
4186
4181
4199
4212
4211
4226
4225
4234

__J----.—-----u----nn------.-

SAMPLE PRUGRBME (Coptinued)
®EL e inruil as a Zguare.
PRINT .
PFRINT "Flezse gilve mez the appropriazte number to"
PRINT "fill each co-ordinate of the proposed magic”
PRINT "sguare., I will give co-crdinates in row-"
PEINT "column form:"
PRINT TARB(2),"(row,column)= <you type number here>”
FPRINT
FGR Ru=6 TC 5-1
FOR CO=6 70 S5-1
FRINT "(",%11,R0+1,",",C8+1,"y= ",
IXPUT “",A(R#,CH)
NEAT
WEXT

Py TR

e RING

"Here 1is vour proposed magic square;"

£
n

R A R I
o O
It

(2y B(RB,CBY, =
1d widths are 12 columns.

ERINT N\ PEINT Y\ PRINT
NEXT
RETURN
RENM Determine 1if square in array A is magic.
Fiv On return, M <> 0 if magic, M=0B if not.
REM Add up rows, columns, and dlagonals.
REM "Master" total kept in T1,
REM Temporary Row, Column, and Diagonals
REM totals kept in R1l, €1, D1, DZ.
M=8 \ REM Assume not magic until we prove it is,
Dl=¢ \ D2=0 \ REM Initialize diagonals.
FOR ®@=0 TO S-1
D1=D1+A(RO,RO) \ D2=D2+A{(RO,S-1-RB)
REM Above updates diagcnals
R1=0 %\ C1l=0 \ REM Initialize row, column temp totazals.
FOR C@=8 TO 5-1
R1l=R1+A(RG,CH) N\ Cl=Cl+A(C{,RH}
REM Above updates row and column.
NEXT
IF Rf=@ THEN T1=Rl
EEM Arbitrarily choose lst row as master total.
IF (R1<>T1} OR ({Cl«<>T1) THEN EXIT 4999
REM 1If row or column <> master, return M=Q@.
NEXT

- NOKTH STAR BASIC = Al-11

T S —

£240
4245
4259
4999
Soee
5829
5626
5049
3650
59¢9

S

L MPLE PROGAANS (Contln¥zd)

IF (D1<>T1l) OR (D2<>T1l) THEN 49359

EEM If disgonals don't match master, return with M=d.

M=1 %\ REM
RETURN

If here,

all totels have matched master.,

REM Report results to user.
PRINT “This square is ",

IF M=@ THEN PRINT "NOT ",
PRINT "2 magic sguare."

FRINT
RETURN

- NORTH STAR BASIC -

;\1-12

N EERY I

L TH

I e
o CR 02}) jme

SIoD LU TIZOR (non-tt
st

wo85ages printed by
RS trappable using the
o » in parentheses after

ooyt

.+ af each error is
" HROR MESSAGE

? E o .. —.~vtions for each
ToseiTEoE aiven ot 1T NS preated in DISCUSSION
. walid zrqument to a
[s . .1 tor a user—-defined
oot A Tenes L at parameters for that
..... C. e PIT mMumeTTETTATL .. . JUNTinue program
ci1zloattenpr ot oo0n VT L be CONTinued if the
Lt Trasvet et e if any editing of
STOENEQUTIST ELUUTSC T L Juring an interruption,
: Toprearat cee 8T n sratement.
ThzompoaraT nEEooas b o
- — eyt - --~""‘..\‘\ 3 I
. TERON - D R !m‘-xnﬁef nestlng of FOR and

BRI .tatements, or multi-line
Liatements, It also occurs
.iatement in a program.

ERPR.

SOCuUr s

et sy,
tion oall
IR statersnt Lf

;ion an array or string,

Tzt ohas besn tRIE h‘,imq|l in some other, illegal,
iz the Dikz-zl AR

IZRIR (0 ST by zZero.

]
1
r
=
]
kL
‘3
Lat
el

_ ““‘“‘.\|1“,|.un for the same user-
§ mare TrET e MU tjons are defined at RUN
Toin the same LR fore program execution
This messise oo M

Seqing.

[
g

i . Jiszkette file which

TuamoLh oTtUaLTT T by
_ . . et pae i
Sxistoor s O

This error will =zlszo

_______._----—------“---------‘-__

ERROR MESSAGES (Continuqgd)

occur when you try to LOAD a BASIC program from a type 2
file which has never before held a BASIC program. File
errors occur when attempts are made to use file numbers
which are less than @ or greater than 7, or when a file is
being OPENed, but the file number specified is already in
use. Attempts to CREATE or NSAVE files onto diskettes too
full to hold them also yield a FILE ERROR. Finally, & FILE
ERROR can occur if any attempts are made to store

information on, or erase information from, a write-protected
diskette.

FORMAT ERRCOR (5)

An illegal format string has been used in a FRINT stetement.
Either the format string is formed incorrectly, or the field
specifications are too big or are inconsistent. Alsc, an
attempt to PRINT a value which won't fit into a specified

field, or to PRINT a non-integral value using I-formet will
result in this error.

FUNCTTON DEF ERROR {non-trappable)

HARD

This means that BASIC has encountered the beginning of a new
user-function definition {a DEF statement) before the
previous definition has been concluded. Generaliy, the
function defined immediately above the offending DEF
statement does not include (but needs) a FNEND statement.

This error also occurs when an attempt is made to call an
undefined user-function.

DISK ERROR (8)

An impossible disk access was attempted. This can result

from not having a properly mounted diskette, or from having

a diskette with unreadable data., See the DOS manual for
further discussion.

ILLEGAL DIRECT ERROR {non-trappable)

An attempt was made to use a statement in direct mode which
can only be used as part of a program. See DISCUSSION: SOME
BASIC CONCEPTS for a list of those statements which may be

used in direct mode. Note that user-functions may not be
used in direct mode.

INPUT ERRCR (12)

buring the execution ¢of an INPUT statement, the user typed
an improprely formed numeric constant in response to a
programmed request for numeric input.

INTERNAL STACK OV {(non-trappable)

This message should not occur in normal BASIC programs. It
means that an unanticipated amount of internal BASIC memory
was required to process the STATEMENT or COMMAND.

Please
report the circumstances to North Star (in writing} if this
error occurs.

- NORTH STAR BASIC -~

AQ-2

e ————

" ERROR MESSAGES {(Continued) .

LJ LERGTH ERROR {16)

This error occurs if an attempt is made to type a longer
line of text than BASIC allows. (This limit may be reset by
using the LINE statement.} Typically, LENGTH ERRORs may
ocecur when typing in response to INPUT statements, or when
entering program statements or commands to BASIC. Unless
otherwise personalized or informed by the LINE statement,
BASIC assumes that a line may be no longer than 80
cheracters,

LIKE NUMBER ERROR ({6}
There is a missing or improperly formed line number in the
crroneous COMMAND or STATEMENT. Also, if @ line number is
speclfied in a COMMAND or STATEMENT, but that line cannot he
found in the current BASIC program, a LINE NUSBER ERROR will
e generated.

MEMLY FULL EEROR {non=-trappable)
The total amount of memory available to BASIC is
insufficient to contain the current program, its variables,
‘and temmorary storage. The MEMSET command may be ussd to
expand the available memory area. Note that, when
nerforming string concatenations, BASIC reserves as
temporary storage an area in memory as large as the
concatenated string itself, BASIC also reserves this

r temporary storage when PRINTing expressions, so PRINTing

(_/ . iarge string expressions may sometimes result in this error.

MIZEING WEXT ERROR (non-trappable)
Within an executing program, a FOR statemwent is encountered
for which no matching NEXT can be found.

NO PROGRAM ERROR (non-trappable)
This error occurs when an attempt is made to RUN and there
is no current program.

NCMERIC OV ERROR (14)
This error occurs whenever an arithmetic operation results
in a number larger than 9.9999999E+62. Numbers larger than
this cannot be represented in standard versions of North
Star BASIC. (Numbers smaller than 1E-64 are converted to
G.)

OUT OF BOUNDS ERROR {3)

' This message occurs when a numeric argument is not within
legal range, e.9., when an array subscript is too large or
too small, or when an argument used with CALL, EXAM, FILL,
INP, or QUT is not in the correct range. When dealing with
diskette files, an OUT OF BOUNDS BRROR will occur as
attempts are made to READ from or WRITE to a file beyond its

(}, azsolute end {determined by the file size).

- NORTH STAR BASIC - B2~3

M

READ

STOP

ERROR MESSAGES (Continued)

ERROR (11)

Wwhen using the READ statement, if an attempt is made to READ

a numeri¢ value into a string variable or vice versa, or to

READ any value when there is no more DATA avallable, a READ
ERROR will ocecur.

(1%)

This is not reallyv an error, but when control-C is enzbled
and pressed while an ERRSET statement ig in effect, the
attempted program interruption 1s treated ag a progrer
error, with 15 as its code. In other words, "error 15Y
means that control-C was pressed while ERRSET is in effers.

SVKTAX ERROR (18

This is the most commonly~generated error message. It
occurs when a language feature has been used impronerly, or
has been impreoperly formed {typed incorrectly). Most of
these mistakes become obvicus upon brief (but careful)
examination of the faulty COMMAND or STATEMENT (as combparend
with its manual description). Refer to the approprizte
exposition or BISCUSSION section to determine the corr
form of the language feature in question, and make sure
2ll keywords are correctly spelled.

m

-
(-

that

TOO LARGE. OR NO PROGRAM ERROR (non-trappable)

TYPE

This message occurs when an attempt is made to LOAD, APPEND,
or CHAIN to a preogram which either is too large to fit in
the program/data area, or is not a valid BASIC program.

ERROR (4)

TYPE ERRORs happen when a string value appears where a-
numeric value is expected, or vice versa. With regard to
disk file operations, an attempt to OPEN a file whose actual
type doesn’t agree with the type specified in the program,
or to READ a value on disk inte a program variable of the
wrong type, will lead to this error.

~ NORTH STAR BASIC - A2-4

IMPLEMENTATION ROTES

r(-;%PPﬂhblﬁ 3

This appendix is designed to provide important details concerning

spme of the internal workings of North Star BASIC, and the
internal representations of data within BASIC, in order to help

vou better understand the operation of the system, and to
facilicate writing of programs which perform tasks which would be

[T

difficult or impossiple to undertake withoot such information,

TISKE T DATA-STORAGE FORMATS

L Forlos i

17 WUKBLEES which have been written to diskette by a BASIC
.= ogaven oprecisicn will have 2 standard fixed storage size
S ouvtes Howaver, the storage size of a numper written o

vy 6-8igit BASIC, for example, will ne smaller in siie

<

man that ot 2 number written by 18-digit BASIC., Here is
. t which tells how many pytes a numper will redguire on
‘lzv, depenalng upon the precisien of the BARSIC writing it:

PRECISION BYTES
B 4 -
8 >
18 !
12 7
i4 &

]

e stored in packed, binary-coded-decimal (8C
representation is as follows:

tirst byte:

bits 7-4 = most signicant digit of value in BCD
coding
bits 3-8 = next most significant digit of value

middle bytes:

bits 7-4 = next significant digit of value in BCD
coding
bits 3-8 = next significant digit of value

last byte:

bit 7 = sign (l=neqgative, @=positive)
bits 6-0 = exponent in excess 64 binary _
representation (If all bits in the last byte are 9,

the entire number is 0.)

£:1 values are normalized.

The decimal value of the first byte in a number stored on
“1sk will always be greater than 15, even when the number 1is
zero, {(This 1is how the TYP functicon determines 13 the rnext
Zzta element 18 numeric.)

- NORTH STAR BARS5IC - 33-1

—M

W

IMPLEMENTATION NOTES ICOntinged}

STRINGS are stored using a number of bytes equal to the
length of the string plus two or three overhead bytes,
Strings of length less than or egual to 255 are stored with
two overhead bytes, the first one being of decimal value 3,
and the second containing tne number of characters in the
string. The information bytes -- the string itself

-- follow the overhead bytes. A string wvalue of length
greater than 255 is stored with three overhead bytes, the
first one being of value 2, and the second two being the low
and high bytes, respectively, of the length of the string,
expressed as a lé~bit integer. Again, the string itself
follows the overhead.

The ENDHMARK for a seguential file 1s a single byte of value
1'

fILE BUFFER SIZES -- LIFETIMES OF BUFFEES

Whenrr each file is OPENed. anh area of RaM memory is teserved
as a high-speed data-transfer "buffer" between BASIC and the
disk drive. A buffer of 256 bytes is reserved when CQPENing
a single~density file, wWith double-density files, the
buffer size is 512 bytes. Buffers are used to make disk
access as efficient and guick as possible.” When the file is
CLOSEd, its buffer region does not return to free-memory,
but 1s reserved for later use by any files whicn will pe
opened under the file number associated with the buffer.

TYPE-DEPENDENT INFORMATION IN A TYPE-2 FILE DIKECTORY ENTRY

Those familiar with the DOS and the details of diskette
‘directory entries will realize that 3 bytes are reserved in
each entry for what is termed "type-dependent” information.
For a type 1 file, this area is used to store the GO address
for the file. For type 2 files -- that is, BASIC program
files -- the information stored in the "type-dependent” slot
is the actual size of the program in disk bhlocks. This
infdrmation, stored as part of a program’' s directory entry,
and updated every time & program is SAVEd or NSAVEdQ into
that file, allows BASIC tc make economical use of its time
‘when LOADing a BASIC program -- it may read only as much
program data as actually exists in a file, and need not
waste time attempting tc LOAD information from beyond the
end of the program. This number is stored in byte 13 in a
type 2 file's directory entry. See the DOS section of the
NORTH STAR SYSTEM SOFTWARE MANUAL for more information about
directory entries, '

PRINT HEAD TABLE

At memory addresses OKG+17 and ORG+18 {ORG+11lH and CRG+12RH)
there exists a pointer containing the low and nigh bytes,

- NOKRTH STAR BASIC - A3-2

LJ.

IMPLEMENTATION WOTES (Continuved)

respeceively, of the zddress in memory where BASIC s “"print-
head-table® 1s stored. Each of the 8 bytes in this table
contains the current cursor position £or one of BASIC s 3B
nossible 1/0 devices (starting with device 4#8). for some
applications, such as plotting., some users may wish to EXAN
or FILL these bytes to avoid LENGTH ERROR messages or thne
cutemstic carriage-return which BASIC supplies when enough
characters to fill a line have been PRINTed on a given
devige, Users with standard versions of BASIC may use the
foilowing user-function to return the address of the table
cntry for any of the 8 devices. EXAM or FILL this address
o determine or change the value of the print-head counter
fovonrne alven device.

DEF FNY(D)=EXAM(11537)+ (EXAM (11538} %255 +5
REM P IS DEVICE NUMBER FROM @ TO 7

POALLDR TRARLE
inig taole follows immediately the 8 bytes of the print-heed
le descrived above. The file-header teble is BY ovtec

and contains cone l1@-byte entry for each of the §
Each_ entry has the following

izng,
wossiple open files (@ to 7).
format:

] bvte @: status byte
LY bryites 1-2: buffer address for the file (lowshigh)

} byvtes 3-4: disk address of the open file (the numder of

the file s beginning disk block) :

dj bytes 5-6: filesize in blocks
2, bvtes 7~9: current file pointer -- this points to the
next byte to be accessed, expressed as an offset from
the start of the file. Because three bytes (arranged
as middle byte, high byte, low byte) are used to .
represent the pointer value, BASIC may access files as
large as an entire diskette side (singlie or double

density}.

[S S ¥

BASIC PRUGRAM PRE-PROCESSING

Once program lines are typed into BASIC, they are pre-
processed automatically into a more compact, efficient form
where each reserved word maps. onto a single byte value, and
line number references in GOTO, GOSUB, RESTORE and similar
ctatements are collapsed into 16-bit values. This permits
fester execution, and more efficient use of storage space in
both RAM {when the prodgram is RUNning or under development)
and disk (when the program is SAVEd or NSAVEd). When the
program is LISTed, the compaction process is reversed, and
the complete text of the program is restored for the user,
The conversion of program-line text into compacted ioim even
cxrends to REM statements. REMs which incliude instances of

- NORTH STAR BASIC - A3-3

—%

M

IMELENENTATION HROTPES (Contigaued)

keywords will take up less memory space than RiMs of

equivalent length which contain n¢ embedded keywords.

For
example

REM FOR THE NEXT ORIGIK, LETS TRY 2380Hh
will be compcted into a much smaller internal form than

REM 2000H HEX IS THE NEW STARTING PLACE

because the former includes instances of FGOR, NEXT. GR., and
LET -- all keywords which will be compacted 0 single-bvte
form., The second REM includes no embedded keywords, 30 will
be stored in exactly the same form as it is written. E&paces
are retained in the number and order typed in the program
line to preserve the autnor s style and any indentation.
Compaction does not occur wit:in quoted strings.

Throughout the evolution of North Star B8ASIC, certain
single-byte kKeyword codes have had thelr meanings chenged

Az a result, RENMNs in programs which were written onder
earlier versions of BASIC may undergo small changes wnen the
programs are LISTed under release 4 or latesr versions of
BASIC, This is because these REMs included embedded
keywords which were compacted to single bytes, and now,
these codes are translated back into different keyworis. In
particular, instances of CREATE., DUNMP, and NULL in older REHN
statements will become AUTC, MEMSET, and NSAVE respectively.

To correct this, just retype the correct form of the altered
REM statement and re-SAVE the program.

" Note also that programs written under later versions of
BASIC will not always list properly under earlier BASICs,

especially if they include some of the newer keywords, such
as CREATE, ERRSET, etc.

THE INTERNAL FORM OF A PROGRAM

In RAM and on disk, a program is represented as a seriss of

program lines which have been converted to the compacted

"form mentioned above, Each line is arranged as follows:

a) byte @#: contains the binary representation of the number
of bytes in the program line (called "N" here for
purposes of discussion}.

bytes 1-2: the program~line number expressed as a lé-bit
binary integer (low byte/high byte).

¢) bytes up to N-2: the program line in its compacted form.

d) byte N-1: A carriage-return character (byte value 13 or
ODH) .

o)

There is a standard ENDMARK (byte value 1) after the last

- NORTH STAR BASIC - 43-4

'*LTPuh..ﬁTIOx HOTES {Continuead) .

lire in the program,
U R4 DURING PROGRAM EXECUTION

e a program is executing, BASIC maintains two variaple-
ize data storage areas at opposite ends of memory. These
‘2 the GENERAL DATA AREA and the BASIC CONTROL STACK. The
:n2ral data area begins immediately above the last byte in
current BASIC program. This storage area contains
57C s sympol table, and static storage space which has
2n allocated for numeric¢ variables, arrayvs. and strings.
neneral data area agrows from low memory to high memory.

C’s control stack beging at tne highest byte availabnl:
BASIC system, and grows downward, into low memsry.
"k contains highly transient information such zs ¥
OSU3. and uvser-function c¢all linkages., wWhenever

conditions lead to the ¢case that one of these areacs
to "grow" into the other, a MEMCRY FULL ERKOR

- NORTH STAR BASIC = A3-5

CONVERSION TABLE

AFPENDIX 4 ‘
DECIMAL-ASCII-HEX~BINARY CONVERSION TABLE

The folliowing table is intended to ease the task of conversion
between the various numeric representations commonly used in
programming, as well as between numbers (of any kind) and the
ASCII character code.

Note that the ASCII character set only goes as far as decimal 127
(7FH, 91111111 B)y. Also, many “characters” in ASCII are non-
printing CONTROL CHARACTERS. Whenever a code corresponds to a
wrintahle character, that will be given. In the case of control

characters, a description or name for the special charascter will
he given in parentheses.

DECIMAL HEX BINARY ASCII
5 AR g0pe0a00 {NUL)
1 ¢1H GopeAaRl { CONTROL-A)
o 2B 20000014 {CONTROL-B)
i @3 Zogopell {CONTROL~C)
4 G4H appenlaq {CONTROL-D)
5 B5H pEBER1A1 {CONTROL-E)
& d6H Geeopllio {CONTROL~F)
7 . @7H Gpeapl1ll {CONTROL-G, RINGS BELL)
g B8 gpeol1eag {CONTROL-H, BACKSPACE}
G G9H Apeal1aal (CONTROL-I, TAB)
iR BAH PAdB1010 (CONTROL-J, LINEFEEDR}
1 #BRH dapBlell { CONTROL-K)
1z BACH Qag6Bllog (CONTROL-L, FORMFEED)
i3 @DH AGBEllal (CONTROL~M, CARRIAGE RETURN)
14 ¢ EH ggeB1110 {CONTROL-N)
15 2FH geppllirl {CONTROL-~0)
16 *10H geRl1o0Ge {CONTROL-P)
17 11H pEBl1e6o1 {CONTROL-Q}
1ls 128 ApB8l1E810 {CONTROL-R)
19 " 13H pee1ae1l {CONTROL-8)
28 14H pe014190 {CONTROL-T)
21 158 pav1eInl {CONTROL-U}
22 168 genl1elln (CONTROL-V) .
23 17H #PAlelll { CONTROL-W)
24 188 £9911aap { CONTROL-X}
25 1SH 80114991 {CONTROL-Y}
26 1AH pealiele {CONTROL-2}
27 1BH ge811pll (ESCAPE)
28 1CH AEp1110@ (NON~PRINTING)
29 1DH gesl11181] {NON-PRINTING}
36 1EB AEsl1111e {NON-PRINTING)
31 1FH 8811111 {NON-PRINTING}
- NORTH STAR BASIC - Ad4-1

| . |
’ CONYVERSION TABLE {Continued)

J(JIDEC1MAL BhX BIHARY ASCTI
(32 29H goleopnas {SPACE)
‘ 32 - Z1H ga1a00a61 !
34 Zz2H g0laaale "
’ 25 238 Ggelgenll $
26 244 we100108 S
R 254 el1aalol %
|- 13 J6H 00100110 -
39 274 OEloe1ll ’
au 284 Belaiene {
SUH AC1a19061)
2z N a2inlela *
“l IRY aglalipll +
g SO 29141100 .
2 *DH 6101181 -

LR gglellile

N

SFH (3181111 /

i 30 50110000 o

| Ny 215 08110091 1
5 328 00116010 2 S,

| 21 I3 $0110011 3

\ 32 344 6p1ldlen 4

53 15H (9110101 5

}(’/ 54 360 PO116110 5

53 37 pO116111 7

4 39H 06111600 8

T 399 39111081 9

35 34 (0111010 :

59 3B8 00111011 ;

60 3CH 66111100 <

61 3D 60111141 =

2 IEH 00111110 >

53 IFE 69111111 ?

('\

- NGRTH STAR BASIC - R4~

3%]

DECIMAL

64
65
66
67
68
69
70
71
72
73
74
75
76
77
ER:]
79
gé
51
a2
83
84
85
86
87
g8
g9
99
91
92
93
94
g5

HEX

40H
414
42H
43H
44H
45H
45H
47H
48H
49H
4AR
4BH
4CH
4DH
4EH
4FH
56H
51H
52H
53H
54H
55H

- 56H

37H
58H
59H
SAH
SBH
5CH
5BH
SEH

"SFH

CONVERSION TABLE (Continueg)

BINARY

01060060240
010600401
91260010

91960011

gleegloa
glogglel
Al09B110
41889111
g12p10e9
gleglogl
gleeloin
pléglell
plogiles
210011461
g108111¢
plegllll
g1eloeag
81812001
81610010
51610011
610101440
21610161
glalelle
#1918111
2lelioad
916119001
91611418
81911411
p1611108
pler1101t
91011118
71011111

- NORTH STAR BASIC -

ASCII

= A e MMM RSO YOO EZECIR OO O ®

M

OR

I CONVERSION TABLE {Continued)

f(./DECIMAL RN BIMNARY ASCTII
9§ 60H 511600600
97 618 Allpedol a
96 628 01106810 b
| 55 £3H 01100011 c
| i0e £4H 01106100 d
131 E3H 01106101 e
, 18 (6H 011406110 £
10 £ 7H 01106111 g
124 528 (11101600 b
10 4% 011p1601 i
\ S0 1171616 3
157 CBH 01161611 k
1B5 GCH 11061100 1
106G §DH P1141101 m
| 1A €50 01181110 B
M £FH P11o1111 o
| in: 708 01110000 e
117 T1H N11169al a
| 114 720 §lll@elg £ -
115 738 @1116611 s
115 74 ¢glllaieo t
117 758 @lileisl u
11F 76 0111011¢ v
(_/ 13 778 Pl1i6111 W
170 781 1111408 X
15T 79 ©81111041 y
122 7BH gl11iple z
123 734 @1111011 {
124 7CH @1l11198 l
125 7DH p1111141 I
126 7EH @8lliille ~
127 7FH 81111111 (DELETE, RUB OUT)

- NORTH STAR BASIC - A4-4

M

138
131
132
133

134

—t
) L
&

b
H |
~1 Lr

L [e R R o
U SR N T S FA S B I
= T

R
[Lo I S

=
53]

147

= b=t et
LwRnonan
] LY B L DD

158
158

HEX

848
g1H
828
834
£4H
854
£6H
87H
88H
94
§aH
£BH
gCH
8DH
8ER
8F3
9¢H
21d
92H
938
94H
951
96R
9741
98H
99H
9AH
SBH
9CH
9DH
9EH
SFH

CONVERSION TABLE (COntinued;

BINARY

10000068
lépdpenl
16000019
regaesll
lasggploe
190¢p101
lgppelle
108pp1ll
16081900
160618081
16e881¢10
lgpglell
lgeelled
1eeg91161
160811149
18801111
leglenng
139192001
1ee1081e
10016011
lgelelon
iée16101
16010110
1gBlelll
19011666
lep11a0l
16611616
188110611
16011100
18811101
1681111@
18811111

- WORTH STAR BASIC -

ASCII

| ——'-.----.--—------—-—-—--—-—-ﬂ.
|

‘ CONVERSION TABLE {(Continued)

C DECINAL HEX BINARY ASCIT
166 B6H 10100000
161 Al 10108001
‘ 162 K28 10120310
163 A3H 10100411
164 A4E 101060108
165 A58 18188101
. 166 260 18100116
\ 167 37H 14100111
164 ABH 10101600

) RS ren 14161661
it AR leldlale

17) 5BE 19181011
172 5CH 10181100
| 173 ADE 10101181
‘ 174 AEH 10141118
| 7t AFE 16161111
i34 BOH 10110000
| i BIE 109118001
e B24 16110010 o
279 BIR 10110011
189 B4H 16116100
181 BSH 181181¢1
182 B6H 10119116
C 153 B7H 18118111
184 BGH 10111000
185 BOK 18111081
136 BAH 101110140
157 BBE 16111011
188 BCH 10111108
189 BDH 10111101
190 BEH 10111118
191 BFE 18111111

~ NORTH STER BASIC - Ai-6

M

CONVERSTON TABLE {(Continus’t)

DECIMAL HEX BINARY ASCII
192 CoH llaespao
193 Cid 11060001
194 C21 1lagagle
185 C3H 11606911
196 C4H 1lpd01a0
197 CSH 114906101
198 CéH ll1papl1la@
1399 ci8 11609111
208 CBH 11301009
221 con 11061901
282 CAR 11081618
203 CBH 11681911
04 CCH 11001108
285 CoDH 11891101
266 CEx 118811148
287 CFH 1180111)
Z48 D&H llelgooe
2Ce D1lH llpla@al
218 D2H 11p1¢614@
211 p3d 1iglogll
212 D44 1181018¢
213 D5H 11819191
214 © D6H 11819119
215 B74 11616111
216 DBH 119114490
217 D9H 11611961
21g DAR 11611616
218 DBH 11611611
220 pCH 11811100
221 DDH 11811181
222 DEH 11611110
223 - DFH 11411111

- NORTH STAR BASIC -

T O BTN T 0 T I LT OO 3
)

[I S

LA Led T BT P B R D

T
u

B

Y Rk
e Lad e tad

LIS AR A

LI

JRIN 5. RS BN DRSS SN L N

B N N .

Vel YUY B L b e TR

PRI R T A T A I VL

il
| o
IR EE R

259
251
252
283
254
255

ELEREE VI B B 5 Y =N

HEX

E@H
E1H
EZH
E3H
E4H
ESH
E&H
E7H
E8H
LY
EAH
EBH
ECH
EDH
EEE
EFH
FOH
Fip
F2d
F38
FaH
F5H
Fo6H
F7H
F8H
FOH
FAR
FBH
FCH
FDH
FEH
FFH

CONVERSTON

BINARY

11129008
11130881
11166010
11146011
11160140
11100191
11108119
111¢6111
111e14a6a
illeieol
1llalale
1iiplaeil
11161109
11161161
11ig11ie
11121111
l11lgaep
11119681
lillgaele
11119011
11114190
11119181
11liglle
11118111
1111i089
11111681
111i10la@
11111811
11111108
11111101
11111118
11111111

TapLE

ASCII

fContinuead)

- NORTH STAR BASIC =-

A4-8

W

BASIC TOPICS INDEX

APPENDIX 5

This is the index to topics and discussion sections in the BASIC
section of the System Software Manual, and is designed to heip
the reader study North Star BASIC from a topical standpoint.

Listings to DISCUSSION sections are given in all-czpital letters.
Those which refer to general topics are given in lower-case,

The page reference format is a hyphenated one, with the chapter
designation as a capital letter appearing on the left side of the
hyphen, znd the page number within the chapter eppearing in
arabic form on the right side. For example, the listing

constant, numeric D-1

indicates that the term "Numeric constant" is discussed in
chapter D, page 1. 1If a topic consumes a whole chapter, cnly the
chapter letter is given as the page reference. Page intervals
ére denoted by inserting an ellipsis (...} between the page
references ¢of the first and last pages in the interval. Whenever
information zbout a given topic appears on more than one separate
page, the pages with the most important information are listed in
‘order first, then those with less important information. A semi-
colon (;) separates the list of more-important references from.
the less-important ones within an entry.

argument list K-l

arguments K-1; B-9

arrays E
default dimensions E=-3
re-dimensioning E-3

ASCII character set F-7

AOTOMATIC PROGRAM SEQUENCING M-6,..M-7

BCD (Binary Coded Decimal} D-1; N-2, A3-l
bootstrap PROM, non-standard O0-7

CHAINING M-6,.,.M-7
character deletion, changing echo for 0-5
character set F-7 :
command B-9
COMMUNICATING WITH BASIC B-2
COMPATIBILITY WITH OTHER BASICS N
BCD arithmetic N-2
IF...THEN evaluation N-3
input translation ©N-2
string handling N-1
concatenaticon F-3
consocle terminal B-2
constant, numeric D-1
constant, string F-1

- NORTH STAR BASIC - AS-1

| _—.-.--.-.--.--'--'-.'----H--n--n-uiﬂl

BASIC TUPICS INDEY (Continued)

‘ Ld) control~g inhibit O-5
control! characters B-5
caontroel statemernt J-1
current format H-7
current length F-2; F-7

‘ current program B-9

’ _ LATA FILES L-1...L-9

P
ids
=
3
ja

1+

L

n
M
fis]
[
T
=
T
—
m
—
=
=
=t
[
0
t"I
I
(o3

L-%
R ales (exprescsiony L-8
‘ by ntizl z¢cezs L-4
p vie agcess L-7 - =

cz of elements in -- L-4
oointer 1I-2; I-4
k format H-7

expression H-12
i E-Z

T-9; J-5

gtrings FrF-1
1

E-format H-3: D-1

endmark L-4...L-7

ENTERING A BASIC PROGRAM B-6...B-8
ERRCR TRAFPPING AND RECOVERY M-9...M-10
EXECUTION AND CONTROL FLOW J-1
gxporent D=1

syporential format D-1

expression, numeri¢c D-6

exoressicn, string F-3

field width H-4

file block L-2

file buffer A3-2

file header tabhle 2A3-3

il name L-1

file number L-3

file pointer ©L-7; L-14, L-16
fi1je size L-~Z

= tvpe L-2)
' “lwating Point Board (FEB) BASIC=: 0-13; 0-7, 0-11
L/ ei-EAT LOOE, THE J-7...J0-11

- NORTH &STAR BASIC - 25-2

BASIC TOGPICS THRDEX {Contirfusd;

body of -- J-%

control variable J-7

exiting from nested loops J-11

limit value J=7

nesting J-9

optional control variable in NEXT J-18
step value J-7

format specification H-4
FORMATTED PRINTING H-3...H-8
allowzbhle formats (chart) H-6

format characters H-7
free format H-3
FUNCTIONS K
built-in K-1l...K=7
string F-3
user -- K-8,..K-11
function call K-8
multi-line K-18
names K-8
numeric parameters K-9
single-line K-8
string parameters K-9

-hexadecimal C-17

I-format BH-4
IMPLEMENTATION NOTES A3
index number E-1

justification, right H-5

LINE EDITOR, THE M=13...M-19
new line M-13
0ld line M-13
specifics and functions M-15...M-19
line length 0-4; C-18
line number B-5, B-1f; J-2
LOADING BASIC B-1

MACHINE LANGUAGE SUBROUTINES M-4,..M-5
mantissa D-1

maximum length F-1l; F-7

memory Size 0-2

memory usage during program execution A3-5
MULTIPLE I/0 DEVICES H~-12...H-13

nesting
of FOR-NEXT lcop 3-9
of IF statements J-3
of subroutines J-17
new line M=-13
NON-STANDARD VERSICNS OF BASIC O-1Z...0-13

- NORTHB STAR BASIC -

H
LS

as

BASIC TQPICS INDEX (Continued)

null string F-1
numbers D

cld line M-13
cpen-ended substring F-3
operators
aritnmetic D-4
boolezn D-5...D-6
numeric D-4...D-6
numeric, order of evaluation D-6
relatvional D-4...D-5
string F-~3
:)

rubtpet detas list H-L
paging {video)} 0-4
FERSONALIZING BASIC 0-2...0-11
recedence D-6...D-7
zcigjon, numeric D-1; ©-13
~hesd table A3-2Z
T B_f’,‘. BR-G
¢rnezl form of -~ A3-4
-- pre-preocessing A3-3 -
program/data area C-17; G-1
rrogram line B-63; B-19
program mode B-9

-
Lia

random address {(expression) L-8
renge, numeric D=3

reguler format H-3

relocation of BASIC O-12

scientifiec notation D-1
sector, diskette L—~2
sequential execution J-1
shrinking BASIC 0-6
SPECIAL ENTRY POINTS O-1
statement B-9
strings F
assignment to substrings and ~- F=5...F-7
compariscns F-4
compatibility with other BASICs N-1
current length F-2; F-7
functions F-3
maximum length F-1; F-7
SUBRQUTINES J~-15...J-16
SUBROUTINES, MACHINE LANGUAGE M-4...M-5
subroutines, nesting J-17
subscript E-~-1

suhstring F-2.,.F=-3
open—ended -- F-3
-- interval F-2 '
-- notation F-2

~ NORTH STAR BASIC - A5-4

BASIC TOFICS INDEX (Contingfd)

truncation B-1; F=-5
turnkey startup of BASIC 0-8
typing to BASIC B-2

uppetr case bias of BASIC B-2
user-functions K-8...K-11
USING AERAYS FE

USING NUMBERS D

USING STRINGS F

value, numeric D-3

variable
-= name D=3, -1
simple -- D-3...D-4
numeric -- D-3
string -- F-1
string --, dimensioning of ¥-1

zero-element E-1

un

- NORTH STAR BASIC - A5-

P

W

APFPENDIX 6

BASIC KEYWORD INDEXR

This is an index of the statements, commands, and functions in
North Star BASIC, and is included to facilitate the manual 's use

I

information in a hurry.
convention set in APPENDIX 5:

by experienced programmers needing to look up specific
Page number references follow the
refer to that APPENDIX if you are

unfamiliar with the format.

ABS E-2
APFEND C-11
rsC K-3
ATH K-3
AUTC -8

CHEIN M-8

_CHRS K~-23; F-7...F-8
CLOSE L-13

CONT C-15; J-5...Jd~6
CONTRCL-C C-13

CCS K-3

CREATE L-10

paTA I-1

DEF EK-12

DEL C-2

DESTRCY L-11

DIM G-1; E-2, F-1

EDIT M-15

END J-6

ERRSET M-11
EXAM K-6

EXIT J-14; J-149
EXP K-3

FILE K-5
FILL M-1
FNEND K-14
FOR J-12
FREE K-6

GOSUB J=-17
GOTQ J-2

1F...THEN...ELSE J-32
INCHARS K-4
INP K-5; H-160

- NORTH STAR BASIC -

A6-1

BASIC KEYWORD INDEX {(Continw:d}

INPUT H-9
INFUT1 BH-11
INT K-2

LEN K-3: F-7
LET G-4

LINE C(C-18
LIST C-1
LOAD (C-1¢
LOG K-2

MEMSET C~17

NEXT J-13
NOENDMARK L-7; L-9, L-16
RSAVE C-¢

ON...GOTO J-~4
OPEN L-12
oUT M-3

PANIC BUTTON (CONTROL-C} C-13
PRINT H-1
PSIZE C-16

READ XI-2°

READ# L-14; L-4

REM G-3

REN (-4

RESTCORE I1-4

RETURN
subroutines J-16; J-~18
user-functions K-13

RND EK-=5

RUN C-12; I-4

SAVE (-8,
SCR (-3
SGN K-2
SIN K-3
SORT = K-
STOP J-
STR$ K-

UL

-

TAB K~6
K-5

H-5
TYP L-5

-

VAL K-

-9

WRITE# L-16; L-4

- NORTH STAR BASIC -

A6-2

