p e} o DL N MK MK M S Y. 3¢

| GETTING

STARTED
WITH

BASIC

i w2 a1 e 1 T MK

“Creative Electronics”




This section is not intended to be a detailed course in BASIC pro-
gramping, It will, however, serve as an excellent introduction for those
of yoit unfamiliar with the language.

The text here will introduce the primary concepts and uses of BASIC

enough to get you started writing programs. For further reading sugges-
tions, see Appendix M.

if your ALTAIR does not have BASIC loaded and running, follow the
, procedures in Appendices A § B to bring it up.

We recommend that ycu try each example in this section as it is pre-
sented. This will enhance your "“feel" for BASIC and how it is used.

Once your I/0 device has typed ' 0K ", you are ready to use ALTAIR
BASIC.

NOTE: ALl commands to ALTAIR BASIC should end with a ¢arriage
return. The garriage return tells BASIC that you have fintshed
typing the command. If you make a typing error, itype a back-
crrow ( + ), usually shift/0, or an underline to eliminate the
lagt character. Repeated use of " « " will eliminate previous

characters. An at-gign ( @ ) will eliminate the entire line
that you are typing.

Now, try typing in the following:
PRINT 10-4 (end with carriage return)
ALTAIR BASIC will immediately print:

|
OK

The print statement you typed in was executed as soon as you hit the
carriage return key. BASIC evaluated the formula after the "PRINT" and
then typed out its value, in this case 6.

Now tyy typing in this:

PRINT 1/2,3*10 (1A means multiply, /" means divide)
ALTAIR BASIC will print:

.5 3o

As you can see, ALTAIR BASIC can do division and multiplication as
well as subtraction. Note how a "' , " (comma) was used in the print com-
mand to print two values instead of just one. The comma divides the 72
character line into 5 columns, each 14 characters wide. The last two of
the positions on the line are not used. The result is a " , " causes
BASIC to skip to the next 14 column field on the terminal, where the
value 30 was printed.

o



Commands such as the M"PRINT' statements you have just typed in are
called Direct Commands. There is another type of command called an In-
direct Command. Every Indirect command begins with a Line Number. A
Line Number is any integer from C tc 65529.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program". Instead of
executing indirect statements immediately, ALTAIR BASIC saves Indirect
Commands in the ALTAIR's memory. When you type in RUN , BASIC will
execute the lowest numbered indirect statement that has been typed in
first, then the next highest, etc. for as many as were typed in.

Suppose we type in  RUN: now:
RUN .
ALTAIR BASIC will type out:

1
-1

oK

In the example above, we typed in line 10 first and line 20 second.
However, it makes no difference in what order you type in indirect state-

ments. BASIC always puts them into correct numerical order according to
the Line Number. '

If we want a listing of the complete program currently in memoxy,
we type in = LIST . Type this in:

LIST
ALTAIR BASIC will reply with:
10 PRINT 2+3

¢l PRINT 2-3
oK

Scmetimes it is desirable to delete a line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carrfiagé return.

Type in the following:

10
LIST



ALTAIR BASIC will reply with:

20 PRINT 2-3
0K

We have now deleted line 10 from the program. There is ﬁo way to
get it back. To insert a new line 10, just type in 10 followed by the
statement we want BASIC to execute. :

Type in the following:'

10 PRINT 2*3
LIST

ALTAIR BASIC will reply with:

10 PRINT 2*3
20 PRINT 2-3
oK

There is an easier way to replace line 10 than deleting it and then
inserting & new line. You can do this by just typing the new line 10 and
hitting the carriage return. BASIC throws away the old line 10 and re-
places it with the new one.

Type in the following:

10 PRINT 3-3
LIST

" ALTAIR BASIC will reply with:
10 PRINT 3-3

20 PRINT 2-3
oK

It is not recommended that lines be numbered consecutively. It may
tecome necessary to insert a new line between two existing lines. An in-
crement of 10 between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory,
type in V' NEW ". 1If you are finished running one program and are about
to read in a new one, be sure to type in " NEW " first. This should be
done in order to prevent a mixture of the old and new programs.

Type in the following:

NEW
ALTAIR BASIC will reply with:

QK



Now type in:
LIST
ALTAIR BASIC will reply with:
s

Often it is desirable to include text along with answers that are
printed ocut, in order to explain the meaning of the numbers.

Type in the following:
PRINT *"ONE THIRD IS EQUAL TO",1/3
ALTAIR BASIC will reply with:
ONE THIRD IS EdQUAL TO .333333
oK

~ As explained earlier, including a " , " in a print statement causes
it to space over to the next fourteen column field before the value fol-
lowing the " , "' is printed.
If we use a ' ; " instead of a comma, the value next will be printed
immediately following the previous value.

NOTE: Numbers are aluways printed with at least cne trailing space.
Any text to be printed 13 always to be enclcsed in double quotes. |

Try the following examples:

A)  PRINT "ONE THIRD IS EQUAL TO";1/3
. ONE THIRD IS EQUAL TO .333333

CK

8) PRINT 1,2,3
! 2 3

0K

C)  PRINT 1;2;3
I 2 3
oK

D}  PRINT -1323-3
=l 2 -3



0K

We will digress for a moment to explain the format of numbers in
ALTAIR BASIC. Numbers are stored internally tec over six digits of ac-
curacy. When a number is printed, only six digits are shown. Every
number may also have an exponent (a power of ten scaling factor).

The largest number that may be represented in ALTAIR BASIC is
1.70141*10%8, while the smallest positive number is 2,93874*10733,
" When a number is printed, the following rules are used to determine
the exact format:

1} If the number is negative, a minus sign (-) is printed.
If the number is positive, a space 1s printed.

2} If the absolute value of the number is an integer in the
range 0 to 999993, it is printed as an integer.

3} If the absolute value of the number is greater than or
equal to .1 and less than or equal to 999939, it is printed
in fixed point notation, with no exponent.

4) If the number does not fall under categories 2 or 3,
seientific notation is used.

Scientific notation is formatted as follows: SX.XXXXXESTT .
(each X being some intsger 0 to 9)

The leading "S'" is the sign of the number, a space for a
positive number and a " - " for 2 negative one. One non-
zero digit is printed before the decimal point. This is
followed by the decimal point and then the other five digits
of the mantissa. An "E" is then printed (for exponent),
followed by the sign (8) of the axponent; then the two
digits (TT) of the exponent itself. Leading :ieroes are
never printed; i.e. the digit before the decimal is never
zero. Alse, trailing zerces are never printed. If there
is only one digit to print after all trailing zeroes are
suppressed, no decimal point is printed. The exponent
sign will be " + ¥ for positive and ' - " for negative.
Two digits of the exponent are always printed; that is
zeroes are not suppressed in the exponent field. The
value of any number expressed thus is the number to the

left of the “E' times 10 raised to the power of the number
to the right of the ME".

No matter what format is used, a space is always printed following
a number. The 8K version of BASIC checks to see if the entire number
will f£it on the current line. If not, a carTiage return/line feed is
executed before printing the number, ' '



The following are examples of varicus numbers and the outpuf format
ALTAIR BASIC will place them into:

NUMBER : QUTPUT FORMAT
+1 . )

-1 ~1

6523 : L3223
-23.460 . ~23. 4k

1E20 1E+20 -
-12.3486E-7 ~1.23456E-06
1.234567E-10 1.234576-10
1000000 1E+0h
998999 99999

.1 <1

.01 : 1E-02
.000123 1.23E-04

A number input from the terminal or a numeric constant used in 2
BASIC program may have as many digits as desired, up to the maximum length
of a line (72 characters). However, only the first 7 digits are signifi-
cant, and the seventh digit is rounded up. '

PRINT 1.2345678901234567890
L.23457 '

oK

The following is an example of a program that reads a value from the
terminal and uses that value to calculate and print a result:

10 INPUT R
20 PRINT 3.14159*R*R
RUN
? 10
31L4.35%

oK

Here's what's happening. When BASIC encounters the input statement,
it types a question mark (?) on the terminal and then waits for you to
type in a number. When you do (in the above example 10 was typed), execu-
tion continues with the next statement in the program after the variable
(R) has been set (in this case to 10}. In the above example, line 20
would now be executed. When the formula after the PRINT statement is
gvaluated, the value 10 is substituted for the variable R each time R ap-
pears in the formula. Therefore, the formula becomes 3,14159*10*10, or
314.159,

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R",



If we wanted tc calculate the area of various circles, we could keep
re-running the program over each time for each successive circle., But,
there's an easier way to do it simply by adding another line to the pro-
gram as follows:

30 GOTO 10
RUN
? 10
3L4. 159
?3
28.2743
? 4.7

E9.3977
?

OK

By putting a " GQTO " statement on the end of our program, we have
caused it to go back to line 10 after it prints each answer for the suc-
cessive circles, This could have gone on indefinitely; but we decided
to stop after calculating the area for three circles, This was accom-
plished by typing a carriage.return to the input statement (thus a blank
line).

NOTE: Typing a carriage return to an input statement in the 2K
vergion of BASIC will cause a SN error (oee Reference Material).

The. letter "R" in the program we just used was termed a “wariable",.
A variable name can be any alphabetic character and may be follcwed by
any alphanumeric character.

In the 4K version of BASIC, the second character must be numeric
or omitted. In the 8K version of BASIC, any alphanumeric characters
after the first two are ignored. An alphanumeric character is any let-
ter (A-Z) or any number {0-8).

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

IN 4K VERSION

A % (ist character must be alphabetic)
zl Z1A {variable name too long)

: QR (2nd character must be numeric)
IN BX VERSION

™ ' TQ (variable names cannot be reserved
PSTGS : words)
COUNT RGOTC {variable names cannot contain

reserved words)



The words used as BASIC statements are “reserved" for this specific
.~ purpose. You cannot use these words as variable names or inside of any

variable name. For instance, "FEND" would be illegal because "END" is a
reserved word. :

The following is a list of the reserved words in ALTAIR BASIC:
4K RESERVED WORDS |
ABS CLEAR DATA DIM END FOR GOSUB GOTC IF  INPUT
INT LET LIST NEW NEXT PRINT READ REM RESTORE
RETURN RND RUN 8GN SIN SQR STEP STOP TAB( THEN
TO USR |
8K RESERVED WORDS INCLUDE ALL THOSE ABOVE, AND IN ADDITION
ASC; AND ATN CHR$ CLOAD CONT COS CSAVE DEF EXP
FN  FRE INP LEFTS LEN LOG  MID$ NULL ON QR NOT
QUT PEEK POKE POS RIGHTS SPC( .STR$ TAN VAL  WAIT
Remember, in the 4K version of BASIC variable names are only a letter

or a letter followed by a number. Therefore, there is no possibility of
a conflict with & reserved word.

Besides having values assigned to variables with an input statement,

you can alsc set the value of a variable with a .LET or assignment state-
ment.

Try the following examples:
A=5
oK

PRINT A,A*2
5 1a

oK
LET Z=7

oK

PRINT Z, Z-A
2 2

oK



As can be seen from the examples, the "LET" is optional in an assign-
ment statement.

BASIC "remembers' the values that have been assigned to variables
using this type of statement. This “remembering" process uses space in
the ALTAIR's memory to store the data.

The values of variables are thrown away and the space in memory
used to store them is released when cne of four things occur:

1) A new line is typed into the program or an old
line is deleted

2) A CLEAR command is typed in
3) A RUN command is typed in
4) NEW is typed in

Another important fact is that if a variable is encountered in a
formula before it is assigned a value, it is automatically assigned the
value zero. Zero is then substituted as the value of the variable in
the particular formula. Try the example below:

PRINT Q,Q+2,Q*2 :
a = g -

K

Another statement is the REM statement. REM is short for remark.
This statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves
no useful function as far as the operation ¢f the program in selving a
particular problem.

Suppose we wanted to write a program to check if a number is zero
or not. With the statements we've gone over so far this could not be
done. What is needed is a statement which can be used to conditionally
branch to another statement, The "IF-THEN" statement does just that.

Try typing in the following program: {(remember, type NEW first)

10 INPUT B

20 IF B=0 THEN 50
30 PRINT "NON-ZERQY
40 GCTO 10

50 PRINT "ZERO®

60 GOTO 10

When this program is typed into the ALTAIR and run, it will ask for
a value for B. Type any value you wish in. The ALTAIR will then come to
the "IF" statement. Between the "IF" and the "THEN'" portion of the state-
ment there are two expressions separated by a relation,

10



A relation is ane of the following six symbols:

RELATION - MEANING
= EQUAL TO
> ‘ GREATER THAN
< - LESS THAN
<> NOT EQUAL TO
<= - LESS THAN OR EQUAL TO
=> GREATER THAN OR EQUAL TO

The IF statement is either true or false, depending upon whethei the
two expressions satisfy the relation or not. For example, in the pro-
gram we just did, if 0 was typed in for B the IF statement would be true
because (=0, In this case, since the number after the THEN is 50, execu-
ticn of the program would continue at line 50, Therefors, "ZERQ" would
- be printed and then the program would jump back to line 10 (because of
the GOTC statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state-
ment would be false and the program would continue execution with the
next line. Therefore, "NON-ZERQ" would be printed and the GOTO in line
40 would send the program back to line 10,

Now try the following program for comparing two numbers :

.10 INPUT A,B
20 IF A<=B THEN S0
30 PRINT "A IS BIGGER™
40 GOTO 10
50 IF A<B THEN 80
60 PRINT “THEY ARE THE SAME™
70 GOTO 10 "
80 PRINT "B IS BIGGER"
90 GOTO 10

When this program is run, line 10 will input two numbers from the
terminal. At line 20, if A is greater than B, A<=B will be false. This
will cause the next statement to be executed, printing "A IS BIGGER" and
then line 40 sends the computer back to line 10 to begin again.

At line 20, if A has the same value as B, A<=B is true so we go to
line 50. At line 50, since A has the same value as B, A<B is false;
therefore, we go to the fellowing statement and print "THEY ARE THE SAMEY.
Then line 70 sends us back to the beginning again,

At line 20, if A is smaller than B, A<=B is true so we go to line 50,
At line 50, A<B will be true so we then go to line 80. ™B IS BIGGER" is
then printed and again we go back to the beginning.

Try running the last two programs several times. It may make it
easier to understand if you try writing your own program at this time
using the IF-THEN statement. Actually trying programs of your own is
the quickest and easiest way to understand how BASIC works. Remember,
to stop these programs just give a carriage return to the input state-
ment.

11




One advantage of computers is their ability to perform repetitive
tasks., Let's take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 10. The BASIC
function for square root is ''SQR'; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the pro-
gram as follows:

10 PRINT 1,SQR{1)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,5QR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10,SQR(10)

This program will do the job; however, it is terribly inefficient.
We can improve the program tremendously by using the IF statement just
introduced as follows:

10 N=1

20 PRINT N,SQR(N)
30 N=N+1

40 IF N<=10 THEN 20

When this program is run, its output will look exactly like that of
the 10 statement program abeove it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the vari-
able N at 1. At line 20 we print N and the square root of N using its
current value. It thus becomes 20 PRINT 1,SQR{1}, and this calculation
is printed out.

At line 30 we use what will appear at first to be a rather unusual
LET statement. Mathematically, the statement N=N+1 is nonsense. However,
the impertant thing to remember is that in a LET statement, the symbol
" = ' does not signify equality. In this case " = ' means "to be replaced
with'. All the statement does is to take the current value of N and add
1 to it. Thus, afrer the first time through line 30, N becomes 2.

At line 40, since N now equals 2, N<=10 1s true so the THEN portion
branches us back to line 20, with N now at a value of 2,

The overall result is that lines 20 through 40 are repeated, each
time adding 1 to the value of N. When N finally equals 10 at line 20,
the next line will increment it to 1l. This results in a false state=-
ment at line 40, and since there are no further statements tc the pro-
gram it stops. :

‘This technique is referred to as "looping" or "iteration'. Since
it is used quite extensively in programming, there are special BASIC
statements for using it. We can show these with the following pro-
gram,

12



10 FOR N=1 TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as
the previous two programs. B

At line 10, N is set to equal 1. Line 20 causes the value of N and
the square root of N to be printed. At line 30 we see a new type of
statement. The "NEXT N'" statement causes one to be added to N, and then
if N<=10 we go back to the statement following the "FOR" statement. The
overall operation then is the same as with the previous program.

Notice that the variable following the "FOR'" is exactly the same as
the variable after the "NEXT". There is nothing special about the N in
this case. Any variable could be used, as long as they are the same in
both the YFCR" and the "NEXT" statements. For instance, ''Z1" could be
substituted everywhexe there is an "N" in the above program and it would
function exactly the same.

Suppose we wanted to print a table of square roots from 10 to 20,
only counting by two's. The following program would perform this task:

10 N=10

20 PRINT N,SQR(N)
30 N=N+2 |

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed
on page 12 for printing square roots for the numbers 1 te 10. This pro-
gram can also be written using the "FOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the
previous one using "FOR" loops is the addition of the “STEP 2" clause.
This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in a "FOR" statement, BASIC as-
sumes that one is to be added each time. The "STEP" can be followed by
any expression. ' )

Suppose we wanted to count backwards from 10 to 1. A program for
doing this would be as follows:

10 I=10

20 PRINT 1

30 I=I-1 '

40 IF I>=1 THEN 20

Notice that we are now checking to see that 1 is greater than or
equal to the final value. The reascn is that we are now counting by a
negative number. In the previocus examples it was the opposite, 50 we
were checking for a variable less than or equal to the final value.

13



The "STEP" statement previcusly shown can also be used with negative
numbers to accomplish this same purpose, This can be done using the same
format as in the other program, as follows:

10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT I

"FOR' loops can also he "nested". An example of this procedure fol-
lows:

10 FOR I=1 T
20 FOR J=1 T
30 PRINT I,J
40 NEXT J
50 NEXT 1

05
03

!

Netice that the “NEXT J" comes before the 'NEXT I". This is because
the J-loop is inside of the I-lcop. The following program is incorrect;
Tun it and see what happens.

10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J

40 NEXT I

S0 NEXT J

It does not work because when the "NEXT I is encountered, all know-

ledge of the J-loop is lost. This happens because the J-loop is "inside®
of the I-loop,

It is often convenient to be able to select any element in a table
of numbers. BASIC allows this to be done through the use of matrices,

A matrix is a table of numbers. The name of this table, called the
matrix name, is any legal variable name, "A" for example, The matrix
name "AM is distinct and separate from the simple variable A", and you
could use both in the same program.

To select an element of the table, we subscript "A" : that is to
select the 1'th element, we enclose I in parenthesis "(I)* and then fol-

low "A" by this subscript. Therefore, "A(I)" is the I'th element in the
matrix "AM. |

NOTE: In this seetion of the manual we will be concerned with

cne-dimensional matrices only. (See Reference Material).

"A(I)" is only one element of matrix A, and BASIC must be told how
much space to allocate for the entire matrix.

This is done with a "DIM" statement, using the format YDIM A(15)".
in this case, we have reserved space for the matrix index "I to go from
0 to 15. Matrix subscripts always start at 0; therefore, in the above
example, we have allowed for 16 numbers in matrix A.

14



If "A(I)" is used in a program before it has been dimensioned, BASIC
reserves space for 11 elements (0 through 10).

As an example of how matrices are used, try the following progran
to sort a list of 8 numbers with you picking the numbers to be sorted.

10 DIM A{S)

20 FOR I=1 TOQ 8

30 INPUT A(I)

50 NEXT I

70 F=0 |
80 FOR I=1 TO 7

90 IF A(I)<=A(I+1) THEN 140
100 T=A(I}

110 A(I)= A(I+1)
120 A(I+1)=T

130 F=1

140 NEXT I

150 IF F=1 THEN 70
160 FOR I=1 TC 8
170 PRINT A(I),
180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values,
A{Q) through A(8). Lines 20 through S0 get the unsorted list from the
user. The sorting itself is done by going through the list of numbers and
upon finding any two that are not in order, we switch them., "F' is used
to indicate if any switches were done. If any were done, line 150 tells
BASIC to go back and check some more. -

If we did not switch any numbers, or after they are all in order,
lines 160 through 180 will print out the sorted list. Note that a sub-
script c¢an be any expression.

Another useful pair of statements are "GOSUB" and “"RETURN'. If you
have a program that performs the same action in several different places,
you could duplicate the same statements for the action in each place with-
in the program.

The '""GOSUB"-"RETURN' statements can be used to avoid this duplicaticn.
When a "GOSUB" is encountered, BASIC branches to the line whose number fol-
lows the "GOSUB". However, BASIC remembers where it was in the program
before it branched. When the "RETURN" statement is encountered, BASIC
goes back to the first statement following the last "GOSUB'" that was exe-
cuted. OCbserve the following progran.

10 PRINT '"WHAT IS THE NUMBERY;

30 GOSUB 100

40 T=N

50 PRINT "WHAT IS THE SECOND NUMBERM;

70 GQSUB 100

80 PRINT "THE SUM OF THE TWO NUMBERS IS'",T+N
90 STOP

100 INPUT N

15



110 IF N = INT(N) THEN 140

120 PRINT “SCRRY, NUMBER MUST BE AN INTEGER. TRY AGAIN."
130 GOTO 100

140 RETURN

What this program does is to ask for two numbers which must be inte-
gers, and then prints the sum of the two. The subroutine in this pro-
gram is lines 100 to 130. The subroutine asks for a number, and if it
is not an integer, asks for a number again. It will continue to ask until
an integer value is typed in. _

The main program prints ' WHAT IS THE NUMBER ¢, and then calls the
subroutine to get the value of the number into N. When the subroutine
returns (to line 40), the value input is saved in the variable T. This

~1s done so that when the subroutine is called a second time, the value
of the first number will not be lost.

" WHAT IS THE SECOND NUMBER " is then printed, and the second value
is entered when the subroutine is again called.

When the subroutine returns the second time, " THE SUM OF THE TWO
NUMBERS IS " is printed, followed by the value of their sum. T contains
the value of the first number that was entered and N contains the value
of the second number.

The next statement in the program is a "STOP" statement. This causes
the program to stop execution at line 90. If the 'STOP" statement was not
included in the program, we would "fall into" the subroutine at line 100.
This is undesirable because we would be asked to input another number. If
we did, the subroutine would tTy to return; and since there was no "GQSUB"
which called the subroutine, an RG error would occur. Each "GOSUB" exe~
cuted in @ program should have a matching "RETURN" executed later, and the
opposite applies, i.e. a 'RETURN" should be encountered only if it is
part of a subroutine whlch has been called by a "GOSUB"™.

Either ''STOPY or "END" can be used to separate a program from its
subroutines. In the 4K version of BASIC, there is no difference between
the ""STOP' and the "END". In the 8K version, "STOP" will print a mes-
sage saying at what line the "STOP" was encountered.

Suppose you had te enter numbers to your program that didn't change
each time the program was run, but you would like it to be easy to change
them if necessary. BASIC contains special statements for this purpose,
called the "READ" and "DATAY statements.

Consider the following program:

10 PRINT "GUESS A NUMBER';

20 INPUT G

30 READ D

40 IF D=-999999 THEN 90

50 IF D<>G THEN 30

€0 PRINT "YOU ARE CORRECT*

70 END

90 PRINT "BAD GUESS, TRY AGAIN."
95 RESTORE"

16



100 GOTO 10

110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15, 34 999999

This is what happens when this program is run. When the "READ“
statement is encountered, the effect is the same as an INPUT statement.
But, instead of getting a number from the terminal, a number is read
from the "DATAY statements.

The first time a number is needed for a READ, the first number in
the first DATA statement is returned. The second time one is needed,
the second number in the first DATA statement is returned. When the en-
tire contents of the first DATA statement have been read in this manmner,
the second DATA statement will then be used. DATA is always read se-
gquentially in this manner, and there may be any mumber of DATA statements
in your program.

The purpose of this program is teo play a little game in which you
tTy to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statements until we find one that matches the guess.

1f more values are read than there are numbers in the DATA state-
ments, an out of data (OD) error occurs. That is why in line 40 we check
to see if -999999 was read. This is not one of the numbers to be matched,
but is.used as a flag to indicate that all of the data (possible correct
guesses) has been read. Therefore, if -999999 was read we know that the
guess given was incorrect.

Before going back to line 10 for another guess, we need to make the
READ's begin with the first piece of data again. This is the function of
the "RESTORE". After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only
READ statements make use of the DATA statements in a program, and any
qother time they are encountered during program execution they will be
ignored.

THE FOLLOWING INFORMATION APFLIES TCQ THE 8K VERSION
CGF BASTC ONLY

A list of characters is referred to as a "String™. MITS, ALTAIR,
tand THIS IS A TEST are all strings. Like numeric varlables,_strzng
variables can be assigned specific values. String variables are distin-
guished from numeric variables by a "$'" after the variable name.
For example, try the following:

A$="ALTAIR 8800"

oK

PRINT A$

ALTAIR 2400

K

17



In this example, we set the string variable A$ to the string value
"ALTAIR 8800". Note that we alsoc enclosed the character string to be as-
signed to A§ in quotes.

Now that we have set A to a string value, we can find out what the
length of this value is (the number of characters it contains). We do
this as follows:

PRINT LEN(AS$),LEN("MITS")
1L y

K

The M"LEN" function returns an integer equal to the number of chara-
cters in a string.

The number of characters in & string expression may range from O to
255, A string which contains 0 characters is called the "NULL" string.
Before 2 string variable is set to a value in the program, it is initial-
ized to the null string. Printing a null string on the termipal will
cause no characters to be printed, and the print head or cursor will not
be advanced to the next column. Try the following:

PRINT LEN(Q$);Q$;3
g 3

oK

Another way to create the null string is: Q§="n
Setting a string variable to the null string can be used to free up
the string space used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate
them, Now that we have set A§ to "ALTAIR 8800", we might want to print
cut only the first six characters of AS. We would do so like this:

PRINT LEFT$(AS,8)
ALTAIR

oK

YLEFT$" is a string functien which returns a string composed of the
leftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN(A$) :PRINT LEFTS(A$,N):NEXT N
A

AL

ALT

ALTA

ALTAL

ALTAIR

ALTAIR

ALTAIR &

ALTAIR &3

18



ALTAIR 880
ALTAIR 8800

¢K

. Since A$ has 11 characters, this loop will be executed with N=1, 2,
3,...,10,11. The first time through only the first chatacter will be
printed the second time the first two characters will be prlnted etc.

There is another string function called VRIGHT$" which returns the
right N characters from a string expression. Try substituting "RIGHT§"
for “LEFT$" in the previous example and see what happens.

There is also a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(A$):PRINT MIDS (A$,N):NEXT N
ALTAIR 4200
LTAIR 3800
TAIR &400
AIR 8800

IR &a&00

R &400

4500

8800

&id

0

a

oK

"MID$" returns a string starting at the Nth position of A§ to the
end {last character) of A$. The first position of the string is posi-
tion 1 and the last possible positicn of a string is positionm 255.

Very often it is desirable to extract only the Nth character from
2 stying. This can be done by calliing MIDS with three arguments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN(A$):PRINT MID$(AS$,N,1),MID$(A$,N,2) :NEXT N
AL
LT
TA
AL
IR
R
)
&&
ac
0o
g

oo AT >

<
”~

19



See the Reference Material for more details on the workings of
"LEFTS$", YRIGHTS$" and '"MID3".

Strings may alsc be concatenated (put or joined together) through
the use of the "+" operator. Try the following:

B$=I!MITSII+N NeAS

oK
PRINT B§
MITS ALTAIR 4800

OK

Concatenation is especially useful if you wish to take 2 string apart
and then put it back together with slight modifications. For instance:

C$=LEFTS (B$,4)+'"-"+MID$ (B$,6,6)+" -"+RIGHTS (BS, 4)

oK :
PRINT C$
MITS-ALTAIR-8200

0K

Sometimes it is desirable to convert a mumber to its string repre-
sentation and vice-versa. "VAL" and "STR$" perform these functions.
Try the following:

STRINGS=1567. 8"

0K :
PRINT VAL(STRINGS)
Sh7.4

0K
STRING$=STR$(3.1415)

oK
PRINT STRINGS,LEFTS (STRINGS,S)
3. 1415 314

oK

"STREY can be used to perform formatted I/0 on numbers. You can
convert a number to a string and then use LEFT$, RIGHTS, MIDS and con-
catenation tc reformat the number as desired.

"'STR$'" can also be used to conveniently find out how many print
columns a number will take, For example:

PRINT LEN(STR$(3.157))
b

20



oK

If you have an application where a user is typing in a2 question such
as '""WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1
FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 from
the question. For further functions "“CHRS$™ and “ASC' see Appendix X.

The following program sorts a list of string data and prints out’
the sorted list. This program is very similar to the one given earlier
for sorting a numeric list, :

100 DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX

110 FOR I=1 TO 15:READ A$(I):NEXT I:REM READ IN STRINGS .

120 F=0:I=1:REM SET EXCHANGE FLAG TC ZERO AND SUBSCRIPT TO 1

130 IF A$(I)<=A$(I+1) THEN 180:REM DON'T EXCHANGE IF ELEMENTS
IN CORDER

140 T$=A$(I+1):REM USE T$ TO SAVE AS(I+1)

150 AS(I+1)=A$(I):REM EXCHANGE TWO CONSECUTIVE ELEMENTS

160 A$(1)=T$

170 F=1:REM FLAG THAT WE EXCHANGED TWC ELEMENTS

180 I=I+1: IF I<15 GOTQ 130

185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK

187 REM TO SEE IF WE EXCHANGED ANY. IF NOT, DONE SORTING.

190 IF F THEN 120:REM EQUIVALENT TO IF F<>0 THEN 120

200 FOR I=] TO 15:PRINT A$(I):NEXT I: REM PRINT SORTED LIST

210 REM STRING DATA FQLLOWS

220 DATA APPLE,DOG,CAT,MITS,ALTAIR,RANDOM

230 DATA MONDAY,''***ANSWER***'', ¢ FQQ"

240 DATA COMPUTER,  FOG,ELP,MILWAUKEE,SEATTLE,ALBUGUERQUE

21



2,



