A BASIC Interpreter for Microprocessors

Paul Allen and William Gates
MITS, Inc.

Design Philosophy

In January of 1975, the implementation of a BASIC
interpreter for the 3780 microprocessor was begun.

BASIC was chosen for a variety of reasons. Pirst,
BASIC is a well known and easy to learn language for which a
wealth of text books and tutorial information is readily
available. Secondly, a small interpreter can be readily
defined and constructed in a relatively straight foward
manner. Finally, the interactive nature of BASIC is well
known for its ability to provide rapid program generation
and efficient debugging. .

_ Compilers were considered but rejected for a variety of
reasons. Compilers require large amounts of memory which is
often in short supply on a microprocessor system, Also,
mass storage devices such as tape units or floppy disks are
almost an absolute necessity for efficient use of compilers.
Lastly, the execution speed of floating point routines on an
eight bit processor makes a compiler's advantage over an
interpreter a factor of only two or three, and execution
speed was not an overiding concern. :

Implementation

Once a BASIC Interpreter was chosen as the final product,

‘development began immediately. One of the cardinal rules of

software design is to examine other implementations of a
similar product so that useful design strategies are not
re-invented. A number of different BASIC interpreters were
examined and several useful ideas were used in the
microprocessor version.

11R927256




Page 2

Coding started once the data structures and flow of the
interpreter were well defined. at the same time, work was
begun on a number of software tools that could be wused to
generate the interpreter. '

: We felt that a large time shared mainframe system with

which we yere very familiar would suit our needs for a
development System. However, we decided to write our own
development tools instead of using cross assemblers and
simulators available fronp - time sharing vendors or
microprocessor manufacturers,

First, an assembler was contructed using the MaACRO
facility of the host assembler, This provides the user with
a2ll the features of the host assembler including conditional
assembly and cross reference listings, Generation of the
assembler took about a single man week. :

Next, a simulator for the 808¢ was written in the hosts
assembly language. This makes simulations run very quickly,
about an order of magnitude slower than an actual BA8g
microprocessor. The inherent speed of the simulator reduced
CPU charges ang made dubugging of long routines less time
consuming. The standargd hoest debugging Package was modified
to recognize 8088 format operation codes and register
references, Also, since the host debugging Package allowed
references to assembly symbols at debug time, all labels and
other assembly time Symbols were available during the
debugging'process.

These powerfyl tools, which were developed in under a
man month, made the generation of the the first “cut" at
BASIC a very quick process. fThe first version was ready
after less than five man months Of effort by a three inan
programming team. One PIogrammer wrote the floating point
arithmetic and input and print routines, another programmer
worked on statement éxecution routines ang another wrote the
development tools and the interpreter's Program editor.

This first version was executed Successfully the first
time it was loaded into an gggp microcomputer, a MITS ALTAIR

88413.

Since that time, BASIC has evolved into a number of
different versions, each with an increased number of
features. 1t has also been fun on other 8487 baged Systems,
Such as INTEL's development Systems and other custom 8¢8%
based units,

Versions of gggg BASIC



Page 3

that the user could type 'PRINT 2+2" and immediately receive
the response '4*,

Next is the 8K version, which uses about 6K of memory.
A number of distinctive features, such as boolean
arithmetic, characters strings with substring operators and

string arrays, PEEK and POKE to read or write a byte from

any memory location, and INP and OUT which are used to read
and write a byte from an I/O port are available in this
version., These last two features are extremely useful when

debugging new I/O devices and interfaces, and are regularily

used by MITS engineers for this purpose.

Also, these features allow the user to perform low

speed I/0 to external devices without having to resort to
assembly language. An assembly language subroutine call is
also provided so the user can take advantage of the speed
and flexibility of assembly language where necessary.

Extended BASIC, which takes approximately 18K bytes of
memory , adds integer and double precision floating point
arithmetic, PRINT USING for formatted output, and many other
improvements,

Double precision floating point gives the user sixteen
digits of accuracy when needed. Integer variables are
economical in their use of memory space, and speed up
program execution where integer quantities are used.

Another special feature allows the user to default
variable names that start with a certain character to a
particular variable type (integer, string, single and double
precision). This is similar to FORTRAN's IMPLICIT
statement. _

A powerful EDIT command also makes changes to already
existing program lines an easy task. - -

Disk Extended BASIC, which requires 16K bytes of
memory, adds a full file structure system for floppy disks.
This includes both sequential and random file access
methods, as well as commands for deleting, renameing,
loading and saving disk files.

6828 BASIC

A 6800 version of 8K BASIC was coded from scratch using
the 8888 version as a guide. The 6899 version required
slightly more memory, about 6288 bytes as compared to 5980
for the 8888 version, but the 6883 version is slightly
faster than the 8088 version. This demonstrates that the
8088 and 6800 are extremely close in terms of memory

-

- 1169256



Page 4

effiency and speed; However, the 6828 tends to be simpler
to program for a given application, while the 8888 requires
more sophisticated programming technigues.

Future Software Development Plans

Plans for the future include a version of Extended
BASIC on ROM, and continued refinement and additions to the
already existing versions. One of the unique features of
the ROM version is that a BASIC program can be put in ROM or
PROM, and then be executed by the ROM BASIC interpreter.
This means that complete turn-key systems can be developed
in BASIC, and then placed in PROM when completely debugged.

Also in the works are APL interpreters for the 8888 and
6800.



