FLOPPY DISK SYSTEM
CONTROLLER

FIB
FIRMWARE

Copyright 1976 IMSAI Manufacturing Corporation
14860 Wicks Boulevard
San Leandro, California 94577

FLOPPY INTERFACE BOARD

FIRMWARE
Functional Description

FUNCTIONAL DESCRIPTION

The controller for the Floppy System is designed to make
the operation as easy as possible for the end user. All
power on initialization sequences and error recovery pro-
cedures are contained within the firmware in the floppy
-disk controller. Hence, if a hardware error is indicated
by the floppy disk controller, it is an unrecoverable er-
ror and the user need.not have error recovery procedures
in his/her software. Similarly, the floppy coatroller is
designed to monitor drives going NOT READY and becoming
READY again, and to insure that proper head position is
performed on these drives. .

The communication between the master MPU -and the IFM uses
an ocutput instruction (to a port address which has been
selected on the floppy disk controller board) for passing
single byte commands tc the controller. The floppy disk
controller has a DMA access to the master microprocessor's
memory for retrieving string commands and transferring data
and status back to the MPU. The two types of commands,
(i.e., the single byte command, and the data string command)
are described in more detail below.

The FIF board has provisions for using interrupts to assist
the MPU program in determining when a command has been
completed. The interrupt request line can be attached to
any of the eight request lines for the PIB wvia a wired
jumper. An interrupt request is generated whenever the -
processing of a command string is complete (i.e., the
status byte is set non-zero). It is cleared whenever a
command is accepted from the MPU via the output instruc-
tion. It should be noted that undefined commands are
treated as NOT's and can be used to clear the interrupt

' request.

The master microprocessor is put into a wait state whenever
it does an output instruction to the port of the floppy
disk controller. It is held in this state until the floppy
disk controller has taken the command from the master mi-
croprocessor and started processing it. The completion of
an operation for single byte commands is signified by the
IFM's ability to accept another command. The completion of
a4 command string obtained from the MPU's memory is signi-
fied by the passing of a proper status word to the master
microprocessor. Note that these command strings must al-
ways be in RAM memory since part of the command string is

a location for the IFM to transmit back the status of the
last operation.

(¥

FLOPPY INTERFACE BOARD FIRMWARE
Theory of Operation

THEORY OF OPERATION
FIF/IFM Firmware Description

This description will be divided into three separate sections.

The first section will describe the major storage areas and the
use of each area during the routine. The second section will give
an individual description of frequently called subroutines. The
third section will consist of a straight-line description of the
code in the order that it is normally executed.

Part I Description of the Major Storage Areas

This description will consist of given the label used for the-
storage area in the program and then describing the use of this
storage area.

PBAS

32 bytes in length and is used to contain the pointers to the
address in main memory for retrieving command strings. These
pointers are originally set to dummy values contained within the
firmware and can be modified by the main program as described in
the Users Guide.

PTRK

1 byte. Contains the physical track number that we are presently
working on.

LTRK

1 byte. Contains the logical track number we are presently working
on. Note that for normal operation the logical track number and
physical track number will coincide. However, for strict IBM
compatibility in the media readable format the logical track and
physical track may differ if there are defective tracks on the
disk.

SECT

1 byte. This byte contains the present sector we are working on,
and has a value from 1 to 26. During the Read All routine it is
used to contain the delay time before we start reading.

BUFA

2 bytes. This is the address pointer to the location in main
memory where the data to be written on the floppy is contained cr
where the data read from the floppy is to be stored. '

i

FLOPPY INTERFACE BOARD FIRMWARE
Theory of Operation

FUNC

1 byte. This byte in the four MSBs contains the function we are
presently executing. This function is a number in the range is
from 0 to 5. The fact that the logical track differs from the
physical track has been removed prior to storing the general func-
tion in this byte.

INTF

1 byte. This is the interupt flag and controls whether the
interupt routine returns a fatal error signifies that a drive is
not ready. In all cases, except when we are testing for drive
ready, the interupt flag has a value of 0 and this indicates that
the drive was ready and has become not ready during an operation.
This is a fatal error. In this case no retries are attempted.

RTRC

1 byte. 'This is the retry counter and is used for counting the
number of attempts to do an operation when an error occurs. Ten
attempts to retry an operation are made prior to telling the
main program that an error has occurred.

#

STPT

2 bytes. This holds the address in main memory of the status byte.
This byte is the second byte in all command strings.

HDFL

This byte contains the head flag to indicate to the firmware wheth-
er or not the head on the selected disk drive is lowered. If it
contains a value of 0 the head is raised. If it contains a value
of 1 the head has been lowered. During the time after an opera-
tion has been completed and prior to lifting of the head a value

of 2 is put in this location and then after one revolution the

head is raised. ‘ ‘

DRVO

1l byte. This byte contains the present location of the head for
drive 0. The most significant bit is the software write protect
flag for this drive. 1If it is a 1, the drive is protected. A
value is 7FH for the track location indicates that the drive shculd
be restored over track 0 prior to any operation being performed.

This value is put into this location upon power up to indicate
that all drives should be restored. It is also inserted whenever
a drive is detected to be off line and should be restored over
track 0 for alignment when it comes on line. It is also set when
a track address error has occurred and we must restore to track O
to attempt to relocate the desired track.

- 6

FLOPPY INTERFACE BOARD FIRMWARE
Theory of Operation

3 DRV1 1 byte. Refer to DRVO
DRV2 1 byte. Refer to DRVOQ.
DRV3 1 byte. Refer to DRVQ.
TDRV

1 byte. . This byte contains, in the four least significant bits,
a select bit for the drive we are about to operate on. It is
loaded by the drive address routine, DRAD and is references in
the drive ready routine, DRDY when we are going to see if a sel-

- ected drive is ready. The least significant bit corresponds to
selecting drive 0 while bit 3 corresponds to selecting drive 3
and so forth.

SDRV

1 byte. This byte contains in the 4 least significant bits the
select bit for the present drive.

DATB

133 bytes. This area is the data buffer location for the operating
program. Note that the label is at the bottom of the stack so that
data is pushed into this using the PUSH instruction during opera-
tion and popped off it during a write operation.

INTE

1 byte. This byte contains the present status of the interupt bit.

STAX

26 bytes. This is the stack area used for the program execution.

Description of the Frequently Called Subroutines

The format for this section is to give the four-letter name for the
subroutine followed by a description of the operations performed
within the subroutine.

DRAD

This is the drive address select routine. It operates by locking

at the four least significant bits of the B register to determine

what drive, if any, is selected. For the drive that is selected

it sets that bit in TDRV and puts the address of DRV0 through DRVI,
g whichever is appropriate, in register pair H. Note that the routire
k can be called repetitively to perform operations on different érives.

i
'

.k ot b b d et e dad e EDNedd LRANLLXLNES DL DCIVIVVLAR PO,

,Theory cf Operation

Each time it seéts up the address for a selected drive it clears
the corresponding bit in the B register. Upon entry, if no drive ‘
is selected it returns with the 0 flag (Z) set. If any drive is
selected it returns with Z = 0.

DRDY

This is the drive ready test routine. It tests the drive whose
address is contained in register pair H to see if it is ready.

Upon entry, it compares the value of TDRV .and SDRV to see if the
same drive is being reselected. If the same drive is being sel-
ected and the head on that drive is already lowered it does not
reselect the head since this would be a duplicate operation. If
either it is a different drive or the head has already been raised,
the selected drive bit is set in control register 1. The interupts
are then enabled follow by a SUB A register instruction. If, on
the following instruction the A register has a value of 1 this
indicates that the selected drive was not ready and the restore
flag is set in its status location. The routine exits with the

Z = 0 if the selected drive is not ready.

If the selected drive is ready, the routine checks to see if the
restore flag for this drive is set. If it is, it checks to see

if this drive is over track 0. If the drive is over track 0 it
executes a step out to insure that the drive goes off track 0 and
then steps back in to realign the track 0 position.- If the drive ‘
is already off track 0 it attempts to move the head out until a
track 0 indication occurs. 1If this indication does not occur
within a maximum of 77 steps the drive is determined to be inoper-
able and a failure exit is taken. If the drive does go back over
track 0 then the track address set to 0 and a successful exit is
used.

LDED

The load head routine is called when the formatter is going to
perform the final step to reach the desired track. This routine
loads the head and sets the greater than 43 bit if it is required.

CRCC Routine

This routine will compute the cyclic redundancy check bytes for
data stored in a buffer location pointed to by register pair D,
and for the number of bytes contained in register C. A complete
description of the operation of this routine can be found in other
INTEL publications.

HDRC

This routine computes the CRC for a address sector in the disk if
calls the CRC routine with each byte as it would appear in the ‘
header sector and returns with the value of the CRC for this header
in register pair H.

8

FLOPPY INTERFACE BOARD FIRMWARE
Theory of Operation

SYNC

This is the major routine used to f£ind the desired sector on a
track. Upon entry it calls HDRC to compute the expected CRC

for this track. It then sets up in the registers the values of
the track, sector, clock and address mark patterns so it can com-~
pare all of these within the time limit for each byte.

After the initial set up, the PLO is sunk and the routine goes
into a wait pattern waiting for a clock byte which has bit 5
missing. Once this byte has been found the clock pattern and
data pattern are read intc register pair H. The clock pattern

is compared first to see if it is appropriate. If it is not, the
routine recycles and tries sinking the PLO again to obtain a new
clock pattern. Each time the routine attempts to resink it checks
to see if an index pulse has occurred. If two successive index
pulses occur, it determines that it cannot sink properly on this
track and indicates an error.

If the clock byte is correct, it does an increment on the data
byte. (Note that the data byte should initially have a value of
FPE Hex and therefore 2 increments will cause it to be 0.) Next,
it reads and compares the track address byte. If it is not equal
a branch is made to determine whether or not the data byte was
correct. If the data byte was not correct then it was a false
sink and we attempt to resink. If the data byte was correct,
then the track address we read was incorrect and we have a track
address error which will cause us to restore the drive and reat-
tempt the operation. . 4

If the track address compares another increment is done on the

data byte. This should set the 0 flag if the data byte was correct.
Following this, the next byte is read from the disk. This byte
should contain 0. After this is read the jump on whether or not
the data byte of the ID mark was correct is performed. If it is
correct, the CRC value is popped after the stack and the sector
number is read and compared from the disc.

If it compares correctly, the second zero byte is read and ORed
with the first 0 byte to ensure that they are both zero.

Then the first CRC byte is read and compared, and finally, the
second CRC byte is read and compared. If both of these bytes
compare, 10 more bytes are read to locate the head one byte from
where the write enmable should be turned on, or 2 bytes prior to
where the PLO should be resunk for reading the data section of
this sector. Following the reading of these 10 bytes the routine ,
is exited. ;

RTRY

This routine is used to increment the retry counter. If 10 attempts
have already been made to perform this operation, then an.error is

4 - 9

4 - 10

FLOPPY INTERFACE BOARD

FIRMWARE
Theory of Operation

taken. 1If not, the routine exits to its calling location
where another attempt is made to perform the operation.

Straight Line Description of the Program

Prior to starting the main description, the interrupt pro-
cessing routine will be described. The interrupt instruc-
tion used in the FIF is a RST 7 which causes an interrupt
to location 38H. The interrupt routine looks at the inter-
tupt flag. If it is 0, a selected drive has become not
ready, and a fatal error is determined. No retries are
are attempted because the drive or controller is obviously
malfunctioning. A return is made .to the main program
through the error exit.

If the interrupt flag is a 1, it indicates that we are
testing to see if the selected drive is ready, and the
value of 1 is returned in register A to signify to the
drive ready test routine that the selected drive is not
ready.

On system power-up or RESET, the program sets the stack
pointer and checks to see if drive g is ready. If it is
ready, the program executes the bootstrap sequence as

follows:

1. A JMP § instruction is DMA'd into system memory
locations ¥, 1 and 2, so that the front panel
operations RESET, EXAMINE g, and RUN cause the
system processor to enter on infinite wait loop.

2. A small program to read sector 1 of track # from
drive § is DMA'A into system memory starting at
location 84.

3. The low byte of the address in the JMP instruc-
tion is changed to cause the system processor to
jump into the bootstrap code above location 84.

If the drive is not ready, or when the bootstrap sequence
is complete, the default pointers are set up. Once this
is done, the software protect flag is turned on for all
drives. No operation need be performed on the individual
drives since this will be done by the scan loop while
waiting for commands from the main processor. The scan
loop actually has 2 separate sections. The first section
is used when the head is down on a selected drive. This
inhibits selecting of other drives since the head would be
raised. We stay in this loop until two revolutions have
occurred or another command request is received from the
main processor. If two index pulses have occurred, the
head on the selected drive is raised and the flags are
set appropriately.

FLOPPY INTERFACE BOARD
FIRMWARE
Theory of Operation

If the head was not down, we go into the section of the
scan loop where we look at each drive. If a drive has
become ready and a restore flag is set on it, then the
restore is done on that drive. If a drive is ready and
has been ready, no action is performed. If a drive be-
comes not ready, the restore flag is set on it. These
operations are performed by calling the DRAD and DRDY
subroutines. In either of these loops a check is made to
see if the main program is requesting an action. If it
is, a jump is immediately taken to location ACTN where
the type of action requested is determined. An action
code or 0 calls for a command string to be read from main
memory and processed. This cperation will be described in
the next section.

An action code of 1 is the setting of a new address in
main memory for a pointer. The address of the pointer is
formed in subroutine PADO and then RBYT called to read the
next two bytes from main processor and to store them into
the proper pointer location.

An action code of 2 calls for a restore to be executed on
all drives whose bit is set in the four least significant
bits. Note that the subroutine DRAD is used to set the-
addresses for each of the bits and determine when all drives
have been processed. For each selected drive, the flag is
set in its respective status byte. The restore actually
will be done in the scan loop at a later time.

An action code of 3 calls for the software write protected
to be set in for each drive whose bit is set in the four
least significant bits. Again, the same routine DRAD is
used to cycle through the four least significant bits.

An action code of 5 calls for the software write protect
bit to be cleared for each drive which is selected in the
four least significant bits. If the action code is greater
than 5, it is considered to be a NOP and the routine re-
turns to the scan loop.

For an action code of 0, the address of the string in main
memory is determined. Then the string is analyzed and as

a function of the operation code the parameters are checked
to ensure they have the proper value. This is done in a
straight line fashion and the routine ends up at ACT6 with
all of the parameters except for the separate logical track
if it is a special IBM function. At this time, if it is

a special IBM function, the logical track number is read
and stored in LTRK after being parameter checked.

The dr%ve ;s then checked to ensure that it is ready. 1If
the drive is ready, and the write protect status is OK, the

4 -~ 11

4 - 12

J:'J..Ufi;x Lﬁi‘rmrnuz. Duts.l:u.;
FIRMWARE
Theory of Operation

drive is then positioned. Prior to positioning the drive,
the retry counter and interrupt flags are set to 0 since
any interrupt from now on will be a fatal error on the part
of the drive. The difference between present track and the
desired track is computed. If it is 0, we go out to test
if the head is loaded. If the head is already loaded, then
we may continue without any time delay. If the head has
not been loaded, we then come back to the section of the
routine where the track step delay is performed. Just
prior to the last step for the correct track, the head is
loaded. The .16 millisecond delay is used.

If this operation requires steps in or .out, register E is
set with the direction bit and the head is revised.

The program then issues a track to track step each 6 milli-
seconds until there is 1 track to go. At this time, the

. load head routine is called and after the 6 millisecond

step delay, we go through a 10 millisecond head settling
delay. At the completion of the drive positioning, we are
now ready to accomplish whatever operation was called for

in the action code. This occurs at ACTB where the
function in four MSBs of FUNC is interpreted and we jump

to the proper routine. The separate routines for processing
will be described in each of the following paragraphs.

The read all routine, RALL, starts by setting for 64 bytes
to be read. Note that the clock and data values are saved
for each byte and this is 128 bytes to be transferred. Af-
ter the set up, the routine waits until a index pulse has
occurred and then delays for the proper number of milli-
seconds (0 to 255). After the delay, the PLO is sunk and
the routine reads the clock and data pattern from 64
successive bytes storing them in the data buffer area DATB.
Then the data buffer area is moved to the proper location
in main memory and the stack pointer is reset to it's pro-
per value. The routine then goes to the scan loop to wait
for another operation.

WRIT.

The write routine is used to write a sector of data onto
the disk. The 128 bytes are first retrieved from the main
memory. After this, the CRC is computed. Note that 129
bytes are used to compute the CRC since the value of the
data in the Data Address Mark is used as the first byte
for the CRC computation. This is stored in memory soO it
is readily available using pop instructions during the
execution of the actual write on the disk. The sector lo-
cation routine SYNC is then called to get in the proper
position on the disk for writing the data in this sector.

FLOPPY INTERFACE BOARD
FIRMWARE
Theory of Operation

SYNC exits after reading 10 trailing 0 bytes following

the address header. The setup is then done for the write
routine and the write enable is turned on at approximately
the end of the 1llth byte. At this time, the data loop
starts by writing 6 bytes of zeros followed by the Data
Address Mark, 128 bytes of data, the two CRC bytes and 1
trailing 0 byte. At this time, a successful write has
been completed and the write enable is cleared. A normal
return is taken.

WDSsC

The next routine WDSC writes the Deleted Data Address
Mark on an individual sector. It again starts by calling
SYNC to find the proper sector on this track. Once SYNC
exits, the set up is done in the registers to perform the
write. A delay is executed prior to setting the write
enable. This ensures that the llth byte after the header
will pass prior to the write enable being set. Once

write enable is set, 6 bytes of zeros are written followed
by the Deleted Data Address Mark and a trailing zero byte.
At the completion of this byte, the write enable is cleared
and a successful return is taken.

Read Routine

This routine is used both for the check read function and
the read function. The difference being that after the
data is read and the CRC is checked, for a Check Read the
data is not moved back to the main memory.

The routine starts by calling the SYNC to position to the
proper sector. After returning from SYNC, the parameters
for checking the data address mark are put into the regis-
ters. A delay is then executed to ensure that the head
has passed the area where the write current is turned on
during a write operation before syncing the PLO. Then the
PLO is sunk and the read routine goes into the wait mode
waiting for the next byte with a missing clock pulse to
occur. When this byte is received, both the clock and
data from the byte are read into register pair H. First
the clock byte is compared to ensure that it has the pro-
per value (Hex C7). If this walue 1is proper, the data
byte is compared. If the data byte does not compare with
the value for a normal sector (FEH), a branch is made to
check to see if this is a Deleted Data sector (FBH). If

a Deleted Data Address Mark has been found, there is a
Deleted data read error and no retries are attempted, and
an error exit is immediately taken. If it is neither a
Data nor a Deleted Data Address Mark, it is an error and
a retry is attempted.

4 - 14

FLOPPY INTERFACE BOARD
FIRMWARE

Theory of Operation

After the data address mark has been successfully read,
the routine reads 130 bytes. The first 128 of these

are data and the last two are the CRC bytes. The inter-
rupt is disabled after he CRC bytes. The CRC is then
checked, a byte at a time. Note that the data pattern
from the Data Address Mark is the first byte processed
by the CRC routine. The 130 bytes are then processed and
t+he result should be a 0 CRC value, if a proper read has
been performed. If not, the CRC error is set and a re-
try attempt is made. If all the data is correct, the
value in FUNC is checked to see if it is a check read or
a read. If the function is a read, a jump is made to

_return the data to the main memory. If it is a check

read, a normal return is made.
FRMT

This is the format routine which writes all the gaps and
index marks on a track for later use by the read and write
routines. Due to the time constraints during writing, the
set up must be made for all variable parameters prior to
initiating the formatting of a track. Hence, upon entry
the format routine calculates the CRC value for each
header for each sector to be written. This is done using
the routine HDRC and the resulting values are stored in
the data buffer area. Note that the CRC value for the
data sectors is identical for all 26 sectors since they
all have the same address mark, followed by 128 bytes of
0. Hence, this CRC is used as constant. Once the header
CRC's have been computed, the routine does the set up for
starting a write. Then i+ waits for the index mark at
which time it is to start writing.

At this time, it sets the write enable and writes the last
46 bytes of GAP IV. DNote that whenever a gap is written
in this routine, the counter is always set to value one
less than the size of the gap and then the final byte is
written. The reason for this is to permit the maximum
set up time for writing the next byte which is always a
special clock pattern byte.

A sector consists of first writing GAP I which is 32 bytes
in length. Note that in this case the counter is set to
30 since a single trailing 0 byte is written after the CRC
value at the end of each sector. In the case of the first
GAP I (prior to sector 1), the gap is only 31 bytes in
length.

After writing GAP I, the Index Address Mark is written
followed by the track number, a zero byte, the sector.
(contained in register B throughout the routine), another

FLOPPY INTERFACE BOARD
FIRMWARE
Theory of Operation

zero byte, followed by the 2 CRC bytes (which have pre-
viously been stored in a data area). This is followed by
GAP II which is 17 bytes in length. Hence, the counter
is set to a value of 16. The end of GAP II is followed
by the Data Address Mark and 128 bytes of zeros (the

data field). The two CRC bytes, which are common for all
data sectors, are then written followed by a trailing
zero byte.

The sector number is checked to see if the format for

26 sectors has been written If not, a return is made to
write the next sector. If the 26 sectors have been writ-
ten, then the first section of GAP IV is written. This
consists fo writing 0's until the index pulse occurs. At
this time the write enable is cleared and a successful re-
turn to the main routine is taken.

4 - 15

FIFWARE.PRN : ' " PAGE |

;26 OCT 76. BRH. ADDED BOOTSTRAP LOADER.
;21 OCT 76. BRH. MERGED PROGRAM INTO ONE FILE,.

»

RRARARRX FLOPPY INTERFACE FIRMWARE &®K8RXAXARA

F 4
P
; IFM RAM ADDRESSES
= PBAS EQU 800H ;RAM STORAGE FOR COMMAND POINTERS
= PTRK EQU PBAS+32 ;PHYSICAL TRACK NUMBER
= LTRK EQU "PTRK+1 ;LOGICAL TRACK NUMBER
= SECT EQU LTRK+1 ;SECTOR NUMBER
= BUFA - EQU SECT+1 ;ADDRESS OF BUFFER IN MAIN MEMORY §
= FUNC EQU "BUFA+2 ;PRESENT FUNCTION IN 4 MSB
= INTE EQU FUNC+1 ;INTERRUPT FLAG (LATCH CONTENTS)
= INTF EQU INTE+1 ;INTERRUPTS: 1 FOR TESTING DRIVE,
. ; 0 IF INTERRUPT IS FATAL ERROR .
= RTRC EQU INTF+1 ;RETRY COUNTER FOR ERROR PROCESSING
= STPT EQU RTRC+1 ;HOLDS STATUS BYTE ADDRESS
= HDFL EQU STPT+2 ;0 IF HEAD UP, 1 IF DOWN,
; 2 IF WAITING TO BE RAISED
= DRVO EQU HDFL+1 ;DRIVE TRACK LOCATION IN 7 LSB.
= DRV1 EQU DRVO+1 ; MSB IS 1 IF DRIVE IS SOFTWARE
= DRV2 EQU DRVI+1 ; WRITE PROTECTED. 7 LSB = 7F
= DRV3 EQU DRV2+1 ; IF DRIVE MUST BE RESTORED.
= TDRV EQU DRV3+1 ;DRIVE SELECT BIT FOR NEXT DRIVE
= SDRYV EQU TDRV+1 ;DRIVE SELECT BIT FOR THIS DRIVE
= DATB EQU SDRV+133 ;TOP OF 133 BYTE DATA BUFFER \
= STAK EQU 900H ;TOP OF STACK g
= RAM EQU 900H ;START OF DEBUG RAM
’ i
; POWER UP ROUTINE /
b4
0000 ORG 0
0000 310009 CLXI SP,STAK ;SET STACK POINTER
0003 97 SUB A ;SET PARAMS FOR DRDY...
0004 322C08 . STA DRVO
0007 323108 STA SDRYV
000A 0601 MV I B,1 ;FORM DRIVE 0 ADDRESS...
000C CDBDO2 CALL DRAD
000F CDE302 CALL DRDY ;CHECK TO SEE IF DRIVE 0 IS READY
0012 €28100 JNZ SCLPH ;SKIP BOOTSTRAP IF NOT READY
0015 97 sus A ;RESET SYSTEM MEMORY BIT...
0016 320640 STA 4006H
0019 67 MOV H, A ;ZERO HL...
001A 6F MOV L,A
001B 3EC3 MV I A,0C3H ;GET JUMP OPCODE
001D 320080 STA 8000H ;STORE AT 0 IN SYSTEM MEMORY
0020 220180 SHLD 8001H ;STORE ADDRESS TO JUMP TO
0023 218080 o LXI H,8080H ;START OF BOOT CODE IN SYSTEM
0026 114200 LXI D,SYSCM ;POINTER TO BOOT CODE IN PROM
6929 0E1F MV 1 C,SYSLN ;LENGTH OF BOOT CODE
02B CD9103 CALL DMOV ; TRANSFER CODE TO SYSTEM MEMORY 4
T02E 3E87 MVI A,SYSTR ;POP IN LO BYTE OF JUMP ADDRESS
0030 320180 STA 8001H ; SO SMPU JUMPS TO BOOT CODE

0033 C38100 JMP SCLPH ;CONTINUE AT SCAN LOOP HEADER -

FIFWARE.PRN

0038
0038
go3s
003C
0030
003F

0042
00L3
0044
gous
0046
00&7

0049
00&A
004D
0 O0L4F
0052
0053
0056
0058
0058
005C
005E

001F
0081
6087
008D

0061
0063
0065
0067
0069
0068
006D
006F
0071
0073
0075
0077
0079
0078
007D
007F

0081
0084
0087
0089

3A2708
87

(o))
0ES1
€38302

21
00
60
00
01
0000

97
328100
D3FD
3A8100
B7
CA8DO0O
FEOL
CAQGOO
2F
D3FF
Cc38700

0o

8000
0010
0020
0030
0040
0050
0060
go7o0
0080
0090
00A0
0080
goco
0000
00EOQ
00F0

210008
116100
0E20

cD9103

INTR:

ORG
LDA
ORA
RNZ
MVI
JMP

38H
INTF
A

C,91H
AERX

;
; SYSTEM BQOT CODE

;
SYSCM:
STATS:

’
START:

STARO:

g

SYSLN
SYSTA
SYSTR
SYSTO

DB
CB
DB

- DB

DB.
DW

suB
STA
ouT
LDA
ORA
JZ

CPI
JZ

CMA
ouT
JMP

EQU
EQU
EQU
EQU

21H
0oH
00H
0C0H
01H
0000H

A
SYSTA
OFDH
SYSTA
A
SYSTO
1

0 .

QFFH
SYSTR

$-SYSCM

PAGE 2

;READ SECTOR COMMAND
SSTATUS BYTE

SHI BYTE OF TRACK #
;L0 BYTE OF TRACK #
;SECTOR #

;ADDRESS OF BUFFER

;MAKE ZERO

SRESET STATUS BYTE

SEXECUTE POINTER ZERO

;GET STATUS BYTE

;15 1T 02

;LOOP AS LONG AS IT IS
;STATUS OKAY?

;JUMP INTO BOOTSTRAP IF SO
;PUT ERROR CODE IN LIGHTS...

;TRY TO BOOT AGAIN

STATS-SYSCM+80H
START-SYSCM+80H
STARQ-SYSCM+80H

Ie
; DEFAULT POINTERS

;
DEFP:

DW
Dw
Dw
Dw
Dw
DW
oW
Dw
Dw
Dw
Dw
DWwW
Dw
Dw
DwW
Dw

00080H
01000H
02000H
03000H
04000H
05000H
06000H
07000H
08000H
09000H
0A000H
08000H
gCo000H
0D0O0CH
0EOOOQOH
0F000H

;
; SCAN LOOP HEADER

?
SCLPH:

LXI
LXI
MVI
CALL

H, PBAS
D, DEFP
c,32
DMOV

;SET DEFAULT POINTERS...

FIFWARE.PRN _ _ PAGE 3

008C 97 SuUB A ;INITIALIZE VARIABLES...
322808 STA 'HDFL
322608 STA INTE
323108 STA SDRYV
3ETF MV I A, 7FH
212€08 LX1I H, DRVO

0098 77 MOV M, A

009C 23 INX H

009D 77 MOV M, A

009E 23 INX H

009F 77 MOV M, A

00A0 23 | INX H

00A1 77 ; MOV M, A

;

; MAIN SCAN LOOP

’

00A2 3A2B08 SCLP: LDA HDFL ;GET HEAD FLAG
00A5 B7 ORA A ,
00A6 CAD300 JZ scLl ;JUMP IF HEAD NOT DOWN
00A9 3A0018 SCL2: LDA 1800H ;DOWN, CHECK COMMAND
00AC 1F RAR .
00AD DAE80Q0 JC ACTN
00B0 3A0L440 LDA 4004H ;NO, CHECK FOR INDEX
0083 E602 ANI 2
00B5 CAA900 JZ scL2
0088 3A2608 LDA INTE ;YES, CLEAR IT AND
00BB F680 ORI 80H ;MAINTAIN INTERRUPT FLAG

BD 320640 STA 4006H

0C0 3A2B08 LDA HDFL ;SEE IF TIME TO RAISE
00C3 3C INR A :
00C4% 322B08 STA HDFL
00C7 FEOQ3 CPI 3
00C9 C2A900 JNZ SCL2
- 00CC 97 SUB A ;YES
00CD 320540 STA 4005H
0000 322B08 STA HDFL
00D3 060F SCL1: MVI B,0FH ;SET TO TEST ALL DRIVES
00D5 3A0018 LDA 1800H
0008 1F RAR
00D9 DAES00 JC ACTN
00DC CDBDO?2 CALL DRAD ;GET DRIVE ADDRESS
00DF CAD300 JZ scLl ;JMP IF ALL DONE
00E2 CDE302 CALL DRDY ;TEST THIS DRIVE
00ES5 C3D500 JMP- SCL1+2

; ACTION JUMP MODULE - PERFORMS COMMON OPERATIONS
; VERIFIES COMMAND STRING, THEN JUMPS TO PROPER ROUTINE

97 ACTN: SUB A ;CLEAR INTERUPT FLAG

320640 STA 4006H

322608 STA INTE

3A0014 LDA 1400H ;GET COMMAND WORD

47 MOV B,A

EG6FO ANI OFOH ;GET TYPE

CAS5401 JZ ACT1 ;OF COMMAND STRING

C6FO ADI OFOH

CAQFO1 JZ' ACT2 ;POINTER SET

C6F O ADI OFOH

CA3401 JZ ACT3 ;RESTORE DRIVE

C6F O ADI OFQH '

FIFWARE.PRN

0104
gl07
0109
010cC
010F
0112
0115
0116
0119
011C
011F
0120
0123
0126
gl27
0128
0128
012C
g12€E
012F
0130
0132
0133
0134
0136
0139
013C
013D
013E
013F
0142
0144
0147
01LA
014D
01lLE
0150
0151
0154
0157
0158
0159
015A
0158
015C
015F
0160
0163
0165
0166
0167
0169
016A
016D
016E
016F
0172
0173

CA4201
CHFO
CA4701
C3A200
cD2801
cD1CO1
23
¢D1Co1
C3A200
3A0018
1F
D21C01
3A0014
77

c9
210008
78
E60F
07

4F
0600
09

c9
0E7F
CDBDO2
CAA200
7E

B1

77
€33601
0ESO
€33601
cDBDO2
CAA200
7E
E67F -
77
C34701
cD2801
LE

23

66

69

23
222908
28
CDYAO3
0EC1
46

23
3E00
86
C28302
23

86
C27F02
23

EB

ACT2:

RBYT:

PADD:

ACT3:

ACTL:

ACTS:

ACT1:

JZ
ADI1
JZ
JMP
CALL
CALL
INX
CALL
JMP
LDA
RAR
JNC

- LDA

MOV
RET
LXI
MoV
ANI
RLC
MOV
MVI
DAD
RET
MVI
CALL
JZ
MOV
ORA
MOV
JMP
MV1
JMP
CALL
JZ
MOV
ANI
MOV
JMP
CALL
MOV
INX
MOV
MOV
INX
SHLD
DCX
CALL
MVI
MOV
INX
MV1
ADD
JNZ
INX
ADD
JNZ
INX
XCHG

PAGE &4

ACTH ;SOFTWARE WRITE PROTECT
O0F OH
ACT5 ;SOFTWARE WRITE ENABLE
SCLP ;NOP FUNCTICN
PADD ;POINTER ADDRESS
RBYT ;LSB OF POINTER ADDRESS
H
RBYT ;MSB
SCLP
1800H SWALT
RBYT ‘
1400H ;DATA
M, A ; SAVE
H, PBAS ;BASE ADDRESS
A,B
OFH
,A
,0
Cc,7FH ;RESTORE FLAG
DRAD ;GET DRIVE ADDRESS
SCLP
A,M
C ;SET NEW STATUS
M, A
ACT3+2 .
C,80H ;PROTECT INDICATOR
ACT3+2
DRAD
SCLP
A, M
7FH ;CLEAR INDICATOR
M, A
ACTS
PADD
C,M ;CONVERT TO TRUE ADDRESS
H
H, M
L,C ;SECOND BYTE
H ;SAVE STATUS BYTE ADDRESS..
STPT
H !
FADD ; TAKE CARE OF MSB
C,0C1H ;SET FOR COMMAND STRING ERROR
B,M ; COMMAND
H
A,0
M
AERX ;STATUS BYTE NOT ZERO
H ; TRACK MSB MUST BE ZERO
M
AERX-4
H

FIFWARE.PRN

CDBDO?2
CA8202
CDBDO2
C28102
1A

13
FE4D
D27F02
322008
322108
78
EGFO
CAA00?2
FEAL
D28002
FE60
DAA201
C6AQ
CA8002
322508
FE30
CACAOQ1
1A

13

B7
CA7EQ2
FE1B
D27EQ2
322208
342508
FE21
D2CAQ1
1A
322308
13

1A

13
322408
78
FEGF
DADFO1
1A

87
€27€C02
13

1A
FE4D
D27C02
322108
0EAL
CDE302
€28302
78
£610
CAF901
3A0LLO
1F
D28202

ACT7:

ACTG:

ACTQ:

CALL
JZ
CALL
JNZ
LDAX
INX
CPI
JNC
STA
STA
MOV
ANI
JZ
CPI
JNC
CPI
JC
ADI
JZ
STA
CPI
JZ
LDAX
INX
ORA
JZ
CPI
JNC
STA
LDA
CPI
JNC
LDAX
STA
INX
LDAX
INX
STA
MOV
CPI
JC
LDAX
ORA
JNZ
INX
LDAX
CPI
JNC
STA
MVI
CALL
JNZ
MCV
ANI
JZ
LDA
RAR
JNC

DRAD
AERX~1
DRAD
AERX-2
D
D
77
AERX-4
PTRK
LTRK
A,B
0F OH
RDAL
0A1H
AERX=-3
60H
$+8
CADH
AERX=3 -~
FUNC
30H
ACTS6
D
D

A
AERX-5
27
AERX-5
SECT
FUNC
21H
ACTS
D
BUFA
D
D
D
BUFA+1
A,B
6F H
ACTQ
D

A

AERX-7

77
AERX=7
LTRK
C,0AlH
DRDY
AERX
A,B
10H
ACTS
4LoO4H

AERX-1

PAGE 5

;NO DRIVE SELECTED

;MORE THAN ONE
;TRACK NUMBER

;SAVE
; COMMAND
;READ ALL

; ILLEGAL TOO LARGE

;SAVE COMMAND

;UMP IF SECTOR NOT REQUIRED
GGET IT

;SAVE GOCD SECTOR VALUE
;SEE IF NEED BUFFER LOC

;YES, GET IT

;ALL PROCESSED, SEE IF IBM SPECIAL

;YES, GET LOGICAL TRACK

;SAVE IT
;SET DRIVE TEST ERROR
;SEE IF DRIVE READY

;OKAY, SEE IF WRITE

;YES, CHECK HARDWARE PROTECT

FIFWARE.PRN : PAGE 6

01F4 7E MOV A, M

01F5 17 RAL ;TEST SOFTWARE PROTECT
01F6 DA8102 JC AERX-2 SYES

01F9 97 ACT8: SUB A SSET PROCESSING FLAGS
01FA 322808 STA RTRC ;CLEAR RETRY COUNTER
01FD 322708 STA INTF ;SET INTERRUPT FLAG
0200 7E ACTD: MOV A,M ;NOW POSITION DRIVE
0201 E67F ANI 7FH ;GET PRESENT TRACK

0203 57 MOV D,A ;SAVE STATUS OF PROTECT
0204 7E MOV A,M

0205 E680 ANI 80H

0207 77 MOV M, A ' ;SEEK NEW TRACK

0208 3A2008 - LDA PTRK

0208 86 ADD M

020C 77 MOV M, A

020D 3A2008 LDA PTRK

0210 92 SUB D ;GET DIFFERENCE

0211 1E00 MVI E,0 | ;SET FOR STEP IN

0213 57 MOV D, A

0214 CAABO2 JZ TSTH ;ALREADY ON TRACK

0217 F22302 JP ACT9-4 :

021A 1E08 MVI E,8 ;STEP OUT

021C 97 SUB A

021D 92 SUB D

021E 57 MOV D,A

021F 3A3108 LDA SDRYV ;RAISE HEAD...

0222 320540 STA LOO5H

0225 00 NOP ‘ ;OELAY...

6226 00 ‘ NOP

0227 15 ACT9: DCR D ;TEST FOR TIME TO LOAD HEAD
0228 CCHAD03 CZ LDHD .
0228 78 MOV A, E ;LOAD STEP REGISTER
022C 320640 STA 4006H

022F C604 ADI &4 ;NOW SET STEP BIT

0231 320640 STA 4006H

0234 E608 ANI 8 ;CLEAR STEP BIT

0236 C600 ADI 0

0238 320640 STA 4006H

0238 FB ACTP: EI ;INTERRUPT IF DRIVE GOES NOT READY
023C CD8303 CALL TMLD ;WAIT 6 MILLISECONDS
023F CD8303 CALL TMLD

0242 CD8303 CALL TMLD

0245 15 DCR D ;SEE IF MORE REQUIRED
0246 F22802 JP ACT9+1

0249 1605 MVI D,5 SWAIT 10 MILLISECONDS FOR HEAD
0248 CD8303 CALL TMLD

024E 15 DCR D

024F C24BO2 JNZ $-4

;HEAD IS NOW LOADED, WE'RE ON RIGHT TRACK

;AND WE'RE READY TO TAKE ACTION

; RECALL THAT POINTER TO STATUS LOCATION IS SAVED
; IN STPT, FUNCTION IS IN & MSB OF FUNC

0252 F3 ACTB: DI ;DISABLE INTERRUPT UNTIL REQUIRED
0253 3A2508 LDA FUNC

0256 216A02 LXI H,JMPT ;BASE OF TABLE

0259 OF RRC

025A OF RRC

0258 OF RRC

FIFWARE . PRN o PAGE 7

OF RRC

E607 ANI 7 .

C26302 ACTA: JNZ $+04

E9 PCHL ;JUMP TO ROUTINE
23 INX H

23 INX H

23 INX H

3D DCR A

C35F02 JMP ACTA

}FOLLOWING IS JUMP TABLE FOR ACTIONS 0 TO 5
; NOTE THAT 7 TO 11 ARE SAME AS 0 TO 5 WITH DIFF LTRK

026A C3D703 JMPT: JMP RALL
026D C3D904 JMP WRIT
0270 C36B05 JMP READ
0273 C3EF05 JMP FRMT
0276 C36805 JMP READ ;JUST IGNORE TRANSFER AT END
0279 C32905 JMP WDSC
;ERROR RETURN ROUTINE BASE ERROR IS IN C
oC INR C
0c INR C
0c INR C
0c INR C
. oc INR C
0cC INR C
0C INR C
2A2908 AERX: LHLD STPT ;GET STATUS BYTE ADDRESS
CDYAD3 CALL FADD
71 MOV M,C
F3 DI ;INTERRUPTS OFF
97 suB A ;CLEAR CONTROL REGISTERS
320540 STA 40O5H
322808 STA HDFL
3E10 MVI A, 1l0H
320640 STA 4LOO6H ;SET INTERRUPT FLAG
322608 STA INTE
310009 - LXI SP,STAK ;RESET STACK POINTER
C3A200 JMP SCLP
322508 RDAL: STA FUNC ;SET FUNCTION
1A LDAX D ;GET DEAAY
13 INX DO
322208 STA SECT ;SAVE IT
C3C001 JMP ACT7 ;G0 GET BUFFER LOC
3A2808 TSTH: LDA HDFL ;SEE IF HEAD LOAD REQUIRED
B7 ORA A
3E01 MVI A1 ;ALREADY LOADED
322808 STA HDFL ;RESET FLAG
€25202 JNZ ACTB ;G0 PROCESS FUNCTION
CD6A03 CALL LDHD
C33802 JMP ACTP
; FORM DRIVE ADDRESS FOR DRIVE SELECTED IN 4 LSB OF B.
. CLEAR BIT OF DRIVE SELECTED. RETURN NON-ZERO IF
; THERE WAS A DRIVE AND ZERO IF NONE WAS SELECTED.
3EQF DRAD: MVI A, OFH - ;SEE IF ANY
AQ ANA B
c8 RZ
3E01 MVI A,1 ;02
212C08 LXI H,DRVO

A0 ANA B

FIFWARE.PRN ' PAGE 8

02C7 C2DB02 JNZ DRA1

02CA 3E02 MVI A2 512

02¢C 23 INX H

02CD A0 ANA B

02CE C20B02 JNZ DRAI

0201 3EO04 MVI A4 522

0203 23 INX H

0204 AD ANA B

0205 C20802 JUNZ DRAI

0208 3E08 MVI A, S8 ;MUST BE 3

020A 23 INX H

0208 323008 DRA1: STA TDRV ;SAVE SELECT BIT
02DE 2F CMA ;CLEAR THIS BIT
02DF A0 ANA B

02E0 47 MOV B, A

02E1 3C INR A ;SET FLAG -
02E2 C9 RET

; TEST DRIVE READY. RETURN NON-ZERQO FLAG IF NOT READY.
; IF READY, PERFORM RESTORE IF FLAG SET (DRIVE TRACK = 7F).

02€3 3EQL DRDY: MVI A,1 ;SEE IF SELECTED

02E5 322708 STA INTF ;DRIVE IS READY

02E8 3A3008 LDA TDRY ;SELECT DRIVE AND

02EB 57 MOV D, A ;SEE IF SAME AS LAST

02EC 3A31038 LDA SDRV -

02EF 92 SUB D

02F0 C2FAQ2 JNZ DRD6

02F3 3A2B08 LDA HDFL ;SAME SEE IF HEAD DOWN

02F6 B7 ORA A ‘
02F7 C20403 JNZ DRDS5 ;JUMP IF DOWN

02FA 97 DRD6: SUB A ;CLEAR HEAD FLAG

02FB 322808 STA HDFL

02FE 3A3008 LDA TDRV

0301 320540 STA 400SH -

0304 FB DRD5: El

0305 97 SUB A ;IF DRIVE NOT READY, INTERRUPT
0306 F3 DI ; OCCURS AND RETURNS A 1 IN A
0307 B7 ORA A

0308 C24003 JNZ DRD1

0308 3A3008 LDA TDRV © ;O0KAY, SAVE DRIVE B8IT

030E 323108 STA SDRV

0311 7E MOV A, M ;CHECK FOR RESTORE FLAG

0312 EG7F : ANI1 7FH

0314 FE7F CPI 7FH

0316 C23E03 JNZ DRD2

0319 3A0440 LDA L4004H ;YES, SEE IF OVER TRK 0

031C E604L ANI &

031E CLL4BO3 CNZ STIN ;IF S0, STEP IN

0321 3A0L440 LDA 4004H ;STILL THERE?

0324 E604 ANI &

0326 CO RNZ ;RETURN DRIVE NO GOOD

0327 164D MVI D,77 ;SET COUNT

0329 CD4FO03 DRD3: CALL STOU ;STEP OUT

032C 3A0LLO LDA 40O04H ; THERE?

032F E604 ANI &4 {
0331 C23A03 JNZ DRDL

0334 15 DCR D ;NO, MAX TRIES?

0335 €22903 JNZ DRD3

0338 14 INR D ;SET NON-ZERO FLAG

FIFWARE.PRN PAGE 9

c9 RET
3E80 DRD4: MVI A, 80H ;THERE, SET TRACK 0
A6 ANA M
77 MOV M, A
97 DRD2: SUB A ;SET ZERO FLAG
c9 RET
97 ‘DRD1: SUB A ;NOT READY, CLEAR HEAD FLAG
322808 STA HDFL
3E80 MVI A, 80H ;SET RESTORE FLAG
A6 ANA M
C67F ADI 7FH
77 MOV M, A
c9 RET
;STEP HEAD IN
97 STIN: SUB A.
€35103 . JMP STOU+2
;STEP HEAD OUT
3E08 STOU: MVI A,38
320640 STA 4006H
CH04 ADI & ;ADD STEP BIT
320640 STA L4006H
E608 ANI 8
C600 ADI 0
320640 STA 4006H
1606 MVI D,6 ;WAIT 12 MILLISECONDS
CD8303 STO1: CALL TMLD
15 DCR D .
C26203 JNZ STO1
c9 RET |
; LOAD HEAD ROUTINE. SET > 43 BIT IF REQUIRED
7E LDHD: MOV A, M ;GET TRACK
E67F ANI 7FH
636D FE2C CPI 44
036F 3F CMC
0370 3E80 MVI A, 80H
0372 1F RAR
0373 OF RRC
0374 OF RRC
0375 4F MOV C,A |
0376 3A3108 LDA SDRV ;GET SELECT BIT
0379 81 ‘ ADD C
037A 320540 \ STA 4005H
037D 3E01 MVI A,1l ;SET HEAD DOWN FLAG
037F 322808 STA HDFL
0382 C9 RET
0383 CDRAO3 TMLD: CALL MLDL ;TWO MILLISECONDS IS
0386 CD8AO3 CALL MLDL ;ONE PLUS ONE
0389 C9 RET
038A 3E83 MLDL: MVI A, 131
038C 3D DCR A
038D C28C03 JNZ $-1
0390 C9 RET
;MOVE C BYTES FROM D TO H
1A DMOV: LDAX D
77 MOV M, A
13 INX D
23 INX H
0D DCR C

FIFWARE.PRN : PAGE 10

0396 C29103 JNZ DMQV
0399 C9 RET ‘
039A 7¢C FADD: MOV A,H ;SET MEMORY BIT FOR TRANSFER
0398 E680 ANI 80H .
039D OF RRC
039E OF RRC
039F 320640 STA 4006H
03A2 7¢C MOV A, H ;SET BIT 15 FOR INTERNAL
03A3 F680 ORI 80H
03A5 67 MOV H,A
03A6 C9 RET
’
0048 = CRCU EQU 48H
0029 = CRCL EQU 29H
; COMPUTE CRC FROM BUFFER POINTED TO BY PAIR D
; BUFFER LENGTH IS IN C
; _
03A7 21FFFF CRCC: LXI H,O0FFFFH ;PRESET CRC VALUE
03AA 1A © LDAX D ;GET A BYTE
03AB CDB403 CALL CRC1 ;D0 ONE BYTE
03AE 13 INX D
03AF 00 DCR ¢
0380 C2AAQ03 JNZ CRCC+3
0383 C9 RET
0384 CS5 CRC1: PUSH B ;COMPUTE FOR ONE BYTE
0385 D5 PUSH D
0386 AC XRA H
03B7 47 MOV B,A
0388 07 RLC
06389 07 RLC
03BA 07 RLC
0388 07 RLC
03BC A8 XRA B
038D 4F MOV C,A
03BE E6FO0 ANI OFQH
03C0 57 MOV D,A
03C1 81 ADD C
03C2 5F MOV E,A
03C3 7A MOV A,D
03C4 CEO0Q ACI 0
03C6 AD XRA L
03C7 67 MOV H,A
03C8-78 MOV A,B
03C9 EGBFO ANI OFOH
03CB 47 " MOV B,A
03CC AB XRA E
03CD 6F MOV L,A
03CE 78 MOV A,B
03CF OF RRC
03D0 OF RRC
0301 OF RRC
03D2 AC ’ XRA H
0303 67 MOV H,A
0304 D1 POP D
0305 C1 POP B
03D6 C9 RET

;READ ALL LOOP...INTERLEAVE CLOCK AND DATA (64 BYTES WORTH)

FIFWARE.PRN

0E40
3E80
320640
318708
03E1 FB
03E2 3A0440
03E5 E602
03E7 CAE203
03EA 3A2208
03ED FEOO
03EF CAFAOQ3
03F2 57
03F3 CDBAOS3
03F6 15
03F7 C2F303
03FA 3E01
03FC 320640
03FF 97
0400 C600
0402 C600
0404 320640
0407 2A0240
040A ES
040B 0D
040C C20704
040F 2A2308
0412 CD9AO3
‘i 15 118608
(813 oc30
041A 1A
0418 1B
041C 77
0410 23
C041E 0D
04L1F C21A04
0422 2A2908
0425 CD9AOQ3
0428 F3
0429 34
042A 3E10
042C 320640
042F 322608
0432 310009
0435 C3A200

0438 CDLEOS
ES

97
322608
110240
3A2108
4F
3A2208
L7
31FCO08
3A0440
E602

RALL:

RAL1:

RAL2:

RALL:

RAL7:

RALS:

RALG:

MVI
MVI
STA
LX1I
El
LDA
ANT
JzZ
LDA
CPI
Jz
MOV
CALL
DCR
JNZ
MV I
STA
SUB
ADI
ADI
STA
LHLD
PUSH
DCR
JINZ
LHLD
CALL
LXI
MV I
LDAX
DCX
MOV
INX
DCR
JNZ
LHLD
CALL
DI
INR
MV I
STA
STA
LXI
JMP

;ROUTINE TO
;EXITS AFTER TEN BYTES OF ZEROES FOLLOWING HEADER

SYNC:

SYN2:

CALL
PUSH
SUB
STA
LXI
LDA
MOV
LDA
MOV
LXI
LDA
ANI

C,64

A, 80H
4006H
SP,DATB+1

4004H
2
RAL1
SECT
0
RAL2
D, A
MLDL
D

$-b
Al
4006H

RALS
STPT
FADD

M
A, 10H
Looo6H
INTE
SP, STAK
SCLP

HDRC
H

A

INTE

D, 4002H
LTRK

C,A

SECT

B,A
SP,STAK=4
4004H

2

PAGE 11

;BYTE COUNTER
;INHIBIT INDEX INTERRUPT

;SET DATA AREA

;WAIT FOR INDEX

;SYNC PLO

;DELAY 12 MICROSECONDS

;GET 64 BYTES WORTH

;MOVE TO MAIN MEMORY

;SUCCESSFUL RETURN

;SET INTERRUPT FLAG

;AND SAVE THE SET VALUE
;RESET STACK POINTER
;WAIT FOR MORE

SYNC ON START OF SECTOR

;COMPUTE CRC FOR HEADER
;SAVE FOR LATER
;CLEAR INDEX COUNTER

;REGISTER ADDRESS
;SET FOR FAST CHECKING

;WHERE CRC IS STORED
;TEST FOR INDEX

FIFWARE.PRN

aus3
0456
0458
0458
O045E
045F
0462
0Lbh
0467
0469
0L6C
046F
0471
0474
0475
0476
0477
0479
g47cC
0470
047F
gu82
0483
0486
0487
0488
0489
048C

048D

048E
O48F
0492
0493
0494
0495
0498
0499
04g9A
049C
049F
04AD
04Al
0L4AL
0LAS
04Ab
04A8
04AB
04AC
04AE
0 4AF
0480
0483
04B4
0LB5
0488
0489
04BC
048D

CAGFOL
3E80
320640
3A2608
3C
322608
FEOS
C26FO04
0ES3
CDE205
C33Co4
3E01
320640
97

E3

E3
ceo0g
320640
FB
3ECT
2A0040
BC
C24004
2C

1A

91
C2B40G
2C

EB

LE
C24004
Dl

7E

90
C24004
79

B6
0ESS
C26904
7E

92
C2A604
78

96
0ESH
C26%04
7€
0EO9
7E

0D
C2AEQL

310009

SYN&:

SYN1:

SYN3:

JZ
MVI
STA
LDA
INR
STA
CPI
JUNZ
MVI
CALL
JMP

. MVI

STA
suB
XTHL
XTHL
ADI
STA
El
MVI
LHLD
CMP
JNZ
INR
LDAX
SUB
JNZ
INR
XCHG
MOV
JNZ
POP
MOV
suB
JNZ
MOV
ORA
MVI
JNZ
MOV
SUB
JNZ
Mov
sSuB
MVI
JNZ
MOV
MVI
MOV
DCR
JUNZ
RET
INR
JNZ
DI
LDA
MoV
LXI

SYN1
A, 80H
4006H
INTE
A
INTE
3
SYN1
C,93H
RTRY
SYN?2
Al
4006H
A

0
4006H

A,0C7H
LOogoH
H
SYN2+4

C,M
SYNZ+4
D

A,M

B
SYN2+4
A,C

M
C,95H
SYNL
A,M

D

$+5
A,E

M
C,94H
SYN4
A,M

T W

c,
A,
C
§-2

L
SYN2+4

SDRV
B, A
$P, STAK

PAGE 12

;CLEAR IT

;YES, SEE IF SECOND

;SECOND SET ERROR

;SEE IF RETRY COUNT EXPIRED
;RETURN SAYS TRY AGAIN
;SYNC PLO

;WALIT FOR CHARACTER

;CLOCK PATTERN CHECK
;DATA SHOULD BE FC
;GET TRACK

;NOT SAME - WRONG TRACK?
;COMPLETE DATA BYTE CHECK

;GET ZERO BYTE
sJMP IF DATA BYTE NOT CORRECT
;GET CRC BYTES

;GET SECTOR

SCORRECT?

; YES
;LAST ZERO BYTE

;JUMP ON FORMAT ERROR
;CRC BYTE 1

;CHECK IT

;CHECK CRC BYTE 2

;JUMP ON ERROR
;OKAY, WAIT TEN BYTES

;RETURN OKAY
;SEE IF DATA BYTE CORRECT

;YES, THERE IS TRACK ADDRESS ERROR
;SET DRIVE FOR RESTORE

;CORRECT SP

/{/

£ IFWARE . PRN PAGE 13

CDBDO2 CALL DRAD
3E80 MVI A, 80H
Ab ; ANA M
C67F ADI 7FH
77 MOV M,A
0E92 MVI C,92H ;SEE IF RETRY DONE
CDE205 CALL RTRY
CDE302 CALL DRDY ;OKAY, POSITION DRIVE AGAIN
CA0002 JZ ACTD ;OVER 0 THEN GO AGAIN
0E91 MVI C,91H ;ORIVE INOPERABLE
C38302 JMP AERX

;ROUTINE TO WRITE A DATA BLOCK
2A2308 WRIT: LHLD BUFA ;FIRST GET DATA
CDYAQ3 CALL FADD
113208 LXI D,DATB-132
D5 PUSH D
EB XCHG
36FB MVI M, OFBH ;DATA HEADER FOR CRC
23 INX H : ‘
0ER0D MVI C,128
€D9103 CALL DMOV
D1 POP D ;GET DATA ADDRESS AGAIN
0E81 MVI C,129
CDA703 CALL CRCC
7¢C MOV A,H ;SAVE IT
12 STAX D .
13 ‘ INX D
7D MOV A,L
12 STAX D
13 INX D
97 SUB A ;TRAILING ZERO
12 STAX D
cD3804 CALL SYNC ;FIND PROPER SECTOR
210740 LXI H,4007H ;SET WRITE ADDRESS
014205 LXI B,542H ;SET COUNTERS
313308 LXI SP,DATB=-131
D1 POP D ;GET FIRST DATA BYTES
3E02 MVI A2 ;SET WRITE ENABLE
320640 STA 4006H
97 SUB A ;WRITE ZERO BYTES
05 DCR B
77 MOV M, A
C20D05 JNZ §-2
3EFB MVI A, OFBH ;WRITE DATA INDEX MARK
321FLQ STA 401FH
C31C05 JMP 545 ; START DATA LOOP
72 WRTZ2: MOV M,D
D1 POP D ;GET NEXT TwO BYTES OF DATA
0D DCR C ;SEE IF DONE
73 MOV M,E ;WRITE DATA BYTE
C21A05 JUNZ WRT2
73 MOV M,E ;WAIT FOR ZERO BYTE
97 sus A ;CLEAR WRITE ENABLE
320640 STA 4006H
C32204 JMP RALSG ; SUCCESSFUL RETURN

;ROUTINE TO WRITE DELETED DATA ADDRESS MARK
CD3804 WDSC: CALL SYNC ;FIND SECTOR

210740 LXI H,4007H ;DATA WRITE REGISTER

FIFWARE.PRN

052F 010105
0532 3C
0533 3C
0534 3C
0535 3C
0536 3E02
0538 320640
0538 97
053C 05
0530 77
0538 C23C05-
0541 3EF8
0543 321F40
0546 97
0547 77
0548 320640
0548 C32204
054E 21FFFF
0551 3EFE
0553 CDB403
0556 3A2108
0559 CDB4O3
655C 97
055D CDOB403
0560 3A2208
0563 CDBL4O3
0566 97
0567 CDB403
056A C9

0568 CD3804
056E 110240
0571 014106
0574 318708
0577 05
0578 C27705
0578 3E01
057D 320640
0580 97
0581 E3
0582 E3
0583 E3
0584 E3
0585 320640
0588 3ECY
058A 06FB
058C 2A0040
058F 94
0590 C2D905
0593 EB
0594 56
0595 78
0596 90
0597 C2CFO05S
059A 5E
0598 D5
059C 00
059D 56

LXI
INR
INR
INR
INR
MVI
STA
suB
DCR
MOV
JNZ
MVI
STA
SUB
MOV
STA
JMP

HDRC: LXI

MVI
CALL
LDA
CALL
sus
CALL
LDA
CALL
suB
CALL
RET

-
un
(=]
[
XI

[o

» o N
(o2}
X

k=1

Rili}

T oo
T

o

PFEFPOIEIEFPEDD>O

M, A
4006H
RALG

H, OFFFFH
A, OFEH
CRC1
LTRK
CRC1

A

CRC1 .
SECT
CRC1

A

CRC1

;SET COUNTERS

PAGE 14

;EQUALIZE TIME WITH WRITE

;SET WRITE ENABLE

JWRITE ZERO BYTES

;WRITE DELETED DATA HEADER

; TRAILING HEADER

;CLEAR WRITE ENABLE
;SUCCESSFUL RETURN
;COMPUTE HEADER CRC
;ADDRESS INDEX MARK

;TRACK ADDRESS
;ZERO BYTE
;SECTOR NUMBER

;ZERO BYTE

;IT IS ALL COMPUTED IN H,L NOW

;ROUTINE TO READ A SECTOR OF DATA

READ: CALL

LXI
LXI
LXI
DCR
JNZ
MVI
STA
suUB
XTHL
XTHL
XTHL
XTHL
STA
MV1
MVI
LHLD
SuB
JNZ
XCHG
MOV
MOV
Sus
JNZ

RED2: MOV

PUSH
DCR
MOV

SYNC
D,4002H
B,641H
SP, DATB+1
B

$-1

A,l

4006H

;FIND SECTOR:

;DATA READ ADDRESS

;SET COUNTERS

;SET DATA BUFFER READ POINTER
;DELAY PAST HEAD TURN ON AREA

;SYNC PLO

;SET UP FOR TESTING DATA

;ADDRESS MARK

;READ IT FROM DISK
;CHECK CLOCK PATTERN

;GET FIRST DATA BYTE

; TEST DATA FROM INDEX MARK

;JUMP TO SEE IF DELETED DATA

;ALL OKAY, GET ANOTHER DATA BYTE
;STORE TWO OF THEM

;GET NEXT BYTE

{

FIFWARE.PRN

059E

C29A05
S5E

D5

F3
310009
21FFFF
118608
0E82
3EFB
CDB403
1A
CDB403
18

0D
C2B405
7€

BS
C2D905
3A2508
E6FO
FE20
CAQF 04
C32204
C603
C20905
0E97
€38302
0EY6
F3
CDE205
C36805

C38302

3ELA
322208
118608
CDLEOS
7D

12

18

7C

12

18
3A2208
3D
322208
C2F705
13
210740
012C01

- 3E80

320640

JUNZ
MOV
PUSH
DI
LXI
LXI
LXI
MVI
MVI
CALL
RED3: LDAX
CALL
DCX
DCR
JNZ
MOV
ORA
JNZ
LDA
ANI
CPI
JZ
JMP

- RED4: ADI

JNZ
MV I
JMP
RED1: MVI
DI
CALL
JMP
; TEST RETRY
RTRY: LDA
INR
STA
cPI
RNZ
JMP
;ROUTINE TO
FRMT: MVI
STA
LX1
FRM1: CALL
MOV
STAX
DCX
MOV
STAX
DCX
LDA
DCR
STA
JNZ
INX
LXI
LXI
MVI
STA

RED2
E,M
D

SP, STAK
H, OFFFFH
D, DATB
c,130
A, OFBH
CRC1

D

CRC1

D

¢

RED3
A, H

L

RED1
FUNC
0F OH
20H
RAL7
RALG

3

RED1
C,97H
AERX
C,96H

RTRY

READ
COUNTER.

RTRC

A

RTRC

11

AERX
FORMAT A

A, 26

SECT

H,%007H
8, 12CH
A, $0H
4006H

PAGE 15

;LOOP UNTIL DONE
;THIS IS SECOND OF CRC BYTES
;SAVE THEM

;ALL DONE

;NOW CHECK CRC

;FIRST DO HEADER DATA

;GET DATA BYTE

;SEE IF DONE

;SEE IF CRC CORRECT
;OKAY, SEE IF CHECK READ

;GO MORE DATA IFF READ
;SUCCESSFUL RETURN IF CHECK READ
;TEST FOR DELETED DATA

;YES, SET ERROR
; AND RETURN
;CRC ERROR

;SEE IF TRY AGAIN
;YES

RETURN IF TIME TO TRY AGAIN
; INCREMENT RETRY COQUNTER

;SEE IF ALL DONE

;TRIED MAX TIMES, SO QUIT
TRACK OF A DISKETTE

;COMPUTE AND SAVE HEADER

;CRC VALUES FOR ALL 26 SECTORS

;CRC SAVED
;SET NEXT SECTOR

;LOOP UNTIL 26 DONE

;SET D TO CRC OF FIRST SECTOR
;WRITE REGISTER

;SET COUNTERS

;WAIT FOR INDEX

0616
0617
0614
061cC
061F
0621
0624
0625
0626
0627
062A
0628
0620
0630
0631
0633
0634
0635
0638
0639
0638
063E
o641
0642
0643
0644
0646
0647
0648
0649
064A
0648
064C.
064D
064E
064F
0650
0653
0654
0656
0659
065A
065C
065D
065E
0661
0662
0664
0665
0667
0668
0669
0668
066C
066D
0670
0673
0674

FB
JAOLLO
E602
CA1706
3E82
320640
87

77

0D
C22506
77
3EFC
321740
97
0ElE
77

0b
€23306
77
3EFE
321FL40
3A2108
77

87

77
0E1Q
70

77

1A

13

77

1A

13

77

g7

0o
C24D06
77
3EFB
321F40
g7
0E7F
77

00
C25C06
77
3E48
77
3E29
77

04
3ELB
30

71
€23006
3A0LL40
71
E602

FRM2:

FRMGL4:

El
LDA
ANI
Jz
MV
STA
SUB
MOV
DCR
JNZ
MOV
MV
STA
sUB
MV I
MOV
DCR
JNZ
MOV
MVI
STA
LDA
MOV
sU8
MOV
MV I
MOV
MOV
LDAX
INX
MOV
LDAX
INX
MOV
SUB
DCR
JNZ
MOV
MV I
STA
Sus
MV I
MOV
DCR
JNZ
MOV
MV I
MOV
MV I
MOV
INR
MV I
SUB
MOV
JNZ
LDA
MOV
ANI

4O04H

$-5
A, 82H
4006H

Ch™

“ -

-

- ~ .
> X

i

FBH

N N W NN . “ . E N e
BPO>OD>N P - I P
A A [%) B
o) O ~ T
~ [y .

-
N
~d

m“zg;g\xm:t:CDZDZ>ZMOZO>-P)>K_MOJ>ZOOZOOZZQ
OO0

PAGE 16

;SET WRITE ENABLE
;SET ZERO BYTES

SWRITE GAP &

;WRITE INDEX ADDRESS MARK

;D0 A SECTOR'S WORTH
;FOR GAP 1

;LAST BYTE
;1D ADDRESS MARK

;TRACK ADDRESS

;ZERO BYTE

;SET COUNT FOR GAP 2
TSECTOR NUMBER

;ZERO BYTE
;CRC BYTE 1

;CRC BYTE 2
;ZERO BYTES FOR GAP 2
;LAST BYTE

;DATA ADDRESS MARK

;DATA BYTES FOR SECTOR ARE ALL ZERO
;NUMBER BYTES LESS ONE
;WRITE ONE

;LAST BYTE

;ADVANCE SECTOR NUMBER

;WRITE ZERO BYTE
;LOOP TILL DONE
SWRITE ZEROES TO INDEX

$0676
§0679
‘67A

FU AU NAMRD o FIRIN

C27D06
71
C37006
97
320640
C32204

FRM3:

JNZ
MOV
JMP
SUB
STA
JMP
END

FRM3
M, C

* FRMY4

4oo6H
RALS

;CLEAR WRITE ENABLE

FAGE L7

