
t

U

ITHACA INTERSYSTEMS
ASMBlElZ

ARELOCATING MACRO ASSEMBLER
REVISION 2D

Copyright by
@ Ithaca Intersystems, Inc.

u

TABLE OF CONTENTS

Introduction
Features

Who Should Use This Manual
Assembling
Assembler Operation
Once Thru Code
Relocation

Module Sections
Entry Point
External
Name
Library

prog ram Coun ter
SYmbols
Listing
Source Line Format

Label Field
Instruction Field
Argument Field
Comment Field

Macros
Argument Format
Arithmetic
Strings
Numbers.
Relative Jumps
Register Names
Machine Instructions

Jump
Call
Return
Restart
Accumulator
Increment
Decrement
Double Add
Double Subtract
Load, Store
push, Pop
In, Out
Move Immediate
Load Immed i ate
Move ,
Block'
Bit
Rotate, Shift
Miscellaneous

Assembler Instructions
Macro

1
1
2
3
9
9

10
12
14
14
15
16
18
19
20
22
22
23
24
25
26
30
31
33
33
35
36
37
38
38
39
40
41
42
42
43
43
44
45
46
47
47
47
48
49
50
52
53
54

Define Byte
Define Word
Define Storage
If
Entry
External
Abs
ReI
Data
Com
Org
Load
Name
Inc! ude
Libfile
Equate
Set
End
List

Error Messages
Worked Example
Running under CP/M
Running under K3

Job Status Word
Version

55
55
56
57
58
58
59
59
59
59
~O

60
62
1=;3
~4

~5

115
~11

67
~8

71
75
71=;
76
7~

ASMBLE/Z

A Relocating Macro Assembler

lC) Copyr ight 19RO by
'fthaca InterSystems, Inc.

Manual Revision ?

u

INTRODUCTION

ASMBLE is a Z-80 source code macro assembler which produces
ei ther an absolute binary, a hex, or a relocatable code module
and a program listing. The assembler allows you to specify the
devices .and file names for the input and output files as well as
which output files. you want generated. If you ask for a listing,
it will contain a column alphabetized symbol table.

FEATURES

1) Two pass operation

2) Cond it ional assembl y

3) External labels and relocatable cone

4) Absolute binary or hex code

1:) Separation of code and data spaces

'i) Macros

Include files

~) Column alphabetized symbol table in listing

u
- t - ASMBLE!Z

WHO SHOULD USE THIS MANUAL?

You may be read ing th i s manua 1 because you wAnt to know how to
assemhle, link, and run a program written in Pascal. tf this is
the case, you should skip this manual and read the first part of
the linker manual since the Pascal compiler tAkes Cr.lre of
generating all the assembler code thAt is normally required to
run a Pascal program.

own assembler
to write a
should ·read

to add your
you mAy ~ant

that case, 'you
linker manual.

On the other hand, you may want
routines to a pascal program, or
stand-alone assembler program. tn
this entire manual and then read the

ASMBLE/Z - 2 -

u

ASSEMBLING

He re a re the steps you go th rough from the c ren t i on of i'ln
assembly lnnguage program to its execution.

1) Run the text editor, create a new SRC file on a disk,
and type· in your program (written in assembler
mnemonics) •

?-) Run the nssembler which translates the assembler
mnemonic statements into machine language code.

1) If you asked the assembler to generate a relocatable
module, you run the linker which 10nds the module into
memory, and sta rt the prog ram.

If you asked the assembler to generate hex code, you
run the loader which translates the hex code into a
COM file. You then run the COM file.

If you asked the assembler to generate a COM file, you
run it.

Tn your program you tell the machine exactl y whnt to do by
writing a list of mnemonic machine instructions. These mnemonics
are translated, one to one, into machine executable instructions.
(machine code' •

Each machine instruction has its correspond ing mnemonic. For
example, if you want to move a copy of the byte from the B
register into the A register you write:

MOV A,B

If you want to complement the byt~ in the A register you write:

CMA

u
- 1 - ASMBLE/Z

An instruction is .one or more bytes long and is stored in one or
more consecut i ve memory locations. You can symbol i call y
reference an instruction by placing a label in front of the
instruction and referencing the label. For example, suppose you
want to wr i te a routine that dec ides whether or not a val ue in
the ~ register is equal to ten. You might write:

CPI
.n
XRA

TARGET:MOV

1."
TARGET
A
B,A

Does
Yes.

; No.
Save

A = 10?

Make it o.
it in B.

Tn this example, if the ~ register contains ten, the machine
jumps to the instruction bearing the TARGET label. You· can
locate this routine anywhere in memory and not worry about the
location which TARGET represents (the value of TARGET). The
assembler calculates it for you.

You may also give a value to a symbol with an equate
instruction.

ENDVAL EQU 10

Here, ENDVAL is given the absolute v~lue ten. It has this value
no matter where it is defined. You may use it in your program as
follows:

ENDVAL EQU 10
cpr ENDV~L Does A = ENDVAL?
.JZ TARGET Yes •
XRA A No. Make it o.

TARGET:MOV B,A Save it in B.

ASMBLE!Z - 4 -

~ section of an assembly cod~ may be swi tched
surrounding the code with conditional statements.

on or off by
For example:

u

FALSE EQU n
TRUE EQU NOT FALSE
ORANGE EQU TRUE

IF ORANGE
NAME: DB 'This program is called Orange'

ELSE
NAr.tE: DB 'This program is called Lemon'

ENDIF

In this example, the first three statements define the v~lues of
the symbols FALSE, TRUE, and OR~NGE. The conditfonal statements,
IF, ELSE, and ENDIF, sel ect one 0 f the two statements 1abeled
NAME for assembly.

Code which is often repeated,):)ossibly wi th some variation, may
be stored in a macro and assembled simply by giving the name of
the macro. This saves a little typing and usually makes the
program easier to understand. For example:

PRTNT: MACRO TEXT
LXI H,TEXT
CALL TEXT
ENDM.b.C

PRINT HITEXT

HITEXT:DB 'Hi there'

In this example, the first four lines define the macro called
PRINT which contains. one dummy parameter, TEXT. When the
statement PRINT HITEXT is assembled it is replaced by:

LXI
CALL

H,HITEXT
TXTYP

This loans the address of the text string into the HL register
and calls TXTYP to print the string.

u
- S - ASMBLE/z

Here is a short example of a program that reads the front panel
switches and set~ the front panel lights accordingly. It
conta ins a cond it ional control swi tch, FLI P, wh ich ca uses the
assembler to generate code to complement the value sent to the
1 ights if FLI pis true. I f all the swi tches are up the prog ram
returns control to the monitor.

Light Test.

FALSE EQU
TRUE EQU

o
NOT FALSE

FLIP EQU TRUE Complement flag.

LIGHTS EQU
SWITCH EQU

OFFH
OFFH

; Front panel lights port.
Front panel switch port.

RNDCOD EQU 111111118; Switch pattern for stop.

NDTEST:MACRO
CPI ENDCOD
•12 n
ENDMAC

ORG 100H

LOOP: IN SWITCH
NDTEST

Test for ENDCOD in A.
Time to qui t?
Yes. Back to monitorl~nd•

Put the code at location 100H.

Read the switches.
Test for end.

ASMBLE/Z

tF
CMA
ENtHF

OUT
JR

END

FLIP

LIGHTR
LOOP

LOOP

Flip the bits.

Display in the lights.
And repei'\t.

Start at LOOP.

- t:i -

Here is a listing of the program in the previous example as it is
assembled. Notice how the macro and conditional code is
treated.

Light Test.

0000
FFFF

: Light Test.

FALSE EQU
TRUE EQU

ASMBLE v-5b Page 1

o
NOT FALSE

LIGHTS EQU
SWITCH EQU

FFFF

OOFF
OOFF

FLIP EQU TRUE

OFFH
OFFH

Complement flag.

Front panel rights port.
; Front panel switch port.

OOFF ENDCOD EQU 11111111B: Switch pattern for stop.

0000

0100

NDTEST:MACRO
CPI
JZ

ENDMAC

ORG

:
ENDCOD
o

100H

Test for ENDCOD in A.
; Time to quit?
; Yes. Back to monitorland.

Put the code at location 100H.

u

u

Olon DB FF

0102+FE FF
Ol04+CA 0000

FFFF
0107 2F

0108 D3 FF
OIOA 18 F4

0100

LOOP: IN
NDTEST

CPI
.JZ

IF
CMA
ENDIF

OUT
JR

END

- 7 -

SWITCH
;

ENDCOD
o

FLIP

LIGHTS
LOOP

LOOP

Read the switches.
Test for end.

; Time to quit?
; Yes. Back to monitorland.

Flip the bits.

Display in the lights.
And repeat.

Start at LOOP.

ASMBLE/Z

Here is a listing of the same program except that FLIP has been
set to false. Notice how this changes the conditional code.

Light Test.

0000
FFFF

; Light Test.

FALSE EQU
TRUE EQU

ASMBLE v-5b page 1 'J

a
NOT FALSE

0000 FLIP EQU FALSE Complement flag.

11111111B; Switch pattern for stop.

OOFF
OOFF

nOFF

0000

LIGJiTS EQU
SWITCH EQU

ENDCOD EQU

NDTEST:MACRO
CPI
,TZ

ENDMAC

OFFH
OFFH

;
ENDCOD
o

Front panel lights port.
Front panel switch port.

Test for ENDCOD in A.
Time to qui t?

: Yes. Back to monitor1and.

0100

0100 DB FF

0102+FE FF
0104+CA 0000

0000

0107 1)1 FF
OlOCl II=! F5

0100

ASMBLE/Z

ORG HIOH Put the code at location lOflH.

LOOP: IN SWITCH Read the switches.
NDTEST Test for end.

CPI ENDCOD . Time to quit?,
JZ 0 . Yes. Back to monitor1and.,

IF FLIP U
CMA Flip the bits.
ENDIF

OUT LIGHTS Display in the lights.
,JR LOOP And repeat.

END LOOP Start at LOOP.

- R -

ASSE~BL~R OPERATION

The nssembler oper21tes in two passes.
identical in both passes.

'(ts operation is almost

During the first pass the input file is read ann each source line
is processed. Each time a symbol is defined it is entered into
the symbol table. All error messages except SYMBOL NOT FOUNT),
REDEFINED, and OUT OF RANGE are printed during pass one.

During pass two the input file is read again and each source line
is processed. If the source line generates any machine code, it
is sent to either the binary, hex, or relocatable output file in
the proper format. A copy of the line of source text along with
the address and generated machine code is sent to the listing
file.

ONCE THRU CODE

The initialization routine used by the assembler is written in
once through code and is located in the symbol table region. You
may restart or save the assembler at any time while the assembler
is ~sking the file name question. After the question hAS been
answered, the assembler no longer needs the initialization code
and destroys it. From this point on the assembler must be
reloaded in order to restart it.

- 9 - AS~BLE/Z

RELOC1l.TION

There are two terms, module and section, which hnve special
mean i ngs when used to descr i be re] oca tabl e code. When one or
more source files are assembled the resulting relocatable code is
call ed a mod ule. That is, each time the assembl er is used to
generate relocatable code it produces a single module. The
module may contain one or more sections. It may contain a
program section, a data section, and one or more common
sections.

ASMBLE/Z can produce relocntable modules. These modules are
loaded into memory by the 1 inker. Taken together, these two
prog rams (the assembler and the 1 inke r) prov ide ve ry powe rful
fncilities for the programmer:

1) Source code (in a SRC file), written with all address
references represented by symbols, can be assembled into a
relocatable module, which is then sent to the linker. The
linker can be told to load the module at nearly any address:
that is, the module is relocatable. The relocatable modules
require relatively little processing by the linker as
compared to the processing the assembler performs on a
source file, and therefore the relocation of a module can be
accomplishen in very little time.

2\ Several relocatable modules can be loa~ed by the linker into
different locations in memory; the linker determines the
absolute addresses so that all the code is loaded properly,
each relocatable module going into the next memory location
left free by the last relocatable module.

'3) Convenient means are provided to allow various relocatable
modules to make references to each other. This means that
there can be symbols in a source file which only reference
other places in the same source file (this means that they
can b,~ duplicated in other source files you wish to link
without conflict) and, on the other hand, certain labels can
be spec i fi ed as entry po int symbols 0 r ex ternal symbol s
(see ENTRY and EXTERNAL section), allowing different source
files to have common symbol ic references. If in one .source
file a certain symbol is specified as an entry point, then
refe r(~nces to tha t symbol in other modul es - if they are

. declared as external symbols - will be performed correctly.
Thus, modules can call subroutines and reference data in
other modules.

4) .r..lso available are common sections. These are typically
used to transfer data between different modules. Each
relocatable module may have up to l~ of these, distinguished

ASMBLE/Z - 10 -

by their name C'lny symbol ic IC'lbel desired, or c3 blank
label, is permi tted. When the var ious source files Are
assembled into relocatnble modules and dre then loaned into
memory by the linker, these common sections are grouped
together from all the different modules according to nAme.
The common sections are overlayed~ the linker assumes that
any common sect ions wi th the same name (nIl bl ank commons
are assumed to have the same name) represent identical
locations in memory. This allows the different modules to
have common tables of data, so that when one module calls a
subrout ine in another, for instance, it can pass a
reference to a table in a commpn area that the other
subroutine can use to process data.

l)) Other named sect ions are prov ined: PROG, ABS, and DATA. The
PROG (program) is the default section which is assumed if no
section label is given. ABS provides the facility for
writing absolute code that will not be relocated, when that
is desired. DATA is provided so that you may, if you
desire, locate the data section of a program in a different
area than the instruction area, as might be necessary if
the program is to be burned into a PROM.

A facility of the linker that provides even more programming
power is the ability to construct library modules. These
are produced in much the same wflY as a normal relocatable
modules by writing source files, assembling them to
produce relocatable modules, and linking them - except that
in the librarian mode, the linker produces a library file as
output instead of executable absol ute binary cone. This
library file contains relocatable modules, but provides a
powerful additional feature. You typically load one or more
relocatable modules wi th the linker, followed by a library
file~ the linker treats the library file in a special way,
in that, as it encounters eflch module in the library file,
it checks to see if any references have been made to the
entry point symbols in that 1 ibrary module. If the linker
finds no requests for these entry points, it skips that
module of the library file without loading it, and moves an
to the next. On the other hand, if the linker finds that it
needs one or more entry points in the library file it loads
that module.

These features together prov id e a very fl ex i bl e Z-RO assembly
language environment. The operation of each facility is
explained in detail in Inter sections of this manual.

u
- II - ASMBLE/Z

,."ODULE SECTIONS

A relocatable module may contain up to eighteen different
sections to allow you to store absolute, program, data, and
common code. Each section has its own program counter. At the
beginning of an assembly all program counters are set to zero.
As the assembler gener~tes code in one section the appropriate
program counter is incremented to keep track of the location of
each byte of code. As labels are generated they are marked as
belong ing to that section of code. When you change from one
section to another (you may do this as often as you like) the
assembler saves the program counter from the last section and
loads the prog ram counter fo r the new section. La te r on, if you
swi tch back to the prev ious sect ion ag a in the prog ram coun ter
points to the next available byte in that section and the code
assembly continues from where it left off.

For example, if you generate three bytes in section one they are
stored at locations 00, 01, and O? in section one's base. Then
you generate two bytes in section two. They are stored nt
locations 00 and 01 in section two's base. Now, if you generate
another byte in section one it is stored at locotion rn in
section one's base.

The eighteen different sections are called by name. The first
three sections are called ABS, PROG, and DATA (when the assembler
starts it specifies PROG as the default section'. The remalnlng
fifteen sections are called COM. Each CO"" section has a user
defined name. The names are only significant in the first eight
characters (the same as symbol names). One COM section may be
unnamed. It is r efe rred to nS blank common. You may change to
any section by gi-Ting its name as an instruction. For example:

DATA
PROG
COM
COM
DATA

TT.\BLE

Start the DATA section.
Start the PROG section.
Start a common section named TABLE.
Start a blank common section.
Continue in the DATA section.

The assembler treats all eighteen sections alike. That is, it
maintains a separate program counter for each section and marks
all labelS generated in a given section as belonging to that
section. The I inke r, on the other hand, treats the sections
differently. Absolute code from the ABS section is always loaded
into absolute memory as specified (that is, it is not
relocated). If several modules are being linked together the
PROG and DATA sections from the various modules are loaded into
different regions of memory. All common sections of a given name
are loaded into the same locations. For example, assume the

ASMBLE/Z - l~ -

u

linker loads two modules which each contain a'PROG section and a
blank common section. When the program runs, the part of the
program in the first module's PROG section might store a data
byte in the first location of blank common. The part of the
program in the second module's PROG section might load the same
byte from the first location of blank common.

You should use a little caution when generating code in ABS and
COM sections. This code may be overwritten by other modules
which are 1 inked together. For example, one mod,ule may
initialize a table in a common section in one way and another
module may initialize the table in the same common section in
another way. The order in which the modules are specified to the
linker determines which initiali.zation is overwritten and which
one remains loaded. Tt is usually better to simply reserve space
in all common sections with the DS instruction and initialize
them ~t run time.

You may also change sections with an ORG instruction. The type
of argument (that is, the section in which the argument was
defined) determines the new section. For example, if BLOTZ is
the name of a location in the data section, then:

ORG BLOTZ+?7

tells the assembler to generate code in the data section 27 bytes
beyond BLOTZ.

You should be very careful about using the ORG instruction in
programs that use external symbols (see ENTRY and EXTERNAL
section, below). The assembler generates all references to an
external symbol of a ,given name as a linked list. The last
reference points to the previous reference, etc. The list must
be intact for the linker to properly resolve the external
symbol. If you rewri te a section of code wi th the ORG
instruction (for example, ORG S-·?O) and an external reference is
overwritten, then the linked list is broken and the linker will
do unpredictable things. This cannot happen if you use the PROG,
and DATA instructions.

Referencing external symbols in a common section is also a
dangerous practice because the linker overlays all common
se~tions of the same name. In general, it is not a good practice
to store any executable code in common sections.

u
- 11 - AS~BLE/Z

ENTRY and EXTERNAL

Monules :ney communicC'!te with each ~ther t!'lrough common sections
as explained in the previous :)ara~rnphs. They may also
communicate by specifying various locations as entry points in
one mod ule, and as an external synbol in another module. The
linker matches up all the entry point symbols in one module with
all the external symbols in other modules it is linking.

En try po in ts and external symbol s are trea ted as s i xteen-bi t
address values. Therefore, if BLaTZ is an external symbol you
may refer to it in a statement such as LXI H,BLOTZ, but you may
not refer to half of an external address in a statement such as
MVI A,BLOTZ/2SI1.

A module may specify certain locations as entry points, in which
case they must be defined in the same module. The module may
also specify certain locations as external to that module. These
locations must not be defined in that module but will be defined
later in the linking operntion. For example, suppose you are
writing a navigation module which uses trig functions
(subroutines) in another module. In your navigation module you
might write:I

l
I

EXT
LHLD
CALL

LHLD
C.ALL

SIN,COS,TAN
ANGLE
SIN

ANGLE
COS

define SIN, COS, TAN as externals.

In the trig function module you might write:

SIN:

COS:

ASMBLE/Z

ENTRY
PUSH

POP
RET
PUSH

SIN,COS,TAN
H

H

H

- 14 -

~ define SIN, COS, TAN as entry points.

When the linker links these modules it first loads them into
memory and determines the actual locations of the three entry
points, SIN, COS, and TAN, in the trig function module. Then it
goes through the navigation module and sets the actual addresses
for the three external symbols.

NAME

Every relocatable module has a name. The name is initially set
to the first eight characters of the output file (REL file)
name. You may change the module name at any time with the NAME
instruction. You may change the name as often as you like but
onl y the last name spec i fi ed is given to the output fil e. For
example:

I

U

u

NAME TRIG

- 15 - ASMBLE/Z

LIBRARY

Related relocatable modules, usually subroutines, may be
collected together in a single file called a library. Various
modules from the library are selectively loaded by the linker
after the main routines (modules) of a program are loaded. That
is, the main routines of a program usually need to use
subroutines which are found in the 1 ibrary. The main routines
are loaded . first. Whenever a main routine needs a 1 ibrary
subroutine it declares the subroutine's entry point to be
external to the main routine. The linker places the subroutine
entry po in t name (symbol) in the ex ternal symbol table. "'fter
the main routines have been loaded (and several symbols have 'been
placed into the external symbol table) the linker selectively
loads the library. It compares entry point symbols from each
library module wi th symbols in the external symbol table. If it
finds a match, that is, if it finds that one or more entry points
in a 1 ibrary module will resolve external symbols, it loads the
module. If it does not find a match it skips the module (since
it does not need itl and goes on to the next one.

A module in a library may contain external symbols as well as
entry point symbols, that is, the module may require the services
of one or more other modules in the library. For example, in the
TRIG library, the Tl\N and COT modules calculate the tangent and
cotangent of an angle. These modules make use of the identi ty:
TAN(a)=SIN(81/COS(a), and call the STN and COS modules to
calculate the sine and cosine of an angle. The TAN and COT
modules also call the DIV module to perform the division.

A 1 ibrary shoul d load all necessa ry modul es (and no unnecessary
ones) in one pass. Thi s means th~t a module should appear in a
1 ibrary after it has been referenced by an external symbol in
other modules. That is, external symbols should forward
reference the modules in which the symbols are defined (as entry
points). For example, the COT module should come before the TAN
module because it uses the TAN function in its calculation
(COT(a)=l/TAN(a». The TAN module should come before the SIN and
COS modules. The SIN and COS modules do not reference each other
and thus may appear in any order. Everything references the DIV
module so it should come last. With the library put together in
this order the required modules (but no more) will be loaded no
matter what the main routine may require.

Sometimes it is not poss ibl e to arrange 1 ibrary mod ul es so that
the i r ex te rnal symbols onl y reference in a fo rward direction.
For example, suppose that some subroutines in module A reference
some subroutines in module B and some other subroutines in module

ASMBLE/Z - Iii -

,

U

B re fe renr:e sone sub rout i nes ~ n mod ul e A (fold yo ur hands and
think about it). There are several things you can do to rectify
this situation: You may decide that module A and module B should
be combined into one larger module thus eliminating the cross
referencing. Or you may find that you can eliminate the cross
referencing by moving some subroutines from one module to the
other.

However, it may not always seem possible to eliminate the cross
referencing. In that case you may put two copies of module A
into the library, one before and one after module B. If the main
routine needs module A it is loaded the first time it is
encountered in the library. Module A then references module B
wh ich is loaded next. When the second copy 0 f mod ule A is
encountered in the library it is skipped because all external
references to it have already been resolved (resolved external
symbols are removed from the external symbol table). On the
other hand, if the main routine needs module B it is loaded first
followed by module A. In ei ther case both modules are loaded,
only their order in memory is different.

It is a good idea to put non-mod i fi able execut ion code (pure
cod e) in PROG sect ions and mod i fi abl e data in DATA sections.
This is true in both main routines and in libraries. If you ever
want to burn a program into a PROM you simply tell the linker to
load all PROG sections into the PROM region of memory and to
allocate space in read-wr i te memory for the data. For example,
suppose you have a pair of text buffering subroutines: one
subroutine gets a complete line of text from the keyboard and
puts it into aline buffer, the companion routine returns the
next sequential character from the line buffer each time it is
called. These two subroutines would be placed in the PROG
section of the module and the line buffer would be placed in the
DATA section.

- 17 - ASMBLE/Z

PROGRAM COUNTER

The assembler evaluates each I ine of source code and generates
one or more bytes of machine code. The machine code will be
loaded into sequential memory locations later on. The assembler
keeps track of the current memory address in its program
counter. This is a 16 bit counter which starts with a value of
zero. Each time the assembler generates a byte of machine code,
it increments the program counter. Since each byte is stored in
a location whose address is one greater than the address of the
last byte, the value of the program counter and the value of the
current memory address always agree. This one-to-one
correspondence is, of course, altered when a relocatable module
is loaded by the linker.

The program counter
following examples I
line.

may be read wi th the symbol
represents the left edge of

$.
the

In the
source

IHERE EQU $ HERE is set to the current value of the
program counter.

There are actually eighteen different program counters; one each
for the absolute, program, and data sections, and one for each of
the fifteen different common sections. Every time a new section
is entered th~ program ~ounter for the last section is saved and
the program counter for the new section is loaded. This means
that you can generate code in a program section, for example,
then swi tch to the data section, generate some data code, then
swi tch back to the program section and continue generating code
from where you left off.

ASMBLE/Z - 18 -

SYMBOLS

A symbol represents a number or an instruction. It starts with a
letter, dollar sign, percent sign, dot, number sign, or
underscore and may contain any of the following characters:

0-9
A-Z
a-z

$
%

#

Numbers
Upper case letters
Lower case letters
Dollar sign
Percent sign
Dot
Number sign
Underscore

Here are some examples of symbols and non symbols:

$
ABC
X27

4SALE
D"3

A symbol may start with S.
A symbol may start with a letter.
A symbol may contain numbers.

A symbol must not start with a number.
A symbol must contain only alphanumeric
characters, $, %, ., #,

When a symbol is evaluated all lower case. characters are
translated into upper case characters. The following symbols all
have the same value:

mov
Mov
MOV

When the assembler extracts a symbol from a source line, it picks
up characters until it has a total of eight charadters or until
it reads a non-symbol character. Any symbol characters beyond
the first eight are ignored. Here is a list of symbols as they
appear in a source line and as they are extracted by the
assembler:

abc123
A,B
VALUE12
VALUE13

ABC123
A
VALUEI
VALUEI

In the first example the lower case characters are translated
into upper case characters. In the second example the symbol is
A and is terminated by the comma. In the third and fourth
examples only the first eight characters are significant in the
symbol. The rest are ignored. Notice that VALUE12 and VALUEl3

- 19 - ASMBLE/Z

are treated as the same symbol.

LISTING

The fi r3t 1 ine on each page of the 1 isting is the program header
line. It is made up of the first line from the first source file
(wi th 1 ead ing semicolons, spaces, and tabs str i pped off), the
current date, the assembler vers ion number, and the current
page. The remainder of the page contains the program listing.

Each listing line contains the address of the first byte of code
in the line, up to four bytes of code, and the source text which
generated the code.

The DB and DS instructions may generate more than four bytes of
code. In this case the extra code is listed on subsequent
lines.

Some instructions do not generate any executable code (for
example, EQU, IF, END, etc). The address is left blank in these
1 ines to indicate that no code is generated. However, many of
tt:ese instructions have a numeric value associated with them
which i~; listed.

Addresses associated wi th relocatable (non absolute) code
sections are followed by various characters to indicte the code
section in which they were generated. The characters are as
follows:

"
*

PROG
DATA
COM
EXT

Macro defi nit ions are noted wi th a minus sign following the
add ress. Macro expans ions are noted wi th a pI us sign following
the address.

Macro defini tions, macro expansions, and condi tional statements
(IF) may be nested (a macro expansion may call another macro
expansion, for example). The source text is indented two spaces
for each level of nesting.

ASMBLE/Z - 20 -

Sixteen-bit values are listed with their most signifiC'.<tnt byt~
first for readability, but they are stored with their least
significant byte first. For example, the following instruction:

LXI B,1234H

is listed as:

0000 01 1234 LXI B,1234H

and generates the following code:

01
34
12

The symbol table follows the prog ram 1 ist ing • The fi rst line
contains information about the assembly (number of errors
detected, number of symbols generated, and amount of unused space
in memory). If the program generated any macros the next line
contains information about the macros (number of characters
stored and number of macros generated). The next line contains
information about section sizes (size of absolute, program, and
data sections) followed on subsequent lines by the names of all
common sections and their sizes (blank common is listed as
* *) . The symbols follow on the next page in column
al phabeti zed order followed by thei r six teen bi t val ue wr i tten
as four hex characters. I f a val ue is a re10catabl e address it
is followed by the corresponding relocation character (I, ", *,
or #). Macro names are also listed in the table followed by the
letter M in place of the value.

u - 21 - ASMBLE/Z

SOURCE LINE FORMAT

A source line consists of a label field, an instruction field, an
argument field, and a comment field. Each line may contain none,
any, or all of these fields. This is what a source line looks
like:

I LABEL

LABEL FIELD

INSTRUCTION ARGUMENT(S) COMMENT

A label is a symbol which begins in the first column. If a
symbol does not begin in the first column it is not a label.
This means that you may have only one label on a line since there
is only one first column on a line. It also means that you may
not indent labels.

I BOB
I CHARLIE

BOB is a label.
CHARLIE is not a label; it is indented.

A label may be terminated with any non symbol character, that is,
a space, tab, colon, etc.

I MULT
IDIV:

Label ends with a space.
Label ends with a colon.

The symbol used in a label is given the current value of the
program counter. Since the value of the program counter is
equivalent to the current memory address, each label is equal to
the memory address of the first byte in its line. For example,
suppose that the current value of the program counter is 123.

IMIX: MOV A,B
IMATCH:MOV C,D

MIX is given the value 123 since the value of the program counter
is equal to 123 at the beginning of the first line. The
instruction MOV A,B generates one byte of code. This increments
the program counter. At the beginning of the second line it has
a value of 124 so MATCH is given a value of 124. In the case of
relocatable code, the assigning of actual memory addresses to
labels is deferred until the linker loads the code.

ASMBLE/Z - 22 -

INSTRUCTION FIE~D

An inftruction is a symbol which does not begin in the first
column. The assembiLer tells the difference between labels and
instructions by noting whether or not the symbol starts in the
first column. The instruction symbol may only be terminated with
a space, tab, semicolon, or carriage return.

ITOP: RAL
I PCHL
I
IL26:CMA
I

TOP is a label. RAL is an instruction.
PCHL is an instruction.·
It does not start in the first column.
L2~ is a label terminated by a colon.
CMA is an instruction.

- 23 - ASMBLE/Z

AR'3UMENT FIELD

Sone instructions require one or more arguments. The arguments
are separated from the: instruction by one or more tabs or
sp3ces. If the instruction requi res more than one argument the
multiple arguments must be connected by commas and must have no
intervening tabs or spaces. The only e.xception to this rule is
the use of the arithmetic operator NOT. It must be separated
from the argument it modifies by a tab or a spac.e. Here are some
examples of single arguments:

COUNT
C
'G'
'AB'
'Time'
36
NOT TRUE
TOP+2

A symbol
Either the symbol C or register C
A one byt~ text string
A two byte text string
A multi-byte text string
A number
An arithmetically modified symbol
Another arithmetically modified symbol

Here are some examples of instructions. which require single and
multiple arguments: '

POP D
ADI 100
SUI PVAL

MOV C,A
LXI H,ADDR
LXI B,' XY'

In the first example the instruction POP requires a single
argument which must be a register name. The instructions in the
second and third examples require a single argument which may
have any eight bi t val ue. 100 is used as the val ue 0 f the
argument in the second example; the val.ue which PVAL represents
is used as the argument value in the third example. In the
fourth example the MOV instruction requires two arguments which
must be reg ister names. The arguments are separated by a comma.
The instructions in the last two examples require two arguments.
The first argument must be a register name. The second argument
may have any 16 bi t val ue. The val ue of ADDR is used .as the
value of the argument in the fifth ex,ample; the l~ bit value of
the text string XY is used as the argument vaiue in the last
example.

ASMBLE/Z - 24 -

COMMENT FIELD

Any line of source code may contain a comment. The comment is
optional. It is just a place for you to make a remark about the
source code (or anything else, for that matter). The comment
field usually contains a running commentary on the operation of
the program.

A comment is separated from the instruction or arguments by a
tab, a space, or a semicolon. If a line contains nothing but a
comment field the comment must start wi th a semicolon or an
asterisk. Here are some examples of source lines with comments.

I MOV
I CMA
I MOV
I; This line
I

A,B This is a comment.
; This comment starts with semicolon.

D,A; This comment is separated by semicolon.
contains only a comment.

;50 does this one.

u
- 25 - A5MBLE/Z

MACROS

A macro is a named collection of one or more) ines ("f coOP.
After the macro has been defined, it may be in:>erted into a
prrgram one or more times simply by typing the macro's name in
pl;.ce of an, instruction. See the ASSEMBLER INSTRUCTION section
for more detailed information about macros.

A macro is defined by the instruction MACRO. It must have a name
which starts in column one. The body of the macro follows on
subsequent lines. The end of the macro definition is indicated
by the instruction ENDMAC.

I FLI P:
I
I
I
I

MACRO
MOV
CMA
MOV
ENDMAC

A,M

M,A

DEFINE A MACRO CALLED FLIP.
; GET A BYTE.
; COMPLEMENT IT.

REPLACE IT.
END OF MACRO DEFINITION.

This macro may be called in a program by using the name FLIP as
an instruction.

LXI
FLIP

H,ADDR POINT TO A MEMORY LOCATION.
COMPLEMENT ITS CONTENTS.

When the program is assembled, the macro in the preceding example
is expanded as follows.

LXI
MOV
CMA
MOV

H,ADDR
A,M

B,M

; POINT TO A MEMORY LOCATION.
GET A BYTE.
COMPLEMENT IT.
REPLACE IT.

Notice that the comments in the macro definition are stored with
the macro text and appear in the listing when the macro is
expanded. If your prog ram defines qui te a few macros, a lot of
storage space may be taken up by comments. You can save this
space by starting each comment with two semicolons. This
prevents the comment from being stored.

I COM:
I
I
I

MACRO
MaV
MaV
ENDMAC

A,M
M,B

; THIS COMMENT IS STORED.
;; THIS COMMENT IS NOT.
; END OF MACRO DEFINITION.

This macro is expanded as follows:

ASMSLE/Z

MOV
MOV

A,M
M,S

; THIS COMMENT IS STORED.

- 26 -

A macro may be defined with dummy arguments which are replaced
rl . with real arguments when the macro is called later in the
~ program. The dummy arguments are listed on the first line of the

macro as arguments separated by commas. Each time a dummy
argument is encountered in the body of the macro, it is replaced
with a numbered marker.

When the macro is called, the real arguments are given on the
call line as arguments separated by commas. The first real
argument replaces every occurrence of the first marker in the
macro body, the second replaces the second, etc. If there are
too many real arguments the extras are ignored. If there are not
enough real arguments the missing ones are treated as null
arguments, that is, arguments without any characters in them.

10UTPUT:MACRO
I LDA
I OUT
I ENDMAC

PORT,ADDR; DEFINE MACRO CALLED OUTPUT.
ADDR GET CONTENTS OF MEMORY LOCATION.
PORT TRANSMIT TO OUTPUT PORT.

END OF MACRO DEFINITION.

The macro is called as follows:

0UTPUT 27H,DATA; TRANSMIT A BYTE FROM DATA TO OUTPUT PORT 27.

It is expanded like this:

LDA
OUT

DATA
27H

GET CON~ENTS OF MEMORY LOCATION.
TRANSMIT TO OUTPUT PORT.

The dummy arguments may occur anywhere in the macro body,
including the label and instruction fields.

IMACK: MACRO
ILAB: INS
I ENDMAC

LAB,INS,ARGl,ARG2
ARGl,ARG2

This macro is called as follows:

I. MACK ABCI,MOV,A,M

It is expanded as follows:

IABCI: MOV A,M

Dummy symbols are treated like ordinary symbols. They must start
with a letter, $, ., %, #, or • Only the first eight characters
are significant. However, the arguments which replace the
markers when the macro is expanded may contain any number of
characters including quoted commas.

- 27 - ASMBLE/Z

A dummy argument may be concatenated with text in the macro body
by using the ! as a concatenation character. Whenever !
immediately precedes or follows a dummy symbol in the macro body,
the ! and the dummy symbol are both replaced by the marker,
without any intervening space. When the macro is later expanded
the marker is replaced b'y a real symbol.

ITEXT: MACRO
IT!TAG:D8
I ENDMAC

TAG,TXT
TXT,O

This macro is called as follows:

TEXT
TEXT

1,"Hi there, boys and girls"
2,"This is Uncle Fink"

It is expanded as follows:

ITl:
IT2:

D8
DB

"Hi there, boys and girls",O
"This is Uncle Fink",O

One macro definition may contain another macro definition. The
dummy arguments apply to all the macro definitions. The text for
the inner (contained) macro definition is modified and stored
inside the outer macro body.

IOUTER:MACRO ARGI,ARG2; DEFINE OUTER MACRO.
I LDA ARGI
IINNER:MACRO ARG3 DEFINE INNER MACRO.
I ADI ARG3
I ENDMAC END OF INNER MACRO DEFINITION.
I STA ARG2
I ENDMAC END OF OUTER MACRO DEFINITION.

At this tim~ OUTER has been defined but INNER has not. A call to
INNER resul ts in an error message. INNER is defined when OUTER
is called and expanded.

OUTER HERE,THERE

It is expanded as follows:

I LDA
IINNER:MACRO
I ADI
I ENDMAC
I STA

HERE
ARG3
ARG3

THERE

DEFINE INNER MACRO.

END OF INNER MACRO DEFINITION.

Now INNER has also been defined. It can be called as follows:

IpOINT:INNER

ASMBLE/Z

34

- 28 -

Notice that the label POINT has been placed in front of the mAcro
call. It is expanded as follows:

ADI 34

Finally, a macro may contain a call to another macro. In fact,
macro expansions may be nested to sixteen levels.

u

u

INEST: MACRO PLACE
I LDA PLACE
I INNER 123
I STA PLACE
I ENDMAC

It is called as follows:

NEST SOPPER

This is expanded as follows:

LDA SOPPER
ADI 123
STA SOPPER

NESTED MACRO CALL.

- 29 - ASMBLE!Z

ARGUMENT FORMAT

Each argument may be made up ·of ~ny combination of user defined
symbols, numbers, or quoted character str ings. They may be
combined by + (add), - (subtract or negate), * (multiply), /
(d i v ide), and & (log ical and). Any a rgumen t may be preceded wi th
the word NOT (complement). The arithmetic procedures are carried
out from left to right. No parentheses are allowed. For
example, 1+2*3 is evaluated as 9, not 7. Arithmetic symbols may
not be combined. For example, SYM1&NOT SYM2 causes an error. To
prevent the error, divide the operation into two lines. The
first line is NSYM2 EQU NOT SYM2. The second line contains
SYM1&NSYM2.

..

ASMBLE!Z - 30 -

RELOCATABLE SYMBOL ARITHMETIC

Absolute symbols may be used in all arithmetic operations. For
example, the following operations are all valid:

ABS
OFFSET EQU

LDA
STA

27
S+OFFSET
TABLE-OFFSET

TABLE: DS 100

Relocatable symbols may be used in some arithmetic operations but
not in others. A constant (absol ute) symbol may be added to or
subtracted from a relocatable symbol. The resul t of the
operation belongs to the same section as the relocatable symbol.
A relocatable symbol may not be mul tipl ied, divided, anded, or
NOTed.

PROG
LDA
LXI

TABLE-3
H,TABLE/4

Valid
Not val id

TABLE: DS 100
-.

A relocatable symbol may be subtracted from another relocatable
symbol of the same sect ion. The resul t is the absol ute
difference between the two symbols. The two symbols may not be
in d if feren t sect ions bee a use the add resses represented by the
symbols are not known until the module is linked.

DATA
, TABLE: DB 'A'

DB
LENGTH EQU

'z'
TABLE-S NUMBER OF BYTES IN TABLE

- 31 - ASMBLE/Z

The assembler evaluates an expression frmn left to right. In the
following example the fi rst two terms are relocatable but the
resLlt of the subtraction is an absolute number which may be
divided by another absolute number.

DATA
TABLE: DW

DW
LENGTH EQU

BLOTZ

BLINTZ
TABLE-$/2 ; NUMBER OF ADDRESSES IN TABLE

An external symbol may not be used in any arithmetic or logical
operation.

ASMBLE/Z

EXT
LDA
STA
LHLD

BLOTZ
BLOTZ
BLOTZ+3
3-BLOTZ

Valid
Valid
Not val id

- 32 -

STRINGS

A quoted character string must start with either a single quote
(') or a double quote ("). The quote character is used as a
delimiter to determine the end of the string. All characters in
the string up to but not including the· second delimiter are
evaluated. Both delimiters must be the same. If the second one
is missing, all remaining characters up to the end of the line
are considered part of the quote string. For example, DW 'AB' is
evaluated as 4l42H.

NUMBERS

Some instructions require a single byte argument. If the value
of the evaluated argument requires more than one byte to express,
an error message is printed. For example, 2~0 is evaluated as
10 4H. MVI A,260 gives an error message. The except ion to th i s
rule is a number whose high byte is OFFH, such as -2 (OFFFEH).
This number returns only the low byte without an error message.

Numbers may be represented in binary, octal, decimal, or hex
notation. All numbers must start with a decimal digit (0 - 9).
That is, a hex number that starts with a letter should have a
zero before it, or it will be interpreted as a symbol (OFFH). If
the number is not a decimal number it must end with a letter to
indicate the notation.

TYPE DIGITS TERMINATION

Binary 0 - 1 B
Octal 0 - 7 0 or Q
Decimal 0 - 9 D or or nothing
Hex 0 - 9, H

A - F

- 33 - ASMBLE/Z

Here are some examples of proper numbers:

1011001B

1357Q
224fiO

2468.
l234D

99

3B9CH
OFFFH

ASMBLE/Z

Binary

Octal

Decimal

Hex

- 34 -

RELATIVE JUMPS

The relative jump instructions require an argument which is
evaluated as a l~ bit address. The difference between the
address and two plus the current value of the program counter is
used as the eight bit signed relative jump offset. If the offset
cannot be expressed by an eight bi t number, that is, if the
address is farther than plus or minus 127 bytes from the program
counter plus two; the jump cannot be made and an error message is
printed. A relative jump may start and end in the same
relocatable section but it may not jump from one section to
another.

u.
- 35 - ASMBLE/Z

REGISTER NAMES

Single (eight bit) registers have the following names:

A
B
C
D
E
H
L
M
d(IX).
d (IY)
I
R

Interrupt vector register
Memory refresh register

M is a memory location whose address is in the HL register pair,
that is, HL po ints to reg i ster M. Memory locat ions d (IX) and
d(IY) are locations whose address is the contents of the IX or IY
register added to d where d is a signed eight bit number. The
symbol d can be eval ua ted as a signed eight bit number. It may
also be omitted altogether.

Double (16 bit) registers have the following names:

B BC pair
D DE pair
H HL pai r
PSW Processor status word, A and flags
SP Stack pointer
IX Index register X
IY \~ Index register Y

P may be substituted for PSW, S may be substituted for SP, and X
or Y may be substituted for IX or IY in any instruction.

ASMBLE/Z - Vi -

MACHINE INSTRUCTIONS

This section contains the machine instructions organized into
logical groups. They generate code which tells the computer what
to do. The first line of the description of each group of
instructions is an example of the proper use of an instruction in
the group.

- 37 - ASMBLE!Z

JUMP, CALL

Format: ,TMP BLOTZ

,
The jump and call instructions require an argument which is
evaluated as a 16 bit address.

JMP Jump.
JNZ Jump if non-zero.
JZ Jump if zero.
JNC Jump if no carry.
JC Jump if carry.
JNV Jump if no overflow.
JV Jump if overflow.
JPO Jump if parity is odd.
JPE Jump if parity is even.
JP Jump if positive.
JM Jump if minus.

JNV qenerates the same code as JPO. JV the same as JPE.

JR
JMPR
JRNZ
JRZ
JRNC
JRC

DJNZ

,lump reI at ive.
Jump relative.
Jump relative if non-zero.
Jump relative if zero.
Jump relative if no carry.
Jump relative if carry.

Decrement B and jump relative if B <> o.

Format: CALL BLOTZ

CALL
CNZ
CZ
CNC
CC
CNV
CV
CPO
CPE
CP
CM

Call a subroutine.
Call if non-zero.
call if zero.
Call if no carry.
call if carry.
Call if no overflow.
Call if overflow.
Call if parity is odd.
Call if parity is even.
Call if positive.
Call if minus.

CNV generates the same code as CPO. CV the same as CPE.

ASMBLE/Z - 38 -

RETURN

Format: RET

The return instructions do not require an argument.

RET Return from a subroutine.
RNZ Return if non-zero.
RZ Return if zero.
RNC Return if no carry.
RC Return if carry.
RNV Return if no overflow.
RV Return if overflow.
RPO Return if parity is odd.
RPE Return if parity is even.
RP Return if positive.
RM Return if minus.

RNV generates the same code as RPO. RV is the same as RPE.

RET!
RETN

Return from interrupt.
Return from non-maskable interrupt.

- 39 - ASMBLE/Z

RESTART

Format: RST 3

The restart instructions require an argument which represents a
number between zero and seven.

RST n Restart at location n*R where n is a value from 0 - 7.

ASMBLE/Z - 40 -

ACCUMULATOR

Format: ADI 27

The accumulator immediate instructions require an argument which
is evaluated as eight bits. These instructions modify all
flags. All instructions except CPI leave the resul t of the
operation in the A register. The CPI instruction does not change
the A register.

ADI Add immediate.
ACI Add immediate with carry.
SUI Subtract immediate.
SBI Subtract immediate with borrow.
ANI AND immediate.
XRI Exclusive OR immediate.
ORI OR immediate.
CPI Compare immediate.

Format: ADD 3 (IX)

The accumulator register instructions require an argument which
is a single register name, A, B, C, D, E, H, L, M, d(IX), or
d(IY). These instructions modify all flags. All instructions
except CMP leave the result of the operation in the A register.
The CMP instruction does not change the A register.

ADD Add register to A.
ADC Add register to A with carry.
SUB Subtract register from A.
SBB Subtract register from A with borrow.
ANA AND register with A.
XRA Exclusive OR register with A.
ORA OR register with A.
CMP Compare register with A.

- 41 - ASMBLE/Z

INCREMENT, DECREMENT

Format: INR A

The single register increment and decrement instructions require
an argument which is a single register name, A, B, C. D, E, H, L,
M, d(IX), or d(IY). All flags except carry are modified.

INR Increment the register.
DCR Decrement the register.

Format: INX H

The double register increment and decrement instructions require
an argument which is a double register name, B, D, H, SP, IX, or
IY. No flags are modified.

INX
DCX

ASMBLE/Z

Increment the register pair.
Decrement the register pair.

- 42 -

DOUBLE ADD, SUBTRACT

Format: DAD B

The doubl e reg i ste r add and subtract instructions requi re an
argument which is a double register name, B, D, H, or.SP. DADX
accepts IX instead of H as an argument and DADY accepts IY
instead of H as an argument. The DADC and DSBC instructions
modify all flags. The other instructions modify only the carry
flag.

DAD
DADC
DSBC
DADX
DADY

Add the register pair to HL.
Add the register pair to HL with carry.
Subtract the register pair from HL with borrow.
Add the register pair to IX.
Add the register pair to IY.

- 43 - ASMBLE/Z

LOAD, STORE

Fo rma t : LDAX 13

The LDAX and STAX instructions require an argument which is a
double register name, B, or D.

LDAX
STAX

Load A from location pointed to by register pair.
Store A in location pointed to by register pair.

Format: LDA BLOTZ

The load and store direct instructions require an argument which
is evaluated as a 16 bit address.

LDA Load A.
LBCD Load BC.
LDED Load DE.
LHLD Load HL.
LSPD Load stack pointer.
LIXD Load IX.
LIYD Load IY.
STA Store A.
SBCD Store BC.
SDED Store DE.
SHLD Store HL.
SSPD Store stack pointer.
SIXD Store IX.
SIYD Store IY.

ASMBLE/Z - 44 -

PUSH,POP

Format: PUSH H

The push and pop instructions require an argument which is a
double register name, B, 0, H, PSW, IX, or lY.

PUSH
POP

Push the register pair onto the stack.
Pop the stack into the register pair.

- 45 - ASMBLE/Z

INPUT, OUTPUT

Format: IN 5

The input and output instructions require an argument which is
evaluated as an eight bit port number. These instructions do not
modify any registers.

IN Move data from the input port into A.
OUT Move data from A to the output port.

Format: INP D

The input register and output register instructions require an
argument which is a single register name, A, B, C, D, E, H, L, or
M. The OUTP instruct ion does not mod i fy any flags. The INP
instruction modifies all flags except carry. The INP M
instruction only modifies the flags, not the memory location.

INP

OUTP

Format: INI

Move data from the input port whose port number is
in C into the register.
Move data from the register to the output port whose
port number is in C.

The input memory and the output memory instructions do not
require an argument. The zero flag is set if the B register is
decremented to zero. The carry flag is not affected.

INI

INIR
IND
INDR
OUTI

OUTIR
OUTD
OUTDR

ASMBLE/Z

Move data from the input port whose port number is
in C into M. Decrement B. Increment HL.
Do INI until B = o.
Same as INI except decrement HL.
Do IND until B = O.
Move data from M to the output port whose port
number is in C. Decrement B. Increment HL.
Do OUTI until B = o.
Same as OUTI except decrement HL.
Do OUTD until B = o.

- 4') -

MOVE, LOAD IMMEDIATE

Format: MVI B,27

The move immed i ate instructions requi re two arguments; a sing Ie
register name, A, B, C, 0, E, H, L, M, d(IX), or d(IY), and an
argument which is evaluated as eight bits. The two arguments are
separated by a comma.

MVI Move the number into the register.

Format: LXI H,BLOTZ

The load immed iate instructions requi re two arguments: a double
register name, B, 0, H, SP, IX, or IY, and an argument which is
eval ua ted as In bi ts. The two arg uments are sepa rated by a
comma.

LXI Load the number into the register pair.

Fo rmat: MOV A, B

The move instructions requi re two arguments. Both are single
register names, A, B, C, 0, E, H, L, M, d(IX), or d(IY). The
arguments are separated by a comma. The two arguments should not
both be memory, that is, you can't say MOV M,(IX).

MOV Move second register into first register.

- 47 - ASMBLE/Z

BLOCK MOVE, SE1.RCH

Format: LOI

The block move and ~ompare instructions do not require an
argument. The P/V flag is cleared to zero if BC is decremented
to zero. The load instructions modify only the P/V flag. The
compare instr,uctions set the zero flag if the contents of A equal
the contents of M and also modify the sign flag. These
instructions do not change the carry flag.

LOI

LOIR
LOO
LOOR
ceI
CCIR
CCO
CPDR

ASMBLE/Z

Move contents of memory pointed to by HL into memory
pointed to by OE. Increment OE and HL. Oecrement
BC.
00 LOI until BC = O.
Same as LOI except decrement OE and HL.
00 LOO until BC = O.
Compare A with M. Increment HL. Oecrement BC.
00 CCI until BC = 0 or A = M.
Same as cpr except decrement HL.
00 CPO until BC = 0 or A = M.

- 48 -

BIT

Format: BSET 3,M

The bit set, reset, and test instructions require two arguments:
an argument which represents a bi t posi tion between zero and
seven, and a single register name, 'A, B, C, D, E, H, L, M, d{IX),
or d (IY). The arguments are separated by a comma (bit number,
register name). Only the BIT instruction modifies any
registers. The carry flag is not changed.

BSET
RES
BIT

Set the bit in the register.
Reset the bit in the register.
Copy the bit in the register into the zero flag.

- 49 - 'ASMBLE/Z

ROTATE, SHIFT

Format: RLC

The rotate A instructions do not requi re an argument. They
modify only the carry flag.

RLC

RRC

RAL
RLA

RAR
RRA

ASMBLE/i,

Rotate A left 8 bits.

I I
Cy <-- 7 •• 0 <-

Rotate A right 8 bits.

I I
-> 7 •• 0 --> Cy

Rotate A, carry left 9 bits.
Same as RAL.

I
- Cy <-- 7 •• 0 <-

Rotate A, carry right 9 bits.
Same as RAR.

I
-> 7 •• 0 --> Cy -

- 50 -

MSB into carry.

LSB into carry.

MSB into carry.

LSB into carry.

Format: RLCR D

The rotate and shift instructions require an argument which is a
single register name, A, B, C, D, E, H, L, M, d(IX), or d(IY).
These instructions modify all flags.

RLCR

J~LAR

RRCR

RRAR

~;LAR

SRAR

3RLR

Format: RLD

Rotate register left 8 bits.
See RLC.

Rotate register left 9 bits.
See RAL.

Rotate register right 8 bits.
See RRC.

Rotate register right 9 bits.
See RAR.

Shift register left 9 bits.
Cy <- 7 •• 0 <- 0

Shift register right 9 bits.

I-I
-> 7 •• 0 -> Cy

Shift register right 9 bits.
o -> 7 •• 0 -> Cy

MSB into carry.

MSB into carry.

LSB "into carry.

LSB into carry.

o into LSB.
MSB into carry.

Sign into MSB.
LSB into carry.

o into MSB.
LSB into carry.

The rotate digit instructions do not require an argument. These
instructions modify all flags except carry.

RLD Rotate four LSBs of A left with M.
--->---------

I I
A3 •• AO M7 •• M4 M3 •• MO

, I I I
---<- -<--

RRD Rotate four LSBs of A right with M.
---<---------

I I
A3 •• AO M7 •• M4 M3 •• MO

I I I I
.._->- ->--

- 51 - ASMBLE/Z

~ISCELLANEOUS

Format: CMA

Several mi scellaneous instructions do not requi re an argument.
No flags are affected unless otherwise noted.

CMA
NEG
DAA
STC
CMC
NOP
HLT
EXAF
EXX
XTHL
XTIX
XTIY
XCHG
PCHL
PCIX
PCIY
SPHt
SPIX
SPIY
DI
EI
LDAI

STAI
LDAR

STAR
IMO
IMI
1M2

ASMBLE/Z

Complement accumulator.
Negate accumulator. All flags modified
Decimal adjust accumulator. All flags modified.
Set carry. Only carry modified.
Complement carry. Only carry modified.
No operation.
Halt.
Exchange A 1, flags 1 with A 2, flags 2.
Exchange BC 1, DE 1, HL 1 with BC 2, DE 2, HL 2.
Exchange the contents of the top of the stack with HL.
Exchange the contents of the top of the stack with IX.
Exchange the contents of the top of the stack with IY.
Exchange DE with HL.
Load the program counter from AL.
Load the program counter from IX.
Load the program counter from IY.
Load the stack pointer from HL.
Load the stack pointer from IX.
Load the stack pointer from IY.
Disable interrupts.
Enable interrupts.
Load A with I. Zero and sign flags modified.
P/V flag gets contents of IFF.
Store A in I.
Load A with R. Zero and sign flags modified.
p/V flag gets contents of IFF.
Store A in R.
Set interrupt mode O.
Set interrupt mode 1.
Set interrupt mode 2.

- 52 -

ASSEMBLER INSTRUCTIONS

This section contains assembler instructions. They tell the
assembler what to do. In some cases they generate machine code.
The first line or lines of the description of each instruction is
an example of the proper use of the instruction.

- 53 - ASMBLE/Z

MACRO

Format: BLaTZ: MACRO
SLAR
ENDMAC

REG
REG

A macro definition requires the MACRO instruction with a label,
zero or more lines of code which are stored as the body of the
macro definition~ and an ENDMAC instruction~ which marks the end
of the macro body. The line containing the MACRO instruction may
al so conta i 0. several dummy a rguments separated by commas. A
macro de f in i t ion may contain other macro defin i t ions . (255
maximum) and calls to other macros (15 maximum) •

Once a macro has been defined it may be called by using the macro
name in place of an instruction. The code stored for that
particular macro is recalled and entered in the program,
character by character, and evaluated.

When the MACRO instruction is encountered, the label is entered
in the user's symbol table and marked as a macro. The dummy
argument symbols are stored in a temporary symbol table. The
code in the body of the macro definitio/n is stored character by
character in the macro storage space. Comments beg inning wi th
two semicolons are not stored. If a symbo;l in the body is
encountered which matches one of the dummy argument symbols, a
numbered marker is stored in the macro storage s.pace instead of
the symbol. If the symbol matches the first dummy symbol the
marker is given the value one, if it matches the second symbol it
is given the value two, etc. The exclamation point (n is used
as a concatenation character. If a d'lmmy symbol in the body is
preceded or followed by the concatendtion character, the ! is
removed along wi th the dummy symbol when it is replaced by a
marker. The macro defini tion may cor tain one or more embedded
macro definitions. The dummy argumert symbols are compared to
symbols in all levels of the definition. All dummy symbols are
replaced by markers.

The line containing the macro call mat also contain one or more
arguments separated by commas. These arguments (actually
character strings) are substituted fo': the markers in the macro
body. The arguments may be any length (as long as they all fi t
on one line), and may contain comma~; in quoted strings. The
first argument string replaces every occurrence of the first
marker, the second string replaces the second marker, etc.

ASMBLE/Z - 54 -

DEFINE BYTE, WORD

Format: DB 'ABC'

The DB (Define Byte) and OW (Define Word) instructions may be
followed by one or more arguments. Each argument is evaluated as
a separate byte or word. If a DB argument is a text string
enclosed in single or double quotes, the seven bit ASCII value of
each character in the string is returned.

EXPRESION CODE GENEHATED

DB 100 64
DB 'MOM' 4D

4F
4D

DW 100 n4
00

DW l234H,45'5 7 H 34
12
(,7
45

Fo rm at: DB S ' AB' , CR, LF

The DBS (Define Byte Sign) and DBZ (Define Byte Zero)
instructions are similar to the DB instruction. They differ in
the way they treat the termination of the command line. The DBS
instruction sets the sign bit of the last character in the line.
The following pairs of lines generate the same code:

DB 'ABCDE' ,'F'+128
DBS 'ABCDEF'

DB 'Hi there' ,CR,LF+128
DRS 'Hi there' ,CR,LF

The DBZ instruction appends a zero byte to the end of the line.
The following pairs of lines generate the same code:

DB ' ABCDEF' ,0
DBZ 'ABCDEF'

DB 'Hi there' ,CR,LF,O
DBS 'Hi there' ,CR,LF

- 55 - ASMBLE/Z

DEFINE STORAGE

Format: DS 200

The DS (Define Storage) instruction requires one argument and
reserves the amount of space (in bytes) determined by the value
of the argument. The instruction does not generate any code.
The instruction is used to allocate space in memory for variables
and tables without specifying the contents of those locations or
generating any code in the HEX or BIN files. For example, assume
SIZE represents the value 100.

ASMBLE!Z

DS
DS

SIZE
14

Reserve 100 bytes of space in memory.
Reserve 14 more bytes.

- 56 -

CONDITIONAL

Format: IF KFLAG
CALL BLOTZ
END1F

The IF i nstruc tion requi res one a rg ument. If the val ue of the
argument is zero, assembly of code is suppressed until an ELSE or
ENDIF instruction is encountered at which time it resumes. If
the value is non-zero, assembly continues until an ELSE
instruction is encountered. Then, assembly is suppressed until
an ENDIF instruction is encountered. The use of the ELSE
instruction is optional. For example, assume SWITCH is equal to
zero.

IF
INR
ELSE
DCR
ENDIF

SWITCH
A

Argument evaluates to zero.
Don't assemble this code.

Assemble this code instead.

IF
DCR
ENDIF

NOT SWITCH Argument evaluates to FFFF.
A Assemble this code.

MOV C,A Always assemble this code.

IF instructions (with optional ELSEs) may be nested to 255
1evels.

- 57 - ASMBLE/Z

ENTRY, EXT

Format: ENTRY SIN,COS

The ENTRY instruction requi res one or more arguments which are
symbol names. It marks those symbols as entry points. The
symbol s must be defined somewhere in the prog ram (used as a
label, for instance). Entry point· symbols are passed via the
relocatable output file (REL file) to the linker to define the
symbols for use by other modules. This instruction may be used
anywhere in the program. The entry instruction is not valid when
the assembler is generating a hex or binary file.

Format: EXT TAN,COT

The EXT instruction requires one or more arguments which are
symbol names. It tells the assembler that those symbols are not
defined in the current program but will be defined later in other
modules. EXT symbols are passed via the REL file to the linker
to be defined by entry point symbols in other modules. This
instruction may be used anywhere in the program. The EXT
instruction is not valid when the assembler is generating a hex
or binary file.

ASMBLE!Z - 58 -

ABS, PROG, DATA, CO~

Format: ABS

The ABS, PROG (REL may be used instead of PROG), and DATA
instructions do not require an argument. They tell the assembler
to begin or continue generating code in a particular section. If
coje had been generated in that section before, the program
counter points to the next available byte of storage so that code
generation continues from where it left off last time. These
instructions are not val id when the assembler is ·generating a hex
or binary file.

Format: COM BLOTZ

The COM instruction may take an eight character name as an
argument. If no name is given it is assumed to be blank (all
spaces). It tells the assembler to begin or continue generating
code in that common section in exactly the same way as the ABS,
PROG, and DATA instructions do. There may be as many as fifteen
different common sections. The COM instruction is not valid when
the assembler is generating a hex or binary file.

- 59 - ASMBLE/Z

ORG, LOAD

Format: ORG 100H

The ORG instruct10n requires an argument which is evaluated as a
15 bit address. The instruction sets the assembler, HEX, and BIN
program counters to that address; that is, it determines the
starting address of the next block of code generated. The type
of the argument (section in which it was defined) determines the
type of the new section. For example, if GRIBLY was defined in
the data section:

ORG GRIBLY+IOO

tells the assembler to continue generating code in the data
section.

ORG 20

has an absolute argument and tells the assembler to generate code
in the absolute section.

If the line containing the ORG instruction contains a label, the
label is set to the new value of the program counter.

IGUM: ORG 123 GUM has the value 123.

If you are generating a COM file you may not ORG below 100H +
BOOT and you may not ORG backwards (ORG to a location less than
the current program counter) •

Format: LOAD 1000H

The LOAD instruction is only valid when the assembler is
generating hex code. It is not valid when the assembler is
generating relocatable code or COM file code. It requires an
argument which is evaluated as a l~ bit address. The instruction
forces the code generated by the assembler to be loaded into
memory whose address is different from the address set by the ORG
instruction. This allows you to load code into one region of
memory and later move it to another region for execution (for
example, prog ramming a PROM). The LOAD instruction requi res an
argument. It sets the BIN and HEX program counter to the value
of the argument but does not change the assembly program
counter. For example, if you were writing code to be loaded at
24H but executed at I003H you would use the instructions:

ASMBLE/Z - ~O -

(I
\.J,l'

I ORG lO03H Set assembler program counter to lO03H.
I LOAD 24H Set binary ard hex program counter to 24H.
ILOOP: OCR C 00 is stored at 24H.
I JNZ LOOP C? is stored at 25H.
I 03 is stored at 2fiH.
I 10 is stored at 27H.

- iiI - ASMBLE/Z

NAME

Format: NAME TRIG

The NAME instruction requires an eight character name as an
argument. This name is passed via the relocatable file to the
linker and appears in th~ module name listing. This instruction
may be given more than once in a program but only the name
specified last is put in the REL file. If this instruction is
not used in a program the first eight characters of the REL file
name are used as the module name. The NAME instruction is riot
valid when the assembler is generating a hex or binary file •.

ASMBLE!Z - 152 -

INCLUDE

Format: INCLUDE <filename>

INCLUDE temporaril y changes the input file to the assembler.
This allows code in another file to be inserted into a program
during assembly. When the INCLUDED file is exhausted, the
assembler resumes read ing the source lines from Ithe or ig inal
source file with the line immediately aft'er the INCLUDE
instruction.

Note that nested INCLUDE files are not permitted (I.E. a file
which is an argument to the INCLUDE instruction may not contain
any INCLUDE instruction).

- ~3 - ASMBLE/Z

LIBFILE

Format: LIBFILE ALTLIB

The LIBFILE instruction requires an eight character name as an
argument. This name is passed via the relocatable file to the
linker and tells the linker to use the file given by this command
(wi th an assumed ex tension REL) as the library file. I f no
LIBFILE command is given the I inker uses the defaul t library
file, LIB.REL. This instruction may be given more than once in a
prog ram but onl y the LIB FILE name spec i f i ed I ast is put in the
REL file. The LIBFILE instruction is not valid when' the
assembler is generating a hex or binary file.

ASMBLE/Z - 64 -

EQUATE, SET

Format: CHAR EQU 'z'

The EQU instruc tion requi res a 1abel and an argument wh ich is
evaluated as a l~ bit number. The label is given the l~ bit
val ue • A symbol (the label) may be defi ned onl yonce in a
program with the EQU instruction.

Format: CHAR SET 'X'

The SET instruction is similar to the EQU instruction. It
requires a label and an argument which is evaluated as a l~ bit
number. The label IS given the l~ bit value. The SET
instruction may be used to change the val ue of a symbol (the
label) as 0 ften as desi red.

- 155 - ASMBLE/Z

END

Format: END BLOTZ

The END instruction may be placed at the end of a program but its
use is optional. The END statement may have one argument
(optional) which is evaluated as a 16 bit address. The value of
the argument is used by the operating system as the starting
address of the program. The starting address must be in an ABS,
PROG, or DATA section. If it is in an EXT or COM section an
error message is printed and the starting address is ignored. If
no starting address is given, the operating system is able to
load the program but not start it. If a starting address is
given wi th the ORG add ress not equal to the LOAD add ress, an
error message is printed and the starting address is ignored. (A
prog ram cannot be executed prope rl y unless it is loaded at its
execution address.)

END program has no starting address.
END 22H program is started at 22H.
END GUMBAL program is started at GUMBAL.

ASMBLE/Z - 'i6 -

LIST, NLIST, MTLIST, NMTLIST

Format: NLIST

The NLIST and LIST pseudo-ops turn the listing off and back on.
When NLIST is encountered it suppresses the listing. When LIST
is encountered it reenables the listing.

NLIST
MOV
MOV
LIST
POP

A,B
D,E

H

Assemble this code but don't list.

Resume 1 isting.

The NMLIST and MLIST pseudo-ops turn the listing of macro
defin i t ions and expansions 0 ff and back on. When NMLIST is
encountered it suppresses the listing of lines containing either
macro definitions or macro expansions. When MLIST is encountered
it reenables the listing.

Format: MTLIST

The NMTLIST and MTLIST pseudo-ops turn the 1 isting of the text
part of macro expansions off and back on. When NMTLIST is
encountered it suppresses the 1 isting of the text part of macro
expansions (the bodies of the macros), but does not suppress the
listing of the hex code generated by the macros. When MTLIST is
encountered it reenables the listing.

- 67 - ASMBLE/Z

ERROR MESSAGES

Argument too big The value of the argument is greater
than 255 or less than -255.

The value of an argument in en RST
instruction is greater than seven.

Bad argument An unknown character, number,
symbol is used in an argument.

or

Bad arithmetic operator

Bad base

Bad instruction

Bad label

Bad number

IX or IY may not be used as an
argument with this instruction.

An unknown character is used as an
arithmetic operator.

The starting address is in a section
other than ABS, PROG, or DATA.

An entry in the instruction field is
not recogni zed as an instruction or
macro.

The label does not start with a $, %,
., or letter.

The radix character is unknown.

An improper digit appears in the
number.

Bad symbol The symbol does not start with a $, %,
., or letter.

Can't back up in COM file Attempted to ORG to a value less than
the current value of the program
counter or less then 100H. Code in a
COM file can only go forward.

Displacement too big

Division by 0

Dummy redefined

ASMBLE/Z

The value of the displacement is
greater than 127 or less than -128.

Attempted division by zero.

A dummy argument in the macro
definition is used more than once.

- 68 -

Extra argument

Extra ELSE

Extra ENDMAC

File not found

Macro not defined

MACRO symbol

Missing argument

Missing

Multiple tag

Nested INCLUDE

No EQU label

No expression

No EXT

No MACRO label

No relocate

Too many arguments are given for this
instruction.

The ELSE instruction does not have a
matching IF instruction.

The ENDMAC instruction does not have a
matching MACRO instruction.

The INCLUDE file cannot be found.

A macro is called before it is
defined.

A macro name is used in an instruction
argument.

Not enough arguments are given for the
instruction.

The) is missing from the name of an
index register.

This label has been used before.

The INCLUDE file calls another INCLUDE
file.

The EQU instruction does not have a
label.

An expression is not allowed with this
instruction, only a symbol.

An external symbol may not be used
with this instruction.

The macro defini tion does not have a
label.

A relocatable symbol may not be used
with this instruction or arithmetic
operation.

If the assembler is generating an
absolute binary or hex file a
relocatable operation is not allowed.

A relative jump instruction jumps from
one relocatable section to another.

- 69 - ASMBLE/Z

No SET label

Not allowed in COM file

Offset not zero

Out of range

Redefined

String too long

Symbol not found

Symbol table full

Too many arithmetic
operators

Too many commons

Too many externals

Too many index registers

The SET instruction does not have a
label.

The LO~D instruction cannot be used
when generating COM file. Generate a
HEX file instead.

The starting address is given with the
LOAD address not equal to the ORG
address.

The destination is too far for a
reI at i ve j um p •

The value of the label is changed.

A macro name is used as a non-macro
1abel.

The string contains more than two
characters.

An undefined symbol is used in an
argument.

There is no more room to add symbols
to the symbol table or to define more
macros.

More than one arithmetic operator is
used in front of a symbol or number.

More than 15 common sections have been
defined.

More than one external symbol has been
used in an expression.

An index register is specified for
both arguments in a MOV instruction.

Too many macro nest levels More than 15 macro definitions or 255
macro expansions are nested.

ASMBLE/Z - 70 -

WORKED EXAMPLE

This section contains assembler listings of three modules. The
first module contains the main part of the program which reads a
string of characters from the keyboard and prints them. The
second and third modules contain subroutines which communicate
with either the CP/M operating system (second module) or the K3
operating system (third module). This program may be rU,n with
either operating system simply by linking the main module with
the appropriate subroutine module.

- 71 - ASMBLE/Z

Str i ng Echo. ASMBLE v-5b Page 1

; String Echo.

0000
OOOA

CR
LF

EQU
EQU

13
10

Carriage return.
; Line feed.

0001 PRINT: MACRO
LXI
CALL

ENDMAC

TEXT ; Print a text string.
H,TEXT
TXTYP

EXT CI,TXTYP,MONITOR

Mark the end of the line.

the buffer.

return to the monitor.

Point to the line buffer.
Get a character.
Store it.

; Bump pointer.
; End of line?

Not yet. Keep going.
; Add a line feed.

TITLE
H,TITLE
TXTYP

H,BUFFER;
CI
M,A
H
CR
LOOP
M,LF
H
M,O
CRLF

H,CRLF
TXTYP

BUFFER ; Echo
H,BUFFER
TXTYP

MONITOR ; And

PRINT
LXI
CALL

LXI
CALL
MOV
INX
CPI
JRNZ
MVI
INX
MVI
PRINT

LXI
CALL

PRINT
LXI
CALL

JMP

START:

LOOP:

0017+21 0036'
001A+CD 0004#

0000+21 00211'
0003+CD 0000#
0006'21 0000"
0009'CD 0000#
000C'77
0000'23
OOOE'FE 00
0010'20 F7
0012'36 OA
0014'23
0015'311 00

0010+21 0000"
0020+CD 001B#
0023'C3 0000#

00211'44 115 flO
20 50 72
67 72 111
00 OA 2A

0036'00 OA 00

6FTITLE:
I1F
110
00

CRLF:

DBZ

DBZ

'Demo Program' ,CR,LF,'*'

CR,LF

0000"
0000"0080

0000'

DATA
BUFFER:DS

END
1'-8
START

String buffer.

ASMBLE/Z - 72 -

CP/M Operating System Subroutines. ASMBLE v-Sb Pnge 1

; CP/M Operating System Subroutines.
; These subroutines talk to the CP/M operating system.

0001 lOP: MACRO
MVI
CALL

ENDMAC

FUNCTION; Call an I/O processor function.
C,FUNCTlON
5

0000
0001
0002

MON EQU
CREAD EQU
CWRITE EQU

o
1
?

Return to the monitor.
Read a character.
Write a character.

ENTRY Cl,TXTYP,MONlTOR

OOOO'ES

000l+0E 01
0003+CD 0005
OOOl)'El
0007'C9

; Read a character from the keyboard with echo.
CI: PUSH H ; Save HL.

lOP CREAD
MVT C,CREAD
CALL 5

POP H
RET

Keep going.
H
TXTYP

Null?
Yes. QU it.

E,A Not yet.
H Save pointer.
CWRITE Write character.

C,CWRITE
5

Write a text string pointed to by HL.
The string ends with a null.

TXTYP: MOV A,M Get a character.
INX H
ORA A
RZ
MOV
PUSH
lOP

MVI
CALL

POP
JR

OOOE+OE 02
0010+CD 0005
0013'El
0014'18 F2

0008'7E
0009'?3

I iO OOA 'B7
V OOOB 'C8

000C'5F
000D'E5

the monitor.
MON

C,MON
5

Return to
MONITOR: lOP

MVI
CALL

0016+0E 00
0018+CD 0005

- 73 - ASMBLE/Z

K3 Operating System Subroutines. ASMBLE v-5b page 1

; K3 Operating System Subroutines.
; These subroutines talk to the K3 operating system. ~

0001 lOP: MACRO
CALL

ENDMAC

FUNCTION; Call an I/O processor function.
FUNCTION

DOOO
D037
D03D

MON EQU
CREAD EQU
CWRITE EQU

ODOOOH
MON+37H
MON+3DH

Return to the monitor.
Read a character.
Write a character.

ENTRY CI,TXTYP,MONITOR

; Read a character from the keyboard with echo.
CI: lOP CREAD

OOOO+CD D037 CALL CREAD
0OO3'4F MOV C,A

lOP CWRITE . Echo.,
0004+CD D03D CALL CWRITE
0007'79 MOV A,C
0008'C9 RET

Write a text string pointed to by HL.. The string ends with a null.,
0009'7E TXTYP: MOV A,M ; Get a character.
000A'23 INX H
000B'B7 ORA A ; Null?
000C'C8 RZ ; Yes. Quit.
00OD'4F MOV C,A ; Not yet.
OOOE'E.5 PUSH H Save pointer.

lOP CWRITE Write character.
OOOF+CD D03D CALL CWRITE
0012'EI POP H
0013'18 F4 JR TXTYP Keep going.

the monitor.
MON

MON

; Return to
MONITOR:IOP

CALL
END

0015+CD DOOO

ASMBLE/Z - 74 -

R~~~ING THE ASSEM3LER UNDER CP ~

To run the assembler type:

ASMBL <fn>.<opts>,<fn>.<opts>,<fn>.<opts> ..• /<type>

where

<fn> is a text file with the extension SRC

<opts> is an optional list of options up to three letters
long.

first letter: drive to get source from.

second letter: drive to send output file to.

third letter: drive to send listings to. If this
letter is omitted, no listing is
generated. If the letter is X, the
listing is sent to the console
instead of the disk.

<type> specifies the type of the output file. It must be
/COM, /HEX, or /REL. If no type is specified /COM is
assumed.

If more than one file is specified, the files will be assembled
as though they were one large file. The order in which they are
listed in the command line is the order in which they would
appear in this large file (note: no "large file" is actually
created). The name of the last input file is used as the name of
the output file. If an option is not specified, or if a space is
used in place of a letter, the default drive is used. The
exception to this is the listing file: If a space is used, a
listing file is created on the default drive, if nothing is
specified, no file is created. For example:

A>ASMBL INIT,NAVAGAT/HEX

Assemble INIT.SRC with NAVAGAT.SRC. Get both files from drive A
and send NAVAGAT.HEX to drive A. No listing file is generated
because no listing drive letter was specified.

C>ASMBL INIT.A,NAVAGAT. BX

Assemble the file INIT.SRC on drive A with NAVAGAT.SRC on drive
C. Send NAVAGAT.COM to drive B. Send the' listing to the
console.

- 75 - ASMBLE/Z

RUNNING THE ASSEMBLER UNDER K3

The assembler recognizes two additional instructions under the K3
operating system. They are as follows:

Format: JSW 1000H

The JSW instruction onl y generates code when the assembler is
producing a BIN file under the K3 operating system. It requires
one argument which is evaluated as a 16 bit number. The value of
the argument is used by the operating system as the job status
word. If the 1000H bit is set, the program may be started at the
starting address with the operating system RUN or START
commands. If the 20008 bit is set, the program may be restarted
at a location three less than the starting address wi th the
operating system restart command. If the JSW instruction is not
given, the operating system assumes a default value for the job
status word.

JSW

Format: VER '1' ,'2' ,'c'

10008 Allow the program to be started
but not restarted.

The VER instruction requires three arguments which are evaluated
as three ASCI I characters. These three characters are stored
only in the K3 BIN or K3 HEX file, and are read only by the K3
LIMITS prog ram. It is recommended that the first two characters
be used fo r a two dig i t version number and that the th i rd
character be used for a single revision letter. If your program
has only a single digit version number, the first character
ShO\lld be a space.

ASMBLE!Z

VER
VER

, ',' 7 ' , , b'
'2' ,'7' ,'x'

- 76 -

version 7b.
; version 27x.

\~en the assembler is started it asks you for a file
specification. The specification is in the following format:

DEV:NAMEl.BIN(,REL, or HEX) ,DEV:NAME2. LST=DEV:NAME3. SRC/B/RE/H/L/G/RU/E

Not everything in the specification line needs to be typed in.
For example, the extensions (BIN, REL, HEX, LST, SRC) are always
filled in by the ass~mbler and should not be typed in. This
means that the source file must always have a SRC extension. The
listing file always has a LST extension, etc.

The first entry in the specification determines the device and
file name (if necessary) to which the BIN, REL, or HEX file is
sent. If the output device is non-file structured (paper tape
punch, for example), a file name is not needed. If the output is
sent to a file structured device and the file name is not given,
it is given the name of the last source file.

The IB, IRE, or IH option determines which file is generated,
BIN, REL, or HEX. If no option is specified IB is assumed. If
no device and file name is specified but the IB, IRE, or IH
option is given a BIN, REL, or HEX file is assumed using the last
source file name. Here are some examples of proper file
specifications:

PP:=BLOTZ Output is sent to the paper tape punch.
DK3:TRIG=BLOTZ Output is sent to TRIG. BIN on DK3.
DKO:=BLOTZ Output is sent to BLOTZ.BIN on DKO.

If the IG (get) or IRU (run) options are specified the assembler
automatically sets the IB option (clears the IRE and IH options)
and generates a BIN file. At the end of the assembly the
operating system is asked to get (/G) or run (/RU) the BIN file.
If any errors are detected in the assembly, the get or run
request is suppressed.

The second entry in the specification determines the device and
file name (if necessary) to which the listing file is sent. If
the output device is non-file structured (line printer, for
example) a file name is not needed. If the output is sent to a
file structured device and the file name is not given, it is
given the name of the last source file. If the IL option is
given without a listing file specification a LST file is assumed
with the name of the last source file. The listing entry is
always the second entry in the specification line and is
separated from the first entry by a comma. If no BIN, REL, or
HEX file is desired, the line must start with a comma.

- 77 - ASMBLE/Z

I .R ASMBLE DK2:=TEST/RU

This command loa.ds and runs the assembler, assembles I)1(O:TEST. SRC
into DK?:TEST.BIN, loads, and runs DK2:TEST.BIN.

The IE option sends error messages to the line printer. This is
useful for generating a printed record of assembly errors.

If control C is typed while the program is running, the assembly
stops, all files are closed, and control returns to the moni tor.

If control 0 is typed while the program is running, the listing
of error messages is suppressed. If any other key is typed, the
printing resumes.

ASMBU.:/Z - 78 -

o

IASMBIOSI
A Restricted Version of the InterSystems Assembler

ASMBIOS.COM is a special, restricted version of ASMBLE/Z,
InterSystems' Z-BO macro assembler. ASMBIOS. COM has been
modified so as to assemble only FBIOS.SRC, the InterSystems cache
BIOS source file; SBIOS.SRC, the InterSystems standard BIOS
source file; and TBIOS.SRC, the source file for InterSystems'
"tiny BIOS."

When you run ASMBIOS.COM, it will print the following
message;

This program assembles only PBIOS.SRC, SBIOS.SRC, and TBlOS.SHC

If the file you are trying to assemble is not on~ of the above
three programs, ASMBIOS will merely open empty output files and
return to CP/M.

Except for the fact that ASMBIOS will assemble only the
above three files, it is exactl y the same as ASMBLE/Z.
Therefore, refer to the ASMBLE/Z manual for instructions on the
use of ASMBIOS. The unrestr icted assembler, ASMBLE/Z, is
available for sale from InterSystems, and is also part of the
PASCAL/Z compiler package.

If you have purchased ASMBLE/Z or the PASCAL/Z compiler,
there is no need to use or even keep ASMBIOS, since it can do
nothing that cannot be done by ASMBLE/Z. If you have purchased
PASCAL/Z, and there is no assembl e r manual followi ng th is note,
you will find the assembler manual in the PASCAL/Z binder.

