VTL/2:
‘AVeryTiny
Language

By Gary J. Shannon

| Gary Shannon 3

| may be reached at:
. 18411 Vincannae

| l_'luﬂhridga, CA 91325

73

pe

. If you assume that in order
to run significant programs
in a higher level language you
need 8-12 k of memory and a
BASIC interpreter, you will be
interested to learn of Gary
Shannon’s Very Tiny Lan-
guage. The interpreter for
Gary's language resides in
768 Bytes of ROM and the
language is very terse, making
it possible for a significant
program to fit in a 1k or
smaller RAM. The terse nota-.
tion also pays off in terms of
fast execution, and in spite of
its size, VTL has some very
powerful features. _

Of course, by opting for a

very compact language, Gary
has paid a price~don’t
expect your VIL programs to -

" be very readable and don't

look for lots of diagnostic

. messages from the inter-

‘preter. You too will pav a
price if you wish to buy a
VTL chip set for the Altair
680-it sells for $114.00 at
vour local MITS dealer. Just
before going to press, we
learned that 8800 chip sets
are also available at $114.00
for 270X’s or 3149 00 for
2702’s. |
If vou wish more informa-
tion, you can get a copy of
the 27 page VTL/2 language
manual by sending $2.00 to
Dick Heiser, The Computer
Store, 820 Broadway, Santa
Monica, California 90401. Be

* sure to specify 8800 or 680.

Gary began building home
computers out of relays and
tubes while in high school. He
has been a professional sys-
tems programmer for 13
years. At the time this article
was written, he was an
emplovee of the Computer
Store, and therefore had a
commercial interest in VTL.

.

So you've built your Altair 680,
now what? Let's face it, there's
not much you can do with only 1K
of memory. That's not enough room
for BASIC, or even for an assem-
bler. But wait a minute. I know one
user who is running a small billing
system on his 1K 680. Another, a
college professor, is doing complex
matrix manipulations on archeo-

~ logical data. These sound like seri-

ous applications., Surely no one
is taking-the 680 seriously!

-Well, if that's what you think,

. then think again. All over the coun-

try hundreds of 680 owners are
taking their tiny 1K systems vafy
seriously. Their secret is VTL/2, “
a Very Tiny Language for the Altair

680. This language gives the user
the capabilitiés of BASIC, yet re-
quires only 768 bytes of read

only memory.

Having a language in PROM is
the ultimate in convenience. Each
time the system is turned on, the
interpreter is right there, ready to

" use, with no time wasted in igading.

By way of contrast, 8K of hex
format paper tape requires over
20 minutes to]oad from a slow
cassette. %

Not enly does the* ‘interpreter

- itself use up very little space, but#
" the VTL programs themselves are

very compact. You might call it a
“smallified BASIC” To begin with,
in place of the key-words used in
BASIC, VTL uses single character
abbreviations for such functions as
INPUT, PRINT, GOTO, GOSUBE,
RETURN, IF, RND, FRE, USR,
and for array or string array
references.

Variables may be represented
by any single alphabetic or special
character. Most of these are avail-
able for the user to define as he
wishes. Some of them, however,
have very special meanings. These
are called “system variables”.

The system variable pound
sign (#), for example, will always
contain the line number of the
program line currently being exe-
cuted. If nothing is done to this

"~

VTL/2

variable, it will advance to the next
line number in the program after
each line is executed. If, however,
the statement changes the value
of “#”, the next line executed will
be the one whose number was
placed into “#”. In other words,
“#=300" means “GOTO 300”. The
only exception to this rule is that
if the result placed in “#” is zero,
that value will be ignored, and the
next line in the program will be
executed. This fact allows us to
“calculate”an IF statement in VTL/2.
Consider this example:

10 X=1 (sets X to 1)

20 #={x=25)*50 (if X=25
_ goto H0)
30 X=X+1 {add 1 to X)
40 #=20 {goto 20)
50... (continue}

Notice that “X=25" is a logical
expression which has the value one
if it is true (i.e. if X is equal 25) and
zero if it is false (i.e. if X is not equal
25). When this “logical” value is
multiplied by 50, the result must
be either zero or 50. If it is 50 the

statement causes a “GOTO 50" to.

be executed. If it is zero, a “GOTO
07, which is a dummy (NOP) state-
ment falls through to the next line
in the program.

Every time the value of “#™is
changed to some non-zero value,
the original value plus one is saved
in another system variable, exclam-
ation point (!). The variable “#” can
be used for both “GOTO” and
“GOSUB", since the statement “# =I"
means “go back to where you came
from plus one line”. This is the
VTL/2 “RETURN" statement.

The system variable question
mark (?} represents the user’s ter-
minal. It can be either an input, or
an output depending on which side

-of the equal sign it falls. The state-

ment “?=A" means “PRINT A” and
the statement “X=?" means “IN-
PUT X”. Since “?” is a variable, it
may appear anywhere in a state-
ment, so that “R=({?+2+7?)/3” will
call for three numbers to be input,

and will put their average in the
variable “R”. In response to a re-
quest for input, the user may type
a number, a variable name (whose
value will be the value used), or
an entire VTL/2 expression!

For games and simulations, the
system variable apostrophe (') rep-
resents a different random integer
between 0 and 65535 every time
it is called. if your game (or simu-
lation) program requires a number
in some other range, the statement
“R={’/(Y—X+1}"0}+%+X" produces
a random integer between X and Y.
{Notice that the system variable
percent sign {%0) always contains
the remainder after the most recent
integer divide.)

In addition to decimal input and
output, the system variable doliar
sign {S) is used to input and out-
put ASCII string data. This is accom-
plished by allowing any variable
{or array position) to contain either
a numeric value, or a single ASCII
character, This dual purpose even
allows you to perform computations
on character data as if they were
‘numeric. Add one to the character
“A” and the result is the character
“B”. As an example:

10 A=65

20 S=A

30 A=A+1

40 #=pA < 9120

. 50 ?=!!.!!

The above program will print out
a continuous string of letters, each
of which is one greater than the
one before it. Since 65 is the decimal
value for the letter “A”, and 90 is
the letter “Z”, the actual output
would be “ABCDEFGHIJKLMN-
OPQRSTUVWXYZ", Statement 50
then prints a carriage return.
Any memory remaining after
the end of the program may be used
as array storage, The array does
not need a name, since there is only
one, but it can be divided up as
required, and appropriate subscripts
calculated. A subscript expression
is identical to any other VTL expres-

sion except that it begins with a
colon (;) and ends with a right
parenthesis. This subscript expres-
sion may appear anywhere that you
would otherwise use a variable
name. For example:

10 :1)=0 ({(zero first array loc)
20 =1 (set subscript to 1)
30 41)=D+1 (put next higher
number in next

array position)

40 [=I+1 {bump subscript)
50 #=[<101-30 (loop back
till [=101)

Since subscripts refer to two-
byte words in memory, it is possibie
for large valued subscripts to “wrap
around” memory and clobber the
VTL/2 source program itself. On
the other hand, this also means
that clever programs could modify
themselves. (Very carefully, of

.course)

There are no error messages in
VTL/2. If an expression is wrong,
the results of executing the instruc-
tion will be unpredictable, In other
words, VTL expects you to know
what you're doing, and will do its
best to execute any statement you
give it. This gives you wide latitude
for trying various programming
“tricks”, but also leaves you, the user,
with the responsibility of verifying
program accuracy.

In addition to the features dis-
cussed here, VTL/2 has provisions

for user defined machine language -

subroutines, printing string literais,
control-C (cancel), and control-A
(suspend). Pointers available to the

user as systemn variables make it

possible to compute memory ad-
dresses, and “PEER”, or "POKE”

to those locations. Similarly, memory
sizes and free space may be easily

computed from system variables.
The structure of VTL/2 by no

" means limits you to 1K in.your

system. The interpreter will handle
any size memory up o 63K. (1K
must be reserved for PROM,)
How about speed? VTL/2 bench-
mark programs have run 20-30%
faster than 8800 disk extended
BASIC. Keep in mind that this
speed increase is in spite of the
fact that the 8800 system clock

runs twice as fast as the 680 clock!

The speed of 8800 VTL/2 (yes, it
is available for the 8800) is even
greater. -
By now, most Altair dealers
should have the VTL/2 PROMs.in
stock, so isn't it about time you
began to take your 680 seriously?

