alfielr BE00 basic

e ——

C [REERENGE MMM

(-é’_nﬁ's,‘rnc. 977~
Reprinted July, 1977 .

3 PG S SN
3 subsudiary of Pertec Compurer Corporation

2450 Alamo S.E. fAlbuquerque, New Mexico 87106 -

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",]; <string variable name>

CHANGE TO:

LINE INPUT [“<prompt string>";] <string variable>

Page 40, Paragraph 5-3b, line 9:

The of the <integer expression> is the starting address of . . .
CHANGE TQ:

The <integer expression> is the starting address of . . .

Page 41. Insert the fellowing paragraphs between Paragraphs 3 and 4.
ADDITION:
The string returned by a call te USR with a string argument is that

string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C$=USR(A$}

results in A$ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C3=USR(AS+" ™)

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for AS,

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string’s length in a user routine is guaranteed to cause problems.
Page 49, last paragraph, line 7:

. . . leading § signs, nor can negative numbers be output unless the sign
is forced to be trailing.

CHANGE TO:

« + » leading § sigms.

C

10.

BASIC Reference Manual Addenda, April, 1977
Page 2

Page 59, last line:
520 CLOSE #1
CHANGE TO:
520 CLOSE 1
Page 70, CLEAR [<expression>] explanation:

Same as CLEAR but sets string space to the value . , .
CHANGE TO:

Same as CLEAR but sets string space (see 4-1) to the value.. . e
Page 70, CLOAD <string expression> explanation, second line:
+ . . character of STRING expression> to be . . .
CHANGE TO:

. + . character of <STRING expression> to be . . .

Page 71:

CSAVE*<array name> 8K (cassette), Disk

CHANGE TO:

CSAVE*<array name> 8K (cassette), Extended, Disk

Page 75. Insert the following after LET and before LPRINT.

ADDITION:
LINE INPUT LINE INPUT “prompt string'; string variable name

Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt
string is omitted, LINE INPUT may not be edited by Control/A.

Page 76, POKE explanation, second line:

. « . If I is negative, address is 65535+I, . . .

CHANGE TO:

« + « If I is negative, address is 65536+I, . . .

11.

12,

13,

14.

13,

16.

17.

BASIC Reference Manual Addenda, April, 1977

Page 3

Page 80, OCTS:

oCTS aCTIX) 8K, Extended, Disk

CHANGE TO:

oCT$ CCTE(X) Extended, Disk

Page 81:

SPACES SPACE$ (1) 8X, Extended, Disk

CHANGE TOQ:

SPACE$ SPACE$ (I) Extended, Disk

Page 91, line 4:

+ « + question (see Appendix E).

CGHANGE TO:

» - . question {see Appendix H).

Page 95, first paragraph, line 3:

+ « . Por instructions on loading Disk BASIC, see Appendix E.
CHANGE TO:

+ « . For instructions on loading Disk BASIC, see Appendix H.
Page 103, line 11: '

€ (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.
CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.
Page 114, third paragraph, line 2:
. « . by the first character of the STRING expression>.

CHANGE TO:

(;,

18,

i9.

20,

21.

22.

BASIC Reference Manual Addenda, April, 1977
Page 4

. . » by the first character of the <string expression>. Note that the
program named A is saved by CSAVE"™A".

Page 119, last semntence before the NOTE:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 16 and adding the position of the slot in the
sector (0-8) plus 1.

CHANGE TO:

File numbers are calculated by multiplying the sector number of the direc-
toty track the file is in by 8 and adding the position of the slot in the

sector {0-7) plus 1.
Page 122, Step 1, line 3:

. . . location 2=116 octal . , .
CHANGE TO:
+ « o« location 2=077 octal . . .

Page 126, line 6:

COPP,1 PROM § TO 1?7 YCARRIAGE return> DONE
CHANGE TO:

*COPp, 1

FROM p TO 1? Y<carriage return>

DONE

-

Page 126, lines 13 through 15:

. . . Example: *DAT® (DAT is equivalent) TRACK? §SECTOR? § 9P #9¢ pop
309 299 099 993 299 809 S99 PP PPO PHP etc.

CHANGE TO:

*DATP

TRACK? $

SECTOR? #

900 900 P09 POO 08P 208 PO POB PPY 008 8PP 908 BPP etc.
Page 131, line 1 of program:

ORG 7Q1

CHANGE TO:

ORG 719

BASIC Reference Manual Addenda, April, 1977
Page 5

(_, 23, Page 135, Step 7, line 2:
' . . . the board type is IOCHNL, . . .

CHANGE TO:

. . . the board address is IOQCHNL, . . .
24. Index, line 12:

ADDITION:

7 P T 3

C

PREFACE

The Altair BASIC language is a high-level programming
language sapecifically designed for interactive computing
systems. Its simple English=like instructions are easily
understood and guickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 888d series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
extended versions provide additiconal features including
compiehensive file input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, release 4.4,
For quick refarence, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6.
complete index is at the end of the manuval. In addition to
this reference manual, the programmer should have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J. .

Lnua:y. 1977

1.
1-1

1-2
1-3

2-2

2-3

3.

CONTERTS

Some Introductory Remarks.

Introduction to this manual
a. conventions

b. definitions

Modes of Operation

Formats

a. lines<-AUTQ and RENUM

b. REMarks

C. error messages

Editing - elementary provisions
a. single characters

b. lines

¢. whole programs

Expressions and Statements

Expressions
a. constants
b. variables
1) names
2) typing
C. arrays -~ the DIM statement
d. operators and order of precedence
e. logical operations
£. the LET statement
Branching and Loops
a. branching
1} GOTO
2) IF...THEN...[ELSE]
3) ON,..GOTO
b. loops = FOR,NEXT
c. subroutines - GOSUB,RETURN statements
d. memory limitations
Input/Qutput, Data Handling
a. INPUT
b. PRINT
c. DATA, READ, RESTORE
1) DATA
2} READ
3) RESTORE
d. CSAVE, CLOAD
¢, miscellanecus
1} WAIT
2) PEEK,POKE
3) ouT, INP

Punctions

Page 2

January, 1977

3-1 Intrinsic Punctions
(_/ 3-2 User-defined Functions - the DEF statement
4. Strings
- 4=]1 String data
4-2 String operations
a. comparisons
b. LET statements
¢. input/output
1) INPUT, PRINT
2) DATA,READ
4-3 sString Functions
§. Extended Features
$=-1 Extended Statements
5-2 Extended Qperators
5-3 Extended Functions
S~4 EDIT Command
$-5 PRINT USING Statement
5-6 Disk Operations
6. Tables and Directories
6-1 Commands
6-2 Statements
(_/ 6-3 Intrinsic Functions
6~4 Special Characters
6-5 Errorv Messages
6-6 Reserved Words
‘ 6-7 1Index
Appendices
‘ A, ASCII Character Codes
3. Loading Altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface ;
G. Convarting BASIC Programs Not Written for the Altair Computer.
B. Disk Information :
I. The PIP Utility Program
J. BASIC Texts
K. Using altair BASIC on the
Intellec* 8/Mod 84 and MDS Systems
L. Patching Altair BASIC's I/0 Routines
M. Using Disk Altair BASIC: An Example
Index

Page 3

January, 1977 Page 4

1. SOME INTRODUCTORY REMARKS

-1 Introduction to this Manual, ‘

a. Coanventions, For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language.

1. Words printed in capital letters must be written exactly
as shown, These are mostly names of instructions and
commands.

2. Items enclosed in angle brackets (<>} must be supplied

as explained in the text. Items in square brackets ([]) are
optional. 1Items in both kinds of brackets, [<KW>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary. ;
3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key

and typing the indicated letter.

4. Bll indicated punctuation must be supplied.

b. Definitions. Some terms which will become
important are as follows:

Alvhanumeric character: all letters and numerals taken .
together are called alphanumeric characters. i

Carriage Return: Refers both to the key on the ‘
terminal which causes the carriage, print head or cursor to
move to the beginning of the next line and to the command
f?at the carriage return key issues which terminates s BaSiIC
ne.

Command Level: After Altalr BASIC prints OK, it is at
the command level. This means it 1is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are - loosely divided intc two classes, Commands and
Statements, Commands are instructions normally used only in
direct mode (see Mcdes of QOperation, section 1-2). Some
commands, such as CONTymay only be used in direct mode since
they have no meaning as program statements. Some commands,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But most
commands will find occasional use as program statements.
Statements are instructions that are normally used in
indirect mode. Some statements, such as DEF, may only be
used in indirect mode.

j
1'
i
1
|
1
i

Fanuacry, 1977 Page 5

BEdit: The process of deleting, adding and substituting
(_/ lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as “editing." The particular meaning in use will be clear
from the context.

Integer Expression: An expression whose value is
truncated to an integer. The components of the expression
nead not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these

are the following:

{caret) appears on some terminals as * {up-arcow)
~~ (tilde) does not appear on some terminals and prints
as a blank
. (underline) appears on some terminals as -w-(back~arrow).

String Literal: A string of characters enclosed by

quotation marks. () which is to be input or output exactly

(_/ as it appears. The quotation marks are not part of the
string 1literal, nor may a string literal contain quotation

marks. (""HI, THERE""is not legal.) "

TYpe: While the actual device used te enter
information into the computer differs from system to system,
this manval will use the word “"type" to refer to the process
of entry. The user types, the computer prints. ?Type also
refers to the classifications of numbers and strings.

1-2 Modes of COperation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debuaging
and for using Altair BASIC in a "calculator™ mode for guick
computations which do not justify the design and coding of
complete programs.

In the indirect mede, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line

(/ nunber. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines

are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN
commands.

1-3 Formats.

a. Lines. The line is the fundamental wunit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nannn <BASIC statement>[:<BASIC statement>...])

Each 2ltair BASIC line begins with a number, The number
corresponds to the address of the 1line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the range
B to 65529, A good programming practice is to use an
incremant of 5 or 12 between successive 1line numbers to
allow for insertions.

1} Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the !
AUTO and RENUM commands. The AUTO command provides for
automatic insertion of 1line numbers when entering program ‘
lines. The format of the AUTO command is as follows:

AUTO([<initial line>[,{<increment>]]]
Example;

AUTC 160,18

160 INPUT X,Y . ;

118 PRINT SQR(X"2+Y"2)

128 “¢ !

CK

i
i
AUTO will number every input line until Control/C is typed. i
If the <initial line> is omitted, it is assumed to be 18 and ;
an increment of 12 is assumed if <increment> is omitted, If §
the <initial 1line> is followed by a comma but no increment H
is specified, the increment last used in an AUTO statement]
is assumed. :

!

|

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

LTSI dhiad- A

2) The RENUM command allows program lines to be “spread
out" so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<KNN> [<MM>[,<II>]]]

where NN is the new number of the first line to be
reseguenced. If omitted, NN is assumed to be 14. Lines
less than MM will not be renumbared. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be reseguenced., If II is omitted, it
is assumed to be 1§. Examples:

RENUM Renumbers the whole program to start at line
18 with an increment of 18 between the new line numbers.

RENUM 149, ,169 Renumbers the whole program to start
at line 198 with an increment of 188,

RENUM 6008,5000,10909 Renumbers the lines from 506060
up so they start at 6990 with an increment of 1404.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,38 when the program has
three lines numbered 149, 20 and 39) nor to create
line numbers greater than 65529, An ILLEGAL
FUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
ON,..GOTO, ON...GOSUB and ERL<{relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the staktements above
but does not exist in the program, the message “UNDEFINED
LINE XXXXX IN YYYYY®" will be printed, This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Bxtended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly useful
in the use of the EDIT command. See section 5-4,

4) Following the 1line number, one or more BASIC
statements are written. The £f£irst word of a statement
identifies the operations to be performed. The list of
arguments which follows the identifying word serves several
purposes. It can contain {or refer symbolically to} the

fanvary, 1977 Page 8

data which is to be operated upon by the statement. In some)
important instructions, the operation to be per formed
depends upon conditions or options specified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on one 1line |if
they are separated by colons (:). Any number of statements
can be joined this way provided that the 1line 1is no more
than 72 characters 1long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

184 IP %<¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage raturn>

The line is shown broken into three lines, but it is input
as one BASIC line.

b. REMarks. In many cases, a program can be more
easlly understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows such comments to be included
without affecting execution of the program. The format of ‘
the REM statement is as follows: .

REM <remarks>

A REM statement is not executed by .BASIC, but branching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

1849 REM DC THIS LOOP:FOR I=1TOld -the FOR statement
will not be executed
191 FOR I=1 TO 1@: REM DO THIS LOQP -this FOR statement will

be executed.

In £xtended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

€. Errors. When the BASIC intecpreter detects an
error that will cause the program to be terminated, it
prints an error message. The error message formats in
Altair BASIC are as follows:

Direct statement ?XX ERROR ‘

anuary,

C

1977 Page 9

Indirect statement ?2XX ERROR IN nnnnn

XX is the error code or message (see section 6-~5 for a 1list
of error c¢odes and messages) and nnnnn ig the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 Editing - elementary provisions.

Editing features are provided in Altair BASIC sc¢ that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Digk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single “characters, If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals}) or ,except in 4K, the RUBOUT key. Each
stroke of the Kkey deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can bhe replaced simply by
typing the rest of the line as desired, . o

When RUBOUT is typed, a backslash {\) is printed and
then the character to be deleted. Each successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters betwsan the backslashes are deleted.

Example:

188 X=\=X\Y=10 Typing two RUBOUTS deleted the °*=!
and 'X' which were subsequently
replaced by Y= .,

b. c¢orrecting lines. A 1line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the 1line i{s deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versions, typing Contrel/a
instead of the carriage return will allow all the features
of the EDIT command (except the A command) to be used on the

anuary, 1977 Page 19

line currently being typed. See section 5-4.
¢. correcting whole programs. The NEW command cauées
the entire current program and all variables to be deleted.

NEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1, Expressions.

The simplest BASIC expressions are single constants,
variables and function c¢alls.

a. Constants. Altair BASIC accepts integers or
floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1, Some examples of acceptable numeric
constants follow:

123
3.141
B.0436
1.25E+4@5

Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section 1-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567898123
produces the following output:

1.23457
oK

In BExtended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determineé by the
following rules:

1. If the number is negative, a minus sign (=) is printed
to the left of the number. If the number is positive, a
space is printed.

moary., 1977 Page 11

2. If the absolute value of the number is an integer in
(_/ the range ¢ to 999999, it is priated as an integer.

3. If the absolute value of the number is greater than or
equal to .81 and less than or egual to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point values up to
9999399999999999 are possible.

5. If the number does not fall into categories 2, 3 or 4,
scilentific notation is used.

The formats of scientific notation are as follows:
SX . XXXXXESTT single precision
SX . XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of couzse), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may bhe read "...times ten to the power...."
Non~significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed £for the mantissa. The
('/ exponent must be 1in the range =-38 to +38. The largest
number that may be represented in Altair BasSIC is
1.76141238, the smallest positive number is 2.9387E~-38. The
following are examples of numbers as input and as output by
Altair BASIC:

.

Number i Altair BASIC Ouiput
+1 1

-1 -1

6523 6523

1B28 1824 .
-12.34567E-180 ~1.23456E-09
1.234567E-7 1.23457E~07
1990099 1E+9d6

.1 .1

.61 .81

883123 1.238-94
~25.4619 -25.46

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type ¢f a number constant is

(/’ determined according to the following rules:

anuary, 1977 Page 12

1, A c¢onstant with more than 7 digits or a 'D' instead of
'E' in the exponent is double precision.

2. A constant outside the range =32768 to 32767 with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no dJdecimal
point is integer.

4. A constant followed by an exclamation point (1!} is
single precision; a constant followed by a pound sign

(¥#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the
symbol &H preceding the number. The constant may not
contain any characters other than the QJigits 8 - 9 or
letters A -~ F, of a SYNTAX BERROR will oeccur. Oc¢tal
constants may be designated either by &0 or just the & sign.

In al) formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current 1line. If not, it
issgegi a carriage return and prints the whole number on the
nex nea. . .

b. Variables

1) A variable represents symbolically any number which
is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. 1In 4K ,
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
be a letter. No reserved worda may appear as variable names
or within variable names. The following are examples of
legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:
A $A (first character must
be alphabetic.)
z1 ZlA (variable name is too
long for 4K)

Other versions:

anuary,

1977 Page 13

TP TO (varlable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.,)

In all but 4K Altair BASIC, a variable may alsc
represent a string. Use of this feature is discussed in
section 4.

2) Bxtended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type ' Symbol
Strings (8 to 255 characters) $
Integers {-32768 to 32767} %
Single Precision (up to 7 digits, exponent between

-38 and +38) !

Double Precision (up to 16 digits, exponent between
-38 and +38)

Internally, BASIC handles all numbers in binary. Therefors,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly, If no type 1is explicitly
declared, type 1is determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT ¢ Integer
DEFSTR ¢ sString
DEFSNG r Single Precision
DEFDBL ¢ Double Precision

where r is a letter or range of letters to be designated.
Examples:

153 DEPINT I-N Variable names beginning with the let-
ters I-N are to be of integer type.

20 DEFDBL D Variable names beginning with D are to
e of double precision type.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEPSNG A-Z statement.

anuary,

1977 Page 14

3) Integer variables should be used wherever possible
since they take the least amount of space in memori and
integer arithmetic iz much faster than single precision
arithmetic.

Care must be exercised when single precision and double
ptecision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

19 A=1,41 single precision value
29 B3=A¥*10:C§=CDBL(A)*10#% convert to double precision
36 PRINTA;B4#;C#;CDBL(A) in various ways
RUN
1.01 10.10090038146973 10.699%9990463257 1.009999990463257
(0):4

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR§ functions
should be used. For example:

19 a=1.81
20 B#=VAL(STRS (A)) :CH=BJ*104%
3% PRINT A;B#%;C#

RON
1.1 1.01 10.1
OK

¢. Array Variables, It is often advantageous to refer
to several variables by the same name, In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables, or
arrays. The Eorm of an array variable is as follows:

VV(<subscript>[,<{subscript>...])

where VV is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will f£it on a single line.
The smallest subscript ig zero. Examples:

A(5) The sixth element of array A. The first
element is A{6).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the reference to the

knuary,

C

1977 Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero, The form of the DIH
statement is as follows:

DIM VV(<subscript>{,<subscript>...]}

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Bach DIM statement may apply to more
than one array variable. Some examples follow:

-

113 DIM A(3), D§$(2,2,2)

114 DIM R2%(4), B(19)

115 DIM Ql(N), Z#({2+I) Arrays may be dimensioned dy-
namically during progran
execution. At the time the
DIM is executed, the expression
within the parentheses is e- -
valuated and the results trun-
cated to integer.

If no DIM statement bhas bheen executed before an array
variable is found in a program, BASIC assumes the variable
to have a maximum subscript of 18 (11 elements) for each
dimension in the reference., A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which is outside the space
allocated in its associated DIM statement. This can occur
when the wrong number of dimensions is used in an array
element reference. For example: :

38 LET A({1,2,3)=X when A has been dimensioned by
19 DIM A({2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This oftan occurs when a DIM statament appears
after an array has been given its default dimension of ld.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators, The order of execution of operations in an
expregsion 1is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence

fanuary, 1977

Oper
Oper
same
in a
1.
2.

7.
8.

9.
18.
il.

12.
13.
14,

In 4
once

Page 16

ators are shown here in decreasing order of precedence.
ators listed in the same entry in the table have the
precedence and are executed in order from left to right
n expression.

Expressions enclosed in parentheses ()

* exponentiation (not in 4K). Any number to the zero
power is 1, Zero to a negative power causes a /4 or
DIVISION BY 2ERC error.

- negation, the unary minus operator

*,/ multiplication and division

\ integer division (available in Extended and Disk
versions, see section 5-2}

MOD (available in Extended and Disk versions. See
section 5-2)

+,~ addition and subtraction
relational operators
= gqual
<> not egual
< less than
> greater than
<=,={ less than or equal to
>=,=) greater than or equal to

(the logical operators below are not available in 4K)

NOT logical, bitwise negatien

AND logical, bitwise disjunction

OR logical, bitwise conjunction

{The logical operators below are available only in
Extended and Disk versions,)

XOR logical, bitwise exclusive OR

EQV logical, bitwise equivalence

IMP logical, bitwise implication

K Altair BASIC, relational operators may be used only
in an IF statement. 1In all other versions, relational

d

anuary, 1977 ’ Page 17

operators may be used in any expressions. Relational
expressions have the value either of True (-1} or False (#).

C e. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. 'The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments inte sixteen bit, signed, two's complement
integers in the range -32768 to 32767. After the operations
are performed, the result is returned in the same form and
range., If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time., In
binary operations, bit 7 is the most significant bit of a
byte and bit 8 is the least significant.

AND
X Y XAND Y
1 1 1
1] B
1 9
3 8
OR
X Y XORY
1 1 1
C 1 8 1
9 1 1
¢) 8
NOT
X NOT X
1 0
6 1
XOR
X Y X XOR Y
1 1 ¢
1 g 1
0 1 1
g g 8
EQV
X Y X BEQV ¥
1 1 1
1 a e
0 1
9 9 1
IMP
X b 4 X IMP Y
1 1 1
1) o
? 1 1
9 1

fanuary,

1977 Page 18

Some examples will serve to show how the logical operations
works

63 AND lé=16 63=binary 111111 and l1lé=binary 160049,
S0 63 AND 16=16

1S AND 14=14 15= binary 1111 and l4=binary lllﬂ,
s0 13 AND l4sbinary 1119=14,

=1 AND 8=8 =l=pipary 1111111111111111 and 8=binary
1394, so -1 AND 8=8,

4 OR 2=6 4=hinary 106 and 2=binary 10 so
4 OR 2=binary li#=6.

19 OR 10=18 binary 1810 OR'A with itself is 18ld=

-1 OR ~2=-] =l=binary 1111111111111111 and =2=

) 1111111111111114, so =1 OR ~2=-1,
NOT @u-1 the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement representation of -1,

NOT X=«~{X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered in the
discussion of the IF statement,

f. The LET statement. The LET statement 1iIs used to
assign a value to a variable. The form is as follows:

LET <VV>=<expresziond>

where VV is a variable name and the expression is 'any valid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1406 LET V=X
118 LET 1I=I+1 the '=' gign heremeans 'is replaced
BY oo’

The word LET in a LET statement is optional, so algebraic
equations such as:

129 V=,5% (X+2)
are legal assignment statements.

4 SN or SYNTAX ERROR message is printed when BASIC
detects incorrect form, illegal characters in a 1line,
incerrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the resuit of a calculation is

<

i

rnuary, 1977 Page 19

too large ko Dbe represented by Altair BASIC's number
formats, All numbers must be within the range lE-38 to
(_/ 1,76141E38 or -1E-38 to -1.70141E38., An attempt to divide
by zerc results in the /8 or DIVISION BY ZERO error message,

FPor a discussion of strings, string variables and
string operations, see section 4.

2-2., Branching, Loops and Subroutines,

a. Branching. 1In addition to the sequential execution
of program lines, BASIC provides for changing the order of
execution. This provision is called branching and is the
basis of programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEN and ON...GOTO statements,

1} GOTO is an unconditional branch. Its form is as
follows:

GOTO<mmmmm.>

After the GOTO statement is executed, execution continues at
line number mmmmm.

(-/ 2) IF...THEN is a conditional branch. 1Its form is as
follows: .

IF<expression>THEN<mmmmm>

where the expression is a valid arithmetic, relational or,
except in 4K, logical expression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the 1IF...THEN statement is as
follows:

IFP<expression>THEN<Kstatement>

where the statement is any Altair SASIC statement.
Exanples:

19 IF A=10¢ THEN 44 if the expression A=16 is
true, BASIC branches to line 44. Otherwise,
execution proceeds at the next line.

15 IF A<B+C OR X THEN 199 The expression after IF is
evaluated and if the value of the expression s
non-zero, the statement branches to line 1484.

Lnuary. 1977 Page 20

Otherwise, execution continues on the next line.

29 IF X THEN 25 If X is not zero, the statement
branches to line 25.

30 IP X=Y THEN PRINT X If the expression X=sY is true
{(its value is non-zero}, the PRINT statement is
executed. Ctherwise, the PRINT statement is not
executed. - In either case, execution continues with
the line after the IF...THEN statement.

35 IF X=¥+3 GOTO 39 Equivalent to the correspoending
IF...TREN statement, except that GOTC must be.
followed by a 1line number and not by another
statement.

Extended and Disk versionsa of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THENKYY>ELSE<ZZ>

whara YY and 22 are valid 1line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT “GREATER" ELSE PRINT "NOT GREATER"

If the expression X>Y is true, the statement after THEN is
executed; otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERROR®

If the expression X=2%Y is true, BASIC branches to 1line 35;
otherwise, the PRINT statement is executed, Extended and
Disk Altair BASIC allow a comma before THEN,

IF statements may be nested in the BExztended and Disk
versions. Nesting is 1limited only by the length of the
line. Thus, for example:] :

IF X>Y THEN PRINT “GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT “EQUAL"

and

IF ¥=Y THEN IF ¥>Z THEN PRINT “X>2" ELSE PRINT "Y<=Z*
ELSE PRINT "X<OY*

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatched THEN. Example:

IF A=B THEN IF 8=C THEN PRINT "A=C" ELSE PRINT "A{C"

will not print "A<>C" when A<>B.

Lnuary, 1977 Page 21

C

C

3) ON...GOTQ (not in 4K) provides for another type of
conditional branch. 1Its form is as follows:

ON<expression>GOTO<list ¢of line numbers>

After the value of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is Ith in the list. The statement may be
followed by as wmany line numbers as will fit on one line.
if I=9 or is greater than the number of lines in the 1list,
execution will continue at the next line after the ON...GOTO
statement, I must not be less than zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b, Loops. It is often desirable to perform the same
calculations on different data or repetitively on the same
data. Por this purpose, Altair BASIC provides the FOR and
NEXT statements. The form of the FOR statement is as
follows:

POR<variable>=<X>TOKY> [STEP <2I>]

where X,Y and 2 are expressions. When the FPOR statement is
encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which is
called the initial value, BASIC then executes the
statements which follow the FOR statement iIn the wusual
manner, When a NEXT statement is encountered, the step 2 is
added to the variable which is then tested against the £inal’
value Y. If 2, the step, is positive and the variable is
less than or equal to the final value, or if the step is
negative and the variable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
execution proceeds with the statement following the NEXT.
If the step is not specified, it is assumed to be 1.
Examples:

10 FOR I=2 TO 1l The loop is executed 19 times with
the variable I taking on each in-
tegral value from 2 to 1ll.

28 FOR V=1 TO 9.3 This loop will execute 9 times un-
£il V is greater than 9.3

38 FOR V=10*%N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval~
gated only once, before loop-
ing begins.

49 FOR V=9 TQ 1 STEP -1 This loop will be executed 9
times,

FOR.. .NEXT lcoops may ke nested. That is, BASIC will execute

[anuary, 1977 Page 22

a FOR...NEXT 1loop within the context of another loop. An
axample of two nested loops follows:

148 POR I=1 TC 10
120 FOR J=1 TO I

130 PRINT A(I,.J)

140 NEXT J

150 NEXT I

Line 130 will print 1 element of A for I=1l, 2 for I=2 and so
on. If loops are nested, they must have different loop
variable names. The NEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any numbetr of levels of nesting |is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT([<variable>[,<vaciable>...]]

whére each variable is the loop variable of a FOR 1loop for

which the NBEXT statement is the end point. 1In the 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a variable will match
the most recent FOR statement., In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so on., If BASIC encounters a
NEXT statement before its corresponding FOR statement has
been executed, an NF or NEXT WITHOUT FPOR error message is
issued and execution is terminated.

¢. Subroutines. If the same operation or series of
operations are to Dbe performed in several places in a
program, storage space reguirements and programming time
will be minimized by the use of subroutines, A subroutine
is a gseries of statements which are executed in the normal
fashion upon being branched to by a GOSUB statement.
Execution of the subroutine 1is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

GOSUB<line number>

where the line number is that of the first 1line of the
subroutine, A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

Nsary,

C

1377 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ON...GOSUB statement, whose
form is as follows:

ON <expression> GOSUB <list of line numbers>

The execution is the same as ON...GOTO except that the line
numbers are those of the first lines of subroutines.
Execution continues at the next statement after the
ON...GOSUB upon return from one of the subroutines,

d. O0UT OF MEMORY er:ors. While nesting in loops,
subroutines and hranching is not limited by BASIC, memory
size limitations restrict the size and complexity of
programs. The OM or OUT OF MEMORY error message is issued
when a pregram requires more memory than is available. See
Appendix C for an explanation of the amount of memory
required to run programs.

2-3., Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<list of variables>

The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the
list. When an INPUT statement is executed, a question mark
(?) is printed on the terminal signalling a request for
information. The operator types the reguired numbers or
strings {or, in 4K, expressions) separated by commas and
types a carriage return. If the data entered is invalid
(strings were entered when numbers were requested, etc.}
BASIC prints 'REDO FROM START?' and waits for the correct
data to be entered. If more data was requested by the INPUT
statement than was typed, ?? is printed on the terminal and
execution awaits the needed data, 1If more data was typed
than was reguested, the warning 'EXTRA IGNORED' is printed
and execution proceeds. After all the reguested data is
input, execution continues normally at the statement
following the INPUT. Except in 4K, an optional prompt
string may be added to an INPUT statement.

INPUT ("<prompt string>";)<variable list>

Execution of the statement causes the prompt string to be
printed Dbefore the guestion mark. Then all operations
proceed as above. The prompt string must be enclosed in
double quotation marks (") and must be separated from the

anuary,

1977 Page 24

variable list by a semicolon (;}. BExample:

199 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of ¥ and Y are typed after the ?
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the variables in the variable list unchanged. 1In 4K, a
SN error results.

b. PRINT., The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect is to skip a
line. The more usual PRINT statement has the following
form:

PRINT<list of expressions>

which causes the values of the expressions in the list to be
printed, String 1literals may be printed if they are
enclosed in double gquotation marks (").

The position of printing is determined by the
punctuation used to separate the entries in the list,
Altair BASIC divides the printing 1line into 2ones of 14
spaces each. A comma causes printing of the value of the
next expression to begin at the beginning of the next 14
column zone. A semicolon {:;) causés the next printing to
begin immediately after the last value printed., If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line acceording
to the conditions above, Qtherwise, a carriage return is
printed.

c. DATA, READ, RESTORE

1) the DATA statement. Numerical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements., The format of the DATA statement is as follows:

DATA<1list>

where the entries in the 1list are numerical or string
constants separated by commas. In 4K, expressions may alseo

aneary, 1977 Page 15

(_J appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement, Examples:

19 paTA 1,2,-1E3,.084

29 DATA ™ LOQ", MITS Leading and trailing spaces in
string values are suppressed unless the string is
enclosed by double quotation marks.

2} The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READ<list of variables>

where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list, This is done one by cne from
left to right until the READ list is exhausted, If there
are more names in the READ list than values in the DATA
lists, an OD or OUT OF DATA error message is issued, If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be

) executed will begin with the next unread DATA list entry. A

(_, single READ sStatement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list, In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. In other versioens,
the line number in the error message will refer to the
actual 1line of the DATA statement in which the error
occurred,

3) RESTORE statement, After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list 1in
the program. This allows re~READing the data.

d. CSAVEing and CLOADing Arrays (8K cassette, Extended
and Disk wversions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>

(_/ and

ahvary,

1977 Page 26

CLOAD*<array name)>

The array is written out in binary with four octal 219
header bytes to indicate the start of data. These bytes are

searched for when CLOADing the array. The number of bytes
written is four plus:

8*#<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most quickly, the next leftmost second, etc:

DIM A(leQ)
CSAVE*3

writes out A(0},A(1),...A(10)

DIM A(16,19)
CSAVE*A

writes out A(d,6), A(1,8}...A(16,8) ,A(10,1}...A(16,16)

Using this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc. -

NOTE

Writing out a double precision array and reading (it
back 1in as a single precision or integer array is
not recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K}. The status of input ports can be
?onitored by the WAIT command which has the following
ormat:

WAIT<I, > [,<K>]
where I is the number of the port being monitored and J and

K are integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. g€xecution |is

anuary,

C

|

1977 . Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution is suspended until
those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. 1t
K is omitted, it is assumed to be zero. I, J and K must be
in the range § to 255. Examples:

WAIT 24,6 Execution stops until either bit 1 or bit :
2 of port 29 are equal to 1. (Bit 8 is |
least significant bit, 7 is the meost sig- B
nificant.) Ezecution resumes at the next i
statement. i

WAIT 19,255,7 Execution stops until any of the most SLgnxflcantl
5 bits of port 10 are one or any of the least
significant 3 bits are zerg, Execution
resumes at the next statement.

2) POKE, PEEXK {not in 4K). Data may be entered into
memory in Dbinary form with the PORE statement whose format
is as follows:

POKE <I,J>

whaere I and J are integer expressions. DPOKE stores the byte
J into the location specified by the value of I. In 8K, I
must be less than 32768. 1In Extended and Disk versions, I
may be in the range @ to 65536, J must be in the range 8 to
255, In 8K, data may be POKEd inte memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address, Te
POKE data into location 45000, £for example, I is
45806-65536=-20536, Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded
again.

The complementary function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK{<I>)

where I is an integer expression specifying the address from
which a byte is read. 1I is chosen in the same way as in the
PORKE statement. The value returned is an integer between 9
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

300, INP (not in 4K). The format of the O0UT
statement is as follows:

anuwary, 1977 Page 28

OuT <I,J>

where I and J are integer expressions., OUT sends the byte
signified by J to output port I. I and J must be in the
range 8 to 25S5.

The INP function is called as follows:
INP (<I>)

INP reads a byte from port I where I £s8 an integer
expression in the range @ to 255. Example:

26 IF INP(J)=16 THEN PRINT "ON®

3. FUNCTIONS

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function
call is as follows:

<name> (<argument> [,<argument>...))
where the name is that of a previously defined function and
the arguments are one or more expressions, separated by
Commas . Only one argument is allowed in 4K and 8K.
Function calls may be components of expressions, so
statements like

1@ LET Ta=(F*SIN(T)}/P and
20 C=SQR(A“2+B"2+2*A*B*COS(T))

are legal,

3-1. Intrinsic Functions

Altair BASIC provides several fregquently used functions
which may be called from any program without further
definition. A procedure is provided, however, whareby
unneeded functions may be deletad to save memocry space. See
Appendix B, For a list of intrimsic functions, see section
6-30

3-2. User-Defined Functions (not in 4K).

angacy, 1977 Page 29

a. The DEF statement. The programmer may define

functions which are not included in the list of intrinsic

(_, functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name> (<variable list>)=<expressiond>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are
‘dummy’® variable names, The dummy variables represent the
argument wvariables or values in the function call. 1In 8K
Altair BASIC, only one argument is allowed for a
user~defined faunction, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
uger-defined string functions are not allowed in 8K If a
type 1is specified for the function, the value of the
expresgion is forced to that type before it is returned to
the calling statement, Examples:

19 DEF FNAVE(V,W)=(V+W)/2
11 DEP FNCONS$ (V$,WS)=RIGHTS (V$+W$,5) Returns the right
most 5 characters of the concat-
enation of V$ and W$.
. 12 DEF FNRAD(DEG)}=3.14159/180*DEG When called with the
(_/ measure of an angle in degrees,

returns the radian eguivalent.

A function may be redefined by executing another DEP
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.

3-3. BErrors.

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function., Some places this might
occur are the following:

1. a2 negative array subscript. LET A(-1l)=9, for example.
2. an array subscript that is too large (>32767)

3. negative or zero argument for LOG

‘anuary, 1977 Page 30

4, Negative argument for SQR
S. A®B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subtroutine.

7. improper arguments to MID$, LEFT$,RIGHT$, INP, OUT,
WAIT, PEEK, ©POKE, TAB, SPC, INSTR, STRINGS$, SPACES or
ON...GOTO.

b. An attempt to ¢all a user~defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED OUOSER PUNCTION errcor.

¢, A ™ or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section,

4-1. String Data.

A string is a list of alphanumeric characters which may
be from @ to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by wvariables. String constants are delimited by gquotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($§). Examples:

A$a"ABCD" Sets the variable A$ to the four character
string "ABCD"

B9S="142/56" Sets the variable B9$ to the six character
string “143a/56"

FOOFOQ$="ES" Sets the variable PFCOFQ0$ to the twoe charac-

ter string "E$"

Strings input to an INPUT statement need not be surzounded

huary,

C

1977 | Page 31

by guotation marks.

string arrays may be dimensioned exactly as any other
kind of array by use of the DIM statament. Bach element of
a string array is a string which may be up to 255 characters
long. The * total number of string characters in use at any
peint in the exscution of a program must not exceed the
total allocation of string space or an 08 or QUT QF STRING
SPACE error will result. 8tring space is allocated by the
CLEAR command which is explained in section 6-2.

4-2. 3String operations,

a. Comparison Operators. The comparison operators for
étrings are the same as those for numbers:

= equal

<> not equal

< less than

> greater than

={,<= lass than or equal to
=>,>= greater than or egqual to

Comparisen is made character by character on the basizs of
ASCII codes until a diffarence is found. If, while
comparison is proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples: .

A<Z ASCII A is 065, 2 is 090

1<A ASCII 1 is 0649

®* A">"A" Leading and trailing blanks are significant
in string literals.,

b. String Expressions. String expressions are
composed of string 1literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operator to the and of the string
on the left, If the result of concatenation is a string
more than 255 characters long, an LS or STRING TCO LONG
error message will be issued and execution will be
terminatad.

¢. Input/OQutput, The same statements uged for input
and output of normal numeric data may be usad for string
data, as well.

fanuary, 1977 . . . o Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, 1leading
blanks will be igneored and the string will be terminated
when the first comma or colon is encountered. Examples:

19 INPUT 200%,FO00$ Reads two strings

29 INPOT X$ Reads one string and assigns
it to the variable X$.

39 PRINT X§,"HdI, THERE” Prints two strings, including
all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string
data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4~3, String Functions.

The format for intrinsic string function calls {3 the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Bxtended and Disk versions and may
be defined by the use of the DEF statement (see sectiocn
3-2). String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. Por

clarity, these features are grouped together in this

section. Some modificationg to existing 4K and 8K features,
such as the IP...THEN...BELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to theose
features.

5=1. Eitended Statements

a., ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes, The format of the ERASE statement is as
follows:

anuary,

C

1977 Page 313

ERASE<array varlable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. 1If a name appears in the list which |is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the o0ld values are lost. Example:

10 DIM A(5,5) ete.

»

66 ERASE A
76 DIM A(166)

b. LINE INPUT. It is often desirable to input a whole
lipe to a string variable without use of guotation marks and
other delimiters, LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ("<prompt string>",)i<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. A gquestion mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing <Control/C. At that point, BASIC
returns to command level and prints OK, Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, s8¢ the command may not be edited
by Control/A for re-execution.

¢. SWAP. The SWAP statement allows the Qalues of two -
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa, Either or both of the variablas
may be elements of arrays. 1If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result, Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

18 INPUT F$,L$
20 SWAP FS$,L$
38 PRINT F$,L$
RUN

anvary, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each 1line in the program is printed as it is
executed. The numbers appear enclosed in sguare brackets
(1. The function s disabled by execution of the TROFF

statement., Example:

TRON executed in direct mode

OK pcinted by computer

19 PRINT 1:PRINT “A" typed by programmer

29 STOP

RUN

(16] 1 line numbers and output printed by
a computer.

(28]

BREAK IN 29

The NEW command will also turn off the trace flag.
e. IF...THEN...ELSE. See section 2-2.
£. DEPINT, DEFSNG, DEFDBL, DEPSTR. See sgection 2-1

g, CONSOLE, WIDTH. CONSOLE allows the console
terminal to Dbe switched from one I/0 port to another. The
format of the statement is:

CONSOLE <I/0 port number>,<switch ragister setting>

The <1/0 port number> is the hardware port number of the low
order (status} port of the new l/0 board. This value must
be a numeric expression between 9 and 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur., The <switch register setting> is also a value
between @ and@ 255 inclusive which specifies the type ¢f 1/0
poert (SIO, PIO, 4PIO etc) being selected. Appropriate
values of the <switch register setting> may be found in
Appendix B in the table of sense switch settings or in the
table below.

Ay Ly,

1977 Page 35

Table of values for <switch register setting>:

I1/0 Board Sense Switch
Setting

2510 with 2 stop bits
2S8I0 with 1 stop bit
SI0O

ACR

4PIO

PIO

HSR

non-standard terminal
no terminal

NI WND @

=

WIDTH Statement

The WIDTH statement sets the width in charactecs of the
printing terminal 1line. The format of the WIDTH statement
is as follows: .

WIDTH <integer expression>
Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 2S5
inclusive, or an ILLEGAL FUNCTION CALL error will occur,

h, Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from ertors
or provide more complete explanation of the cause of errors
than the gimple error messages., This facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTC
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTO <line number)>

‘gnuary, 1977 Page 36

The ON ERROR GOTQ statement should be executed before the d
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause i
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR ;
GOTO statement does not exist, an UNDEFINED LINE error will !
ocgur,

Example:

14 ON ERROR GOTO 1048

2} Disabling the Error Routine, ON ERRCOR GOTO @
disables trapping of errors so any subseguent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO @ statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTO @ subroutine if an error is encountered for
which they have no recovery action,

NOTE ‘.

If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Ecror
trapging does not trap errors within the error trap
routine. :

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error ¢odes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code Error

NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

TLLEGAL FUNCTION CALL
OVERFLOW :
QUT OF MEMORY ‘
UNDEFINED LINE '
SUBSCRIPT OUT OF RANGE

WRIRh AW

anuary,

C

1977 page 37

19 REDIMENSIONED ARRAY

11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 QUT OF STRING SPACE

15 STRING TOO LONG

16 STRING PORMULA TOQ COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION

19 UNPRINTABLE ERROR-
20 NO RESUME

21 RESUME WITHOUT ERROR
22: MISSING OPERAND

23 LINE BUFFER OVERFLOW

Disk Brrors

5@ FIELD OVERFLOW
51 INTERNAL ERROR

52 BAD FILE NUMBER

s3 FILE NOT FOUND

54 BAD FILE MODE

55 FILE ALREADY OPEN

56 DISK NOT MOUNTED

87 DISK I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 BAD FILE NAME

65 MODE-MISMATCH

66 DIRECT STATEMENT IN PILE
67 TGO MANY FILES

68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line
where the error was detected. Ffor instance, if the error
occured in line 1008, ERL will be equal to 1646@. If the
statement which caused the error was a direct mode
statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use

IF 65535=ERL THEN ...
In all other cases, use

IF ERL=a<line number> THEN...

anuary, 1977 Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section l-la).

4) Disk Brror Values -~ The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR(0O)
returns the number of the disk, ERR(l) returns the track
number (8-76) and ERR(2) returns the sector number (9-31).
BRR{3) and ERR{4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement. :

5) The RESUME statement. The RESUME statement is used
to continupe execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line, To RESUME execution
at the statement which caused the error, the user should
use: :

RESUME
or
RESUME 9

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where
the error occurred, use:

RESUME <line number>
Where <line number> is not egqual to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

inaacy.,

o

1977 page 39

168 ON ERRCR GOTC 5940

264 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
2108 2=%/Y

229 PRINT "QUOTIENT 1S";2

239 GOTO 289

$08 IF ERR=11 AND ERL=216 THEN 524

518 ON ERROR GOTO @

529 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
532 RESUME 299

7) The ERROR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above, The format of the ERROR statement is:

ERROR <integer expression>

When Jdefining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expression>
used in an ERROR statement is less than 2ero or dgreater than
255 decimal, an ILLEGAL PUNCTION CALL error will occur. Of
course, the ERROR statement may alsoc be used to force SYNTAX
or other standard Altair BASIC errocs. Use of an ERROR
statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
message to be printed out.

5-2., Extended Operators.

Two operators are provided that are exclusive te¢ the
Extendeé and Disk versions.

a, Integer Division. Integer division, denoted by \
{backslash), forces its arguments to integer form and
truncates the gquotient to an integer. More precisely:

A\B= FIX(INT(A}/INT(B))
Its precedence is just after multiplication and floating

point divisen. Integer division 1is approximately eight
times as fast as standard floating point division.

fanuary, 1977 Page 40
b. Modulus Arithmetic = the MOD operator. A MOD B

gives the 'ramainder' as A is divided by B. More precisely:
A MOD B=INT(A)-(INT(B)*{A\B))

If B=@, a DIVISION BY ZERQ error occurs. The precedence of
MOD is just below that of integer division.

5~-3. Extended Functions .

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a list of these
functions and a description of their use, see section 6-3.

b, The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whoge form is as follows:

DEFUSR{<digit @ through 9>]=<integer expression>
Example:

DEFUSR1=5100699
DEFUSR2=31996
DEFUSRI=ADR

The of the <integer expression> is the starting address of
the USR routine specified. When the USR subroutine s
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

value in A Meaning
2 Two byte signed two's complement integer.

3 String.
4 Single precision four byte floating peint number.
8 Double precision floating point number.

When the USR subroutine is entered, the {H,L) register pair
contains a pointer to the floating point accumulator (FAC).
The [H,L] registers contain the address of FAC-3.

If the value in the FAC is a single precision floating point
number, it is stored as follows:

PAC=3: Lowest 8 bits of mantissa.
PAC-2: Middle 8 bits of mantissa.
PAC-1: flighest 7 bits of mantissa with hidden (implied)

leading one., Bit 7 is the sign of the number (0
positive, 1 negative}.

Rhuary, 1977 Page 41

(_/ FAC: Exponent excess 208 octal. If the contents of FAC is 2068,
the exponent 1s 9. If contents of FAC isg 4,the number is
2ero.

If the argument is double precision floating point, the
FAC-7 to FPAC-4 contain four more bytes of mantissa, low
order byte in FAC~7, ete, If the argument is an integer,
PAC-3 contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, (D,B] points to a string
descriptor of the argument, whose form is:

Byte Use

8 Length of string 6-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution ~ may point into
program text if argument is a string literal).

Normally, the value returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MARINT routine whose address ig stored
in 1location 6 will return the integer in (H,L) as the value
of the function, forcing the value returned by the function
to be integer. Execute the following sequence to return
(_, from the function:

PUsH H :SAVE VALUE TO BE RETURNED
LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE
£THL :SAVE RETURN ON STACK &

$GET BACK (H,L]
RET s RETURN

The argument of the function may be forced to an integer, no
matter what its +type by calling the FRCINT coutine whose
address is located in iccation 4 to get the integer value of
the argument in {H,L]: ’

LXI H,SUBl s+ GET ADDRESS QF SUBROUTINE
s CONTINUATION
PUSH g ;PLACE ON STACK
LHLD 4 +GET ADDRESS OF FRCINT
PCHL ;CALL FRCINT
SUBl: ...,

5-4, The EDIT Command.

fanuary, 1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most c¢ommands may be preceded by an optional numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range @ to 255 (# is equivalent to 1). If the repetition
factor 1is omitted, it is assumed to be 1., In the following
examples, a lower case "n" before the command stands for the
repetition factor. 1In the following description of the EDIT
commands, the "cursor® refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return., The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

NOTE

The best way of getting the "feel* of the EDIT
command is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered,
the computer prints a bell {(control/G) and the command is
ignored.

. In the following examples, the lines labelled "computer
prints” show the appearance of the line after each c¢ommand.

a. Moving the Cursor. Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediztely previous character to be
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

mnuary,

C

1977

Page 43

Character insertion is stopped by typing Escape
{or Altmode ¢n some terminals). Control/C will not
interrupt the EDIT command while it is in Insert
mode, but will be inserted into the edited line.
Therefore, Control/C should not he used in the EDIT
command.

It is possible using EDIT to c¢reate a 1line
which, when 1listed with its line number, is longer
than 72 characters. Punched paper tapes containing
such lines will not read properly. However, such
lines may be CSAVEd and CLOADed without ercor.

I Inserts new characters into the line being edited.

Each character typed after the I is inserted at
the current cursor position and printed on the
terminal, Typing Escape (or Altmode on some
terminals) stops character insertion. If an
attempt is made to insert a character that will
make the line longer .than 255 characters, a
Control/G (bell) is sent to the terminal and
the character is not printed.

A backarrow (or Rubout) ¢typed during an insert
command {or~) will delete the character to the left
of the cursor. Characters up to the beginning of
the 1line may be deleted in this manner, and a
backarrow will be echoed for each character
deleted. However, if there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and then

carriage return were typed. That is,

characters to the right of the <¢ursor will be

printed and the EDITed line will replace
original line.

X is similar to I, except that all characters to

the right of the cursor are printed, and the cursor
moves to the end of the line., At this point, it

will automatically enter the insert mode (sae

command). X is most useful when new statements are

to be added to the end of an existing line.
example:

User types EDIT SO (carriage return)
Computer prints 50

User types X

Computer prints 5S¢ X=X+1

User types :¥Y=Y+1{CR)
Computer prints 50 X=X+1l:Y=Y+1

anuary, 1977

Page 44

In the above example, the original line #58 was:
56 X=X+l

The new line #5080 now reads:

S XmX+l:Y=Y+l

B is the same as X, except that all characters to
the right of the cursor are deleted (they will not
be printed). The insert mode (see I command) will
then automatically be entered, H is most useful
when the 1last statements on a line are to be
replaced with new ones.,

Releting Characters

nD deletes n characters to the right of the

cursor. If n is ommitted, it defaults to 1. if
there are less than n characters to the right of
the cursor, characters will be deleted only to the
end of the line., 'The cursor is positioned to the
right of the last character deleted. The
characters deleted are enclosed in backslashes (\).
For example:

User types 29 i=X+1:REM JUST INCREMENT X
User types EDIT 28 {(carriage return)
Computer prints 20

User types 6D {carriage return)

Computer prints 28 \X=X+l:\REM JUST INCREMENT X

The new line #20 will no longer contain the characters

which are snclosed by the backslashes,

Searching.

The nSy command searches for the nth occurrence of the

character y in the line. N defaults to 1. The
search skips over the first character to the right
of the cursor and begins with the second character
to the right of the cursor. All characters passed
over during the search are printed, Iif the
character is not found, the cursor will be at the
end of the line. 1If it is found, the cursor will
stop to the right of the character and all of the
characters to its left will have been printed. For
example

User types : S0 REM INCREMENT X

User types EDIT 59

ingary, 1977

C

X
e.
c
(_/
f‘
Carriage
g
Q
(,z L

Page 45

Computer prints 5@
User types : 28E
Computer prints 5@ REM INCR

nky is equivalent to S except that all of the

characters passed over during the search are
deleted. The deletad characters are enclosed in
backslashes, For example:

User types 18 TEST LINE

User types EDIT 14

Computer prints 12

User types KL

Computer prints 12 \TEST \

Text Replacement,

A character in a line may be changed by the use of

the command Cy which changes the character to the
right of the cursor to the character y. Y is
printed on the terminal and the cursor is advanced

one ~ position. nCy may be used to change n
characters in a line as they are typed in from the
terminal. {See example below.) If an attempt is
made to change a character which does not exist,
the change mode will be exited. Example:

User types 16 FOR I=1 TC 189
User types EDIT 14

Computer prints 1@

User types 281

Computer prints 19 FOR I=1 T™O

User types 3C256

Computer prints

14 FOR I=1 TO 256

Ending and Restarting

Terminates aditing and prints the re-
The edited line replaces the

Return
mainder of the line.
original line.

E is the same as a carriage return, except the
remainder of the line is not printed.

Q restores the original line and causes BASIC to
return to command level. Changes do not take
effect until an E or carriage return is typed, so0 Q
allows the wuser to restore the original line
without any changes which may have been made.

L causes the remainder of the line to be printed, and
then prints the line number and restarts aditing at

anuary,

1977 Page 46

the beginning of the line. The cursor will be
positioned to the left of the first character in
the 1line. L allows nonitoring the effect of
changes on a line. Example:

User types 5@ REM INCREMENT X
User types EDIT 50

Computer prints 56

User types 2SM

Computer prints 56 REM INCRE

Uger types L

Computer prints gg REM INCREMENT X

A A causes the original linme to be restored
and editing to be restarted at the beginning of the
line., Ffor example:

User types 16 TEST LINE
User types EDIT 19

Computer prints 16

User types 18D

Computer prints 16 \TEST LINE\
User types A
Computer prints ig \TEST LINE\

In the above example, the user made a mistake when

he deleted TEST LINE, Suppose that he wants to

type "1D" instead of 10D. As a reswult of the A

command, the original line 10 is reentered and is
_ ceady for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the error as if an EDIT command had
been typed, Example:

12 APPLE

RUN

SYNTAL ERROR IN 18
1lg

Complete editing of a 1line causes the line edited to be
teinserted., Reinserting a line causes all variable wvalues
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after
the 1line number 1is printed. 1If this is done, BASIC will
return to command level and all variable values will be
preserved,

angary,

C

1977 Page 47

The features of the EDIT command may be used on the
line currently being typed. Te do this, type Control/A
instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (I) and a space.
The cursor will be positioned at the first character of the
iine. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line, Example:

User types g IF X GOTO #"/A
Computer prints !
User types S3 2C12

Computer prints 1 16 IP X GOTO 12

The current line number may be designated by a perilod
(.} in any command requiring a line number. Examples:

User types 19 FOR I= 1 TO 19
User types EDIT .
Computer prints 10

5=5, PRINT USING statement.

The PRINT USING statement can be employed in situations
where a specific output format is desired, This situation
might be encountered in such applications as printing
payroll checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINY USING <string>;:;<value list>

The <string> may be a string variable , string expression or
a string constant which 1ls a precise copy of the line to be
printed., All of the <characters in the string will be
printed just as they appear, with the exception of the
formatting characters. The <value list> is a 1list of the
items to be printed. 7The string will be repeatedly scanned
until: 1) the string ends and there are no values in the
value 1list or, 2) a field is scanned in the string, oput the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a., String Pields.

! specifies a single character string field,
{The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n char~
acters. Backslashes with no spaces between them

Tanuary, 1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. If
the string has fewer characters than the field width, extra
spaces will be printed to f£ill out the entire field., Trying
to print a number in a string field will cause a TYPE
MISMATCH error to occur. Example:

13 A$="ABCDE" :B$="FGH"
28 PRINT USING "1";A$;BS§
36 PRINT USING "\ \";B§;A$

{the abkove would print out)

AP
FGH ABCD

Note that whare the "!" was used only the £irst letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for B§ which has only three characters).
The extra characters in the first case and for A$ in the
sacond case were ignored.

b. Numeric Fields., With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings €for formatting numeric fields are
constructed from the following characters:

$. Numeric fields are specified by the § sign, each of
which will represent a digit position. These digit
positions are always (filled. The numeric field
will be right justified; that is, if the number
printed is too small to £ill all of the digit
positions specified, leading spaces will be printed
as necessary to f£fill the entire field.

. The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always be
printed {(as O if necessary}.

The following program will help illustrate these rules:

anuary,

(-/

1977

* ¥

$$

Page 48

18 INPUT AS,A
28 PRINT USING A$;A
38 GOTO 10
ROUN
7 84,12
12

? ##%,12
12
? BREES,12
12
RE.4%,02

? $44.,12

120
? d.444,.02
6.028
?##.1,2 36

?0##'-12
~12
?#.84,-.12
-.12
?%’#"-12
-12

The + sign may he used at either the beginning or .
end of the numeric field. If the number |is
positive, the + sign will be printed at the
specified end of the number. If the number {s
negative, a - sign will be printed at the specified
end of the number,

The - sign, when used to the right of the numeric.
field designation, will force the minus sign to De
printed to the right of the number if it is
negative. If the number is positive, a space isg
printed.

The ** placed at the beginning of a numeric field
designation will cause any unused spaces in the
leading portion of the number printed out to be
filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed “asterisk
£111")

When the $$ is used at the beginning of a numexic

field designation, a § sign will be printed in the
space immediately preceding the number printed.
Note that $§ also specifies positions for two more
digits, but that the $ itself takes up one of these
spaces. Exponential format cannot be used with
leading § signs, nor <an negative numbers be output

anuary, 1977

g

AAAA

Page 59

unless the sign is forced to be trailing.

The **$ usaed at the beginning of a numeric field
designation causes both of the above (** and §§} to
be performed on the number being printed ocut. All
cf the previous conditions apply, except that *#*§
allows for 3 additional digit positions, one of
which is the § sign,

A comma appearing to the left of the decimal point

in a2 numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma alsc specifies another digit
pogition. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and 1is treated as a
printing character.

(4 4 § Jon some terminals) Exponential Format.

If exponential format is desired in the printout,
the numeric field designation should be followed by
~~** (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left Jjustified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
be used to print a space or minus sign. Examples: -

PRINT. USING *([#$""""]": 13,17,-8

[1E+81]{ 2B+81] [-8E+0]

OK

PRINT USING " [.###$#4""""-1s 12345,-123456
{.123456E+05][.123456E+86-]

0K

PRINT USING ®[+.$$""""]"; 123,-126
{+.12E+03] [-.13E+83]

oK

If the number to be printed out is larger than the
specified numeric field, a % character will be
printed followed by the number itself in standard
Altair BASIC format. (The user will see the entire
number.,} If rounding a number causes it to exceed
the specified field, the % character will be
printed followed by the rounded number. 1If, for
example, A=,999, then

PRINT USING ".##%,a

will print

anuary, 1977 : Page 51

(“’ %l.68.

If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

The following program will help illustrate the
preceding rules.

Program: 1@ INPUT AS,A
20 PRINT USING AS$:A
38 GOTO 19
RUN

The computer will start by typing é ?. The numeric field
designator and value list are entered and the output is
diszplayed as follows:

? +3,9
+9

7 +3,19
$+10
? ¥%,-2

? 3

$-2

? +.4%4,.02
.828

2 3344.%,109
196.0

? $4+4,2

2+

? THIS IS A NUMBER $%.,2
THIS IS A NUMBER 2
? BEFORE ##4 AFTER,L.2
BEFORE 12 AFTER
? $38%,44444
344444
? **Ed, 1
xkk]
? *¥*g§,12
*k]2
? **3d,123
*123
? **§§,1234
1234
2 **33,12345
$12345
(u/ ? **,1
*1

? *%,22

+

Enuary,

1977

22

Tt 5¥,12

12.0¢8

? vl

*ﬂt**l

{note: not floating §)

{note: floating §)

? $,6.9

7

? £.4,6.99
7.9

? #¥4-,2

2

? #%4-,-2
2=

7 #+,2
2+

? §4+,-2
2=

2 #°°77,2
2E+09

? ‘#Aaaa’lz
1E+41

? BESHS.BR47777,2.45678

2456.780E-03
? 34777 7,123
9.123E+83

2 $.834°7""%,-123

-.12E+83

? "#E¥E3,584.87,1234567.89

1,234,579.6

2 S#EME.94,12.34
$ 12.34
? $S#Ee.44,12.56
$12,.56
? $$o‘3l1023
$1.23
? $9.44,12.34
$512.34
? $5H48,0.23

38

? $SAEEN. 48,9
$0.00

? O**SERP.94,1.23

xx*%xS], 23

? **3,.34,1.23
*$§1.23

? SR, L
Hexng]

Typing Contrel/C will stop the program.

5~6.,

Pisk file operations.

Page 52

anuary,

C

1977 Page 53

As many as sixteen floppy disks may be connected to a
single ALTAIR disk controller. These disks have been
assigned the physical disk numbers 6 through 15. Users with
one drive should address the drive at zero, and users with
two drives should address them at zero and one, etc.

in the following descriptions, <3disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk anumber> is omitted
from a statement other than MOUNT or UNLOAD, the <disk
number> defaults to 9, If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks § through the highest
disk number specified at initialization are affected.

a. Opening, Closing and Haming Files. To initialize
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT {<disk number>[,<disk number>...}!}
Example:

MOUNT 0@
Mounts the disk on drive zero, and

MOUNT 8,1
Mounts the disks on drives 2ero and one. If there is
already a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by- Disk Altair BASIC, the user should give an UNLOAD
command :

UNLOAR [<disk number>[,<disk number>...]]
UNLOAD c¢loses all the files open on a disk, and marks the

disk as not mounted, Before any further I/0 is done on an
UNLOADed disk, a2 MOUNT command must be given.

NOTE

MCUNT, UNLOAD or any other disk command may be used
as a program statement,

All data and program files on the disk have an assoclated
file name. This name is the result of evaluating a string

fanuary, 1977 Page 54

axpression and must be one to eight characters in length.
The first character of the file name cannot be a null (@)
byte or a byte of 255 decimal. An attempt to use a naull
file name {zero characters in length) , a file name over 8
characters in length or containing a # or 255 in the first
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:

ABRC

abe {Not the same as ABQC)
filename

file.ext

12345678

INVNTORY

PILE##22

NOTE

Commands that require a file name will use <file
name> in the appropriate position. Remember that a
<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particulac
disk., The format of the FILES command is:

PILES <disk number>
Example:
FILES {prints directory of files on disk 9)
STRTRK PIP CURFIT CISASM
Execution of the FILES command may be interrupted by typing
Control/C. A more complete 1listing of the information

stored 1in a particular file may be obtained by running the
PIP utility program {see Appendix I).

¢. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

angary,

C

1977 Page 55

SAVE <file name>{,<disk number>[,A]]

Example:

SAVE "TEST",9
or

SAVE "TEST"

would save the program TEST on disk zero., Whenever a
program is SAVES, any existing copy of the program
previously SAVEG will be deleted, and the disk space used by
the previous program is made available. See gaction 5-éd
for a discussion of saving with the 'A‘' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>{,<disk number>[,R]]
Correspondingly:
LOAD "PEST",0 or LOAD ™TEST"

loads the program TEST from disk zero. 1If the file does not
exist, a FILE NOT FOUND error will occur. :

LOAD "“TEST",0,R
OK

LOADs the program TEST from disk zero and runs it. The LOAD
command with the "R” option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer‘'s memory. All variables and program
lines are deleted by LOAD, but all data files are Kept
OPEN(see below) 1f the "R" option 1s used. Therefore,
infermation may be passed between programs through the use
of disk data files. If the "R" option is not used, all
files are automatically CLOSEd (see below} by a LOAD.

Example:

NEW
18 PRINT "FQO1":LOAD ™FOCG2",4,R
SAVE “FOO1",9

oK
19 PRINT "FOO2":LOAD “FJO1",9,R
SAVE "FOO2",9

anuary,

1977 Page 56

CK

RUN
FOO2
FOO1
FO02
FOO1
«s.0tc,

{Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. PQO2 prints the
message “FO02" and then callg the program FOOl on disk.
FOOLl prints "POOl® and calls the program FOO2 which prints
"FQO2" and so on indefinitely.

RON may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name)>[,<disk number>{,R]]

All files are closed unless ,R is specified after the disk
number ,

d. SAVEing and LOADing Program Files in ASCII. Often
it is desirable to save a program in a form that allows the
program text to be read as data by another program, such as
a text editor or resegquencing program. Unless otherwise
sgecified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and loads
very guickly. To save a program in ASCIli, specify the “A"
option on the- SAVE command:

SAVE “TEST",8,A
OK
LOAD "TEST",9

OK

Information in the file tells the LOAD command the
format in which the file is to be 1locaded. The first
character of an ASCII file is never 255, and a binary
frogram file alwa{s starts with 255 (377 octal}. Remember,
E9§ding an ASCII file is much slower than loading a binary

ile.

neary, 1977 Page 57

L. €. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE c¢ommand has
been executed, BASIC returns to command level, Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE
statement is as follows:

MERGE <file name>{,<disk number>]
Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII format
saved program or a BAD FILE MODE erroxr will occur. If there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the 1lines £from
the file on disk will replace the ¢orresponding program
lines in memory. It is as if the program lines of the (file
on disk were typed on the usger terminal.

£, Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the KILL statement is as

follows:
RILL <file name)>[,<disk number>)
If the file does not exist, a 'FILE NOT FOUND errdr will

occur. If a KILL statement is given for a file that is
currently OPEN (see bhelow), a FILE ALREADY OPEN error

occurs.,

g. Renaming Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <old file name> AS <new file named>{,<disk number>]
Example:
NAME "QLDFILE* A3 "NEWFILE®
The <old file mname> must exist, or & FILE NOT FOUND ertor
will occur. A file with the same name az <new f£file name>

must not exist or a FILE ALREADY EXISTS error will oc¢cur,
(ﬂf After the NAME statement is executed, the file exists on the

fanuary, 1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h, OPENing Data Files., Before a program can read or
write data to a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

OPEN <mode>, [#)<file number>,<file name>{,<disk number>]
<mode> is a string expression whose first character is one
of the following:

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Cutput mode

WHO

A sequential file is a stream of characters that is read or
written in order much like INPOT and PRINT statements read

from and write to the terminal. Random £files are divided
into groups of 128 characters called records., The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to refer to the file in later 1I/0
operations.

Examples:

OPEN “O",2,"QUTPUT",d
OPEN "“I",1,"INPUT"

The above two statements would open the file OQUTPUT for

sequential output and the file INPUT for sequential input on
disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name was in
the string F$ in mode M§ as file number N on disk D.

i. Sequential ASCII file I/0 Seguential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

anuary, 1977 Page 59

with a file that has been previously OPENed.
L*’ INPUT iz used to read data from a disk file as follows:
INPUT #<file number>,<variable list>

where <file number)> represents the number of the file that
wag OPENed for input and <variable 1list> is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file wusing an INPOUT
statement, no question mark (?} is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and 1line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair BASIC
format., The number terminates on a space, a carriage return
; line~-feed or a comma.

When scanning for string items, leading blanks,
carriage returns and 1line-feeds are alsoc ignored. When a
character which is not a leading blank, carriage retucrn ot
line~feed is found, it is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item is taken as being a guoted string, and all

(_/ characters between the first double gquote (") and a matching
double gquote are returned as characters in the string value.
This means that a quoted string in a file may contain any
characters except double guote. If the first character of a
string item is not a quotation mark, then it is assumed to
be an unguoted string constant. The string returned will
terminate on a comma, carriage return or 1line feed. The
string is immediately terminated after 255 characters have
been read. :

For both numeric and string items, if end of file (EOF)
is reached when the item 1is bheing INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Seqguential I/0 commands destroy the input buffer so
they may not be edited by Control/A for re-execution.

Example of sequential I/0C {numeric items):

589 OPEN “O",1,"FILE",d
516 PRINT #1,X,Y.2
C 520 CLOSE #1

fanuarcy,

1977 Page 60

53¢ OPEN “I",1,"FILE",P
549 INPOT 1°.X,Y,%

Note that CLOSE is used sc that a file which has Just been
written may be read. When PILE is re-0OPENed, the data
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT #<file number>,<expression list>
or

PRINT #<file number>,
USING <string expression>;<expression list>

Example of sequential I/0 (quoted string items):

599 OPEN "O%,1,"FILE"

510 PRINT #1,CHR$(34):;X$;CHR$(34);

515 PRINT #1,CBR${34);Y$;CHRS(34) ;CHR${34);2$;CHRS (34)
528 CLOSE 1

538 OPEN "I",l1,"FILE",0

S40 INPUT #1,X$,Y¥$,32$%

In this example, the strings being output (X$, Y$, 2$) are
gurrounded with double quotes through the use of the CHR$
function to generate the ASCII value for a double guote,
This technigue must be used if a string which is being
output to a sequential data file contains commas, carriage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or line-feeds in the strings to be
output, it 1is sufficient to insert commas between the
strings being output as in the following example:

5606 OPEN "O",1,"FILE"

519 PRINT $1,X$:",”;Y$;",":2$
528 CLOSE 1

538 OPEN "I",1,'FILE",9

549 INPUT #1,X$,¢$,2$

3} CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file number>[,<file number>...l}

muary, 1977 Page 61

CLOSE is wused to finish I/0 t¢ a particular Altair BASIC
data file. After CLOSE has been executed for a file, the
file may be reQPENed for input or cutput on the same or
different <file number>. A CLOSE for a segquential output
flle writes the final buffer of output. A CLOSE to any OPEN
file finishes the connection between the <file number> and
the <file name> given in the OPEN for that file. It allows
the <file number> to be used again in another OPEN
statement.

A CLOSE with no argument CLOSEs all OPEN files.

NOTE

A PILE can be OPENed for sequential input or random
access on more than one <file number> at a time but
mayibe OPEN for output on only one <file number> at
a time.

END and NEW always CLOSE all disk files automatically. STOP
(_/ does not CLOSE disk files. .

4) LINE INPUT. Often it is desirable to read a whole
line of a file into a string without using quotes, commas ot
other characters as delimiters. This is especially true if
certain fields of each line are being used to contain data
items, or if a BASIC program saved in ASCII mede 1is being
read as data by another program. The facllity provided to
perform this function is the LINE INPUT statement:

LINE INPUT $<file number>,<string variable>

A LINE INPUT from a data file will return all characters up
to a carriage return in <string variable>. LINE INPUT then
skips over the following carriage return/line~feed sequence
so that a subsequent LINE INPUT from the file will return
the next line.

S} End of PFile (EOF) Detection. When reading a
sequential data file with INPUT statements it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EOF
function:

X=EQOF (<file number>}

EOF returns TRUE (-1) when there is no more data in the file
and FALSE ({8) otherwise., If an attempt is made to INPU?

anuacy,

1977 Page 62

past the end of a data file, an INPUT PAST END ecrror will
occur.

Example:

1906 OPEN "1I",1,“DATA",Hd
119 1I=90

129 IF ECF(1l) THEN 169
139 INPUT $1,A(1)

149 I=I+1

158 GOTO 120

160 LR B A

In this example, numeric data from the sequential input £file
DATA is read into the array A, When end of file |is
detected, the IF statement at line 120 branches tc line 160,
and the variable I “points™ one beyond the last element of A
that was INPUT from the file,

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEG
in ASCII mode:

19 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
2¢6 OPEN "I%,1,P$,.d

36 I=@

46 IP BOF(1l) THEN 79

56 I=I+1:LINE INPUT #1,L$

68 GOTO 44
76 PRINT "PROGRAM ":P$;" IS ";I;" LINES LONG"
8@ END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy” string L$ which is used just
te INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is.
sometimeg necessary t¢ determine the amount of free disk
space remaining on a particular disk before allocating
{writing}) a file. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental uanit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1024 bytes.

Syntax for the DSKFP function:
DSKF (<disk number))

Example:

pnuary, 1977 Page 63

- PRINT DSKF (0)
200

The above example shows that there are 200*19024=204808
characters (bytes) that can still be stored on disk zero.

3. RANDOM FILE I/0. Previously, we have discussaed how
data may be PRINTed or INPUT from sequential data files,
However, it is often desirable to access data in a random
fashion, for instance to retrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. If seguential files were used, the
whole file would have to be scanned from the start until the
particular item was found. Random f£files remove this
restriction and allow a program to access any record from
the first to the last in a gpeedy fashion. Also, random
files transfer data from variables to the disk ocuput records
and vice versa in a much faster, more efficient fashion than
sequential files, Random file I/0 is more complex than
sequential $/0, and it is recommended that beginners try
sequential I/0 first.

1) OPENing a FILE for Random I/0. Random I/0 files are
OPENed just like sequential files, . .

OPEN "R",1,"RANDON",?

When a file is OPENed for random 1/0, Lt is always OPEN for
both input and ocutput simultaneously.

2) CLOSING Random Files., Like sequential files, random
files must be closed when I/0 operations are finished. To
CLOSE a random file, use the CLOSE command as described
praeviously.

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file - GET and
PUT, Bach random file has associated with it a "random
buffer® of 128 bytes. When a GET or PUT operation is
(_/ pecformed, data is transferred directly from the buffer to
the data file or from the data file to the buffer. The

syntax of GET and PUT is as follows:

anuary, 1977 Page 64

PUT [#])<file number>[,<record number>)
GET [#])<file number>[,<record number>)

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT is read into the random buffer. 1Initially a GET or
PUT without a record number will read or write the £first
record. The largest possible record number is 2846. If an
attempt is made to GET a record which has never been PUT,
all zeroes are read into the record, and no error occurs.

4) LOC and LOF. LOC is used to determine what the
current record number is for random files. 1In other words,
it returns the record number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC(<£ile number>)
PRINT LOC({l)
15

.

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file: :

LOF (<file number>)

PRINT LOF(2)
209

An attempt to use LOF on a sedquential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is , when
the value LOF returns is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 etc. This is due to the way random files are
allocated.

January, 1977 Page 65
NOTE

It ig important to note that the value returned by
LOF may be a record that has never been written in
by a user program. This is because of the way
random files are pre-extended.

S5) Moving Data In and Out of the Random Buffer. So far
we have described technigues for writing (PUT) and reading
{GET) data from a file into its associated random buffer.
Now we will describe how data from string variables is moved
to and from the random buffer itself. This is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement assoclates gome or all
of a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FPFIELDed into the
buffer will automatically have their contents read or
written. The format of the PIELD statement is:

FIELD {§]) <file number)> ,<field size> AS <string variable>[...]

<file number> is used to specify the file number of the file
whose random buffer is heing referenced. 1If the file is not
a random file, a BAD FILE MODE error will occur. <field
size> sets the length of the string in the randem buffer.
{string variable> is the string variable which is associated.
with a certain number of characters (bytes) in the buffer.
Multiple fields may be associated with string variables in a
given FIELD statement., Each successive string variable is
assigned a successive field in the random buffer. Example:

FIELD 18 AS A$, 28 AS B$, 38 AS Cs$

The statement above would assign the first 19 characters of
the random buffer to the string variable A$, the next 28
characters to B$ and the next 38 characters to the variable
C$. It is important to note that the PIELD statement does
not cause any data to be transferred to or from the random
buffer. It oniy causes the string variables given as
arguments to “point" into the random buffer.

Often, it is necessary to divide the random buffer into
a number of sub-records to make more efficient use of disk
space. PFor instance, it might be desirable to divide the
128 character record into two identical subrecords. To
accomplish this a "dummy variable™ would be placed in the
FPIELD statement to represent one of the subrecords. One of
the following statements would be executed depending on
whether the first or second subrecord were needed:

Fanuary, 1977 _ ' Page 66

FIELD #1,64 AS D$, 20 AS NAMES,
20 AS ADDRESSE$, 2¢ AS OCCUPATIONS

or

- FIELD #1,29 AS NAME$, 20 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS D$

where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would be to
get a variable I that would select the (first or second
subrecord.

FIELD 3#1,64*(I-1) AS D§,
20 AS NAMES, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable 1 is one, I-1 *64 =0 characters will
be skipped over, selecting the first subrecord., If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another tachnique that is very useful is
to use a FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1808 FOR I=1 TO 1§

1019 PIELD #1, (I-1}*8 AS DS, 4 AS A$(I),
4 AS BS(I) .

1926 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each., The first
4-character field is in A$(X) and the second 4-character
field is in B§(X,) where X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space, The only space
allocation that occurs is for the string variables
mentioned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up which points into the random buffer £for the
specified file,

anuary, 1977 Page 67

(_, 7) Using Numeric Values in Random Files: MKI$, MRS$,

MKDS and CVI, CVS, CVD. As we have seen, data is always

stored in the random buffer through the use of string

variables., In order to convert between strings and numbers

and vice versa, a number of special functions have been
provided,

To convert between numbers and strings:

MKIS (<integer value)) Returns a two byte string

(FC error if value is not

>=-32768 and <=+32767.

Fractional part is lost)
MEKS$ (<single precision valued) Returns a four byte string
MKD$ {<double precision value>) Returns an eight byte string

To convert between strings and numbers:

CVI{<two byte string>) Returns an integer value
Cvs {<four byte string>} Returns a single pracision valwu
CVD{<eight byte string>) Returns a double precision value

CVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the argument is shorter than required.

(_/ If the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast,
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventicnal sequential I/C must
perform time-consuming character scanning algorithms when
converting between numbers and strings.

8. LSET and RSET. When a GET operation is performed,
all string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CV¥D functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e, inserting strings into the
random buffer before performing a PUT statement, a problem
arises. This is because of the way string assignments
usually take place. PFor example:

LET A$=B$§

#when a LET statement is executed, B$ is copied into string
space, A$ is pointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
(_, string being assigned to be stored where the string variable
was PIEBLDed. 1In order to do this, two special assignment

anuary,

1977 Page 68

statements have been provided, LSET and RSET:
LSET <string variable>=<{string expressiom>
RSET <string variable>=<string expression>

Examples:
LSET A$=MKS$ (V)
RSET B$="TEST"
LSET C$({I)=MKDS$ (D#)

The difference between LSET and RSET concerns what happens
if the string value being assigned 1is shorter than the
length specified for the string variable in the FIELD
atatement. LSET 1left justifies the string, adding blanks
{octal 44, decimal 32) to pad out the right side of the
string if it is too short., RSET right justifies the string,
padding on the left. If the string value is too 1long, the
extra characters at the end of the string are ignored.

NOTE

Do not use LSET or RSET on string variables which
have not been mentioned in a FIELD statement, or a
SET TO NON DISK STRING error will occur,.

k. The DSKI$ and DSRO$ Primitives, Often it is
necessary for the wuser to perform disk I/0 operations
directly without using any of the normal file structure
features of Altair BASIC. Toe allow this, two special
functions have been provided. These are the DSKI$ function
and the DSKOS statement. First we will give examples of how
to perform simple disk I/0 commands using Altair BASIC
statements,

To Enable disk 8:
QuT 8,8
To Enable disk N:
ouT 8,N
TO step the disk head out one track:

WAIT 8,2[2=°UT 9;2

wmueary, 1977 Page 69

(_/ To step the disk head in one track:
WAIT 8,2,2:0UT 9,1
To test for track @:
IF (INP(8) AND 64)=g THEN (statementé or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track #@. This is the
outernmost track on the disk.

To read saector Y (Y may be any expression, minimum sector
=@, maximum = 31):

| A$=DSKIS$(¥)

The statement
DSKO$ <string expression>,<sector expression>

writes the string expression on the sector specified, The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written

(-/ on the sector, and thus will always be one when the sector
is read back in using DSKI$. A maximum of 137 characters
are written; giving a string whose length exceeds 137
characters will cause an ILLEGAL FUNCTIOR CALL errot. It
the string argument is less than 137 characters in length,
the end of the string will be padded with zeros to make a
string of length 137.

‘anuary, 1977 Page 70

6. LISTS AND DIRECTORIES

§~1, Commands.,

Commands direct Altair BASIC to arrange nemory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'OK' and is at command level. The table below lists the
commands in alphabetical order. The notation te the right
of the c¢ommand name indicates the wversions to which it
applies.

Command) Version(s)
CLEAR All

Sets all progrem variables to zero.
CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expression. 1f no argument is given, string space will
remain unchanged. When Altair BASIC is loaded, string space :
is set to 5@ bytes in 8K and 200 bytes in extended. ‘

CLOAD<string expression> 8R(cassette), Extended, Disk

Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A

NEW command is issued before the program is loaded.

CLOAD?<string expression> 8K {cassette), Extended, Disk -

Compares the program in memory with the fille on cassette
with the same name., If they are the same, BASIC prints OK.
If not, BASIC prints NO GOCD,

CLCAD*<array name> 8K{cassette), Disk

Loads the specified array from cassette tape. May be used
as a program statement

CONT 8K, Extended, Disk

Continues program execution after a Control/C has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break oc¢curred wunless
input from the terminal was interrupted. 1In that case, d

anuary, 1977 Page 71

execution resumes with the reprinting of the prompt (? or
prompt string). CONT is wuseful in debugging, especially

(,f where an 'infinite loop' is suspected., An infinite loop is
a series of statements from which there 1is no escape.
Typing Control/C causes a break in execution and puts BASIC
in command 1lavel. Direct mode statements can then be used
to print intermediate values, change the values of
variables, etc, Execution c¢an be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
aumber.

In 4K and 8K Altair BASIC, execution cannot be
continued if a direct mode error has occured during the
break. 1In all versions, execution cannot continue 1if the
program was modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk

Causes the program currently in memory to be saved on
cassette tape under the name specified by the first
character of <string expression>.

CSAVE*<array named 9K {cassette), Disk

Causes the array named to be saved on cassette tape. May be
(~/ used as a program statement.

DELETE<line number> Extended, Disk

Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL PUNCTION CALL

error occurs.
DELETE-<line number> Extended, Disk

Deletes avery line of the current program up to and
including the specified line. If there is no such line, an
ILLEBGAL FUNCTION CALL error occurs,

DELETE<line number>-<line number> Exteaded, Disk

Delates all lines of the current program from the first line
number to the second inclusive. ILLEGAL FUNCTION CALL
occurs if no line has the second number.

EDIT<line number> Extended, Disk

Allows editing of the line specified without affecting anay

other lines. The BDIT c¢ommand has a powerful set of
sub-commands which are discussed in detail in section 5-4.

fanuary, 1977 Page 72 ?

LIST aAll

Lists the program currently in memory starting with the ‘
lowest numbered line. Listing is terminated either by the
end of the program or by typing Control/C,

LIST[<line number>} all

In 4K and 8K, prints the current program beginning at the :
specified 1line. 1In Extended and Disk, prints the specified !
line if it exists. :
LIST{<line number>} [-<line number>] Extended, Disk

Allows several listing options. :

1. I1f the second number is omitted, lists all lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all 1lines from ;
the beginning o¢f the program to the specified line, ¢
inclusive. !

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST(<1line number>] [-<lire number>] Extended, Disk ' ‘

Same as list with the same options, except prints on the
line printer.

NEW aAll

Deletes the current program and clears all variables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to be printed at the end of each
line. Por 16 character per second tape punches, <integer ,
expression> should be >=»3., Por 36 cps punches, it should be F
>3, When tapes are not being punched, <integer expression> 1
should be @ or 1 for Teletypes* and Teletype compatible ;
CRT's, It should be 2 or 3 for 30 cps hard copy printers. !
The default value is #. In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

¥ Teletype is a registered trademark of the Teletype
Corporaticn. ‘

Anuary,

C

1877 Page 71

RUN[<iine number>] All

Starts execution of the program currently in memory at the
line specified, If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements,

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. 1In the table, X
and Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values
are truncated to integers. V and W are any variable names.
The format for a Altalr BASIC line is as follows:

<nannn> <statement>|:<statement>...]
where nnnnn is the line number.

Name Format Version
CONSOCLE CONSCLE <I>,<Jd> Extended, Disk

Allows terminal console device to be switched. 1 is the I/0
port number which is the address of the low order channel of
the new I/0 board. J is the switch register setting (see
section 5-1 for the list of settings). 0<=I,J<=255."

DATA DATA<list> all

Specifies data to be read by a READ statement. List
elements c¢an be numbers or, except in 4K, strings. 4K
allows expressions, List elements are separated by commas.

DEF DEF FNV(<W>)=<X> 8K, Extended, Disk

Defines a user-defined function, Function name is FN
followed by a 1legal variable name. Extended and Disk
versions allow user-~defined string functions. Definitions
are restricted to one line (72 characters in 4K and 8K, 255
characters in extended versions).

DEFUSR DEFGSR[<Aigit>]=<X> Extended, Disk

anwary, 1977 ’ - Page 74

Defines starting address of assembly language subroutine.
Up to ten subroutines are allowed.

DIN DIM VO (<I>([,Tees]) {sess) ALl

Allocates space for array variables, In 4K, only one
dimension 1is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the 1limit of
the line. The value of each expression gives the maximum
subscript possible, The smallest subscript is 8. Without a
DIM statement, an array is assumed to have maximum subscript
of 19 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(9,6) to A{l@,19) unless
otherwise dimensicned in a DIM statement.

END _ END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASESV> [,<W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERROR<I> Extended, Disk

Forces error with code specified by the expression, Used
primarily for user-defined error codes.

FOR FORCV>=<X>TO<Y> [STEP<Z>] All

Allows‘repeated execution of the same statements. Pirst
execution sets V=X, Bxecution proceeds normally until NEXT
is encountered. 2 is added to V, then, IF 2<4 and V=¥, or
if 2>8 and V<=Y, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement
after NEXT.

GOTO GOTO<nnnnn> all

Unconditional branch to line number

GOSUB GcosuB<nnnnnd> All

Unconditional branch to subroutine beginning at line nnann.
IF,..GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF,..THEN except GOTO can only be followed by a line
number and not another statement,

C

\nuacy,

1977 Page 75

IF...THEN (ELSE] IP<X>THEN<X> [ELSE<Y>] All
or IFCX>THEN<Statement>{:statement...]
[ELSE<statement> {:statement...]

If value of X<>#, branches to line number or statement after
THEN, Otherwise, branches to the line number or
statement (s} after ELSE. If ELSE is omitted, and the value
of K=, execution proceeds at the line after the IF,..THEN.
In 4X, X can only be a numeric expression. The ELSE clause
is only allowed in Extended and Disk Altair BASIC,

INPUT INPUTCV> [, <W>.0 0] all

Causes BASIC to request input from terminal. Values (or, in
4R, expressions) typed on the terminal are assigned to the
variables in the list,

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The
word LET is optional.

LPRINT LPRINT X[,Y...] Extended, Disk

Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 8dth character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING, but prints on the line printer. For a
de;giled description, see section 5-5.

MID$ MID$ (<X$>,<I>[,<I>])=¥§ Extendad, Disk

Part of tha string X§ is replaced by ¥Y$. Replacement starts
with the 1Ith character of X$ and proceeds until ¥§ is
exhausted, the end of X$ is reached or J <characters have
been replaced, whichever comes first. If I is greater than
LEN(X$), an ILLEGAL FUNCTION CALL error results.

NEXT NEXT (<¥>,<W>...] all

Last statement of a FOR loop., V is the variabhle of the most
recent loop, W of the next most recent and so on, Only one
variable ig allowed in 4K. BExcept in 4K, NEXT without a
variable terminates the most recent POR loop.

ON ERROR GOTOQ ON ERROR GOTO<line number> Extended, Disk

When an errxor occurs, branches to 1line specified, Sets
variable ERR to error code and ERL to line number where the

invary, 1977 Page 76
error occured. See section 6-5 for a list of error codes.

ON ERROR GOTQ @ (or without number) disables error trapping.
ON...GOTO ON<KI>GOTO<list of line numbers> 8K, Ext., Disk
Branches to line whose number is Ith in the 1list, List
elements are separated by <c¢ommas. If I=8 or > number of
elements in the list, execution continues at next statement.

If I<@ or >255, an error results.

ON,..GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except 1list elements are initial 1ine
numbers of subroutines.

ouT QUT<E>,<3> 8K, Extended, Disk
Sends byte J to port I. @<=X,J<=25S§,

POKE PCKE<I>,<J> 8K, Extended, Disk
Stores byte J in nmemory location derived from I.
B<{=J<=255;-32768<1<65536. I1f 1 is negative, address is
65535+I, if I is positive, address=I,

PRINT PRINTCR> [,<¥D s] All

Causes values of expressions in the list to be printed on
the terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
‘ at beginning of next 14 column 2zone
inmmediately

3
other or none at beginning of next lxne

String literals may be orinted if enclosed by (") marks.
String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>j<list> Extended, Disk

Prints the values of the expressicons in the 1list edited
according to the string., The string is an expression which
tepresents the line to be printed. The 1ist contains the
constants, variable names or expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a 1list of string characters and their
functions, see section 5$-S.

READ READCKV> [,<W>. ..} All

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the

~ “

azzfry, 1977 Page 77

first DATA statement.
REM REM[<remark>] All

Allows insertion of remarks. Not executed, but may be
branched into. In extended versions, remarks may be added
to the end of a line preceded by a single quotation mark
(").

RESTORE RESTORE all

Allows data from DATA statements to he reread. Next READ
statement after RESTORE begins with first data of first data
statement.,

RESUME RESUME { <number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes

resumption at the statement follewing the statement where
the error was made.
(_/ RETURN RETURN All

Terminates a subroutine, Branches to the statement after
the most recent GOSUB.

STOP sSTOP all

Stops program execution. BASIC enters command level and,
except in 4K, prints BREAK IN LINE nnnnn, Onlike END, STOP
does not close files.

SWAP SWAP <V ,<w> Extended, Disk

Exchanges values of the variables named. Variables must be
of the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON

{see below). NEW also turns off the trace flag.

TRON TRON Extended, Disk

Turns on trace flag, Prints number of each line in square
(_) brackets as it is executed.

WAIT WAITLI> <JI>[,<K>} 8K, Extended, Di;k

Status of port I is XOR'd with K and AND'ed with J.

anuvary, 1977 Page 78

Continued execution awaits non—-zero result, X defaults te
. 9<=21,3,R<=255.

é-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition, If the functions are not
reguired for a program, they may be deleted when BASIC is
loaded to conserve memory space, The functions in the
following table are 1listed in alphabetical order. The
notation to the right of the Call Format 1s the versions in
which the function is available. Asg usuwal, X and Y stand
for expressions, I and J for integer expressions and X$ and
¥$ for string expressions.

Function Call Format Version

ABS ABS (X) all

Returns absolute value of expression X. ABS(X)=X if X>=8,
~X if X<#@.

ASC ASC(X3$) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
X$. ASCII codes are in appendix A.

ATN . ATN(X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range =-pi/2
to pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer,
CSNG CSNG(X) Converts X to single precision,
CDBL CDBL{(X) Converts X to double precision,

If the argument is in the range <=32768 ¢to 32767, the
CINT (X)=INT(X). Otherwise, CINT will produce an QVERFLOW
erroc.

CHRS CHRS$ (I} 8K, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII

~

anuary, 1977 Page 79

(_/ codes are in Appendix A,
‘ cos COS({X) 8K, Extended, Disk

‘ Returns cos(X})., X is in radians.

ERL Extended, Disk
Returns the number of the 1line in whic¢h ¢the 1last error
occurred.

‘ ERR E£xtended, Disk

‘ Returns the error code of the last error,
ERR ERR{I} Digk

‘ Returns parameters of disk errors. After a DISK I/0 ERROR,
ERR(8) returns number of the disk, ERR(1l) returns the track
number (d-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the
cumulative count of disk errors respectively.

‘ EXP EXP (X) 8K, BExtended, Disk

(—/ Returns e to the power X. X must be <=87,3365.
FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is
equivalent to SGN(X)*INT(ABS({X)). The major d@difference
between FIX and INT is that FIX does not return the next

lower number for negative X.

FRE FRE({9) 8K, Extended, Disk
Returns number of bytes in memory not being used by BASIC,
If argument is a string, returns numbar of free hytes in
string space.

HEXS BEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INP INP(I) 8K, Extended, Disk

‘ Reads a byte from port I.
(J INSTR INSTR([I,]X$,¥YS$) Extended, Disk

‘ Searches for the first occurrence of string ¥$ in X8 and

‘anuary, 1977 Page 89 i

returns the position. Optional offset I sets position for .
starting the search. B<=I<=255, If I>LEN(X$), if X§ 1is

null or if Y$ cannot be found, INSTR returns 9. If Y§ is

nitll INSTR returns I or 1. Strings ma¥ be string variable
values, string expressions or string literals,

INT INT(X) all~

Returns the largest integer <=¥

LEFTS LEFTS (X$,1) 8K, Extended, Disk
Returns leftmost I characters of string X$.

LEN LEN (X$) 8K, Extended, Disk

Returns length of string X§. Non-printing characters and
blanks are counted.

106 LOG(X) 8K, Bxtended, Disk

Returns natural log of X. X>9

LPOS LPOS (X) Extended, Disk .
Returns the current position of the line printer pciﬂt“head ‘i
within the 1line printer buffer. Does not necessarily give

the physical position of the print head. The expression X
must be given, but the value is ignored, '

MIDS MID$ (X$,I(,J1) 8K, Extended, Disk

Without J, returns rightmost characters from X§ bheginning
with the Ith character. If I>LEN{(X$), MID$ returns the null
string., BO<I<255, With 3 arguments, returns a string of
length 'J of characters from X$ beginning with the Ith
character. If J is greater than the number of characters in
X$ to the right of I, MID$ returns the rest of the string.
B<=J< =255,

OCTS OCTS (X) 8K, Extended, Disk

Returns a string which represents the octal wvalue of the
decimal argument.

RND RND (X) all

Returns a random number between @ and 1, X<@ starts a new

sequence of random numbers. X>86 gives the next random

number in the sequence, X=@ gives the last number returned.

In 8K, Extended and Disk, seguences started with the same ‘
negative number will be the same.

nuarcy, 1977 Page 81

-

POS POS (T} 9K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =@,

RIGHTS RIGHTS (X$,1) 8K, Extended, Disk

Returns rightmest 1 characters of string X$. If IsLEN(X$),
returns X$.

SGN SGN(X) All

1f X>4, returns 1, if X=8 returns §, if X<8, returns ~l.
For axample, ON SGN(X)+2 GOTO 10€,200,380 branches to 189
if X is negative, 209 if X is # and 309 if X is positive.
SIN SIN(X) a1l

Returns the sine of the value of X in radians.
COS (X)=SIN(X+3.14139/2).

SPACES SPACES (1) 8K, Extended, Disk
(_/ Returns a string of spaces of length I.
SPC SPC(I1) 8K, Extended, Disk
Prints I blanks on terminal, @<=I<=255, |
SQR SQR(X) All
Returns square root of X. X must be >=g
STRS STRS (X) 8K, Extended, Disk

Returns string representation of value of X.

STRINGS STRINGS (I,Jd) Extended, Disk

Returns a string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TaAB TAB(T) All

Spaces to position I on the terminal, Space @ is the
laftmost space, 71 the rightmost. I£f ¢the <carriage is
already beyond space I, TAB has no effect, @<=I<=255, ay
only be used in PRINT and LPRINT statsments.

TAN TAN(X) All

Returns tangent(X). X is in radians.

Luuary, 1977 Page 82

usR USR({X) All

Calls the user's machine language subroutine with argument
xt

VAL VAL(X$) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
X$ is not +-,&ora digit, VAL(X$)=0.

VARPTR VARPTR(V) Extended, Disk

Returns the address of the variable given as the argument.
If the varlable has not been assigned a value during the
execution Oof the program, an JLLEGAL FUNCTION CALL error
will occur. The main use of the VARPTR function is to
obtain the address of wvariable or array so it may be passed
to an assembly language subroutine. Arrays are usually
passed by specifying VARPTR(A(A]) s¢© that the lowest
addressed element of the array is returned.

NOTE

All simple variables should be assigned values in a
program before calling VARPTR for any arrcay.
Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change,

6~4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in c¢arriage control,
editing and program interruption. Characters such as
Control/C, Control/s, etc. are typed by holding down the
Control key and typing the designated letter., The special
characters in. the table are listed in the order of the
versions to which they apply, starting with those common to
all versions and ending with thogse that apply only to
extended versions,

Typed as Printed as

The following Special Characters are available in ALL
versions,

Anuary,

C

1977 Page 83

¢ e

Brases current line and executes carriage return.

{backarrow}

Erases laat character typed. If there is no last character
types a carriage return.

_{underline}

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line,
Control/C *C (in extended)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or
after listing the current line., BASIC goes to command level
2“? types OK. CONT? command resumes execution, See saction

.
H 3

Separates statements in a line.

The following special characters are available in 8K,
Extended and Disk versions only.

Contral /O “Q (in extended)

Suppresses all output until an INPUT statement is
encountered, another Control/0 is typed, an error occurs or
BASIC returns to command leval,

? ?
egquivalent to PRINT statement.
Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the last character o0 be printed, Bach
successive Rubout prints the next character to the left,
Typing a new character causes another \ and the new
character t¢ be printed, All characters between the
backslashes are deleted.

anuwary, 1977 . Page 84

Control/U “U {in extended)

Same as @
Control/$S ‘

Causes program execution t6 pause until Control/Q or
Contrel/C is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed,

The following special characters are available in Extended
and Disk versions only.

Control/A

Allows use of the EDIT command on the line currently being
typed. Control/a is typed instead of Carriage Return. See
section 5-4.

Control/1 1l to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at . :
columns 1, 9, 17, ete. The tab character is especially : ﬂl
useful for formatting lines broken with line feeds, :

188<tab>FOR I=1 TO 1l@8:<line feed>
<{tab><tab>FOR J=1 TO 1@:<line feed>
<tab><tab)<tab>A(I,J)=B:<line feed>
<tab>NEXT J,I<carriage return>

lists as:
108 FOR I=1 TO 14:
POR J=1 TC 13:
) A(I,3)=0:
NEXT J,1
Control /G bell

Rings terminal's bell
LINE FEED

Breaks a long line into shorter parts, The result is still
ane BASIC line.

nuary, 1977 Page 85

C

Denotes the number of the current 1line. May be used
wherever a line number is to be specified.

{.1 [r]

Brackats are interchangable with parentheses as delimiters
for array subscripts.

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case If the lower case characters are not part
of string literals, REM statements or single guote (')
ramarks,

§=5. Error Messages.

After an error occurs, BASIC returns to command level and

(_/ types OK. Variable values and the program text zemain
intact, but the program cannot be ¢ontinued by the CONT
command. In 4K and 3K versions, all GOSUB and FOR context
is lost. The program may be continued by direct mede GOTO,
however. When an error occurs in a direct statement, ne
line number is printed. Format of error messages:

Direct Statement ?XX ERROR
Indirect Statement ?¥%¥ ERROR IN YYYYY

where XX is the error code and YYYYY is the line aumber
where the error occurred., The following are the possible
error codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

The following error codes apply in ALL versions.

B3 SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an arrzay element which is
outside the dimensions of the array. In the 8K and larger
versions, this error c¢an ogccur if the wrong number of
dimensions are used in an array reference., For example:

(" LET a(1,1,1)=%

fanuwary, 1977 Page 86

when A has already been dimensioned by DIM A(16,18)
pD REDIMENSIONED ARRAY 19

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 16 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range. FPC errors can occur due to: .

i, a negative array subscript (LET A(-1)=0)

2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument

4. SQR with negative argument

S. A®B with A negative and B not an integer

6. a call to USR before the address of a machine language
subrourine has been entered.

7. calls to MID$, LEFTS$, RIGHTS$, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRINGS, SPACE$, INSTR or ON,..GQT9 with
an improper argument.

0 ILLEGAL DIRECT 12

INPUT and DEF are illegal in the @irect mode. In extended
versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR

The wvariable in a NEXT statement corresponds to no
previously executed FOR statement.

oD QUT OF DATA 4

A READ statement was executed but all of the DATA stataments
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

program.

Imzary,

C

1977 Page 87

oM OUT OF MEMORY 7

Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expresaions. See

Appendix C.
ov OVERPLOW

The result of a calculation was too large to be represented
in Altair BASIC's number format. If an underflow occurs,
zero is given as the result and execution continues without
any error message being printed.

SN SYNTAX ERROR - 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, ete,

RG RETURN WITHOUT GOSUB 3

A RETURN statement was encountered before a previous GOSUB
statement was executed.

oL UNDEFINED LINE 8

The line reference in a GOTO, GOSUB, IP...THEN,..ELSE or
DELETE was to a line which dces not exist,

/9 DIVISION BY ZERO
Can occur with integer division and MOD as well as floating

point division. 8 to a negative power also causes 2
DIVISION BY ZERO error.

The following error messages apply to
3K, Extended angd Disk versions only

CN CAN'T CONTINUE 17

Attempt to continue a program when none exists, an error
occured, or after a modification was made to the program.

LS STRING TOQ LONG 15

An attempt was made to create a string more than 255
characters long.

08 QUT OF STRING SPACE 14

String variables exceed amount of string space allocated for

11

anonary, 1977 - Page 88

then. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string variables.

ST STRING FORMULA TOO COMPLEX 16

A string expression was toc long or too complex. Break it
into two or more shorter ones,

™ TYPE MISMATCH 13
The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, ot
vice~versa; or a function which expected a string argument
was given a numeric one or vice-versa.

ur UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had
never been defined.

The following error messages are available in
Extended and Digk versions only.
MISSING OPERAND) ?2

During evalvation of an expression, an operator. was found
with no operand following it. B

NO RESUME jzo -

BASIC entered an error trapping routine, but the program
ended before a RESUME statement was encountered.

RESUME WITHOQUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR Tg

An error condition exists for which there is no error
message available, Probably there 1is an ERROR statement

witly an undefined errtor code,

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data 1line which
has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

{

nuary,

C

1977 Page 89

Disk Altair BASIC Error Messages

FIELD OVERPLOW

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR

Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds
of disk I/0 errors. ’

BAD FPILE NUMBER

An attempt was made to use a file number which specifies a

file that is not OPEN or that is greater than the number of

éilis entered during the Disk Altair BASIC initialization
alog.

PILE NOT FOUND

Reference was made in a LOAD, KILL or OPEN statement to a
file which did not exist on the disk specified.

BAD FILE MODE 54.
An attempt was made to parform a PRINT to a random file, to
OPEN a random file for seguential output, to perform a PUT
or GET ‘on a sequential file, to lcad a random file or to

execyte an OPEN statement where the file mode is not I, O,
or R.

FILE ALREADY OPEN 55

A sequential output mode OPEN for a file was issued for a
£ile that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.

DISK NOT MOUNTED 56

An 1/0 operation was issued for a file that was not MOUNTed.
DISK I/0 ERROR 57

aAan I/0 error occured on disk X. A sector gead (checksum)
errar occurred eighteen (18) consecutive times.,

SET TO NON-DISK STRING

50

sl

52

53

58

1977 Page 90

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed,

DISK FULL 64

All disk storage is exhausted on the disk. Delete some 0ld
disk files and try again.

INPUT PAST END

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Usge of the EOF function
to detect End Of File will avoid this error.

BAb RECORD NUMBER 62

In a PUT or GET statement, the record number is either
greater than the allowable maximum (2646} or equal to zero.

BAD FILE RAME : 63

A file name of # characters (null) or a file name whose
first bvte was @ or 377 octal (255 decimal) or a Eile name
with more than 8 characters was used as an argument to LOAD,
SAVE, KILL or QPEN,

MODE-MISMATCH 64

Seguential OPEN for output was executed for a file that
already existed on the disk as a random (R} mode £file, or
vice versa.

DIRECT STATEMENT IN PILE 65

A direct statement was encountered dJduring a LOAD of a
program in ASCII format, The LOAD is terminated,

TOO0 MANY FILES

A SAVE or OPEN (O or R) was executed which would create a
new file on the disk, but all 255 directory entries were
already full., Delete some files and try again.

QUT OF RAWDOM BLOCES 67

61

66

o

Fnuary,

1977 Page 91

An attempt was made to have more random files COPEN at once
than the number of random blocks that were allocated during
initialization by the tesponse to the
"NUMBER OF RANDOM PILES?" guestion (see Appendix E).

FILE ALREADY EXISTS 68
The new file name specified in a NAME statement had the same
name as ancther file that already existed on the disk. Try
a different name.

FILE LINK ERROR

During the reading of a file, a sector was read which did
not belong to the file,

6-6. Regerved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc., and thus may
not be used for variable or function names, The reserved
words are listed below in order ¢f the versions for which
they are reserved, starting with those reserved in all
versions and ending with those reserved only in Disk Altair
BASIC. Words reserved in larger versions may be used in
smaller versions, although one may want to aveid all
reserved words in the 1interest of compatibility. in
addition to the words listed below, intrinsic function names
are reserved words in all versions in which they are

available,
RESERVED WORDS

Words reserved in all versions,

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOSUB RETURN
GOTO RUN
1F STOP
INPUT T0
LET TAB
LIST THEN
USR

Words reserved in 8K, Extended and Disk versioans. All the above

Plus:

69

fanuary, 1977

LOAD

AND ON

CONT OR

DEF ogT

FN PORE

NOT spc

NULL WAIT

Words reserved in Extended and Disk

AUTC LINE

CONSOLE KL LLIST

DEFDBL LPRINT

DEFINT MOD

DEFSNG RENUM

DEFSTR RESUME

DELETE SPACES

EDIT STRINGS

ELSE SWAP
TROFF

ERASE TRON

ERL VARPTR

ERR WIDTH

IMP XOR

INSTR

Words reserved in Disk.

CLOSE SET

DSKI1$ MERGE

DSKOS MOUNT

FIELD NAME

PILES OPEN

GET PUT

KILL RSET
UNLOAD

versions.

All the above plus:

Page 92

All the above plus:

‘ January, 1977

C

ASCII

DECIMAL- CEAR.

899
gl
g2
a43
064
aas
daé
a7
g0¢
9o
914
a1l
012

al4
813
916
17
218
413
g28
821
822
8423
g24
825
426
#27
828
929
030
g3l
232
233
834
835
436
937
a3s8
839
948
41
042

LFaLine Feed

NOL
SCH
57X

- ETX

EOT

ENQ

ACK

BEL

BS

BT :
L+ -)
e
PP »:> 27
CR #h FD

DLE
ocl
C2
DC3
DC4
NAR

ETS

sSuB
ESCAPE
F8

GS

RS

N G
&
<

N =N AR

APPENDIX A

DECIMAL
843
844
B4s
46
247
248
A49
Ase
251
52
253
854
455
236
g57
a38
459
969
61
362
263
264
865
266
867
268
969
478
871
872
873
a74
475
76
477
2738
879
286
a8l
82
883
884
483

PFeform Feed

CODES

CHAR.
+

1=

CHOIOUWORIUAYHMOAUADOOPF@ AV I A o BO-~3 NN 8GR DN

DECIMAL
886
2987
a88
289
490
431
992
293
894
895
496
897
293
399
196
131
192
193
184
143
196
1a7
148
199
118
111
112
113
114
115
115
117
118
119
126
121
122
123
124
125
126
127

A PSRN RSO

Page 93

4

AN ES SV QUOR EHAU- PO MRe OO0 W

DEL

CR=Carriage Return DEL=Rubout

Januwacy, 1977 Page 34

Using ASCII codes -~ the CHR$ function.

CHR$ {X) returns a string whose one character is that
with ASCII code X. ASC(XS$) converts the first character of
a string to its ASCII decimal value.

One of the most common uszes of CHER§ is to send a
special character to the user'as terminal., The most often
used of these characters is ths BEL (ASCII 7). Printing
this character will cause a bell to ring on some terminals
and a2 beep on many CRT's., This may be used as a preface to

‘ an error message, as a novelty, or just to wake up the user
‘ if he has fallen asleep, Exampla:

PRINT CHRS$(7);

Anothar major use of special characters is on those
CRT that have cursor positioning and other special
functions {such as turning crn a hard copy printer}. For
‘ example, on most CRT's a form feed (CER$S(12)) will cause the
screen to erase and the cursor to “home* or move to the

upper left corner.

Some CRT's give the wuser the capability of drawing
graphs and c¢urves in a special point-plotter mode. This
feature may easily be taken advantage of through use of
Altair BASIC's CHR§ function.

January, 1977 Page 95

APPENDIX B
LOADING AND INITIALIZING SASIC

A. Loading BASIC from paper tape or cassette,

This appendix details the procedure for 1loading BASIC
in 4K, 8K and Extended versions from paper tape or tape
cagsette. For instructions on 1lcading Disk BASIC, see
appendix .

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "up" and "down", it is convenient tc denote the
up position as 1 and the down position as 6. Taken in
groups of three, then, the switches can represent octal
digits. To save space, the switch positions in the
following loader program 1listings are shown in octal
notation. The leftmost two switches in an 8 bit set are
represented by the first digit, the next three by the second
digit and the low-order three switches by the last digit.

FPor example, if we wish to enter octal 315 on the dJata

(_/ switch register, the switches would have the following
positions:
7) S 4 3 2 1 [}
up i up down dgwn up up dogn up

For data entry, only the rightmost 8 -switches of the 16
switches on the ALTAIR 8994 front panel switch register are
used. All 16 switches would be used to0 enter a memory
address.

The following is the proceduyre for loading BASIC f£from
paper tape or cassette,

1. Turn the power switch on.
2. Raise the STOP switch and RESET switch simultaneously
3. Switch the terminal to LINE

4, Enter one of the following programs on the front panel
switches. The 38=-MBL Multi-Boot Loader PROM contains
the necessary loader programg, 80 it is not necessary to
enter a loader from the front panel {f it is installed.

(_, Refer to the 88-~MBL manual for more information,

January, 1977 Page 96 i
a. loading from paper tape with the SIO board (REV 1) qd

Octal Address Oc¢ctal Data s
999 © 941 i
891 392 !
802 gxx (17 for 4K, 37 for 8K, 77 for
@23 a6l Extended § Disk)
204 922
2as éae
246 333 |
067 240 |
410 017 i
211 338 |
812 333)
213 291 |
314 275 I
81% 314 i
Al6 855
917 167 :
329 380 i
921 351 :
622 @93 :
823 949 '

loading from cassette

Octal Address
aeo0
9291
2802
@63
884
695
Bg6
297
01
411
g12
913
314
915
pls
817
220
321
922
023

Gctal Data :

041 "

362)

gxx (17 for 4K, 37 for 8K, 77 for

261 Extended and Disk)

922

0gn

333

206

917

339

333

297

275

31le@ .

855 |

167 ;

349

351 |

393 |

299 i
|

J(:Pa:y, 1877 Page 97

c. loading with the 88 PIO board

Octal Address Octal Code
089 41

98l 382

8g2 pxx (17 for 4R, 37 for 8K, 77 for
683 P61 Extended and Disk)
864 823

245 :]° 1]

096 333

a7 %04

419 346

811 941

212 314

13 333

014 845

a15 275

Bl6 318

17 955

029 167

921 . 309

822 351

623 993

024 a6

d. leoading witih the 2SIC board

Octal Address Gctal Data
#49 a76
a1 863
002 323
993 a2
04 976
945 921 (=2 stop bits, 925=l stop bit)
086 323
897 920
o1% 941
311 3az
12 Oxx (l7for 4K, 37 for 8K, 77 for
213 961 Extended and Disk)
gl4 a32
915 909
gle 333
817 326
929 817
#21 329
22 333
823 @21
924 2758
(./ 92% 310
326 255

027 167

January, 1977 .] Page 98

838 . 389
#31 351
232 413
233 006

e, loading with the 4PIC board

Octal Address Octal Data
200 257
@81 323
a2 040
2a3 323
pg4 941
895 g76
zos 454
687 323
al¢ P49
gll 241
12 392
B13 0xx (17 for 4K, 37 for 8K, 77 for
al4 961 Extended and Disk)
a1s - 233
916 809
217 333
. @28 848
621 287
822 330
023 333
p24 941
25 275
826 319
227 55
930 167
931 360
332 351
333 914
234 900

f. Loading with the High Speed Tape Reader

Octal Address Octal Data
990 257
01 323
902 044
803 323
904 245
ags 323
096 g46
097 457

219 323

Jy —acy, 1977 : . Page 99

6ll 947
gl2 a7é
8l3 914
814 323
815 . 244
#8lé 976
917 904
28 323
921 846
822 323
923 347
D24 241
925 392
026 Bxx (17 for 4K, 37 for 8K, 77 for
827 861 Extended and Disk)
#308 @47
831 ae0
832 333
#33 944
834 346
235 106
836 318
. 237 333
(-/ 840) 245
841 275
42) 319
843 8455
644 167
845 3906
246 351
047 627
A58 298

To enter these programs,

1. Put switches & to 15 in the down positions

2. Raise EXAMINE

3. Put the data for address zeroc in switches @ through 7.
4. Raise DEPOSIT

5. Put the data for the next address in the switches

6. Dapress DEPOSIT NEXT

7. Repeat steps 5 and 6 until the whole loader is toggled

(’; in

January, 1977 Page 1449

8. Put switches @ through 15 in the down positioen
9. Raise EXAMINE

1a. Check to see that the lights D@ through D7 show the
data that should be in location @é88. Light on =1, light
Off = #. If the correct value is there, go to step 13,
if not go to 11l.

11. Put the correct value in the switches

12, Raise DEPOSIT

13, Depress EXAMINE NEXT

14, Repeat steps 10 through 13 to check the entire loader

15, If there were any mistakes, check the entire 1loader
again to make sure they were corrected.

16, If a paper tape is heing loaded, put it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 362 octal punched in each column. If an
audio cassette is being loaded, put it in the cassette
tecorder and make sure it is fully rewound.

17. Lower switches 8 through 15
18. Raise EXAMINE

19. Enter the sense switch settings, See the table in
section B.

28. If loading is through a SIDA, 8 or C or an 88PI0, turn
on the tape reader and then depress RUN, If a cassetite
is being loaded, turn on the recorder, put it in PLAY
mode and wait 15 seconds. Then press RUN on the
computer. 1f loading is through a 4P10, 28IC or High
gpegd Tape Reader, depress RUN and then start the read

evice,)

21. Wait for the tape to read., Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes
for 4K. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K, Do not move any of
the switches while the tape is being read.

22. If a loading error occurs, the loading procedure must
start over from step 1. See sectien C below for error
conditions,

q;/pary, 1977 . Page 141

23. When the tape (s read, BASIC should start up and print
MEMORY SIZE? See section D below for what to do next.

24, If BASIC will not load from cassette, the ACR module
may need realignment, The Input Test Program described
in the ACR Manual, pages 22 and 28 may be used to test
the ACR.

B, Sense Switch Settings

Sense switches (switches A8 through Al5) must be get
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the load beard
getting and the high orxder four switches contain the
terminal board setting. In the table below, the setting is
given for each I/0 board option. As above, the setting is
an octal aumber which signifies the switch positions. The
Terminal Switch and Load Switch columns show the switches
that are raised for each of the load and terminal Qdevice

options.
(‘/ Sense Switch Terminal Load
Device Satting Switches Switches Channels
2810 2 none none 26, 21
{2 stop bits)
2510 al2 A8 208, 21
{1 stop bit))
sI0 2 Al3 A9 g, 1
ACR 3 Al3,Al2 A9,A8 ' 6, 7
4PI0 4 al4 AlQ 40, 41, 42, 43
PIO 5 Al4,al2 AlD,A8 4, 5
HSR 6 Al4,al3 aAl9,A9 46, 47
non-standard 14
terminal

no terminal 15
Examples:
Input from audio cassette through ACR and CRT terminal
through 25I0 with 1 stop bit,
Switch 15 14 13 212 11 18 9 8
Pogition @ 2 "] 1 [/] 1 i
Input from high speed paper tape reader, terminal

through $I0,
(_/ Switch 15 14 13 12 i1 19 9 8
Pogition @ [’} 1 9 2} 1 1)]

1977 Page 182

C. Error Detection

The checksum loader turns on the Interrupt Enabla light
on the front panel when a loading error occurs. Tha ASCII
code of the error letter is stored in location &. In
addition, the error letter is sent out over all the terminal
channels and 380 will appear on whatever terminal is
go??ected to the terminal. The error letters are as

ollows:

C checksum error. Bad tape data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2,

Q overlay error, Attempt was made to load data on top
of the loader,

I 1invalid load devica. Invalid setting on the
sense switches,

D. Initialization Dialog
Upon starting, BASIC prints
MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory to be used by BASIC and BASIC programs. Remember
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6K in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the printing
line of whatever output device is in use. Typing a carriage
return sets the terminal width to 72. Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTHE guestion is not asked at
initialization and an initial width of 72 is assumed. 1In
4K, the response to MEMORY SIZB? and TERMINAL WIDTH? nust
be less than 6 digits,

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space, 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the

J(HJa:Y' 1977 . Page 143

next guestion
SQR? Y keeps SQR and RND

N deletas SQR, asks next question
RND? Y keeps RND

N deletes RND

8K and Extended BASIC ask,

WANT SIN-COS-TAN~-ATN? ¥ keeps all four
. N deletes all four

A deletes only
C (in extended)&§§¥gtﬁ§“

CONSOLE functlion., Any
other answer deletes
CONSOLE.

Now BASIC prints,
XXXX BYTES FREE

ALTAIR BASIC VERSION 4.8
(POUR»K VERSION]

(./ [EIGHT-K VERSION]
[BXTBNDED VERSION]
OK

BASIC is now in command level and is ready for use.

E., Echo Routines,

The Altair input/cutput channels work in a fuli-duplex
mode. This means that characters entered on an input/ocutput
terminal will not, as a rule, be printed as they are entered
unless the computer is programmed to return them, The
following echo programs may be used to test the input/output
devices. To test an input-only device, dump the echoed
characters on an ocutput device or store them in memory for
later examination., To test an output-only device, send the
echo characters through the front panel switches or send a
constant c¢harcacter. Be sure to check the ready-to-receivs
bit of the output terminal before attempting output. If the
eche program works, but BASIC does not, make sure the lead
device's I/0 board is strapped for 8 data bits and that the
ready-to-recieve bit ig set properly on the terminal device,

88-PIO
OCTAL ADDRESS "OCTAL CODE
C 091 904
092 346

893 881

January, 1977

404
95
#d6
a7
alg
11
912
813
914
28]

2810
OCTAL ADDRESS
1))
(1730
d02
283
004
895
206
887
010
211
812
613
A14
215
916
417
620
821
22
823
824

4PIO

OCTAL ADDRESS
209
6R1
882
243
084
0985
ade
a7
819
Bil
212
913
14
815
glé

31z
994
808
333
805
323
395
383
494
494

OCTAL CODE
876
a3
323
928 (flag ch.)
876
021 (=2 stop bits,
323 P25=1 stop bit)
928
333
B2
Al7
322
219
200
333
821 (data channel)
323
221
393
ale
289

OCTAL CODE
257
323
640
323
g41
323
P42
457
323
843
876
a54
323
040
323

Page 1404

January, 1977

(*/

817
g28
221

822

f23
924
025
#26
827
230
f31

832

233
A34
a3s
836
437
646
941
942
43
244

942
333
040
346
24¢
312
928
004
333
242
346
2849
312
827
668
333
841
323
6843
393
320
a9¢

Page 145

1977 Page 166

APPENDIX C
SPACE AND SPEED BINTS

A. Space Allocation)

The memory space required for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space
regquired for the variouys program elements.

Element Space Required

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bytes in 4K and 8X
doublie precision 11 bytes
string 6 bytes

Arrays

single precision

double precision 8
string 3
8K and 4K

strings and floating pt. |6 |+

Functions

intrinsic 1 byte for the call (2 bytes in Extended and Disk)

user-defined 6 bytes for the definition

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters

1 byte each
Stack Space
active FOR
loop 17 bytes in Extended and Disk,

16 bytes in 4K and 8K
active GOSOUB S bytes
parentheses § bytes each set
temporary
result 12 bytes in Extended and Disk
18 bytes in 4K and 8K

integer (% of elements)*| 2+|6 [+(# of dimensions}*2 bytes
4
5

January, 1977 _ Page .107

k—)

BASIC itself takes about 3.4K in the 4K wversion, 6.2K
in 8K, 14.6K in Bxtended and 28 K in Disk.

B. Space Hints

The space required to taun a program may be
significantly reduced without affecting exectuion by
following a few of the following hints,

1. Use multiple statements per line. PEach line has a 5§
byte overhead for the line number, etc., so the fewer
lines there are, the less storage is required.

2. Delete unnecessary spaces, Instead of writing

14 PRINT X, ¥, 2
uge
16 PRINTX,Y,2

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of costants, expecially when the
same value is used several times. For example, using
the constant 3.14159 ten times in a program uses 44
bytes more space than assigning

19 P=3,1415%9
once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneedad variables instead of defining new
variables.

7. Use subroutines instead of writing the same code
several times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zerc elements of arrays. Remember the array
dimensioned by

108 DIM A(l8)

has eleven elemants, A(#) through A(l@).

Januvary, 1977

19.

3.

Page 1848

In Extended and Disk, use integer variables wherever
possible.

Speed Hints

Deleting spaces and REM statements glves a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. 850, reuse
variable names and keep the list of variables as short
as possible.

In 8K, Extended and Disk use NEXT without the index
variabla.

8k, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use

the larger versions.

The math functions in 8K, Extended and Disgk are faater
than those in 4K.

In the 4K and 8K versions, use variables instead of

constants, especially in POR loops and other code that
must be executed repeatedly,

In Extended and Disk use integer variables wherevar
possible,

1977) : Page 149

APPENDIX D
narnzni?ftif”?uﬁcr:ous

1. Derived Functions

The following functions, while not intrinsic to ALTAIR
BASIC, can be calculated using the existing BASIC functions.

Function: BASIC equivalent:

SECANT SEC(X) = 1/COS(X) -

COSECANT CSC(X) = 1/SIN{X)

COTANGENT COT(X) = 1/TAN(X}

INVERSE SINE ARCSIN(X) = ATN(X/SGR(-X*X+1))

INVERSE COSINE ARQCOS{X;7-8-ATN X{X/SQR{=X*X+1))
+ *

INVERSE SECANT ARCSEC(X) = ATN(XSQR(X*X-1}))
+SGN (SGN(X)-1)*1.5708

INVERSE COSECANT ARCCSC({X) = ATN(l/SQR{X*X-1))
+{SGN(X)~1)*1.5798

INVERSE COTANGENT ARCCOT(X) = ATN(X)+1.57@8

HYPERBQLIC SINE SINH{X) = (EXP(X)-EXP(-X))/2

HYPERBQLIC COSINE COSB(&) = (EXP(X)+EXP({=X))/2

HYPERBOLIC TANGENT TANH (X) I EXP(-X}/EXP(X}+’XP(-X))
*24

BYPERBOLIC SECANT SECH({X} = 2/{EXP(X)+EXP(=X))

REYPERBOLIC COSECANT CSCH(X} = 2/{EXP(X)~EXP{-X})

EYPERBOLIC COTANGENT COTH(X; ; EXP (=X)/ (EXP (X} -EXP (=X} }
*24

INVERSE BYPERBOLIC

SINE , ARCSINH(X) = LOG(X+SQR({X*X+l))
INVERSE HYRPERBOLIC

CCSINE ARCCOSH (X) = LOG (X+SQR(ZX*X+=1))
INVERSE HYPERBOLIC

TANGENT ~ ARCTANH(X) = LOG({1+X)/{1-X})/2
INVERSE HYPERBOLIC

SECANT ARCSECH (X) = LOG({(SQR({~X*3+1)+1)/X)
INVERSE HYPERBOLIC

COSECANT ARCCSCH(X) = LOG({(SGN(X)*

SQR{X*X+1)+1) /4
INVERSE HRYPERBOLIC
COTANGENT ARCCOTH(X) = LOG({X+1)/(X=1))/2
“&2., Simulated Math Functions.\&

The following subroutines are intended for 4K BASIC users

Januvazy, 1977 Page 114

who want to use the transcendental functions not built iato
4K BASIC. The corresponding routines for these functions in
the 8K version are much faster and more accurate. The REM

statements in these subroutines are given for documentation .

purposes only., and should not be typed in because they take
up a large amount of memory. The following are the
subroutine calls and their 8K equivalents:

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X9°Y¥9 GOSUB 60030
L9=LOG{X9) GOSUB 66690
ES=EXP {X9) GOSUB 66169
€9=C0S (X3) GOSUB 66249
TY9=TAN (X9) GOSUB 68280
A9=ATN (X9) GOSyUB 668310

The unneeded subroutines should not be typed in. Please
note which variables are used by each subroutine, Also note
that TAN and COS require that the SIN function be retained
when BASIC is loaded and initialized.

60008 REM EXPONENTIATION: P9=X3"¥9
68010 REM NEED: EXP, LOG
60029 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,YS
60030 REM P9 =1 : E9=0 : IF Y9« THEN RETURN
68040 IF X9<d THEN IF INT(Y3)=Y9 THEN P9=1-2*Y9+4*INT(Y3/2)
¢ X9=-X9
50050 IF X9<>9 THEN GOSUB 68090 : XS=Y9*L3 : GOSUB 69160
60060 PI=PO*E9 : RETURN
60679 REM NATURAL LOGARITHM: L9=LOG(X9)
60082 REM VARIABLES USED: A%,B%,C9,E9,L9,X9
60999 E9=@ : IF X9<=§ THEN PRINT "LOG FC ERROR"; : STOP
60108 A9=1: BY=2: C9=,5: REM THIS WILL SPEED THE FOLLOWING
6811@ IF X9>=A9 THEN X9=C9*X9 : EI=E9+A9 : GOTO 6010¢
6@120 X9=(X9-.787137)/(X9+.70771087) : LI=X9*X9
681368 L9=({(.598979*L9+,961471) *L9+2,88539) *X9+E9-.5)*
. .693147
60135 RETURN
60149 REM EXPONENTIAL : E9=EXP(X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60168 LO=INT(1.4427*X9)+1 : IF L9<¢127 THEN 69180
60178 IF X9>¢ THEN PRIWT "EXP OV ERROR"; : STOP
60175 E9=8 : RETURN
66180 E9=.693147*L9-%X9 : A9=1,32938E-3-1.41316E-4*E9
68130 A9=((AS*ES-8.30136E~23)*E3+4,165748~2) *£9
60195 E9=m((A9-.166665) *E9=1) *E2+1 : a9=2
68197 IF L9<=0 THEN a9=.5 : L9=-L9 : IF L9%=@ THEN RETURN
60280 FOR X9=1 TO L9 : E9=AI*E9 : NEXT X9 : RETURN
60213 REM COSINE: C9=COS(X9)
60229 REM N.B, SIN MUST BE RETAINED AT LOAD-TIME
6023¢ REM VARIABLES USED: C9,X9

January, 1977 Page 111

(“’ 69246 C9=3SIN(X9+1.5708) : RETURN
692580 REM TANGENT: TI9=TAN({X9)
64263 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
64278 R2M VARIABLES USED: C9,T9,X9
69289 GOSUB 60249 : TI=SIN(X9)/C9 : RETURN
68299 REM ARCTANGENT : A9=ATN (X9)
60394 REM VARIABLES USED: A%,B9,C9,T9,X%
68319 T9=SGN(X9): X9=ABS(X93):C9=0: IPF X>1 THEN C9-1: X9=1/X9
60328 A9=X9*X9 : BI=((2.86623E-3*a9-1,61657E-2)*A9
+4.29896E-2) *A9
68336 B9=({({B9-7.5289E~-2) *A9+.186563) *A9-,1142089) *A9+.199936) *A9
69340 A9a((B9-.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.5708-A39

January, 1977 Page 112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions for
intecrfacing with assembly language routines. The USR
function allows Altair BASIC preograms to c¢all assembly
language subroutines in the same manner as BASIC functions.

The first step in setting up a machine 1language
subroutine for an Altair BASIC program is to set aside
memory sSpace, When BASIC asks, MEMORY SIZE? during
initialization, the response should be the size of memory
available, minus the amount needed for the assembly language
routine, BASIC uses all the bytes it can find from location
zero up, 80 only the topmost locations in memory can he used
for user supplied routines, If the answer to the MEMORY
SIZE? question is too small, BASIC will ask the question
again wuntil it gets all the memory it needs. See Appendix

The assembly language routine may be loaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte locatior in memory which varies
from version to version, USRLOC for 4K and 8X Altair BASIC
version 4.8 is 111 OcTAL , In Extended and Disk, USRLOC
need not be known explicitly since it is defined
automatically by DEFUSR. See section $-3b, The fupction
USR calls the routine whoge address is in USRLOC,
Initially, USRLOC c¢ontains the address of ILLFUN, the
toutine which gives the FC or ILLEGAL FUNCTION CALL error,
which is what happens if USR is cailed with no assembly
language routine having been loaded.

When USR is called, the stack pointer is set up for 8
levels (16 bytes) of stack storage. If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language routine. BASIC's stack must be
restored, however, before returning £from the user routine.

31l memory and all the registers can be c¢hanged by a
user's assembly language routine, Cf course, memory
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this argqument by calling the
routine whose address is in locations 4 and 5 decimal. The

C

Ianuary,I1977 Page 113

low=order byte of the address is in 4 and the high~order in
5. In 4K and 8K, this routine {DEINT) stores the argument
in the register pair [D,E]. 1In Extended, the argument is
passed in pair [H,L]. The argument is truncated to integer
in 4K and 8K, and if it is not in the range -32768 to 32767,
an PC error occurs., In extanded, the register pair [H,L]
containg a pointer tc the Ploating Point Accumulator whers
the argument is stored (see gection 5-3b, for more
information).

To pass a result back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,
or [H,L) in Extended. This value must be a signed, 16 bit
integer as defined abova, Then call the routine whose
addreas is in locationa 6 and 7. 1If this routine is not
called, USR{X) returns X. To return to BASIC, then, the
assembly language routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts, Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handling coutine,
Location 56 initjially holds a RET, so it must be set up by
the user or an interrupt will have no effact.

All interrupt handling routines should save the stack,
reglsters A-L and the PSW, They should also reenable
interrupts before returning since an interrupt automatically
disables all further interrupts once it is received.

There is only one way to call an assembly language
routine in 4K and 8K, but this does not limit the programmer
to only one assembly language routine. The argument of USR
can be used to designate which routine is being called. 1In
8%, additjonal arguments can be passed through the wuse of
PORKE and values may be passed back by PEEK.

In BExtended and Disk BASIC, up to ten routines may be
called with the USR8 - USR9 functions. ¥For more information
on this feature, see section 5-3b.

January, 1977 : Page 114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cagsette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed con
cassette, and in Extendad and Disk versions. 8K
BASIC on paper tape will give the user about 254
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in aeither direct or
indirect meode, and its format is as follows:

CSAVE <string expression>

The program currently in memory is saved on cassette under

the name specified by the £irst character of the STRING

E: THe Lexpression>, CSAVE writes through channel 7 when the Write

mxénn1 guffer Empty bit (bit 7) of channel 6 is low. After CSAVE

is completed, BASIC always craturns to command level.

AMED A IS programs are written on tape in BASIC's internal

AVED BY representation. Variable values are not saved on tape,

‘Save A4, although an indirect mode CSAVE does not affect the variable

values of the program currently in memory. The number of

nulls (see NULL command) has no affect on the operation of

CSAVE. Before using CSAVE, turn on the cassette recorder,

make sure the tape 1is in the proper position and put the
recorder in RECORD mode.

Programs may be lcaded from cassette tave by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execute a NEW command, clearing memory
and all variable values, and lcocading the specified file into
memory. When done reading and loading, BASIC returns to
command level. CLOAD reads a byte from channel 7 when the
Read Data Ready bit (bit 9) in channel 6 is low. Reading
continues until 3 consecutive 2eros are read., BASIC will
not return to command level after a CLOAD if it c¢ould not
find the requested file or if the file was found but did not
end with 3 zeros, In that case, the computer will continue
to search until it is stopped and restarted at locatien 0.

C

January, 1977 Page 1liS

In the 8K cassette and Extended versions of ALTAIR
BASIC, data may be read and written with the CSAVE* and
CLOAD* commands., The formats are as follows:

CSAVE*<array variable name>
and
CLOAD*<array variable name>

See section 2«4d for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the program
currently in memory with the specified file on cassatte, If
the two files match, BASIC prints OK. 1If not, BASIC prints
NO GOCD.

Data may also be read from and written on cassette in
the paper tape version of 8K Altair BASIC. To write data,
execute a WAIT 6,128 statement to check for the Write Buffer
Empty bit and then write with an OUT 7,<byte> statement. To
read, execute a WAIT 6,1 to check for Read Data Ready and
then read with an INP(7}. The and of a block of data may be
conveniently designated by a special character. Data should
be gtored in array form since there is no time during
reading and writing for computation.

January, 1977) ’ Page 116

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are scme incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.

1) Strings.

A number of BASICs require Ethe length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASIC3, a declaration of the form DIM AS(I,J) declares
a string array of J elements each of which has a length 1I.
Convert DIM statements of this type to equivalent ones in
Altair SASIC: DIM A$(J). Altair BASIC uses " + " for
string concatenation, not * , Y or * &." ALTAIR BASIC uses
LEFTS, RIGHTS and MID§ to take substrings of strings. Some
other BASICs use A$(I) to access the Ith character of the
string A$, and A$(I,J) to take a substring of a$ from
ghiiacter position I to character position J. Convert as
ollows:

OLD NEW
A§(I) MIDS (AS,I,1)

AS(I:J) MIDS (Ast,J“I"'l)

This assumes that the reference to a subscript of A$ is in
an expression or is on the right side of an assignment. If
the reference to A$ is on the left hand side of an
assignment, and X$ is the string expression used to replace
characters in A$, convert as follows :

In 4K and 3K

OLD NEW

AS{I)=X3 AS=LEFTS{AS,I=-1)+X$S+MIDS (AS,I+1}
AS(I,Jy=X$ AS=LEFTS (AS,I-1)+XS+MIDS {A$,T+1)
Extended and Disk

OLD NEW

AS{I)=X$ MID${AS,1,1)=X$

AS{I,J)=XS8 MIDS(AS$,I,d=-I+1)=X$

C

Januoary, 1977 Page 117

2) Multiple assignments,
Some BASICs allow statements of the form:
588 LET B=Csd

This statement would set the variables B and C to zero. In
8K Altair BASIC this has an entirely diffarent effect. all
the “ = ™ gigns to the right of the first one would be
interpreted as logical comparison operators. This would set
the variable B to -1 if C aqualed d. 1If C did not egqual &,
B would be set to A, The easiest way to convert statements
like this one is to rewrite them as follows,

580 C=@:8=C

3) Some BASICs use " \ * instead of " " to delimit
multiple statements on a line, Change e#ach " \ " to * : "
in the program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of each 1line, instead of the three per line
recommended for uae with Altair BASIC., To get around this,
try to use the tape feed control on the Taeletype to stop the
tape from reading as soon as Altair BASIC prints a carriage
return at the end of the line. Wait a moment, and then
continue feeding in the tape, When reading has finished, be
sure to punch a new tape in Altair BASIC's format,

A program for converting tapes to Altair BASIC's format
wag published in MITS Computer Notes, November 1976, p. 25,

5) Programs which use the MAT functions availablae in some
BASICs will have to be re-written using FOR...NEXT loops to
perform the appropriate operations. .

January,

1977 Page 118

ABPENDIX H
DISRK INFCRMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks Use

8-5 . Disk BASIC memory image.

6-69 Space for either random or sequential files.
76 Directory track. See below.

71-76 Space for sequentizl files only.

Format of DISK BASIC Memory Image (Tracks 8-5):

BASIC is loaded starting at track 6 sector 4 then track 4
sector 1, etc. Each sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,
etc,

Sactor format (Tracks §-5):

Byte Use
8 Track Number+128 decimal.
1-2 Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector,
3-139 128 bytes of BASIC.
131 255 decimal stop byte,
132 Checksum - sum of bytes 3-13@ with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use
8 Most Significant Bit always on.
Contains track number plus 24¢ octal.
1 Sector number * 17 MOD 32.
2 File number in directory. Zero file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
? means the whole group of 8 gectors is free.

January, 1977 Page 119

C

3 Number of data bytes written (0 to 128) . Always
128 for random files., {Except for the random file

index blocks in which case this byte indicates how many

groups are allocated to the file,)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and i3 even valid
in the middle of a group. If it is zero it means there

is no more data in the file, The track is the first byte

and the sector number is the second byte.

7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.

136 Unused. ’

Directory Track (74) Format:

Bach sector of the directory (which is all of track 74)
is composed of up to 8 file name slots, 16 bytes per slot,
Each slot can contain a file name (8 bytes), a link to the
start of file Jata (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequentials=2}, The remaining 5
bytes are not currently used. Any slot which has the first
filename byte equal to zero contains a file which has been
deleted. " I1f the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond
the “stopper" are garbage, File numbers are calculated by
multiplying the sector number of the directory track the
file is in by © and adding the position of the slot in the
sector (6-7) plus 1.

NOTE

The ith logical sector on a track is actnally mapped
to the {*17 MOD 32 physical sector to improve
latency in BASIC I/0 operations.

Format of Random Files

Bach random file starts with two random index blo:ks. The
number of data bytes field in the first block indicates
how many groups are currently allocated to this random £file.
The next 256 bytes in the two random index blocks give the
location of each group in the random file in order of their
position in the file. The upper two bits give the group
number , and the lower six bits give the track number - 6.

January, 1977 Page 128

Assembly Code to Read and Write a Sector ‘

The following code has been provided to halp users write
their own assembly language subroutines to read and write
data on the fleoppy disk. It is assumed that the disk being
used - has already been enabled and positioned to the correct
track. Two data bytes are always read or written at a time
30 that the CPU can keep up with the data rate (32
microseconds/byte) of the floppy disk. RAfter two bytes are
read or written, the CPU re-synchronizes with the next 'byte
ready' status from the floppy disk controller.

; CALL WITH NUMBER OF DATA BYTES TC WRITE IN (A}
; AND POINTER TO DATA BUFFER IN [H,L}

; ALL REGS DESTROYED.
DSKO: MOV Coa $SAVE $ OF BYTES IN C
MVI a,136 ;CALCULATE NUMBER OF ZEROS TO WRITE
suUB c ;SUBTRACT THE NUMBER OF DATA BYTES
MOV B,A ;NUMBER OF ZERGS+1
CALL SECGET s LAPENCY
MVI 4,128 ;ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9 ;
? ¢
; CALL WITH [B]=NUMBER OF ZEROS (C]=NUMBER OF DATA BYTES .
; AND (H,L] POINTING AT OUTPUT DATA
/ .
OHLDSK: MV D,1 ;SETUP A MASK (READY TO WRITE)
MVI a,128 :HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA 4 ;OR ON DATA BYTE
MOV E,A $SAVE FOR LATER
INX | ; INCREMENT BUFFER POINTER
NOTYTD: N 8 ;GET WRITE DATA READY STATUS
aNA D :TEST STATUS BIT
INZ NOTYTD ;NO? READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TO ZERO
ouT 16 ;SEND THE BYTE
OV AN +GET NEXT BYTE TO SEND
INX H sMOVE BUFFER POIWTER AHEAD
MOV E,M ;GET NEXT DATA BYTE
INX H :MOVE BUFFER POINTER AHEAD AGAIN
DCR c ;DECREMENT COUNT OF CHARS TO SEND
Jz ZRLOP ;IF DONE, QUIT & GO TO ZRLOP
DCR < ;DECREMENT COUNT OF CHARS AGAIN:
ou? 19 7SEND THIS BYTE
INZ NOTYTD :STILL MORE CHARS, DO THEN.
ZRLOP: I 8 :GET READY TO WRITE
ANA D +IS IT READY
JNZ ZRLOP +1F NOT, LOOP
ouUT 19 :KEEP SENDING FINAL BYTE
DCR B ;DECREMENT COUNT OF BYTES TO SEND

C

January, 1977) Page 121

JN2 ZRLOP sKEEP WAITING

EI . $RE=ENABLE INTERRUPTS
MVI A,8 ;UNLOAD HEAD

ouT 9 ;SEND COMMAND

RET ;s DONE

3 DISK INPUT ROUTINE. ENTER WITH POINTER
: OF 137 BYTE BUPFER IN [H,L]. ALL REGS DESTROYED.

DSKI: CALL SECGET sPOINT TO RIGHT SECTOR
MVI C,137 ;GET § OF CHARS TO READ
READOK: N 8 ;GET DISK STATUS
ORA A ;READY TO READ BYTE
M READOK
IN 19 ;READ THE STUFF
MOV M,A ;SAVE IN BUPFER
INX " ;BUMP DESTINATION POINTER
DCR < ;LESS CHARS
Jz RETDO ;IF QUT OF CHARS, RETURN
DCR c ; DECREMENT COUNT OF CEARS
NOP ;DELAY INTO NEXT BYTE
N 10 ;GET NEXT BYTE
MOV M,A ;SAVE BYTE IN BUFFER
INX : | ;MOVE BUFFER POINTER
INZ READOK :IF CHARS STILL LEFT, LOOP BACK
RETDO: BI $RE-ENABLE INTERRUPTS
MVI A,8 ;UNLOAD HEAD
outr - 9 ;SEND COMMAND
RET .
SECGET: MVI a,4 ;LOAD THE HEAD
ouT 9
DI ;DISASBLE INTERRUDTS
SECLP2: IN 3 ;GET SECTOR INFO
RAR - ;PTX UP SECTOR #
ac SECLP2 ;IF NOT, KEEP WAITING
ANT 31 +GET SECTOR 4
CMP E ;IS IT THE ONE WE WANTED
JNZ SECLP2 ;TRY TO FIND IT
RET

The Disk PROM Bootstrap Loader

The Disk bootstrap loader PROM must be installed in the
highest position on the PROM board and the PROM board must
be strapped at the proper address. The proper position is
the PROM IC socket on the opposite side of the board from
the black finned heat sink. The black dot or '1' on the
PROM should be in the upper 1left corner. The address
jumpers on the PROM board must e in the '1' pesition.

1977 - Page 122

To use the Disk bootstrap loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177468 (address switches Al5-A38
up, rest dJdown) and then set the sense switches for the
terminal I/0 board as explained in Appendix B. Depress the
RUN switch, BASIC sheuld print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see below,
Using the Casgsette and Paper Tape Bootstraps

If the Disk Bootstrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC

from the disk. This is done by following the procedure
below:

l. [Key in the applicable paper tape or cassette bootstrap
loader from the listings in Appendix B, Make
location 22077 octal. Set the sense switches for the
terminal

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape from
cassette as given in appendix B.

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procdure, see below.
Disk Initialization Dialeg

The initialization dialog has been expanded to allow the
user to select the proper amount of memory needed to use the
digk(s) on the system. After the the MEMORY SIZE question
is answered, BASIC will ask:

HIGHEST DISK NUMBER?

The wuser should answer with the highest physical disk
address in the system or with carriage return to default +o
8. Each additional disk uses 40 bytes of memory.

Exampla:

C

January, 1977 Page 123

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and
sequential files. If the user types carriage return, the
default is zero. Each file allocated requires 138 bytes for

buffer space. Example:
HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on
the £loppy disk where groups of a random file reside. Thus,
the total memory required for each random flle is
138+257=395 bytes, Example:

HOW MANY RANDOM PILES? 1
A typical dialog might appear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage return> -
HOW MANY FILES? 2 <carriage raturnd>

HOW MANY RANDCM FILES? 1 <carriage return>

Xxxxxx BYTES FREE

Altair BASIC REV. 4.4

(DISK EXTENDED VERSION)
COPYRIGET 1976 BY MITS INC.

CK

J&nuary; 1$77 Page 124

APPENDIX 1

THE PIP DTILITY PROGRAH

A BASIC Utility program has been provided to perform such
such common functions as printing directories, initializing
disks, copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR)} require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering
the "HOW MANY FILES?" question with a value greatet
than zero., If an attempt is made to perfrom a LIS
or DIR without following this procedure, a
BAD FILE NUMBER error will occur.

Once the BASIC disk has been mounted, type the following
command

RUN "PIP"<carriage return>
(PIP will type)
*

.

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. . To initialize the
floppy disk in drive @, type:

*INID

PIP will type "DONE® when it is finished. Aany disk nunmber
may be substituted for the @ in the above command and PIP
will format the disk in that drive. Any previous files on
the disk initialized will be lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUNTed.

NOTE

DC NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC
ON IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON
THE DISK.

Januvary, 1977 Page 125

C

Printing a Directory

Giving PIP the command:
*DIR<disk number>
prints out a directory of the files on the specified disk.
The name of each file is printed, along with the file's
*mede® (8 for seguential, R for random), and the starting
track and sector number of the first block in the file.
SRT<disk number>

prints a sorted directory of the files on the specified
disk.

LISting Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:

Syntax:
LIs<disk number>,<file name>

Example:

*LISEG,PIPA user types
7 CLEAR 1999 computer prints

»
-

*

COPying Disks

The COP command is used to copy a disk placed in one drive
to a disk on another drive, Neither disk need he MOUNTed
for the COP command to work properly.

Syntax:

COP<0ld disk number’>,<rew disk number>

January, 1977 Page 126
Before the copy is done, PIP verifies the actionn by
printing the following massage:

FROM<disk number>TO<disk number>
Typing Y followed by a carriage return causes execution to

proceed. Any other responce aborts the command. Example:
*COPG,l FROM 8 TO 17 ¥ {CARRIAGE return> DOWE * -

The DAT command
The DAT command is used to dump out a partxcular sector of
the disk in octal.
Syntax:
DAT<{@isk number>
When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. EBxample: *DATH

TRACK? £ SECTOR? @ 00¢ 000 996 806 poa 069
800 806 090G 009 8¢9 9440 988 etc.

The CNV command

CNV converts disks written under Altair BASIC version 3.4
and 3.3 to a format useable by version 4.0. The format of
the command is as follows:.

CNV<disk number>

CNV makes sure that the next %o last byte of each sector 1ig
255. .

Other Programs Provided on the System Disk

Program Name Use
STARTREK Plays game based on TV series.

C

January, 1977 ' Page 127

APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may bLe helpful
in learning BASIC.
1) BASIC PROGRAMMING, John G. Kemeny, Thomas E. Kurtz,
1967, 145pp.
2) BASIC, Albrecht, Finkel and Brown, 1973
3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A.
Dwyer and Michael S. Kaufman; Boston: Houghton Mifflin
Co., 1973

Books numbered 1 and 2 may be obtained from:

People's Computer Company
P.0. Box 319
Menlo Park, California 940825

They also have other books of interest, such as:

181 BASIC GAMES, David Ahl, Ed., 1974, 250pp.
WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF

COMPUTER GAMES
COMPUTER L1IB AND DREAM MACHINES, Theodore H, Nelson, 1974,

186pp.

January, 1977 Page 128

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* §/MOD 80 AND MDS SYSTEMS.

This appendix covers procedures for loading and
operating Altair BASIC on Intellec and MDS development
systens,

A, Loading BASIC. To load Altair BASIC, put the hex
paper tape of BASIC in the system reader device. Now enter
the System and assign the CONSOLE I/0Q Jevice a3 desired {see
Section 4.2.1 of the Intellec 8/Mod 80 Operator's Manual).
Now read in BASIC with the following R command.

+R(Cr)

The BASIC tape will be loaded into memory and the
system monitor will type a period on the CONSOLE device, If
you are only using contiguous RAM memory below the system
monitor (3890H) or are using BASIC on a MDS System, proceed
£o step 2. If you have RAM memory above tiie PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locatioens known as INTLOC to
point to the bottom (lowest address) of memory. The is most
easily accomplished by using the System Monitor S command.
INTLOC {s given below under "Memory Requirements.” .

«SXXXX 88 490 (Cr)

The above 3 command would amake INTLOC point to RAM, starting
at 16K.

NOTE

If you are using RAM above 18K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? questions asked by BASIC's
initialization dialog should be answered by a Y{Cr).
Also, you must answer the MEMORY SIZE? question
with the highest decimal or &AM address in your
system.

January, 1977 Page 129

(_;

' Start BASIC by giving the monitor GOTO command

.GAgAd<carriage return>

NOTE

Once BASIC has baen started, it may always be
restarted by depressing the RESET switch on the
Intellec B console.

When BASIC types MEMORY SIZE?, Typing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an axact
amount of memozy, type the decimal address of the highest
byte of memory in the computer and type carriage return,

8. BASIC I/0O.

The system devices used for terminal 1/0 in BASIC are
CI, CO and CS817S.

C. Saving and Loading Programs.

To save a program on paper tape, tra-anter the PROM
monitor and reassign the CO device to the paper tape punch
or other output device. Then restart BASIC by using the
GAg406 command and type LIST(Cr). The characters of the LIST
command will not be achced, but the BASIC program currently
saved in memory will be put on the output device.

To load a program enter the system mnmonitor, re-assign
CI to the input device where the program resides, and then
start BASIC with a GgBdd. When the program has been
completely read in, reassign CI to the user console. Then
re-enter BASIC with a God9d, and start the I/0 device. The
program will be echoed on CO as it is read in,

D. Memory Regquirements

BASIC uses locations 0009H-0AG3H and
édl@8~approximately 19DFE in the 8K version, and #619H-2F$EH
in the Extended version. PFor Intellec 8K and MDS 8K BASICs,
INTLOC is 6520 decimal. For MDS Extended, INTLOC is 14257
decimal.

E. Calling Assembly Language Routines

Januazy, 1977 Page 13¢

USRLOC for SK BASIC is @PSS5H. ADR(DEINT) is stored in
- locations (@434, ADR(GIVACP) is stored in location #945H.
In the Extended version these 1locations contain the
addresses of PRCINT and MAKINT, respectively. Interrupt
driven subroutines using RST 7 are not allowed in the
Intellec/MDS version ¢of Altair BASIC. See Appendix C. for
further information on calling assenbly language
subroutines.

* Intellec is a registered trademark of the Intel
Corporation.

Jannary, 1977

C

APPENDIX L

Page 131

PATCHING BASIC'S I/0 ROUTINES

BASIC’s 1/0 routines may be changed to accommodate
terminal equipment. After BASIC is loaded and
been initlialized, 1location 71 contains a
pointer to a list of addresses, These addresses contain the
I/0 routines of BASIC:

non~-standard
before it has

ORG
DW

IOLST: DWW '
DW

pw
DW

DW
W

(" ow

oW
DW
oW

.

TRYOUT: IN
ANI

JNZ
POP
ouT
PUSH
NOP
NOP
POP
RET

TRYIN: 1IN
ANI
Juz

74L&
IOLST

TRYOOT
TRYIN
ISCNTC
NEWSTT
IN2SIO
IN4PIO
LPTCOD
LPTCD2

LPTCD3
IOCCENL

200
TRYOQUT
PSW

PSW

PSW

:TWO BYTE ADDRESS CF ADDRESS LIST

;ADDRESS OF OUTPUT ROUTINE
;CHARACTER INPUT ROUTINE
;POLL FOR CONTROL/C CHECK
;FAST POLL FOR CONTROL/C CHECK
;8K AND LARGER ONLY
;ADDRESS OF INITIALIZATION
;ROUTINE FOR 2SI0 BOARDS
;ADDRESS OF INITIALIZATION ROUTINE FOR
;4PI0C BOARDS
;ADDRESS OF LPT ROUTINE (IN EXTENDED
;AND DISK ONLY.)
;2ND LPT ROUTINE
+3RD LPT ROUTINE
;ADDRESS OF I/0 RESET LOCATION
; (IN EXTENDED AND DISK ONLY)

+GET DEVICE STATUS
;AND OFF BIT 7
sWAIT UNTIL TERMINAL CAN QUTPUT
{GET CHARACTER TO OUTPOUT OFF STACK-
s TRANSMIT IT
$SAVE CHARACTER BACK ON STACK
$CHANGED TO "IN 41" FOR 4P1Q BOARDS

;GET CHARACTER BACK QFF STACK
;ALL DONE WITH CHARACTER OUTPUT ROUTINE

;GET TERMINAL STATUS
;CHARACTER READY?
3;NO, KEEP WAITING

fanuary.

1877 . Page 132

IN 1 ;READ IN THE CHARACTER

AN 127 ;GET RID OF PARITY BIT
CP1 CONTO ;CONTROL/0?
RNZ . sRETURN IF NOT

ISCNTC: IN 2 ;READ TERMINAL STATUS
ANI 11 yHAS THE TERMINAL A CHARACTER
$TO SEND?
RNZ $NO, RETURN

s FOLLOWING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
sAND IS EXECUTED FOR EACH STATEMENT

NEWSTT: IN 8 ;READ TERMINAL STATUS
ANI 1 ;TEST BIT @
¢z CNTCCN :YES, SEE IF CHARACTER CONTROL/C
IN2SIO: CPI 2*4 ;IS IT 2510
RNC , ;NO, OTHER GO DIRECTLY TO SETIO
ADI 21 JGET PROPER INITIALIZATION BYTE
PUSH PSW ;SAVE IT
MVI a,3 ;INITIALIZE THE 2SI0
CALL DOIO20 .
POP PSW ;GET BACK SECOND INITIALIZATION BYTE
JMP DOI026 ;PROGRAM TO DATA AND STOP BITS
IN4PIO: MVI A,540 JRESET FOR DATA TRANSFER
DR M s CHANNEL=22
CALL DOIO20
LPTCOD: LDA PRTFLG ;SEE IF WE WANT TO TALK TO LPT
ORA A s TEST BITS
Jz TTYCHR ;IF ZERO THEN NOT
POP PSW ;GET BACK CHAR
PUSH PSW
CPI] :TAB
INZ NOTABL }NO
MORSPL: MVI a,32 ;GET SPACE
QUTCHR ;SEND IT
LDA LPTPOS +GET CURRENT PRINT POSIT
ANI 7 ;AT TAB STOP?

C

Janaary, 1977 ' Page 133

JNZ MORSPL :GO BACK IF MORE TO PRINT
POP PSW sPOP OFF CHAR
RET s RETURN
NOTABL:
POP PSw ;GET CHARACTER WE WANT TO PRINT
PUSH PSW
CPI 13 $I8 IT CARRIAGE RETURN?
C2 PRINTW 1FORCE OUT A LINE
CPI 13 $+GET CONDITION CODES BACK
JC PPSWRT 31IF FUNNY CONTROL CHARACTER
1 (LF), DO NOTHING
LDA LPTPCS ;WHERE ARE WE?
CPI LPTLEN-]1 * sARE WE AT END OF LINE?
JN3Z NOTELP s+NO, JUST SEND CHAR
MVI A,l ;SET LPTLST=l1 AND LPTPOS=d
CALL FINLP2
DCR -A ;MARE SURE LPTPOS ZERO.
NOTELP: INR A
STA LPTPOS
LPTWAT: IN 2
ORL 245
INR A
JNZ LPTWAT
poP PSwW
ouT 3 sSEND OUT CHAR
RET + RETURN

#sTHIS ROUTINE IS CALLED TC FORCE OUT A PARTIAL BUFFER

$FOR THE LINE PRINTER. IT ALSO RESETS PRTFLG SO ALL

:FURTHUR I/0 GOES TO THE USER'S TERMINAL)
FINLPT: XRA A tRESET PRINT FLAG SO OUTPOT -

STA PRTFLG ;GOES TO THE TERMINAL
LDA LPTPOS ;SEE IF ANY LEFTOVERS MUST BE
ORA a ;FORCED OUT

RZ ;BY LOOKING AT LPTPOS

;THE ROUTINE PRINTW IS CALLED TO FORCE OUT A LINE CURRENTLY
#+IN THE LINE PRINTER BUFFER. TEE CARRIAGE RETURN/LINE FEED
;OUTPUT SUBROUTINE CALLS PRINTW

PRINTW: IN 2 ;MAKE SURE LAST PRINT
ORI 245
INR a
INZ PRINTW +8IT
: SEE IF BUFFER MUST BE EMPTIED
LDA LPTPOS
ORA a ;CHARACTERS IN THE BUFFER?
INZ PRINTR ;IF SO DON'T CLEAR THE BUFFER
LDA LPTLST sPRINT BLANK LINE.
;CHECK IF PRINT WAS LAST
QRA A :1F SO, DO SPECIAL DELAY BECAUSE
;OF DESIGN
Jz NTEXDL s PROBLEM
PUSH H $SAVE (H,L]
LXI H,19609 sDELAY COUNT

January, 1977

LPTDLY: DCX
MOV
ORA
JNZ
POP
STA
NTEXDL: MVI
QuUT
XRA
RET
PRINTR: MVI
ouT
FINLP2: STA
DCR
STA
RET

.

LPTCD2: LDA
ADD
CPI
Jmp
L

LPTCD3: LDA
NLPPOS

CP1
JuP

.

IOCHNL: &
]

ICREST: LXI
CALL
CALL
JMP

Page 134

| ;COUNT DOWN
A'H . "
L sUNTIL ZERO
LPTDLY
5 sRESTORE (H,L] REGS
LETLST ;RECORD LINE FEED LAST

a,2 ;SEND A LINE FEED COMMAND
2
A ;RETURN WITH § &CC'Sag

a,l ;TELL LPT TO PRINT

;STATUS REG

LPTLST
a ilA]=0
LPTPOS sRESET LINE PRINTER POSITION

LPTPOS ;GET CURRENT LPT PRINT HEAD POSITION
M }
LPTLEN sWILL THIS NUMBER OVERLAP?
LINCHK -

LPTPOS $GET LINE PRINTER POSITION

;NOTE: COLUMN WIDTH (CLMWID)=
;14 CHARACTERS
EQU (((LPTLEN/CLMWID) ~1) *CLMWID) ; POSITION REYOND
;WHICH THERE ARE
;NO MORE COMMA FIELDS, SO
NLPPOS ;COMMA JUST DOES A "CRDO“
CHKCOM ;USE TELETYPE CHECK

;DEPOSIT BOARD TYPE HERE |
;CHANNEL GETS DEPOSITED HERE.
i
|

H, IOCHNL sGRAB POINTER TO IT
HELPIO ;SET UP THE NEW CONSOLE DEVICE
STKINT sMAKE STACK OK
READY ;AND TYPE "OK" HOPEFULLY ON GOOD CONSOLE.

To patch the I/0 routines, stop the machine after loading

or read In & tape c¢ontaining the patches. Restart BASIC at
location zero with all sense switches up. This will prevent
BASIC from modifying the I/0 routines. In general, these

|
3ASIC and insert the patches using the front panel switches ‘
|

guidelines should be followed in writing I/0 routines: .

January, 1977 : " Page 135

C

1. 1Insert a JMP at TRYOUT to the custom output routine, Be
sure the PSW that is saved on the stack when the routine
is entered is preserved, Make sure all registers are
left unchanged when the routine is axited.

2. 1Insert a JMP at TRYIN to the custom input routine.
Return the input character in the A register and do not
change any of the other registers. The PSW may be
changed. :

3. To modify ISCNTC insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting i{f no character is present, and zero if a
character 1is present. The A register and the condition
codes wmay be changed.

4. To change the initialization of the 28I0 board, change
the P"ADRI 23Q" to "MVI A, XXX* where XXX is the new
initialization byte.

S. To change the initialization of the 4PIO board, chaage
the °"MVI 2,54Q" to a "MVI A,XXX" where XXX is the new
initialization byte.

6. To patch in a new line printer driver change the code at
LPTCOD, Note that PRINTW is also called by the routine
which prints a carriage return line feed. The c¢ode at
LPTCD2 and LPTCD3 must be changed if the line printer is
not 88 characters wide,

7. To recover from an incorrect CONSOLE command, dJeposit

the board AUpPAESS in IOCHNL, the board type in IOCHNL+1,
and stacrt the machine at IOCHNL+2,

Patching Disk BASIC - the PTD program. After Disk
BASIC is loaded, deposit the desired patches in memory.
Then examine and run PTD at location 54968 octal. After two
or three seconds, the patched version of BASIC will be saved
on disk. The save is complete when the Disk Enable light on
disk drive zero goes out,

To save a patched version of BASIC on a disk which did
not previously contain release 4.0 Altair BASIC, track @
must be copied from a 4.8 disk.

PTD may also be used to save programs other than BASIC
on tracks 9-4 of a diskette by loading the program after
BASIC is loaded and running PTD. All memory locations
between @ and 46080 octal will be saved on tracks 0-4 on
diskette zero.

January, 1977 _ Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following is a discussion of how to program a
typical application in BASIC, The example is the MITS
in-house inventory system which is designed to run on the
following hardware:

Altair 8300b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap locader and a 2510 serial
I/0 board

Two disk drives

24-1line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an
application is setting up the files. Files that are
correctly set up will be easy to use and maintain, Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a random £file) in
the system is set up and how it is handled. The INVEN
listing also shows the use of another cgandom file and a
sequential file. The CALC 1listing shows how to read
programs as data files. CODEl is a partial 1listing of a
program that will be read as a data file.

The INVEN modules listed were included to show the
following £features:
1. program startup initialization and comments about the
files used by the program (lines 1-35)
2. what the complete program does (lines 60~184d¢)

3. an example of how to modify records in a random file
{lines 909-1040)

4. an example of how seguential files arte used (lines
18d9-1868 and 2704-2828)

C

January, 1977 Page 137

5. one approach to the problex of handling a random f£file
that spans more than one disk (lines 2089-28390)

6. three subroutines {lines 306-349, 9¢9¢-9020 and
92808-9220) that are called by the INVEN modules.

The function FNY (line 6) 1s wused to round dollar
amounts to thousandths of a cent, FNQ (line 7) is used to
round duantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INVI and INV2 are crepeatedly fielded by calls to the
gubroutine at line 208494, The IP F>255 (line 69) avoids the
possibility that the program can be stopped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory
module, etc., This prevents updating one £ile but not the
other. (This could happen if PUT Z, Rl was at line 1413.)

Line 2069 sets 2 to 1 and Rl to N if the item wanted,
N, is 1less than 2881. It sets Z to 2 and Rl to WN-2080 if
the item wanted is greater than 2008, Line 2020 then seats
the pointers for the variables in the field statement to
point into either the buffer for INV1 or the buffer for
INV2, depending on whether the item wanted is less than 2691
or greater than 26d4.

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands,
Line 60 waits while the disk comes up to speed $0 the
message "ENABLE DISK 1" will not be printed on the terminal.
Lines 160-14¢ input up to fifty different product codes and
the number of each product to be built, Line 178 opens a
file for each product that contains the parts required for
the product. Lines 220-254 buyild up a report heading
extracting the product description contained in line 18 of
gach file.

Lines 129-150 accumulate the number of parts required
for each product into the array Q. If more than 32767 of a
part is required, a pointer is set in the array Q and the
number of the part is accumuulated in the array Q!. This
maneuvering is necessary since the system does not have
enough memory to dimension Q as single precision instead of
integer.

January, 1977 Page 138

_ The parts lists for a product are programs saved with
the A optioen. Since they are programs, their maintenance is
very easy. For example, suppeose that part 1871 in the §886b
is too marginal and .that from now on part 1173 should be
used instead. With the parts lists disk mounted on drive 9,
the following sequence will update the 8480¢b file:

LCAD "CODEl"
160,1,1173
SAVE “CODE1",0.,A

The programmer who is cramped for memory will £find that
programs can still be documented adequately if comments ace
set up as gseparate files. The memory used for wvariables
when a program runs can be used for comments if the comments
are metged in when the program is to be 1listed.
Alternatively, the program could be listed in two or more
parts. Additional memory can be obtained by bringing BASIC
up without optional functions and with no files,

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program to
dump the function descriptions on the CRT and to return to
the FUNCTION WNUMBER prompt. If the program were to be run
on a printing terminal, instead of a2 96989 baud CRT, it would
not be set up to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The list of function descriptions might be taped on the wall
next to the terminal instead.

Listing of INVEN

DEFINT F-N

DEFINT R

DEFINT 2

DEFDBL 2

DEF FNY#(Q8#)}=INT (Q85*A#+.54) /A%

DEF FNQ# (Q9!)=INT (VAL (STRS(Q9!)))*1906%+.5%) /10604
AS=MKDS$ (@) :BSaMKSS (B) :A$=1500602

19 DIM Q$(2),P§(2})

1

INV] ON DRIVE @ HOLDS ITEMS 1-2000

INV2 ON DRIVE 1 HOLDS ITEMS 2001-4809

{gV? ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEERLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM $S THAT NEED TO BE RESET; AND ARE READ BY
?gE'NEEKLY,MONTHLY RESETS.

Q3) h I N -

Q%{} <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

January, 1977 . Page 139

C

[P(0) OLDEST, P(1) NEXT OLDEST, Q(0)<>8 IF Q(1}<>8,
Q(1)<>8_IF Q(2)<>8]

DS <=> DESCRIPTION LEFT$(DS,3)="$S$" <=> INACTVE ITEM §
15 *

Il$ <=> WEERLY QTY IN

12§ <=> MONTHLY QTY IN

Ol$ <=> WEEKLY QTY OUT

02§ <=> MONTHLY QTY OUT

T$ <=> REORDER LEVEL

DIL§ <=> WEERLY § IN

ID2$ <=> MONTHLY § IN

DOL§ <=> WEEKLY $ OUT

OD2§ <=> MONTHLY § OUT

17 ¢ -

DT)$ <=> WEEKLY DEPT § TAREN

DX2§ <=> MONTHLY DEPT § TAKEW

DG1§ <=> WEEKLY DEPT $ GIVEN

DY¥2$ <=> MONTHLY DEPT § GIVEN

20 OPEN "R",#1,°INV1®
30 OPEN "R",$2,"INV2",1
32 OPEN "R",#3,"INV3",1
35 FIELD #3,8 AS DTL$,8 AS DX2§,8 AS DGl§,8 AS DY2$
68 PRINT:F=8:INPUT"FUNCTION NUMBER®;P:IFF>255THENG3
C 61 ON F GOTO 218,350,358,1908,60%,980,1760,
2789,25@0,2300,2409,1884,2906"
2 3 4 5 & 7 8 9 18 11 12 13
14 15 16
63 PRINT*1 - ENTER NEW ITEM"
64 PRINT"2 ~ LIST ITEM ON CRT (SHORT FORM)"
65 PRINT"3 - LIST ITEM ON CRT (LONG FORM)"
66 PRINT"4 - PRINT ITEMS ON LINE PRINTER
67 PRINT*5 - ADD TO INVENTORY"
68 PRINT"6 - REMOVE PROM INVENTORY"
65 PRINT"7 - PRINT WEEBKLY DEPT DOLLAR RECORD ON LINE PRINTER
70 PRINT*S - PRINT WEEKLY ACTIVE ITEMS LIST O LINE PRINTER
71 PRINT"S - WEEKLY RESET
72 PRINT®19- PRINT MONTHLY OEPT DOLLAR RECORD ON LINE PRINTER
73 PRIWT"11l- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
74 PRINT"12- MONTHLY RESET
7% PRINT"13-~ RESET CRDER LEVELS3
76 PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE~ORDERED
77 PRINT"15- DELETE OLD ITEM
78 PRINT"16- ERRORS BACKOUT
189 GOTO62
298
*

SUB - INPUT PART 4 & GET RECORD
*» .
309 PRINT:PRINT:Na:INPUT"PART NUMBER" ;N :IFN<1THENRETURN

(_/ 310 IFN>4099TRENPRINT:PRINT®''$# TOO HIGH''":GOTC 304
320 GOSUB20¢A:GETZ,R1

Januacry, 1977 Page 149

330 IFLEPTS (D$,3)="$S$S" THENPRINT:
PRINT"™ ' 'NO INFORMATION ON PART''";N:GOTO34d
348 RETURN
898 *
*

Ff=§ = REMOVE FROM INVENTORY
*

998 GOSUB368:IFN=8GOTO63
928 DN=-~1:INPUT®"NUMBER OF ITEMS RENOVED FROM INVENTORY"®;
DN: IFDN=-1THENG3
950 IFCVS(Q$ (B))+CVS(Q$ (1)) +CVS (Q$ (2)) <DNTHENPRINT®
ATTEMPT TO REMOVE MORE THAN ON BAND":PRINT:GOTO63
966 DO=DN:P=@
979 IFD@<KCVS (Q$(9))} THEN
P=°+FNQ#(DG>'CVD(Ps(B)) LSETQ$ (9) =MKS$ (CVS (Q$ (2)) ~D0) :
GOTO1020
986 P=P+FNQ# (CVS(Q$ (€))) *CVD (P$ (8)) :DA=DP-CVS(Q$ (D)) :
LSETQS (4) =Q$ (1) : LSETQS (1) =QS (2) :LSETQS (2) =BS:
Ggggg;g(o)=ps(1):Lsarps(1)=ps(2}:Lserps(z)-aszxsnuraan
1086 LSETOL$=MKS$ (CVS (015) +DN) : LSETO2§=MKS$ (CVS (02$) +DN) :
LSETDOL$=MKDS$ (CVD(DC1$) +P) : LSETOD2$=4KDS$ (CVD (OD2§) +2)
1629 GOSUB9280:IFCH=-1GOTO63
1634 Lssmnrls-MKDS(cvv<orls)+p) LSETDX2$=MKDS (CVD (DX2§) +P)
1840 PUT3,C%:PUTZ,R1:GOTO9B :
1790

F=9 - WEEKLY RESET
*

1800 PRINT"7 - WEEKLY DEPARTMENT RECORD

1892 PRINT"8 - WEERKLY ACTIVE ITEMS

1864 2$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$

1819 IFLEFTS$(Z$,1)<>"Y"THENPRINT:PRINT
"WEEKLY RESET ROT PERFORMED":GOT063

1343 OPEN"I",4,"WEKLYRST"

1845 IFEOF (4) THENCLOSE4:KILL"WEKLYRST" :GOT01862

1858 INPUT44,N:IF 1<=NANDN<=480Q THENGOSUB2990:CETZ,R1l
ELSEPRINTN; *OUT OF BOUNDS. RESET ABORTED,":END

1855 LSETI1$=B8$:LSETO1$=BS:LSETDI1$=AS LSETDOLS$=2$:PUTZ,R1

1867 GOTO184S

1862 FORI=1TOZH

1864 GET3,I:LSETDT1$=A$:LSETDG1$=AS:PUT3,I

1866 NEXT

1868 GOTO6P

1999 '

SUB - GET 72,Rl FOR W AND FIELD TO INV]1,2
*

2009 Z=1-(N>288@) :Rl=N+(Z=2) *2600
2020 FIELD Z,4 AS Q$(9),4 AS Q$(1),4 AS Q$(2), 8 AS pPs(9d),
8 AS P${1),8 AS P${2),49 AS D$,4 AS Il$,4 AS 12%,
4 AS 013,4 AS 02%,8 AS DI1$,8 AS ID2$,8 AS DCL$,8 AS OD2$

J~wary, 1977 Page 141

-

2039 RETURN
3690 !

F=8,11 - WEEKLY,MONTHELY AéTIVE ITEMS LIST
»

2700 Nal:GOSUB296@:605UB2855

2703 IPP=9THENOPEN"O", 4, "WEKLYRST"ELSEOPEN"O" ,4, "MONTHRST"

2705 IT#=0:0T#=0:TT#=2

2710 FORI=1TO2008 R

2726 GETZ,I:IFLEFTS (D§,3)="$$S"THEN280A4Y

2723 QB=CVS(Q9{9)) :Ql=CVS (Q$(1})) :Q2=CVS({Q§{2})

2725 IFF=GTHENI!=CVS(I1$) :0l=CVS(01$§) :I§=CVD(DI1$) :0$=CVD(DO1S)
ELSEI!=CVS{I2$) :01=CVS (02§) :I$=CVD{ID2§) :04=CVD(0D2§)

2727 TTH#=TT#+CVD(P$(0)) *QB+CVD(P$ (1)) *QL+CVD(PS(2)) *Q2

2736 IPI|+0i=QTHEN280Q

2733 PRINT#4,N+I-1

2735 IT¢~IT$+1%:0T#=0T$+03

2740 IFL9>5%ANDKK=8THENGOSUB28SG

2750 LPRINTUSING*#4#¥34" ;999991 +N+1;

2776 LPRINTUSING"4#,9%%, ###“;Il,o:,Q@+Q1+Q2,Qﬂ+@1+02+01-:1;

2780 LPRINTUSING"SS, 344,434, 83" ;14,04

2796 L9=L9+1

2795 KERwKK+1:IPKR«5THENLPRINT:LO=L9+1:KRK=8

2880 NEXT

2810 IFN=1THENN=2891:G0SUB2088:GOT02718

2811 CLOSE4

2813 LPRINT:LPRINTUSING“TOTAL INVENTORY COST -ss#t.ts;.##c‘ag'orra

2815 REM *GOTO2828 IN F=7,18

2829 LPRINT: LPRINTUSING‘TOTAL IN = S48, 348, k04487178

2830 LPRINTUSING"TOTAL OUT =3$$#4, 4%, #83.84";078

2837 LPRINT:LPRINT

2840 GOTOS5Q

2859 FORJ=LITO66 : LPRINT :NEXT

2855 IFFa8THENLPRINT®WEEKLY";:ELSELPRINT”MONTHLY";

2869 LPRINT" ACTIVE ITEMS LIST";:GOSUBS00

2865 LPRINTTAB{39) ;"STARTED"

2878 LPRINT"ITEM # QTY-IN QTY-OUT OQN~HAND MO-WITH
DOLLARS-IN DOLLARS-OUT"

2880 LPRINT:KK=@:L9=6:RETURN

8994 °*

*

SUB - PRINT TODAY'S DATE
*

9968 IFTD$=""THENLINEINPUT"TODAY'S DATE ?%;TD$:IFTDSas""THENG3
9018 LPRINT" ";TD$S

981S LPRINT

3029 RETURN

9199 °*

*

INPUT DEPARTMENT § AND GET TOTALS
*
9208 C3=~1:INPUT"ENTER DEPARTMENT CODE";C3%:IFC3=~1TEENRETURN

January, 1977 Page 142

9218 IFP1<=CRANDCH<=2§THENGET3,C%:RETURN ﬁl
9220 PRINT"INVALID CODE":GOTO9280

Listing of CODEl

5 CODREl1

1@ PARTS LIST FOR: B8880B
28 OCT 34,1976

90 REM THIS I8 THE -START OF DATA
lead ,1i1,1442

119 ,3,1134

129 ,4,1848

139 ,1,1920

149 ,1.1621

159 ,1,1624

160 ,1,1471

179 ,1,1874

189 ,1,2105

1%ad ,24,348

289 ,2,326

N

Listing of CALC

19 CLEARGGO ‘a
20 DEFINT A~2 ‘
30 DIM CN(49),NU(49),Q(44808),Q! (280)

48 CLOSE:UNLOAD1

59 INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1., HIT RETURN";G$

69 FORK!=1TOS@G8:NEXT:MOUNTL

99 ?INBINPUT"TODAY'S MO/DA/YR ";DT$:8BS$(9)sDT$+" PARTS AVAILABLE FOR:"

INPUT QUANTITY OF EACH PRODUCT REQUIRED

L2 2 2 %3 :

189 INPUT"CODE NUMBER (8 WHEN FINISHED)";CN{I)

113 IF CN(I)=g THEN 150

129 IF CN(I)<l OR 50<CN{I) THEN PRINT“INVALID CODE NUMBER":
GOTO 18@

139 INPUT"NUMBER OF UNITS TO BE MADE";HU({I)

144 I=I+1:IF I<58 THEN 180

145 !

ACCUMULATE QUANTITY OF EACH PART REQUIRED

* kRN

158 FOR R=§ TO I-1

169 ONERRORGOTO610

178 OPEN"I®,$1,"CODE®+MIDS (STRS(CN(K)),2),1

189 ONERRORGOTO®

19@ LINEINPUT$1,A$:IFA$=""THEN1ISG

208 IFLEFTS (AS,3)="90 *THEN260

218 IFLEFTS${AS$,3)<>"18 "THEW190

220 IFKTHENHS (HK)=HS (HK)+"," ‘

Janvary, 1977 o + Page 143

C

239 HH$=STRS (NU(K)) +STRS (CN(K) } +"= (“+MID$ (AS,24) +") "

249 IFLEN (BHS$)+LEN(E$ (HK)) >72THENHK=HK+]

250 H$ (HK)=HS (BK) +HHS :GOTOL98 .

260 ONERRORGOTO630

270 IFEOP (1) THEN31d

280 INPUT #1,A,QN,PN

298 IFQ(PN)<ETHENQI (=G (PN))=Q! (-Q (PN} } +NU (K) *QN
ELSEQ (PN) »Q (PN) +NU (K) *QN

300 GOTO274

314 ONERRORGOTOO:CLOSE 1:MEXT K

315 ¢!

GET SECOND EALF OF INVENTORY BACK ON LINE

RRR RN

320 CLOSE:UNLOADL

339 INPUTY

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TC START REPORT®:GS$

340 FORI!=1TO5084d:NEXT:MOUNTL

360 OPEN“"R",#2,"INV1"

376 FIELD #2,4 AS Ql$,4 AS Q25,4 AS Q3%,24 AS G$,49 AS DS

375 !

PRINT REPORT

E2 2 2 8

389 GOSUB570 .

399 FOR Isl TO 4406

(_, 4890 IF Q(I)=0 THEN 530

410 QQ!=Q(I):IFQ(I)<ATHENQQ!=Q! (-Q(I})

426 IFL9>59ANDKK=@THENGOSUBS64

43@ L9=L9+1

440 RN=I

450 IPI<2PPOTHEN4GIELSERN=RN~2600: IFFPLAG=0THEN
CLOSE2;OPENTR",#2,INV2",1:FLAG=]:
FIELD#2,4 AS Ql$,4 AS Q28,4 AS Q3§,24 AS G$,40 AS D§

460 GET $2,RN

479 IFLEFTS(D$,3)="$$$"PHENLPRINTI+100040!;
"xdkakekrx NO INFORMATION ON PART #awakadsn..
LPRINTUSING" &%, ##$4#4" ;QQ! :G0T05208

480 QH!=CVS{QL$)+CVS(Q23)+CVS (Q3§) :QDIsQH1-0Q!

500 LPRINTI+1060061:08;" °;

S10 LPRINT USING "#4,34#48%";Q01:0QH! QDY

520 KK=KK+1:IFKK=STHENKK=0:LPRINT:L9=L9+1

530 NEXTI:CLOSE:END

568 FORK=LITO66:LPRINT:NEXT

565 !

PRINT PAGE HEADING

R AR

57¢ FORK=gTOHK:LPRINTHS (K} :NEXT
589 LPRINT:LPRINTTAB(52);"NEERED ON HAND EXCESS™ : LPRINT
599 KR=@:L3=5+HK:RETURN
695 '
(_, TRAP ROUTINE: BAD CODE NUMBER

kRN

619 IFERR=53THENPRINT:PRINT"NO CODE”;MIDS$ (STRS (CN(K)),2);" FILE"

January, 1977 Page 144

629 ONERRORGOTOH

625 '

TRAP ROUTINE: ACCUMULATE INTC Q OVERFLOWED
RRRRN

638 IFPERR<>60RERL<>293THENONERRORGOTOQ

640 NQ=NQ+1:Q! (NQ) =Q (PN} +NU(K) *QN:Q (PN) ==NQ
670 RESUME279

January, 1977 . Page 145

('/ INDEX
eoooo-oooooooool
ABS 4 4 « ¢ o v s v s s s s o 78
ACR interface « 114
AND .+ & « « « e a0 e e e 8 17
Array varlables P ¥
ASC “ e e o 4 e o a o . 78
ASCII character codes 93
ATN '¢00000v0001078
AUTO « ¢ 2 « o+ o o v o o o o« « 6
BACkarrow .« . .+ + « 2 + o o o 83
BASIC teXtE .+ + o+ 4 o « » o« o 127
Boot loaders . . . e s s . . 96
Branch, condxtional e ¢ o+ o« o 19
Branch, unconditional 19
Branching « + « + « o « « « . 19

(./ Carriage Return . « + « » + o &
Carriage return . . + + . . . 83
Character , alphanume:ic . e 0. 4
CHRS « o « « » o o o 5 » a « « 78
CLEAR + « &« 4« o o « o + « » + 18
CLOAD & & « o o« « o 5 o o« + + 7D
CLOAD* for Arzays . + + « « « 25
CLOAD?............?Q
CLOSE ., P 1
CLOSE, tandom flles e s o+ . 63
Command Level .+ « « « o« o« « o« 4
Commands List . + + » « « + . 7O
CONSOLE v+ « « o o 4 o o o« » o+ 34
Constants « + ¢ o 4 o o o « « 10
CONT . v « o « s a4 « o » o+ « » 10
Control/AB + + v s o » o+ » o o« 18
Control/C « + 4+ « o « o« « + » 83
Control/I . + « « « +» « o« » » 84
Control/O . . + « « « = « +» » 83
Control/Q .« + + ¢+ « o o« 4« « » 84
Control/S . . + « « o « « » .« 84
Control/U . . &+ « « o « o + + 18
Conversion from non-Altair BASIC 116
CO8 v ¢ o o 5 o v o o o o+ » + 19
CSAVE* for arrays . » « » + » 25

. CUD v o 54 4« o o o o v o+ s » 67

(_/ CVI v v v e v s o o o s s s« 67

CUS v o o o o o o o s s 4 +» » 87

January, 1977

DATA ., &+ « «
DEF .+ « + + &
DEFDBL . . .
Definitions .
DEFINT . .
DEFSNG .
DEFSTR .

DEFUSR
DELETE
DIM . . .

Dimensions

Direct Mode
Disk format
Disk number .
Disk operations .

.« e
¢ ¢ v s s e
* % e e 4 8 8 e s e a0

L I T]
e » % s a4 ® v w w A s s 2 e

Disk PROM bootstrap loader

L I O L R R I I
P N T TR T T R Y S
R T S T N ST BRI N)

“« e

L T B S B S R R

e 4 v v a4 % 8 4 4 & 2 e+ s e

Disk read and write, assembly cgge

Division,integer . .
Double precision .
DSKF . .+ .

DSKI§ and szos ptimitives

Echo routines . . .
EDIT

Edit, deflnition PO
Editing, elementary provi

END . & ¢ ¢« « &

*
EOP +« v o ¢ ¢ « »
EQV v v v v v o s .
ERARSE . ¢ 4 « o« o «
ERL .+ + 5 o » + o =«
ERR v ¢ 4 e e s
Error codes . ..

Error message format
Error messages, disk
ERROR statement ., .
Error trapping . . .
EXP . .+ » « s .
Expression, integer

Expressions, string

FIELD
Fields, numerlc
Fields, string
File name . .
FILES command
FIX . .

FOR .+ .+ + v .
FRCINT
FRE e & & @

« a2 e+ 4 e w4 e
L I R T R Y

Functions . .
Functions, derived
Functions, extended
Functions, intrinsic
Functions, simulated

L R R R Y

oooo-oo.coo(ﬁcoo

4

L I T T RN R R S)
-

»

f e 2t e b e e b e e
Fe o s a0 b s e v e v

Qe 4 & o s ¢+ v ¢ s o 0 o »

r

P I N R TS

o
L

T YT

« s+ e

P

e * « o e W e e 4 e v e e

11
62
68

Page 146

January, 1977

Functions, string
Functions, user-defined

GET . « + .
GOSUB 4+ « « « »

»
.
.

HEXS . .

.

Bexadec;mal constants

IF...GOTO . . .
IF...THEN . . .
IF...THEN...ELSE
IMP . . . N
Indirect Hode

Initialization éialog

Initialization dialog,
Initializing a disk

INF . « « «
INPUT . . . o
INPOUT, éisk . .
INSTR « o & = &
INT
Intellec syste ms
KILL

LEF?S .
LEN . .
LET . .
Line . .
LINE FEED
LINE INPUT
LINE INPUT, 4
Line LENGTH
Line Number
LIST . . .
Lists and Dir
LLIST . . &
LOAD
Loader errors
Loading BASIC
LoC
LOF +« . . .
LOG .+ . .
Loops . . .
Lower case inpu
LPOS . ¢+ « 4+
LPRINT , . . .
LPRINT USING .
LSET « ¢ o ¢ o

« e 0

L A A

8

T o * a Fe o« ¢+ ¢ « »

<

o 2 (D ¢ * # je o ¢+ 4 ¢ ¢

« * &« & (T e a & » s & 2«

MAKINT
MERGE
MIDS « + + « .« &

»

Q

e & % % 4 4 4 v v 4 ¢ v P e s o4 v s e

i

* 3 e % % 4 % & + 8 % o+ + De s s s » oa s

e & s & e 2t 4 e e

e % e a4 s s e B v oa v o

[

s o« ¢ ¢ « ¢ e ¢ » a4 »

g

)

« 4 & 8 2 % s s s 4 P s s % & % 2 4 s e v e e o

.

¢« o + o ¢ (B v » 3 s

.

L T R T T T T S S S R S L T

-

e a ¢ o o« o

. LTI T I

L I T S N O I T I T R S I P)

)¢ ¢+ v a o a « v o o ¢ o ¢

.

D T T I e I L I BT I Y 3

70

182
95
64
64
1]
21
85
80
75
75
67

41
75

128

Page 147

January, 1877

MID$ functi
MEDS . . »
MEIS . . .
MKSS . .+ .
MOD operato
MOUNT . .

NAME , . .
NEW . . .
NEW in disk
NEXT I
NOT . .
NULL

oCTS « «
Octal const
ON ERROR GO
ON...GCSUB
ON...GUTC
OPEN . . .
OPEN, rando
Operators
QPERATCORS ,
QOperators,
Operators,
QOperators,
Operators,

. a4 .

ouT . . .

PEEK + . .

PIP utxlity
PiP, CNV co
P1P, COP ¢o

PIP, DAT command

PIP, DIR command
PIP, INI command
PIP, LIS command

PIP, SRT command . .

POKE . . .
POS . .
Precedence,
PRINT . .
PRINT USING
PRINT, disk
Prompt stri
PTD program
PUT . . -«

Random buff

on

-
»
.

1 4

s » & 4 »
Py e b e
L
s 2 & v b
LR BT R
« ¢ e 0 4.
« ¢ o v 4 »

3

.« e
- . * 4+ »
. . L
* e L
LR Y
.+ . o -
LI . o »

ants
T™C .

. ¢

LN AR B

m files
extended and dis
logical . . .
pracedence of
relational .
string . .

.
« & 2 e 3+ 0
.

L I R

4 4 s s 4 e s

2 e s o v a ﬂﬂ v e v e e v .

¢ e & 1w

program
mmand .
mmand .

" e s 3 s
2 e 2 e

L

table of
ng

4 Y 4 & & + e s a4 v a4 s s P 2 b 4 e
LI T T T R R T O I T T T S

» e 9 2 8 4 s e & e » e a

.
-
.
-
-
-

* v e v »
* e s e »

er .

Random Flle I/O
Random files .
READ , . .+ .+
Remarks . . .
RENUM . . .
Reserved NORDS

LI Y

« a2 s e

« 4 s v s e e

LI A LR

L A

L B R Y

¢ ¢ e e @ R R S Y

C e e e e s 8 s e e s + s s e e » xw v s s e e s e

T T Y

= . & o e s

e » » 4 v

L T N Y # 4 ¢ 4 s e s+ a4 e B v e oa s oa ¢ o o & a

R R R)

L A

135

63
63

25

Page 148

SN . ..

January, 1977

Raeserved words

Rgsmag a - - . . * -
RESUMEB . . « « ¢ ¢ = o
RESUME NEXT . « « o«
RETURN « ¢+ ¢ o s ¢ =
RIGHTS o o « o ¢ o o o
m . - - - . . 4 L d -
mm - - L . . * L d - -
ROBOUT o « » ¢« & & ¢ o
Rubo u t * . L * - * . .
Rm‘ L] - L4 > - . L4 * L4
RUN, disk files . . .

SAVB L » - L d L] - - - -
Scientific notatiocn
Sense switch settings
Sequential File 1/0
sgguent‘al mode .

" e ¢+ * s

Single p:acision
Space allocation
Spacs hints . .
SPACES . . + « »
SPC .+ + .« &
Speclal cnaracters
Speed hints . . .
SQR ¢+ + 4 2 . o
Statements . .
Statemants, extende
STOP 4+ o o o« o«
STRS o « o « o
string Literal
STRINGS .+ « o«
strings . . .
Subroutines .
Subroutines, ma
SWAP v « o ¢ « o

* n e 3 s 0

-
.
Cue ¢ ¢ ¢ o 2 ¢4 » o 1 u o

.
.

e o ¢ v o

hin

e Fte ¢ 2 % 4+ * o s s 4 4 a2 F e e

e De 2 v « o o

.
.
.
.
.
1.
.

TAB .
TaN .
TROFF
TRON .
Type of constants

of variables
Type.definition .

.- -

e o ¢ -
¢ o & 0
e ® v @
L R A
* & v a e &

UNLOAD . « + « + &
USR v ¢ & o o o«

.
+

.

VAL .« ¢ » o &
Variable types
Variables . .
VARPTR . + «

« e a0
s 4
« s e’
s e 0

® 0 8 4 0 b s e s 0

ogvoooooooooo‘oooooocoooo

» e ¢ 4 s o s
0

LT T 3

4 4 2 & 2 & 2 e v & v 0

P - S I P I T T R I T R A L L

> 0 LI R T R]

* a » *

o

s)¢ & 4 % 9 o 6 8 8 & s s e s e e n a0 oo

» e B a4 & 0 s e 2 v ¥

L A

T

L I

4 ¢ % 6 0 2 0 b a » s

¢ * 2 4 s 2%e v & 4 0 e 2 e s et e e s e o

* L I *

* o o e

$3
v, 112

82
13
12
82

Page 149

January, 1977 : Page 15¢

WAIT o o v o o s o o o o o o o 26°
WIDTH ll."“.....35

XOR o+ o v o 5 o o « o &+ s » » 18

