The Use'r's Guide
o
North Star BASIC

FIRST EDITION

by ROBERT R. ROGER/

am—,
INTERACTIVE COMPUTERS / bouston, texas ‘nTEBf’:‘%;Q’%
e

COPYRIGHT (e}, 1978
ROBERT R. RQGERS

Hade in the United States of America

Library of Congress Catalcging in Publiication Data
Main entry under title:

The User’s Guide to MWorth Star BASIC, first edition.

Published and Printed by:

Interactive Computers
7620 Dashwood
Houston, Texas 77036

A1l rights reserved, including rights of reproduction and use in
any form or by any means, including the making of copies by any photo
process, or by any electronic or mechanical device, printed or uwritten
or oral, or recerdlng for sound or visual reproductien, or for use in
any knowledge or retrieval system or device, unless permission in
writing 1s obtained from the copyright proprietor.

preface

About seven months ago a very smart businessman brought to my
house a S0l=-20% COMPUTER with 2% K memory, a PANASONIC MONITOR, a
NORTH STAR MICRO=-DISK SYSTEM®, and one VERBATIM MINIDISK with the disk
operating system (DOS) and NORTH STAR BASIC - VERSIOK 6 * RELEASE 3
on it. (I mention all of this detail so that the reader knows exactly
what it is that I learned on and used to WRITE the programs included
in this book.) He set it up in my library, gave me three little 20
page manuals, plugged it in, had a cup of coffee, and lelt.

If he had called me and said, “Hey, I've got a great deal for
Just $3600 --- can I bring it over?" My response would have been very
guick and short --- "NO!" I didn’'t need a $3600 toy.

After he left I went in and pushed the button and thought to
mysell, "It's a neat television-typewriter.® I even picked up ane of
the manuals, & blue one, read a few pages; but couldn't get the thing
to do anything that the bock said it was supposed to doe. 8o I picked
up another manual, this time a yellow one. I did a couple of the
things it said to do and I finally got the ™little blue mail box"™ to
come to life. First a little red light came on, then it hummed for a
few seconds, then turned off. That's about all I got the thing to do
for the first week. I wasn't too impressed.

By the end of the first month, after messing with the thing when
I had nothing better to do, I finally got it working to the point that
1 could copy game programs out of a beok; about half of which never
worked and I never understood why.

By the end of the third month I was writing 3 few simple
mathematical programs - ncthing mueh - but something.

By the end of the fifth month I wrote what 1 considered te be a
significant program. It waa an inventory counting and extension
program, which involved a data file, It was a relatively
straight-farward program, nothing fancy. It did work and it did save
time over the way I had previously done the inventory.

By the end ¢f the sixth month I had several game programs, an
iavoice preparation program, a2 product distribution program, a
customer mailing list program, a cost accounting program, and a
monthly payment program te make computer note payments for bthe next 36
months to my kank. I am now hooked.

If I had had the -information that] “h@ve put in this book
available to me when 1 started,:in the same "over-simplified" format
that*s been used, I would have saved hours of real f{rustration.
Instead of six months of "hard labor,® I could have discovered what a
real "magle box" it is in several weeks.

So you know, that I know you know. I feel a2 last minute
obligation to mention that T have taken certain liberties in some of
my explanations and have made absolutes out of some things for which
there are many exceptions. For the most part I have knowingly done
this, feeling that there is nothing to be gained by confusing vhe
reader.

This is not intended to be & definitive text for the "computer
expert.® It is a starting point for Somebody who has never sat in
froat of one of these "T.V., looking things® and wants to learn how
they work. If you fTeel ¢ffended or have a great urge to tell me about
apme of my "mistakes,®" please de. For you who are just starting,
consider your find.ng these "mistakes" a yard stick of your progress.

I hope you, as a potential reader, derive as much pleasure and
open a gateway to a whole new world of logic as I have.

"GOOD LUCK AND MAY YOUR MEMORY NEVER BE FULL.

R.K. ROGER3

¥Snl is a trademark of Processor Technology Corp:, Pleasanton, CA

North Star DOS and BASIC are copyrighted prdducts of Horth Star
Computers, Berkeley, CA, and are licensed for use only with the North
Star MICRO-DISK SYSTEM. -

-

—

—

contents

PREFACE

ACKNOWLEDGMENT

INTRODUCTIOCAM
Chapter 1. How do we get STARTED. . . e e e e e e e
Chapter 2, How to WRITE a program A . c v e e e . B
Chapter 3. LINE MUMBERS F O B
Chapter 4, How to DISPLAY a program P K
Chapter 5. VARIABLES. . .« . + « « ¢« o = o + o +« o » « + o 17
Chapter 6. Cast of characters . PR g |
Chapter 7. The RENUMBER funection, 33
Chapter 8. How to correct or EDIT a BASIC program 37
Chapter 9. How to LOAD a program from a mini-disk . ., . . U3
Chapter 10. How to 3SAVE a program that you write . ., Y
Chapter 11, How te put D03 on a mini-disk. 55
Chapter 12 How to put BASIC on a mini-disk. 59
Chapter 13 How to DELETE a program or a file. 63
Chapter 14 How to DELETE a file from a mini-disk. . . 6T
Chapter 15 How to COPY a BASIC program from one

mini-disk to asnother , LT
Chapter 16 The LOOP + «+ «+ « + » + » . 15
Chapter 17 SUBROUTINES. « e e . 19
Chapter '8 The ON statement . ., e e . 83
Chapter 19 The TAB function . . « s e s . B9
Chapter 20 The RANDOM funetion - FUN and GAMES. 93
Chapter 21 The SIGN funetion. 99
Chapter 22 The CHAIN command. PP L
Chapter 23 The DATA statement Ve e e o« . o109
Chapter 24 The HUMERICAL FORMAT ' .. 2113
Chapter 25 The EXIT statement . e
Chapter 26 Numerical LISTS and ARR&YS . e . . . 127
Chapter 27 The SUBSTRING. + « « « » ¢« « « o133
Chapter 28 SEQUENTIAL riles « e G137
Chapter 29 How the computer READsS a Tlpe 3 "DATA file. . L1H7
Chapter 30 How to ACCESS and uwse SEQUENTIAL files155
Chapter 31 A closer look at the TYPe funetion ,161
Chapter 32 How to COPY a DATA file from one
mini-disk to another . . . B L X

Chapter 33 How to RANDOM ACCESS data files. D A
Chapter 34 DECIMAL and HEXADECIMAL., . .193
Chapter 35 SECRETS. . 4 &« + o + 4 o « s &+ 4 s s = = « » 203
Chapter 36 The MEW BASIC & & o & « 4+ + « « » » . 209
Assorted Programs 4 « « « 4 s 4 o+ o« o+ e v .+ 219

-

acknowledgment

1 wish to acknowledge the following individuals, whose aasistance
and encouragement provided much of the basis for this book.

William A, Rogers
Bob Johnston
Hillis Rogera
Barbara Rogers
Roxanne Rogers
Matt Barkley

F. Don Cooper

And a host of others......

introduction

One of the most difficult tasks for me, was setting up the order
of the chapters in this book. Chapter one was no problem, as it tells
you how to turn the machine on. From there on, one needs to¢ be aware
of multiple things, all at the same time.

In an effort to cope with this situation, I suggest that one does
not become obsessed with wanting to understand every detail of every
action, but to concentrate on the subject at hand. Before you reach
the end of the book, I promise you that those unanswered questions
Wwill be answered, most of the time.

Each chapter has a major topic, indfcated by the title of that
chapter, In addition, certain other topics are also discussed as they
relate to the major topic.

Some topics are repeated and discussed in several chapters, if it
is felt that further discussion will reinforce the major topie, or if
under different circumstances a rediscussien will expand the
understanding of the secondary topics. .

Other topics are discussed several times, when I felt that they
should be explained separately and then together, in order to better
illustrate their differences.

The last chapter, regarding the KEW PASIC (Release 4; June, 1978)
from Nerth Star, does not attempt to fully cover the subject, but is
meant only as an introductien to it.

All the programs at the end of the book are programs that I wrote
along the way, as I was learning. They are the result of much "trial
and error” programming. It was through these programs that I actually
began to understand BASIC,

I recommend putting these programs in your computer sand RUNning
them. 3tudy them, to better understand how they work., There are many
programming techniques that I have since learned, which would make
these programs more efficient and more professional. [have purposely
not made the changes, as I felt it would be an advantage to the reader
to see the originals, in their elemental state. Even as they are,
they work pretty good. At the time I thought they were great.

A method that I have tried, that makes this book a more useful
tocl, is to copy every program in the book and SAVE it on a mini-disk.
The name for each program should be the page number, when two or more
programs appear on the same page, make one the page number plus A, and
the other the page number plus B. Also create any DATA FILE that is
used. All of this will fit on a single mini-disk.

I have trieg to make simplicity the "guide word" for this book.
The working title was, "The Over-Simplified Method of Learning BASIC."
Even though the title changed, my approach did not.

—

[

L

HOW PO WE GET STARTETD

In most cases whenever one gets a new piece of equipment the
first thing that the manuval tells you, is to completely read and
understand the instructions before trylng to operate the equipment.
If you were to do that with a mini-computer, you would never turn it
on. "When all else fails read the instructions,” is not the by-word
when it comes to computers., The instructions are written for people
who already know how to operate the squipment.

It is my opinion that "computer people” are not secure enough
among their peers Lo write something at the level that the man on the
street can understand. They seem to be constantly dropping words in
thelr explanation like ROM and RAM, or CPU, or 80804 SUPPORT, or PROM,
or the hundreads of other "in® words that they know full well that we
don't know the meaning of.

I may be overly zealous in my evaluation of "computer pecople.®
It could be that terms and expressions they use in all their
explanations, are part of their everyday vocabulary, and they may not
even be conscious of it. If this sounds iike ™sour grapes" it's not.
These pecople have so much to say, s¢ much that they could impart upon
the masses - they have seen over the mountain, but can't seem to tell
us about it.

Every time I sit in front of my "television typewriter,” I am
frustrated by the fact that I don't know how to use this marvelous
machine to the maximum of its sbility., I am only limited to the
maximum of my ability. There is a vast mountain between the two --- I
have yet to see over the mountain. On occasion I have been permitted
a peek and the prospects of more are thrilling.

If you think that I am in awe of these "minji-computers" you are
right. One would normally become less espntranced with something the
more they knew about it ~--- not so with computers. I can't help
reminding myself that what I have is the "baby," the "mini" of the
line. I ean't conceive all that the "big daddy"™ can do.

Before 1t can do anything you've got to learn how to get it
started.

YOU ARE THE MASTER OF THE PLUG.

-1-

START UP s 2

Here ia how:

This is a step by step procedure for the set up that

I have. Someone who does not have the exact same
eguipment may consider the initial section to be useless
to them, but this is not s0. All computers, like all
cars, have the same knobs. They may be located in
d;rferent places on the dashboard, but they are

there.

Assuming that everything is plugged in {(the terminal,
the diskereader, and the monitor) and that all three are
properly connected to the computer, do the following:

1. Press the square red button (white on
some modela) on the back right of the
terminal, facing the keyboard. The
button will lock in the Yon® position.
You should hear what scunds like a slight
thump and then a hummmmm. This is the
cooling fan.

2. Turn on the moniter (t.v. set) by puahing
the rocker switch to the "on" position.

3. Turn on the disk-reader by flipping the
toggle switeh to the "up® position. The
small red light on the front panel will
net come on. It lights only when the
digsk-reader iz ac¢tually running.

Everything is now "on." You should have a " > » sign in the
upper left corner of the monitor. The rest of the screen should be
blank. The ™ > " sign can be considered the "start up® sign. When
gver it appears in that pesition, it indicates that the computer is
neither in the Disk Cperating System (DOS) mode nor the BASIC
mode.

4. The computer is now ready to EXecute the
sommand to load the Disk Operating System
-~ DO3. Press the UFPPER CASE Key
located on the lower left of the keyboard.
The red light on the key should be "on."

-2-

{

e

-

START UP / 3

5. Place the "mini-disk® which contains DO3 in
the diskereader, face up with the end which
has the "oval opening® going in first. Then
close the "flip latch" on the front or the

disk-reader, to lock the mini-disk into place.

6, Type in the command: EX ES00

Note: There is one space between the "EX® and the
"EY00", this exact format must be used.

This "command® will cause the disk-reader to switch on when the
RETURK KEY is pressed, as evidenced by the red light on the
disk-reader coming on and the humming sound which the unit will make.
It will run for about 3 to 5 seconds and then cut itself off. The
character " % * yill appear on the uwpper left corner of the monitor.
None of this will happen until you "enter" the EX E900 command intc
the computer., To "enter" anything that you type on the keyboard, you
must follow it up by pressing the RETURN key.

So:
7. Press the RETURN key.

If the above described activity does not take place, you probably
forgot to turn on the disk-reader. DO HOT turn it on now. The
disk-reader or the computer should never be turned on or off while
there is a "mini-disk" in the unit. It can cause unpredictable
results. It may cause the computer to LOAD the program in the wrong
place; it may WRITE strange things on the "mini-disk®™ in the middle of
an important program; it may erase the entire "mini-disk,"™ or if you
are lucky, it may not do any of the above.

If you find yourself in this predicament; first, take the
"mini-disk" out of the disk-reader., Second, ®**% TURN ON THE
DISK-READER *¥®& Then, press the UPPER CASE key and the REPEAT key at
the same time. This is called a RESTART. The " > " character should
appear on the upper left of the monitor., If it does, just start all
over again. If it doesn’t, take the mini-disk out of the disk reader,
and turn the computer off for a second. This will wipe the slate
clean. Then turn it back on, and start all over again.

START UP / &

8. When the character " * " appears on the
monitor type in the command GO BASIC.
Or to put it another way:

On % type in: GO BASIC
9. Press the RETURN key.

Again the disk-reader wiil come on and run for a few seconds and
shut itself off. The word READY will now appear in the upper left
corner of the monitor.

You have now LOADed in DOS (disk ocperating system) which is a
machline language program that tells the computer how to operate the
disk-reader to read and write {LOAD and SAVE).

You have als¢ LOADed into the computer the BASIC language program
which allows you to WRITE and RUN programs and everything else that
BASIC does.

The computer is READY. The next "move™ is up to you.

.

.. .

.

| S

Y J

HoWw TO WRITE & PROGRAM

r—

There are no simple answers to very complex questions, but there
are very ccmplex answers to very simple questions. For someone to ask,
"How do you wWwrite a computer program?", and want only a simple answer,
mean3 that they really didn't want to know in the first place.

Learning to write computer programs 18 like learning anything
else. You start at the most elementary level and slowly progress to
the point that you realize that you will never learn 23 much as there
is left to learn. But you keep chasing that “carrot,” just like the
donkey with the carrot hanging from a string a few inches from his
nose, the string being attached to a pole tied to his back.

It's worth the effort, so let's get started.

Te write a computer program in BASIC all you have to do is type a
number, which becomes Kknown as the LINE NUMBER, and type a STATEMENT
beside it. The number can be any number from O to 6%5,535. The second
LINE you write will either be executed before or after the first LINE
depending on whether or not the LINE NUMBER you gave it was
numerically higher or lower. The higher LINE NUMBER will be executed
after the first LINE and the lower LINE NUMBER will be executed before
the first LINE. If you give the second LINE the same LINE HUMBER as
the first LINE, the second LINE will replace the first LINE.

A typical BASIC program is written inm a "10X series" of LINE
HUMBERS starting with LINE 10, then LINE 20, LINE 30, LINE 40.......
This allows for ease of nuanbering and also permits inclusion of
additional program LINEs between previously written LINEs. The
importance of this will become obvious as you start to wWrite
programs.

Example:

10 LET A = 10
20 PRINT A + &

This is a complete BASIC program that can be executed (RUN) by the
computer, The meaning of the words in the program have the same
meaning as they do in everyday conversation. We are going to LET &
equal 10, and then we ask the computer to evaluate the numerical
expression A + 5, and substitute the numerical value for A, and then
PRINT the answer.

- m$@QmM%m$mscCc O rccCccc - o™

—

PROGRAMMING / 6

The way that we make the computer execute the program is by @

1. Type in: RUN
2. Press the RETURN key.

If we RUN we get:

15
READY

Obviously the answer is correct. The READY at the end of cur
answer indicates that the computer is READY for more. We can take the
program that we have above and make a change in LINE 10 to expand the
range of its usefulness., Let's say that instead of always making A
gqual to 10 we want to "put in"® a value of A. 3¢ we change our
program to:

10 INPUT A
20 PRINT & + 5

Where "put in®" and INPUT have essentially the same meaning,
except one is "computer talk."

If we RUN we get:

The question mark which popped up on the sereen mezns that you
know something that the computer doesn’t know. It wants you to "put
in" the value of A, It can not RUN the ra2st of the program until you
do. All yoa need do is type in any number. Then after you typge in
the number, enter it into the computer by pressing the RETURN key.

On ? we type in: 240

We get: 245
READY

.

m— . er

PROGRAMMING / 7

411 the words that we have used 30 far in writing our program are
called RESERVED WORDS. They mean exactly what they say. Since the
English language has many words with the same meaning, for the sake of
the computer it has been agreed to use only one of the words with that
meaning. It i3 then called a RESERVED WORD.

The RESERVED WORD that was chosen to mean "reading matter
produced from type passed through a press or an electronics device" is
PRINT. Mo other word with that same meaning will be used.

There are about 30 RESERVED WORDS in the vocabulary of a
computer in the BASIC mode. Everything that the computer does whesn it
i3 RUNning a BASIC program is guided by this very limited vocabulary.
Once you have "limited™ your vocabulary to these 30 words when you are
"talking" to the computer, you will find that it can understand you.
The only problem then is to be sure that what you tell it to do, is
what you want it to do. The computer is very obedient, it does
Yexactly" as it's told,.

Without going inte the meaning of this BASIC vocabulary, I shall
list most of it for you to See:

1. LET 10. END 19. OUT
2. PRINT t1. READ 20, BYE
3. INPUT 12. DATA 2t. RUN
4, IF ... THEN 13. EXIT 22, LIST
5. FOR 14%. RESTORE 23. LINE
6. GOTO 15, GOsUB 24. LOAD
7. ON 16. RETURN 25. SAVE
8. NEXT 17. FILL 26, EDIT
9. STOP 18, STEP 27. NULL

There are several others, but these are the most offen used. The
one thing that they all have in common is they mean exactly what they
mean in “every day talk." If you were going to explain to sombody
what a program is doing, step by step, your choice of words would
probably be exactly the same.

Now hack to our program:

10 INPUT A
20 PRINT & + &

.---------------'---"-"'---""""'""""""""'--'-7

PROGRAMMING / 8

. C_

If we want to test our program with several values of A, but
don't want to keep typing in RUN we can add another LINE and have the
coamputer go to the start after it finishes going through the program.
S0 we add:

. -

30 GOTO 10

Which tells the computer when it gets to this LINE te go to LINE 10,

|

If we RUN we get:

210
15

220
2%

2?2873
2878

. o

This eould go on for ever. MWe are into a program LOOP which
goes from LINE 10 to LINE 20 to LINE 30 to LINE 10 to LINE 20 to LINE
30 to LINE 10 and it will keep going and going and going. The
only way to get ocut is to "abort" the program, short of turning the
computer off---which always works. To do this:

L.

Press the CTRL key and the C key at the same time.

This is called a CONTROL-C. It STJIPs a program in progress, Itf
will interupt the program when the program finishes executing the LINE
that it is on. You may have to do several CONTROL-L procedyres, cne
after another, until the computer gets the signal when it is between
LINEs. When it does, it will STOP and tell you where it STOPped. It
will PRINT something like the feollowing:

| SO g

STOP IN LINE 30

Every program should not be a crisis. We should be able to get
cut of a program when we want to, and we can. Here's how:

s = o

.

?

PROGRAMMING / 9

Let's add a LINE or two, which will allow us to exit the program any
time we want. This 1s what we adg:

15 IF A = 0 THEN 40
Which says exactly what it says:
If the value of A equals zero then go to LINE &0

And then we make LINE 40 say END this program. We do it like this:
40 END

How let's look at our program:

10 INPUT A

15 IF A = O THEN %0
20 PRINT 4 + 5

30 GOTO 10

40 END

If we RUN we get:

725
30
725000
25005

70
READY

That's basically what progrom writing is all about. You now can
write a computer program. You can add things to it to make it do
more. The remainder of this book will not be devoted to show the
reader how to do something she has now learned, The rest of the book
will amplify and expand tbis talent you now possess.

— -

e

3

LINE NUMBERS

LINE HUMBERS are the “road map" that your computer follows
through your programs. They don't tell the computer what to de, the
LINE STATEMENT does that, they just get the computer te the right
place in your program.

Al) BASIC program STATEMENTS start with a LINE WUMBER, The LINE
HUMBER tells the computer in what order to execute the program. The
computer will start with the lowest numbered LINE and proceed in
increasing numerical order to the highest numbered LINE. The sequence
of numbers is not important, as long as they are in increasing
gumerical order. LINE NUMBERS can be any whole number between 1 and

5535.

Most programmers number their STATEMENTS starting with LINE 10
and number subsequent LINEs in a 10X series.

Thus:
10,20,30,00,....00404....65510,06552D,65530

You could just as easily number your LINEs -- 1,2,3,8,...... However,
this is not advisable since it does not allow "space®™ to insert
additional STATEMENTS between existing LINES. The importance of this
will become more obviows when you write your first program.

I apologize that there is not more to say abocut LINE NUMBERS, but
there is not...vevusus

-11=

T3 7Y OTHY T T T T3 T T OTY T OO"TR O OTTY ™M)

i S sann B e S quen-

4

HOW T2O DISPLATY A PROGRAMN

How to see what you got is important, so that you know what you
have., This is called LISTing a program that is in the computer.
The program either got there by writing ft while the computer was in
BASIC mode or it was LOADed in from some "device.® The "device"” in my
case would have been a "mini-disk."

For the purpose of the follewing discussion let's assume that
whatever we ask the computer for is there, unless said otherwise. Our
first question to be answered is:

How do you display a program on the moniter (t.v.)} once it has been
written or LOADed?

¥+ On PROMPT or READY type in: LIST
2. Press the RETURN key.

The entire program will be displayed on the monitor. Il the
program is longer than the number of lines the monitor will display at
one time {16 lines) the program will seroll by starting from the
lowest numbered LINE to the end of the program.

If you want to display only a portion of a program and you know
the LINE NUMBERs involved you can ask for only that portion. For
example:

You have a program with LINE NUMEERs from 10 to 1200

in a 10X series , i.e. 10,20,30,---1190,1200. You want
tc lock at that portion of the program from LINE 320 to
LINE 930.

1. On PROMPT or READY type in: LIST 820,930
2., Press the RETURN key.

The computer would then display all the LINEs between and including
LIRE 820 and LINE 930, a total of 12 LINEs.

If you then wanted to scan the last half of that same program, i.e.,
from LIRE 600 to the end, you would:

-13-

#

LIST 7 14

L

1. On PROMPT or HREADY type in: LIST 500
2. Press the RETURN key.
3
The computer would then seroll by on the monitor, LJ

starting at LINE 600, the rest of the program to i
LINE 120¢; the end,

If you wanted to look at only LINE 600, you would:

1. On PROMPT or READY type in: LIST 600,
2, Press the RETURN key.

The computer would display only LINE 600 on the meniter.

O

NOTE: The only change between the above example procedure and
this one it the addition of the "comma.®

NOTE, NOTE: If you are sitting in front of your computer, and
you just tried all of the above examples,and
everything having to do with LISTing worked,
but seemed to come out backwards, give yourself
one gold star [or noticing. This tells you
that you have the "new™ BASIC. From this point
until you reach chapter 36, the above LI3Ting
example will be one of two, of the only
indicatars of this fact. With the exception
of the COmpact command, it will alsc be the only
difference. Everything else in this book, as
written, applies to your version of BASIC.

The above procedures are the most salient features of LISTing a
BASIC program that is in the computer. However, there is another type
of LISTing that is also important., This is the LIsting of the "files™
that are on the "mini-disk." This procedure is not done in the BASIC
mode but is done in the "disk operating system" or DO3 mode,

=
P

(

-1l

‘anil sa il sl il el el sl

In N e o

C

3 S

LIST 7 15

If you had a "mini-disk"™ and you wanted to know the names of the
files on that "mini-disk” you would do the fellowing

1. Put the computer in the DOS mode.
a. From start up:

Put the mini-disk with DOS
in the disk-reader.

On > type in: EX E900
Press the RETURN key.

b. From BASIC mode:
On READY type in: BYE
Press the RETURN key.

You know when the computer is in the "disk operating system,®
i.e., DOS, because of the " * ™ sign., If it is the last item to
appear on the monitor at the far left --- you are in the "disk
operating system" -- D03, If the word READY is the last item to
appear, you are in the BASIC mode. If just the prompt (curser) is
the last item to appear you are generally in the BASIC mode. If the
" > " sign appears in the upper left corner and the rest of the screen
is blank you are not in either mode, you are at start-up.

2. Put the "mini-disk™ that you want LISTed
in the disk-reader.
3. On * type in: LI
4. Press the RETURN key.
You will see displayed on the monitor a complete LIsting of all the
files on that "mini-disk."
How that's the last word on LISTing and LIsting, but not the last
word on "seeing what yow got."™ All those neat little columns of

numbers that are located next to the names of the files mean
something. But, we won't get into that till lsater.

«15=

r~r—. s rs oot

rm

r —

3

VARIABLES

If you were to ask “real computer pecple" what they thought of
BASIC, they would look down their noses at you and tell you that they
don't see how anybody c¢an make sense out of all those "dollar aigns"
and "C5°s® and all that stuff. "It's nothing but a jumble of ABC's,"
they'd tell you.

Don*t be upseb or taken in by their condescending attitude. Put
their remarks in perspective. Don't forget that many of them consider
the mini-computer a "toy computer.® Withcut their taking the time, or
making an effort to see what the "state of the art"™ is with
mini-computers, they just assume that all they are are glorified
pocket calculators.

Having had the opportunity to expose several "reasl computer
people™ to the job that wmy mini-computer i{s doing for my business, in
accounting, quality control, shipping, product records, and also as a
"word processor," they are usvally very surprised at what they see,
and leave with a whole new attitude about the mini-computer.

But, irrespective of their initial attitude, there is some merit
in what they say about all those ABC's, Most BASIC programs RUN on
ABG's, and if you don’t keep up with them, your program can turn into
a "wild jumble" of *dollar signa® and ®C5's."

There are 286 posaible variable designations for any single
rumerical value. You can assign any letter of the alphabet to
represent a numeric variable, the choice is yours ~ from A to Z. In
addition to any letter of the alphabet, you can combine your chosen
letter with any number from zero to nine. Some of the possible
¢choices are:

K,Hﬁ,LO,P&.D,G“.ZQ.HS.T2,07

Thiz system gives you 286 variable "nasmes" to represent numeric
variables --- there are no rules, pick any one you want, anytime you
need one.

The very same set of rules apply to the system of assigning
*names" to STRING variables (WORDS), with one addition, you must add a
"dollar sign™ ($) as the last character of the variable "name."” Some
typical designations for STRING variables {word variables) are:

-17=~

VARTABLES / 18

A$, NG6% , LO$, Y28 , J73 , (8 , P9$, SB3

Counting the 286 numeriec variable "names,” plus the 286 STRING
variable "names,® you have random access to a total of 572 "names" to
choose from --- as the man said, "that's a lot of ABC's."

Although you need not be frugal in your use of variable names,
nor do you need to be very selective, you should choose them in some
orderly fashion sc as to prevent using the same varisble name in a
given program to represent two different variables. The method you
choose is entirely up to youw, there is no standard method of assigning
variable names.

If one is writing a very long program, and it is taking days or
weeks to write, or to complicate it further, two or more people are
working on it, 1 would recommend using a variable tally sheet. There
are actually two tally sheets, one for numeriec variables and one for
STRING (word) variables.

These tally sheets list all the possible variables, and when you
use one, all you do is cross it off the sheet. This will preclude the
chance of using the same variable more than once. In a situation as I
have outlined above, I would not rely on your memory; it's not as good
as the computer's when it comes to such details. You may forget that
you assigned the same variable name to twe different variables, but
the computer won't.

Here are the programs which will generate your tally sheets:

10 DIM A$(26),B$(26)

20 HUMERIC VARIABLE LIST "
30 !

40 FORF T = 1 TO 26

50 FOR J = 1 TO 1

60 LET A$ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

70 LET B$ " 01234567897
80 ! AS(I,I),B$(J,0)," ",
90 HNEXT J

100 !

110 NEXT 1

-18-

= L o

o Y r— r— e

rm -

—

And:
10 DIM A$(26),B$(26)
20 1» STRING VARIABLE LIST »
0 1 }
40 FOR I = t TO 26
50 FOR J = 1 TO 11
60 LET A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ®
T0 LET B$ = " 0123456789"
T5 LET T$ = "g»
80 t A$(I,I),B$(J,J),T$," *,
90 MNEXT J
100 !
110 HEXT I

Contrary to some published advertisements, that is not all that
you need to know about variables, but that's a start....

VARIABLES /7 19

-19-

i

| g

m O s o e

r—

6

THE CAST OCF CHARACTERS

These small, seemingly insignificant, things are the mortar that
hold the whole BASIC LANGUAGE together. The comma, the quokation
mark, the exclamation mark, the back-slash, the per-cent mark, the
dollar sign, the number sign, the at-sign, and the space. All of
these characters play a major role in the BASIC LANGUAGE. The
presence or absence of a single one of these characters can make the
difference between a well RUN program and absolute garbage.

We 3hall look at each one of these and discuss thelr most salient
functions. I will not at this time attempt to cover all the
characters, some for which I can not even find s name, or their
function, I'm not sure that any single person is familar with all of
them --- I'm net. There are a few that you must become well
acquainted with fn order to work with BASIC. Here are the more
ubiguitous.

THE COMMA

LI R L I T R R Y

The COMMA is the "work horse® of the BASIC LANGUAGE. It is used
to Separate variables, limit procedures, formab OUTPUT, separate
system inatructions, segment statementsg, and on, and on, and on....

Here are some examples of the more common uses for the comma:

10 READ 40, A,B,C$,D,E7$

10 INPUT A,BS$,X

10 ¢ "THERE ARE ",K," INVOICES OUT™

10 PRINT A,

10 $"THERE IS STILL ",%$C8F2,G," IN THE ACCOUNT *
10 INPUT " DISCOUNT CODE 1,2,0r 3 : ® R7
10 ON J GOTO 125,160,240

10 QPEN #0, "AUTOPART®

10 DATA 1,22,3,44,5,66,7,88

10 WRITE #0, A,BS$,C,D$,F73

10 LET N = R(B,0)

LIST 250,300

RUN 144,200

LOAD RUTOPART,2

SF AUTOPART,2

CR DOS, 1 10

“21-

...---------------iI---l-l-l---l-I----I---""""""""""'7

CHARACTERS ¢ 22

These examples show most of the uses of the COMMA that you will
encounter.

The ability to format OUTPUT is a wuse that you must become
familar with at the onset, If a PRINT statement is not terminated by
a COMMA, the OUTPUT from that statement i1s printed on a single line by
itself.

Thus:

10 FOR 5 = 1 TO &4

20 PRINT 5 3
30 NEXT s LJ
If we RUN we gat:
‘ J
2 L
3
]
J
If we change LINE 20 to: .
20 PRINT S, :
If we RUN we get: Lj
1234

For the program:

| -

i0 FOR X = t TO &
20 PRINT X

30 C = X+10

40 PRINT C

50 NEXT X

If we RUN we gel:

—22a

[

m

CHARACTERS / 23

If we change LINE 20 to:
20 PRINT X,

If we RUN we gel:

If we then change LINE 30 to:

30 PRINT C,
If we RUN we get:
111212 313 4 14

What is happening is that the COMMA at the end of a PRINT
statement tells the computer to "add” the QUTPUT from the next PRINT
statement to the same line., If all the PRINT statements in a given
program had COMMAs at the end of them, then all the CUTPUT would be
put on the same line until it overflowed to the next line. If none of
the PRINT statements had s COMMA at the end, then all QUTPUT from each
PRINT statement would be on different lines.

If you have a program in the computer's memory that is 150 LINEs
long, and you want to look at LINEs 20 to 110, if you typed in LIST
the entire program would seroll by unless you were fast enough to
execute a CONTROL € in time to STOP £t at the part that you wanted,
That's an Lffy situation: sometimes you can; most times you can't.
The best way to do it is:

On READY type in: LIST 20,110

The computer will then display LINEs 20 toc 110 and STOP by
itself. 1If you want to look at the last part of the program, from
LINE 110 to the end, then:

On READY type in: LIST 110

Note, no comma.

-23- i

CHARACTER s 23

If you just want to lock at LIYE 110 and nothing else, then:
On READY type in: LIST 110,
KOTE: If you have a problem with the above, see chapter 36.

Most of the other uses of the COMMA are illustrated in the azbove
examples., Their effect 1s not as dramatic as the discussed examples,
but just as significant. Proper placing of the COMMA in a LINE
statement is essential. Be sure that you separate all variables in
LINE statements by COMMAS, regardlesas of whether it is a DATA, a READ,
a WRETE, an INPUT, a PRINT, or an ON statement. If there is more than
one variable or value on a LINE, it needs a COMMA between it.

On the other hand, don't use too many COMMAS, The last item on
the ‘above mentioned LINE statements should not be followed by a COMMA,
with the exception of the PRINT statement, then 1t's optional. If you
are 1n doubt about whether to use the COMMA or not, check the above
examples or just put It "in® and then "take it out” and see what
happens.

QUOTATION MARKS

L R L T I B Y

The QUOTATION MARK cam not be averlooked. If aver you have
anything that needs to be said, the computer will not say it unless
you enclose it in QUOTATION MARKS, the computer does not want to be
responsible for what you have to say. The QUOTATION MARK is
especially important in formating OQUTPUT, allowing the computer to
identify and handle STRINGs (words), and allewing the computer to
differentiate between numbers and numeric expressions.

28

| GUEGR SO GRAEE SUREE GRS S

| -

L

p-

— M Mmoo

CHARACTERS 7/ 25

Some examples of LINE statements with the QUOTATION MARKS in them
are:

20 IF G$ = “YES® THEN 8¢

20 OPEN #0, "FRUIT®

20 INPUT "WHAT IS THE INVOICE NUMBER : *, N

20 PRINT *THE VALUE OF X IS : ", X

20 t"PART NUMBER ",K," IS NOT IN STOCK *

20 t"THERE ARE *,J," INVOICES WITH A TOTAL OF ",R
20 ! a'" ”'B’" |I,C,|' N’D’“ “,E

20 I™ KRISTI MAY SUE "

20 DATA 5,"HY-TEMP SEALED HEADLIGHT",6,"SPARK PLUG™
20 Y™Az",A," Bz=%,B," Cz=",C," Dz=¥,D

20 1" GROSS INCOME = ", %3C10F2,G

20 !HIIII*Q’I‘*Il"lll"'!!lﬁ‘!lﬁ""ﬁ"lilli'"

20 Mlwevacccc]enmcacnan Jewmmmee= Jemmoer Iemusan -1I%
20 1"345=" N
All of these are practical uses of the QUOTATION MARKS . All of

the above sxamples came from actual programs, moat of which are in
this book. Note the flexibility that is allowed when using the
QUOTATION MARKS. You may PRINT an entire line merely by enclesing its
contents with QUOTATEION MARKS, or you may segment a LINE as many times
as space allows, for the inclusion of a variable.

Anything that you enclose by QUOTATION MARKS in a PRINT statement
becomes a STRING (a word) to the computer. If it is a numerical
expression it is not evaluvated by the computer, it ia just PRINTed,
exactly as you enclosed it.

For example;
If on READY you typed in: PRINT 3 + &
You would get: 8
but, if on READY you typed in: PRINT "3 + 5%

You would get: 3 +5

—25-

w

CHARACTERS / 26

The difference between bthe two examples is that without the
QUOTATION MARKS the 3 « S 18 a numeric expression and the computer is
programmed to sclve the expression and PRINT out the answer. The " 3
+ 5 " egnclosed in QUOTATION MARKS is a "ward"™, and the computer is
programmed to PRINT out anything enclosed in QUOTATION MARKS exactly
as 1t appears.

| G

Conslder this program:

10 FOR ¥ = 1 TO &

20 PRINT Y, !
30 MEXT Y
If we RUN we get: 1232 u
Il we change LINE 20 to:
20 PRINT ™ "y, u
If we RUM we get: 1 2 3 Y4

|

Note the spaces between each number. The computer PRINTs what
ever is between the QUOTATION MARKS: in this case it was blank
spaces,

[

If we were to change LINE 20 to:

20 PRINT "THE VALUE OF Y = ", Y

| S

If we RUN we get:

| e

THE VALUE OF ¥
THE VALUE OF Y
THE VALUE OF Y
THE VALUE COF Y

g Py —

Other than for a few examples at the start of this section, !
have not gone into one of the most impeortant functions of the
QUOTATION MARK, its role in handling STRING VARIABLES or in a loose
definition, WORDS. As far as the computer is concerned, if it i3 not
a numeric value or a numeric expression to be sclved --- it's a WORD

(STRING}.

LS €5 &

-?h-

| .

— -

—

CHARACTERS s 27

That being the case, the computer wants you to keep your "words"™ and
your numbers separated, A numeric variable is represented by a single
letter of the alphabet, which may cor may not be coupled with a number
from zero to nine -- GH, A STRING variable is represented by a single
letter of the alphabet, which may or may not be coupled with a number
from zero to mine, plus a dollar sign { $) -- GU$. In this regard,
there is one hard and fast rule which you must remember, that is:

ALL STRINGS (WORDS) WHICH APPEAR IN THE BODY OF A
BASIC PROGRAM MWUST BE ENCLOSED IN QUOTATION MARKS.

THE BLANK SPACE

L S N L R R S T

A quick general statement that comes to mind about BLANK SPACES
is that the computer completely ignores them. But, like most "quick
general statements,” that's wrong., If I were to modify that to, the
computer usually Ignores them, that would be closer to the fact.

The computer does not allow BLANK SPACES in the following:

1. In reserved words. These are words which have
a special meaning to the computer. They are
either "command words™ or "statement words.™
When they appear in the body of a BASIC program
they must remain intaect if they are to mean
anything special to the computer, Some examples

are:
STATEMENTS:

GOTO ONGOTO IF..... THEN

GOSUB RETURN RESTORE

FOR HEXT END

STOP LET READ

WRITE GPEN CLOSE

INPUT FOR....TO PRINT

-27=

I I
CHARACTERS s 28 i
|
I
i

e
COMMANDS : i
LOAD BYE EDIT 5
LIST RUN PRINT -

2. You can not have BLANK SPACES in the "name"™ of
any FUKCTION, such as:

ABS{G) RND{J) INT{T)

3. You can not have BLANK SPACES in any LINE
NUMBER, such that:

50 GOTG 110

is not the same a3
5 0 GOTD 110

The first example being read by the computer
as LINE 50 and the seccond as LINE 5.

5¢ GOTO 110

is not the same as
50 GOTO 1 10

The first example being read by the computer
to GOTO LINE 110 and the second to LIKE 1.

Y4, Mo BLANK SPACES can be used in a "defined"™
STRING {word), such as a FILE NAME or 2
STRING mateh, without it changing the STRING.

HAPPY is not the same as H A PP Y
REDWINE is not the same as RED WIKE

A1l of the above Forms are accaptable. You
must, however, be cognizant that they are
not the same.

| S

-28-

CHARACTERS / 29

Now, back to my original statement, "The computer ignores all
BLANK SPACES, excluding the above mentioned exceptions.” That still
leaves an opportunity for lots of wide copen spaces or il you prefer
you can do away with BLANK SPACES altogether.

Consider the following two programs:

10 FOR X = 1 TO 3

20 Y Fl X + 1
30 FRINT Y
4o KEXT X
and:

1OFORX=1T03

20Y=X4+1

30PRINTY

YONEXTX

This is no doubt a silly example, but it does illustrate the latitude
with which one has to spread out a program or condense it to his own
liking. Both programs are properly typed and the computer would RUM
either with no problem.

THE BACK SLASH

Since we are talking about condensing things, let's next discuss
the "Borden's" of condensed BASIC computer programs -- the BACK SLASH.
The BACK SLASH allcws you to pul as many STATEMENTS on a single LINE
a5 you can possibly squeeze in. The computer will execute each
STATEMENT in order from left to right, just as if each STATEMENT had
its very own LINE NUMBER, each a little bit higher than its neighbor
to the left,

Consider the program in the section on BLANK SPACES where we took
out 8ll the spaces, that same program could have been condensed even
further by the BACK SLASH. It would look 1like this:

10FORX = 1TO3\Y =X+ INEYANEXTX

-29-

CHARACTERS / 30

This is the very same program. [t wiil RUN just like the above
mentioned program, and yield the same QUTPUT. To the computer there
is absolutely no difference.

Why then, you say, do we go to all the trouble te spread things
out, use all those LINE numbers, take up all that space, all that
memory, if the above example is exactly the same to the computer? The
answer is that we don't have to, but if you ever had a problem with a
long program written as asbove, you would go batty trying to figure out
what it says. Unless you were very lucky, orf unless you knew exactly
where your error was, you would have to go back and spread it out in
order to see what you had,.

Many professional programmers, once they have cowmpletely
"debugged” a program, will then go back and "compress" their program
to discourage other people from copying it, or changing it, or
figuring it out.

THE AT-SIGH

The AT-SIGN is of little or no value to¢ the person who does not
make mizstakes, not even typing errors. For the rest of us however, it
provides a quiek, convenient method to "start all over."™ Whenever you
press the AT-SIGN key -- " @ ", it will cause the computer to void
whatever was previously typed on the current LINE, and jump back Lo
start that LINE all over again.

For example:
10 ! * WHAT'S UP DOT @

This whole LINE will be voided and you cam start all over again.

THE EXCLAMATION POIKT

L R N T T S T

I have saved the "character™ that I like best, for last. The
EXCLAMATION FOINT has saved more time, more bytes, and has made
palatable a portion of what I consider to be the drudgery of computer
programming ~--- typlng.

=30=-

-

C_

CHARACTERS / 31

I have a problem in that I can't type as fast as 1 can think.
If 1 try, I find that what I typed is not what I thought. Any BASIC
computer program "worth its salt" is peppered with PRINT statements.

All that the EXCLAMATION POINT does, is allow you mot to have to
type the word FRINT. You can type an EXCLAMATION POINT in its place,
It will replace the word PRINT either as a statement in a LINE or as a
command to the computer, any place you would use the word PRINT, you
can replace it simply by typing an EXCLAMATION POINT.

10 PRINT &, is the same as 0
L}

B,C
PRINT FREE(&) is the same as

That's all that it does, but I'm glad that it does that....

-31-

e mam JRPR RS

—'JJJJJJJIUJUUUU“_IU

| S

7

THE RENUMBER FUNCTION

On the surface this hardly seems a worthy enough subject to give
special attention, and it may not be. But, I have found this little
RENumbering "function®™ is able to bring a little class and order to a
program, and it only takes a second.

All the RENumbering function does is renumber a program., It
makes the first LINE of a program LINE t0 and each subsequent LINE
dumber 10 more than the last LINE number. This is what I refer to as
a "10X series," i.e, 10,20,30,...., ...,. 65520,65530. That's as high
as it goes.

That is not all that the RENumber function renumbers. If there
is a LIKE number in the content of a LINE it will alsc change that
number to mateh the new number assigned to that LINE. I find this
pretty amazing when I consider that in almost any program you will
find at least 10 or more "GOTO's," or "IF/THEN'3," or even more
complicated, an oecasional ON statement.

The time to use the RENumber Ffunction is after you've done all
the adding of LINEs, EDITing, DELETing, and just before you SAVE the
program. RENumbering makes future editing and tracking of the program
a lot easier to work with when looking for errors, or making
additions, 1It's worth the effort and should be done.

Let's look at a few examples:

1 REM THIS WAKES A MATRIX 5 X 6
6 DIM M(5,6)

10 FORJ =0 T0 5

15 M(J,0)=z J

23 FORK = 0 T0 6

31 M(O,K) = K

o PRINT M(J,K),

51 NEXT K
52 PRINT
63 NEXT J
70 END

This program was written by one of the most used methods in
computer programming today. The method was the "trial and error®
method. Most programs written by this method, which have not been

=33

RENUMBER / 34

RENumbered, usuzlly have a3 strange a=sortment of LIKE numbers. This
is the result of constantly changing, editing, adding, and deleting of
LINEs until you get a program that works.

S0 that nobody will know how much trouble you had writing a
pregram, you should RENumber it. Do this:

1. On PROMPT or READY type in: REN
2. Press the RETURN key.

Now to see the results do a LIST.

10 REM THIS MAKES 4 MATRIX 5 X 6
20 DIN M(5,6)

30 FOR Jz= 0 TO 5
40 M(J,0) = J

50 FORK = 0 TO 6
60 MN(0,K) = K

70 PRINT M(J,K),
80 NEXT K

90 PRINT
100 NEXT J
110 END

Note that all the LINE numbers are now in a ™t0X series" starting
with LINE 10 and that the LINE number in the body of the program (LINE
100) has been appropriatly changed.

The same RENumber functiom ¢an als¢ be used to expand LINE space
in a program. Aassume that the following extreme example is the
result of the "trial and error" method:

.

-

520 IF X = 25 THEN 523
521 IF X = 50-C THEN 524
522 IF X > 25 AND X < 50 THEN 525

523 GOSUE 12ug
529 LET D = 22
525 GOTO 60

- = =

[

k- L k. . - o

L L

. LI =

RENUMBER / 35

Let's suppose that after checking the program we find that if the
program returns to LINE 524 after it finishes its subroutine from LINE
523 [t will not RUN. So all we have to do i3 add a GOTO statement so
that it dosen't come back to LINE 524. But wait, we've boxed
ourselves in., There are no numbers left that we can use to add a LINE
at the required place. All we have to do is:

1. On READY type 1n: REN
2. Press the RETURN key.
3. On READY type in: LIST

We will have to scroll through the program and lock for the
desired secticn that we are interested in since we do not know what
the new LINE numbers are to LIST to. Let's say that we find them and
the new numbers we want are 1150 to 1200. So we do the following:

1, On READY type in: LIST 1150,1200

and we get:

1150 IF X = 25 THEN 1180

1160 IF X = 50-C THEN 1190

1170 IF X >25 AND X < 50 THER 1200
1180 GOSUB 1550

1190 LET D = 22

1200 GOTO 80

Now we can add one LINE or up to nine additional LINEs alter our
GOSUP statement if we want to. Problem solved.... Text on RENumber
function ended. :

-15-

1 T ~1 71 T T T3 T3 T3 T3 T T3 TJ32 Ty ™M

S

HOW TO CORRECT OR EDIT A PROGRANMN

I'm sure that the second thing that was done after the computer
was worked out was to develep a system to correct programmer mistakes.
It must have been parsmount in the mind of the pecple who drveloped
the BASIC language, because there are 50 many different ways Lo
correct the same mistake. Sometime you spend more time trying to
decide which method of editing to use than il you just did the whole
thing over. 1I shall discuss some of the most used methods.

If we have the following LINE in a program:

13

136 IF A = B THEMN 60

You want to change it to:

130 IF A

B THEN 110

You do the following:

1. On PROMPT or FREADY type in: EDIT 130
The EDIT command is a built in "function® which essentially treats the
PROGRAM LINE that matches the LINE NUMBER after EDIT, as if it were
the last thing typed into the computer.

2. On PROMPT press: CTRL key & G key
When you press the CTRL key and the G key together it ig called a
CONTROL-G. The CONTROL-G i3 a buflt-in edit "funetion® which
automatically rePRINTS the last item that was typed into the
computer,
Therefore you should get:

130 JF A = B THEN 60

Now do a "shift-delete”" by pressing the DEL key while holding down the
SHIFT key. You will notice that each time you do a

=37

EDIT / 38

Pshift-delete” one character at the end of LINE 130 is

erased, Since to make the desired change we need to erase the "£0" we
do the "shift-delete” twice. Now that we have erased the "607, the
prampt is in the proper position to type in the number "110"., After
you have typed in the "110" press the RETURN key. You have made the
desired change. To verify that the desired change was made, do 3
CONTROL~G, you should get:

130 IF A = B THEX 110

If there are no further corrections, press RETURN key.

Now let's make a change at the other end of the line, we want to
change the LINE NUMBER 130 to LINE NUMBER 170.

On PROMPT or READY type in: EDIT 130
Press the RETURN key.

On PROMPT type in. 170

Do a CONTROL-G.

L N -
I et

You have now made the desired change., If you want te confirm
this do another CONTROL=G. You should get:

170 IF A = B THEN 110

And you do! However, you have left something behind. If you were to
LIST your program you would Find that yow have LINE 170, as you just
confirmed, and you would also see that LINE 13¢ didn't erase when you
"replaced”™ it. When you made all the other changes, one change
avtomatically erased the thing it was changing. LINE NUMBZRS are
something special, If you want to do away with a LINE NUMBER you
specifically have to tell the computer that. Here's how:

1. On PROMPT or READY type in: 130
{LINE to be erased)

2. Press the RETURR key,

The unwanted LINE 130 is now gone...

-38-

C.

et o

EDIT / 39

Now let's change:

70 IF A B THEN 110

170 IF A = 2*B THER 110

Since the desired change this time is ip the middle of the LINE,
we can approach it from either end; it really doesn't matter. If the
end results are the same, there i3 no "right" way. 1 will make the
ehange starting From the LINE NUMBER side, you try it from the other

end:

. On PROMPT or READY type in: EDIT 170

. Presa the RETURN key.

. On PROMPT press: CTRL key snd A key.
Continue to do this until you have passed
the " = " mark in your mark in your LINE.

Ak) -

This is called a CONTROL=-A. It is smother “control function® of
the computer. Tt will automatically PRINT one character at a time -
each tiwe you press the A key while holding down the CTRL key - of
the last thing typed into the computer or put in that "position” by an
EDIT command.

4, HNow press the CTRL key and the Y key.

This $5 called a CONTROL-Y, It is another "eontral function* of
the computer. It is alsc called the "insert control." It i3 a two
step "control function." The first time you do a CONTROL-Y it will
print a " < * st the start of the LINE position that you executed it.
Such as:

170 IF A = £
Then you type your desired change!
170 IF A = <2%

Then you do the second CONTROL-Y whieh will print the ™ > ™ sign at
the end of yow insertion. You now have:

170 IF A = <2¥%

Th:n you do a CONTROL-G which prints the remainder of the line and you
get:

-39-

EDIT / 40

170 IF A = <2%>B THEN 110
Then you do agnother CONTROL-G (This one is optienal) and you get:
170 IF A = 2*B THEN 110
Which is exactly what we wanted,
There are at least two ways to delete characters from a progran

LINE. Again, both are commonly used and except under certain
conditiens, which one you use is up to you. Let's change LIKE 179

from:

17¢ IF A = 2%p THEN 110
to:

170 IF A = 2 THEN 110
Method A:

1, On PROMPT or READY t:pe in: EDIT 170
2. Do a CONTROL-A until the "“2" appears.

3. Press the "space bar" for each character
you want to delete, i.e,..two times.

U, Do a CONTROL-G to display the remainder
of the line.

5. Press the RETURN key to effect the change.
and we get:

WO IF A= 2 THEN 110

Which is what we wanted. However, lock at all those wide open
spaces. I have already told you thabt the computer dosen't care if
they are there, so if you don't care, then everything is fine. If you
do care then I recommend method B.

—4p-

— —

~— r— S e r

—

EDIT / Ut

-

. On PROMPT or READY type in: EDIT 170
2, Do a CONTROL=-A until the "2%" appears.

. Press the CTRL key snd the Z key for

each character you want omitted (two times).

This is called a CONTROL-Z. It is another editing "funetion" of
the computer., Each time you use it it will replace the character in
that pesition with a "&" sign, until you are finished with all your
changea and you enter the changes in the computer. When you LIST your
change or do a CONTROL-G after you have EDITed, the omitted characters
and the "4" sige are gone and so are the characters they replaced, and
30 1a the “space" they occupied.

4. Do a CONTROL-G to complete the remainder
of the line.

we get:

170 IF & = 2%% THEN 110

5. Press RETURN key (this enters the change
into the computer).

6. Do a CONTROL-G to see the EDITed LINE
(optional)}.

we get:

170 IF A = 2 THEN 110
Which 13 exactly what we wanted.

As to those conditions when it is better to use the CONTROL-Z
method of deletions as opposed te¢ the "space bar" method of deletien,
it depends on how much space you can afford to use. Even though the
computer essentially ignores excess spaces in LINE items, it does not
completely ignore them, It SAVEs them for you. If you put them
there, it assumes that you wanted them there., Everytime it SAVEs the
"blank space™ it also takes up one byte of memory. There are to my
knowledge no "reserved words" or “eommands® which have spaces ip them.
Assuming that to be the case, all "spaces” could be eliminated from
all programs, Thus our LINE 170 cculd be writtan:

S P

M

FOIT ~ 42

B

1TOIFA=2THEN 110

The computer will handle this LINE 170 just as easy as the one
above, Besides that, you would save 7 to ¢ bytes on juat that one
LINE, Can you imagine the almost imposzsible task of tryinmg to "track”
a three hundred LIXE program written without any “spaces” while
leoking for an error?

There are other EDIT "functiens" in your system. By
pnderstanding those that I have written abouft, you are in a better
position to evaluyate the use of thase I have not written about., Then
you can decide whether they are worth the effort.

. . L .

|

| SR SO

.

1
=
[3%]
1

r— o

| qun N

‘™ ™

H

HOoWw TO LOAD A PROGFRAM
FROM A HMINIT-DISK

There are two ways to get a program inté the wemory of a
mini-~computer. One we have already discussed; that of writing a
program into the computer. The other we have already used: that of
LOADing a program into the computer from a "device." That device can
be a tape recorder, a paper tape, an ordinary telephane, magnetic
card, gr the "device" that we used to LOAD in DDS and BASIC (both
operational programs), the "disc-reader."

The "disk-reader™ is a wondrous machine. It ¢an READ the
magnetic "mini-disk" in a matter of seconds. In less time than that,
it can "look"™ at what you want and "look™ at what it's got, and tell
you if your "wants" exceeds its "gots." If you ask for something it
can not find on the "mini-disk,"” it will try ten times to locate the
item. 1If it's not successful, the disc-reader will tell the computer
that ft's not able to locate the ask for item and the the computer
will print that on the monitor. A1l that will take place in just a
few seconds or less.

The "minji-disk" is nothing more than a large piece of tape
recorder tape that is the size of a Flve inch saucer instead of a long
skinny tape. It is essentially "played” and "recorded™ in the same
manner as on 3 regular tape recorder. The unique feature of the
"disk-reader" is its ability to loacte any reguested item at any site
or the "five inch saucer." Each mini-disk can contain about 90,000
pieces of information (bytes). You can ask for any one piece and Lhe
disk-reader will locate it for you in a matter of seconds.

It works very much like a record player. The recording head,
called the "pointer,"™ is like the arm on the record player. The
mini-disk is like the record. The disk-reader turns the mini-disk,
Jjust like the turntable turns the record, only much faster. The arm
on the turntable, the ™pointer"™ on the disk-reader, follows the
grooves in the record, the tracks of the mini-disk, starting from the
outside rim and working its way to the center,

Just like one of these new, modern turntables that can put the
playing arm down on any pre-selected band on the record, the computer,

by use of the Disk Operating System can put the “"pointer™ down on any
position C(address) on th mini-disk.

Now that you know how it operates, let's learn how to cperate

-43.

_——___———_ﬂ

LOAD PROGRAM / 14

L.

Every program on a "mini-disk" has a name., The name thit the
program is given is up to the programmer within certin limatations.
A1l activity involving this program is done by using its "given name"
and nothing else.

The "given name" of a program must be no more than ejight
characters long. These characters can either be letters, numbers, or
symbols. There are only two exception. You can not use a blank or a
comma in the name.

 SA SO

The name should be an acronym which will tell the programmer
what the preogram is about. The name for an "invoice preparation
program® could be "INVOPREP®™ or the name for a program which reads the
contents of a mini-disk file could be "DISKREAD". Choose the names of
your programs so that they mean =omething to you, [

| CHE

Let's assume for our example that we have an "inventory
accounting program" which we will name INVACCTN, We could have just
as eaisly named it RABBIT or #%+URL or 6/7/7B. All of these
options fulfill the namming requirement. Bot, let's use the name
INVACCTN. We must further assume that the program named INVACCTHN is
recorded (SAVEd) on the mini-disk that we have in the disk-reader. On
thizs same mini-disk is the program for our Disk Operating System (D05}
and the BASIC Language program. :

-

After making all these assumptions and meeting all the stated
requirements, we are ready to ge from "start up" to putting in
(LOADing) our programs to RUNning them.

Here's how:

-

1. To put (LOAD) the Disk Operating System {DO3) in
the computer:

o

On > type in: EX E900

2. To put (LOAD) the BASIC Language into the
computer :

on * type in: GO BASIC

3. To put (LOAD) the program named INVACCTN in
the computer:

= o

et

[

e _ u l

LOAD PROGRAM ¢ 4%

On READY type in: LOAD INVACCTN

The word READY again pops up on the monitor,

keyboard you have to follow it uvp with pressing the
RETURN key in order to "enter" it inrto the computer.

Each time you "press RETURN key” the disk-reader will
come on, run twe or three seconds, turn itself off, and
replace the last symbol on the screen with the next
required symbol on the monitor, first > then ¥ then
READY --- if all goes well,

The different symbols and the word READY all tell you
that the computer accepts the LOADed program and is in
the required mode for the next "command.® The symbols
mean:

[_ Each time that you "type in"™ something on the terminal

> . . . Tells you that the computer is in the
"start-up” position and there are no

r programs in the computer.
Hn
: . . . Tells you that the computer is in the

Disk Operating System - DOS mode.

- READY . . Tells you that the computer is in the
BASIC mode and that you can READ, WRITE,
SAVE, and LOAD BASIC programs,

—

If you were already in the BASIC mode

and you tell the computer to do
something, it will print READY after if
it finishes its assignment.

Since, after we told the computer to LOAD INVACCTN we got READY.
That wguld indicate that the computer has LOADed our program and we

are READY tc RUN. If you do not have "complete laith™ and you want to
see the program. Do this: ‘

On READY type in: LIST

-U5-

P e

LOAT PROGRAM / 40

The program named INVACCTN will screll by fr:a bhe [irst LIKE t-o
the end. 1If you are now convinged that it is zhers and you want to
RUN the program do the foliowing:

On KEADY ftype in: RUN

When you press the RETURN key to enter the "commard™ into the
computer, it will start executing the program.

That's the way it should always work. On cceasion it dosen't.
Lett's consider the most frequent of these times.

If at any time you command the computer to LJOAD a program and it comes
back and displays on the monitor "HARD DISK ERROR" or HD 000, that
means that for some reason the computer was nct able to transfer the
information on the mini-disk to its memory. JThe most frequent cause
for this "ERROR* is that the mini-disk was not properly inserted in
the disk-reader or that the "lock gate® on the disk-reader was nct
closed.

To eorrect this "ERROR™ check the "lock gate" {f 1t is not
closed, c¢lose it and repeat the LOAD command. If it was properly
closed, open it, take out the mini-disk. Make sure it was insertied
"face up” with the end with the "oval cut-out® Zoing into the slot on
the disk-reader first, Even if it was properly inserted, reinsert it,
close "lock gate" and re-enter the LOAD command.

If it still does not LOAD the program and HE 253, or any number
following the HD appears; two things are probable, Number one, the
mini-disk is damaged. If that's the case, nothing can be done ard you
have lost whatever program that was stored on the mini-disk at
position (BLOCK) 253.

The mini-disks are not fragile, but do reguire some special
handling. They should not be "bent, folded, or mutilated." They
should not be placed in any type of magnetic field. They should be
kept "high and dry® and in the envelope that came in when not in use,
In general, handle them as you would an expensive phoncgraph record.

The second possibility iz that a piece of lint or something got
between the disk-reader head (pointer) and the mini-disk. Sometimes
just removing the mini-disk from the disk-reader aad lightly bouncing
it on its edge a few times on the table or carefully turning the
mini-disk in its preotective holder will correct the problem.
Re-insert the mini-disk and try to LOAD it again.

b

-

p— L:-w‘— —

R ool el

.

r—-v—--

- r— T

|

-

LOAD PROGRAY /7 A7

If it still doesn't work there are twe possibilities., MNumber
one, the mini-disk is damaged. Number two, bthe disk-reader is
malfunctioning. To check this out try to LOAD another program from
the same mini-disk. If you are sucessful then consider the "HARD PTIZK
ERROR"™ is isolated to that one place (BLOCK) on that mini-disk. IF
not, try to LDAD a program from another mini-disk. If you are
sucessful then consider that it is not your disk-reader that is at
fault, but that the previous mini-disk is actually damaged. If you
fail on all attempts its probably your disk-reader. You don't need
mere instructions --- you need a repairman.

Assuming, that none of the above happened, but you still didn't
LOAD your program, the next most freguent occurrence may be the
appearance of the following phrase:

ARG ERROR

This stands for “argument ervror? which means thet what you asked the
computer to do, it could not do, because what it needed to do the task
was not available.

In our particular case, what it says is that there is no program
on the mini-disk with the name you told it to LOAD. Il we are sure
that there was such a program on the mini-disk, then perhaps we made
gn error in our LOAD command. For instances, if we told the computer

L H *

LOAD INVACTN
We should expect an ARG ERROR, because the name of our program was:
INVACCTN

Look closly at the spelling. The computer never forgets what you tell
it. It does exactly what you tell it to if it cam. Most of us mortals
have to learn how to deal with such consistency --- it’s not all that
easy. .

Knowing that there is no room for ERROR, and our memory is not
good enough to come up with the exact name of a program, and the
chances of us lucking up and guessing it are slim, the "computer
people” provided us with a solution. There is a method of getting the
computer to LIst the names of all the programs on a mini-disk.

-H7-

w

LOAD PEOGRAM

Here's huow:

To do

Fohy

If READY 1is the last message or the moniter,
we are still in the BASIC mode. In crder to
display the mini-disk "file"™ LIst we must get
back to the Disk Operating System - 025 mode.

this you must:

On READY type in: BYE

When you press the RETURN key to enter this
command intoc the computer, a #* will appear
as the last item on the monitor. That means
we are in DOS mode.

To get our LIsting of this "file" we then:

Cn * type in: LI

The disk-reader should come on, and a LIst of
all the programs on that mini=-disk will be
displayed on the monitor.

With the complete LIsting of the programs and
there exact spelling in front of you, you are
now able to properly LOAD the program you want.
But , you cant LOAD a BASIC program in the DO3
mode. Here's how to get back to RASIC:

On *# type in: JP 2A0H

When you press the RETURN key you will see
that READY is now the last entry on the
monitor. Which indicates that we have
JumPed bagk inte the BASIC mode.

Kow

On READY type in: LOAD INVACCTN

The word READY should now appear on the
screen again, telling you that ali is done
and the computer is READY to RUN.

-48-

P

—

- o e e r—ore

LOAD PROGRAM / 49

On occasion after the LOAD command is given the phrase:
HO0 PROGRAM ERROR

w;ll appear on the monitor. What this tells you is one of two
things:

Mumber one, Lhere was in fact a space (file) ecreated for a
program called INVACCTN, and this LIsting is on the mini-disk, bult
that program was never SAVEd. Either you forgot to SAVE the program
INVACCTR or you executed your 3SAVE command improperly and the computer
did not SAVE the program and did not tell you otherwise. The first
passibility is the most probable.

Number two, the program (especially if you got it from someone
else, already on a mini-disk) is too large to RUN on your computer.
You either need more memory, a smaller program, or both.

T

e ree e - r-

—

Every time you sit down in front of this magic box to write a
program for a2 specific purpose, or a game, or to try some programming
technique, the potential to do something great exists, limited only by
the human, not by the computer.

On that occasion when you feel that you have accomplished this,
which may happen daily, you certainly don't want to deprive mankind of
this treasure. If you turn off the computer this jewel will be lost.
All that extra cash will disappear, that money you could make if you
called {t "software™ and sold it,

Let's assume that after hours and hours of very trying labor, and
just before the point of complete mental fatigue, you finally get a
very useful and complex program off and RUNning. It's the greatest
thing you ever wrote. For that reason you decide to call it GREATEST.

There must be some way to save this valuable asset, There is, an
here's how:

1. First, check the program and make sure that
all RUNs well and there are no changes you
want toc make before SAVEing the program.

On PROMPT or READY type in: LIST

If you find some changes that you want to make,
do it. If you are READY to SAVE the program,
then proceed.

2, It i3 always better to find out exactly how big
a program iz, rather than guessing. There is a
method for telling you exactly how many blocks
long a program in the computer is. It inveolves
the use of the built«in FREE (0) function.

The FREE{$) function tells the programmer how
much ¢f the computer's avallable memory is still
FREE to use - how much memory is left. By
establishing how much memory you have left after
you LOAD in both DOS and BASIC you would do the
following:

-51-

SAVE / %2

On

PROMPT or READY type ia: ' FREE(Q)

you get: 10812

This means that without any programs in the
computer, other than the ¢perational systems,
that 1 have 10,572 bytes of memcry available,
This number may vary from system to system,
but will remain eonstant for any given system
that is not changed. Once you establish this
value for your system - remember it.

Since we already have a program in the computer,

and we want to find out how many blocks long

it is,

we do Lhis:

On READY type in: 1(10B12 - FREE(0)}/256

you get:

That means thot the =ize of the program in the
computer's memory is 25.51% blocks long. Here's

25.515625

how that was determined:

a, If you typed in: ? FREE(O)
and got : 4280
That means you have 4280 bytes of

memory left.

If you know how much memory you
started with, i.e., 10812 bytes

and you know how much you got left,
i.e,, U280, Then:

10812 - 8280 = 6532

Which means that you used 6532 bytes
to write the program in the computer.

-52-

w

L

. o

-

NOTE:

r~—~rMmm"m"Mm>m>rMmmre e eror o o

SAVE / 53

c, If each block contains 256 bytes then:
6532 7 256 = 25,51 blocks

Which means the the program in the
computer iz 2%.51 blocks long.

d, Putting this all together into one
expression, you get:

No. of blocks = {10812 - FREE{(0)}/256

See Chapter 36 for an easier way to do this il you have the

"new" BASIC,

3. If you are going to SAVE your program on a
a brand new mini-disk that has never been
uzed, you must first INITIALIZE the disk,
However, if you INITIALIZE your mini-disk
at this point you will lose your program
in the computer's memory. The INITIALIZing
function uses the same portion of memory
that your program is in.

DO NOT INITIALIZE AT THIS POINT

If you want to SAVE your program at this point
you will have to SAVE it to amother mini-disk
that has already been INITIALIZED.

In view of the complications brought about by
not having am INITIALIZEd mini-disk ready when
you need one, it is a good practice to
INITIALIZE =211 brand new mini-disk as spon

as you get them. Even il you do severazl at

a time it does not matter, because you can't
use them until they are INITIALIZED.

iy, We must be in the Disk Operating System -
DOS mode - to prepare our FILES, So:

On PROMPT or READY ftype in: BYE

5. We must CReate 5 FILE named GREATEST which is
26 blocks long.

-53-

_

SAVE / 5%

.

On 9 type in: CR GREATEST 26

6. We must TYpe the FILE., Since it is a program
written in BASIC that can be LOADed snd SAVEd,
it is a TYpe 2 program. So that the computer
knows that, we:

o o o

Oon * type in: TY GREATEST 2

7. The program is in the computer, we have CReated
and TYped the FILE, everything is now READY to
SAVE the program GREATEST. We must go back to
the BASIC mode by:

.

On ¥ type in: JP 2A04

8. Let's now SAVE the program GREATEST to the
mini-disk. We d¢ that by:

[-

©on READY type in: SAVE GREATEST

9, It's dene, You now have your program named
GREATEST SAVEQ on a mini-disk. To check it,
tell the computer to LOAD it inte the computer.

On READY type in: LOAD GREATEST

ITf READY pops up as the last item on the

monitor all went well and you 4id in fact

SAVE your program. If you get an ERROR,

nothing is lost, the original program is

still in the computer. Just start over with

3tep number 1, but this time c¢hange the

name of your program to GREAT, This will

preclude the necessity of DELETEing FILEs

at this time. .

And that's all there iz to that....

LT &=

YT

oy

{

11

HOW TO PUYUT POS ON A MINI-DIGSK

There are certain programs which are more important than others.
Some programs are not worth the effort to SAVE and others will
literally shut you down if the wini-disk they are stored on is lost or
damaged.

One such program of the latter type is your Disk Operating System
(POS). If you lose or damage this program you are out two ways.
Number one, you can't do anything with your computer other than use it
a3 a "television typewriter." Without some means of getting BASIC
into the memory of the computer, you c¢an't program or RUN in BASIC.
Without some means to tell the computer when and how to use the
disk-reader you can't LOAD, READ, WRITE, SAVE, LIst, or much of
anything else.

The second way you are ocut is the cost of another mini- disk with
the Disk Operating System (DOS) on it. I can assure you that the cost
of a blank mini~disk is much, much less expensive tham another
pre=written DOS programmed mini-disk.

Since we are only human, and a known human trait is the
"expectability of screwing up," one can without hesitabion be assured
that one will at sometime screw up one's DOS disk, So in the true
spirit of reality --- Prepare for the worst and expect tt. 350 let’'s
prepare a second, third, or however many sdditional mini-disk with DOS
that your paat life experiences comfortably dictate.

Here's how:

1. Place mini-disk with Disk Operating System - DOS
in the disk-reader.

on > type in: EX ES0O

Then press RETURNWN key to enter the command into
the computer - as you will after each "type in:*
When the * charaltcter comes on the screen 1t
indicates that DOS has been LOADed into that part
of the computer'sa memory which operates the
disk-reader. You are in the DOS mode,

-558=

SF DOs 7 56

Put your "new" mini-disk into the disk-reader.

I put quotation marks around "new" for twa
reasons. First, it doesn't have to be a brand
new disk; it can be a mini-disk that you have
already used, but no longer need to keep what

is SAVEd aon {t. We are going to INITIALIZE

the "new" mini-disk. This procedure will
format the recording area 30 that it will aceept
information from the system, It will zlso
over-write (erase) anything that is on the
mini-disk.

The secend reason for the quotation marks is to
to help keep up with which mini-disk is which.
Remember that the "new" mini-dizk will be the
one that we are puttimg DDS5 on.

Cn ¥ type in: IN

If you do nobt INITALIZE a new mini-disk and you
try to record on it you will always get a
HARD DISK ERROR,

Fow we must CReate a file named D03 ten blocks
long

Gn *# type in: CR DOS 10

Now we must put DOS into the computer a
second time, but not as part of the operations
system program {(as above), This time we

we will LOAD it as a "regular program.” Since
it is Just a "regular program® it will be

stored in that portion of the computer's memory
which can be LOADed and SAVEd by the appropriate
command .

We actually will have DOS in the memory of

the computer twice. Unce in the operaticonal
systems portion of the computer's memory and
once in the "regular program" porticn of memory.

To get DOS inte the "regular™ memory of the
computer we must:

—Sh-

e

_—

SF DpOS 7 57

—

On ®* type in: LF DOS 3000

Which meang, LOAD a File named DDS intc the
computer's "regular" memory whose location
{ADDRES3) iz 3000. Note that the LOAD command

in the DOS mode is different from the LOAD
command in the BASIC mode. Since both modes

have common commands the names have been changed
so as not to confuse the operator. Here are some
of the command names:

Dos BASIC

LF LOAD

LI LIST

DE DEL (delete)
GO LOAD

SF SAVE

RD READ

WR WRITE

JP 2804 {mamD BYE

We have now LOADed into the computer DOS in two
places, INITIALIZED the "new"” mini-disk, CReated
a file for DOS on the "pew" mini-disk, and all
that i3 left to do is SAVE DOS on the newly
CReated File. So we put the "new™ mini-disk"™
back in the disk-reader and:

On * +type in: SF DOS 3000

After pressing the RETURN key to enter our

command, the disk-reader will come on, run for

a few seconds, turn itself off, and the character
* will appear a3 the last iftem on ocur monitor.

This would indicate that all went well,

and that DOS i35 now on the "new" mini-disk,

6. To check to make sure that all went well:

On % press at the same time:

UPPER CASE key and REPEAT key

R

=57~

—

SF DOR 7 S8

7. You are back in the "start op" mecds.
On > type in: EX E900

If you get a " you just LOADed your copy
of the Disk Operating System - DOS,

You not only have now fixed &z second DOS disk, you have protected
yourself from the effects of an eventual dumb mistake, That's al'l

there is to know about deoing that....

=GR

mr

r— ™

12

HoWw TO PUT BASIC ON &4 MINI-DISEK

Equally important as knowing how toc put DOS on a mini-disk is
how to put BASIC on a mini-disk, fer all the same reasons. If you
vwere to lose or damage your only copy of BASIC you 3t1l1 couldn't RUN
a program other than Disk Operating System procedures. That by itself
is not much fun. 3So, let's find out how to transfer our BASIC
language program from aone mini-disk to another. The methods are
esgsentially the same as for DOS except the "words™ are different.

Here's how:
1. We must first get the computer in the DO3S mode,

From start-up: on > type in: EX E900
From BASIC: on READPY type in: BYE
Press RETURN key to enter command into the

computer. The # character should appear
as the last item displayed on the monitor.

2. If your mini-disk is a brand new disk and has
never been INITIALIZED before, or it's an old,
used mini-disk that you want to completely
erase then:

On * type in: IW

Press RETURN key to execute the INITIALIZE
command .
If you are adding BASIC to a previcusly used

mini-disk which already has D05 or some other
pregrams on it that you want to keep ---

DO NOT INITIALIZE

55

M’

SF BASIC s 60

Put the "new™ previously INITIALIZED mini-disk
into the diske-reader. We will first CReate a
file named BASIC, forty-five Blocks long, which
iz the size of our BASIC Language Program.

On ® type in: CR BASIC 45
(With a single space between each “word")

Since our BASIC prograw is a GO TYpe program.
That is, that it is LOADed by the command ---
GO BASIC, we must tell the computer this
information. We do that by TYpeing the program.
There are four TYpes of programs that we will
be concerned with:

TYpe O . . A machine language program such as
our Disk Operating System program
that is LOADed by the Elecute
command.

EX E300Q

TYpe 1 . . An operations systems program such
as our BASIC Language Program,
which s LOADed by the GC command.

GO BASIC

TY¥pe 2 . . & BASIC program such 35 thase
that we have written which are
LOADed by the LOAD command.

LOAD INVACCTH

A data file which can only be
accessed by a READ or WRITE
statement after it is OPENed,
and can not be LOADed cor SAVEd.

T¥pe 3 .

-

-60=

L

| -

M

L— SF BASIC / 61

10 OPEW #0, INVACCTN
20 READ #0, A,B,C

b To tell the computer what TYpe program we have
CReated a flle for we do the following:

- On * type in: TY BASIC 1 2400
The ™2400" js the locatfon (ADDRESS) to which
this TYpe one File is to be stored in the
computers memoery.

- 5. Now we must LOAD the BASIC pregram File inkte

[- the memotry of the computer, We do that by
putting a mini-disk with BASIC already on it,

the "old" disk, into the disk-reader and:
On *# type in: LF BASIC 2800

Which tells the computer to LOAD from the
mini-disk a File named BASIC into the
memory of the computer's memory at ADDRESS
H2A00",

If after we press the RETURN key, an ¥ is
the last item on the monitor, we know that the
program is in the computer.

reader, since that’s where the File is that
we want to SAVE the BASIC program to. Then we
do it by:

On 19 type in: SF BASIC 2A00

[: 6. We now put the "new" mini-disk into the disk-

Which tells the computer to "record" on the
mini-disk whatever is in its memory at
location (ADDRESS) 2A00 and identify that
File by the nazme BASIC.

-61-

------------I-lllI-lI-I--I-I-Il----I-ll---‘----'-"--"f-J

SF BasSIC 7 62

7. You now have BASIC om a second minj-zisk, If
you don't believe it:

On * type in: GO BASIC

If you don't get back -- READY -- you messed up.
Go back to square one,

— o

-62-

— -

m

" MM e

13

HOW TO DELETE A PROGRAM OR 4 FILE

It seems that no sooner than you spend untold hours creating a
program or a file, you then come up with "a betier mouse trap.” You
n¢ longer have any use for the old one, but you decide to keep it for
sentimental value. After all, it was the "first program of that type
that I wrote." BScon you have more "old mouse trap" pragrams SAVEd on
"mini-disks" than you have "active" programs.

Then the time comes when you are right in the middle of "a
better mouse trap," it's the greztest ome you've ever done, You look
for a "mini-disk™ with enough open blocks (unused space} on 1t to SAVE
this wonderful new program, only to discover that they are all full.
You don't hesitate for a minute to grab one of thase "old sentimental®

ones and erase it. After the first one it becomes easy to reclaim all
the rest.

The same thing holds true when you are writing a program. After
spending hours putting LINEsS in, you figure a better way to do

something and you spend micro-seconds getting rid of those same
LINEs.

Now let's consider deletion or erasing methods. They are best
explained by example. I found that it was harder trying to
demonstrate how to get rid of someihing you didn't have, than to
create an example and then get rid of it.

Our first example is that we have a program in the computer which i=
50 LINEs and we want to get rid of the whole thing. What we do is
3CRatch the entire program. Here's how:

1. On preompt or READY type in: SCR
2. Press the RETURN key.

You have now wiped out all 50 LINEs of @ program that was in the

computer. If you were to do a LIST, all you would get back is a
READY.

Example #2

We have a program in the computer which has 90 LINEs, numbered from 10
to 900, in a 10X series - i.e. 10,20,30,--- 880,890,900 We want to get
rid (delete} of LINE WUMBERs 50,290,and 470.

DELete / 64

All we have to do is:

On PROMPT or READY type in: SC
. Press the RETURN key.

On PROMPT type in: 290

Press the RETURN key.

On PROMPT type in: 470

Press the RETURN key.

SN Eany =

+ 4 4

These lines are now deleted. If we did a LIST of the program,
you would see that they are no longer part of the program. Because it
is so easy to delete a LINE, one must take extra caution not to
accidentally type in a random number while the computer is in BASIC
mode with a program LOADed, 1If it should happen, 4o not compound the
mistake by pressing the RETURN key. Cerrect the error by a
*shift-delete" or press the " @ " key.

Another common mistake is while you are busy thinking about the
content ¢f a LINE, you type in the wrong LINE NUMBER. If you typed in
360 and should have typed in K60 and then caught your mistake and
pressed the RETURMN key to "start over," everything wouid seem 0.K,,
put it isn't. You just DELETEA LINE NUMBER 360. FRemember, the
computer does what you tell it to do --- even when you don't mean it.
The proper way to have handled the err~r would have been a
"shift-delete™ or to press the " @€ ™ key.

Using the same program as in Example #2, let's now DELETE a2
larger portion of the program. This time we want to DELETE everything
from LINE NUMBER 470 to LINE NUMBER 780, We could do it "by the

numbers" as we did in the second example. That would take a long time
and would be boring, but it wouvld work. Or we could do it this way:

1. On PROMPT or READY type in: DEL 479,780
2. Press the RETURN key.
The task is now complete.
If you want to verify it type in: LIST 460,790
you get:
460 IF K = COS(T) THEW GQSUB 87¢
790 INPUT "3UM OF ALL FIELDS : “,G7

{or whatever the content of these LINEs may have been)

—6l-

(S

-

| GRSl

—

 — - Yy

DELete / 65

If you wanted to DELETE everything in our Example #2 program From
LINE NUMBER 720 to the end of the program you would then:

1. On PROMPT or READY type in: DEL 720
2, Press the RETURN key.

Consider it done.
To confirm it:

On READY type in: LIST

The entire program will seroll by frem top to the last LINE, which
will be LINE 710.

NOTE: You should be aware that on the system that T
am using that due to a flaw in the BASIC, when
you want to use those LINE NUMBERS that you
earlier DELeted --- all will seem rosy, but
it*'s not.

What happens when you start filling the
vacuum that you created by DELeting that big
block of LINEs, and you keep adding one LINE
after amother, and there's no indication that
anything hasz gone awry, is that all these
efforts are in vain. Even though everything
you type appears on the monitor, it's continuing
to be NELeted by the computer from the program.
Consequently you are not doing anything except
practicing typing.

Knowing this still makes the DElLete function
a usable programming tocl. Not knowing this
renders the thing leas than useless. You can
correct this flaw by doing the following
each time you DELete a large block of LINEs:

1. After you have done the DEL 470,780
and pressed the RETURN key.
on READY type in: BYE

2. Press the RETURN key.

3. On * type in: JP 2a0%4

i, Press the RETURN key,

and you are READY to add those LINEs.

wfi5a

DELete s 66

A1l we did was leave BASIC mode, which had the effect of wiping
out any remaining "acommands,” by going to D05 mode., Then we JumPed
back in BASIC mode with a "clean slate.”

You are now in a position to wipe out a LINE, a portion of a
program, or the entire program. We have gone far beyond just
“acratching the surface" with regard to the subject of DELetions, we
have ventured into realm of "SCRatching the whole thing."

Well, not exactly. If I had decided to write an entire chapter

on the subject of how to DElete a FILE on a "mini-disk," 1t would end
up a short ,three line chapter and still cover the subject completely,

almost, like this:

1. On * type in: DE NAME
2, Press the RETURN key.

For HNAME substitute the name of the file you wWish to

DElete.
And that covers the subject of program and file DELETE.

.-

|
J
J
]

-
—

L L.

A SR s S e SN e BN quen |

14

HOoW TO DELETE A FILE FROM & DISK

Let's say that you develop the good habit of saving every
significant program that you write. Even when you write another
program that does the same thing quicker and better you hang on to the
original. At some point in time you will find that many of your
earlier programs, though great at the time, are no longer worth
keeping., You find that all those mini-disks represent too large of an
investment to 3it around with ne expectation of being used again.
It's time to ¢lean house.

If you have a mini-disk with several programs on it and you deem
that none are worth keeping, and you want to erase the entire
mini-disk, here's how:

1. Put the computer in DOS mode.
a. From start up type in: EX E900
b. From BASIC on READY type in: BYE

2. Put the mini-disk to be cleared in the
digk=-reader

3. When you INITIALIZE a mini-disk the computer
over-writes everything that iz on the mini-disk
as it formats it to accept data from the computer
This haz the same effect as "erasing" the
mini-disk.

Here's how:
On * type in: IN

Note that when you INITIALIZE a mini-disk
and you get to the DOS mode from BASIC mode
(BYE), you can not JumP (JP 2AD4) back to
BASIC mode. Both BASIC and any program
that you have in the computer's “regular®
memory (programs that you write or LOAD)
are erased as well, To get back to BASIC
you must GO BASIC.

-67-

%

DElete / 58

Now let's suppose that you don't want to "c¢clean”™ the entire
mini-disk, but only remove one FILE. The name of the FILE that we
want to DElete is GONE.

Here's how:

A. Put the computer in the DOS mode as above.

B. Place the mini-disk with the FILE named GONE
in the disk-reader,

c. On * type in: DE GONE

When the ¥ reappears on the monitor as the
last item - GONE is gone, it has been DEleted.

D. Te¢ check it, you can LIst the FILEs to get the i
names of all the FILEs on the mini-disk by: !

n * type in: LI

You LIsting should nct contain the FILE named
GONE.

-

So that you are aware of what really happens when you DElete a
FILE, consider how the FILE Directory is set up. The first four
blocks of a mini-disk is reserved for the FILE Directory. When you
issue a command regarding a FILE name, the computer tries to mateh the
name you ask for with the names in the FILE Directory. If it isa
successful, the computer then reads the Disk Address of that FILE,
which is recorded as part of the FILE Directory, and goes to that Disk
Address and executes the command that you gave it.

When you DElete a FILE the computer doesn't actually erase the
FILE, but only the Disk Address. The FILE is left intact. If you
were to CReate another FILE with the exact same Disk Address you would
be able to access that "DEleted”™ FILE.

This method is actually used to change the name of a FILE without
changing the file. Consider this example:

-68-

[-

m T

Y

4

'

— e " I-I---------nnj

DElete / &9

You do a LIst of a mini-disk and it tells you:
GONE 186 23 2

There i3 a FILE with the name GONE at Disk Address 186
that i3 23 blocks long and is a TYpe 2 program FILE
(can be LOADed and SAVEd).

If you want to change the name from GONE to HERE and still
maintain the FILE you do this:

a. On * type in: DE GOKE
b, On ¥ type in: CR HERE 23
c. On ¥ type in: TY HERE 2

You now have the same FILE with a "new" name. If you LIsted it
you would get:

On * type in: LI
you get:
HERE 186 23 2

Which is exactly what you wanted, an old FILE with a
new name, and the same Disk Address.

Now what happens when you CReate a new FILE and it ends up with
the same Disk Address as a DEleted FILE, but you really want a "rew”
FILE and not the old recorded information still on the mini-disk from
the DEjleted FILE, usually nothing.

On oceasion, if you WRITE to the "new" FILE in the exact same
format as you did the "old"™ FILE and you READ from the "new" FILE in
the same format as you did from the "old™ FILE, you will find that you
are using "old"™ FILE data if it's s TY¥pe 3 FILE. You might end up
LOADing an "old" program if you did not SAVE the new program to the
"new" FILE.

To prevent this from happening with a T¥pe 3 data FILE, all you
have te do is be sure that the "new" data starts WRITEing at the start
of the "pew" FILE and not at the end of

-69-

DElete / 70

previous data for the "old®™ DEleted FILE. This 1s done with the TYPE
statementz (as oppoused to TYpe) used in ¢anjunction with the READ
statement in your program.

This presents no real problem in using T¥pe 3 FILEs if you are
aware of how the FILE Directory and the FILEs are actually used by the
computer .

If you DElete several FILEs from a mini-disk and leave several
other scattered in bhetween those DEleted, rataner than lose this
available "space™ or hepe to have a program of the proper lengtn {(no.
of blocks) to fit in, you can COmpress all the remaining FILEs to the
front of the mini-cisk. This will leave all of the available "apacen
at the end of exiating FILEs.

To do this you:

1. The computer must be in the D03 mode.

a, From start up on > type in: EX E9Q0
b. From BASIC on * type in: BYE

2. Place mini~disk to be COmpressed into the disk-
reader,

3. On * type in: CO

When you press the RETURM key to enter your
command intc the computer, you will note that
the disk-reader will come on and run longer than
usual, with lots of "elicks."

What it 1is doing is ReaDing each program into
the computer's holding area memory {buffer)
until 1t locates or clears sufficient "space™

to WRite it back on the mini-disk at the "front®
of the disk, It will do this with each program
on the mini-disk and the automatically change
the Disk Address to match the programs new
location.

That's all there is to that....

=T=

L

i

v

e

r -

o

10

HOW TO COPY A BASIC PR
FROM GCNE HINI-DIS3SK TO A

Nobody should ever keep only one copy of an impeortant or highly
used BASIC program. There should always be one toe use and one or more
to stere. The out of pocket cost for the extra mini-disk is far less
than the cost In time and effort to rewrite a program you've already
done. Besides that, it's far less interesting rewriting a old program
than it is to create a new one.

Then there's the cost of BASIC software. (It's called software if
you buy it.) A pre-programmed mini-disk with some utility type
program or a game program that is written in BASIC iz generally to
eipensive Lo risk loss or damage, when it can be duplicated for just a
dollar or so,

The average cost of a mini-disk is about five dollars. Each
mini-disk will hold 89,600 characters {bytes). That works out to
about 5.6 cents per 1000 bytes (1 K), and that's cheap.

Each mini-disk consists of 35 tracks, each traeck contains 10
blocks, and #ach bleck contains 256 bytes. Wot all of these blocks
can be used for recording programs. The first four blocks are
reserved for the directory of the contents ¢f the remaining 346
bloeks., When you LIst a mini-disk it is from these first four blocks
that that information is obtained, Here is a typical LIsting:

DOS 4 10
BASIC 14 45
FILE®L 5% 5
NUMBERS 64 10
6/10/78 T4 5
MT-DATA 79 100
$358533% 179 16

2800

M Ry o P = O

The first eight spaces are for the FILE name, next is the
starting Disk Address, then the size of the FILE - number of hlocks,
then the FILE TYpe. The BASIC Language pragram FILE hes an additiosnal
computer memory Address which tells the computer exactly where to put
it - in the computer's memary.

If you will note that the starting Disk Address for each

consecutive FILE is the sum of the previous FILE plus the total number
of blocks used by that FILE. Thus the FILE named

-71a

COPY PROGRAM / T2 —J
KUMBERS, in our example above, has a starting Disk Address of &4, and

it is 10 blocks long, s¢ the next FILE's starting Disk Address will be
7H, and it is, _J

When the computer is told to LOAD a FILE it does not search the
entire mini-disk fer that FILE, but reads just the FILE directory -~
the first four blocks on the mini-disk. If It finds the FILE name .
that it is searching for, it then reads the Disk Address and the size / !
= number of blocks, which tells it where to go on the mini-disk to [
LOAD the FILE. That is, after it checks the last item on the line and
makes sure that the type of FILE you are sending it after is the right
TYpe.
. e
Now, knowing all of this information should make it easy to LOAD
a program from une mini-disk and record it on another. The fact of
the matter is that even without knowing &1l of this it's relatively i
easy to do, Here's how: !
-
1. Put the computer in the Disk Operating System
- DOS mode. '
-
From start up put a mini-disk with DO3
in the disk~reader and:
On > type in: EX EQ0C 'J
From BASIC mode: L !
On HREADY type in: BYE
L‘
2. If you are using a brand new mini-disk te put
your program on or you are using an used '
mini-disk that you want to totally erase, _
you must first INITIALIZE the mini-disk. 'h
To do this you:
i.
Oon ¥ type in: IN -
If you are going to add this program to a [
mini-disk that already bas been INITIALIZED
do not do it agailn =-- skip this step. i
|
i

3.

COPY PROGRAM / 71

Fut the mini-disk with the program on it that
you want to record on the "new® mini-disk, in
the disk-reader. We are going to LIst it to
get the exact “spelling" of the FILE name that
we want to record and also teo get the size -
number of blocks it contains, and the TYpe

To do this:

Oon ¥ type in: LI
We must note the fellowing items for later use.
We will use the ahbove sample LIsting for our
example.

The FILE name: NUMBERS

The FILE size: 10 blocks
The FILE TYpe: 2

Put the "new" mini-disk back into the disk-reader
We must CReate a FILE with the name NUMBERS,
10 blocks long.
To do that we:

Oon * type in: CR NUMBERES 10
Now we must tell the computer what TYpe of FILE
NUMBERS is so that it will know how to access it.

We do that by:
On % type in: TY NUMBERS 2

NUMBERS is now TYped as a program writiten in
BASIC which can be LOADed and SAVED.

Talkte the "new" mini-disk out of the disk-reader
and put in the mini-disk with the program on it
that you want to record. We must now go to the
BASIC mode.

Do that by:

Oon * type in: GO BASIC

-73-

COPY PROGRAM /7 T4

B.

We now will LOAD the program named MUMBERS
into the computer by:

On READY type in: LOAD NUMBERS

Take out that mini-disk and put in the *neuw"
mini-disk that we want to SAVE NUMBERS on.

To do that:

On READY type in: SAVE NUMBERS
You now have two copies of HUMBERS.
If you do not have “complete faith" and want

to see,

Do the following:

a. On READY ¢type in: SCR

This will SCRateh the program in mamory,
b. On READY type in: LEST

This will LIST any program in memory
Since we just SCRatehed it, this shows
you that there is nothing there.

¢, On READY type in: LOAD NUMBERS
This will put NUMBERS into memory from
your *"new" mini-disk.

d. On READY type in: LIST

The computer will scroll by the program
that you copied.

And that's all there is to that.....

=Tl

16

THE LOOP

The LOOP is exactly what it sounds like it iz, a course that one
follows that leads him in c¢ircles. Actually it's not us that will go
in circles, it's the computer. The "simplest™ LOOP that I can think
of is: i

10 GOTO 20
20 GOTO 10

As you may have noticed, I put "simplest” in quotation marks, as the
word has several definitions.

Program LOOF3 generally instruct the computer to do the same
thing over and aver s specified number of times. They are best
explained by example.

Consider this program:

10 FOR K = 1 T0 3

20 PRINT K
30 NEXT K
If we RUN we get:
1
2
3

This is called a FOR LOOP. LINE 10 tells the computer to execute
the program three times. Each time it executes the program it is to
assign a new value to the variable K. The gpecified values for K are
t,2, and 3. The computer will automatically increase the value of the
variable by increments of 1, between the limits set in the FOR
statement, and then execute the program with the new value.

Another type of LOCP which will do the same thing, only
different, is the GOTO LOOP.

=-T5=

w

LOCF 7 T6

Consider this:

1 R =R+

20 IF R = 4 THEN END
30 PRINT R

4o GOTC 10

. .. L.

The computer can be placed in a LOOP by many different
programming techniquea. Usually theae different methods are the
choice of the programmer rather than being the result of a specific
type LOQP for a specifie type technique. The most discussed and the
most used LOOP i3 the FOR LOOP.

| -

Consider this program:

G

0 FORT =1T0 3
2D X = 10

30 PRINT X + Y

4o Y = Y +« X

50 NEXT T

In this FOR LOOP the values of T are not actually involved in the
essence of the program, but the LOOP i3 just a methed to make the
program cycle three times to change the value of the algebraic
expression -- X+Y. If we were to change LINE 10 to read:

1 FORT =1T0J

Where the value of J i= determined by an INPUT statement, information
to be typed in, or as a result of a calulation made by the computer in
some other part of the program, then the LOOP will cycle through the
algebraic expression J times.

[VSN s SRS s

The computer will automatically inerease the value of the
variable in a FOR statement by 1 unless you tell it te do otherwise.
If you want the computer to increase the value of the variable in a
FOR statement by increments of .5 rather than by 1, then you must tell
the computer to STEP the increases by .5 ,

| Sy

= Lo

L2

-T6-

[.

o

—

-

LOOF / T7

This is how:

1 FOR X = 1 TGO 3 STEP .S
20 PRINT X,

30 MHEXT X
-&{\you RUN you get: :
T 1 1.5 2 2.5 3

You can STEP 2~ FOR statement by any size imcrement that falls
within the buunds of the statement. MWe could have STEPed the above
LINE 10 by .00063, 1.87629, or 2,99, We could not have STEPed it by a
minus number, a zero, or a number greater than three.

The computer will not function with a FOR statement which goes
from a higher number to a lower one,

Such as:
10 FOR X = 3 TO 1

However, it will work if the "negative" FOR statement is STEPed. Why
this happens is beyond the scope of this book, It is =zlso beyond the
scope of its author,

But:
i FOR X = 3710 1 STEP .5
20 PRINT X,
3¢ NEXT X

If we RUN we get:
3 2, 2 1,5 t .5

& program can have as many FOR LOOPS as the programmer desires.
However, if they are superimposed upon each other, rather than being
separate and complete LOOPS isclated in different partsz of the
program, they must be placed in the program in 3 specified manner.

-TT=

LCOP 7 78

Conszider this program:

10 FOR X = 1 TO 7

20 FOR Y = 4 TO 7

W FOR I = 8 TO N

4o FOR W o= 311 TD 14

50 N =X + Y + 2 + W

60 PRINT N ,

70 NEXT W

80 MNEXT Z . _
90 HWEXT Y i

100 NFM’

If we BUN we get:
en ¢5 26 27 25 26 27 28 ,....35 36 3/ 38 36 37 2\ 39

Note that the FOR LOOPE sre "fed" from the innermost LCOP to the
sutermost LDOP. These are valled "nested” LDOPSE., You must always be
sure Lthat you follow this method when you pot in your NENT statements.
Any time you have a FOR statement, you must also have a NEXT
statement. If you have six FOR statements in a program, you wmust also
have six NEXT statements in that program.

This is essentially all that you need Lo know about LOOPS to get
started wusing them......

| Co

— - T

17

THE SUBROUTINE

This i% not a chorus line of underwater ships, but a method of
telling the computer to do something numercus times without having to
write out the instructions numerous times. Heing able to use the
GOSYUR Statement keeps the programmer from being bored by not having to
write and then rewrite, and then rewrite, and then rewrite . ., . . 2
pertion of a program that is repeatedly used. All he or she has to do
is write that portion of the program once, and then anytime it is
needed, you just tell the computer to go to it.

Consider the following program which is used to calculate the
diszount of different types of inventory items and different
gquantities. This program demonstrates the use of the GOSUB statement
and the RETURN statement.

10 INPUT "HOW MANY OF CLASS #31 ITEMS : ",A
20 GOSUB 180

30 *"THE DISCOUNT 15 : ", B¥100,% %"

hg 1

SO ENPUT "HOW MANY OF CLASS #2 ITEMS : ", 8
60 GOSUB 180

gg t*THE DISCOURT 1§ : *,B*93," %%

!

90 ENPUT "HOW MANY OF CLASS #3 ITEMS : " A
100 GOSUB 180

110 {MTHE DISCOUNT S : © B®7S 0 4%

120 1

130 TNPUT "HOW MANY OF CLASS #4% ITEMS : * A
190 GOSUB 180

123 ISTHE DISCOUNT IS : »,B*25,% g0

160 |

170 GOTO 10

180 IF 4 > 10 AND A < 100 THEN B = .07
190 IF A > 99 AND A < 500 THEN B = .09

200 IF A > 499 AND A& < 1000 THEN B = .12
210 IF A > 1000 THEN B = .15
220 RETURN

Now let's consider what is happening. First the computer asks
you, "HOW MAHNY OF CLASS #1 ITEM3"? You type in a response. It then
assigns that value to the variable A. Then the computer jumps Lo a
subroutine starting at LINE 180. This is initiated by the GOSUB
statement:

-79-

GOSUR /4 8O

20 GOSUB 180

The computer then evaluates the value of A, quantity of CLASS #1
items, threough LINE 180 to LINE 210, It then assigns a value to the
variable B, based on its evaluation of variable 4. (Note that the
greater the number of items, the greater the discount factar.)

After the computer determines the "discount factor™ it sends this
information back up to the reguvlar program. The interrupted regular
program picks vp at the next statement after the GOSUR statement and
continuves to execute the rest of Lhe program in 2 normal manner. To
tell the computer to do all of this, i.e.,, to RETURN to the regular
program, one LINE past where it lelt, your LINE statement would he:

220 RETURN

At this peint the computer determines the actual discount by
mulitiplying the discount factor by a "class factor.®™ The computer is
then instructed to PRINT (!) the results of its efforts and go back
for more.

IT we RUN we get:
HOW MANY OF CLASS #1 ITEMS : we type ia: 3175

THE BISCOUNT IS ¢ %

HCW MANY OF CLASS #2 ITEMS : we type in: 20
THE DISCOUNT IS 6.51 %

HOW MANY OF CLASS #3 TTEMS : we type in: 1200
THE DISCOUNT 15 11,26 %

HOW MANY OF CLASS #4 ITEMS : we type ir: 832
THE DISCOUNT IS 3 %

Mow let's Lrack what happened:

1. You assign a value to A = 175

2. The computer evaluales A in the
subroutine and asssirns a value to
B = .09, since iT% is preater tlhan
100 ani less than 500,

L

S

Lo & e

| S

Lot

—

GOSUE /A1

3. The RETURN statement {LINE 220) send
the computer back to where it came
From = the next LINE after the
GOSUB statement (LINE 30).

%, The computer then determines the
discount:

B ¥ 100
.09 X 100 = 9

and PRINTs the discount.

5, Then as expected the computer moves
on to the next LINE in the program
(LINE 140),

The GOSUB statement is no more than a fancy GOTO statement with a
"leash™ to bring it back after it done its busineas, a RETURN
function. The entire activity of the GOSUP statement could be
replaced with two or more GOTQ statements. COne to send the execution
of the program to another LINE and one to send it back. The main
advantage is that you don't have to keep up with RETURN LINE WUMBERS,
the computer does it for you,

If you understand the above program, then you understand the
GOSUB statement. If you don't, go back and study it, it's really
simple.....

T

17T 3T T3 O T3 T3 T T T O O™ T

18

THE "ON" STATEMENT--- WP AT IT TS
AND HOW TO USE ITT

Unlike most of the other topies thus far discussed, the "OR"
STATEMENT 1is not very complicated nor does it need very much
explanation. This is not an indication of its lack of importance but
of its simplicity. Although the uses of the ON statement are varied,
ne matter where it is used, it always does the same thing ---
transfers control of the program to another LINE depending on the
value of a specified NUMERIC variable, That's "computer people™ talk
for a multiple choice GOTQO statement.

A typical ON statement in a program would look like this:

4 OK € GOTO 70,110,270

What thiz tells the computer is:

IF ¢ = 1 THEN GO TO LINE 70
IF ¢ = 2 THEN GO TO LINE 110
IF C = 3 THEN GO TO LINE 270

The value of ¢ can be "typed in" as a response to an INPUT
statement, can be the result of a mathematical expression, or c¢an
simply be assigned by a LET statement, i.e., 30 LET C = 5. A useless
program which illustrates how the ON statement works is this:

111

212

33

51

515

616

77

gta

919
20 INPUT "TYPE A NUMBER FROM 1 TO 10 : ", H
30 ON H GOTO 1,2,3,4,5,6,7,8,9,40
40 END

=-§3=-

ON STATEMEHT 7 84

-

If we RUN 20 we pget:

TYPE A HUMBER FROM 1 TO 10 : if we type in &

.

D Oe =) O

TYPE A NUMBER FROM 1 TC 10 : if we type in §

pr=R=-}

TYPE A MUMBER FROM 1 TC 10 : if we type in 10
READY

What is happening is that the number we type in is evaluated by
the ON statement, and the computer is being sent to that LINE to
execute the program. The computer goes te the LINE number equal to
the INPUT value of H, and continues to execute the rest of the program
from that point on, When you type in the number 8 for the INPUT
statement, it gives the value of 8 to the variable H. The computer
will then GOTO the eighth LINE number in your ON statement and the
program will proceed from that LINE.

| UG GHNUE SO

I do not know the upper limit for the values of the variable in
an ON statement, but I do know that it can e up to 24. Branching to
more LINEs than this would require branching to another ON statement,
if the need should arise.

| G

You may have noticed that 1 said RUR 20. This has nothing to do
with the ON statement, but just starts the execution of the program at
LINE 20, the INPUT statement, rather than at LINE 1.

Another program which illustrates a use of the ON statement is
the following:

—

10 §" WHEN YOU MIX TWO DIFFERENT PRIMARY COLORS "
H

20 1" YOU GET A THIRD COLOR . .
30! Lj
40 ™ SELECT THE COLORS TC BE MIXED BY NUMBER ®

50 ¢

55 ¢ » COLOR M1 BLUE "

60 1 " COLOR #2 YELLOW * i
e . COLOR #3 RED *

8o !

90 INPUT "WHAT IS YOUR FIRST COLOR : ", ¢
D
L

100 INPUT "WHAT IS5 YOUR SECOND COLOR : "

-

—Ri1-

!

ON STATMENT / 85

110 ¥

- 120 ON C GOTO 130,200,270 i
130 COR D GOTO 1“0,?60,180 i
1t 4o BLUE + BLUE = BLUE " ;
150 GOTO 340 ;

e 150 17 BLUE + YELLOW = GREEN *

170 GOTO 340
180 t» BLUE + RED = PURPLE "

L 190 GOTQ 340
200 ON D GOTO 210,230,250
210 o YELLOW + BLUE = GREEN "

220 GOTO 340

230 1» YELLOW + YELLOW = YELLOW "

240 GOTO 340 |
250 YELLOW + RED = ORANGE *

260 GOTO 340
270 ON D GOTO 280,300,320 |
280 I RED + BLUE = PURFLE "

290 GOTO 340

300 v RED + YELLOW = ORANGE " i
310 GOTO 340 :
320 t* RED + RED = RED "

330 ¢

300 1

350 '™ DO YOU WANT TO CONTINUE 722227227 *

360 INPUT "TYPE IN : 1 for YES & 2 for NO > ", E
370 ON E GOTO 40,380

380 END

If we RUN we get:
WHEN YOU MIX TWO DIFFERENT PRIMARY COLORS
YoU GET & THIRD COLGR .
SELECT THE COLORS TC BE MIXED BY NUMBER
COLOR #1 BLUE
COLOR #2 YELLOW
COLOR #3 RED

WHAT IS YOUR FIRST COLOR : we type in: 1
WHAT IS YOUR SECOND COLOR : we type in: 3

BLUE + RED = PURPLE
DO YOU WANT TO CONTINUE ?7%727277

TYPE IN 1 for YES & 2 for NO : we type in: 2
READY

=85~

e

ON STATEMENT / 86

Now, let's examine what took place. When we typed in 1 for the
first INPUT statement (first ceclor ?), we assigned the value of 1 to
the variable C. When we typed inm 3 for the second IKPUT statement
{second color ?), we assigned the value of 3 to the variable D,

120 ON C GOTO 130,200,270

When the computer got to LIKE 120 the ON statement sent the
continued execution of the program to LINE 130, sinece the value of C
wag equal to 1, Had C been equal to 2, the computer would have been
sent to LINE 200 the second LINE number in the ON statement. C equal
to 3 would have sent it to LINE 270.

LINE 130 is another GN statement. For our second INPUT statement
we typed in 3, This assigned the value of 3 to the variable D.

130 ON D GOTO 140,160,180

When the computer executed LINE 130 with the INPUT value of 3 for
D, it progressed to LINE 180; the third LINE number in the ON
statement .

180 I BLUE + RED = PURPLE *
This PRINT statement yields:

BLUE + REDP = PURPLE
Then we:
190 GOTD 340
380 !
A1l this does is skip a space in our OQUTPUT. This is really a
PRINT statement, and it actuzlly does PRINT a line of "spaces."

350 ¢ " DO YOU WANT TC CONTINUE 27727 *

=86~

K b

| S

-

- ON STATEMENT / 87

Another PRINT statement which PRIKTs whatever you have enclosed in
quotation marks.

- 360 INPUT ™ TYPE IN 1 for YES & 2 for RO : ", E '

Which givea us:

{

TYPE IN 1 for YES & 2 for NHO : we typed in 2

This INPUT statement assigned a value of 2 to the variable E. Then
the program progressed to the mext LINE. ~

320 ON E GOTO 40,390

Depending on the value of E, this LINE would either send the
execution of the program back to the start -~ LINE 40 if E were
equal to 1, or to the END —- LIME 390, if £ is equal to 2, Me chose
the latter,

And that's where we are with the ON atatement -- the end.....

-87-

1 .

G S G

S S S S nn S

—

19

THE BUILT IN TABULATOR =--- TAB

The pext built in function, which is part of meost BASIC language
programs, that I feel important enocugh to detail, is the TAD FUNCTIOH.
The dicticonary defines "tabulate" as "To arrange in an orderly
manner.,” That is exactly what the TAB function will allow you to do
with your OUTPUT «—= PRINTed or displayed information.

The TAB function allows you to PRINT out any data in almest any
format that you choose. The TAB funclion must always be used within a
PRINT statemeat, because it tells the computer where to PRINT the

material in that PRINT statement. & typical PRINT statement in a BASIC
program, used with the TAB funetion would appear like this:

130 ' TAB{(30),5

This tells the computer to PRINT the value of the HUMERIC
variable 5 thirty (30) spaces from the left margin, or to skip 29
spaces and then PRINT the value of 5.

You might have the need of setting up columns of numbers, such

that you PRINT statement might lock like this:
136 ' TAB{(10),A,TAB(20),B,TAB(30},C, TAB(40),D

This PRINT statement would start PRINTing A at "space™ 10, B at
"space" 20, € at "space" 30, and D at "space™ H40.

As with any PRINT statement, STRING variables (words) can alsoc be
used with the TAB funetion. Consider this LINE:

130 t TAB(10) ,"WHAT COLOR IS IT ? ",TAB(30),K$,TAB(40),R$

If K$ = RED and R$ = BLUE, then this LINE would yleld:

WHAT COLOR 18 IT ? RED BLUE

-89

ThB / GO ;d

(-

How let's consider a more common use of the TAS function,
addressing envelopes. Tonsider a portion of 5 mailing list program
which prepares the address label as belowu: i

70 1 NE,N1$,a8,C8,2,H8 |

Where: N$ = custemer name hj
NH1$ = company name
4% = street address
€3 = ity & state i
4 = zip code ‘J
M$ = any message
Ir: N$ = Mrs, 4nita Tempanny ;j
H1$ = Tootums Niekle Co. §
At = 1010 Dime Lane
€% = Salada, Tenn.
Z = 10t02 :J
HME = Attention Change Jept. ;

If these values were FRINTed by our LIME 70 above we would get:

Mrs.Anita TempannyTootums Nicklie Co.1010 Dime Lane Salada,
Tenn.10102Attention Change Dept

Which Is no way to address a letter.

First we must spread out our PRINT statement so that each line of the
address is to itselfl.

| Sy

0! N3
BO t N1$ i
90 ' A% u
100 t C$
1Yz
120 1
139 ¢ LJ
180 ¢ M$
:J
|
TN !

e e rcr T o

r— ™

If we RUN we get:

Mrs. Anita Tempanny
Tootums Nickle Co.
1010 Dime Lane
Salada, Tenn.

10102

Attention Changz Dept.

TAR / 91

Whichk is still no proper way to address a letter, 350 we change

PRINT statements to:

70
80
30
100
110
120
130

This will get you:

' TAB(20), H$

H
!
!
!
!
!

TAB{(23), N1%
TAB(26), A%
TAB(29), C€$,TAB(Y8),Z

TAB(10}, M%

Mrs., Anita Tempanny
Tootums Nickle Co.
1010 Dime Lane

Attention Change Dept.

Salada, Tenn. 10102

Which is a properly addressed envelope.

And that's now that works.

LN

-91-

our

— — 1~

~

r-ﬂﬂ

— r— r— r—

I

— ™

20

THE RANDOMNM FUNCTION -FUN AKD GAMES

The RANDOM FUNCTION —--- RND{0Q)} --- is very interesting and fun to
play with, but I have vet to find a use for it other than in writing
games or just wztching it generate random numbers, PBut, there are no
rules which say you can't have fun playing with the computer. 1
hkighly recommend writing game programs, it's much like reading comic
books te learn how to read, it's palatable and it works,

First, T must tell you that the FRANDOM FUNCTION dosen't generate
random numbers, It generates pseudo-random numbers. The difference is
that a randoem number would be any number selected at random without
limits --~ the RANDOM FUNCTION can not do this. The RANDOM function -
RHG(0) - has limits, and within a given program it always produces the
same series of randsm numbers. This may limit its uvsefulness, but
certainly does not negate it.

Let*s first examine a program which will give us Ffour random
numbers.

10 FOR R =1 TO 4
20 PRINT RND(D),
30 HNEXT R

If we RUN we get:
L5626 ,52392578 L 21208191 .BUb149

If you were to RUN the same program again, you'd get the exact
same series of numbers. This phenomencn provides a method for
debugpging programs, since you get the same series of numbers each
time., To the best of my knowledge, you can not generate truly randam
numbers, but there are ways to get close.

A3 you can see in our above program, all the numbers generated by
the function RND(0Q} are decimal numbers. All the numbers are betuween
zero and one., That's all that the RANDOM function does - generate
numbers between 0 and 1. Llet's say that you want to generate four
random numbers between 1 and 10, 3ince we know exactly what the
RANDOM function does, all we have to do is change our program to!

-93a

RANDOM s ou

10 FOR R =1 TO 4
20 PRINT 10*RND(C),
30 MNEXT R

IT we RUN ue get:

-

1.5625 5.2392578 2.1208191 B.44149

All we have done is to multiply the original random numbers by
ten. We now have random numbers between 1 and 10, Let's suppose that ;
we want only whole numbers between t and 10, Using essentially the 1=
same program, we make the following change:

10 FOR R =1TO 4 ;
20 1 INT(10%RND(0)), i
30 NEXT R

We RUN we get:

1528

Right off, I'm sure that you noticed that T have slipped in a
functien that has not been mentioned before == the INTEGER Ffunction,
The entire activity of this function can be summed up in one sentence.
The INTEGER FUNCTION -- INT(X) -- rounds off to the next lowest whole
number any value of K. If the value of ¥ = 7.878, the INT(XK) = 7. If
the value of K = 8853243, the INT{(X) = 0. Thus, in our above proegram
all we have done iz "round off™ the random numbers, once they have
been generated and multiplied by ten.

S Sl i S

=

20t INT{(RHD(0}*10)}

FIRST : RND {0} = . 15625
SECORD: 15625410 = 1,5625
THIRD : INT(1.5625) = 1

Now let's suppose that we want the computer te PRINT Tour
random numbers between 1 and 60. We would change cur program to:

i0 FOR R =1 TO i
20 PRINT INT(60¥RND(C)+1),
30 MNEXT R

—ou_

—

RANDOM / 95

If we RUN we geb:

12 48 26 51

This is what happened:

20 ! INT(GO*RND{O}+1}

FIRST : RKED(0) = . 19287
SECOND: 60%, 19287 = 11.5722
THIRD : 11,5722 « 1 = 12.5122

FOURTH: INT(12.5722) 12

That's how the computer got the first random number in the program
above.

Note that our range of random numbers Ffrom 1 to 60 was
established by multiplying the RANDOM function - RND{O] - by the
highest number in our desired range and then adding ! to give us the
lowest number in our range.

20 1 INT(HO*RND{O)+1}
60 to 1

This holds true for all ranges of random numbers a3 long as the
lowest number in the desired range is 1, It would not work if we
wanted to generate four random numbers hetween 300 and 500, If we
wrote our PRINT statement like this:

20t INT(S00%RND(0)+300)
800 teo 300

We would generate random numbers bebtween 300 and 7100, not 300
and 800, 1If you will examine the arithmetiec involved vou will quickly
see why. In order toc get the desired results cur PRINT statement
would have to be:

20 1 INT(S00*RND(0}+300)

~95-

-—w

RANDOM / 96 [

L—

.

If we RUN we get:

378
T09
721
566

That concludes most of what there is to know about the FANDOM
FUNCTION and how it works., There is ore last "secret" whicn I
indicated above that I would revezl, and that is how to maks the
RANDOM function more random. Even though the computer "helps" us cut
by generating the same series of "random” numbers each time it
executes a given program, when playing games il's nobt much of a
challenge if you know all of the answers beforehand., That is what
will happen after you have used the same program several btimes -- you
will end up knoawing the series of "random™ numbers that the computer
is going to generate, It's much more of 2 challange to write 2 game
program and then be forced to play it without prior knowledge,

. o .

If you will look c¢lose at the RANDOM FUNCTION's format you will
notice a heretofore unmentioned zero enclosed by parentheses. This is
the ey to an almost real RANDOM number generator., The zero 2an he
replaced by a variable so that:

|

S

RND (0} becomes RRD ()

The variable J then becomes a "seed" which will start the EANDOM
generator at different "places™. Tt iz only used by the computer to
"start® the RANDOM generator and need not be gone back to in a eiven
program each time a RANDOM number is generated. However, if you use
the came value for the "seed™ every time you RUN a given program, you
will end up back where you started; getting the same series of ;
"random™ numbers, What you must do Is to have the "seed,™ the valus :
for J, be the result of an INPUT statement, Such as: .

= oo

10 INPUT "TYPE IN ANY NUMBER BETWEEN O AND 100 : ™, P
20 LET J = =P/100

30 FOR D=1 TQO &

4G t INT(BO%RND(J»20)

50 MNEXT D

50 GOTO 10

6

. g

|

RANDOM 7 97

This program will generzte random numbers between 20 and &0. If
each time the program comes to the INPUT statement you type in a
different number between O and 100, you will get a different series of
"random" numbers. If you type in the same number you will get the
same series of "random" numbers,

The vazlue of the "seed"” J can not be greater than the numbers
generated by the RANDOM Ffunction, It must be between -1 and 1. 3o if
our INPUT statement asks for a number between } and 100, we must
divide that INPUT by 100 to get a fractional value for the "seed"
variable 4 {(J = -P / 100)}. 1If any number greater than 99 were typed
in, the computer would indicate an OUT OF BOUNDS ervor. This is
because the RANDOM function -~ RND(D} =~ can not equal or exceed 1.

The value for the "seed"™ does not have to come from an INPUT
statement, it can be the result of any number of devious or

compliczted routes. The harder it is to purpasely duplicate bhe
Y"seed," the truer will be the "random” number. The only thing that

et the programmer must be sure of, fs5 that once a value for the "sgeed" is
attained, that it be between -1 and 1.

- I have now told you all I know abouwt RND(O)

s

]

-37-

—

_
- 21 |

THE SIGN FUNCTION

- The SIGN FUNCTION - SGN(A) - when called upon, looks at a numeric
expression generated by the program that it is used in and assigns
itself a numeric value of 1,0,-1, depending on whether the evaluated
numeric expression wasg positive, equal to zero, or negative;

el respectively.

If K = 58,941 the SGHIK) = 1
If K =20 the SGN(K) = 0
If K = - .386 the S5GM(K) = -1

Where K is the numerie variable to be evaluated by the SIGN function
GH{K)

flthough limited in its use, the SIGN function does provide a
needed "service.™ It of course, should never be confused with the
SINE Ffunction - SIN(G) « as it has nothing to do with that kind of
stuff .

Here is a potentially useful program which best illustrates the
use of" the SIGN FUNCTION:

10 REM THIS IS & SIMPLE CHECKBOOK BALANCING PROGRAM

20 INPUT ™ STARTING BALANCE FROM BANK STATEMENT : ", A
3o 1

40 INPUT % HAVE YOU MADE A DEPOSIT - YES or NO : ™, A$
50 IF A$ = "HO"™ THEY 130

60 1

70 INPUT " WHAT WAS THE AMOUNT OF THE DEPOSIT : ", E
80 F = F + E
90 K = K + 1

100 1

110 INPUT * DID YOU MAKE ANOTHER DEPOSIT : *, A1$
120 IF A1$ = T™YES" THEW 70

130 !

140 INPUT *WHAT XS THE AMOUNT OF THIS CHECK : ", B

10 C = C «°1

160 D =zD » B

170 ¢

180 INPUT “HAVE YOU WRITTEN ANOCTHER CHECK 7?7297 HERAES &

[—

-39~

r—

|
SGN{4) / 100 LJ
3
¥
190 IF Y$ = MYES" THEN 140 }J ;
200 G = A+« F =D : i
2]0 !\!\! HEERRRARRER A AN RN RN R R R AR AN AERARD i
220 ¢
230t "YOU BAVE WRITTEN ",(," CHECKS : TOTAL ", %8C10F2,D ;J
g;g : YYOU HAVE MADE *,K," DEPOSITS : TOTAL ", %2$C10F2,F é
260 H = SGN(G) b
270 IF H = 1 THE¥ 320 iJ :
280 IF H = -1 THEN 350 |
290 1 m YTOUFU ARE NOT OVERDRAWNN © |
300 ! ® BUT THERE 1S KOG MONEY LEFT IN YOUR ACCOUNT n Ly
310 GOTO 380 i
320 1 v YOU STILL HAVE MONEY LEFT®™
336 1 ¢ THERE IS *,24C10F2,G," 1IN YOUR ACCOUNT » !
340 GOTO 380 |
350 ¢ wENSEE ¥ o) ARE OVERDRAWN H#ess » i
/O 1M YOl MUST DEPOSIT ",%$C10F2,ABS(G)
70 v ov TO COVER CHECKS ALREADY WRITTEN * : ;
380 END

This program contains several notable programming techniques,
most of which have nothing to do with the SICM function, but that you
should be aware of. First we will list the variables c¢ontained in the
program;

o

A
A$ and Y$

STARTING BANK BALANCE _
YES or NO I
AMOUNT DEPOSITED ;
TOTAL AMOUNT DEPOSITED

TOTAL WUMBER OF OEPOSITS

AMOUNT OF CHECK WRITTEN

TOTAL AMCUNT OF CHECKS WRITTEN
TOTAL OF KUMBER OF CHECKS WRITTEWN
BALANCE OF BANK ACCOUNT

SGH (G)

TOoOOomDxTm

g ——

By knowing what everything stands for, it is nsuch easier to trace
the steps of the program and Ffigure cut what is happening, Anytime
that you are working with an unfamiliar BASIC program, the very first
thing to do i3 to list and identify all the variables, then refer to
this 1list as you track the program. This advice may not solve all
your problems in understanding a program, but it will certainly help.

-100-

SGN(AY 7 101

One cother piece of advice: if you come across a variable that
you can not identify, don't be alarmed. Some "computer people” quite
often throw in unneeded variables to confuse someone who is trying to
figure out their program. If you should encounter what appears to be
a2 "UFV", unidentifjable fabricated wvariable, just take it out of the
program and see if the program will RUN without it. If its absence is
not noticed through a number of varied RUNs, you've probably located
an "UFV"., If that's the case - discard it.

Now back %o our program, I don't use "UFVs" so don't waste time
looking for them., Let's look at some of the specific programming
techniques in this program.

1. The YES/NO method for determining the direction of the program.

b0 INPUT "HAVE YOU MADE A PEPOSIT ", A$
53¢ 1IF A3 = "NO"™ THEN 130

If your answers here had been NO the computer
would have skipped the entire section relating

to deposits. If your answer is YES the program
then proceeds to the next LINE. This same method
is used agatin starting with LINE 180.

180 INPUT "HAVE YOU WRITTEN AMOTHER CHECK ? ", Y§
t90 IF ¥$ = "YES® THEN 140

Here the program can either proceed to the next step
ar go back for more infarmation. IF the answer is
YES, the program goes back to LINE 140 for the
required INPUT. If the answer is NO, then the
computer has all the necessary information to finish.

Some programmers prefer to use just the abbreviation
for YES and NO -~- ™Y" and "N". If you use

this method vou must adjust your If statement
accordingly.

=101=

]

36N(AY 7102

2. The "value accumulation™ technique.

LIME 80 and LINE 160 both use this technique

to get a total of snother variable. Only in the
world of computer can szomsthing be equal to itself
pius something else. Let*'s look at what's happening:

C_-

70 INPUT "WHAT IS THE AMOUNT OF THE DEPOSIT :“, E
B0 F =F + E

Everytime the computer gets a new value for the
variable E it then goes to LINE 80 and that

value is then added to the previous value of the
variable F. If after LOADIng our above program
inte the computer and before telling the computer
to RUN, we typed in PRINT F, we would get 0.

So:

| g

START: F = F « E then F=10

If we then responded to the INPUT statement by
typing in 10 for the value of E, then:

| I

F=F +E then F o= 10

because: F =0+ 10

| S

Then if we had another INFUT for E of 5:

| S—

F= F+E then F =15

because: F=10+5

| oy

Then if we had another IRPUT for E of 12:

|

F= F+ E then F = 27

because: F 15 « 12

snd so on, and so on,...

107~

| S

L . LA . ul B -i

-

SGHNCAY 4 101

"CQUNT THE PASSES" technique:

This is essentially the same thing as above,
except that instead of Keeping 3 running total
of a second variable as we did in that example,
we are just counting the number of times that
the program passed by a given LINE. If we know
the reason for passing by "that" LINE, then

we know how many "causes" there were which
required that passage. In cther werds, il you
knew that a certin man only passed by your
office door to go to the water cooler, and Lhat
he passed by your door T times in the course

of a day ~= you know that he went to the water

cooler seven times that day.

This same logiec is applied ipn LINE 90 and
LIRE 159.

90 K
150 €

oy =
+ -
N

Each time the computer passes elther cne of these
LINEs, the value of its respective variable

will increase by 1. Variable K counts the

number cf deposits that are made. Each time

a deposilt is INPUT, the pregram passes through
LINE 90. Each time the program passes through
LIKE 90, K is increased by 1, If you know

how many times the computer passed through

LINE 90, you know how many deposits were made.

|

These are all of the major programming techniques used in the
above program, but there are some other items which might require some
explanation. Consider LINE 200:

mrm

o

200 G =A<+ F =D
G = BALANCE OF CHECKING ACCOUNT

=103~

SGNCAY 7 100

So, if you take your "starting balance.," 4,
and add the "total amount ol deposits ™ F,
and subtract the "total amount of checks,” D,
you will end up with your "balance,” G,

LINEs 260, 270, and 280, are what this whcle
chapter is all about. This is the SIGN
function in action., Depending on the value
of SGN(G) your friendly "banker" will

either give you "“thumbs up"™ or "thumbs down.™

260 LET H = SGN(G)
270 IF H =1 THEN 320
280 IF H = -t THEN 350

What thiszs tells the computer is that if the
balance of you bank account is "positive"
then GOTO LINE 320 and tell you. If the
balance of your account is "negative®™ then
GOTO LINE 35¢ and tell you. If you are
exactly even, no money Ln the bank and not
overdrawn, then proceed to LINE 290, and
tell you that.

The computer will evaluate the value of the
variable G, whic¢ch in this case is the

*balance of the checking account” 23 determined
by LINE 200. Then depending on the SIGN of the
value of G (+,-,0), a value is assigned

to the variable H (1,-1,0). The value

of the variable H really directs the activity.

One last footnote to this discussion of LINE 260,
this LINE is called a LET statement. As you will
notice I have not included the YLET" in the

above program LIKE 260, but I did ineclude it

in the explanation of LINE 260. 1Im a3 LET
statement the computer doesn't care if you put
the word LET in or leave it out.

LINE 360 has another heretofore unexplained
function in it. This is called the ABSOLUTE
FUNCTION. The ABSOLUTE functicen does only
one thing, it returns the "absclute value" of
the variable it 1s instroveted to "function"
with. In this case G. In our program

G will have a negative value, as it is found
in LINE 360, That's how we got to LINE 360,

=104

co

. =

_

SGHCAY £ 109

L vur account was overdrawn. Since the program
is telling you how much to deposit to cover
the overdrafts, it must be a "positive" or
*ahsolute® value, The "absolute value™ of
a number is "that" number, with complete

- disregard to its sign.
LINEs 230,240,330,and 360 all have funny

L little sets of symbols,letters, and numbers
enclosed by commas (E3C10F2). These are not
typing errors, they are format instructions
to the computer,

-

That's more than you probably wanted to know about 3GN(A) ...,

-

Bpisl

.

bir

b

Bt

-

B

L -105-

_

- 22

THE CHAIN COMMAND

Nt .
- The CHAIN command when used in a LINE of a BASIC program tells
the computer to STCP the program that it has in memory, and LOAD
another program and start executing the "“new" program. The procedures
for doing this are no different than if you were to do it yourself, bg
b putting the computer in the READY condition and then type in LOA

"PROGRAM", and then type RUM. The only difference is, that by using
the CHAIN command you have switched from "manual® to "automatic.®
It's always nicer for the computer to do the work than to have to do
it yourself,

Consider these two 3illy examples:

—

The first program we will name BIRDS

10 FOR ¥9$ = 10 TO 19
20 t = BIRDS " ,

30 NEXT V9

40 CHAIN "BEES"

T

The second program we will name BEES

p - 10 FOR Q% = 1 TO 12
20 I ™ BEES *,

bt 30 NEXT Q5

40 CHAIN "BIRDS"

Azsuming that both of these programs are on the same mini-disk
unless you have a multi-disk system, you need only LOAD either BIHDé
or BEES and tell the computer to RUN. The computer will keep the
BIRDS and BEES coming for as long as you would like. In fact, the
- only way to STOP them would be to abort the cyele, by a CONTROL-C or
turning the computer off. The CONTROL-C is the preferred method.

oot
If we RUN we get:
X BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS
BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES
BIRDS RIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS BIRDS
i BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES BEES
L and so on, and so on, and S0 on ...,....

-107- i

CHAIN ~ 108

What is happening is the the computer is LOADing ®“BIRDS" and
executing that program, then the CHAIN command in LINE U4C tells the
computer to LOAD "BEES"™ and execute that program, then the C(HALN
command in LINE Y40 of that program tells the computer to LOAD "BIRDS™
and RUN that program. This cycle is set up by the CHAIN commands in
both programs and will continue wntil you 3TCP it.

There are obviouly some very practical uses for the CHAIN
command, If you had a business program which prepared your invoices,
this invoicing informationm could then automaticz2lly be passed on to
the "accounts receivable® program, and then this information c¢ould
gutomatically be passed on to the "general ledger®™ program, and from
that to the "income statement™ program, and then to the "balance
sheet™ program. All of this could automatically be done by CHAINing
the necessary programs in the sequence that you wanted.

If you have a need for the CHAIN commanmd, the possibilities for
its use are further extended when used in conjunction with cther
STATEMERTs such as the ON statement or the IF statement.

So that's what the CHAIN command does

=108-

—1

g

23

THE DATA STATEMENT

Data does not have to be stored on a mini-disk or any other type
of "device” to be available for use by the computer. It can be part
of the fro ram as DATA STATEMENTS. When DATA is supplied by this
method, it is given a LINE NUMBER, just as is any other STATEMENT in a
program,. The DATA STATEMEKRTs can he placed anywhere in the program,
but are usually placed at the end of the program.

The same generzl rules which we have already discussed far using
READ stotements with the mini-djisk, apply to READ statements used with
the DATA statement.

When the computer i3 told to READ a value for a variable, it goes
through the DATA STATEMENT2 in numerical/sequential order and "picks
up" a value. This process of READing DATA is almost exactly like the
process when READing data from a mini-disk or other "device.” Much
like the pointer on the disk reader starts at the "start of FILE"™ and
sequentially READs the data, advancing itsell at the rate that data is
READ, until the pointer reaches the “end of file” or END MARK; so does
the computer's "DATA statement pointer."”

When the computer is told to READ data from a DATA STATEMENT, it
READs the DATA starting with the DATA STATEMENT with the lowest LINE
HUMBER and sequentially READs all the DATA on that LINE, from left to
right. For example:

10 READ F

15 IFF = 0 THEN 60
20 PRINT F,

30 GOTO 10

HO DATA 1,2,3

50 DATA 4,5,5,0,7,8
60 ! "END OF DATA"
70 END

If we RUN we get:

123485 6 END OF DATA

Each value for the NUMERIC VARIABLE F was READ by the computer,

-109~

DATA STATEMENT / 110

and then that value was PRINTed. The computer started READing DATA
from LIRE 40, the first value for F was 1, the second was 2, and the
third time a value for F was READ it was 3. Then when there was no
more DATA on LINE U0, the compubter proceeded to the next DATA
STATEMENT =--- LINE 50. It then READR each value from that LINE,

Note that each value (data) is separated by a vomma and that the
last item of DATA on each LIKE is not followed by a <omma.
If we were to change our READ statement to:

10 READ F,B

and leave everything else as it s in the above program,
we wolld get:

1T 3 5 END OF DATA

The first time LINE 10 is excuted:

F=1 B =2
the second time: F = 3 B =
the third time: f =5 B==6
the fourth time: Fz=0 B =7

If we were to change the READ statement to:
10 READ F,B,H

If we RUN we get:
1 4 END OF DATA

The First time LINE 10 is excuted:

F =1 B =2 H= 3
the second time: F=-# B=zS H =586
the third time: F=0 P =0T H=28

-110=

DATA STATEMANT / 111

Now let's consider our "FRUIT® program that is used to explain
SEQUENTIAL FILEs., If you will remember, we wirote a program to prepare
a DATA FILE and also wrote a program to READ that DATA FILE and when
the product number was INPUT the computer would PRINT the name of the
fruit. For a program that short, and with no more DATA than was used,
it would have been more reasonable to use the DATA STATEMENT method.
This is how the program would be:

10 INPUT "WHAT IS THE PRODUCT NUMBER : ",P
20 IF P = D THEN 160

30 READ XN,F$

% IF N:=P THEN 70

50 IF N = O THEN 100

60 GOTO 30

70 PRINT P,™ "™ F$

80 RESTORE

90 GOTO 10

100 % “THERE IS NO PRODUCT WITH NUMBER : ", P

110 RESTORE

120 GOTO 10

130 DATA 100,"APPLES",200,"ORANGES",300,"LEMONS" 400
140 DATA "BANANAS",500, PEACHES",600,%GRAPES",700

128 D#Tk "PLUMS", 800, "CHERRIES", 0, "ZERO"

1 END

If we RUN we get:
WHAT IS5 THE PRODUCT NUMBER : if we type in: 600
we get: 600 GRAPES

WHAT 15 THE PRODUCT NUMBER : if we type in: 200
we get: 200 ORANGES

WHAT I3 THE PRODUCT NUMBER : if we type in: 0

we get! READY
Two things should be noted about the above program. The first is
that the READ statement must exactly match the TYPE of DATA available

to be READ. It must be an exact match =-- number for number and
Yword® for "word"... .

=111~

DATA STATEMENT / 112

The second item worthy of further consideration is the RESTORE
STATEMENT found in LINEs 80 and 100, The RESTORE statement would be
comparable tc the OPEN statement when using a data FILE. This
statement RESTORES the PYpointer® to the start of the DATA {(to the
"start of FILE").

Each time you enter a “product number” for the INFUT statement,
the program starts its search of DATA from the start of the DATA
statements. This is because we have told the computer to RESTORE all
DATA before it goes back to LINE 10, the INPUT statement. Had we not
included the RESTCRE statement, then our search for all successive
INPUT "product numbers" would start in the middle or end of our DATA,
wherever the "pointer" happened to be after fts last READ statement,
This would generate false OQUTPUT {information that the computer PRINTs
on the monitor) similar to that experienced in our example "Acecunt
Number/fctive/Non-active ,” when discussing OPENing and CLOSing data

FILEs,

Also, if you were to review the section on SEQUENTIAL FILEs, you
will note that our programs on "AUTOPARTS"™ ias very similar to the
above "FRUIT® program, and it too could easily be done with DATA
STATEMENTs. In fact, in my opinion, it's a lot easier and faster to
work with DATA STATEMENT3 rather than DATA FILEs, This even becomes
more evident when one has to make a change to some of the already
generated DATA. With the DATA STATEMENT all you have to do to make a
change is EDIT the LINE., With a DATA FILE you must RANDOM ACCE3S that
specific DATA you want to change and write a program to change it.

If the DATA STATEMENT method is qulicker,faster, and easier to
use, why then would anybody hassle with DATA FILES? On the surface
that 1is a very valid question, but if ane conaiders how much "space®
is taken up just storing DATA, the answer becomes very obvious. All
af the cited examples contained only a limited number of DATA items.
IF our "auto parts house" wanted to inmventory 6000 items instead of
just the 10 we used in our example, we would run out of available
memory before we ever got started. The same would be true for any of
the other examples. These are all very small and short programs,
almost useless in a “real" situwation.

However, that does not render the DATA STATEMENT methad useless,
There is both a place and a need for this technique, and your time
spent in perfecting your use of it will be well rewarded. Tt has been

for me.

That's all there 1s to DATA STATEMENTS......

-112-

L

ﬂ

- 24

THE NUDMERICAL FORMAT

bar

- Anytime you have numerical OUTPUT, whether it is *hard copy"
(computer talk for printed material) or it is displayed on Lhe
menitor, it is formatted. That is to say, that the numbers are
"printed® in & definite method of display. If you don't format

l_ numerical OUTPUT, the computer automatically will. If the computer
does it, all numerical OUTPUT is printed in the DEFAULT FORMAT.

There is nothlng fancy about the DEFAULT format. It is very .
funetional and very simple. It is also the most commonly used format :
p— for numbers. In the DEFAULT format all displayed numbers contain up
to eight digits. This maximum total of eight digits is used with
complete disregard as to where the decimal point iz placed. If the
number to be displayed is greater than eight digits, only the first
- eight numbers are displayed. Any remaining numbers are rounded off to
the eighth number or the number is printed in SCIENTIFIC NOTATION if i
it is too large or too small to round off within the eight digit iimit 3
and still maintain most of its wvalue.

- Here are some examples of numbers supplied to the computer and
then printed in the DEFAULT formatd:

INPUT DEFAULT FORMAT
- 1000 1000
- 350200509 3.5020051E408
123.12345678 123.12346
. 1234567489 12345679
. 0000000005 SE=10
g 12345678919 1.23456T9E+10
There are instances when the DEFAULY format will work, but a
- different format would make the dafa easier to use.
gat
)
.
s

-113=

RUMERICAL FORMAT / 114

Consider this program:

1 INPUT ™ NUMBER OF BARRELS OF OTL ON HAND ;" J

20 INPUT " CURRENT COST PER BARREL IR
30 INPUT ™ CURBENT SHIFPING COST PER BARREL : ™, A
4¢ 1 "™ VALUE OF JIL OM HAND ¢ ", J*B

50 + " TOTAL COST OF SBHIPFING DT, JEp

60 f ¥ TOTAL NUMBER OF GALLONS ON HAND : ", J¥*55
10 END

If we RUN we get:

NUMBER OF BARRELS OF QOIL ON HAND : we type in: 1273
CURRENT COST PER BARREL : we type in: 18,395
CURRENT 3HIPPING CO3T PER BARREL : we type 1n: 1,859
YALUE OF 0T ON HAND 1 23815.83%

TOTAL COST OF SHIFPING : 2366,507
ToTa'. NUMBER OF GALLONS ON HAND : FO015

All aof the answers are correct, but it would be eagier to
understand and more useful if it were better formatted. It would be
mush better if it had dellar signs in the proper places, right
justified, commas, and decimal points for cents. ALl of this can be
accomplished by a few simple changes.

The necessary changes are all made in the PRINT statements,

Let’s first discuss LINE 40:

40t ™ YALUE OF QIL ON HAND : ™, J®B
If we change LLINE U0 to:

4o Y " WALDE OF QIL ON HAND : ", 4$CI10F2, J*B
IF RUN with the same TNPUT as above, we would get:

VALUE OF OIL ON HAND : & 23,416.84

1Y

-

-

—

-

S

:l ' i l .!

NUMERICAL FORMAT < #15

As opposed to the previous OUTPUT:
VALUE OF OIL ON HAND : 23416.835

Kow let's look at what took place, The key bto the new format is
the addition of "$3C10F2" to LINE 40. This addition gave us a dollar
sign, comma in the proper place, two places after the decimal rounded
off, right justified, and space for up to ten digits. The " %$C10F2 "
is called a FORMAT STRING.

The % . . percent sign in a PRINT statement tells
the computer that format instructions
are forthcowmming.

The $. . dollar sign tells the computer to PRINT
a dollar sign in front of the data to
be PRINTed.

The C . . letter C in the FORMAT STRING tells the
computer to PRINT commas in the proper
places for the numeric values.

The 10 . . number ten in the FORMAT STRING tells the
computer that there are a tetal of 10
characters in the OUTPUT,

The F . . letter F in the FORMAT STRING telils the
computer to print the numbers in FLOATING
POINT format.

The 2 . . number two tells the computer how many

places beyond the decimal you want PRINTed
and how you want the numbers rounded off.

The STRING FORMAT must be enclosed in commas in the PRINT
statement, Any features that you do not want can be omitted from the
STRING FORMAT. If you did not want the comma to appear in the OUTPUT,
butlyog wanted everything else to remain the same, your STRING FORMAT
would be:

2310F2
If you wanted the comma, but did not want the dollar sign:

%CI10F2

~115-

NUMERICAL FORMAT / 116

If you did not want either the dollar sigh or the corma:

210F2

If you wanted the dollar sign, the comma, and three places beyond the
decimal point:

£3C10F3

If you wanted everything exactly as above but you need space for 15
total characters instead of the formatited 01

$3C15F 3

If you only wanted the 15 character range to be right justified and
there would be no numbers beyond the decimal:

115F0

A3 you can see, ¥you can take or leave a5 much of the STRING
FORMAT as you want. You can expand its scope to handle very large
numbers with deollar signs and commas or diminish it to only right
justify whole numbers or decimals.

In our program above we would change the ather PRINT statements
to:

50 ¢ "TOTAL COST OF SHIPPING s " ESCI0F2, %A
60 I "TOTAL NUMBER OF GALLONS ON HARD : v 3CT0FO0,J%55

In this program we have included a STRING FORMAT in every PRINT
statement. Many programs may have hundreds of PRINT statements all
requiring the exact same STRING FORMAT. It would work all right if

au included the same STRING FORMAT in each and every PRINT statement,
ut [t 15 not necessary if you make one addition to the STRING FGRMAT.
If we were to add the ®number® sign {(#} to the STRING FORMAT:

*5CR10F2

-116-

L

il ST SR

o

NUMERECAL FORMAT < 17

All subsequent numbers would be formated by the PRINT statement which
contained the above STRING FORMAT. To recap:

$$C10F2 FORMATS A SINGLE PRINT STATEMENT
F3CH10F 2 FORMATS ALL FOLLOWING PRINT STATEMENT

There may be some QJUTPUT in & program that you don't want
formatted like all the rest. Consider our program above, we would not
want our "pumber of gallons" to be formatted like doilars ansd cents.
On a short program a: above it was easier to add the 3TRING FORMAT to
each PRINT statement, bubt suppose you had a program that had cne
hundred PRINT statements, half of which were formatted cne way, the
obther half used the DEFAULT format. &1l you have to do is to "void"
the STRTNG FORMAT by the following:

65 t it

The %4# symbols in combinration may be added to any PRINT
statement or may be included on a LINE by themaelves as in LINE 65 in
the above ewxample, either way the effect is the same -- they cancel
all previous STRING FORMATs.

How that we are back where we started, we have covered the subject

ek

-117-

- - O i

— o e T

T

20

THE EXIT 5TATEMENT

Experience has shown me that the EXIT statement is seldom
included when cne 13 originslly writing a program which contains a
"nested LOOP," but that it is always added a3 a result of a CONTROL
STACK ERROR. Tt is one of those things that nobody ever thinks about
until they need it. The impertant thing is not to completely forget
it, thus spending needless hours trying to figure out why 2 program
won't RUN.

Consider tihe CONTROL STACK ERROR as a reminder. The absence of
an EXIT statement is not the only thing that will generate this ERROR,
but it*'sz one ot the things that will,

The EXIT statement allows one to EXIT a "nested LOOP"™ (a LOOP
within ancther LOOP} before the computer has completed its cycle of
that LOCP, and Lhen be able to re-enter that same LOOPF as if it did

complete its cyele.

This, of course, can be best explained by example. So here it is

P

Consider this program:

10 FOR X = 1 10 3
20 PRINT "X = * X
30 NEXT X

If we RUN we getb:

O e e e
[]

=

This is exactly as expected. If we change the program to the
following:

10 FOR X = 1 TO 3
20 ¢ " "X

25 IF X = 2 THEN ho
30 MEXT
35 END
40 1 ™ T AM OUT v
50 GOTO 30

Bl]

-119=

W

EXIT STATEMFHT / 170

L

If we RUN we get:

C .

X
kS

1
2
AM OUT

o U

X =z 3
READY

As you can see, we started the LOOP, then left it, thnen
re-tntered it right where we left off. 5o far no ERRUR and no EXIT
statenient, I we change our program to:

5 FOR Y =
10 FOR X =
20 ' "y
25 IF &
30 MEXT
35 MEXT
18 END
HG ¢ T AM CUT M i
50 GOTO 35 ;

1
1
l"x
2 THEN 40O

TC 3
TO 3

- g N

.

If we RUN we get:

X
X

1

2

Al OUT

CONTROL STACK ERROR IN LINE 235
READY

gy

| S

Well, we kept messing around until we finally got an ERROR. Al
Wwe tried to dn was to RUN the same program bhree times that we hLa?
already sucessfully RUN one time,

| S

The other thing thav we tried to 49 was to ieave a "nssted LDOP™
before it had firnished its cycle, and then tried to re-enter it, Mhen
you do this you will always get a CONTROL S5TA"K ERRCH.

g

3ince the computer is very ohedient, and does exactly as it is
teld, our program has put It in the positiorn of having to erecute tuwo
conflicting directives at the same time. One, 1t is told to finish
its X LOOP for ¥ = 1 TG 3., The other, it s told to get the NEXT Y.
I[f it goes to the NEXT ¥ it can't finish its X LGOP, If it finishes
its X LDOP it can't go to the NEXT Y. 5o, the computer savs to hell
with the whole thing ==~ giving you a COHTROL STACK ERROR.

'[———~

!

EXTT STATEMENT 7/ 11

All that we have to do to make everybody happy is to tell the
computer that when necessary, it fs all right if it EXITs the X LOOP
and does not finish its cycle. This allows the computer to finish its
X LOOP when it can, and leave it when it can't.

To do all of this, we add the EXIT command to LINE 25,
25 IF X = 2 THEN EXIT 40

I we RUN we get:

i

T e =
-
uon "ot
ol -)
RN =g X -
=]
L=
-

I ouT

g

1 AM OUT
READY

One practical use of this new gained knowledge would be to use it
in what I call the "unique data test® programming technique. This
programming technique allows one to take DATA from any source -- INPUT
statements, READ/DATA statements, or from READ/DATA files -- and test
each piece of data to see if it is the same as any previous data or is
it unique. If its unique it is assigned a unigue variable, il it is
not, it is not,

-121=-

EXIT STATEMENT / 122

Here i3 the program:

10 DIM A(k)
---------------- 20 FOR T =« t TO 4
1 30 READ A
data 1 unique --==ex 40 FOR D = 1 TO 4
feed 1 test 1 50 IF A = A(D) THEN EXIT 90
loop 1 loop ------ 60 NEXT D
1 TO K = K + 1
1 80 A(K) = &
---------------- 90 HEXT T
unique datz ===-- 100 FOR ¢ = 1 TO K
rint 1 110 PRINT a(C}
oop 000 ——=-- 120 MEXT C

130 DATA 10,20,10,30

By changing the DIMENSION of A, this program can be expanded to
handle as many values of A as available memory will allow. By
s5uitably changing the scource of "feed"™ for the variable A, this
information could be supplied by a wide range of mebhods.

Now let's lock at the program as written. The sequence of events
for this program are:

1. From the firat cycle of the "feed lcop"
tre computer gets 3 value for A.

2. It then sends this data to the "test icop".
If the data i3 equal to any previous value
for the variable A, the computer goes bhack
to the "feed loop" and gets another value for
A.

3. If the value of & does not equal any previous
value, it is then assigned a unique variable
name -~ A(K)} = A, The computer is then sent
back to the "feed loop™ to get another value
for A.

Because I feel that thig is an important programming technigue,
since comparison of data is a key compuber function, and because I
spent two days trying to fFigure this whole thing out, and because I
think that a complete understanding of this program has other things
to offer, I shall fully explain how it works. Here 1t is as I see
it.

-122-

L. _

T

EXIT STATEMENT / 123

ITf you RUN you get:

HEERRRARRANN

The FIRST TIME the computer cycles the program:

LINE 20 T =1
LINE 30 A= 10
o A{D)
LINE 40 unique 1 A{1) = €
LIRE 50 test A = 10 2 A(2) = O
LINE 60 loop 3 A(3) = 0O
y Afd) = 0

SINCE A IS MOT EQUAL TO A(D)
A= 10 <> any AD)

The computer finishes its "unique test loop"

and goes on to the next LINE -=-= LINE T70.
LINE 70O K=0+1 K =1
LINE 80 AK) = 4 A(1} = 10
LINE 90 Go back to "feed loop™ for anather A.
EERAERAKERES

The SECOND TIME the computer cycles the program:

LINE 20 T
LINE 30 A

it
RN
=]

-123~

EX1T STATEMENT / 121 : | i
Ly
D A(D) ;J |
LINE 40 1 AC1) = 10
LINE 50 A= 20 2 A(2) = O
LINE &0 3 A3y = O
i Al = 0O [

-

A IS KOT EQUAL TO AfD)
= 20 < > and AD)

The computer has completes the "unique test loop” and goes to the next

line of the program -- LINE 70. 1'
LINE TO K =z 1 «1 K =2

LINE 80 ACK) = A A2y = 20 Lj
LINE 90 Back to the "feed loop"™ for another 8,

|

FRARARREREEN

-y

The THIRD TIME the computer cycles the program:

LINE 20 T=3 LJ
LINE 30 A= 10
D A(D) l’
LINE 40 1 AC1} = 10
LINE 50 A=z 10 2 A(2) = 20 -
LIRE &0 3 A3y = 0 t’
L] AfMY = D

SINCE A I8 EQUAL A(D)
any A{D)
10 = A(1) = 10

o=
i

=

124~

r—

-

EXIT STATEMENT / 129

The computer 12 sent back to the “feed loop" for another A.

HREAREEARERE

The FOURTH TIME the computer cycles the program:

LINE 20 T =4
LINE 30 A= 30
D A(D}
LINE a0 1 ACT)
LINE 50 A = 30 2 A(2)
LINE 60 3 A(3)
[} Add)

10
20

woonoa
L=

SINCE A IS5 NOT EQUAL TO A(D)

A= 30 < > any

ACD)

The computer finishes the "unique test lcop" and goes to the next line

-—— LINE 70.
LINE 70 K 2 +1 K=z 2
LINE 80 A{K) = A(3)

The "feed loop" is now complete (T =
the next line -- LIKE 100.

But first let's look at:

30

U) so the computer progresses to

D A(D)
K =3 1 AC1) =
2 A(2) =
3 A(3) =
4y ACHY =
~-125-

EXIT STATEMENT ¢ 126

LINE 100 the
LINE 110 print FOR C = 1 TC 3 (K =31

LINE 120 loop

Therefore: c ACC)
1 A{t) = 10
2 AC2) = 20
3 a{3) = 30
So we get: w20 30
HEAREAERARSN

I am sure that this iz the longest chapter in any published book
o the EXIT statement., For that reason, one should freel that it has
bzen adequately explained —= I hope s0.........

-126-

=

rrr~-—rr~rmMmr MM e e T

26

NUMERICAL LISTS aAND ARRATYS

When you see DIM A(12) or A(H4,7) or A{16), you see the "ecall
letters"® or the DIMENSION for a NUMERICAL LIST or a NUMERTCAL ARRAY.
Whenever I see them I feel a great urge to reprimand the computer
industry for nok making the format of these different from DIM A3(12)
or A$(H,T) or A${16)}, If this book does nothing more for you than to
engrave in your memory that the two have little or nothing in common,
it will be worth the cost of the book in the savings in time and
frostration.

I caution you not to make the wistakes that I originally made by
assuming that because they look alike, they therefore share the same
qualities. This would be a normal assumption, since many other
NUMERICAL and STRING qualities are shared. To compound the erroneous
assumptions, there is little or nothing to indicate otherwise. You
start getting hints that somthing is awry when you start using them.

Rather than going inte detail of how each NUMERICAL and each
®"1ike" STRING differ, I prefer to discuss how each works. This
chapter is devoted to the NUMERICAL, the STRING will be discussed
elsewhere.

Let's first discuss the NUMERICAL DIMEMNSION statement. It
appears in the BASIC program as!

DIM A{16) or DIM A{15),B(12) or DIM A(5,8)

The default DIMENSION of any NUMERICAL list is ten (10}, Thus if
you have a list of ten or less numbers you do not have to include a
DIMENSION statement in your program. If you want to limit a list to a
definite number of entries them you must include a DIMENSION
statement.

Consider these examples:

10 FOR X = 1 T0 6
20 INPUT Y{X)

30 NEXT X

YO FOR X = 1 TO 6
50 PRINT Y(X),

60 NEXT X

-127-

LISTS & ARRAYS / 128

If we RUN we get:

we type in:
? 10

? 20

? 30

? 40

? 50

? 60

10 20 30 40 S0 60
READY

If we typed: PRINT Y(4}
and pressed the RETURN KEY

we would get: 40
Now if we taok the very same program and added:
5 DIM Y{3)

If we RUR we would get an CUT OF BOUNDS error if we added more
than three vzlues for Y. On the other hand if we changed LINE 5 to:

5 DIM Y(18)
The program would RUN exactly as it did in our first example,

What DIM Y(5) really means is that you have reserved in the
computer's memory room for five values of Y. 1If you do not use all
the reserved spaces, the memory is still reserved. For that reason
you should not excessively over=-DIMENSION any variable. There will be
times that you will not know how many values a DIMENSIONed variable
will have. On those occasions 1 recommend a DIMENSION close to what
you would expect.

Since the computer will store the first five values of Y {DTM
Y{(5)), we can not use Y as our variable name, becsuse Y will actually
have 5 valuea. Alsc it's important to know exactly which value of ¥
we are dealing with. There are several ways to do this, but the mosat
used i$ the subseript.

=128~

L—

S S

| g

l

LISTS & ARRAYS / 129

Such that:
The first value of Y = Y(1)
The second value of ¥ = Y(2)
The third value of Y = Y(3)
The fourth value of Y = Y{U)
The fifth value of Y = ¥(5)
The K th wvalue of Y = Y(K)

Where K in this example can equal 1 to 5.

If you had two or more variables which had multiple values, you
would then have two or more variables in your DIMENSTON statement.
For example, if you had four variables which would have multiple
values, and you necded to keep up with each value for each variable,
and you knew the expected number of values each variable would have,
your DIMENSION statement would be:

10 DIM A{1%),B(25),C(7),D(100)

Note that the DIM need only appear one time and that the
variables and their DIMENSION are separated by commas. The only other
hard and fast rules that I can think of for the DIMENSION statement
are:

1. A variable must be DIMENSIONed before it is used.

2. A varlable can only be DIMENSICGNed one time in
a program, and can never be reDIMENSIONed in the
body of the program.

The next item is the NUMERICAL ARRAY. It is like the NUMERICAL
LIST only different. The DIMENSION statement for a NUMERICAL ARRAY
which is to contain three rows of values and Four cclumns of values
for a specified variable would be:

10 DIM A(3,4)

This means that A is expected to have a total of 312 values, and
that the computer is to store each separate value of A in an ARRAY
made up of three rows and four columns, as illustrated.

-129-

w

LISTS & ARRAYS 7 130

L

Consider this:

COLUMHE
1 2 3 b

i ——— pm——— P bmmm——— + i
ROW 1 I 10 1T 35 I 20 I 25 1 |

———— Fomm e — O pmmmm—— * 5 L
ROW 2 I 3¢ I 35 1 4 1 45 [LJ

P fmmmmm— $mmmmm R +
ROW 3 I 50 I 5% I 60 I A5 1

Fm————— PR oo +

This is our ARRAY filled with DATA. There atre many ways to fill an
array, from specific lecation INPUT:

A(3,2) = 55

from values generated from a program:

90 LET A(2,4) = K

In the above case K:-A5

S

Or we can write a program specifically designed to fill cur array.
That program would be:

10 DIM A(3,4)

20 FOR X = 1V TO 3

3J0FOR Y = 1 TO &

40 IKPUT A{X,Y)

50 NEXT Y

60 NEXT X

70 ' "THE ARRAY IS FILLED™\:!
80 t "WHAT BOX DO YOU WANT 7"

=

90 INPUT MWHICH ROW HELIN §

100 INPUT "WHICH COLUMN : ".¥

110 ¢ A Xm0 Y WY o ACK, YN
120 GOTO 80

This program will start with the rirst ROW and fill it with DATA =and
Lthen the second, and the the third,

-130-

----IIIII.IIlllI-I----.-ll-.-.--....--.----..-u.-...----.-...-..-.--.-.-..7

LISTS & ARRAYS / 131

If we RUN we get:

(In the interest of space type in the following
numbers in sequence for each 2.)

i0 15 20 25 30 315 W0 45 50 55 60 65

THE ARRAY IS5 FILLED

WHICH 80X DO YOU WANRT ?

WHICH ROW : we type in: 2
WHICH COLUMN : we type in: 3
AC2,3) = O

in numbera. If you decide to STOP, press the CTRL key and the C key
at the same time. This is called a CONTROL-C and will abort the

program.

That's how LISTs and ARRAYs work, but that's not all there 1is to
know about them. The hard part starts now, learning how to use them.
I can show you what they are and what they deo the rest is up to
YOU connaa

[' This program will keep RUNning as long as you are willing to type

-131- |

—

Nl an il aalll calll el ol ool ol ool sl ool o

'

217

THE SUBSTRING

Now we are starting to get into the heavy stuff. I wasn't ready
to write this section until today. I spent about two hours with my
“anslyst™ (computer type} to make sure it really was like I thought it
was. He satd 1 was close enough to the truth to proceed. 5So we
will.......

One of the biggest problems with understanding SUBSTRINGS, parts
of "words," is getting Lhem confused with other things. The format
for the SUBSTRING - A%(3,7) - looks similar to the format for a
NUMERICAL ARRAY - A{3,7). Since they do look so much alike, and you
must admit they do, T have a tendency to equate traits of one with the
other. This leads to mass confusion, and erroneous conclusions. Thus
the need for my time with the Manalyst."

By now, you must be asking why would anybody care about parts of
"words." Though you may not be conscious of it, a lot of what we do
with words involves working with their parts. W¥hen you look up the
spelling of a word in the dictionary, you apprcach it in parts - the
first syllable, then the next, and the next, until you "match" the
ward., When we alphabetize a Yist of names, we compare the first
letters, then the second, and 50 on. When the computer performs these
same tasks, it has to be told exactly how te do it, although you may
be doing it subconsciously.

Consider the following:

STRING VARIABLE : A% = "RED WIME"
RED WINE
12345678

SUBSTRING: A$(5) = WINE

A$(5) is the 5th through the last character

A$(J) i3 the Jth through the last character

=133~

SUBSTRINGS / 134 -
4
IF J =5 then Af{d) = WINE ;
Ifd =8 then A${J) = E :
If J =1 then Ad{J) = RED WINE

A$(3,7) is the 3rd throvgh the Tth character
A$(3,7) = D WIN

For our example STRING: RED WINKE

AS(5) = A${5,8} = WINE

L. Lo L.

Since by definition the first value enclosed by
parenthesea is the starting character in the
SUBSTRING, and the second number i3 the ending
character, and the STRING is zlways counted from
left to right, the first value must always be
less than or equal to the second value.

Lo -

A$(8,5) will generate an OUT OF BOUNDS error

A$(1,)) is Ith character through the Jth character.

Where I <= J {I is less than or equal i3 J)

| S

If I =2 and J = 6 then A$(I,J4) = ED VI

1f 1 =1 and 4 = 3 then A${(I,J) = ERED)
Ir I =% and J =8 then AS(I,J) = WINE

If I =7 and J = 7 then A${I,d} = N

A$(X K) will always equal the Kth character,

=

If K = 2 then A${(K,K} = E

If K =5 then A$K,K) = W .

If K = 1t then A$(K,K) = 7 u
A%$(3,3) will always equal the ird character =z D .
A$(7,7) will always equal the Tth character = N

e K

SUBSTRINGS / 135

Consider this program:

10 T$ = "ABCDEFGH"
20 FOR C = 3 TO 5
30 PRINT T4(C)

40 MEXT C

If we RUN we get:

CDEFGH
DEFGH
EFGH

Consider this program:

10 B$ = "ABCDEFGH"
20 FOR E =1 T0 3
30 FOR F = E » 2
40 PRINT B$(E,F}
50 NEXT £

If we RUN we get:

ABRC
BCD
CDE

Consider this program:

10 READ A%

15 IF A% = "0" THEM 110

20 ' " I'M THINKING OF & WORD - WHAT IS TT *

30 INPUT "TYPE IN A THREE LETTER WORD : *,B%

40 FOR X = 1 TO 3

50 IF B$(X,X)=A$(X,X) THEN !'"CORRECT : *,As$(X,X)
60 NEXT X

70 !

8¢ %F Bi=A$ THEN 1383 yOU ARE RIGHT #w#aaw

90 IF A$ < >, B$ THEN 30

95 GOTC 10

100 DATA “CAT",*DCG™, "PUT","TAP™,"COY","MIX", "WRY"
110 END

-135-

SUBSTRINGS / 136

This program compares each character of the INPUT word (B$) with
each character of the “game word" (A$). IF the computer makes a
match, then the character is printed. If the computer does not make a
mateh, it goes on to the next character and repeats the process,.
After it has evaluated all three characters [letters), it then
evaluates the word. If it makes a matech, it tells you so, and then
READs a new "game word." If it does not make a match, the computer
returns to the INPUT statement for you to try another werd,

The above explanation and sample programs will only give you a
start on the use of SUB3STRINGS. Learning how to us= them well wil)
widen your avajlable choices to compare data. A good deal of the use
of the computer is to compare data, the more ways you know how to do
it, the more use you will get out of the computer.

That is NOT all there is to know about that

-136-

NI g ot

1

~— r— ¢ o

28

SEQUENTIAL FILES

To get the maximum use of your system it is mandatory to learn
how to use data FILEs {TYpe 3 FILEs}, and be familiar with how they
work and how the computer READs and WRITEs to them. Any time you use
(access) a dats FILE you are storing data on a2 device and therefore
are leaving FREE available memory in your computer for writing or
expanding your program, You are alsc able to store data far beyond the
memory capacity of your system, since each mini-disk will store about
90,000 bytes {88 K). As mentioned earlier, each mini-disk contains
350 blocks and each block contains 256 bytes.

Before getting into the specifics of how data FILEs work, a
general over-all view of their cperation will shaw that they are not
too different from any other TYpe FILE. TYpe 3 data FILEs, like all
other TYpe FILES, must first be CReated. In order to do that they
must be named. The same rules for naming other TYpes of FILEs apply
for naming TYpe 3 FILEs. The next step is to TYpe the FILE: all DATA
FILEs are TYpe 3. That means that they can only be used (accessed) by
a READ or WRITE statment in a BASIC program. After you have dene all
the above, the FILE is ready for putting in data.

To add data to a FILE one usually writes a program that asks for
specific information to be typed in (INPUT). Once the required
information is supplied, the computer is then told to WRITE this
information (data) onto the mini-disk. FEach new addition is added teo
the mini-disk immediatly following the previous data, thus a
sequential FILE is slowly filled with data. The required information
may be no more thanm a single numerical value or may be more than a
thousand numbers or words, depending on the program written to add
(WRITE) data to the FILE. Regardless of the INPUT the computer
sssentlally handles it all in the same manner, and records (WRITEs) it
on the mini-disk the same way.

Just having a mini-disk full of information is not of much value.
It only becomes valuable when one can ask for a specific piece of data
and the computer in its unique way can search all that available
informetion and then give you what you ask for, if it has it, in a
matter of seconds., In order to be able to do this, you must now write
a second program - this time tc take cut information (READ).

Having learned how to do all the above, ycu have greatly expanded

the capacity of your system and increased its range of uzefulness.
How let's learn how to da all the above.

-137-

W

SEQUENTIAL FILES / 138

First we must again remember that the computer does ne more than
what one could do himself by conventional methods. Tt has a couple of
advantages over doing the task by "hand."” HNumber one, it ¢an search a
FILE much [aster., It essentially does it by the same method that you
would: it looks at all the data until it finds some that matches what
it is looking for.

Number two, the computer can evaluate Lhe "found" data for any
number of instructed conditions, such as; IF this is found - de this,
or IF this is equal to that - do this, and so cn.

The computer <an perform all of these tasks in a matter of
seconds, usvally with little or no error. The human can perform all
of these tasks by "hand," hopefully with little or ne error, The main
difference between the two methods is time and efficiency,

| S

We will approach the uwse of DATA FILEs on the basis of
contrasting the "hand" method with the "electronie”" method. This will
allow the reader to better understand what is happening, and be able
to relate to the sequence of events,

| S

Let's suppose that you work for an auto parts Supply company.
You have been given the job of preparing an inventory listing of all
auto parts and assigning a part number to each, This information i3
to be placed in a file and stored for future use,

[A

You start by first getting a rile folder and naming the folder
AUTO FARTS. You then get some paper and start recording the part
number wikh ita accompanying auto part. You start at the top of the
page and continue to add part numbes, then part name. You continue
this procedure until you have Finished the task., You then put the
papers in the file folder and then put the {file folder into a file
cabinet.

| S

Using our above example, the "electronic" method would be
essentialliy the same. First, we must CReate az lile folder. We do
this by the following.

1. We must put the computer into the DOS mode.
a2, From start up = put a mini=disk with

Pisk Operating System (D0O3) on it in
the disk-reader.

On > type in: EX £900

-]38-

o e

r rHr T

Yy o e

r

W

SEQUENTIAL FILES /7 139

b. From BASIC mode:
On READY type in: BYE

2. To CReate our "file folder,” with the name
AUTOPART, we must place an INITIALIZEd mini-disk
in the disk-reader and then:

On * type in: CR AUTOPART 300

This CReates a FILE with the name AUTOPART which
is 300 bloecks long - which is almost the capacity
of a new mini-disk.

3. We must then tell the computer that the FILE
named AUTOPART is a TY¥pe 3 data FILE, so that
we will be able to READ and WRITE to the FILE.
This is accomplished by:

On * type in: TY AUTOPART 3

We now have a "rile folder™ labeled AUTOPART, it is ready to put
our RECORDs inte it.

Next we want to develop a data FILE which contains two pieces of
information for every auto part maintained inm the inventory of a parts
house. We want to give every auto part a part number, and then we
want to identify the auto part which goes with this number, We want
to WRITE this information in an orderly manner, as was done by the
"hand" method above.

Our Tirst step is to write a program which will add this
information to our FILE in an crderly manner, There are two questions
that the computer must ask: 1. “WHAT IS THE PART NUMBER ", 2. "WHAT IS
THE PART NAME™.

In BASIC these questjions are represented by the INPUT statement
as!

50 [INPUT "WHAT 1S THE PART NUMBER : *, N

-139-

W{

SEQUENTLAL FILES / 180

L.

Where INPUT is the alert word - reserved word - used by the computer
to tell it to ask for some information. That portion of the INPUT
statement which is in quotation marks is {or the user's benefit. It
is the method used by the computer to tell the operator what
information he is to btype in (INPUT), Anything that is encleosed in
quotation marks following an INPUT statement is PRINTed by the
computer. If no guoted remark follows the INPUT statement then a
question mark (?) will appear on the monitor, indicalbing to the
gperator that they must type in some information befgre the computer
can go ah.

- . .

The meost signlificant character in the above INPUT statement to
the computer iz the letter "H". The operator will never see this, but
it i3 to the eomputer what the guotation mark enclosed portion of the
IKPUT statement is to the operator. The letter "N" is used to

represent a numerical value - a variable - to the computer. It could
have been any letter of the alphabet or any combination of letter and
nunber from 0 to 9, t.e., KU,B2,%X7,G,5 +.v-van.

Let's assume that the first part number is 1001, and it is the
part number for HY-TEMP SPARK PLUGS. When the computer ask you:

-

WHAT IS THE PART NUMBER

You respond by typing im the number: 1001

C_

You have assigned the numeric value of 1001 to the numeric
variable "N", If you were Lo ask the computer what is the value of
NN §§ would PRINT 1001, "KE" will always have this value until you
change it.

[

The next gquestion that computer should ask is "WHAT IS THE PART
NAME®. This question is represented by the INPUT statement:

| Sy

60 INPUT “"WHAT I5 THE PART NAME : ", N&

| e

The same general information pertaining to LINE 50 goes for this LINE
with one notable exception -- the dollar sign, "3", which follows the
“K"_. In pure computer talk this INPUT statement wants you to type in
a STRING., For some unknown reason all alphabetic or alphanumeric
values are called a

STRING., For ease of understanding, I have

[S

o K

-140-

S

rmm ! m

SEQUENTTAL FILES / 111

found it useful to automatiecally substitute WORD every time I see ar
hear STRING. Thls conversion is not exactly valid, but by the time
you understand the reasons why it's not, you will understand the
caoncept of STRING variables.

Now back to LINE 60. On the monitor we would see:
WHAT I3 THE PART NAME
You would then type in (INPUT) : MY-TEMP SPARK PLUGS

We have now assigned the "word” - HY-TEMP SPARK PLUGS - to the
"word variable," N$. Or in computer talk the STRING VARIABLE, N$, is
equal to: HY-TEMF SPARK FLUGS.

The relationship between the two variablea:
N = 1001
N$ - HY-TEMP SPARK PLUGS

is essentially the same as far as the computer is econcerned. They are
handled the same way, as illustrated above for the numeric variable,
if we told the computer to PRAINT N$ it would PRINT: HY-TEWMP SPARK
PLUGS, since that is what N% i3 equal to.

The computer now has the required information for performing the
task that we set cut to do, i.e., values for both variables, or
answers to both its questions. We must now tell the computer what to
do with this information (data).

We want it to WRITE this unique combination of part number and
part name on a mioni-disk so that "1001" and "HY-TEMP SPARK PLUGS" are
inseparable. If one knows the part number, the computer can tell you
the part name or if one knows the part name, the computer will tell
you the part number,

If we were doing this by the "hand" method, we would have to go
+o the flle cabinet (the mini-disk), apen the cabinet and take out our
file folder for AUTO PARTS (QPEN the FILE named AUTOPART), write down
the Information on a sheet of paper in the folder (WRITE H,N$), and
then close the file and put it back into the file cabinet (CLOSE), and
we are finished (END). The computer must be instructed to de
essentially the same thing. We tell the computer to:

-141-

|

_

SEQUENTIAL FILES / 142

4G OPEN #0, "AUTOPART"

This STATEMENT tells the computer to:

a, Go to "file cabinet" #0.
Turn on the disk-reader.

L. . o L

b, QPEN the "file cabinet.m |
Search for a FILE.

c. Find the "file folder™ named "AUTOPART",
Finds and OPENs the FILE - AUTOPART.

At this point the computer has the required information ta be
recorded, has located the proper FILE to WRITE the information to, has
QPENed the FILE and is READY to put it in the FILE, We must now tell
the computer to put the data Into the "file folder."™ So our next
STATEMENT is:

L. o

| G

80 WRITE #0, N, N$

L_

The "#0 " makes sure that the computer WRITEs the values for N and N$
to the same FILE that it spent all that time locating and OPENing.
S0, that's what it does : it WRITEs the values of the variables in the
FILE represented by #0, I[f we could see the FILE AUTOPART we would
see:

1001 HY-TEMP SPARK PLUGS *

S

The computer will automatically WRITE the values of N, N% at the
start of the FILE. The asterisk at the end of the value of NE iz my
representation of an END MARK. After each WRITE command the computer
will place an END MARK at the end of the last item it recorded - it is
Iike 2 period at the end of a sentence. The need for the END MARK
#ill become evident as we go on.

_

We are now ready to add more data., The mext item will have the
part number 1002, and it is a SEALED BEAM LTCGHT. Therefore N = 1002
and N$ = "SEALED BEAM LIGHT". In order to get back to the start of
our program we have to tell the computer to go back and get some mote
data, Since we did not tell the computer to CLOSE the FILE, it left
it COPEN and the recording head {pointer) i3 at the end of the previous
INPUT.

| S

142

—

r r— r r—

|

SEQUENTIAL FILES / 143

This being the case, we will not have tell it to do all that again.
411 we have to tell the computer to do is go back for more data or
INPUT, So, we tell it to go to LINE 50, which is the first of the two

INPUT statements:
90 GOTO 50

The next thing to appear on the monitor is:

WHAT 1S THE PART NUMBER :
You would then type in: 1002

WHAT IS THE PART NAME :
You would then type in: SEALED BEAM LIGHT
The computer would then go through the same motions as before and our
FILE would now look like this:

1001, HY-TEMP SPARK PLUGS,1002,SEALED BEAM LIGHTS®

Then the computer would go back for more data:

INPUT
WRITE
GOTO INPUT

This eycle would continue as long as you want it to. After a few
minutes our FILE would look like thia:

1001 HY-TEMP SPARK PLUGS 1002 SEALED BEAM LIGHTS
1003 BONDED BRAKE LIRINWG 1004 STEEL BELTED T.RES
1005 SEAT BELTS 1006 LOW PRESSURE OIL GAGE 1007
AIR HORN 1008 HI-LCAD SHOCK ABSORBERS 1009 LOCK
TYPE GAS CAP 1010 WIDE AMGLE MIRROR®

-183-

W

SEQUENTIAL FILES /7 144

That's exactly what we want. But it's nrot all that easy, I we
were to PRINT the contents of our FILE AUTOPART as we have constructed
it, we would not get what we have shown above, but all of our STRING
variables {(words) would be cut short and limited to only 10 characters
(10 bytes}.

Thus cur first item:

. o

1001 HY-TEMP SPARK PLUGS

would be:

| S

1001 HY=-TEMP 3P

There is a pre-set limit to the size (DIMENSIONY of any STRING
variable (word). Unless told otherwise the computer will give all
STRING variables the DIMENSION of 10 characters. If the size, leagth,
or DIMENSIOK of a "word" iz greater than 10 characters, only the first
10 characters are accepted by the computer and the rest are ignored.

. L-

Although this 10 byte limit would net effect some of the data
entries in our FILE, it would render others uninteliigibl:. Unless
one is willing te play word games every time he gots only a portion of
a "word," this situation would be conzidered unacceptable.

S

There is a2 method of correcting the problem., One need only
consider the length (DIMENSIGH} of the longest single "word," STRING
variable, in his data. In our case that would pe 63 gharacters found
in part number 1007. We must then tell the computer how many
characters to reserve for each of our "words" (STRING variables).
This 13 ecalled DIMENSIO¥ing a variable. Cur DIMENSION statement is
part of the BASIC program and must appear befor the variable is used,
Once a variable is DIMERSICNed within a program that wariable will
alWways have that DIMENSION. You can not change that DIMENZION in a
later portion of the program.

| SR G

Qur statement would be:

—

20 DIM N3$(23)

[

This tellw® the computer to always reserve 23 bytes any time it
READs or WRITEs the STRING variable K$. No matter how long the "word"
for N3 is the computer will always allot 23 characters for it. For
STRINGS that are shorter than this the computer will still use 23
c¢haracters, the unused porfion being Filled with blank spaces.

| .

| S

~thi-

| S

. - rr— - — " r— -

SEQUENTIAL FILES / 145

Now, let's stop and ook at the BASIC program that we have thus
far put together:

20 DIM N$(23)

80 OPEN #0, "AUTOPART"

50 INPUT "WHAT IS THE BART NUMBER : ", N
60 INPUT "WHAT IS THE PART NAME : ", N3
80 WRITE #0, N,N$

a0 GOTO RO

That looks omd works great, it does everything that we set out to
accomplish. I want to turn off the computer and go home for the day.
Before T can lecave I must put all the FILEs back and CLOSE the FILE
cabinet. The computer ts no different, it's got to do the same thing
-- and like lots of people it must be told., We tell khe computer by
this statement:

100 CLOSE #0

That's all there is te that. But wait, if we examine the program
we see that the ecomputer will never get to LINE 100. Everytime it gets
to LINE 90 we have told it to GOTO LINE 50. There doesn't seem to be
any escape., We could just turn the thing off, but that's not
recommended procedure. If we just turned it off while it is in a
program loop (cyele) it may not have completed all its assigned tasks,
and we may not get recorded all the data enlries we need. This is how
we do it:

55 IF N = 0 THEN 100

What this tells the computer is i{f ever the value for the
©.:ble N i3 eqgual to zero then GOTQ LINE 100, 8o when the computer

WHAT IS THE PART NUMBER

if you type in: 0

The computer will GOTO LINE 100 and then the computer will CLOSE
the FILE as instructed, This is called an ESCAPE statement,

-145-

_

SEQUENTIAL FILES / 146

But, that's still not all, there's one more thing that we should
tell the computer, to give it one last chance to do everything 1t was
supposed to do.

Because the computer is "lazy," it will store up 211 its
instrueted jobs and then do them 211 at once, This ability to "put
off doing now, what you can do later®™ is not really a sign of
laziness. It allows the computer to limit disk activity, so that the
disk=-reader is not turning on and off every second or so., The
computer has a built in BUFFER, which is a small memory "ecell" that
stores data that it is to WRITE. If you were to Jjust turn off the
computer as earlier menticned, you would not give the computer an
opportunity to clean out its BUFFER memory. All the information still
stored there would be lost.

For the most part, all of the BUFFER activity would have been
completed at LINE 100, the CLOSE statement. Althou." it pay not be
required, [suggest that the last STATEMENT for any prog. am be:

110 END LJ
This shuts everything down in proper fashion z-+ also tells
anyone who LISTs the program that that last LINE &5 ‘n fact the last

LINE.

e e

o

T

—

— -

29

HOW THE COM UTER
TA

P READS A
TYPE 3 DA FILE

I continue to dwell on the "ins and outs" of data FILEs, because
their sucessful use is dependent on one's total understanding of how
they actually work, This attitude is probably a reflecticon of the
difficulity that T experienced when I was first learning how to use
them. On wmany occasions 1 was unable to get a FILE READ without
generating an ERROR. In the absence of understanding what was going
on, it was almost impossible to correct the ERROR.

Let's assume that we have CReated a2 FILE with the name

FRUIT. If we were able to see the contents of our FILE on the
mini-disk it would look like this:

100 APPLES 200 GRANGES 300 LEMONS H00 BANANAS
500 PEACHES 600 GRAPES 700 PLUMS 800 CHERRIES®

The program used to fill this FILE with data could contain an
assortment of INPUT and WRITE statements, The most obvious would be:

10 INPUT “WHAT IS5 THE FRUIT NUMBER : *, F
20 INPUT "WHAT IS THE FRUIT NAME H
and then
90 WRITE #0, F,F$

If these LINEs were part of a program similar to the program that
was used to fill the data FILE "AUTOPART® earlier, they would generate
YFRUIT® FILE as shown above. But, the same FILE could be generated
from multiple INPUT and WRITE statements.

Consider the following:

-187-

DATA FILES / 1ug

30 INPUT "WHAT I3 TWO TIMES 50 :", J

40 INPUT "WHAT IS NEW YORK'S FAVORITE FRUIT :", P$
60 INPUT "HOW MANY YEARS IN A BICENTENNIAL : ™, T
80 INPUT "WHAT IS FLORIDA'S FAVORITE FRUIT : ", Qf
90D =J+T

100 INPUT "WHAT FRULT GOES BEST WITH SEAFOOD : ™, ¥$
160 WRITE #0¢, J,P$,T,Q9%,D,13

Assuming the expected answers for the INPUT, if we were to look at the
data on the FILE we would see:

100 APPLES 200 ORANGES 300 LEMONS®

Even though our INPUT and WRITE statements were radically
different from the previous example, you'll note that the net result
is identical. PBoth FILEs contain the same daka in the same seguence,
The computer 1s only assigning values to variables and then recording
that information.

The same thing holds true for READing a data FILFE. Using again
our example FILE "FRUIT™, all of the READ statements below when
included in a properly written program will yield the same results.

5 OPEN #0, "FRUIT™
10 BREAD #0 , C
20 PRINT ¢
30 READ #0 , X$
40 PRINT X$
50 READ #0, E
60 PRINT E
70 HEAD #0, G%
80 PRINT G%

90 FHREAD #0, M
100 PRINT M

110 READ #0, S8
120 PRINT S$
130 CLOSE #0
150 END

If we were to RUN a program which contained these LINEs and used the
FILE "FRUIT" as its data source, we would get:

-148-

L

oo

ot

- /"

DATA FILES / tH4g

Or using the same logie, if our program contained:

t0 OPEN 40, "FRUIT"
50 READ #0, C,C$,W
- 60 PRINT C,CH,W

80 READ #0, H$,Y,L$
90 PRINT H$,D$

95 PRINT ¥
| 100 CLOSE #0
110 END
We would get:
-
100 APPLES 200
. . ORANGES LEMONS
300
e
Or for a final example, again using the same premise:
- td> OPEN #0, "FRUIT"®
40 READ #0, A _A$ B,P$,C.C$
: 50 PRINT C§,B$,A$
L- 63 PRINT A,B,C
TO CLOSE #0
80 END
We would get:
]

LEMONS ORANGES APPLES
100 200 3Q0

The point its tha® READing data FILEs is not limited to the same
INPUT that put data into that FILE. Nor must the farmat of OUTPUT
follow the same sequence. The only "hard and fast™ rule that must be
followed is that data must he READ in the exact same order that it is
contained in the FILE.

-149-

CL_

DATA FILES / 150

..

This last statement is5 so Iimportant that I feel an obligation ta
repeat it.

ALL DATA IN A DATA FILE MUST BE READ IN EXACTLY
THE SAME ORDER THAT IT IS CONTAINED IN THE FILE.

-

If were ware to examine our example FILE "FRUIT", we would notice
that the sequence of order of data is:

G

NUMERIC VALUE STRING VALUE HUMERIC VALUE i
STRING VALUE NUMERIC VALUE STRING VALUE i

and s0 on i

Therefore, we must READ our FILE in that same order. If our first
READ statement in 2 program for this FILE was:

S

30 READ #0, R3%

.

We would get:
TYPE ERROR

| S

Which would indicate that we ask the computer to READ a value for
the STRING variable R$ and the first data on the FILE is a NUMERIC
VALUE --- thus the wrong type of data --- thus the TYPE ERROR,

| a—

In order to sucessfully READ a data FILE you must know the
sequence of TYPEs of values contaiped in that FILE, Youwr READ
statement must exactly match the available data to be READ, If it
does not mateh, you will get a TYPE ERROR.

Consider the feollowing program:

=150~

| 2

DATA FILES / 151

10 INPUT ™ WHAT IS YOUR FILE NAME : ", F$
20 OPEN #0, F$

30 IF TYP(0) = © THEN 120
40 IF TYP(0) = 1 THER 60
50 1IF TYP(0) = 2 THEK 90
60 READ #0, S$

70 PRINT ™ STRING ¥,

80 GOTO 30

90 READ #0, N

100 PRINT " NUMBER *,

110 GOTO 30

120 PRINT * END OF FILE ®
130 CLOSE #0

140 END

This program will READ any FILE and PRINT the sequence of wvalue
TYPEs. Thus if we were to use it to READ our example FILE "FRUIT", we
would get:

NUMBER STRING NUMBER STRING NUMBER STRING
NUMBER STRING WUMBER STRING NUMBER STRING
NUMBER STRING NUMBER STRING END OF FILE

This program is able te READ any FILE without knowing the
sequence of TYPEs of data by the fact that we have made provisions for
what the computer is to do no matter what TYPE of data it encounters.
This is done with the TYP FUNCTION,

So much emphasis has been placed on the sequence of TYPE of data
in the data FILE because that is how 1t is READ by the computer when
accessed SEQUENTIALly. FRemember how the "pointer" always starts at
the beginning of the FILE when it is OPENed, 2nd advances through the
FILE at the rate of each READ statement.

The pointer will not go back to the start of the FILE unless you
reQPEN the FILE. If you fail to remember this fact and you are
writing a “search" type program where you want to repeatedly search a
FILE for different kinds of information, vou will emnd up only
searching that portion of the file that kas not yet been READ., The
computer will only READ the data that is left after the last advance
of the "pointer™ (reader arm). Therefore after each "search you must
CLOSE the file and the OPEN it again before starting the next
“search," Let's consider the following example,

-151-

DATA FILES / 152

Let's say that we have (Reated a FILE named YACCOUNTSY,

From BASIC:

on READY or CURSOR type in: BYE
on ¥ type in: CR ACCOUNTS 10
on ¥ type in: TY ACCOUNTS 3

Next we write a program tc add DATA to the FILE named ACCQUNTS,
ACCOUNTS will contain 151l the active accounts of an imaginary company.

Here is the necessary program:

10 GPEN #0, "ACCOUNTS™
20 INPUT "ACTIVE ACCOUNT NUMBER : ",5S
30 JF S = & THEN 60

50 WRITE 0, S

50 GOTO 20
60 CLOSE #0
70 END

Then we RUN the program and add all the account numbers for all

of the active accounts. Now, our file ACCOUNTS looks like this:
M0 200 300 400 500 600 TOD 800 GO0 ¥

NHow let's write a proeram to put all of the above to some
practical use. The purpose of our program i3 to be able to itype in an
account number, and the computer will tell us if thst is an active

acceount .

10 TNPUT " WHAT IS THE ACCQUNT NUMBER : ", X
20 IF X = 0 THEN 140

30 OPEN #0, PACCOUNTS"

40 IF TYP{(0) = O THEN 110

50 READ #0 , P

60 IF P = X THEN 80

70 GOTO 40

80 ! "ACCOUNI NUMBER " ELT IS ACTIVE M

g0 CLOSE ¢0
100 GOTO 10
110 ! "aCCOUNT NUMBER " ,X,™ IS NOT ACTIVE .¢
120 CLOSE #0

130 ZOTO 10

140 CLOSE #0

150 END

-152-

C-

-

——

£ . KD E B L Lo

DATA FILES / 153

If we RUN we get:

WHAT I3 THE ACCCUNT NUMBER : we type in: 400
ACCOUNT NUMBER %00 I3 ACTIVE.

WHAT I3 THE ACCOUNT NUMBER : we type in: 260
ACCOUNT NUMBER 260 IS NOT ACTIVE.

WHAT I3 THE ACCOUNT WUMBER : we type in: 0
READY

If we were to take out LINE 90 and then RUN we would get:

WHAT 1S THE ACCOURT NUMBER : we type in: 400
ACCOUNT NUMBER U00 I3 ACTIVE.

WHAT IS THE ACCOUNT NUMBER : we type in: 200
ACCOUNT NUMBER 200 IS NOT ACTIVE.

Since we know what is on the FILE we know that 200 is an ACTIVE
account, What went wrong? Account 200 would also like to know, They
are sure they paid their bill.

By tzking out LINE 90 we did not CLOSE the FILE, therefore the
"pointer” {reader arm) will start READing the FILE from position
"400". From that "point on" it will not encounter the number 200, but
will reach the END MARK " # % thus indicating that there is wno
active aceount, "200%,

If we were to put LIRE $G Lock in our progi-sm and take out LINE
120 all would go well untii .= had as acceuni ihast wasz fob "active W
Then, 211 future INPUT would icsult in a TYPE EREOR. The reason being
that the "pointer” would he at the END OF FILE and the next thing to
come up would be the END MARYK ~-- * uwhich i3 neitbher a NUMERICAL
VALUE or & STRING VALUE. The other possibility would bhe that the
computer would find mo "active™ accounts.

{I have taken certin liberties in the above explanations in the
interest of best explaining the effects and need of certain progranm
LINEs. The fact is, that by taking out the above mentiloned LINEs the
programs probably would not RUN, since we would be telling the
computer to OPEN a FILE that is already QPEN. Alsc, the format of all
the PRINT statements would not be actually PRINTed as I have
fllustrated them, but the content of these statements would be as
represented. I do not

153

—i——-———.

DATA FILES / 154

!
feel the need to be totally exact and dilute the reader’s L
concentration by mentioning all the possible exceptions., These "halfl
truths” will become evident as you better understand the principles of
the subjeect,}
i
=

That completes this section on "How the computer READs a
SEQUENTIAL FILE." Study this section and remember what it says.
Without knowing the information presented above, you will experience
many frustrations as a result of not being able toc get the computer to
READ a FILE without genmerating a plethora of ¢ILE ERRORs, as I
did.....-

—

—

| SN SoUUE SR

Lo

-154-

| vl

-

=

e

30

HOW TO ACCESS AND USE
SEQUEMNTIAL PATA FILES

Now that we have CReated a data FILE and we have put data into
it, it's time for it to become a useful tool and pay its way. Up to
this point everything that we have done with regards to SEQUENTIAL
FILEs has been for the computer. We've got nothing ocut of it. We
must instruct the computer as to how it camn give us the information we
want, when we want it, This, of course, i3 done by writing another
BASIC program.

When we start to write this program we must remember that the
computer is generally dumb, it can't do even the simplest thing unless
we tell it to. The nice part about the computer is that we need only
tell it once, a2nd it doean't forget.

First, let's consider what we want the computer to do with the
data FILE that we have CReated,

a. Find a data FILE named AUTOPART

b. OPEN it

¢. Search for some specific information

d, Retrieve the informatien if it's there

e, PRINT it cut or display it on the monitor

. Be READY to do it all over again

That's all we want the computer to do with our data FILE.

Following the same line of thought as we did before when we
CReated cur data FILE, we must first locate and OPEN the FILE.

We do that by:
20 OPEN #0, "AUTQPART®
Since we know that some of the "words" (STRING variables) in our

data exceeds the DEFAULT DIMENSION of 10 characters (10 bytes), we
must DIMENSION our STRIKG variable " N§ ™,

—w

SEQUENTIAL ACCESS / 156

So we write:
10 DIM H$(23)

We must decide what information we want and what information we
must type in (INPUT). We can either give the computer the "part nzme”
and asz it to find the "part number" that goes Wwith that name, or vice
versza. Let's szay that we want to be able to tyoe in (INPUT} the "part
number™ and the computer will supply us with the name of the part with
that number. To do this we must supply the "part number.™ Ouvr INPUT
statement would then be:

30 INPUT “WHAT IS THE PART WUMBER : *, P

Now that the computer has the "part number," or in reality a
value for the numeric variable P, that is:

P = Whatever “part numbar™ that we type in

It is ready to go looking for a "part name”™ with a "part number"®
that matches the one we typed in, So we tell the computer to:

40 READ #0 , H,N$

Where:

K = PART MHUMEER in ocur data FILgp

N$ = PART NAME in our data FILE
Remembering what our data FILE 1ooked like, the first time the
computer READs the FILE it will come up With:

N o=z 100

N$ = HY-TEMP SFARK PLUGS

We want the computer to compare the INPUT “part number,"” P with

the stored data "part number,” N. If the two numbers are the same,
then we want the computer to PRINT the Ppart number,” N and its

accompaning “part name," N$. As complicated as it sounds it's neot -
here's how:

=154 -

.__.._‘__“ —— - ___L_.,

mlii;;_.l:::.m_(::; N ange [::;_ N R

— T

r«-‘\-u-

—

o

SEQUENTIAL ACCES3S 7 157

50 IF ¥ = P THEN PRINT N,N$
This LINE tells the computer to do just what we said:

If N (FILE part number) = P (INPUT part number)
Then PRINT N (FILE part number) and N$ (FILE part name)

But what happens if the numbers don't match ? Since we haven't
told the computer what to do in this sitwation, nothing will happen.
The computer will just sit there, the disk-reader will run for a
while, and then all will stop. Our next LINE will therefore be:

60 IF TYP(O) = 2 THEN 40

Since the “part numbers®" didn't match the computer will
immediately go on to the next LINE. LINE 80 tells the computer that
if the next thing to come up on the mini-disk is a numeric value then
GOTO LINE 60, The way it tells the computer all of this iz from the
READ TYP function:

TYP(O}

(I shall go into greater detail in explaining the TYP funetfon in
another chapter. Suffice it to say for the time being that it does
what I have indicated that it does.)

5S¢0 what happens is that if N is not equal to P the computer goes
back to LINE 60 and READs another set (RECORD) of variables. It
continues to do this wntil it finds a set of variables (N and N$)
where N = P, when it finds N = P it then PRINTs the set (RECORD).
INPUT P
READ N, N$
N <> P N =P

PRINT N, H$

=~157=

-u---------I------i----I-I--hH..lI-I-II-------------7

——

SEQUENTIAL ACCESS / 158

The next obvious question should be, "What happens If it doesn't
find &2 mateh 7" Suppose that the INPUT number was never put into the
data FILE, or the operator hit the wromg key and put in a "bad" number
~== what then?

The first thing I can tell you is that if you didn't tell the
computer what to do under these circumstances, it sure as hell deesn't
know. Again, everything will ceme to a stop, or worse, the
disk-reader will just keep running and runaing and running. 1 would
suggest a CONTROL - € if this ozeurs.

You, as the programmer, must anticipate all the possible
occurences, and write the program #£o that when they occur the computer
knows what to do. To digresa for a minute, I wovld like to relate 2
story I read in the newspaper which will i{llustrate my point.

-

-

In 2 state which allows personalized license
plates for automobiles an enterprising computer
programmer requested the license plate "NONE "

The agency which censors personalized plates saw
nothing wrong with it, so the license plate "NONE"
was izsped,

it did not become evident to the authorities
why such a license plate should not have been issued,
until about 200 unpaid parking tickets later.

It seems that whenever an unpaid parking ticket
was turned over to the warrant division, they used
their computer to match the name and address of
the owner of the car with the licenss plates.

The computer was programmed such that if the
license plate number was not az valid match, it
would automatically give it the default number
"NONE", thus making a match impossible.

Now, back to more important things. What to do if the computer
ean't make a match with our "part numbers?n

Do thia: u

70 IF TYP(O) = 0 THEN 870

| S

This tells the computer that if the next thing up on the
mini-disk is an ZND MARK, which would indicate END OF FILE, then the
computer has gone through the entire FILE and has reached the END and
still can not make a mateh. In that case the computer is Instructed
to GOTO LINE 150,

~158=-

[

e r~rr>ccc e e

g BN

SEQUERTIAL ACCESS / 159

Which says:

§0 PRINT " THERE IS5 NO PART WITH THAT NUMBER "

Then we start all over again, with:

90 CLOSE #0

To insure that we start our next search at the "start of file,™
as opposed to starting where the "file pointer” is now located, at
*fend of file."

And then: .
100 GOTQ 20

To start the whole process all cover again,

Let's review our program up to this peint:

10 DIM H$(23)

20 OPEN #0, "AUTOPART™

30 INPUT "WHAT IS THE PART WUMBER : ", P
35 IF P = O THEN 110

L0 READ #0, N,N$

50 IF N = P THEN PRINT N,N$

55 IF N = P THEN 90

60 IF TYP(O) = 2 THEN 40

70 IF TYP(0) = 0 THEN 80

80 "THERE 1S NO PART WITH THAT NUMBER®
90 CLOSE #0

100 GOTD 20

170 CLOSE 40

120 END

That is essentially the whole prograzm. We have only two thing to add:
1. An escape statement. 2. CLOSE and END statemerts. OQur "escape"
statement would be similar ¢ the one we used in the preceding
chapter:

3 IF P =0 THEN 110

=159-

SEQUENTIAL ACCESS / 1560

Such that when the computer asks you:

WHAT IS5 THE PART NUMBER :

and you type in: 0

The computer will GOTO LIKE 310, which says:

110 CLOSE #0

and then: 1290 END

That's all there i3 to it..,.......:

=160~

- o - r— r s r— r— o

37

A CLOSER LOOK AT THE TIYP FUNCTION

We have covered a very complex, but one of the most useful sets
of tools the computer has to offer --- the use of SEQUENTIAL FILES. I
neaed to go back and mention a few things whieh I think would be more
salient now than at the time they first appeared in the program.

My explanation of the TYP lunction was inadaquate, but I did not
want to divert from the point at hand. Therefore, [just briefly
mentioned what the TYP function did in that particular program,
without further explanation., Let's now look at the TYP funetion
closer.

If you remember I said that any time you OPEN a FILE the "reader”
(pointer} always goes to the "front" or start of the FILE. It then
moves in an orderly manner through the FILE, much like the arm on a
record player follows the groves In a phonograph record. There are
many occasions when one dees not want to start at the "“front" of the
FILE. Often it's necessary to start at the end of the FILE.

Let's consider the program we wrote to add data to our FILE
AUTOPART. We have long since CLOSEd that FILE and put it away. HNow a
new shipment of auto parts has just arrived, and we must add these new
items to the FILE. If we were to use the program we had previously
written, we would have a minor disaster.

Why would we have a "disaster" when it worked so well before?
The reason is, that by OPENing the FILE again the pointer (reader)
starts at the bheginning of the FILE, as it always doea. If you were
to RUN the program as written, without making any changes, you would
be erasing previous data at the same rate that you were adding new
data. You would be "over writing®™ anything that was already on the
mini-disk and when you finished adding your new data, that's all that
you would have -~- your new data.

Even If you added only one {tem and the FILE already had 236
other data entries, you would still end up with a FILE with only one
item on it. The reasan is that when the computer finished writing
that single item on the mini-disk, it would thenm place an END MiRK
after {t. Thia of course, would tell the computer when it goes to
READ the FILE, after it READs that single item and then encounters an
END MARK, that that is the "end of file.®

-161-

|

TYP{0) FUNCTTON / 162

Now, all of this is all right if that’s what you intended to do,
but if you meant to add the data for the new auto parts at the end of
all previous data entries, then you've got teo *ell the computer to do
it that way. Here's how

RN G

Whenever bthe computer READs a data FILE on 3 mini-disk 1t always
"looks" one step ahead --- it always knows what's coming up next. We
are provided with a method to taske advantage of this fact, it is
called the TYP FUNCTION. Like all other FUNCTIOKs discussed, it is
part of the BASIC LANGUAGE program, and is there to be called upon
when needed.

Let us look at ocur original program that we wrote to add datsz to
our FILE AUTCPART:

| GUN S S

10 DIM H$(23)

15 OPEN #0, "“AUTOPART®

30 INPUT " WHAT IS THE PART NUMBER : ", N
490 IF N = ¢ THEN B0

50 INPUT ™ WHAT I35 THE PART NAME FEL I 3.
60 WRITE #0, N,N$

70 GOTO 30

&0 CLOSE #0

90 END

If we make the appropriate changes, such that we can add new data
to the end of the old data, thus expandirng our FILE AUTCPART. OQur naw
program to add additional data to the FILE would look like this:

.

10 DIM N$(23}
15 OPENW #0, "AUTOPART"
------- 22 IF TYP(G) = 0 THEN 30

I 24 IF TYP(O} = 2 THEN 26
I 26 READ #¢, W1, N1
——————— 28 Goto 22

30 INPUT " WHAT IS THE PART NUMBER : *, N
80 IF N = 0 THEK 80

S0 INPUT " WHAT I3 THE PART NAME : ", N3
60 WRITE #C, N, N$

| S o

70 GOTO 30
B0 CLOSE #0
90 END

-162=

N o~G WD ~~o e

e

TYP(O) FUNCTICON / 163

43 you can see, both programs are exactly the same except for the
inelusicen of LINEs 22,24, 26,and 28. Let's examine exactly what each
of these LINEs does and how they affect the program.

22 IF TYP(O0) = O THEN 30

This tells the computer that IF the next thing to come up on the
FILE is an END MARK, THEN go to LINE 30, LIMNE 30 is really the start
of our program for adding data to our FILE after it is properly OPENed
and DIMENSIONed.

24 IF TYP(D) = 2 THEN 26

This tells the computer that IF the next thing to come up on qur
FILE is a NUMERIC VALUE {(number), them go to LINE 25.

26 READ %0, N1, Ni%

The computer already knows that the next thing to come up is a
NUMERIC VALUE, that's why it came to LINE 26. We already know that
ocur FILE is constructed of sets (RECOBDs) of a NUMERIC VALUE {(part
number), Followed by a STRING VALUE (part name}. Since we know how
the FILE i3 constructed, we also know that the computer can not READ
another NUMERIC VALUE until after it has READ a “part name," a STRING
VALUE. Knowing all of this, we are in a position to tell the computer
what to HEAD so that we know that the "next thing to come up" on the
mini~-disk will either be a HUMBER or an END MARK.

The other thing of interest which you may have noticed is that we
have changed the "names" of both of the variables. N has become NI
and N$ has become N14. We must differentiate between typed in {INPUT)
values =-=-- N, B$ and READ values -~-- N1, N1%. If we did not, the
computer would already have z value for the "part number® and "part
name," it would be the last set of values it READ from the mini-disk.

For this particular program it would not make any difference,
since we immediately assign new values for N and N$ by ocur INPUT
statements. It i3 generally not in your best

-163-

TYP(O) FUNCTION / 164

L

interest to use the same variable "names"™ for "proecedural tasks,” such
as setting the "file pointer" to the proper position, as yor uze for
"actual values" in your program. You may inadvertently assign a2 value
to something without knowing it, particularly when you are wiruing
with long complicated programs.

28 GOTO 22

The only way the computer could have gotten to LINE 28 was to
have not encountered an END MARK when it READ the FILE., Since we are
trying to set the pointer (reader arm) to the "end of FILE" so that we
can add additional new data, we know that we have not reached the "end
of FILE" and therefore must send the computer back to READ more data,
That is what LINE 28 does, it starts the READ cycle (loop) all over
again, Thus we get:

CHECK FOR END MARK

NO YES Lj
CHECK FUR NUMBER START WRITING
READ 3ET OF DATA READ SET OF DATRA

This cyecle {loop) will continue until the computer finally
encouriters an END MARK. When the computer has READ Lhe entire FILE
and hus placed the peointer (resder arm) on the eventually found END
MARK, the file peinter Is then in the proper position to WAITE new
data at the end of all previous data. Thes starts the INPUT portion
of your program and then the WRITE portion.

We can now add new data to this FILE at anytime without fear of
"over WRITEing"™ any previous data. Ko more problems - right? Not
50.... ¢veryltime we resclve ¢ne problem, we potentially create another
one. Since the computer can not think for itself and must rely on you
to do its thinking, it is at a disadvantasge., We humans usualily
resolve immediate problems with little regard to long term effects, as Lj

gvidenced by the solution of the above problem. What we did works and
works well,for cur particular set of cireumstances. However, there is
sti1l one "flaw" in the system, or maybe 1 just haven't learned how to
get around iL.

~160.- u |
S

o

TYP(Q) FUNCTIORN / 165

If you were to take our "new improved" program above and start
with a new unused mini-disk; our FILE properly CReated and TYped,
everything exactly as it should be; and try to RUN it --- it wouldn'k
work.

The disk-reader would come on and just run and run and run
after a while the computer may turn it off or it may not. To put a3
STOP to this, press the CTRL key and the "C" key at the same time
(CONTROL C), Everything will come to a STGPF and READY will again
appear on the monitor.

Now, let's see if we can figure out what has happened. Our
approach to the solution must be guided by the fact that the computer
is very unylelding and that it always does what it 1s told to do.
Since we feel sure that we have not erred, as evidenced by the fact
that we have already successfully RUN this program before, it must be
a malfunction of the equipmeant --- our natural instinct is to blame
that which we least understand. HNot s0

Granted, the computer does exactly as it is told to do, but if we
fail to tell it to do something then it is left in the position of not
knowing what to do. That is what we have done with our new, improved
program. LINEs 62 and 63 tells the computer what to do if it finds »
number or an END MARK. But nowhere have we told the computer what to
do if it doesn't find anything. On a “brand new" FILE that has never
been written to there would not be a number or an END MARK. HNeither
condition of our program would be met and we have not told the
computer what to do under these circumstances.

Not only have we not told the computer what to do in a situation
like this, neither has the manufacturer, nor has the "person" wheo
wrote the Disk Operating System, nor the "person" who wrote the BASIC
language program =--- nabody tald the computer what to do. So, don't
feel like 1t's just our dumb mistake.

I would suggest another TYP FUNCTION to handle a zituation like
this, which would tell the computer that if it Finds & "c¢lean" FILE
then go back to the "start of FILE™ and continue with the rest of the
pr:g:au === but, none presently exists. The problem however, does
exist,

There are a couple of ways to program around the problem, both
are essentially the same. One is that you c¢an at the start of any
program which is used to add data to a FILE, include an INPUT
statement which ask: ARE YOU STARTIHG A NEW FILE 2 1If you type in:
NG, then the program proceeds as normal. If you type in: YES, then
the program is routed around the TYP FUHNCTION statements and
im:ediately goes to the INPUT and WRITE statements for the first data
entry,

-165-

*‘

—_

TYP(Q) FUNCTION / 166

Such as the lellowing:

T7 INPUT ™ ARE YOU STARTING A WEW FILE 7 ", Y%
18 IF ¥$ = “YES" THEN 30

|

This method i3 quite effective, hut requires that you respond to
the INPUT question everytime you RUMN the program. 3ince in my
situation T don't start a new FILE that often, I prefer to just type
in a GOTO statement on those acecasions when I do start a new FILE.
Thus 1 include:

18 GOTC 30

for just that first data entry. The program is written So that it
never goes back te LINE 18 for all subsequent dats entries. Since T
don't SAVE the program with LINE 18 in it, the next time I LOAD the
program it is not there.

There is a hazard in using this method, in that if you route your
program arcund the TYP FUNCTIONs in any subsequent data entries, you
will end up with only one data entry =-~-- the last one you typed in.
To insure that this doesn't happen, it's a good idea to STGP the
program after the first data entry and DELete LINE 1B8. Then, the
program will be exactly as originally written,

S

d

-
32

HOMW TO COPY A DATA FILE
FROM ONE MINI-DISK TO ANOTHEHR

There is no real problem with transfering a TYpe 3 data FILE from
one mini-disk to another, it just has to be done by some method other
than the LOAD and SAVE method used for programs written in BASIC,
i.e,, TYpe 2 FILEs. ’ :

Essentially, what you must do is ReaD a specific number of blocks
of data at a specific starting place (ADDRESS) on the mini-disk inte
the computer, then put in the "neu® mini-disk and WRite the same data
to a specific Disk Address.

This method can be used to completely copy anything that is on
one mini-diak to another, not limited only to TYpe 3 FILEs. You
alternately ReaD a specific number of blocks into the camputer's
memory (number of blocks dependent on available memory) from the "old"
mini-disk, and then WRite them out of the computer's memory at a
specific Disk Address on the "pew" mini-disk.

Here is how to do it for a TYpe 3 FILE:

1. Put the computer in the DO3 mode.
a. From start up type in: EX ES00
b. From BASIC: on READY type in: BYE

2. Put the mini-disk with the TYpe 3 FILE to
he transfered in the disk-reader.

3. On % type in: LI
Let*s suppose that the FILE that we intend to

¢opy 18 named CUSTOMER and it is S0 blocks
long. When we LIst we get:

CUSTOMER L] 50 3

Which indicates that the FILE name is CUSTOMER,
it starts at block ¥ {disk-address), it is
5C blocks long, and it is a TYpe 3 FILE.

-167- [

COPY DATA FILES 7/ 168

How put the "new" IKITIALIZEd mini-disk into
the disk-reader and Cheate a FILE named CU3TOMER
that is 50 blocks long.

Te do this you:
On * type in: CR CUSTOMER 50

We must tell the computer that the FILE with the
name CUSTOMER is a TYpe 3 data FILE. You then:

On ®* type in: TY CUSTOMER 3

S0 that we know where to tell the computer to
WRite the stored data it got from RezDing the
"old" mini-disk, we need to know the Disk Address
of the FILE named CUSTOMER on the "new™ mini-disk
To find that out we:

On ¥ type in: LI

We get:

CUSTOMER 135 50 3

Let's stop and recap what we've done and what we
want to do, First look at the Disk Address:

"olgn CUSTOMER L] 5¢ 3
"new" CUSTOMER 135 50 3

We want the computer to ReaD 50 blocks of data
from the "cld" FILE named CUSTOMER starting at
Pisk Address 4 and store it in its "regular®
memory {(READ ,WRITE,LOAD,SAVE, and program
pertion of the memory). So that's what we tell
it:

=168~

soull vadll sk

C

|

W

COPY DATA FILES / 169 !

on * type in: RD 4 2400 50

This command tells the computer to go to Disk
fiddress 4 and ReaD the next 50 blocks and store
this data in a "box" in the computer with the
ADDRESS 2400 (hex RAM address).

8. We now want the computer to WRite the 50 blocks
of data that it has in 1ts "“regular™ memory to

a FILE on the "pew" mini-disk {(put it in the
disk- reader) with the name CUSTOMER, whose

Disk Address is 135. So that's what we tell the
computer to do:

On # type in: WR 135 2A00 50

This tells the computer to go to @ “"box™ that

is located at ADDRESS 2A00 somewhere inside

it. Get the contents, 50 blocks of data, from
the "box™ and WRite it on the mini-disk starting
at Disk Address 135.

The best way that you can be sure that all went
well is to RUN a program that accesses this FILE
and uses the data.

Another method is the use of the following
program. I have named the program FILELIST
and would recommend copying the program in
BASIC, end SAVEing it as one of your general
use programs.

10 REM THIS PROGRAM PRINTS THE CONTENTS
20 REM OF A TYPE 3 DATA FILE

30 DIM N$(300)

40 INPUT "TYPE IN FILE NAME : ", F$
50 OPEN #0, F$

60 IF TYP(0)x0 THEN { "END OF FILE"
65 IF TYP(0)=0 THEN 140

70 IF TYP{0)=2 THEN 110

80 READ #0, N$

90 t TAB (15),43

100 GOTO 60

110 READ #0, N

120 ¥ TAB{(6},N

130 GOTO 60

140 END

=-169-

COPY DATA FILES / 170

As I menticned earlier this method of ReaDing and WRiting from
one mini-disk t¢ another is not limited only to transfering TYpe 3
data FILEs, but may be used to capy entire mini-disk includiang DOS,
BA3IC, and any other TYpe programs and their LIsting. However, it is
the most practical method for TYpe 3 FILEs,

It is most important to develop a full understanding of this
technique and be able to have it available when nee¢ded. As with other
TYpes of programs, one should never have only one copy of an impeortant
program, this includes data FILEs.

=170~

| ORI GO S

C

™

33

HOW TO RANDOM ACCESS DATA FILES

That is not a question, but the title of this chapter. Not too
many days ago it was a question for me, I had already decided not to
ineclude the subjeet, because it was outside the scope of this book.
(That's literary talk for, * I don't understand it well enough to
write about it.") I gave it one more try and all of the sudden, for
the first time, it made sense.

I can now tell you that RANDOM ACCESS of data files is just as
logical and just as easy as all the other phases of operating one of
these computers, if you finally get to the point that you understand
the principle of the thing. I had already read that RAMDOM ACCESS was
an advanced technique. This statement alone had made me declde not to
spend the time to figure it out t11]1 Y absolutly had to.

I finally had a reason, I have a very long data file which lists
all the customers and thelr addresses for the company I work for. The
file was set up 30 that the most frequent customers were at the front
of the file and the occasional customers were near the end of the
file. Since this file was READ by SEQUENTIAL ACCESS, it saved time by
setting the file up this way. No sconer than I had entered all the
nemes and addresses (about 200), than one of our very good customers
moved. [was faced with the decision of either learning RANDOM ACCESS
or reINPUT all of the data into a new file,

After reading the "computer manual”™ for the tenth time I almost
optioned for the latter. Here i3z what the "computer manual™ tried to
say but never quite could

In general all youw do is READ or WRITE to a specifie place
(ADDRES3) on the "minji-disk." To determine the starting point
(ADDRESS) where you want the computer te READ or WRITE, you must by
some method tell the computer how many "bytes" tc skip over before it
starts. Let's consider the simple READ statement:

10 READ 4,B,C

This READ statement tells the computer to READ a set of three
numerical variables -- A,B, and C. In a DATA statement or in a DATA
file this set of three numerical variables would exactly match the

variables in our READ statement. This SET of numerical values is
called a RECORD.

=171~

RANDOM ACCESS s 172

file:
First

3. On *
4, On *

10
20
30
40
50
60
70
g0
90

If we RUN we get:

VARIABLE
YARIABLE
VARIABLE
VARIABLE
YARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
READY

CREATE

——————

type in:
type in:

Let*s CReate a file,

QPEN #0

GOTQ 20

IF &
INPUT ™ VARIABLE C

write a program,

a Tile named

1, If you are in BASIC mode: ON
2. Turn on "disk-reader®" insert INITALIZED "mini-dise™

CR FILE 5
TY FILE 3

, "FILE"
INPUT * VARIABLE
=0 THEN 80
INPUT ™ VARIABLE

WRITE #0 , A,B,C

CLOSE #0

AP OO O@ROD o Cm e

END

o H o

LU LTI L 1O | I T I R TR | I T

L T

wWe
we
we
we
we
wWe
we
wWe
we
we
we
we
we
we
we
we

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:
in:

DAVA R E Bl ta b IR - -

=172~

READY

This program will add DATA to our “FILE":

A
B

How our "FILE" is complete with DATA...

If you were able to see the data on a "mini-dise™ 1t would appear
as a series of sets (RECORDRS) of three numeric values each.

and WRite data to the

"FILE"

Lype in: BYE

- . . L

[.

RANDOM ACCESS / 173

This "FILE"™ can be ACCESSED by either SEQUENTIAL or RANDOM ACCESS
methods, as can most Files.

Let's say that the data in the "FILE"™ looks like this:

RECORD #1 1 1 1
RECORD #2 2 2 2
RECORD #3 3 3 3
RECORD #4 4] b
RECORD #5 5 5 5

Jommmmam-— I {"end mark")}
Each RECORD in our "FILE" occupies a specifie number of bytes.
REMEMBER: EACH NUMERICAL VALUE IS FIVE (5) BYTES

This is true regardless of the size of the numerical value
i.e...number. 1 = 5 bytes and 1,000,000 = 5 bytes. Since cur "FILE"
has three numerical values in each RECORD, each RECORD contains: 3
times 5 bytes for a total of 15 bytes.

3 NUMERICAL VALUES X 5 BYTES EACH = 15 BYTES
The RANDOM ACCESS READ statement for our PFILEY would be:
10 READ #0 $15%K, A,B,C
The 10 . . .is the LINE NUMBER.

The READ #0 . .is the READ "command" to the computer to
tell it that it is reading a "mini-disc"
file.

The 1. .. .is the "command" to the computer to evaluate
the following arithmetic expression and
Pskip® that many bytes before it READs the
specified values,

-173-

RANDOM ACCESS / 174 _J !
i
)
The 15is the number of bytes in each set (RECORD). Lj !
The X. . . .is the number of RECCRDS (sets} to be skipped » E
It is also equal ta one less thanm the RECORD LJ
NUMBER . ,
|
The A,B,C . . .is the names of three numerical variables ; I
that the computer is to READ values for. |
|
Let's look at what we have: LJ i
_ o |
x RECORD # A,B,C ADDRESS BYTES TOTAL BYTE3
O RECORD #1 1 1 1 £15%Q 15 15 i
! RECORD #2 2 2 2 %1581 15 30
2 RECORD #3 3 3 3 £15%2 1% 45 i i
3 RECORD #4 4 [4 %1533 is 60
4 RECORD #% 5 5 S 315% 15 1% [

Now congider our READ STATEMENT azgain:

10 READ RO $£15*X ,a,B,C
This is the same as: L‘

SKIP 15 BYTES ¥ TIMES THEM FREAD A,B,
1 15 * X , A,B,

(1 understand that the times sign {(*) and the X get mixed up, but

just read through it.)

Mow let's consider some examples and use the above chart to
follow our examples like the computer,

10 READ #0 %15%X , 4,B,C

The computer will skip the First two RECORDS and then READ values into
our variables from the third RECORD.

If we want to know what A,B, & C is in the third record we set K = 2. li

-174= Lj ‘

e e e

— s e

—

RANDOM ACCESS / 175

€1 m -
0oy
et

If we want to know what A,B, & £ is in the first record we set X = 0.
This tells the cowmputer not to skip any RECORDS, but to READ the
values into our variables from the very first RECORD.

o
Hunn
—

If we want to know what A,B, & C i3 in the Jth RECORD we set the value
of X = J - 1, Using the variable expression J - 1 to replace X, since

they are the same, enables us to then type in the exact RECCRD number
we want to READ or WRITE. If our READ statement was:

10 READ #0 %15%(J-1)} , A,B,C

If we set J = 3 (We want to READ RECORD #3) we get:

0o
Honon
Ak Lad L

K program that would RANDOM ACCESS this "FILE" would be:

10 OPEN #0 , "FILE"
20 INPUT "WHAT RECORD KUMBER DO YOU WANT : * J
30 IF J = 0 THEN 70

B0 READ #0 $15%(J-1) , A,B,C

50 PRINT A&,B,C

60 GOTO 20

70 CLOSE 40

80 END

-1765=

RANDOM ACCESS / 176

If we RUN we getl:

WHAT RECORD NUMBER DG YOU WANT : If wa type in: ¥
We get: 4
Yy
y

WHAT RECORD NUMBER DO YOU WANT : If we type in: 2
We get: 2
2
2

WHAT RECORD NUMBER DO YOU WANT : If we type in: ©

We get:
READY

To change a value in a RECORD {set) in our example "FILE"™ is a
1ittle more complicated, but not much, Let's First look at our “FILE”
structure again:

RECORD # 1 11
RECORD # 2 2 2 2
RECORD # 3 303 3
RECORD # U bbb
RECORD # 5 5 5 5

P 1

8ince we have zlready established that:

10 READ 20 %15(J-1), 8,B,C

will =sllow access to a specific RECORD by setting the variadle J equal
to that RECORD nunmber, let's review how we arrived at the sccess
expression: $15%{J=1), The 15 was the sum of the “hyte space"
occupied by the three numerical values for A,B, and C.

A = 5 bytes

B = 5 bytes

C = 5 bytes
-176-

L.

o

rrr - - r— Mmoo

r—

—

RANDOM ACCES3S / 177

If we set J = 3 for our READ statement the computer will send the
"pointer™ to the start of RECORD number 3 and READ the next 15 bytes
for the values of A,B, and €. It would asctually go to the start of
RECORP number three and READ the first 5 bytes for the value of A,
then READ the second 5 bytes for the value of B, and them READ the
third 5 bytes for the value of C.

The fact that we know that that's how the computer will READ the
"FILE" enables us to derive an ADDRESS for each individual value for
4,B, and C,

The ADDRESS for A is : %£15(3=1)
The ADDRESS for B i5 : %15(3-1)+5
The ADDRESS for € i3 : %$15(3=1)+10

Femember, that all the ADDRESS does is to tell the computer where
to start READiIng. So if we tell the computer to go to the ADDRESS for
A it will auvtomaticaly READ the next ™five byte space®™ for the value
of A. For this reason the ADDRESS for the variable A fs the same as
the ADDRESS for the RECORD.

The ADDRESS, "starting pofnt", for variable 5 would be the same
as for variable A plus the "byte space" used for variable A i.e.. five
bytes, If the computer was told to READ variable B, using the
ADDRESS given above, it would "sakip" two Fifteen byte RECORDS (3-1}
and then "skip” five more bytes (+ 5) and then READ the next Pfive
byte space"™ for the value of variable B .

The ADDRESS for variable C would be the same as for variable A
plus the "five byte space" used for variable A plus the "five byte
3pace” used for variable B, so the ADDRESS, "starting point", for
variable C would be:

215%{3-13+10.

We now know how to get to each individual value for each
individual variable. By changing our READ statement we c¢an now ACCESS
any single value for any single variable. If we wanted to know the
;alue of B in the Jth RECORD of our "FILEM our READ statement would

-

10 READ #0 %15(J-1)+5 B

=177

RANDOM ACCESS / t78B

For variable C it would be:
10 READ #0 %t5{(J-1)+10 , C

For variable A& it would be cur original READ statement, except we will
tell the computer to READ only variable A:

10 READ #0 $15{(J-1) , A

Once you have learned hew to get to a specific pilece of data,
changing 1t should present no particular problem. Just getting there
was most of the battle., First we must urite a program which will
allow us to OPEN the "FILE®", INPUT cur change, ADDRESS the “FILE",
WRITE our change, and then CLOSE the °"FILE". The necessary program

would be:

10 INPUT "DO YOU WANT TO CHANGE A , B , GR C : *, W§
20 INPUT "WHAT DO YOU WAKT TO CHANGE IT T (R

30 IF W$ = "A" THEN P = 0O

40 IF W$ = "B" THEN P = 5

50 IF W$ = “C" THEN P = 10

60 INPUT "WHAT RECORD # DO YOU WANT TO CHANGE : ",J

70 OPEN #0 , "FILE®
80 WRITE #0 %15%(J-1)+P , T , NOENDMARK
90 CLOSE #0

100 END

Now lett's track the program and s=e what's happening.

LINE 10 .. This INPUT tells the computer which variable you
are going to change by assigning the variable P
toe the variable you type in - A, B, or C. The
variable P is used in the ADDRESS to set the
peinter “up" the proper number of additional bytes
for the individual variables A, B, or ¢,

LINE 20 .. This INPUT assigna a value to the variable T

which assumes the position of either &, B, or
C, the one youw wanted to chsnge in LINE 10,

-178-

|

—
el

. C

rrr rmrm Moo

=]

4

—

RANDOM ACCESS / 179

30

LINE 40 ,. These three LINEs assign a value to the variable P.
S0

LINE 60 ,. This INPUT tells the computer how many RECORDS to

nskip.®
LINE 70 .. This statement OPENs a file named "FILE".

LINE 80 .., This is the statement that essentially does all
the work. It takes the information from all the
INPUT, determines the ADDRESS, then WRITEs the
new value at that ADDRESS.

But what's that at the end of LINE 80 -- ? "NQOENDMARK™ t If you
will remember we previously said that after the computer executes a
WRITE statement it automatically prints an "END-MARK", This indicates

. that this entry is the last entry of a WRITE statement.

We certinly den't want an "END-MARK™ in the middle of a data
file. It would do two things: Number 31, it would play havoc with cur
"byte count system™ we have established to determine the ADDRESS,
since the "END-MARK"™ would throw in an additional byte, Number 2, it
would indicate to the computer if one were using the SEQUENTIAL ACCESS
method that it had rezched "end of file,” when in fact it was in the
middle of a "FILE".

If we did not tell the computer not to put an "END-MARK"™ after it
finished its WRITE command, ft autematically would. Since we don't
want it we must include the "reserved word"™ NOENDMARK at the end of
the WRITE statement.

Keep in mind, however, what would happen if we had to change the
very last variable of the very last RECORD in the "FILE" -=--- we
would end up with NO END MARK at all. If we were to access this
*FILE" by the SEQUENTIAL ACCESS method and you got te "end of flle"
and there was NGENDMARK the "disk-reader™ would just keep running and
running and running.

$This would not be a problem for the "FILE" that was only RANDOM
ACCESSED since you would always tell the computer the specific address
that you want it to go to.

This is not the laat word on RANDOM ACCESS, but it will give you
a working knowledge of how to use it for numerical variables.

=-179-

RANDOM ACCESS s 180

Isn't there more to life than just numeriesl variables? There
must be! Yes, Virginia, tlhere is; there's STRINGS. STRING variables
(words) present a greater challenge Lo RANDOM ACCESS of data files,
but a challenge thalt you are very close to meeting.

With numerical variables the computer reserved s specific number
of bytes for each variable. For the number three the computer
reserved the same number of bytes as it would for the number three
million. It may not make any sense but you can always "count" on it
w—e= and we did,

Since a string (word) variable can potentially range in size from
one byte te 89,500 bytes, {maximum determined by total number of bytes
that can be stored on a single ™mini-disk,"™ plus or minus 2 or 3} and
the computer handles strings differently from numbers, it would be
impossible to pre-size (dimension) a string variable.

The key word im the above "paragraph sentence™ is the word
DIMENSION ---- remember the DIM statement. Te quickly review, an
unDIMENSIONed string (word) has the default DIMENSION of 10 or, if vou
1ike, 10 bytes. If the string is shorter than !0 bytes, and you know
it*s zn unDIMENSIOMNed string, this creates no particular problem. If
the unDIMENSIONed string is longer than 10 bytes (characters) the
computer will use only the first 10 bytes and ignore the remaining
characters, Thus:

GO TO HELLISPORT
If left unDIMENSIONed becomes:
GO TO HELL

Which i3 not what we want. Remember each string variable must be
?IHENSIONed or it will assume the default CDIMENSION of 10 characters
bytes),

To determine the size of a File RECORD (set of variables) which
contains one or more string variables, all we do is count the number
of bytes (characters) im each string and then add 2 bytes for each
string variable. Let's first CReate a file and write z proeram to
WRite data to it:

1. Get in the disk operating system (DOS),
A. From start uvp, load from "mini-disk": EX E900
B, From BASIC wmode, type in: BYE

-180-

L . -

| SR G GG SR SRl Gt S G S S

—~—m

L=

| S,

r s rr r-r rc rrmmr- T rTcrreoe T

—

RANDCM ACCESS / 181

2. ON ®* type in: CR FILES S
3. ON ® type in: TY FILE$ 3

4, Put the computer in BASIC mode.
A. From start up: ON * type in: GO BASIC
B, If BASIC has already been LOADed cnce
ON ¥ type in: JP 2A08

(In all instances where you "type in" always follow that by
pressing the RETURN key - I forget to mention that sometimes}

The nice thing about numeric FILEs and RANDOM ACCESS is that
there are very sirict rules for the computer to follow that are part
of the operating systems of the computer, the DISK OPERATING SYSTEM,
and the BASIC LANGUAGE program. The programmer is not bothered by all
the internal goings on and the how and why it works. 1If the
programmer properly sets the disk in motion, the computer will do the
rest. He need not be bothered with the "size" of any numeric value,
how many bytes are required to store it, or adjusting the program in a
specifie order, All of these factors rewain coastant for all numeric
values, If you know what to do with one numeric value, then you know
witat to de¢ with all numeric values,

However, such is not the case with STRING variables and their
relationship to TYPE 3 DATA FILES and RANDOM ACCESS. All of the
sudden life becomes very complicated, and you have to pay attention to
every minute detail. An error can produce irreparable consequences;
resulting in erroneous values, if any, and could render a DATA FILE
that may have taken months to prepare completely useless in just a few
microseconds. How could such devastation be brought about by just one
little eérror or miscalculation?

When you start writing to a DATA FILE by RANDOM ACCESS, at least
two significant things happen: one, whatever you tell the computer to
WRITE it writes, and two, wherever you tell the computer to WRITE it
writes, There is no consideration on the computer’s part as to
whether the file pointer is at the start or end of file, or whether
the sequence that you are WRITING is in the same format as other DATA
in the FILE. When you tell the computer to WRITE something at some
place in the DATA FILE by RANDOM ACCESS, the computer will obey and
will overwrite anything at that place, even if it's right in the
middle of another variable--it's done., This is why even a small
mistake can be amplified a thousand times.

-181-

RANDOM ACCESS / 182

Now that I've made you almost afraid to mess with RANDOM
ACCESSing of DATA FILEs which contain multiple STRING VARIABLES, I
will tell yort that if you fully understand what's going on you will
never experience any of the above. In addi.ion to that, I wiil alse
tell you that fully understanding what's geing on is no big deal.
Here's now to do it....

First you will need to remember a lot of the things that we have
already discussed and used. Having done this, ycu must then forget
about half of the "rules," because they don't a2pply. The most notable
of these is the stuff about an unDIMENSIONED STRIKG VARIABLE always
having a default value of ten bytes, and Lhe computer always
*reserving”™ that space. When it comes to WRITING te a DATA FILE, the
only space "reserved" is two bytes plus the exact size of the STRING,
Unlike numeric values, which all require the same “byte space” -- 5§
bytes; each STRING value for each STRING variable could and probably
will require an assortment of "byte spaces™ when the values are
written to a DATA FILE.

On the surface, if you fullv understand the significance of the
above sentence, this would seem to make RANDOM ACCESSing of DATA
FILES, which contain STRING variables, an almost impossible task - how
would one e.er know the exact size of each and every RECORD? Consider
this example:

RECCRD #1 S JOKES 200
RECORD #2 19 SMITH 575
RECORD #3 154 CLARK B00G
RECORD #4 279¢ ADAMS 2

Each RECORD in this FILE contains 17 bytes.

RECCRD #1 5 JONES 200
5 bytes «+ f+2 bytes + 5 bytes = 7 bytes
RECORD #2 19 SMITH 575

23N 29 0N +444s

The READ STATEMENT that would be used to RENEOM ACCESS this PETA FILE
would be:

20 READ #0 $317%(J-1),A,8%,C

-1R2-

[m——

= o oo

| S

r**_

—

B

RANDOM ACCESS 7 183

Which says:
SKIP 17 BYTES (J-1) TIMES AND THEN READ 4&,8%,C

Where J is the desired RECORD number.

That's simple enough -- but we had one thing going for us; all the
names in the FILE were exactly the same number of characters - 5
bytes.

Consider this FILE:

RECORD #1 5 ROXANNE 200
RECORD #2 18 GREG 575
RECORD #3 154 KATHY 8000
RECORD #4 2784 ELTZABETH 2
RECCRD #1 5 ROXANKE 200
5 bytes «+ T+2 bytes + 5 bytes = 19 bytes
RECORD #2 19 GREG 575
5 bytes + 442 bytes + 5 bytes = 10 bytes
RECORD #3 154 KATHY 8000

5 bytes + 5+2 bytes + 5 bytes = 17 bytes

RECORD #4 2784 ELIZABETH 2
5 bytes * 9+2 bytes 5 bytes = 21 bytes

+

Nothing short of a very complicated serlies of separate READ statements
For each RECORD would allow us to RANDOM ACCESS this FILE as it is
written. Yet, this FILE seems very typical, and common sense tells us
that FILEs such as this are RANDOM ACCESSed a million times a day.
"So how do they do it ?" you ask. Here's how....

I am sure that there are a covey of ways to do it, but the following
method seems the most logical to me,

If we look at our second example FILE, we see that no name in {t is
greater than 9 bytes, If we are sure that all future DATA for the
STRING variable will not exceed nine bytes, we then DIMENSION that
STRING variable to nine == DIM A$(9). We could just as eaaily have
DIMENSIONed it to 10, or 22, or 200, or any 3ize that we needed. OCur
expected DATA would have determined the required DIMENSION.

183w

RANDOM ACCESS / 1Ra

One would think that in view of the existence of zne default DIMENSION
of 10 for all unDIMENSIONed STRING variables, thzt the computer would
automatically reserve 10 byte spaces, and we woulin't have to bother
with a DIMENSION statement, since we could just as easily ovsed 2
default silze of 10, WNWot so.... As 1 said eariier, all STRING
variables occupy only the number of bytes for the characters in the
STRING, plus 2 or 3 additional bytes for "disk format.™ If the STRING
is less than 256 characters, it is 2 additional bytes; il greater than
256 characters, it is 3 additional bytes.

In order to RAMDOM ACCESS a TYPE 3 DATA FILE which contains variable
lezngth STRING variables, one must devise a method of being able to
determine in advance the size of each RECORD. The easiest way that 1
know to do this is to determine in advance the maximum size of the
largest RECORD in the FILE, and then fores the compuber to make all
the RECORDS in that FILE that size. This way you will know in advance
the size of each and every RECORD, thus you will be able to provide
the reguired "pointer instructions" for RANDOM ACCESS.

Again, considering our second example file if we make the first
variable &, the second variable B$, and the third variable C, we would
want to READ or WRITE A,B$,C for each RECORD in FILES.

If we DIMEKSION 8% to 9 bytes - DIM B$(9) - this would allow E$ to
contain one to nine characters. That's not what we want, we wart it
to always contsin exactly 9 characters (9 bytes}. So we must create a
second STRING variable - L$ - which will always be equal to 9 bytes.
We do this by:

Where there are exactly nine "dots" between the guotation marks. This
is the key to the whole thing - L3. let's see how we will use the key
to unlock the mechanism that will force tbe computer to alweys make B$
contain the required nine bytes, Thus, allowing us to determine the
exact size of our RECORD3 in our FILES,

Consider this:

1st...By DIMENSIONing B$ to 9 ---~ DIM BE(%)
we allow B$ to comtain 1 to 9 characters.

2rd...We have made L$="......... "

-189-

| GO U

ot

e

e L T L

bl

e

R —~—— - """ "~}
RANDOM ACCE3S /7 185

3rd...We create yet another STRING variable
- B1$, which we alsoc make DIM B1$(9).

Our reason for DIMINSIONing Bt1% to

nine bytes is to 1limit its size to

no more than 9 characters, If the

s STRING value assigned to B1§ is greater
than ¢ characters, the computer will
automatically ignore any characters
after the first nine.

- Yth,, .We will now make B1$# equal to the INPUT
STRING variable - B§, plus our "made up"
STRING variable - L$§, Thus:

L. B1$ = B} « L$
[- 5th...If we INPUT JULIE for B$ then:
B1% = B% + L%
B1$ = JULTE + ...000vne
i
81% = JULIE.........
Therefore, B1$ contains 14 characters
6th...Now, let's put it all together. BSince
DIM B1£(9), the computer will igrore
- all but the first nine characters, thus:

B1$=JULIE. ...

S¢, if we were to change L$ = hd
Where there are nine spaces hetween the
quotation marks, then:

B1$ = JULIE

As far as the eye i3 concerned,.....

—

-185- i

r—

RANDOM ACCESS / 186

. .z

Now let's consider how we can use all these fabricated special
conditions in a general sort of way., First we will CREATE a DATA FILE
named FILE$, We do that from NOS by:

—

On * type in: CR FILE$ 10
On * type in: TY FILES 3

.

Then, we write a program to add DATA to this FILE$. This program will
add DATA by SEQUENTIAL ACCESS. The program would be:

5 DIM A$(11),B$(11),C8{11)

6 DIM L$(11)

7 DIM A1${11),B1$(11),C1$(11) .
10 OPEN #O, "FILES$" Lj
20 INPUT “A$ = ", A%

30 IF A$ = ™0O" THEN 120

40 INPUT “B$ = ",BS$,
50 TNPUT "C$ = ", C$ LJ
60 Lé="..... el

70 A1S = A$ + L8

80 B13 =B} + L%

90 C1$ = C$ » L% i
100 WRITE #0, A1$,B1$,Ct$

110 GOTO 20

120 CLOSE #0

130 END

| S

If we RUN we get:

| -

A% = type in : FRANCE
B$ = type in : ENGLAND
C$ = type in : USA
A% = type in ; HORWAY Lj
B} - type in : CANADA
Cc$ = type in : USSR
AS$ = type in : AUSTRALIA
B$ = type in : MEXICO |
C$ = type in : DENMARK
A$ = type in : POLAND
B$ = type in : PERU
C$ = type in : SWEDEN i
A$ = type in : O i
]
!
-186= :

| -

r

-

 {

RANDOM ACCESS / 187

Now, let's quickly review what is happening when this program is

executed.
5

LINE 6
i

LINE 10
20

LINE 40
5¢

LINE 30
LINE 60
70

LINE 80
90

LINE 100
LIKE 110

LINE 120

These LINEs both set and limit the size
of all STRING variables in the program

OPENs the FILES
These LINEs assign values to A$,B$,and C$

This is the "escape" to terminate the program

This provides the "filler™ to assure that all
STRING variables contains eleven bytes

These LINEs assign values to Al$,B1$, and C1%
by taking the INPUT values and adding the
"filler" to assure that each STRING variable
containg exactly eleven bytes.

This WRITEs the DATA to FILE$
This sends the progrem back for more DATA

The program comes to this LINE when all

DATA i=z complete and ™0" 1is typed in

as 2 response to the INPUT statement for AS.
The FILE$ is then CLOSED and any DATA in

the BUFFER is WRITTEN.

Let's now discuss how all of this relates to our specific example.
response to the three INPUT statements, we made:

STRING values.

In

A% = FRANCE
B$ = ENGLAND
C$ = USA
The computer did as instructed and added L$ to each of the three
Thus:
A1% = FRANCE...,..uvuue
B1$ = ENGLAND........cs.
C13 = USA. ... ivunue

=187~

RANDOM ACCESS / 188

Or the INPUT value plus eleven "dots" for each.

However, since A1%,B1%, and C1$% have all been DIMENSIONed to eleven
characters, they are then limited to only eleven ¢haracters, and the
computer will ignore all but the first eleven characters. The
resulting values then become:

At$ = FRANCE.....
B1$ = ENGLAND....
Ct$ = USA........

Now, each of these STRING variables contains exactly eleven characters
(11 bytes), and we can "count™ on that.

Each RECORD in our FILE% now containz a pre-determined number of
bytes, this allows us to RANDOM ACCESS and single RECORD or any single
VARIABLE within that RECORD.

Our FILE$ looks like this:

RECORD #1 FRANCE..... ENGLAND. ... USA........
RECORD #2 NORWAY.....CANADA..... USSR.vssens
RECORD #3 AUSTRALIA..MEXICO..... DENMARK. ...
RECORD #4 POLAND.....PERU,......SWEDEN. ...,

Each RECORD contains 39 bytes.

RECORD #1 FRANCE.....ENGLAND....US&........

39 BYTES = 1142 bytes 11+2 bytes 1142 bytes

Qur READ statement to RANDOM ACCESS any RECORD in this FILE$ would
be:

40 READ #0 $39%(J-1),A$,B$,C$

Nate that there i3 no comms between READ #0 and the file pointer
instructions, %$39%(J-1), J is the desired RECORD number.

-188-

—

|

RANDOM ACCESS / 189 ;

—

The program to READ our FILE$ would be:

10 OPEN #0, "FILES"

20 INPUT "WHAT RECORD NUMBER DO YOU WANT : *,J
30 IF J = O THEW 80

40 READ #0 239%(J-1),A%,0$,C$

5O 'AasNIBENICS

60 CLOSE #0

70 GOTO 10

80 CLOSE #0

END

if we RUN we get:

WHAT RECORD NUMBER DO YOU WANT : type in: 3
AUSTRALIA..

MEXICO.....

DENMARK. ...

WHAT RECORD NUMBER DD YOU WANT : fype in: O
READY

Now let's suppose that 3ll those "dots" are starting to bother you,
and frankly you just dan't want the things around. Now that you
understand the reason for having them there, there is no further need
to keep them there., o back to the program that was used bto put the

r—

DATA in the FILE$ and change LINE 60 to:
]
60 Ls - " "
. Where there are eleven blank spaces hetween the quotation marks. Then
if you RUN you get:
- WHAT RECORD NUMBER DO YOU WANT : type in: 3
AUSTRALIA
MEXICO
DENMARK
WHAT RECORD NUMBER DO YOU WANT : type in: ¢
e READY
Now, let’'s assume the inevitable happens. No sconer than we get
L all the world powers in reasconable order and on FILE$, we get a letter

from the NEAR EAST telling us that if we don't include them they will
"cut our water off." We've got to do it.

| -
L_ 169 #

RANDOM ACCESS / 190

deletion, since they just discovered cil. That’s the easy part, the
tough part is changing our FILES, We must write a program to allow us
to select the desired RECORD, and then make the appropriate change for
the degired VARIABLE, without upsetbting the neighbors, AUSTRALIA and

We READ our FILE$ and find that MEXICC is agreeable to a aJ
I
DENMARK. The required program would be:

10 DIM K${11) ,K186C11},L8(11)

20 INPUT "WHAT RECORD WUMBER DO YOU WANT : ", J LJ
30 TF J = 0 THEN 150

WO INPUT "WHAT VARIABLE DO YOU WANT TO CHANGE : " W$

50 INPUT "WHAT DO YOU WANT TO CHAKGE IT TO : ",K$
60 IF W$ = "A$" THEN H = 0 !
T0 IF W$ = "B%" THEN H = 13 i ;
80 IF W$ = "C3" THEN H = 26
90 LS = ", .
100 ¥14 = K$ + L$ i
110 OPEN #0, "FILES"™ Lj
120 WRITFE #0 %39%(J=-1)+H, K13, NOENDMARK
130 CLQSE #0
e GOTGe 10
150 CLOSE #0 |
160 END
f
Again, T mention, if you domn't want all those "dots™ change LINE 00 LJ
to:
90 L$ = " Lj

With eleven blank spaces between the quotation marks.

If we RUN we get: ij

WHAT RECORD NUMBER DO YOU WANT : type in: 3
WHAT VARIABLE DU YOU WANT TO CHANGE : type in: B$ |
WHAT DO YOU WANT TO CHANGE 1T TO : type in: IRAW LJ

WHAT RECORD NUMBER DO YOU WANT : type in: O
READY

If you now go back and LOAD the program that was used to READ this

FILE$ and RUN, you gel:

_ |
190- !
|

RANDOM ACCESS / 191

WHAT RECORD NUMBER DO YOU WANT : type in: 3
AUSTRALIA.. :

TRAN.......

DENMARK

We have now completed the longesgt and most demanding chapter in
this book. There is much repetition here, because 1 feel that some of
us need all the helip we can get. If you understand all that I have
written about RANDOM ACCESS of DATA FILEs, and it took you less than
slx months to understand it, then I can only assume one of two things:
1. You are considerably more intelligent than I, or 2. You had better
inatructive informstion avallable to you, 1 hope in your case it is
the result of both.

191w

34

DECIMAL AND HEXADECI®MAL

Now, to what I consider more of the heavy =stuff. On numerous
aceasions we have already used the computer's memory ADDRESS system to
EXecute, JumP, ReaDl, or LiFt a program, As we encountered them, I
kept glos=ing over their explanation, or put it off till later, or on
most occasions, not mentioming it at 2l1l. I didn't want to call it te
your attentionm.

Each one of the COMMANDS was followed by a number. This number
tells the computer where to get zomething or where to put something.
There are two types of ADDRESS systems used, one is the DISK ADDRESS,
the other is the computer's memory ADDRESS system.

The DISK ADDRESS has already been discussed in the chapter on
RANDOM ACCESS. It has little or nothing to do with DECIMAL or
HEXADECIMAL addresses, and should not be confused with them.

Consider the following examples which we have already used:
EX EQOQ RD 0 6000 32 JP 2A04 %R 32 5700 16

These are all COMMANDS directed at specific ADDRESSes in the memory of
the computer. These are all HEXADECIMAL ADDRESSes. Up to now wWe have
not used the DECIMAL ADDRESS.

There is a direct relationship between DECIMAL and HEXADECIMAL.
All HEXADECIMAL ADDRESes have an equivalent DECIMAL ADDRESS, and all
DECIMAL ADDRESSes have an equivalent HEXADECIMAL ADDRE3S. The
relationship between them will be examined.

The HEXADECIMAL ADDRES3 is the only address used by the Disk
Operating System. All commands used in DOS which contain an ADDRESS
must be in HEXADECIMAL. HNote the above examples.

We have as yet have not encountered the use of the DECIMAL
ADDRESS. The DECIMAL ADDRESS is used at the "byte access" level., In
general, it is eonly used in the BASIC mode. Each "“space" of memory has
a specific DECIMAL ADDRESS. A 24K system has 24,576 DECIMAL
ADDRES3Ses.

-193-

DECIMAL & HEXADECIMAL / 194

Some examples of the DECTMAL ADDRESS are:

10 FILL 52224,42

20 EXAM (57321}

The FILL statement will place a specifiec ASCII code in memory. For our
example it will place 42 (*) in the computer's 52,Z24th "memory
space."

The EXAM statement will EXAMine whatever is im the computer’s memory
at the designated DECIMAL ADDRESS. 1In our example it will look at the
57,321st "byte space." If it looked at the 52,22Lth "byte space™ it
would see 42,

Let's look a%t how the HEXADECIMAL system works,

Essentially the HEXADECIMAL system is5 no more than 3
alphabetic-numeric representztion of the DECIMAL system, to the base
SIXTEEN intead of TEN. For our purposes the smallest number would be
zerc and the largest number would be 65,534,

They would be represented by:

HEX DEC HEX DEG
0000 0 $ FFFF 65535

Since HEXADECIMAL uses base sixteen, we need symbols for the
"units" from 10 to 15, in addition teo 1 to 9, Ws use the letters A to
F to represent the digits 10 to 15,

Let's consider our highest example:

HEX DEC
FFFF 65535

Starting at the left, the first number or letter tells you how many
times to raise 16 to the third power.

-184-

o S

—

e Eo Lo D L O

=
-

%

DECIMAL & HEXADECIMAL / 195

Therefore:

F TIMES 16 CUBED
or:
F¥1673

The next number or letter tells you how many times to raise
16 to the second power.
Therefore:

F TIMES 16 SQUARED

or:
F¥16"2

The next number or letter tells you how many times to raise
16 to the first power.
Therefore:

F TIMES 16

or:
F * 16

The last number or letter tells you how many times to raise
16 to the zero power. Since 16 to the zero power is one:

F TIMES 1 or F

The next question should be, "How do you know the value of the

'letter' in the HEXADECIMAL number?®

Here it is:

-195%=

DECTIMAL & HEXADECIMAL / 196

| GHENR SUNY S

Ist 2rd 3rd ath
1 1 1 1
' 1 H !
H ! ! [}
g g 9 9
10 times A A L} A
11 times B 8] g B
12 times [C C "
13 times D D 1] D
14 times E E E £
15 times F F F F

— .

S0 again considering our highest example:

FFFF LJ
I1st F = 15 X 1673 =z 6Gi44p
2rd F = '3 %162 = 140
ard F =z 1% X 16°1 = 200
4th F = 19 X 1670 = 15
HEX FFFF = 65535 DEC

Now let's try it with JP 2&804, which is the JumP command to get
from DOS to a BASIC program in the computer's memory.

24 0.4
st 2 z 2 X 16%3 = 2 % 4096 = B192
2vd A = 10 X 16°2 = 10 X 256 = 2560
3rd 0 = 0X 161 = OGX 16 = 0 {
th 4 = 4 X 1670 = & % 1 = I .
HEX 2 & 0 & = 10756 DEC Lji
i
]
|
Ji
=
|
~196= : |

[o

!

DECIMAL & HEXADECIMAL / 197

o

Now for some practical considerations, Consider our example,
RD O 6000 32. What this tells the compuber is to READ from a
mini-disk STARTING at BLOCK 0 into the computer's memory STARTING AT
HEX ADDRESS 6000 the NEXT 32 BLOCKS on the mini-disk,

.

The 6000 is the HEX address, since all DOS functions are done by
HEXADECIMAL, telling the computer where to store the information that
it is ReaDing off the mini-disk. 1In assigning this address several
! things must be considered. First one does not want to "store™ the
e information where something else already is stored, In order to
execute the ReaD command we had to load the Disk Operating System into
the computer, DOS is at HEX 2000. So il we ReaD our mini-disk to
2000 - RD 0 2000 32 -~ we would overwrite DOS.

The next consideration is the size of what we are storing. We
want to ReaD into the computer 32 BLOCKS, On a 24K system like mine,
the highest HEX ADDRESS is 8000. With D0OS loaded into the computer,
the mini-disk can be Real into the computer anywhere between HEX 2000
et plus 10 blocks for DOS and HEX 8000, Since each BLOCK i3 256 bytes
(1672}, we don't want to make our starting ADDRESS too high, or we
will exceed the memory ADDRESSes of our system.

- Let's look at the lowest possible starting address. We know that
DOS is loaded into the computer starting at HEX ADDRESS 2000, We
also know that DOS is 10 BLOCKS long - which is the same as 10 times

256 bytes long - which is the same as 10 times 16°2 long. Now, it's
starting to look like cone of the "factors” in the HEXADECIMAL system,
and it is.

I

REXADECIMAL equivalent of 10 X 162 = 0 A 00

If you add the DO5 starting ADDRESS 2 0 0 0 to the number of BLOCKS
required to store DOS - converted to HEXADECIMAL, you will end up with
the DOS ending ADDRESS.

Thus:

— /"

D05 STARTING HEX ADDRESS = 2 0 0 O
NUMBER OF SLOCKS IN HEX = 0CADO0

[: DGS ENDING HEX ADDRESS = 2400
r -197=-

Lo —L-

DECIMAL & HEXADECIMAL / 198

Which is the HEX starting ADDRESS for BASIC. Which makes sense,
because RASIC is loaded into our system immedialely following 003 in
memory. However, for our example since we have not loaded BASIC this
memory “space™ is available.

m_l;;h_h

o T

Now back to the 32 BLOCKS that we want to ReaDl tnto the
computer's memory.

32 BLOCKS = 32 X 16°2 = HEX 2 000

Lo L

If we add:
pOS ENDING HEX ADDRESS : 2 A 0 0 :
HEX VALUE OF 32 BLOCKS ¢+ 200 0 ‘
ENDING HEX ADDRESS : HAOD LJ !
| H

And since we ean go up to HEX ADDRESS B00Q, we will have no trouble
Realing our 32 BLOCKS starting at HEX 2 A 0 0. 30 our ReaD command
could have been:

RD 0 2400 32

If we had BASIC in our computer, which has a starting HEX ADDRESS of
2 400, and is 45 BLOCKS long, our availahle memory for "storing”

would be:
STARTING HEX ADDRESS FOR BASIC : 2 A 00
HEX VALUE OF 4S5 BLOCKS 1 2D0CO
ENDING HEX ADDRESS FOR BASIC 57400

Qur Real command c¢ould have been:

RD O 5700 32

-198-

I
'1E:LT”

— —

t

et #

DECIMAL & HEXADECIMAL 7 199

And our ending HEX ADDRESS would be:

7700
(5T00 + 2000 = 7700

Which is still less than cur maximum HEX ADDRESS 8 0 0 O.

But we choose a convenient number to remember -- 6000,
So:
STARTING HEX ADDRESS : 6 0 0 0
HEX VALUE OF 32 BLOCKS: 2 0 0 O

ENDING HEX APDRESS 8000

This equals our maximum HEX address of B 0 0 0, so we would just be
able to "store®™ 32 BLOCKS starting at HEX 6 0 0 O.

Lett's look at the arrangement of memory in the computer. Unique
to this system (30L-20 with NRORTH STAR BASIC) is the fact that the
first 8K of memory is not used, and therefore the First 8 times 102U
of DECIMAL or HEX addresses are not used. The reason for this is
beyond the scope of this book. However, that does not mean that you
have lost 8K of available memory. It's all there, it's just at a
different ADDRESS.

This i3 the way the computer's memory bank locks:

4]
{ No memory
|
8K
1 1st 8K
! nemory
16K
! 2rd 8K
1 memory
2UK
1 3rd 8K
1 memor y
32K
i
=199~

DECIMAL & HEXADECIMAL /7 200

This arrangement of memory causes no problems, but you must make
suitable adjustments in figuring the HEX or DECIMAL ADDRESSes.

The next thing to remember i3 that "K" is not equal to 1000, but that
K" is equal to 1024. Therefore a 24K system has:

28K = 28 X 1024z 24576 - 1 bytes

Or 24575 byte ADDRESSes. The reason for the "- 1" is because the
computer atarts counting at zero instead of one.

Here is another "map™ of the computer's memory:

=200~

—C=

—Cz

.

“-—'Iifi““—lEEil““WGEf;i*“‘iﬁi;;'"“Ifii"‘lfii.' “‘:::j.' i:fb'_

|

r—~ - o

- r—

[

;r_,_

24K
24,576
bytes

DECIMAL
ADDRESS

4]
1
1
1

PR P — YT

e d el ey e e e e el el e e il il ol Ty wr]

e

—

ST
10.?95 bytes
1

1
-emn-e--32767
1

DECIMAL & HEXADECIMA

18t 8 K
NO MEMORY
= 8 X 1028 minus 1 ==e----a-
= 2000 HEX

STARTING DOS

10 BLOCKS2
2,560 bytes
END DOS
= 2 A 00 HEX

STARTING BASIC

45 BLOCKS
11,520 bytes
(45 L 2%6)
END BASIC
= 5700 HEX
START FREE
MEMCORY
END OF MEMQORY ~re-mceccaow
= § 000 HEX
-201-

L/ 201

o T T Ty T P U P

L.

DECIMAL & HEXADECIMAL / 202

.

If we can get from HEX to DECIMAL, then we ocught to be able to go
the oppsite way - DECIMAL ko HEX. We can, but it is a little
different.

Here is how:

A

STARTING : 22310 DECIMAL

22310 divided by 1673 = & +« remainder: 1830
1830 divided by 162 = 7 + remainder: 38
38 divided by 16™1 = 2 +« remainder: 6

& divided by 1670 = 6

HEXADECIMAL equivalent for a DECIMAL number is the quotients from the
above calculation:

DECIMAL 22310 = HEXADECIMAL 5726

ORI ST SR e

If any of the quotients had been between 10 and 15, we would
substitute the HEX letter for the value: 10:z4, 11=B,...,15=F, Il a
quotient is more than 15 it means that we didn't start with a high
encugh power of 16,

L L T

That is all that one really needs to know about the relationship
between DECIMAL and HEXADECIMAL at this time. To be completely honest
with you, you probably don't really "need™ to know this mueh. Most of
the HEX ADDRESSes that you will use are already provided and by the
time you start working with DECIMAL ADDRESSes, byte access, you will
have long passed the need for this book. On the other hand,
understanding this chapter will enable you to better understand why
and what you are doing.

I have included a program in the back of the bdook which will
convert HEX to DECIMAL or DECIMAL tc HEX, which further precludes the
necessity for this chapter. In spite of all the reascns not to become
familiar with the subject at hand, I highly recommend the
CONVErsSe.......

P

|

=202=-

— T

— . o

—-

30

SECRETS

I honestly wish that this could be the longest chapter in the
book, but it rivals the shortest.

A secret, according to the Random House Dictionary, College
Editien, i3 "a method, formula, plan, etc., known only to the
initiated or the few.™ I have found that a lot of the "general
knowledge® about the finer points of how to operate and program these
microcomputers qualifies as a secret by the above definition.

My experience has been like dealing with the little old lady who
gives you her favorite recipe, but "forgets" tc include one or two of
the mast significant ingredients., When you try her recipe, what you
get is all right, but never as good as hers --- and you never really
understand why.

1 have found "computer people™ to be a lot like the "little old
lady.," They seem to slways make their computers do more than you can
make yours do, They always say they've told you everything, but if
you wateh and listenm real close, they will always do something they
"forgot™ to tell you about.

After two six-paks of beverage, 1 finally got one of those
Y"people" talking. However, in order to keep him drinking {and
talwing), I bhad te drink along. This proved to be a disaster. I
don't remember much of what he said, and my notes weren't as great the
next day as I thought they were that night. From my early evening
notes I was able to glean some "secrets," though not as many a3 are
8till out there,

Here's what I got:

1. How to change the display and INKPUT speed
of the Sol computer.

On PROMPT or READY type in: FILL 51211,45

The number after the FILL 51211, can be any
number between 0 and 255, zere being the
fastest speed and 255 being the slowest
speed. The display stays at this speed until

=-203=

SECRETS / 264

changed again by this statement. It can also
be included in a program so that it c¢an "print™
en the screen at different speeds depending on
what's geing on in the program,

The video portion of the 501 computer*s memory
is between 52224 and 53247. If you want the
computer to PRINT any character that you
choose, in any position of the monitor,

you would type:

FILL S2224,42

Which would put the character * somewhere

on the screen. (42 is the ASCII code for %)

I think he said the top left corner if the
screen was cleared to start with {see below for
how to clear the screen).

Te clear the monitor of all characters, you
would type:

t CHR$(11)

This one was abvious, after he told me it does
the same thing as the CLEAR key on the keyboard
does when we're in the START-UF mode,

I got this program off the table cloth
the next day:

10 ¥ CHR$(11)

20 I"THIS WILL PLOT ANY CHARACTER YOU WANT™
30 1"ANYWHERE ON THE SCREEN."
44 1

50 1”13 THE CHARACTER YOU WANT ON THE KEYBOARD ?"

60 A% = INCHAR$(252)

70 IF A$ = "Y" THEN 110

80 INPUT “EWTER THE ASCII CODE : ", C
90 A% = CHR$(C)

100 GOTO 130

110 ! "WHAT CHARACTER 70

204,

ST G

>

—

T

SECRETS 7/ 205

120 A% = INCHAR$(252)

130 '"INVERSE VIDEO 7 (Y OR N)

U0 X$ = INCHARS {252}

150 IF X$ = "Y™ THEN A% = CHR${ASC(A$)+128)
160 INPUT "LINE (0 TO 15} : ",L

170 INPUT "CHARACTER POSITION (0 TO 63) : ",K
175 1 CHR$(11)

180 FILL 52224 +64%, + K, ASC(A$)

190 GOTO 150

The next day, I put it in the computer, and
it provided "food for thought™ all day.

(I think some of it only works with the "NEW"
BASIC, and just on the Sol).

To turn your Sol computer into just a terminal to
work with another computer, you:

On > type in: TE

I didn't know this, and I've never had a
need for this information, but I guess it's
good to know.

Te make your computer PRINT on a printer,
instead of your monitor, you would:

On PROMPT or READY type in: FILL 51207,1

To stop your computer from PRINTing on a
printer, and display on the monitor, you
would:

On PROMPT or READY type in: FILL 51207.,0

Everybody seemed to know this, but me, I also
found out that this only applies to a "serial"
printer. If you have a "parallel” printer, use a
2 instead of a 1 after the FILL statement. This
one will also work from inside a program.

=-205=

7.

ist
2rd
3rd
4th
Sth
Gth

Tth
ath
9th

10th
11th

above didn

SECRETS / 206

How do you make the computer print 3 gquoration

mark in a PRINT statement?

60 'CHR$(34),"COMPUTERS ARE FUN®,THES(IU)

That's how,.....

Here's how to change DOS such that you can go
directly from START UP to READY by only typing
in EX E900 and then pressing the RETURE key.
The computer will automatically GO BASIC and
LCAD it for you.
LOAD DO5 , . . on > typs in: EX E9Q0
LOAD BASIC . . on ¥ tLtype in: GU BASIC
Return to DOS. on FREADY type in: BYE
LoAD DOS at 3000 . . on * type in: LF DOS 3000
Go to START UP . . .press UPPER {ASE and REPEAT
Change the "FLAG"™ byte 38E5 (HEX) from 01 to 00:
On > type in: EN 38ES
Press the RETURN Key.
on ¢ type in: 00/
Press the RETURN key.
Go to BASIC . . ., on > +type in: EN 2A04
Go ta DOS on READY type im: BYE
Fut in "new" INITIALIZED wmini-disk.

SAVE modified DOS . . on % type in: SF DOS 3000
SAVE BASIC . . . on * type in: 3F BASIC 2400

For some versions of DOS this may net be sufficient.
't work for you. then that means that the GO

-206-

If the

S N S STE ol oASl S GGl GSlany G S O

-

B SO W,

r’ﬁ—'\

G I aa BN B

o

Y e

SECRETS /7 207

BASIC instructions are not a part of your DOS., S¢o let's put them
there., To do this, after step 6, in the above procedure, {you can
repeat the whole thing) you should:

On > type in: EN 37CO
Press the RETURN key.

On : type in: UT 4F 20 Y42 41 53 59 43 0B/
Press the RETURN key.
Proceed to STEP 7

All those funny numbers say "GO BASIC"™ in HEX. The *0D" iz the HEX
representation for a carriage return.

There were a lot more "secrets" disclosed that night, as we
talked, and drank, till dawm. 1 just can't remember them, I would
highly recommend taking your friendly computer store person out and
buying him/her a few beverages, I would further recommend, that yocu
write and he/she drink, HOWEVER, under no circumstances, invite two
or more "computer people®™ out at one time, if your objective is to
learn something. If you can get a "computer type™ to sit down with
you at your computer, you can also discover & lot of the "secrets®
from them.

-207-

|

e T B Sl Sl B Wl T Tl T e e T Dt M

-208-

—
36

THE NEW BASIC

f

There is always something to be gained from learning the !
fundamentals, but it is not always necessary to know them to be able :
to function. The REW BASIC is exactly like the "old" BA3IC execpt
that it is different. It does everything that the "old™ BASIC does,
for the most part, exactly the same., It also does a few new things.
Almost anything that you learn about the "old™ BASIC is applicable to
the HEW BASIC.

The NEW BASIC is North Star’'s Release 4 (June, 1978). This book
was complete and ready for the publisher, when I received a copy of
the NEW BASIC. My first impulse was not to include it, However,
after working with it a few days, I decided that the MEW BASIC had
something to offer that you should know about.

The biggest changes are the automation of the wmost used
"functions" relating to SAVING and LISTING files. These make life a
little eaiser and eliminates a great deal of JumPing and BYEing. Now
you can do it all from BASIC mode. There are probably a lot more
advantages than I can evaluate, because I don’t fully understand
2verything that the "old"™ BASIC can do yet., One thing that I kaow
that hasn't changed is the person that writes the manuals for North
Star. I honestly could not understand most of it, but then T may have
been lacking some "familiarity with some version of BASIC."

After much reading and much "trizl and error® time with my
computer, I finally figured out the following:

1. The FREE cowmand now has a partner. As you
remember, the FREE ¢ommand, From BASIC mode,
will tell you how much FREE {(available)
memory, in bytes, you have left in the computer. ;

Now, with the new BASIC youw have the PSIZE
commnand. The PSIZE command also operates in

the BASIC mode. When executed the PSIZE command
will tell you how much memory, in bloecks, that
you have used for the program in the computer.

Thus FREE tells you how much you've got left
in bytes, and PSIZE tells you how much you've
used in blocks. (block = 256 bytes)

If you have written a program and you want to

=209

o

know how many blocks of disk space would be
required to SAVE your program, you would:

an READY or CURSOR type in: PSIZE

and the computer would respond by telling you
how many blocks wauld be required.

The new function - N3AVE - is a welcome
addition. From the BASIC mode it will

allow you to 3AVE the program that you

have in the computer without having to

go to the DOS mode, CReate a file, TYpe
it, size it, and then back to BASIC to

SAVE it. The HSAVE command dees all of
that for you automatically. Again, all
the "old" BASIC operations to deo this,

still work too,

The CAT command will allow you to LIst
the names of all the files that you have
on any mini-disk in the disk reader from
the BASIC mode. Heretofore you had to
go to the DOS mode lirst. Now vou can
use CAT from the BA3IC mode and LI from
the DOS mode.

The next new feature is the AUTO command.
This command will cause the computer to
automatically write the LINE NUMBERS for
you, when you are writing a BASIC program.
When this command is executed, the computer
will generate 2 new LINE number, everytime
you press the RETURN key.

You can specify the stariing LINE number
and the size of the increment, if you want.
Or, if you don't want, the computer will
assigh the default starting LINE number of
10, and the default increment of 0. All
you do is:

o prompt or READY : type in: AUTO

=210~

i

| S §

—

B

|

NEW BASIC / 210

- r— T T

B Gl

And you would get:

Two things that make the AUTO command awkward to use

for me:

NEW BASIC /7 211

Thus:

MW,
20, « . . 0 0 e
0. o0 e e e

I1f you want to start at a LINE number other
than 10, then:

on prompt or READY : type in: AUTO 100

This will start with LINE 100, and each
subsequant LINE number will increase by
the default increment of 10.

Thus:

1wo,
110, &+ . & v« .
1200 . . 0. . ..

If you want te start at LINE 100 and increment
by 100, you would then:

oen prompt or READY : type in: AUTO 100,100

100,
200, ,
00,

There is no space automatically provided
between the LINE number and the LINE
statement, s¢ you have to remember to
put it there if you want it. 1It's

not necessary, and it does take up
memory. Still, for beginners and
programmers who like to be able to

find the right LINE number in & hurry,

I recommend the "“space.™

-211=

HEW BASIC / 212

b. I'm not a good encugh programmer t2a write
a program without having to ™insert” LINEs
as [go along. Thus, I always start out
using the AUTO command, but very guickly
abandon it, because it's more trouble >
stop and restart it than it is to just
put in the LINE numbers. But, 1 always
start out using it.

1 would recommend for the next version of NEW BASIC to rectify
these two detractants, by making the space between LINE number and
LINE statement optiomal, and showing the computer owner how to
personalize the AUTG command, if possible, Alse, by including an
®escape™ from the AUTO command, which would allow one to exit it, use
whatever LINE numbers he wants, and then re-enter the AUTO, such that
it would retain its "count."

5. The APPEND command will probably not be
one of the most used features of the NEW
BASIC, but it's good to have around. This
command allows one fo LOAD a program from
a mini-disk on to a program that is already
in the computer.

The one condition required to use the APPEND
command, i3 also the only draw-back I see to
the use of the APPEND command. The last
LINE number of the program in the computer
must be lower than the first LINE number

of the program that you are LOADing into

the computer.

Thus if you have:

PROG=1

10.
20.
30,
4o,

s e
e oo
s o= oa
e e

PR0OG-2

10,
20,

.

L I T
.
.
.

40,

-212-

=<

e
e

N &

{-‘—-'-‘

r~-r~-~cc -~ r" e et rr

r—-..--n.

HEW BASIC / 213

Where, PROG=1 is in the computer and PROG-2
is on a mini-disk, and you wish to APPEND
PROG-2 to the end of PROG-1, this can not
be done without changing all the LINE
numbers of PROG-2, such that the first LINE
number is greater than LIKE #0.

If PROG=-1 i3 in the computer and you want to
add PROG-2 to the end of it - APPEND PROG-Z.
You do this:

on prompt or READY : type in: APPEND PROG-2

If in the NEW NEW BASIC they include an
automatie LINE NUMBER CHANGER, it would
be great, without it - it's only good.

The new BASIC provides a very f{lexible method
for RENumbering any program. You may select
the beginning value for the first LINE of the
program to be RENumbered. If none is selected
the default starting LINE ia 10. In addition
to the starting LINE NUMBER, ycu may alse¢
select the increment value for subsequent LINE
NUMBERS. If none is selected, the default value
of increments of 10 is automatically assigned.
Here' how:

To RENumber any program in the computer

all that do is type In KEN and press

press the return key, 1in the BASIC mode.

This will make the first LINE of the

program LINE 10, and all subsequent LINE
NUMBERS will increase in increments of 10.

10,20,30,........65510,65520,65530
If we wanted or first LINE NUMBER to be 100
and each subsequent LINE HUMBER to increase
in incrementz aof 10, we would then type:
REN 100
Then press the RETURN key. We would get:

100,110,120,.......56610,65520,65530

=213~

NEW RASLIC / 214

If we wanted our first LINE NUMBER to begin
with LINE HUMBER MI00Q, and ezch subsequent
LINE NUMBER to increase by 100, We woonld:

REN 100D, 100

After we pressed the RETURN key and LISTed
the program we would find the desired
sequence of LINE NUMBERs:

1000, 1100,1200,...... £5300,65400,65500

7. Another change is the new entry point to
BASIC from DOS or START UP. For the old
BASIC 1t was HEX 2A04. If you were in
DOS mode and you wanted to get back tu
BASIC mede, you would:

on ¥ type in: JP ZACGH
From START UP you would:
on > type in: EX 2ACQM

For the new BASIC both of these commands
still work and are both useful. But,
another entry address has been provided

that retains the value of all the variables.
This new entry address is HEX 2414, Thus,
if you are RUNming a BASIC program and STOP
it, and go te DOS mode, and then want to go
back to the program, keeping all the values,
you would:

on * type in: JP 2414

1f you wank bto re-enter the program with
all the values reset, then: .

on * type in: JP 2A04

as always....

=214

L (.

<

.. C L £

T o O o

-
E)

=

)

10.

HEW PAASTE

The new BASIC has also corrected what

1 considered to be a major irritation

in the old BASIC. The DELete command
has been "fixed" so that once used on
large blocks of LINE numbers, that these
DELeted LINEs are usable again. As you
may remember, I cauticned the reader
about this "flaw" in an earlier chapter.

Khile we are on the subject of deletions,
T will take this opportunity teo mention
that the old DE (DEletic¢n) command, used
to DElete files from the mini-disk, has
been supplemented with DESTRCY in the new
RASIC.

"old" DE PROBLEM

*new" DESTROY "PRGBLEM"

Mot only has the command been changed, bui
so has the command mode. The DESTROY command
operates Iin the BASIC mode. Thus:

on READY or CURBOR: type in: DESTROY *OLD™

But like everything else, “the more things
change, the more they remain the same."

That is to say, the "old" way still works
tco. S0 if you're in the BASIC mode and want
te DESTROY a FILE you can. If you are in

the DOS mode and you want to DElete a FILE
you still ¢an.

The LIST command for LISTing a BASIC program
in the memory of the computer has changed
somewhat. Actually the commands have
remained the same, but their meaning changed,

The "old" LIST 2%0

Would LIST a program from LINE 250 to END.

-215-

NEW BASIC / 216 _ J

The "new" LIST 250 e
will LIST LINE 250 only.

The “olg" LIST 250,

s
o
would LIST only LINE 250 : J
And: . 's (
The "new" LIST 250, |
+
will LIST the entire program from LIRE 250) 'J ‘
to the END. .
Everything else remains the same with regard '
to LISTing. u i

11. Another item of change that T will go into
is the COMPACT command. In the old BASIC,
if you had 2 mini-disk which you had DEleted
several of the files from, and you wanted
to "move™ everything to the front of the

mini-disk, you would put the computer in u

the DOS mode, insert the desired mini-disk,

and:
on ¥ type in: CO . ‘f

In the new BASIC, you first load the COMPACT C
program by: u

on * type im: GO COMPACT

Then insert the desired mini-disk intc the U
disk-reader and, type in: 1, !

-216=

| il

r—

r--.-—-—h.

“ 'S l

NEW BASIC / M7

There are several other features to the new BASIC which I either
have not used enough to write about, or that [tried to use, but as
yet do not fully understand.

In general, the new BASIC is an improvement over the old BASIC.
If given the choice, I would recommend starting with the new BASIC.
If you already have the old BASIC, I would recommend getting the new
one when you get 3 chance, However, it's not a major advancement in
the computer ?ndustry, it*s just an improved version of what you
already have, and what you already have works pretty good. TI'm told
that 99% of programs written with the old BASIC will work with no
changes with the new BASIC. So I would not make a mad rush to your
neighborhood computer store to get it, but if you are there ~ pick it
up.

The end...but really just the beginning....

-217-

%

programs

e o L3 o od o o d ied md ed ed od

T Ty T Oy T T T T2 OTMTRYODT3Y OTY ™R T ™My

e

10 REM TH15 PROGRAM PRINTS A LIST OF ALL THE POSSIBLE VARIABLES
20 REMW
30 ' " IF YOU WANT A LIST OF STRING VARIABLES TYPE IN: 1"
a0 1
20 t " IF YOU WANT A LIST OF WUMERIC VARIABLES TYPE IN: 2"
01
70 [NPUT “WHICH DD YOU WANT 1 or 2 @ *.W
83 ON ¥ GOTO 90,220
90 DIM AS$(26), BS[PGJ

o o STRING YVARIABLE LIs3T
Mg !

120 FOR T = 1 TO 26

130 FOR J = 1 TO 11

130 LET A$ = "ABCDEFGHIJKLMNCPQRSTUVWXYI®
150 LET B$ = ™ D123456789%

160 T§ = "gn

170 1 A$(1,0), B$CJ,J), T$, » ",

180 NEXT J

190

200 MEXT I

210 END

220 DIM A${26), B$(11)

230 1 * NUMERICAL VARIABLE LIST"
2ho t
250 FOR
260 FOR

I =1 TO 26
d =1

270 LET &
B
{

TG ¥t
"ABCDEFGHIJHLMNOPQRSTUVWXYEZ"
" 0I23US6789"

280 LET B$ «
‘I, Bs(J)J)I " i

290 ! A
300 NEXT J
310 1
320 NEXT 1
330 END

$
$
I

1 REM THIS PROGRAW READS ANYTHING THAT IS READ INTO THE
2 REM MEMOR OF THE COMPUTER FROM A MINI-DISK

3!

10 REM INPUT ¥ALUES\ S=z 2“576 ----Es 32768

20 REM LOAD MENORY =z2:= * RD *4' 6000 32
30 REM WHERE # =0, 32 , 6u y 96, mmees 350

a0 REM THEN * JSp 2m04
50 REM THEN RUM

60 WEM EACH BLOGK IS 256 BITS \ IF # =1 THEN E=2M576 +256
70 REM 5 & E ARE SET FOR 32 BLOCKS

80 Ss2U5T6

90 E=32768

100 FOR W25 TO E

110 A=EXAMIN}

120 IF A>128 THEW A=A-128

130 IF A<32 THEN Azd6

130 ICHR$(A),

150 WEXT N

=221-

10 REM THIS I3 A& SIMPLE CHECK BOOK RALANCING PROGRAM

20 IKPUT ™ STARTING PALANCE FROM BANK STATEMENT 0,
30 1
Hp IHNPUT ™ HAVE YOU MADE a DEPDSIT T : ", Af
20 IF A$ = "NO"™ THEN 130
ot
70 INPUT " WHAT WAS THE AMQUNT OF THE DEPOSIT : ", E
B0 F= F + E
9K =K + 1
100 ¢t
110 INPUT " DID YOU MWAKE ANOTHER PEPOSIT T @ ™, Al
120 IF Ai$ = "YES"™ THENW 70
130!
140 IKPUT " AMOUNT OF CHECK WRITTEN : ", R
150 C = € « 1
160 D = + B
176!
180 INPUT " HAVE YOU WRITTEN AMOTHER CHECK ? L §
190 IF Y$ = "YES™ THEW 140

200G =A+F -D

2'01\!\! L 2 S RA SR TSI RS IRS RS2SR

2201

230 1 * YOU HAVE WRITTEN *,C," CHECKS : TOTAL ™,%$C1OF2,D
20 1 ™ YOU HAVE MADE *, K, " DEPOSITS : TOTAL * Z8C10F2,F
2501

260 H = SGH(G)

270 IF H = 1 THEW 320
280 IF K = =1 THEN 350
2901 YOU ARE WG T OGVERDRAWN .

300" BUT : THERE IS NO MONEY LEFT IN YOUR CHECKING ACCOUNT
310 GOTO 380

2o - You STILL BHAVE MONEY LEFT 7

330 t * THERE IS5 ™, I3CtOF2,G," 1IN YOUR CHECKING ACCOUNT
340 GOTO 380

350 1 YOoOU ARE QOVERDRAWN

360 '™ YOU MUST DEPOSIT ™ ,%$C10F2, ABS{G)," TO COVER CHECKS",
370! ™ ALREADY WRITTEN "

380 END

) REM THIS PROGRAM WILL READ ARD PRINT THE CONTEKTS OF ANY
2 AEM TYPE THREE FILE

10 DIM A$(1000)

20 INPUT "FILE NAWE : ", B$
30 GPEN #0, B$

40 IF TYP(D)=0 THEN END

S0 IF TYP{D)=1 THEX 90

60 READ #0,M

70 1 TABLG) 0

86 GOTO 40

90 READ #0, A%

100 1 TAB(15), A$

10 GOTO 40

—222.

o

—

I

—

10
20
30

a0
20 INPUT *WHAT DO YOU WANT 1 or 2 : ",V

B0

70 ON ¥ GOTO 150

80

£l

100
110
120
130
140
150

150 1
170 !

180

190 1

209
2140

! CHR$(139)

FOR W=1 TO 4 \) CHR${19), \ NEXT W

READ X,V

iF X=0 THEN 230

IF X=0 THEN 230

FILL{52224 + X « 5% Y) , 160

SOTO 30

REM FIRST LEFT

DATA 18,13,18,12,18,11,18,10,18,9,18,8,18,7,18,6

REM FIRST BOTTOM

DATA 19,13,20,13,21,13,22,13,23,13,24,13,25,13,26,13,27,13
DATA 28,13,29,13,30,13

DATA 31,13,31,13,32,13,33,13,34,13,35,13,36,13,37,13,38,13
DATA 39,13,40,13

SEM FIRST AIGHT SIDE

DATA 81,12,81,11,44,10,481,9,81,8,81,7,49,6

DATA 40,12,40,11,40,10,40,9,480,8,40,7,40,6

DATA 19,13,19,12,19,11,19,10,19,9,19,8,19,7,19,6,40,13

REM FIRST TOP

BATA 19,6,40,6,20,6,2%,6,22,6,23,6,28,6,25,6,26,6,27,6,28,6
phIA 29,6,30,6,31,6,32,6,33,6,34,6,35,6,36,6,37,6,38,6,39,6

DATA 81,6,0,0

RESTORE

FOR W= 1 TQ 1000% MEXT W
60To 10

END

T " IF YOU KNOW THE CHARACTER AND WANT THE ASCII CODE TYPE IN: 17
!
t"IF YOU KNOW THE ASCIT CODE AND WANT THE CHARACTER TYPE IN: 27

1

80

INPUT ™ WHAT iS THE CHARACTER FOR ASCII CODE NUMBER: *,A
!

1

i”THE CHARACTER FOR ASCII CODE %, A," IS : " CHR$(A)
I

1

GOTO 10

INPUT "WHAT CHARACTER DO YOU WANT THE ASCII CODE FOR: ", A%
1

'"THE ASCIL CODE FOR ", A$, ™ IS: ",ASC(A%)

!
GOTO 0

=223-

280
2480
300
310
a0
330
340
350

REM
REM
REM
REM
REW
DIM R
INPUT
IF LE
READ
IF C
FOR
IF R
I¥ R
IF F

NEXT
1" D
GOTO
REST!
! n

GOTO
REM

REM

REM

DATH
TATA
DATA
CATA
DATA
CATA
DATA
DATA
DATA
DATA
REM

DATA

THIS PROGAAM MATCHES THREE TYPES OF DATA AGAINST STOREP
DATA. THE INPUT IS 21 CHARACTERS EITHERN « , - ,

THE + CAN REPRESEWT POSITIVE, THE - CAN HEPRESENT NEG&TIVE.
THE " REPRESENTS A VARTABLE RERCTION WHICH CAN BE + (R -.
AS THE PROGRAM TS WRITTENW THE INPUT MUST RE 21 CHARACTERS

$(21), R1%{21)

YWHAT ARE YOUR 21 REACTIONS : ", A%
N{REY <> 21 THEN 70
R1%,C

= 0 THEN 18D
H=1T0 21

1N, N) = "% THEN 150

$(H,N) = nWr THEN 150
S{N,NY <> RIS{N A} THEN EXIT 90

N
ATA MATCH FOR NUMBER : " .C
90
ORE
END OF DATA"

70

YOUR DATA STATEMENTS MAY RE CHANGED TO SUOTIT YOUR
OWN REQUIREMENTS -~ THE REACTIONS MUST BE
ENCLOSED TH QUOTATTON MARKS.

L et T LY SRR PR |

Mem b pmmmd b=t bbemn® 2

LELE USRI N TT L L L L

R __WRE___REN___$Wde]
n*l_+§_+i_*!_+I,4I-+I_n,5
SRS R
Frddbsbrbddibbbbbbbt s T
HESEZREARRRARRIRNENERGY 8

LF IR . -v,0
----- P S S e e TR L)
YOUR LAST DATA STATEMENT MUST BE:
"O00000000000000000000" , 0

224~

L

| G SR G G S G

S

—

.

%
0E OLOD 06w
i 00w
S'w @ ST INT¥A TYWIDAQ IHL.'(Z2)AVLIOLNY
& IX3W 09k
H + 5 = § 05k
LW RIHL §=3 A1 Oy
1. 9lal=H NIHL £=3 41 ofe
ZuotalsW NIHL 2=¥ 41 02w

£.91al5W KIHL 12X 41 OLlk
($19)T¥A=1 00K
Oth NIHL 6<1 I 06E

S1=1 NIHL wdu=$18 31 08

wl=l NIHL «Ju=$18 41 OLE

£1=1 RAND wQu=$18 41 09€

2L=L RIHL wDu=%$15 3T 0SE

L1=1 NIHL 4Hus$l8 3T O%E

oL=1 NIHL wVu=fL9 41 O

0=1 02§

(L ryga=$id 131 01€

t*N=d 0Of

k OL L = [H04d 062

w04 21880502 100=\0=) 082

$8'u! YASWAN IVWIDAA 3HL INVM 00K OG IWT¥A XIH 1¥HMe LNdK] 0LZ
0f 0L0D 092

49£559 OL 40 SYTAWON SAAVL LINO AVHEDOUd SIHL wi 0&2
[ANE:1 T

0f 0109 02

X IN3N 02z

*uOu i NIHL 0<C{L~K)X 41 o012

0£ 0109 002

L LX3AN 061

FLLRIXCCRIXISY (1s)avLi 081

012 HIHE 0=(A)X 41 0LL

‘u = INIYA X3Ha *(HE)AVL I HIHL L=k 4T 091
(COL/¥IININDL) = ¥ = (R)X 051

(01/({ 9628 ((2)XILKD)~ (D6E0Ha({1}XDIINII~ ¥))} EINLl= (EDX Okl
(2. 9L7CCCEL9L/V)INIaE.98) = ¥)) INI = (2)X Oft
(E.91/7¥) INI ={1)X 02L

n 0L =X HO3 otL

ud3ADAVERLISHEZLLUSY 0Ot

106

OhZ MIHE SEGS9¢¥ 41 08

V' I HOA JNTVA YIH ¥ LNVA NOA 04 Y3AWOK TYWIZIQ LVHM« LNINI 0L
iNiD9

0LZ 'OL OLOD 1 KO 0%

ist
T'a 2 HO L « LDJNL 0%
wi WWHIDAA OL XAH - Z# 40 XIH OL TVWIDAA-L# INWM 00X Oduil SE

i
{SL)$Y WIA OL
4400 \INdWI 38 18NW 44 MWIAY 2
"SINIVA IYHISIAVXAH HOd4 SHATYA 5004 LOINL LSOW NOA W3H L

1 REN THIS IS A GAME OF GUESS THE NUMBER THAT THE COMPUTER
2 REM 15 THINKING OF. THF COMPUTER WTLIL TELL YOI IF YOUR
3 REM GUESS I3 TOO HIGH OR TOO LOW, YOU THEN TRY ANOTHER
4 REM GUESS.
0 A=0
20 K=INT(RHDOO}®100+1)
0 A=A+l
43 INPUT ™ WHAT DO YOU THIMNK THE NUMBER 13 7 "L
50 IF X>Y THEW S0
60 IF X<Y THEN 120
70 IF X=Y THEN 150
40" YOUR KUMBER IS TOOQ LoW"
301
100
110 GOTO 30
1201" YOUR WUMBER IS5 TOO HIGH"
130t
140GOTG 30
1504
1601
TTOIN RS RN ARRERINERRARRANANERERRARANAAARX IR AR RANERTENERANEET
tBO!
tagn Toun ARE CORRECT - YGQGU GOT IT !
ZIDIH R A E AR R R RV AN R R R R RN AR R F AN AR R RANN AR RN R
220%
gsgl“ IT TOOK ¥OU THIS MANY TUNRS TO GET IT = ",A
3

2500
260 GOTO 10

1 REM THIS AN INVOICE TOTALIMG PROGRAM

10 INPOT ™UNIT COST: " ,F

15 INPUT "HOW MANY GF THIS ITEM: ",H

16 ¢ =F ¥

20 ¥ "I3 THIS A TAXABLE ITEM 2?7

30 INPUT "YES OF NO: ",T$

40 IF Y$ = "YES" THENW GOSOB 140

5 R =1 +C

60 INFUT "DO YOU HAVE ANGTHER ITEM ¢ TYES OR NO; ",D$
70 IF 4 = "YES"™ THEN 10

80 ! T#310F2

90 ! "TOTAL COST OF ALL ITEMZ: “,R

100 ' "TOTAL €OST OF TAXABLE ITEMS: ",B

110t "TOTAL AMOUNT OF TAX: ", .06%B

120 t "TOTAL OF ALL ITEMS PLUS TAX: ™, R+.06%B
130 END

140 B =98 + ¢

150 RETURN

-226-

Lo

|

S

e

L

i
i
I
i
!
|
i
I
|
I
!

[

o

1 REM THIS IS AN INVOICE TOTALING PROGRAM WITH ACCOUNTING
2 REM OF ALL THE INVOICES, PLUS DISCOUNT CODES .

10 1s0\D«0\Js0\Ha O \KaO\Sn)\T20\Qu 0\ R=0

20 ¥zN+1

30 INPUT "I3 THIS ACCOUNT TAXABLE 27 : ™, A%

HO IF A% = "YE3S®™ THEN T=.05

S0 01 = T+l

601

70 INPUT " WHAT IS THE LIST PRICE OF THE ITEM ? : ™.,F

801
90 INPUT * BOW MANY ARE TO BE SHIPPED ONW THIS INVOICE : ¥,Q
1001t

110 R=RB+0

120 INPUT “WHICH DISCOUNT CODE + , 2 , OR 3 : ™, D

1301

14¢ GOSUB 330

150 INPUT "DD YOU HAVE ANOTHER ITEM : ™, B$

160 IF B « "YES™ THEN 50

170NN A
190

190 | * TOTAL NUMBER OF LINE ITEMS FOR THIS IHVDICE RS T 9 §
200 ¥ " TOTAL WUMBER OF UNITS FOR THIS INVOICE : R

210 t " TOTAL LIST PRICE ALL PRODUCT ON INVOICE : IJS1OF2 H
220 1 " TOTAL DISCOUNT FRICE ALL FRODUCT H

230 t ™ TOTAL TAX ON THIS INVQICE H ",K'T

280 1 " TOTAL AMOUNMT OF THIS INVOICE 1" K« {K*T)
238!H=Ho(14(K'T))

2

270 INPUT *DO YOU HAVE ANOTHER INVOICE : ™, (%

280 IF C$="YES™ THEW 10

2901

30481 * TOTAL NUMBER OF IMVOICES PREPARED TN
3101 " TOTAL AMOUNT OF ALL INVOICES PREPARED : ", $310F2 M
320 EMD

330 OK D GOTD 340,360,380

340 J=F

350 GOTG 390

360 J=P%,9

370 GOTO 390

380 J=F* 3

390 H=H+{P%q}

400 K=K+ (%)

410 RETURN

22T

{ |
v
g |
; |
10 ¢ * THIS IS A MULTIPLICATION LEARNING PROGRAM ™ il
20 1 '
30 1 % FOLLOW TME INSTRUCTIONS BY THE COMPUTER " ‘_j
Y
50 INPUT * PUT IN THE TIMES TABLE VALUE YOU WANT %, A
60 LET B = A% g
70 LET C:=AP2 % \J
80 LET D=A¥9 : :
90 LET £ = A" :
100 LET F = A1 :
110 LET G = A®4 :
120 LET H = AR7 . E:J
130 LET J = A®12 :
10 LET K = A®3 ;
150 LET L = A" ' i
160 LET H = A*10 oo
170 1 A, " X 6 = ",\ INPUT ", P X
180 IF P=B THEN 250 ;Lj
1601
200 IF P<>B THEN 210 ' ;
210! ' i
220 1 ® YOUR ANSWSER IS INCORRECT -- TAY AGAIN # by
230 | 'y
200 GOTO 170 i hj
250 IF P = B THEW GOSUB 1020
260 ! 5
270t A, " % 2 = ", NINPUT "%, @ .
280 IF Q=C THEN 380 :Lj
290 IF Q<C THEN 300
300 ! .
3101 " YOUR ANSWSER IS INCORRECT -- TRY AGAIN " ;
320 GOTO 260 .
3o B
380 GosUB 1020 i
300 A, " X 9 = " NINPUT M ", R :
360 IF R = D THEN 470 i
3;0 IF R<>D THEN 380 i
80 1 &
90y - YOUR ANSWER IS INCORRECT -~ THINK AND TRY AGAIN " .Lj
900 GOTO 350 \
410 GOSUB 1020 i
W20t A, " X 5 x Y, \INPUT " ", % |
430 IF § = E THEW 380 i
HiQ IF S<E THEM 450 J
450 1
450 t ™ w¥ENWS® YOUR ANSWER IS INCORAECT -~ THINK AND TRY AGAIN ##v

470 GOTO B20 i
430 GOSUB 1020 , _ :
B30t A, " X 11 =z FAINPUT " %, T i
500 IF T=F THEN 550 N
540 IF T<>F THEN 520 :
520 1 i
530 1 " YOUR ANSWER 1S INCORRECT -- THINK HWARD--TRY AGAIN n t
530 GOTO 290

550 GOSUB 1020

560 1 A, " X 4 z ", \INPUT "™, U
570 IF U = G THEN 620

580 IF UGG THEN 590

590 t

-228- i

f

n—

L

— 7

6001 v YOU AR

610 GOTO 5560

620 GOSUB 1020

630 1 A, v X

640 IF ¥ = H THEN 6

650 IF V<> H THEN 6

660 1

670 4 » WAONG -~

680 GOTO 630

690 GOSUE 1020

00 A, ® X

710 IF W = J THEN 7

720 IF W¢> J§ THEN 7

730 !

TH0 ¥ % THE AWSWER

750 GOTO 70D

760 GOSUB 1020

7701 A, * X

T80 IF X = K THEN B

790 IF X <> K THEN

800 1

81D ¢t % YOU MUST K

820 GOTO 770

830 cosuUB 1020

BIO T A, * %

850 IF Y=L THEN 900

860 TF Y<>L THEN 87
T

880 t * WOT RIGHT
890 GOTO 840

900 GOSUB 1020
910t 4, "

920 IF Z = M THEN ©
930 IF z<>M THEN 914
Qqup 1

950 1 " WRONG ---
960 GOTO 910

970 GOSUB 1020

980 1 " Y0U HAVE COI
%90 IMPUT * YES OR
1000 IF Wg = "TES"
1002 t " PLEASE -=
1010 EXND

1020 t

1030 1 nEFERRNARY
10401

1050 RETURN

1060 END

E WRONG -~ YOUR NOT THINKING -- TRY AGAIN -

T & ",NINPUT v % Y

90

60

--WRONG-—--WRONG-~-ONCE MORE = WRONG *
12 = "N THRUT % v W

60

30
YOU PROYIDED IS WRONG -- TRY AGAIN =
3 = *, NINPUT " ML X

1D

Bao

NOW THAT CAN NOT BE THE RIGHT ANSWER-- TRY AGATH "

8 = ™, N INPUT ® 7, Y
0
~- THINK IT OVER AND TRY IT AGAIN "
10 = %, \NINPOT " ° , 2
T0
0
JUST ADD A ZERO TO YOUR NUMBER AND TRY AGAIN"
MPLETED THIS SECTION -- DO YOU WANT TG TRY MORE 2 ©
HO %, WS

THEN 50
TRY 1T JUST ONE MORE TIME -~ CHICKEN ™

YOU ARE CORRECT SEERAEESEALY

~229-

150 FeCH(X+1,7-1)

150 FOR W = ¥+1 TO 40

160 IF G$(W,W)=" " THENW EXIT 180
170 MEXT W

180 FOR Z s Wel TG 40

190 IF C${2,Z)="." THEN EXIT 218
200 NEXT 2

Do
Pl
T
I
iy ‘
b
i .
10 DIM C$(40) ! ;
L2 .
2TI"TYPE DESIRED CONVERSION : 3 KG TO LB." R |
301 :
BOINPUT "WHAT TO WHAT : ",C$ i \
50 C530 P
60 FOR X = 1 TO 10 - i
70 D$=CS01,X) [‘
B0 IF C$(X_X)=" » THEN EXIT 100 D
90 WEXT X ;
100 F=¥AL(D$) ;
110 FOR Y = X+1 TO 40 DL
120 IF C4(Y,Y)=* THEN EXIT 140 P
130 NEXT ¥ :
|

R

210 US:C$(U¢1,Z-1) i
220 IF F§ = "KG* THER K=1 o
230 IF F§ = "GM" THEM K=2 S i
200 IF F$ = "LB* THEN K=3
250 IF F$ = "MG® THEN Kell
260 IF F$ = "0I" THEN K:=5
270 IF F$ = "MCG" THEN K« L
2806 IF F§ = "GAL® THEN K=7 i
290 TF F$ = "QT" THEN K=8 i
300 IF F$ = "PT™ THEN K=9
310 IF F$ = "L® THEN K=10
320 1F F$ = “CC" THEW K=11 ‘
330 IF F$ = "ML" THEN K=11
G IF U$ = "KEGT™ THER J = 1
350 IF U$ = "GW" THEN 4 = 2
360 IF U$ = "LB* THEN J = 3 |
370 IF U$ = "WG" TREN J - & Sy
380 IF U$ = "OZ™ THEN J < 5 i
390 IF U$ = "MCGY THEN J = 6 i
¥00 IF U$ = *GAL™ THEN J = 7 t
%01 IF 0% = "QT* THEW J = 8 i !
N02 IF U$ = *PT® THEN J = 9 |, 0
403 IF U$ = SL" THEN J = 10 P
90K TF Of = »CC* THEN J = 11 P
205 IF 0% = “HL® THEN J = 11 |
h10 IF K = 1 AMD J = 3 THEN €5 = 2.205
420 TF X = 1 AND J= 8 THEK C5 = 10°3
930 TF K = 1 ABD & = 4 THEN €5 = 1076
480 IF K = 1 AND 4 = 5 THEN C5 = 35.28 5
450 TF K » 1 AND J= 6 THEM €5 = 10°9
460 [F K= 2 MWD 4= 1 THEN €5 = 10°-3
470 IF K= 2 AND J= 3 THEN C5 = 2.205%10°-3
uBG IF K= 2 AND ! = 4 THEK CS = 10°3
400 IF K = 2 AND J = 5 THEM C5 = .03527 }
500 IF K x 2 AND J = & THEN C5 = 10°%
SI10 IF X = 3 AND J = 1 THEW €5 = .85359
520 IF K = 3 AND J = 2 THEN €5 = 53,5924
§
-230- ‘

T

530 IF K = 3 AND J = 4 THEN C5 = U453592.%

Shp IF ¥ = 3 AND J = 5 THEN €5 = 16

550 IF X = 3 AND J = & THEN €5 = 4.535924%10°8
560 IF ¥ = 4 AND J = 1 THEN C5 = 1076

570 IF K = 4 AND J = 3 THEN C5 = 2.205%10%-6
580 IF K = 4 ANDR J = 2 THEK €5 = 10°-3 -

590 IF K e 4 AND J = 5 THEN C5 = ,03527Y%10"-3
5OD IF K = 4 AND J » 6 THEN €5 = 1073

610 IF K = 5 AND J = 3 THEM C5 = .0625

620 IF K = % AND J = 1 THEN C5 = 2§8.3495%10°-13
630 IF K = 5 AND & = 2 THEN C5 = 28,3495

64D IF K = 5 AND J = 4 THEN C5 = 2B.3895%10"3
650 IF K = 5 AND J = 6 THEN €5 = 28.3095815 ¢
660 IF K = 6 AND J = 3 THEN €5 = 2.205M0"-9
BT0 IF K = 6 AND J = 1 THEN €5 = 10"-9

68D IF K =« 6§ ANP J = 2 THEN £5 = 10°-6

690 IF K = 6 AND J = 5 THEN CS = .03527%¥107-6
700 IF K = 7 AND J = B THEN C5 = 4

710 IF K = 7 AND J = 9 THEN G5 = 8

720 IF K = 7 AND J = 5 THEN C5 = 128

730 IF K = 7 AND J = 10 THEM €5 = 3.78%

740 IF K = 7 AND J = 11 THEW €5 = 3788

750 IF K = 8 AND J = 7 THEN ¢5 = .25

T60 IF ¥ = 8 AND J = 9 THEN €% = 2

770 IF X = B AND J = 5 THEM C5 = 32

780 IF K = 8 AND J = 11 THEN C5 = 946.3

790 IF K = 9§ AND J = 7 THEN ¢5 = .125

800 IF K =9 AND J = § THEN C5 = .5

B10 IF K = § AND J = 5 THEK €5 = 16

820 IF K = 8 AND 4 = 10 THEN ©5 = U732

830 IF K = 9 AND 4 = 19 THEN C5 = 473.2

8u3 IF K =5 AND J = 7 THEN C5 = T7.8125%10%°-3 |
650 IF K =% AND J = 8 THEN CS5 = 0625 . -
860 IF K =5 AND) = @ THEN C5 = 125

870 IF K =5 AND J = 10 THEK Cc% = .02%.

880 IF £ = 5 AND J = 17 THEN C5 = 473.2

890 IF K = 10 4ND J = ¥ THEH €5 = 2642

GO0 IF K = 10 AND J = 8 THEN C5 = 1,057

10 IF X = 10 AND J = 9 THEN C5 = 2,113

920 IF €K = 10 AND J = 5 THEN €5 = 33,618

930 IF K = 10 AND J = 13 THEN C§ = 10"

S4O IF K = 11 AND J = 7 THEN C5= 2,842%107-4
950 IF K = 11 A®D J = 8 THEN €53 1.0567%10°.3
860 IF K = 11 AND J =9 THEN CS= 2.11328107-3
G70 IF K = 11 AND J = 5 THEH CS5= ,033818

980 IF X = 71 AWD J = 10 THEN C5z 10°=3

990 IF £% = U3 THEW CS5
9951

=1

t000 IF ©5 = O THEN !TAB({15),"THE DESIRED CONVERSION IS NOT IN THIS PROGRAW."

1005 GOTD 1030
1010 1

1020 1 TAB(20),F,” ",F§," IS EQUAL TO: “,C5%F," *,U%

16301
1040 GOTO 20

«231-

: -2
f?
E
iDos
» NOILISO4 LHOIH THL NI IZBY/SI w ‘r‘s HOIRM 40 o | G6h
! « SHIAWON IHDIM » ' ¥ 'w IAVH 0O 4 i 0@%
L+3=d N3KL @ = 1Q 31 Ole
v+3=1 N3HL 2 = 14 A1 ogn
1+X=H N3IHL # = 1d 41 poy
L+%8Y NAHL ¥ 2 14 41 onn
! L+f=F N3HL q = 1Q 31 Ofh
i+%=1 NAHL a = 13 4@ ozh
L+X=a NIEL D = LD JI OLn
L+¥=% N3IHL 8 = 12 41 ook
; t+3=1 NIWL ¥ = 13 31 06E
{ |+F=P KAHL 2 = |3 31 08f
: Led=Y NIHL d = 18 47 0if
L+¥=¥ NJHL 2 = 18 3T 0%E
i+¥=3 NIHL 9 = 149 41 ost
L#H=d NIHL ¥ = 18 4T onf
L+P=p NIHL 9 = I8 41 0L€
¥ 1*Y = ¥ NAHML d = LV 21 02€
A=Y MAHL 0 = 1Y 41 01f
L+¥=3 NIHL 8 = LY 41 Opf
& L+d=Y NAHL ¥ = 1Y 2 062
; L+PSP NIHL ¥ = 1Y 41 0ge
D= H LIT 0L
0= r 131 092
La‘Lafie’1y 1ndNI osz
] w B'E'2YL-=SYMWOD A ¢31VY3I4AS NI HIAEWON BAOL Lhd o § OhE
! ‘ L + N = N 137 of2
i ! Ol M3IHL 2=8 dI 022
: OL NIHL @ = 2 41 W2
OL N3HL @ = 8 41 00&
0L NANL Q =v 41 051
) Gl N3HL 5 = v 41 0Bl
i 0L HAWL €=¥ 41 0Z¢
{(OLa{T)ANB)LNI = 4 137 091
(OLaCI)ANEIINI = O 131 06t
(01s()INH)INY = 8 LA Onl
! (OLa{VIONEIINL = ¥ L37 01
i 6 GL t= = @ Hod 021
: 6 01 1= % D Hud GLL
6 0L 1= = @ 404 00
| € 0L b~ = ¥ 304 06
! iof
: ; 0L
i g 0= A& L3709
!I ing
| ion
: y i
; iozZ
i i0l

1 *SHANL XTS N1 439WNE IHL £53nD 01 37AY 36 QINOHS NHOL ‘13D NOL Wi¥ £
i 1¥HL §3NT12 3HL WO QdSYE 6666 GNY 0000 NITMIIA 4IGHON W4 ¢
¥ 20 ONINNTHL SI EILNANOD FHL “3u¥D §3UWAN ¥ S SIRL wW3Y |

I R |

7

510 IF J = 4 THEN 530
520 GOTD 230
530) MAANEEKESEENN YOUR ANSWSER IS CORRCCT *ewweswssxsess o

Su0 ¢

S50 f *IT TOOK YOU *», N , " TURNS TO GET LT RIGHT "
ELIUNE B YOUR RATING IS : -

701

580 IF W<5 THEN 6HO

380 IF N=5 THEN TOO

600 IF Ns& THEN 700

610 IF N= T THENT20

620 IF Ne B THENT20Q

B30 IF M=9THEN72D

640 IF N = 10 THEM 740

650 IF N = 1t THEN 740

660 IF N = 12 THEN 740

670 IF N > 12 THEN 760

1: 10 tzzizizir YOU ARE A& GENIUS -- OR YOU ARE VERY LUCKY :z:;;::®
690 GOTO 780

700 v » NNEWNEN YOUR NUMERIC LOGIC IS AROVE AVERAGE SWsSNNEn
710 GOTO 780

720 4w TEmmmmessse YOUR WUMERIC LOGIC IS5 AVERAGE ~~~=~~~==-=~" b
730 GOTO 780

TUD AMAFREREPY YOUR WOMERIC LOGIC WEEDS MELP #EFrippan

750 GOTO 780
F6O!® XXAKXXXXX YOUR NOT TOO BRIGHT « OR YOU ARE WOT TRYING XXXXXX"
;gg GOTQ 780

1

790 1

g0y

-REI I WOULD YOU LIKE TO TRY AGAIN 2772 *
ggg INPUT * YEE OR MO : *.T$

1

gﬂﬂ IF T$ = "YES"™ THEN 10

501

460 ! " CHICKEN--CHICKEN==CHICKEN==CHICKEN==CHICKEN--CHICKEN ™
470 MEXT

880 NEXT

890 BEXT

900 NEXT

91¢ END

~233-

—

1 REM THIS IS A GAME LIKE THE CARD GAME "TR~-BETWEER"

2 REM YOU BET AGAINST THE POT IF THE NEXT WUMBER DISPLAYED
3 REM IS IN-BETWEEW THE TWO “CARDS"™ SHOWN.

10 Q22100

2o~ - -

30T THE FPOT HAS : "LEETOF2,0Q2

Hnr=
50 INPUT™® " A%

60 K!I!T(RND(O}‘13+1)

70 Y=INT{RND{Q}®13+1}

80 IF Xs=¥ THEN 60

90 IF X=Y+1 THEN 60

100 IF I=Y-1 THEN &0

110 K=ARS{{((ABS(A-Y)=1)/13)}%100)=100)

120 K2={ ((K/50)/1)+(K-50)-(2F(100/K)))#3/5.25
130 IF K2 ¢ .5 THEW K2=.S5

140 IF ABS{X-Y}-1 = 6 THEN K2=1

L. _

L o L.

L2 "

1609 CARD WNUMBER ORE LS AISK IS ™

lTO!TRB(#S),iﬁF! lBS((((lBS(X-T)-111131'100)-100}.‘ £ AGAINST®

130!* CAR WUMNBER THO "T," ", ABS{X-Y)-1,® CARDS"

1901 .
200!" HOUSE PATS *,1310F2,K2,™ FOR EVERY DOLLAR BET * LJ
L S rtaaE s s st saaaasaann " i
ggu INPUT 'PLEISE PLACE YOUOR BET : $ ™,0

240 z:lnr(nno(o)'13+1j .
2501 MWEXT CAAD UF IS A : "2 B
260 . [

270 IF Q=0 THEW 20
200 IF 7 = X THEN 330
290 IF Z = Y THEN 330
300 IF X>Y THEM 330
310 IF ¥<Y THEN 3160
320 IF X=Y THEN 240

C-

BxY . .
350 GOTC 380 '
360 B=X i
370 A=Y :
380 IF I>A THEWN1O
390 IF I<B THENA10
400 GOTO M50
K10t # T0VU LOOSE #4 *
8201
430 Q220240 :
Niig Qu=QU-g !
850 GOTO 510 i
:?g:“ $3555338358348 YO U WIN $553555555 88588
4B0 Q2=qg2-0%NZ
890 QA=QAQIK2
500 GOTO S10 ;
S10 IF Q4 > 0 THEN 530 |
520 IF Q¥ < 0 THENW 560

5301" YOU HOW HAVE WON : ®4510F2,Q8

580 IF Q2 < 1 THEN1Q .

550 GOTO 20 |

501" YOU NOW HAVE LOST : ©,8810F2,QU I

570 GOTO 20 i
—23M-

=

-

e

s T

1 REM THIS I3 AN INVENTORY COUNTING PROGRAM

2 REM FIRST YOU MUST CREATE A TYPE 3 DATA FILE (ANY NAME) !
3 REM ALL DATA STATEMENTS MUST HAVE FOLLOWING FORMAT

i REM !
5 REM ITEM # , “ITEM NAME® , 1TEM CLASS , ITEM COST

6 REM

7 REM THE ITEM NAME MUST BE ENCLOSED IN QUOTATION MARKS

301

_HD INPUT " HAME OF PERSON RUNNING PROGRAﬁ ", K$
", D§

SOINPYUT “INVENTORY DATE

601 :
70 DIM E$(24) i
a0t

QOTHPUT ™ FILE WAME : ®, F3%
100 OPEN #0,F3%

110 1F TYP(0) THEN 150

120 IF TYP{0)=? THEN 130

130 READ #0,H

1Mo GoTo 110

150 ¢ FILE IS READY FOR INVENTORY UPDATE"
1601

¥701

1RO READ W,E$,C,0

190 1€ NW=1 THEW 410

200 ' H,® ", E$

210 INPUT * N3, OF UNITS IN INVENTORY - ", H

220 ¢

230! "ITEMY DISCRIPTION CLASS UNIT$ ON HAND®

2401 ;
2561 TAB(T),E$,Tap(29),C,TAB{38),0, TAB(UB) H : :
2B i riieiae i e sy rasanaes" '

270 WRITE#D ,MN,E$,C, 0B

280 GOTO 180

3 1 R P S I S WA P S W PP S ST S DA L
3001

310 REM YOU CAH HAVE A5 MAMY ITEMS IN DATA STATEMENTS A3
g:; :E: YOU HAVE AVAILABLE MEMORY. 24K = 300 ITEMS

313 REM ITEM # ITEM WAME ITEM CLASS ITEM COST
320 DATA 101,"ORANGES™,1,.23

330 DATA 102,%GRAFES™,1,.0T7

340 DATA 103, "EGGS™,2,.79

350 DATA 105, ®HILK",2,1.25

360 DATA 106, “30UP",3,.21

370 DATA 107,"CORN",3,.35

390DATA O, "END-TYPE 0O ", 0,0

B00DATA 1,"0",0,0

N0t

420 I YOU ARE NOW FINISHED WITH THE IMVENTORY INPUT ™
:gg!HRITE M, D%, 81,K$

A5¢ 1 THAMK YOU VERY MUCH ™ ,K$
860 CLOSE £ 0
47O END

g 35-

i BEM THIS INVENTORY ACCOUNTIING PROGRAM MUST BE RUN WITH
20 REM THE DATA FROM THE INVENTORY COUNTING PROGRAM THAT

30 REM WAS WRITTEN TO THE INVENTORY FILE CREATED BY THAT
ug REM PROGH AM

G0 REM

60 REM THI3 PROGRAM WILL GIVE ITEM TOTALS AND EXTENSIONZ

70 FREM AND TOTAL DOLLARS FOR 10 SEPERATE CLASS ITEMS

80 FREM AND TOTAL DF ALL ITEHMS IN LIKE CLASS ITEMS

90 REM

100 '™ THIS IS THE INVENTORY EXTENDING AND LISTING PROGRAM

110%" IT I5 RUN WITH THE IMYENTORY COUNT DATA DEISC "

120 DIM E$(24)

L.

130¢ .
140 INPUT *DATE OF THIS INYENTORY AUN : *,D$;J
150 INPUT “THIS PROGRAM RUNK BY : " T

160 THPUT * IMVENTORY FILE NAME *,F$’

170 GPEN #0,F$.
B0 ™ it ienauoasareananasrsasanarroassarbnrnratnsaney verrere ™ i
190" ITER# DESCRIPTION CLASS UMIT$ COUNT COST" ;
2000, e tee st i aretesnnaeanensaten b ran s "

210 T0

220 Tz

230 T2:0 §
280 T30

250 T4=0

260 T5=0

270 Th=0

280 T7=0 ;
290 TH:=0

300 T9=0

310 READ #0,N,E$,C,0,H

320 IF N=0 THEN 680

330 IF H=0 THEN 310 .
380 IF C=1 THEN 450 :
350 IF C=2 THEN 470

360 IF Cx3 THEN 490

370 IF C=% THEN 510

380 IF C=5 THEN 530 .
390 [F C=6 THEN 550 }
8500 IF C=7 THEN 570 R
410 IF C:B THEN 590 . ;
420 IF €=% THEN 610 = ’
830 IF C=10 THEM 630

4ap! 1
450 TaT+O® !
460 GOTO 660

470 T1=T1+0%

480 GOTO 660

490 T2=T2+0%H ,
500 GOTO G&O 1J
510 T3=T3+0%H

520 GOTO 660

S30 TH=TH+0M

SA0GOTOBGD

550 TS=TS5+0%H }
S60G0TO660

570 TEaTH+0™

580GOTO6E0

236~

N AR S S

i L

i r.—.,

560 TT=TT+0%*y

HOGGOTORHO

610 T8=TA+Q*H

620G0TO660

530 T9=TY«O®

640GOTO660

650 GOTO 660

660N, TABCT) ,ES$, TAB(31),C, TAB(36),0, TAB(45) H, TAB(55) ,88F2,0%
470 GOTD 310

6801

[N R R R R L R R R R R S R LR S S A SR R R R SR R S RS S -0 o
TA0! "FRUIT AND VEGTABLES =1 w RSCHIOF2,T
T10! "DAIRT FRODUCTS =¥ 2 "1

7201 *"CANNED GOGDS =43 ".T2

730! “IKVENTORY ADJUSTMEMT = P4 LT3

TUG! "A GOODS =45 ", TH

70! "D GOODS =4 B " TS

7601 "¢ GODDS =47 .

TTot "D GGODS =48 17

T8GY *E GOOD3 =4 g v, 18

T90¢ ®F GOCDS = #10 i

800 REM
810 F1=T+T1+T2+T 3+056+108
820 R1xTH+T5+TOH+TT4TE+TO+U+U 14024l T4 M+UTsU Tl G2t 4W 1
GIOINERER R EN AR RNRN A AR IR RPN RAR RN RE NS RRE AR R RN R
BAQ El1xF14RT
501
601" TOTAL FINISHED PRODUCT : ", F1
870y
LELE A TOTAL RAW MATERIALS : ¥ "R
8901
900" TOTAL ALL TNVENTORY ITEMS + § ",E1
10 134
gzg!":III'!'lIlf”l'li!i!!‘lillllﬁlll!liil!lIh!I.‘Iill'll!lll*l’!llﬂ
930 CLOSE #¢
Q40 END

-237-

3

3

EAFART]!

¥

an3
oL 010D

NOLXEN \000L O b =N #0J

JUOLSIY

0'0 ¥ivd

e e Eats 2’2 viva

Liratrtozt tor Lt nt L EL LAz AN A 08 610961 G EL NI
P EAT N EAU T AN R Tl i A RECAT M AN LA M T 241

MOCKIM dn W3

gp’setRiRiEgie et Le vIva

R RN T - R R At R A T Il TR Il rTR R Tl Rl T It R TR T X 1]
LLFSE L ns LI EG LI 26 1L es Wlva

feEt i er e taet L et i G LGt b et LL T ER Y1¥a
Zt'entzL s 2L vy WLYC

€1'ng L5 L1 25 VIVG

CLALS EL 08 ' Dudan L an v L e EL ' gn EL o i o€ *Eh K1VO ¢
TR M TN LA I I L S T D S S TR Y T -2 AN]
Rl nl En .t in L on RIS el thn e "ER 6L GS 51 2R VIV
OLNY I

GG gL g G Y GE A6 9 PR 9 6G vIvD

h‘ ls‘ﬁ'ag‘h‘h“;'h‘gs‘ﬂ‘gs‘ﬁ‘f.s'ilﬁg‘ﬁ‘sg 'l'u

0¥14 HIY

G165 N1 ES wIYQ

L BG LGS i hG 0] FES TS S 65 0 65 L 65 9 66 665 HIVa
6096 65 6 LG R 90 6 G5 6 NS 6 59 6 25 6 LL 108 WIva

6 OR' 6 N B L 6 R e SR 6 kG ER R E Ln 6 On B EE VIV
0V HIY

£1'pf 'eLtge wIvO
trtgzterteR it oE Lt eE L e L T ERT 2L EE Vv
ELEEELCSESEL S IE ELTOE 62 EL g2t €10 L2 VINA

MOOKIM H3Y

AR AL TR T AL TR VA R T AN F R Al WAL A N YR 4 4]

R TRV R VRN TR RS TR VAT TR TR N Bl TRETRFTAL TRE NN 3L ¢
IHOTH KGCILo8 GI LHOIN OL do0l 0L 1447T WOLIOE %\ HOUT W3y
SLEGE'SL LG A G 0L G 'S Yivg

ETRE - TR TP 4 TR S T A2 AL A R T BTN (TR F.AR-T R -C ¥ 1 [
IR TRE Fag S ATl FAL T ¥- SR -T Il T AL TS A TR WAL I TR N L {1
IR SR T - IR TR Y R TR BT I ALTRE AT AL TR RETRE-SE-TI) 38 741
LHOIE Ol 1437 40014 W3y

B et I 6 o8O g L L 6T LRI QET 9 LE viIv]

M AE G A G Gl R R n GE L GE e 2 T EE L EE 128 HING
WOL1106 Ol JOL 3004 1HOIY W3d

SRR A RS ARy [AR - F AR AT UYL L A R AN A T4 FA {i]

[YA Bt~ A T ol Tk s Pl Tl Y Bl Bl T VA R - TR IR -TR I TR J 8 [}
1HOIY oL 14371 Wyad 4004 W3

[TR TR A AR A NS S I RN REY R AT A1 1

SUECLTOL Y R 96 L6 LG L AR L 8 96 L 6% YYD

dOL Ol WOLLOS 4004 L1337 W3y

B 6 On'6T6E B BE VIvA

NOISNALXI WV3d WiH

SUYLE MLt RN AE L AR e T LE TR IE vy

SRRt BETELTRETRLUGE LLCBE QUL TR BE VIND

WOLIOE OL JOL TT¥A 1HOIY Wid

B'QEG L6 ST 6 L 6 REC B EL G RE 6 NIE 607 ‘606216702 VIV
Blez'floRtil s b Nt E2 6 22 6 126 026 61 6 01T L1 VIV
YeFCL TRt nLT L eta e Lt e 0N te e e 076 L 6976 S8 e V1]

LHOIY Ol 1337 Wy39 WM &:
S TSI AT ST AT I R AL TP AS- TR AT I
6°9'pLt9t L9tz ie E1te L 9t 61"y VIVD

dgl Gl HOLLOH YA 1437 HWab 2.
aF oIoo s

091 % (ko an9 + X ¥ REJEL)TNTILA
Ot9 NIHI v=X a1
k'K GNiEs

KOAXAN O\ C(ELISHHD v v on 0 LEN H04 6T
(BELISHND i ¢

REM THIS PROGRAM PREPARES THE FMPLOYEE TATA FILE (TYPE 2}
REM TO BE USED WITH THE PAYROLL PROGRAM, ALL 0OF THE
REM QUESTIONS MUST BE ANSWERED. AN HOURLY RATE MUST PE USET

REM HOURLY EMPLOYEES MUST HAVE AN EMPLOYEE WUMBER GREATER

1
2
3
4 REM EVEN FOR SALARIED EMPLOYEES= BASED O 40 HOURS PER WREK
5
)

REK THAN 200 --. SALARTED EMPLOYEES A NUMBER LESS THAN 207,
16 DIM N$(30},38(11)
20 OPEN #0, "EMPLOYEE"

30 INPUT ™ EMPFLOYEE NWUMBER "N
R0 IF N = 0 THEN 220

50 INFUT ™ EMFLOYEE NAME ;"ML NE
60 INPUT " SOCIAL SECURITY NO. t ", 5%

70 " TYPE I FOR MARLITAL STATUS : "
80 INPUT ™ 1 - SINGLE * 2 - MARRIED: ",W

90 INPUT * EMPLOYEE'S PAY RATE LN
100 INPUT * TOTAL WO. DEPENGENTS : *.,D
110 [* TAKING DEPENDENT INSURANCE 2 %
120 INPUT " 1 FOR YES 2 FOR NO : *,I
130 |
140 IF TYP{O} = O THEN 200
15¢ IF TYP{0)=2 THEN 160
160 READ 40, N1, N1$,S18,M1,R1,01,11
1701* THE LAST WUMSER READ ON THE FILE WAS : .1
1801" THE LAST NUMBER WRITTEN ON THE FILE : " N
190 GOTO 0
200 WRITE #0, N, N$,5% M R, 0,7
210 GOTO 30
200 CLOSE RO
230 END
2401
2501
2601t
70 OPEN #0,"EMPLOYEE"
280 IF TYP(0)=D THEN 320
290 IF TYP(0)=2 THEN 300
300 READ #O,N1,N1$,515,M1,R1,01,11
310 GOTO280
320 1* THE LAST EMPLOYEE NUMBER ON FILE IS : ",N1
330 CLOSE#0
3%0 END

-239~

) REM THIS IS A PAYROLL PROGRAM WHIGCH CALTULATES WITHOLDING !
2 REM AND FICA, ALLOWS FOR OTHER DEDUCTIZNS, IT REQUIRES i
3 BEM A TYPE 3 EMPLOYEE-DATA FILE {(INCLUCED IN THIS SECTION) :
R REM IT 1S BASED DW A MEEKLY PAYROLL AND HANDLES BOTH

S REM GALARTER (NOS, 1 TO 199) AND HOURLY (¥0S, > 200) |
& REM THE WITHHOLDING TAX IS5 BASED OK 1978 RATES 5
7 REM TO UPDATE CHANGE LINES 430 TC 600) i

10 DIM N$(30},5$(11) !

20 K4:0 ol
30 INPUT " THIS PAYROLL IS FOR THE PEAIOD EHDING : , D% il
L1 YR AL P, . e e e *

50 OPEN PO, "EMPLOYEE"

60 INPUT "WHAT IS THE EMPLOYEE WUMBER :", N9
70 I7=0\H2=0\FR=0

80 IF N9 = 0 THEN ?tODD

90 1F N9<200 THEX K4 = K4 1 2
100 READ 70, N,H$,5%,M,8,0,1 E
1§0 IF N = N9 THEN 160

SR
120 [F TYP(0)=2 THEN 100 hl

J

J

130 IF TYP(O)=0 THFN 1 “THERE IS NO SUCH HUMBER ™ i
140 CLOSE £0 '
150 GOTO 50

160t

I;g!“ THE YUMBER : ",N9,™ I35 FOR ; ",N$

1 !

190 IF NS<200 THER 219

200 GOTO 220

210 H=30\GOTQ 260

220 INPUT "TOTAL NO, OF REGULAR HOURS WORKED 1 ",H
230 IF H < 41 THEN 250

240 UERE O MORE THAN G ®REO\GOTO 220

250 INPUT *TOTAL NO. OF OVER-TIME HOURS WORKED : ™ H2 i
260!

270 IF N3»>200 THE®R 300

280 INPUT "IF COMMISIONS HOW RUCH : " F3

290 F9sF9+F 3

300 W = "R

310 WY =HZ"RY¥t.5

320 G = W + W) « FB

330 HS=H5+H

340 HE=HE+H2

350 WOH=WE+W1

360 INPUT "AMOUNT OF ADVANCEMENT REPAYMENT : ", b7

370t

380 D1 = D¥1B.Y

390 N1 = G=D1

400 F=G*,0605

413 ON M GOTO 820,520

azov

B30 IF N1<33 THEN T1x0

480 IF N1>33 THEN T1={N1-33)%.16

450 IF N1>75 THEHW T1=6.88+(K1-T6)Y® 18

460 IF MIXVSITHENT =18, 94 +(N1-143)% 22

470 IF M1 >182 THEW T1s27.52+(N1-182)% .20

UGD IF W13220 THEN T1=36.644+{N1=2200" 28 :
90 TF H1>297 THEN T1:=58.20+{N1-2G7)% 32

500 IF N1>355 THEM T1:=76.76+(N1-35C)% 36

510 GOTD $10

5201

530 1F N1<61 THEN Ti=0

540 IF W1>61 THEN T1= {N1-61)*_15

~240.

550 1F N1>105 THEN T1 =6.6+(N1-105)%,18
5G0 IF N1 » 223 THEN T1:27.8U0s(N1-223)*,22
570 IF W1>278 THEN T1 = 39,94+(N1-2TRIY.25
580 IF N1>355 THEN T1:=59.19+{N1-355)% 28
590 IF N1>432 THENT1=80.75+({N1-432)¥%,32
600 IF K1>509 THEN T1=105.30«(N1-5093% 36

6101

620

630 '"EMPLOYEE NUMBER r " TAB(35),810F0,N
B0 I " TAB(35),N$

650 1*SOCIAL SECURITY # i ", TAB(35),5%

660 IF N9<200 THENW 690

670 1"PAY RATE : ", TAB(35),3$§10F2,R
684 GOTC T10

690 R2=R*40

700 t"PAY RATE : ", TAB{(35),3310F2,R2
710 '*TOTAL DEPENDENTS ", TAB(35},%10F0,D
720 1"PAY PERIOD ENDING : ", TAB{38},D%

730 Y"GROSS PAY t "L TAB(35),470F2,C
TG IF N9<200 THEN THO

T504H," HEGULAR IICURS = r ML TAB(3S) ,510F2,H R
760 IF H2=0 THEW 730

7704H2," OVER-TIME = + ", TAB(35),%10F2,H2Z*R*1.5
780 IF F8>1 THEN 800

790 GOTO 810

BOO t "COMMISIONS : %, TAB(35),%10F2,FB
B10 ! "Flca WITHELD = : ", TAB(35),310F2,F
§20 t "WITHOLDIMNG TAX = : ", TAB(35),810F2,T1
830 IF T = 2 THEN 980

B0 [2 = 13.12\13z13+12

§50 ¢ "DEPENDENT INMSURANCE : %, TAB(35),$10F2,12
860 I7=13.12

870 IF D7=0 THEN S00

880 t “ADVANCE DEDUCTION : ®,TAB(3I5), $I0FZ,D7
890 p8=DBeDY

900 !

QIQInREE NET PAY : * R$C1O0F2,G-F-Tt1-IT7-D7

920t

930 N2=G-F-T1-17-DT

gud G1=G14G

950 F1=F1+F

960 T2:T2+T1

GY0 WI=M3+N2

980 CLOSE #0

980 GOTC 50

TOOGINIY RN SRR E AN RN R R EF RN AN AR E R AR ERRER R F R

TOrOININY

1820 ¢ " TOTALS FOR PAYROLL PERJOD ENDING : ", D$
10301

1040 1" TOTAL GROSS PAYROLL PR 7.5 w8 [- e
1050 '™ TOTAL FICA : K1

1060 1" TOTAL WITHHOLDING TAX ", T2

1070 1" TOTAL DEPENDENT INSURANCE : ™,I3

1080 1" TOTAL ADVANCE DEDUCTIONS + ".D3

1090 1" TOTAL NET PAYROLL HE X1

t100!

1110 IF N3OG1-F1-T2-13-D8 THEN !"ERROR IN NET PAYROLL #sad#swn
11201%48

1130 '™ TOTAL REGULAR HOURS PAID : ™ HS-{K4*4D)

1140 1" TOTAL QVER-TIME HOURS FAID: ™ Hb
1150 1® TOTAL OVER-TIMF WAGES PAXD: " £3CI0F2,W6
1160 1% TOTAL COMMISIONS PAID PO ASCI0F2, RO

-241-

S N RGNS [T U GRS RS IS RN N R T I R e e

