PENDIGES |

AP

APPENDIX A

HOW TO LOAD BASIC

When the ALTAIR is first turned on, there is random garbage in its
memory. BASIC is supplied on a paper tape or audio cassette. Somehow
the information on the paper tape or cassette must be transfered into the
computer. Programs that perform this type of information transfer are
called loaders. '

Since initially there is nothing of use in memoxry; you must toggle
in, using the switches on the front panel, a 20 instruction bootstrap
loader. This loader will then load BASIC.

To load BASIC follow these steps:
1y Turn the ALTAIR on.

2) Raise the STOP switch and RESET switch simultanecusly.
3) Turn your terminal (such as a Teletype) to LINE.

Because the instructions must be toggled in via the switches on the
front panel, it is rather inconvenient tc specify the positions of each
switch as "up" or "down". Therefore, the switches are arranged in groups
of 3 as indicated by the broken lines below switches 0 through 15. To
specify the positions of each switch, we use the numbers O through 7 as

shown below:

3 SWITCH GROUP

QCTAL
LEFTMOST MIDDLE RIGHTMOST NUMBER
Down Down Down 0
Down Down Up 1
Down Up Dawn 2
Down Up Up 3
Up Down Down 4
Up Down Up 5
Up Up Down 6
Up Up Up 7

So, to put the octal number 315 in switches O through 7, the switches
would have the following positions:

7 6 5 4 3 2 1 0 -«—SWITCH
Up UP DOWN DOWN up up DOWN UPp === POSITION
3 1 5 e QCTAL NO.

i

Note that switches 8§ through 15 were not used. Switches 0 through
7 correspond to the switches labeled DATA on the front panel A memory
address would use all 16 switches.

The following program is the bootstrap loader for\users loading from
paper tape, and not using a REV 0 Serial I/C Board.

OCTAL ADDEESS OCTAL DATA
000 ' 041
001 175 - _
002 037 (for 8X; for 4K use 017)
003 061
004 022
005 000
006 333
007 ' 000
010 ' 017
01l 330
012 333
g13 001
014 275
Q18 310 i
016 055
017 167
020 300
021 351
Q22 003
023 000

The following 21 byte bootstrap loader is for users loading from a
paper tape and using a REV 0 Serial I/0 Board on which the update changing
the flag bits has not been made. If the update has been made, use the
above hootstrap loader. -

CCTAL ADDRESS OCTAL DATA
000 041
001 175
o2 037 (for B8K; for 4K use 017)
003 061
004 023
005 . 000
LS 333
007 ¢oo
010 345
011 040
012 310
Q13 333
014 001

- 0158 275
glé 310
017 055
Q20 167

47

CCTAL ADDRESS QCTAL DATA

(cont.)
021 300
022 351
023 003
024 000

The following bootstrap loader is for users with BASIC supplied on

an audioc cassette.

1)
2)
3)
4)
5)
6)
7)
8)
9)

10}

OCTAL ADDRESS OCTAL DATA
0oG 041
0Cl 175
002 037 (for 8K; for 4K use 017}
003 - 061
Qo4 022
005 000
006 333
007 006
010 017
011 330
012 333
013 007
014 275
015 310
016 053
Q17 167
020 300
021 351
Q22 003
023 ¢eo

To load a bootstrap loader:

Put switches 0 through 15 in the down position.

Raise EXAMINE.

Pur 041 (data for address 000) in switches 0 through 7.
Raise DEPOSIT.

Put the data for the next address in switches 0 through 7.
Depress DEPOSIT NEXT.

Repeat steps 5 § 6 until the entire.loader is toggled in.
Put switches 0 through 15 in the down position,

Raise EXAMINE.

Check that lights DO through D7 correspond with the data that should
43

11)
12)

13)

14)

15)

16)

20)

2L)

be in address 000. A light on means the switch was up, a light.off
means the switch was down. So for address 000, lights D1 through D4
and lights D6 § D7 should be off, and lights DO and DS should be on.

If the correct value is there, go to step 13. 1If the value is wrong,
continue with step 11.

Put the correct value in switches 0 through 7.
Raise DEPOSIT.
Depress EXAMINE NEXT.

Repeat steps 10 through 13, checking to see that the correct data is
in each corresponding address for the entire loader.

If you encountered any mistakes while checking the loader, go back
now and re-check the whole program to be sure it is corrected.

Put the tape of BASIC into the tape reader. Be sure the tape is
positioned at the beginning of the leader. The leader is the section
of tape at the beginning with 6 out of the 8 holes punched.

If you are loading from audio cassette, put the cassette in the re-
corder, Be sure the tape is fully rewound.

Put switches 0 through 15 in the down position.

Raise EXAMINE.

If you have comnected to your terminal a REV Q0 Serial I/C Board
on which the update changing the flag bits has not been made, ralse

switch 14; if you are loading from an audio cassette, raise switch
15 also.

If yoﬁ have a REV 0 Serial I/O'Board which has been updated, or have
a REV 1 1/0 Board, switch 14 should remain down and switch 15 should
be raised only if you are loading from asudio cassette.

Turn on the tape reader and then depress RUN. Be sure RUN is depres-
sed while the reader is still on the leader. Do not depress run be-~
fore turning on the reader, since this may cause the tape to be read
incorrectly.

If you are loading from a cassette, turn the cassette recorder to
Play. Wait 15 seconds and then depress RUN

Wait for the tape to be read in., This should take about 12 minutes
for 8K BASIC and 6 minutes for 4K BASIC. It takes about 4 minutes
to load 8K BASIC from cassette, and about 2 minutes for 4K BASIC.

Do not move the switches while the tape is being read in.

1

22)

23)

24}

If a C or an O is printed on the terminal as the tape reads in, the
tape has been mis-read and you should start over at step 1 on page
46.

When the tape finishes reading, BASIC should start up and print
MEMORY SIZE?, See Appendix B for the initialization procedure.

If BASIC refuses to load from the Audio Cassette, the ACR Demodulator
may need alignment. The flip side of the cassette contains 90 seconds.
of 125's (octal) which were recorded at the same tape speed as BASIC.
Use the Input Test Program described on pages 22 and 28 of the ACR
manual to perform the necessary alignment.

50

APPENDIX B

INITIALIZATION DIALOG

' STARTING BASIC

Leave the sense switches as they were set for loading BASIC (Appen-
dix A). After the initialization dialog is complete, and BASIC types CK,
you are free to use the sense switches as &n input device (I/0 port 2535).

After you have loaded BASIC, it will respond:
MEMORY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all
the contiguous memory upwards from location zero that it can find., BASIC
will stop searching when it finds one byte of ROM or non-existent memory.

If you wish to allocate only part of the ALTAIR's memory to BASIC,
type the number of bytes of memory you wish to allocate in decimal. This
might be done, for instance, if you were using part of the memory for a
machine language subroutine,

There are 4096 bytes of memory in a 4K system, and 8192 bytes in an
8K system.

BASIC will then ask:

TERMINAL WIDTH? This is to set the output line width for
PRINT statements only. Type in the number
of characters for the line width for the
particular terminal or other output device
you are using. This may be any number
from 1 to 255, depending on the terminal.
If no answer is given (i.e. & carriage
return is typed) the line width is set
to_72 characters.

Now ALTAIR BASIC will enter a dialog which will allow you to delete
some of the arithmetic functions. Deleting these functions will give
more memory space tQ StoTe your programs and variables. However, you will
not be able to call the functions you delete. Attempting to do so will
result in an FC error., The only way to restore a function that has been
deleted is to reload BASIC.

The following is the dialog which will occur:

4K Version
WANT SIN? Answer " Y ' to retain SIN, SQR and RND.
If you answer "' N ", asks next question.
WANT S&R? Answer " Y " to retain SQR and RND.

- If you answer " N ¥, asks next question.

5

WANT RND? Answer ™ Y " to retain RND.
Answer " N ' to delete RND.

- 8K Version

WANT SIN-COS-TAN-ATN?

Answer " Y ' to retain all four of

the functions, " N " to delete all four,
or " A "™ to delete ATN only.

Now BASIC will type out:
' - XXXX BYTES FREE

ALTAIR BASIC VERSION 3.0
[FOUR-K VERSION]

(or)
[EIGHT-K VERSION]

OK

XXX is the number of bytes
available for program, variables,
matrix storage and the stack. It
does not include string space.

You will now be ready to begin using ALTAIR BASIC.

52

APPENDIX C

ERROR MESSAGES

After an error occurs, BASIC returns to command level and types OK.
Variable values and the program text remain intact, but the program can
not be continued and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed.

Format of error messages:

Direct Statement XX ERROR
Indirect Statement #XX ERROR IN YYYYY
In both of the above examples, "XX'" will be the error code., The
YYYY" will be the line number where the error occured for the indirect
statement.

The following are the possible error codes and their meanings:

ERROR CODE MEANING
4K VERESION
B3 Bad Subscript. An attempt was made to reference a

matrix element which is outside the dimensions of the
matrix. In the 8K versiom, this error can occur if
the wrong number of dimensions are used in 2 matrix
reference; for instance, LET A(l,1,1)=Z when A has
been dimensiocned DIM A(2,2}.

oD Double Dimension., After & matrix was dimensioned,
another dimension statement for the same matrix was
encountered, This error often occurs if a matrix
has been given the default dimension 10 because a
statement like A{I})=3 is encountered and then later
in the program a DIM A(100) is found.

FC Function Call error. The parameter passed to a math
or string function was out of range.
FC errors can cccur due to:

a) a negative matrix subscript (LET A(-1)=0)

b) an unreasonably large matrix subscript
(>32767)

¢} LOG-negative or zero argument

d) SQR-negative argument
53

T

NF

QD

oM

oV

SN

RG

us

/0

gx

N

e) A4B with A negative and B not an integer

£) a call to USR before the address of the
machine language subroutine has been
patched in

g) calls to MID$, LEFT3, RIGHTS$, INP, OUT,-
WAIT, PEEK, POKE, TAB, SPC or ON...GOTO
with an improper argument.

Illegal Direct. You cannot use an INPUT or (in 8K Version)
DEFFN statement as a direct command.

NEXT without FOR., The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all of
the DATA statements in the program have already been
read. The program tried to read too much data or 1nsuf-
ficient data was included in the program.

Out of Memory. Program too large, too many variables,
toc many FOR loops, too many GOSUB's, too complicated
an expression or any combination of the above. (see
Appendix D)

Overflow. The result of a calculation was too large to

be represented in BASIC's number format. If an underflow
occurs, zero is given as the result and execution continues
without any errox message being printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An'attempt was made to GOTO, GOSUB
or THEN to a statement which does net exist.

Division by Zero.

VERSTON (Includes all of the previous codes in addition to the
Following.)

Continue error. Attempt tO continue a program when
none exists, an error occured, or after a new line
was typed into the program.

LS

oS

ST

™

UF

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Cut of String Space. Save your program on paper tape or
cassette, reload BASIC and allcocate more string space
or use smaller strings or less string variables,

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones,

Type Mismatch., The left hand side of an assignment
statement was a numeric variabls and the right hand
side was a string, or vice versa; or, a function which
expected a string argument was given a numeric one or
vice versa,

Undefined Function. Reference was made to a user defined
function which had never been defined.

55

APPENDLIX D

SPACE HINTS

In order to meke your program smaller and save space, the fellewing
hints may be useful. o

1) Use multiple statements per line. There is a small amount of
overhead (Sbytes) associated with each line in the program. Two of these
five bytes contain the line number of the line in binary. This means
that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 65529}, it takes the same number of bytes. Put-
ting as many statements as possible on a line will cut down on the number
of bytes used by your program.

2) Delete a1l unnecessary spaces from your program, For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX,Y,Z-
Note: All spaces between the line number and the first non-
blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least
one byte plus the number of bytes in the comment text. For instance,
the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM,

4) Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement
10 P=3.14158
in the program, and use P instead of 3.14159 each time it is needed, vou
will save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; ‘39, an END statement at
the end of a program may be deleted.

6) Reuse the same variables. If you have a variable T which is used
to hold a temporary result in one part of the program and you need a tem-
porary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questiomns
at two different times during the execution of the program, use the same
temporary variable A$ to store the reply.

7) Use GOSUB's to execute sections of program statements that per-
form identical actions.

8) If you are using the 8K version and don't need the features of
the 8K version to run your program, consider using the 4K version in-
stead. This will give you zpproximately 4.7K to work with in an 8K machine,

as opposed to the 1.6K you have available in an 8K machine running the
8K version of BASIC.

5

9) Use the zero elements of matrices; for instance, A(0}, B(0,X).
STORAGE ALLOCATION INFORMATION

S5imple (non~matrix) numeric variables like V use & bytes; 2 for the
variable name, and 4 for the value. Simple non-matrix string variables
also-use 6 bytes; 2 for the variable name, 2 for the length, and 2 for a
pointer,

Matrix variables use a minimum of 12 bytes. Two bytes are used for
the variable name, twe for the size of the matrix, two for the number of
dimensions and two for each dimemsion along with four bytes for each of
the matrix elements.

String variables also use one byte of string space for each character
in the string. This is true whether the string variable is a simple string
variable like A$, or an element of a2 string matrix such as Ql$(5,2).

When a new function is defined by a DEF statement, & bytes are used
to store the definition.

Reserved words such as FOR, GOTO or NOT, and the names or the
intrinsic functions such as C0S, INT and STRY take up only one byte of
program storage.. All other characters in programs use one byte of pro-
gram storage each.

When a program is being executed, space is dynamically allocated on
the stack as follows:

1) Bach active FOR...NEXT loop uses 16 bytes.
2) Each active GOSUB (one that has not returned yet) uses 6 bytes,

3} Each parenthesis encountered in an expression uses 4 bytes and
each temporary result calculated in an expression uses 12 bytes.

K7

APPENDIX E

SPEED HINTS

The hints below should improve the execution time of your BASIC pro-
gram. Note that some of these hints are the same as those used to decrease
the space used by your programs. This means that in many cases you can
increass the efficiency of both the speed and size of your programs at
the same time. ‘

1) Delete all unnecessary spaces and REM's from the program. This
may cause a small decrease in execution time beczuse BASIC would otherwise
have to ignore or skip over spaces and REM statsments.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10.
Use variables instead of constants. It takes more time to con-
vert a constant tc its floating point representation than it does to fetch
the value of a simple or matrix variable. This is especially important
within FOR...NEXT loops or other code that i1s executed repeatedly.

3) Variables which are encountered first during the execution of
a BASIC program are allocated at the start of the variable table. This
means that a statement such as 5 A=0:B=A:C=A, will place A first, B second,
and, C third in the symbol table (assuming line 5 is the first statement
executed in the program). Later in the program, when BASIC finds a refer-
ence to the variable A, it will search only one entry in the symbel table
to find A, two entries to find B and threse entries to find C, etc.

4} (8K Version) NEXT statements without the index variable. NEXT
is somewhat faster than NEXT I because no check is made to see if the
variable specified in the NEXT is the same as the variable in the most re-
cent FOR statement.

8) Use the 8K version instead of the 4K version. The 8K version
is about 40% faster than the 4K due to improvements in the floating point
arithmetic routines.

6) The math functions in the 8K version are much faster than their
counterparts simulated in the 4K version. (see Appendix G)

APPENDIX F

DERIVED FUNCTIONS

The following functions, while not intrinsic to ALTAIR BASIC, can be
calculated using the existing BASIC functiocns.

FUNCTION

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
RYPERBOLIC SINE
HYPERBOLIC CCSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBQLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOCLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBQLIC
COTANGENT

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS

SEC{X) = 1/00S(X}

CSC{X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(~X*X+1})

ARCCOS (X) = -ATN(X/SQR(~X*X+1))+1.5708
ARCSEC(X) = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
ARCCSC(X) = ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708
ARCCOT(X) = -ATN(X)+1.5708

SINH(X) = (EXP(X)-EXP(~X))/2

COSH(X) = (EXP(X)+EXP(-X))/2

TANH(X) = -EXP(-X)/(EXP(X)+EXP(~-X))}*2+1
SECH(X) = 2/(EXP(X)+EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X} = EXP(-X)/(EXP(X)-EXP(-X))*2+1

ARGSINH(X)

LOG (X+SQR (X*X+1))

ARGCOSH(X) = LOG(X+SQR(X*X-1))

ARGTANH(X)

LOG((1+X)/ (1-X))/2

ARGSECH(X) = LOG((SQR(~X*X+1)+1)/X)

ARGCSCH (X}

LOG { (SGN (X) *SQR (X*X+1)+1)/X)
ARGCOTH (X)

LOG { (X+1}/(X-1})/2

‘5'9__

APPENDIX G

SIMULATED MATH FUNCTIONS

The following subrcoutines are intended for 4K BASIC users who want
to use the transcendental functions not built inte 4K BASIC. The cor-
responding routines for these functions in the 8K version are much faster
and more accurate. The REM statements in these subroutines are given for
documentation purposes only, and should not be typed in because they take
up a large amount of memory.

The following are the subroutine calls and their 8K equivalents:

8K EQUIVALENT - SUBROUTINE CALL
P9=X9+YS GOSUB 60030
LS=L0G (X9} GOSUB 6Q09¢
E9=EXP (X9) . GOSUB 60160
S=C0S (X9) GOSUB 60240
T9=TAN(X9) GOSUB 60280
AS=ATN(X8) GOSUB 60310

The unneeded subroutines should not be typed in. Please note which
variables are used by each subroutine, Alsoc note that TAN and COS require
that the SIN function be retained when BASIC is loaded and initialized.

EOOO0 REM EXPONENTIATION: P9=X9TY9

&D0LO REM NEED: EXP. LOG '

60020 REM VARIABLES USET: AT89-CT:£%.19.P9.X9.Y9

LO030 PS=1 : Ef=0 : IF Y9=0 THEN RETURN

LOO4D IF XG9<0 THEN IF INT(YT9)=Y9 THEN P9=1-2*YR+U*INT(Y9/2) : X9=-X%
B00s0 IF XS<>0 THEN GOSUB BOOSO : X9=YS*L9 : GOSUB &O1LD
LOCLO P=PS*E] : RETURN

60070 REM NATURAL LOGARITHM: LS=L0G(XT)

60080 REM VARIABLES USED: AT-8F(F-E9-L9-X7

&00S0 E9=0 : IF X9<=0 THEN PRINT "LOG FC ERROR': : STOP

LOCAS AS=L ¢ B9=2 ¢ (8=.5 : REM THIS WILL SPEED UP THE FOLLOWING
&OLOO IF Xx9>=A" THEN X9=CH*XT : E£9=£9+A7 : GOTO LO1O0

EOLLO IF X9<C9 THEN X9=B9*X9 : E?qu-Aﬁ GOTO RO11D

&0L20 XF=(X"~.P07107) 7 (X59+.707107) @ L9=XT*X%

EOL3D L9=(((. a7 LT+ ﬁblH?l)*L3+E 48539} *XHET-. 5)*-&?:1“?
&0L35 RETURN

BOLYO REM EXPONENTIAL: ES=EXP(X%)

0150 REM VARIABLES USED: A%.E9-.L9.X9

EOL&O L9=INT(L.4427*X9)+1 : IF L9<127 THEN &0240

RO170 IF XT9>0 THEN PRINT "EXP OV ERROR": : STOP

&0L75 E9=0 * RETURN

60LA0 EF=.L93147*L9-XT ¢ A9=1l.32988E-3-1.413ILE-4*EY

BOLS0 AS=((AS*E-2. 30L3LE-3) *Eq+4. 1 57YE-2) *EX

60LES E= ({ (A9~-1EEkES) *E7+. 5) *EF-2) *E9+1 ¢ AS=d

60197 IF L9<=0 THEN A"=.5 : L9=-L9 & IF =0 THEN RETURN

&

E0200 FOR X9=1 TO LT + E9=A9*ES : NEXT X9 : RETURN

L3220 REM COSINE: C9=COS(XT)

&0220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME

&0Z30 REM VARIABLES USED: (9-X9

LOEWD CF=SIN(X9+L.5708) : RETURN

E0250 REM TANGENT: TH=TAN{X®)

GOZL0 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TINE)

0270 REM VARTABLES USED: C9.T9-X9

60280 GOSUB bO24O : TH9=SIN(XT}/C3 : RETURN

BO290 REM ARCTANGENT: A[=ATN(XF)

60300 REM VARIABLES USED: A9.89.C9.T9.X9

LO310 TA=SGN(XT): XG=ABS(XT): (=0 ¢ IF XT>1 THEN (=1 : X9=1L/X%

£0320 A9=X9*XT : BA=((2.8kbIIE-3*AG-1.51LE7E~2) *AT+4. 2909LE~2) *AY
E0330 B=((((BF-7.5289E-2) *AT+. 106563) *ATF-. JIUS0AT) *A%+. 15993k) *A%
60340 A%=((BF~.33333R)} *AF+1) *X9 ¢ IF (=1 THEN A9=1.5708-A9

0350 AA=TF*AT 3 RETURN

(]

APPENDIX H

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE ALTAIR

Though implementations of BASIC on different computers are in many
ways similar, there are some incompatibilites which you should watch for
if you are planning to convert some BASIC programs that were not written
for the ALTAIR.

1) Matrix subscripts. Some BASICsS use " [* and "] " to denote
matrix subscripts. ALTAIR BASIC uses M (™ and ") ™.

2) Strings. A number of BASICs force you to dimension (declars)

the length of strings before you use them. You should remove all
dimension statements of this type from the program. In some of

these BASICs, a declaration of the form DIM A$(I,J) declares a string
matrix of J elements each of which has a length I. Convert DIM
statements of this type to equivalent ones in ALTAIR BASIC: DIM A$(J).

ALTAIR BASIC uses " + " for string concatemation, not ' , " op M & ™,

ALTAIR BASIC uses LEFTS, RIGHTS and MIDS to take substrings of
strings. Other BASICs use A$(I) to access the Ith character of
the string A§, and A$(I,J) to take a substring of A$ from charac-
ter position I to character pesition J. Convert as follows:

oLd NEW
AS(D) MID$ (A$,I,1)
A$(I,T) MID$ (A$,1,J-1+1)

This assumes that the reference to 2 substring of A$ is in an expres-
sion or is on the right side of an assignment. If the reference to
A$ is on the left hand side of an assignment, and X$ is the string
expression used to replace characters in A3, convert as follows:

oLp NEW
AS(1)=X$ A$=LEFTS (A$,I-1)+X$+MIDS (AS,I+1)
AS(I1,J)=X$§ A$=LEFT$(A$,I*l)+X$+MID$(A$,J+1)

3) Multiple assignments. Some BASICs allow statements of the
form: 500 LET B=C=(Q. This statement would set the variables B
& C to zero.

In 8K ALTAIR BASIC this has an entirely different effect., All the

" =ts " to the right of the first one would be interpreted as logical
comparison operaters. This would set the variable B to -1 if C
equaled 0. If C did not equal 0, B would be set to 0., The easiest
way to convert statements like this one is to rewrite them as follows:

82

500 C=0:B=C.

4) Some BASICs use "\ ™ instead of " : " to delimit muitiple
statements per line. Change the " \'s " to "™ :'5 " in the progranm,

5} Paper tapes punched by other BASICs may have no nulls at the end
of each line, instead of the three per line recommended for use with
ALTAIR BASIC.

To get around this, try to use the tape feed control on the Telatype
to stop the tape from reading as soon as ALTAIR BASIC types a car-
riage return at the end of the line. Wait a second, and then continue
feeding in the tape.

When you have finished reading in the paper tape of the program, be
sure to punch a new tape in ALTAIR BASIC's format. This will save
you from having to repeat this process a second time.

6) Programs which use the MAT functions available in some BASICs
will have to be re-written using FOR...NEXT loops tc perform the
appropriate operations.

APPENDIX I

USING THE ACR INTERFACE

NOTE: The cassette features, CLOAD and CSAVE, are only
present in 8K BASICs which are distributed on cassette.
8K BASIC on paper tape will give the user about 130 more
bytes of free memory, but it will not recognize the CLOAD
or CSAVE commands.

The CSAVE command saves a program on cassette tape. CSAVE takes one
argument which can be any printing character. CSAVE can be given directly
or in a program. Before giving the CSAVE command start your audlo recorder
on Record, noting the position of the tape.

CSAVE writes data on channel 7 and expects the device status from
channel 6. Patches can easily be made to change these channel numbers.

When CSAVE is finished, execution will centinue with the next state-
ment., What is written onto the tape is BASIC's internal representation
of the program in memory. The amount of data written onto the tape will
be equal toc the size of the program in memory plus seven.

Variable values are not saved on the tape, nor are they affected by
the CSAVE command. The number of nuils being printed on your terminal
at the start of each line has no affect on the CSAVE or CLOAD commands.

CLOAD takes its cone character argument just like the CSAVE command.
For example, CLOAD E. :

The CLOAD command first executes a "NEW" command, erasing the cur-
rent program and all variable values. The CLOAD command should be given
before you put your cassette recorder on Play.

BASIC will read a byte from channel 7 whenever the character ready
flag comes up on channel 6. When BASIC finds the program on the tape,
it will read all characters received from the tape into memory until it
finds three consecutive zeros which mark the end of the program. Then
BASIC will return tec command level and type "OK".

Statements given on the same line as a CLOAD command are ignered.
The program on the cassette is not in a checksummed format, so the pro-
gram must be checked to make sure it read in properly.

If BASIC does not return to command level and type "OK", it means
that BASIC either never found a file with the right filename character,
or that BASIC found the file but the file never ended with three con-
secutive zeros. By carefully watching the front panel lights, you can
tell if BASIC ever finds a file with the right name.

Stopping the ALTAIR and restarting it at location O will prevent
BASIC from searching forever. However, it is likely that there will
either be no program in the machine, or a partial program that has errors.
Typing NEW will always clear out whatever program is in the machine.

Reading and writing data from the cassette is done with the INP, OUT
and WAIT statements. Any block of data written on the tape should have
its beginning marked with a character. The main thing to be careful of
is allowing your program tc fall behind while data passes by unread.

Data read from the cassette should be stored in a matrix, since

54

there isn't time to process data as it is being read in. You will pro-
bably want to detect the end of data on the tape with a special character.

65

At location 4050=7722 Base 8 put:

7722/333 IN 255 ; (255 Base 10=377 Base 8) Get
77237377 ;the value of the switches in A
7724/107 MOV B,A ;B gets low part of answer
7725/257 XRA A ;A gets high part of answer
7726/052 LHLD ¢ ;get address of routine
7727/006

7730/000 . s;that floats [A,B]

7731/351 PCHL ;g0 to that routine which will
_ ;Teturn to BASIC
;with the answer

MORE ON PEEK AND POKE (8K VERSION ONLY!

As mentioned before, POKE can be used to set up your machine language
routine in high memory. BASIC does not restrict which addresses you can
POKE. Modifying USRLOC can be accomplished using two successive calls to
POKE. Patches which a user wishes to include in his BASIC can also be
made using POKE.

Using the PEEK function and QUT statement of 8K BASIC, the user can
write & binary dump program in BASIC. Using INP and POKE it is possible
to write a binary loader. _

PEEK and POKE can be used to store byte oriented information., When
you initialize BASIC, answer the MEMORY SIZE? question with the amount of
memory in your ALTAIR minus the amount of memory you wish to use as stor-
age for byte formatted data.

You are now. free to use the memory in the top of memory in your ALTAIR
as byte storage. See PEEK and POKE in the Reference Material for a further
description of their parameters.

68

CHAR.'“'

DECIMAL DECIMAL
000 NUL 043
001 SOH 044
002 STX 045 7 -
003 ETX Q046 -
004 EOT 047
0G5S ENQ . 048,
0C6 ACK 0459
007 BEL 050
008 BS 051
Q09 . HT - D52
010 LF - ‘053
01l VT . 054
012 FF - 055-
013 CR 056
014 S0 057
015 51 058
016 DLE 059
017 DC1 060
018 DC2 061
019 . DC3 062
020 DC4 063
021 NAK 064 -
022 SYN 065
023 ET3 Q66
024 CAN- 067
028 EM 068
026 SUB 069
027 ESCAPE 070
028 FS§ 071
029 ©GS 072
030 RS 073
031 Us 074
032 SPACE 075
033 { 076
034 " 077
Q35 # 078
036 $ 079
037 % 080
038 & 081
039 “ 082
040 (083
041) 084
042 * 085
LF=Line Feed FF=Form Feed

APPENDIX K

ASCIT CHARACTER CODES

_CHAR.

+

I W

. V00N B LR O

M O gHOROYOZErRUAIOTMOO®EE® 3V I A

C

DECIMAL

086
. c87

088 .

089
090
091
092
093
094
095
096

098
099
100
101
102
103
104

108

- 112
113
114
115
116
117
118
119
12¢
121
122
123
124
125
126
127

=#Carriage Return

097 -

Ca0s
106
L7

100
110 °
111

2

r-'} e e [6 BEOE e E
¥

Do MmN X T<E 0 H.QTC 0 H W HTR e e o

EL

* DEL=Rubout

CHR$ is a string function which returns a one character string which
contains the ASCII equivalent of the argument, according to the conversion
table on, the preceeding page. ASC takes the first characuer of a string
and conyerts it to its ASCII decimal valde. :

One of the most common uses of CHR§ is to send a special character
to the user's terminal. The most often used of these characters is the
BEL (ASCII 7). Printing this character will cause a bell te ring on scme
terminals anid 3 Ybeep! on many CRT's. This may be used as a preface to
~ &n error message, as a novelty, or just to wake up the user 1f he has
fallen asleep. (Example: PRINT CHR$(7);)

’ A'major use of special characters is on those CRT's that have cursor
p051t10n1ng and other spec;al functions Csuch as turnlng on & hard copy
prlnterj

As an example, try sendlng 2 form feed - (CHR$(12}J to your CRT. On
most CRT's this will usually cause -the screen to erase and the cursor to
"Home'' or move to the upper left cornmer.

Some CRT's gzve the user the capability of drawlna graphs and curves

in a special point-plotter mode. This feature may easily be taken advan-
tage of through use of ALTAIR BASIC‘S CHR$ functlon.

?ﬂ

APPENDIX L

'TEXTENbED BASIC

-

When EXTENDED BASIC is sent put the BASIC manual will be updated
te contain an extensive section about EXTENDED BASIC. Also, at this® time °
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and gxplain more carefully the areas usérs are hav—

ing trouble with. This sect;onxls here mainly to explaln what EXTENDED
BASIC will conmtainm.® . . . o o

- .\‘r-'

S c?, AR

INTEGER VARIABLES These are stored .as. double byte szgned quantitleé
ranging from -32768 to +32757. They .take up half as much space as” ‘normal
variables and are about ten times as fast for arithmetic. They are denoted
by using a percent sign (%) after the variable -name. The user:doesn’t =~
have to worry about conversicn.and can mix integers with other variables -
types in expressions. The speed improvement caused by using integers ‘for™
loop variables, matrix indices, and as arguments tc functions such as
AND, OR or NOT will be substantial.. An integer matrix of the same dzmen— _
sions as a flcatlng point matrix will: requlre half a8 much-memorym ; j jﬁ

DOUBLE-PRECISION Double-Prec1szon varlables are almost the oppe-.
site of integer variables, requiring twice as much space (8bytes per valuej
and taking 2 to 3 times as long-to .do arithmetic as single-precision:
variables. Double-Precision varighles’ are dencted by using a number sign
'(#) after the variable name. They provide over 16 digits of accuracy.
Functions like SIN, AIN and EXP will convert their arguments to single-
precision, so the results of these functions will only be good to 6 digits.
Negation, addition, subtraction, multiplication, division, comparision, -
input, cutput and conversion are the o¢nly routines that deal with Double-~
Precision values. Once again, formulas may frzely mix Double-Precision
values with other numeric values and conversion of the other values to
Double~Precision will be done automatically.

PRINT USING Much like COBOL picture clauses or FORTRAN format
statements, PRINT USING provides a BASIC user with complete contrel over
his output format. The user can control how many digits of a number are
printed, whether the number is printed in scientific notation and the
placement of text in cutput. All of this can be done in the 8K version
using string functions such as STR$ and MID§, but PRINT USING makes it
much easier.

DISK 1I/0 EXTENDED BASIC will come in twe versions, disk and non-
disk, There will only be a2 copying charge to switch from one to the
other. With disk features, EXTENDED BASIC will allow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac-~
cess as well as sequential access will be provided. Simultaneous use of
muitiple data files will be allowed., Utilities will format new disks,
delete files and print directories. These will be BASIC programs using
special BASIC functions to get access to disk information such as file
length, etc. User programs can also access these disk functions, enabling
the user to write his own file access method or other special purpose

n

disk routine. The file format can be changed'tbléllow the use Qf_other
(non-floppy) disks. This type of modification will be done by MITS under
special arrangement. .

OTHER FEATURES Other nice features which ﬁiii be added are:

Fancy Error Messages ,
--#n ELSE clause in IF statements-
LIST, DELETE commands with line rangé as arguments
Deleting Matrices in a program
TRACE ON/OFF. commands to monitor program flow = .« ° '
' EXCHANGE statement to switch variable values (thlS«Wlll Speed
up string sorts by at least a factor of two).
Multi-Argument, user defined functions with string arguments -
and values allowed .

H

Other features contemplated for future release are:

A multiple user BASIC
Explicit matrix manipulation
Virtual matrices :
Statement modifiers

Record 1/Q

Paramaterized GOSUB

Compilation _ : -

Multiple USR functlons T N
“Chaining' o

EXTENDED BASIC will use about 11K of memory for its own code (10K
for the non-disk version) leaving 1K free ona 12K machine. It will take
almost 20 minutes to load from paper tape, 7 minutes from cassette, and
less than 5 seconds to load from disk,

We welcome any suggestions concerning current features or possible
additions of extra features. Just send them to the ALTAIR SOFTWARE
DEPARTMENT.

12

APPENDIX M

i?f%asxcleiTsz -

1) BASIC PROGRAMMING, John G. Kemeny, Thomas E Kurtf I967 9145

2} BASIC AlbxechtJ Finkel .ahd Brown, 1973

3) A _GUIDED TOUR OF COMPUTER. PROGRAMMING IN‘BASIC Thomas~§ Dwyer
. -and Michael S. Kaufman, “Boston:, Huughton lefllﬂ Co., 1973

i

Books. numbered 1 § 2 may be obtained fomr ?‘7;;;7'.h
People's Computer Company (" e e ;}-;;
P.0. Bax 310 A R T A S
Menlo Park, Calzfurnla o S
94025 e

They also have other books of interest, such #s? "

101 BASIC GAMES, Ed. David Ahl, 1974 p2so .77 7

WHAT TO DQ AFTER YOU HIT RETURN or PCC's FIRST ;;iiﬂ*iﬁ '
7 BOOK OF COMPUTER GAMES — . FE

COMPUTER LIB & DREAM MACHINES Thecdore H Nelson, 19?4 Plﬂﬁllsj

Lo T A
XN AL S : o

13

MntS

2450 Alamo SE
Albuquerque, NM 87106

