1.0 CPU BOARD

GENERAL INFORMATION

The Nabu ACP-1101 CPU Board is designed to bring the full power of the Zilog Z-80A microprocessor to the S-100 bus. The CPU board has provision for up to three 2716 type EPROM's (for a total of 6K bytes), and two 2114 type static RAM's (for a total of 1K bytes). The base address of this memory block can be set using on-board jumpers. The board also performs an automatic jump to a user selected memory address on system start-up or reset. The clock frequency of the main processor is also selectable between 2 and 4 MHz. When the 4 MHz clock frequency is used, the board automatically inserts one wait state when the on-board EPROM or RAM is accessed.

When used in the Nabu 1100 computer system, the board operates at a 4 MHz clock rate, with one 2716 EPROM and two 2114 RAM's addressed from F800H to FFFFH.

SPECIFIC FEATURES

Clock Frequency Selection

The Nabu ACP-1101 may be clocked either at 4 MHz or 2 MHz. The operating frequency is selectable with Jumper 8 (JP-8). (Please refer to the board layout for the location of all jumpers). Connecting this jumper sets the operating clock frequency to 2 MHz. The standard CPU card is shipped with the jumper disconnected and runs reliably at 4 MHz.

Pin 98, labelled as FREQ, on the S-100 bus, is used by the Nabu system as an indicator line for the operating frequency. For 4 MHz operation the line will be high; for 2 MHz it is low.

Automatic Power-On Jump

When system power is turned on, or a reset signal is received, the CPU jumps to one of two hundred and fifty-six possible memory locations. The jump address is selected by the eight address jumpers JP-9 to JP-16. Only the eight most significant address bits (Al5 - A8) are used to decode the jump address. The eight least significant address bits (A7 - A0) are taken as logic 0 as shown on the next page.

The standard Nabu CPU board has the power-on jump address set at FC00H (jumpers JP-15 and JP-16 installed).

On-Board Memory Selection

The Nabu CPU board offers a maximum of six kilo-bytes of onboard memory, which consists of three $2K \times 8$ (2716 type) EPROM's and two $1K \times 4$ (2114 type) static RAM's. IC sockets are provided on the board for the memory chips.

The memory address for the on-board EPROM's and RAM's are grouped as a block. Within the block, the individual memory chips are allocated as follows:

Base + 2000H	
Base + 1C00H	ROM 1 *
Base + 1800H	RAM 1 / RAM 2
base + 1000H	ROM 3
Base + 1000H	ROM 2
Base + 800H	RUM 2
Base of Block	NOT ASSIGNED
pase of Block	

*Only the upper 1K of ROM 1 is used.

The RAM is configured as 1024×4 bits (2114 type). RAM 1 stores data bits D0, D7, D6, and D5; and RAM 2 stores data bits D4, D3, D2, and D1.

The base address of the block is set by jumpers JP-1 through JP-3. The three most-significant address bits are used to set the address of the block. Table 1 (on the following page), lists the possible base addresses of the block corresponding to each jumper connection.

JUMP	ERS	(JP)	STARTI	NG ADDRESS (IN HEX) OF:	
1	2	3	ROM 2	ROM 3	RAM 1/RAM 2	ROM 1
0	0	0	0800	1000	1800	1C00
0	0	1	2800	3000	3800	3C00
0	1	0	4800	5000	5800	5 C00
0	1	1	6800	7000	7800	7C00
1	0	0	8800	9000	9800	9C00
1	0	1	A800	B000	B800	BC00
1	1	0	C800	D000	D800	DC00
1	1	1	E800	F000	F800	FC00

^{&#}x27;l' represents 'Jumper is connected'

TABLE 1: Jumper Connection And Starting Address of Memory

^{&#}x27;0' represents 'Jumper is disconnected'

The enabling of these memory chips is done by connecting jumpers JP-5, JP-6, and JP-7 in the selection area S-1. JP-5 enables ROM 2, JP-6 enables ROM 3, and JP-7 enables ROM 1 and RAM 1/ RAM 2, as seen in the figure below. (Note that ROM 1 and RAM 1/ RAM 2 are enabled together, and so both must be used together).

Selection o o o o o o o o o o Area S-l

o o o o o o o o o o o o o Jumpers (JP) 5 6 7

connected to enable ROM 1/ RAM's

connected to enable ROM 3

connected to enable ROM 2

In addition, enabling on-board RAM's and EPROM's renders any external devices or memory at the selected address-block inaccessible to a read instruction. However, a write operation will write into all devices located there.

The standard Nabu ACP-1101 is shipped with the following memory setting:

Selection o o o o o o o o o o o Jumpers (JP) 1 2 3 5 6 7

The memory map corresponding to the standard setting would be:

FFFF	
	ROM 1
FC00	
	RAM 1 / RAM 2
F800	
	NOT SELECTED
F000	
	NOT SELECTED
E800	

When both the 4 MHz operating frequency, and the on-board EPROM's and RAM's are chosen, (as in the standard Nabu ACP-1101 setting), one wait-cycle is automatically inserted by the CPU logic circuitry.

Refresh Enable

Dynamic RAM's periodically require a refresh to maintain the data stored within the memory cell. The Nabu CPU board brings the memory-refresh signal from the Zilog Z-80A microprocessor to the S-100 bus. Pin 66 on the S-100 bus is designated by Nabu as the memory-refresh signal, RFSH. The memory request signal from the Z-80A processor is also brought out to the S-100 bus. Pin 65 (named as MREQ), is used to indicate a valid memory address on the address bus.

NABU ACP-1101 CPU BOARD PARTS LIST

Integrated Circuits

U1-U4 U5	2114 74LS136	1024 x 4-bit NMOS static RAM Quadruple 2-input NOR with open-
U6 U7 U8, U9, U28,	74LS42 74LS20	collector outputs 4-line-to-10-line decoder Dual 4-input NAND
U30-U34	74LS241	Octal buffer/line-driver with 3-state outputs
U10 U11	74LS175 74LS123	Quadruple D-type flip-flop Dual retriggerable monostable multivibrator with clear
U12, U17, U20, U23, U24	74LS74	Dual D-type rising-edge-triggered flip- flop with preset and clear
U13	74LS132	Quadruple 2-input NAND with Schmitt- triggered inputs
U14, U21 U15 U16 U18	74LS04 74LS08 74LS32 Z-80A-CPU	Hex inverter Quadruple 2-input AND Quadruple 2-input OR Central processing unit (4 MHz)
U19 U22, U25, U35 U26 U27	74LS157 74LS02 74LS367 74LS14	Quadruple 2-line-to-l-line multiplexer Quadruple 2-input NOR Hex non-inverting bus-driver Hex inverter with Schmitt-triggered inputs
U29, U36 U37, U38 ROM1-ROM3	74LS368 7805 2716	Hex inverting bus-driver 5 V positive voltage regulator 2716 EPROM with bootstrap program
Transistors:		
Q1 Q2	2N4124 2N4126	NPN silicon transistor PNP silicon transistor
Diodes:		
D1, D2	1N914A	Silicon switching diode
Capacitors:		
C1-C10, C13-C15	5,	

C1-C10, C13-C15,	
C19-C24, C25,	
C26, C30, C31	0.1 μF
C11, C18	33 pF disc
C12	22 µF, 16 V tantalum electrolytic
C16, C27-C29	10 µF, 16 V tantalum electrolytic
C17	10 nF

Resistors:

R1, R2	10 k ∧
R3, R5-R7, R11	lkn
R4	100 ⚠
R8	220 🔨
R9	22 \(\Omega\)
R10	100 k Λ
RN1-RN3	9-resistor pack of 1 kA resistors with
	common pin #1

Crystal:

XTAL

8.000 MHz parallel-resonant

Ouantity	<u>Description</u>
16	14 pin socket
7	16 pin socket
4	18 pin socket
8	20 pin socket
3	24 pin socket
1	40 pin socket
1	Delta 680-0.5-220 Heatsink
6	#6-32 x 3/8" machine screw
6	#6-32 nuts
1	p.c. board

NOTE: The following ll pages have been reproduced by permission of Zilog, Inc. © 1979, 80, 81. This material shall not be reproduced without the written consent of Zilog, Inc.

 $Z-80\,A$ is a trademark of Zilog, Inc., with whom the publisher is not associated.

Z8400 Z80° CPU Central Processing Unit

Product Specification

March 1981

Features

- The instruction set contains 158 instructions. The 78 instructions of the 8080A are included as a subset; 8080A software compatibility is maintained.
- Six MHz, 4 MHz and 2.5 MHz clocks for the Z80B, Z80A, and Z80 CPU result in rapid instruction execution with consequent high data throughput.
- The extensive instruction set includes string, bit, byte, and word operations. Block searches and block transfers together with indexed and relative addressing result in the most powerful data handling capabilities in the microcomputer industry.
- The Z80 microprocessors and associated family of peripheral controllers are linked by a vectored interrupt system. This system

- may be daisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining.
- Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software through single-context switching, background-foreground programming, and single-level interrupt processing. In addition, two 16-bit index registers facilitate program processing of tables and arrays.
- There are three modes of high speed interrupt processing: 8080 compatible, non-Z80 peripheral device, and Z80 Family peripheral with or without daisy chain.
- On-chip dynamic memory refresh counter.

Figure 1. Pin Functions

Figure 2. Pin Assignments

General Description

The Z80 Z80A, and Z80B CPUs are thirdgeneration single-chip microprocessors with exceptional computational power. They offer higher system throughput and more efficient memory utilization than comparable secondand third-generation microprocessors. The internal registers contain 208 bits of read/write memory that are accessible to the programmer These registers include two sets of six generalpurpose registers which may be used individually as either 8-bit registers or as 16-bit register pairs. In addition, there are two sets of accumulator and flag registers - group of "Exchange' instructions makes either set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may

be reserved for very fast interrupt response.

The Z80 also contains a Stack Pointer, Program Counter, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5 V power source, all output signals are fully decoded and timed to control standard memory or peripheral circuits, and is supported by an extensive family of peripheral controllers. The internal block diagram (Figure 3) shows the primary functions of the Z80 processors. Subsequent text provides more detail on the Z80 I/O controller family, registers, instruction set, interrupts and daisy chaining, and CPU timing.

Figure 3. Z80 CPU Block Diagram

Z80 Microprocessor Family

The Zilog Z80 microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputer-based systems.

Zilog has designed five components to provide extensive support for the Z80 microprocessor. These are:

- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to interface with standard parallel peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers,

- each of which has an 8-bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.
- The DMA (Direct Memory Access) controller provides dual port data transfer operations and the ability to terminate data transfer as a result of a pattern match.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asynchronous communication, including Bi-Synch and SDLC.
- The DART (Dual Asynchronous Receiver/ Transmitter) device provides low cost asynchronous serial communication. It has two channels and a full modem control interface.

Z80 CPU Registers

Figure 4 shows three groups of registers within the Z80 CPU. The first group consists of duplicate sets of 8-bit registers: a principal set and an alternate set (designated by '[prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-

foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Refresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip-flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table 1 provides further information on these registers.

Figure 4. CPU Registers

2001-0213

Z80 CPU	Re	gister	Size (Bits)	Remarks
Registers	A, A'	Accumulator	8	Stores an operand or the results of an operation.
(Continued)	F, F'	Flags	8	See Instruction Set.
	B, B'	General Purpose	8	Can be used separately or as a 16-bit register with C.
	C, C'	General Purpose	8	See B, above.
	D D'	General Purpose	8	Can be used separately or as a 16-bit register with E.
	E, E'	General Purpose	8	See D, above.
	н, н '	General Purpose	8	Can be used separately or as a 16-bit register with L.
	L, L'	General Purpose	8	See H. above.
				Note: The (B,C), (D,E), and (H,L) sets are combined as follows: B — High byte C — Low byte D — High byte E — Low byte H — High byte L — Low byte
	1	Interrupt Register	8	Stores upper eight bits of memory address for vectored interrupt processing.
	Ŗ	Refresh Register	8	Provides user-transparent dynamic memory refresh. Automatically incremented and placed on the address bus during each instruction fetch cycle.
	IX	Index Register	16	Used for indexed addressing.
	Ι¥	Index Register	16	Same as IX, above.
	SP	Stack Pointer	16	Stores addresses or data temporarily. See Push or Pop in instruction set.
	PC	Program Counter	16	Holds address of next instruction.
	IFF_1 - IFF_2	Interrupt Enable	Flip Flops	Set or reset to indicate interrupt status (see Figure 4).
	IMFa-IMFb	Interrupt Mode	Flip-Flops	Reflect Interrupt mode (see Figure 4).

Table 1. Z80 CPU Registers

Interrupts: General Operation

The CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt since it requires that interrupts be enabled in software in order to operate. Either $\overline{\text{NMI}}$ or $\overline{\text{INT}}$ can be connected to multiple peripheral devices in a wired-OR configuration.

The Z80 has a single response mode for interrupt service for the non-maskable interrupt. The maskable interrupt, $\overline{\text{INT}}$, has three programmable response modes available. These are:

■ Mode 0 -- compatible with the 8080 microprocessor.

- Mode 1 Peripheral Interrupt service, for use with non-8080/Z80 systems.
- Mode 2 a vectored interrupt scheme, usually daisy-chained, for use with Z80
 Family and compatible peripheral devices.

The CPU services interrupts by sampling the NMI and INT signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Interrupts: General Operation (Continued)

Non-Maskable Interrupt (NMI). The non-maskable interrupt cannot be disabled by program control and therefore will be accepted at at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066H. Normally, software starting at this address contains the interrupt service routine.

Maskable Interrupt (INT). Regardless of the interrupt mode set by the user, the Z80 response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch (MI) cycle in which IORQ becomes active rather than MREQ, as in a normal MI cycle. In addition, this special MI cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request and to place the interrupt vector on the bus.

Mode 0 Interrupt Operation. This mode is compatible with the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus, which is then acted on six times by the CPU. This is normally a Restart Instruction, which will initiate an unconditional jump to the selected one of eight restart locations in page zero of memory.

Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has a vector address of 0038H only.

Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8-bit address vector on the data bus during the interrupt acknowledge cycle. The high-order byte of the interrupt service routine address is supplied by the I (Interrupt) register. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available

location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A₀) must be a zero.

Interrupt Priority (Daisy Chaining and Nested Interrupts). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain configuration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwared to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The Z80 CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.

Interrupt Enable/Disable Operation. Two flip-flops, IFF₁ and IFF₂, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and Z80 Assembly Language Manual.

Action	IFF ₁	IFF ₃	Comments
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction execution	0	0	Maskable interrupt INT disabled
EI instruction execution	1	1	Maskable interrupt INT enabled
LD A,I instruction execution	•	•	IFF ₂ - Parity flag
LD A,R instruction execution	•	•	IFF ₂ — Parity flag
Accept NMI	0	IFF1	IFF ₁ — IFF ₂ (Maskable inter- rupt INT disabled)
RETN instruction execution	IFF ₂	•	IFF ₂ → IFF ₁ at completion of an NMI service routine.

Table 2. State of Flip-Flops

Instruction Set

The Z80 microprocessor has one of the most powerful and versatile instruction sets available in any 8-bit microprocessor. It includes such unique operations as a block move for fast, efficient data transfers within memory or between memory and I/O. It also allows operations on any bit in any location in memory.

The following is a summary of the Z80 instruction set and shows the assembly language mnemonic, the operation, the flag status, and gives comments on each instruction. The Z80 CPU Technical Manual (03-0029-01) and Assembly Language Programming Manual (03-0002-01) contain significantly more details for programming

The instructions are divided into the following categories:

- □ 8-bit loads
- □ 16-bit loads
- □ Exchanges, block transfers, and searches
- □ 8-bit arithmetic and logic operations
- [] General-purpose arithmetic and CPU control

- ☐ 16-bit arithmetic operations
- □ Rotates and shifts
- Bit set, reset, and test operations
- □ Jumps
- □ Calls, returns, and restarts
- Input and output operations

A variety of addressing modes are implemented to permit efficient and fast data transfer between various registers, memory locations, and input/output devices. These addressing modes include:

- □ Immediate
- □ Immediate extended
- Li Modified page zero
- □ Relative
- \square Extended
- □ Indexed
- ☐ Register
- □ Register indirect
- □ Implied
- □ Bit

8-Bit Load Group

Mnemonic	Symbolic Operation	s	z		Flo H	ga	P/V	N	c	Opcode 78 343 210	Hex		Na.of M Cycles		Comments
LD r, r' LD r, n	r - r' r - n	:	•	X	:	X	:		:	01 e r' 00 r 110 — n		1 2	1 2	4 7	r, r' Req. 000 B 001 C
LD r. (HL) LD r. (IX+d)	r = (HL) $r = (IX + d)$:	:	X	:	X X	:	:	:	01 r 110 11 011 101 01 r 101	DD	3	2 5	7 19	010 D 011 E 100 H
LD r. (1Y+d)	r — (IY + d)	•	•	Х	•	X	٠	•	٠	- d - 11 111 101 01 r 110 + d -	FD	3	5	19	101 L 111 A
LD (HL), r LD (IX+d), r	(IX + d) = r	:	:	X	:	X	:	:	:	01 110 r 11 011 101 01 110 r - d -	DD	3	2 5	7 19	
LD (1Y+d), r	(IY+d) - r	•	•	Х	•	X	•	•	•	11 111 101 01 110 r	FD	3	5	19	
LD (HL), n	(HL) + n	•	•	X	٠	Х	•	•	•	d 00 110 110	36	2	3	10	
I.D (IX+d), n	$\alpha \rightarrow (b + XI)$	•	٠	Х	•	Х	٠	•	•	11 031 101 00 110 110 - d -	DD 36	4	5	19	
LD (iY+d), n	(IY + d) - n	•	•	X	•	Х	•	•	٠	11 111 101 00 110 110 - d -	FD 36	4	5	19	
LD A. (BC) LD A. (DE) LD A. (nn)	A - (BC) A - (DE) A - (nn)	:	:	X X X	:	X X X	:	:	:	00 001 010 00 011 010 00 111 010	0Å 1Å 3Å	1 1 3	2 2 4	7 7 13	
LD (BC) A LD (DE), A LD (nn), A	(BC) ~ A (DE) ~ A (no) ~ A	:	:	X X X	:	X X X	•	:	:	00 000 010 00 010 010 00 110 010	02 12 32	1 1 3	2 2 4	7 7 13	
LD A, I	A - 1	1	1	X	0	X	IFF	0		11 101 101		2	2	9	
LD A. R	A - B	1	1	X	C	X	IFF	0		01 010 111	57 ED	2	2	9	
LD I, A	1 A	•	•	х	•	X	•	٠	•	01 011 111	5F ED	2	2	9	
LD R. A	R - A	•	•	X	•	X	•	•	•	01 000 111 11 103 101 01 001 111	47 ED 4F	2	2	9	

NOTES: r, r means any of the registers A. B. C. D. E. H. L.
IFF the content of the interrupt enable flip days. (IFF) is
copied into the PP II lag.
For an explanation of flag notation and symbols for
mnemonic labbles, see Symbolic Notation section
following tables.

6-Bit Load Group	Masmonic	Symbolic Operation	8	2		F)	ags	P/V	N	с	Opcode 78 543 210 Hex	No.of Bytes	No.at M Cycles	No.of T States	Comments
aroup	LD dd, nn	dd ← nn	•	•	Х	•	X	•	•	•	00 dd0 001 ← n →	3	3	10	dd Pair 00 BC
	LD IX, nn	IX nn			x		х				- n - 11 011 101 DD	4	4	14	01 DE 10 HL
											00 100 001 21 - n -				ll SP
	LD IY, nn	IY nn	•	•	X		X	•	•		- n - 11 111 101 FD	4	4	14	
											00 100 001 21 - n - - n -				
	LD HL, (nn)	H - (nn+1) L - (nn)	•	•	X	•	X	٠	٠	٠	00 101 010 2A - n -	3	5	16	
	LD dd, (nn)	$\frac{ddH + (nn+1)}{ddL + (nn)}$	•	•	X	•	X	•	•	•	12 101 101 ED 01 ddl 011 - n -	4	6	20	
	LD IX, (nn)	$\begin{array}{l} IX_{H} + (nn+1) \\ IX_{L} - (nn) \end{array}$	•	•	X	•	X	•	•	•	- n - 11 011 101 DD 00 101 010 2A - n -	4	6	20	
	LD IY. (nn)	$\begin{array}{l} \text{IY}_{L} \leftarrow (nn+1) \\ \text{IY}_{L} \leftarrow (nn) \end{array}$	٠	•	Х	•	x	•	•	•	- n - 11 111 101 FD 00 101 010 2A	4	6	20	
	LD (nn), HL	(nn+1) - H (nn) - L	•	٠	x	•	X	•	•	•	00 100 010 22 - n -	3	5	16	
	LD (nn), dd	(nn+1) - ddH (nn) - ddL	•	•	X	•	X	•	•	•	11 101 101 ED 01 dd0 011 - n -	4	6	20	
	LD (nn), IX	$\begin{array}{l} (nn+1) \leftarrow IX_{\mathbf{H}} \\ (nn) \leftarrow IX_{\mathbf{L}} \end{array}$	•	•	Х	•	x	•	•	•	11 011 101 DD 00 100 010 22 - n -	4	6	20	
	LD (nn), IY	$\begin{array}{l} (nn+1) - IY_{\mathbf{H}} \\ (nn) - IY_{\mathbf{L}} \end{array}$	•	•	x	•	х	•	•	•	11 111 101 FD 00 100 010 22	4	6	20	
	LD SP. HL LD SP, IX	SP - HL SP - IX	:	:	X	:	X X	:	:	:	11 111 001 F9 11 011 101 DD	1 2	1 2	6 10	
	LD SP, 1Y	SP - IY	•	•	x	•	X	•	•	•	11 111 001 F9 11 111 101 FD	2	2	10	
	PUSH qq	(SP - 2) ← qqL (SP - 1) ← qqH	•	٠	X	•	Х	٠	•	•	11 111 001 F9 11 gq0 101	1	3	11	99 Pair 00 BC 01 DE
	PUSH IX	$SP \rightarrow SP - 2$ $(SP - 2) \leftarrow IX_{\perp}$ $(SP - 1) \leftarrow IX_{\parallel}$	•	•	x	•	X	•	•	•	11 011 101 DD 11 100 101 E5	2	4	15	10 HL 11 AF
	Push IY	$SP - SP - 2$ $(SP - 2) - IY_L$ $(SP - 1) - IY_H$	•	•	X	•	X	•	•	•	11 111 101 FD 11 100 101 ES	2	4	15	
	POP qq	SP - SP - 2 qqH - (SP+1) qqL - (SP)	•	•	X	•	X	•	•	•	11 gqQ 001	ł	3	10	
	POP IX	$SP \rightarrow SP + 2$ $IX_H \rightarrow (SP + 1)$ $IX_L \rightarrow (SP)$	•	•	x	•	x	•	•	•	11 011 101 DD 11 300 001 E1	2	4	14	
	POP IY	$SP - SP + 2$ $IY_{H} - (SP + 1)$ $IY_{L} - (SP)$ $SP - SP + 2$	•	•	x	•	X	•	•	•	11 111 101 FD 11 100 001 E1	2	4	14	
	qq is at (PAIR)	iny of the register pairs BC ny of the register pairs AF H. (PAIR) Liteter to high o BCL = C. AFH = A.	BC, D	E, H1		r eigi	ht bit	s of th	he re	g:ster	påir respectively,	·			
xchange.	EX DE. HL	DE - HL			x	•	х	•	•	•	11 101 011 EB	1	1	4	
lock ransier.	EX AF, AF EXX	AF - AF' BC - BC' DE - DE'	:	•	X	:	X	:	:	:	00 001 000 08 11 011 001 D9	1	ì	4	Register bank and auxiliary register
lock Search	EX (SP), HL	HL HL' H (SP+1)		•	x		X		•	•	11 100 011 E3	1	5	19	bank exchange
roups	EX (SP), IX	$L \leftarrow (SP)$ $IX_{H} \leftarrow (SP+1)$	•	•	x	•	x	•	•	•	11 011 101 DD	2	6	23	
	EX (SP), IY	$IX_L \rightarrow (SP)$ $IY_H \rightarrow (SP+1)$ $IY_L \rightarrow (SP)$	•	•	X	•	X	•	٠	•	11 100 011 E3 11 111 101 FD 11 100 011 E3	2	6	23	
	LDI	(DE) - (HL) DE - DE + 1 HL - HL + 1	٠	4	X	0	x	0	0	•	11 101 101 ED 10 100 000 A0	2	4	16	Load (HL) into (DE), increment the pointers and
	LDIR	BC - BC - 1 (DE) - (HL)			х	0	х	0	Q		11 101 101 ED	2	5	21	decrement the byte counter (BC) If BC ≠ 0
							••	-			10 110 000 B0	2	4	16	If BC = 0

NOTE: \bigcirc P/V flag is 0 if the result of BC $\cdot 1 = 0$, otherwise P/V = 1.

Exchange, Block	Maemonic	Symbolic Operation	8	z		Flo	gs	P/V	N	С	Opcode 76 543 210 Hex		No.of M Cycles		Comments
ransier.	***************************************							0					***************************************	~ ~ ~	
lock Search roups Continued)	LDD	(DE) (HL) DE DE - I HL HL I BC BC I	•	•	Х	Û	X	ł	a	•	11 (01 (0) ED 10 (01 000 A8	2	4	16	
.	LDÓR	(DE) + (HL) DE - DE - 1 HL - HL - 1 BC + BC - 1 Repeal until	•	•	Х	ø	χ	()	G	•	11 101 101 ED 10 111 000 B8	2 2	5 4	21 ;6	If 8C ≠ 0 If BC = 0
		BC = 0		2				0							
	CPI	A (HL) HL HL + 1 BC BC 1	ı	(2)	х	1	Х	•	i	•	1) 101 101 A1 10 100 001 A1	ż	4	16	
	CPIR	A - (HL)	t	1	Х	1	Х		:	•	11 .01 101 ED	2	5	21	If BC # 0 and
		HL - HL+: BC - BC : Repeat intol A = (HL) or BC = 0									10 110 001 B1	Ž	4	16	A ≠ (HL) H BC = 0 or A = (HL)
	CPD	A - (HL) HI HI i BC BC - 1	1	② 1	X	:	X	0 -	:	•	1) iot 101 ED 10 101 101 A9	2	4	16	
	CPDR	A - (HL)	ı	② 1	Х	ī	х	0	ì		11 101 101 ED	ż	5	21	if BC ≠ 0 and
		HL ← HL − 1 BC − BC − 1 Repeat until A = (HL) or BC = 0									10 111 001 199	2	4	16	A ≠ (HL) # BC = 0 or A = (HL)
3-Bit	Ø 7. liag ADD A. r	A A + r	nse Z =	t	х	1	х	v	0	1	;n 000 r	1	ı	4	r Reg.
irithmetic and Logical	ADD A. n	A - A + n	1	t	Х	ı	Х	A	Ĵ	1	11 <u>000</u> 110 n	2	2	7	000 B 001 C 010 D
- Proup	ADD A, (HL) ADD A, (IX+d)	A = A + (HL) $A = A + (IX + d)$	1	1	X	1		V	0		10 000 110 11 011 101 DE - di	3	2 5	7 19	011 E 100 H 101 L 111 A
	ADD A, (IY+d)	$A = A + (\{Y + d\})$	1	1	Х	1	Х	V	C	ı	11 111 101 FD 10 000 110 - d -	3	5	39	14. A
	ADC A. s	A - A+s+CY	ţ	1	X	1	Х	ν	C	t	001				s is any of r. n, (HL), (IX+d),
	SUB s	A - A - s	į	1	X	•	X	V	1	1	010				(IY + d) as shown
	SBC A. s	A - A - s - CY	1	1	Х	1	X	V	1	1	<u>011</u>				for ADD instruction.
	AND s	A - A ^ s	Ť	1	Х	1	Х	P	0	G	<u> </u>				The indicated bits replace the 000 in
	OR s	$A \leftarrow A \vee s$	1	į	Х	Ü	Х	P	0	ŋ	<u>[1]0</u>				the ADD set above.
	XOR s	A - A • s	1	:		0			0	0	<u>iici</u>				
	CP s	A - s	1	1	X	1	X	٧)	ı	1111				
	INC r	$r \leftarrow r + 1$	1	ţ	Х	1		٧	0		00 г <u>100</u>	1	i	4	
	INC (IX+a)	(HL) = (HL) + i (IX + d) = i	1	1		1		٧	C G	:	00 110 [00] H 011 101 DD d	3	3 6	11 23	
	INC (IY+d)	$\begin{aligned} \{IY + d\} &= \\ \{IY + d\} + 1 \end{aligned}$	1	i	Х	1	X	V	0	•	00 110 100 - d -	3	6	23	
	DEC m	m — m - 1	1	I,	X	;	Х	٧	1	•	" ത്				m is any of r. (HL), (IX+d), (IY+d) as shown for INC. DEC same format and states as INC. Replace [IO] with [IO] in opcode.

12 2001-001

General- Surpose	Mnemonic	Symbolic Operation	s	z		Fla H	zgs	P/V	N	С	Opcode 76 \$43 210 Hex		No.of M Cycles		Сощтель	
rithmetic nd	DAA	Converts acc. content into packed BCD following add or subtract with packed	1	ŧ	Х	1	Х	Р	•	t	00 100 111 27	1	1	4	Decimal adjust accumulator.	
PU Control roups	CPL	BCD operands. A = Ā	•		Х	ı	X	•	}		00 (01 11) 2F	i	1	4	Complement accumulator (one's	
	NEG	A = 0 + A	ţ	1	Х	ı	χ	٧	:	1	11 101 101 ED	2	2	8	complement). Negate acc. (two's	
	CCF	$\mathtt{CY} = \overline{\mathbb{CY}}$	•	•	Х	x	X	•	3	ı	0: 000 100 44 00 11: 111 3F	1	1	4	complement). Complement carry	
	SCF NOP HALT	CY — i No operation CPU haited	:	•	X X X	0	X X X	:	0	!	00 110 111 37 00 000 000 00 01 110 110 76	1 1 1 1	i i i	4 4 4	flag. Set carry flag.	
	DI * E! *	IFF ← 0 IFF ← 1	:	*	X	:	X	:	:	:	11 110 011 FB	1	1	4		
	IM I	Set intercupt mode 0	•	•	X	•	X	•	•	•	01 000 110 46	2	2	8		
	IM 1 IM 2	Set Interrupt mode 1 Set interrupt	•	•	X		X	•	•	•	01 101 101 AD 01 010 110 56 11 101 101 ED	2	2	8		
		mode 2									01 011 110 5£	<u></u>				
	CY :n	dicates the interrupt coable fa dinates the carry fact rimp ficates interrupts are not sample			end :	a El	ar Df									
6-Bit	ADD HL. ss	HL - HL+ss	•	•	Х	Х	Х	•	0	1	0C ss] 001	1	3	11	ss Reg. 00 BC	
irithmetic Froup	ADC HL, ss	HL + HL + ss + CY	1	1	Х	Х	Х	V	C	1	1: [0] [0] ED 01 ss: 010	2	4	15	01 DE 10 HL 13 SP	
	SBC HL, 88	HL - HL-ss-CY	1	1	Х	Х	X	V	ì	1	1, 101 101 ED 01 ss0 010	2	4	15	:; SP	
	ADD IX, pp	[X + [X + pp	•	٠	X	X	X	•	С	1	21 OH 101 DD 91 ppt 001	2	4	15	pp Reg. 00 BC 01 DE 10 IX	
	ADD IY, rr	IY 1Y + rr	•	•	Х	X	Х	•	0	ı	.) 111 101 FD 06 ml 001	2	4	15	11 SP rr Reg. 00 BC 01 DE 10 IY 11 SP	
			_		v	_	v	_			00 0 01)	,	,	<i>c</i>		
	INC ss INC IX	ss ss + 1 (X (X + 1	:	:	X	•	X	:	:	:	00 ss0 011 11 011 101 DD 00 100 011 23	2	1 2	6 i0		
	ING IY	IY - (Y * !	•	•	Х	•	Х	•	٠	٠	15 111 101 ED 00 100 011 23	2	2	10		
	DEC ss DEC IX	ss - ss-1 IX - IX-1	•	•	X	:	X	:	:	:	00 ss1 01) 11 011 101 DD	1 2	1 2	6 10		
	DEC: IY	IY IY - I	•	•	Х	•	Х	٠	•	•	00 10) 011 2B 11 1)) 101 FD 60 10) 011 2B	2	2	10		
	pp 18 .	ing of the register pairs BC 1D any or the register pairs BC 1D by of the register pairs BC 1D	E IX	C SP.												
otate and hift Group	RLCA	CY 7 0 -			х	0	х	•	0	1	0 0 000 111 - 07	· 1	1	4	Rotate left circular	
•	RLA				Х	0	x		ő	1	00 010 111 ::	7 I	1	4	accumulator. Rotate left accumulator.	
	BBCA	7 - CY		•	x	0	Х		G	ı	00 001 411 - 01	F L	ı	4	Botase right circular accumulator.	
	HRA	A (CY)		•	Х	C	х		0	1	00 011 111 11	- 1	1	4	Rotate right accumulator.	
	RLC r	-	1	1	х	0	X	٢	0	į	00 000 r	B 2	2	A	Rotate left circular register r.	
	RLC (HL)		1	1	X	ð	Х	Ρ	G	i	11 00: 011 C1 06 000 110	B 2	4	is	<u>τ Reg</u> . 600 Β	
	REC (IX + d)	$CY = \frac{7 - 0}{7 - (1X + d) \cdot (1X + d)}$		ţ	x	0	x	Þ	Ü	ı	1: 0ii 10: Di 1: 00: 0ii Ci - d ~		6	23	010 D 011 E 100 H 101 C	
	R1.C (i¥ + d)		:	:	Х	0	х	Р	9	1	06 000 110 11 13; 101 FF		6	23	333 A	
	J										11:001:013 (0) - d - 00:000:110	5			Instruction format	
					х		х			ī	· • •				and states are as	

Rotate and Shift Group	Mnemonic	Symbolic Operation	5	z		Fie H	2 9 6	P/V	N	С	Opco 76 543		Hex		No.e! M Cycles		Commente
Continued)	RR m	n=r.(BL) (JX + d) .JY + d)	ŧ	1	X	Ġ	х	۴	0	1	(H						
	SLA m	$\begin{bmatrix} CY & & & & & & & \\ CY & & & & & & & \\ DY & & & \\ DY & & & \\ DY & & & & \\ DY & & \\ DY & & & \\ DY & & \\ $:	t	х	÷	X	'n	6	:	{ <u>;00</u>						
	SRA m	- (H), (IX + d), (IY + d)	1	1	X	0	X	Р	()	1	[6]						
		$\begin{array}{c} + \overline{Y - + 0} - + \overline{GY} \\ n = r (Hi.; (IX + d) (IY + d) \end{array}$	1	1	Х	0	X	ř	e	1	112	+					
	RLD [7 - 4 3 - 0 7 - 4 3 - 0 HUI	1	!	X	С	Х	P	O	•	11 101 01 101		ED 6F	2	5	:8	Rorate digit lett and right between the accumulator
	няо "	7 4 3 6 7 4 3 6 A	t	1	X	C	X	P	G	•	11 (8) 91 (00	101 111	E0 6?	ž	iş.	18	and location (HL) The content of the apper half of the accumulator is unaffected.
lit Set, Reset	BIT b. r	$Z \leftarrow \overline{r}_{b}$	Х	1	x	:	х	х	0	•	11 001 01 b		СВ	2	2	В	<u>r</u> 8eg. 000 Β
ind Test	BIT b (HL)	$Z \leftarrow (\widehat{HL})_{\mathbf{b}}$	X	1	X	i	X	Х	G	٠	11 001	011	СВ	2	3	12	001 C 010 D
Group	BIT b, (iX + d)p	$b = (\overline{(X+d)})b$	X	1	X	ì	X	X	Ü	•	01 b H 011 11 001 ← d O1 b	101 011 -		4	5	20	011 E 100 H 101 E 111 A
	BIT b $(!Y+d)_i$	₂ Z (ĪŸ + d̃) _b	x	ı	Х	!	X	Х	9	•	11 (13) + d 65 b	011		4	5	20	b Bit Tested 000 0 001 1 010 2 011 3 100 4 101 5
	SET b. r	r _b - 1			х		x	•			11 001		CB	2	2	8	110 6 311 7
	SET b. (HL)	(HL) _b - 1			х		х				77 001 [J] P		СВ	2	4	15	
	SET b. (IX + d)	(IX + d)b - 1	•	٠	Х		x	•	•		Щ в 1: 011 11 001	101 011		4	6	23	
	SET b. (!Y + d)	$(1Y+d)_{\mathbf{b}}=1$		•	Х		Х	•	•		- d 11 061 11 061 - d	116 101 : 911 :		4	б	23	
	RES b. m	$m_b = 0$ $m = \tau, (HL),$ $(IX + d),$ $(IY + d)$	•	•	х	•	x		•	•	d []						To form new opcode replace [ii] of SET b, s with [ii]. Flors and time states for SET instruction.
	MOTES The no	adled, tog disseates bit picch	- 21 6	r I	W.M.	n											— <u> </u>
lump	iP nn	PC - no			Х	•	Х			•	11 000 - n	011	C3	3	3	10	
Group	JP cc, nn	If condition on is true PC — nn. otherwise continue	•	•	X	•	X	٠	•	•	— n H de	e:0 =	25	3	3		Condition
					X	-	X		Ī	•	- e-2						III M sign negative
	IR C. e	If $C = 0$, continue If $C = 1$.	٠	•	X	-	Х	•	•	•	00 111 - e-2		ж	2	3		If condition not met. If condition is met.
	IR NC. e	PC PC+e If C = 1.	٠	٠	х	•	х	•	•		00 110		30	2	2	7	If condition not met.
		continue If C = 0, PC − PC+e									~ e~	۰ -		2	3	12	If condition is met.
	IP Z. e	If Z = 0 continue	•	•	Х	•	X	•	•	•	00 101 - e-2		28	2	2	7	If condition not met.
		If Z = 1, PC PC+e									- e-2	_		2	3	12	If condition is met.
	JR NZ, e	If Z = 1, continue If Z = 0.	•	•	X	•	χ	•	٠	•	00 100 e - 2		20	2 2	2		If condition not met.
	JP (HL)	PC - PC+e PC - H1.			х		х				11 101	001	Ed	ı	3	4	r condition is rilet.
	IP (IX)	PC IX			X		Х							2	2	8	
	11 (1A)	· · · - · · ·	7	•	^	•	٨		•	•	11 011 11 101			4	4	u	

ump Group Continued)	Musmonic	Symbolic Operation	8	z		Flo H		P/V	W	c		Opec 143		Hex	No.of Bytes	No.of M Cycles		Comments
,Commueu/	IP (IY)	PC - IY	•	+	X	٠	X	٠	•	•		111			2	2	8	
	DINZ. •	B - B - 1	٠	٠	x	٠	X	•	•	•	00	010	000		2	2	8	II B = 0.
		If B = 0, continue									-	6	2 -			•		N.B O
		HB ≠ 0, PC PC + e													2	3	13	If B ≠ 0.
	NOTES: • repre	sents the extension in the re	lative	addr	estin	g max	le.	125				******						
	e 2 in	signed two's complement nut t the opcode provides an eff 2 prior to the addition of e								ément	ed							
Call and	CALL nn	$\begin{array}{c} (SP-1) - PC_{H} \\ (SP-2) - PC_{L} \end{array}$	•	•	x		х	•	•	•	11	00) n		CD	3	5	17	·
Return Group	CALL cc. nn	PC - nn If condition			X		x				-		-		3	3	10	If co is false.
	CALL CC, III	oc is false	•	•	^	•	^	•	•	•	_	n						
		continue, otherwise same as CALL nn									-	מ	_		3	5	17	If cc is true.
	RET	$PC_L \leftarrow (SP)$ $PC_H \leftarrow (SP+1)$	•	٠	x	٠	X	•	•	•	11	001	001	C9	1	3	10	
	RET oc	If condition	•	•	X	٠	X	•	•	•	11	cc	000		1	1	5	If cc is false.
		continue, otherwise													1	3	11	If co is true.
		otherwise seme as RET																cc Condition 000 NZ non-zero 001 Z zero
	RETI	Return from interrupt	•	•	X	٠	X	•	•	•		101 001			2	4	14	010 NC non-carry 011 C carry
	retn ¹	Return from non-maskable interrupt	•	•	х	•	x	•	•	•	1)	101	101	ED	2	4	14	100 PO parity odd 101 PE parity even 110 P sign positive 111 M sign negative
	RST p	(SP-1) - PCH			x		х				п	ŧ	111		1	3	11	t p
		(SP - 2) + PCL PCH - 0																000 00H 001 00H
		PCL + p																010 IOH
	NOTE (TITLE)	PCL + p				~		ny nahyyanajina							ш.			
	NOTE: 'RETN'																	010 10H 011 18H 100 20H 101 28H 110 30H
	NOTE: 'RETN'	PCL + p		•	x		x	•	•	•		011 n		DB	2	3	11	010 10H 011 18H 100 20H 101 26H 110 30H 111 36H
		PCL p	•	:		ī		• P		•	11	011 n 101 r	101		2 2	3	11	010 10H 011 18H 100 20H 101 28H 110 30H 111 38H
Input and Output Group	IN A, (n)	PCL \leftarrow p osds $ FF_2 - IFF_1 $ A \leftarrow (n) r \leftarrow (C) if $r = 110$ only the flags will be affected (HL) \leftarrow (C) B \leftarrow B \rightarrow 1	• ;	0	x		x		Q		01	n 101	101 000	ED ED				010 10H 011 18H 100 20H 101 28H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₈ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C)	$PC_L + p$ odd $IFF_2 - IFF_1$ $A = (n)$ $r = (C)$ $ir = 110$ only the flags will be affected $(HL) = (C)$ $B = B - 1$ $HL = HL + 1$ $(HL) = (C)$	x	Φ:	x x	1	x x	x	Q 1	•	11 01 11 10	101 r 101 100 101	101 000 101 010	ED ED A2 ED	2	3 4 5	12	010 10H 011 13H 100 20H 101 26H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C) INI	PCL - p osds IFF ₂ - IFF ₁ A - (n) r - (C) if r = 110 only the flags will be affected (HL) - (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL + 1 Repeat until	x	0;	x x	1	x x	x	Q 1	•	11 01 11 10	101 r	101 000 101 010	ED ED A2 ED	2	3	12	010 10H 011 18H 1100 20H 101 28H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI INIR	PCL + p oods $ FF_2 - FF_1 $ A - (n) $r - (C)$ if $r = 110$ only the flags will be affected (HL) + (C) $B - B - 1$ HL - HL + 1 (HL) - (C) $B + B - 1$ HL - HL + 1 Repeat until $B = 0$	x x	Ф: - -	x x	x x	x x	x x	Q 1		11 01 10 11 10	101 r 100 100 101 110	101 000 101 010 101 010	ED A2 ED B2	2 2 2	3 4 5 (If B≠0) 4 (If B=0)	12 16 21 16	010 10H 011 13H 100 20H 101 26H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI	PCL + p oods IFF2 - IFF1 A - (n) r - (C) if r = 110 only the flags will be affected (HL) - (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL + 1 Repeat until B = 0 (HL) - (C) B - B - 1 HL - HL - HL + 1	x x	0;	x x	1	x x	x x	Q 1		11 10 11 10	101 r 101 100 101	101 000 101 010 101 010	ED A2 ED B2	2 2	3 4 5 (If B≠0) 4	12 16 21	010 10H 011 13H 100 20H 101 26H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C) INI INIR	PCL - p oeds IFF2 - IFF1 A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL + 1 Repeat until B = 0 (HL) - (C) B - B - 1 HL - HL - (C)	x x	0:	х х х	x x	x x x	x x	0 1 1		11 01 11 10 11 10 11 10 11 11 10 11 11 1	101 r 101 100 101 110 101 101 101	101 000 101 010 101 010	ED A2 ED B2 ED AA ED	2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4	12 16 21 16	010 10H 011 13H 100 20H 101 28H 110 30H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C) INI INIR	PCL - p osds IFF ₂ - IFF ₁ A - (n) r - (C) ir = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B + B - 1 HL - HL + 1 Repeat until B = 0 (HL) - (C) B - B - 1 HL - HL - 1	x x	0:	х х х	x x	x x x	x x	0 1 1		11 01 11 10 11 10 11 10 11 11 10 11 11 1	101 101 100 101 110 101 110	101 000 101 010 101 010	ED A2 ED B2 ED AA ED	2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4	12 16 21 16	010 10H 011 13H 100 20H 101 26H 110 30H 111 38H 111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI INIR INIR	PCL + p oeds [FF2 - IFF1] A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B + B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C)	x x	0:	х х х	x x	x x x	x x	0 1 1		11 01 11 10 11 10 11 10 11 10 11 10 11 10 10	101 r 101 100 101 110 101 111	101 000 101 010 101 010	ED A2 ED B2 ED AA ED BA	2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0)	12 16 21 16 16 21 16	010 10H 010 10H 010 20H 101 26H 110 30H 111 30H 1111 30H 1111 30H 1112 30H 1113 30H 1111 30H
	IN A, (n) IN r, (C) INI INI INI INI IND IND OUT (n), A	PCL - p osds IFF2 - IFF1 A - (n) r - (C) if r = 110 only the flags will be affected (HL) - (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) Repeat until B = 0 (n) - A	x x	0:	x x x x	x x	x x x x x	x x	0 1 1		111 001 111 100 111 110 110 111 110 11	101 101 100 101 101 101 101 101 101 101	101 0000 101 010 101 010 101 010	ED A2 ED B2 ED AA ED BA	2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0) 3	12 16 21 16 16 21 16	010 10H 011 18H 100 20H 101 28H 110 30H 111 38H 110 30H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI INIR INIR	PCL + p oeds [FF2 - IFF1] A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B + B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C)	x x	①; ; ; 1 1	х х х	x x	x x x	x x	0 1 1		111 011 110 111 110 111 111 111 111 111	101 r 101 100 101 101 101 101 101 101 10	101 0000 101 010 101 010 101 010	ED A2 ED B2 ED AA ED BA	2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0)	12 16 21 16 16 21 16	010 10H 011 13H 100 20H 101 26H 110 30H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ n to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI INI INI INI IND IND OUT (n), A	PCL - p oeds [FF2 - IFF1] A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL + 1 Repeat until B = 0 (HL) - (C) B - B - 1 HL - HL - 1 (HL) - (C) B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL)	x x	①; ; · · · · · · · · · · · · · · · · · ·	x x x x	x x	x x x x x x	x x x x	1 1 1		11 01 10 11 10 11 10 11 11 10 01 11 11 1	101 100 101 101 101 r 101 r 101	101 000 101 010 101 010 101 010	ED A2 ED AA ED BA ED ED ED	2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0) 3	12 16 21 16 16 21 16	010 10H 011 19H 100 20H 101 26H 110 30H 1111 38H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C) INI INIR IND INDR OUT (n), A OUT (C), r	PCL + p oods [FF2 - IFF1] A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B + B - 1 HL - HL + 1 Repeat until B = 0 (hL) - (C) B - B - 1 HL - HL - 1 (HL) - (C) B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1	x x x x x x		x x x x x x	x x x	x x x x x x x	x x x x x x	Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111 01 11 10 11 11 10 11 11 10 11 11 11	101 100 101 100 101 101 101 101 101 101	101 0000 101 010 101 010 101 010 011 101 001	ED A2 ED AA ED BA ED A3	2 2 2 2 2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0) 3 3	12 16 21 16 16 21 16 11 12	010 10H 011 19H 100 20H 101 26H 110 30H 1111 30H
	IN A, (n) IN r, (C) INI INIR IND INDR OUT (n), A OUT (C), r	PCL - p osds IFF2 - IFF1 A - (n) r - (C) if r = 110 only the flags will be affected (HL) - (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL - 1 (HL) - (C) B - B - 1 HL - HL - 1 (HL) - (C) B - B - 1 HL - HL - HL - 1 HL - HL - HL - 1 HL -	x x x x x x		x x x x x x	x x x	x x x x x x x	x x x x x x	Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111 01 110 110 111 110	101 100 101 101 101 r 101 r 101	101 000 101 010 101 010 101 010 011 101 001	ED A2 ED AA ED A3 ED A3 ED A3 ED	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0) 3 3 4 5 (If B≠0)	12 16 21 16 16 21 16 11 12 16	010 10H 011 19H 100 20H 101 26H 110 30H 1111 38H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇
	IN A, (n) IN r, (C) INI INIR IND INDR OUT (n), A OUT (C), r	PCL + p oeds IFF2 - IFF1 A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B - B - 1 HL - HL + 1 Repeat until B = 0 (HL) + (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) B - B - 1 HL - HL - (C) HL -	x x x x x x		x x x x x x	x x x	x x x x x x x	x x x x x x	Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111 01 110 110 111 110	101 r 101 100 101 r 101 100 100 101 100 101 100 101 100 101 101 100 101 10	101 000 101 010 101 010 101 010 011 101 001	ED A2 ED AA ED A3 ED A3 ED A3 ED	2 2 2 2 2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 5 3 3 4	12 16 21 16 16 21 16 11 12	010 10H 011 13H 100 20H 101 26H 110 30H 1111 38H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅
	IN A, (n) IN r, (C) INI INIR IND INDR OUT (n), A OUT (C), r	PCL + p oeds [FF2 - IFF1] A - (n) r - (C) if r = 110 only the flags will be affected (HL) + (C) B - B - 1 HL - HL + 1 (HL) - (C) B + B - 1 HL - HL + 1 (HL) + (C) B - B - 1 HL - HL - 1 (HL) + (C) B - B - 1 HL - HL - 1 Repeat until B = 0 (n) - A (C) - r (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 (C) - (HL) B - B - 1 HL - HL + 1 HL - HL + 1	x x x x x x x		x x x x x x	x x x	x x x x x x x	x x x x x	Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111 01 11 10 11 11 10 11 10 11 10 11 10 11 10 10	101 r 101 100 101 r 101 100 100 101 100 101 100 101 100 101 101 100 101 10	101 000 101 010 101 010 101 010 011 	ED A2 ED AA ED A3 ED B3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 4 5 (If B≠0) 4 (If B=0) 4 5 (If B≠0) 4 (If B=0) 3 3 4 (If B≠0) 4	12 16 21 16 16 21 16 11 12 16	010 10H 011 13H 100 20H 101 26H 110 30H 1111 38H 1111 38H n to A ₀ ~ A ₇ Acc. to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅ C to A ₀ ~ A ₇ B to A ₈ ~ A ₁₅

Input and Output Group	Mnemonic	Symbolic Operation	8	z		Flo H		P/V	N	С	Opcode 78 543 210 Hex		No.of M Cycles		Comments
(Continued)	OTDR	(C) (HL) B B 1 HL HL 1 Repeat until B = 0	х	1	X	Х	X	Х	1	•	1: 101 101 ED 10 111 011	2	5 (If B≠0) 4 (If B=0)	16	C to A ₀ - A ₇ B to A ₆ - A ₁₅

Summary of Flag Operation

Instruction	D ₇	2		н		P/V	N	D ₀	Comments
ADD A, s; ADC A, s	[ı	Х	ı	Х	ν	0	;	8-bit add or add with carry.
SUB s: SBC A, s: CP s: NEG	1	1	Х	- 1	Х	V	1	1	8-bit subtract, subtract with carry, compare and negate accumulator.
AND a	- 1	1	X	- 1	Х	Þ	0	-0}	
OR s. XOR s	t	1	Х	C	X	Ρ	0	0 J	Logical operations.
INC s	t	1	Х	1	Х	V	0	•	8 bit increment
DEC s	1	1	Х	1	Х	V	1	•	8-bit decrement
ADD DD, se	•	•	Х	Х	Х	•	0	1	16 he add.
ADC HL, ss	1	1	Х	Х	Х	V	0	ţ	16 bit add with carry.
SBC HL. se	ŧ	1	Х	Х	X	٧	1	1	i6-be subtract with carry.
RLA, RLCA, RRA; RRCA	•	•	Х	0	Х		¢	1	Rotate accumulator.
BL m: RLC m; RB m; RRC m; SLA m; SRA m; SRL m	‡	1	X	Đ	Х	Ρ	0	ı	Rotate and shift locations.
RLD, RRD	1	1	X	0	X	₽	0	•	Rotate digit left and right.
DAA	1	1	X	t	Х	P	٠	t	Decimal adjust accumulator
CPI.	•	•	Х	1	X	•	1	•	Complement accumulator
SCF	•	•	Х	0	Х	•	Û	1	Set carry
CCF	•	٠	X	X	Х	•	0	ŧ	Complement Parry.
IN r (C)	ŧ	Ţ	Х	Į×.	X	P	0	•	Input register radicect.
INI, IND, OUTI, OUTD	Х	1	Х	Х	Х	Х	ŧ	• }	Bireck appart and output: $\mathbb{Z} = 0$ if $\mathbb{B} \neq 0$ otherwise $\mathbb{Z} = 0$.
INIA; INDR: OTIR, OTDR	Х]	Х	X	X	X	1	- 1	Dietak diput and support E = 0 ii b # 0 interwise E = 0.
LDI: LDD	X	Х	Х	0	Χ	ţ	0	• 1	Block transfer instructions P/V = 1 if BC ≠ 0, otherwise P/V = 0.
LDIR: LDDR	X	Х	Х	- ()	X	5	0	• J	
CPI: CPIR: CPD: CPDR	X	;	Х	Х	X	:	1	•	Block search instructions, $Z = 1$ if $A = (HL)$, otherwise $Z = 0$, $P/V = 1$ if $BC \neq 0$, otherwise $P/V = 0$.
LD A, 1, LD A, R	1	ì	Х	0	Х	17 F	G	•	The postent of the interrupt enable flip-flop (IFF) is copied into the P/V flag.
BIT b, s	X	•	Х	1	Х	X	0	•	The state of bit is of location is is copied into the Ziflag.

Symbolic	Symbol	Operation
Notation	S	Sign flag, $S = 1$ if the MSB of the result is 1.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Z	Zero flag. $Z = 1$ if the result of the operation is 0.
	P/V	Parity or overflow flag. Parity (P) and overflow
		(V) share the same flag. Logical operations affect
		this flag with the parity of the result while
		arithmetic operations affect this tlag with the
		overflow of the result. If P/V holds parity, P/V =
		I if the result of the operation is even, $P/V = 0$ if
		result is odd. If P/V holds overflow, $P/V = 1$ if
		the result of the operation produced an overflow.
	н	Half-carry flag. H = 1 if the add or subtract
	••	operation produced a carry into or borrow from
		bit 4 of the accumulator.
	N	Add/Subtract flag. N = 1 if the previous opera-
	.,	tion was a subtract.
	H & N	H and N flags are used in conjunction with the
	11 00 14	decimal adjust instruction (DAA) to properly cor-
		rect the result into packed BCD format following

addition or subtraction using operands with packed BCD format.

Carry/Link flag. C = 1 if the operation produced a carry from the MSB of the operand or result. С

Symbol	Operation
1	The flag is affected according to the result of the
	operation.
•	The flag is unchanged by the operation.
0	The flag is reset by the operation.
1	The flag is set by the operation.
Х	The flag is a "don't care."
V	P/V flag affected according to the overflow result
	of the operation.
P	P/V tlag affected according to the parity result of
	the operation.
r	Any one of the CPU registers A, B, C, D, E, H, L.
S	Any 8-bit location for all the addressing modes
	allowed for the particular instruction.
SS	Any 16-bit location for all the addressing modes
	allowed for that instruction.
ii	Any one of the two index registers IX or IY.
R	Refresh counter,
n	8-bit value in range < 0, 255 >.
IJ	16-bit value in range < 0, 65535 >.

Pin Descriptions

A₀-A₁₅. Address Bus (output, active High, 3-state). A₀-A₁₅ form a 16-bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64K bytes) and for I/O device exchanges.

BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR have entered their high-impedance states. The external circuitry can now control these lines.

BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals MREQ, IORQ, RD, and WR to go to a high-impedance state so that other devices can control these lines. BUSREQ is normally wire-ORed and requires an external pullup for these applications. Extended BUSREQ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.

D₀-D₇. Data Bus (input/output, active High, 3-state). D_0 - D_7 constitute an 8-bit bidirectional data bus, used for data exchanges with memory and I/O.

HALT. Halt State (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a non-maskable or a maskable interrupt (with the mask enabled) before operation can resume. While halted, the CPU executes NOPs to maintain memory refresh.

INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal software-controlled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.

IORQ. Input/Output Request (output, active Low, 3-state). IORQ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. IORQ is also generated concurrently with MI during an interrupt acknowledge cycle to indicate that an interrupt response vector can be

placed on the data bus.

MI. Machine Cycle One (output, active Low). MI, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. MI, together with IORQ, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.

NMI. Non-Maskable Interrupt (input, active Low). NMI has a higher priority than INT. NMI is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and automatically forces the CPU to restart at location 0066H.

RD. Memory Read (output, active Low, 3-state). RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

RESET. Reset (input, active Low). RESET initializes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0. During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.

RFSH. Refresh (output, active Low). RFSH, together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.

WAIT. Wait (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.

WR. Memory Write (output, active Low, 3-state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU Timing

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- I/O device read or write
- Interrupt acknowledge

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Figure 5). Approximately one-half clock cycle later, MREQ goes active. The falling edge of MREQ can be used directly as a Chip Enable to dynamic memories. When active, RD indicates that the memory data can be enabled onto the CPU

The basic clock period is referred to as a Time or cycle, and three or more Ticycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

data bus.

The CPU samples the WAIT input with the rising edge of clock state T3. During clock states T3 and T4 of an M1 cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

NOTE: $T_{\mathbf{w}}\text{-}\mathbf{W}$ ait cycle added when necessary for slow anchillary devices

Figure 5. Instruction Opcode Fetch

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode fetch (\overline{Ml}) cycle. The \overline{MREQ} and \overline{RD} signals function exactly as in the fetch cycle. In a memory write cycle, \overline{MREQ} also becomes active when the address

bus is stable, so that it can be used directly as a Chip Enable for dynamic memories. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

Figure 6. Memory Read or Write Cycles

Input or Output Cycles. Figure 7 shows the timing for an I/O read or I/O write operation. During I/O operations, the CPU automatically

inserts a single Wait state (T_w) . This extra Wait'state allows sufficient time for an I/O port to decode the address and the port address lines.

NOTE: $T_{\mathbf{w}^*} = \mathbf{One}$ Wait cycle automatically inserted by CPU

Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Figure 8). When an interrupt is accepted, a special $\overline{\text{Ml}}$ cycle is generated.

During this MI cycle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

NOTE: 1) $T_L = Last$ state of previous instruction.

2) Two Wait cycles automatically inserted by CPU(*),

Figure 8. Interrupt Request/Acknowledge Cycle

Non-Maskable Interrupt Request Cycle.

NMI is sampled at the same time as the maskable interrupt input INT but has higher priority and cannot be disabled under software control. The subsequent timing is similar to

that of a normal memory read operation except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066H (Figure 9).

^{*}Although NMI is an asynchronous input, to guarantee as being recognized on the following machine cycle, NMI's falling edge

must occur no later than the rising edge of the clock cycle preceding $\Upsilon_{LAST},$

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR

lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

NOTE: TL = Last state of any M cycle.

Tx= An arbitrary clock cycle used by requesting device.

Figure 10. Bus Request/Acknowledge Cycle

Halt Acknowledge Cycle. When the CPU receives a HALT instruction, it executes NOP states until either an INT or NMI input is

received. When in the Halt state, the HALT output is active and remains so until an interrupt is processed (Figure 11).

NOTE: INT will also force a Halt exit.

*See note, Figure 9.

Figure 11. Halt Acknowledge Cycle

Reset Cycle. RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes

inactive, two internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12).

Figure 12. Reset Cycle

Number	Symbol	Parameter	Z80 Min (ns)	CPU Max (ns)	Z80A Min (ns)	CPU Max (ns)	Z80B Min (ns)	CPU Max (ns)
1	TcC	Clock Cycle Time	400*		250°		165*	
2	TwCh	Clock Pulse Width (High)	180*		110*		65*	
3	TwCl	Clock Pulse Width (Low)	180	2000	110	2000	65	2000
4	TfC	Clock Fall Time	_	30	_	30		20
5 —	TrC	Clock Rise Time		 30		30		20
6	TdCr(A)	Clock † to Address Valid Delay	_	145		110		90
7	TdA(MREQf)	Address Valid to MREO 1 Delay	125*	~	65*		35 °	-
8	TdCf(MREQf)	Clock to MREQ Delay		100	**	85	_	70
9	TdCr(MREQr)	Clock † to MREQ † Delay		100		85	_	70
10 —	Twmreqh	MREQ Pulse Width (High)	 170*		 110*		65*	
11	TwMREQ1	MREQ Pulse Width (Low)	360*		220*	_	135*	
12	TdCf(MREQr)	Clock I to MREQ 1 Delay		100		85 ·	*********	70
13	TdCf(RDf)	Clock I to RD I Delay	_	130	_	95	~~	80
14	TdCr(RDr)	Clock 1 to RD 1 Delay		100		85	_	70
15 —	-TsD(Cr)	- Data Setup Time to Clock 1	 50		35 -		30	
16	ThD(RDr)	Data Hold Time to RD †		0	_	0		0
17	TsWAIT(Cf)	WAIT Setup Time to Clock !	70		70		60	_
18	ThWAIT(Cf)	WAIT Hold Time after Clock		0	_	0		0
19	TdCr(M1f)	Clock I to MI Delay		130		100	-	80
20	TdCr(Mlr)	Clock ! to MI ! Delay ———		 130		 100 		80
21	TdCr(RFSHf)	Clock 1 to RFSH Delay	_	180		130	_	110
22	TdCr(RFSHr)	Clock 1 to RFSH 1 Delay	_	150		120		100
2 3	TdCf(RDr)	Clock I to RD Delay		110	-	85		70
24	TdCr(RDf)	Clock 1 to RD Delay	_	100	-	85		70
25 —	TsD(Cf)	- Data Setup to Clock 1 during — M ₂ , M ₃ , M ₄ or M ₅ Cycles	60 -		 50 -		 4 0 -	
26	TdA(IORQf)	Address Stable prior to IORQ 1	320*	_	180*	_	110*	_
27	TdCr(IORQf)	Clock 1 to IORQ Delay		90		75		65
28	TdCf(IORQr)	Clock I to IORQ Delay		110	-	85		70
29	TdD(WRI)	Data Stable prior to WR I	190*		80*		25*	•
30	TdCf(WRf)	Clock to WR Delay		 90		80		 7 0
31	TwWR	WR Pulse Width	360"	_	220*	_	135*	_
32	TdCf(WRr)	Clock I to WR Delay	-	100		80		70
33	TdD(WRi)	Data Stable prior to WR I	20*	_	-10*	_	-55*	
34	TdCr(WRf)	Clock 1 to WR Delay		80		65		60
35 —	- TdWRr(D)	Data Stable from WR 1	 120*·		60*		30*	
36	TdCf(HALT)	Clock to HALT or		300		300		260
37	TwNMI	NMI Pulse Width	80	_	80		70	
38	TsBUSREQ(Cr)	BUSREQ Setup Time to Clock 1	80	_	50		50	

^{*}For clock periods other than the minimums shown in the table, calculate parameters using the expressions in the table on the following page.

AC Characteristics

AC Charac- teristics	Number	Symbol	Parameter	Z80 (Min (ns)	CPU Max (ns)	Z80A Min (ns)	CPU Max (ns)	Z80B Min (ns)	CPU Max (ns)
(Continued)	39	ThBUSREQ(Cr)	BUSREO Hold Time after Clock !	0		0		0	
	40	-TdCr(BUSACKf)	-Clock 1 to BUSACK Delay		 120	,	- 100 -		 90
	41	TdCf(BUSACKr)	Clock I to BUSACK † Delay		110		100		90
	42	TdCr(Dz)	Clock 1 to Data Float Delay		90		90		80
	43	TdCr(CTz)	Clock † to Control Outputs Float Delay (MREQ, 10RQ, RD, and WR)		110		80		70
	44	TdCr(Az)	Clock 1 to Address Float Delay		110		90		80
	45	-TdCTr(A)	- Address Stable after MREÖ t, IORO 1, RD 1, and WR 1	- 160°		80*		 35*	
	46	TsRESET(Cr)	RESET to Clock Setup Time	90		60	_	60	_
	47	ThRESET(Cr)	ŘĚSEŤ to Clock † Hold Time		0		0	~	0
	48	TsINTf(Cr)	ÑŤ to Clock † Setup Time	80		80		70	
	49	ThINTr(Cr)	INT to Clock 1 Hold Time		0		0		0
	50 —	- TdM1f(IORQf) —	- M1 ↓ to IORQ ↓ Delay	 920*				 365*	
	51	TdCf(IORQf)	Clock ↓ to IORO ↓ Delay		110		85		70
	52	TdCf(IORQr)	Clock 1 to IORO 1 Delay		100		85		70
	53	TdCt(D)	Clock I to Data Valid Delay		230		150	_	130

^{*}For clock periods ofter than the minimums shown in the table calculate parameters using the following expressions. Calculated values above assumed Tr(..... TIC. = 20 ns.

Footnotes to AC Characteristics

Number	Symbol	280	Z80A	Z80B
1	TcC	TwCh + TwCl + TrC + TfC	TwCh + TwCl + TrC + TfC	TwCh + TwCl + TrC + TfC
2	TwCh	Although static by design, TwCh of greater than 200 µs is not guaranteed	Although static by design, TwCh of greater than 200 µs is not guaranteed	Although static by design, TwCh of greater than 200 μs is not guaranteed
7	TdA(MREQI) =	TwCh + TfC - 75	TwCi: + TiC - 65	TwCh + TfC - 50
10	TwMREQh	TwCh + TIC - 30	TwCh + TfC - 20	TwCh + TfC - 20
11	TwMREQ1	TeC - 40	TeC - 30	TcC - 30
26	TdA(IORQf)	TcC - 80	TeC - 70	TeC - 55
29	TdD(WRI)	TcC - 210	TcC - 170	TcC - 140
31	TwWR -	TcC - 40	TeC - 30	TcC - 30
33	TdD(WBt)	TwCi + TrC - 180	TwC1 + TrC - 140	TwCi + TrC - 140
35	TdWRr(D)	TwC+ TrC ~ 80	TwC1 + TrC - 70	TwCl + TrC - 55
45	TdCTr(A)	TwC1 + TrC - 40	TwC1 + TrC - 50	TwC1 + TrC - 50
50	TdMH(IORQf)	2TcC + TwCh + TfC = 80	2TcC + TwCh + TfC - 65	2TcC + TwCb + TtC - 50

 $[\]begin{array}{lll} AC \; \text{Test Conditions:} & & V_{OH} = 2.6 \; \text{V} \\ V_{IH} = 2.6 \; \text{V} & & V_{OL} = 6.8 \; \text{V} \\ V_{IL} = 0.8 \; \text{V} & & \text{FLOAT} = \pm 0.8 \; \text{V} \\ V_{ILC} = V_{CC} = 0.6 \; \text{V} & & \text{V} \end{array}$

Absolute
Maximum
Ratings

Storage Temperature -65°C to +150°C Temperature under Bias Specified operating range Voltages on all inputs and outputs with respect to ground . -0.3 V to +7 V

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0 V). Positive current flows into the referenced pin. Available operating temperature ranges are:

■ 0°C to +70°C, +4.75 V \leq V_{CC} \leq +5.25 V

■ -40°C to +85°C, +4.75 V ≤ V_{CC} ≤ +5.25 V

■ -55°C to +125°C, +4.5 V \leq V_{CC} \leq +5.5 V

All ac parameters assume a load capacitance of 50 pF. Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

DC	Symbol	Parameter	Min	Max	Unit	Test Condition
Character- istics	$v_{\text{II.C}}$	Clock Input Low Voltage	-0.3	0.45	V	
	v_{iHC}	Clock Input High Voltage	V _{CC} 6	$V_{\rm CC}$ + .3	V	
	v_{iL}	Input Low Voltage	-0.3	0.8	V	
	\mathbf{v}_{IH}	Input High Voltage	2.0	v_{cc}	V	
	v_{ol}	Output Low Voltage		0.4	V	$I_{OL} = 1.8 \text{ mA}$
	v_{OH}	Output High Voltage	2.4		V	$I_{OH} = -250 \mu\text{A}$
	Icc	Power Supply Current Z80 Z80A . Z80B		150 ¹ 200 ² 200	mA mA mA	

For military grade parts, I_{CC} is 200 mA
 Typical rate for Z80A is 90 mA.

Input Leakage Current

3-State Output Leakage Current in Float

103 3. A₁₅-A₀, D₇-D₀, MREQ, IORQ, RD, and WR.

-10

10

μΑ

μΑ

 $V_{IN} = 0 \text{ to } V_{CC}$

 $V_{\rm OUT}$ = 0.4 to $V_{\rm CC}$

Capacitance	Symbol	Parameter	Min	Max	Unit	Note
	Caloak	Clock Capacitance		35	рF	
	C_{IN}	Input Capacitance		5	ρF	Unmeasured pins returned to ground
	C_{OUT}	Output Capacitance		10	рF	

TA = 25°C, 1 = 1 MHz

 I_{L1}

 I_{LEAK}

Ordering Information	Product Number	Package/ Temp	Speed	Description	Product Number	Package/ Temp	Speed	Description
	Z84 00	CE	2.5 MHz	Z80 CPU (40-pin)	Z8400 A	DE	4.0 MHz	Z80A CPU (40-pin)
	Z8400	СМ	2.5 MHz	Same as above	Z8400A	DS	4.0 MHz	Same as above
	Z8 400	СМВ	2.5 MHz	Same as above	78400 A	PE	4.0 MHz	Same as above
	Z8400	CS	2.5 MHz	Same as above	Z8400A	PS	4.0 MHz	Same as above
	Z8400	DE	2.5 MHz	Same as above	Z8400B	CE	6.0 MHz	Z80B CPU (40-pin)
	Z8400	DS	2.5 MHz	Same as above	Z8400B	СМ	6.0 MHz	Same as above
	Z84 00	PE	2.5 MHz	Same as above	Z8400B	СМВ	6.0 MHz	Same as above
	Z8400	PS	2.5 MHz	Same as above	Z8400B	CS	6.0 MHz	Same as above
	Z8400 A	CE	4.0 MHz	Z80A CPU (40-pin)	Z8400B	. DE	6.0 MHz	Same as above
	Z8400A	СМ	4.0 MHz	Same as above	Z8400B	DS	6.0 MHz	Same as above
	Z8400A	CMB	4.0 MHz	Same as above	Z8400B	PE	6.0 MHz	Same as above
	Z8400A	CS	4.0 MHz	Same as above	Z8400B	PS	6.0 MHz	Same as above

NOTES: C = Ceramic, D = Cerdip, $P = Plastic(|E| = |46\%C| to + 85\%C|M| = |55\%C| to + 125\%C|MB| = |55\%C| to + 725\%C|with MIL-STD-883|Class|B|procession, <math>S = C^{\circ}C$ to + 74%C|