
4.0 ZASM

z80 assembler - Zilog style

Table of Contents

Sect ion

1.
11.

111.
1V.

V.
V1.

4. I INTRODUCT ION

Title

Introduction
Assembler Execution
Source Format
Error Messages
Loading the Object
Object Fi Ie Format

The Dynabyte Inc. z-80 Zilog assembler, ZASM.COM, reads Zilog

assembly language source files previously created with the systems

text editor and produces Z-8D machine object code. The object

output of the assembler is in INTEL standard hex format. The hex

output can be converted to absolute machine code with the utility

LOAD. COM.

20

•

4.2 Asse~bler Execution

The Assembler is called from disk simply by typing "ZASH"

followed by the file name of the source code to be assembled.

This source file MUST have the extension' .z80' to be found by

the Assembler, regardless of whether or not it consists entirely

of z80 code.

this

to the

that if

default

Notedisk.

specify an optional 3-letter

has NO relation to the 3-

When calling ZASM, the user may

drive-request for the file name that

letter extension of the file name on

3-1etter drive-instruction is omitted, ZASM will

CURRENT drive for all operations.

This drive-request instruction is of the form SXP, where:

S indicates where the SOURCE fi Ie is;

X indicates where the HEX'object fi Ie is to be placed;

P indicates where the PRINT fi ie is to be placed.

The letters (@, A through D) indicate the disk drive to

place or find the file, where @- current and otherwise a specific

drive. For the two output files (print, and object), X, Y, or Z

is allowed, which means:

X - Console

Y - Printer

Z - Dummy (no output)

The object file wil I be created on the dIsk with the extension,

.HEX, and the print-listing will be created with the .PRN extension.

21

•

For example:

Suppose the fi Ie to be assembled resides on disk drive A under

the fi Ie name SAMPLE.zBo. If it is desi red not to have the

.HEX and .PRN files sent to drive A (for lack of room on disk A,

for example), the Assembler might be called by the command line:

ZASH SAMPLE. ABY (return)

This will assemble the source file on drive A, create an

object file on drive B, and send the print-listing to the printer.

One option may be specified at assembly time if desired. It

instructs the assembler to construct ~ cross-reference listing as

part of the print (.PRN) file. This option is specified simply

by typing it as part of the command line when calling ZASH. The

option is designated by a single letter as follows:

x - generate a cross reference

It should be noted that the 'X' option requires additional

memory space and on very lengthy programs an overflow error message

may be given. Consider the following example:

ZASH SAMPLE X (return)

This will generate a X-reference as part of the file for

this assembly. Notice that the options must be separated from

the fi Ie name by at -least one space.

22

4.3 SOURCE FORMAT

The Assembler recognizes four fields or different types of

expressions. These are:

labels,

opcode mnemonics,

operands,

remarks.

The conventions which apply in the use of these four fields are

given below.

Any two of the four fields must be separated from each other

by at least one delimiter; these are: a tab, a space, a colon

(after labels only) a semi-colon (before remarks only), or a CR-
LF (to terminate lines). Multiple deli~iters may be used to improve

readability.

LABELS

May be as long as desired (if all on one line); however, only

up to the first 6 characters are used by the assembler. Thus, the

first six characters of a label may not be duplicated in another

label.

The first character of a label must be an alphabetic character,

the remaining characters may be any alphanumeric (A-z, 0-9). The

delimiter for a label is generally a colon space, colon-tab.

The label must be followed by a colon. The colon may be

followed immediately by the operation or one or more blanks. Labels

need not start in column one. A label can not be a register name.

23

Correct Labels:

Incorrect Labels:

T123115

Al

T123456 (last character is Ignored)

A E SP HL

B F AF IX

C H BC IY

0 L DE R

I

4A5B (Starts wi th a numeric character.)

24

----- -------~--_.- -

OPCODES

Hay be preceded by a label. A space is not required between

the label and the op-code. The op-code must be followed by at

least one space.

The operands must be separated by commas. The length is

governed by the type of reference. A reference to a register pair

is typically two characters. A label as an operand is up to six

alphanumeric characters, and a numeric literal may not exceed

OFFFF hexadecimal. The op-code of an unlabeled code line may

start In column 1.

The ZASH Assembler recognizes all standard Z-80 mnenomics.

For those who do not have familiarity with these, they are well-

documented In the z-80 CPU Techn Ica 1 Hanual published by both

Zilog and Hostek. The following mnemonics are recognized by ASMZ

In place of those pub I Ished by ZllOG:

ADC s; ADD n' ADO r', ,
ADD (Hl) : ADD (lx+d) ; ADD (lY+d);

sec s; IN Atn; OUT nJA.

which were published by Zilog as:

ADC A,s;

ADD A, (Hl) ;

sec A,s;

PSEUDO-OPCODES

ADD A,n;

ADDA,(1x+d);

INA,(n);

ADD A,r;

ADD A,(lY+d);

OUT (n) ,A.

Pseudo-Opcodes are a special form recognized only by the

Assembler and for which no object code Is generated. The con­

ventions of ZASH for pseudo-ops are described in another section.

These are ORG, EQU, DEFe, DEFW, DEFS, and END.

25

OPERANDS

May consist of register names, constants, label names,or

expressions. Register names include all standard z-80 registers.

These are documented in the Z-80 CPU Technical Manual published by

Zilog and Mostek for the reader who is not familiar with their

names or purposes. Constants consist of one of the types outlined

below.

Constants - allowed; hexadecimal, decimal, and ASCI I constants

according to the following conventions:

Hex - Numbers formed from hexadecimal digits (0-9 and A-f)

and terminated by the character 'H'. A hex number beginning

with a letter MUST be preceded by a '0' to distinguish it

from a label or register name.

Range: -OFFFFH OFFFFH.

Example: LD DC,2B7AH

Decimal - Numbers formed from decimal digits (0-9) and

·Ieft unterminated.

Range: -65535 65535

Example: LD BC,11130

ASCI I - Numbers represented by the ASCI I character(s)

itself (themselves) enclosed in single quotes.

Range: I ~ through ,~, which amounts to the values 20H

through 7EH, including all alphanumerics and punctuation.

Example: LD BC,'+Z'

26

The "$" character may be used in the operand of any opcode

allowing expressions as operands. The "$" is used to represent the

current location counter of the Assembler. Note that "$" points

to the BEGINNING of the instruction which contains it and not to

the end.

Expressions - are allowed as operands. Computations are performed

on both numbers and labels. The operations of addition, subtraction,

multipication, and division are allowed. The expression is evaluated

from left to right. The expression 2+6 * 2 will evaluate to 16.

Example: LD B,2+6*2

27

load with 16

COMMENTS

The comment field is free-format includ ing any printable ASCII

characters as long as the comment is preceded by a 'i'. The remark

may follow an opcode, operand, or label or may exist on a line by

itself. The ';' may be in column one if it is desired to have the

remark on a line by itself. Multiple blanks or tabs may be used

before or within the remark to improve readability. A CR-LF

terminates the remark. Remarks may appear on any line.

PSEUDO-OPS

DEFB or DB (Defined BYTE)

The DB pseudo-op is used to tell the Assembler to reserve a

byte or string of bytes as data in the object code. The bytes may

be specified using any of the forms of constants described above;

or as a series of labels which have been previously defined or

equated to a value. Note that if the value or the label or constant

exceeds the range 0 to 255 (or its equivalent representation in

hexidecimal, octal. or binary). the DB wi 11 generate an express ion

error. Also note that either of the terms DB or DEFB may be used.

DEFW or DW (Defined Word)

The DW pseudo-op is used to tell the Assembler to reserve a

word or string of words in the object code. A word is defined to

be 2 bytes. Thus, the DW pseudo-op might be used to specify a

look-up table or absolute addressess. The words may be specified

28

using any of the forms of constants described in the Constants

section above, or a label which has been previously defined or

equated to a word. Note that either of the terms OW or OEFW is

recogni2e~ by ZASH. Also note that the Assembler places the low

byte FIRST, treating every word of two bytes as though it were an

address.

ORG (Program Origin)

The ORG pseudo-op sets the Assembler location counter and is

used when it is desired to start assembly of a block of code at a

particular address. This location may be set by the user to be

absolute, or it may be left up to the Assembler to determine the

value of the ORG. The location counter may be set to a value as

often as desired in a source program; that is, multiple ORG

statements may be used.

29

EQU (Equate)

The EQU pseudo-op is used to inform the Assembler that two

named quantities are equivalent. It is also used to equate a label

to a particular value. Once this label is defined, it is defined

for the entire source program.

END (End Assembly Pass)

The END command is a signal to the Assembler that a logical

body of code is complete. Therefore, only one END statement should

appear in a module. Should the END appear in the middle of a

block of code, everything following the statement will be ignored

by ZASH. If an expression occurs, it will be used to indicate the

execution address.

4.4 Error Hessages

The following error conditons will be flagged by the Assembler

and will be placed in the print listing ahead of the line number. A

maximum of two errors per line will be given.

A

D

L

H

o
P

R

S

U

V

Argument error

Double definition

Label error

Hissing Label

Op-code error

Phase error

Range error

Syntax error

Undefined

Value error

30

4.5 LOADING THE OBJECT

Once a file has been assembled, an Intel Standard HEX file is

generated as described in Section VI. This fi Ie cont"i"ns specific

address information as to where the object code is to reside in

memory. This file may be converted to a binary image by using

LQAD or DOT and the SAVE command.

31

•

4.6 abject File Format

Record Mark Field: Frame 0

The ASCI I code for a colon (:) is used to signal the start of a

record.

Record length Fi e ld: Frames 1 and 2

The number of data bytes in the record Is represented by two

ASCII hexadecimal digits in this field. The high-order digit is in

frame 1. The maximum number of data bytes in a record is 255 (FF

in hexadecimal). An end-of-file record contains two ASCI I zeros In

this field.

load Address Field: Frames 3 to 6

The four ASCII hexadecimal digits in frames 3-6 give the

address at which the data is loaded,' The high-order digit is in

frame 3. the low-order digit in frame 6. The first data byte is

stored In the location indicated by the load address; successive

bytes are stored in successive memory locations. This field in

an end-of-file record contains zeros or the starting address of the

program.

Record Type Field: Frames 7 and 8

The two ASCII hexadecimal digits in this field specify the

record type. The high-order digit is in frame 7. All data records

are type 0; end-of-file records are type 1. Other possible values

for this field are reserved for future expansion.

32

Data Field: Frames 9 to +2* (record length) ~1

A data byte is represented by two frames containing the ASCII

characters 0-9 or A-F, which represent a hexadecimal value between

o and FF (0 and 255 decimal). The high-order digit is in the first

frame of each pair. If the data is 4-bit, when either the high or

low-order digit represents the data and the other digit of the

pair may be any ASCII hexadecimal digit. There are no data bytes

in an end-of-file record.

Checksum Field: Frames 9+2* (record length) to 9+2" (record

1ength) +1

The checksum field contains the ASCI I hexadecimal representation

of the twos complement of the 8-bit sum of the a-bit bytes that result

from converting each pair of ASCII hexadecimal digits to one byte

of binary, from the record length field to and including the last

byte of the data field. Therefore the sum of all the binary equivalent

data, including the checksum is zero (0).

': I <len.2'> <load address.4'> <:type.2) <data.n) <check.2>

33

