

36363536 M3 W-3h 3 Pa ge 1

INTRODUCTION
t 222 T s

- The Cromemco CDOS Text Editor enables one to create, edit, and save
ASCII text or program files. The CDOS Text Editor is very versatile in

that it can be used to manipulate and edit text on & line, word. or
character basis. Characters and words can be inserted in, deleted from.
or changed within a 1ine of text, The point of change can be chosen

to be the beginning or end of the text, the beginning or end of any line,
or the beginning or end of any word. insertions and deletions can be
made that cover more than one line of text. The Text Editor is not
encumbered by line numbers or other extraneous information, and operates
uysing only the text itself as a guvideline to changes,

General Procedure of Editing

EEERERIDISIRERIE = L

The usual procedure for creating a new text file is to call the Text
Editor (hereafter called the Editor), enter text from the system console
in Insert Made, edit or change the text using String Mode:. and then
output the text file to a diskette for storage. The procedure for
editing an existing file is exactly similar; however, prior to

editing a usual step is to input the old text from a diskette file.
These procedures are described in detail in the following pages |
calling the Editor is described under GETTING STARTED.

= == BERNEEEEe- = b4+ -4 4]
Definitions of Important Terms and Symbols

S R R IR IR . p—— b pod ot R F S

Memory Requirements —

The CDOS Text Editor occupies approximately 8400 bytes of RAM memory
within the resident routines of CDOS, which require about 5500 bytes.
The remaining RAM memory is available as work space for the Editor.

This amounts ¢to the #following number of bytes (ie, number of characters)}
for these systems: 2300 for 146K system: 18700 for 32K system: 3ID100 for
48K system, and 51300 for 44K system. Although not required. a 32K
system is probably the minimum acceptable for most editing.

Yext Buffer -

The text buffer is the work space as well as the storage space of the
Editor. All entered text is kept here during an editing session, and all
existing text to be edited must first be transferred here from the disk
before changes can be made. The size of the text in the buffer varies,
increasing as text is entered, and decreasing as text is deleted (see V
command for an explanation of how to determine the remaining space in the
buffer). When the buffer is empty., the beginning and end of it coincide.

Page 2
Character-Pointer -

The character—pointer is used to locate the position in the text

buffer where editing is to occur. The character—pointer (or pointer)

is in most cases positioned BETWEEN characters (ie, after one 1
tharacter and before the next). However. the pointer can also be)
positioned immediately before the first character in the text buffer (the
"top” of the buffer) or immediately after the last charsacter in the buffer
(the "bottom" of the text buffer). In Insert Mode (or under the S or €
commands) text is placed into the buffer at a point immediately

preceding the character-pointer.

The ctharacter—pointer can be moved to any position within the text
buffer. Any command attempting to move the pointer past the boundaries
of the text buffer is terminated when the pointer reaches the boundary.
even though the command specified may not have been comleted. An
exception to this avre the —nP command, which will continve %o re—ftype
the top page of the buffer the number of times specified (unless a key
is pressed to abort the command) and the Macros, <>, for which execution
is carried out the specified number of times even after the buffer
boundary is reached (although no changes are made in the text after the
boundary is reached). This tan also be aborted by pressing any kay.

The tharacter—-pointer can be moved by characters, words, or lines.

and accordingly, the Editor can bhe used for “character editing., " "word
editing, " or "line editing." A line of text in the buffer is a string

of characters having a line feed as its last character. A word of text is
& string of characters having a space, %ab., carviage return., or line

feed as its last character. The next character in the text buffer
iomediately following the line feed, <LF>, is in the next line and will ,"
be so displayed on the system console. If no <LF> characters are used,
the entire text is considered to be one line. When one enters text, the
Editor avtomatically generates a <LF> following a carriage return, <CR>,
whenever the <CR> key is depressed. Thus: if you want &to delete a
carriage rveturn. you must delete two characters to eliminate the line

feed also.

Curront'Character
Curvent Word
Current Line -~

Fhe current character. word, or line is that which currently con-

tains the character~pointer. Note that if the pointer is following the
<LF> of one line and immediately preceding the first character of the
next line, that next line wil]l be the one considered the current line.

Character Editing
Hord Editing
{.ine Editing -

The term character editing applies when you are using the C and D
commands for deletion and pointer positioning. The term word editing
applies when you are using the J and X tommands. The term line
editing applies when you are using the L and K commands. The 8 and

I commands may be used in all three cases for text insertion.

Page 3
Defavult Value -

This is used through—out the following command descriptions to
~ indicate the assumption that is made if a given quantity is omitted.
For example, the statement. "The DEFAULT VALUE of n is 1." means
that the value of n is assumed by the Editor to be 1 if it is
aomitted from the command.

demard
Bottom
Bawn -

These terms are synonymous and mean to move through the text buffer
towards its end. This can be a "forward" movement of the paointer, "down"
through the buffer, or towards the “"bottam. *

Backward
Top
Up ~

These terms are synonymous and mean to move through the text buffer
towards its beginning (the point at¢ which you would begin entering text
for a NEW FILE). This can be @ "backward” movement of the pointer, “up"
through the buffer, or towards the "top. "

A

These brackets are used in the examples in the following material to

set off ASCII characters or other quantities which are user—typed

but cannot be easily represented otherwise. For example, the symhbol

<CR> stands for a user—typed carriage return. Note that you would

MOT type the four individual characters: < C: R, and >. Naote that thess
symbols are also used for Macros; this use will always be so labeled.

»f—-

This is the printed representation in what follnms of the Fam:lxar
symbol, *"plus—~or-minus. " .

n

This prefix is part of the mnemonic for a large number of the Editor
commands. However, it would never be typed in actuval vse; it is instead
a symbol for the integer values:

n=20,%2a3...655335

Note that n is- ALWAYS positive. If the particular command allows
negative values of n, the command mnemonic will be written: +/-n7.

*

This symbol is echoed back to the console by the Editor and stands

for the word “Contrel—. " That is, this symbol together with the letter
immediately following it stand for one of the Control Characters. For

example, the symbol "TZI" stands for "Contral-Z. " Note that the symbol

for the <ESC> or escape key is "*[. "

Page 4
&

This is a USER-ENTERED character and stands for the maximum number
of times for carrying out any function en the Editor:

Y

= 65535

1t may be used with any of the commands of the form: n7? or +/-n7 in place
of the "n," and used in this way will cause the command to execute until:
(a)it is executed &333% times, (b)the top or bottom of the buffer is

reached, (clthe command can no longer be carvied ocut svccessfully. An
example is:

#B#TLCRY>

which will first move the character~pointer $to the top of the buffer and
then type out all the lines of the present Ffile.

a2 212 2 2 o og Sl s

GETTING STARTED
I3 33 2 336

The CDOS Text Editor is contained in a file named EDIT. COM on the CDOS
system diskette. It is called by entering the filename as a CDOS
cammand. The syntax of the EDIT command is:

EDIT <filename. ext>

where "filename"” is either the 8-letter name of a new file to be created
and edited or the name of an existing file to be edited, and "ext" is
its 3~letter extension if there is one, When a new file is created: the
Editor prints the message: :

NEW FILE
at the start of the editing session.

There is another way of calling EDIT which is vseful for simultaneously
editing and transfering a file to ancther diskette. The format of this is:

EDIT X:FILENAME Y:

where X and Y each stand for one of the disk drives, A B, C, or D. Note
that the file "FILENAME"™ is initially on drive X, and is to be transferred
to drive Y following the edit. Also NOTE that X is the drive containing
the sourcefile and Y is the dvive which will contain the guiput file: and
that this is exactly opposite the convention used in CDOS for XFER.

The file "FILENAME" will be found (after editing) on drive Y with the same
name it had on drive X.

Cammand Syntax

The Editor signals its readiness to accept commands by prompting with ~
an asterisk (). Commands can be entered in upper or lowev case; for ‘
example, the Type—out command can be "T" or "t ¥

-

. Page 5
Commands can be entered singly or in a command string. The commands
entered in a command string are executed in the order they are entered.
A command string is terminated and executed with a carriage return;

some commands may be terminated but not executed by an ESC or I (5 and
F commands for example). They will be executed when the <CR> is pressed.

600 I 30038 30 20 35 36 20 M B A3

Control Characters
W3 TR ER Y

Following are descriptions of the Control Characters used by the CDOS
Editor. Each character will be represented by the symbal, *?, where
the ? stands for the character name. This symbol, ™7, stands for
*Cantrol-?" or, on some consoles, "CTRL-?". Under each Control
Character are two headings: String and Insert, explaining the control’s
function in each of these two modes. Note that Control Characters

are called "controls" in the following to distinguish them from

the "commands, " which are those responsible for text re-arrangement

and insertion. Also, the differences between "normal®” and "alternate”
Insert Modes are explained under the I command.

Contral-A

ek bk e s .

String — The TA has no effect in this mode; it is simply echoed to
the console.

Insert ~ The ™A is a very convenient feature of “"normal” Insevt Mode.
When pressed at any time, it serves to type out the previous 23 lines.
oer "“page"” of text above the character—pointer. The pointer‘’s position
is unchanged by this, and further text may be inserted following the
issve of the T™A. However. this control does not wark in "alternate”
Insert Mede, that where the inserted text is all on one line (see
explanation under Insert Mode).

i S e A A P et Sl vt

String — The 7C restarts CDUS, which means that all text in the

text huffer is lost. This generally would not be used to get out

of EDIT unless a system problem had occcurred {(insufficient RAM, etc.)

The Control~C has no effect if issued during a type-out of text.) § -

may or may not abort other Editor commands while they are in progress., hut
it is not advisable o use it for this purpose because of the danger of
losing the contents of the buffer.

Insert ~ The *C has no effect in "nermal” Insert Mode ofher than to be
entered as a3 character of text, It does, hgwever. have the restart CDOS
effect in "alternate” Insert Mode, Be careful of this difference.

—t A P TS i Bl e vty

A - —

Gtring ~ The *E is a physical carvriage return-—line feed. That is, it
has the effect of returning the console cursor to the left side of the
rseveen WITHOUT having any effect on entered text.

Page &

Insert - The TE has no effect in Insert Mode octher than to be snitered
as a character of text. Note, however, that some console terminals

"will provide an avtomatic TE at the end of a full line while text

is being entered; this is NOT entered as a <CR><LF> in the text itself.
Thus, it‘s possible to have the entire contents of the huffer enterad
on "one line." ie: as & single character string without carriage rTeturns.

String % Insert — The TH has the same effect in both modes: a backspace
without character—echo. On some terminals a BACK key is actually present
and serves to implement the TH, Other terminals have a RUB or DEL key;
the Editor will also accept these as backspace esven though the T™H is not
used for this, Note that the DEL or RUB key will work in vpper— or lower-
case, and consequently, the <underline> key cannot be used with the
Editor. Hence. any of the following may be used to backspace, depending
on the console terminal used: TH, BACK, RUB, DEL. <underlinel.

Control-1
8tring — If TI is given in a string of commands, it will produce an
eTTOT Meéssage. If it is given WITHIN a command. however, such as an

F or 8 command, it will bhe treated as a <tab> character.

Insert — The TI in this mode is a <tab> character. Some terminals f‘?
may have an actual TAB key which will impiement the TI also. A

+I is stored in the text buffer as & single character. The system

atcepts this character to generate a sufficient number of spaces

an the console to position the next character at the next tab location.

Tab stops are located every eight character positions across a line

on the console. Note that the <tab> will NOT generate a single

ctharacter if the Z command has been used to change the spacings.

See Z command for a further explanation of this.

String ~ The ™. is a logical carriage return—--line feed. That is, if
it is used in a string as part of the F, N, or § commands, it will be
treated as the two characters, <CR> and <LF> This is necessary
because the actual carriage return key has the effect of terminating
the F, N, or S5 commands. For example:, suppose one wanted to find every
time that two <CRO<CLF> ‘s had been entered consecutively, and sub-
stitute one <(CROCLF>. The user would type:

#BRSTL LTI LCRD

Insert - The TL is also a logical carriage Teturn-—line feed in
"alternate” Insert Mode and is used as described above (part of

Page 7

a string after the I command). In "normal® Insert Mode: however,

the *L is inserted into the text as the character itself and

NOT as a CCR> and <LF>. This is a very useful feature, becavse

the TL character 1is accepted by most printers as a form—feed.

Yhus, you can insert the TL into the text every B5&6 lines., for

example, which will advance the paper at the bottom of each printed
page. Note that ™., TE. and *C are the only of the Control Character
commands which can actvally be stored in the text as those characters.
Any random control characters which are not commands may also be stored
in the text. ' '

S P e fakr . Tl Sk

Control-p

String & Insert — The ™ is used in both these modes to turn the printer
an and off. When the printer has been turned on: everything typed

out on the console screen will also be printed. If it is later no

longer desired to have printout: another TP should be typed. The TP works
by a “toggle” action., ie, if the printer is on when ™ is preassed, it will.
go off, and if it was off, TP will turn it on, Thus, typing an even
number of Control-P's {(say two) will leave the printer as it is,

The ™ should NOT be used with systems not having a printer as it may
cause the system to hang up; if one ™ is typed accidentally, be sure to
type another one immediately BEFORE any other characters are typed.
Should another character be typed, the Editor will go into a "wait" for
the printer to be ready. Since no printer is connected to the system, it
fan never be ready; hence, the system gets hung up and the contents of
the buffer will bde lost in restarting CDOS.

Control-R

String & Insert — The ™R is used in both modes to retype the current line
being displayed on the console screen. In Insert Mode this is 9 line of
entered text; in String Mode it is the present command string. No char-
acters are sent to the text buffer and Control-R may be typed as many
times in succession as is desired. It is most useful if several
Contrel~X’s have been given in the line and it has become hard to read,

String % Insert — The %S is used in both modes to start and stop the type-
aut on the console screen. This would occur after issuing a ™A in Insert
Mode. ov after issuving either a P or T command in String Mode. This is

2 most useful control; for example, you might give the command string
“B#T" in St¢tring Mode which would type out all the current contents of

the text buffer. The Control-S would be uysed as often as needed to stop
fhe type—out so that parts of it could be read. Like the ™, the 7S works
by a "toggle*” action; note that it does not abort the type~out, it merely
causes it to pause. A type-out may be aborted by tapping any key (other
than 18) during its progress,

Page B

Contraol-U

Tt S Y P oy — —

String — The U is usﬁd tb_dglete the current line on the console. In ’j@
String Mode this means deleting the current command string. This is a
quicker way of eliminating a long cbmmand.string than T™H would be.

Insert — The T is also used in Insert'nodelto delete the current line on

the console. It di¥ffers, however, #rom String Mode in that it is used to

delete the current line of inserted text, ie, the line back to but not
including the last previous carriage return and line feed. I# the <CR> and
CLF> are then deleted by using TH, the next previous line may be deleted
using Control-U, and so on.

Control-X

‘8tring - The *X is used to delete commands 1n a command strzng WITH echo..

One character will be deleted for each time T™X is pressed and it will
proceed in a last-typed, first—deleted manner. The first time X is
pressed it displays 3 "\" (backslashes) to demark the beginning of the
deletions, and the first character you type following the release of the

Control-X will display 3 "/" (forward-slashes) to demark the beginning
af correctly entered fext.

Insert — The X is used in an exactly similar way in this mode except
that it is inserted text which is deleted rather than part of a command
string. The 3 "\" followed by the 3 "/" are also used here to mark the
beginning and end of the deletions. Notice that the difference between
+X and ™H {(or RUB) is that the Control-X will echo the deleted characters
to the terminal se that you can see how far back you have deleted.

Control~Z or ESC Key (1L)

String — The *Z and ESC keys (Escape Key echoed to the terminal as “TL")
are exactly equivalent in their actions for the Editor. The TZ is used in
String Mode as a delimiter for the F, N, and S commands. These commands
are terminated by a carriage return; however, sometimes it is desired to
terminate them (or & part of them) in another way. Consider the following
example using Macros to find the first three gccurrences of the word
*Editor" and type the line containing each one:

*BICFEditortI0TTO

where the 1Z is used as a delimitér for the string which is to be found.
Mote that the following string using ESC is exactly equivalent:

f
#BIKFEditortLQTT2

Insert — The 72 is vsed in a slightliy different way in Insert Mode as
a delimiter, In "normal” Insert Mode the *Z (or ESBC) is the key pressed ~.

Page 9

to return to String Mode. The character—-pointer will remain where it is:
at the end of the just insevted text. In “*alternate” Insert Mode the *Z
(or ESC) is used as a delimiter jJust as it was for the F. N, or 8
commands., Suppose in the previous example it was desivred ¢to pluralize
the first three occurrences of “"Editor”:

#B3<FEdi torTZIst20TT>

where the 7Z was used as a delimiter for both the F and I commands. Note
that no carriage return was needed to terminate the I command since the
4+7 was used as a delimifer.

RUB or DEL HKey

(See Control—-H for an explanation of this function.)

I 33 390 3 36 3 3T I 63836203

COMMAND DESCRIPTIONS
A0 I I I 33036 3 3 0

++t bbb+t

Insert Mode
e R S

¥ - Insert Text Before Character-Pointer

The I command is the only one which can be used to insert{ text into
the text buffer vsing Insert Mode, (See R: G, and S commands for
means of inserting text using String Mode.) The usual format for the
I command has been called "normal" Insert Mode in this manual. : This
farmat is: T

ILCR>

after which the user may begin entering text. Note that as you enter
text, carriage returns may be uvsed as may any other character. Then

when all the desired text is entered. you leave Insert Mode by pressing
either Control~Z (t+Z) or Escape (<ESC)>» key which is echoed as *[).

It the I command is preceded by any prefix other than part of a valid
command string, it is either ignored or produces an error message. There
is a special form of the I command (called “"alternate” Insert Mode in
this manual) which is used to insert text on one line only: :

I<this is inserted text><CR>

This form will not require a TZ or <ESC> to return to String Mode.
{There are other differences between "normal” and “"alternate"

Insert Modes: sea Control Characters for a description of these)
Instead the <CR> both returns the user to String Mode and also inserts
the <CR> and <LF> at the end of the inserted line. You would not use:

Page 10

this form to insert one or several words at the beginning of an existing
line, however., as it would insert an undesivrable carriage return. 1¥
the character—pointer is in the middle of a line when the ! command

is given: the Editor types the portion of the current line before

the pointer, and then enters Insert Mode. The user may then use the
 or <RUB> key as though hes/she had just typed ail the characters
displayed. Thus, the [command may be used to delete previous lines
(without returning ¢o String Mode) by "backing up” over lines that are
already there. It is important when vusing the I command to position the
pointer BEFORE. going into Insert Mode so that the inserted text

will be positioned where desired. The text will be inserted before the
ctharacter—pointer position in the text buffer: the following example
will illustrate this further. Suppose we have the text:

LINE 1
LINE 3

and wish to insert the words, "LINE 2." The charécter—pointef must first
be positioned before the "L" in "LINE 3¢

#BFLINE 3TLOLT<CR>
LLINE 3

where the F command is used to find the line desired, and the OL command
is used to locate the character-pointer at the beg:nning of that line.
The user now makes the following insertion:

*ILINE 2<CR>
#—2TT<CR>

and the typed-out text appears as:

LINE 1
LINE 2
LINE 3

The user might also have typed out the first two lines of this text by
issuving a Control-A, <?A>, while still in Insert Mode (see Control
Characters for a further explanation of this). Most of the control
tharacters will work in Insert Mode as well as Gtring Mode; the
differences are explained in the Control Characters section.

Note that if you are in Insert Mode and completely fill the Text
Buffer, the Editor automatically returns control to String Mode
and further commands will NOT have any effect unless they are
gne of the write commands: W, E, Q@ H. or 0. Fellowing writing
aut some of the buffer, you may return to Insert Mode.

Page 11
T+t bttt

Htring Mode

R S TS S

The following commands may all be used in String Mode. They are
sub~divided into logical sub-headings. For example. the B, C. J. and L
commands are all used to reposition the character-pointer and are thus
grouped under one sub-heading: Character-Pointer Positioning Commands.

mrEERREREEEEEEEEIINRE

Type—~out Commands

RN ERE

T - Type a Specified Number of Lines on the Console

The T command is used to type back the entered text so one can make
sure it was entered correctly. The farmat of the command is

+/-nT

The command nT causes text to be typed from the current position of the
character—-pointer forward to the nth carriage return; the command -nT
causes text to be typed from n lines before the current line (containing
the pointer} up to the position of the pointer. The default value of

n is 1, which causes typing from the pointer to the end of the current
1ine (if the pointer is located at the beginning of & line. this causes
the entire line to be typed). The command OT causes typing from the
beginning of a line up to the pointer. 1t may be seen from this that
the command string "OTT" causes the current line to be typed regardless
of the position of the character—pointer within it and without moving
the position of the pointer. Note that if the pointer is in the middle
of a line and the command T is issued, the results will be printed on
the console beginning in column 1, even though that is not the way

it is stored in the buffer (ie, an entire line is still stored). Pressing
any key during a type-out will abort the command and return cantrol

$0 the Editor with @ prompt (see also Control-8).

P - Move and Print & Specified Number of Pages

The P command is used to type back the printed text in blocks of 23
lines each called pages. The format of the command is

+/-nP

The command nP causes the character—pointer to move down the text buffer
(n x 23) lines and begin typing there, typing out 23 lines. The command
~-nP causes the character—pointer to move up the buffer (n x 23) lines and
type out 23 lines. The command OP does not% cause the pointer to move;
hence, this command is used to type out the current page (ie. the 23 lines
peginning with and immediately following the pointer). The default value
of n is 1; giving successive P commands will cause the text to bhe typed
out page by page.

Page 12

An example of the use of the P command command is:

#BOP#PCCR>

which cavuses the entire contents of the buffer to be typed out by pages
beginning with the first line. After each page is displayed there is
about a 1 second pause before the next page is typed. During this time
the type out can be stopped using a Contrel-5 (see Control Characters).
The type—-out can be aborted (as opposed to stopped) at any time by hitting
any character on the keyboard. IF the command —~P is given jJust upon
coming out of Insert Mode:, the last 23 lines of insevrted text will bhe
typed. 23 lines was chosen because this is the standard size of a3

page which can be displayed at one time on most CRT‘s;: persons having

a 12-line CRT will have to move by half-pages. For example, the caommand
string: '

#*BI12tOP#L~12LF>

is suitable for typing out an entire bady of text by 12~line pages (see
Macros). Also, type—ouvt for the P coemmand is aborted upon reaching the
lower boundary of the text buffer; if it is not immediately aborted at
the upper boundary. you may stop the €ype—out by hitting any key.

+/-n — Move Character—-Pointer and Type a Line (+/-nLT)

The +/-n command is a convenient combination of two other commands:
the L and T commands. Its format is simply: +/-n, which is exactly
equivalent to the command string “+/-—nLT:" however, unlike this string
the +/-n command cannot be preceded or sucteeded by any other command
characters. In other words the +/-~n must be the OUNLY command in

the string;:; if it is neot, it wili either be igrored or will produce an
error message. The defavlt value of n is 1; thus, the command "—<CR>"
will type the line immediately preceding the line containing the
character—pointer; the command "<CR>" will type the line immediately
following that containing the pointer. The command “OCCR>Y will €type
the current line. (There may be slight variations in this if the pointer
is not located at the beginning of a line.) From the above it can

be seen that it is possible to step through the text buffer line by
line, examining each one in turn, simply by hitting successive
ctarriage returns. It is aiso possible %o skip through the buffer

with little tygping by successively issuing a command such as:

"2OCCR>" (see also L and T commands).

:

/1@

i

Page 13

= === SEEEESNE IR DTN
Character—-Pointer Positioning Commands
=== samEm I NI REE SRR

B - Move Character—Pointer to Beginning or Bottom of Text Buffer

- ——

The format for this command is
+/-~B

The (+)B command moves the character—-pointer to immediately before the
first character in the buffer. This might be useful for the following:
{(l)defining a starting point for typing out the whole text buffer con-
tents, (2)setting a reference point for counting lines of text or search—
ing for a word or phrase, (3linserting text before text already in the
buffer. The ~B command moves the character-pointer to immediately after
the last character in the buffer, and is uvseful for adding text at the em
of the present text in the buffer. The —B command may also be used with
the W or N commands if it is desired to write out the present buffer

and replace it with more of the input file {(see W and N commands).

C — Move Pointer Over One or More Characters

The € command will locate the pointer within a line and is useful for
character editing. The format of the command is

+/-nC

The command nC causes the character—-pointer to move forward n

characters from its pressnt position; the command —nC cavses

the pointer to move back n characters. The default value for n is 1.

n=0 is vndefined for this command (ie, the character-pointer does

not move). Remember that the pointer always resides BETWEEN

characters and that its traditional location while doing line editing

is before the first character of the current line. The € command treats
the <CR>CLF> at the end of every line of edited text the same as any othey
two characters and thus the pointer may pass from line to line i¢

n is large.

J « Jump the Character~Pointer Forward or Backward Over Words

- o st i ey ot i ——

The J command Jjumps the character—pointer over a specified number of
words, The format of the command is

+/=n

The cammand nJ moves the peointer to jJjust hefore the first character of
the nth word after the current word. The command -nJ maoves the pointer
to before the first character of the nth word preceding the word now con-
taining the pointer. The command OJ moves the pointer to the beginning

Page 14

af the current word (ie, the one containing the pointer). The defavult

value for n is 1. The delimiters defining the ends of words are: <space>,
<tab>, <LF>., and <CR>. When the pointer Jjumps to a new word, it includes,jm
the delimiter as the last character of the word bdbeing jumped. Thus: the v
command string “JT" would cause the word following the current word to be
typed, beginning in the first column of the screen. Also, it‘s important

to note that any two delimiters following each other also constitute a

word. Thus, the <CR> and <LF> at the end of every line of edited text

will constitute a word. The J command (along with the associated X

command) is most vseful for word editing. As with the C and L commands

the J command is aborted if it reaches either boundary of the text buffer.

L — Move Character—Pointer Forward or Backward Over a Number of Lines

—

The L cummand moves the character paointer a specified number of lznes
forward or backward. The format of the L command is

+/-nbl

The command nl. advances the character—pointer to the beginning of the nth
line following the current line; the command —-nlL moves the pointer to the
beginning of the nth line preceding the current line. The defavlit value

of n is 1, moving the pointer to the beginning of the line immediately
following the current line; a ~L moves it to the beginning of the
immediately preceding line. The command OL moves the pointer to the
beginning of the current line. Note that the L command always

places the pointer at the BEGINNING of a specific line, thus making ’7&
it most useful for line editing. Alsao, if the value specified g
for n is too large. the character—pointer mill staop at the tap or

Gottom of the text buffer.

+/-n — Move and Type a Line
P — Move and Print Pages

These two commands will also reposition the character—pointer. They are
described in detail under the Type—out Commands section. '

-+ +-+-3—-3-3 -3 3+ 1+ &+ S
Deletion of Text Commands
e T eI

[FER—

D ~ Delete Characters from Text Buffer

The D command deletes a specified number of characters from the text.
The format ot the D command is

+/-—nD

The command nD cavuses deletion of n characters following %the character 'Aﬁ

Page 19

pointer. The command -nb causes deletion of n characters preceding
the character—pointer. The defauvlt value for n is 1. n=0 is undefined
for this command. '

K - Kili Lines of Text

The K command deletes lines of tekt. The format of the K command is
+/—-nik

The command nKk causes text to be deleted #rom the current position of
the character—pointer forward to and including the nth carriage retuwvn
and line feed. The command —nK cavses deletion to start from n lines
before the beginning of the current line (jie. the line containing the
character—pgointer) and continves until the character—pointer is
veached. The command OK causes text deletion from the beginning of
the current line up to the character-pointer. The default value for

n is 1, which causes deletion from the character—pointer of the rest
of the current line. Note that if one wishes to delete the last portion
of a line, a <CR> {(and <LF>) must be re-insertod as the K command will
remove the ane alveady there,

X — Deleate Mards of Text

¥Yhe X command deletes a §peci91ed number of words from the text. The
format of the command is

+/-nX

The command nX deletes the portion of the current word which lies after
the character—pointer plug the first n—1 words after that. The command
-nX deletes the n words before the pointer plus the partion of the
current word which lies before the pointer. The command 0X deletes
only the portion of the present word which liez before the pointer.

The default value of n is 1. Thus, a word of text might be deleted by
positioning the pointer before the first letter of the word and giving
the command "X." ovr by positioning the pointer after the space
immediately following the word and issving the command "0X. " The
delimiter for a word is a <space>, <tabl>, <CR>, or a <L LF>i thus, dele—
tion of a word always includes the space immediately following the word.
Algo, one delimiter immediately followed by another constitutes a word by
itself, BSee J command for more information on the definition of a word.

Page 1&

Search and Substitute Commands

F - Find a Character Y%ring in the Text Buffer

The £ command is used to find a string of characters in the text buffer.
The format of the command is

+/-nF{textestring>tLl (aovr <CR>)

The command nF will find the first n occurrences of the "textstring”
AFTER the present position of the character-pointer, and will reposi-
tion the pointer immediately following the nth occurrence. The command
-nF will search in the other direction, ie, BEFORE the present pointer
position, and will vreposition the pointer immediately following the nth
accurrence: counting UPWARD: of the "textstring”. n=0 is undefined for
this coamand, and may produce an error. The defavult value for n is 1.
I¢# the search can be completed only m times, where m is a number Da O,
‘the character~pointer is left at the end of the mth eccurrence of the
*“textstring™” and the Editor prints the message:

CANNOT FIND *<textstring>"

I# m is O, ie, if the search is unsuccessful in all cases, the pointer
is left at its position prior to the issue of the command.

It is wise to verify that the search has been successful by typing out 1@)
¢he line prior to making any modifications on text near the just—found -
string. The "textstring" can often appear in unusval places; for example,
suppase you have the line of text:

© This is, however:, the first day we
' ') will be able to go.

and you desire to remove the incorrect <LF> by using the command string:

#Fwet(DOLT
The resultant line printed out would be:

This iz, howeer, the first day we
' will be able ¥to go.

The F command string is limited to 128 characters including the "text-
string”, and if more than this are used. the command is avtomatically

terminated without completion. Remember to use a TL instead of <CRZCLF>
within the “textstring”.

Page 17

N — Find Next Dccurrence in File

The N command may be used to search through an entire file for a parti-
cular character string. However, it may alsc be used to search for the
nwll string: which tauses half the text buffer space to be filled with
text from the input file. This is really an I/0 feature; the N command
is therefore described in detail under the I/0 Commands section.

5 — Substitute One Character String for Ancther

The S command is used to substitute one character string.for another
in the text buffer. The format of the § command is

+/-nS<oldtextrtri<newtext>rL (or <CR>}

The command nS looks AFTER the present location of the character—pointer
for the nth occurrence of the character string called "oldtext™, removes
the n strings, and replaces each of them with the string called “newtext".
The substitution is made only if the search is successful. The command
-nS searches BEFORE the present location of the pointer for the nth prev-
iows occurrence of the string "oldtext" and suvbstitutes the string
"newtext® n times. Note that this means that the substitution is made
ane time in each of n places. n=0 is undefined for this command,

and may produce an error. The defavlt valve for n is 1. The
character—pointer following @ successful substitution is left at

the end of the string "newtext®; if the search is not successful., the
pointer is left where it was Just prior to the issue of the command.

I1f the substitution is made some arbitrary number of times, say m (where
m may be O}, and the string “"oldtext” cam no longer be found, then the
last n-m substitutions are ignored, and the Editor prints the message:

CANNOT FIND "<oldtext>"

Note that the appearance of this message does not necessarily mean that
no substitutions oeccurvred, but only that the (m+lith suvbstitution did
not occur. It is vsually a good idea to print back the line on which
the substitution was made to be sure it was done in the corvect place.
For example, the command string issved might be:

#*SOLDTINEWTLOTTICR>

The total length of the S command including “"oldtext" and "newtext®
should not exceed 128 characters:; meore than this will cavuse the command
to terminate withouvt completion. If "newtext" is omitted., the “"gldtext"
string is found and deleted; thus the S command may be vsed for word
deletions. MHeep in mind that the string searched for by the S command
must exactly match the string specified in the command, including

upper and lower case, punctuvation, etc. Remember %o use a T to repre-—
sent a CCR>CLF> in a s¢ring of characters within the S command.

- Page 18

=R TR e

I/0 Commands from/to Input File

SNSRI Il mrEtE o s

A - Append Lines to End of Buffer _ _ _ dﬁi

The A command is one of two commands (see also N command} used to

bring text from the input file into the text buffer. The format of the
& command is

né

With this command lines of text are appended to any text already present
in the text butfer. (The A command will be aborted. however. once the
buffer becomes filled.) Each jteration of this command causes one line
of text to be read into the buffer. The character—pointer position is
NOT changed by A commands. n=0 is undefined for this command.

E - End EDIT, Close Files: and Return to CDOS

The E command writes the contents of the text buffer to the output

file and exits to CDOS. Any prefix to £ is ignored or produces an

erTorT message {(unless E is preceded by other commands in a command

string); the format is simply: E. Also note that even if the entive

input file was not loaded into the text buffer, E will write ft

through the text buffer in its entirety onto the output file. The

E tommand is the one normally used to end an editing session. Note {??
that E creates a BAK file only after the second time a file is edited:;

& new file will be returned to the disk without a backup file.

H - End EDIT and Reopen at Head
O - Obliterate Buffer and Reopen Input File

These two commands are useful for saving edited work on the disk (M) or
restarting EDIT (0). However:. bhecause of their many valuable features. i
they are described separately in the EDIT Restart Commands section.

M - Find Next Occurrence of a Character String in Input File

The N command is similar to the F command; however, it avtomatically
appends and writes lines as the search proceeds. The farmat of the

command is
nNCtextstring>tl (or <CRD>}

The command nN causes the Editor to search for the nth occurrence of
"textstring” and to reposition the character—pointer immediately after

Page 1%

the last character of that string. It will search the entire sovrce-
file if necessary. The command works in the following manner: The

text buffer ia half-filled with text from the input file, and this

text is then searched for the "textstring”., If it is not found, the
entire contents of the buffer are then written out to the disk:, and

the Editor again proceeds to half~Fill the buffer with text and search
that. This continues until all the text has been searched and the
entire input file has been written intc the buffer and then written

to the output file. The search can proceed only in a forward direction
because of the read and write operations; therefore, a negative or zero
prefix to the N command will produce an error message.

When half—-filling the buffer, the command will ALWAYS print the full line
uvp to and including the <CR><CLF> immediately folleowing the event of the
buffer becoming half—-Ffilled. 1¢ will thus find the next occurrence af
any "textstring"” which is all on one line. It is not advised. however,
to search for strings which lie on two separate lines because of the
passibility that one of them will be read in one read operation: and .
the other will be read in the subsequent read operation.

There is a special form of the N command which is most useful for reading
a file into the text buffer. This foram is

#NSCRD

This causes the Editor to search for the null string.. Initially. before
any text is present in the buffer, this means that half the buffer space
will be filled with text and then contrel is returned to the user. This
is because any character will satisfy the null string -and thus that
character is found when anything is present in the buffer. The advantage
of this form of the command over the A command is that you can always

be sure of filling the buffer at least half-full, but also be sure of not
over—filling it. The command #A is useful for very short files, but there -
is the danger of completely filling the text buffer with large files.

To read more of the input text into the buffer after having edited some
of the first porfion, ¢the command is issuved: "~BN<CR>" which moves the
poinfter to the end of the buffer before again searching for the null
string. I# this was not{ done, the N command alone would stop upon
reading the first character it encountered.

el

G - Quit EDIT With No File Changes and Return to CDDS

-

The @ command can be used to terminate an editing session in
progress without doing any output. Any prefix te the command is
either ignhored or produces an error message {(unless Q is preceded
by other valid commands in & command string); therefore: the format
is simply: @ The input file is unchanged following & @ command;
note, however, that NO output file is created even if lines of

text had been written out of the text buffer prior to the 4
command. The G command is therefore very powerful in its effect
and is usvally invoked only just after entering EDIT if one decides

Page 20

not to continue. Also naote that the Q command will leave no BAK

~ file on the disk regardless of whether or not one was present Jjust

prior to entering the Editor: 1t leaves only %the original sourcefile.
I+ @ is issued after having entered EDIT with a new file. the new

¥ilename and sourcefile will not be left on the disk.

R — Read File from Disk Into Text Buffer

The R command is used to read files from the disk into the text buffer
without leaving EDIT. This prevents having to exit from the Editor to

concatenatg_or transfer files. The format of_the R command is:

R<#ilename. extd>

shere filename is the B-letter disk filename. and ext is the 3—letter
extension (if any) to that filename, Note that there can be no space

between the "R" and the filename. Any prefix to the R command is ignored

or produces an error message (unless part of a valid command string).
The text which is read in is always placed immediately AFTER the char~—
actter—pointer; thus, the pointer must be positioned prior to issuing an
R command. If only part of a8 particular file is desired: the entire
file must be first read in and then the undesired portions deleted
out. Be careful not to exceed the text buffer space; if in doubt.
fivst write out some portion of the buffer. and then read in the file.
Any file may be rvead including BAK files EXCEPT the BAK file for the
file which is presently being edited. Alsc note that to follow an R
by other commands in a command string, a *Z or ESC (T[) must be typed
following the filename as a delimiter.

There is a special form of the R command for reading files from any of
the other disk drives. This form is

*RX: {filename. ext>
where X stands for any of the disk drives A, B, €. or D. This feature

is very time—saving as files can be read from other drives without
leaving ERIT. *

W - Write Lines Before Ppinter to Dutput File

The W command is used to write out @ number of lines from the text
buffer to the output file. The format of the command is simply: Wi
any prefix to the W command is ignored or causes an error indication
(unless W is preceded by a valid command string?. Text is written
to the output file from the beginning of the text buffer through the
character immediately preceding the character—-pointer, even if the
pointer is in the middle of a line. If only part of any given line
is written out, the remainder will be written out correctly by

any other write operation such as E or H.. Note that one must

take cavre to position the pointer so that the text one wishes

Page 21

{0 be written ovt actually does get written. After a write the

- remaining lines (if any) are moved to the top of the buffer freeing

moTe space at the bottom for insertions. If one wishes %o vuse the
W command to write out a specific number of lines, one showld first
uyse the +/—-n command to locate the character—-pointer at the line
number, and then issuve a W command. 1f one writes oput more lines
than intended:. it is possibie to return to the beginning of the file
by issving an H command followed by locating the pointer correcth
and re—issuing the W command (see H and +/-n commands).

== = =i

EDIT Restart Commands

s o g o o

- -

H « End Edit, Close and Reopen Files at Head

Any prefix to H is ignored or produces an error message (unless H
is preceded by other commands in a command string); therefore the format
is simply: H. The H command is similar to the E command; however, you
never leave the Editor. Its action is similar to issuing an E command,
followed by recalling EDIT vusing %the same filename. However: the H
command preserves both the tab settings and the contents of the Save
Buffer. This is useful for file re—arrangement. The original
sourcefile (before invoking H) is then rtetained as sourcefile. BAK,

and the edited version of it becomes the new sourcefile. Often

during a lang editing session., one may want to either view text

which has already been written onto the disk or save large sections

of text material on the disk followed by a restart at the beginning

of the sourcefile; this is the advantage of the H command: a
convenience and a safety feature for long passages of edited text.

Mote that the ORIGINAL sourcefile. BAK is not retained. Also,
following an H command no text will remain in the text buffer; thus,
either the A or N commands must be invoked %o reinsert text into
the buffer. Note that these can be put in the same command string
as the H command. HWeep in mind the difference between the H and O
commands: the H command reopens the file which has just been

edited as 3 NEW sourcefile; the O command reopens the ORIGINAL
sourcefile ag though no editing had been done (they BOTH preserve
the Save Buffer and tab settings: see O command for an example

of using this for file re—arrangement).

B - Oblxterate Contents of Text Buffer and Reopen Input File

-va —

Any prefix to an O command is ignored or produces an error message
(unless DO is preceded by other valid commands in a command string);
therefore, the format is simply: 0. The O command is quite similar to
the H command: controcl never leaves the Editor. Its action redsembles
issuing 3 @ command followed by recalling EPIT vusing the same filename.
However: there are three things saved by the O command which would not

Page 22

be saved by the previous actions: (llany text already written ovt prior

to issving the 0 is saved on the gutput file, (2)the contents of the Save
Buffer are preserved, (3)the tabs remain set as they were prior to in— ;j@
voking the O command. These features give one a great capacity for file /
re-arrangement. For example, it can be used to move a block of text

from the end to the beginning of a sourcefile too large to fit entirely

into the text buffer. First, the user would read in the sourcefile,

killing all lines above the block of text which is to be moved. When the
desired block is in the bu¥ffer, it may either be put into the Save Buffer

or be written directly to the ovtput file using the W command (if it

should go at the beginning of the new file). Then the O command is

issued, the sourcefile is read in from the beginning and written to the
autput #ile in back of the block already there, taking care to kill the
block of text which stil)l remains at the end of the text. Variatiens

on this scheme may be used for other types of file re—-arrangement.

Also, note in the above that following an O command no text will remain
in the text buffer; thus, either the A or N commands must be invaoked

to reinsert text into the buffer. Note that it is most convenient to
put such a command into the same command string as the O command. For
example, the command string "OMLCRO" will first obliterate the buffer and
rewind the input file, and will then refill half the text buffer with
text from the inpuyt file, HKeep in mind the difference between the

H# command and the O command: The H command reopens the file which

has Just been edited; the O command reopens the original sourcefile.

They both kill all portions of the file in the buffer which are not in
the Save Buffer; however, only the U command preserves the text which

has bheen written to the output file. Due to the hidden power of the

0 command to destroy one’s editing work, it is never execvted without ”@
asking the user if it was intended by printing the message:

OBLITERATE TEXT BUFFER AND "REWIND" INPUT FILE (Y/N)7?

If one responds with an "N", control continuves as though the 9 command had
never been given {(ie, the prompt is issuved); if one responds with a "Y",
control continues with the O command.

Save Buffer (ommands

¢ - Get the Contents of the Save Buffer

The ¢ command is used to get the coantents of the S8ave Buffer and insert

them into the text buffer just preceding the character—pointer. The for-
mat of the command is simply: Gi any prefix to & ig either ignored or pro-
duces an error message (unless part of a valid command string). For exam-
ple the incorrect command “2G" has the same effect as the command "G%*; %the
*2" is ignored. However. the command "G&" would have the effect of dupli-
cating the Save Buffer twice in svccession in the text buffer. The Save
Buffer contents are not destroyed by a ¢ command, and thus, the Save Buf-
fer may be accessed as many times as desired. This feature may be used F1§
it there are a large number of identical or almost identical lines ¢o ’
be inserted into the text.

Page 23
Following a & command, the character—pointer position is not changed
and it will be at the end of the inserted text. Note that one cannot
insert a3 povtion of the Save Buffer, a single G command inserts the entire
contents. Upen first starting an editing sessien in EDIT: the Save Buffer
is cleared.

Y — Put Lines of Text inteo fhe Save Buffer

— z — — i

‘The Y command is used to save text in the Save Buffer. The format is:

nY

A negative or 2eroc prefix te Y produtes an error message. The nyY

command is used to save the portion of the current line following the
character-pointer plus the following n—1 lines. The defauvlt value

For mn is 1. Note that the lines to be saved must always follow the
pointer: thus, the pointer will have to be positioned beforehand. Each
time a Y command is given, the contents of the Save Buffer are cleared
as the new lines are written. Thus. it is not possible $to save lines suc-—
cessively (ie, using two Y commands) without first writing out the con-
tents of the Save Buffer using the G command (see G command} Also, note
that the Save Buffer contents are preserved by the O command but not by
the H command, See O command for an explanat;on of how this can be used
For file rve-arrangement.

The Save Buffer is limited in size to 2048 characters. An attempt
Lo write more characters than this will cause the Editor to issuve
the message:

SAVE BUFFER FULL

and abort the Y command at the boundary of the Save Buffer. Thus, there
may be only a portion of the last line written into it. A G command

tan be issued (after properly positioning the character-pointer)., and -
the remainder of lines to be transferred can then be wr;tten out +o

the Save Buffer.

o i o S ey e e s s e e e s e

Miscellaneous Commands

LR = e

U — Upper Case Translate

The U.cummand is used to guarantee that all text enteved will be in

ASCII upper—case; only alphabetic characters are affected, however, The
format of the command is

+/-U

Any prefix to this is ignored (unless an algebraic sign or part of a valid
command string preceding U), and the sign of U is taken as the last
preceding sign in the string. For example, the command string “-7u"

would be interpreted as the command ~U. The command "OU" is also inter-—
preted as —-U, but all positive integers are interpreted as (+)U,

1

Page 24

Upon entering EDIT the U command is always de-selected (ie, it is as
though —U has just been issved); this means that lower—case ASCII is
entered as lower—case and upper—case ASCII is entered as upper-case. Now
it the U command is given, all text will be stored as upper~case in the
text buffer regardless of how it is entered. The Editor does, howaver.
echo the characters just as they are typed, so it is not until a type-out
that the upper case is seen. For example., if one enters the following:

#UCCRY>
#Ithis is an example<CR>
#-TCCR>

the Editor then responds by typing:
THIS I8 AN EXAMPLE

The —U command is then used to return to no—-translation mode. BE
BURE to issue the -U if you no longer want all text to be entered

in upper~case. Note that the U command will have no effect when used
on terminals which are not capable of producing lower—case; they

are effectively locked into upper—case mode at all times.

V — Verify Remaining Text Buffer Space

The V command computes and displays on the console the amount of work
space remaining in the text buffer for use by the Editor. The format
is simply: Vi any prefix to V is ignored {(unless part of a valid
command string}. The Editor responds with the message:

ROOM FOR XXXXX MORE CHARACTERS IN BUFFER

where XXXXX is a number between O and 69535 (each byte of memory holds
one character). If you are editing a large file and are running out

of work space, you can write the first part of the buffer to the output
file vusing the W command.

Z — Set Tabs

The Z command is used tu pre-—arrange the insertion of a number of
spaces, which will be called by the Control-I command, known as & "tab. "
This is similar to the tab setting function of a typewriter: Upon
entering the Editor, the tabs are set at multiples of B spaces (0, 8,
16, 24. etc.), which are the standard spacings for entering assembly
language code. Note: these spacings are stored internally as a

SINGLE ASCII tab character and NOT as B spaces. However, resetting

the tabs by means of the I command inserts an equivalent number of
spaces, This may be undesirabie for large programs, as a large part

of the text buffer could then be occupied by spaces. The format of the
Z command is simply: Z; any prefix is ignored (unless part of a valid
tammand string preceding Z). The command is then self-explanatory,
typing out instructions and numbering the columns of the console screen.
Note that even though the columns are numbered only to &3, the actual

Page 25

line length may be as long as 128 characters, and control returns to
the Editor if one spaces past this length. If one desivres to return
again to the standard single~character spacings, the I command
should be Te—issuved. In response to the "?" the user should type:

?8<CR>

which will restore the standard tabs (note that the upper~case S ONLY
will carry—ouvt this function). Any ASCII character is sufficient to set
the tabs including the <spacel. (See also Control-1 command.)

W 3 33630 36 W3 3030 30 35 O6 3 303030 3 90 30 2 30 30 00 0

MACROS OR COMMAND ITERATIONS
A2 S T2 22 X By Rt T

The Macro Command symbols. <2 allow the user to group EDIT commands
together for repeated evaluation. The form of the command is

n<cammand string>

where “"command string” is any valid sequence of Editor commands; this
string will then be executed n times, where n may alsc be the "#" symbol
to stand for 65535 €times. A "O0" preceding the Macro is defined to be the
same as the "#"; a negative value for n is considered positive. The
default valuve for n is 1, which is the same as issving the command string
without a Macro. Unlike the § or F commands:, the Macro will not abort
when it can no longer be executed; thus, if the "#" symbol is used, it
will attempt to execute the command string 65535 times. To abort it,
simply press any key. An example of the use of Macros is the following
in which you can make changes in % labels used in an assembly language
grogram. If the original labels are:

SUBTL: DW OH
SUBT2: DWW B8H
GUBT3: DW 1CH
SUBT4: DW 18H
SUBTS: DW 20H

and you issue the Macro:
*B5<SSUBTTLADDTL>

where the B is used to move the pointer to the beginning of the buffer
prior to executing the Command Iteration. The resultant suvbstitutions
wouvld leave the text:

ADD1L: DuW OH
ADD2: Di BH
ADD3: D 10H
ADD4: oW igH
ADDG: D 20H

Page 26

Command Iterations can be nested up to 25 deep. Any attempt to nest
Macros more than 25 deep is trapped and the error message is printed
an the console: : _ : ‘!»

MACROS NESTED TOO DEEP

An example of the use of nested Macros is to organize columns of data

into more readable fashion. Suppose you have the following columns
of data: '

1035. 298349817
98. 209370128
107. 242475023
87. 584374879
4. 7273768289
101. 239797957
102. 885097399

You might issuve the following Macro command:
#B7LF, TI2C3CI *i>D>
which would result in the following columns of data:

105. 198 349 817

8. 209 370 128

107. 242 475 023

87. 584 394 879

94.729 398 289 | “»
101. 239 797 957

102. 885 097 399

ftacros are also vefq useful in conjunction with the Conditional commands
which are described in the following section.

-2 2 3 332 e 36 3 3

CONDITIONAL COMMANDS
bas s s it 22 2 BT Y

The Conditional Commands allow the user to conditionally execute commands
in the command string. The format of the commands is

=Ctext stringd>tl
/<text string>rL

The symbols used for conditional commands asre ‘=‘ and ‘/‘. The ‘=’ stands

for equal and '/’ stands for not equal. Any prefix number to ‘=’ ar /¢

is ignored. the command is executed only once. The entered text string

is compared to the text following the tharacter—pointer. If the two

strings are identical, the character-pointer is maved to after the string.,
otherwise the character—pointer remains unchanged. If the condition is

met, the next instruction in the command string is executed. If the

condition is not met., all commands up to the end of the Macro or the m

ﬁﬁ‘

Page 27

end of the line are skipped aver. An example of using conditionals
follows. Suppose you wish €o change all ‘%’ which begin a line to semi-—
colons. The command string wauld be

B#<{=u1+L-DI: T*L2L>

When this string is executed, it will start at the beginnig of the taxt
buffer. I+ the first character is an '#’, then it is deleted and a3 semi-
colon is inserted. Because of the nested macros, the character—pointer
is moved to the next line, whether or not the condition was met.

Page 28

CDOS Text Editor Command Summary

The following is an alphabetical Tist of the CDOS Editor commands. @
The mnemonic source of the command letter is underlined in the description.

Command Description ' Page

nA | Append lines from input file to end of text buffer... 18
+B Move character-pointer beginning or bottom of text

buffer. oL Lo oL 13
nC Move pointer over one or more characters. 13
+nD Delete characters from text buffer. 14
E End edit, close files, and return to CDOS 18
tnF Find a character string in the text buffer 16
G Get the contents of the Save Buffer and insert

them into the text. 22
H End edit, close and reopen files at head ; .21
I Insert text before character-pointer. 9 !!D
nd Jump the character-pointer forward or backward

overwords. L L. ool .. eo. 13
+nK Kill Tines of text. 15
+nb Move the character-pointer forward or backward

over a number of lines 14
ni Find next occurrence of a character string in

input file. o o o L L L L L. 18
0 _ Obliterate contents of text buffer and reopen

input fileat head. . . . , 21
+nP Move and print a specified number of pages. - N
0 Quit edit with no file changes and return to CDOS. . 19
R Read file from disk into text buffer 20
ns Substitute one character string for another. ., . . . 17
T Type a specified number of lines on the console, . . 1

Description _ Page
Upper case translate.« .+ .. 23
Verify remaining text buffer space. 24
Write lines before pointer to output file. 20
Delete words of text. e e e e e e e e e 15
Put Tines of text into the Save Buffer. 23
Set tabs. . . . v e s e e e e e e e e e e e e e 24
Move character-pointer and type a line (#nLT). . . . 12
Repeat command string n times-Macros. 25
If equal, proceed with command string. 26

If not equal, proceed with command string. 26

Page 30

Control Character Summary

The following is an alphabetical listing of the CDOS Editor control

characters. Under "Modes", 'I' means Insert Mode and 'S means string Mode.

Control ' Modes
CTRL-A I
CTRL-C 1.S
CTRL-E S
CTRL-H I,S
or DEL key '
CTRL-1 I,S
CTRL-L I,S
CTRL-P I,S
CTRL-R 1,S
CTRL-S I,S
CTRL-U 1.8
CTRL-X I,S
CTRL-Z I,S
or ESC Key

Description Page

Type page preceding character-pointer.. 5

Restart CDOS and lose edited text...... 5
Physical carriage return-line feed;

not sent to text buffer. 5
Backspace without echoing character. . 6

Generate a "tab" character or
equivalent number of spaces. 6

Logical carriage return-line feed;
these are generated by EDIT and .
inserted into text. 6

Turn printer on or off; a toggle action.7

Retype curvent line. 7
Stop or start type out on console;

a toggle action. 7
Delete current line. 8
Rubout characters with echo. 8

Used as delimiter for F,N,R, and §
commands in a command string. 8

