TABLE

2a.
2b
3a
3b
3c

~ e o

8a
8b
9a
9b
9
9d
10
11
12

13

14

-ie

LIST OF TABLES

- DESCRIPTION

Sector Test Program

Patch Point Changes (HEX)

Patch Point Changes IOCTAL)

COUT Routine -

CIN Routine -

CCONT Routine

TINIT Routine

Copying the new DOS

Creating DOS/BASIC File

File Types

Changes Which Allow Use of 0-8K
for Program Storage (Version 2
BASIC)

UPMOfE Routine .
DOWNMOVE Routine (SimiTar to UPMbVE)
Direct Comman&s

Statémentg_

Functions

Basic File Access Commﬁnds

Edit Commands

Logarithm Test

Comparison of MITS and North Star
String Functions Operating on a 20

Character String

Additional MITS Extended Basic
Operations

North Star BASIC lLoader for
Processor Technology's VOM-1

- PAGE

10
)
"
12
12
13
13
14

15

19

23
28
27
28
29

30

30
34
35

37

39

1.0
2.0

3.0

'4.0'

5.0

6.0

TABLE OF CONTENTS

INTRODUCTION. e]
NORTH STAR DISK HARDHARE. . » » . » « » .+ . . . 2
ASSEMBLING A NORTH STAR DISK SYSTEM : 4

THE NORTH STAR DISK OPERATING SYSTEM {DOS). . .8
NORTH STAR BASIC. o v . 27

CONCLUSIONS c e e e o M

1.0 INTRODUCTION

This report is a brief review of the North Star floppy
(micro-) disk system; This device, including its attending soft-
ware, very nicely matches the needs of a small {less than $4000)

microcomputer system.

The discussion is divided into severéi progressive sections.

The fn?iowing:section deﬁls with hardware aspects of the North
Star disk system, along with some Spot comparisons with other
products. The next sectioﬁ provides a user-oriented description
of North Star's very adequate disk operating sysfem software.

This software is capable of accommodating the needs of most

small system users. Also included is a description of how to
“patch” in personalized hardware, with the MITS 88-S10 as

a specific example. The next section considers North Star's BASIC
software. This software has both good and bad features, along
with at Teast one major glitch which should have been caught before

. distribution.

-2-

2.0 NORTH STAR DISK HARDWARE

It is probably generally true that in the development of a small
micro- {(and perhaps Mini-) computer system the first mass storage
devicelis either a PROM, a magnetic-tape cassette recorder or a
paper tape reader/punch, or all simu1tanéou51y. The next step up
is a floppy disk, the micro-disk representfng the Tow end of

the improvement.

‘The North Star floppy disk hardware appears to have good
features for the price. For example, PERTEC Computer Corpora-
tion (owner of MITS, Inc.) advertises a disk drive at

twice the retail price of the North Star and emphasizes that

their new micro-disk system has a head disengage feature which
breaks contact after 5 seconds of no disk 1/0*. The North Star
hardware also has this important property but they do not
advertise it as such a feature is taken for granted by prb-
fessionals. Generally, most-microcohputer systems operate
with the head in contact with the diskette only perhaps 1%

~of the time**, and an automatic disengage feature is a must.

As a comparative example of the ability of the North Star system, we

may compare it with the Sykes floppy disk (not a micro) system which is

*The manual presently states 6.4 seconds.
**For the North star drive, MTBF is 8000 hours, assuming 25% motor

duty cycte. Medium 1ife is said to be 3 miilion passes, or
roughly the drive 1ife. '

used with our PDP-8. At many times the North Sfar price, the
Sykes disk has 1e§s than twice the data (bit) transfer rate and
storade capacity of the North Star. Two North Star's would have
been_a,much better buy than one Sykes, assuming the North Star
disk accesses could be 1nter1eavéd while mainéaining the maximum

access rate of either disk,

As another comparison point, we also have a PEﬁTEC floppy disk unit
{not their newly announcéd micro-disk which they call a "mini"
connected to an Altair 8800aR.- It took some time to get this
-system up and'running (as_opposed to the North Star system which
went without a hitch): The final snag encoﬁntered was the memory
size (in bytes) required to just.get the system Qoing: 24K*, in
comparison to the North Star reguirement of 12,5k, The PERTEC disk
system costs more than twice tﬁat of the North Star, while also

requiring an extra 8K of memory.

Although North Star does not have a large reputation, they are
sure to grow. The quality of their produﬁt is qujte good. One
way they could fmprove their position is to develop a large
variety of software to accompany their hardware system. “An.
example might be a BASIC compiler (instead of interpreter) option.

We presently have a FORTRAN compiler on the North Star system.

*The newly advertised PERTEC microdisk system is said to require
20K of memory, including BASIC.

3.0 ASSEMBLING A NORTH STAR DISK SYSTEM

The Noith Star disk drive (manufactured by a Xerox subsidiary,
Shugart) is controlled By a printed cifcuit board which fits
into a $-100 bus computer, Inc1uded on the controller board
are three preprogramméd'fusibTe-link (titanium~thngsten)
ROM's. This on-board program is reQuired for the bootstfap
loader which starts the system up. Such is not the case with
the more expensive PERTEC disk system which has an optional

1702 PROM bootstrap, requiring an additional board,

Included in the standard hér&ware documentation* is a checkout
procedure for the controller board which largely consists of
looking for pulses of the right shape and repetition rate.
However, there is no hardware trouble-shooting guide to handle

the situation in which a failure occurs in the checkout procedure!

However, we have had no failures to date.

The power requirements_for'the controller board are taken care of
by the computer bus supply. The disk drive requires +5 and +12 volts
for operation, In principle, these could also be ohtained from the

computer bus. In particular, the +5-volt demand in less than one

*North Star optionally supplies additjonal hardware and documentation
for disk drive head alignment, timing and general repair.

ampere, and is thus no problem. However, the +12-volt demand
is between one and two amperes, which is a 1ittle high. North
" Star offers the option of no'power supply, a reguiator board which

accepts unregulated +8 and +18 volts, or a complete power

supply.

Before hooking everything up, some board quper changes are required
in the eventuality that more than one drive is to be driven by the
one controller board. Uplto three drives can be connected in
para11él and controlled. Also, it appears that multiple controller
Icards can be used to handle more disks with only minor modific&tions
of hardware and software. These alterations are well laid out in

the manual and are simple.

Connecting the controller to the disk drive P.C. board is relatively
simpie. A nice 4-conductor ribbon cable is supplied with already
installed end connectors. The directions for plugging into the
controller boééd are crystal clear. However, the connection to the
disk drive board is a Tittle confusing. MNorth Star's directions’

.. are technically- correct, but not immediately interpretable. As an

aid in choosing the correct one of twe orientation possibilities, note
that if the drive unit is oriented with the drive board at the top,
.the céb1e connection will be such that the cable will want to
naturally (no bends in the ribbon) come out the bottom of the drive.

However, there are obstacles to bringing the cable neatly out the

bottom of the unit and the ribbon ends up getting bent back up

towards the top of the drive in something short of an "S",

Once the controller, power supply, and drive are connected, North Star
provides two simpTelcheckouts. The first is the running of the

following program: _
TABLE 1: Sector Test Program

Location (Hex) Operation {Hex)
2000 3A 80EB LDA EBSO
2003 €3 0320 JMP 2003

Running this loop presumably turns on the drive motor for 5 seconds,

The next test is a 1ittle more visible. In this case you examine
address EB20. This results in the sector position field* (0-9)

being displayed on tha lower four bytes of the data bus.

The first real test of operation is to be found in operating the
ROM bootstrap loader. This is Jone by ruﬁning from location E900
{the ROM bpotstrap smaft}y Happens to be out of the way of the

- standard Proceﬁsor Technology or HIfS 2K PROMS which tend to be

placed in the last 2K of memory for other software uses}. The

*The diskette has 10 sector holes in it which are used for locating
fields. The corresponding PERTEC drive/controller uses a 16 sector
diskette. The two are definitely not interchangeable.

7=

head immediately engages with a "]oud click" {more appropriately
described as-a "clack"), followed by "muted clicks" as the head steps
 to track "0" for referencing. Now we cross the boundary between

hardware and software,

8.0 THE NORTH STAR DISK OPERATING SYSTEM (DOS)

Once the hardware is up‘and going, the task of putting together an
operating system begins. Fortunately the DOS software and instruc-
tions supplied by Nofth Star make this an easy job. To proceed

in an organized manner, we will first discﬁss how to interface

user I/0 hardware to the North Star DOS, and then briefly consider
the electrical structure of the diskette, fiTe format, and some ideas

on how to manipulate fiies.

Patching your own 1/0 routines into North Star's DOS is very simple
and straightforward. The following four called routines are

required:

COUT: Character output routine. This routine assumes that the

DOS has placed the ASCII character to be outputted in register B.
It then should test the status of the output 1/0 device etc,
Finally, the routine should return after d1so placing the outputted
character in the accumulator. This is the routine one deals with

when jnterfacing to a VDM-1 video terminal, or other output devices,

CIN: This routine is required to place the 7-bit ASCII

character to be input into tHelaccumu]ator and then return. This
routine should also do status checks, etc. Most Tikely a keyboard
will be the target device. However, one can also patch to a cassette
interface for Tinking subroutines by making the computer think it

is seeing a terminal.

Ilﬁll:' This 1s a terminal initialization routine. It is meant to
handle i/O dgvices which are requirgd to be set up prior to computer
- operation. For example, the IMSAI 25I0 and MITS* boards require

such an initialization. This routine has no effect on the DOS, so

it can a1$6 be used for any utility function which might be performed
upon disk startup, such as starting a clock to keep track of disk

hours, etc,

CONTC: This rodtine's job is to detect the presemce of a "CONTROL-C'
It does this by setting the zero flag if "CONTROL-C" occurred. To
avoid hanging the computer up in a loop, this routine should check

to see if a "CONTROL-C" was typed, and not wait until one is typed.

The actual software patching shown below is for the specific case of
an (o1d) MITS SIO, REV. 1. The changes to be made for Processor
Technolagy's VDM-1 video display are described in the section on

BASIC; a "poking" program is used,

Before patching into tﬁe DOS, the DOS must be loaded into the
computer's active memory. This is done by placing the software
 Idiskétte provided by North Star into the drive. The disk bootstrap
{on PROM) is then run from location E900. The DGS will load

and the computer will go into a loop at TINIT; the software provided

has self-loops at the patch points and will not operate until it is

*A trademark of PERTEC Computer Corporation,

=10-

"personalized"., Stop the machine and make the changes shown on .
Table 2A (Hex) and Table 2b {Octal). Observe that we are chénging
| se1f-160ps to unconditional jumps.

JASLE 2a

PATCH POINT CHANGES (HEX)

Address (Hex) Was (Hex) Change to (Hex) . Reason
200D (COUT) €30D20 30029 To jump to a memory
o : region having
2010 (CIN) £31020 €31029 enough room for the
I/0 routines, This
2013 (TINIT) £31320 £33029 could also be a loca-
- tion in a PROM moni-
2016 (CONTC) £31620 32029 tor, such as the TDL

monitor which is used
for I/0 by al1 TDL

software.

There are several jtems to note at this point. Fih;t, the self-loop
Tocations in the first column are branched to by the DOS using a "call".
Thus the software routines we have just arranged to jump to must contain
"returns”, and not "“jumps" as their concluding opérations.' Also note
that the TINIT routine js implied to be at 2930, above the other
routines. As this routine has some alternate uses, it should have some
breathing room. This extra room extends to just below 2A00, where

the North Star BASIC interpreter (see the next section) starts,

“11-

-TABLE 2b

PATCH POINT CHANGES (OCTAL)

Address (Octal) Was (Octal) Change to (Octal)

010, 015 303 303
_ 015 000
. 010 051
010, 020 : 303 ' 303
. ' 020 020
_ 010 051

010, 023 303 : 303

023 060
_ 010 051
010, 026 303 o 303
026 040

010 , 051 .

The next step in personalizing is to toggle in the I/0 subroutines
starting at the locations just branched to. These programs are shown
on Tables 3a through 3d. A MITS SIO, Rev. 1 is assumed*.
TABLE 3a
COUT ROUTINE

Location Hex (Octal) Code:Hex {Octal) " Function
2900 (051,000) DBOO (333,000) In {Input status from
_ N ' port 0?.
2902 (051,002) _ E680 (346,200} ANI {Check Ds*. For MITS

SI0, active low is a
"go" condition).

2904 (051,004) 20029
{302,000,051) JNZ {If Dy is not low,
. _ try again;.

2907 (051,007) 78 (170) MOV A,B {Move the char-
acter from the B regis-
ter to the accumulator).

2908 (051,010) D301 (322,001) OUT {Output character to

. _ port 1).

2904 (051,012) €9 (311) Retu;n (Return to original

. . call}. '

*D is the least significant bit; Dy the most significant;
MITS convention,

*Similar information is supplied in the DOS manual. However, the above

natrhne ava enartifir tr tha CTN and Aiffarm in rAama wacnnrte Fram the bMarth St

-12-

JABLE 3b

CIN ROUTINE

Location Hex {Dctal)

Code Hex (Octal

Function

2910 {051,020}

2911 (051,022}

2914 (051,024} -

297 (051,027)
2919 (051,031}

2914 (051,033)

DBOO (333,000)

E601 (346,001)

£2102¢
(302,020,051}

DBOT (333,001)
E67F (346,177)

co (311)

N {Input status from port 0)

ANI (Check D)
INZ (Loop if D not Tow)

IN {Input character to -
accumulator)

ANIT (Mask to 7 bit ASCII
character)

Return

TABLE 3c

CCONT ROUTINE

Location Hex (Octal)

Code Hex {Octal)

Function

2920 (051,040)

2922 (051,042)
2924 (051,044)

2925, {051,045)

2927 (051,047}

2929 (051,051)

DBOO (333,000}

E60T (346,001)
co (300)

DBOT -(333,001)

FED3 (376,003)

€9 (311)

IN (Input status to check if
character has been typed)

ANI (Test to see if D, Tow)

RNZ {Return if no character
typed)

IN (Input character to
accumulator)

CPT (Test to see if character
was CONTROL-C; set zero flag
if yes)

Return

=13~

TABLE 3d
TINIT ROUTINE

Location Hex (Octal) Code Hex (Octal} " Function
2930 {051,060) co (31) Return
or :

~ Any machine language routine (#ith a size constraint), using any
registers, followed by a return.

Another DOS change which is aptional s to place 01 in location 202B.
This causes the disk software to verify every write operation with a

read,

Once the chahges shown on Tables 2 and 3 are made, the DOS may be
properly entered and operated by runhing from TINIT {examine 2930 Hex
and run). An asterix prompt character should appear on your output
display. At this point it is a wise idea to start a new diskette and
p?acg your new DOS on it. This.is ddne using thé fo1lowing commands,
These commands are typed in following the asterisk brompt, followed
by a-carriage return,

TABLE 4

COPYING THE NEW DOS

Command : Purpose
*IN 1 Initializes diskette (prepares it for future
operation}.
*CR DOS 10 This creates a file called DOS having a
‘ length of ten 256 byte blocks.
*SF DOS 2000 The DOS software starting at 2000Hex and

running 2560 bytes is loaded intc the DOS
file opening on the diskette.

*In the new versions of the North Star DOS, the NOS should be loaded into
some other region of memory, adjusted, and saved from there to avoid
problems which occur when the DOS tries to save itself.

-14-

While you are creating your first disk file operating system, you
may as well also include North Star's BASIC. This is done by
removing your new diskette, putting in the software diskette

supplied by North Star, and doing the following (Table 5).

TABLE 5

CREATING DOS/BASIC FILE
(Version 6, Release 2, 3)

Command _ - Purpose

*LF BASIC 2A00 This loads the 40-block BASIC program
from the software diskette into memory
starting at 2A00.* :

~--Remove software diskette. Insert your new file diskette--

*CR BASIC 40 Create a 40-block-long file table entry
on your new diskette.

*TY BASIC 1 : : This creates a table entry which tells
the B0S that the BASIC file is in machine
Janguage.

*GA BASIC 2A00 The DOS is told that the "go address"

of this machine lanquage file is 2A00,

*SF BASIC 2A00 _ The 40-block BASIC program is saved.

The above is a blow-by-blow description of how to get your disk software
goihg. We now consider the logical structure of the diskette being used

and the general operating characteristics of the DOS.

The diskette is used on one side only in a single density mode** in which

there are 35 concentric tracks numbered 0 to 34. Each track has ten hard

*How the DOS automatically knows BASIC §s 40 blocks Tong will be discussed
shortly. _

**\s opposed to Shugart's new double-density micro-disk drives, PERTEC also
has announced a two-sided drive system. '

-15-

sectors which are physically located according to ten holes in the
diskette. Each track in each of these sectors contains a string of
'ovefhead data plus 256 bytes of "user" space. That is, in each sector

you can place 256 bytes worth of information, not including the

accdunting information which the DOS takes care of automatically.

The North Star convention is to number the sectors from €00 to 349,

The DOS uses sectors 000 to 003 to store'(aéain,'automatica11y) a tabTe
or file directory which contains the file name (up to 8 characters
long, excluding blanks and commas}, type (default is "0") and possibly
a "go address". Up to 64 files can be ptaced on one diskette, the
timitation caused by the ff1e directory length. The file types are
explained in Table 6. ‘

TABLE 6
FILE TYPES*

TYPE _ PURPOSE

0 Default, With this type one can manually
(LF and SF) move files to active memory
and vice versa.

T. : _ - Machine language file which can have a
“go.address”

2 ' BASIC program file,

3 BASIC date file,

>3 Assembly language, etc. files.

*The){EKC Assembler/Disassembler software available from the Westminster
(CA.) Byte Shop also uses type "8" to denote assembly language files.

-16-

North Star's description of the DOS commands is simple and complete.

These commands can accomplish the following:

¢ Initialize or test a‘diskette. In%tiaTization takes abbut 10
seconds on the Nofth Star, as cémpargd to eight minutes on a
PERTEC unit which is about 4X Targer in capacity (the larger of the
two PERTEC floppies).

] Lisf directory (file name, size and type, but not "go address").
Newer versions list "go address".

s Create a file space/na@e.

o Delete same.

ol Define a file type.

o Compact a diskette set of files (useful after'dg1etions).

e load a file into active memory starting at a specific address.

] Séve a file similarly.

o Set “g0 address" of a machine language file. Specified in TYPE

command in newer versions.

¢ Move onelfiTe into another on the same diskette.

Read or write to or from a file or RAN address in integral numbers
of blocks,

-17~

The last function may sound l1imited to those who want to move individual
bytes aroundu However, the cbmmand structure of North Star BASIC allows
oﬁe to address any byte positioh within a block, thus opening up some
versatile file management capabi]jt?es which.are useful in data

handling.

Loading BASIC with the new software diskette is easy. Once the DOS is
lToaded in and running, type "GO BASIC" andlroughly two seconds 1ater:
"READY" will appear, signifying that BASIC has loaded. This response
time is not surprising. The rotation speed of the diskette is 300 rpm,
-Or 50 btocks/second. This is the equivalent of am average data transfer
rate of rougbly 12.5K bytés!second*. North Star BASIC occupies about 10K
bytes (more in the newer version) of memory, and therefore should take
tess thap a second to load. The head engagement and drive motor
-start~up account for a good fraction of the observed respense

time,

Once BASIC has been entered, the DOS is still alive in the approximately
2.5K of memdry below BASIC.- The DOS can be returned to by typing in
"BYE". This arrangement is convenient, but also causes some small |
: diff%cu1ty unless guarded against. For example, if one has written a
BASIC program too large to fit on the present diskette, there might be a

temptation to test a new diskette, initialize it and try to Toad the

*The 300 rpm value is from the PERTEC manual; boih PERTEC and North Star
use the Shugart 400 disk drive. PERTEC states its transfer rate to be
125,000 bits/second. As their disk capacity (user available) is 71,680
data bytes, versus 88,832 data bytes for North Star (first 3 blocks not
counted}, PERTEC must he specifying a peak, not average, transfer rate.
Such is the game of “specsmanship”,

-18-

file to be saved onto that empty diskette. That approach will not
work. The DOS test and initialization functions both use 2.5K bytes
of memory above the DOS, cutting into BASIC and destroying it along
‘with your'program. Anoiher approach éould be.to compact the disk
being used, hoping to free up enouéh spaée for the program. Un-

fortunéteTy, the compacfing function also dses memory above the DOS.

The reason for loading the DOS and BASIC oﬁ every diskette, including
the spares, is a matter of convenience and safety. From the convenience
perspective, giving up 50 blocks out of 350 is a small price to pay
.to avoid the nuisance of switching diskettes around. From the safety
point of view, it is poss%ble to wipe out a complete diskette file if
the protect notch on the diskette is not covered and a mistake is made.
When such happens, it is reassuring to have extra copies of the DOS

and BASIC around. Also, duplicate your files on separate diskettes.
Incidentally, if you are going to create a diskette having the DOS

on it, make the DOS the -first file. The ROM bootstrap on the interface
board expects to find the DOS file starting at sector 004,

It is apparént.from the memory address references given above that the
DOS/éASIC combination starts at 2000 (HEX), leaving the 1.0w¢st 8K bytes
of memory possibly unused. The software package provided by North Star
uses the memory above BASIC for program storage, leaving the 0-8K
region free. This region may be instead used for probram storage by

making the following changes in BASIC.

~19-

TABLE 7

CHANGES WHICH ALLOW USE OF 0-8K FOR PROGRAM STORAGE (VERSION 2 BASIC)

Location Hex (Octai) ' Code Hex {0Octal)}
2A06 (052,006) 00(000) Low order byte of the beginning
-address of program storage space,
- 2A07 (052,007) 00(000) High order byte.
2809 (052,011) - EF(377) Low order byte of the end
address of program storage space.
~ 2R0A {052,012) "1F(037) High order byte.

The above modification restricts one to a maximum of 8K bytes of program
memory. ‘ This does not represent a significant limitation in program .
storage for most applications. However, a programmer might prefer to
‘1eave memory space free below the DOS/BASIC for special use. For
example, if interrupts are ever to be employed, ft’is important to note
they use service routines located at the beginning of memory (8080 case;
the Z-80 microprocessor has other interrupt mode). Thus, it is convenient
to leave fhis space freé for eventual interrupt service routines. User
machine language routines may also be conveniently placed in this region,
and in the next section.a VDM-1 video display routine is presented which
resides in memory starting at the 2K boundary. Another potential use

for the 0-8K region is found in observing that MITS 8K BASIC can be

-20-

resfdent in active memory at the same time as the North Star

DOS and BASIC. This is helpful in that-North.Star's BASIC
1ackslsome features that the MITS 8K BASIC has. This will be
discussed in the next section. As a further application, it is
possible to use the 0-8K region as byte-wise data storage space,
though this can be costly in both softwaré overhead and computing

time,

To conc1ude this section, a few examples of file creation using

. the DOS are in order, For the first example, consider the stofage
of MITS 8K BASIC. The actud1 length of this software is a little
more than 6K bytes and is assemBTed starting at 0000 (Hex). It
can comfortably reside in the 8K of memory below the DOS. leaving
almost 2K bytes of program storage space between.its top and DOS's
bottom. One way to put 8K BASIC into the file system is shown

below:

1} Load in the DOS
2) Create the 8K BASIC file entry:
 *CR BKBASIC 33

*TY BKBASIC 1
*GA 8KBASIC 0000 {older versions)

Observe that 8K BASIC is a machine language file (type 1), 33 blocks

Tong, having 0000 as its "go address"”.

-21-

3) Stop the computer.

-4) Load in the MITS 8K bootstrap loader (see the MITS manual.
- Cassette tape is assumed)

5) Set sense switches (A15 up for MITS SI0.terminal at ports
- 0,1; 88ACR at 6,7).

6) Start tape. Run computer from 0000,

7} When "MEMORY SIZE" is requested by 8K BASIC, stop the
- computer,

'B) Enter into and run the DOS from location 2000 Hex. This
brings the DOS back into operation. _ ‘

9) Save 8K BASICIas follows (Eémembering to unprotect the.
diskette); :

*SF 8KBASIC 0000
10) Protect the diskette.

8K BASIC is now part of the disk file system. To run it, simply
type "GO BKBASIC". However, remember to set the sense switches
before "going"; it's easy to forget those switches. Also, when 8K
BASIC asks "MEMORY SIZE?", responding with more than 8191 will

cut info and'destroy the North Star DOS, which you may not care

about anyway.

As a’second example, consider adding MITS's excellent 12K BASIC
{Extended BASIC) to your file system. This software is also
‘assembled to start at 0000, but it is 10312 bytes Tong, not
including program storage space. Obviously, loading Extended

BASIC in will overrun the DOS. In fact, the DOS cannot be used

*Audio Cassette Record Interface

22~

directly to ldad Extended BASIC as it would be wiped out before
completing the program transfer. To deal with this situation

one may use two very short machine language files called UPMOVE
and DOWNMOVE. The machine language listings of these programs

are shown on Tables 8a and 8b, UPMOVE is a routine which shifts
the first 63 bIocks (16K-256 bytes) qf active memor& upwards to

an address region starting at 16K + 256. UPMOVE itself resides
starting at 16K, DOWNMOVE does the reverse. Also, when DOWNMOVE
has compieted the downwards transfer, it unconditionally jumps

to 0000 Hex, thus starting opefat1on of the machine languége
program it 10aded there. -To see the mechanits'of this procedure,
assume you have already created two one-block-long machine

Tanguage files, UPMOVE and DOWNMOVE, having "go addresses"

of 4000 Hex. These "go addresses" are not used in this application,
but have been estab1ished fok futuré utility. Also assume you |
have created a machine language file space ca11e§ T12BASIC which

is 42 blocks long (INT(10312/256) + 1). The steps taken in

adding Extended BASIC to your repertoire are as follows:

-23-

TABLE 8a
UPMOVE ROUTINE

Address Hex (0ctq1)

Code Hex (Octal)

Function

4000 (100,000)
4003 (100,003)

4006 (100,006)

4007 (100,007)

4009 (100,011)

400C (100,014)

400D (100,015)

400€ (100,061)

400F (100,017)
4010 (100,020)

4013 (100,023)

210041 (041,000,101)
010000 {001,000,000)

7¢ {(174)
E680 (346,200)

C21340 (302,023,100)

DA (012)

77 (167}

03 {003)

| 23 (043)

C30640 (303,006,100)

£31340 (303,023,100}

LXI {Load H&L registers
with 16K+252 address
boundary)

LXI {Load B&C registers

with OK address

boundary)
MOY A,H (Move H to A)

ANI {Test to see if 32K
boundary has been
reached)

JNZ (Jump to finish
lToop if move has been
completed)

LDAX {Load accumulator
with data stored at
address given in B&C
registerg

MOV (Move accumulator to
address specified by

H&L registers)

INX {Increment B&C)

INX (Incremént HaL)

JMP (Jump to H register
test)

JP (Loop when finished)

P4

TABLE 8b

DOWNMOVE ROQUTINE (Similar to UPMOVE)

Address Hex (Octal)

Code Hex {Octal)

Function

4000 (100,000)
4003 {100,003)
4006 (100,006)
4007 (100,007)
4009 (100,011)
200C (100,014)

400D (100,015)

400E (100,016)
400F (100,017)
4010 (100,020)
4013 (100,023)

210041 (041,000,101)

010000 {001,000,000)
7¢ (174)

E680 (346,200)
£21340 (302,023,100)

7E (176)

02 (002) -

03 (003)
23 (043)
€30640 (303,006,100)
€30000 {303,000,000)

LXT HaL
LXI B&C

MOV A,H

ANI

JNZ

MOV (Mov to accumulator
data at address speci-
fied by H&L registers)
STAX {Store accumulator
at address specified

by B&C registers)

IKX B&C

THX H&L

JMP

IMP(Jump to beginning
of program just moved)

1) Load (but do net run} UPMOVE: *LF UPMOVE 4000

2) Stop the computer; toggle in the 12K BASIC bhootstrap Toader

(see the MITS manual); set the sense switches; load the

Extendéd BASIC software into the computer.

-25-

3) When "MEMORY SIZE" is requested, stop the computer, examine '
4000 Hex and run. The upwards shift of 12K BASIC will take only
a moment and completion will be apparent from the address Tights

on the computer's front panel.
4) Again stop the computer and reload the DOS (run from ES0Q).
5) Replace UPMOVE with DOWNMOVE: *LF DOWNMOYE 4000,

6) Place the c0mb1nati0n of DOWNMOVE + Extanded BASIC onto the
diskette. *SF 12BASIC.4000.

Extended BASIC may now be loaded and jumped to (remember to set the
sense switches beforehand) by typing "GO 12BASIC" when the DOS is

active,

The above examples may be applied with variation to create disk files

of almost any software.
As & third and very simple (but important) example we consider
moving files between diskettes, such.as might be done in copying

a diskette or recrganizing. This is done as follows:

1) Load the file directly into free memory {(e.g., *LF FILEX 0000)

-26-

2) Remove original (or source) diskette and insert the new (or

destination} diskette.
3} Create an identical file entry on the new diskette.
4) Directly save file (e.g., *SF FILEX 0000}

'The flexibility of the North Star DOS, combined with some user

. creativity, is conducive to the generation of very powerful
" applications. In the next section we will discuss the North Star
BASIC interpreter which operates in conjunction with the DOS.
However, it should be noted that sufficient information is supplied
in the North Star documentation to allow some measure of linking
of the 0OS to othér BASIC interpreters having user defined machine

language subroutines.

“27-

5.0 NORTH STAR BASIC

North Star BASIC, Version 6, Release 2 and higher, is a more than
adeq@ate interpreter. ‘It has.some features which the industry standard,
MITS Extended BASIC, does not have, and vice versa. Instead of des-
cribing all its features, I will concentrate on the differences between
North Star BASIC and MITS Extended BASIC, taking the latter as a bench-
mark. Also presented in this section is a program for use with the
North Star system which does a complete job of 1inking Processor
Technology's VDM-1 video display control board to the DOS; just load

the program, type "RUN" and the VDM-1 display device will be part

of the microcomputer-disk system.

We first consider North Star BASIC's instruction set, See Tables
%, b, ¢, d and 10,

TABLE 9a

DIRECT COMMANDS

RUN <opt. 1ine no.>

LIST <opt. line no.> , <opt. line no.>

SCR (= NEW) : Scratch or delete y

REN <opt. beginning value> , <opt. increment> : remember
CONT: continue after "stop" or "CONTROL-C" |
'LINE <no. of characters> (= WIDTH = < >) : tine width control
NULL <no.>

LOAD <file name> : Disk operation*

Save <file name> : Disk operation*
Edit <line no.> '
BYE: Return to DOS

*Note, however, that MITS BASIC has similar commands for tape files.

»28a

. TABLE %b

STATEMENTS

LET Jloptional)

IF/THEN/ELSE {can cascade) .
FOR/STEP/NEXT

GOTO

EXITI(GOTO out of a FOR/NEXT loop)
ON/GOTO

STOP

END (stop w/0 message)

REM (remark)

READ/DATA/RESTORE

INPUT/INPUTL (no carriage return)
GOSUB/RETURN |

PRINT (Formats: nFm, nI, nEm, default)
(alsc zero suppress, commas, auvto §)

FILL (= POKE)
ouT
DIM

DEF (function definition)

~29-

"TABLE 9¢

FUNCTIONS

FN (name) (xl,x .} : User defined function

9° "
FNEND: End statement for multiple line user defined function.
FREE (0): Remaining-free storage

CALL (,): Machine language subroutine call

TYP {): Gives type of information in next disk file element.
"INP (): Input from specified port

EXAM {): 2 PEEK ()

ABS {): Absolute value

SGR {): Value/Abs (Value)

INT (): Integer

LEN (): String length

CHR$ (): Decimal - ASCII conversion

ASC (): Aasciz +'Decima1 conversion

VAL (}: value of numbher string

STR$ { }: Number +.§tring conversion

SIN {): Sine

Cos {): Cosine

RND {): Random number generator

L0G (): Natural Logarithm

EXP (-): Exponent

ISQRT (): Bqguare root

-30-

TABLE 94

BASIC FILE ACCESS COMMANDS

Open # <file no.> ,<file name® : assigns number tec an active file;
> sets file position pointer to file
beginning.

Close # <file no.> : Deactivates access te file and empties write
' buffer into diskette file.

Write # <file no.> , <list of items>
Read # <file no.> , <list of variables?
Write # <file no.> , % <file pointer> , <list of items>

Read # . <file no.> , % <file pointer> , «list of variables>

TRBLE 10

EDIT COMMANDS

Character Function

Control D < > - Copy to specified character
Control Z l Erase character
Contrel Q Backspace

Control A Copy old‘character

Control G .Copy rest of old line
Contrxol ¥ < > Insert specified character

Contreol N Re-edit new line

w3le

Starting with the direct command set (Table 9a) we find pretty
much the same list as exists in MITS Extended BASIC*, with the

following notable exceptions:

® REN in MITS BASIC can start at a specific statement; the North

Star analog renumbers the whole progran.

e LINE controls the output from the "PRINT" command, and not the
"LIST" command. Thus, long program statements attempt to print
out full width. This 7s annoying when using a narrow width

~

printer,

o NULL in North Star's BASIC is limited in argument size to 32 in
Release 2, and does not work fn Release 4 and 5; MITS BASIC
handles NULL's up to 255. At 30 characters/second, the delay
time difference between 32 and 255 is one second maximum vs. about

- 8 seconds maximum. Delays are useful for slow carriage return

terminals and in some protocol situations.

e LOAD, SAVE and BYE are all disk commands which have counterparts

in the disk version of MITS BASIC.

o EDIT in North Star BASIC is technically a 1ittle more versatile
than its counterpart in MITS BASIC as the 1ine number may also

be changed; the old line is directly treated as a template.

North Star's statement complement (Table 9b) is very similar to that

of MITS Extended BASIC, the excepticns being:

*Yersion 3.2.

-32-

¢ IF in North Star BASIC consideré the next Tine to be the statements
added to the same physical line with a ":" or */". MITS IF uses
the next pﬁysical line. The MITS version is more flexible. The
next line feature of the MITS version can be defeated with an

"ELSE"; IF < > THEN < > ELSE < >: Next statement.

- ® -GOTO in North Star is not tolerant of a space between GO and
T0. Also, in the North Star version GOTO can not be used as a

direct statement; RUN <line number> fulfills this function. -

¢ EXIT in North Star allows a'graceful exif from a FOR/NEXT loop

lteaving a correct stack arrangement.

o INPUT] stops the carriage return echo after the user's renly.

This has some formatting advantages.

¢ FILL equals MITS's POKE. It's curious that these statements are
different only in name as North Star did make allowances in its
interpreter to translate ":" (line delimifer) and ";" (no carriage
return), which are used in MITS BASIC, into North Star's equivalent
"\" and ",". No such translation is done for PEEK and POKE.

The function list (Table 9c) is as cﬁmp]ete as any, inc1udin§ both

numeric and string functions with the very notable exception being

the absence of an inverse trig function in Release 2 (the newer versions

contain it). Also, one of the functions, log (X), has a problem

(at least in Nofth Star Version 6, Release 2). This error can be

programmed around, but is nonetheless annoying.

-33.

North Star offers accuracy options ranging from two to fourteen
digits. The option must be specified when ordering the

. software; it is not adjustable once receijved.

Although the MITS anleorth Star functions are very similar, there is
a very significant difference between the string variable forms. In
MITS Extended BASIC, string variablies can be up to 255 characters
Iong. which is a limitation I have encountered. These string
“variables may be dimensioned in matrices such as A$(I,d,K}. The
power of-this structure is that string variable matrices can be
_ created which are very useful in heavy I/0 oriented programs. To
subsequently manipulate these strings, the MITS software provides

functions such as LEFTY, RIGHTY and MIDS.

The North Star string form 1s much d1fferent; String variables are
limited in length only by available memory. The VDM-1 video display
1cad program presented later has a Hex string, A%, 678 characters
long, which would be {llegal in MITS BASIC. waever, North

Star's string variables can not be sﬁbscripted. The equivalent

MITS BASIC string functions are implemented in North Star BASIC

as shown.on Table 12.

3=

TABLE 11

LOGARITHM TEST

LIST

16 FOR %=8 TC -8 STEF -1

20 FRINT XiGF7, LOG(1GTHH/LDG(1E),
38 PRINT * CORRECT = %, 4ZL %

48 HEXT 2

READY .

RUN

S pbeRabi CLERECT
8 FasEd CORRECT
7. BEEAGAL CORRECT
€ DhaGaERe CORRECT
5 eppeat: CURRECT
4 @gpponie CORRECT
3 emBaned CORRELT
2 DoGohaEE CORRECT
4 gBsaceR CORRECT

L BEGOBEE CURRELT

—————

[}

~4 BEGIGE CORRECT
-1 BRosbpe DORRECT
-2 GEatihs CORRECT
=3, EEpepeE CORVELT
;o CORRECT

CORRECT

L AN LN Sl e AR PR S A A T e e

4 &l

L
N TR

LT T T S T O T 3 A A O T T E N O O BT B L I | |

-35-

TABLE 12
COMPARISON OF MITS AND NORTH STAR STRING FUNCTIONS OPERATING
ON A 20 CHARACTER STRING

MITS ' : North Star Equivalent

CLEFT$ (A$,9) o a$(1,9)
RIGHTS (A$,18) | A${18,20}
‘MIDS (A$,3,1) | A$(9,10)

The North Star version is technically equivalent to that of MITS,
with perhaps a 1ittle moré conciseness on the part of North Star.
However, the tlack of dimensioning tapabi]ity.1eads to programming

difficulty.

Another difference between the two BASICS is the allowed form for
variable names. Having worked largely with FORTRAN IV and MITS
BASIC, the use of variable names su&h as‘"TEMP", “%IME“ and so on
is a convenience one has difficulty giving up. In North Star
BASIC_[and that on the Xerox Sigma ?/9), variable names are
restricted to §1etter> <optional number> formats. Howevgr,

perhaps asking for a BASIC which behaves 1ike a FORTRAN interpreter

is unfair. Or is it?

Both MITS Extended BASIC and North Star BASIC have editing capabilities
(Table 10). Those employed by North Star are explained in the North
Star BASIC manual. The two ediﬁors are different, and on the whole

the MITS version is perhaps more convenient. The differences are:

-36-

¢ The HNorth Star edit structure allows one to-copy the old line
(with chahges) into a new line having a different number. This
might be considered North Star's answer to MITS's "PRINTUSING"

format tool which North Star does not have.

¢ In the MITS version, by typing 7SA_after the edit command, the
0ld line will be copied up to the 7th occurrence of the character
- A. There is a similar convenience for changing groupﬁ of
characters. The North Star edit allows one to search for the

next occurrence of a given character only.

¢ In the North Star editing system typing a “CONTROL-D" plus a
character presumably copies the old line up to the specified

character.

s The North Star editing system is physically more difficult to
use than that of MITS, requiring two separate keys to be
pressed simultaneously. Typing fCONTROL-N" with one hand

gives me a charley horse of the forth finger.

MITS Extended BASIC is an exceptionally good piece of software,
and,_in the comparison given above, it significaatly outperforms
North Star BASIC. This is true without consideration of the operation

which MITS has and North Star does not. See Table 13.

-37-

TABLE 13
'ADDITIONAL MITS EXTENDED BASIC OPERATIONS

SWAP variables

TRACE program steps

ERASE variables

DELETE specified 11ﬁe number 1nterva13(avai1abie in
_ new North Star versions)
MOD arithmetic '
Integer division
Doﬁb]e precision (arithmetic, not functions)
Clear variables

WAIT

SPC{I) space printing

As mentioned eartier, North Star has provided a very well defined
patching structure for interfacing user 1/0 software drivers., This

is well documented aﬁd includes examples. The ihterfacing documentation
which come§ with Processor Technology's video interface, VDM-1, is
equally well documenteéd. Shown on Table 14 is a program written

in North Star BASIC which links the VDM-1 to the North Star DOS,

which in turn links to North Star BASIC. Observe that statements

310 through 480 create a single string of 678 hexadecimal characters.
Thié string represents the VDM-1 machine language routine which is
loaded into memory in type size groups starting at 0800 Hex

(001,000 Octal), running upwards for 339 bytes.

~38-

After loading this driver, the program.then "nokes"("fills"

in this language) memory changes to accommodate the MITS 88-$10
sfafué bit structure (low active; 1ea§t significant bit in status
byte). The DOS output routine is then patched to the VDM-1 driver
by using a call, movfng the outputted character to the accumulator,

and making a return.

Running this program will automatically set up'the VYDM-1 such
that all subsequent outpUt will be to the video display. The
video driver can be later escaped by reconstructing the original

patches. This could be done using a "repair" program.

This Toad program can also be stored as a file on the North Star
disk as part of a routine operating system. For convenience,
corresponding system diskettes could start with the following

file structure:

IR AR
o A Iy |

oo e LN g 1
U ow B 0w ol o R

LYE]

A
by

e G B2 OO T Py T 1 (g

-39.
TABLE 14: NORTH STAR BASIC LOADER FOR PROCESSOR TECHNOLOGY'S VDM-T
Hém MO DG GE GO R OE D EHE G OO O C L
FER UDM-1 FEMOIRY LOADER

REM 2388 TO 93ks USED
REM S8eSsdeosnssodstsssosssoy

GOSUE B0

FOR I=1 TO 432%

A=2HY .

Es=A%l -1y 1-1)

GOSUE S60

M=E#16 _
Ef=A% (4 J)GOSUE 558

M=M+E

FILL &%256+I-1sM

ME®T 1 _

REM AOJUST UVDMLORD 3TATUS
FILL (E¥25E+70),194

FILL (S¥258+125).1%4

FILL (2¥256+15321y 124

FILL (9%255+170), 061 ‘
FEM FATCH UM TO D0s CRLLS

o REM CHLL 9200 (HEX]

FILL 184936, 265

FILL 18437, 885

FILL 168422 088

FEM AFTER REETURMs MOUF. b
FILL 1849% 120

FEM FETUREM TO I0ES IMTERIOR
FILL 1@3@E. 211

EMD

DIM ASC1Ha8)

Ft-‘;‘h: nn

RE=AS+" o EYRo2 1 0BBa 33 FoasES DSCESFSCRI AR ICI DI ELF QSR ETROCY
Af=As+" VP OELVFFEVFCEFESF CRZ L FESBCACEGSFESDCAY L S9FESCOAR &
A=A +"FEQLCALSEYFEZGISFS2ABRASA T PECaC AT G2CASE QS DAC O RS2 »
HE=RZ+ " OaC e EZADETTREFERL ATV EEECEF 4F AF SV SNCRE9RS 1 7RSE] »
AF=As+" B0 DaB 2T CET COE DS A 1O SR F ESR CACDAT SR/ TREZCSY
AF=RS+"CHISHSZ] BROSFEFESSUASCBRESCDRRASE 1 220 2aTaRCTIRT ST HSE
AZ=RZ+"BSCDACEIF ESRDZEYG2F E2 DAB4BEF GO DO0AACTH S69F L CSapszL
HE=R%+" O30 a8 R4 E4 007 USSRt 54S4 4P AR 1 SRS EaRF SR snsSeeL v
HE=RZ+ 000 POCeEd 2e 2 A RECC 2 R GOAF 28 B4Aa s ESe oS BRau s 22 paman
RE=AS+" 2EOF SR O o DR 2oa D R A oG T AV BB P S L BSRO BE DSOS R4 F 2RER Y
AE=AE+"S47 SHR IO CITARR YL 3REE I CFEARL 2SRRS4 P ZAE L BSCT Y
H&E=RE+"9F AP0 DSZO a7 2B MRS T SR EL Q0380 SABSHR4T AR L Bo CIrap pan
A=z +" 2B 2 Ban Bl A9 ES 309 AR BRREF ZE BN 2ABCeY4 7 AR a0 as
FE=RE+" 3221 ESORESTESS 2001 a8RnC IFPags il a8 rac oAl oo asaaE1 TEEE
RE=Rs+ " GOF PP CaF SRS EaF SRBIAREOUF R EF EEBSCE e P P LES COANEF CSESOF
Az=HE+" Bl B D O T S E DAy SR B R BT P E AN OO E G PP e TR Py oA
HE=AS+ Y CHFRRRVEERFF VVCRIBAHER ARCSHER L EATF C3A00D 0] DEEM He v

FETIURH

B

IF BE="A" THEH
IF. ES="E" THEN
IF bkz="C" THEH
IF E$="0" THEN L=13
If DE="E" THEM E=14
IF BE='F" THEH I=1%
IF Br=18 THEM FETLIRM
B=UGL tES I SRET LR -

ottt b b
[I |

—_— ek b et
RN A

-40-

Name . # Blocks
Directory | 3
DOS 10
BASIC 40
VDM 8

This means that an overhead of 58 blocks {out of 350) is carried
- for the sake of operating convenience. Other users may have

different values and not want to have such file duplication.

-41-

6.0 CONCLUSIONS

The previous sections have served to demonstrate how much power
and convenience is available through the use of a micro-disk

system such as that provided by North Star.

If there were a single area in the North Star System to be examined
for improvement, it would be the software beyond the DOS. Besides
having.the logarithm error, North Star BASIC is generally not as

| capable as MITS Extended BASIC, which must be considered a
benchmark. North Star has a good piece of hardware which is
partially sold by its software back-up, which af'this point is
good, but not great. Specific areas for improvement and expansion

of their BASIC interpreter are:

o Fix logarithm error (apparently done in the latest releases)
¢ Provide string variable subscripting

e Include on on-line doubYe precision option

. &dd starting statement choice to "renumber”

o Allow line width control of all printing

o Use single key edit commands

e Allow longer variable names

e Implement a "trace” for debugging

-42-

The_generaTJSOftware frontiers presently being pushed are a BASIC
compiier and PASCAL. The features which are important for a

BASIC compiler are:

¢ Compile/Interpret option for program building and dehugging
o Disk save and load functions for object code

o Fast running object code (which will end the argument that
BASIC is inefficient):

e Disk oriented Tinking of programs in both compile and interpret*
modes.

*The PASCAL software is just now becoming available, and will be
considered in & later report.

