'Programming Manual

~ altair 680b

Table of Contents

I. INTRODUCTION « - = = = = = = = o - o n e e n page 3

II. SYSTEM DESCRIPTION = = = = = = = = o = = o o - page 5

II1. SOURCE LANGUAGE AND ADDRESSING MODES - - - - - page 7

Character Set - - = - - - - e ee e page 7

Fields of the Source Statement - - - - - - page 8

Addressing Modes - - = - = = =« - o o o o page 17

Assembler Directives - - - - - < - -s- page 25

IV. INSTRUCTION SET = - - = = = = = - - v o -2 & page 27

T Condition Code Register Operations - - - - page 27
v M6800 Instruction Set - = - - - - - - - - - page 28-29

Hexadecimal Values of Machine Codes - - - - page 30

Octal VaTues of Machine Codes = = = - - - - page 31

Decimal Values of Machine Codes - - - - - - page 32

Condition Code Register Instructions - - - page 33

Number Systems = - = « = - = = - o o - - o page 34

AccumuTator and Memory Operations - - - - - page 38

. Program Control Operations - - - - - - - - page 41

V. -ARITHMETIC OPERATIONS - - = = = = —'- - - - - ‘page 53

Number Systems - - = - = « - - - - - - .. page 53

The Condition Code Register - - - - = = - - page 54

Overflow - - - = = = = A it page 54

The Arithmetic Instructions - -~ ~ - - - = ‘- page 56

Addition and Subtraction Routines - - - - - -page 61

Multiplication -« - = = = = w o 000 o - o page 67

Division - - - = = - = o oo - c= - page 72

VI. SAMPLE PROGRAMS - - - =~ = = = = = - = - = o o page 77

APPENDIX A - Instruction Set
APPENDIX B - Assembler Directives
APPENDIX € - Input/Output Information

(:i_) Major portions of the Altair 680b Programming Manual have been reprinted
by permission of MotoroTa Semiconductor Products, Inc., copyright 1975,

Ob MITS, Inc. 61976
P 2450 Alamo SE.
Albuguerque, N.M, 87106

INTRODUCTION

The Altair 680b Programming Manual describes the format
of the 680b assembly code source language and the 6800 MPU
instruction set and addressing modes.

A brief overview of arithmetic programming techniques
and some general purpose sample programs are also included.

This manual is in no way intended to be a beginning
course in computer programming.

/———-r_ microproceseing
' unlt

]
)

oco Besand

I

d
a
1
memory —
b
u
8
input/cutput :
devices
Figure 2-1

Microcomputer System Block Diagram

7 L]
E ACCUMULATOR A
7 0
E ACCUMULATOR B
18]
[3 J INDEX REGISTER
15 [}
r [J PROGRAM COUNTER
hid]
r k4] STACK POINTER

5 &
[u]) [njz]vlc] comoiTon cODES REGIETER

Figure 2-2, Programming Model of M680O

(1 11 SYSTEM DESCRIPTION

In order to program a camputer in machine language or assembiy
code, it is necessary to have at least a block diagram level under-
standing of the computer hardware.

A general purpose microcomputer (see figure 2-1) consists of a
microprocessing unit (MPU}, a memory, and & number of input and out-
put devices. These components are linked together by an address bus
and a data bus.

The computer memory is used to store instructions and data for use
by the MPU. In the 680b, the memory is organized into 8 bit words
called bytes. Fach memory byte is assigned a unique 16 bit address.
This address is used by the MPU to gain access to the contents of a
particular memory byte.

Input and output devices, such as Teletypes, CRT Terminals, and
paper tape readers are used for communication between the computer and
the external world. Each 1/0 device in a 680b system has one or more
unique 16 bit addresses assigned to it.

The MPU is responsible for controlling the microcomputer system
and performing all arithmetic and logic operations. The MPU must be
told what steps to execute to perform a given task. This is accom-
plished by storing a program into the computer's memory. Once a program
is stored in memory, a register in the MPU called the Program Counter
(PC) is loaded with the address of the memory byte which contains the
first instruction of the program. When the computer is put into the run
mode, the MPU puts the address contained in the PC on the address bus
and reads the contents of that location via the data bus. The instruc-
tion that has been read is executed after the PC is incremented to point
to the next instruction.

This sequence is repeated until the processor is halted.

The 680b MPU is a Motorola M6B00 which operates on 8-bit binary
numbers presented to it via the data bus. A given number {byte) may
represent either data or an instruction to be executed, depending on
where it §s encountered in a program. The M6800 has 72 unique instruc-
tions, however, it recognizes and takes dction on 197 of the 256 possi-
bilitfes that can occur using an 8-bit word length. This larger number
of instructions results from the fact that many of the executive in-
structions have more than one addressing mode.

These addressing modes refer to the manner in which the program
causes the MPU to obtain its instructions and data. The programmer must
have a method for addressing the MPU's internal registers and all of the
external memory Tocations. The complete executive instruction set and
the applicable addressing modes are sumarized in Figure 4-1, however,
the addressing modes will be described in greater detail prior to intro-
ducing the instruction set in a later section. A programming medel of
the %6800 is shown in Figure 2-2. The programmable registers consist
of: two 8-bit Accumulators; a 6-bit Condition Code Register; a Program
Counter, a Stack Pointer, and an Index Register, each 16 bits long.

II1 SOURCE LANGUAGE & ADDRESSING MODES

While programs can be written in the MPU's language, that is, bi-
nary numbers, there is no easy way for the programmer to remember the
particular word that corresponds to a given operation. For this reason,
instructions are assigned a three Tetter mnemonic symbol that suggests
the definition of the instruction, The program is written as a series
of source statements using this symbolfc language and then translated
fnto machine language. The translation can be done manually using an
alphabetic 1isting of the symbolic instruction set such as that shown in
Appendix A. More often, the translation is accomplished by means of a
special computer program referred to as an assembler.

The source language for the MG6800 microprocessing unit is built
around 72 mnemonic instructions and 12 assembier directives. Section
I1I deals with the details of the character set and format of the source

language.
CHARACTER SET

The characters used in the source language for the 680b assembler
form a sub-set of ASCII (American Standard Code for Information Inter-
change, 1968). The ASCII Code is shown in Figure 3-1. The following
characters are recognized by the assembler.

1. The alphabet A through 7
» The integers 0 through 9
. Four arithmetic operators:
P
. Characters used as special prefixes:
(pounds sign) specifies the immediate mode of addressing
$ {dollar sign) specifies a hexadecimal number
@ {commercial at) specifies an octal number
% (percent) specifies a binary number
' (apostrophe) specifies an ASCII literal character
5. Characters used as special suffices:
B (letter B} specifies a binary number
H (letter H; specifies a hexadecimal number
0 (letter 0) specifies an octal number
Q@ {Tetter Q) specifies an octal number
6. Four separating characters:
SPACE
Horizontal TAB
CR {carriage return)
. {comma)
The use of horizontal TAB is always optional, and can be replaced
by SPACE.
7. A comment in a source Statement may include any characters with
ASCIT hexadecimal values from 20 (SP) through 5F (_).

2
3
4

8. In addition to the above, the assembler has the capability of
reading strings of characters and of entering the corresponding 7-bit
ASCII code into specified locations in the memory. This capability is
provided by the assembler directive FCC (See Appendix B). Any charac-
ters corresponding to ASCII hexadecimal values 20 (SP) through 5F {)
can be processed. This kind of processing can also be done, for a sin-
gle ASCII character, by using the inmediate mode of addressing with an
operand in the form "#C".

BITS4thru6é6 — O 1 2 3 4 § 6 7
(0 NUL DLE SP 0 @ P P
1 SOH DCI ! 1 A Q a q
2 SIX D&2. " 2 B R b o«
3 ETX DC3 # 3 C S ¢ s
4 EOT DC4 $ 4 D T d t
S ENQ NAK % 5 E U e u
BITSOthrud< 6 ACK SYN & 6 F V f v
7 BEL ETB ' 7 G W g w
8 BS CAN (& H X b «x
© HF EM) 9 1 Y i y
A LF SUB * = 1 Z j z
B VI ESC + ; K [k {
C FF FS < L ¢ 1 |
D CR GS = M] m }
E SO RS > N { n =~
F s U / ? ©O — o DEL

-

Figure 3-1 ASCII Code

FIELDS OF THE SOURCE STATEMENT

A source statement includes from one to four fields. From left to
right, the four fields are:

(1) label (2} operator {(mnemonic) {3) operand (4) comment

The comment is optional, and may be used in most source statements.
Comments are intended for the convenience of the programmer, and to fa-
cilitate documentation of the program. A label is required for some
statements which are involved in the definition of symbols and, in some
cases, at the destinations of branches and jump instructions. An oper-
and field may or may not be present depending on the nature of the
operator. The mnemonic operator must be present in any statement ex-
cept when the statement consists only of a comment.

With one optional exception (explained below), the successive
fields within a statement are separated by,

either: one or more SPACE characters

or: horizontal TAB
The use of the horizontal TAB is hardware-dependent in that its avail-
ability will depend on the particular type of terminal in use. The
SPACE bar may always be used rather than the TAB key.

CAUTION

A SPACE in the first character position of a source statement

is used to indicate that a label is not included in the state-
ment. A label, if used, must begin in the first character pos-
ition of the source statement. It follows from the above that,
when typing a source program into a file in which the statements
are fdentified by 1ine numbers, there will be only one space
following the line number if the statement includes a label.

Two or more spaces follewing the Tine number will indicate that
a label is not used.

The exception to the foregoing rule relating to SPACE or hori-
zontal TAB between the elements of a source statement applies
to operators with dual addressing in the operand field (indi-
cated by the column headed "Dual Operand" in Figure 3-2 and
to certain other operators if they are functioning in the

vaccumulator mode" of addressing (indicated by the column
headed "ACCX" in Figure 3-2. In these cases, the first
character of the operand field is either A or B (indicating
accumulator A or B), and the second character is a SPACE.
The programmer then has the option of omitting the SPACE
between the operator and the operand field. This results

in an apparent four-character format, as for example "ADCA",
"ASRB", “STAA", "TSTB", and similarly.

Label Field

An asterisk (*)} in the first character position of a statement
causes the entire statement to become a comment. Otherwise, the com-
ment will be preceded in the statement by one or more fields of the
other three types, and the comment will occupy the last field in the
statement.

Except in some cases when it is used with the mnemonic operator
EQU (see below) a label always corresponds to a numerical address in the
programmable system. It provides a means of referring to that address
by using a symbol identical with the label. The address represented by
the label {or symbol) may be that of an instruction in the machine code
or of a location in the memory where data is stored.

WM sww s s st e st el s sNuaNNN YD

perapuy
pepusixg
weug
CLTI
Xaov

{pusisdg (sng)

LI
usisyu|
prxwpu)
popunxg
1420
Bapeww)
X20v

{pursdQ 200}

AT DUBWONN PSS S s sD S s aDTIN G

WaASMBPYNNCO I ¢ +00 ¢ PaAY S ESNOWT &8

I EEEEEXLE N NE IR BB I R NN R e B]

S A S B BNMTI 46 PNS SIS EBINN PO EES PN

CEEEREREERENT- IR B KRS BN N R I

LDX

.

-~

- e

- s

L]

-
.

'EEEEESAAR A E LA B B B AR N-L A I NI B B S S B B I N

»
CnxLtaE
a
22349
N sss0s

SN~ ™~
s gwww
eI 4
sV B e

> e P PNN

*

LI

*

L d

-

.

-m

LY.

-

S E 0 8 & BN SN S AN T

e e e RS ePae~ oG AN B)

48 0 45808 SADETDN WD

S 4803 F0 SRS ORI ET 0

LIE I R B R R R R B O N B I

LIS S B RS IR N A)

x

*

L

*m

* N

Interrupt time is 12 cycles from the end of

NOTE:

the instruction being executed, except following

a Wal instruction. Then it is 4 cycles.

mes

3-2 Instruction Addressing Modes and Execution T
(Times in Machine Cycies)

Figure

10

The following rules apply to labels:

1. A label consists of from 1 to € alphanumeric characters.

2. The first character of a labe] must be alphabetic.

3. A label must begin in the first character position of a
statement. .

4. AT labels within a program myst be unigue.

5. A label must not consist of any one of the single char-
acters A, B, or X. (These characters are reserved for
special syntax, and refer to "accumulator A", "accumu-
lator B", and "index register", respectively.)

Labels are used in source programs in the following cases:

1. A label may be included in any statement which is the destina-
tion of:
a. Any of the conditional branch instructions: BCC BCS BEQ

BGE BGT BHI BLE BLS BLT BMI BNE BPL BVC BYS

b. The unconditional branch instruction: BRA, or
c. The branch to a subroutine: BSR
Correspondingly, the operand field of the branch instruction
would consist only of a single symbol which would be identical
with the label at the destination. In the case of the instruc-
tion BSR, the symbol in the operand field, identical with the
label at the destination, could be regarded as, in effect, the
name of the subroutine.

2. A label may be included in any statement which is the destina~
tion of either of the instructions:
JMP (unconditional jump}
or JSR (jump to subroutine)
when the instruction is being used in the extended mode of
addressing.

Correspondingly, when used in the extended mode of addressing,
the operand field of either of the instructions JMP and JSR
would consist only of a symbol which would be identical with
the label at the destination. For JSR, this could be regarded
as, in effect, the name of the subroutine.

3. A label would be included in an assembler directive which
specifies the location in memory corresponding to a symbol.
This applies only to the dirvectives:

FCB FCC FDB RMB
When used for this purpose, the Tabel in the assembler dir-
ective would be identical with the corresponding symbol.

4. A label must be used in a statement which includes the assem-

bTer directive EQU. The label will be identical with the sym-
bel which the EQU statement 1s defining.

n

5. In other cases, a label may be used in any executable instruc-
tion at the option of the programmer. Among the assembler
directives EQU must always be written with a label; each of
FCB, FCC, FDB, and RMB, may have a label; any other of the
assembler directives must not be written with a label.

(For further details on the assembler directives see Appendix
B.)

Operator Field

The mnemonic operators recognized by the assembler include 72 execu-
table instructions. Each instruction is translated by the assembler into
one to three bytes of machine code. The remaining mnemonic operators are
assembier directives, of which four (FCB, FCC, FDB, and RMB) are translated
into one or more bytes of machine code. The other assembler directives
contrel the overall assembly process and are not translated individually

into machine code.

A functional classification of the mnemonic¢ operators is shown in
Figure 3-3. An alphabetical 1isting of the executable instructions is
given, with brief definitions, in Figure 3-4.

Executable Instructions

Each of the executable instructions recognized in the source lan-
guage consists of three alphabetic characters. {However, as when the
first operand in the operand field is either A or B, the programmer has
the option of joining the character A or B to the operator, which re-
sults in an apparent four-character format.)

Figure 3-2 gives complete information stating which modes of ad-
dressing can be used with the different executable instructions. The
table also shows the execution times in clock cycles.

The assembiy of an executable instruction results in from cne to
three bytes of machine code, depending on the addressing mode. This
information is summarized in Figure 3-5.

Detailed definitions of the executable instructions are given in Ap-
pendix A.

12

. Operations on 8-Bit Registers:

Two-operand arithmetic
Single-operand arithmetic
Comparisons and Tests
Shifts and Rotations
Logic Functions
Load and Store
Transfers

ammonE >

II. Jump and Branch Control:
A. Conditional Branch

B. Uncenditional Branch and Jump .
C. Control of Subroutines
D. Control of Interrupts

ABA ADC ADD SBA SBC SUB
CLR DAA DEC INC NEG

CBA CMP TST

ASL ASR LSR ROL ROR

AND BIT COM EOR ORA

BCC BCS BEQ BGE BGT BH1
BLE BLS BLT BMI BNE BPL
BVCBVS

BRA NOP JMP

I, Control of Index Register and Stack Pointer:

A. Index Register,
B. Stack Pointer
C. Transfers

IV. Control of Condition Codes Register:

A BitCeatrol
B. Byte Transfers

V. Assembler Directives

Figure 3-3 Functional Classificati

13

DEX INX LDX STX CPX
DES INS LDS STS

END EQU FCB FCC FDB MON
NAM OPT ORG PAGE RMB SPC

on of the Mnemonic Operators

ABA

CPX

DAA
DEC
DES
DEX

EOR
INC

Add Accumulators
Add with Carry
Add

Logica! And
Arithmetic Shift Left
Arithmetic Shift Right

Branch it Carry Clear
Branch i Carry Set

Branch if Equal to Zero
Branch if Greater or Equal Zero
Branch if Greater than Zaro
Brarch it Higher

8it Test

Branch if Less or Equal
Branch if Lower or Same
Branch if Less than Zero
Branch it Minus

Branch it Not Equal 10 Zero
Brarch if Plus.

Sranch Always

Branch 1o Subrouting
Branch i Overflow Clear
Branch f Overlow Set

Compare Accumulators
Clear Carry

Clear Inlerrupt Mask
Clear

Clear Quertiow
Compara

Camplement

Compare index Regisier

Decimal Adjus!
Decrernent

Decrement Stack Pointer
Decremant Index Register
Exclusive OR

Increment

NS
INX

JMP
JSR

LDA
LDS
LDX
tSR

NEG
NOP

CRA

PSH
PuL

ROL

RTE
ATS

SBA
SBC
SEC
SEI

SEV
STA
STS
STX
sue
swi

TAaB
TAP
TBA
TPA
TST
TSX
™S

wal

Increment Gtack Pointer
Increment Index Register

Jump
Jump to Subjoutine

Load Accumutator
Load Stack Painter
Load Index Register
Logical Shitt Right

Negate
No Operation

Inclusive OR Accumulatar

Push Data
Pull Data

Rotate Lelt

Rotate Right

Retwm from Interrupt
Returr from Subrouting

Subtract Accumulators
Subtract with Carry
Sel Carry

Set Interrupt Mask
Sel Qverflow

Store Accumufator
Store Stack Register
Slare Index Register
Subtract

Scftware Interrupt

Transfer Accumulators

Transfer Accumulators ko Gondition Code Reg.
Transfer Accumuialors

Transter Condition Code Heg. ta Accumulator
Test

Transfer Stack Poinler to Index Register
Trangler Index Regisier 1o Stack Pointer

Wait fer nterrupt

Figure 3-4 Executable Instructions -- Alphabetic List

NUMBER OF BYTES

ADDRESSING MODE OF MACHINE CODE
Inherent 1
AccumuTator {single operand) 1
Relative
Direct 2
Indexed p
Immediate: 2

1. A1l instructions except CPX, LDS and LDX 2

2. Instructions CPX, LDS and LDX 3
Extended 3

Figure 3-5
Operand Field

The kind of information placed in the operand field depends on the
particular mnemonic operator. For the 72 executable instructions the
microprocessor uses various modes of addressing for obtaining the oper-
ands and saving the results of execution. The addressing mode is deter-
mined by the mnemonic operator combined with the information in the oper-
and field. The addressing modes are summarized in Fiqure 3-2.

The assembler recognizes numbers, symbols and expressions in the
operand field. Dual operand instructions regquire either of the single
characters A or B as the first operand.

Numbers

Numbers are accepted by the assembler in the following formats:

Numbey {decima1}

$ Number hexadecimal)
Number H {hexadecimal)
@ Number {octal)
Number 0 (octal)
Number Q %octal)

% Numbey binaryg
Number B (binary

15

where Kumber is a positive integer. A prefix "§", "®", or "%" instructs
the assembler to interpret the number as hexadecimal, octal, or binary,
respectively. A suffix of "0" or "Q" indicate octal numbers while the
suffix "N" indicates hexadecimal, and the suffix "B" indicates binary.
When none of these prefixes or suffixes is used, the number is assumed
to be decimal.

In the case where the prefix is "$" and the last character is “B"
the assembler interprets the number as hexadecimal.

Symbols
Symbols when used in the operand field follow these rules.

1. A symbol must not be any of the single characters A, B, or X,

2. Subject to rule (1), a symbol may consist of from 1 to 6
alphanumeric characters, of which the first is alphabetic.

3. The single character "*" is a symbol which represents the
program counter.

The special symbol "*" represents the program counter. Its value is,
therefore, equal to the numerical address of the first byte of machine
code which results from the assembly of any source instruction which con-
tains "*" in the operand field.

The single characters A, B, and X are reserved for special use in
the source program, to represent accumulator A, accumulator B, and the
index register. The single characters A or B must be used with dual
operand instructions and may be used to indicate accumulator addressing.
The single character X is indication of indexed addressing.

A1l other symbols must be defined in the source program. There are
three ways of defining a symbol, as follows:

1. An executive instruction in the source program may include a
label indentical with the symbol being defined. The value of
the symbol 1s then the numerical address of the first byte of
machine code which results from the executive instruction which
includes the label.

2. One of the assembler directives FCB, FCC, FDB, or RMB may be
written with a label identical with the symbol being defined.
The value of the symbol 1s then the numerical address of the
first byte of machine code which results from the assembler
directive (FCB, FCC, FDB, or RMB) which includes the label.

3. The symbol may be defined by using the assembler directive EQU.
The mnemonic operator "EQU" is preceded by a label identical
with the symbol being defined. The value of the symbol, re-
presented by the Tabel, is that of the operand which follows
the mnemonic operator "EQU". The operand may be a number,
another symbol,or an expression,

16

I'’xpressions

An expression is a combination of symbols and/or numbers being
separatﬁd one from the next by one of the arithmetic operators {+, -,
*,0r /).

The assembler evaluates expressions algebrajcally from Teft to
right without parenthetical grouping, there being no heirarchy of pre-
cedence among the arithmetic operators. A fractional result, or inter-
mediate result, if obtained during the evaluation of an expression, will
be truncated to an integer value. The use of expressions in the source
language does not fmply any capability of the microprocessor to evaluate
those expressions, since the expressions are evaluated during assembly
and not during execution of the machine language program.

Evaluation of Symbols and Expressions

The assembler must complete the numerical evaluation of symbols and
expressions in two passes through a source program. Reflecting the two-
pass characteristic of the assembly process, only one level of forward
referencing is permitted in the use of symbols or expressions in the
operand field of source statements.

Comments Field

A comment may be included in a source statement at the option of
the programmer. The comment, if present, may contain amy characters
corresponding to ASCII hexadecimal values 20 (SP) through 5F ().
Source statement comments do not affect the machine code which results
from the assembly of a program. They are ignored by the assembler
except for being included in the program 1isting.

Comments may be used in source programs for aiding comprehension of
the program, and for purposes of checkout and documentation.

ADDRESSING MODES

The assembler scans the operator and operand to determine the pro-
per addressing mode. The addressing modes are:

Inherent Addressing
Relative Addressing
Immediate Addressing
Indexed Addressing
Accumulator Addressing
Extended Addressing
Direct Addressing

17

Dual Addressing

Eleven of the executable instructions require addressing of two
operands in the operand field. These instructions are indicated in
Figure 3-2 by the column headed "Dual Operand". For all of these oper-
ators the first operand must be either accumulator A or accumulator B.
This is specified respectively by A or B as the first character in the
?perand)fie]d, the second character in the operand field being a SPACE

OR TAB).

For dual addressing the specification of the first operand (either
A or B) is separated from that of the second operand by one or more
SPACE characters {or alternatively by TAB).

The second operand is specified in the operand field in accordance
with the rules for immediate, direct, extended, or indexed addressing
(as defined subsequently); depending on which modes of addressing are
valid for the individual operators.

{For the mnemonic operators which employ dual addressing it is
permis§ib1e to omit the SPACE between the operator and the operand
field.

Accumulator Addressing (single operand)

Thirteen of the operators address a single operand from the operand
field and can so address either accumulator A or accumutator B in the
microprocessing unit. These operators are indicated by the column headed
"ACCX™ in Figure 3-2. This mode of addressing is specified by writing an
operand field consisting only of the single character A or B, corres-
ponding to accumulator A or accumulator B. (It §s then permissible to
omit the SPACE (or TAB) beiween the operator and the operand field, for
this type of addressing.) .

For this type of addressing the assembly of a source instruction
results in one byte of instruction in the machine language.

(For operators PUL and PSH, the accumulator mode is the only valid
mode of addressing. The remaining eleven operators capable of this mode
of addressing can alternatively be used with extended or indexed addres-
sing.)

Inherent Addressing

in many cases the mnemonic operator itself specifies one or more
registers which contain operands or in which results are saved. For
example, the operator ABA requires two operands which are located in
accumulator A and accumulator B of the microprocessor. The operator
also determines that the result of execution will be saved in accumu-
lator A.

18

For some executable instructions, all of the information which may
be required for the addressing is contained in the mnemonic operator,
and no operand field is used in the source statement. There are 25 such
instructions. These are indicated by the column headed "inherent" in
Figure 3-2.

Assembly of this type of source instruction results in only one
byte of machine language code. (Some other operators which contain ad-
dressing information inherently in the mnemonic code also require further
addressing or operand information which is then placed in an operand
field. Examples are the operators CPX, LDS, LDX, STS, and STX.)

Immediate Addressing

The operators with which the immediate mode of addressing is permis-
sible are indicated by the column headed "immediate” in Figure 3-2. This
mode of addressing is selected by beginning the specification of the
corresponding operand {in the operand field of a source statement) with
the pound character "#".

With the immediate mode of addressing, the operand field of the
source statement either contains the actual value of the operand, or
it includes a symbol or an expression which has an algebraic value equal
to the value of the operand. The operand may be specified in accordance
with any of the following formats:

Number

Symbol

Expression
#'C

In the first three of these alternate forms the assembler will find
or compute a numerical value of the operand. For any executive instruc-
tion in the immediate mode of addressing except CPX, LDS, or LDX, the
numeric value must be an integer from 0 to 255 (decimal). For the oper-
ators CPX, LDS, or LDX, any value from 0 to 65535 (decimal) is valid.

In the last of the alternative forms, #'C, the apostrophe instructs
the Assembler to translate the next character into the corresponding 7-
bit ASCII code. The ASCII code so obtained is then the value of the
operand. The single character "C" can be any character of the ASCII
character set with hexadecimal value from 20 {SP) through 5F (}.

For the immediate mode of addressing, the assembler inserts the
actual vaiue of the operand into the machine code. Except for the three
operators CPX, LDS, and LDX an instruction in the immediate mode is as-
sembled into two bytes of machine code, and the value of the operand is
entered in the second byte. When it is a number, the operand is entered
in the memory in unsigned 8-bit binary code. When it is an ASCII char-
acter, the corresponding 7-bit ASCII code applies, using bits 0-6, and
bit 7 is set to zero.

"

For the three operators CPX, LDS, or LDX, used in the immediate
mode, the source statement is assembled into three bytes of machine
code. The numerical operand, which can have any value from 0 through
FFFF, will be entered in the second and third bytes. The second byte
will contain the most significant part of the operand, the third byte
will contain the least significant part of the operand. Both parts are
entered into the respective bytes of the memory in unsigned 8-bit bi-
nary code.

The operators CPX, LDS, or LDX, in the immediate mode, are not
normally used with an operand in the format "#'C". However, in such a

. tase, the assembler would place the ASCII coded character "C" in the
* third byte of the machine code corresponding to the source instruction.

When the immediate mode of addressing is used, the numerical ad-
dress is in effect that of the second byte of machine code which results
from assembly of the source instruction. Data flow for the immediate
addressing mode is shown in Figure 3-6.

Lol MPU
ACCA
= -
RrRAM RAM
.
TN N Figure 3-6 Immediate Addressing
PROGRAM PROGRAM
HemoRy MEMORY Mode Data Flow
s T —
PC INSTR #C = 5002 LDA A
DATA . 7
- i
GENERAL FLOW EXAMPLE

Relative Addressing

For the relative addressing mode to be valid, there is a rule which
1imits the distance in the machine language program from the branch in-
struction to the destination of the branch. The rule which applies to
the relative addressing mode is that the address of the destination of
the branch must be within the range specified by:

(PC+2)-128<D<(PC+2}+127

where: .]
PG = address of the first byte of the branch instruction
D = address of the destination of the branch instruction.

When it is desired to transfer control beyond the range of the
branch instructions, this can be done by using JMP (unconditional jump)
or JSR (jump to subroutine). These instructions do not use the relative
mode of addressing.

20

L]
1

The assembler translates & branch instruction into two bytes of
the machine code. The second byte contains a relative address. This
is stored as a number in 8-bit, two's compiement, binary form, with
decimal value in the range from -128 to +i127. These numbers corres-
pond to the limits of the range of a branch instruction, as described
above.

The relationship between the relative address and the absolute
address of the destination of a branch instruction is expressed by:

D=(PC+2)+R
where:
PC = address of first byte of the branch instruction
D = address of the destination of the branch instruction
R = the 8-bit, two's complement, binary number, stored in the second
byte of the branch instruction.

The relative addressing mode is available only to the conditional
branch instructions, the unconditional branch instruction BRA, and the
branch to subroutine BSR., None of these source instructions can use
any other mode of addressing. The three-character mnemonic instruction
is, therefore, sufficient to determine for the assembler when the rela-
tive mode of addressing will be used. BAn example of the data fiow for
the relative addressing mode is shown in Figure 3-7.

Indexed Addressing

A column of Figure 3-2 indicates the instructions for which indexed
addressing is valid.

With this mode of addressing, the numerical address is varfable and
dependent on the contents of the index register. The current address is
obtained whenever it is required during the execution of a program, rat-
her than being pre-determined by the assembler as it is for the other
addressing modes. The operand field of the source statement contains
a numerical value which, when added to the contents of the index register
during execution of the program, will provide the numerical address.
Alternatively the operand field may contain a symbol or an expression
which the assembler is able to replace by the value which is to be added
to the contents of the index register. An example of the indexed ad-
dressing mode is shown in Figure 3-8.

For indexed addressing the data for obtaining the numerical address
may be written in any of the formats:

X

X

Number, X
Symbol,X
Expression, X

A

MPU MPU
- HINEVE <
RAM RAM
p————
-
/\ -_—‘
PROGRAM PROGRAM
MEMORY MEMORY
PC INSTR i
OFFSET :rl"—‘—‘ pc-s008 | BEQ C_
PC + 2) [NEXT INSTR 5
PC = 5010 [NEXT INSTR
(PG + 21 +
(orrse T JNEXT INSTR T
PG = 5025 INEXT INSTA)
r—J b——]
Figure 3-7 Relative Addressing Mode Data Flow
MPU MPU
) ACCE
[58]
NDEX
AAM ARAM
ACDR = INDX .
s oFrort bDATE < ADDR = 405 5% K
PRCGRAM PROGRAM
MEMORY MEMORY

)

PG INSTR PC = 5006 LDAB
OFFSET 5

OFFSET < 265

GENERAL FLOW EXAMPLE

/

Figure 3-8 Indexed Addressing Mode

22

-——

The single character "X" informs the assembler that the indexed mode is
to be used, the character "X" being reserved to denote the index register.

The format "X", when used alone, instructs the assembler that the
address of the operand is identical with the contents of the index regis-
ter. (This format has the same effect on the assembly as if "0,X" had
been written.}

If a symbol or an expression is used rather than a number, the as-
sembler will find or compute a numerical value of that symbol or expres-
sion. The source program must then include other statements which define
a numerical value for the symbol or which enable the assembler to compute
a numerical value for the symbol or expression. Only values from zero
to FF (hexadecimal) are valid. This value is added to the contents of
the index register during execution to obtain the numerical address as
shown in the following formula:

D = numerical value + X

where
X = contents of index register
D = numerical address

For indexed addressing the source instruction is translated into two
bytes of the machine code. The second byte contains the number, in un-
signed B-bit binary form, which is added during execution of the instruc-
tion to the contents of the index register. The number thus obtained is
the numerical address (in accordance with the foregoing formula).

Direct and Extended Addressing

For direct addressing the source instruction is translated into two
bytes of machine code. The second byte will contain the address in un-
signed 8-bit binary form.

For extended addressing the source instruction is translated into
three bytes of machine language. The second of these bytes will contain
the highest 8 bits of the address. The third byte will contain the low-
est § bits of the address. The contents of the second and third bytes
will both be coded in unsigned 8-bit binary form.

For both direct and extended addressing, the address, which is
placed by the assembler into the second or the second and third bytes of
the machine code, is the absolute numerical address.

As may be seen in Figure 3-2, there are several instructions for
which the extended mode of addressing is valid but the direct mode is
not. For these instructions, when using any of the following formats,

Number

Symbo1

Expression
the assembler will select the extended mode of addressing whatever may
be the value of the numerical address. The source statement will be
translated into three bytes of the machine code.

2

For those instructions which may use the direct mode of addressing
as well as the extended mode, the assembler selects the mode according
to the following rule: The assembler will select direct addressing §f
the numerical address is in the range from zero to 255 {decimal) and
will select extended addressing if the numerical address exceeds 255
(decimal). Examples of the direct and extended addressing modes are
shown in Figures 3-9 and 3-10.

MPU MPU
: ACCA :
RAM RAM
ADDR DATA ADDR = 100 35 <
L i
PROGRAM PROGRAM
MEMCRY MEMORY
PC INSTR PC = 5004 LDA A
ADDR 100
ADOR =0 S 255
GENERAL FLOW EXAMPLE
Figure 3-9 Direct Addressing Mode Data Flow
MPU MPY
: ACGE :
AAM RAM
ADDR DATA K ADDCR = 300 45 <
v —
PROGRAM PROGRAM
MEMORY MEMORY
= _ =
INSTR PC=5006] 1DaB :
PC ADDR
300
ADDR '_
ADOR = 256
GENERAL FLOW EXAMPLE

Figure 3-10 Extended Addressing Mode Data Flow
24

ASSEMBLER DIRECTIVES

The assembler divectives allow the programmer control of the as-
sembly of the executive instructions into machine code, including con-
trol of the allocation of memory, and assignment of values to data,
when applicable. The assembler directives also provide for control of
the sequencing of source programs through the assembler, and for con-
trol of the format of the assembler output.

A functional classification of the assembler directives is given
below:

CODE SUMMARY DEFINITION FUNCTION

ORG Assign origin of program counter Defines the numerical
. address of the first byte
of a subsequent segment of
the coded program.

£QU Equate a symbol to an operand Equates a symbol to a nu-
merical value, ancther
symbal, or an expression.

FCB Form constant byte Assign values and

FcC Form constant characters addresses of data, and

FDB Form double constant bytle assign addresses of

RMB Reserve memory bytes scratch areas of memory.

END Define end of source program Control the sequencing

MON Return to conscle of source programs
through the assembler.

NAM Name the program or insert text Format control

oPT Assembler control options (Source program and/or

PAGE Move paper to top of form assembler listing)

SPC Vertical spacing of program 1isting

Assembler Directives - Operand Formating

Detailed definitions are shown in Appendix B. The formats of the
assembler directives operand field are summarized below:

25

FCB (2) EQU (1)} FCC END

FDB (2) ORG (1) NAM MON

RME (1) SPC (1) 0PT PAGE

. Special Format- No
ting Rules Operand

Number
Symbo1 (see details of {Operand field
Expression the assembler dir- is left blank or

ectives in Appendix will be treated by
B.) the astembler as a
comment..)

Notes: (1) Only one operand.
(2) May have more than one operand, separated by
commas .

Labels Used with Assembler Directives

A label must be included in any source statement which includes
the assembler directive "EQU". The label must be identical with a
symbol used elsewhere in the source program. The "EQU" directive is
used to define the symbol, directly or indirectly.

The significance of the label, in this case depends on that of
thet symbol with which it is identical. It can represent a numerical
address, or data, or neither of these. In the latter case the label,
and the corresponding symbol, would represent an algebraic quantity
which appears in one or more expressions in the source program.

A Tabel may be included in any source statement which includes amy
of the assembler directives FCB, FCC, FDB, or RMB. These are the only
assembler directives which are translated Individually into one or more
bytes of machine code. The label, if used, represents the address of
the first byte of the machine code which results from the respective
source statement.

Any source statement which includes any assembler directive other
than EQU, FCB, FCC, FDB or RMB, must not be written with a label.

Comments Used with Assembler Directives

The assembler directive "NAM" does not distinguish between the
operand field and a comment. Both are treated by the assembler as
continuous text.

A comment may be used with any other assembler directive at the
option of the programmer; however, comments with the SPC or PAGE as-
sembler directives will not be printed (these two directives do not
print}.

26

fv INSTRUCTION SET

The M6800 instructions are each described in detail in Appendix A.
This section will provide a brief intreduction to the instructions and
discuss their use in writing 680b programs.

The instruction set is shown in summary form in Figure 4-1. Each
of the 72 executable instructions of the source language assembles into
from 1 to 3 bytes of machine code. The number of bytes depends on the
particular instruction and on the addressing mode. The addressing
modes which are available for use with the various executive instruc-
tions are indicated in Figure 3-2.

The coding of the first (or only) byte, corresponding to an exe-
cutable instruction, is sufficient to fdentify the instruction and the
addressing mode. The hexadecimal equivalents of the binary codes, which
result from the translation of the 72 instructions, in all valid modes
of addressing, are shown in Figure 4-2. There are 197 valid machine
codes, 59 of the 256 possible codes being unassigned. The octal and
decimal equivalents of the machine language codes are shown similarly,
in Figures 4-3 and 4-4.

Microprocessor instructions are often divided into three general
classifications: (1) memory reference, so called because they operate
on specific memory locations; (2) operating instructions that function
without needing a memory reference; (3} I/0 instructions for transfer-
ring data between the microprocessor and peripheral devices.

In many instances, the 6800 performs the same operation on both its
internal accumulators and the external memory locations. In addition,
the M6800 treats peripheral devices exactly like memory locations, hence,
no I/0 instructions as such are required. Because of these features,
other classifications are more suitable for introducing the 6800 instruc-
tion set: (1) Accumulator and memory operations; {(2) Program control
operations; (3) Condition Code Register operations.

CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR), also called the Program Status
Byte, will be described first since it is affected by many of the other
instructions as well as the specific operations shown in Figure 4-6.

The CCR is a 6-bit register within the MPU that is useful in controlling
program flow during system operation. The bits are defined in Figure
4-5,

The instructions shown in Figure 4-6 are available to the user for
direct manipulation of the CCR. In addition, the MPU automatically sets
or clears the appropriate status bits as many of the other instructions
are executed. The effect of those instructions on the condition code
register will be indicated as they are introduced and is also included
in the Instruction Set Summary of Figure 4-1.

il

MDDES CORD. CODE AEY.
ACCUMULATOR AND MEMDRY IMNED DIRECT WOEX EXTND INHER FOBLERMANTHRETIC DFEadTioN -
AL ropister lnsals 1 LARE A
OPERATIONS MuEMoNIC for | ~ [# [op !~ | ¢ jor |~ e|ar|~fafor|~| & rudet s gantemns) ale|nfz]lv]e
Add soca fa |z |2 fes |3 a|s{z]umfs Ael—=aA 1 epryafe]e
apos [ce {7 |2 |oa|3 1] ti{fe|a |3 BeM—p HEIEIEIENE!
Add Acmbin ABA wlz]|t]ase~a L EIRIE] AR
At wath Carry apca [eo | 1|2 8s (32 [an |6 2fee |43 AtMECrA tlels|tft]t
ancs fea |2 |2fes |3z fes|s|zfra]aya 4+WeC~B tle|t|elele
And ANDA |84 [2]2 [s 3 7 (A |B 28]z AvM 2 A slel S| tfnle
aNDB foa |2 |z |oefs |2 |ea|s]|2|fajala Bel=B sfe]t|tfapn
Bt Test BTA |es |z |z |5 [3 |2 |asds|2]esfaz Ak sfel1]t|n|e
ute fes]2y 2 fos |32 fes s |2{Fs| 4|3 Bel ofs[tit|n|s
Clear CLR DASEEEF AN NE o0 ~H efe[nls|[n|n
CLAA 4F 1 1|06 —~a || RIS{A|R
CLRB SEj2 | 1]o0e-s ofe|Ris[{n|R
Comoare oMPa B | 2 [z @ |32 |m |5 zfe || A-M sfs|tfe]t|2
wwes |ev [z iz |z]er|s|z2|(r}a]a [wfeftfs)e)s
Compars Acmitry CBA nilz|1|a-p LIEIRTRIRI RS
Complsment, ¥ £on |7 |2|n]s |3 -w MLUERIEILIE]
COMA w1 A=a LLIBI LR
Sowa s112)1{8-=p LILIRRRI LI
Complement, 23 HEG 6 | r|zjmfs |2 00 -M-M ool 1] 51O
{Negate) HEGA w |z 1[o0-a-a ole]lt| @G
NEGE so |z |1|0o0-0~B DRI RIO]l6]
Uscomal Adiust, A DAA 19 | 2 [1| Someets Bary R0d ol BEO Chuscrers | o | @) 1] 1 ¢ |3)
Deciement DEC EA 7 2|7A)| 8 3 LEREY] o|a|} t@ -
DECA afzi1]|a-1=a slaf1]1|@|e
oECE saf2[1)lB-t-s slali]| @ e
Exelutne OR ecaa (g | 2 | 2|8 |3 [z |aafs | 2]ea]s]z EXLETY ool 1]R]e
FoRg Jc8 |z |2 |oe |3 |2 |es |5 | 2fFa)e]|s ESN-E o|e|t|1iR]e
Ingrement NG sc |7 |z|n]s|a CRESE] sia|lt|t|® e
INCA 2] 1| as=a wiw|1|3|® e
NcE sciz|1|esxr-n ool 1|@)
Losd Acmite LOAR 86 e [9% 1 2 |AG [2|86 | 4 3 WA slalil5|R]|e
wae oo |z |z |os|3]2]es|s|2|Fe|4]a B ofslsft]|nfe
Or. Inctysive oRaa |aa |z |2 joa |3l 2 |aa]s | 2feals |3 Ak A |l i|iiR|e
RAR fCa{2 [zjoa|3 | 25ea|5 |2 |Fa|a {3 B4M-3 wlof1]2iR]|e
Push Oas PSHA B [4| 1| A~Mgp.8P-1 5P ele|s|aln]s
P5HB 32| 4| 1] B -+Mgp SP-1SP s(sl0ialsla
Pult Datx PULA 24| 1]sPerosrugpra elo|o|alefe
PULE n|a 1| SPet 5P Msp~+B AR AEIRA L]
Rovate L4t ROL B9 |7]2lm |6 |23 [[sislt|3|®f 2
AQLA 432l.ng—CI:rJIHI}j o el 171|®}1
ROLE a|1|1]e T olelt]t|@bs
Actate Right AQK 6 (1 |2/m|6]s] o nl1]t|@®fs
RORA |2 |1)a! Lo o oo eleltpi|@is
AGRS w2]v]e s o|eltlt]|@}:
St Lelt, Anthmetie ASL 68 |1]2/m|8 |3] - slolt|t|@®l
ASLA W21t A g « IIIan-o sleofsls|@®f s
AS5LE CEEEN] u! - = " o|nft|t|® ¢
Shilt Right, Apshmerk ASR sr |1 [2417 6|3] " olel 2 s|@]¢t
ASRA |2 IAJL—_-KEIDJID»D slelt||® ¢
by) T
ASRE stlelale wle|t|1|@®]t
Shift Rught_ Logic LSR o7 |2zjnm|s |3 " - elela|t|@|¢
LSAA u:ln} ¢~ [OIn « O RIEIR]C]R]
o o
1508 sl2]11e slefn] @)t
Stors Acmh. 5TAR o |aj2|ar|s|zfm|s!s AM o|o|t|t]n]e
STAB w|aflzlerje|2z]Fr|s}s BM DUERIEIL
Subrract susa feg| 2|2 fse |32z lan|s|2]ee|a |3 A-N-A wio|t|s]t]t
sugs fco| 2|z fow a2 |e0|s |2 Fa]|e |2 B-M-p UEIRIERR
Subract Aemitrs. SBA 0| 2]t]a-n-a D EARIRR R
Sudtr, weth Ciity SBCA sl {s|2ia|spr|82]|4]3 A-M-C=A wlalr|t)2]s
sac [c2 | 2|2 |o2|z]2 ez 2(Ff2la]a B-M-C=# ofloftle]s]s
Tronelwe Asmirrs ran w2]1{a-n sloftitinls
™A A ER KRN BN slefrit|r]e
T, Zoto or Minus 51 0 {7 |z2]|mwmis 3 M- 00 aleltftintn
ST awi2]i|a-n slel1ftinln
T5TR so|2]rv|B-m sle|i|t]n]r
Figure 4-1 M6B800 Instruction Set

]

INDEX REGISTER AND STACK INMED OIRECT woEx EXTHD INHER s{ajafzr]n
POINTER OPERATIONS MNemomiC [orf ~ [«lor |~ = jor | ~{ xjor |~ | 2 |ar = | BOQLEAN/ARITHMETIC DFERATION, | H| 1 [N fZ (v |L
Cemanta Index Ry CPK gepa3fscfalzjac|e{ejec|s|a (X)) = (MM + F e D1 [G)]e
Oscrament (ndex Ang JEX 0|4 1 X-1=X oloje|tfe]e
Decrament Stack P UES RN SP-1-~5P elafo|nfe]e
Irstrwcant (ndew Rep iNX 03 [4 | Kel=) slafoitia|a
Incremunt Stack Pt L1 5[4 SP 41 5P o|laju|afe|e
Load index Reg Lox cEja |3 |oela |2 eEe|B]2 |FE|5 |3 LEE L RS g T} sloal@|tfjr|e
Laad Stack Pnit Los g [3 |3 |oE | e |2 |aE|6 |z |BE[5]3 M SPy, M r 1) 2 SP sle|@|t]r|e
Store bndex Aey 5TX oF | s Q2 |er |7 |2 |FE |8 |2 Xy =M Xy =M1 sfal@®tlr|e
Srort Srack Py 57§ ofF [s |2 |aF|? |2 |8F|6]2 3Py -+ M, 5P ~(M+ 1) ele|@®|t]r]e
Inda Reg - Stack Pnte xS 35 1 X-1-5F alnjuje]e]s
Stach Puir = Indx Ang TSK 30 1 P} -X sleje]alefs
1UMP AND QRANCH RELATIVE INDEX EXTHD INHER s{afafzf1]o
QPERATIONS MweMomE Jor | ~ | =jop| ~ | =|or| ~ | * |oOF % BRANCH YEST wir|uj2|vic
Braath Always BRA W42 Nore slejaaja|e
Beanch If Carry Clear ace uijpa| cap ole|u|e]e|»
Baanch It Carry Seu (1] wle| 1 c=1 s|efo|wfe]e
Branh If = Zero (1] |42 Tt s|e|e|oje]e
Braneh It 2 Tera BGE W42 LE2 RS] ajajalaln|e
Branch it > Zerg 8GT et ZHiNevi=0 e|asfe|n]a]e
Branch 1l Higher B n|s+]2 [¥R] w|ele|o]s]e
Beanch If < Zero BLE w|alz2 ZHiNeV =} ajejalnle]s
Braach 1 Lower O Same BLS nla] C#Z=l ole|ajm|e|n
Beanch o Zorg BLT mpag 2 NEY«| I RIUIEIE]
Branch If Miawy BMI wpale N=1 efelajelo)e
Branch It Not Equsl Zere BNE a2 -0 slelalajals
Branch H Overfiow Glear Bve 2|42 'Ry} alele|afe]e
Branch 11 Opartiow Ser BYS 3|42 LA LI
Branch H Plus BPL wmla]2 N=D afelo|elale
Branth To Subroutine BSR awlef? alejaefn]s
Jump M BEj 42l 23]]s«slmw Oparanons olo|e|wjoje
Jump To Subrouaue IR A a {21808 |3 alalelefels
No Opreation NOP 0 1 Advances Prog. Caar. Only alefe|ejels
Rerurn Fipm Interrup RT! 38 1
Rerurn Fiom Subroutine RTS 39 1 .
Soltware interrupl W L 1]s“‘p"mnw“'m af{s{e|njele
Wai For Inierrupi WAl 3E 1 s |)]e]|s]s]»
CONGITIONS CODE REGISTER INHER — sjafajzfpi o CODE ALGISTER NOTES:
DPERATIONS muemasee | o | ~ | = |oreRaTioN R o M]Z IV (C 1800 508 of 1241 5 trut and cleared otheowse)
Ciew Carey e PEERE 0~g s ala|aisn]| D @) Ten: Resa+ 100000007
Cler Intecrupt Wask [e {21] o= efn]e]e|s]|e] @ tmrc: Teu: Resir = coonooos
Char Qvirilow o |2] ¢y sloe|lela|rn|n] @ @irc Ten: Dorims vatus at mos seniticant BCD Charactes greates than rine?
Set Cary sEC PO s elale|ele]s 1Kot cleared il prevousty 1.}
Set Intatrapr Mok SE1 T ERE 11 els|e|e]e]|o]| @ 1BV Tre Osrmand - 10000000 prict 16 evacution?
Set Qutrhiow SEV e |24 1= eln]elals ot ® 1Buvl fese Operand = 011RII prive 1o mecution’
Acnler A~ CCH TAP w |21 A ~CCA {& 1BV Tere: Seraqual to result of B b € obtie thibt hat occurced
CCR — Acmiir & WA o |2] CCR ~& @ (B N) Ty Saan b of mon sgilicant IKS) byle of result = 1%
@ 1BY) Ten Ticompiemens surdiow from subteactian of LS byres?
& (8t Te: Aesultdess thae 2ero? (B 18 2 1)

LEGEND: 00 Byte Zea, @ 1A Losd Cadiion Code Repister fram Stack, (See Sprcial Dprvations}

OF Opastion Code (Henadeermal), W Hallqaury from bit J; © (B St when interrupl oecum. i priviously s, » NoMaskatle Inferrupt ¢

=~ Number oi MPU Cycla; 1 interrupd mask rauiad (0 9ui bt 3t

& Humber of Progeam Bytes, N Megative fuge bitl @ ALY Satsccontiogto he comtent of Accumuiaiar A.

. Arithmetse Plu; 2 Iwo lbyw)

= Arithmatic Minus; ¥V Oustlliow, ¥'scomplement

+ Bookyn AND; € Conytambir 7

Wgp Conients of memady location L] Raanl Always

pointed (0 b Stack Pointer; S Sur v

+ Boolwn Incluswe OF; T Tl 206 0 il run, clearec othenwink

@ Booiee Extlypve OR; ® Not Aflecied

N Complemin ol ¥; LCR Candition Code Regimer

= Teamfe into, LS Leawt Significant

] B » Taro; NS Moo Sigaificsnt .

2

oy 40 NEG A B0 SUB A IMM [CO SUB B MM
o NoP a - 8l CMP A MM | €I CMP B MM
oo a@a . 82 SBC A IMM | €2 SBC B IMM
b3} - 43 cOM A §3 . cy -

(I 4 1SR A B4 AND A IMM | C4 AND B IMM
05 * 45 = 85 BIT A IMM|Cs BIT B IMM
06 TAP 46 ROR A 86 LDA A IMM|C6 LDa B MM
07 TPA 47 ASR A B c7oox

08 INX 48 ASL A B8 EOR A MM |C8 EOR B [IMM
® DEX 49 ROL A 89 ADC A IMM|C? ADC B MM
0A CLV 4o DEC A A ORA A IMM|CA CORA B MM
0B SEV B v 88 ADD A IMM|CB ADD B IMM
oC CLC 4C INC A 8C CPX mMM|CcCo*

oD SEC 4D TST A D BSR REL | CD *

0B CL 4 * RE LD§ MM | CE LDX MM
OF SEI 4F CLR A BF * cFo*

10 SBA 50 NEG B 9 SUBE A DIR |[DO SUB B DIk
) CBA 52 . 91 CMP A DIR | DM CMP B DIR
12 . n . 92 SBC A DIR |[D2 SBC B DIR
13 53 COM B B = D3+

“. 4 LSR B ™ AND A DIR | D¢ AND B DIR
5. 5 95 BIT A Dig |D5 BIT B DIR
16 TAB % ROR B 95 LDA A ik |Dé6 LDA B DIR
17 TBA 51 ASR B 97 STA A DIR | D7 STA B DIR
"o 54 ASL B 9% EOR A DIR |DE EOR B DIR
19 DAA 59 ROL B 9 ADC A DR |D9 ADC B DIR
14+ SA DEC B 94 ORA A DR |DA ORA B PIR
1B ABA 5B+ 98 ADD A pik | DB ADD B DIR
1Ic . SC INC B 9 CPX DIR |DC *

Lo 5D TST B] 1t B

1E SE 9E LDS DIk | DE LDX DIR
IF* SF CIR B 9F STS DIk | DE STX DIR
20 BRA REL 60 NEG IND A0 SUB A IND |EC SUB B IND
21 . 6+ Al CMP a IND |[El CMP B IND
22 BHl REL 62+ A2 SBC A IND |E2 SBC B IND
23 BLS PREL COM IND A} s E3 *

24 BCC REL 54 LSR IND A4 AND A IND | B4 AND B IND
25 BCS REL 65 v A5 BIT A IND |ES BIT B IND
26 BNE REL 6 ROR IND A6 ILDA A IND |E6 LDA B IND
27 BEQ REL 67 ASR IND A7 STA A IND |E? STA B IND
23 BVC REL 68 ASL IND A3 EOR A IND |E8 EGR B IND
2% BVS REL 59 ROL IND A ADC A IND |E® ADC B IND
IA BPL REL 6A DEC IND AA ORA A IND |EA ORA B IND
2B BMI REL B AB ADD A IND |EB ADD B IND
2C BGE REL 6C INC IND AC CPX IND | EC *

2D BLT REL &b TST IND AD ISR IND | ED *

2E BGT REL 6E IMP IND AE LDS IND | EE LDX IND
2F BLE REL §F CLR IND AF STS IND | EF STX IND
30 TSX 70 NBEG EXT BO SUB A EXT|F0 SUB B EXT
31 INS oo Bl CMP A EXT|Fl CMP B EXT
32 PUL A n o B2 SBC A EXT|F2 SBC B EXT
3 PUL B 73 COM EXT B3 * F3 =

34 DES 74 LSR EXT B4 AND A EXT | 4 AND B EXT
35 TXS 75 o BS BIT A EXT | F5 BIT B EXT
36 PSH A % ROR EXT B6 Lba A EXT|F6 LDA B EXT
37 PSH B 77 ASR EXT B?7 STA A EXT|F7 'S§TA B EXT
2 78 ASL EXT BE EOR A EXT|F8 ADC B EXT
39 RTS 7% ROL EXT B¢ ADC A EXT {F9 ADC B EXT
A A DEC EXT BA ORA A EXT|FA ORA B EXT
3B RT B BB ADD A~ EXT|FB ADD B EXT
w . 7C INC EXT BC CPX EXT jFC *

D e 0 TST EXT BD JSR EXT j FD *

3E wal JE IMP EXT BE LDS EXT [FE ' LDX EXT
IF__ 5w JE_ CLR EXT BF _STS EXT [FF STX EXT
Notes: 1. Addressing Modes: A = Accumulaior A MM = Immedialc REL = Relutive

B = Accumultor B DIR = Direct IND = Indexed
2. Unassigned code indicated by'***". EXT = Exiended -

Figure 4-2 Hexadecimal Values of Machine Codes
30

060 v 100 NEG a 200 SUB A IMM | 200 SUB B IMM
00l NOP LTI 201 CMP A IMM T 30i CMP B M
002 . 2 202 SBC A IMM | 302 SBC B IMM
w3 103 CoM A 203 03 o+

o 104 LSR A 204 AND A IMM | 304 AND B MM
s 105 =« 205 BIT A IMM (305 BIT B MM
006 TAP 06 ROR A 206 LDA A IMM] 306 LDA B IMM
07 TPA 107 ASR & 07+ 307 »

010 INX LI0 ASL A 20 EOR A IMM|[310 EOGR B IMM
0ii DEX Il ROL A 2l ADC A iMM | 311 ADC B IMM
02 CLv U2 DEC A 217 ORA A iMM| 312 ORA B MM
013 SEV iy = 213 ADD A IMM| 213 ADD B LMM
014 CLC trd INC A 214 CPX IMM | 314 =

015 SEC 15 TST A 215 BSR REL | 215 =

016 CU 1ns = 216 LDS IMM |} 316 LDX MM
ai? SE 117 CLR A 27 - nr o+

020 SBA 120 NEG B 220 SUB A DIR 1320 SUB B DIR
021 CBA 121 - 221 CMP a DIR [321 CMP B DIR
022+ 122+ 222 SBC A DIR | 322 SBC B DIR
0z o+ 123 COM B 223 # 23 0+

024 * 124 LSR 8 24 AND A DIR | 324 AND B DIR
[175 B 125 = 25 BIT A DIR | 325 BIT B DIR
026 TAB 126 ROR B 226 Lha A DIR |326 LDA B DIR
027 TBA 127 ASR B 227 STA A DIR ;327 STA B DIR
0o+ 3¢ ASL B 230 EOR A DIR | 330 EOR B DIR
04 Daa 131 ROL B 1 ADC A DIR 1331 ARC B DIR
032 =+ 132 DEC B 232 ORa A DIR [332 ORA B DIR
033 ABA 133 = 233 ADD A DIR |333 ADD B DIR
04+ 13 INC B 234 CPX DIR [334 =

055 135 TST B 235 - 335 ¢+

036 o+ 136, = 236 LDS DIR | 336 LDX DIR
03r 137 CLR B 237 STS DIR | 337 S8TX DIR
040 BRA REL 40 NEG IND 240 SUB A IND {34¢ SUB B IND
M - 4 = 241 CMP A IND 1341 CMP B IND
04} PBHl REL 142 = 242 SBC A IND [342 SBC B IND
043 BLS REL 141 COM [IND 243 - M1 =

044 BCC REL 144 LSR IND 244 AND A IND | 344 AND B IND
045 BCS REL 145 = 45 BIT A IND 1345 BIT B IND
046 BNE REL 146 ROR IND 246 LbA A IND {346 LDA B IND
047 BEQ REL 147 ASR IND 47 STa A IND | 347 STa B IND
050 BVC REL 150 ASl. IND 250 EOR A IND | 350 EOR B IND
051 BYS REL 151 ROL IND 251 ADC A IND [351 ADC B IND
052 BPL REL 152 DEC IND 252 ORA A IND | 352 ORA B IND
052 BMI REL i53 = 253 ADD A IND | 353 ADD B IND
054 BGE REL 15¢ INC IND 254 CPX IND | 354 =

055 BLT REL 185 TST IND 255 ISR IND | 355 =

056 BOT REL 156 IMP IND 156 LDS IND | 356 LEX IND
057 BLE REL 157 CLR IND 257 STS IND | 357 STX IND
060 TSX 160 NEG EXT 60 SUB A EXT | 360 SUB b EXT
061 INS 6] * 261 CMP A EXT |31 CMP B EXT
62 PUL A 162 * 262 SBC A EXT | 362 SBC B EXT
®%3 PUL B 163 COM EXT 263 » 36y v

064 DES 164 LSR EXT 264 AND A EXT | 384 AND B EXT
065 TXS 155 = 265 BIT A EXT 365 BIT B EXT
066 PSH A 166 ROR EXT 266 LDA A EXT [366 LDA B EXT
667 PSH B 167 ASR EXT 67 STA A EXT | 367 STA B EXT
oy v 170 ASL EXT 270 EOR A EXT 1370 EOR B EXT
071 RTS 171 ROL EXT 271 ADC A EXT |37t ADC B EXT
0L o+ 172 DEC EXT 272 ORa A EXT (372 ORA B EXT
973 RTI 173 = 273 ADD A EXT | 373 ADD B EXT
04 = 174 INC EXT 214 CPX EXT {14 =

615 o~ 175 TST EXT 15 ISR EXT|375 »

076 wal 176 JMP EXT 176 LDS EXT 37 LDX EXT
077 SWI 177 CLR _EXT 277 STs EXT [377 STX EXT
Notes: 1. Addressing Modes: A = Accumulator A MM = Immediate REL. = Relative

8 = Accumulator B DIR = Direct IND = Indexed
2, Unassigned code indicated by***"*. EXT = Extended

Figure 4-3 Octal Values of Machine Codes

3

[L LU O6d NEG A 124 SUH A MM 192 SUR K iMM
LLU e (L5 I 129 CMP A IMM | IvF (MI" B MM
w1l o 066 * W SBC A IMM | 194 SBC B IMM
[0 X I 67 COM A - 195«
0 * 068 LSR A 132 AND A IMM] 196 AND B IMM
ws * (L2 1713 BIT A MM | 197 BIT B MM
006 TAP 070 ROR A 134 LDA A IMM | 198 LDA B MM
007 TPA 671 ASR A 135 » 199~
008 INX 072 ASL A 136 EOR A IMM | 200 EOR B MM
009 DEX 073 ROL A 137 ADC A IMM {301 ADC B IMM
010 CLV 074 DEC A 133 ORA A IMM [202 ORA B IMM
0l SEV 05 = 139 ADD A MM | 203 ADD B IMM
02 QLC 076 INC A 140 CPX IMM | 204+
013 SEC 077 TST A 41 BSR REL | 205 *
ts CU a7s * 142 LDS IMM | 206 LDX MM
015 SEI 079 CLR A 143+ wr
016 SBA 08¢ NEG B 144 508 A DIR {208 SUB B DIR
017 CBA -1 B i35 CMP A DIR {20¢ CMP B DIR
013+ 082 * 146 SBC A DIR {210 'SBC B DIR
LI 083 COM B 147 = 21 -
0z - 084 1SR B 148 AND A DIR {212 AND B DIR
021+ 085 * 149 BIT A DIR 213 BIT B DIR
022 TAB 08 ROR B 150 LDA A GiR (214 LDA B DIR
0} TBA 087 ASR B 151 STA A DIR |215 STA B DIR
04 = 088 ASL B [52 EOR A DIR {216 EOR B DIR
25 Daa 089 ROL B 153 ADC A DIR {217 ADC B DIR
2 = 09 DEC B 154 ORA A DIR |218 ORA B DIR
027 ABA [B 155 ADD A DIR [219 ADD B DIR
08 * 092 INC B 156 CPX DIR | 220 =
09 o+ 093 TST B 157 * p7A B
030 » 094 158 LDS DIR | 222 LDX DIR
wr * M5 CLR B 159 STS DIR |223 STX DIR
032 BRA REL 0% NEG IND 160 SUB A IND [224 SUB B IND
LI R o 161 CMP A IND {225 CMP B TND
034 BHI REL 0w - 162 SBC A IND | 226 SBC B IND
035 BLS REL 099 COM IND 163 » .
036 BCC REL 100 LSR IND 164 AND A IND | 228 AND B IND
037 BCS REL 0 - 165 BIT A IND {229 BIT B IND
938 BNE REL 102 ROR IND 66 LDa A IND 1230 1DA B IND
039 REQ REL 103 ASR IND 67 STA A IND | 231 STA B IND
040 BVC REL 104 ASL IND 68 EOR A IND | 232 EOR B IND
041 BVS REL W5 ROL [IND 169 ADC A IND [233 ADC B IND
42 BPL REL 106 DEC IND 170 ORA A IND {234 ORA B IND
043 BMI REL wr v 171 ADD A IND {235 ADD B IND
044 BGE REL 108 INC IND 72 CPX IND {236 *
045 BLT REL 109 T3T IND 173 ISR IND | 2317 *
46 BGT REL 110 JMP IND 174 LDS IND {238 LDX IND
047 BLE REL 1t CLR IND 75 STS IND {239 STX IND
Mg TSX 112 NEG EXT 176 SUB A EXT 240 SUB B EXT
049 INS ni 177 CMP A EXT |241 CMP B EXT
050 PUL A s » 178 SBC A EXT |242 SBC B EXT
051 PUL B 115 COM EXT 179 = 43+
052 DES 115 LSR EXT 180 AND A EXT [244 AND B EXT
053 TXS u7 18I BIT A EXT |245 BIT B EXT
054 PSH A 118 ROR EXT 182 LDA A EXT [246 LDA B EXT
055 PSH B 119 ASR EXT 183 $TA A EXT | 247 STA B EXT
Gs6 = 120 ASL EXT 1838 EOR A EXT {248 EOR B EXT
457 RTS 120 ROL EXT 183 ADC A EXT | 249 ADC B EXT
osg 122 DEC EXT 186 ORA A EXT | 250 ORA B EXT
059 RTI 123 187 ADD A EXT | 251 ADD B EXT
060+ 124 INC EXT t88 CPX EXT |252 =
061 - 125 TST EXT 189 ISR EXT | 253 +
062 Wal t26 IMP EXT 190 LDS EXT | 254 LDX EXT
[063 Swi 127 _CLR EXT 191 STS EXT | 255 STX EXT
Notes: }. Addressing Modes: A = Accumulator A IMM = Immediate REL = Rehitive
B = Accumulator B DIR = Direct IND = Indexed
2. Unassigned code indicated by =+, EXT = Exended

Figure 4-4 Decimal Values of Machine Codes

32

by;{ by |bs|b

[av]

b1| B,
HIT IN|Z 1V (C

Half-carry; set whenever a carry from b, to b, of the result is
generated by ADD, ABA, ADC; cleared 1f fo b3 %o b4 carry; not
affected by other instructions.

Interrupt Mask; set by hardware or software interrupt of SEI instruc-
tion; ¢leared by CLI instruction. (Normally not used in arithmetic
operations.) Restored to a zero as a result of an RT1 instruction if
1m stored on the stack is Tow.

Negative; set if high order bit (b7) of result is set; cleared other-
wise.

Zero; set if result = 0; cleared otherwise.

oVerflow; set if there was arithmetic overflow as a result of the
operation; cleared otherwise.

Carry; set if there was a carry from the most significant bit (b7)
of the result; cleared otherwise.

Figure 4-5 Condition Code Register

CONDITIONS CODE REGISTER S|4]3]2]1]
BOOLEAN

OPERATIONS MNEMONIC OPERATION | H |1 [N | ZiVv |C

Clear Carry CLe G~C e le]ele|e R

Clear Interrupt Mask cLi [IEad] o (R |]eiole e

Ctear Overflow CLv t->v e |e]|ejefRr]|

Set Carry SEC 1-C o |efe]|e|e |5

Set Interrupt Mask SEI 1= oS [e|e]e]e

Set Overflow SEV 1=V e je |o|e]|S5S e

Acmitr A = CCR TAP A—+CCR

CCR — Atmitr A TPA CCR—A L IO I . | oJo | *

R = Hesat

§ =%

o = Not atfected

(D (AL Set according to the contents of Accumulator A.

Figure 4-6 Condition Code Register Instructions

33

NUMBER SYSTEMS

Effective use of many of the instructions depends on the interpre-
tation given to numerical data, that is, what number system is being
used? For example, the ALU always performs standard binary addition
of two eight bit numbers using the 2's complement number system to re-
present both positive and negative numbers. However, the MPU instryc-
tion set and hardware flags permit arithmetic operation using any of
four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number
in the range -128 to +127:

262528 232200 0
b7 b6 b5 b4 b3 bZ b] bU
10000000 (-128 in 2's complement)
T1T 111111 (-1 in 2's complement}

) (0 in 2's complement)

[]

00000
0000 01 (+1 in 2's complement)

o O O

117111 11 (+127 in 2's complement)

(2} Each byte can be interpreted as a signed binary number in the
range -127 to +127:

28 95 2% 23 2% ol R0
b, b by by by by by by
111111 (-127 in signed binary)

1 000 0G0 D01 {-1 in signed binary}
6 0o 0CO0O0O0OTU0OU O (0 in signed binary)
0D OO0 O0O0D1 (+1 in signed binary}

(' T TS O T A (+127 in signed binary)

{(3) Each byte can be interpreted as an unsigned binary number in
the range 0 to 255:

27 26 25 24 23 22 21 30

by bg bs bg bz by by bg

a0 00O0O0O0O0 {0 in unsigned binary}
1111111 (255 in unsigned binary)

M

{4) Each byte can be thought of as containing two 4-bit binary
coded decimal (BCD)} numbers. With this interpretation, each byte can
represent pumbers in the range 0 to 99:

23 22 21 20 53 22 51 0
by bg by by by b, by b

7 %6 "5 P4 P53 P2 0
000 O0OO0O0O0 {BCD 0)
007100111 {BCD 27)
1 0011001 (BCD 99)

The two's complement representation for positive numbers is ob-
tained simply by adding a zero (sign bit) as the next higher signifi-
cant bit position:

27 26 25 24 23 52 91 50

617 35 35 6.4 33 32 ﬂ-l ao

1111111 (binary 127)

111111 (127 in 2's complement representation)
g oo0Qao0 01 {binary 1)

¢ 0000O0O0 1 {+#1 in 2's complement representation)

When the negative of a number is required for an arithmetic opera-
tion, 1t is formed by first complementing each bit position of the pos-
{tive representation and then adding one.

64 32168 4 2 1

8, 85 85 3, 2, 2, a; ag
o111 111 (+127 in 2's compiement representation)
1000 000O0 {1's complement)

1 (add one)
1T 0000 0 01 {-127 in 2's complement representation)
0 000CO0O0O0CO {0 in 2's complement representation)
T1 111111 (1's complement)

] (add one}
0000000 0 ("0" is same in either notation)
00 00C0O0O0 1 (+1 in 2's complement representation)
11T 111110 (1's compTement)

1 {add one}
TT 1T 71T 771711 (-1 in 2's complement representation)

35

Note that while +127 is the largest positive two's complement num-
ber that can be formed with 8 digits, the Jargest negative two's com-
plement number is 10000000 or -128. Hence, with this number system, an
eight bit byte can represent integers on the real number line between
-128 and +127 and a, can be regarded as a sign bit; if a; is zero the
number is positive,’if ay is one the number is negative:

10000000 . i 000010000 00000001 Ollllllll
i e

} 1
—128 4 -1 0 +1 +127

Since much of the literature on arithmetic operations presents the
information in terms of signed binary numbers, the difference between
2's complement and signed binary notation is of interest. Signed bi-
nary number notation also uses the most significant digit as a sign
bit (0 for positive, 1 for negative}. The remaining bits represent the
magnitude as a binary number.

+ 643216 8 4 2 1

37 aﬁ a5 34 33 32 a-l 30

111111 v (-127 in signed binary)
1 0000001 (-1 in signed binary)
00 0CO0O0DO0OTO (0 in signed binary)
Do oo o001 {+1 in signed binary)
o011 11111 (+127 in signed binary)

An 8-bit byte in this notation represents integers on the real
number line between -127 and +127:

1111 . 10000001 00000000 00000001 . 01111111
-127 7 -1 0 +1 Ed +127

36

Comparing this to the 2's complement representation, the positive num-
bers are identical and the negative numbers are reversed, i. e., -127
in 2's complement is -1 in signed binary and vice versa. In normail
programming of the MPU, the difference causes no particular problem
since numerical data is automatically converted to the correct format
during assembly of the program source statements. However, if during
system operation, incoming data is in signed binary format, the program
should provide for conversion. This is easily done by first comple-
menting each bit of the signed binary number except the sign bit and
then adding one:

+ 6432168 4 2 1

a7 as 35 a4 33 32 a1 ao

11 .1 11111 {-127 in signed binary)

1 00 0 0OD0O0TOD {1's complement except for sign bit)
000 ¢CO0O0O0 1 fadd 1)

10000001 (-127 in 2's complement)

The MPU instruction set provides for a simple conversion routine.
For example, the following program steps can be used:

This routine assumes that the signed binary data is stored in accumulator
A (ACCA). The program tests the sign bit and, if the number is negative

(N=1), performs the required conversion. The contents of ACCA and the N

hit of the Condition Code Register would be as follows after each step of
a typical conversion:

Instr N aaa aaaaa
TSTA 11T 11100 01 (~113 is signed binary)
BPL NEXT 111110001
NEGA oc000Q01T 111 (2's complement of ACCA)
ORAA #%100006000 100007111711 (<113 in 2's complement)

37

Note that the sign bit status, N, is updated as the NEG and ORA instruc-
tions are executed. This is typical for many of the instructions; the
Condition Code Register is automatically updated as the instruction is
executed.

ACCUMULATOR AND MEMORY OPERATIONS

For familiarization purposes, the Accumulator and Memory operations
can be further subdivided into four categories: (1) Arithmetic Opera-
tions; (2) Logic Operations; (3) Data Testing; and {4) Data Handling.

Arithmetic Operations

The Arithmetic Instructions and their effect on the CCR are shown
in Figure 4-7. The use of these instructions in performing arithmetic
operations is discussed in section V of this manual.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (AN register tabeks sfaj3[z2|1]0
OPERATIONS MNEMONIC tefer to contents) Hitlnjz|vic
Add ADDA A+M—A t{e|t[2lt]t

ADOB B+M—=B 1ol b tit]
Add Acmitrs ABA A+B—+A A LIRIEIRER:
Add with Carry ADCA A+M+C—+A HEIRIEIEAE]
ADCB B+M+C—B AR RIRAR
Complement, 2's NEG 00 —M—>M elel 3|1 DO
(Negate) NEGA |00 -A-~aA ole|t|:]|0G®
NEGB 00 - 8~8 elel t]|1|DE
Decima) Adjust, A OAA ?J:Z"EE‘BBF‘E?M"' ofBLD Charecters | g i ol ¢ (413
Subtract suBA A-M-=A ole|tltit|t]
suss B-MmM-—B efe| |2t
Subract Acmitrs. SBA A-B—+A ejeol bttt
Subitr. with Carry SBCA A-M-C—A LILIERR IR AR
SBCB B~M-C-B 4 EARIERE]

*Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCD numbers. DAA adds 110 to lower half-byte if ieast significant number 1001 or i preceding instruction
caused a Half-carry, Adds 0110 1o upper half-byte it most significant number >>1001 or it preceding instruction
caused 8 Carry. Afso adds 0110 to upper hali-byte if least significant number 1001 ang rmost significant aum.

ber=9.

(Bit set if test is true and cleared otherwise)
(@) (BitV) Test: Result = 100000007
(@ (B C) Test: Resuit = 00DO00DO?

3 (BitC) Test: Decimal value of most significant BCD Character greater than aing?
{Not cleared if previously set.)

Figure 4-7 Arithmetic Instructions
38

Logic Operations

) The Logic Instructions and their effect on the CCR are shown in
Figure 4-8. Note that the Complement (COM) instruction applies to
memory locations as well as both accumulators.

COND. CODE REG

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (ANl register labels 3j21t]o
OPERATIONS MNEMONIC refer (0 contents) Hit{n]|Ziv]C
And ANDA AsM—A ele|t|l|R]|e

ANDB BeM—g ele|t|2|R]|e
Compiement, 1's coM M->M w|®| L] t|A{S
coMA | A-A o|le[t]|t|Rils
comg | 8-8 e|oltlt|nils
Exclusive OR EORA ADM—A elelt]|i|R[e
EORB BEeM—+B o 8| t|t{R|le
Or, nclusive QRA A+M—+a o|le|lt]|t|R]e
ORB E+M—B IR IEIERIC

Figure 4-8 Logic Instructions

Data Test Operations

The Data Test instructions are shown in Figure 4-9. Bit Test (BIT)
is useful for updating the CCR as if the AND function were executed but
does not change the contents of the accumulator, The Test (TST) instruc-
tion also operates directly on memory and updates the CCR as if a compari-
son {CMP} to zero had been executed.

COND. CODE REG

BOOLEAN/ARITHMETIC OPEAATION Y

ACCUMULATOR AND MEMORY (AN register labels 4 3¢2117(0
OPERATIONS MNEMONIC refer to contents) HllI|&{2|V]|C
Bit Test BITA AsM oleltit|R]|®
BITe Bel sleojt|tiR|e

Compare CMPA A-M ejei Lttt
cmpe B-M o|lo| $[tf2]t

Compare Acmitrs CBA A-B elel tlt]t]t
Test, Zero or Minus TST M-00 e|le|t|R]R
T5TA A-~00 elell|ilr]R

TS¥0 B-00 ele| | Y(R[R

Figure 4-9 Data Test Instructions

3

Data Handling Operations

The Data Handling instructions are sunmarized in Fiqure 4-10.

Note

that the Clear (CLR), Decrement (DEC), Increment {INC), and Shift/Rotate
instructions all operate directly on memory and update the CCR accord-

ingly.

BOOLEAN/ARITHMETIC GPERATION

CRND. CODE REG.

ACCUMULATOR AND MEMORY {AH register labels 514{3 10
CGPERATIONS MNEMONIC refer 10 contents) HIIIN|2Z]|VY]|C
Clear CLR) +M e|lejR(SIR]|R

CLRA as —+A s|e|RIS|R]|R
CLRB 00 =B o|(elR|IS|A{R
Decrement DEC M-1-+M e|e|]|t (D .
DEEA A-1-A sle| 1|4 (9 [
DECB B-1-+8 e|eft|3|D e
increment INC M+1+M elel 11|
INCA A+i=A eloj 1|1
INCB B+1-B vie|1jt|®]e
Load Acmity LDAA | M=A slo|t|t|R]e
LDAB ' Bd] e|leilit|R]|e
Push Data PSHA, A+ Mgp,SP—-1—+5P eleojo|n|e]e
PSHB 8 —-Mgp, SP—1-—+5P o le|nlo|e|e
Puli Data PUEA SP+1-+5P, Mgp~+A ole|e|ejeo]|e
FULB SP+1-+5P, Mgp—~B IEIEIERES
Rotate Left ROL M s|e| t|t]|®]¢
ROLA A L—-@ - [IU.‘EED]*—J e|leit]|t]|®]2
ROLE | B I ool t]|ti@®|1
Rotate Right ROR M el 1| t|E
rora | a1 L~ oo slelt|t|®|¢
4 & —~ g
RORB B ele|t| |1t
Shift Left, Arithmetic ASL M - e|o| i3 |®}
ASLA A 0« OOIIID+ 6 oleft|$|B]¢
asie | B b’ ° ole:|ti®|2
Shift Right, Arithmetic ASR L . e|o|tit|®]?
ASRA A} [:LE;EDIEEEE -+ %} e |12 9 1
ASRE B e|le| 1| 3@
Shift Rignt, Logic. LSR [} N sle|ln|t|®
LSRA A] o—-g}:l:r_‘m% -+ 3 o|le|R|i® ¢
LSRB B ele|R|$|B)]¢
Store Acmitr. STAA AW e o t|[t{R[®
STAB B—+M e|leolt|t|R[e
Franster Acmites TAB A-B oottt R]e
TBA B—+A ejsf i it R]|e

@ {BitV} Test: Dperand = 10000000 priot to execution?
(8 (BitV} Test: Dperand = 0F111111 prior 1o execution?
(® {BitV} Tesi: Set equal to result of N © siter shift has accurred.

Figure 4-10 Data Handling Instructions

40

G

PROGRAM CONTROL OPERATIONS

Program Control cperaticn can be subdivided into two categories:
(1) Index Register/Stack Pointer instructions; (2} Jump and Branch oper-
ations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU's Index Register
and Stack Pointer are summarized in Figure 4-11. Decrement (DEX, DES),
increment {INX, INS), load (LDX, LDS) and store (STX, STS) instructions
are provided for both. The Compare instruction, CPX, can be used to
compare the Index Register to a 16-bit value and update the Condition
Code Register accordingly.

INDEX REGISTER AND STACK stafzlzl1lo
POINTER DOPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION HIIN]JZ|V||C
Compare Index Reg CPX (XHIXLE - (MM + 1) o|e |G e
Decrement Index Reg 0EX X-1-X eiole|l|ele
Decrement Stack Potr DES SP - 18P sleje|o|ele
Increment Index Reg INX X+1-+X e|ofeli]|e]e
increment Stack P INS SP+1-+5P o|lo|ein|e|e
Load Index Reg LDX M)y M+ 1) =% s|le|@D t]|r]|e
Laad Stack Potr Los M—SPy, (M+ 1) +SP, o|e[@®f:R|le
Store Index Reg 5TX XM, X M+ 1) eiel@t|n|]e
Store Stack Potr s7S Py =M, SP| > M+ 1] o|=!@]tR|je
Indx Reg —Stack Pntr XS X—1-+5P s|leo|o{e]|afe
Stack Pnir = Indx Reg TSX SP+1->X elo|e|s|e|e
(D (it N} Test: Sign bit of most significant (MS) byte of result = 17
@ (Bt V) Test: 2's complement overflow from subtraction of LS bytes?
(3 (BitN} Test: Result less than zero? {Bit 15= 1}

Figure 4-11 Index Register and Stack Pointer Instructions

The TSX instruction causes the Index Register to be loaded with the
address of the last data byte put onto the "stack". The TXS instruction
Toads the Stack Pointer with a value equal to one less than the current
contents of the Index Register. This causes the next byte to be pulled
from the "stack" to come from the Tocation indicated by the Index Regis-
ter. The utility of these two instructions can he clarified by describ-
ing the "stack" concept relative to the M6800 system.

L)

The "stack" can be thought of as a sequential 1ist of data stored
in the 680b's read/write memory. The Stack Pointer contains a 16-bit
memory address that 1s used to access the list from one end on a last-
in-first-out (LIFO) basis in contrast to the random access mode ysed hy
the MPU's other addressinn modes.

The M6800 instruction set and interrupt structure allow extensive
use of the stack concept for efficient handling of data movement, sub-
routines and interrupts. The instructions can be used to establish one
or more "stacks" anywhere in read/write memory. Stack length is limited
only by the amount of memory that is made available.

MPY MPU
acea [F] sccn 73]
m-2 m.2
m-—1 SP mge- m — 1
SP —— g New Data m F3
- < Lr.._:
m+ 1 TF g masq 7F
Previgously Provigusly
Sracked m+2 63 Stacked mi+2 63
Data Data st
m+3 FD m+3 FD
PG PSHA <: PSHA
Next lngtr. / PC =i Next lnstr.
‘-\-___-_ l—_—“‘-—.\‘__
{a) Before PSHA {b) After PSMA

Figure 4-12 Stack Operation, Push Instruction

2

Freviousty
Stacked
Dats

m =1

SP m—

m+1

PC——= n

n+1

MPLF

ACCA

m+1 tA
m+z ac
m+3 o5

EC

|
’_—/

[—— PULA

MNaxt instr.

7€

A

L
—.———-—”—‘_-—-

8sA

K = Offser*

Next Main Instr.

L

*K = Signed 7-Bit Value

{a} Befors Exmcution

[—

{a) Bafore PULA

MPU
m- 2
m—1
m
SP =t o+ 1 TA
m+2 3c
Previgusty
Stacked m+3 =13
Data
B
PULA
PC —] Naxt Inate.
{n) Afrar PULA

Figure 4-13 Stack Operation, Pull Instruction

m—1 ILES{1.]
m in+2)
m+ 7€
. —
]
n BSR
n+ 1 IK & Dityet
n+2 Next Main Instr.

—

PCi-in + 2) 3K T#1 Subr. instr,

‘——/‘-____—

(b) Afier Exacution

Figure 4-14 Program Flow for BSR

F i

m-1
SP—m

me

7E

m+2

TA

m

S
——-/_-

PG = 0 J8A = 8D
LER] Sy = Subr. Agdr.
n+2 | S =Subr. Addr.
nea Néxt Main Instr.
s} Bafors Exssudan
m-2
ma
3P ——m
mée TE
=
.-___-—/-—.
PC——a- A ISH = AD
nel K = Othn*
ne Next Main o,

*K = 8-Bit Unsigned Valus

-_—/-_

{s} Bafore Exscurion

PC—s-5

S tormed from
Sy and Sy b

Figure 4-15 Program Flow for JSR (Extended)

PC wne K™ 2 K

*Contat at Index Registar

Figure 4-16 Program Flow for JSR {Indexed)

4

in+ 3

LLE I

TE

TA

Sy = Subr. Addr.

S * Subr. Addr.

Next Main Inser,

—

Tat Subs. (nstr,

‘-—-/_'_‘—

(b} Adter Exscution

___-—""——__—

in + 214

W+ 2L

7€

TA
b
e)

JSA = AD

K= Offsat

Naxc Mabn Inate,

L

Vot Subr. insr.

‘-—-"d—-—.—_.

(b) After Exmcution

SP—tem — 2 m—-2
m-1 (n+ 334 m—t
m in+ 3 SP— m
™t 7E m+ 1 JE
Th TA
f f
Iy)
n JSR = BD n JSR = BD
n+1 Sy = Subr. Addr. n+1 Sy 7 Subr. Addr.
n+2 S| *= Subr., Addr. n+2 S| = Subr. Addr.
nt3 Next Mein Instr, PC ==+ 3 Naxt Main Inste.
e
___-/— ____-_'/"'H
Last Subr. Instr, Last Subr. lnntr.
[ro— RTS Sn RTS
L —— —

{a) Befors & xecution

{b} Atter Execution

Figure 4-17 Program Flow for RTS

Operation of the Stack Pointer with the Push and Pull instructions
is #1lustrated in Figures 4-12 and 4-13. The Push instruction (PSHA)
causes the contents of the indicated accumulator (A in this example) to
be stored in memory at the location indicated by the Stack Pointer. The
Stack Pointer is automatically decremented by one following the storage
cperation and is "pointing" to the next empty stack location. The Pull
instruction (PULA or PULR) causes the last byte stacked to be loaded into
the appropriate accumulator. The Stack Pointer is automatically incre-
mented by one just prior to the data transfer so that it will point to
the last byte stacked rather than the next empty location. Note that the
PULL instruction does not "remove" the data from memory; in the example,
1A is still in location (m+1) following execution of PULA. A subsequent
PUSH instruction would overwrite that Tocation with the new "pushed"
data.

45

I'xecution of the Branch to Subroutine (BSR) and Jump to Subroutine
{JSR) Instruclions causes a return address to be saved on the stack as
shown in figures 4-14 through 4-16. The stack 1s decremented after each
byte of the return address is pushed onto the stack. For both of these
instructions, the return address is the memory location following the
bytes of code that correspond to the BSR and JSR instruction. The code
required for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended [three
bytes) addressing mede. Before it is stacked, the Program Counter is
automatically incremented the correct number of {imes to point at the
location of the next instruction. The Return from Subroutine instruc-
tion, RTS, causes the return address to be retrieved and lcaded into
the Program Counter as shown in Figure 4-17.

There are several operations that cause the status of the MPU to be
saved on the stack. The Software Interrupt (SWI) and Wait for Interrupt
(WAI} instructions as well as the maskable {IRQ}) and non-maskahle (NMI)
hardware interrupts all cause the MPU's internal registers (except for
the Stack Pointer itself) to be stacked as shown in Figure 4-21. MPU
status is restored by the Return from Interrupt, RTI, as shown in Figure
4-21.

Jump and Branch Operations

The Jump and Branch instructfons are summarized in Figure 4-18.
These instructions are used to control the transfer of operation from
one point to another in the control program.

The Ko Operation instruction, NOP, while included here, is a jump
operation in a very limited sense. Its only effect is to increment the
Program Counter by one. It is useful during program development as a
"stand-in" for some other instruction that is to be determined during
debug. It is also used for equalizing the execution time through al-
ternate paths in a control program,

Execution of the Jump Instruction, JMP, and Branch Always, BRA,
effects program flow as shown in Figure 4-19. When the MPU encounters
the Jump {indexed) instruction, it adds the offset to the value in the
Index Register and uses the result as the address of the next instruc-
tion to be executed. In the extended addressing mode, the address of
the next instruction to be executed is fetched from the two locations
immediately following the JMP instruction. The Branch Always (BRA) in-
struction is similar to the JMP (extended) instruction except that the
relative addressing mode applies. The opcode for the BRA instruction
requires one less byte than JMP (extended) but takes one more cycle to
execute.

46

JUMP AND BRANCH Sfal3tzfe o
DPERATIONS MNEMONIC BRANCH TEST HIT|N|Z|V]C
Branch Always BRA None s|ofole|e]le
Branch If Carry Clear BCC C=0 sle|lasle|e]e
Branch It Carry Set BCS €=1 sle|sjalole
Branch If = Zere BEQ Z=1 s|lo|ejolefle
Branch if > Zero BGE NeV=0 s|lele|oinle
Branth If > Zero BGT Z+INaV)=0 s|lole|a|slle
Branch If Higher BHI C+2Z2 =0 ole|o|s|eile
Branch If < Zero BLE Z¥iNey)= sfe|ofole]ln
Branch If Lower Or Same BLS C+2Z=1 AL R LRI]
Branch If < Zero BLT NeVa=i s|le|es|o|afp
Branch If Minus BMI N=1 sle|s|o|o(pm
Branch If Not Equal Zerp BNE Z=0 s|o|o|o|a]|w
Branch If Overflow Clear BVC V=8 v |e|o|s|e|p
Branch If Overflow Set BVS V=1 sje|alo|e]|m
Branch if Plug BPL N=0 ole|lelolele
Branch To Subroutine BSR sjole oo |p
Jump mp See Special Operstions slefo|e]|o]|n
Jumg To Subroutine 1] LA RN X BN
No Operatian NOoP Advances Prag. Cntr. Only ois|ejefe]n
Return From Enterrupt RTI @ N
Return From Subroutine RTS . _ eleje »
Software Interrupt swi See special Operations o|ls|e[e|oim
Wait for Interrupt wal o l@D)]eje >

® (A} Load Cnnahinn Code Register from Stack. {See Special Operations)

(@ {Bit)) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is
required tp exit the wail s1ate.

Figure 4-18 Jump and Branch Instructions

41

[¥ Main Program

Main P) Mairt Program
BC a_ln rogram y e) o
n | GE - JMP n+ 1 JKy = Next Address -
INDXD n+1 K=0N§et EXTND { n+2 |K, = Next Addrese| n+1 K-?ilm

0
X+K K In+2) K | Next Instruction

*K = Signed 7-bit value
{a) Jump {b) Branth

Figure 4-19 Program Flow for Jump and Branch Instruction

The effect on program flow for the Jump to Subroutine (JSR) and
Branch to Subroutine (BSR) is shown in Figures 4-14 through 4-16. Note
that the Program Counter is properly incremented to be pointing at the
correct return address before it is stacked. Operation of the Branch
to Subroutine and Jump to Subroutine (extended) instruction is similar
except for the range. The BSR instruction requires less opcode than JSR
(2 bytes versus 3 bytes) and also executes one cycle faster than JSR.
The Return from Subroutine, RTS, is used at the end of a subroutine to
return to the main program as indicated in Figure 4-17. .

The effect of executing the Software Interrupt, SWI, and the Wait
for Interrupt, WAI, and their relationship to the hardware interrupts
is shown in Figure 4-20. SWI causes the MPU contents to be stacked and
then fetches the starting address of the interrupt routine from the
memory locations that respond to the addresses FFFA and FFFB. Note that
as in the case of the subroutine instructions, the Program Counter is
incremented to point at the correct return address before being stacked.
The Return from Interrupt instruction, RTI, (figure 4-21) is used at
the end of an interrupt routine to restore control to the main program.
The SWI instruction is useful for inserting break points in the control
program, that is, it can be used to stop operation and put the MPU re-
gisters in memory where they can be examined. The WAL instruction is
used to decrease the time required to service a hardware interrypt; it
stacks the MPU contents and then waits for the interrupt to occur, ef-
fectively removing the stacking time from a hardware interrupt sequence.

4

Wait Far Hardware bnterrupt or

; SeHware Interrupt Interrupt Non-Maskahle Interrupt (NMI)
q4 Main Program Main Program Main Program
- o { 3F=swi | 3E-wal] []
n+ 1 | Next Main Instr. n+1 F Hext Main |nstr.—| n I_Last Prog. Byie]
\, J A v - 7
—— —-.(
vEs NO No
Ya
Continug Main Prog.
"
| B |
Stack

S

m — 6| Condition Cade

::> m—5{ Acmlir. B
m— 4| Acmir. A
m — 3| Index Rogister (X}
o~ 2] Endex Register (X}
m—1| FCln+ 1)K

m | PCin + 1IL

HOWR WAL NMI (Restari '
(’4 tNT

Y

Wait Loop

FFFA FFER FFFC o FFFE
¥y FFFB ¥ FFF9 FeF0 Y prer

Sel Interrupt
Matk (CCR 4)

Interrupt Memry Assignmant !

FFFB | Constam, Hdware | MS
FFFI 1 Constant, Hdware | ES

FFFA | Sofrware MS Fiest Ingtr.

Software [H] Addr. Formed Lasd Intervupt
FFFB MS :> By Fetching Veetar into
FEFC | MNon-Maskable Int. 2-Bytes From Program Counter
FFFD | Non-Maskable bot. | LS Par. Mem, r
FFFE | Restan M8 Astign,

FFFF | Restary LS

Interrupt Program
NOTE: MS = Most Signiticant Address Byte; |

LS = Leost Significant Adoress Byte; W

Figure 4-20 Program Flow for Interrupts

SP—me m -7 m—=7
m-6 CCR m-6 CCR
m-—5 ACCH m—5& AcCca
m o4 ACCA m- a4 ACCA
m—3 Xy {Index Reg) m-3 Ay
m-2 X, {Index Rag) ma-2 XL
m -1 PCi{n+1)IH m-=1 PCH
m PC(n+1iL SP —thm- m PCL
____."_E_-/-_—- __E/-——-.
n+ 1 Next Main Instr, PC—8=— a4+ Naxt Main Ingtr,
%n Last Inter. Instr. Last Subr. Instr,
PC — == ATI Sn ATI
(a) Before Exmcution ib) Atter Execution
Figure 4-21 Program Flow for RT)
The conditional branch instructions, Figure 4-22, consist of seven
pairs of complementary instructions. They are used to test the results

of the preceding operation and either continue with the next instruc-
tion in sequence (test fails) or cause a branch to another point in the
program (test succeeds).

Four of the pairs are used for simple tests of status bits N, Z,

¥, and C:
{n

(2)

Branch On Minus (BMI) and Branch On Plus (BPL) tests the sign
bit, N, to determine if the previous result was negative or
positive, respectively.

Branch On Equal (BEQ)} and Branch On Not Equal (BNE)} are used
to test the zero status bit, Z, to determine whether or not
the result of the previous operation was equal to zero. These
two instructions are useful following a Compare [(CMP) instruc-
tion to test for equality between an accumulator and the oper-
and. They are also used following the Bit Test (BIT) to de-
tertnine whether or not the same bit positions are set in an
accumulator and the operand.

50

. {3} Branch On Overfiow Clear (BYC) and Branch On Overflow Set (BVS)
C_// tests the state of the V bit to determine if the previous oper-
ation caused an arithmetic overflow.

(4) Branch On Carry Clear (BGCC) and Branch On Carry Set (BCS) tests
the state of the C hit to determine if the previous operation
caused a carry to occur. BCC and BCS are useful for testing
relative magnitude when the values being tested are regarded
as unsigned binary numbers, that is, the values are in the range
00 (Towest) to FF (highest). BCC following a comparison (CMP)
will cause a branch if the {unsigned) value in the accumylator
is higher than or the same as the value of the operand. Con-
versely, BCS will cause a branch if the accumulator value is
lower than the operand.

The Fifth complementary pair, Branch On Higher (BHI) and Branch On
Lower or Same (BLS} are in a sense complements to BCC and BCS. BHI tests
for both C and Z = 0; if used following a CMP, it will cause a branch if
the value in the accumulator is higher than the operand. Conversely,

BLS will cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results of operations
in which the values are regarded as signed two's complement numbers.
This differs from the unsigned binary case in the following sense: In
(, unsigned, the orientation is higher or lower; in signed two's complement,
: the comparison s between larger or smaller where the range of values
(“, is between -128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater Than Or Equal
To Zero (BGE) test the status bits for N+ VY =T1and N+ V¥ = 0, respec-
tively. BLT will always cause a branch following an operation in which
two negative numbers were added. In addition, it will cause a branch
following a CMP in which the value in the accumulator was negative and
the operand was positive. BLT will never cause & branch following a
CMP in which the accumulator value was positive and the operand negative.
BGE, the complement to BLT, will cause a branch following operations in
which two positive values were added or in which the result was zerg.

The last pair, Branch On Less Than Or Equal Zero BLE) and Branch
On Greater Than Zero {BGT) test the status bits for Z (N+ V) =1 and
I+ (N@VY) =0, respectively. The action of BLE is identical to that
for BLT except that a branch will also occur if the result of the pre-
vious result was zero. Conversely, BGT is similar to BGE except that
no branch will occur following a zeroc result.

BvC
avs

BHYI :
BLE :

Figure 4-22 Conditional Branch

N=1
N~g

e

C+Z=y ;
C+Z=1 ;

BLE
BGT :

BEQ
BNE

BCC -
ecs

BLT
BGE

o0
[

NBvs=]
NEV =g

Z+NBVI=1 ;
I+{NBV)=p ;

52

Instructions

) V. ARITHMETIC OPERATIONS
S
(;/ NUMBER SYSTEMS

The ALU (Arithmetic Logic Unit} always performs standard binary addition of
two eight bit numbers with the numbers represented in 2's complement form. How
ever, the MPU instruction set and hardware flags permit arithmetic operation using
any of four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number in the
range -127 to +127:

+ 26 25 24 23 22 21 0
bob_b_b b b b b

76 5 43 210
10000001 {~127 in 2's complement representation)

111 1 11 11 (<1 in 2's complement representation)

0 00 0O0O00D0 0 {0 in 2's complement representation)

0 00O0O0O0TO0IN {+1 in 2's complement representation)
a1 111111 {+127 in 2's complement representation)

(; 4 (2) Each byte can be interpreted as an unsigned binary number in the

(*J range 0 to 255:
27 26 25 24 23 22 21 20
bbb b b b b b
7 65 4 3 210
0 0O 0 0CO0COTOCTO O {0 in unsigned binary)

1111111 (255 in unsigned binary)

(3) Each byte contains one 4-bit BCD number in the 4 LSBITS, the 4MS
bits are zeros. This is referred to as unpacked BCD and can re-
present numbers in the range of 0-9:
27 26 25 24 23 22 31 20
bob b b b_ b b b

76543 210
oo 000000 {BCD 0)
000 O0O0T1O01 (BCD 5)
¢ 00010 01 (BCD 9)
\--—\ﬂ’
/ Must always
(_// he zero

53

(4) Each byte can be thought of as containing two 4-bit binary coded
decimal (BCD) numbers. With this interpretation, each byte can
represent numbers in the range 0 to 99:

27 26 25 5% % 2 51
000 O0DOCOO0 0 {BCDOO)
0010011 1 ({BCD27)
100 1 100 1 (BCD99)

Each of these number systems will be illustrated with programming ex-
amples after the condition code flags and instruction set have been intro-
duced in more detail.

THE CONDITION CODE REGISTER

During operation, the MPU sets {or clears) flags in a Condition Code
Register as indicated below:

[RIL[NTZIVIC]
H = Half-carry; set whenever a carry from by to by of the result is genera-
ted; cleared otherwise.

Condition Code Register

I = Interrupt Mask; set by an interrupt or SEI instruction; cleared by CLI
instruction. (Normally not used in arithmetic operations).

N = Negative; set 1f high order bit (by) of result is set; cleared otherwise.
Z = Zero; set if result = 0; cleared otherwise.

¥ - oVerflow; set if there was arithmetic overflow as a result of the oper-
ation; cleared otherwise.

C - Carry; set if there was a carry from the most significant bit (b7) of
the result; cleared otherwise.

OVERFLOW

The description of most of the condition code bits is straight forward.
However, overflow requires clarification. Arithmetic overflow is an indica-
tion that the last operation resulted in a number beyond the +127 range of
an 8-bit byte. Overflow can be determined by examining the sign bits of the
operands and the result as indicated in Table 5-1 where the results for ad-
dition of A + B is shown.

5

Row az b+ ry ¥

1 0 0 n]
2 0 0 1 1
3 0 1 0]
4 0 1 1 0
5 1 0 0 0 (A+B) =R
6 T 0 1 0
7 1 1 0 1
8 1 1 1 0

TABLE 5-1: Overflow for Addition

If the sign bits of the operands, ay and b,, are different (rows 3 through

6 of the Table} no overflow can occur and %he V flag is clear after the oper-
ation. [If the operand sign bits are alike and the result exceeds the byte
capacity, the sign bit of the result (r,)} will change and the overflow bit
will be set. This is illustrated in the following example. The example
follows actual ALU operation in that the starting number A is initially in
the accumulator but is replaced by the result of the current operation,

v 7 6 543210
000 1T 1 01 1 0 A=+54

1000 01 1 1 8=-=-121; (negative numbers are tn 2's complement
notation)

0101111071 Ry=A+B=-67; {signs of A & B different; no
overflow)

01001 1 100 R=Ry+B-=-100; {Signs alike but byte capacity
not exceeded; no overflow)

1001 1 10 0 Ry=-100;
1110000 0 B=-32;

101 1111 0 0 Rp=+124 (Signs of Ry & B alike and sign of result
accurred)

4

Here the capacity of the register has been exceeded and the result is +124
rather than -32. Overflow is said to have occurred.

In subtraction operations, the possibility of overflow exists whenever
the operands differ in sign. Overflow conditions for A - B are illustrated
in Table 5-2.

Row a; by r, v
1 0 0 0 0
2 0 i 1 1
3 0 1 G 0
4 0 1 1 0 (A-B)=R
5 1 o 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
TABLE 5-2

Overflow for Subtraction

Note that Table 5-2 is identical to the addition table except that by has
been replaced by b,. This is explained by the fact that the ALV performs
subtraction by addgng the negative of the subtrahend 8 to the minuend A.
Hence, the ALU first forms the 2's complement of B and then adds, The sub-
traction table with b, negated then reflects the sign bits of two numbers
that are to be added.’ If az and b7 are alike, overflow will occur if the
byte capacity is exceeded.

THE ARITHMETIC INSTRUCTIONS

Table 5-3 summarizes the instructions used primarily for arithmetic
operations. The effect of each operation on memory and the MPU's Accumu-
lators is shown along with how the result of each operation effects the Con-
dition Code Register.

The carry bit is used as a carry for addition and as a borrow for sub-
traction and is added to the Accumulators with the Add With Carry Instruc-
tions and subtracted from the Accumulators in the Subtract With Carry in-
structions.

56

ADDRESSING MOOES COMO. CIDE HEG.
SOOLEAM/ARITHMETIL OF
ACCUMULATOR AND MEMORY WMED OIRECT INDEX EXTND INHER L8l segiste inbeh slafafz2lh|o
OPERATIONS wnesonic foe [~ | # [opq{~ | 7 |op |~ | #for] ~ or |~k raler 1o comtents! H1 z|p|c
™ apon [se 22|32 {an|s{2|es|afa Ak ea e e el s
appn (cB |2 |z |os|3 |z e |si2|Fe|a|s3 Bl g HEIEIRIIR
248 Aemitry aga w271 |AasBra HEIRIEIIHR
Add with Carey ADCA 82|z s |3 |z |A9 |5 |2]Bs|a |3 ArM+C+A LIEZRINLER
ApCE €9 |2 | 208 |3 |2 |E9 6 |2|FI]4 |3 B+M+C~B HEIRIRIIEE]
Complemant, 1’5 coM @Bjr|zjn|sfa "B sie|ti2|R|s
CDNA a2 1|A-a DEIRIRI LR
cong 3|1 1]|&~e w|lelt]1{Rr]s
Complamani, 25 NEG 6o fr|2|n]|6]|3 a1 -M—M LIRIRARE0] (]
Mogate NEGA 0 |z)9]|00-a-n ale| t]tOdD
NEGE 50 |z)1jo0-g~8 o|e| 1D
Decrmal Adyute, A Das IRERA a‘:m‘;?::’:’:‘“ ol BCD Charscters NI
Rolue Lett ROL 68 [74z|m|6 |2 My —_— elo| i@
OLA AN A]L-Lc)~gln:\:|:|:|——-’ slo|t] i@t
RoLE sl2f1]e T oo rfr]@|:
Rotats Right ROR B [r[2|® |83] . elo|t|t|®t
RORA w2 o]al O s omorme 3 elelslit@ 1
RORE % 12|]el "o AnGE
5n.t Lk, Asithmatig ASL & r|2|mB|6 |3 L] . oloft]1i®|
ASLA W2 1[A 0« gomoId-«~ o LI RERILOIR
Aste 812118 = " sl t|t|®]
Snift Right, Arithmetic Ash stir|zim|s] " . sleft|i|®:
ASAA w2 |al dmmoo - o sinft|r[@®ft
Asap FARIE n] " e ool s t|®|t
Shitt Right, Logic LSR B8 | T 2|7 |6 |12 Ll - sle|R|!®]
L3AA uzlA] DO —~ O3 S| R[1|EB} 1
LsAB se|2f1]e " " eialn|t|®lt
Subtrazt SuBA Wl z]2|%]3 2|A0 | S| 2|0 |43 A-W-=A wlalt)t t
sy dcof 22 (oo |3 |2 € |5 |z|f0|ayz B-M-~B wls|t]1 4
Subract Acmltrs sBA wlz|r|a-a-a oot t
Swbir, with Carry S6CA 2| r| 292|312 |Aaz|s5|2fe2| |3 A-—M-C+A a|wj1}? T
secd c2| r |2 (D23 |2 |EX {5 |2|F2| 4|3 B-M-C—+B LIRIR A B3 13
LEGEND: 00 Byt = Zw; CONDITION CODE REGISTER NOYES:
QOF Opaation Code (Hexadecimal): H Half carry from bn 3; (Bie 11 of (41 18 True and cleared otherwise)
~ Wymbes of MPY Cyelas, | fnvarmupt mask @ BVl Ten: Result = 10000000*
X Number of Program Bytes: N Negativa (sgn butl @ (B4C) Fest: Resuit = 0ORODOODT
+ Agithmetic Pus, z Zoro (byee) (@ (BitC} Teat: Gecimal vabue of most simificant G0 Charscier greaier thav ning?
~ Arthmetic Minus; vV Owritow, I's comptrment iNot clhiwed if areviousty st
* Boolessn ANG; [Earry from &ie 7 ® IBis Vh Test: Set vquat 1o nesult of N2 € af1er shilt has occuiren
Mgp Contanns ol memory losation R Resal Alweypn !
painted 10 be Stack Poiniar; 5 Set Abways
4+ Backean Inchusiva OR; 4 Testand w1 e, cleared othanwise
* Baghan Exclusve 0R; ® NotAffectan
T Comprement of M; CCR Condition Gade Register
=+ Teamfa imo; 1% Least Significant
N B s Zwo; NS Maz Sieilicam

Table 5-3 Arithmetic Instructions

97

The Decimal Adjust fnstruction, DAA, is used in BCD addition te adjust
the binary results of the ALU. When used following the operations, ABA,
ADD, and ADC on BCD operands, DAA will adjust the contents of the accumulator
and the C bit to represent the correct BCD Sum.

Table 5-4 shows the details of the DAA instruction and how it affects
and is effected by the Condition Code Register bits.

Operation: Adds hexadecimal numbers 00, 08, 60, or 66 to ACCA, and may also set the carry
bit, as indicated in the following table:

State of Upper Initial Lower Number Added State of
C-Bit Half-Byte Half-Carey Half-Byte t6 ACCA C-Bit
Before DAA (Bits 4—7) H-Bit {Bits 0—-3} by DAA After DAA
{Col. 1} [Col. 2} (Cal, 3} (Col. 4} {Col. 5} (Col. 6)
0 0-9 0 0-9 00 o
0 0--8 4] A~F 05 0
0 0-9 1 0-3 06 o
0 A~F 0 0-9 60 1
0 9—F 0 A—F 66 1
0 A—F 1 0-3 66 1
1 0-2 V] 0-9 60 1
1 0-2 0 A—F 66 1
t 0-3 1 0-3 66 1

NOTE: Columns {1) to {4} of the above table represent all possible cases which ¢an result from
any of the operations ABA, ADD, or ADC, with initial carry either set or clear, appliad
1o two binary-coded-decimal operands. The table shows hexadecimal values.

Effect on Condition Code Register:
H Not affected.
I Not affected.
N Set it most significant bit of the result is set; cleared otherwise.
2 Set if all bits of the result are cleared; cleared otherwise,
V Not defined.

C Set or reset according to the same rule as if the DAA and an immediately preceding ABA,
ADD, or ADC were replaced by a hypothetical binary-coded-decimal addition.

Table 5-4 Effect of DAA Instruction

58

Use of Arithmetic Instructions

(;/} Typical use of the arithmetic instructions is illustrated in the fol-
Towing examples:

The ABA instruction adds the contents of ACCB to the contents of ACCA:

ACCA 10101010 ($An}

ACCB 11007100 ($cc)

ACCA 071170110 {$767 with a carry.
CARRY 1

The ADCA instruction adds the operand data and the carry bit to ACCA:

ACCA 1 01 01T 0 1 0 $AA
OPERAND DATA T 10011 00 CC
CARRY
ACCA 01T 1T 1T 0 1T 1T 1 3§77 with carry
d/ J CARRY !

In both of these examples, the 2's complement overflow bit, ¥, will be
set as shown in Table 5-5,

2's compTement by by b,
overflow carry ACC ACC OPERAND (OR ACCB)
after after after before before

0 0 0 0 0

1 0 1 0 0

0 0 1 0 1

0 1 0 0 1

0 0 1 1 0

0 1 0 1 0

1 1 0 1 1

(_, y 0 7 1 1]

TABLE 5-5

Truth Table for "Add with Carry"

The SUBA instruction subtracts the operand data from ACCA:
B bbb b b b b
ACCA 011 001 01 $65
OPERARD DATA 100001 1 1 $87

ACCA T"T° 01 1 1 1 0 $DE with a borrow
BORROW 1

The SBCA instruction subtracts the operand and the borrow (carry) it from
ACCA.

» bbbbbbeob

ACCA 1 0 1 1T 1 1 0 0 $BC
OPERAND DATA © 1 1 1 1 0 1 1 $7B
BORROW (carry} 1 €=1

0 1 0 0 0 0 0 0 %40 no borrow
BORROW 0

The 2's complement overflow and carry hits are set in accordance with
Table 5-6 as a result of a subtraction operation.

2's b7 by by
complement carry ACCA ACCA OPERAND
overflow after after before before
0 0 0] 0
0 1 1 0 0
0 1 0 0 1
1 1 1 0 1
1 0 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 1 1
TABLE 5-6

Truth Table for "Subtract with Borrow"

ADDITION AND SUBTRACTION ROUTINES

Most applications will require that the arfthmetic instruction set be
combined into more complex routines that operate on numbers larger than one
byte. If more than one number system is used, routines must be written for
each, or conversion routines to some common base must be used. In many
cases, however, it is more efficient to write a specialized routine for
each system requirement, i.e., hexadecimal (HEX) versus unpacked BCD multi-
plication, etc. In this section, several algorithms will be discussed with
specific examples showing their implementation with the M&800 instruction
set.

The basic arithmetic operations are binary addition and subtraction:

ALPHA + BETA = GAMMA ALPHA - BETA = GAMMA
LDAA ALPHA LDAA ALPHA
ADDA BETA SUBA BETA
STAA GAMMA STAA GAMMA

These operations are so short that they are usually programmed in line
with the main flow. Addition of single packed BCD bytes requires only one
more instruction. The DAA instruction is used immediately after the ADD, ADC,
or ABA instructions to adjust the binary generated in accumulator A {ACCA) to
correct BCD value:

LDAA ALPHA
ADDA BETA
DAA
STAA GAMMA
Carry ACCA
X 67 0110 0111 =ACCA
X +79 carry 0111 1001 =MEMORY
0 146 0 1110 0000 =ACCA binary result
46 1 0100 0110 =ACCA after DAA; the carry bit will
also be set because of the BCD
carry.

61

Since no similar instruction is available for BCD subtraction, 10's
complement arithmetic may be used to generate the difference. The follow
routine performs a BCD subtraction of two digit BCD numbers:

LDAA #$99

SUBA BETA {99-BETA) = ACCA

SEC carry = 1

ADCA ALPHA ACCA + ALPHA + C = ACCA

DAA DECIMAL ADJUST (-100)

STAA GAMMA ALPHA-BETA = GAMMA

The routine implements the algorithm defined by the following equations.

ALPHA - BETA = GAMMA

ALPHA + (99-BETA) - 99 = GAMMA 9's COMPLEMENT OF BETA

ALPHA + (99-BETA + 1) - 100 = GAMMA 10's COMPLEMENT OF BETA
One is added to the 9's complement of the subtrahend by setting the carry bit
to find the 10's complement of BETA which is then added to the minuend ALPHA
and saved in ACCA. The DAA instruction adjusts the result in ACCA to the
proper BCD values before storing the difference in GAMMA. Since 100 has been

added {99 + 1) to the subtrahend by finding the 10's complement, 100 must
also be subtracted., This is accomplished by the DAA instruction since the

resulting carry is discarded.

62

Multiple precision operations mean that the data and results require

more than one byte of memory.

The simplest multiple precision routines are

additien and subtraction of 16 bit binary or 2's complement numbers. This
is often called double precision since 2 consecutive bytes are required to

store 16 binary bits of information.

functions:

LDAA
LDAB
ADDA
ADCB
STAA
STAB

LDAA
LDAB
SUBA
SBCB
STAA
STAB

ALPHA + 1
ALPHA
BETA + 1
BETA
GAMMA +]
GAMMA

ALPHA + 1
ALPHA
BETA + 1
BETA
GAMMA + 1
GAMMA

The following routines illustrate these

ADD LS BYTES
ADD MS BYTES WITH CARRY FROM LS BYTES

SUBTRACT LS BYTES
SUBTRACT MS BYTES WITH BORROW FROM LS BYTES

63

Four digit BCD additicn can be accomplished in a similar fashion with
the use of the DAA instruction. The following routine has been expanded to
a 2N digit addition where N is the max number of packed BCD bytes used:

START CLC
LDX #N

LooP LDAA ALPHA, X
ADCA BETA,X
DAA
STAA GAMMA, X
DEX
BNE LOoOP

NOTE: ALPHA, BETA, and GAMMA must be in the direct addressing range and
adJusted for offset for this example (See indexed address1ng for
further details).

This routine uses indexed address to select the bytes to be added,
starting with the least significant. The carry is cleared at the start and
is affected only by the DAA and ADCA instructions. This allows the carry to
be included in the next byte addition.

Expanding subtraction to mdltip]e precision is accomplished in a manner
similar to the single byte case; 10's complement arithmetic is used. A
syitable routine is shown in the Assembly Listing of Figure 5-7.

b4

00010
00030
00060
ono7o
00080
00090
00092

00094
00095
00096

00097
0n097
00097
n0og7
00097

00100
GO110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
06220
00230
00240

00251
00252

00254

0000
0008
0010

0100

0100 CE 0008 DSUB LDX #8

0103 86
0105 A0
0107 A7
0109 09
O10A 26

99
00
10

F7

NAM DSUBT&
OPT SYMB

SUBTRH EQU 0
MINUEN EQU 8

R

SLT

EQU 16
ORG 256

* DECIMAL SUBTRACT SUBROUTINE FOR 16 DECIMAL DIGIT

*

* o

* ¥

010C CE 0008

010F 0D
0110 A6
0112 A9
0114 19
0T15 A7
0117 09
0118 26
0114 39

SYMBOL TAELE

DSuUB

0100 DSUB1

SUBTRH 0000

08
10

10
F6

*
%*

THIS
FROM

ROUTIKE SUBTRACTS THE SUBTRAHEND {"SUBTRH")
THE MINUEND ("MINUEN") AND PLACES THE

DIFFERENCE IN "RSLT",

THE MEMORY ALLOCATION IS AS FOLLOWS:

ADDRESS RANGE LSB

SUBTRAHEND 1-8 8
MINUEND 9-16 16
DIFFERENCE 17-24 24

DSUB1

DsuB2

THE
384

ADDRESS VALUES ARE DECIMAL

SET BYTE COUNTER

LDA A #$99

SUB A SUBTRH,X FIND 9'S COMPLEMENT
STA A RSLT,X USE "RSLT™ AS TEMP STORE

DEX DECREMENT BYTE COUNTER

BNE DSUBT LOOP UNTIL LAST BYTE

LDX #8 RESTORE BYTE COUNTER

SEC SET CARRY TO ADD 1 TO COMPL

LDA A MINUEN,X LOAD MINUEND
ADC A RSLT,X ADD COMPLEMENT SUBTRAHEND

DAA DECTMAL ADJUST

STA A RSLT,X STORE DIFFERENCE

DEX DECREMENT BYTE COUNTER
BNE DSUB2 LOOP UNTIL LAST BYTE
RTS RETURN TO HOST PROGRAM

EXECUTION TIME OF THIS SUBROUTINE IS
MPU CYCLES EXCLUDING THE RTS.

END

0103 DSUB2 0110 MINUEN 0008 RSLT 0010

Figure 5-7 Decimal Subtract Assembly Listing

This routine first finds the 9's complement of the subtrahend and stores
it in the result buffer. The carry is then set to add 1 to the 9's complement,
making it the 10's complement which 1s then added to the minuend and stored
in the result buffer. Note that this routine has 2 Toops, the first to cal-
culate the 9's complement, the second to add and decimal adjust the result.
The decimal add and subtract routines operate on 10's compTement numbers as
well as packed BCD numbers. A number is known to be negative in 10's com-
plement form when the most significant digit in the most significant byte
is @ 9. When in the 10’s complement form, this digit is reserved for the
sign and the actual number of magnitude digits is one less than 2 times the
number of bytes. A routine similar to the above subtract program will con-
vert the 10's complement number to decimal magnitude with sign for display
or output purposes:

DCONY CLR SINFLG CLEAR SIGN FLAG
LDAA RESULT+1 GET MSBYTE
BPL END POSITIVE:END
LDX #3 NEGATIVE:
DCONVI LDAA #$99

SUBA RSLT,X SUBTRACT RESULT FROM
STAA RSLT, X ALL 9's INCLUDING
DEX SIGN DIGIT
BNE DCONT
LDX #8
CLRA
SEC
DCONVZ ADCA RSLT,X ADD 1 TG RESULT
DAA

STAA RSLT,X

DEX

BNE DCONVZ

DEC SINFLG SET SIGN FLAG
END RTS RETURN

The sign flag would be used to indicate plus when clear and minus when not clear.

66

MULTIPLICATION
Multiplication increases programming complexity. In addition to the
addition and subtraction instructions, the use of the shift and rotate in-
structions is required. The general algorithm for binary muTtiplication
can be {llustrated by a short exampie:
(1) Test the least significant multiplier bit for T or 0.
(a) If 1t is 1, add the multiplicand to the result, then 2.
(b) If it is 0, then 2.
(2) Shift the multiplicand left one bit.

(3 Test the next more significant multiplier bit; then l1a or 1b.

DECIMAL BINARY
13 1101 MULTIPLICAND
1 1011 MULTIPLIER LSB = 1; ADD MULTIPLICAND TO RE-
SULT (A)
1101 (A)

13 1101 (B) SHIFT MULTIPLICAND LEFT ONE BIT (B)

1001171 {C) LSB+1 = 1; ADD MULTIPLICAND TO RESULT (C)
13 o1 (o) SHIFT MULTIPLICAND LEFT ONE BIT (D)

1101 (E) LSB+2 = 0; SHIFT MULTIPLICAND LEFT 1 (E)
23 TO00T117 (F) LSB+3 = 1; ADD MULTIPLICAND TO RESULT (F)

128 + 15 = 143

Signed binary numbers in 2's complement form cannot be multiplied without
correcting for the cross product terms which are introduced by the 2's comple-
ment representation of negative numbers. There is an algorithm which generates
the correct 2's complement product. Since positive binary numbers are correct
2's complement notations, they also may be multiplied using this procedure.

It is called Booth's Algorithm. Simply stated the algorithm says:

{1) Test the transition of the multiplier bits from right to left as-
suming an imaginary O bit to the immediate right of the multiplier.

{2) If the bits in question are equal, then 5.

(3) If there 1s a 0 to 1 transition, the multiplicand is subtracted from
the product, then 5.

67

(4)

product, then 5.

(5)

If there s a 1 to 0 transition, the multiplicand is added to the

Shift the product right one bit with the MSBit remaining the same.

(This has the same effect as shifting the multiplicand Jeft in the
previous example).

(6)

Go to 1 to test the next transition of the multiplier.

The following example (Figure 5-8) shows the typical steps involved in an

actual calculation.

and 5-10, respectively.

A flow chart and assemb]
tion program using the M6800 instruction set

y listing for a multiplica-
are shown in Figures 5-9

Sign Bits 5Bl
e
111101 = -3
T11011 =-5
000000001111, =+15
10 Bits
111101 Muttiplicand
t1101 1 (0 Multiplier
poOooOoO0 010 1; subtract by adding the 2's
+ 000013 complement of the multiplicand
000011 PRODUCT
a000011 Shift PRODUCT
00000011 1 to 1 shift PRODUCT
+ 111101 1 to 0 add
11110111 PRODUCT
111110111 Shift PRODUCT
+00001 1 0to 1 subtract
00000111 PRODUCT
0000001111 Shift PRODUCT
00000001111 1 to 1 shift
0000000012111 1 to 1 shift
N — °

Sign %

Figure 5-8 Multiplication Using Booth's Algorithm
68

MULT 18

Clear tha Working Registers
This Includas the Previous LS Bit
of the Multipller Yest 8yte
Initialize the Shitt Count 10 16

Does the

LS Bit of the

Muitiplisr = tha

Freviaus LS Bit
k4

Does

the LS Bit

of the Muttiplier
=07

Add the Multipiicand Subtract tha Multiplicand
to the Product with from the Product with
the M3 Bytes Linas Up the MS Bytey Lined Up

Ciear the Pravious
LS Bit of the Multiplier Test Byt

|

Shift the Multiplier Right One
Bit with tha LS Bit Gainginte
tha LS Bit of tha
Multipiier Tast Byte

I

Shift the Product Right One Bit,
the MS Bit Remaining the Same

[

Dacrament the
Shift Counter

Doet

Return

tha Shift
fram Caunter
Subroutina =07

Figure 5-9 Flow Chart for Booth's Algorithm
69

nnnTon NAM MULTI6

onnzn OPT NOPAGE

66030 *

onotn * THIS ROUTINE MULTIPLIES TWQ 16 BIT 2'S

00050 * COMPLIMENT NUMBERS USING BOOTH'S ALGORITHM
00060 *

00070 * THE MULTIPLIER = ¥ = Y{MSB),Y{LSB) = Y,Y+]
00080 * THE MULTIPLICAND =XX=XX{MSB),XX(LSB) = XX,XX+]
No0so * THE PRODUCT = U = U{MSB),U+1,U+2,U43

00100 * THE TEST BYTE FOR Y(LSB-1) = FF

00110 *

nni1zo 0080 ORG $80

00130 0080 onN2 Y RMB 2

00140 ON82 N002 XX RMB 2

00150 0084 00N4 U RMB 4

00160 0088 NOM FF RMB 1

onm7zao *

NMman * THE MULTIPLIER AND THE MULTIPLICAND MUST BE
00190 * STORED IN Y AND XX RESPECTIVELY, THEN A JSR TO
a0nz200 * MULT16 WILL GENERATE THE 2'S COMPLIMENT PRODUCT
00210 * QF Y AND XX IN U.

00220 *

00230 * THE MULTIPLICAND WILL BE UNCHANGED, THE

00240 * MULTIPLIER WILL BE DESTROYED.

00250 *

00260 0400 ORG $400

Figure 5-10 Assembly Listing for Booth's Algorithm (Sheet 1 of 2)

70

00270 0400 CE 0005 MULTI6 LDX

00280 0403
00290 0404
00300 0406
00310 0407
006320 0409
00330 040C
00340 040E
00350 b410
00360 0411
n0370 0413
00380 0415
00390 N416
00400 0418
00410 041A
00420 041C
00430 041E
00440 0420
00450 0422
00460 0424
00470 0426
00480 0428
00490 042A
00500 042C
00510 042E
00520 0430
00530 0432
00540 0435
00550 0438
00560 0438
00570 043F
00580 0441
00590 0444
00600 0447
00610 044A
00620 044B
00630 044D
00640

Figure 5-10 Assembly Listing for Booth's Algorithm (Sheet 2 of 2)

4F
A7
09
26
CE
9%
84
16
g
27
)
27
96
D6
a0
D2

83 LP

85 ADD

0088 SHIFT
0080
0081
0088
0084
0085
0086
0087

BF

#5
CLR &
STA A U-1,X
DEX
BNE LP]
LDX #16
LDA A Y41
AND A #1
TAB
EOR A FF
BEQ SHIFT
TST B
BEQ ADD
LDA A U+l
LDAB U
SUB A XX+1
SBC B XX
STA A U+
STABU
BRA SHIFT
LDA A U+1
LDAB U
ADD A XXH1
ADC B XX
STA A UH)
STABU
CLR FF
ROR Y
ROR Y+1
ROL FF
ASR U
ROR UH1
ROR U+2
ROR U+3
DEX
BNE LP2
RTS
END

CLEAR THE WORKING REGISTERS

INIT'L SHIFT COUNTER TO 16
GET Y{LSBIT)

SAVE Y(LSBIT) IN ACCB

DOES Y(LSBIT) = Y{LSB-1) ?
YES: GO TO SHIFT ROUTINE
NO: DOES Y(LSBIT) = 0 ?
YES: 60 TO ADD ROUTINE
NO: SUBTRACT MULTIPLICAND
PRODUCT WITH THE MSBYTES
LINED UP

THEN GO TO SHIFT ROUTIKE
ADD THE MULTIPLICAND TO THE
PRODUCT WITH THE MSBYTES
LINED UP

CLEAR THE TEST BYTE

SHIFT THE MULTIPLIER RIGHT
ONE BIT WITH THE LSBIT

INTO THE LSBIT OF FF

SHIFT THE PRODUCT RIGHT ONE
BIT, THE M5B REMAINING THE
SAME

DECREMENT THE SHIFT COUNT
IF NOT 0 CONTINUE

n

IVISTON

A flow chart for binary division is shown in Fiquee b-11. The
assembly listing of the program is given in Figure 5-12.

The algorithm used for this straight forward binary division is as
follows:

(1} Left justify the divisor byte.

(2} If the MS byte of the dividend is less than the divisor byte, shift quo-
tient left one bit with the LS bit = 0; then 4,

(3} If the MS byte of the dividend is greater than or equal to the divisor,
(2)shift the quotient left one bit with the LS Bit = 1; (b) subtract the
divisor from the MS byte of the dividend, the result being stored in the
MS byte of the dividend; then 4§,

{4} Shift the dividend left one bit with the LS Bit = 9, and the MS Bit going
into the carry.

(5) If the carry is set, go to 3a.

{6) If the carry is not set, go to 2a.

The process continues until the number of quotient shifts equals 8 +
number of shifts required to left justify the divisor.

n

XKDIVD

Initislize Shitt Count to B (S = B)
Cleat Quotient Butfers

Y

tncrement Shift Count (S}
=5+1

Save Shity Count for Determining
the Offser of the Remainder
Shitt Divisor Back Right One Bit

DVDERR

Divisor = 0

DVDEND

| Subtract 9 from Saved Shift Count]

1

Subtract 4
trom Result

Store Aesult in Remainder
Displacamaent Buffer

LS8 Goes into Carry

CVDERR

L

L Store $FF in Quotient]

DVDEND

0

Dtvisor is Now Left
Justifiac snd the Shift
Count s in ACCE

NO

-

Shift Quotlant Left One Bit
with LS8 =1
Subtract: Dividend {MS Byte)

Dividend {MS Byte) — Diviser

Shift Quotient Lefr One Bit
$

Lsp=0

L

Docrament Shift Count
§=5—-1

NO

Snift Dividend Laft One Bit with:
LS8 = 0 and MSE intoc Carry

YES Does NO

Carry =
\,/
Figure 5-11 XKDIVD Flow Chart
3

(0100 OPT L

00000 NAM XKRIVD

nooio oPT NOPAGL

00020 5%00 ORG B5900

00030 * SUBROUTINE TO DIVIDE AN UNSIGNED 4 DIGIT
00040 * HEX NUMBER [16 BIT BINARY] BY AN UNSIGNED
00050 * 2 DIGIT HEX NUMBER [8 BIT BINARY].

00060 *

00070 * THE DIVISOR = X = XKDVSR = [F9]

00080 * THE DIVIDEND = Y(M},Y(L)

00090 * =XKDVND, XKDVND+1

00100 * =[FA,F8]

00110 * THE QUOTIENT = Q(M),Q(L)

00120 * =XKQUOT, XKQUOT+H

00130 * =[FC,FD]

00140 * THE SHIFT COUNTER = 5 = ACCB

00150 * THE LEFT DISPLACEMENT OF THE REMAINDER = XKDSPL
00160 * = [FE]
00170 *

00180 * THE DIVISOR AND THE DIVIDEND MUST BE LOADED
00190 * [NTO XKDVSR AND XKDVND,XKDVND+1 RESPECTIVELY
00200 * THEN A JSR TO XKDIVD.

00210 *

00220 * THE REMAINDER WILL BE IN Y(M) [XKDVND],

00230 * SHIFTED LEFT THE # OF BITS INDICATED IN XKDSPL
00240 * THE DIVISOR WILL BE BINARILY LEFT JUSTIFIED

Figure 5-12 XKDIVD Assembly Listing (Sheet 1 of 2)

L)

#8

INIT'L 5=8

XKQUOT 7ERO QUOTIENT BUFFER
XKQUOT+1
$5-5+1
#16
DVDERR IF S>16 DIVIDE ERROR
XKDVSR IF S<16 LEFT SHIFT BIVISOR
DVOLPO IF C=0 CON'T LOOP
XKDSPL IF C=1 XKDSPL = SHIFT COUNT
XKDVSR SHIFT THE DIVISOR BACK 1
SHIFT COUNT NOW IN ACCB
DIVISOR LEFT JUST, IN X
XKDVND
XKDVSR IF THE DIVIDEND<DIVISOR
DVNSUB DON'T SUBTRACT
IF THE DIVIDENT >OR=DIVISOR
XKQUOT+) SHIFT Q LEFT 1 BIT
XKOUOT ~ WITH LSB = 1
XKDVSR Y(M) = ¥(M)-X
XKDVND
DVSHFT
SHIFT @ LEFT WITH
XKQUOT+1 LSB = 0
XKQUOT
S = §-1
DVDEND IF S = O STOP
IF $>0 SHIFT DIVIDEND
XKDVND+1 LEFT ONE BIT; LSB=0
XKDYND MSB INTO CARRY
XKDVND
DVDLPZ IF C = 1 6O TO LOOP 2
DVDLP 1 80 TO LOOP 1
#SFFFF
XKQUOT
XKOSPL GET SHIFT COUNT INTO ACCB
#9 XKDSPL = XKDSPL-9
#4 XKDSPL 4
DVDLP3 YES: GO TO RETURN
#4 NO: XKDSPL=XKDSPL-4
XKDSPL DISPLACEMENT OF REMAINDER

STORED IN XKDSPL

Figure 5-12 XKDIVD Assembly Listing (Sheet 2 of 2)

00260 5900 C6 0B XKDIVD LDA B
00270 5902 7F 0OFC CLR
00280 5905 7F 00FD CLR
00290 5908 5C DVDLOP INC B
00300 5909 C1 10 (MP B
#0310 5908 2E 34 BGT
00320 590D 73 00F9 ASL
60330 5910 24 F6 BCC
00340 5912 D7 FE STA B
00350 5914 76 OCF9 ROR
00360 *
00370 *
00380 5917 96 FA LDA A
00390 5919 31 F9 DVDLPT CMP A
00400 5918 25 0D BCS
00410 591D 0D DVDLP2 SEC
00420 591E 79 OOFD ROL
00430 5921 79 0OFC ROL
00440 5924 90 F9 SUB A
00450 5926 97 FA STA A
00460 5928 20 07 BRA
00470 5924 0OC DVNSUB CLC
00480 592B 79 0OOFD ROL
00490 592E 79 00FC ROL
00500 5931 5A DVSHFT DEC B
00510 5932 27 12 BEQ
00520 5934 0C CLC
00530 5935 79 00FB ROL
00540 5938 79 QOQFA ROL
00550 5938 95 FA LDA A
00560 593D 25 DE BOA
00570 593F 20 D8 BRA
00580 5941 CE FFFF DVDERR LDX
(0590 5944 DF FC 5TX
00600 5946 D6 FE DVDEND LDA B
00610 5948 CO 09 SUB B
00620 594A C1 04 CMP B
00630 594C 25 02 BCS
00640 594E CO 04 SUB B
00650 5950 D7 FE DVDLP3 STA B
00660 *
00670 5952 39 RTS
00680 END
NOTE

Section V is, by no means, comprehensive. It is intended to provide
some examples that can be used as is or that will suggest the direction for
modifying them for other specialized applications.

%

16

Nl

7

Sample Programs

Vi

BE1aa
Ap2aa
an3es

SASNILARCETD DS

B PIRINI BRI b et b et ot

5 o (o S (S O 0 4 0 S T8 0 5 T s £ O e U5
P P ol i i dad Lt o L L L St L RS N N B
SOCEELREENEEDEARIRRESER S

A ICNLN e G) = S0 D O QN AT i L B et SO 0wk Y
ARARRNAREIRFESAAREREERNOONHREDREEDEE

(=]
b

. NAM PUNCH
* PUNCH MOTOROLA HEX FORMAT TAPES
+"USE MONITOR'S J COMMAND TO START EXECUTION
* AT BR9C
:*ENTER ADDRESS OF FIRST BYTE TO PUNCH
* ENTER ADDRESS OF LAST BYTE TO PUNCH
+"WONT'TOR ROUTTNES
* ADDRESSES ARE FOR ACIA VERSION OF MONITOR
FEBl QUTCH EQU FF8
FF6D OQUTZH gw‘so
FF62 BADDR FF62
FF82 QUTS Fr82
FFAD CRLF EQU FFAB
0849 .. Oms e
* DATA RECORD FORMAT
3009 8D FORM FCB $D,$A,0,08,'S,'1,$FF
201 @A
0292 62
0303 09
004 53
205 31
0096 FF
067 9302 BEGADR RMB 2 FIRST ADDR T0_PUNCH
709 7292 LASADR RMB 2 LAST ADDR TO PUNCH
Q005 0P8] NUMBYT RMB 1
060C 8D 69 BSR GETADR GET FIRST ADDR
990E OF 87 STX BEGADR STORE IT
0419 3D 65 BSR GETADR GET LAST ADDR
9812 DF 89 STX R SIORE IT
6414 8D 4C BSE BUNCH LEADER
@3le CE FFFF PUN LDX $FORM~1 POINT TO PUNCH FORMAT
2219 43 PUNG INX
201A E6 29 DA B X
201C 28 85 BMI PUNL HIGH ORDER BIT SET - DONE
@a1E ED FFal JSR OUICH PUNCH CHARACTER
2071 28 F6 BRA PUND
8023 96 8A PUNI LDA A 'LASADR+] SUB LOW ORDER BYTES
225 99 0g SUB A BEGADR+]
0027 D6 29 {DA B LASADR = SUB HIGH ORDER BYTES
0029 D2 97 SBC B BEGADR
2028 26 94 BNE PUN2 LOTS MORE TO PUNCH
go2p 81 1¢ CME A #16 LESS THAN 16 TO BUNCH?
202¢ 25 22 BCS PUN3
03l 86 @F PUN2 LDA A $15 N0, SO PUNCH 16
5833 97 63 DUN3 STA A NUMRYT RE 4OF BYTES TO PUNCH-1
0635 38 04 ADD A 44
@037 BD FF6D JSR OUT2H PUNCH BYTE COUNT
003a 28 INX BOINT TO BEGADR
038 8D 2F BSR PNCH? PUNCH ADDRESS
AA30 30 2D BSR PNCH2
2O3F DE @7 LDX 8EGADR POINT TO DATA
@031 30 29 PUN4 BSR PNCH2 PUNCH DATA
#343 7A JboB DEC NUMBYT MORE TO PUNCH THIS RECORD?

FL]

continued over

0346 2A FY &Pl PUN4 ;
A48 DF @7 STX B R S'IDRE WEW_START ADDRESS “
Ag4a 43 cov A RM 1'S COMP OF cm.cxsum
3948 BD FF6D JSR OUT2H PUNCH CHECKSUM
BA4E 79 DEX ARJUST POIN’I‘ER
AA4F 9C 99 CcPX LASADR ARE WE DON
2951 26 C3 BNE NO, KEEP ON PUNCHING
2853 Ch 53 LDA $'S YES, PUNCH EOF
2055 BD FFgl JSR QUTCH
3358 C6 39 DA B *g
2054 BD FF81 JSR B _
#95D 8D A3 8SR LEDTRL DUNCH TRATLER
825F JE FFAB JMp CRLF RETURN TO PROM MONITOR
* SUBROUTINE TO PUNCH 53 NULLS
0962 86 32 LEDTRL LDA A 459
2264 SF CLR B
@@65 BD FFBl LED1 JSR QUTCH PUNCH A NULL
2368 4A DEC A
0269 26 FA BNE LEDL KEEP PUNCHING
2668 39 " RTS RETURN TO CALLER
* PUNCH 2 HEX DIGITS POINTED
* TO BY X REG AND UPDATE CHECKSUM
2B6C B6 66 PNCHZ LDA B X GET BYTE 'IQ PUNCH
806E 1B ABA UPDATE CHECRSUM
PAGE 36 PSH A SAVE CHECKSUM
2e@70 17 TBA, COPY BYTE TO A
2871 BD FPsD JSR QUT2H PUNCH BYTE
ga74 32 PUL A RESTORE CHECRSUM
pA7S 23 g BUMP BYTE POINTER i
#a76 39 . RTS RETURN TO CALLER !
* READ ADDRESS FORM TTY INTO X REG q
3377 BD FF82 GETADR JSR TS SEND S
pa7a C6 3F iDA B V3 SEND QUESTION MARK
207C BD FF8l JSR OUTCH
237F BD FF62 JSR BADDR GET ADDRESS
2382 39 RTS RETURN
END
ERRORS 292200

28941

0092

093

0pa4

28095

Pava6

200d7

20903

adea9

a0p1o

28811

BaAA12

6913

pal4

30915 FFgl
peaLs FFeD
30917 FFg2
3418 FF82
99214 FFAB
28820

20021 0314

30422 0014 Redl
88923 2415 2aai
29224 8316 0091
20925 LT 3092
A6H206

Aga27 2919 8t Avl4
20028 9a1C BO Q053
#0829 PB1F DF 15
00839 (a2l BD 0853
#0031 @824 a8
00332 8925 DF 17
dp833 ¢o2] DE 15
aed34 2929 S5F
20235 832A E7 89
a6 992C £l 69
93037 00A2E 27 18
208238 2230 C6 20
29939 P@32 BD FF8l
99d48 2335 C6 AA
@2¢41 @337 BD Frol
20342 @234 DE 15
22043 983C 95 1
20044 A23E BD FEBD
0pA45 2941 9% 1
90046 @043 BD FF6D
20047 @046 20
#0048 0048 5C
28049 Pa49 26 OF
02958 aE4B ag
gaas1 ae4c 9C 17
09952 Ag4E 26 DI
Ba353 @459 TE FFAB
29854

08055

23956

22957

@2058 @53 BD FFB82
20059 9356 C6 3F
23060 8258 BD FFgl
#9961 @@58 BD FF62
P0gde2 BASE 39
w363

TOTAL ERRORS 98000

. NAM

MEMTEST

:*ALTAIR 6888 MEMORY TEST PROGRAM
* USE MONITOR'S J COMMAND TO START EXECUTION

* AT @219
ok

:*ENTER ADDRESS OF FIRST LOCATION 10 TEST
:*ENTER ADDRESS OF LAST ADDRESS TO TEST

* MONTTOR RCUTIN

ES
:*ADDRESSES ARE FOR ACIA VERSION OF MONITOR

QUTCH)
QUTZH)
BADDR)
QUTS
MONIT

*xk

STACK RMB
XHIGH RMB
LLOW RMB
&STBYT RMB
GO LDS

9
NXTBYT CLR B
NXTPAT STA B

L]

%77601
177542
177692
177653

R EAENE:

NXTPAT

LSTBYT
NXTBYT
MONIT

x REG HIGH ORDER
X REG LOW ORDER
LAST BYTE TO CHECK

INIT STACK POINTER
g%g FIRST ADDR

STOQ
POINT TO FIRST BYTE

WRITE TEST PATTERN

CHECK WRITTEN PATTERN

DID WE READ WHAT WE WROTE?
NO,SEND CR AND LF

@
STORE X REGISTER

PRINT HIGH BYTE OF ADDRESS
NT LOW BYTE OF ADDRESS

DONE WITH THIS BYTE

INCREMENT TEST PATTERN

ALL PATTERNS TESTED?
ES, BUMP BYTE POINTER

ALL BYTES TESTED?
YES, RETURN TO PROM MONITOR

o
: SUBROUTINE TO GET ADDRESS INTO X REG

GETADR .JSR
LbA B
JSR
JSR
RIS
END

OUTS
17
BADDR

]

PRINT A SPACE
PRINT A QUESTION MARK

GET ADDRESS
RETURN TO CALLING PROGRAM

WL
A28
0339
ARl
Bisul

bl
=
=3

JaF3
J9F3 FF

1
FFAB

2347 BD Fraz2
! 3F
J84F BD FF62

30F3
APE3 232

ERRORS 900972

o HAM DMp
:*_ALTA'IR G803 HEXADECIMAL MEMORY LYJMP PROGRAM
: LLOAD VIA PROM MONITOR

*USBI‘DNIIORSJCOMMAN O
* STARI‘ EXECUTION AT @6A5

:*ENTER ADDRESS OF FIRST BYTE TO DUMP
:*ENTER ADDRESS OF LAST BYTE TO DUMP
:*‘I‘YPEI ANY CHARACTER 0 ABORT WHILE RUNNING

:'CON‘K‘I'DL RETURNS TO THE PROM MONITOR

ORG gFB
FCB FF TURN QFF TTY ECHO DURING LOAD

*
* MONITOR ROUTINES
: ADDRESSES ARE FOR ACIA VERSION OF MONITOR
OUTCH U d177601
QUT2H @177555
BADDR %{U’ 8177542
OUTS 177692
MONIT EQU 8177653
POLCAT (I:;)%L;J 5177444
X8I RMB 1 TEMP FOR HIGH BYTE OF X
XLO RMB 1 TEMP FOR LOW BYTE OF X
LSTBYT RMB 2 ADDRESS OF LJ-\SI' BYTE ‘IO DuMp
COUNT RMB 1 COLUMN COUNTER
GO B5R GETADR GET FIRST ADDR

STX XHI STORE IT

BSR GETADR GET LAST ADCR

INX ADJUST IT

STX LSTBYT STORE IT

LD% XHL POINT TO FIRST BYTE
CRLE LDA B #4415 SEND CRLF

JSR OUTCH

LDA B $alz

JSR

LDA B $17

STA B COUNT INIT COUNTER

STX XHI PRINT ADDRESS

LDA A XTI

JSR it

LDA A XLO

JER QUT2H
NXTBY‘I‘ DEC COU

BEQ CRLF

JSR QUTS SEND A SPACE

LDA A X BYTE TO A

JSR oUT2H PRINT IT

INX BUMP POINTER

CPX LSTBYT ARE WE DO

BEDY JMONIT YES, RE‘I‘URN ’10 MONTTOR

JSR POLCAT NO, WANT TO QUIT?

B NXTBYT

Lpa A FgL YES, READ CHAR FROM BUFFER
gMDNIT JMP IT AND RETURN TO MONITOR

* GETADE LOADS X WITH ADDRESS
: READ FROM TTY

GETADR JSR oUTS SEND SPACE
LDA B §'2 SEND OUESTION MARK
JSR OUICH
JER BADDR GET ADDDRESS
. RTS RETURH
* RESTORE TTY ECHO AFTER LOAD
ORG F3
FCB a
END

appendix
A

Instruction Set

0

APPENDIX A

Definition of the Executable Instructions

A.1 Nomenclature

The following nomenclature is used in the subsequent definitions.

(a)

(b)

(c)

(d)

Operators

—

)

@O =t

[

I

contents of

is transferred to

**is pulled from stack”
*‘is pushed into stack’’
Boolean AND

Boolean (Inclusive) OR
Exclusive OR

Boolean NOT

Registers in the MPU

ACCA = Accumulator A

ACCB = Accumulator B

ACCX = Accumulator ACCA or ACCB

cC = Condition codes register

IX = Index register, 16 bits

IXH = Index register, higher order 8 bits

IXL = Index register, lower order 8 bits

PC Program counter, 16 bits

PCH = Program counter, higher order 8 bits

PCL = Program counter, lower order 8 bits

SP = Stack pointer

SPH = Stack pointer high

SPL = Stack pointer low

Memory and Addressing

M = A memory locaticn (one byte)

M +1 = The byte of memory at 0001 plus the address of the memory
location indicated by *'M."”

Rel = Relative address (i.e. the two’s complement number stored

in the second byte of machine code corresponding to a
branch instruction.

Bits O thru 5 of the Condition Codes Register

= ZN<anN

[t

Carry — borrow bit — 0

Two’s complement overflow indicator bit — 1

Zero indicator bit — 2

Negative indicator bit — 3

Interrupt mask bit — 4

Half canmy bit — 5
Al

ey Status of Individual Bits BEFORE Execution of an Instruction

An
Bn
IXHn
IXLn
Mn
SPHn
SPLn
Xn

=

Bit n of ACCA (n=7,6,5,....0)
Bi1 n of ACCB (n=7,6,5,...,0)
Bit n of EXH (n=7,6.5,... 1)
Bit n of [XL (n=76,5,...,0)
Bit n of M (n=7,6.,5,....00

Bit n of SPH (n=7,6,5,...,0)
Bit n of SPL (n=7,6,5,....0)
Bit n of ACCX (n=7,6,5,...,0)

(1} Status of Individual Bits of the RESULT of Execution of an Instruction
() For 8-bit Results
Rn

= Bit n of the result (n =7,6,5,...,0)

This applies to instructions which provide a result con-
tained in a single byte of memory or in an 8-bit register.

(i) For 16-bit Results
RHn = Bit n of the more significant byte of the result

(n =7,6,5,... 0)

RLn = Bit n of the less significant byte of the result

(n =7,6,5,...0)

This applies to instructions which provide a result con-
tained in two consccutive bytes of memory or in a 16-bit
register.

A.2 Executable Instructions (definition of)

Deetailed definitions of the 72 executable instructions of the source language are

provided on the following pages.

A2

Add Accumulator B to Accumulator A ABA
Operation: ACCA « (ACCA) + (ACCB)

Description: Adds the contents of ACCB to the contents of ACCA and
places the result in ACCA.

Condition Codes: H: Set if there was a carry from bit 3; cleared otherwise.

I; Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the resuli are cleared; cleared otherwise.

V: Setif there was two's complement overflow as a result of
the operation; cleared otherwise.

C: Set if there was a carry from the most significant bit of
the result; cleared otherwise.

Boolean Formulae for Condition Codes:
H = A3.Ba+Ba.Rs. +Ra.Aq
N=R_
Z = R: ReRs.ReRe Re.RiRo
V = Ar.Br.Rs+A7Be.Rs
C = A7.B:+Br.R:+R1. Ay

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal:

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Inherent 2 1 1B 033 027

A-3

ADC Add with Carry
Operation; ACCX « (ACCX) + (M) + (C)
Description: Adds the contents of the C bit to the sum of the contents of

ACCX and M, and places the result in ACCX.

Condition Codes: H Set if there was a carry from bit 3; cleared otherwise.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Set if there was a carry from the most significant bit of
the result; cleared otherwise,

Boolean Formulae for Condition Codes: _
H = X3 Ma+M;.Ra+R3.Xa

Z = R71.Re.Rs.Re.Ra.Rz.R1.Ro
V= X-:.Mw.R'I‘F}i?.M"w_.R‘J
C = X7.M7+M7.R7+R7. X7

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. { OCT. | DEC.
A IMM 2 2 89 211 137
A DIR 3 2 99 231 153
A EXT 4 3 B9 27 185
A IND 5 2 A9 251 169
B IMM 2 2 c9 311 201
B DIR 3 2 D9 331 217
B EXT 4 3 Fo 371 249
B IND 5 2 E9 asi 233

A4

Add Without Carry ADD

Operation:

Description:

Condition Codes:

ACCX « (ACCX) + (M)

Adds the contents of ACCX and the contents of M and places
the results in ACCX.

H: Set if there was a carry from bit 3; cleared otherwise.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise,

Z: Set if all bits of the result are cleared; cleared otherwise.

V. Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

€: Setif there was a carry from the most significant bit of
the result; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing Formats:
See Table A-1

Addressing Modex,
decimal);

(DUAL OPERAND)

H = Xa.Ms+Ma. R +Rs. X3

Z= ﬁ-r.ﬁu.ﬁ_s.i:ﬁa_._ﬁz._lh.ﬁo
V= X-r.M1.R7+}£1.Mi.R7
C =X7.M:+M:7 R +R7. X5

Execution Time, and Machine Code (hexadecimalfoctal/

Coding of First (or only)
Number of byte of machine code
Addressing { Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 8B 213 139
A DIR 3 2 9B 233 155
A EXT 4 3 BB 273 187
A IND 5 2 AB 253 171
B IMM 2 2 CB 313 203
B DIR 3 2 DB 333 219
B EXT 4 3 FB 373 251
B IND 5 2 EB 353 235

A5

AND Logical AND

Operation: ACCX — (ACCX) (MY

Description: Pertorms logical ‘“AND"" between the contents of ACCX
and the contents of M and places the result in ACCX, (Each
bit of ACCX after the operation will be the logical **AND"’
of the corresponding bits of M and of ACCX before the
operation.)

Condition Codes: H: Not affected.

I Not affected.

N: Set if most significant bit of the resuit is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V. Cleared.

C: Not affected.

Boelean Formulae for Condition Codes:;

N=R _ _ _ __
Z =R:ReR:sRaRsReRiRo
V=0

Addressing Formats:
Sec Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctalf
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 84 204 132
A DIR 3 2 94 224 148
A EXT 4 3 B4 264 180
A IND 5 2 Ad 244 164
B IMM 2 2 C4 304 196
B DIR 3 2 D4 324 212
B EXT 4 3 F4 364 244
B IND 5 2 B4 44 228

A-6

Arithmetic Shift Left ASL

[Cl=[_1I

Operation:

TT T T T°T 1 o

b bu

Description: Shifts all bits of the ACCX or M one piace to the left. Bit O is
loaded with a zero. The C bit is loaded from the most
significant bit of ACCX or M,

Condition Codes: H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.,

V: Set if, after the completion of the shift operation,
EITHER (N is set and C is cleared) OR (N is cleared and
C is set); cleared otherwise.

C: Setif, before the operation, the most significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:
N=R+_
Z =_R7.§5.E5.R4.Ra_.R2.R1_.Ro
V=N® C=[NIOINC
(the foregoing formula assumes values of N and C after
the shift operation)
C =M-
Addressing Formats

See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimat):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 48 110 072
B 2 1 58 130 088
EXT 5 3 78 170 120
IND 7 2 68 150 104

A-7

ASR Arithmetic Shift Right

Operation: I | o
LT T T T T 11T]J—=c

br bo

Description: Shifts all bits of ACCX or M one place (o the right. Bit 7 is
held constant. Bit O is loaded into the C bit.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result is set; cleared
otherwise.

Z: Set if ali bits of the result are cleared; cleared otherwise.

V. Set if, after the completion of the shift operation,
EITHER (N is set and C is cleared) OR (N is cleared and
C is set); cleared otherwise.

C: Setif, before the operation, the least significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Z =R7.Re.Rs.R4.R3.Rz.R1.Re
V=N@C = [N.CJ]O[N.C]

(the foregoing formula assumes values of N and C after
the shift operation)
C =M
Addressing Formats:
See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 47 107 071
B 2 1 57 127 087
EXT 6 3 77 167 119
IND 7 2 67 147 103

A8

Branch if Carry Clear
PC «— (PC) + 0002 + Rel it (C)=0
Tests the state of the C bit and causes a branch if C is clear,

Operation;
Description;

Condition Codes:

BCC

See BRA instruction for further details of the execution of the

branch.
Not affected.

Addressing Formats:

See Table A-8.
Addressing Modes, Execution Time, and Machine Code (hexedecimalfoctal/
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 24 044 036

Branch if Carry Set

Operation;

Description:

Condition Codes:

PC « (PC) + 0002 + Rel if (O)=1
Tests the state of the C bit and causes a branch if C is ser,
See BRA instruction for further details of the execution of the

branch.
Not affected.

Addressing Formats:

BCS

See Table A-8.
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 25 045 037

A9

BEQ

Operation:
Description:

Branch if Equal
PC « (PC) + 0002 + Rel if (Z)=1
Tests the state of the Z bit and causes a branch if the Z bit is
set.

See BRA instruction for further details of the execution of the
branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Addressing Modes, Exccution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 27 047 039

-

Branch if Greater than or Equal to Zero BGE

COperation:

Description:

PC— (PC) 4 0002 4 Rel if (N} (D (V) = @
i.c. if (ACCX) = (M)
(Two's complement numbers)

Causes a branch if (N is setand V is se) OR (N is clearand V
is clear).

If the BGE instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two's complement
number represented by the minuend (i.e. ACCX) was greater
than or equal to the two’s complement number represented by
the subtrahend (i.e. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.
Addressing Formats:

See Tahle A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX, | OCT. | DEC.
REL 4 2 2C 054 044
A-11

BGT
Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

Branch if Greater than Zero
PC «— (PC) + 0002 + Rel if @) O [(N) @ (V)] = 0
i.e. if (ACCX) > (M)
(two’s complement numbers)
Causes a branch if [Z is clear | AND [{N is set and V is set)
OR (N is clear and V is clear)].

If the BGT instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the iwo's complement number
represented by the minuend (i.¢. ACCX) was greater than the
two's complement number represented by the sobtrahend
(i.e. M).

See BRA instruction for details of the branch.

Not affected.

Execution Time, and Machine Code (hexadecimalfoctal/

Addressing | Execution Time hytes of
Modes (No. of cycles) | machine code | HEX, | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 2E 056 046

A-l2

-

Branch if Higher

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

BHI

PC «~ (PC} + 0002 + Rel if (C) . (#)=0
j.e. if (ACCX) = (M)

(unsigned binary numbers)
Causes a branch if (C is clear) AND (Z is clear).
If the BHI instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the unsigned binary number
represented by the minuend (i.e. ACCX) was greater than the
unsigned binary number represented by the subtrahend (i.e.
M.

See BRA instruction for details of the execution of the
branch.

Not affected.

Execution Time, and Machine Code (hexadecimalioctal/

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 22 042 034

A-13

BIT Bit Test

Operation: (ACCX) . (M)

Description: Performs the logical ** AND™ comparison of the contents of
ACCX and the contents of M and modifies condition: codes
accordingly. Neither the contents of ACCX or M operands
are affected. (Each bit of the result of the **AND’” would be
the logical “*‘AND" of the corresponding bits of M and
ACCX.)

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the ** AND’”
would be set; cleared otherwise.

Z: Set if all bits of the result of the “*AND"" would be
cleared; cleared otherwise.

V: Cleared.

C:. Not affected.

Boolean Formulae for Condition Codes:

N=R:__ _ _ _ _ _
Z = R7.Re.Rs.Re.Rs.R2.R1.Re
V=0

Addressing Formats:
See Table A-1.

Addressing Modes, Execytion Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes {No. of cycles) | machine code | HEX. OCT. | DEC.
A IMM 2 2 85 205 133
A DIR 3 2 95 225 149
A EXT 4 3 BS 265 181
A IND 5 2 AS 245 165
B IMM 2 2 (o4 305 197
B DIR 3 2 D5 325 213
B EXT 4 3 F5 365 245
B IND 5 2 ES 345 229

A-14

Branch if Less than or Equal to Zero BLE

Operation:

Description:

PO« (PC) + (002 + Rel if () UNy (B (V)]=1
re. il {ACCX) s (M)

{two’s complement numbers)
Causes a branch if [Z is set] OR [(Nis set and V is cleat) OR
(N is clear and V is set}].
If the BLE instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two’s complement number
represented by the minuend (i.e. ACCX) was less then or
equal to the two’s complement number represented by the
subtrahend (i.e. M}.

See BRA instruction for details of the branch.

Condition Codes: Not affected.
Addressing Formats:

See Table A-R,

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctalf/

decimal};
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2F 057 047
A-15

BLS

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

Branch if Lower or Same
PC « (PC) + 0002 + Rel if (CYCHD) = |
i.e. if (ACCX) = (M)
{unsigned binary numbers)
Causes a branch if {C is set) OR (Z is set).
If the BLS instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the unsigned binary number
represented by the minuend {i.e. ACCX) was less than or

equal to the unsigned binary number represented by the
subtrahend (i.e. M).

See BRA instruction for details of the execution of the
branch.

Not affected.

Execution Time, and Machine Code (hexadecimalfoctal/

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 23 043 035

A16

Branch if Less than Zero BLT

Operation:

Description:

PC «- (PC) + 0002 + Rel if (N) () (V) = |
i.e. if (ACCX) < (M)
(two’s complement numbers)

Causes a branch if (N is set and V is clear) OR (N is clear and
V is set).

If the BLT instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, §BA, or SUB, the
branch will occur if and only if the two’s complement number
represented by the minuend (i.e. ACCX) was less than the
two’s complement number represented by the subtrahend
(i.e. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.
Addressing Formais:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2D 055 045
A-17

Operation;

Branch if Minus
PP 4 0002 4 Rel il tNy 1
Description; Tests the state of the N bit and causes a branch if N is set,

See BRA instruction for details of the execution of the
branch.
Condition Codes: Not affected.
Addressing Formats:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2B 053 043

BNE

Operation:

Branch if Not Equal

PC « (PC) + 0002 + Rel if (Z) = ¢

Tests the state of the Z bit and causes a branch if the Z bit is
clear.

Description:

See BRA instruction for details of the execution of the
Branch.
Condition Codes: Not affected.
Addressing Formats:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimalioctal/
decimal):

Coding of First {or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 26 046 038

A-18

C

Branch if Plus
Operation:

Description:

Condition Codes:

Addressing Formats:

PC «— (PC) + 0002 + Rel if (Ny =0
Tests the state of the N bit and causes a branch if N is clear.

E;-ce BRA instruction for details of the execution of the
branch.

Not affected.

See Table A-8.
Addressing Modes, Execution Time, and Machine Code (hexadecimalfovtalf
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code [HEX, | OCT. | DEC.
REL 4 2 2A 052 042

Branch Always

Operation:
Description:

Condition Codes:

Addressing Formats:

See Table A-8.

BRA

PC «— (PC) + 0002 + Rel

Unconditional branch to the address given by the foregoing
formula, in which R is the relative offset stored as a two's
complement number in the second byle of machine code
comesponding to the branch instruction.

Note: The source program specifies the destination of any
branch instruction by its absoluie address, either as 2 numeri-
cal value or as a symbol or expression which can be numeri-
cally evaluated by the assembler. The assembler obtains the
relative address R from the absolute address and the current
value of the program counter PC.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.
REL 4 2 20 040 032
A-19

BSR

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Branch to Subroutine
PO~ (PC) + XX2
1 (pcL)
SP «— (5P) — 0001
1 (PCH)
SP « (5P — 0001
PC «— (PC) + Rel
The program counter is incremented by 2. The less signifi-
cant byte of the contents of the program counter is pushed
into the stack. The stack pointer is then decremented (by 1).
The more significant byte of the contents of the program
counter is then pushed into the stack. The stack pointer is

again decremented {by 1). A branch then occurs to the
location specified by the program.

SEE BRA instruction for details of the execution of the
branch.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC,

Coding of First (or only)
Number of byte of machine code

REL

8 2 8D 215 141

A-20

Branch to Subroutine

EXAMPLE
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A. Before
PC « $1000 8D BSR CHARLI
$1001 50
SP < SEFFF
B. After
PC « $1052 ** CHARLI R *ddok
SP « SEFFD
$EFFE 10
$EFFF 02

BVC

Branch if Overflow Clear

‘ Operation: PC « (PC) + 0062 + Relif (V) = 0
(./‘ Description: Tests the state of the V bit and causes a branch if the V bit is
clear.
See BRA instruction for details of the execution of the
branch.
Condition Codes: Not affected.

Addressing Formats:

See Table A-8.
Addressing Modes, Execution Time, and Machine Code {hexadecimal/octal/
decimaly:
Ceding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.
REL 4 2 28 050 040
A-21

BVS Braach if Overflow S;:t

Operation: PC «— (PC) + 0002 + Rel if (V) =1
Description; Tests the state of the V bit and causes a branch if the V bit is
set.

See BRA instruction for details of the execution of the
branch.

Condition Codes: Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 29 051 041

A-22

Compare Accumulators CBA
Operation: (ACCA) — (ACCB)

Description: Compares the contents of ACCA and the contents of ACCB
and sets the condition codes, which may be used for arith-
metic and logical conditional branches. Both operands are
unaffected.

Condition Codes: H: Not affected,

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion would be set; cleared otherwise.

Z: Set if all bits of the result of the subtraction would be
cleared; cleared otherwise.

V: Set if the subtraction would cause two's complement
overflow; cleared otherwise.

C: Set if the subtraction would reguire a borrow into the
most significant bit of the result; clear otherwise.

Boolean Formulae for Condition Codes;
N =R: _
Z = R7.:Rs.gs.l_l4.ﬁ3.§2.§x.Ro
V = A B:R:+A7.Bw.Rs

C = A7.B:+B7.Rr+R7. A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes {No, of cycles} | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 11 021 017

A-23

CLC

Operation:

Description:

Cohit e)

Clear Carry

Clears the carry bit in the processor condition codes register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected,
V: Not affected.
C: Cleared
Boolean Formulae for Condition Codes:
C=0
Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No, of cycles} | machine code | HEX, | OCT. { DEC.
INHERENT 2 1 ocC 014 ot2
CLI Clear Interrupt Mask
Operation: I bit «= 0
Description: Clears the interrupt mask bit in the processor condition codes

register. This enables the microprocessor to service an inter-
rupt from a peripheral device if signalled by a high state of the
“*Interrupt Request™ control input.

Condition Codes: H: Not affected.
I: Cleared.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected,
Booclean Formulae for Condition Codes:
1 =0
Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 0E 016 014

A-24

Clear CLR

Operation: ACCX « 00
or: M« 00
Description: The contents of ACCX or M are replaced with zeros.

Condition Codes: H: Not affected.
I. Not affected.
N: Cleared
Z: Set

V: Cleared

C: Cleared

Boolean Formuiae for Condition Codes:
N=0
Z =1

0
0

I’}

\%
C
Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing { Execution Time bytes of
Modes (No. of cycles) | machine code! HEX. | OCT.| DEC.
A 2 1 4F 117 079
B 2 1 5F 137 095
EXT 6 3 7F 177 127
IND 7 2 6F 157 11

A-25

CLv

Operation: Vbite 0

Clear Two’s Complement Gverflow Bit

Description: Clears the two's complement overflow bit in the processor
condition codes register.

Condition Codes:

: Not affected.

Not affected.

. Not affected,

1 Cleared.

H

I

N: Not affected.
Z:

v

C: Not affected.
Boolean Formulae for Condition Codes:

V=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 0A 012 010

A-26

Compare CMP

Operation: (ACCX) ~ (M)

Descriplion: Compares the contents of ACCX and the contents of M and
determines the condition codes, which may be used sub-

sequently for controlling conditional branching. Both
operands are unaffected,

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion would be set; cleared otherwise,

Z: Set if all bits of the result of the subtraction would he
cleared; cleared otherwise.

V: Set if the subtraction would cause two's complement
overtlow; cleared otherwise.

C: Carry is set if the absolute value of the contents of
memory is larger than the absolute value of the ac-
cumulator; reset otherwise.

Boelean Formulae for Condition Codes:

7 = Ry.Rs.Rs.Re.Rz2.Re.R1.Ro
v = X7.M7 R1+X7.M7.R7
C = X7 M7+M7.R+.R7. X7

Addressing Formats:
See Table A-I.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execuation Time bytes of
Modes {No. of cycles) | machine code| HEX. | OCT. | DEC.
A IMM 2 2 81 201 129
A IDR 3 2 ot 221 145
A EXT 4 3 Bi 261 177
A IND 5 2 Al 241 161
B IMM 2 2 C1 301 193
B DIR 3 2 [8] 321 209
B EXT 4 3 F1 361 241
B IND 5 2 El 341 225
A-27

COM Coml-llement

Operation: ACCX « = (ACCX) = FF — (ACCX)
or: M « = (M) = FF — (M)
Description: Replaces the contents of ACCX or M with its one’s comple-

ment. (Each bit of the contents of ACCX or M is replaced
with the complement of that bit.)

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Z: Setif ali bits of the result are ¢leared; cleared otherwise.
V: Cleared.
C: Set.

Boolean Formulae for Condition Codes:

Z =Rr.ReRs.ReRsR:Ri Ro
V=0
CcC=1

Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctalf
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.
A 2 1 43 103 067
B 2 1 53 123 083
EXT 6 3 73 163 15
IND 7 2 63 143 099

A-28

Compare Index Reglster CPX

(,/ Operation: Xty Ml
(IXH)y - (M)

Description: The more significant byte of the contents of the index register
is compared with the contents of the byte of memory at the
address specified by the program. The less significant byte of
the contents of the index register is compared with the con-
tents of the next byte of memory, at one plus the address
specified by the program. The Z bit is set ot reset according to
the results of these comparisons, and may be used sub-
sequently for conditional branching.

The N and V bits, though determined by this operation, are
not intended for conditional branching.

The C bit is not affected by this operation.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion from the more significant byte of the index register
would be set; cleared otherwise.

Z: Setif all bits of the results of both subtractions would be
cleared; cleared otherwise.

V: Set if the subtraction from the more significant byte of

N the index register would cause two’s complement over-
e flow; cleared otherwise,
C: Not affected.

Booiean Formuiae for Condition Codes:

(RL7.RL¢ RLs.RL4.RLz.RL2.RLi.RLo)
V = IXH7.M7.RH7+]XH7.M».RH7

Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

MM 3 3 8C 214 140
DIR 4 2 9C 234 156
EXT 5 3 BC 274 188
IND 6 2 AC 254 172

(_‘/ A29

DAA

Decimal Adjust ACCA

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also
set the carry bit, as indicated in the following table;

State Number | State of
C-bit Upper Initial Lower Added C-bit
before | Half-byte Half-carry Half-byte to ACCA after
DAA | (bits 4-7) H-bit (bits 0-3) by DAA DAA
(Col. 1) | (Col. 2) (Col. 3) (Col. 4) {Col. 5 | (Col. §)
0 0-9 0 0-9 00 1]
\] 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
0 A-F Q 0-9 60 1
0 9.F 0 A-F 66 1
0 A-F 1 0-3 66 1
| 0-2 0 0-9 60 i
l 0-2 0 A-F 66 1
) 0-3 1 0-3 66 1

Note: Columns (1} to (4) of the abave table represent all possible cases which can
tesult from any of the operations ABA, ADD, or ADC, with initial carry
either set or clear, applied to two binary-coded-decimal operands. The table
shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry-borrow bit C and the
half-carry bit H are all the result of applying any of the operations
ABA, ADD, or ADC to binary-coded-decimal operands, with or
without an initial carry, the DAA operation will function as follows.

Subject to the above condition, the DAA operation will adjust the
contents of ACCA and the C bit to represent the correct binary-
coded-decimal sum and the correct state of the carry.

Condition Codes: H:

L
N:

Qam

Not affected.
Not affected.

Set if most significant bit of the result is set; cleared other-

wise,

. Set if all bits of the result are cleared; cleared otherwise.
; Not defined.
. Set or reset according to the same rule as if the DAA and an

immediately preceding ABA, ADD, or ADC were replaced
by a hypothetical binary-coded-decimal addition.

A-30

(-

Boolean Formulae for Condition Codes:
N = R

7 Rs.RoRaRiR:R:z:Ri Ro
' See lable above.

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes {Neo. of cycles) | machine code| HEX. | OCT.| DEC.

INHERENT 2 1 19 031 025

Decrement D EC

Operation: ACCX « (ACCX) — 01
or M« M) -0
Description: Subtract one from the contents of ACCX or M.

The N, Z, and V condition codes are set or reset according to
the resolts of this operatton.

The C bit is not affected by the operation.

Condition Codes: H: Not affected.

I. Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Set if there was two's complement overflow as a result of
the operation; cleared otherwise. Two’s complement
overflow occurs if and only if (ACCX) or (M) was 80
before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:

Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Caoding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. { OCT.| DEC.
A 2 1 4A 112 074
B 2 1 5A 132 090
EXT 6 3 A 172 122
IND ¥ 2 6A 152 106
A-31

Decrement Stack Point

DES

Operation: SP «— (SP) — 000}
Subtract one from the stack pointer.

Not affected.

Description:
Condition Codes:

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal);

Coding of First {or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 1 34 064 052
DEX Decrement Index Register
Operation: IX « (IX) — 0001
Description: Subtract one from the index register

Condition Codes: H:

Only the Z bit is set or reset according to the result of this

operation.

N:
Zz

Not affected.
: Not affected.
Not affected.

: Set if all bits of the result are cleared; cleared otherwise.

V: Not affected.

a2

Not affected.

Boolean Formulae for Condition Codes:

Z = (RH+.RHs.RH:.RH4.RHs .RHz.RH1.RHo).

(RL7.RLs RLs.RL+.RL3.RLz.RL1.RLo)

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 I 09 011 009

A-32

Exclusive OR EOR
Operation: ACCX « (ACCX) (M)
Description: Pertorm logical "*EXCLUSIVE OR*" between the contents

of ACCX and the contents of M, and place the result in
ACCX. (Each bit of ACCX after the operation will be the
logical (EXCLUSIVE OR" of the corresponding bits of M
and ACCX before the operation.)

H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Cleared

C: Not affected.

Boolean Formulae for Condition Codes:

Condition Codes:

N=R__ _ __ _ _
Z = R7.R4.R5.R4.Rs.Rz.R1.Ro
v=0

Addressing Formars:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
A IMM 2 2 88 210 136
A DIR 3 2 98 230 152
A EXT 4 3 B3 270 184
A IND 5 2 A8 250 168
B IMM 2 2 Ccs 310 200
B DIR 3 2 D8 330 216
B EXT 4 3 F8 370 248
B IND 5 2 E8 350 232

l NC Increment

Operation: ACCX «— (ACCX) + 01
or: M« (M) + 01
Description: Add one to the contents of ACCX or M.

The N, Z, and V condition codes are set ot reset according to
the results of this operation.

The C bit is not affected by the operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise,
Z: Setif all bits of the result are cleared, cleared otherwise.
V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise. Two’s complement
overflow will oceur if and only if (ACCX) or (M) was 7F
before the operation,
C: Not affected.
Boolean Formulae for Condition Codes:
N =R»
Z =R ReRs.ReRsRe.RiRo
V = X7.X6.X5.X4.X3.X2.X1.Xo

= R7.R¢.Rs.Rs.R3.Rz.R1.Ro
Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or onty)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
A 2 1 4C 114 076
B 2 1 5C 134 092
EXT 6 3 ic 174 124
IND 7 2 6C 154 108

A-34

Increment Stack Pointer
SP « (SP) + 0001
Add one to the stack pointer,

Operation:
Description:

Condition Codes:

Not affected.

INS

Addressing Modes, Execution Time, and Machine Code (hexadecimalioctal/

decimal);
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
INHERENT 4 1 31 061 049

Increment Index Register
1X < (IX) + 0001
Add one to the index register.

Operation:
Description:

Condition Codes: H:

INX

Only the Z bit is set or reset according to the result of this

operation.

Not affected.

I. Not affected.
N: Not affected.
Z: Set if all 16 bits of the result are cleared; cleared other-

wise.

V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:

Z = (RHz RHs.RHs RH«.RH3.RHz.RHi.RHs).

(RL:.RLs.RLs.RL4+.RLa.RL:. RL:.RLo)

Addressing Modes, Execution Time, and Machine Code (hexadecimai/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execntion Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 | 08 010 008

A-35

JMP Jump

Operation: PC « numerical address

Description: A jump occurs to the instruction stored at the numerical
address. The numerical address is obtained according to the
rules for EXTended or INDexed addressing.

Condition Codes: Not affected.
Addressing Formats;
See Table A-7.

Addressing Modes, Execution Time, and Machine Code (hexadecimaifocial/
decimal):

Coding of First {or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

EXT 3 3 TE 176 126
IND 4 2 6E 156 110

A-36

Jump to Subroutine

Operation:
Either:
or:

Then:

Condition Codes:
Description:

Addressing Formats:
See Table A-7.

JSR

PC « (PC) + 0003 (for EXTended addressing)
PC « (PC) + 0002 (for INDexed addressing)
| (PCL)

SP « (SP)y — 0001

1 (PCH)

SP « (§P) — 0001

PC < numerical address

Not affected.

The program counter is incremented by 3 or by 2, depending
on the addressing mode, and is then pushed onto the stack,
eight bits at a time. The stack pointer points to the next empty
location in the stack. A jump occurs to the instruction stored
at the numerical address. The numerical address is obtained
according to the rules for EXTended or INDexed addressing.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal);
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
EXT 9 3 BD 215 139
IND 8 2 AD 255 173

Jump te Subroutine

EXAMPLE (extended mode)

Memory Machine

Assembler Language

Location Code (Hex) Label Operator Operand
A. Before:
PC — $0FFF BD ISR CHARLI
$1000 20
$1001 77
SP « S$EFFF
B. Afier:
PC — 352077 ok CHARLI i Aokt
S — 3EFFD
$EFFE 10
$EFFF 02

A-38

Load Accumulator LDA
Operation; ACCX « (M)
Description; Loads the contents of memory into the accumulator. The

condition codes are set according to the data.

: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared
otherwise.

Set if all bits of the result are cleared; cleared otherwise.
: Cleared.

Not affected.

Boolean Formulae for Condition Codes:
N =R,

Z= §1.R8.R5.R4.R3.R2.R1.Ro
V=0

Condition Codes:

Q<N z~-m

Addressing Formats;
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

DUAL OPERAND}

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. OCT. | DEC.
A MM 2 2 86 206 134
A DIR 3 2 96 226 150
A EXT 4 3 B6 266 182
A IND 5 2 A6 246 166
B IMM 2 2 Cc6 306 198
B DIR 3 2 D6 326 214
B EXT 4 3 F6 366 246
B IND 5 2 E6 346 230

A39

LDS Load Stack Painter

Operation: SPH « (M)
SPL «— (M+1)
Description: Loads the more significant byte of the stack pointer from byte

of memory at the address specified by the program, and loads

the less significant byte of the stack pointer from the next

byte of memory, at one plus the address specified by the

program.

Condition Codes: H: Not affected.

I. Not affected.

N: Setif the most significant bit of the stack pointer is setby
the operation; cleared otherwise.

Z: Set if all bits of the stack pointer are cleared by the
operation; cleared otherwise.

V: Cleared.

C: Not affected.

Beolean Formulae for Condition Codes:
N = RH7

(RL7.RLe.RLs.RL+.RLa.RL:.R1: RLo)
V=0
Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time hytes of
Modes (No. of cycles) | machine code | HEX, | OCT, | DPEC.

IMM 3 3 8E 216 142
DIR 4 2 SE 236 158
EXT 5 3 BE 276 190
IND 6 2 AE 256 i74

A-40

Load Index Register LDX
Opcration: IXH «~ (M}

IXL +— (M + 1)
Description: Luads the more significant byte of the index register from

byte of memory at the address specified by the program, and

toads the less significant byte of the index register from the

next byte of memory, at one plus the address specified by the

program,

Condition Codes: N: Not affected.

I Not affected.

N: Set if the most significant bit of the index register is set
by the operation; cleared otherwise.

Z: Set if all bits of the index register are cleared by the
operation; cleared otherwise.

V: Cleared,

C: Not affected.

Boolean Formulae for Condition Codes;
N = RH-

V=0
Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code| HEX. | OCT. | DEC.
MM 3 3 CE 316 206
DIR 4 2 DE 136 222
EXT 5 3 FE 376 254
IND 6 2 EE 356 238

A4l

LSR Logical Shift Right

Operation: 0~____|]|’|l|l|""

b bo

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is
loaded with a zero. The C bit is loaded from the least
significant bit of ACCX or M.

: Not affected.

Not affected.

Cleared.

Set if all bits of the result are cleared; cleared otherwise.

: Set if, after the completion of the shift operation,
EITHER (N is set and C s cleared) OR (N is cleared and
C is set); cleared otherwise.

C. Setif, before the operation, the least significant bit of the

ACCX or M was set; cleared otherwise.

Condition Codes:

<Nzom

Boolean Formulae for Condition Codes:
N =
L= if.icis.ﬁd.ﬁa.iz.il.ﬁo
Vo= N@ C= [N.E]O[N.C]
{the foregoing formula assumes values of N and C after
the shift operation).
C = Mo
Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal);

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX, | OCT. | DEC.

A 2 1 4“4 104 068
B 2 1 54 124 084
EXT 6 3 T4 164 116
IND 7 2 64 144 100

A42

.

Negate NEG

Operation: ACCX «— — (ACCX) = 00 — (ACCX)
or: Me - (M)=00- (M)
Description: Replaces the contents of ACCX or M with its two’s comple-

ment. Note that 80 is left unchanged.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Set if ail bits of the result are cleared; cleared otherwise.
: Set if there would be two's complement overflow as a
result of the implied subtraction from zero; this will
occur if and only if the contents of ACCX or M is 80,
C: Setif there would be a borrow.in the implied subtraction
from zero; the C bit will be set in all cases except when
the contents of ACCX or M is 00.

Boolean Formulae for Condition Codes:

Condition Codes:

<N

V¥V = R7.Re.Rs.R¢.Rz.R2.R1.Re
C =Rs+Rs+Rs+Rs+R3+Rz+R1+Ro

Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

A 2 1 40 100 064
B 2 1 50 120 080
EXT 6 3 70 160 112
IND 7 2 60 140 096

A-43

NOP No Operation

Description: This is a single-word instruction which cavses only the prog-
ram counter to be incremented. No other registers are af-
fected.

Condition Codes: Not affected.

Addressing Modes, Execution Thne, and Machine Code (hexadecimal/octal/
decimal);

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

INHERENT 2 1 01 001 001

A-d4

Inclusive OR o ORA

Operation: ACCX e (ACCX)y(M)

Description: Perform logical **OR"’ between the contents of ACCX and
the contents of M and places the result in ACCX., (Each bit of
ACCX after the operation will be the logical ““OR"’ of the
corresponding bits of M and of ACCX before the operation).

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Z: Setif all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

N = E? _______
Z = R7.Rs.Rs.R4.R:. Rz R1.Re
V=0

Addressing Formats:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code] HEX. | OCT. | DEC.
A IMM 2 2 8A 212 138
A DIR 3 2 9A 232 154
A EXT 4 3 BA 272 186
A IND 5 2 AA 252 170
B IMM 2 2 CA 312 202
B DIR 3 2 DA 332 218
B EXT 4 3 FA 372 250
B IND 5 2 EA 352 234

A-45

PSH

Operation:

Description:

Condition Codes:

Addressing Formats:

See Table A4,

Push Data Onto Stack
L (ACCX)
SP « (SP) — 0001
The contents of ACCX is stored in the stack at the address

contained in the stack pointer. The stack pointer is then
decremented.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX.| OCT. | DEC.
A 4 1 36 066 054
B 4 1 37 067 055
PUL /Pull Data from Stack
QOperation: SP « (SP) + 0001
1 ACCX
Description: The stack pointer is incremented. The ACCX is then loaded
from the stack, from the address which is contained in the
stack pointer.
Condition Codes: Not affected.
Addressing Formats:
See Table A-4,
Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
A 4 1 32 062 050
B 4 1 33 | o063 | os1

A-46

Rotate Left

ROL

Operation: "'_'I | | l I I | l:l"—
1]

Description:

Condition Codes:

b

Shifts all bits of ACCX or M one place to the left. Bit 0 is
loaded from the C bit. The C bit is loaded from the most
significant bit of ACCX or M.

C:

: Not affected.

Not affected.

Set if most significant bit of the result is set; cleared
otherwise.

Set if all bits of the result are ¢leared: cleared otherwise.

¢ Setif, after the completion of the operation, EITHER (N

is set and C is cleared) OR (N is cleared and C is set);
cleared otherwise.

Setif, before the operation, the most significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Addressing Formats:
See Table A-3

N

=Rz

V=N@C = [NCp(N.c)

C

(the foregoing formula assumes values of N and C after
the rotation)
= M

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal);
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code| HEX. | OCT.| DEC.

A 2 1 49 111 073

B 2 1 59 131 089

EXT 6 3 79 1 121
IND 7 2 69 151 105

A-47

ROR Rotate Right
Operstons [(—-CTTTITTTT—[d

bs

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is
loaded from the € bit. The C bit is loaded from the least
significant bit of ACCX or M.

H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared

otherwise.

Set if all bits of the result are cleared; cleared otherwise.

: Setif, after the completion of the operation, EITHER (N
is set and C is cleared) OR (N is cleared and C is set);
cleared otherwise.

C: Setif, before the operation, the least significant bit of the

ACCX or M was set; cleared otherwise,

Boolean Formulae for Condition Codes:
N =R~
Z = i-r.ﬁs.is.iLEa.ﬁn.Ei.io
V=N@C=[NTIQNC
(the foregoing formula assumes values of N and C after the
rotation)
C =M

Conditien Codes:

<N

A48

Addressing Formats:
See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes {No. of cycles}) | machine code | HEX. | OCT. | DEC.
A 2 1 46 106 070
B 2 1 56 126 086
EXT 6 3 76 166 118
IND 7 2 66 146 102

A-49

RTI

Operation;

Description:

Condition Codes;

Return from Interrupt

SP « (SP) + 0001 , 1CC

SP « (SP) + 0001 , TACCB

SP « (SP) + 0001 , TACCA

SP « (SP) + 0001 , 1IXH

SP « (SP) + 0001 , 1IXL

SP « (SP) + 0001 , 1PCH

SP « (SP) + XX1 , 1PCL

The condition codes, accumulators B and A, the index regis-
ter, and the program counter, will be restored to a state pulled
from the stack. Note that the interrupt mask bit will be reset if
and only if the corresponding bit stored in the stack is zero.

Restored to the states pulied from the stack.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code| HEX. | OCT. [DEC.

Number of | Ceding of First {or only)

INHERENT

10 1 3B 073 059

A-50

C

Return from Interrupt

Example
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A, Before
PC — 3D066 3B RTI

SP — $EFF3
$EFF9 11HINZVC {binary)

SEFFA 12
SEFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
$EFFF 67
B. After
PC —p $556‘7 £33 %ok *koRakk
$EFF8
$EFF9 LIHINZVC (binary)
SEFFA 12
. $EFFB 34
(_/ $EFFC 56
$EFFD 78
$EFFE 55
SP - S$EFFF 67
CC = HINZVC (binary)
ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)

A-51

HTS Return from Subroutine

Qperation: SP « (SPY + 0001
1 PCH
SP « (SP) + 0001
1 PCL
Description: The stack pointer is incremented (by 1). The contents of the

byte of memory, at the address now contained in the stack
pointer, is loaded into the & bits of highest significance in the
program counter. The stack pointer is again incremental (by
L}. The contents of the byte of memory, at the address now
contained in the stack pointer, is loaded into the 8 bits of
lowest significance in the program counter.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

Number of | Ceding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code] HEX, | QOCT. | DEC.
INHERENT 5 1 39 071 057

Return from Subroutine

EXAMPLE
Example:
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A. Before
PC $30A2 39 RTS
sSp $EFFD
$EFFE 10
$EFFF 02
B. After
PC $ 1m2 *ok *ok# ET T
$EFFD
$EFFE 10
SP $EFFF 02

A-52

Subtract Accumulators SBA
Operation: ACCA « (ACCA) —~ (ACCB)
Description; Subtracts the contents of ACCB from the contents of ACCA

and places the result in ACCA. The contents of ACCB are
not affected.

H: Not affected.
I. Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Set if all bits of the result are cleared; cleared otherwise.
: Setif there was two’s complement overflow as a result of
the operation.
C: Carry is set if the absolute value of accumulator B plus
previous camry is larger than the absolute value of ac-
curnulator A; reset otherwise.

Condition Codes:

<™

Boolean Formulae for Condition Codes:

Z =R: 'E“ .Es.R_i.Ea ReRLF
V = A;.Br.R:+A+B7Rs
C = A7.B7+B7.R:+R7. A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 10 020 016

SBC Subtract with Carry
Operation; ACCX « (ACCX) = (M} = (O

Description: Subtracts the contents of M and C from the contents of
ACCX and places the result in ACCX.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are ¢leared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Camy is set if the absolute value of the contents of
memory plus previous cacy is larger than the absolute
value of the accumulator; reset otherwise.

Boolean Formulae for Condition Codes:

Z = R7.Re.Rs.Re.Rs.R2.R1.Ro
V= ET.MLRI‘FXT.MT.R_T
C = X7y Ms+M7s.R7+Rr. X7
Addressing Formats:
See Table A-1.

Addressing Modes, Execntion Time, and Machine Code (hexadecimal/octal/
decimal):
(DUAL OPERAND)

Number of | Coding of First (or only)

Addressing | Execution Time bytes of byte of machine code

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

A IMM 2 2 82 202 130
A DIR 3 2 92 222 146
A EXT 4 3 B2 262 178
A IND 5 2 A2 242 162
B IMM 2 2 C2 302 194
B DIR 3 2 D2 322 210
B EXT 4 3 F2 362 242
B IND 5 2 E2 342 226

A-54

Set Carry SEC
Operation: C bit « |
Description: Sets the carry bit in the processor condition codes register.
Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.

Set.
Boolean Formulae for Condition Codes:

C=1

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/
decimal):

s}

Number of | Coding of First {or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 oD 015 013
Set Interrupt Mask SE'
Cperation: Ibit <1
Description: Sets the interrupt mask bit in the processor condition codes

register. The microprocessor is inhibited from servicing an
interrupt from a peripheral device, and will continue with
execution of the instructions of the program, until the inter-
rupt mask bit has been cleared.

. Not affected.

Set.

. Not affected.
Not affected.

: Not affected.
Not affected.
Boolean Formulae for Cendition Codes:

I =1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Condition Codes:

O<NzZSD

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes {No. of cycles) | machine code| HEX. | OCT. | DEC.
INHERENT 2 1 OF 017 015

A-55

SEV

Operation:
Description:

¥V bit + |

Set Two’s Complement Overflow Bit

Sets the two's complement overflow bit in the processor
condition codes register. :

Condition Codes: H: Noi affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Set.
C: Not affected.
Boolean Formulae for Condition Codes:
V=i
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
INHERENT 2 1 0B 013 a1l

A-36

L/ Store Accumulator STA

Operation: M «— (ACCX)

Description: Stores the contents of ACCX in memory. The contents of
ACCX remains unchanged.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the contents of ACCX is
set; cleared otherwise,

Z: Set if all bits of the contents of ACCX are cleared;
cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

N=X; __ _ _ _ __
Z = X7.X6.X5.X4.X3.X2.X1.Xo
V=0

Addressing Formats:
See Table A-2.

Addressing Modes, Execution Time, and Machine Code (hexadecimalfoctal/

(._/ decimal):
Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code

Modes (No. of cycles) | machine code [HEX. | OCT. | DEC.
A DIR 4 2 97 227 151
A EXT 3 B7 267 183
A IND 6 2 A7 247 167
B DIR 4 2 D7 327 215
B EXT 5 3 F7 367 247
B IND 6 2 E7 347 231

A-57

STS Store Stack Pointer

Operation: M - (SPH)
M + 1« (SPL)
Description: Stores the more significant byte of the stack pointer in mem-

ory at the address specified by the program, and stores the

less significant byte of the stack pointer at the next location in

memory, at one plus the address specified by the program.

Condition Codes: H: Mot affected.

I: Not affected.

N: Set if the most significant bit of the stack pointer is set;
cleared otherwise.

Z: Set if all bits of the stack pointer are cleared; cleared
otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

(SPL7.SPLsg,SPL5_SPL4.SPL3.SPL2.SPL1.SPLw)
V=0

Addressing Formats:
See Table A-6.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octalf
decimal):

Number of | Coding of First {or only}
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

DIR] 5 2 9F 237 159
EXT 6 3 BF 277 191
IND 7 2 AF 257 175

A-58

i .
(// Store Index Register STX

Operation: M « (IXH)
M + 1+~ (IXL)
Bescription; Stores the more significant byte of the index register in

memory at the address specified by the program, and stores
the less significant byte of the index register at the next
location in memory, at one plus the address specified by the
program,

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bite of the index register is set;
cleared otherwise,

Z: Set if all bits of the index register are cleared; cleared
otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:
N = IXHs

(IXL7.TXLe IXLs JXLa.IXLa.IXL: . IXE .IXLo}

) V=0
&/ Addressing Formats:
O See Table A-6.
Addressing Modes, Execution Time, and Machine Cede (hexadecimalfoctal/
decimal):
Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
DIR 5 2 DF 337 223
EXT 6 3 FF 377 255
IND 7 2 EF 357 239

U A5

SUB Subtract

Operation: ACCX « (ACCX) — (M)

Description: Subtracts the contents of M from the contents of ACCX and
places the result in ACCX.

Condition Codes: H: Not affected.

I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Camy is set if the absolute value of the contents of
memory is larger than the absolute value of the ac-
cumulator; reset otherwise.

Boolean Formulae for Condition Codes:

Z =Rr.Re.Rs.RsRa.Rz.R1.Ro

v =§1.M1.R1+X1.M1.R_1

C = X7 M7s+M: Rr+Rr. X~
Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
(DUAL OPERAND)

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 80 200 128
A DIR 3 2 90 220 144
A EXT 4 3 BO 260 176
A IND 5 2 AQ 240 160
B IMM 2 2 co 300 192
B DIR 3 2 Do 320 208
B EXT 4 3 Fo 360 240
B IND 5 2 E0 340 224

A-60

(‘//

Software Interrupt

Operation:

Description:

Condition Codes:

SwWi

PC — (PC) + (001

1 {PCL) , SP + (SP}-0001

4 (PCH) , SP « (§P)-0001

1 (IXL) , SP « (SP)-0001

1 (IXH) , SP « (SP)-000!

! {ACCA) , SP « (§P)-0001

{ (ACCB) , SP « (SP)-0001

} (CC) , 8P « (5P)-0001

<1

PCH « (n-0005)

PCL <« (n-0004}

The program counter is incremented (by 1). The program
counter, index register, and accumulator A and B, are pushed
into the stack. The condition codes register is then pushed
into the stack, with condition codes H, I, N, Z, V, C going
respectively into bit positions 3 thru 0, and the top two bits {in
bit positions 7 and 6) are set (to the 1 state). The stack pointer
is decremented (by 1) after each byte of data is stored in the
stack.

The interrupt mask bit is then set. The program counter is
then loaded with the address stored in the software interrupt
pointer at memory locations (n-5) and (n-4), where n is the
address corresponding to a high state on all lines of the
address bus.

. Not affected.
Set.

: Not affected.
Not affected.
: Not affected.
Not affected.

neNzZrT

Boolean Formula for Condition Codes:

Addressing Modes,
decimal):

I =1

Execution Time, and Machine Code (hexadecimal/octal/

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) ; machine code | HEX. | OCT. | DEC.
INHERENT 12 1 3F 077 063
A-61

Software Interrupt

EXAMPLE
A. Before:
CC = HINZVC (binary)
ACCB = 12 (Hex) IXH = 56 {(Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
PC — 35566 3F SWI
SP — SEFFF
$FFFA Do
$FFFB 55
B. After:
PC — $DO5S
5P — S$EFF8
$EFF9 11HINZVC (binary)
$EFFA 12
$EFFB 34
$EFFC 56
$EFFD 78
$EFFE 55
$EFFF 67

Note: This example assumes that FFFF is the memory location addressed when ali
lines of the address bus go to the high state.

A-62

¢ C

Transfer from Accumulator A to Accumulator B TAB

ACCB + {(ACCA)

Moves the contents of ACCA to ACCB. The former contents
of ACCB are lost. The contents of ACCA are not affected.

Operation:
Description:

Condition Codes: H:

I

N:

z

Not affected.

Not affected.

Set if the most significant bit of the contents of the
accumnulator is set; cleared otherwise.

Set if all bits of the contents of the accumulator are
cleared; cleared otherwise.

V: Cieared,
C: Not affected.
Boolean Formulae for Condition Codes:
N = Ry o
Z=RRRRRBLRR
V=0
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execation Time bytes of
Modes {(No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 1 16 026 022
A-63

TAP

Operation:

Description:

Condition Codes:

Transfer from Accumwlator A
to Processor Condition Codes Register

CC « (ACCA)
Bit Positions

7 6 5 43 2 10

CI T T TTITT 1 acca
I—Ca.rry-Borrow
—en——— Qverflow
(Two’s Complement)
Zero
Negative
Interrupt Mask

Half Carry

Transfets the contents of bit positions 0 thru 5 of accumulator
A to the corresponding bit positions of the processor condi-
tion codes register. The contents of accumulator A remain
unchanged.

Set or reset according to the contents of the respective bits 0
thru 5 of accumulator A.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal);

Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

INHERENT

2 1 06 006 006

A-64

R

Transfer from Accumulator B to Accumulator A TBA
Operation: ACCA « (ACCB)
Description: Moves the contents of ACCB to ACCA. The former contents

of ACCA are lost. The contents of ACCB are not affected.

Condition Codes: H: Not affected,

I: Not affected.

N: Set if the most significant bit of the contents of the
accumulator is set; cleared otherwise.

Z: Set if all bits of the contents of the accumulator are
cleared; cleared otherwise.

V: Cleared,

C: Not affected.

Boolean Formulae for Condition Codes:

N=Re _ _ _ _ _ _
Z = RiRe.RsRs.RsR: Ri.Ro
V=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. DEC,

INHERENT 2 1 17 027 023

A-65

TPA Transfer from Processor Condition Codes Register to

Accumulator A
Operation: ACCA « (CC)
Bit Positions
7 6 5 4 3 2 1 0
LI LTI { T T] Acca
1—’ | HJ{[N[Z[V]C] cCC
| L
Carry-Borrow
Overflow
(Two’s Complement)
Zero
Negative
Interrupt Mask
Half Carry
Description: Transfers the contents of the processor condition codes regis-

ter to corresponding bit positions 0 thru 5 of accumulator A.
Bit positions 6 and 7 of accumulator A are set (i.e. go to the
*“1'" state). The processor condition codes register remains
unchanged.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimalioctal/
decimal);

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes {No, of cycles) | machine code { HEX. | OCT. | DEC.

INHERENT 2 1 07 007 007

A66

(J/J Test

Operation:

Description:

See Table A-3.

L, decimal):

TST

(ACCX) — 00

(M) - 00

Set condition codes N and Z according to the contents of
ACCX or M.

Condition Codes: H: Not affected,

I: Not affected.

N: Setif most significant bit of the contents of ACCX or M
is set; cleared otherwise.

Z: Setif all bits of the contents of ACCX or M are cleared:
cleared otherwise.

Boolean Formulae for Condition Codes:

V: Cleared.

C: Cleared.

N =M;

Z= ﬁw.ﬁs.ﬁs.ﬁa.ﬁs.ﬁz.ﬁl Me
V=0

C=90

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

Addressing
Modes

Coding of First (or only)
Numiber of byte of machine code

Execution Time bytes of
(No. of cycles) | machine code | HEX. | OCT. | DEC.

A
B
EXT
IND

1 4D 115 077
1 5D 135 093
3 D 175 125
2 6D 155 109

~N N

A-67

TSX
Operation:

Description:

Condition Codes:

Transfer from Stack Pointer to Index Register
IX « (SP) + 0001

Loads the index register with one plus the contents of the
stack pointer. The contents of the stack pointer remains

unchanged.
Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal);
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes {No. of cycles) | machine code | HEX. { OCT. | DEC.
INHERENT 4 1 30 060 048

TXS
Operation:

Description:

Condition Codes:

Transfer From Index Register to Stack Pointer

SP « (IX) —

0001

Loads the stack pointer with the contents of the index regis-
ter, minus one. The contents of the index register remains

unchanged.
Not affected.

Addressing Modes, Execation Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycdles) | machine code | HEX. { OCT. | DEC.
INHERENT 4 1 35 065 053

A-68

Wait for lntefrupl

Operation:

Condition Codes:
Description:

Condition Codes:

Addressing Modes,
decimal):

WAI

PC «— (PC) + 0001

1 (PCL} , SP «— (SP)-0001

| (PCH) , 8P « (SP)-0001
1 (IXL} , SP « (SP)-0001

| (IXH) , SP « (SP)-0001

1 (ACCA) , SP « (SP)-0001
| {ACCB}) , SP « (8P)-0001
1 (CCy , SP « (SP)-0001

Not affected.

The program counter is incremented (by 1). The program
counter, index register, and accumulators A and B, are
pushed into the stack. The condition codes register is then
pushed into the stack, with condition codes H, I, N, Z, V, C
going respectively into bit positions 5 thru 0, and the top two
bits (in bit positions 7 and 6) are set (to the 1 state). The stack
pointer is decremented (by 1) after each byte of data is stored
in the stack.

Execution of the program is then suspended until an interrupt
from a peripheral device is signalled, by the interrupt request
control input going to a low state,

When an interrupt is signalled on the interrupt request line,
and provided the I bit is clear, execution proceeds as follows.
The interrupt mask bit is set. The program counter is then
loaded with the address stored in the internal interrupt pointer
at memory locations (n-7) and (n-6), where n is the address
corresponding to & high state on all lines of the address bus.

H: Not affected.

I: Not affected until an interrupt request signal is detected
on the interrupt request control line. When the interrupt
request is received the I bit is set and further execution
takes place, provided the I bit was initially clear.

N: Not affected.

Z: Not affected.

V: Not affected.

Not affected.

Execution Time, and Machine Code (hexadecimal/octal/

0

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

INHERENT

9 1 3E 076 062

A-69

Addressing Mode of First Operand
Second Operand Accumulator A Accumulator B

IMMediate CCC A #Number CCC B #Number
CCC A #symbol CCC B #symbol
CCC A #expression CCC B #expression
CCC A #C CCCB #C

DIRect or EXTended CCC A Number CCC B Number
CCC A symbol CCC B symboi
CCC A expression CCC B expression

INDexed CCCAX CCCB X
CCCZ X CCCB X

CCC A Number, X
CCC A symbol X
CCC A expression, X

CCC B Number, X
CCC B symbol X
CCC B expression, X

Notes: 1. CCC = Mnemonic operator of source instruction

2. “‘symbol’’ may be the special symbol “**”

3. “‘expression’’ may contain the special symbol ***”’
4. space may be omitted before A or B

Applicable to the Following Source Instructions:

ADC ADD AND BIT CMP
EOR LDA ORA SBC SUB

*Special symbol indicating program-counter

TABLE A-1. Addressing Formats (1)

A0

Addressing Mode of
Second Operand

First Operand

Accumulator A

Accurulator B

DIRect or EXTended

STA A Number
STA A symbol
STA A expression

STA B Number
STA B symbol
STA B expression

INDexed

STAAX -

STA A X

STA A Number,X
STA A symbol, X
STA A expression, X

STABX

STAB X

STA B Number, X
STA B symbol X
STA B expression, X

Notes: 1. **symbol’” may be the special symbol *‘**.

2. “expression”” may contain the special symbol <***°.
3. spacg may be omitted before A or B.

Applicable to the Source Instruction:

STA

*Special symbol indicating program-counter

TABLE A-2. Addressing Formats (2)

Operand or
Addressing Mode Formats

Accumulator A CCC A

Accumulator B CCCB

EXTended ' CCC Number
CCC symbol
CCC expression

INDexed CCcC X

CcCC X

CCC Number, X
CCC symbol X
CCC expression, X

Notes: 1. CCC + Mnemonic operator of source instruction.
2. “symbol” may be the special symbol “***.
3. “expression” may contain the special symbol “**'*,
4. space may be omitted before A or B

Applicable to the Following Source Instructions:

ASL ASR CLR COM DEC INC
LSR NEG ROL ROR TST

*Special symbol indicating program-counter

TABLE A-3. Addressing Formats (3)

Operand Formats
Accumulator A CCC A
Accumulator B CCCH

Notes: 1. CCC = Mnemeonic operator of source instruction
2. space may be omitted before A or B

Applicable to the Following Source Instructions:
PSH PUL

TABLE A-4. Addressing Formats (4)
A-72

Addressing Mode

Formats

IMMediate

CCC #number
CCC #symbol
CCC #expression
CCC #°C

DIRect or EXTended

CCC Number
CCC symbol
CCC expression

INDexed

CCC X

CCC X
CCCNumber,X
CCC symbol X
CCC expression, X

("~

Notes: 1. CCC = Mnemonic operator of source instruction
2. “*symbol” may be the special symbo] *****
3. “expression'’ may contain the special symbol ***”

Applicable ta the Following Source Instructions:

CPX LDS LDX

*Special symbol indicating program-counter

TABLE A-5. Addressing Formats (5)

Addressing Mode Formats

DIRect or EXTended CCC N
i CCC symbol
CCC expression

INDexed CCcCX

cCcC X

CCC Number,X
CCC symbol, X
CCC expression, X

Notes: 1. CCC = Mnemonic operator of source instruction
2. "'symbol”’ may be the special symbol ‘**’
3. “‘expression’’ may contain the spcial symbol ***’

Applicable to the Following Soiirce Instructions:
STS STX
*Special symbol indicating program-counter

TABLE A-6. Addressing Formats (6)

Addressing Mode Formats

EXTended CCC Number
CCC symbol
CCC expression

INDexed cccx

CcCcC X

CCC Number,X
CCC symbol X
CCC expression, X

Notes: 1. CCC = Mnemonic operator of source instruction
2, **symbol’’ may be the special symbot ¥**
3. “‘expression’’ may contin the special symboi ****

Applicable to the Following Source Instructions:
JMP JSR

*Special symbol indicating program-counter

TABLE A-7. Addressing Formats (7)
A-74

{('\

Addressing Mode

Formats

RELative CCC Number
CCC symbol

CCC expression

Notes: 1. CCC = Mnemonic operator of source instruction

2, “‘symbol™ may be the special symbol ****

3. “‘expression” may contain the special symbol ***

Applicable to the Following Source Instructions:
BCC BCS BEQ BGE BGT BHI

BLE BLS

BLT BMI BNE BPL. BRA BSR BVC BVS

*Special symbol indicating program-counter

TABLE A-8. Addressing Formats (8)

appendix .
B

Assambler DImctI'vei

APPENDIX B
Definition of the Assembler Directives

Alphabetic List of Assembler Directives

END End of program

EQU Equate symhbol

FCB Form Constant byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Monitor

NAM Name program

oPT Option

ORG Origin

PAGE Advance Listing to top of page
RMEB Reserve Memory Bytes

SPC Space n lines

END - End of Program

When the assembler directive "END", is used, it marks the ead of 2
source program and can be followed only by a statement containing the
assembler directive "MON" or another program.

The operator in the last statement of a source program must he
efther “END" or "MON". If the program ends with a "MON" directive, the
use of "“END" is optional.

The "END" directive must not be written with a Tabel, and it does
not have an operand.

The "END" directive is not translated into object code,

EQU - Equate Symbol

The "EQU" directive is used to assign a value to a symbol. The
"EQU" statement must contain a label which is identical with the symbol
being defined. The operand field may contain the numerical value of the
symbol (decimal, hexadecimal, octal, or binary). Alternatively, the
operand field may be another symbol or an expression which can be eva-
Tuated by the assembler. The EQU statement is not translated into object
code.

The following are examples of valid "EQU" statements:

Location Data Label Operator Operand
0A0 SUN EQU $401
0003 AB EQU 3
DADT AR EQU SUN
0A04 AC EQU AB+AA
OFC1 ABC EQU $FCY

Relating to the use of a symbol or an expression in the operand
field, only one level of forward referencing will assemble corvectly.
This reflects a two-pass characteristic of the assembly process. An
{111egal) example of two levels of forward referencing would be:

E QU Y
Y EQU ¢
c EQU 5

This will not assemble correctly because E will not he assigned a
numerical value at the end of pass 2. E and Y are both undefined
throughout pass 1. E is undefined throughout pass 2 and wiil cause an
error message.

FCB ~ Form Constant Byte

The "FCB" directive may have one or more operands, separated by
commas. An 8-bit unsigned binary number, corresponding to the value of
each operand is stored in a byte of the object program. If there is more
than one operand, they are stored in successive bytes. The operand field
may contain the actual value {decimal, hexadecimal, octal, or binary).
Alternatively, the operand may be a symbol or an expression which can be
assigned a numerical value by the assembler.

An *FCB" directive followed by one or more void operands separated
by commas will store zeros for the void operands.

An "FCB" directive may be written with a label.
Examples of valid "FCB" directives follow:

Location Data Label Operator Operand

0000 FF TOP FCB $FF
000 00 TAB FCB +$F,23,
0002 oF

0003 17

0004 00

0005 E5 FCB *+$E0

FCC - Form Constant Characters

The "FCC" directive translates strings of characters into their
7-bit ASCII codes. Any of the characters which correspond to ASCII hex-
adecimal codes 20 (SP) thru 5F () can be processed by this directive.

1. Count, comma, text. Where the count specifies how many ASCII
characters to generate and the text begins following the first
comma of the operand. Should the count be Tonger than the text,
spaces will be inserted to fi11 the count. Maximum count is 255.

2. Text enclosed between identical delimiters, each being any sin-
gle character. (If the delimiters are numbers, the text must
not begin with a comma.)

B2

C

€

If the string in the operand comprises more than one character,
the ASCII codes corresponding to the successive characters are entered
inte successive bytes of memory.

An "FCC" directive may be written with a label.

The following are examples of valid "FCC" directives:

Location Data Label Operator Operand

0A0O 54 MS61 FCC /TEXT/
0AD1 45
OAQ2 58
0AD3 54
0AO4 54 MSGZ FCC 9, TEXT
0AQS 45
DAO6 58
0AO7 54
0A08 20
0AQ9 20
DACA 20
0AOB 20
0AOC 20

FDB - Form Double Constant Byte

The "FDB" directive may have one or more operands separated by
comnas. The 16-bit unsigned binary number, corresponding to the value
of each operand is stored in two bytes of the object program. If there
is more than one operand, they are stored in successive bytes, The oper-
and field may contain the actual value (decimal, hexadecimal, octal, or
binary}. Alternatively, the operand may be a symbol or an expression
which can be assigned a numerical value by the assembler,

An "FDB" directive followed by one or more void operands separated
by commas will store zeros for the void operands.

An "FDB" directive may be written with a label.
Examples of valid "FDB" directives follow:

Location Data Label Operator Operand

0010 0002 TWO FDB 2

0012 0000 MASK FOB 2 $F, $EF, , $AFF
0014 000F

0016 O0EF

0018 0000

001A OAFF

MON - Return to Monitor

The assembler directive "MON", if used, must be in the last state-
ment of a source program. (See assembler directive "END" above.)} The
"MON" directive instructs the assembler that the source program just
complieted is the last to be assembled, and it returns control to the
680b PROM Monitor.

The Tast statement of a source program must contain either "END"
or "MON",

The assembler directive "MON" must not be written with a label,
and no operand is used.

The "MON" directive is not translated into object code.
NAM - Name

The "NAM* (or NAME) directive names the program, or provides the
top of page heading text meaningful to users of the assembly.

The "NAM" directive must not be written with a label. The "NAM"
directive cannot distinguish the cperand field from the comment field.
Both the operand field and the comment field are treated as continuous
text.

No object code results from the "NAM" directive.
OPT - Option

The "OPT" directive is used to give the programmer optional control
of the format of assembler output. The details of the "0PT" directive
depend on the version of the 680b Resident Assembler being used. When
the Assembler becomes available, details of the "OPT" directive will be
included in the documentation.

ORG - Origin

The assembler directive "ORG" defines the numerical address of the
first byte of machine code which results from the assembly of the imme-
diately subsequent section of a source program. There may be any number
of "ORG" statements fn a program. The "0RG" directive sets the program
counter to the value expressed in the operand field.

The operand field may contain the actual value (decimal, hexadeci-
mal, octal, or binary) to which the program counter is to be set. Alter-
natively, the operand field may contain a symbol or an expression which
can be assigned a numerical value by the assembler.

The location counter fs initialized before each assembly. If no
"ORG" statement appears at the beginning of the program, the location
counter will begin as if an “ORG" zero had been entered.

An "ORG" directive must not be written with a label.

The ORG statement does not tramslate into object code.

The following are examples of valid ORG statements:

By

lLocation Data Label Operator Operand

0064 {blank) ORG 100

AF23 {blank) ORG $AF23
1100 BEGIN EQu $1700

1100) (blank) ORG BEGIN

PAGE - Advance Paper to Top of Next Page

The "PAGE" directive causes the Assembler to advance the paper to
the top of the next page. The PAGE directive does not appear on the
prog{am listing. No labe) or operand is used, and no machine code
results.

RMB ~ Reserve Memory Bytes

The “RMB" directive causes the location counter to be increased by
the vaTue of the operand field. This reserves a block of memory whose
length is equal to the value of the operand field. The operand field
may contain the actual number {decimal, hexadecimal, octal or binary)
equal to the number of bytes to be reserved. Alternatively, the operand
may be a symbol or an expression which can be assigned a numerical value
by the assembler,

The block of memory which is reserved by the "RMR" directive is
unchanged by that directive.

The "RMB" directive may be written with a Tabel,

Examples of valid "RMB" directives follow (the data column indicates
the number of bytes being reserved):

Location Data Label Operator Operand

0100 0004 RMB 4
0104 0014 TABLE 1 RMB 20
ons 0014 TABLE 2 RMB 20

SPC - Space N Lines

The "SPC" directive provides n vertical spaces for formatting the
program 1isting. It does not itself appear in the Tisting. The number
of Tines to be left blank is stated by an operand in the operand field.

The operand would normally contain the actual number (decimal, hex-
adecimal, octal, or binary} equal to the number of Tines to be left
blank. A symbol or an expression is also allowed.

The "SPC* directive must not be written with a label.

When the "SPC" directive causes the Tisting to cross page boundries
only those blank lines required to get to the top of the next page will
be generated.

Bj

appendix|
C

Input /[OQutput Information

APPENDIX C, INPUT/OUTPUT INFORMATION
ACIA

The 680b is supplied with an Asynchronous Communications Interface
Adapter (ACIA) for the purpose of handlfng serial input and output oper-
atfons. Initialization and controi of this I/0 port is usually handled
by system software such as the PROM Monitor.

The following information concerning the ACIA registers is included
for those who wish to do their own initialization and I/C¢ handling.

ACIA Registers
Transmit Data Register (TDR)

Writing data into the Transmit Data Reqister causes the Transmit
Data Register Empty bit in the Status Register to go low. Data can then
be transmitted. If the transmitter is idling and no character is being
transmitted, then the transfer will take place within one bit time of
the trailing edye of the Write command. If a character is being trans-
mitted, the new data character will commerce as soon as the previous
character is complete. The transfer of data causes the Transmit Data
Register Empty (TDRE) bit to indicate empty.

Receive Data Register {RDR)

Data is automatically transferred to the empty Receive Data Register
{RDR) from the receiver deserializer (a shift register) upon receiving a
complete character. This event causes the Receive Data Register Full
bit (RDRF) in the status buffer to go high (full}. Data may then be
read through the bus by addressing the ACIA and selecting the Receive
Data Register with RS and R/W high when the ACIA is enabied. The non-
destructive read cycle causes the RDRF bit to be cleared to empty al-
though the data is retained in the RDR. The status is maintafned by
RDRF as to whether or not the data is current. When the Receive Data
Register is full, the automatic transfer of data from the Receiver
Shift Register to the Data Register is inhibited and the ROR contents
remain valid with its current status stored in the Status Register.

Control Register

The ACIA Control Register consists of eight bits of write-only
buffer that are selected when RS and R/W are Tow. This register con-
trols_the function of the receiver, transmitter, interrupt enables, and
the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CRO and CR1) - The Counter Divide Select
Bits (CRO and CR1) determine the divide ratios utilized in both the trans-
mitter and receiver sections of the ACTA, Additionally, these bits are
used to provide a master reset for the ACIA which clears the Status Re-
gister (except for external conditions on CT5 and DCD) and initializes
both the recefver and transmitter. Master reset does not affect other
Control Register bits. MNote that after power-on or a power fail/restart,
these bits must be set high to reset the ACIA. After resetting, the
clock divide ratio may be selected. These counter select bits provide
for the following clock divide ratios:

Cl

CRT CRO
a N 7
0 1
1 0

1

1

function
+1
116

+64

Master Reset

Word Select Bits (CR2, €3, and CR4) - The Word Select bits are used
to select word length, parity, and the number of stop bits. The encoding
format is as follows:

CR4 CR3 CR2 Function

0 o} 0 7 Bits + Even Parity + 2 Stop Bits
0 0 1 7 Bits + 0dd Parity + 2 Stop Bits
0 1 0 7 Bits + Even Parity + 1 Stop Bit
0 1 1 7 Bits + 0dd Parity + 1 Stop Bit

} 0 0 8 Bits + 2 Stop Bits

1 0 1 8 Bits + T Stop Bit

1 1 0 8 Bits + Even Parity + 1 Stop Bit
1 1 1| 8Bits + 0dd Parity + T Stop Bit

Word length, Parity Select, and Stop Bit changes are not buffered
and, therefore, become effective immediately.

Transmitter Control Bits (GRS and CR6)} - Two Transmitter Control
bits provide for the contral of the interrupt from the Transmit Data
Register Empty condition, the Request-to-Send output, and the transmis-

sion of a Break level (space).

The following encoding format is used:

RTS = Tow, Transmits a Break level on the
Transmit Data Output, Transmitting
Interrupt Disabled.

CR6 CRS Function

] 0 RTS = low, Transmitting Interrupt Disabled.
0 1 RTS = low, Transmitting Interrupt Enabled.

] 0 RTS = high, Transmitting Interrupt Disabled.

c?

Receive Interrupt Enable Bit (CR7) - Interrupts will be enabled hy
a high level in bit position 7 of the Control Register (CR7). Interrupts
from the receiver section, Receive Data Register Full being high or by a
low to high transition on the Bata Carrier Getect signal line, are en-
abled or disabled by the Receive Interrupt Enable Bit.

Status Register

Information on the status of the ACIA is available to the MPU by
reading the ACIA Status Register. This read-only register is selected
when RS is low and R/W 1s high. Information stored in this register
indicates the status of the Transmit Data Register, the Receive Data
gegister and error logic, and the peripheral/modem status inputs of the

CIA.

Receive Data Register Full (RDRF), Bit 0 - Receive Data Register
Full indicates that received data has been transferred to the Receive
Data Register. RORF i3 cleared after an MPU read of the Receive Data
Register or by a master reset. The cleared or empty state indicates
that the contents of the Receive Data Register are not current. bData

Larrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE)}, Bit 1 - The Transmit Data
Register Empty bit being set high indicates that the Transmit Data
Register contents have been transferred and that new data may be entered.
The low state indicates that the register is full and that transmission
of & new character has not begun since the last write data command.

Data Carrier Detect {DCD}, Bit 2 - The Data Carrier Detect bit will
be high when the DCD input from a modem has gone high to indicate that
a carrfer is not present. This bit going high causes an Interrupt Re-
quest to be generated when the Receive Interrupt Enable is set. It
remains high after the DCD input is returned Tow until cleared by first
reading the Status Register and then the Data Register or until a master
reset occurs., If the DCD input remains high after read status and read
data or master reset have occurred, the DCD status bit remafns high and
will follow the DCD input.

Clear-to-Send ({T5), Bit 3 - The Clear-to-3énd bit_indicates the
state of the Clear-to-Send input from a modem. A Tow CI5 indicates that
there is a Clear-to-Send from the modem. In the high state, the Trans-
mit Data Register Empty bit is inhibited and the Clear-fo-Send status
bit will be high. Master reset does not affect the CTéar-to-5end Status
bit.

Ci

Framing Error (FE}, Bit 4 - Framing error indicates that the re-
ceived character is improperly framed by a start and a stop bit and is
detected by the absence of the 1st stop bit. This error indicates a
synchronization error, faulty transmission, or a break condition. The
framing error flag is set or reset during the receive data transfer
time. Therefore, this error indicator is present throughout the time
that the associated character is available.

Receiver Overrun (OVRN), Bit 5 - Overrun is an error flag that
indicates that one or more characters in the data stream were lost.
That is, a character or a number of characters were received but not
read from the Receive Data Register (RDR) prior to subsequent charac-
ters being received. The overrun condition begins at the midpoint of
the last bit of the second character received in succession without a
read of the RDR having occurred. The Overrun does not occur in the
Status Register until the valid character prior to Overrun has been
read. The RDRF bit remains set until the Overrun is reset. Character
synchronization is maintained during the Overrun condition. The Over-
run indication is reset after the reading of data from the Receive
Data Register. Overrun is also reset by the Master Reset.

Parity Error (PE}, Bit 6 - The parity error flag indicates that
the number of highs (ones) in the character does not agree with the
preselected odd or even parity. 0dd parity is defined to be when the
total number of ones is odd. The parity error indication will be pre-
sent as long as the data character is in the RDR. If no parity is
selected, then both the transmitter parity generator output and the
recefver parity check results are inhibited.

Interrupt Request (IRQ), Bit 7 - The IRQ bit indicates the state
of the IRQ output. Any interrupt condition with its_applicable enable
will be indicated in this status bit. Anytime the IRQ output fs low,
the IRQ bit will be high to Indicate the interrupt or service request
status. :

Paper Tape Reader Control

When the paper tape reader control circuit_is used, the RTS output
of the ACIA turns the reader on and off. When RIS is high, the reader
will be on. When RTS is tow, the reader will be off. Therefore, the
reader is turned on when CR6 is 1 and CR5 is 0. This also turns off
input interrupts. (See ACIA Control Register above,) The reader is
off for the three other possible combinations of CR6 and CR5.

Interrupt Vectors

The processor interrupt vectors are Tocated in locations FFF8
through FFFF within the 680b PROM Monitor. The contents of the
interrupt vectors depends on the version of the Monitor being used.
Refer to Section VI of the System Monitor Manual for further informa-
tion.

C4

2450 Alamo SE
Albuquergque, NM 87106

