WAYNE T. WATSON

An Introduction to
Structured BASIC for

the Cromemco C-10

An Introduction to

Structured BASIC
for the
cromemco C-10

An Introduction to

Structured
BASIC for the
cromemeco €C-10

By Wayne T. Watson

Macmillan Publishing Company
New York

Collier Macmillan Publishers
London

Copyright @ 1984, Macmilian Publishing Campany, a dhvision of Macmiilan, Inc.
Printed Im the United States of America

All rights reserved. No part of this book may De reproduced or
trarsmitted in any form or By any means, electronic or mechanical,
including phototopying, recording, or any Information storage and
retrigval system, without permission in writing from the Publisher.

Macmilan Publishing Company
856 Third Avenue, New York, New York 10022

Colller Macmiilan Canada, Inc.

Library of Congress Cataloging In Publication Data

Watson, Wayne T,
AN introduction to Structured BASIC for the
Cromemco C-10.

Includes index.

1. Cromameca C-10 Icomputan—FProgramming.
1. BASIC ICompuber program languager 3. Structured
programming. 1. Tite,
QATE.3.CTEWST 1984 001.6a°2 3518328
ISBN D=2-424580-1

PrinCing: 12545678 Yean 4567800123
IZBN O-02-424580-%

To
Karen, David and Greta
Mother, Dad, Marianne, and David
Rick, Keith, Kelly
Gerd, Vera, Alf and Dan
And
The Sierra, Grand Canyon
and wilderness Memories

contents

Praface

CHAPTER

CHAPTER

CHAPTER

1: INTRODUCTION 1
BASIC 1

Programming 2

Review Questions and Exercises 6

Summary 6

2: STARTING INTO STRUCTURED BASIC 7

Becoming Familiar with BASIC 8

Some Often-Used Commands--LIST, RUN, SCR 10

Correcting Program Lines 12

Saving Your Program 13

Miscellaneous Commands--DIR, DSK 14

Renumbering Program Lines 15

Phantom Line Mumbers 17

Deleting Many Lines 17

More Miscellaneous Commands=--ATTE, RENAME,
ERASE a8

Exploring on Your Own 19

Review Questions and Exercises 20

Summary

3: EXPLORING PRINT AND LET 23

Expanding Our Knowledge of PRINT 23

Errors in Form--Syntactic Errors 24

Computing with the LET Statement 26

Ueing LET with String Data 28

Working with Longer Strings 30

Using Portions of Strings——sSubstrings Ly

Miscellaneous Remarks About LET 52

Reserved Names

PRINT Field width 35

Control of Spaces and Carriage Returns
with PRINT

Literals and Embedded Quotes 36

Review Questions and Exercises 37

Summary 3B

CHAPTER

CHAPTER

CHAPTER

CHAPTER

4: DATA INPUT AND NUMBERS a1

INPUT with Numeric Data @1

INPUT with String Data 43

INFUT with Strings and Numbers 44

Dreszing Up the INPUT Statement @5

Another Data Input Method--READ, DATA,
and RESTORE 45

Wull Characters &7

A Remarkable Statement--REM 49

Some More About Humbers 50

Hexadecimal Numbers 51

Literal and Variable Storage 52

Review Questions and Exercises 54

Summary 55

5: FUNCTIONS AND PRINT FORMATS 56
Increasing OQur Understanding of LET 56
Arithmetic Functions 59

User-Defined Functions--DEF 62

String Functions &4

Inserting into a String-—-EXPAND 66
Binary Functions &7

PRINT USING with Humbers 68

FRINT USING with Strings 72

PRINT USING with Mumbers and Strings 74
PRINT USING--Miscellanea 74

Review Questions and Exercises 76
Summary 76

6: EDIT FACILITIES 78
Editing Lines--EDIT 78

Locating an Item—=FIND 81

Making Multiple Changes--CHANGE 82

Letting BASIC Number Your Lines--AUTOL 83
REeview Questions and Exercises 85

Summary 85

7: LOOPING, BRANCHING, and LOGIC B6
Simple Loops-——FOR and NEXT 86
Common Loop Efrors 88

Step Control in FOR-NEXT 90
Nested Loops 91

Transferring Control--GOTO 93
Multiple Transfers-—-0N=GOTO aqa
Logical Control-—-IF 96

Loan Repayment Program Example 989
Programming Suggestions 101

Review Questions and Exercises 103
Summary 104

Contents

CHAPTER

CHAFTER

CHAPTER

8: DEBUGGING

Immediate Mode 106

Stopping and Continuing 107

Listing Variables 108

Statement Tracing 108

Using LIST and ENTER to Clean Up Programs
Using LIST to Find a Line MName 112
Review Questions and Exercises 113
Summarcy

9: ARRAYS AND GOSUES

Simple Tables 115

Two-Dimensional Tables 117
Higher-Dimensional Tables and MAT 118
Tables of String Data 119

Histogram Example 120

A Plot Program 122

Avoiding Statement Repetition=--GOSUB 125
Review Questions and Exercises 129
Summary 129

10: ODDS AND ENDS

Setting System Parameters 131

Obtaining System Parameters 153
Responding to Execution Errors 134
Recovering from Errors with a GOSUB 136
Controlling the Escape Key 137
Protecting Program Lines 138

Protecting Input Data 158

Substrings Revisited 138

Humbers and Storage--The Long and Short of
Observing the Effect of BASIC on Numbers
Variable Storage 144

Miscellanecus System Facilities 145

A Few More Odds and Ends 146

Review Questions and Exerciges 148
Summary 148

105

110

It

115

131

142

143

X

CHAFPTER

CHAPTER

CHAPTER

Contents

11: FILES 150
File Structures and Accessing Files 150

Working with Files 152

Reading and Writing Seguential File Structures 153
PUT and GET Precautions 155

Using Simple String Variables with PUT and GET 156
Opening Files 157

Records 159

Bccessing Random File Structures 160

Using INPUT and PRIMT with Files 162

File Example--Little League Baseball Records 164
Detecting the End of File 168

BASIC File Commands 172

A File Function 172

Using GET for Terminal Input 174

Review Questions and Exercises 175

Summary 176

12: MODERN PROGRAMMING STRUCTURES 178
Grouping Statements Together-—-DO-ENDDO 179
Two-Part Logical Groups=--ELSE 181
Looping Under Logic Control--WHILE-ENDWHILE

and REPEAT-UNTIL 182
Review Questions and Exercises 184
Summary 184

13: WRITING LARGE PROGRAMS 185

Figuring Qut How Much Space Is Available 185

Contrelling Storage——Mode Changes 186

Mode Changes for Trigonometric Functions 189

Controlling Storage of Specific Variables 189

Mixed Mode Arithmetic Again 191

Using DELREM to Increase Space 191

Using LIST and ENTER to Combine Frograms 192

Chaining Programs Together with RUN 184

Fassing Data Between Programs-—0Overlays, Files,
and COMMON 184

Review Questions and Exercises 200

Summary 2m

contents X1

CHAPTER

Appendix
Appendix
Appendix
Appendix

Index

l4: PROCEDURES 202
Advantages of Procedures 202

Form of a Procedure 203

Global and Local Variables 206
Recursion and Stacking 208

Matching Arguments 209

Building Frocedure Libraries 210
Partitions 211

Locking a Partition 213

Scratching a Partition 214

Creating a Library with LIBBUILD 215
Common for Procedures 216

Review Questions and Exercises 220
Summary 221

A: GENERATING BASIC 224
B: AN EXAMPLE OF RECURSIOM 226
C: BASIC ERROR MESSAGES 230
D: ASCIT CHARACTER CODES 232

235

Preface

This book ise an introduction to the Cromemco®
Structured BASIC, or Structured BASIC, language,
which is available for use only on Cromemco
microcomputers. It is for individuals who want to
know more about Structured BASIC. Enowledge of the
CDOS or CROMIX operating system commands is assumed.

It iz the intenticn of this book to describe
and organize Structured BASIC in a way that will be
useful to you, regardless of whether you are just
starting to use computers, you have previous
experience with computers, or you have already
worked with Structured BASIC. BHReaders who do not
have Structured BASIC available to them will find
many useful examples and ideas which can be extended
to other versions of BASIC.

A good deal of emphasis is placed on making
uwzgeful information readily available, and in
progressing from beginning material to more advanced
material. Sample programs are provided to
illustrate the concepts presented. At the end of
each chapter, a summary of the key points of the
chapter is given. The summary can be useful to the
firgt-time user for a review of some of the concepts
learned in the chapter. Review guestions and
exerciges are found at the end of each chapter to
emphasize concepts learned in the chapter.
Furthermore, the organization of the book lends
itself to a gquick and handy reference to the
concepts of Structured BASIC for both the beginning
and the advanced user,

*The names Cromemco, CDO0S, and CROMIX are trademarks of
Cromemco Ing,, Mountain view, Ca,

X Preface

Much of the material in this introduction
covers features which are common to many programming
languages, and should help readers extend their
general knowledge of computer languages when it is
mastered.

An extension to the Structured BASIC language
is a feature referred to as the keyed seguential
access methoed feature, or KSAM, It ie available in
a version of Structured BRSIC known as 32K
Structured BASIC. It is not available in Structured
BASIC for the C-10., While ESAM i= undoubtedly of
interest to some users, we feel that is of limited
uge in many applications, and is only of interest to
some advanced users. There are virtually no
differences between Structured BASIC for the C=10
personal computer and 32K Structured BASIC for other
Cromemco computers except for KSAM. This book is
applicable to either version of BARSIC. Users of 32K
Structured BASIC have the additional ability of
tailoring BASIC to different cperating environments.

A detailed description of Structured BASIC and
32K Structured BASIC are contained in the Cromemco
Structured BASIC Instruction Manual (part no,
023-4050) and the 32K Structured BASIC Instruction
Manual (part no. 023-0080), respectively, both
available from Cromemco. Both manuals are good
sources of additional information, and should be
used when the user needs to know more details of the
actual implementation of BASIC., For the 32K
Structured BASIC user, KSAM, device drivers, and
some other advanced features of BASIC are discussed
at length in the 32K manual.

For the first=time user of BASIC or computers,
we suggest that you start with Chapter 1 and
continue through Chapter 9. When you have completed
Chapter 9, vou will have a solid introduction to the
most used concepts in BASIC, By the time you have
finished Chapter 7, vou should be in a position to
write some fairly complex programs. We urge you to
try to program some of vour own applicationa by
then. If you are unsure of tackling your own
preblems, try modifying some of the larger examples
in the book. The loan repayment, scatter plot, and
histogram programe are useful for this purpose. For
other ideas, see the suggestions at the end of
Chapter 7. Remember, one of the best wayes to learn
how to program is to practice. If you have a hard
time thinking of applications, try conwverting
programs from other BASIC books inte Structured

Preface xv

BASIC. Take a peek at Chapter 10 occasionally as
you feel more comfortable with BASIC.

When you feel fairly confident about your
abilities, move on to Chapter 11 on files., Take
gome time to really get acgquainted with file
operations; they are important to many applications.
Be you increase your abilities, move on to the last
three chapters. Make use of subroutines {(Chapter 9)
when you feel that you are using a lot of the same
codes in your programs, When you feel comfortable
with subroutines, try Procedures (Chapter 14).
Procedures are & really good feature of Structured
BASIC and are not found in many other
implementations of BASIC.

It is a pleasure to thank my wife, Greta, for
her careful procfreading of the book for spelling
and punctuation errors; Jim Drebert for hie interest
in and encouragement for the project; Charles
Silbereisen for his attention to detail and his
interest; and a number of friends who indirectly
made this project worthwhile. Despite their heroic
attempts, the problems and errors which remain are
attributable to me.

Wayne T, Watson
The Software Hill
Mountain View, California

CHAFTER'

Iintroduction

BASIC

A you are about to discover, Structured BASIC is a
very powerful and useful language for solving
problems using your microcomputer. The BASIC
language has been available in a number of forms
gince the mid-sixties, when it was developed at
Dartmouth University. Originally, BASIC was
designed to provide a simple and easy-to-use
language for solving problems using a computer.
Since that time, its capabilities have grown. The
Structured BASIC language extends the criginal BASIC
concept to include modern features, At the same
time, it continues to provide & simple and
easy-to-use tool for selving problems.

Structured BASIC ie known as a higher-level
language (HLL). Other such languages are FORTRAN,
COBOL, APL, PL/I, and Pascal. What & HLL means to
you is that you will not have to know much about the
inner workings of your computer. Other languages,
usually assembly languages, require a detailed
knowledge of what goes on inside the computer. A
HLL allows you to get guickly at concepts and
instructionse that help you solve your computer
application problems.

Another aspect of Structured BASIC is that it
ig also an interpretive language, This feature
allows you essentially to stop vour program, a set
of instructions written in the BASIC language, in
midstream and to make modifications, cerrections,
and additions and then continue with your cemputing
from the point where vou stopped. This is very
useful when you are beginning to explore the

2 An introduction to Structured BASIC for the Cromemco €10

language or develop a program. Structured BASIC
uses an interpreter to execute your programs; many
other languages use compilers, Compilers have the
disadvantage that corrections are not so easily
made. However, in general, compiled programs
execute faster than interpreted programs.

PROGRAMMING

Now that vou know something about the history and
general capabilities of Structured BASIC, you may be
wondering about what you are actually going to do
with it to help wyou solve your problems.

Structured BASIC is a language. Specifically,
it is a computer languade. What this means is that
it is composed of a set of instructions and commands
for solving problems. Problems may be as diverse as
differential eguation solving, data plotting,
information retrieval, data base management,
forecasting, pavroll accounting, and inventory
contrel. A computer language provides a way of
communicating certain instructions to a computer
that will help solve these and other problems. The
organization of the instructions in a group
constitutes a program; the act of organizing the
instructions is referred to as programming (writing
a program), Writing a program, or programming, is
somewhat like writing in a mnatural language such as
English, except that the rules are different and
much more restrictive tham in a natural language.
Structured BASIC is the language vou will use to
write programs. Programming is what this book is
all about.

To give yvou a slightly more concrete look at
what programming is about, consider the task of
cleaning a window. Although computers do not wash
windows, this example illustrates closely the
process of communicating a task to a computer. We
can write this task as a series of instructions to
give to someone to perform, maybe your son or other
family member, if you are lucky.

Here is & set of possible instructions:

l, Get a bucket, water, socap, and wash rag.
2. Go to the living room.

Ch. 1: introduction 3

. Select a window,

. Wash the selected window.

. Belect another window and repeat instruction 4.
If there are no other windows unwashed go to
instruction &.

» Empty the dirty water in the laundry sink,

. Return the bucket, scap, and wash rag to where
you found them before performing instruction 1.

L e L

=) on

By way of analogy, these instructions constitute a
program, Writing them is the act of programming.
The written instructions are a program. The
language is English. Later we will use BASIC. The
person carrying out the instructions represents the
computer .

Perhaps you are wondering why we did not just
uee one instruction that said, "John, go get some
water and wash the living room windows, and make
sure you return the eguipment to where you found
itl!" This would make sense to humans, but computers
are not guite as smart. We have to break things
down into sets of smaller instructions that
computers can deal with. The set of instructions a
computer deals with is incorporated in languages
such as Structured BASIC. Structured BASIC allows
us to deal with one set of instructions. Another
programming language might allow us to deal with
another set., We have to understand each language so
that we can determine how to provide the computer
with the right set of instructions.

Besides instructions, we will have to provide
data and informationm about the data. In our
example, we might want to say that the soap is
SHAPPY-WINDOW cleaner and the rag is a paper towel.
50 we might insert a statement such as

A, The soap is SNAPPY-WINDOW cleaner.
B, The wash rag is a paper towel.

These declarations are really defining data or some
property of the data., At any rate, they are not
instructions in the sense of instructions 1 through
7 given earlier,

Generally, we will refer to declarations,
definitions, and instructions as statements.
Statements are a very important aspect of a
programming language. They are not the only part,
but they deserve much attention.

q An introduction to Structured BASIC for the Cromemeco C-10

Although we will not deal with the technigues
of writing programs, it should be mentioned for the
beginner that a sharp pencil and some paper are
often used to sketch out a program before it is
placed in the computer. By sketching, we mean that
a loosely written set of inetructions is written
which may look something like the actual statements
that are needed by the computer., Once we are
satisfied that the loosely written instructions
represent a solution to our problem, we enter the
actual program at the termipal. Usually, a
combination of sketching a program on paper and
directly entering specific program statements at the
terminal are used. Another technigue often used is
a flow diagram, A flow diagram is just a figure
containing blocks and lines. These figures
generally indicate logic flow, computational blocks,
and data movement. This ie probably the oldest form
of describing programs and is ocften used,

Figure 1.1 is a simple example of a flow diagram
which shows how to find an ace in a deck of cards,
We assume that the deck is face up on a table.

Startc

Gat a
card
deck

Gat
next card

Finighed

Figure 1.1

Ch. 1: Intreduction

HIPOQ (Hierarchy-Input-Process-Output) charta
(introduced by IBM) and Structured charts
{introduced by Yourdon and Constantine) are other
ways of describing programs. Pseudo-Design
Languages (PDL) are yet another popular method.
Unless you are fairly experienced at programming,
you will not find these latter metheds appealing.

Like any experience, programming involves
making mistakes. 1In fact, it may seem that a major
portion of our concern in writing programs involves
errors, At the present state of human and computer
development, this seems an unavoidable problem.
There will be times when mistakes occur, but they
can be corrected. Structured BASIC provides
facilities for finding and fixing errors, and a
chapter of this book is devoted to the topic, If
you are just beginning to program, do not letk your
errors discourage you. With perseverance you will
overcome them and you will soon be making fewer
errors and moving toward selving larger and more
complex problems. Just keep on truckin'.

Figure 1.2 Time to get crackin'.

3.

An Introduction to Structured BASIC for the Cromemco ¢-10

Review Questions and Excercises

Can you draw a flow diagram for finding a two
of spades and the first ace in the deck? Does
it reguire one or two diamond figures in the
diagram? Can you explain your diagram to
gomecne? Does it allow both cards to be found?

If someone painted SLOH on a road sign, would
you understand that it meant SLOW? Would a
computer? Computer languages usually reguire
that important words be spelled correctly. Do
you think BASIC will allow you to misspell
words in ite instructions?

In Chapter 2 we will find that BASIC
instructions are identified by =simple names
such as PRINT, LET, IF, and GOTO. These are
very powerful statements in BASIC, Does this
surprise you? What do you suppose they do?

If you make a mistake in writing a program, do
you suppose that it cannot be corrected? Would
you have to buy something te fix such a mistake
ag, sayy in repairing a broken window?

summary

BASIC

A programming language,

Frogram

A set of instructions written in a
programming language which direct a computer
to perform and solve an application problem.

Interpreter

A particular implementation of a computing
language which allows programs to be stopped
in mid stream. This ability allows you to
make modifications, corrections, and
additions, and then to continue with your
program without starting from the beginning
again.

Structured BASIC

An interpretive programming language
implemented for use on Cromemco computer
systems.

CHAPTER

Starting into
Structured BASIC

Structured BASIC contains nearly one hundred
statements which allow us to state our problem to
the computer. Many of these statements need not be
learned at firast, We can gradually learn how to use
all of them; we learn by starting with the simpler
and most freguently used statements first and then
by moving to others as our experience grows. The
same approach can be used in learning other parts of
the language.

Figure 2.1 This should be a pleasant experience,

B8 An Introduction to Structured BASIC for the Cromemco C-10

To get started on this process, we will go
directly to Structured BASIC and use it, We will
introduce you to what you need as we go along, and
eventually turn you loose in succeeding chapters to
explore and understand more on your own.

BECOMING FAMILIAR WITH BASIC

The first thing you will want teo do is simply enter
the Structured BASIC interpreter; =zo fire up your
computer and let's get started.

The interpreter is nothing but a special
program that allows you to operate BASIC. It is
delivered with your copy of Structured BASIC on a
floppy disk, and the program is called SBASIC. Look
for a file called SBASIC.COM with your CDOS or
CROMIX commands, Put this file on a disk which is
not write-protected. If you are not sure what
"write-protected” means or how to transfer files
from one disk to another, see your CDOS or CROMIX
manual.

Once you have placed your floppy diek
containing SBASIC.COM in a drive, enter the
following at the kevboard of your terminal

EBASIC

(From a C=10, select option 5 from your main menu.)
Make sure you hit the carriage return on your
keyboard afterwards. We will not say much more
about hitting carriage returns, but unless we say
otherwise, when you are asked to enter something, it
needs to be followed by a carriage return., This
signals the computer that you want something done,

We will refer to the process, just described,
of running the BASIC interpreter as "entering,
running, or executing BASIC".

The computer should respond with

>

This is BASIC's way of telling you that it is ready
for you to enter something. Hit the carriage return
geveral times and notice that BASIC responds with >3
each time.

In our description of BASIC, you will be asked
from time to time to enter something at the

€h. 2: starting Into Structured BASIC)

terminal, In the text, we will show this by
printing the text you should enter in bold
characters. For example,

»>PRINT 1.5

indicates that you should enter "PRINT 1.5" at your
terminal console,

Before going very far, let's £ind out how to
get out of BASIC and back to the operating system,
CDO58 or CROMIX. Just enter the BYE command

»>BYE

Presto. MNothing to it. We are ocut of BASIC
interpreter. Re=-enter BASIC by typing in SBASIC,
and we will continue.

How, let's enter a program. Enter the
following exactly as shown

»»100 PRINT "HELLO"
»>110 END

If you make a mistake and BASIC prints ERROR-1
SYNTAX or something similar, just re-enter the line
of text., If yvou misspell something before hitting
the carriage return, just back up your cursor with
the delete or left-curscr-arrow key on your terminal
and continue typing once the misepelled character is
erased by the key., If you misspelled a line number,
eliminate the line by entering just the mistyped
line number with a carriage return, and then enter
the correct line. We will delve more into deleting
and correcting lines shortly.

You have just entered a two-line program., EBEach
line begins with a number, and represents a program
gtatement. The first item after the line number is
the name of the statement, in this case the PRINT
and END statements,

The PRINT statement usually contains some
information that you wish te print at the terminal,
The items to be printed follow the word PRINT,
Etrings of alphabetie and non-alphabetic characters
of strings to be printed are enclosed in double
quotes ("). In later chapters, we will learn that
the PRINT statement has many more capabilities. The
END statement simply marks the end of the program
statements and stops execution of the program when
it is encountered. Later we will learn about the

10 An Introduction to Structured BASIC for the Cromemco C-10

STOP statement, which is like END, but is a little
less definitive,
Enter LIST as shown

»»LIST

BASIC should have responded by listing the two-line
program previously entered

100 Print "HELLO"
110 End

Hote that the PRINT and END statements have
been slightly revised. Only the first character is
a capital letter, BASIC likes to make statements a
little more readable when posgible, It might be
useful to mention that although we are typing
commands and statements in capital letters, BASIC
will recognize commands and statement names (FRINT
and END) in lowercase letters., We use capitals to
highlight entries.

Incidentally, if you forgot the double guote
(") at the end of the line containing PRINT, you may
notice that BASIC put one there for you. BASIC
always inserts a double guote at the end of a line
if it needs one., Sometimes this can save vou a few
extra key strokes. We will refer to (") as a double
guote. This is to distinguish it from the single
guote ('), which will always be referred te as an
apostrophe. The double guote and apostrophe are
geparate keys on the keyboard.

SOME OFTEN-USED COMMANDS—LIST, RUN, SCR

In our preceding discussion, LIST produced a listing
of the program at your terminal in the order of the
line numbers specified. LIST was not preceded by a
number and is not part of the program. LIST is one
of many commands available in BASIC. Commands are
not preceded by a line number and they are executed
immediately by BASIC., They allow vou to display,
edit, and manipulate programs,

Although we have just stated that commands are
not preceded by line numbers and, hence, are not part
of a program, in later chapters we will find that
some commands can be preceded by a line number and
can become part of a program. For now, ignore this

Ch. 2: Starting Into Structured BASIC 1

dual ability of commands.

LIST may alsc be used to list specific lines or
groups of lines. For example, LIST 100 lists only
line 100. LIST 100,150 ligts all lines from 100
through 150, in our case, just lines 100 and 110,
Omitting a line number after the comma causes LIST
to list all lines from the specified line to the end
of the program. If a line number referenced in the
command does not exist, LIST, like many other
commands, finds the next closest line number
available and proceeds,

Another command is RUM. It is very important,
Use it by entering

>>RUN
The results which appear should be

HELLO
*k%)1(Endrts

If you do not get this result, retype the program.
The gtring of characters HELLO is the output of the
program. The ***110 End*** indicates that the
program has stopped running at line 110. In effect,
RUN causes BASIC to begin running, or executing, the
program from the lowest numbered line and then to
proceed to successively higher numbered lines.
Later, we will find that there are ways of
controlling the execution sequence,

The program just entered is said to be in a
work space. LIST allows us to list whatever we have
in the work space. The work space can be cleared by
entering the command SCE (scratch). Enter SCR
followed by LIST

»»BCR
>>»LIST

Thie time LIST shows that the work space is

scratched or empty. Enter the following in the
order shown

»»120 PRINT "STRUCTURED BASIC*®
»»110 PRINT “IS FUN"
»»130 END

12 An Introduction to Structured BASIC for the Ccromemco C-10

Enter the LIST command and you will find that you
have

110 Print "IS FUN"
120 Print "STRUCTURED BASIC"
130 End
Enktering RUN produces
15 FUN
STRUCTURED BASIC
**¥%]30 End#*®

Somehow this does not look like reasonable output,
The intent was to produce

STRUCTURED BASIC
IE FUN

How do we correct the program?

CORRECTING PROGRAM LINES

Obviously, the segquence of program statements in our
program is incorrect. A possible way to correct
this is to first enter 120

>>120
How enter LIST

>>»LIST

This produces

110 Print “"IS FUR"
130 End

We have discovered that entering just the line
number deletes the line, How type

»>100 PRINT "STRUCTURED BASIC"
followed by LIST

»>LIST

Ch. 2: Starting Into Structured BASIC 13

which produces

100 Print "STRUCTURED BASIC"
110 Print "IS FUN"
130 End

How, try running this program to see if you get the
desired output. Use RUR.

SAVING YOUR PROGRAM

Suppose we like our little program and decide that
we would like to keep it for future reference. The
BASIC SAVE command is useful here, Enter

»»SAVE "EXAMPLE.BAS*®

Thiz command causes the work space containing your
program to be saved as a file with the name
EXAMPLE.BAS on the current disk. As you may recall
from your knowledge of CDOS or CROMIX, files have a
name and an extension. EXAMPLE is the file name and
BAS is the extension, and they are separated by a
pericd. File names may contain numbers and other
characters like a dollar sign. Usually it is wise
to use just letters and numbers. An extension need
not be given but it is usually advisable to do so,
In order to place a program on a specific disk, a
disk specifier may precede the file name, For
example, "B:EXAMPLE,.BAS" would be used to save the
program on the B-disk or corresponding directory (in
CROMIX) .

By now the program should be saved. Let's see
how this really works. Enter the S3CR command,
followed by the LIST command, BASIC should respond
by showing you there is nothing in your work area,
How enter

>>LOAD “"EXAMPLE.BAS"

When BASIC prompts you for input, enter the
LIST command. This should produce a listing of the
EXAMPLE program that we just entered. Execute the
program by entering the RUN command.,

Actually, we did not have to scratch the work
area before loading EXAMPLE. LOAD always clears the
work area first, Try entering some PRINT statements

14 An introduction to Structured BASIC for the Cromemco C-10

at random line numbers and then use LOAD again
without first using SCR. Use LIST to see what has
happened.

Another way of loading & program from disk and
executing it is to enter

RUN "EXAMPLE,BAS"

When a file is specified with the RUN command, RUN
first loads the program file and then executes it.

Try RUN and LOAD with the names of program
files that you do not have on your disk, For
example, RUN "NOWHERE.BAS", BASIC should give you a
message stating that the file does not exisk,

SAVE and LOAD give us a way of saving and
retrieving program files. Another pair of commands,
ENTER and a variation of LIST, are also useful for
this purpose and will be discussed in Chapters 8 and
13. The discussion in Chapter 13 concerns the use
of these commands to merge and combine programs.

MISCELLANEOUS COMMANDS—DIR, DSK

Another handy command that you might need at this
stage is DIR. DIR allows you to examine your
directory. Some examples are

DIR
DIR “*,BAS"
DIR "B:M* ®"

Kote that this is similar te the CDOS DIE command,
Egi that double gquotes are used when specifying
es.,

DEK is another command that occasionally is
useful. It helps us designate a new maskter drive.
1t functions like the entry of A: or B: in CDOS.
Some examples are

DSE "A:"
DSE "C:"
DSE "-A:"

In the last example, the presence of the minus sign
indicates that the disk in drive & should be

ejected, A disk is actually only ejected on B-inch
Persi drives. For other drives, a message is issued

Ch, 2: Starting Into Structured BASIC 15

to remove the disk.

It is advisable to use the DSK command to
"log in" a disk drive if you physically remove and
replace floppy disks while still in BASIC, You
log in the disk by using DSE to establish the drive,
with the new disk as the current drive. Then you
use DSK to establish the drive that you want as the
current drive for the next portion of your terminal
segsion. This procedure gives BASIC and your
operating system a chance to recognize the new disk.
It is even more advisable to exit from BASIC if you
need to switch floppy disks. The point here is that
some care is required to make sure that the
operating system and BASIC have the opportunity to
adjust to the switch.

RENUMBERING PROGRAM LINES

A command that is useful for organizing programs is
the RENUMBER command. It renumbers programs in the
work area, This will bhe particularly useful as we
write larger programs. It's probably a good idea to
try the command now just 50 you have it available
when you do some experimenting on your own. Let's
reload our EXAMPLE program, It looks like this

100 Print "STRUCTURED BASIC"
110 Print "IS FUN"
130 End
Suppose we add a line 115.
»»115 PRINT "“AND HANDY"®
How we hawve
100 Print "STRUCTURED BASIC"
110 Print "IS FUN"
115 Print "AND HANDY"™
130 End
By entering

»>RENUMBER
»:LIST

16 An Introduction to Structured BASIC for the Cromemca C-10

the work area now shows

10 Print "STRUCTURED BASIC®
20 Print "IS FUN"

30 Print "AND HANDY"

40 End

HENUMEBER, in this form, always renumbers the first
line to 10 and increments each fellowing line by 10.
We can do more. Enter

»>RENUMBER 1000,100
»>LIST

to produce

1000 Prinmt "STRUCTURED BASIC"
1100 Print "IE FUN"

1200 Print "AND HANDY"

1300 End

The two numbers following RENUMBER, separated by a
comma, indicate that line numbering should begin at
1000 and be incremented by 100. We can do a lot
more with this command, and we will explore some
pessibilities in a later chapter.

Two other forms of RENUMBER exist that are
freguently helpful

RENUMBER 4000,10,5000,6000
RENUMEER 1000,50,1100,

The first form renumbers lines 5000 through 6000 so
that the new lines begin at 4000 and are in¢remented
by 10. In the second form, all lines from 1100 to
the end of the program are renumbered so that they
start at 1000 and are incremented by 50.

An interesting aspect of the RENUMBER command
goccurs when we renumber a group of lines so that
their new line number causez them to be placed ahead
of an other group of lines. The renumbering takes
place, but the lines are not actually moved. Hence,
using LIST will show the line numbers out of
seguence, This use of RENUMBER does not occur
frequently, but when it does and you are disturbed
by the presence of ocut-of-seguence line numbers, use
the LIST-ENTER procedure discussed in Chapter B.

€h. 2: Starting into Structured BASIC 17

PHANTOM LINE NUMBERS

There is a peculiarity in the RENUMBER command and
BASTC that is worth mentioning. If a line ie
removed just by entering its line number, that
number will be bypassed if an attempt is made to
renumber lines which include that line number, For

example, consider the very simple program

510 PRINT "HELLO"
520 PRINT "HI"
530 ENMD

We can remove line 510 by just entering
510

NHow if we renumber with RENUMBER 500,10 and LIST,
and we obtain

500 Print “HI"
520 End

line 510 is bypassed. It stil]l exists as sort of a
phantom line number. This peculiarity does not
cause any problems; it just jumbles our line numbers
slightly. We can use 510 again because only the
RENUMBER command is affected., The problem can be
eliminated with another version of LIST in
combination with the ENTER command., This topic will
be discussed in Chapter 8.

DELETING MANY LINES

While we are on the subject of deletions, BASIC
contains a DELETE command. Its three forms are seen
in the examples

DELETE 400
DELETE 300,500
DELETE 1000,

Form one deletes only line 400, The second form
deletes lines 300 through 900, and the last form

18 An introduction to Structured BASIC for the Cromemco C-10

deletes everything from line 1000 to the last line,
Waturally, some care should be exercised in entering
the second ferm because omitting the second number
will cause deletien to the end of the program, The
command DELETE, without any specified line numbers,
will result in an error and no lines will be
deleted.

Phantom line numbers will be created by the use
of DELETE.

MORE MISCELLANEOUS COMMANDS—ATTR,
RENAME, ERASE

File protection attributes (read, write, and erase)
of disk files will be changed with the ATTR (or
ATRIB) command; this command has two spellings. The
ATTR command is similar to the CDOS ATTR command.
Two examples are

ATTR "MYFILE.DAT","E"
ATTR "SOMEFILE.DAT","+W"

The protectien attribute of MYFILE.DAT is changed to
erase-protection only. In the case of SOMEFILE.DAT,
the write-protection attribute is added to whatever
other attributes are in effect for the file.

Files may be renamed with the RENAME command.
This command is similar to the CDOS REN command
except that its parameters are reversed from REN.
An example is

RENAME “"NEWMASTR.DAT","OLDMASTR.DAT"

The name of the file OLDMASTR.DAT becomes
HEWMASTE . DAT.

Files may be erased by the use of the ERASE
command, This command is similar to the CDOS ERA
command. An example of how it may be used is

ERASE "TESTPROG.BAS®

This simply removes the file TESTPROG.BAS from the
current directory.

Ch. 2: Starting Into Structured BASIC 18

EXPLORING ON YOUR OWN

At this point, you might want to explore some of the
concepts that we have learned, Try using some of
the commands and statements in your own program.

Try entering something at line zero (BASIC will
cbject). What is the highest line number you can
use? (Answer: 99999.) What happens when you enter
123456 or 10.50 as a line number? What happens when
you misspell PRIMT or LIST? What does LIST 100,50
de? (Mothing; BASIC will object.)

Figure 2.2 Are you sure we came in this way?

*l
sl

El

An Introduction to Structured BASIC for the Cromemco C-10

Review Questions and Exercises

The program line
190 PRINT

causes BASIC to skip a line, Is this useful?
When?

Will the following program print anything when
you uge RUN? Why not?

100 END

110 PRINT "TODAY IS TUESDAY"

120 PRINT "THE TIME IS 10:30 DM"
130 END

Should you enter pregrams without leaving room
between line numbers to insert new lines? What
is a reasonable increment between lines? (Ten
is frequently used as a safe increment,)

What is a phantom line number?
What command saves programs on disk?

How do you erase a program from a disk? How do
you scratch the work space?

Summary

Line Humber

A number which precedes a statement and is
used teo number and organize program
statements in the work area and program,

Work Area

An area within BASIC which contains program

statements entered from the keyboard or from
disk files.

A program must be in the work area in crder

to be executed.

Ch. 2; starting into Structured BASIC 1

Program Statement

A BASIC instruction which iz formed by
preceding the statement form with a line
number .,

A statement represents an operation or
instruction which BASIC is to perform when
the statement is executed,

Command

An operation or instruction which BASIC
performs immediately when the command is
entered,

Similar to program statements except that
commands generally are used to manipulate the
work area of a program, or to direct BASIC or
the operating system to perform some
non-programming operation.

Phantom Line Number

BYE

PRINT

END

LIST

LOAD

EUNH

A line number which has been deleted from the
work area and is not reused for a new
statement.

Returns you to CDOS or CROMIX,.

Program statement which prints a character
string at the terminal.

Program statement which ends execution of a
proqram.

Lists the work area,
Several forms exist to selectively list
lines.

Places a program file from disk into the work
Aread.

Clears and resets the work area before
loading the program.

Executes the program in the work area.
Loads and executes programs from disk.
Only loads and executes programs that have
been placed on disk with the SAVE command.

22 An Introduction to Structured BASIC for the Cromemco C-10

SAVE
Places a program in the work area onto the
disk.
SCR
Scratches, clears, and resets the work area.
DELETE
Deletes lines of code.
Several forms exist to selectively delete
lines,
RENUMBER
Renumbers program lines in egqually spaced
intervals.,
Several forms exist to renumber lines
selectively.
DSE
Alters the current disk default drive.
DIR
Lists files in a directory.
RENAME
Renames a disk file.
Parameters are reversed from the CDOS REN
command.
ERARSE
Erases a disk file.
ATTRE or ATRIB
Changes the protection attributes of & file.
Boldface
Used in this book to indicate that the reader
is to enter those program lines and commands
- at his or her computer terminal.
Prompt symbols output by BASIC to indicate
that you are toe enter statements or commands.

CHAPTER 3

Exploring PRINT
and LET

In this chapter, we will cover the capabilities of
the PRINT statement in greater depth. We will also
introduce elements of the LET statement, which will
allow us to perform complex calculations. HNumeric
and string variables will be introduoced, which will
permit us to store data for use in other statements.

EXPANDING OUR KNOWLEDGE OF PRINT

We have learned a number of things about BAEIC, but
the programs we can write with just a simple PRINT
are not very useful, However, the capabilities of
PRINT have not yet been fully explored.

Clear your work area with the SCR command and
enter the following program,

>»100 PRINT "HELLO"

»»110 PRINT

>»120 PRINT "How are you?®

»»130 PRINT

»»140 PRINT 100.355

>>150 PRINT "Monday","Tuesday","Wednesday"
#2160 PRINT 10+*2

>>170 @ 4,5

»»180 EMD

After you have entered this program, enter the RUN
command to execute it. The results should be

23

24 An Introduction to Structured BASIC for the Cromemco C-10

HELLO

How are you?

l00.55

Monday Tuesday Wednesday
20

4 5

We note that the PRINT statement at 110 does not
have anyvthing following PRINT. This is legal; the
effect ig to skip a line., The output produced by
line 120 is in upper-and lowercase as shown in the
string. The string enclesed in guotes is produced
exactly as it was entered intce the program., Line
140 does not contain a character string. Instead,
it contains a number, and the number is printed.
Line 150 containe three different strings, which are
separated by commas., The effect is to produce the
three strings on the same output line with some spacing
between them, Line 160 contains 10%2 and produces
20 in the output. The notation 10*2 indicates that
10 is to be multiplied by 2. The result is output
by the PRINT statement, Finally, line 170 shows
that an @ symbol is an alternate netation for the
PRINT statement, This single symbol reduces the
number of key strokes needed to enter the often-used
PRINT statement. We will continue to use PRINT for
clarity.

The notation * denotes the multiplication
operator when it appears between numbers. Several
other arithmetic operators are available: J/ for
division, - for subtraction, and + for addition.
Examples are

15*30 45/15 10+80 90-25 400/40 15+5
Before pursuing the ability of BASIC to perform

computations, let's digress for a bit and consider
mistakes that are related to statements.

ERRORS IN FORM—SYNTACTIC ERRORS

What constitutes a mistake? At present, our concern
ie with what are called syntactic errors, which are
caused by not following the specific form of a

ch. 3: Exploring PRINT and LET 25

gtatement, This is probably a good time to discuss
the subject, since our statements are getting
complicated by the presence of strings, numbers, and
computations, Other errcrs, such as logic errors,
will be touched upon later.

BASIC assumes a specific form for each
statement. Thisg form must be adhered to, or BASIC
will object with a message that says something like
"Error=-1 Syntax"™ when you enter an inwvalid
statement, For example

PRIN 100,200

will produce such a message because PRINT is
misspelled., A similar result is obtained for

PRINT "WEIGHT,"SFEED"

except the error here is that the string "WEIGHT
does not have a double guote at the end. BASIC will
allow you to enter these statements but will issue a
syntax error message which indicates that the syntax
or form of the statement is incorrect. This is a
very useful feature of BASIC, because you are warned
of such mistakes immediately instead of at some
later, and perhaps more critical, time. The
permissible forms of a statement are stated in the
Structured BASIC Instruction Manual. Consult this
manual when you have gerious trouble with syntax.

What happens if a syntactic error is not
corrected immediately and you try to execute an
incorrect statement? BASIC will object by stopping
and issuing a message telling at which line it
etopped. Let's go through the proecedure, Secratch
your work area and enter

»»500 PRI 100,200
»»510 PRINT "FINISHED"
*»520 END

0Of course, when you enter line 500, the syntax ecror
message is issued, but ignore ik, Enter RUN when
you'wve finished entering this program. The program
will stop &t line 500 with &an error message

Error 5 at line 500 = Illegal statement

We can list the offending statement by entering

26 An introduction to structured BASIC for the Cromemco C-10

»»LIST 500
WNow enter the correct line
»»500 PRINT 100,200

and then enter RUN, Ewverything should work properly
now .

COMPUTING WITH THE LET STATEMENT

Let's return to our discussion of computatiens in
connection with the PRINT statement

PRINT 10%2
Use SCR to scratch the work area and enter

»»>100 PRINT “"INCHES IN THREE FEET:",3*12
»>110 PRINT “CUBIC INCHES IN A CUBIC FOOT™,12%12%12

How we have gtrings and pnumeric computations in the
PRINT statement. These iteme are separated by
copmasg, Use RUN and observe the output., The
quantity 3*12 is printed as 36 and 12%12*12 is
printed as 1728. HNow we are getting somewhere. We
have a real calculator with printed information to
tell us what the caleculations mean! Let's break
away from the PRINT statement and explore
calculations further,

While we can perform some interesting
calculations with the FRINT command, we can do
better. Suppose we are interested in calculating
the weight of people in ounces, given their weight
in pounds. The following simple program might do
for this purpose. You need not enter it.

300 PRINT "WEIGHT IN OUDNCES®™,175*16

Here the weight is assumed to be 175. Suppose
instead that there are a lot of different weights
which are to be converted to ounces. Every time we
change the weight, line 300 must be retyped. To
overcome this problem, let us consider the following
program instead

Ch. % Exploring PRINT and LET 27

200 LET WGT=175
300 PRINT "WEIGHT IN OUNCES" ,WGT*1é

Line 200 introduces the LET statement. It says set
something called WGT egqual to 175. WGT represents
the name of a location in which we store the number
175. In line 300 it replaces the number 175. This
program will produce exactly the same results as our
preceding program. However, if our weight changes,
we need to retype only line 200 and use RUN to
execute the program.

WGT represents what is termed a variable,
variables are used to store things for computations
or for other purposes needed somewhere else in a
program, Variables have arbitrarily assigned names
with a length of from 1 to 32 characters, Other
possibilities are

LET WEIGHT=175
LET W=175
LET WT=175%

and so on, The first character of a name must be
alphabetic but the remaining characters may be any
combination of alphabetic and numeric characters or
apostrophes: WEIGHT, WGTl, WEIGHT'IN'1940,
STOME'WEIGHT. Blanks are not allowed in a name.
There are some restrictions on names that will be
discusgsed later.

The LET statement is sometimes referred to as
an aseignment statement since it assigns a wvalue to
the variable that appears to the left of the egual
sign. Further examples of this statement are

LET VOLUME=10%15%20
LET COST=100*300+1000
LET SPEED=400/20

Hote that an arithmetic expression may appear on the
right side of the equal sign. We read, for example,
COST=100*300+1000 as assigning 100 times 300, plus
1000, to the wariable COST. When this particular
LET statement is executed, 31000 will be placed in
CO8T. COST may be used later in some computation or
displayed in a PRINT statement. COST will contain
31000 until it is changed elsewhere in the program.

LET has other forms. Secratch your work area
with SCR and enter the following program

28 An introduction to Structured BASIC for the Cromemco C-10

»»100 LET AREA=5*10

»»110 LET VOLUME=AREA*5

»»120 PRINT "volume and Area:",VOLUME, AREA
»»130 END

Line 100 causes 50 (10 times 5) to be Baved in AREA.
The next line says multiply AREA by 5 and put the
result, 250, in VOLUME. Line 120 displays the
contents of VOLUME and AREA. Note that each item in
PRINT is separated by commas,., Try executing this
program with RUN,.

An often-used LET statement in programs is

LET COUNT=COUNT+1

What does this statement do? A value of 1 is added
to the data in COUNT and put back into CQOUNT, The
result is that COUNT has increased by 1. Of course
COUNT could be any wvariable name, RED'AUT(OS, BEANS,
MARBLES. Another point to note here is that a
variable appearing on the left of an assignment may
also appear on the right. That is, the computations
on the right are carried out first and then placed
in the assignment wariable on the left, thus
changing the wvalue of the assignment variable.

Let's return to variable names, Earlier we
mentioned that numeric variable names consist of
from 1 to 32 characters. This is true, but it is
usually not a good idea to use long names for
variables. The reason for this is that if the
variable is used freguently, it will have to be
entered in the program in a number of places. This
can lead to a lot of typing effort and introduces
the possibility of typing mistakes. Usually names
with 3 to 10 characters are sufficient to describe
most wariables,

By now you should realize that we are beginning
to have the elements of some pretty powerful
statements for writing programs and soclving
problems. Let's expand our knowledge of LET.

USING LET WITH STRING DATA

Let's learn something else about variables, Can we
store strings such as "JOHNW DOE" or
"Portland, Oregon"™ in variables? The answer is ves,

ch. 5: Exploring PRINT and LET 28

but there are some restrictions. All variable names
for wvariables which may contain alphabetic or
non-alphabetic string information must contain a
dollar sign as their last character. Examples are
CITYS, WNAMES, PARTMNAMES, WEEKDAY1980%, or CLASSS.
Some possible LET assignments are

LET CITYS="DALLAS"
LET NAMES="JOHN DOE"
LET DATES="MAY 15, 1984"

These variables are referred to as string variables
because they contain strings of alphabetic and
non=alphabetic data.

Scratch the work area again and enter

»»100 LET CITY$="MEW YORK"

>>110 LET WAMES="SMITH"

»»120 PRINT WAMES," IS FROM " ,CITYS
>>130 END

Try executing this program with RUN. You should see
output something like

EMITH IS5 FROM HEW YORE

Although this ie a very simple program, you should
see that there are great possibilities for writing
programs which we can adapt to different needs by
changing just a few instructions. WVariables, both
numeri¢ and string, are the keys to this ability.

Like numeric wariables, a string wvariable can
be saved into another string wvariable. Consgider the
following program

100 LET NAMES="ROBIN"
110 LET HOLDS=NAMES
120 PRINT WAMES,HOLDS
130 END

It produces as output
ROBIN ROBIN

Some other points about string variables must be
discussed.

50 An introduction to Structured BASIC for the Cromemco C-10

When an assignment of the type
LET ADDRESS§="1857"

is made, ADDRESSS$, although it contains a "number,"”
cannot be vsed in a computation., In this case, 1857
repregents a string, not a number. Such strings
cannot be used in arithmetic operations unless they
are converted to a numeric representation. The
BASIC VAL function, which will be discussed in a
later c@apter. may be used to perform such a
conversion.

WORKING WITH LONGER STRINGS

String variables are restricted to 11 characters of
data, unless you tell the computer differently.
We'll discuss how you can tell it differently
shortly. For now, consider the following program,
If you decide to enter it into BASIC, make sure you
put the $ at the end of the wvariable names.

100 LET MAMES="FRANKENSTEIN"

110 LET COUNTRY$="NORTHERN IRELAND®

120 PRINT WAMES,™ IS5 NOT FROM " ,COUNTRYS
130 EMD

Both MAMES and CQUNTRYS are set to strings which are
longer than 11 characters. BASIC will just use the
first 11 characters so the result will look like

FRANKENSTEI IS5 NOT FROM HORTHEEN IR

We can remedy this problem with a DIM statement.
DIM; for dimensicn; is a declarative statement that
tells BASIC to define variables in a certain way.

It also can be used with numeric wvariables to
specify arrays and wvectors, but here the interest is
in allowing longer strings to be stored in string
variables. In our example, suppose we do not expect
a country name to exceed 200 characters and a
person's name to exceed 15 characters. Adding

%0 DIM COUNTRYS(19) ,NAMES(14)

to the program tells BASIC to allow 20- and 15-
character strings for COUNTRYS and NAMES. We use 19

Ch. 3: Exploring PRINT and LET n

instead of 20 and l4 instead of 15 in the DIM, This
is because BASIC reserves space beginning with
position 0. Hence, when we specify a number like
19, we are asking to reserve space for character
positions 0 through 19, which makes 20 characters.
Try entering the program with and without line 930 ko
see the difference,

hs an aside for intermediate or advanced users,
DIM is an executable statement. If it is not
executed, it has no effect,

USING PORTIONS OF STRINGS—SUBSTRINGS

Another useful feature of string variables is that
portions of the string contained in the variable may
be referenced, Consider the following

100 LET HAMES="MARY SMITH"

110 PRINT "FIRST MAME:" ,NAMES{0,3)
120 PRINT "LAST NAME :" ,NAMES(5,9)
130 END

Executing this program produces

FIRST HAME: MARY
LAST HAME : SMITH

The notations (0,3} and (5,9) following the string
name MAMES tell BASIC to select a range of
characters shown in the parentheses. The first
character in a string ie in poeition 0, so (0,3)
indicates that positions 0 through 3 (MARY) are
selected. When the parenthesis notation follows a
string variable, the resulting string that is
gelected is called a substring, Other substring
notations exist, For example, a way of selecting a
substring that starts in a certain position and
continues to the last position is to just reference
the starting position. For example, HAMES(5) is the
gubstring reference for positions 5 to 10 (10 is the
last position of an 11 character string).

There is more to say about substring
references, but for most applications, the substring
references discussed are sufficient. We
particularly recommend using both the beginning and
ending position to reference a substring. We will
return to substring references in Chapter 10.

52 An Introduction to Structured BASIC for the Cromemco C-10

MISCELLANEOUS REMARKS ABOUT LET

There are several important facts to know about the
LET statement, First, it is really not necessary to
put LET in the statement. BASIC is able to
determine when a LET or assignment statement is
ugad. Hence, the fecllowing are all legal LET
statements:

INTEREST=0.06 *MONEY
TOTAL=TOTAL+PREVIOUS "AMT
AREA=300*5+60*4+20%3/2
NAMES="WILSON, WOODROW"
CITYS=CAPITALS

We will continue to use LET, but it is not
Necessary.

Becond, it is not possible to assign numeric
values to string variables and strings to numeric
variables. The following are illegal statements

LET CITY="ROSTON"
LET HUMBER="THREE-HUNDRED"
LET ADDRESSS5=1450

Third, a LET statement is not the only way of
assigning data to a variable. You may have
accidentally discowvered this fact for yourself if
you mistyped a variable name. Consider the simple
program

100 PRINT TOTAL
120 PRINT CITYS
130 EHMD

Executing this program will produce
0
k%] 30 Endtrs

TOTAL has & value of 0 and CITY$ contains nothing.
The empty line following the output of 0 represents
CITY$. We have discovered that BASIC initializes
numeric variables to 0 and string variables to an
empty string, which is sometimes referred to as a
null string.

Ch. 3: Exploring PRINT and LET 53

Although there is a lot of freedom in composing
variable names, there are some exceptions, A number
of reserved names exist in BASIC. These are names
used to define statements like PRINT or LET, The
following will cause BASIC to object

LET PRINT=100.00
LET BYE=34*HEIGHT
LET LET=LET+1

In general, it is best not to use command or
statement names for variable names, Function names
are not usable ag variable names either: we will
discuss functions more fully in a later chapter.

PRINT FIELD WIDTH

You may have noticed in some of the PRINT examples
that the output contains a number of apparently
random spaces between items. For example

PRINT "RESULTE:",500,"POUNDS"

produces

RESULTS 500 POURDS

The reason for this is that the PRINT statement
places each item in a field of 20 characters in
width, If we put a gauge over the column's output,
vou will see this more clearly

column 10

|

v

1 2 3 4 5
12345678001 234567690123 456708901234567B890123456708590
REEULTS 500 POUNDS

We might inguire as to what happens if we place more

3 An introduction to Structured BASIC for the Cromemco ¢-10

iters in a PRINT statement than can fit in the width
of the terminal output screen, For example

PRINT 1,2,3,4,5

Write a one=line program with this statement and see
what happens. You will see that the numbers fold
over onto a second line.

Here is a small program that illustrates a
possible use for the orderly placement of data in
columns

100 PRINT "COMPOSERS", "MOVIES"
110 PRINT "==—m=smee! femame= G
120 PRINT "BACH","STAR WARS"

130 PRINT "BRAHMS"™,"JAWS"

140 PRINT "WAGHNER","MY FAIR LADY"
150 PRINT " ","FIVE EASY PIECES"
160 PRINT " ","CASABLANCA"

170 END

This program produces the output

Composars Movies

BACH 5TAR WARS

BRAHMS JAWS

WAGHER MY FAIR LADY
FIVE EASY PIECES
CASABLANCA

CONTROL OF SPACES AND CARRIAGE RETURNS
WITH PRINT

In some applications it may be necessary to control
cutput spacing. This may be accomplished by
separating items with a semicolon.

PRINT "RESULTS:":;S500;"POUNDS"
produces

RESULTS : S00POUNDS
When semicolons appear, all blanks between items are

removed, ©Of course, some blanks in the strings
might make this ocutput more readable.

Ch. 3: Exploring PRINT and LET 35

PRINT "RESULTS: “;500;" POUNDS"
produces

RESULTS: 500 POUNDS

Semicolons and commas may be used in any combination
in a PRINT statement. For example

PRINT 5550,"and",300;" are not the same"
produces

5550 and 300 are not the same

Commas indicate that the next print item should
begin at the left-most position of the next
20=-character field. GSemicolons remove EpPaces
between items that are output to the terminal.

The semicolon has another use in the PRINT
statement which can be guite handy. Whenever a
PRINT statement is executed, it always performs a
return or skip to the next line when the last item
iz printed, However, if & semicolon is placed after
the last item, the return does not occur. Consider

100 PRINT "HELLO. “;

110 PRINT "STRUCTURED BASIC IS5 FUN"
120 PRINT "AND USEFUL."

130 PRINT

140 PRINT 1,2;

150 PRINT 3;" TESTING"

160 EMD

This program produces as output

HELLO. STRUCTURED BASIC IS FUN
AND USEFUL.

1 Z 3 TESTING

The semicolon at the end of line 100 caused
suppression of the return, The same is true of line
140. Hote the blank before TESTING appears because
it is part of the string " TESTING". This
relatively simple feature of BASIC will prove to be
very useful in many application programs, so keep it
in mind.

36 An Introduction to Structured BASIC for the Cromemco C-10

Other ways of contrelling the spacing of ocutput
from the PRINT statement are with the use of the SPC
and TAB functions., We will discuss a number of
function® that can be used in BASIC later, but, for
now, think of these two functions as special
indicatores to the PRINT statement that something
special is to occur when they are used,

SPC simply inserts a specified number of spaces
in the output., For example,

PRINT SPC(50);"PAGE 44"

causes 50 spaces to be output before printing
"PAGE 44". The number of gpaces needed is always
enclosed in parentheses.

TAB allows us to position the next item output
by the PRINT statement in a specific column on the
line. For example

FRINT "REPORT 6":TAB(41);"VERSION 4"

prints "REPORT &%, skips to column 41, and prints
"VERSION 4%. Like many position-dependent features
of BASIC, the first column is referenced as column
0. Hence, TAB({41) causes the string "VERSION 4" to
begin in the forty-second column,

When uwsing either TAB orf SPC, we separate items
in the PFRINT list with semicolons to ensure that the
20 column subfield definitions discussed previously
de not interfere with the placement of items on a
line.

LITERALS AND EMBEDDED QUOTES

A point that ie woerth mentioening iz that numbers and
strings, such as 22.44 and "HELLO®, which have been
used as part of eur programs, are often termed
literals; they are sometimes referred to as numeric
literals and string literals, to make the
distinction finer.

Another point is that when you need to place a
double guote inside a string, you must place two of
them zide by side, as in

"QUOTATION: ""1F,"" HE SAID."
This is printed upon ocutput from a PRINT statement as

QUOTATION:"IF," HE SAID.

ch. 3: Exploring PRINT and LET 37

Review Questions and Exerclses

Which statement in the following program is
incorrect?

100 PRINT 34.0,22.5
110 PRINT ,500
120 END

What is the easiest way to correct line 1107

Why will using PRINT as a variable name result
in an error in a LET statement?

which of the two statements i1s preferable?

FPRINT LASTHAMES ,FIRSTHAMES
PRINT LASTHAMES;FIRSTHAMES

Why are these LET statements wrong?

LET ABCS=100.0
LET DATE="SEPTEMBER 25, 2001"
LET TIMES="1300 HOURS®

Using
LET ALPHAS="ABCDEFGHIJE"

causes only A through J to be found in ALPHAS.
Why?

The names hours and HOURS are the same to
BASIC. What type of variable does HOURS
represent? (Numeric or string?)

What is the use of a semicolon in a PRINT
statement? What does it mean when the
semicolon is used at the end of a PRINT
statement?

What ie the difference between & literal and &
numeric constant? What is the difference
between a literal and a string constant?

Why does the statement
520 DIM STATES(19)

allow STATES to contain as many as 20
characters?

10.

11.

1d.

13.

14.

An introduction to Structured BASIC for the Cromemco C-10

If the variable VALUE has not been set by any
statement before it is used, why will it
contain the value zero?

If TOTAL has a value of 15.0 prior to BASIC
encountering

200 LET TOTAL=TOTAL+18,0

why does TOTAL have the walue 33.0 after
executing this statement?

What is the meaning of WAMES(10,15)7 How many
characters does (10,15) refer to? Is the
substring NAMES(0,0) valid? wWhat does it
generally refer to, assuming WAME$ contains the
first name of someone?

In the following program, why does BIRDSE have a
null value?

100 PRINT BIRDS;" is the name of a bird."

110 END
What will be printed by line 1007

What do you suppose was meant by the following
valid statement?

900 PRINT "RED","BROWN""GREEN"

Is something missing? Why is the statement
still walid?

summary

PRINT

Items in a PRINT statement may be numbers,
gtrings, arithmetic expressions, numeric
variables, string wvariables, or substrings,
Items following the PRINT are separated by
commas or semicolons,

Commas cause ocutput to be left-justified in
20=-calumn fields.

Semicolons remove spaces between output
items.

Ch. 3: Exploring PRINT and LET 39

LET

If no item appears after PRINT, an empty line
appears in the output; that is, a line skip
OCCUrS.

A semicolon at the end of a list of items
suppresses the carriage return after the
items are printed.

The @ symbol is an alternate notation for
PRINT in the PRINT statement.

Performs arithmetic computations and assigns
or places the results in a variable,

Assigns or places strings into string
variables.

The arithmetic expression on the right of the
equal sign may contain complex arithmetic
operations invelving constants and numeric
variables.

Variables-=-Numeric

Contain and store a numeric walue which may
be the result of a numeric computation with a
LET.

Numeric variable names begin with an
alphabetic character and may contain as many
as 32 alphabetic characters, numeric
characters, and apostrophes.

Variables which are not set by the program
are initialized to 0.

Variables--String

DIM

Contain and store a string of characters
which may be assigned to a variable with a
LET.

String variable names are formed in the same
way as numeric variable names but they must

end with a dollar sign.

A string up to 11 characters long may be kept
in a string variable without being redefined
in a DIM.

The first position of a string is position 0.
String wariables which are not set by the
program are initialized to a null string.

Allows the length of the string stored by a
string variable to be defined.

DIM is not effective unless it iz executed.
All strings begin at position 0.

40

An introduction to Structured BASIC for the Cromemco C-10

Substrings

Referenced by appending
(start-pesition, end-position) notation to a
string variable name.

HReserved MName

Syntax

Any name which is used as a BASIC statement
or command name (and function) cannot be used
a8 a numeric variable name.

Eftors

Caused by improperly formed statements or
commands,

A syntactically invalid statement cannot be
executed,

Literals

TAE

5PC

A name for numeric constants and strings of
characters surrounded by double quotes,

A special function for use with PRINT that
positions the next item to be printed at a
specific column.

PRINT columns are numbered from zero.

A special function for use with PRINT that
produces a specified number of spaces in the
output.

-

Dcita INPUT
cand Numbers

We have come a fair distance in the initial
chapters. We have learned a number of commands and
two freguently used statements, PRINT and LET. So
far, nothing has been said about getting data into
the computer by any means other than through a LET
statement, However, this can be a tedious way of
entering data, because it requires changing program
statements each time a new data value is needed. In
this chapter, we will learn of some ways that make
entering data easjier, In addition, we will discuss
the representation of numeric data.

INPUT WITH NUMERIC DATA

One of the simplest ways of entering data into a
BASIC program is with the INPUT statement., INPUT
allows us to enter data when a program is executing.
Let's consider a simple example to see how it works,
Scratch your work area and enter the program

»»100 PRIMT "ENTER SIDE OF SQUARE"

*»»110 INPUT SIDE

»>>120 PRINT "AREA OF SQUARE: ";SIDE*SIDE
»»130 END

This program computes the area of a sguare, given
the length of a side, Line 110 is actually a
request to enter a value which will be placed in the
variable SIDE, SIDE is multiplied by SIDE in line

41

a2 An Introduction to Structured BASIC for the Cromemco C-10

120 to give the resulting area. Enter RUN to see
what happens. You should get

ENTER SIDE OF SQUARE
'y

The guestion mark is printed by the INPUT statement
and means that the program wants you to respond with
a number. Enter the number 5, as in

ENTER SIDE OF SQUARE
? 5

You should see the following printed after you enter
5 and hit the carriage return

AREAR OF SQUARE: 25

What happens if we enter RUN again, but respond
with a carriage return without first typing in a
number? Until you enter a number, INPUT will
continue to prompt you with a gquestion mark. Try
itl

What happens if you enter something that is not
& number, like ABC? BASIC will object and issue the
message

Error 204 at line 110 == INPUT

Try it. The way to recover from this error is to
enter RUM again and input a proper number,

We can get fancier with INPUT, Scratch the
work area and enter

»»100 PRINT "ENTER THE TWO SIDES OF A RECTANGLE"
»»110 INPUT SIDEA,SIDEB

»»120 PRINT "AREA OF RECTANGLE: *,S5IDEA*SIDEB
»>130 END

This program computes the area of a rectangle when
the lengths of two adjacent sides are given, If you
enter RUN, you should get

ENTER THE TWQ SIDES OF A RECTANGLE
?
The question mark again is the prompt from INFUT.

If you look at INPUT on line 110, it wants two
values, cne for SIDEA and the other for SIDEE. To

Ch. &: Data INPUT and Numbers a3

enter the values, we separate them by commas as in

ENTER THE TWO SIDES OF A RECTANGLE
? 5,10

which produces
AREA OF RECTANGLE: 50

What happens if only one number is entered?
BASIC will prompt you for the next number with a
double guestion mark as in

ENTER THE TWO SIDES OF A RECTANGLE
T 5

77 10

AREA OF RECTANGLE: 50

Suppose three numbers are entered in response to an
INFUT reguest that only reguires two numbers. What
happens? BASIC produces error message 204, which we
saw above. Incidentally, if you are having trouble
using INPUT at this point, hit the escape key on
your terminal. Hitting the escape key is a useful
way te terminate a program that seems to be hung=-up.

INPUT WITH STRING DATA

Mumeric wvalues are not the only data INPUT accepte,
Let's try string data. Scratch the work area and
enter

*»100 FRINWNT "WHAT IS5 YOUR HAME"
>»110 INPUT MAMES

*»120 PRINT "HELLO, ";HAMES
>»»130 END

Enter RUN and you will get the following reguest;
WHAT 15 YOUR HAME
2

Try responding with the name MR. SPOCK and you
should get the seguence

WHAT IS YOUR NAME
? MR, SPOCK
HELLO, MR. SPOCK

a4 An Introduction to Structured BASIC for the Cromemco C-10

Unlike our previous experience with strings, INPUT
did not require guotes., This i=s not always true, as
we shall shortly discover. What happens if we use
RUN again and enter the name MR. STEVENSON?

WHAT 15 YOUR NAME
? MR, STEVENSON
HELLO, MR. STEVENS

Our name has been shortened; the input MR, STEVENSON
is output as MR. STEVENS. BAs we noted before, NAMES
may only contain 11 characters if it is not declared
to have a greater length with a DIM statement.

INPUT simply truncates the string after the eleventh
character.

Suppose that instead of reading one string we
try to read two. Clear your work area and enter

»>»>100 PRINT "ENTER HAME AND THE MONTH ¥YOU WERE BORN®
*»110 INPUT HAMES,MONTHS

»»120 PRINT HAMES;" WAS BORN IN ";MONTHS

*»>130 ENWD

The INPUT statement regquires data for two
different variables: MNAMES and MONTHS. If we
enter, for example

JOHNSON , MAY

BASIC has no way of deciding which part of this
string belongs in HAMES and which part belongs in
MOMTHS. The comma is not sufficient to divide the
two since INPUT reads any character as a string.

The sclution is that we need to enter each separate
string in guotes after having entered RUKN, as in the
following instance, Try running the program to
produce the following sequence

ENTER NAME AND THE MONTH ¥0OU WERE BOERN

7 "JOHNSON","MAY"
JOHNEON WAS BORN IN MAY

INPUT WITH STRINGS AND NUMBERS

Whenever &4 string variable and any other variable is
reguested as input through an INPUT statement, it is

Ch. 4: Data INPUT and Numbers as

always necessary to encloge the strings in guotes.
An appropriate response to the program segment

150 PRINT "ENTER MAME AND AGE"
160 INPUT HAMES,AGE

for a person with the name SEMITH and who is age 25
would be "SMITH",25.

DRESSING UP THEINPUT STATEMENT

The guestion mark output from INPUT can be
eliminated by placing a string immediately before
the first item in the INPOT list. Instead of a
question mark prompt, the string is printed in its
place. This device can be used to produce a more
acceptable locking prompt for users of your computer
programé. Clear your work area again and enter

*»100 INPUT "ENTER YOUR MAME: " ,NAMES
»»110 PRINT “YOUR NAME IS ";NAMES
»»120 END

Ueing RUN and entering the name JONES produces the
following seguence

EMTER YOUR NAME: JONES
YOUE HAME IS JOMES

The string "ENTER YOUR MAME: " appearing in line 100
iz substituted for the guestion mark that would
otherwise appear. This device is used very often in
interactive programs, i.e., programs which generally
use yes, no, and names for responses,

INFUT is used most freguently for obtaining
interactive responses and for obtaining small
amounts of data, Another statement, READ, is useful
for working with larger amounts of data.

ANOTHER DATA INPUT METHOD—READ, DATA,
AND RESTORE

READ is similar to INPUT except that it expects data
from DATA statements rather than from the terminal,

a5 An Introduction to Structured BASIC for the Cromemco C-10

As an illustration, clear your work area and enter

>»100 DATA 200,50,20

>»>110 READ A,B,C

>>120 PRINT "SUM OF THE NUMBERS: ";A+B+C
»»130 END

Entering RUN produces
EUM OF THE WUMBERS: 270

The wvaluee 200, 50, and 20 in the DATA statement are
read into the numeric variables A, B, and C by the
EEAD statement, Thisz program produces the same
results

100 DATA 200,50

110 DATA 20

120 READ A

130 READ B,C

140 PRINT "SUM OF THE NUMBERS: ";A+B+C
150 END

The READ at line 120 reads the value 200 into A,

The READ at line 130 reads the values 50 and 20 into
B and C, respectively. We see that READ just reads
data from the varicus DATA statements in the order
in which the DATA statements are entered. DATA
statements need not occur in any particular part of
the program. For example, they may occur after the
first READ, Usually, for readability and
organization, they are placed together at the
beginning or end of the program,

DATA statements may contain string data as
well., Strings must be enclosed in double guotes.
Data items may aleo be arithmetic expresgione, such
ag 3+10. BSome examples of walid DATA statements are

DATA 200,"ARBOR HOSPITAL"
DATA 400,200/30+100,"TAXABLE CAPITAL"
DATA “JAN" ,"FEB","MAR","APR"

Unlike the INPUT statement, which prompts us
with a double gquestion mark when a data value has
not been entered, the READ statement produces an
error message if an attempt is made to read more
values from DATA statements than exist. Of course,
READ will balk at reading a string into a numeric
variable and vice versa,

€h. 4: Data INPUT and Numbers azr

Sometimes it is necessary for data values to be
read several times in a program, ‘The RESTORE
statement allows us to perform this task. Consider

100 DATA 1800,2000,200

110 READ A,B,C

120 RESTORE

130 READ D,E,F

140 PRINT "SUM: ";A+B+C

150 PRINT "DIFFEREMCES: ";D=E,E-F
160 END

When executed this program produces

SUM: 4000
DIFFERENCES: =200 1800

When the RESTORE at line 120 is executed, it tells
BASIC to start the next READ at the first DATA
statement in the program. The next READ, at line
130, re-reads the data inte D; E; and F. These are
the same valuyes read into A, B, and C, Although
this example ie so simple that there seems to be
little value in re-reading the data because the
result on line 150 could be obtained as A-B,B-C, it
does illustrate the capability of RESTORE. RESTORE
can be used specifically to reset the pointer to the
next DATA statement to be read by entering RESTORE,
followed by a line number, as in

RESTORE 200

This statement would cause the next READ to take
place at the firast DATA statement on or following
line 200.

NULL CHARACTERS

An important aspect of string variables is their
relationship to null characters., A null character
is simply the absence of a character. A null
character cannot be displayed on a printer or at
your terminal, but it does occcupy space in a string
variable. Their normal function is to signal the
end of a string of characters. BAs an illustration,
consider the following statements:

a8 An Introduction to Structured BASIC for the Cromemco C-10

100 DIM STATES(14)
110 LET STATES="TEXAS"

STATES is a 15- (remember the zero poaition)
character string; "TEXAS" is placed in its first five
positions, The remaining positions are padded with
null characters, Denoting a nell character by a 7,
the string is kept internal to BASIC as:

TEHP"Snnanhnnann

Trailing null characters are important to BASIC, It
uses them as a means of marking an end of string.
You normally de not have to worry about them, but it
igs useful to know about them,

When using PRINT to display a string wvariable,
only the portion of the string up to the trailing
null characters are output. When using INPUT or
READ, if the input string is smaller than the
dimension of the string wariable, then the string
variable is padded with trailing null characters
when the input string is stored in the variable.
This is similar to what happened in the LET example.

An instance when the trailing null characters
may cause you some concern occurs when a semicolon
is used to separate two string wvariables, as in

100 CITYS="SAN DIEGO,"
110 STATES="CALIFORNIA"
120 PRINT CITYS:STATES
130 END

Boeth CITYS and STATES may contain up to 11
characters, by default. Line 100 puts a 10=-
character string in CITY¥S. CITYS will contain 1
trailing null character. You might expect line 110
to produce

SAN DIEGO, CALIFORNIA
However, the single null character deoes not print,
and it does not occupy space in the output.
Instead, we get
SAN DIEGO,CALIFORNIA
with a space missing between the city and state, Of

course, we could remedy this by inserting a blank
literal in the PRINT statement. However, the point

Ch. 4: Data INPUT and Numbers a9

we are mdking is that such shifts may be disturbing
in some applications where items are expected in
particular columns of the output line. In the next
chapter, we will find that the PRINT USING statement
gives us a way of making sure that items are
positioned where we want them.

A REMARKABLE STATEMENT—REM

It is already possible to write some fairly large
programs with just the few statements that we have
discussed. When programs begin to go beyond several
statements, it is usually a good idea to be able to
put some descriptive information in them that will
enable ug to understand what is happening if we have
to come back to the program at a later time, BASIC
provides us this facility through the REM, or
remark, statement, A REM statement does absolutely
nothing as far as BASIC is concerned, BASIC ignores
these statemente during execution. Examine the
program

100 REM DATA VALUE IS PI

110 DATA 3,1415

120 REM THIS5 IS THE BEGIMNING OF THE PROGRRM
130 READ PI

140 PRINT "THE AREA OF A CIRCLE ";

150 PRINT "WITH A 10 INCH RADIUS 15: ";

160 PRINT PI*10%10

170 END

Lines 100 and 120 contain REM statements which
describe something to us, not to BASIC, about the
program which are ignored by BASIC during execution,
REM statements reguire storage space in your
work area and in program files stored on disk. In
fact, they can take up a considerable portion of
yvour program area if used excessively. It is a good
idea to use them, but used them sparingly. A
reasonable rule of thumb might be that 1 ocut of
evary 10 to 20 statements can be a REM. Thea
topic of program size and how to control it will be
covered later. The discussion of the DELREM command
in a later chapter illustrates a way to conveniently
delete large numbers of REEM statements,

50 An Introduction to Structured BASIC for the Cromemco €10

SOME MORE ABOUT NUMBERS

Until now, our examples involving numbers have, for
the most part, shown nice whole numbers and no
decimals, As you may have discovered on your own,
BASIC is perfectly capable of working with other
types of numbers as well. Let's take a look at how
we represent some numbers in BASIC.

Humbers are generally written in a familiar
notation, with some restrictions, Some valid
numbers are

100 200,55 30.45E+4 =73.88 65700.,00
=B00.0 90, 44 00077 5.5E8 =0.5E-4

Some invalid numbers are

1,000.00 one Zero 6.5 III
40 = 10 1154 +20.4

The reasons why these examples are either valid or
invalid will be discusszed next.

Humbers may be coded in several different ways:
integer, decimal, or E=notation,

Integers are numbers that are expressed without
a decimal point, such as 1984, 400, 252, or 1000.
Typically such numbers represent counts or amounts,

Decimal numbers are written with a decimal
point and some decimal portion, such as 3.1415,
188.45, or .0D45. Typically, such numbers represent
measurements, scores, percentages, of monetary
amounts.

Humbers may be expressed in E-notation when
they represent very large or very small guantities,
Humbers in this notation are sometimes referred to
as being in "scientific notation" or "floating
point® notation., They are formed by appending to a
number the letter E, which represents "power of 10,°
and the ameunt 10 is to be raised by. The result
represents the number raised to the power of 10
gpecified. For example, the number 4.5E6 represents
4.5 times 10 raised to a power of 6, That is, 4.5E6
represents 4.5 x 1000000 or 4500000. A sign may
appear immediately after the E to indicate whether
the power is positive or negative. The absence of a
gign is interpreted as indicating & positive power.
The powar must not be more than two digits. Other

Ch. 4: Data INPUT and Numbers 51

examples of numbers in E-notatien are 0,055E4,
18.71E=15, and 3.4578E+2.

Numbers may Le signed, that i=, expressed as
pesitive or negative. A minus sign, =
prefixing a number indicates a negative numher.

Some examples of negative numbers are -45.28, =190,
and -34.33E10. Poesitive numbers are indicated by an
absence of a minus sign, as in 345, 1000,55, and
0.05.

Numbers may not contain commas to denote groups
of 1000 as in 4,000,000, Such a number must be
entered as 4000000 or 4EG.

Another type of number that can used in BASIC
ie a hexadecimal number. These numbers have apecial
ugses and will be discussed later in thie chapter.

When using numbers with computers, it is
desirable to understand how large numbers can be and
how many digits can be represented accurately within
the computer or language, The largest and smallest
non—-zero numbers representable, without regard to
sign, are 1E+62 and 1E-65, respectively. This is an
extremely wide range. If we try to work outside of
this range, BASIC will complain. Numbers may
contain 14 significant digits. If you enter more
than 14 digits, BASIC will simply truncate the
number .

HEXADECIMAL NUMBERS

Another type of number that may be represented in

BASIC is a hexadecimal number. A hexadecimal is one
which uses base 16 instead of base 10, which is used in
the more common decimal system. The following shows
the correspondence between bage 10 numbers and base

16 numbers.

1

Decimal 1 2 31 a4 5 b

6 7 &8 9 12 13 14 15 16
Hexadecimal 1 2 3 4 5 & 7 & 9

0 11

A B D E F 10
For example, the hexadecimal number D corresponds to

the decimal number 13. These numbers are used in
applications which deal more directly with the

internal computer representation of addresses and
{ASCII}) characters, In BASIC, a hexadecimal number

is denoted by the number surrounded by percent

gigns, For example, %20% is the hexadecimal number

20, or 32 in base 10 notation. We will not have

52 An Introduction to Structured BASIC for the Cromemco C-10

much need for hexadecimal numbers in our programs,
and they will not be discussed further,

LITERAL AND VARIABLE STORAGE

As we have seen, BASIC allows us to use integer,
decimal, and scientific forms of numbers for our
numeric data. These literals or constants are kept
in the storage area of a program, and they occupy
space in sterage, or memory, as this type of storage
iz often called, For reasons of efficiency, BASIC
keeps or stores numbers internally in two forms.
The two forms are the integer form and the floating
form. These forms allow BASIC certain advantages in
storage and-computational speed, (ARctually, a third
form is used for hexadecimal numbers, Hexadecimal
numbers are stored exactly in the form they are
written in the program.)

The integer form of numbers is familiar to us
from the previous discussion. Actually, the
floating form is familiar to us as well., HNumbers
expressed in floating, or floating point, form are
similar to the numbers expressed in the scientific
notation previously discussed, When we enter a
simple decimal number,; BASIC converts it internally
te its floating notation, i.e., £t a form that
contains a power of 10, MNumbers in scientific
notatioen are already in fleoating notation. BASIC
finds it efficient to convert any integer number we
enter that lies outside the range from -10000 te
+10000 to a floating point number as well., Hence, a
number like 432 is represented as an integer
internally, but 12345 is represented as a fleating
number internally.

In addition to representing literals as
floating or integer, BASIC allews us to specify the
type of data a variable may store. Later, we will
lzarn how to specify whether a variable is to
contain floating or integer data. For now, we will
gtate that all the wariables will store numbetrs in
their fleoating forms. Two forms of floating
variables exist, a ehort form and long form. The
short form only permits the storage of about &
gignificant digits whereas the long form allows up
to 14 digits of accuracy. The ability to specify
what type of number is represented in a wvariable
allows us to control how much stoerage is used by a
program., This has an impact on the size of the

Ch. 4: Data INPUT and Numbers 53

programs we can write, All BASIC variables have the
long fleating storage attribute as & default. We
will learn how to control these storage attributes
in a later chapter.

o e

A

o e g
5

f

| S

Q EH i G
@ m |ﬂu E ﬂ?
T oae== 1w !y =a

Figure 4.1 Some of these won't work as input datal

An Introduction to Structured BASIC for the Cromemco C-10

Review Questions and Exercises

Does the following statement expect a numeric
or gstring value?

800 INPUT TIME
Consider the statement
200 INPUT "Enter three ages - ":;A,B,C

How do you enter on & single input line the
three values reguested?

When are guote marks required for a response to
an INPUT statement that involves entering
gtring data?

What statement does BASIC use to read data from
a4 DATA statement? Must DATA statements appear
in any special place in a program?

What BASIC sztatement permits vou to read a DATA
statement again?

A programmer entered the following DATA
statements and expected to define 12
three-character strings identifying each month
of the year, Instead, only 11 strings are
defined. What is wrong? Why doesn't BASIC
generakte a syntax error messaga?

320 DATA "JAN","FEB","MAE","RPR" "MAY""JON"
330 DATA "JUL","AUG","SEP","0CT","NOV" ,"DEC"
What is a null character? Can a null character

be printed? How much space deoes a null
character occupy in a print line?

Why does the following statement result in a
syntax error?

200 PRINT +34.44

What decimal number does 4.5E+l represent? How
about 3.3E-1 and 123.45E-17

Ch. 4: Data INPUT and Numbers 55

summary

INPUT

DATA

Allows the entry of data from the terminal,
Data are entered in response to a guestion
maArk prompt.

Numeric and string data may be input.

A request for a single string data item does
not reguire guotes around the string.
Several numeric and string variables may be
entered if string data are encleosed in double
quotes,

A string, placed as the first item in the
INPUT statement, may be substituted for the
guestion mark normally produced by INPUT.

Used in specifying data items that are to be
read by the READ statement.

Strings must be enclosed in guotes.

Data items may be arithmetic expressions,
DATA statements are read in the order they
are found in the program.

RESTORE

REM

READ

Sets the line number at which the next READ
statement begins reading from the DATA
statements.

Makes it possible to place descriptive
remarks within the program that can be used
ag program documentation.

REM statements require storage space in your
program.

Reads data from DATA statements placed
throughout the program.

Any combination of numeric and string data
may be read.

Numbers (Constants, Literals)

Integer, decimal, and scientific notation are
allowed.

Rumbers may range in magnitude from 1E-65 to
1E+62,

Up to 14 significant digits may be used.
Numbers are regarded as integer, fleating, or
hexadecimal by BASIC and each type cccupies a
different amount of storage.

Floating and Integer Variable Storage

Numeric wariables may bhave storage attributes
g0 that they occupy different amounts of
storage,

CHAPTER 5

Functions and
PRINT Formaoats

In this chapter, we will learn more about LET, We
will discuss how arithmetic expressions are
evaluated, and you will be introduced to the many
useful arithmetic and string functions that are
available. An important statement, PRINT USIHG,
which allows us to more accurately specify the
printed output formats of data, will be introduced.

INCREASING OUR UNDERSTANDING OF LET

Let us return to the arithmetic LET statement that
wag introduced in a Chapter 3, LET is capable of
performing some fairly complex arithmetic and
logical calculations, First; let us consider
arithmetic calculations.

We stated earlier that arithmetic operations
included addition, subtraction, multiplication, and
division. Other posaible operations include
negation and exponentiation. WNegation simply refers
to turning & result into its negative wvalue. For
example

LET ABC=—-400.55
LET VALUE=-MONEY

result in the storage of -400.55 in ABC and the
negative value of MONEY in VALUE, Placing a
positive sign in front of a value or expression is
illegal, as in LET A=+5., Exponentiation refers to

56

€h. 5: Functions and PRINT Formats 57

the process of raising a number te a power, This is
the method often used to express the sguare of a
number. Exponentiation is represented by the symbol

-~

** gr ". The examples

LET AREAR=10%*2
LET VOLUME=SIDE"3

result in the square of 10 placed in AREA and the
cube of SIDE placed in VOLUME.

As suggested in our earlier discussion of LET,
the arithmetic expresgion can be fairly complex.
For example

LET TOTAL=LOAN*,08+LOAN+DEBT/12-NUMEBER"SOLD*COST

The complexity of such expressions raises the
guestion of in what order the operators are applied
in the expression. Consider

LET A=5%3+1

Does this result in 1 being added to 5 times 3 or 3
being added to 1 and the result multiplied by 57
Such expressions are evaluated from left to right,
with multiplication and division being performed
before addition and subtraction., The result placed
in A in our example is 16 even if the statement is
written

LET A=145%3

Multiplieation and divisien are performed in the
order they occur when they are found in successive
operations. The same is true for addition and
subtraction., Exponentiation is performed before
multiplication and divigion. Negation is performed
before exponentiation; so -3**2 isg 9, and not =9,
The manner in which expressicn= are evaluated
is fairly close to what one might normally expect.
Howewver, when you are not certain of what might
happen or when you want to clarify an expression,
parentheses are allowed. The statement

LET LENGTH=(1+SIDEA)* (SIDEE/20.5)
ig clear as to how the computation is to be

performed. Remember, when using parentheses, that
for every left parenthesis, (, there must be a right

58 An introduction to Structured BASIC for the Cromemco C-10

parenthesis,). Left and right parentheses always
surround a collection of computations that are
considered to be together.

At the beginning of this section, we mentioned
that LET is capable of performing leocgical
calculations. This topic is probably most suitable
for the experienced programmer, and will be touched
upon only lightly here, More will be said later
about legic in connection with the IF statement.
For the experienced programmer, an example of a
logical calculation is

LET ANSWER=4»B=0

The result in ANSWER 1is 1. Logical expressions
always result in a value of 1 or 0., The Structured
BASIC Instruction Manual contains additional detalls
on logical calculations.

Another interesting tepic in cennection with
LET is the use of mixed mode arithmetic. We will
introduce this topic by asking: What is the result
of the following statement?

LET 2=4/3

If you said 1.333, you are wrong. The result placed
in 2 is 1.0, assuming % iz a floating variable, The
reason for this result is that 4 and 3 are both
integers, and BASIC evaluates the expression using
integer arithmetic. A division of two integers
results in an integer; any decimal portion is
removed or truncated., The resulting inteqer is
converted to & floating value when it is placed in
Z. We can obtain the desired fractional
representation by ueing either 4 or 3, or both, as
floating literals as in

LET 2=4.0/3.0

When an expression consists of integer or floating
literals and variables, the arithmetic performed is
referred to as mixed mode arithmetic. The result
may not be what we expect, but for mest applications
it does not cause many problems, As a caution,
however, until we return te this topic, it is best
to specify decimal constants in expressions which

Ch. 5; Functions and PRINT Formats 548

require division by constants, We will return to
mixed mode arithmetic again in a later chapter when
the SHORT, LONG, and INTEGER statements have been
introduced.

Figure 5.1 The detail is getting mighty fine.

ARITHMETIC FUNCTIONS

Another aspect of arithmetic expressions is that
there are special functions included with BASIC that
permit the calculation of many mathematical
functiens, e.49., the sine and cosine functions.

Even if you are not interested in functions such as
the sine and cosine, pay attentien here because some
of the functions have application to commercial
programs as well.

Functions have names. Following the name is an
item which is enclosed in parentheses that iz called
the argument of the function. Some functions have
multiple arguments, which are separated from each
cther by commas. An example of the more commen
function with a single argument is SIN(AWGLE). This
notation indicates that the sine of the argument
ANGLE is needed. In a LET statement, we might have

LET SIDE=100*SIH(ANGLE)

Arguments can contain complex arithmetic expressions
as in

LET SIDE=100*SIN({ (ANGLEL+ANGLEZ2/2.0)+30.0)

0 An Introduction to Structured BASIC for the Cromemco €10

The following is a list and brief description
of the arithmetic functions in BASIC (X represents a
number, arithmetic expression, or wvariable):

Function Meaning

ABS(X) Absolute value of X

ATHIX) Arctangent of X

COs(X) Cosine of X

EXE(X) Mathematical constant e raised to X
FRA(X) Fractional part of X

INT(X) Integer, whole, portion of X

IRE(X) Integer random number from 0 to 32767
LOG(X) Logarithm of X in base e
MAX(X1,...) Maximum walue of X1, X2, etc.
MIK(X1,...) Minimum walue of X1, X2, etc.

RND (X} Random number from 0.0 te 1.0
EIN(X) Sine of X

SCH{X) One with =ign of X, i.e., =1 or +1
SQR{X) Square root of X

TAM(X] Tangent of X

FRA and INT are very commonly used functions and
have numereous uses in commercial applications. The
following sample program illusatrates their use.

100 MOMEY=100.50
110 DOLLARS=INT(MOMEY)
120 CEMTS=FRA(MOMEY)

130 PRINT "5§"; DOLLARS;™ AND ";CENTS*100;" PENNIES"
140 EWD

This program produces as output
5100 AND 50 PENNIES

When BASIC reaches line 130, DOLLARS contains 100
and CENTS contains 0.50. To get the proper number
of pennies for line 130, we multiply CENTS by 100,
An experienced programmer might wonder why a
modulo function is not included in the above list of
functions. BASIC does not contain this function.
For the interested reader, the concept of a modulo
operation is perhaps best explained by an
illustration. The hour number on most household
clocks is the number of hours from midnight modulo
12. That is, the remainder of hours since the clock
wag last at 12 is the hour number of the day modulo
12. Minutes are taken module 60 and so on. A way

Ch. 5: Functions and PRINT Formats 61

of computing the module of a number, say, module 12,
can be accomplished using the INT function as in

LET CLOCKTIME=DAYHOUR-12*INT (DAYHOUR/12)

If we are 15 hours into the day, represented by
DAYHOUR, then the result placed in CLOCKTIME is 3.
If DAYHOUR is 12, the result is 0, 12 o'clock.

IRN and RKD generate random numbers and are
often used in applications invelving games or
simulations. Actually the argument for these
functions is not needed and may be any legitimate
argument; using the number 1.0 iz sufficient. Let's
scratch the work area and enter the program

»»110 LET HUMBERLI=IEN{l.0)

»»120 LET NUMBER2Z=IRN(1.0)

»»130 PRINT "FIRST RANDCOM NUMBER: ®;NUMBER1
»>»140 PRINT "SECOND RANDOM NUMBER: “;NUMEER2
»>»150 EKRD

(Note that statement 100 is omitted.) HNow enter RUN
and look at the result. My tun shows

FIEST RANDOM HWUMBER: 2423
SECOND RANDOM WUMBER: 363

These lock like twe legitimate random numbers.
Enter RUN a second time and observe the result, My
run shows

FIRST FANDOM NUMBER: 2423
SECOND RANDOM MWUMBEER: 363

We see that we get the same two numbers! This dose
not seem too random. In some applications this may
be desirable, especially when checking out programs
for problems, Repeatability may be useful in such a
case, but in many instances it is not desirable,

The RANDOMIZE statement allows us to proceed in a
different way. RANDOMIZE tells BASIC that a new
starting point is needed the next time a random
number is generated, That is, each time the program
is RUMN, the execution of RANDOMIZE will cause the
next use of the RND functionm to start at a different
random number than was used in a previcus execution
of the program, RANDOMIZE need be used only once in
a program. Let us add it to the program

62 An Introguction to Structured BASIC For the Cromemco C-10

»»100 RANDOMIZE
How use RUN two times as above, My results are

FIRST RANDOM NUMBER: 18002
SECOND RANDOM NUMBER: 49391

and

FIRST RANDOM NUMBER: 7381
SECOND RANDOM NUMEER: 14808

How we have obtained numbers that really look random
from run to run, Try running the program several
times, and compare the results. Incidentally, these
numbers are properly called pseudc-random numbers,
They have many of the useful properties of random
numbers, but they are generated by a mechanical
process, and not a truly random process. They are
nevertheless extremely useful,

USER-DEFINED FUNCTIONS—DEF

Earlier we mentioned that BASIC does not contain a
modulo function., We saw that we could produce the
same results as a modulo function by writing a
relatively short arithmetic expression. In
applications where the medule function is needed
repeatedly, it becomes tiresome to have to write out
such an expression. Indeed, this is the case for a
number of application-dependent arithmetic
expressions whose forms remain the same, but whose
input wvariables change between usages. This
situation is similar ko our need to have functions
like COS5, INT,; and LOG that we discussed earlier.
The difference is that BASIC permits us to define
our own functions in terms of arithmetic expressions
which we specify.

BASIC provides a statement, DEF, which permits
us to define functions representing arithmetic
expressions that are used repeatedly. Instead of
writing the expressiocns repeatedly, we can just use
the function name. Let's see how this works in
calculating the area of a circle when we are given
the radius of the circle, Our DEF statement is

DEF FNAREA(RADIUS)=3,14*RADIUS*RADIUS

Ch. 5: Functions and PRINT Formats 63

The DEF statement defines a function called FHNAREA.
All function names defined with DEF must begin with
FN and be followed by a name fashioned in the manner
of a BASIC variable name. An argument list of names
follows the function name, In this case, we have
only one argument, RADIUS, The arithmetic
expression uewally is composed of variables in the
argument list, DEF simply defines the form of the
function. When this statement is executed, nothing
happens except that FNAREA becomes & known function
te BASIC. When PNAREA is used in a BASIC statement,
the expression is used to evaluate the function.

For example, suppose We want to calculate the cost
of a circular table that is 2 feet in radius and
costs 20 dollars a sguare foot, We might write the
statement

LET COST=FRAREA(2)%*20.0

A value of 2 is used for RADIUS in the DEF
expression for FNAREA, and BASIC returns a value of
3.14a%2*2, or 12.56, which i=s multiplied by 20.

RADIUS in the DEF statement is just an
artificial variable; it and any other variables
found in the argument list define variables which
are used in the DEF arithmetic expressions. If
RADIUS is used elsewhere, it is not considered to be
the same RADIUS found in the DEF.

Variables which are not arguments of the
fupnction may appear in the DEF expression, These
variables take on whatever values they currently
have when the functienm is used.

Consider the following program that is used to
compute the volume of two ecylinders, given their
radius and height, and to compute the circumference
of a circle with a radius of 4.5.

100 DEF FHNCYLVOL(RAD,HGT)=PI*RAD*RAD*HGT

110 PI=3.14

120 RAD=4,5

130 PRINT "CIRCUMFERENCE OF A CIRCLE" ,RAD*2*PI
140 PRINT "FIRST CYLINDER®",FNCYLVOL(Z,10)

150 PRINT "SECOND CYLINDER",FNCYLVOL(6.25,15)
160 END

Line 100 uses a DEF to define a function, FHNCYLVOL,
containing two arguments which represent the radius
and height of the cylinder. Lines 110, 120, and 130

&4 An introduction to Structured BASIC for the cromemco C-10

are used to compute the circumference of a circle.
When line 140 iz executed, 2 is substituted for RAD,
and 10 is substituted for HGT in the expression
defined by FNCYLVOL. Because PI in that expression
is not an argument variable, the value of PI is
taken as the value set in line 110. The axecution
¢f the statement at line 150 is similar, When the
program is finished, RAD has a wvalue of 4.5, not
6.25, even though 6.25 was substituted in the ERAD
variable of line 100 when executing line 150. This
last statement emphasizes the fact that argument
variables are not the same as variables found
elsewhere in the program, despite the fact that the
game names may be used.

STRING FUNCTIONS

You might be wondering whether there 2re string
functions as well, or maybe you hadn't considered
such a possibility. The answer is yes, they do
exist, and they are very useful, String functions
operate on strings in variocus ways., Some produce
strings as ocutput as the result of examining a
numeric argument. Others produce & numeric value
{usuwally an integer) as the result of examining a
string. String functione are highly useful in many
applications. String functions which return
etrings, i.e., produce strings as output, end with a

*

s
¥
p'fr'
el

Figure 5.2 A string function? MNo. No.

€h. 5: Functions

In the

and PRINT Formats B5

list and brief description cf the string

functions that follow, AS and B$ represent strings,
n represents an integer number, and X represents a
number, numeric variable, or arithmetic expression.

String Functions

Function Meaning

ASC(AS) Returne the ASCII numeric value of the
first character in AS.

CHRS (X) Produces a single character which is
the ASCII character corresponding to
the wvalue of X,

DATES (AS) If AS is "yymmdd", sets the date for
3102 terminals. vy (yvear), mm {(month],
dd (day). IE A% is "" {(null), date is
returned.

HEXS (X)) Produces a four-digit hexadecimal ASCII
representation of X,

LEN{AS) Returns the current length, i.e, number

POS(AS,BS,n)
STRS (X)

TIMES (AS)

VAL (BS)

VALC (AS)

of characters, of A%, exclusive of
trailing null characters.

Finde the first position in A%,
beginning at position n, which containe
BS. Return -1 if no match.

Converts X to its character repre-
sentation. For example, 1.34 to "1,34%,
If AS is "hhmmss", sets the time for
3102 terminals, hh (hr), mm (min),

s (sec). If AS is "" (pull), time ie
returned.

Convert AS to its numeric representation.
For example, "1.,34" to 1.34.

Same as VAL except that it sets an
error condition when A$ coptains bad
information. The error may be detected
by the OH statement.

Frobably the most freguently used string functions

are LEN and

100
110
120
130
140
150

POS. In the program

WAMES="BOB SMITH"

LENGTH=LEN (NAMES)

WHERESHITH=POS [NAMES , "SMITH" 0}

PRINT "LEWGTH OF NAME: ";LENGTH

PRINT "SMITH LOCATED AT CHARACTER: ", WHERESMITH+1
END

66 An Introduction to Structured BASIC for the Cromemcao C-10

the use of LEN at line 110 and POS at line 120
produces as outpuk

LENGTH OF HAME: 9
SMITH LOCATED AT CHARARCTER: S5

We see that although NAMES has a maximum default
gize of 11 characters, it really contains only 9
characters. Furthermore, the search for "SMITH"
indicated in line 120 begins at position 0, the
first position in the string HAMES. Teo obtain the
character position that we might normally expect the
string "SMITH" to begin, we add 1 toc WHERESMITH con
line 140.

ASC, CHRS, and HEXS relate to ASCIT character
codes and will be left to the interested reader to
explore. The ASCII character codes are the nomeric
eguivalents of all the allowable characters in
BASIC. A table of these codes is located in the
appendix.

VAL, VALC, and 5TR$ can be useful in many
applications reguiring conversion of strings
representing numbers to numeric values, and wvice
versa., The interested reader should explore these
independently. There are seweral peculiarities of the
VALC function that vou may want to be aware of if
the function is of interest to you. In particular,
VALC needs to have numbers on both sides of any
decimal point. See the Structured BASIC Instruction
Manual for & more detailed explanation.

DATES and TIMES are used to set and read the
time from the Cromemce 3102 terminal. When the date
or time are set, a LET may be used with a dummy
string variable on the left, ag in

LET DUMMYS=DATES ("830804")

INSERTING INTO A STRING—EXPAND

A particularly useful statement related to the
string functions is the EXPAND statement, It can be
used to help insert characters into the middle of a
string. This statement is used to insert null
characters into a string variable., The substring of
null characters can then be replaced with another
gtring using a LET. For example

Ch. 5: Functions and PRINT Formats 67

EXPAND MAGAZINES(5) .3

inserts three null characters in MAGAZIMES starting
before position 5 in MAGRZINEZ,

Congider the need to insert the string "ALAN"
into the middle of "ROBERT BROWN", A program that
performs this insertion is

100 DIM NAMES {20)

110 LET HAMES="ROBERT BROWH"
120 EXPAKD WAMES(7) .5

130 LET NAME$(7,11)="ALAN "
140 PRINT "HIS HAME IS ";HAMES
150 END

produces
HIS HNAME 15 ROBERT ALAN BEOWN

Position 7 in HNAMES is occupied by the letter B. We
insert 5 null characters to accommodate the extra
space needed in the middle name by using EXPAND in
line 120. Line 130 actually inserts the name

"ALAN ", with a blank provided to take the place of
the fifth null character.

BINARY FUNCTIONS

Structured BASIC contains several functions that are
referred to as binary functions. These are probably
only of interest to advanced users, and they will

only be mentioned briefly here. There are five binary
functions

Function Meaning

BINADD(el,eZ) Binary addition

BINSUB(el, el} Binary subtraction

EINAND (el ,eZ) Binary logical "and"

BIROR (el ,e2) Binary logical "or"
BINXOR(el,e2) Binary lecgical "exclusive or"

The arguments el and e represent integer
eXxpreesions, l6-bit numbers, or hexadecimal
constants., More information on these functions may

68 An Introguction to Structured BASIC for the Cromemco C-10

be found in the Structured BASIC Instruction Manual.
PRINT USING WITH NUMBERS

By now you may have discovered on your own that when
numbers are printed with PRINT they may be printed
in a format that is not entirely useful for certain
applications. 1In fact, it may have occcurred to you
that there should be more contreol of how an output
line is formatted. The PRINT USING statement gives
you this control. PRINT USING is similar to FRINT,
except that a format for the variables printed is
specified, This format is contained in a string
literal or string variable included with the
gtatement, A simple illustration using & string
literal for a format is

BRINT USING "###&.8%,3,12

The string "#4#4#.8#" is the format, It indicates

that exactly six print positions will be output, one
for each character in the format. The sharp signs (#)
indicate where numbers are to occur; and the period
shows where the decimal point iz, The output of

this statement is

3.1

Three spaces occur before the 3 since there are no
digits in these positions. Only one decimal place is
printed, as indicated by the format. The result is
rounded.

How consider

PRINT USING "####.#",1000.4,400.77,100
This produces
1000.4 400.8 100.0

That is, each number is printed with the same format
until the list of numbers is exhausted. HNote
carefully that the space between the numbers is
generated because there is no digit there in the
second and third numbers, and not because BASIC
politely put them there, To make sure there is a
space between numbers, we should actually use a

Ch. 5: Functions and PRINT Formats 69

format with a trailing blank, as in "#§###%.# ". The
trailing blank in this format is always output, and
leaves a desirable separator between the fields.
Hote that the number 400.77 is rounded when placed
in the output field,

Suppose the following is used

PRINT USING "#4%.8 #8844, 88 " ,100.4,12345.67
The cutput is
100.4 12345.67

Hence, tWwo fields are defined in the format and they
are used successively by the items in the list.

What happens if there are more items in the
list than fields defined in the format? The format
is recycled, So

PRINT USING "d84.4 &2604_ 44 ",100.4,12345.67,144.5
produces

100.4 12345.67 144.5

Textual information may be included in the format,
ag in

PRINT USING "ANSWER QUESTICH #4.% AND SCORE #8%,12.3,20
which results in
ANSWER QUESTION 12.3 AND SCORE 20

We will say more about using textual information in
a format in a short while.

0f course, variables can be used with PRINT
USIMG as in the program segment

400 LET MYFORMATS="SIZE: ##"
410 LET SIZE=15
420 PRINT USING MYFORMATS,SIZE

A common problem with formats occurs when not
enough room in a field is specified, For example,
in the preceding sequence of statements, suppose
SIZE is set to 150 instead of 15. BASIC cannot fit
150 into the two-digit field specified, so it prints

70 An introduction to Structured BASIC for the Cromemco C-10

asterisks instead., The result is
SIZE; **

If you try to print a negative number with what we
have learned thus far, you will be surprised to find
that the # does not help us. The # specifies that
the field it represents is to contain a number or
space and nothing else. Another foermat symbol, the
= (minug) or + (plug) can be used to get us around
this problem. Incidentally, the &, -, and + are
called format specifier symbols when they are used
to specify a format, When present in a format
field, the first sign specifier in & field indicates
that a =sign or blank is to be cutput in the
corresponding position, Subseguent occurrences of a
gign in the field indicate that & sign, number, or
space is acceptable as putput characters. Let's

try it and see what happens. Scratch your work area
and enter

*>100 PRINT USING "-###.%# ", 50.0, -5.4,-234.5, 6000
»>110 PRINT USING "+&##%.%# ", -50,0, 5.4, 234,5, 6000
»2120 ENWD

Enter RUN., We find the output

50.0 = 5.4 =234.5 %xrt &
50,0 + 5.4 #2345 **wd %

The sign is always in a fixed position. The sign
output for the positive number in the first format
is just a blank. In the second format the sign is
always printed, The use of the sign specifier here
indicates that the corresponding pesition is
reserved for a blank or a sign. Hence, the value
6000 cannot be accommodated, and is therefore
printed as a field of asterisks.

It may not always be desirable to have the sign
occur in a fixed position. Successive use of sign
gpecifiers permits the sign to "float® in the field.
For example

PRINT USING "--##,% ",-300.0,-20.0,-1.0,6000
produces

=300.0 =20.0 - 1.0 ®w%#k =

ch. 5: Functions and PRINT Formats k|

The sign is allowed to float to the right-most
position of the two fields containing the sign
specifier. Here the second minus is able to
accommodate a digit as well as a sign. The first
minus, as shown previously, permits only a sign; so
the 6000 prints as asterisks.

Several signs may appear in succession as in
the following example format strings

LES TR | L B T L e T E T L e

In the last strina, the minus symbols in the decimal
portion of the field are the same ag # there. That
is, the sign output is alwaye placed to the left of
the decimal.

We have tacitly used the decimal point as a
specifier, A comma has a similar use. For example

PRINT USING “&,#4#8.%4% ",1000,50,234.56
produces
1,000.50 234.56

We see that the size of the number determines
whether the comma is output, as we would hope.

A particularly useful specifier for commercial
applications is the § symbol, It is very similar to
the sign specifiers. Consider the sample program

100 PRINT USING “S##4.6% ",5.0,100.0

110 PRINT USING "55&4.## ",250.0,10.0,0.50
120 PRINT USING "-S##4.88 ",-40.0,2.0,-800.50
130 PRINT USING "5-##.88 ",-5,25

140 END

This program produces

§ 5.00 $100.00
$250.00 S5lo0.00 &% Q.50
—240.00 £ 2,00 %*us% s
$- 5.00 § 25.00

The asteriske are produced in the third output line
becauge in line 120 the -B00.50 is too large; there
ie no room for the digit 8, Its position 1s heeded
for the § according to the format.

When a fixed § format is used, epecifiers

72 An introduction to Structured BASIC for the Cromemco C-10

preceding the $ are made blank unless they are sign
specifiers, in which case a sign may be output. In
the case of a fleoating 5, only one specifier may
precede the first 5. It must be a sign.

In a number of scientific applications, it is
useful to print a number in E-notaticn. The symbol
! used successively in four locations allows
E-notation ocutput. The example

PRINT USIKG "-—.###1111 ",100,0, 0.05, -1200.0
outputs
1,000E+02 5.000E-02 -1,200E403

The most significant digit is placed in the
left-most position that & number is allowed,

There are two other specifiers that may be used
in connection with numeric fields, the & and .
These specifiers are like the # in that they provide
for digits, But when there iz no leading digit to
print, the & indicates the leading digite of zero,
and * indicates the leading digits are asterisks.
From the sample program

100 PRINT USING "&&&.##% “,100,10,1
110 PRINT USING “*** g4 ",100,10,1
120 PRINT USING "-&&&.% “,-20,200,5
130 END

we find the results

100,00 010,00 0C1l.00
100.00 *10.00 **1.00
=020.0 200.0 005.0

PRINT USINC WITH STRINGS

Up to this point, our concern has been with numbers.
It is certainly possible to use strings in the
output list of a PRINT USING. When a string appears
in a PRINT USING, any of the specifiers we have
discussed reserve positions for characters of the
string., Variable or literal strings are permitted.

ch. 5: Functions and PRINT Formats 73

For example

100 CITY§$="DETROIT"

110 STATES="MICHIGAR"

120 PRINT USING "®##84F0 AKD $¢#Ped#d BASE","FIRST","SECOND™
130 PRINT USIMG "CITY:EbLEsWIbd SETATE:=5*"+ $#4",CITYS ,5TATES
140 FRINT USING "###d" , "PINISHED™

150 END

produces upon execution

FIRST AND SECOND BASE
CITY:DETROIT ETATE:MICHIGAN
FINI

In the preceding example, we see that the
etring is always left-justified, i.e., pushed to the
left, in the field. 1In lipe 120, the strings
"FIRST" and "SECOND"™ are shorter than the fields
inte which they are placed. Looking at the cutput,
we spé that blanks fill out the portions of the
fields that are not occupied by these strings, The
same is true for the string wvariables used in line
130. This is sometimes called padding with blanks
on the right. The string output in line 140 is
truncated because it is too long for the field.
Although lines 120 and 130 show a mixture of
specifiers in the format, it is usuvally a good idea,
for consistency, to use just # for string fields,

There is an interesting situation in which the
field containing a string wariable does not seem to
be padded on the right when the string is shorter
than the field., As stated in ocur earlier
discussions of string variables, if a string is
placed in a variable which has a size greater than
the string, the atring is padded to the right wikh
nell characters. These null characters are actually
characters, They appear to occupy no space in the
output when printed. If we insist on printing them,
which may happen when a subsetring reference ie
given, the output may seem erratic. The program

100 CITYS="CHICAGO"

110 PRINT USING "CITY(#éédd4d4s8%)",CITYS

120 PRINT USING “"CITY (#f###&488%)",CITYS(D,8)
130 END

produces the output
CITY (CHICAGD }

74 An Introduction to Structured BASIC for the Cromemco C-10

CITY (CHICAGO)

CIT¥S is a string variakble and has & default size of
11 characters; "CHICAGO" contains 7 characters which
occupy positions 0 through 6. There are 4 null
characters at the end of CITYS. In line 110, BASIC
assumes the end of string is encountered when it
finds null characters, and it pads the output with
blankz. However, in line 120, we have explicitly
asked to print the 2 null characters in our
substring reference, They occupy no space in the
output, and this is shown by what appeares as two
migsing spaces before the final parenthesis.

PRINT USINC WITH NUMBERS AND STRINGS

0f course, there is nothing te prevent us from using
FRINT USING with both numbers and strings, For
example

100 PRINT USING “##dad. 48 #8E64+" ,300.44,"ERREN"

produces
300.44 EAREN

There is really nothing very complicated about such
forms, The only problem that we face is that of
making sure that our list of variables and literals
matches the format items.

PRINT USING—MISCELLANEA

In some of our examples, non-specifiers appear. In
the previous example, CITY, (, and) are
nen-specifiers. When such symbols appear, they are
assumed not to specify any portion of a field and
they may be used freely. Only the specifiers

E * & 5 , + - . |

define a format field., Hence, if these special
symbols are needed as descriptive information in the
output, they must be output from strings. For
example

100 PRINT USING "gg8ssdd4448¢" “"HI, THEREL"
110 END

Ch. 5: Functions and PRINT Formats 75

This produces
HI, THERE!

containing the epecial characters the comma and the
exclamation point, ,
Like the PRINT statement, PRINT USING permits
the inclusion of a mixture of numeric and string
data and variables in the list following the format
string., A semicolon at the end of the list
suppresses the carriage return., The example

100 WET=20, 4

110 NAMES$="SMITH"

120 PRINT USING "##8.84 #48388484" ,100.4,NAMES;
120 PRINT USING "##.% POUNDS",WGT

130 END

produces the output
100.40 SMITH 20,4 POUNDS

Finally,; let's combine much of what we have learned
by presenting some of the more interesting format
combinations in the following table., &An entry
corresponds to the result of applying a data item to
a format, e.q9.; applyving +20 to #4#% produces 20.

Formats At a Glance
Print rtems
FORMAT +20 =20 + 5 -5 100 "ABC"
44 20 20 5 5 100 BBC
LA b *20 *20 *kD k%5 100 BBC
E&E 0zo 0zo 0os oos 100 ABC
LEg 020 G20 0*5 0*5 100 ARC
+id +20 =20 + 5 -5 whk BRC
++4 +20 ~20 +5 -5 *wn KBC
4 +20 =20 +5 -5 wEE BBC
-§§ 20 =20 5 -5 kEE ABC
. | 20 =20 5 -5 LA ABC
= 20 =20 5 -5 k& REC
i §20 520 $ 5 § 5 PN ABC
558 20 5230 55 55 *kk ABC
$.._ 4 X & W $ 5 $._5 L £ 8 3 .F.LBC
=g#1111 20E+00 -20E+00 GSOE-01 -S0E-01 10E+01 ABC
———— 20.00 =20.00 5.00 =5.00 *%% %% ARC
e 20 _20 5 =5 .'l..-lm ABC

OUT:==-= OUT: 20 OOT:-20 OOT: 5 OUT: -5 OUT:*** QUT:ABC

76 An introduction to Structured BASIC for the Cromemco C-10

Review Questions and Exercises

1. Two of the following LET statements are
invalid. Which onez are they?

LET TIME=TIME*22.4

COUNT=COUNT+1

LET XPERCENT=(YEAR*131.4/INVENTORY)+18.004/8.2
LET TOTAL=(100.0+SALES-TAXES))+400

LET LOSS=DELTA® (150-WORK

24 Write a LET statement that takes the sine of
THETA and stores the result in SINTHETA.

3 What does the BANDOMIZE statement do?

4. Why do the following statements cause
KILOMETERS to contain 16.07

900 DEF FNCONVERT (MILES)=1.6*NILES
%10 NO'QF'MILES=10.0
920 KILOMETERS=FNCONVERT (WO'OF'MILES)

L IF ALPHAS contains “ABCDEF", why is the value
returned by POS(ALPHAS,"C",0) a 27

6. What BASIC statement permits you to insert null
characters into a string variable?

T What is & format? Give an example of a format
that can be vsed ko print a three-digit number
without any decimal point.

8. Which PRINT USING statement is wrong?

PRINT USING "####.8",NUMBER
PRINT USING "“####.4" NUMBER

9, What is the difference between the formats
Ve #4" and "-#,.44" when the number -5,0 is
printed? When -0.,2 is printed?

10, Can string literals and variables be printed
with PRINT USING?

summary

PRINT USING
Permits numeric and string data to be

LET

77

formatted in specific fields and positiong of
an output line.

A format is specified with a string or string
variable.

Epecial format specifiers define the
permissible contents of a field,

Formats allow decimal point positioning,
Commas may be inserted in fields to represent
units of 1000.

Descriptive information may be included in
formatse.

Arithmetic signs and dollar signs are allowed
to "float"™ at the beginning of a field,
Strings are left=Jjustified in a field; any
gpecifier defines & character field,

Mumbers may be output in E-notaticn.

Mixtures of numeric and string data may
appear in the PRINT USING list.

A semicolon at the end of a PRINT USING list
suppresses the carriage return,

Arithmetic expressions are evaluated from
left to right but with a preference that 1s
dependent upon the cperaters involved, The
preference is in the order: negation,
exponentiation, multiplication and division,
addition and subtraction.

Parentheses may be used freely to order and
clarify the order of calculation,

A namber of useful arithmetic functions may
be included in arithmetic expressions.
Functions contain arguments which are
provided in a list enclosed in parentheses
following the function name.

String functions exist for manipulating
string data,

Several binary functions are available for
performing arithmetic and logical operations,

RANDOMIZE

LEF

EXFAND

Permits the RND and IRN functions to
initialize at new random numbers when they
are first used,

Allows user—defined arithmetic functions.
Function names must begin with PH.

When used with LET, provides a way of
inserting substrings into the middle of
gtring variables,

CHAPTER G

EDIT Facilities

Now that we have learned several BASIC statements,
we are able to construct some fairly sizable
programs. AS a result, our programs are more
subject ko modification, EBarlier, in Chapter 2, we
learned how to make modifications by deleting a
line, or by retyping a line. In this chapter, we
will take a brief but useful diversion into some
commands which will help us modify and construct
programs and program statements. BASIC provides
four very useful commands for this purpose: EDIT,
FIND, CHANGE, and AUTOL. You should become guite
familiar with these commande because they can save
you a lot of time in entering and correcting program
lines.

EDITING LINES—EDIT

Az a matter of course, it is desirable to use EDIT
to make changesg in lines rather than to retype a
line, This is preferable not only because it
reduces typing time, but also because 1t reduces the
possibility of introducing new mistakes into a line
which originally may have suffered only minor
problems. Let's see how EDIT works.

Scratch your work area and enter

»»100 PRINT "THIS IS A TERBLE MIS TAKE"
»>110 PRINT "THIS SHOULD BE THE FIRST LINE",ABC

Ch. &: EDIT Facilities 79

Now enter EDIT 100 te edit line 100 as in
>>EDIT 100
and you will get the response
100 Print"THIS IS5 A TERBLE MIS TAKE"

You are now in the edit mode. BASIC has positiened
your cursor after the colon and is waiting for a
response, You can leave the edit mode by hitting
the escape key on your keyboard, Assuming that we
want to continue, BASIC expects us to move the
curaor £rom a point on the line containing the colon
to the point where we wish to make a change. The
cursor can be moved by using the space bar to move
right or the delete key to move left. Let's try to
remove the space between MIS and TAEE. Move the
curfur to the space we want to delete and type a D
as in

= 100 Print"THIS IS A TERBLE MIS TAKE"
H D

This symbol designates that we want to delete the
character above it. Several D's may be entered if
needed. Here we only need one. HNow hit the
carriage return and you should get

- 100 Print"THIS IS5 A TERBLE MISTAKE"
H

The space between MIS and TREE is missing, as we
wanted., We are still in the edit mode, as indicated
by the colon. Now let's correct the spelling of the
word "terrible," Move the cursor to below the B in
TERBLE and type IRI as in

- 100 Print"THIS IS A TERBLE MISTAKE"
H IRI

The firat I designates the insert operation and
anything typed after it will be inserted before the
I on the line above. Hit the carriage return and
you should get

80 An Introduction to Structured BASIC for the Cromemco C-10

= 140 Print"THIS IS5 A TERRIBLE MISTAKE"

S

Wow hit the carriage return without entering
anything, and the familiar BASIC prompt will
reappear., We will be out of the edit mode, and the
changes we made will be in effect. If we had hit
the escape Key, we would leave the edit mode without
the changes being in effect. Enter LIST to list the
work area and wyou should f£ind

100 Print"THAIS I5 A TERRIBLE MISTAKE"
110 Print"THIS SHOULD BE THE FIRST LINE",ABC

Incidentally, entering EDIT without a line number
following it causes BASIC to prompt vou for edit
changee for each line in the work area. Hitting the
carriage return causes the next line to become
available for editing, until all the lines have been
exhausted.

Mote that only one I symbol i= allowed on a
line because any other 1 that follows it is
interpreted as part of the character string to be
inserted into the line,

MNow let's assume that ABC in line 110 is
extraneous and thus should be eliminated, We could
enter EDIT 110 and place DDDD under ",ABC" but let's
tty one other edit symbol, K, Here we go! Make
sure you hit the carriage return after entering K,
as shown,

>»EDIT 110
- 110 Print"THIS SHOULD BE THE FIRST LINE",ABC
H E

110 Print®THIE SHOULD BE THE FIRST LINE"

The K means kill all characters from the position of
the K to the end of the line.

Do not hit the carriage return yet; we have
more to do on this line. We now suppose, as line
110 says, that it should be ahead of line 100.

Let's modify its line number as in the seguence

110 Print"THIS SHOULD BE THE FIRST LINE"
DODISH
a0 FPrint"THIS SHOULD BE THE FIRST LIKE"

TR T |

Ch, 6: EDIT Facliities 81

Here the notation DDDIS0 effectively says to delete
110 and to insert 90 in its place. The line below
our entry of DDDIY0 shows that this has happened.
Any portion of a line may be edited, including the
line number. Mow hit the carriage return to exit
from the edit mode and enter LIST. You should have

90 Print"THIS SHOULD BE THE FIRST LINE®
100 Print"THIS IS5 A TERRIBLE MISTAEE"
110 Print"THIS SHOULD BE THE FIRST LINE",ABC

We see that line 110 has not been eliminated and
that all of our changes have been placed on a new
line %0. When EDIT is operating on a line of text
from the program, it does not make the changes
directly in the work area until you are finished
with the line. It then inserts the edited text into
whatever line is shown in the final edit. If we had
not changed the 110 to 90, line 110 would hawve been
replaced, This can be a very effective way of
moving lines around in BASIC without retyping the
entire line. To get rid of line 110 in the work
area, we Simply enter 110. As we learned in an
earlier chapter, this deletes the line, and we are
left with lines 80 and 100.

The EDIT command actually comes in four
varieties, Examples of each are

EDIT

EDIT 600
EDIT 300,540
EDIT 2000,

The first form allows us to successively to edit all
lines in a program in the fashion mentioned
previously. The second form has just been
illustrated. The third form tells BASIC to apply
EDIT to each of the lines from 300 to 540
successively. Finally, the last form applies from
line 2000 through the last program line.

LOCATING AN ITEM—FIND

There are times when we want simply to locate a
particular string in our work area. Visual
inspection of statements using LIST can be

a2 An Introduction to Structured BASIC for the Cromemco C-10

time-consuming. The FIND command allows us to
locate a string guickly., When we enter FIND as in

»>FIND
we are prompted with
FIND:

BASIC wants us to enter the string that it should
gearch for. Entering "Print® as in

FIND:Print

will cause BASIC to list all the lines in which the
string "Print" occurs.
There are four forms of FIND:

FIND

FIND 400

FIND 8900,9500
FIND 6000,

The first case has just been discussed., The other
three forms allow us to restrict the lines searched
in the same manner that EDIT can be limited to
certain lines,

The FIND command can be terminated at any time
by hitting the escape key on your terminal,

MAKING MULTIPLE CHANGES—CHANGE

The CHANGE command is uwseful when we want to apply a
similar change over a range of lines. When CHANGE
is entered, a prompt, FROM:, is issued by BRSIC
regquesting the string that is to be changed, After
entering the string and hitting the carriage return,
you are again prompted by TO: to enter the string
that is to replace the one you just entered in
cesponse to the FPROM: prompt, Here is a typical
seguence which changes all occurrences of the symbol
@ to PRINT

>>CHANGE
FROM: @
TO:PRINT

ch. &: EDIT Facilities B3

When you hit the carriage return after entering the
string PRINT, BASIC begins searching for all
occurrences of the @ symbol (a single character
gtring), When it finds the strimg, it displays the
line the string is contained in, positions the
cursor under the string, and waits for a response.
¥You may enter a carriage return to reject the change
at that peint, a C to accept the change, or an
agterisk(*) to accept all changes from that point
onward, In the first two instances, BASIC will
continue to wait for a response from you as it finds
each new occurrence of the string., In the last
case, BASIC will automatically make the reguired
changes as it finds each string to be replaced,
without waiting for you to respond.

Like EDIT and FIND, CHANGE has four forms which
allow you to select the lines that you wigh it to
operate on., The CHANGE command may be terminated by
hitting the escape key,

LETTING BASIC NUMBER YOUR LINES—AUTOL

AUTOL is useful when a number of statements are to
be added to your program and you do not want to type
the line numbers yourself., ADTOL automatically
supplies the line numbers. As each number is
generated, you enter the statement on the line whose
line number is generated. You may terminate the
command simply by responding with a carriage return,
without entering any other text for the line, or by
hitting the escape key. An example of this command
is

AUTCL 500,10

The first number, 500, is the first line number you
want generated., The second number, 10, is the
amount by which you want each subsegquently generated
line number to be incremented. «Clear vour work area
and enter

»>AUTOL 1000,5
BASIC will respond with
1000

84 An introduction to Structured BASIC For the Cromemco C-10

The 1000 was generated by AUTOL, Now enter PRINT
after the 1000 a=z in

»>»1000 PRINT
and BASIC will respond with

*»1005
It is waiting for you to enter something on line
1005, Enter REM or some valid statement and

continue experimenting until vou are satisfied with
your understanding of AUTOL.

Figure 6.1 Back to the easy life,

Review Questions and Exercises 85

Review Questions and Exercises

1. How does the CHANGE command respond to a C,
space, carriage return, and asterisk?

2. How are entries to an AUTOL command terminated?

3. Is it possible to EDIT a line number? What
happens?

summary

EDIT

FIND

CHANGE

AUTOL

Permits the editing of lines oh a character-
by-character basis, as needed, with special
edit symbols,
Quick summary of EDIT codes:

K : Kill remaining portion of line

I : Insert input text

D : Delete text

Finds all occurrences of a specified string

of characters by displaying the lines
containing the string.

Changes all occurrences of a specified string
to another string while providing the
cpportunity to selectively decide whether the
change should be made.
Quick summary of CHANGE codes:

C 3 Accept change

* ; Accept all following changes

Carriage Return : Reject Change

Automatically generates line numbers and
prompts for the statement for the line,

. |

Looping,
Branching,
and Logic

Up to this point, the programs that we have been
able to write contained statements that executed in
a seduential order. Progress through the statements
was made by moving from the first line of code to
the last line, without any side trips or jumps.
While this method of operations is useful in some
applications, thia is not how powerful, flexible,
and really useful programs are written. There are
times when we would like to move off the beaten
trail and do something more complicated. And, like
so many efforts that take us off the beaten trail,
the statements that we learn about will not be used
in our applications without some risk., The risk
evolves from the fact that these statements also
make it more complicated to get our prodrams to
behave correctly. We will attempt to tackle that
praoblem when we get to the chapter on debugging,
Nevertheless, the statements we will learn in this
chapter disclose a whole new dimension in our
ability to solve complex applications on the
computer. We should approach them with some
caution, but with much enthusiasm for their ability
to help us solve difficult application problems,

SIMPLE LOOPS—FOR AND NEXT

The first of these statements are the FOR and HEXT
statements, They always occur as a pair, and they
permit us te execute repetitively a section of

BE

Ch. 7: Looping, Branching, and Logic 87

statements for a fixed number of times. Such an
activity is usually regarded as a lcop, or simple
loop. Often the two statements are referred to as
defining a FOR-MEXT loop. Here is a program that we
will enter to illustrate the two statements. Clear
your work area first, and enter

»»100 FOR J=1 TO 4
»»110 PRINT "VALUE OF J: ":;J
»»120 NEXT J
»»130 PRINT "FINAL VALUE OF J: ";J
»»140 END

When RUN, this program produces

VALUE OF J: 1
VALUE OF J: 2
VALUE OF J: 3
VALUE OF J: 4
FINAL VALUE OF J: 5

Statement 110 is executed four times; each time it is
executed, J is increased by 1. The reason for this
is that the FOR statement tells BASIC to loop by
starting with J and 1 and, each time tha loop is
completed, to increase J by 1. The 4 following the
T in the FOR statement tells BASIC that looping
should stop when J has exceeded 4. The HEXT
statement defines the end of the loop, causes J to
be increased by 1, and the execution to be returned
te the FOR. When J becomes 5, the loop is
terminated, and the program goes to the statement
following the MEXT. We sometimes refer to this as
falling through the bottom of the loop, or falling
out of the leop. The variable J is referred to as
the loop variable and 1 and 4 are referred to as the
starting and limiting walues.

It is important to understand that the HEXT is
actually responsible for both incrementing and
testing the loop variable, even though symbolically
the FOR statement appears to have both of these
functions. In the example program, the reason for
the termination of the loop 1s that after the NEXT
statement increments the loop variable, J, it checks
the loop variable value against the limit, If the
value is too large, the loop is terminated by going
to the statement following the NEXT.

In our example program, only one statement is
included inside the loop, but there is no reason why
more statements could not be included. If you LIST

B8 An Introduction to Structured BASIC For the Cromemco C-10

the above program, you will notice that the
statements of the loop are indented. BASIC performs
this editing to make the loop stand out more readily
in a program listing.

A common program structure seen with these two
statements is demonstrated in the feollowing program.
Scratch your work area and enter

»»100 DATA 5,15,20,35,40,50
»»110 READ HNDATA

»>»120 TOTAL=0

»»130 FOR LOOP=1 TO NDATA
»»140 READ VALUE

»»150 LET TOTAL=TOTAL+VALUE
»»160 NEXT LOOP

*»»170 PRINT "TOTAL: ";TOTAL
»»180 END

This program adds the five values 15, 20, 35, 40,
and 50 and prints the total, Line 100 containeg the
five walues in a DATA statement, The first value in
the DATA statement, 5, is the number of data values
and is read into the variable NDATA in line 110.
TOTAL is used to sum the results and is set to zero
in line 12Z0. The FOR-NEXT loop uses the loop
variable LOOP and the loop is executed with LOOP
starting at 1 and continuing until it becomes
greater than NDATA, of 5. The loop is executed §
times. 1Inaide the loop, the next data item is read
into VALUE at line 140. The LET statement adds
VALUE to TOTAL and puts the result in TOTAL. When
the loop is completed, line 170 is executed next,
The leoop containing LET statements that sum a series
of numbers is commonly found in many applications.

Try executing the above program, Y¥You should
find the result

TOTAL: 160
Something else to notice about our example is that
the limiting walue is a variable, The starting

value can be a variable as well, 1In fact, either
value can be an expression.

COMMON LOOP ERRORS

Let's consider several simple programs involving a
POR-NEXT loop which are incorrect in some way.

ch. 7: Looping, Branching, and Loglc 89

Program 1:

100 FOR K=1 TO H

110 PRINMT "VALUE OF K: ";K
120 HEAT E

130 END

FProgram 2:

100 FOR LOOP=1 TO 8

120 PRINT "VALUE OF LOOP: ";LOOP
130 HEXT LOP

140 END

Program 3:

100 FOR Q=1 TO 50

110 PRINT "VALUE OF Q: “;Q
120 END

Program 4:

100 TOTAL=0

110 FOR WUMBER=1 TO 100000
120 TOTAL=TOTAL+NUMBER

130 NEXT WUMEBER

140 PRINT "TOTAL: ";TOTAL
150 END

Program 5:

100 FOR NUMBER=1 TO 10

110 PRINT "PI*";NUMBER;" IS ";HNUMBER*3.l4
120 NUMBER=NUMBER+0D.5

130 PRINT "PI*";WNUMBER;" IS ";NUMBER*3.14
140 MNEXT NUMBER

150 END

Program 1 will execute the loop exactly one time
with K set to 1. The reason for this is that,
first, N is zero. Variables which are not
initialized, i.e., set to a value by the program,
are set to zero by BASIC. Second, recall that the
loop variable is incremented and tested at the NEXT.
Hence, when the MEXT is reached, we fall out of the
loop. It is very common toe not initialize a
limiting variable and thus to have a loop execute
fewer times than expected. A FOR-NEXT loop is
always executed at leaet once.

In Program 2, an error message will appear when
line 130 is executed. The loop wvariable is not the
same in the HEXT as in the POR. In Program 3, the
MEXT is missing entirely and an erecor message is
generated when the END is executed.

80 An Introduction to Structured BASIC for the Cromemco C-10

Program 4 does not really contain any mistakes.
It attempts to add all the numbers from 1 teo 100000.
If left to run long enough, it will eventually
succeed. We may ceally have wanted to add only the
first 1000 numbers, and have mistakenly entered
100000. The problem here is that we are asking to
loop 100,000 times, You will find that although
computers are quick, they do have limitations.
Looping this many times will be slow, It may be a
good 7 to B minutes or more before the loop is
completed. The point of this program is that we
must exercise sSome care 1n what we expect a computer
to doy the computer may not match our expectations
in computational speed, Our program may appear to
fail as a result of a programming error, when this
is not actually the case.

The problem illustrated by Program 4 is often
encountered, and we need a way of getting out of the
loop to repair it in case it takes too much time,
The execution of BASIC programs may be stopped by
hitting the escape key on your keyboard. BASIC will
stop and display a message telling you at which line
vou have stopped. You can repair the program and
enter RUN again. We will see that there are other
ways to restart a stopped program in the chapter on
debugging. j .

Program 5 apparently is an attempt to print
1*pi, 2*%pi, ..., 10%pi and 1.5%pi, 2.5%pi, ...s
10.5*pi where pi is the mathematical constant 3,14,
The leop variable is changed inside the loop at line
120. This is a bad practice. This program will
work, but in general, this type of coding is to be
avoided., Very often, you will find yvourself staying
ingide loops either a leot longer or a lot shorter
than you expected, if you modify the loop variable.

STEP CONTROL IN FOR-NEXT

Another form of the FOR-HEXT contains a step size
and it is illustrated by the example

100 FOR COUNT=1 TO 10 STEP 5
110 PRINT "“COUNT IS: ";COUNT
120 NEXT COUNRT

130 END

ch. 7: Looping, Branching, and Logilc a1

The STEP 5 portion of the FOR at line 100 indicates
that the increment should be 5 instead of 1. In
this example, COUNT will start at 1 and then be
incremented by 5 at the NEXT statement. The result
is

COUNT IS5: 1
COUNT IS: 6

The loop is completed when COUNT is incremented to
11; since 11 is greater than 10, the limiting walue,
the loop is terminated., Remember, as noted in the
Program 1 example, the loop variable is incremented
at the NEXT statement and its value is then tested
againgt the limit value.

There are times when it is useful to loop from
a large number down to a small number using a
negative step size, BASIC permits this operation
with the FOR=MEXT statements, Here is an example

100 FOR COUNT=10 TO 1 STEP =5
110 PRINT "COUNT I5: ";COUNT
120 NEXT COUNT

130 END

The STEP -5 portion of the FOR at line 100 indicates
that the increment is =5. In this example, COUNT
will start at 10 and then be decremented by 5 at the
HEXT. The result is

COUNT IS5: 10
COUNT IS: 5

When the step size is negative, the test used to
determine when the loop is finished is different
than when the step is positive. When decrementing,
we drop out of the loop when the loop variable is
less than the limiting wvalue,

NESTED LOOPS

There is no reasch why loops cannct be nested within
one another, as in

100 DATA 100,154
110 DATA 120,135

92 An Introduction to Structured BASIC for the Cromemeo C-10

1Z0 DATA 215,302
130 FOR ROWS=1 TO 3

140 S0M=0

150 FOR COLS=1 TOD 2
la0 READ VALUE

170 SUM=5UM+VALUE
180 HNEXT COLS

190 PRINT USING "SUM OF ROW #% IS5 #####.4%" ,ROWS,VALUE
200 HEXT ROWE
210 EKD

This program sums the rows of a 3 x 2 table of data
values found in the DATA statements, The osuter loop
ig controlled by ROWS and is responsible for looping
over rows. The inner loop is controlled by COLE and
is responsible for looping over the column data
within a row. The terminology inner and outer stems
from one loop being inside the other. You might try
entering the previous program, and examine how it
Works.

A common fault in constructing programs which
contain nested loops i5 to cause an inner loop to
fall partly outside of the outer loop. This is
illustrated by

100 FOR ROWS=1 TD 3

110 FOR COLS=1 TO 2

120 PRINT "ROW $## COLUMN #4" ,ROWS,COLS
130 NEXT ROWS

140 NEXT COLS

150 END

when executed, this program will stop at 130 with
BASIC issuing an error message. The cause of the
problem is that BASIC expects to increment COLS
gince it was the the lcocop variable in the most
recent FOR statement encountered. Instead it finds
a HEXT for ROWS. The correct program is

100 FOR ROWS=1 TO 3

110 FOR COLS=1 TO 2

120 PRINT "HOW ## COLUMN #4" ,ROWS,COLS
130 HEXT COLS

140 HEXT ROWS

150 END

Another way of modifying the execution order of
programs is with the GOTO statement. This statement
is found in many programming languages and has a

ch, 7: Loaping, Branching, and Logic o3

controversial reputation in wmodern "structured”
programming technigues, WNevertheless, vou will find
it very useful, As you become more accustomed to
programming, vou may f£ind that in large application
programs, the DO and ENDDO statemente, coupled with
the IF statement, are useful replacements for the
GOTO, The IF statement will be introduced in this
chapter and the DO and ENDDO in a later chapter.

TRANSFERRING CONTROL—COTO

The GOTO simply causes execution to continue at the
line number identified in the the GOT0. For
example, when GOTO 400 is executed, the next
statement executed will be at line 400. Scratch
your work area and enter the example program

»»100 GOTO 130
»»110 PRINT "COME MAN'S MEAT IS ANOTHER MAN'S POISON®
»>120 GOTO 140

»»130 PRINT "FOUR SCORE AND SEVEN YERRS AGO ..."
>>140 EMD

Enter RUN, and you should get the results
FOUR SCORE AND SEVEN YEARS AGO ...

The GOTO on line 100 causes the program to skip ko
line 130 without executing lines 110 and 120. MNow
enter

>»100

thereby Knocking out statement 100. Enter RUN again
and you should get

ONE MAN'S MEAT IS ANOTHER MAN'S POISOHN

The GOTO at line 120 skips directly to line 140.
Line 130 is not executed, Although this is not a
very useful way to write a program, i.e., selecting
which part iz to be executed by removing statements,
it does illustrate the GOTO.

If a program containing GOTO statements is
renunbered, BASIC adjusts the line numbers in the
GOTO statements to point to the new line numbers.

If a GOTO does not reference a wvalid line number

a4 An Introduction to Structured BASIC for the Cromemco C-10

when it is renumbered, the invalid reference is
changed to a number greater than the last line
number in the program.

At times, referring to line numbers with GOTO
statements can prove to be a tedicus exercise when
there are many transfer points in a pregram. To
simplify line references, BASIC allows us to label
lines and to use the labels in GOTD statements.
ngadis the preceding example with a few labels
adde

100 GOTO AREQUOTE
110 PRIKT "OME MAN'S MEAT 15 ANOTHER MAN'S POISON"
120 GOTO QUIT

130 *ABEQUOTE:FRINT "FOUR SCORE AND SEVEN YEARS AGD ...

14¢ *QUIT:END

BABEQUOTE and QUIT, on lines 130 and 144,
respectively, are labels, Each is preceded by an
asterigk(®*) and followed by a colon (:). Each label
is an alternate reference to the line on which it is
found. The GOTO on line 100 now pointe to ABEQUOTE
rather than 130. This ability to use labels makes
programs far more readable than using line numbers.
Labels are also called line pnames, Line pames, or
labelsz, are formed in the =ame way as numeric
variable names: alphabetic and numeric characters
and an apostrophe may be used; reserved names may
not be used. For obvious reasons, line names must
be unigue within a program.

If a GOTO uses a line name that does not exist,
which is possibly caused by a misspelling, the error
will not be detected until BASIC attempts to execute
the GOTO, A message is issued and the program
stops.

MULTIPLE TRANSFERS—ON-GOTO

Another form of the GOTO is the ON-GOTO. This
statement is similar to the GOTO, but it allows
transfer of the program to another line,
depending upon a value in the statement. Scratch
your work area and enter

»»100 *START: PRINT "ENTER 1 OR 2";
»2110 INPUT NUMBER
»»120 ON NUMBER GOTO BROME, BRTWO

Ch. 7: Looping, Branching, and Logic 95

»»130 GOTO START
»>»140 *BRONE: PRINT "YOU ENTERED A OHE"
»»150 GOTO QUIT
»»160 *BRTWO: PRINT "YOU ENTERED A TWO"
*»170 *QUIT: END

This program uses a ON-GOTO at line 120. If NUMBER
contains a 1, the program branches to the first line
name in the line name list following the GOTO,
BRONE. If NUMBER contains a 2, the program branches
to the second line name in the list, BRTWO. If
NUMBER is not an integer (a whole number), it is
rounded to the nearest integer and used; the wvalue
stored in NUMBER is not changed. If NUMBER does not
contain a value corresponding to a line name, for
example, 3, then the next statement following the
ON-GOTO is executed, Try RUN and respond to the
prompt with a 1. We have

ENTER 1 OR 271
¥OU EWTERED A CHE

Try RUMN again and respond with a 2.

ENTER 1 OR 222
¥YOu ENTERED A TWO

Try once again and respond with a 3.

ENTER 1 OR 273
ENTER 1 OR 272

In this case, NMUMBER is 3 when we get to line 120,
and there is mo line to branch to for this walue in
the ON-GOTO so we fall through to the next line

which is a GOTO that transfers us to START., At
START, the prompt is printed again.

The item following ON does nok need to be a
simple wvariable; any arithmetic expression is
allowed. For example

ON VALUE+l GOTO MOVE, SET, KEEP, FIX
ON INT(COS(A/2)*2)+1 GOTO SWIFT, ROBIN, FOX, WHEAT

96 An Introduction to Structured BASIC for the Cromemco C-10

LOGICAL CONTROL—IF

One of the most-used statements for changing the
order of program execution is the IF statement. It
also allows us to test expressions and relations,
and then to act upon the result of the test, This
statement introduces into our programs the ability
to use a substantial amount of logic. Scratch your
work area and enter the following program

*»100 PRINT "ENTER & NUMBER";

»»110 INKPUT HUMBER

»»120 IF NUMBER=0 THENW GOTO ZERO

»»130 PRINT "THE NUMBER IS MOT ZERD"
»>»140 GOTO QUIT

»»150 *ZERO: PRINT "THE NUMEER IS A IZERD"®
>>160 *QUIT; END

Before running this program, notice that line 120
contains an IF statement, It is read "If NUMBER
equals 0 then go to line name ZERO", The esgual sign
does not mean assignment ag in the case of the LET
statement., It expresses a logical relationship.

Wow enter RUM and respond to the prompt with a 0.

ENTER A NUMBERZO

This produces
THE NUMBER IS A ZERO

The IF statement at line 120 tests WUMBER to
gee if it is zero, It i=2 zero, 50 execution is
transferred to line name ZERO. HNow enter RON again
and respond to the prompt with 400.

ENTER A NUMBER?400
Thie producees the result

THE NUMBER IS NOT ZERQO
Since NUMBER contains 400 when the IF is
encountered, i1t is certainly not zero, and the
statement following the THEM, GOTO ZERO, is not

executed. Instead, the next statement in sequence,
line 130, is executed.

ch. 7: Looping, Branching, and Logic a7

The general form of the IF statement is as was
just illustrated. There is a logical expresesion
which is tested, It is followed by the word THEN,
and finally the THEN is followed by a statement.

Many different types of logical expressions may
be used in an IF, A logical expression is nothing
more than a way of dealing with the relationship of
two objects, as in

Iz X greater than 100.07
Is X not egual to ¥7

X, ¥, and 100 are the objects; the relationships
dezired are "greater® and "not equal." In IF
statementa, relaticonships are expressed by
relational eperators., The available operators are

Relational Operator Meaning
= Egual to
> Greater than
< Less than
p Greater than or egqual to
L= Legs than or egual to
<> or # Not egual to

Some examples of their use in the IF are

IF NUMBER>400 THER GOTO TOOBIG

IF VALUE=PI THEN VALUE=VALUE*FPI

IF AGE>65 THEN NO'RETIRE=NHO'RETIRE+]

IF COST<>»0 THEN TOTAL=TOTAL+COST

IF YES THEN GOTO YESRESPONEE

IF SALES>=40000*MONTHS THEN GOTO SETSALES

The second to last example shows that a relationship
is not needed. In this case, if the simple
expression is 1 {true), then control is transferred
to YESRESPONSE. This type of coding in an IF should
probably be avoided for most beginning programmers.
It may occur, however, as the result of a typing
error, if the complete expression is not entered.

In the last example, the logical expression contains
an arithmetic expression, 40000%*MONTHS. This is
perfectly legal, and any valid arithmetic expression
iz allewed. Several of the examples show that the
statement to be executed when the logical portion is
true can be something other than a GOTO.

88 An Introduction to Structured BASIC for the Cromemco C-10

It i= possible to have several statements
following the THEW. The statement

IF AGE=20 THEN SUM=SUM+AGE : COUNT=COUNT+1

illustrates this point, The colen separates
additional statements that are executed when the
logical relationship is true,

The relational expression in an IF can be
compounded with logical or Boolean operators of the
sort: or,; and, not, exclusive or, In a logical
expression, the following Boolean operators are
allowed:

AND OR HOT XOR (exclusive or)

The "and® and “or" are the twoe most widely used,
They are illustrated in the examples

IF AGE>30 AND WEIGHT<=200 THEN TOTWGT=TOTWCT+WEIGHT
IF COST>100.50 OR INVENTORY<=300 THEN GOTO REWORE
IF A=l OR A=Z OR B=3 THEN VALUE=200

IF (C=100 OR B=50) AND M=15% THEN GOTO BADHEALTH

Logical operators separate relational expressions.
. Of course, IF statements can be used with

string wvariables and strings. As an

illustration

100 PRINT "ENTER YOUR FIRST HAME"
110 INPUT MAMES

120 IF MAMES="JIM® THEN GOTO JIM
130 PRINT “"YOUR MAME IS NOT JIM"
140 GOTO QUIT

150 *JIM:PRINT "HELLO, JIM"

160 *QUIT: END

Line 120 compares the string entered into NAMES in
the IHPUT statement. If the name JIMMY is entered,
the comparison between JIMMY and JIM made by the IF
will not result in the strings being considered
egual. In this case, the program would continue to
line 130.

As an aside, a common mistake is to conpare
lowvercase characters with uppercase characters, and
expect an egual comparison. The string "Jimmy"™ is
not the same as "JIMMY",

Another common mistake that is made when using
the IP is in connection with comparing a string
variable with a blank. For example, consider

Ch. 7: Looping, Branching, and Logic 09

IF HAME$=" " THEN GOTO HNONAME

In the IF statement, the first characters in NAMES
up to the final non=null character are compared with
" ". If NAMES contains a single blank character,
the comparison is true; otherwise, it is falge. If
HAMES contains two or more blank characters only,
the result is false. This can pose a small dilemma
in some applications. A way out of the dilemma is
to use NAMES(0,0) in the comparison.

LOAN REPAYMENT PROGRAM EXAMPLE

We have arrived at a point where it is useful to
illustrate some of the concepts that we have learned
with a specific example. Consider the problem of
determining the monthly payment, M, on a loan with a
certain principal, P, to be paid at a given interest
rake, I, if the leocan is to be paid in N years,
Actually, we would like to produce a table showing
the monthly payment for a loan with a variety of
years for repayment and a variety of loan amounts.
Suppose we want to determine the monthly rates for
15 through 25 years and for loans of $30000,

535000, $40000, 545000, and $50000. We will use
6.5% a3 an interest rate, The formula for
calculating M is

M= {1/12) * Q/(0Q-1) * P
where @ iz (1+(I/12))**§ and N is in months.

Recall that ** is the notation for raising a number
to a power.

The program that performs the reguired
computations follews, along with a table of ocutput
values, Prom the table, we see that a lcan of
$30000 for 20 years at an interest rate of 6,.5%
requires monthly payments of $223.67. Let's look at
the program.

Linegs 100 through 130 set the interest rate
variable, INTEREST, and print some title
information., Since our principale range from 30000
to 50000 in steps of 5000, we use a FOR-NEXT loop at
150 to 170 to print the principal values as column
headers. The variable PRINCIPAL is used to hold the
valueg of the principal. Note that the PRINT at 180
causes a carriage return and lipne feed to terminate

100 An Introduction to Structured BASIC for the Cromemeco C-10

the title line produced by line 160. Lines 150 and
200 print additional title information. Lines 210
te 290 contain a loop on the wvariable NOMONTHS.
KOMONTHS begins with 180 (15 years) and goes to 300
{25 years) in steps of 12 (1 year). When the number
of years are needed in the cutput at line 240,
NOMONTHS is divided by 12. Essentially, this lecop
controls the printing of rows. Lines 220 and 230
evaluate the formula for M. The 1200.0 appearing in
these lines is 12*100, where dividing by 100
converts INTEREST to a number between 0.0 and 1.0.
Since the formula is dependent upon the principal
and we have not specified it, we compute M1. M1 is
the portion of the formula for M without the
multiplication by the principal. The loop from
lipes 250 to 270 causes PRINCIPAL to go from 30000
to 50000 in steps of 5000. Inside this loop, we
know the current value of the principal; so, at line
260, PRINCIPAL is multiplied by Ml to give M. M is
printed in this statement. Since the PRINCIFAL loop
iz interior to the NOMONTHS loop, we end line 260
with a semicolon to place all the principal
caleulations for a given NOMONTHS on the same outputb
line, The PRINT on line 280 provides a carriage
return and line feed to begin the next line of the
table.

Monkthly Payment Program

100 INTEREST=6.5
110 PRINT

120 PRINT USINGTINTEREST: ##.8#", INTEREST

130 PRINT® - PRINCIFAL ="

140 PRINT" "y

150 FOR PRIKRCIPAL=30000.0 TO 50000.0 STEP 5000

160 FRINT USING® fdkdpi#d™ PRINCIPAL;

170 NEXT PRINCIPAL

180 PRINT

190 FRINT®YERRS "1

200 PRINT" mm==== me——=— S Esteisn b i
210 FOR MOMONTHS=180 TO 300 STEP 12

220 Q={1l,0+(INTEREST,/1200,0)) **NOMONTHS

2310 M1=(INTEREST/1200.0)*Q/(0Q=1.0)

240 PRINT USING"8#4# ", NOMONTHS/12.0;

250 FOR PEINCIPAL=30000,0 TC 50000,0 STEP 5000

260 PRINT USIKG* A$E4E,.#4" MI*PRINCIPAL;

270 HEXT PRINCIPAL

280 PRINT

290 NEXT ROMONTHS

300 END

ch. 7: Looping, Branching, and Logic 101

Program Output for
Monthly Payments on a Loan

INTEREST: 6.350
= PRIRCIPFAL -
30000 35000 40000 45000 50000
YEARE" =it el gttt SO -
15 261.33 304.89 348.44 3%2.00 435.55
16 251.72 293 .68 335.63 377.58 419.54
17 243.34 283,89 324,45 365.00 405.56
18 235.97 275.30 314,62 353.95 393.28
19 229,46 267.70 305.594 344.1%9 igz.43
20 223,67 260.95 298.23 335.51 372.79
2] 218,51 254.93 291.35 327.76 364.18
22 213 .88 249.53 285.18 320.82 356.47
23 208.72 244.67 279.63 314.58 349.53
24 205,96 240.29 274.62 308.94 343,27
25 202,56 236.32 270.08 303.84 337.60
PROGRAMMING SUGGESTIONS

If you have not had much experience with programming
ot have written only a few small programs from this
book, you might want to pause here and try your hand
at some personal applications using what you have
learned up to this peint. Y¥You might want to read
ahead to the next chapter, but you should take some
to try some of the concepts you have learned in

Lime
this
very

you,

chapter.

You will find that you can build some

ugeful programs with what you have learned.
We'll leave the specific applications up to
but here are some suggestions for iteme you
might want to include in your programs:

1.

Have the proJram interact with the user
by asking his name and small amounts of
information. Try to minimize the
interaction, and keep it simple,

Echo back some of the interactive
information.

Check some of the input data for
consistency. For example, if a year is
entered, is it greater than 19%00 and less
than 20007

Get yvour application to work first and
then think of ways to generalize it. For
example, if you write a program to work
with last year's gas bills, try to

102 An Intreduction to Structured BASIC for the Cromemco C-10

rewrite it to work with any year's gas
bills,

5. Use PRINT USING at least once in your
program to place some results at specific
parts of a line.

6. Do not go with grand ideas at first.
Think small and get something running,
and then add to it.

RrReview Questions and Exercises 103

Review Questions and Exercises

Why does J cycle through the numbers 5, 4, and 3 in the
statement

200 FOR J = 53 TO 3 STEP -1

Why is the following statement not likely to loop with J
beginning at 17

400 FOR J = I TO 10

Why do we prefer to a GOTD with a reference to a linpe
name rather than te a line number? Why is the line name
*STOP invalid?

What happens if K is 4 when the following statement is
encountered?

500 OM K GOTO FIRST,SECOND
What is wrong with the IF statement
500 IF TIME =1 OR 3 OR 5 OR 7 THEN GOTO ODD

Why does the compare in the following IF statement fail
and cause the program to continue with the statement
following the IF?

250 STATE§=" "
260 IF STATES=" ®" THEN GOTC BLANK
270 PRINT STATES

In the following program, why is the number of elements
in the array MYDATA only 11, despite the fact that line
120 has reserved 517

100 PRINT 300.4,297.6

110 GOTO SETUP

120 DIM MYDATA(50)

130 *SETUP:RSLOT=2000.0

140 PRINT “APRIL"

Why does the use of END in the following program line
result in an incorrect statement?

150 IF EMD=45.0 THEN GOTO 400

104

An Introduction to Structured BASIC for the Cromemco €10

When you are repeatedly modifying a program and using
SAVE to save a the latest copy on disk, you must
remember the name of the file each time. A way to avoid
having to remember the name of the file, and to avoid
worrying about mistyping the file name each time is to
embed & few simple statements scmewhere in the program
like

500 LIST 310
510 SAVE "MYPROG.BAS
520 STOP

When vou want to save, just GOTO line 500, Is there any
danger in this technigue of accidentally saving the file
while the program is executing? Should any lines
precede line 500% Does this technigue suggest that you
should be consistent in placing the SAVE code in each
program? Would it be wise to start at 500 in one
program, 900 in another, and 250 in another?

summary

FOR-NEXT

Allows a group of statements to be executed repeatedly
for a specified number of times.

Testing of the loop takes place at the HEXT statement
after the loop variable is incremented by the step
size,

A step value of positive or negative size may be
specified.

Loope may be nested one inside another.

Eacape Key

GOTO

Used to terminate program execution when execution
time is5 excessive,

Allews transfer of program control to a specified
line.

OH-GOTO

Permits transfer of control to one of many lines
depending upon the value of an arithmetic expression.

Label or Line Name

iF

An alternate name for a line number.

Inktroduces logic into programs by permitting the
execution of statements to be dependent upon the
results of a logical expression,

Permits a number of relational cperators [egual,
greater than, etc.) and logical operators ("and",
"or®, etc.) in a leogical expression.

CHAPTER

It is possible to write some fairly complicated
programs with the statements you have learned thus
far. This increases the chances for errors of logic
and other kinds to- enter into the programs. Such
errors will keep the programs from operating
correctly. It is tempting to think that we are so
good at writing programs that there won't be any
problems, The modern Diocgenes would f£ind a search
for the perfect programmer as difficult as the
ancient Diocgenes found his search for the honest

mans.

106 An introduction to Structured BASIC for the Cromemco C-10

The process of uncovering programming errors
and correcting them is called debugging. The errors
uncoevered are often referred te as bugs, Debugging
is not always an easy task, and it may consume a
great deal of the time it takes to complete a program
successfully. In this chapter we will learn of some
BRSIC features that will help us to debug programs.

IMMEDIATE MODE

BASIC has an immediate mode of operation which

permits us to execute statements independently of
any program, Let's see how it works by scratching
your work area and entering the error—-free program

»»100 LET A=HBG64

»>110 LET B=3&

»»120 LET RESULT=A/B

»»130 PRINT "RESULT: *;RESULT
»>140 END

Use RUN to execute the program and to check the
results against the expected output

RESULT: 24

Enter, without a line number
»>PRINT A,B

¥ou should see
864 6

BASIC executes instructions without line numbers
immediately; hence, the name immediate mode, This
gives us the opportunity to use, in this case, the
PRINT statement, to check to see if variables have
the values we expect. We might have meant to set A
to 0.864 instead of 864 and were surprised at the
large result of 24, In a larger program it might
not be so obvious that we set a variable to the
wrong value.

Enter the follewing

»»PRINT A+B,A-B,"MORE RESULTS"

Ch. 8: Debugging 107

This should result in
00 828 MORE RESULTS

You see that we are not restricted to simple PRINT
statement,

In fact, any statement can be used in immediate
mode. Try entering

»»LET A=T72
»»GOTD 120

This produces
RESULT: 2
If vou print &, you will see that it is now 72,

gsince we changed its value in the immediate mode.
The GOTO is used here to recompute AS/B at line 120,

STOPPING AND CONTINUING

Another useful statement for debugging is the STOP
statement., It simply stops the execution of the
program when it is encountered. Add the follewing
line to our program and then enter RUN.

»>105 BTOP
This should produce

ek] (5 Stophuw

Entering

*>PRINT A,B

produces

864]

Thig illustrates an important point. Entering RUN
causes all program numeric variables to be

initialized to 0 and string wvariables to be set to
null strings. ({(An exception, which we will learn

108 An introduction to Structured BASIC for the Cromemco C-10

about in a later chapter, is COMMON variables that
are used in chaining programs.) Since we stopped at
line 105, B has not been assigned the value 36 at
line 110. Hence, B is 0. HNow enkter

»»CON

This produces
RESULT: 24

CON is the continue command, It allows us to
continue the program from the point where it
stopped. This does not apply to the END statement.
We cannot continue a program which has been steopped
by an END. The CON is very valuable in debugging
becauze it may be used in combination with STOP to
continue a stopped program after displaying the
contents of wvariables, The uge of GOTO in immediate
mode permits the same funection as COM, but we must
supply a line number or line label; this is not
always conveniently done while krying to debug.

LISTINC VARIABLES

Another feature of BASIC that is useful in debugging
is the LVAR statement. It finds more use in the
immediate mode than as an actual program statement.
Using the previous example; now enter LVAR after the
entry CON

> > LVAR
This should produce

& LFP B64.0
E LFP 36.0
Result LFF 24.0

LVAR, which stands for "list wvariables," produces a
list of all variables, labels, function names, and
procedure names, (Procedures will be discussed in a
later chapter.) The current value of the wvariable
ig displayed along with ite mode: LFP for leong
floating point; SFP for short fleoating point; and
INT for integer. Labels are identified by LBL:
other notations are used for functions and

Ch. 8: Debugging 109

procedures. The list produced by LVAR may be placed
on a file instead of being displayed at the terminal
by uzing, for example, LVAR "PROGLIST.DBG". The
string following LVAR specifies a file to which the
results are written. The file can be printed for
inspection using CDOS or CROMIX facilities,

While LVAR hae some appeal, it is usually most
useful in debugging programs that are fairly short.
When the number of variables, labels, or names in a
program becomes large, it is very difficult to weed
out the results you really want to look at,

Usually, printing just the wariables you want
displayed to the printer or terminal with PRINT is
sufficient, LWVAR is certainly useful for
determining what wvariables exist in your program and
what arithmetic modes (short, long, integer) are
used by variables to store data. We will have more
to say on mode in a later chapter.

STATEMENT TRACING

Another pair of statements, TRACE and NTRACE, are
useful in debugging programe. They can be used
egually well as program statements or in immediate
mode. Usually, immediate mode is more suited for
their use.

TRACE simply turns on the trace operation of
BASIC, which lists each line number of each
statement as it is executed, This can be very
ugeful in tracing logic flow, Scratch the work area
and enter

»>»100 LET TOTAL=0

>»110 FOR NUMBEE=85 TO B7

>>120 TOTAL=TOTAL+HUMEBER

»»130 MNEXT HNUMEEER

>>140 PRINT "SUM OF 85,86,87: ";TOTAL
»»150 END

How enter TRACE and RUM as in

>>TRACE
>>BUN

110 An introduction to Structured BASIC for the Cromemco C-10
This causes the program cutput

100>

<110>

<120%

<130

£110%

120>

£130>

110>

S120

130>

£140>

SUM OF 85,86,87 IS5: 258
150>

**‘15“ Endtt#

Each line number executed is shown between < and >.
The FOR-NEXT loop is executed three times and the
gequence <110> <120> <130> is seen three times in
the output, The trace may be turned off by entering
NTRACE, for no trace, as illustrated by

»»NTRACE
>>RUN

This produces

SUM OF 85,86,87 IS: 258
lsﬂ End

Thiz is the normal output produced by BASIC; the
trace is not operational because we entered HTRACE.

USING LIST AND ENTERTO CLEAN UP PROGRAMS

Although they are not specifically provided in BASIC
for debugging purposes, two commands, LIST and
ENTER, may sometimes help us overcome some
idiesynerasies of our programs caused by BASIC.
LIST is the same LIST discussed earlier. Before
stating how these commands are of help, let's zee
how they operate.

If we follow LIST with a string literal or
string variable, the program in our work area will
be listed to the file that is specified by the

ch. 8: Debugging 111

string. & file created in this manner and form
cannot be loaded with LOAD, It can be brought back
into the work area only with ENTER. SCR is usually
used to clear the work area before using ENTER. A
typical seguence of these commands, assuming there
is something in our work area to begin with, is

LIST "MYPROG.LIS"
ECR
ENTER "MYPROG.LIS"

ENTER takes each line found in MYPROG.LIS that is
created by the preceding LIST, and places it at the
correct line number in the work area.

The guestion now is: What did LIST and ENTER
Jjust do for ws? Actually, they did quite a bit.
Using ENTER is nearly egquivalent to having entered
each line by hand directly into the work area; this
has the effect of clearing away any loose ends in
the program. The ENTER command causes BASIC to
reanalyze each statement as it is entered, and in so
doing, it sometimes clears up troublesome statements
and programs.

How do statements and programs become
troublesome? Usually, statements become troublesome
when we modify them a great deal, The edit
features, covered in an earlier chapter,
occasionally introduce problems into statements.
ENTER often clears them up. Programs become
troublesome sometimes because we have modified them
greatly and then saved them (using SAVE) repeatedly
after modifying and executing them., Each time SAVE
is wused it saves everything: program statements,
deleted line numbers, current variables and labels,
and variables and labels previously deleted from our
program. The use of LIST and ENTER as described
sweeps away all of the excess debris from the work
area and places the program statements in a fresh
environment. Sometimes this can do wonders for
gtraightening out balky and erratic-behawving
programs. However, don't get too excited about this
as a cure-all for program problems. The wvast
majority of bugs found in our programs will stem
from other sources, which are usually of our own
making, and these bugs will require some of the
previously discussed features of BASIC to solve.

If vou are interested in seeing how some debris
accumulates in the work area, try the following
exercise. Scratch your work area, Enter a LET at

112 An introduction to Structured BASIC for the Cromemco C-10

line 100, for example, LET A=1, Use RUN, An END
statement is not needed in the work area, Use the
LVAR command, Fepeat this operation several times,
changing the variable ueed in the LET. You will
notice that each time LVAR is used, it lists all of
the wvariables previously used. Use the LIST, SCR,
and ENTER sequence discussed previously to clear up
the one-line program work area and enter LVAR again.
Are you left with just one variable when you use
LVAR? You should be.

Before continuing, let us comment on what would
happen if an ENTER is used without first scratching
the work area. If statement lines already exist in
the work area, they are not changed unless they
correspond to lines in the program named in the
ENTER. Later we will say more about this feature as
a way of inserting or merging program sSegments into
other programs, WNote that the primary difference
between LOAD and ENTER is that LOAD clears the work
area before loading a program, and ENTER does not
clear the work area.

USING LIST TO FIND A LINE NAME

In previous chapters, we mentioned that LIST is
useful for listing program statements between two
line numbers, It is also very useful for locating a
line name, Por example, suppose we have a line name
of DO'TAXES in our program, and we want to locate
the actual line where this line name oceurs, To deo
this, we need only enter

LIST DO'TAXES

Try it out on a program that you have writtenm that
contains some line names,

Review Questions and Exercises 1%

Review Questions and Exercises

What is the difference between CON and RUN?
When are CON and GOTO alike?

How do you turn off a trace?

Have & friend write a small workable program of
5 to 10 lines, Have him introduce a bug into
the program, Debug the program using TRACE,
COM, and LVAR. Are these commands helpful?
Does inserting a PRINT at wvarious points to
print program variable valvues help? Is STOF a
useful statement to insert somewhere in the
program to help debug it?

If vou write 8 program which has the last
statement on line 4980, does adding the
following statement help you to locate the last
statement in wyour program when it is
renumbered?

4930 *LAST:REM

What happens when you enter LIST LAST after
renumbering your program?

summary

Immediate Mode

BASIC statements may be executed immediately
by entering a statement without a line
number .

Statements executed in immediate mode do not
become part of the program.

Initialization

CON

RUN resets numeric values to zero and string
variables to null strings,

GOTO, in immediate mode, or CON do not
re~initialize variables.

Continue command for continuing programs
stopped by a STOP.

An intreduction to Structured BASIC for the Cromemco C-10 114

LVAR
Provides a way of listing the attributes and
116 An Introduction to Structured BASIC for the Cromemca C-10

Twelve data values are represented in the three DATA
statements in lines 100 to 130. Line 140 contains a
DIM statement which tells BASIC that a variable with
the name of COST may contain up to 13 values, These
values may be referenced by the notation COST(0),
COST(1l), COST(2); ...s COST(12), and thev represent
a table, We do not really need COST(0) and prefer
to use COST(l) as the storage reference for the
first data item. The numbers enclosed in
parentheses following COST are called subscripts,
Subscripts are used to refer to a specific element
in the table. Lines 150 to 170 read each of the 12
data items intoe COST(1l) to COST(12), using J as an
index to subscript COST. Lines 190 to 210 loop
through COST, using J as an index to subscript COST;
each time COST(J) is added to the total, kept in
TOTAL.

Although there are other ways of programming
the above problem without using a table, the program
does illustrate a way to use tabular structures,

The DIM statement serves as a way of telling
BASIC how many elements to reserve in storage for a
table or array. Any element may be used simply by
referencing its subscript. In cur example program,
COST(J) references the j=th element in the COST
array. Array elements may be used in any statement
where a simple variable can be used. For example

PRINT COST(4),COST(3)
LET TAXES (J)=TAXES (J)+1
IF SALES(3)>»200 THEN GOTQ LARGE

are all legal statements. COST, TAXES, and SALES
are arrays,

When reserving space with the DIM statement, or
dimension statement, we must be careful not teo
overstate our needs. It is very easy to exceed the
storage that is available to us by using too large a
dimension. The number following the variable name
in the DIM is referred to as the dimension of the
array variable., Storage is shared by both program
statements and variables, and we must reach a proper
share for each, BASIC will tell us; with an error
message issued at execution, when we do not have
enough space for our program., We will address the
problem of storage space in a later chapter.

Ch. 9: Arrays and GOSUBS 17

dimension MYDATA for 21 wvalues, ANGLES for 301, and
COST for 49. BASIC uses what is called a zero
origin for arrays, so we always get subscript zero,
Hence; the numbers seen in a DIM statement must
always be considered in light of this. If a
dimension is not declared, then a wvariable with a
subscript is automatically assumed to have a
dimension of 10, which thereby reserves 11 elements.
Incidentally, the reference COST, for example, is
not the same as COST(0). That is, a variable and an
array with the same name do not share the same
storage locations., It is possible to have an arrcay
and a simple variable with the same name, although
it is not good practice to do so.

It is worth noting that DIM is an executable
statement., If it is not executed, it has no effect.
If, for example, line 100 is neot executed, then the
arrays MYDATA, ANGLES, and COST all have the default
dimension of 10.

TWO-DIMENSIONAL TABLES

Arraye such as the ones described above are called
one—dimensional arrays, They essentially allow us
to store a4 single column or row of data.
Two=-dimensional tabular data may be represented as
well. For example, the table

Age Weight
30 160
43 175
28 182
25 130

iz of this type. It contains four rows and two
columns, each corresponding to a dimension. Here is
a8 program that reads this array data and prints it,
Scratch your work area and enter it,

»»100 DATA 30,160

»»110 DATA 43,175

»>120 DATA 28,182

»>»130 DATA 25,190

»>»140 DIM AGEWGT(3,1)

»>»150 FOR J=0 TO 3

>»160 FOR E=0 TQO 1

3»170 READ AGEWGT(J,K)

>»180 PRINT USING "ROW # COLUMN # ®,J,Kr
*>190 PRINT USING "VALUE:##+# " AGEWGT (J,E) 1

18 An introduction to Structural BASIC for the Cromemeo C-10

»>»200 MEXT E
»»210 PRINT
»»220 MEXT J
»»230 END

The data for the table are contained in the DATA
statements. Line 140 declares the variable AGEWGT
as a two-dimensional array with four rows and two
columns. The subscripts for rows are 0 to 3, and
for columns 0 to 1, It takes two FOR-WEXT loops to
loop over two dimensions. The inner loop, from
lines 160 to 200, contrels the loop variable E,
which is used to refer to coelumn numbers 0 and 1.
The cuter loop, from lines 150 to 220, controls the
loop variable J, which iz used to refer to the row
numbers 0, 1, 2, and 3. The data are read into the
array RAGEWGT at line 170, which is inside both
loops, Line 180, inside both loops, prints AGEWGT
and the row and column subscript used. The
semicolon at the end of the PRINT USING statement
prevents a carriage return from occurring. When a
row of data has been read and printed on a line, the
innermost loop, which controls the row variable K,
is completed, Line 210 is then executed, causing a
carriage return to occur. Hence, any output that
follows is begun on the next line.

Now enter RUN and you should get

ROW 0 COLUMN O WALUE: 30
ROW 1 COLUMN O VALUE: 43
ROW 2 COLUMN O VALUE: 28
ROW 3 COLUMN 0 VALUE: 25

ROW 0 COLUMN 1 WALUE:1G0
ROW 1 COLUMN I VALUE:173
ROW 2 COLUMN 1 VALUE:182
ROW 3 COLUMN 1 VALUE:1%0

Statements similar to the loop and print
contrnl statements in the program are freguently
found in programs that deal with two-dimensional
tables., Thug it is worthwhile to study the program
carefully to see what is happening.

Some peocple prefer to use 1 instead of 0 as the
subscript in the first row or column of a table,
This is easily accemplished by replacing lines with

140 DIM AGEWGT(4,2)
150 FOR J=1 TO 4
160 FOR E=1 TO 2

The new DIM reserves a 5 x 3 table. We do
not use row 0 or column 0, For many users, the

convenience of using subscript numbers that are

Ch. @ Arrays and Gosubs 119

familiar to them may offset the loss in storage that
occurs because the entire table is not being used.

You might try modifying the program and
experimenting with it. Keep a copy around by saving
it with SAVE, For example, modify the PRINT USING
to print just the value, without the row and column
information, Try adding a line that prints the
titles AGE and WEIGHT above each column.

HIGHER-DIMENSIONAL TABLES AND MAT

BASIC allows three-dimensional tables to be
referenced as well, A DIM which reserves space for
the three-dimensional table GEOGRAFPH with 20 rows,
15 columns, and 5 planes is

DIM GEOGHAPH(19,14.,4)

Higher=dimensional tablee are not allowed.

Sometimes it is necessary to initialize all of
the elements of an array or matrix to zero or some
constant. This may be accomplished easily by the
use of the MAT statement. For example

MAT COSTS=0

gets all of the elements of the array COSTS to zero.
This is the only operation that is permitted on
arraye. For the mathematicians, there are no matrix
inversion or arithmetic matrix operations in
Structured BASIC.

TABLES OF STRING DATA

There are times when we want to store string
information in tables. BASIC does not allow us to
do this in the same fashion as for numeric data.
However, it is still possible to store string data
in a tabular form,

For example, suppose we need to use the first three
letters of each month as labels for a report that we
want to produce, and for convenience we would like
to keep these labels in a single string variable.
Here is a sample program that prints the meonths
across a print line

120 An Introduction to Structured BASIC for the Cromemeo €-10

100 DATA "JAN","FEB","MAR","APR","MAY","JUN"
110 DATA "JUL","AUG",“SEB","OCT",*NOV","DEC*
120 DIM MONTHS (35)

130 FOR J=1 TO 12

140 READ MONTHS((J-1)%*3,J%3~1)

150 NEXT J

160 FOR J=1 TO 12

170 PRINT USING "### “,MONTHS$((J=1)*%3,J*3-1);
180 NEXT J

190 PRINT

200 END

Since each of the 12 months is represented by three
characters, we reserve 36 positions in the string
variable MONTHS at line 120. We will place all the
labels in this variable. Lines 130 te 150 read each
of the 12 labels into the next 3 consecutive
positions of MONTHS beginning with positiom 0. For
example, when J is 1, "JAN" is placed in
MONTHS((1-1)*3,1*3-1) or MONTHS(0D,2). When J is 2,
"FEB" is placed in MONTHS({(2-1)*3,2%3-1} or
MONTH$(3,5) . The method of packing strings into
substrings of a string variable is typical of the
way related string data are kept in a single string
variable,

This program gives us a way of generally
accessing tabular data that is stored in a eingle
string wvariable, When we are given the number of
the month whose label is to be obtained, the
substring netation, {((J=1)*3,J*%3-1), which is used
in lines 140 and 170, defines the substring
positions needed. This idea is easily extended to
other situations where the substrings are of a
different length than 3.

HISTOGCRAM EXAMPLE

One of the simpler and more useful programs that can
be written in BASIC is a program to produce a
histogram. The program listing is shown next along
with its output. In this program, we produce a
histogram for numbers between 0 and 65. Any number
that is 65 of greater is simply counted and the
count is printed. The idea presented here can be
easily be expanded upon to produce histograms for
other ranges of numbers,

To produce a histogram, we first must decide
how we will collect the numbers. Each number

Ch. 9: Arrays and GOSUBS 121

between 0.0 and 65.0 is tabulated as belenging to an
interval of length 5.0. For example, all numbers
between 0.0 and 5.0 are counted in thisz interval,
This is referred to as the first interval. The
mumbers from 5,0 te 10,0 are in the second interval,
We will tabulate the number of wvalues in each
interval.

The mechanism for deciding which interval is
uged for a particular number is guite easy. We
simply divide the number to be tabulated by 5.0 and
find the resulting integer portion with the INT
function., One i added to this result to give us an
interval number, For example, consider the number
4,0, The integer portion of (4.0/5.0) is 0. Add
one, The number belongs in the first interval. We
use an array called URN to count the number of
numbers in each interval, URN(l) refers to interwval
1., UORN{0) is not used,

With these comments in mind, lock at the
histegram program. The number of data points to be
tabulated is read as NUMBER at line 160. The value
40 is read into WUMBER, Lines 170 through 220 form
a loop which reads and tabulates each of the 40
numbers found in DATA statements in lines 120 to
150. VALUE contains the number to be tabulated.
Line 190 computes the interval number according to
the mechanism discussed previcusly. If VALUE is 65
or greater, then line 200 uses interval 14 teo
tabulate numbers 65 and above. Lines 230 to 300
print the bars for each of the 13 intervals., The
statements from 260 to 2B0 print as many asterisks
on a line as indicated by the contents of URN for
each interval. Line 250 makes sure that an asterisk
ie not accidentally output for intervals whose count
is 0.

Histogram Program

100 DIM URM{14)

110 DATA 40

120 DlalT-p-I- 44;13.-22r15;li"r3$r29;-‘nr55r29
130 DATA 18,80,22,17,44,18,14,80,5,43
140 DATA 15,71,92,74,15,24,18,39,55,17
150 DATA 7,91,18,24,47,49,77,61,15,81
160 READ WUMBER

170 FOR J=1 TQ NUMBER

180 READ VALUE

190 INTERVAL=INT ({VALUE/5) +1

200 IF VALUE>=65 THEN INTERVAL=14

210 URM({INTERVAL) =URM({INTERVAL) +1

122 An introduction to Structured BASIC for the Cromemco C-10

220 MEXT J

230 FOR E=1 TQ 13

240 PRINT USING"#d#.% TO ddk. 4 :",5.0% (K=1) ,5%K;
250 IF URM(K}=0 THEW GOTO EMPTY

260 FOR M=1 TO URN(K)

270 PRINT"#*";

280 NEXT M

2400 "EMPTY : PRINT

300 KEXT E

R PRINT : PRINT"KO. VALUES AT 65 OR BEYOMD: “;URN(14)
320 END

Qutput from Histogram Program

0.0 TO 5.0 :

5.0 ™0 10.0 %W
10.0 ™0 15.0 z2%
15.0 TO 20,0 sekkeswdwdknnw
20.0 TO 25.0 ghe#*
25.0 TO 30.0 %%
30.0 TO 35.0 3
35.0 TO 40,0 %%
40.0 TO 45,0 z***x
45,0 TO 50.0 z*=*
50,0 TO 55.0 3
85.0 ™D 60.0 ¥
60.0 TO 65.0 1*

WO, VALUES AT 65 OR BEYQOND: 39
A PLOT PROGRAM

An interesting application inveolves plotting data in
a scatter diagram fashion, Given a data point
[3,4), we plot a point three units along an x-axis
[horizontal axis) and four units along a y-axis
(vertical axis})., & typical example is a plot of
weight versus height.

Next, we will discuss a fairly simple plot
program which assumes that our ¥ and y data fall in
the range between 0.0 and 50.0. It is relatively
easy to change the program to plot values over
different ranges,

To produce a plot in the simplest fashion,
assume that we have a grid of sguares which will
either be blank or contain a symbol that represents
a plot point. Initially, the grid is filled with
blanks., This grid is 3% squares wide and 20 squares

Ch. 9: Arrays and GOSUBS 123

high, Assuming that we want to plot 50 units on the
horizontal axis, then each aquare width represents
50/35 or 1.42 units, Suppose the point we wish to
plot has the coordinates (10,22). To find the
distance along this axis for an x value of 10, we
would use 15*(35/50) or 10.5. That is, 15 would be
located in the sguare 10,5. For convenience, we
would use 11, Por the ¥ value of 22, ¥ would be
located at sguare (20/501*22 or B.8, and we choose 9
for convenience. Our point at (15,22) would be
placed at grid point (11,9).

The grid we would like to use is our terminal
screen or printer. However, instead of plotting
each point at the terminal, it is easier to put the
point in a string in our program, which represents
the grid, and then print the string when all the
points are placed in it. The program that follows
does just this by putting a "+" in the string
variable GRIDS to represent a plot point. Although
GRIDS containe a single one-dimensional string of
characters, we can treat it as though it contains a
row-and-column, two-dimensional string as mentioned
earlier in this chapter. Since we tend to think of
output in terme of lines and positicne within a
line, we can think of GRID$ in that way too. The
first 35 elements contain the first line of the
plot, and the second 35 elements contain the second
line, etc., The first position in a line is the
first element in a block of 35 elements, With this
background in mind, let's loock at the program more
closely,

Line 100 reserves 701 elements for GRIDS. The
700 reserves space for a 35*20 grid. The program
doeg not use GRIDS(0,0). In lines 110 through 130,
GRIDS is set to blanks. The DATA statement at 140
indicates that there are 10 pairs of = and ¥
coordinates given in the next DATA statements,

(5,3) is the first pair. Line 170 reads the number
of pairs into COUNT.

Lines 180 through 240 are the heart of the
program, A palr is read inte X and ¥. Lines 200
and 210 compute the X position and ¥ line number
that the point should occupy. At 220, P, the
location of the point in GRIDS is computed.

Lines 250 through 360 place borders on the plot
and print the data found in GRIDS. Note that the
computation of P is slightly different in line 250
than in line 220, The reason for the difference is
that what is congidered line 1 in GRIDS is really
line 20 on the ocutput screen,

124

100
110
120
130
140
150
160
170
180
180
200
210
220
230
240
250
260
270
280
250
300
310
3120
330
340
350

Plot Program

An Introduction to Structured BASIC for the Cromemco C-10

Plot Program

DIM GRIDS(700)
FOR J=1 TO 700
GRIDG (J,J)=" "
NEXT J
DATA 10
DATA 5,3,18,25,7,4,9,11,22,30
DATA 6,8,45,45,30,40,40,47,38,44
READ COUNT
FOR J=1 T0 COUNT
READ X.,¥
XPOS=INT(35%X/50,0)+1
YLINE=INT(20*¥/50.0)+1
P=15% (YLINE-1) +XPOS
GRIDS (F,P)="+"

HEXT J

PRINT" X"
FOR J=1 TO 20
PRINT" |"r

FOR E=1 TO 34
P=35* (20-J) +K
PRINT GRIDS (P,P):
NEXT K

PRINT

HEXT J

0 0 N B

END

L S L s e Sy s — o}

xl

Ch, 5: Arrays and GOSUBS 125
AVOIDING STATEMENT REPETITION—COSUB

Quite often in programming we find ocurselves
rewriting and repeating similar pieces of code or
statements, This activity tends to waste our time
and computer program storage. In order to overcome
thie difficulty, BASIC provides a way of defining
code that is easily accessible from anywhere in a
program and can be easily used over and over again.
Such statements comprise what is known as a GOSUB,
or GOSUB subroutine, and this code may be accessed
with the GOSUB statement. Here is a simple example
program which illustrates the concept

100 PRINT "QUARTERLY ELECTRICITY COST FOE 1%81"

110 GOSUB HEADER

120 PRINT USING “###.#4 “,350,25,175.6,140.44,470.58
130 REM OQUTFUT GAS TITLE

140 PRINT "QUARTERLY GAS COSTS FOR 1981"

150 GOSUBE HEADER

160 PRINT USING "###.#% ",120.22,75.05,80.44,200.50
170 GOTO QUIT

180 "HEADER: PRINT * Q1 Q2 Q3 Q4"
190 PRINT T mm——— mm——
200 RETURN

210 *QUIT:END

This program prints the guarterly electricity and
gas costs of a household in 1981, It is desirable
to print a label above each cost printed that
indicates the guarter to which it applies., To
simplify the task of repeating the statement used to
output the guarter labels, this task has been placed
in a subroutine at lines 180 to 200. When the
labels are needed, the GOSUE statement iz used to go
to the subroutine, execute the statements in the
subreoutine, and return to the next statement after
the GOSUB statement. FPor example, when line 110 is
executed, BASIC goes to the line name HEADER and
continues executing there. Since HEADER corresponds
te line 180, execution continues at 180. When line
200 is reached, the RETURN statement tells BASIC to
return to the statement following the GOSUB, at line
120. The GOSUB is used again at line 150 to print
the labels.

A GOSUBR subroutine must be terminated by
executing a RETURN statement. If a subroutine is
executed that does not eventually execute a RETURN,
BASIC will issue an error message and terminate your

£

126 An Introduction to Structured BASIC for the Cromemco €10

program, The opposite is true also. If a RETURN is
executed without you having previously used a GOSUB
statement, an error will occur.

In the previous program, if line 170 did not
transfer control past the subroutine, the subroutine
would accidentally be executed a third time. During
the third execution, an error message would be
generated at line 200 because the subroutine was not
activated by a GOSUB statement,

In our previcus illustration of a GOSUB, the
subroutine was very small, and comprised of only a
few lines. There are no limitations on the size of
a GOSUB; some may be several hundred lines., We can
pass different data into and cut of a subroutine, as
in the following example

100 LET INVALUE=10

110 GOSUBR DEPTH

120 PRINT "SPEED: ";OUTVALUE*3.0

130 LET INVALUE=30

140 GOSUB DEPTH

150 PRINT "SPEED: ";0UTVALUE*3.0

160 GOTO QUIT

170 *DEPTH:IF INVALUE=10 THEN QUTVALUE=44.7
180 IF INVALUE<»10 THEN OUTVALUE=20.50
190 RETURN

200 *=QUIT:END

INVALUE is set before executing the DEPTH
subroutine, The subroutine checks the value of
INVALUE and sets OUTVALUE as reguired. The main
poertion of the program uses QUTVALUE to print its
results, This use of a GOSUB illustrates that
parameters may be passed back and forth between the
program using the GOSUB and the subroutine invoked
by the GOSUB. When using a GOSUB in this manner, we
must be wvery careful about changing variables inside
the subrowutine that are also used elsewhere in the
program for other purposes. Such mistakes are guite
often made.

GOSUB subroutines are very useful in many
applicationsg and should be considered when vou find
yourself repeating similar statements in your
program. Here is a program that uses a subroutine
called NSORT that sorts a one-dimensional array of
numeric data into ascending order, i.e,, from low to
high wvalues.

Ch. 9: Arrays and GOSUBS 127

100 DATA 35,45,22,15,18,20,30,10,60,20,5,4,1,3,2
110 DIM NDATA(15)

120 FOR J=1 TO 15

130 READ NDATA (J)

140 KEXT J

150 Ul=15

160 GOSUB NSORT

170 FOR J=1 TD 15

180 PRINT USING"##% ", NDATA(J):
150 HEXT J

200 FRINT

210 sTOP

500 REM S0ORTE HNUMERIC ONE-DIMEMSIONAL ARRAYS:NUMSORT
5140 REM INPUT ARRAY IS NDATA. NDATA(D) IS NOT USED
520 REM Ul IS THE MUMBER OF ELEMENTSE IN NDATA

530 REM Ul, Wl, W2, W3, W4 AND W ARE LOCAL VARIABLES
540 *NSORT : Wl=l

550 *LESST1 : Wl=Wl+Wl

560 Wisil=1

570 IF Wl>Ul THEN GOTO NEXIT

580 GOTO LESSTI

590 ®*NEXIT : W4=INT(W4/2)

600 *DOWHIL : IF Wid=0 THEM GOTO NQUIT

610 W3=01=-w4d

620 FOR W2=1 TO W3
630 FOR W6=l TO W2 STEP W4

640 W1m2=W6+1

50 IF HDATA (W1+W4)>=NDATA(W1) THEN GOTO BRANCH
660 W=NDATA (W1)

670 NDATA (W1) =NDATA (W1 +W4)

680 NDATA (W1+W4) =W

690 NEXT W6

700 *BRANCH : NEXT W2
710 WA=INT(W4/2)

720 GOTO DOWHIL

730 *NQUIT : RETURN

740 END

Lines 100 te 210 contain the program which uses the
MSORT subroutine found in lines 500 ko 740, Fifteen
data values are read from the DATA statement into
the array NDATA. After NSORT is used at line 160,
the sorted values are found in NDATA and output as

1 2 3 4 51015 18 20 20 22 30 35 45 60

We will not explain the inner workings of
WSORT, It is based on an algorithm by D. L. Shell,

128 An Introduction to Structured BASIC for the Cromemco C-10

"Highspeed Sorting Procedures," COMMUMICATIONS OF
THE ACM, Volume 2, No. 7 (1959), pp. 30-32., If vou
use it in your own programming, note that Ul is set
to the number of walues in the array and that
HDATA(0) is not used.

Figure 9.1 Smooth sailing now.

Review Questions and Exercises 129

Review Questions and Exercises

If DIM ABC(20) iz found in a program, why does
the ABC array have 21 elements?

Are COST and COST(0) the same variables? Why
not?

Why does DIM SALES(10,10) reserve 121 elements?
Why is DIM MONTHSS(12,.5) invalid?

Even though BASIC doesn't allow string arrays,
is it possible to use string variables to store
array=like data?

What statement must be used to exit from a
subroutine?

Is it a good idea to put a STOP statement
before a subroutine? Is a GOTO placed before a
subroukine that branches around the subroutine
ugeful? what happens if you accidentally enter
a subroutine without using the GOSUB statement?

Summary

Array or Matrix Variable

DIM

A wariable which is used to contain data
represented as a table.

One—, two- or three-dimensional arrays are
allowed.

An element of an array variable is referenced
by using the subscripts corresponding to the
element.

Arrays may be defined only for numeric data,

Used to reserve storage for an array.
Always reserves space for zero-th entry,
That ie, a zero origin ie assumed for all
dimensions.,

All one—dimensional arrays have a default
dimension of eleven elements.

Sets all the elements of a matrix or array to
a constant.

130 An introduction to Structured BASIC for the Cromemeo C-10

GOSUB subroutine
A set of program statements that may be
executed repeatedly from other parts of a

program,
GOSURB
Transfers control to the GOSUB subroutine
named in the statement.
RETURHN

Causes a GOSUB subroutine to return to the
statement following the previously executed
GOSUE statement.

CHAPTER 1 o
Odds and Ends

This chapter marks a point which is approximately
two-thirds of the way through our learning about
Btructured BASIC and programming. The statements
that we have learned already will allow us to write
some very sophisticated and complex programs.
Before extending our knowledge of BASIC further, we
Wwill try to bring together some odds and ends that
will increase our ability to solve application
problems with BASIC. These items, when added to
what we have previously learned, represent a good
fundamental knowledge of BASIC.

Figure 10,1 Not guite this odd.

SETTING SYSTEM PARAMETERS

BASIC allows us to have some control over system

parameter settings. For example, when we use LIST

to liet lines in the work area, the statement and
151

152 An Introduction to Structured BASIC For the Cromemco C-10

variable names are capitalized and the remaining
portion of the names are in lowercase. We may
change the corresponding system parameter so that
everything is capitalized. System parameters are
identified by numbers, Parameter 6 is associated
with the uppercase control just mentioned. The
parameter may be set to normal capitalization, or to
complete capitalization. The statement which does
this for us is SET. An example of its use is

150 SET 6,1

This example tells BASIC to set parameter 6 to a
value of 1, which indicates complete capitalization.
A value of 0 is used to set normal capitalization.

Here iz a list of the more commonly used
parameters which may meaningfully be set.

Para-
meter Description and Values Examples Meaning

] Controls page width of SET 0,132 132 columns
output statements. SET 0,-1 Infinite-=-no
Default value is 80. carriage
HNegative value inhibits return
carriage return and feed,

1 Tabbing field width uced SET 1,20 20 cols/f14
by the PRINT to separate SBT 1,-1 Na tabs
fields. & Lield width of between flds
20 is normal,

Megative value of zefo
inhibits tabbing,.

] Positions current print SET 4,70 Hove next
colump. peint ko 70

5 Controls how long an INPUT SET 5,0 Indefinite
statement will wait for wait
input. Normally this SET 5,20 Wait 2 sec
feature is off, i.e., set
ke 0. Any value turns it
on. Units are 10 per second.

& Conkrols capitalization of SET 6,1 All caps
names when a LIST is used, S5BT 6,0 Pirst cap
A 0 denotes first character
of & name capitalization.

A 1 denotes all characters
are capitalized upon output.

T Numeric constants are SET 7.0 Ho spaces
displayed =o that units of EET 7.1 1 space

1000 are evident, btwn l000s

Ch. 10: odds and Ends 13%

Para-

mater Description and Values Examples Meaning

8 When using LIST, indentation SET 8,5 Indent 7
of such staktements as the SET 8,-1 Indent 1
FOR-KEXT is controlled by SET 8,-2 Indent 0
this parameter. HNormally
it is SET to 0 indicating
an indentation of 2
positions. A minus 2
provides no indentation,
Values range from =2 te 5.
] Whether gquotation marks SET 9,0 Ignore "

input in response to an SET 9,1 Obtain "
IMPUT statement are to be
ignored is controlled by
this parameter. Normally,
it is Bet to 0 to ignore
them, HAccept if Bset to 1,

10 Set partition number, Also EET 10,6 Set to
gsee USE in Chapter 14. partition &

Parameter 0 i=s often used in applications that wish

to cutput more than B0 characters per line.

Applications such as pletting, that do not want
carriage returns inserted when a right margin is

encountered,

setting,

BEySstem paramecers,

parameters that may meaningfully be set,
parameters may be set by SET.
be discuseed shortly.

use this parameter with a negative

This list does not contain the complete set of
It represents only the list of
All system

Other parameters will

OBTAINING SYSTEM PARAMETERS

In addition to parameters which may be set and
controlled by us, wvalues of these parameters may be

read by a program,

There are only a few that it

makes sense to try and obtain during the execution

of a program.

A particularly important one is

parameter 3, which contains the error number of the
last error produced during execution of a program.
When BASIC detects an execution error, it always
places a unigue error number for the error in this

parameter.,

error numbers may be found in Appendix C,
of any parameter may be examined by use of the 5YS

All errors detected by BABIC and their

The value

134 An Introduction to Structured BASIC for the Cromemco C-10

functien, For example, to obtain the walue of
parameter 3 we might use

ERRORNO=5¥5(3}
The number enclosed in parentheses is the parameter

number. Here is a list of some of the more
important parameters which may be examined with 8¥S.

Parameter Desé%iptian Example
2 Character last AS=8Y5(2)
printed
3 Error number of ERNO=8YS(3)

last error detected
during program

execution
4 Current print column PCOL=EYS(4)
5 Time remaining for ITIME=SYS5(5)
INPUT
10 Current partition ERRENCO=EY5(10)

When using SY5(2), the result is a string containing
one character, Here is an example using SYS(2)

LASTS=8Y5 (2)

Again, all system parameters may be examined
with 8¥S; however, there are very few applications
where it makes sensze to examine the uppercase
listing parameter with 5YS({6). SYB(3) is by far the
most fregquently used S5¥YS function,

Geveral other parameters which have meaning
with the keyed seguential access method (ESAM)
facilities of BASIC may be set and read. See the
32K Structured BASIC Instruction Manual for a
discussion of this topic.

RESPONDING TO EXECUTION ERRORS

As we hawve just seen in our discussion of system
parameters, BASIC reacts to errors caused during the
execution of a program by putting an error number in
system parameter 3. It would be useful in some
circumstances if the program could continue to
operate and determine if the error is sericus enough
to stop. BASIC provides a statement for this
purpose: ON ERROR, It has three forms which are
illustrated here

OM ERROR STOP
ON ERROR GOTO ERRORCHE
ON ERROR GOSUB LOOKERROR

In the first case, the statement tells BASIC to stop
whenever an error occurs and issue a message, This
is the uswal reaction by BASIC to an error., In the
second case, BASIC is told to go to the statement at
a line name of ERRORCHK and continue there. The
final case is like the second one, but a GOSUB with
the name LOOKERROR is used. Return from the GOSUB
is made to the point following the statement that
caused the error.

Mot all errors can be controlled by use of the
ON ERROR statement. Certain errors are considered
fatal and cause BASIC to stop, regardless of any
ON ERROR setting. An example of a fatal error is a
trangfer to a lipne number that does not exist, Only
non-fatal errors react to the ON ERROR statement.
An example of & non—-fatal error ig an arithmetic
overflow or an arithmetic expression that produces a
number which is larger than allowed by BASIC,
Hon—-fatal errors are any errors which have an error
number of 12B or greater.

Let's look at an example of how ON ERROR is
used, Scratch your work area and enter

55100 LET BAD=4/ANUMBER
>>110 PRINT "BAD: "3BAD

55120 ON ERROR GOSUB RECOVER

»»130 LET NOTGOOD=22/ANUMBER

>>140 PRINT "NOTGOOD: ";NOTGOOD

>>150 GOTO QUIT

>>160 *RECOVER:PRINT "YOU JUST GOOPED"
>>170 RETURN

»>180 *QUIT:END

Both lines 100 and 130 contain invalid computations,
They contain expressions which attempt to divide a
number by 0. ANUMBER is 0 since it was not
initialized. Enter RUN and you should get as output

Error 250 at line 100 —- Overflow/underflow

Since we have not yet told BASIC teo do anything
special about errors, it proceeds normally and stops
with an error message. Now enter the continue
command, CON, and this will produce

BAD: 0

YOU JUST GOOFED
HOTGOOD: 0
%]BO*** End

136 An introduction to Structured BASIC for the Cromemco C-10

Line 110 printed the first line of output, We see
that the variable BAD was assigned a value of 0.

The next line, 120, tells BASIC to go to the GOSUR
gubroutine RECOVER when a non-fatal error occurs,
Line 130 contains a non-fatal error, division by 0;
BASIC jumps to RECOVER and prints the second line of
sutput. The RETURM takes us back to line 140, which
is the line following the error, The wvalue of
NOTGOOD is printed at line 140 and the program
terminates successfully,

The process of treating errors as was just
described is often referred to as trapping errors,
The ON ERROR is used to set or not set the trap. It
may not be necessary to have a trap in effect for
all parts of a program. It is turned off by using
ON ERROR STOP,

There is nothing to prevent us from doing
whatever we want when we have trapped an error. We
might issue our error message as in the example or
ignore the message. Other possibilities are to
examine system parameter 3 with S¥S5(3) and react to
the error type or to correct an invalid variable
value and continue processing. The last possibility
iz aided by the RETRY statement.

Appendix C contains a list of all fatal and
non-fatal error messages used by BASIC, Take a look
at the appendix to get an idea of the types of
errors for which BASIC issues messgages. HKote in
parkticular the non-fatal errors 200 throuwgh 208, and
250. Error message numbers 128 through 142 pertain
to files, and they will be useful later when we
learn more about file usage.

You might try using ON ERROR to recover from
error 204 by constructing a simple program
containing INPUT. You should use ON ERROR to trap
and respond to the error. ISsue your Own message,
and direct the user to input the correct number of
items. Try to input too many data items to INPUT as
a test of your program.

RECOVERING FROM ERRORS WITH A GOSUB

RETRY is used in place of a RETURN in a GODSUR when
we want to transfer back to the statement causing
the error. Presumably we will be able to correct
the cause of the error in the GOSUB subroutine
before attempting the RETRY, or we will find
ourselves in an endless loop between the statement

Ch. 10: Odds and Ends 157

containing the error and the subroutine. In the
previcus example, we might put statements in the
subroutine that ask for the wvalue of ANUMBER so that
a retry would be successful; also, we would replace
RETURN with RETRY,

CONTROLLING THE ESCAPE KEY

There is another type of ON statement which is
ugeful in applications where we want the user of a
program to signal the program in some way by hitting
the escape key. It is the ON ESC statement. Like
ON ERROR, it comes in three wvarieties as seen in the
following examples

ON ESC STOP
OM ES5C GOTO EXAMINE
ON ESC GOSUB HEWMODE

If the first example is in effect, hitting the
escape key will cause BASIC to stop at whatever line
it is executing. The other two examples cause BASIC
to transfer to a line or GOSUB subroutine. When the
program transfers, it may, for example, ask the user
for scme specific item,

The normal reaction of BASIC to hitting the
ezcape key may be disabled by use of the NOESC
statement, When NOESC is in effect, BASIC ignores
the hitting of the escape key, This may be of
interest in applications which do not stop when the
uger hite the escape key. The normal response may
be restored by use of the ESC statement. These two
statements have the simple forms

ROESC
E5C

The HOESC statement is usually not used when a
program is being developed or tested. The reason is
that errors may exist that cause the program to go
into an endless leop and the escape key could not
then be used to stop the program. The reset switch
on your computer would be used ko stop everything in
order to restart, Some care should be exercised in
using NOESC,

138 An introduction to structured BASIC for the Cromemco C-10
PROTECTING PROGRAM LINES

There are some programs or portions of programs
which a program developer may find waluable and not
want to disclose to other users of the program.
BASIC contains a command, WOLIST, which permits you
selectively to designate lines which no one can list
with LIST. Like LIST itself, NOLIST has several
forms which are illustrated in the following
examples

NOLIST

ROLIST 9000
MOLIST 4500,6000
NOLIST 500,

The first example makez it imposcible ko list any
program lines. Example 2 makes 1t impossible to
list line 9000, and example 3 makes it

impossible to list lines 4500 through G000.

Finally, the last example prevents 500 to the end of
the program from being listed. Caution should be
observed in the use of this command., There is no
way to restore the ability to list lines which have
been designated as uvnlistable with NOLIST, EKeep a
gseparate program file containing completely listable
lines, if you use MOLIST,

PROTECTING INPUT DATA

Some applications reguire that a user enter a
password or identification that allows him access to
the applicatien. In order to prevent someone else
from seeing a private code when it is entered, it is
possible to have BASIC not echo each character as it
is entered. When you enter a character at your
terminal or console, it is BASIC that displays each
character back to the terminal so that you can see
what you have entered, The NOECHD statement turns
off the facility which echos characters to the
terminal, ECHO restores the facility te the normal
mode, Here is an example program that shows how
EC?G and NOECHO work. Scratch vour work area and
enter

Ch. 10: Odds and Ends 139

>»100 NOECHO

>»110 PRINT "ENTER YOUR SECRET CODE"

»>»120 INPUT CODE

»»130 ECHO

>»140 PRINT "ENTER YOUR HKAME"

»>150 INPUT HAMES

»»160 PRINT "THANK YOU, ":MAMES;

»»170 PRINT ", YOUR SECRET CODE IS ";CODE

»»180 ERD

Enter RUN, Responding with 500 as the secret code
where shown the arrow, and the name "WILLIAM" as
in the followling seguence produces

ENTER YOUER SECRET CODE
? «—— enter 500
ENTER YOUR HAME

TWILLIAM

THANE YOU, WILLIAM, YOUR SECRET CODE IS 500

Our response to the first guestion mark that is
produced by the INPUT at line 120 is not shown
because NOECHO is in effect., The response, WILLIAM,
to the next INPUT is echoed because line 130 turns
the echo facility to its normal echo response.

SUBSTRINGS REVISITED

There are several different notational forms of
referencing a substring. The method explained in an
earlier chapter is the simplest form to understand
and to use, Use both the beginning and ending
position in a substring reference, We recommend
using this approach whenever possible. There are
times, however, when you will stumble into using
other forms, and you may want to know what is
happening, We will attempt to explain and simplify
what is a very difficult set of notational and
interpretational form differences for referencing
substrings. With a little patience, you can
understand and use the notation effectively in your
programs,

Probably the best place to start is with the
notion of a string variable's length and dimension.
By dimension, we mean the current dimension of the

140 An introduction to Structured BASIC for the Cromemco C-10

string variable as established by a DIM statement.
If a DIM statement was not used, the DIM of a string
variable is 10. The length of a string variable is
itz length as determined by the Structured BASIC LEN
function. The length is determined by counting
characters beginning with the first position (0) and
continuing until trailing null characters are
encountered. A null character in the middle of a
string variable is not a trailing null character.
How, let's examine a common reference form.

As we are about to discover, a simple reference
to a string variable, such as NAME$, is actually a
substring reference, even though the notation seems
to suggest that it references the entire string in
the variable. BASIC interprets such a form as
referencing the first position of the variable
ipogition 0) to some other final position in the
variable. The final position is the length -1
{determined by LEN) or the dimension of the
variable, (You don't have to apply LEN: BASIC does
this for you as it tries to interpret the string
variable reference,) The method used to find the
last position is determined by whether the wvariable
iz uged in an input or output statement., INPUT,
READ, and PRINT are examples of such statements., 1In
a later chapter, we will find PUT and GET as further
examples, The LET statement is both am input and
cutput statement. A wvariable on the left of the
assignment is considered input, and one on the right
is considered output. Here are two rules BASIC uses
to determine the final position in the simple string
variable reference

Rules for Final Position
in a
Simple S5tring vVariable Reference

Input: dim(stvars)
Qutput: LEN(stwvar$)-1

The dim indicates that the current DIM is used by
BASIC to determine the final position. As examples,
consider the two statements

Ch. 10: Odds and Ends 141

INPUT NAMES
PRINT CITYS

according to our rules, any data input into HAMES in
the INPUT statement is interpreted as a reference to
position 0 through the last position of the string,
10, assuming that WAMES was not used in a DIM.
Obgerving the rule concerning ocutput, the PRINT
statement reference to CITYS is interpreted as a
reference to positions 0 through the last nen-null
character in CITY¥S or the position determined by
LEN(HAMES)-1.

With this gimple form behind us, all other
forms add refinements to it., There are really only
two other notational forms for referencing a
substring

STVARS (el)
STVARS (el ,el)

The symbols el and e2 are just arithmetic
expressions, In their siwplest form, el and e2 are
just numbers.

When el is used, it refers to the first
position of the substring, Por example, the & in
HAMES(6) indicates that the substring begins in
position & of NAMES, When e2 iz omitted, the last
position is determined by one of the two rules
stated for the simple reference, That is, e2 is
determined from a consideration of the string
variable's length (23 determined by LEN) and its
DIM. When e2 is used, its meaning is determined by
whether 22 is positive or negative, If el is
positive, it is the final pesition in the string.
However, if €2 is negative, it is the number of
pesitions, beginning with el, in the substring. As
examples

HAMES (4,6) references positicons 4 through 6
NAMES (8,-3) references positioms B through 10

Although it is tempting to use the negative e2 form,
this is an unusual feature that is not commonly
found in most languages, and should probably be
avoided.

142 An Introduction to Structured BASIC for the Cromemco C-10

What happens if we make a mistake in specifying
either el or e2? What if el is negative? BASIC
simply ignores both el and e2., For example,

MAMES (-2,5) is treated as HAMES, but with one
extremely important exception. If the form like
MAMES (el) is used and el is negative, the last
position is always considered to be determined by
the dimension regardless of whether the variable is
used as input or output. This is very important in
file statements because, a8 we will learn later, we
often need a simple way of making sure all
charactersa in a string variable are read and
written.

What if e2 is posikive, but refers to a
position preceding el, as in NAMES(4,2)7 What
happens if a reference such as WAMES(&6,-3000) is
given, where MAMES has a dimension of 10¢. 1In both
cases, since e is not meaningful, BASIC determines
the final position as it did for the simple
reference NAMES; nevertheless, the first position is
taken as el, What happens if el or e2 are positive
and are larger than the dimension of the string
variable? wWhen you try to execute a statement with
such a reference, BASIC will give you an error.

In summary, BASIC has a way of interpreting all
valid notational substring references; positional
references beyond the dimension of the string
variable are illegal, Positional references before
position 0 are taken as references to position 0.
When an explicit reference is not made to the last
position of a substring, BASIC determines the
position from whether the statement in which the
reference made is an input or an output statement.

NUMBERS AND STORAGE—THE LONG AND SHORT OF IT

If we become sophisticated enough in cur programming
needs, eventually we will become concerned about how
much of our program is taken up by numeric constants
and variables. After all, these items must be kept
some place in the memory of the computer so that we
can use them. They occupy memory, ©r storage, as we
will call it for now, Por most simple programs of a
hundred or s¢ lines, storage of these items will not
be of much concern and we can ignore it. However,
we will eventually be forced to deal with storage
considerations, 2o let's learn some of the
preliminaries, You may wish to read the following

Ch. 10: Odds and Ends 143

description lightly until you have mastered more or
BASIC and have begun writing larger programs.

To start with, floating point numbers are
broken into two forms: short and long floating
point numhers. In the short form, only 6
significant digits are retained, In the long form,
14 digits are retained. This is the default
floating point form. Short fleating numbers require
less storage than long floating numbers. In fact, a
short floating number requires exactly one half the
storage of a long floating number. (The fact that
6 is not one half of 14 may bother you. Two
additional digits for the exponent are stored with
the numbers. Hence, the numbers reguire B and
16 digits for storage which is a ratio of 1
to 2.} Integer numbers regquire less storage than
short fleating numbers. Fleating numbers must keep
some information about the size, in powers of 10, of
the number they represent, whereas integer numbers
do not. This additional information requires extra
storage over an integer number.

OBSERVING THE EFFECT OF BASIC ON NUMBERS

The representation of a number, or constant, in a
program is important to how it is stored internally
in BASIC. BASIC attempts to alleviate this
consideration for the programmer by storing numbers
in their most compact form when possible.

As a brief illustration of how BASIC tries to
use the minimum storage for data, consider the
following program which was entered exactly as shown

100 LET A=4000
110 LET B=45000
120 LET C=12.34
130 PRINT A,B
140 END

Applying LIST to this program produces

100 Let A=4000
110 Let B=45000.0
120 Let C=12.,34
130 Print A,B,C
140 End

We see that something has changed about the 45000 in
line 110, It now contains a decimal point.

144 An introduction to Structured BASIC for the Cromemco C-10

However, 4000 and 12.34 in the other two LET
statements have not changed. BASIC keeps any number
with a decimal as a floating number, It represents
any integer number that is not greater than 10000 in
magnitude as an integer. Hence, the listing.
indicateg that 45000 ie represented as a floating
number; 4000 is an integer, so no decimal peint is
added. Since 12.34 has a decimal point, it is
represented as a floating number, Both 12.34 and
45000 are considered short floating numbers because
they do not centain more than 6 significant digits.

VARIABLE STORAGE

BASIC extends the concept of floating and integer
numbers to variables, BASIC makes it possible to
specify that a wvariable must keep data in a certain
representation. For example, we might state that a
variable should store only integer numbers, thereby
regquiring less space. This ability gives us control
over storage size. The amount of storage taken by a
variable is measured in bytes., A byte is a
fundamental unit of data storage, The amount of
storage occupied by variables of the three types is

Type Storage
Long Float 8 bytes
Short Float 4 bytes
Integer 2 bytes

BASIC has several statements whieh allow us to
controel the representation and storage of data.
Although we will postpone the discussion of
specifyving variables as representing long, short, or
integer storage to a later chapter, let's emphasize
something that still may not be clear. First, the
variable A in our example program in the preceding
section occupies storage for a leong floating number,
Numeric variables default to long floating storage.
Secondly, in our example program, 4000 will be kept
internally in an area of steorage for constants as an
integer., When 4000 is placed into A during the
execution of line 100, the variable A still occupies
the space for a long floating number despite the
fact that an integer constant is placed in it. In
fact, the integer is first converted from its
integer representation to its floating form when it

Ch. 10: Odds and Ends 145

is stored in A, The point we wish to emphasize is
that constante occupy storage according to a set of
rules concerning how the constants are written in
the program, and variables occupy storage according
to a different set of rules. The rules which apply
to variables will be discussed in a later chapter.
The BASIC mode statements also influence the rules
for both constants and variables, and these
statements will be discussed later.

MISCELLANEOUS SYSTEM FACILITIES

For BASIC users who are familiar with assembly
language and the inher workings of the computer,
BASIC provides several statements and functions
which may be of interest, Here is a list with a
brief description of their purpose.

Function Description
ADR kFeturns the address of a variable.
INP Reads data from an input port.
PEEK Reads the contents of a memory
location.
TYFE Determines whether an arithmetiec

expression is short £loat, long
float, or integer.

USSR Executes an assembly language
subroutine.
Statement Description
ouT Writes to an output port
POEE Stores into a memory location

These functicons and statements are described in more
detail in the Structured BASIC Instruction Manual.
KSaM numeric sorting conversion functions are
described in more detail in the 32K Structured BASIC
Manual. Some examples of their use follow

MEMLOC=PEEE {2 FAB4%)

POKE #C004%,128
DUMMY=USE (%C100% ,2,1,18)
oUT 1,34

CHARHEK=INP(3)
ADDRESS'"OF " Z=ADR(Z)
VALTYPE=TYPE (32.0/2)
VALTYPE=TYEE (ARC)

146 An Introduction to Structured BASIC for the Cromemco C-10

PEEE reads the contents of the memory location at
the hexadecimal number %FAB4% into MEMLOC. POKE
places the wvalue 128 (decimal) into memory location
&CO005%. USSR executes an assembly language program
at location %C100%, and passes it the parameters I,
1, and 1B. OUT sends the wvalue 34 to port 1, and
INP reads a character from port 3. ADR returns a
two-byte integer corresponding to the address of the
variable %, TYPE is discussed in more detail in the
next paragraph,

The TYPE funcktion is particularly useful in
determining the mode of an expression or simple
variable, It returns the following values

Value Expression Type

1 Integer
2 Short Fleating
4 Long Floating

Try some of the following uses of TYPE to see what
you get

LET ZIP=TYFE(3)

LET ZIP=TYPE{5/2)
LET ZIP=TY¥PE(22.0/4)
LET ZIP=TYFE{2*A)
LET ZIP=TYPE{44,444)
LET ZIP=TYPE{A+B/3}

A FEW MORE ODDS AND ENDS

As indicated in Chapter 7, & colon (:} ¢an be used
with the IF statement to place multiple statements
after the IF that are executed when the logical
expregsion in the IF is true, The colon has a
gimilar use elsewhere in BASIC. Multiple statements
may be placed on any line if they are separated by a
colon. For example

150 PRINT : PRINT : PRINT "MARCH DATA"

In this example, the three PRINT statements are
executed from left to right when line 150 is
encountered, Although it is appealing to use
several statements on a single line, we suggest that
you minimize such use. Your programs will generally

Ch. 10: Odds and Ends 147

be easier to read and to debug if you use one
statement per line.

It is possible to concatenate strings with the
+ operator in the LET statement. By concatenate, we
mean the ability te combine several strings into a
larger string. For example

250 LET CITY5="BOSTON"
260 LET STATES="MASS."
270 LET TITLE$=CITYS5+", "+5TATES

Assuming TITLES has & dimension great encugh to hold
the result, TITLES will contain the concatenation of
CITYS, ", ", and STATES

BOSTON, MASS.
¥You cannot use the concatenation ocperation to
concatenate a variable to itself because an
incorrect result will be cobtained, The following
will result in "ABC" being placed in A% regardless
of the the previcus contents of AS

400 AS=AS+"ABC"
The correct result can be obtained by using

400 BS=AS+"ABCH
410 A5=BS

148 An introduction to Structured BASIC for the Cromemco C-10

Review Questions and Exercises

z i What does SET 0,-1 do? What does S5Y¥S5(3) refer
to? If 8¥S(3) returns a value of 10, what
errer has ocecurred according te the
descriptions of errors given in the appendix?

2. If you have not used ON ERROR, what is the ON
ERROR response given by BASICY

3. How does a fatal error differ from a non-fatal
error? What is the range of error numbers for
a fatal errog?

4. If MAMES contains "ABCDEFG"™, why does HAMES (4)
reference "BPFG"?

- How many significant digits are retained by
BASIC for short and long variables? How many
bytes of storage do such variables reguire?
Does an integer variable use only one byte of
storage?

6. What wvalue does TYPE(3,4442) return? wWhat does

it mean?
Summary
SET
Statement which sets system parameters that
control page width, field tabbing, etc.
5¥s

Function which returns the current settings
of system parameters,
Error Kumbers
Numbers corresponding to BASIC error
mMesSages .
S¥s5({3) produces the error number of the last
error detected during program execution.
Fatal Error
An error which causes BASIC to stop
execution,
Non-Fatal Error
An error which causes BASIC to stop executing
unless an OM ERROR statement is in effect
which specifies otherwise,

summary 149

0N ERROR
Allowe transfer to program statements which

examine error causes and react as necessary.

ERETRY
A Bpecial return from a GOSUB that returns to
a statement which was in error when the GOSUB
was activated,

ON ESC

Allows transfer to program statements which
react to the activation of the escape key.
NOESC-ESC
Disable and restore the normal response of
BASIC to the activation of the escape key.
HOLIST
Command which permits lines to be selectively
specified as unlistable,
HOECHO=ECHO
Digable and restore the normal response of
BRSIC to echo characters back to the terminal
entered in response to an INPUT statement,
ADR, INP, PEEK, TYPFE
Special functions for detailed svstem work.
ouT, POKE
Special statements for detailed system work,
Numbers are regarded as integer, short
flvating, long fleating, or hexadecimal by
BASIC and each type occcupies a different
amount of storage.
Short, Long, and Integer Variable Storage
Humeric variables may have storage attributes
80 that they occupy different amounts of
storage.
Subscripts
String variables may be subscripted in a
variety of ways. The safest approach is to
use ABCS (beginpos,endpos) .

CHAPTER 1 1

Until now, our concerns about storage have been with
storage in the memory of the computer where our
programs reside during execution, vVariables and
program statements occupy this storage when a
program is executed in the work area. There is
another type of storage which lies outside of
memory. It is the sterage that is available on your
floppy disk or hard disk, AsS we know, when we save
or leoad programs, we are actually uwutilizing disk
storage where the program files reside. We may also
place data files on our disk storage. The topic of
data files will be addressed in this chapter.

FILE STRUCTURES AND ACCESSING FILES

There are three types of data file structures
allowed in BASIC: segquential, random access, and
keved segquential access, File structures of the
last type are manipulated by the extensive Keyed
sequential access method (KSAM) statements available
only with 32K Structured BASIC. KSAM will not be
discussed in this book.

Seguential data files are files which are
written and read in a segquential manner. Data are
placed on the file in a fixed sequential order and
is retrieved in the same order. Random data files
are files which are not written in any fixed
seguential order. Data are read from them in an
order that is dependent on the application and on

150

Ch. 11: Flies 151

the way the data are written. Date are placed on the
file in some specific order, which is usually
application-dependent,; and are retrieved in a way
that is meaningful to the application.

When we use a sequential file structure, we
might write the numbers 7.4, 3,2, and 5.3
seguenktially to a file. In order to retrieve them,
we would have to read 7.4 first, 3.2 second, and 5.3
third, i.e., seguentially, With a random file, we
might structure it so that every group of five
numbers is related in some way. For example, each
group of numbers might be the test scores for
individuals in five different classes. It may be
necessary for our application to examine the fifth
number of every group. In the example, this
corresponds to the scores of all students in the
fifth class. 1In another application, a different
combination of the five might be examined. Assume
that the fifth item is of interest here., If we
access the file as a random structure, we would read
and examine.the fifth, tenth, and fifteenth numbers
on the file without reading any of the others. It
may be advantageous to access the fifth number in
each group of five in some order which is
application-dependent, We might, for example, read
the tenth, fortieth, fifth, and then the ninetieth
number, and so on through the file, The access may
appear to be random; hence, the name. Random access
structures are used in applications in which the
data involved have some characteristic that permits
us to compute guickly ites location in a Eile.
Sequential structures are uszed in the bulk of
application work that reguires files,

Deppite our emphasis on the order in which data
are read and retrieved from the two file structures,
it is certainly poseible to use a random structure
as if it were seguential and to use a seguential
gtructure as if it were random., This will become
clearer later when we learn more about how data is
read and written. Uswally we think of a file as
either representing a random or a seguential
structure and operate on it accordingly. Let us
begin our discussion of the file statements
avallable in BASIC by first finding out how to
create a file on disk.

152 An Introduction to Structured BASIC for the Cromemco C-10

WORKING WITH FILES

In order to place data in a file, the file must have
a name and it must exist on disk. We may create a
directory entry by using the CREATE statement as in

CREATE "MYDATA.DAT"

This statement simply creates a directory entcy with
the name MYDATA and extension DAT on the current
disk, in CDOS, or current directory, in CROMIX. To
create this same file on the C disk we would use

CREATE "C:MYDATA.DAT"

There is nothing magical about DAT as an extension;
We Can use pretty much what we want., Of course,
extensions such as COM, BAK, and REL have specific
meanings to the operating system, and we should
avoid using such extensions., The name of the file
can be contained im a string variable, as in

CREATE FILEMAMES

where FILENAMES contains, say, "MYDATA.DAT". Once a
file is created, there is no need to create it
againy if you attempt to do so, BASIC will issue an
EILOL WMesSs5age.

Wow let's do some work with the file, In order
to use it, we mast tell BASIC that we wish to use
it. This is accomplished with the OPEN statement.
For example

OPEN M 4\"MYDATA.DAT"

telle BASIC that MYDATA.DAT is to be used and that
it is to be asscciated with the file number 4. The
choice of 4 is arbitrary, but the numbers 1 through
8 must be used. The file number, rather than the
file name, is used to reference the file in read and
write statements for the file. The file number may
be an expression or a variable, and the file name
may be a string variable so we might use

OPENMFNOYFHAMES

where FNO hae been assigned 4 and FNAMES has been
assigned the string "MYDATA.DAT®.

Mote very carefully that we use the backward
glash to surround the file number in the OPEN and

Ch. 11: Flles 153

not the forward slash that is used for divieion.
The backward slash is used in this capacity in all
file statements that we will encounter,

When we have finished reading or writing data
to a file, the CLOSE statement is used to prevent
further access to the file. Examples of the CLOSE
are

CLOSEN5Y,
CLOSEWFHNUMY,

Only a file number iz used, A file name is not
needed,

When a file is closed by CLOSE, the file cannot
be read or written without causing BASIC to generate
AN error megsage. A file must be opened before it
can be accessed (read or written),

Before continuing, let us mention a few
miscellaneous things about OPEN and CLOSE. Only 8
files can be open at any one time in BASIC. All
files that are open may be closed simultaneously by
using CLOSE without a file number reference, or by
using CLOSE for file 0, as in

CLOSE
CLOSENOY,

It is probably worth your while to review zome
of the error messages that are associated with
filegs, Take a look at the appendix on error
messages and note that there are a number of file
errors that can be trapped by the ON ERROR
statement. See error numbers 128 through 142,
Looking for error number 134 is a very useful
activity in applications in which the user of an
application is to supply a file name. If the file
does not exist, perhaps the user mistyvped the name: an
OPEN will generate this error. By responding to it
with an ON ERROR, you can ask the user to specify an
existing file.

READING AND WRITING SEQUENTIAL FILE STRUCTURES

Scratch your work area and enter the following
program

»»100 CREATE "MYDATA,DAT"
>»110 OPENM4M\"MYDATA.DAT"

154 An introduction to Structured BASIC for the Cromemco C-10

2120 PUT,4%200.22,55.6,77.4
23130 CLOSEN4Y

»»140 OPENY4\"MYDATA.DAT"
»»150 GET“4“A,B

»3»160 GET.4\C

»»170 PRINT A,B,C

>>180 CLOSEN4Y

»»190 END

Enter RUN and you should see the output
200,22 55.6 774

{If you have trouble executing the program and need
to execute it a second time after correcting your
ELTOCS, you may be stopped at line 100 with a
message, The message would result from trying to
create MYDATA.DAT a second time. Just delete line
100 and use EUN again. You may have to enter CLOSE
in immediate mode to make sure the file is closed
before attempting to open it again.)

Let's see what the program is deing. You
should be familiar with lines 100 and 110. The PUT
statement on line 120 writes data on file nuomber 4.
The data consist of three numberg: 200.22, 55.6,
and 77.4., Line 130 containg a CLOSE statement,
which tells BARSIC that no more data are to be placed
on the file. We then open the file again at line
140. Thie causes BASIC to reposition itself to the
beginning of the file. The GET statement at line
150 reads the first two data items on the file into
4 and B, The next GET on line 160 reads the third
data item into C. The result of getting or reading
the file is seen in the output of the PRINT. The
final CLOSE at line 180 closes the file to further
use.

Incidentally, if we had not closed and reopened
our f£ile, by omitting lines 130 and 140, BASIC would
have been positioned after the third item written
when we attempted to get A and B. Because there is
nothing after the third item, data will be read
erronecusly. In some instances BASIC will generate
an error message. This will be discussed later in
connection with detecting an end of file,

It is not necessary to close and reopen a file
to cause BASIC to reset iteelf at the beginning of a
file, Use of the following statement is sufficient

FUTN4,0,0%

Ch. 11: Flles 155

The 4 is the file number and should be replaced by
whatever file number corresponds to the file wyou
wish to position at its beginning. The two zeroes
have a meaning which will be discussed later in this
chapter.

PUT AND CET PRECAUTIONS

In our example program, we have introduced two new
statements: GET and PUT, We will discuss them more
fully next.

A GET simply reads the next data items on a
file into the wvariables listed in the GET statement.
The case where we read past any legitimate data that
we have placed on the file will be discussed later
in this chapter in connection with testing for an
end of file condition.

A PUT simply writes data items to a file in the
order they are listed in the PUT, Items contained
in the list may be arithmetic expressions, numbers,
strings, and wvariables. Here are some examples

PUOTY5%20.5,X,Y,2
PUTY 3425 .5+15.2/6 ,AVALUE , "TUCSON"
PUTY 2% NAMES ; "BOSTON" 44 .5

The file number reference in a PUT or GET may
be a variable or arithmektic expression.

For reasons of consistency in reading and
writing files in BASIC, it is advisable not to use
arithmetic expreseions or numbere in the list of a
PUT. It is best to use variables to write data to
fileg, Assign numbers or expressions to a variable,
and write the variable to the file. If you do place
a number in the list of a PUT, make Bure it is a
decimal number (use a decimal point). In our
example programs, we have taken care to write
decimal numbers, and not integers, to files. The
reason for these cautions will become apparent later
as you acguire a firm understanding of how numbers
and variables are stored internally to BASIC, The
idea behind these precavtions is to assure that the
type of number (integer, f£loat) written is the same
as the type of variable used to read them.

When reading strings, it ie important to read
exactly the number of characters in the string into

156 An Introduction to Structured BASIC for the Cromemco C-10

a string variable, <Consider the following simple
program

100 DIM ALPHAS(5)

110 OPEN\2'"MYDATA.DAT®
120 PUT\2\"ABCD",44.5
130 CLOSEY2Y

140 OPEN\2\"MYDATA.DAT"
150 GET\2“ALPHAS A

160 PRINT ALPHAS A

170 CLOSE

180 END

This program writes "ABCD" and 44,5 to the file and
then reads the items into ALPHAS and A, It will not
work satisfactorily, The string "ABCD" is written
as four characters. When we attempt to read it into
ALPHAS at line 150, BASIC sees that ALPHAS i=
defined as & (=5+1) characters and tries to read six
characters from the file., It will succeed by taking
some of the non-character representation of 44.5,
which follows it on the file, The fifth and sixth
positions of ALPUAS will contain garbage
(undecipherable or unusable characters), When A is
read, part of it is already in ALPHA$ and the result
placed in A will also be garbage. We can remedy
this situwation by using DIK ALPHAS(3) in line 100.
That is, the dimension of the string variable is
made to match the length of the string on the file.
Another way of getting around the difficulty with
reading and writing string data is discussed in the
next section.

One other precautioen should be mentiened. When
data are written to a file using PUT, they are placed on
the file in an internal computer format which can be
read by the GET. It is not posesible to list these
files with CDOS or CROMIX commands such as the CDOS
TYPE command, The CDOS DUMP utility program can be
vged to list files. See the CDOS Instruction Manual
provided by Cromemco for details on how to use DUMP,
DUMP may not be accessed from BASIC,

USING SIMPLE STRING VARIABLES WITH PUT AND GET

A particularly important observation was made in
Chapter 10 about how BASIC treats an unsubscripted
(simple) string wvariable differently in input and
output situations. Upon output, the length (LEN) of

Ch. 11: Flles 157

the variable is considered, but, upon input, the
dimension is considered, This can result in a
rather unusuval result. For example, consider the
progcam

100 DIM BETA%(3)

110 OPENMZ\"MYDATA.DAT"
120 LET BETAS$="XYZ"

130 PUTY 2Z\BETAS

140 CLOSEN2%,

150 OPENM2%"MYDATA,DAT"™
160 GET\2\BETAS

170 CLOSE

180 END

Line 130 places the three-character string "X¥2Z" on the
file because BETAS is used as output and the length
of BETAS is 2. At line 160, the GET causes six
characters to be placed in BETAS because BETAS is
used asz input and it has a dimension of 5. The three
extra characters read from the file will probably
not make sense when they are printed.

To make sure that we always GET and PUT the
same number of characters with a string variable, we
can use the beginning and ending substring reference
approach that was recommended earlier in connection
with using substring references. In some cases, it
becomes awkward to remember orf to specify the ending
position, An easy way to keep our reference to
gsimple string variable consistent is to uge a single
negative subscript. In lines 130 and 160, we should
replace BETAS with BETAS(-1). As we discuesed in
Chapter 10, this always causes BASIC to input and
output as many characters as are associated with the
dimension of the variable, The PUT at line 130
would place six characters on the file: "XYE"
followed by three null characters. The GET at line 1l&0
would read all six characters.

OPENING FILES

Let's return tc the OPEM statement for awhile.
There are two parameters other than the file number
that the OPEN statement uses., The first is the
record size for the file., It is specified in the
following examples

OPEN“ 4,256 "MYDATA ,DAT"
OPENG ;51 2\"AFILE.DAT"

158 An Introduction to Structured BASIC for the Cromemco C-10

The 256 and 512 in the respective OPEN statements
tell BASTC the record size, Por most sequential
file applications, this is not an important number,
If a number is not given, BASIC assumes 128, The
importance of this parameter will become clearer
when we consider random access structures later in
this chapter. For seguential access, 128 is a
reasonable choice,

The second of the two parameters tells BASIC
whether you plan to read, write, or both read and
write on the £ile during its use in the program, If
neither is specified, then both read and write are
assumed. This was the case in our previous
examples. It is not often that applications both
want to read and write into a file, Usvally we
either read or write, This is true in most cases
where we are dealing with a seguentially structured
file, Examples of how this parameter is used in the
OFPEN are

OPEN“\5,128,1%"SOMEFILE,OLD"
OPEN“4,100,2\"MASTER. SAL"
OPENMT ;256 , 3\ "OLDMAST . INV"

The third item between the backward slashes is a
code which designates the file mode

Mode Meaning
1 Read only
2 Write only
3 Both read and write {(default)

It might be tempting to always use mode 3, read
and write, but there is a reason to use the other
modes, If you are using the read mode and
accidentally try to write on the file, BASIC will
issue a message and stop. The opposite is true if
you are using the write mode. Thus, these modes can
be used to protect your files from being
inadvertently damaged.

Humeric variables and arithmetic expressions
may be used to define the file number and parameters
uged in the OPEN. The following are walid forms of
the OPEN

OPENMINFILE'NO,RECSIZE, RDONLYY MASTERS
OFEN“6,S5IZE,DUALY "PAYROLL.MAR"
OPENMFILENO42,256 ,WRONLYY NEWMASTS

Ch. 11: Flles 159

A fundamental concept that is necessary to
understand when working with random access
structures is that of a record. BASIC views a file
as consisting of a series of records. A record is a
group of related items that occupy a fixed number of
positions, For example, a record might consist of
the name, address, and age of an individual or a
record may consist of only one item, Each item in a
record may be thought of as occupying a field of
fixed length within the record.

BASIC essentially is unconcerned with the
concept of a record when processing seguential
structures. It does not need to know where a record
begins or how long it is. We get to the beginning
of the each successive record by reading a fixed
number of items. In a random access structure, we
may want to go directly to the tenth record without
reading anything in between. If BASIC knows the
exact length of a record, it can position itself in
the file without reading anything., It simply skips
as many positions as needed from the beginning of
the file, enough positions to cover nine times the
record length in our example.

How do we compute the length of a record? A
record's length is determined by the tvpe of data we
write into it., Assuming we only write records with
variables or strings (as advised earlier), we can
use the following guide

Item Type Length
Long float 8

Short float 4
Integer 2
String Skring length

If our record consists of six long floating point
fialds and one string of 12 characters, the record
length is 60. This is the record size value we
should use to cpen the file in the OPEN statement,
In the terminology often used in BASIC, we would say
the record has a length of 60 bytes. A byte is a
fundamental unit of storage. A single alphabetic
character occupies 1 byte of storage,

In working with random access structures, BASIC
allows us to position a read or write operation at

160 An Introduction to Structured BASIC for the Cromemco C-10

the beginning of a record or at any position within
the record. In the next section, we will see how
this is accomplished.

ACCESSINC RANDOM FILE STRUCTURES

Our preceding discussion and program examples were
concerned with using file structures in a seguential
fashion, Repeated use of PUT or GET advanced us
seguentially through a file., By the intreoduction of
a few parameters that were not previocusly discussed,
we can proceed through a file in whatever order best
suits our application,

AS an example, sBuppose we have a record that
contains three long floating point items, i.e., & record
length of 24 (or 24 bytes), The following program
writes three records of data and then reads the data of
the second record and prints it at the terminal.
Scratch vour work area and enter ik,

»>>CREATE "RANDOMF,DAT"

»>»>100 OPENM1,24%"RANDOMF,DAT"
»>110 PUTA1,1%44.4,55.5,66.6
»»120 PUTAN1,O0MN11.1,22.2,33.3
»»130 PUTMN1,2M\77.7,88.8,99.9
3>>140 GET\1,1%A,B,C

»»150 PRINT A,B,C

>>160 CLOSEMIY,

»»170 END

We use the immediate mode to create the file
RANDOMF.DAT. Line 100 opens the file as file number

1, and defines each record &8s containing 24 bytes.

This record size is sufficient to accommodate three long
floating numbers, Since a file mode parameter is

not given in the OPEN, the default is both read and
write mode. ©On lines 110 through 130, thres data items
are put into records 1, 0, and 2. HNote that the
records are not written in the seguential order 0,

1, and 2. (BASIC numbers records from 0.) The

record number follows the file number in each PUT.

Line 140 iz a GET that points to record 1, and is
designated by the 1 following the file number. The
three data items are read into A, B, and C using the
GET, Lime 150 displays the values read. The output
from this program is

44 .4 55.5 66.6

Ch. 11: Files Ll

When using GET and PUT in the manner just
described, these forms are referred to as the random
access forms of PUT and GET. Sometimes we call this
manner of using them the random access method of
accessing file data.

It is possible to refine our ability to read or
write at specific points in a file. Replace line
140 in the program with

»3»140 GET,1,1,B\B

and re-execute the program. You will find the
output is now

0 55,5 0

A and C are not read and are 0. The third wvalue
between the backward slashes in the GET indicates
that we want to read beginning at the eighth
position in the record (BASIC uses 0 as the first
position in a record). This position is the
beginning of the field containing the second number
in the record, or 55.5. BASIC leaves its pointer on
the next item in the file at the position
immediztely follewing the last item read. This
pointer ig kept internal to BASIC, and it is
referred to as the file pointer. A file pointer
exists for each active file,

If we were to have the statement

145 GETAING

following the line 140 change that we just made,
this statement would cause 66.6 to be read into C.
A record number and record position are not needed
here because BASIC remembers the last position read
in the file from the current position of the file
pointer. After the statement

140 GET\1,1,8\B

iz executed, the file pointer is at record 1 and
position 16 (B i= a long wvariable requiring 8 bytes
of storage). The reading of B moves the pointer 8
bytes to position 16. When C is read at line 145,
the next number, 66,6, is moved into C,

Some valid examples of the GET statement in its
random access form are

GET3,20,2\A,B,C
GET%1,10,40%NAMES
GET 1, RECNUMBER, TOTAL'FLO\TOTAL

162 An Iintroduction to structured BASIC for the Cromemco C-10

The PUT statement can be used to place data
anywhere within a record by giving the wvalues for
the record number and the position within the
record. Some valid formes are

PUTY3,9,2%33.45,2,TOTAL
PUTMNZ 0,28 INTEREST , SALES
PUT% 4 ,RECHD ,MAME 'FIELD\"SMITH, JOHN®

The PUT moves the file pointer to the position
following the last data item placed on the file,

When PUT is used without a list of data items
in its random access form, it positions BASIC at a
specific record and location within the record. The
next read or write will begin at the position
specified. As we stated in connection with
seguential file operations, specifying a record
number and record position of 0 (for example,
PUTHN3,0,0%) is a useful way of positioning the next
read or write operation at the beginning of a file.
In this particular form, a PUT may even be used to
position a file which is in read-only mode; nothing
is actually written to the file.

When using a statement of the form

GET%1,5M\EIP

in which the position within the record is omitted,
a value of 0 is assumed. The same is true for PUT.

USING INPUT AND PRINT WITH FILES

As we mentioned earlier, GET and PUT coperate on
files with data kept in an internal computer format,
There are some applications where we would like to
produce and manipulate data in its external form,
i.2.; the natural form in which we expect to see
numbers written. The external form of the number
44 .77 13 just 44.77. Its internal computer
representation is slightly more complex and not
suitable for interpretation by most users, The
external format is sometimes referred to as the
ASCII format,

The output of the PRINT (or PRINT USING)
statement is in an external format. The PRINT
statement can be usged to write data in the same form
to files. Similarly, the INPUT statement can be
used toe read the external form on a file. INPUT,

€h. 11: Flles 163

PRINT, and PRINT USIMNG operate exactly the same way
when they are used to read and write data from and
to the terminal, Some example forms are

IKPUTY 45\ ABC, CITYS
INPUTNZ,2,1\4,B,C

INPUTNG , 1NLINES

PRINTN2M\A,B,C

PRINT6,0,10%LINES

PRINT" 2, 4" NAMES ,WGT,SIZE

PFRINT USINGA\2\"TOTAL: #88¥_ 88", SUM

Like GET and PUT, the file number, reécord number,
and position within a record are specified between a
pair of backward slashes,

The output writtenm on a file by PRINT is most
suitable for printing or display rather than as file
input to a program. Files created by PRINT are
easily displayed and printed with commands like the
CDOS TYPE command, It is not recommended that files
created by PRINT be read with either GET or INPUT.
Additional details on reading PRINT produced files
may be found in the Structured BASIC Instruction
Manual.

Basically, INPUT reads strings of ASCII
characters, the characters you see on wvour keyboard,
and expects each string to be terminated by a
carriage return and line feed character, This is
similar to its expectations when you enter data for
an INPUT which reads the data from the terminal
instead of a file, When you depress the return key
on your keyboard, a carriage return and a line feed
are transmitted to BASIC, along with any other ASCII
characters you entered on the line. The string of
ASCII characters entered at the terminal is
interpreted in the same way as when they come from a
file, In either case, the string of ASCII
characters cannot exceed 132 characters.

Perhaps one of the more common uses of INPUT
with files is to read text prepared by an edit
program (not the edit command in BASIC), or to read
a file created by LIST. A program that reads a file
created by LIST and counts the number of lines in
the program is shown next.

100 DIM NAMES(15) ,LINES(131)
110 PRINT"ENTER PROGRAM NAME";
120 INPUT NAMES

130 OPENM\1\NAMES

140 LINES=0

164 An Introduction to Structured BASIC for the Cromemco €10

150 ON ESC GOTO ENDFILE

160 *BEGIN:INPUTM1\LINES

170 LINES=LINES+l

180 GOTOD BEGIN

150 *ENDFILE:PRINT

200 PRINT"PROGRAM: ";NAMES

210 PRINT"NUMBER OF LINES: ";LINES
220 CLOSEM1N

230 END

If you use this program, you must enter the name of
a file that has been created with LIST as the
response to the prompt at lines 110 and 120, The ON
ESC statement in line 150 is used to detect the end
of file. This topic is discussed in more detail
later. The INPUT at line 150 reads from the file
named. PBach line in the file iz a string of ASCII
characters that has been terminated with a carriage
return and line feed character. Each line is read
into LINES, When the program tries to read bevond
the last line, an escape interrupt is generated and
thg ON ESC causes the program to transfer to line
190,

It is tempting to teplace the INPUT from the
file in the preceding program with a GET. The .
result would be guite different., Instead of reading
data to the next carriage return and line feed into
LINES, the next 132 characters of data would be
read. GET reads as much data intoe a string variable
ag. the wvariable can hold. The result produced would
be a count of the number of 132 character blocke in
the program, and not the number of lines.

An application where PRINT ie ugeful is in
connection with writing data directly to a prinkter
without placing it on the terminal screen. This is
especially impertant in CROMIX, since it has ne
other way of simply writing to the printer, Writing
directly to the printer is accomplished by opening a
gpecial file called SLP (do not use lowercase, i.e,
$lp), and then directing all printed cutput to the
file number associated with SLP. For example

400 OPEN\S5\"S$LP"
410 PRINT\5\"SEND ME TO THE PRINTER"

FILE EXAMPLE—LITTLE LEACUE BASEBALL RECORDS

It is probably a good idea to take a loock at an
example of file usage. For this purpose, Suppose we

ch. 11: Flies 165

would like to keep statistics on the number of times
at bat and the number of hits per player for a
Little League baseball team of 12 players, To
establish our recordkeeping system, we will place
the data for each player on a record in a file on
the computer, We will update the player's record
after each game.

A simple approach to manipulating this data on
a file is to use a file record for each player. A
record will consist of the player's name, the number
of times at bat, and the number of hits. We will
allow room for a Z0-character name. If we write
times at bat and hits as long floating variables,
they will each occupy & bytes in a record. A
record, therefore, needs to be at least 36 bytes,
Hence, we choose 36 byvtes as a record size, For
convenience, we will use jersey numbers as a way of
referring to the playere., The team has jersey
numbers from 1 to 16 with numbers 6, 7, 12, and 13
missing., Record 1 will correspond to the player
with jersey number 1, and so forth.

Assume that we are in the middle of the seascon
when we decide to begin our task. First, we must
initialize a data file with the current data on the
players.

A program for initializing our data file,
TEAMSTAT.DAT, followe. Lines 100 to 210 contain
DATA statements for each player. A player's jersey
number, name, number of times at bat, and number of
hits are contained in each statement, Line 220
indicates that data for the last player
preceded this DATA statement, &t 500, WAMES is
defined to allow 20 characters. WVariables are set
in lines 510 and 520 for our file number and record
gize., The use of these variables in file statements
will help clarify file statement parameter lists.
Although we could create the file TERMSTAT.DAT
outside the program by using CREATE in immediate
mode, we use it as a statement in line 530. Line
540 opens the file in write-only mode. The loop
from 560 to 580 writes null string data into every
name field, and 0 values into every record from 1 to
16. This assures us that the records for which
there are no players will contain some recognizable
data. Actual data will be placed in records for
existing jersey numbers later in the program. MNote
that the variable ZERD is used instead of 0.0 in
keeping with our precautions about not using literal
data in PUT statements. Lines 590 to 620 read the
data from the DATA statement and put the data in the

166 An Introduction to Structured BASIC for the Cromemco C-10

record number corresponding to the player's jersey
number, At line 620, NAMES(=l) is used to make sure
all 20 characters of NAME are written, When the IF
at line 600 determines that the jersey number just
read is zero, the program terminates by going to
QUIT, whereupon the file is closed.,

Program to Initialize TEAMSTAT.DAT File

100 DATA 1,"BOBEY FELLER", 40,12

110 DATA 2,"MIKE MANTLE",55,18

120 DATA 3,"JOHNNY SEAT",55,17

130 DATA 4,"NOLAN ROLAN®, 44,12

140 DATA 5,"ALAN CALINE",62,22

150 DATA B,"CROOKS ROBINSON",47,17

160 DATA 9,"SPARKY MYLE®,30,8

170 DATA 10,"ROLLIE THUMES", 25,8

180 DATA 11,"YOGGIE BEARA", 49,17

190 DATA 14,"ROBIN MOUNT",54,18

200 DATA 15,"FERNANDO VENEZUELA",38,14

%ig DATA %ﬁ::ngcgy HEMDERSON® , 35,12
DATE O,"",0,

500 DIM NAMES(19)

510 FILENO=1

520 RECSIZE=36

530 CREATE"TEAMSTAT.DAT"

E;g ﬂggg\glgﬁﬂﬁrRECSIZE.E\'TEHHSTAT.D&T”
& =0,

560 FOR J=1 TO 16
570 PUTNFILENO ,J\NAMES (-1} , ZERO, ZERO
580 HEXT J

590 *MOREDATA : READ JERSEY'NO,MAMES,AT'BATS,HITS

600 IF JERSEY'NO=0 THENW GOTO QUIT

6§10 PUT\FILENO,JERSEY'NO\NAMES (-1) ,AT'BATS,HITS

620 GODTO MOREDATA

630 *QUIT : BRINT

640 PRINT"TEAMSTAT.DAT FILE CREATED. READY FOR USE"
650 CLOSEN\FILENOY

660 END

How we will consider the next program shown,
which allows us to update the number of times at bat
and number of hits for each player. When executed,
the program will prompt us for a jersey number.
Responding with a 0 terminates the program and lists
all the players' statistics, ineluding batting
averages, When a jersey number for nonexistent
playere is given, a prompt for a correct number is
given, Giving a valid jersey number causes the
current ptatistics for the corresponding player ko

ch. 11: Flies 167

be listed, and a prompt for the new data

(times at bat and hits for the latest game) is
issued, Supplying this data causes the record to be
updated and the new statistics to be printed, A
prompt for a new jersey number is given when the
update iz complete,

In the code for the program, line 530 opens the
file in both read and write mode. This iz very
important for updating records, since the data must
be read and then written, Lines 540 to 570 process
the jersey number, The jersey number is checked at
line 560. If the number is 0, then a branch to
QUIT, line 720, is made. If a number larger than lé
is accidentally entered, line 570 issues a warning
and branches to prompt for a new jersey number. If
the number is walid, line 580 is reached, and the
data from record number JERSEY'NDO is read into
NAMES; AT'BATS, and HITS., If HAMES is null (line
590) there is no player for the jersey number. A
message is issued to that effect, and a branch to
the jersey number prompt code is made. Upomn finding
a non=null name, the statistics for the player are
listed in 620 to 630. Lines 640 toe 660 reguest the
player's data for the latest game, At line 670, the
new statistics are computed. When the new
etatistics from lines 680 to 690 are displaved, the
statistice are written back into the record at line
700. Line 710 takes us back to the jersey number
prompt. When a jersey number of 0 is finally
entered, lines 720 to B30 are used to print the
statistics for the entire team. HNote that the loop
in this code causes all 16 records to be read. When
a record containing data for a non-existent plaver
iz read, line 790 skips the printing of the data for
that player.

Program to Update Plaver Records

500 DIM NAMES (19)

510 FILENO=1

520 RECSIZE=34

530 OPEM\FILENO,RECSIZE,3\\"TEAMSTAT.DAT"
540 *ASK : PRINT

550 INPUT"ENTER JERSEY NO.- " ,JERSEY'RO
560 IF JERSEY'NCQ=0 THEN GOTO QUIT

570 IF JERSEY'NO>16 THEM PRINT"INVALID NO." : GOTO ASK

380 GETYFILENC ,JERSEY 'HO\NAMES ,AT"BATS ,HITS

£90 IF NAMES="" THEN PRINT"MO SUCH PLAYER" : GOTO ASK

600 FRINT
610 PRINT"PLAYER: " NAMES

168

a2l
630
640
650
660
670
&80
600
700
110
720
130
740
7540
760
770
T80
790
8oo
8lo
20
B30
840
850

An Introduction to Structured BASIC for the Cromemco €10

PRIKT USING"AT-BATS: ##8 HITS: ### " AT'BATS HITS;
PRIRT USING"AVERAGE: ##8.##",1000"HITS/AT'BATS
PRINT

PRINT"ENTER GAME AT-BATS & HITZ (0'S IF SKIF) “;
INFUT G'AT'BATS,G"HITS

AT'BATS=AT'BATS+G"AT'BATS : HITS=HITS+G'HITS

PRINT USIHG"AT-BATS: ##8% HITS: %44 ", AT'BATS, HITS;:
PRINT USING"NEW AVERAGE: £4##.48 ",1000*HITS/AT'BATS
PUT\FILENO,JERSEY "NOWNAMES (-1} (AT 'BATS HITS

GOTO ASE

*QUIT : PRINT

PRINT" TEAM STATISTICS"
PRINT

PRINT"NAME AB H AVG"
PRINT = omrevrmromme—un we= =n —m=S

FOR J=1 TO 16
GETYFILENO, JYNAMES (=1) (A, H
IF HAME$="" THEN GOTO NOPLAYER
AVG=1000.0%H/A
PRINT USING "¢#4£E4888b0 0800844 " . NAMES
PRINT USING™ ##8# #¢# ##8",2,H,AVG
*NOFLAYER : NEXT J
CLOSEWFILEROY
END

The following example shows how the record for

Johnny Seat, jersey number 3, is updated, He had 4
at bats and 2 hits in the latest game. The arrows

at the right show where data were entered in response
to prompte from the program., In the team summary,
note that only Seat's data have been updated.

Example Execution of the
Baseball Update Program

ENTER JERSEY NO.— 3 A — Enter 3

PLAYER:
AT=BATS :

JOHNNY SEAT
55 HITS: 17 AVERAGE: 309.09

EMTER GAME AT-BATS B HITS (0'S IP SKIF} 4,2 <— Enter 4,2

AT-BATS:

59 HITS: 1% NEW AVERAGE: 322.03

ENTER JERSEY NO.- O «—— Enter 0

ch. 11: Files on

TEAM STATISTICS

HAME ARE H AVG
BOBBY FELLER 40 12 300
MIKE MANTLE 55 1B 327
JOHNNY SEAT 59 19 322
HOLAN ROLAM 44 12 273
ALAN CALINE 62 22 355
CROCES ROBINSON 47 17 382
SPAREY MYLE 30 B 267
ROLLIE THUMES 25 B 320
YOGGIE BEARRA 49 17 347
ROBIN MOUNT 54 18 333

FERNANDO VEMEZUELA 38 14 368
ROCEY HENDERSON 35 12 343

DETECTING THE END OF FILE

The topic of detecting the end of file is an
interesting one. We will see that there are several
ways to determine the end of file.

When reading a file in a sequential manner, we
would like to know when we have read the last data
item, There is no simple facility in BASIC that
indicates that we have come to the end of file data,
It is usually a good idea to write a count of the
itemz on the file at the beginning, so that the
programs know how many items to read, An example
program that illustrates this idea is

100 QPENM1M"MYFILE.DAT"

110 GETY1\TOTAL

120 COUNT=0

130 *BEGIN:IF COUMT:»=TOTAL THEM GOTC ENDFILE
140 GETY1“\ANUMBER

150 PRINT ANUMBER

160 COUNT=COUNT+1

170 GOTO BEGIN

180 *ENDFILE:PRINT “END OF JOB"

190 END

Line 110 reads the first number from the file
MYFILE,DAT., We assume this number contains the
total number of data items on the file. COUNT is

170 An introduction to Structured BASIC for the Cromemco C-10

initialized to 0 and is used to keep track of how
many numbers we read from the file. When COUNT
exceeds TOTAL, line 130 will transfer to the ENDFILE
line name. Lines 140 through 170 read numbers from
the file, print the numbers, and repeat these
operations.

We might expect that BASIC would produce an
error message 1f we wrote five items to a file and
then attempted to read these five items plus two more.h
In most cases, we can read past the last item
written on a file because BASIC always creates files
in blocks of 128 bytes, which are called sectors.

AB we learned earlier in our discussion of records,
five long floating point numbers take up 40 bytes. The
remaining bytes in the sector often contain zeroes
or null characters. (They probably won't if BASIC
has re-used a discarded sector., BASIC grabs
diacarded or free sectors on the disk to add to your
file as they are needed,) When the two extra items
are read, they will contain zeroes. It is,
therefore, very important to be able to tell where
the end of £ile is by the means described
previocusly. BASIC will produce an error message
when we btry to read past the physical end of file,
the end of the last sector, and we can use that to
our advantage in some applications. This
possibility is discussed shortly.

As an aside, the fact that BASIC allocates file
gpace on disk in terms of sectors rather than
records may be confusing. However, as we mentioned
earlier, the concept of records is used for random
file structures and access methods, The concept of
sectors is common to both,

A simple but effective way of finding the end
of tile is to write an unusual or unigque data value
as the last item on the file. For example, the last
value written might be 1.0E+50. This value is so
large that it is unlikely that it would serve as the
end-of-file item in many applications. When reading
the file, the program checks to see if this value is
read. Some care must be exercised in choosing an
unusual value,

Another way of determining whether we have read
past the last data item is te have the program that
wrote the file record place information in the file
about the location of the last item. The IOSTAT
funection that is discussed later in this chapter is
able to tell us the location of the last item when
it is written. If we place this information at the
beginning of our file, it can be used when the file

ch. 11: Files m

ie read. Since this information is not known until
the last item is read we should leave space for it
at the beginning of the file 2o we do not have to
write the entire file again. Before attempting such
a scheme, you should become very familiar with PUT
and GET as they are used in random access methods,
and the concepts of records and sectors. Sectors
are discussed in connection with the IOSTAT
function.

Another method of detecting the end of file is
applicable when we seguentially read records using
random access methods, If we attempt to read an
item that is beyond the physical end of the file,
BASIC will generate an error message and stop. This
fact can be used to our advantage when we use the ON
ERROR statement that was discussed in an earlier
chapter. When BASIC attempts to read past the last
item on a file, error number 138 is generated and
138 is put in system parameter 3. If we are using
ON ERROR, the program will transfer to a portion of
the program that handles the end of file, The
system function S5¥5(3) allows us to examine whether
138 is in fact the error. A program that
illustrates these concepts is

100 OPENM1N"MYFILE.DAT"

110 ON ERROR GOTD EXAMINE

120 RECHMO=(

130 *BEGIN: GET.1,RECHO“A

140 PRINT &

150 RECNO=RECHNO+1

160 GOTO BEGIN

170 *EXAMINE:IF SY¥S5(3)=138 THEN GOTO ALLDONE
180 PRINT "NOT TERMINATED BY AN END OF FILE"
190 *ALLDONE: CLOSEY1%,

200 ENMD

This program keeps getting the the first item in
sach record in the file and printing it, RECHNO
keeps track of which record we are to read.
Eventually the end of file will be reached and it
will transfer to line 170 since we are using

ON ERROR. It is unlikely that any error other than
138 will be encountered, so the check at line at 170
is superfluous,

The method for detecting an end of file for
files written by a text editer or the LIST command
ig different than we just described. We assume that
such files are to be read with INPUT {see the
earlier discussion of INPUT). Such filez contain a

172 An introduction to Structured BASIC for the Cromemeco €-10

special character at the end, which causes BASIC to
produce an escape interrupt. Thisg interrupt can be
detected by the use of the ON ESC statement, as was
ehown in the program example concerning the use of
INPUT to read files.

BASIC FILE COMMANDS

The BASIC command ATTRIB, or ATRIB, which was
discussed in Chapter 2, is applicable to data files
as well, Two other commands, which have
applicability to either program or data files, are
RENAME and ERASE, These commands are similar to the
ChOS REN and ERA commands, They were discussed in
Chapter 2 also, but we will explore them further
here, We want to stregs that they can be used as
statements as well as commands and that string
variables can be used to define the files referred
to in these statements. ATRIBE can be used as a
statement too, but it probably has a less freguent
use in the statement form than ERASE and RENAME.

RENAME simply changes the name of a file from
an old name to a new name. Some examples are

150 RENAME "QLDFILE.TXT","MEWFILE.TXT"
170 REMAME OLDNAMES,"MASTER,DAT"

Note that string variables may be used.

ERASE simply removes a file from the directory
so that it no longer can be accessed, Some examples
of the ERASE command are

120 ERASE "INVMASTER.DAT"
290 ERASE "C:0LDPAYRL.DAT"
400 ERASE MASTERS

Like the RENAME command, string variables may be
used.

A FILE FUNCTION

There are instances when we would like to know where
we are in the file, That is, we would like te know
the record and the position within that record where
BASIC is positioned for its next read or write. We
cannot tell which record BASIC is positioned at

Ch. 11: Files 173

directly, but we can use the IOSTAT function to help
determine the position. If we give the IOSTAT
function both a file number and an information
regquest code as its arguments, IOSTAT will return a
value that gives us information about the file.
There are three possible codes. The first code, 0,
is illustrated in the example

LET FSTATUS=I0STAT(5,0)

which regueste the file status of file number 5,
The 0 is a code that reguests the file status,
FSTATUS will be set to one of the following three
values

Status Value Meaning
L File is QK.
1 Positioned at the physical end

of file, i.e., the end of the
last sector.

2 Fositioned at a record which was
never writtem by a random access
write,

The second code, 1, returns the sector number
where BASIC is positioned in the file. While BASIC
dees view files in terms of records, it also views
them internally as sectors. A sector is just 128
bytes or characters of file data., A file with 64~
byte records would have its first two records
contained in the first secter of the file.
Specifying a code of 1 in IOSTAT as in

LET FSECTOR=IOSTAT(5,1}

sets FSECTOR to the sector number at which BASIC is
positioned within file 5. Sector numbers begin with
sector number 0,

The third code, 2, returns the position within
the sector where BASIC is positioned in the file.
Like the record position, the first position is
numbered 0. Specifying a code of 2 in IOSTAT as in

LET FSECTPOS=I0STAT(5,2)

sets FSECTPOS to the position number at which BASIC
is positioned within file 5.

174 An Introduction to Structured BASIC for the Cromemco C-10

In summary, IOSTAT has the following meanings

IOSTAT (filenco,0) - return status (0, 1, or 2)
I0STAT(£ilena, 1) - return sector number
IOSTAT(fileno,2) - return byte position in sector

where fileno is a file number, variable, or
expression,

USING GET FOR TERMINAL INPUT

An interesting use of the GET statement occurs when
it is used to obtain data from the terminal, An
example of this use of the GET statement is

100 PRINT "Hit any key to continue"
110 GETNOMAS(O,0)
120 END

File number 0 designates the conscle or terminal,
When this code is executed, the message at line 100
will be displayed, and the program will pause at
line 110 until any Key is depressed upon the
keyvboard. This use of GET is a very handy mechanism
for causing a pause in the output of a program,

This ability is used to give the person who is
interacting with the program a chance to read the
cutput before continuing. The reader of the output
can thus proceed at his or her own pace.

Review Questions and Exercises 175

2.
3.
4.

10.

Review Questions and Exercises

If a program reads the fifth and then then
tenth record in a file, what access method is
it mest likely to be using?

What is missing in the statement OPEN24.7
Why does CLOSE/3/ result in a syntax ecror?

Is it a good idea to use PUTA\3%2Z? Why is it
preferable to use PUT\3422.07

The definition of a record length is important
to random access of files, Why? If a record
is to be written with three long floating
variables, why is the choice of 24 bytes as a
record length reasonable? How much record
gggce would be wasted if we choose a length of

Which record does the statement PUTA\5,25% refer
toe? Which record does PUTMNS,0% refer to?

Which byte in record 8 does GETAG6,8,20% refer
to? How about GET\6 8,047

What i8 a read=-only £ile? What code in an OPEN
specifies such a file?

PUTN5,10,0% positicns a file at record 10, even
if the file ig a read only file, How do you
position a f£ile at the first byte in the first
record? Do yvou use PUTAWS,.0,0% or PUTAG,1,1%\?

BREIC has no specific statement that allows us
to detect an end of file. Name several methods
that can be used to detect an end of file,

176 An Introduction to Structured BASIC for the cromemee C-10
summary

Sequential File Structure
A file organized in such a way as to make it
easy to read from or write to it in a
seguential fashion with BASIC seguential
access methods.

Random File Structure
A file organized in such a way as to make it
easy to write or read it in a random, or
application-dependent way, with BASIC random
access methods.

Sequential Access Method
A GET or PUT statement that does not
reference a record number.

Random Access Method
A GET or PUT statement that references a
record number,

Records
A group of data items which represent related
items.
Records have lengths measured in byvtes.

End of File
Applicable to seguential file strucutes,
The occurrence of going beyond the last data
item on a file.

CREATE
Creates a directory entry for a file with a
specified name.

OPEN
Makes & file accesgible through GET and PUT
statements,
Files may be opened in three modes: read
only, write only, or both read and write,
Defines the size of a record for use of a
file as a random file structure,
Repogitions BASIC to the first data item in
the file,

CLOSE
Makes & file inaccessible to other file
operaticon statements,
Allow for the closure of individual files or
all files simultaneously.

GET

Reads data from a file.
Sequential access form does not reguire a

PUT

177

[ECOrd nUmMbDer,

Random access form reguires a record number,
Position number within a record may be
gpecified for the random access form,

Writes data to a file.

Seguential access form does not require a
record number,

Random access form requires a record number.
Pogition numher within a record may be
specified for the random access form,

When used without a list of data items in its
random access form, it positions BASIC at a
specific record and location within the
record.

File Humber

Sector

Bumber associated with a file when the file
is opened,

Used to reference the file in read, write,
and close operations.

Fundamental unit of file space allocation on
disk,
128 bytes of disk space.

File Pointer

INPUT

PRINT

Internally, BASIC keeps track of where the
next read or write is to begin with a file
pointer.,

The file pointer is stated in terms of a
record number and the position within the
record number.

Changed by using a seguential or random
access method operation.

Set to the beginning of a file when the file
ig opened.

Functions exactly like the INPUT to read data
from the terminal except that it expects its
input from a file.

May be used as a random access method.

End of data is read when a carriage return
and line feed character are found in the
input,

Functions exactly like the PRINT to print
data at the terminal except that it places
its output into a file.

May be used as a random access method,

Files produced by PRINT are better suited for

178 An introduction to Structured BASIC for the Cromeamco C-10

display or printing than as files to be read
by other statements,

EEMAME
Renames a file,
Command form is more widely used than ikts
statement form.

ERASE
Erases a file,
Command form is more widely used than its
statement form.

IOSTAT
gystem function which provides information
about the status of a file or the location
where BASIC is pointing for the next read or
write.,

EHAFTEE'z

Modern
Programming
Structures

In an earlier chapter we learned about control
statements such as FOR-KEXT, IF, and GOTO, We
mentioned that the GOTD is a controversial statement
in programming, GOTO derives most of its negative
reputation from the faet that it is often used to
excess, thereby creating programs which are hard to
debug and medify. When it is used axcessively, the
resulting programs tend to resemble spaghetti in
their appearance because transferg are made up,
around, and down in the program. Programs tend not
to flow generally from the first statement to the
last when GOTO is used frequently; they lack a
certain structure, which makes them difficult te read
and understand.

These situations and others are remedied by
program statements which generally provide a simpler
structure to the programs and make them easier to
modify and debug. Basically, these new statements
are related to the IF and FOR-WELT statements that
were previously discussed. They have become
increasingly popular in programming languages in
recent years and will be discussed in detail in this
chapter.

GROUPING STATEMENTS TOGETHER—DO-ENDDO

A particularly simple pair of statements that help
to add structure to our programs is the DO-ENDDO
pair. They do nothing more than provide a beginning

179

180 An Introduction to Sstructured BASIC for the Cromemco C-10

and an end for a group of related statements. Their
use is illustrated by the following section of a
progran

200 DO

210 PAGENO=PAGENO+1

220 PRINT " PAGE "; PAGENO
230 PRINT

240 PRINT "NAME ADDRESS PHONE"
250 PRINT "——-—-—- - -

260 LINENO=4

270 ENDDO

280 PRINT USING "###488%" NAMES;

When line 200 is executed, nothing really happens
and execution of the following statements is made in
the expected order, The execution of the ENDDO has
no special effect, In this form, DO-ENDDO are not
very useful, but when it is used with the IF
statement, it becomes very useful. (Another place
where these statements are effectively used is with
the wariable stacking and recursive capabilities of
BASIC.) The DO-ENDDQ can be used to define a block
of statements that are executed when the logical
expression of an IF statement is true., For example

200 IF LINENO>66 THEN DO

210 PAGENO=PAGENO+1

220 PRINT " PAGE " ;PAGENO
230 PRINT

240 PRINT "MAME ADDRESS PHOME"

250 PRINT "=—====r scccceseccece—s eceeeeeee- »
260 LINENO=4

270 ENDDO

2B0 PRINT USING "##4888%" NAMES;

When line number 200 is executed and LINENQ is
greater than &6, then the group of statements
surrounded by DO and ENDDO will be executed, If
LINEMO is not greater than &6, then the statement
following the ENDDO will be executed next.

It appears that the only advantage gained here
is that we avoided ceoding a GOTO and a line name for
the GOTO transfer. Another advantage becomes
apparent if we use LIST on this program section,
Using LIST would show that statements 210 through
270 are indented, which makes them stand out as a
related group of statements. This highlighting of
related statements is very effective when a program

Ch. 12: Modern Programming Structures 18

contains many statements and we are trying to modify
it.

A simple form of grouping related statements
for execution whén only the logical expression in an
IF statement is true was discussed in an earlier
chapter. It is restated here in the example

IF ANUM=45 THEN A=4 : B=B+10 : PARTHOS="ABC-4"

If ANUM is 45, then the three assignment statements
following the THEN are executed; otherwise, control
is passed to the next line.

TWO-PART LOGICAL GROUPS—ELSE

Another statement which is related to the
IF-DO-ENDDQ statements is the ELSE. Here is an
example of its use

150 IF LINENO>66 THEN DO
160 LINEND=0Q

170 ELSE

180 LINENO=LINENO+L

190 ENDDO

When LINENO is greater than 66, execution begins at
the line following the IF-THEN-DO, It continues to
the ELSE, where transfer iz then made to the
statement following the ENDDO, If the logical
expression is false, transfer is made to the
statement following ELSE and continues through the
ENDDO, ELSE; therefore, acts as a divider within
the DO-ENDDO to divide statements which are executed
when the logical expression is true and when it is
false. Only one ELSE is allowed to divide a
DO=-ENDDO group.

It is perfectly legal to place the group of
IF-THEN-DO-ELSE-ENDDO statements inside DO-ENDDO
groups, For that matter, any statement is legal
inside a DO=-ENDO group.

Like the FOR-NEXT statements, the DO-ENDDO
statements always come in pairs. ©&Some care should
be exercised in making sure that the DO and its
ENDDO are correctly placed in the program, If an
ENDDO is encountered without having been preceded by
& DD, BASIC will generate an error message, If DO
is executed, but the corresponding ENDDO is not

182 An Introduction to Structured BASIC for the Cromemco C-10

executed before the program terminates with an END,
BASIC will issue an messade that a stack error has
occurred.

LOOPING UNDER LOGIC CONTROL—WHILE-ENDWHILE
AND REPEAT-UNTIL

A very effective statement pair for controlling
loops and for determining whether or not a group of
statements should be executed are the WHILE and
ENDWHILE statements, Like DO-ERDDD they group a
related set of statements together. However, the
statements grouped together by WHILE-EMDWHILE are
executed only while a logical expression in the
WHILE is true; the group of statements is executed
repeatedly while the expression is true, Scratch
your work area and enter the program

»>100 COUNT=0

»»110 WHILE COUNT<3

»»120 PRINT "COUNT IS ";COUNT
»>»130 COUNT=COUNT+1

22140 ENDWHILE

»»150 PRINT "FINAL COUNT: ":COUNT
»»160 END

Uging RUN we £ind this program produces

COUNT IS5 O
COUNT IS5 1
COUNT IS5 2
FINAL CODWNT: 3

When the program begins, COUNT is 0, so the
expression COUNT<3 in the WHILE is true. The
gtatements between WHILE and ENDWHILE are executed,
and the program starts with the WHILE again to
determine whether the expression is still true. The
previous execution of the WHILE loop changed COUNT
to 1 so the expression is true, and the loop is
executed again, When COUNT becomes 3, the loop is
not executed, and execution continues at line 150.
If line 100 set COUNT ko 5 to begin with, then
the WHILE loop would never be executed because the
expression is false. Some care should be exercised
in making sure that the logical expression in a
WHILE is eventually met; otherwise, the program will

Ch. 12: Modern Programming Structures 18%

loop indefinitely. The ability of the WHILE to
prevent the execution of a loop when the logical
expression is false makes the WHILE-ENDWHILE a
particularly useful structure. Proper use can
prevent numercus mistakes from creeping into our
programs,

A statement pair that works something like
WHILE-ENDWHILE igs the REPEAT-UNTIL structure,
Instead of checking a logical expression at the
beginning of its loop, it checks a logical
expression at the end of its loop. This causes the
loop defined by REPEAT-UNTIL to always be executed
at least once, In a sense, the REFEAT-UNTIL and
WHILE-ENDWHILE are opposites of one another, The
REPEAT-UNTIL program structure is illustrated by the
example program

100 COUNT=0

110 REPEAT

120 PRINT "COUNT IS ";COUNT

130 COUNT=COUNT+1

140 UNTIL COUNTI>=3

150 PRINT "FINAL COUNT: ";COUNT
160 ENWD

This is the same program that was used in the WHILE
example except that WHILE and ENDWHILE have been
replaced by REPEAT and UNTIL. The loop is repeated
until COODNT becomes 3 or greater; in this instance,
the loop will terminate when CQUNT is 3, MNote that
the condition tested is the opposite of that in the
WHILE-ENDWHILE example. The program produces the
same output as in the previous example

COUNT I3 0
COUNT IS 1
COUNT IS5 2
FINAL COUNT: 3

The major difference ig that if line 100 is changed
to set COUNT to 3, the loop is executed exactly once
before going to statement 150. Making this change
in the preceding WHILE-ENDWHILE example would cause
the WHILE loop not to be executed.

The warning in an earlier chapter that you
should not transfer inte the middle of a FOR-NEXT
loop applies to the loop structures discussed in
thie chapter as well,

184 An Introduction to Structured BASIC for the Cromemco C-10
Review Questions and Exercises

1 . If VALUE is 10 and TOT is 15, why is TOT still
15 when BASIC continues to the line following
4007

400 IF VALUE=24 THEN PRINT VALUE : TOT=TOT+l

2 END and ENDDO are not the same. What is the
difference? What statement is an ENDDD used

with?
3. What is wrong with the following use of ELSE
100 IF NUMBER=20 THEN COST=100
110 ELSE
120 COsT=200
130 ENDDO

How do you correct line 1007 Where does
CO5T=100 belong?

Summary

DO-ENDDO
Group similar statments together in a single
unit.
Most effective when used with an IF
statement.

IF
All statements occurring after the THEN and
on the same line as the IF are executed when
the logical condition is true,

WHILE-ENDWHILE
Defines a loop structure which is executed
only while a logical condition is true,
The defined loop structure is not executed if
the logical condition is false when the loop
is encountered,.
The logical expression is evaluated at the
top of the loop.

REPEAT-UNTIL
Defines a loop structure which is not
executed until a leogical condition is true.
The defined loop structure is executed once
regardless of whether the laogical
condition is true or false when the loop is
begun.
The logical expression is evaluated at the
bottom of the loop.

— k-

Writing Large
Progroams

As we increase our skills in programming and tackle
larger applications, the progams we write become
bigger and they often cannot be accommodated in the
work area available., In this chapter, we will
coneider some features of BASIC that allow us te
write programs that are larger the work area.

FIGURING OUT HOW MUCH SPACE IS AVAILABLE

We can get a very good ldea of how much space is
left in our work area by using the FRE function.
Although this function does not actually reguire an
arqument, it nevertheless must he supplied onej so
we write it as FRE(0) whenever we use it, The
argument of 0 has no specific meaning to the
function. This function simply returns to us the
number of bytes or characters not occupied by our
program. Let's try this function, Scratch your
work area and enter

»>100 DIM TABLE(200)
»>»110 PRINT "HELLO"
»»120 END

How enter the following statement in immediate
mode as

»*PRINT FRE(0)
185

186 An Introduction to Structured BASIC for the Cromemco C-10

BASIC will respond with 19712, (If you are working
with 32K BASIC and have installed it with less than
its full complement of features, vou may get a
significantly larger number. See the appendix on
the installation of 32K BASIC, In any other case,
you should get something close to 15712.) This is
approximately the size, measured in bytes, of the
work area that remains for your use. It is not a
completely accurate number because BASIC allocates
space for its own use in segments or blocks. Unused
space in these blocks is not reflected by FRE.
Furthermore, the DIM statement allocates space when
it is executed; hence, we have not accounted for the
space allocated to TABELE vet. MNow enter RUN and
then re—-enter PRINT FRE(0) =0 as to produce the
sequence

»>RUN

HELLO
£%%]20) Epd***

»»PRINT FRE(0)
17920

This time, FRE tells us that the available space is
17920 bytes., Some of the difference is accounted
for by the 200 elemente allocated to TABLE, or about
1600 bytes. TABLE is a long floating peint variable
and each element occcupies B bytes, The remaining
difference is accounted for by the extra space BASIC
needs to acquire when it begins execution.

We see from our exercise that there is a
difference between the space used when the program
is simply loaded into the work area and when it is
executed.

CONTROLLING STORAGE—MODE CHANGES

As mentioned in earlier chapters, the amount of
storage reguired to store a number depends upon the
representation of the number., Integer numbers
require two bytes, which is the least amount of
storage; short floating numbers reguire four bytes;
long floating numbers reguire eight bytes, With
BASIC, we can specify the type of numbers that a

Ch. 13: Writing Large Programs 187

variable is to store in several ways. Hence, We can
refer to a variable as an integer, short float, or
long £loat variable,

Integer variables may store integer valued
numbere which range from -32768 to +32767. Contrast
this with a statement in an earlier chapter, which
stated that integer constants range from -10000 to
+10000,., Both statements are true, As stated in
earlier chapters, a statement such as

LET INTHUM=30000

in which INTNUM is an integer variable, converts
30000, a short float number, to an integer.

The simplest way to specify the type of
variables used by a program is with the IMODE,
SFMODE, and LFMODE statements. They refer,
respectively, to integer, short float, and long
float mode, When you start writing a program in a
wokk area, BASIC assumes that all wariables and
computations will be made in long float mode,
Switching to ancther mode may save considerable
space. Howewver, some caution should be observed in
that the space saved is mostly obtained in
connection with numeric array variables., See a
related discussion in the section concerning the use
of INTEGER, SHORT, and LOMG,

The mode may be changed by using one of these
three statements, However, when one of the
ingtructions is executed, the mode change does not
come into effect until a RUN is executed afterwards.
The use of these statements in your program creates
a slightly awkward problem, however. How is it
possible to use RUN after the executicon of the mode
change statement? A solution is given in the
Structured BASIC Instruction Manual which is guite
difficult to remember. A very effective and
ecasy-to-remember solution is not to wuse the mode
statements as part of the program, and to use them
in immediate mode instead. We'll elaborate on this
idea in the next few paragraphs,

Let's change the mode of a program from its
default mode of long float to short float, Scratch
vour work area and enter the program

»»100 LET A=200.0
»»110 LET B=0.4
»>120 PRINT A,B
»»130 END

188 An introduction to Structured BASIC for the Cromemoo C-10

Verify that A and B are in long float mode by using
LVAR, as in the seguence

>>LVAR
This produces

A LFPF 0.0
B LFF 0.0

Now enter the SFMODE and LVAR as in the sequence

»>SFMODE
>>LVAR

This produces

A LFP 0.0
B LFF 0.0

We zee that A and B are still in long float mode
despite the use of SFMODE, Now enter RUM, which

produces the following seguence
>>RUN

200.0 0.4
*RK130 Endwes

Entering LVAR produces

A SFPB 200.0
B SFF 0.4

All variables are now in short float mode.

If the program is to be saved, we need to be
somewhat careful to make sure that we do not create
some unwanted debris. It is probably advisable to
place a STOP statement as the first line of code in
the program when you are changing mode ag we just
described. When RUN is entered after using SFMODE,
the program will stop immediately, but all variables
will be in the new mode, HNow, delete the STOP and
use SAVE, This procedure minimizes the debris saved
with the program file. If you actually let the
program run without first stopping it, debris
created by the execution would be saved with a
subseguent SAVE.

Ch. 13: writing Large Programs 189

MODE CHANGES FOR TRIGONOMETRIC FUNCTIONS

Two other mode change statements that we have not
discusged are DEG and RAD, Normally, the arguments
and return values of trigonometric functions are
assumed to be in radians. DEG changes the mode to
degrees instead of to radians, and RAD does just the
oppesite. RAD is the default mode for trigonometric
functions, We do not recommend the use of DEG or
RAD because most other high-lewel languages assume a
radian mode with trigonometric functions. BAs a
result of using them, yvou may lose some portability
in transferring programs from one language to
another, if you ever need to.

CONTROLLING STORAGE OF SPECIFIC VARIABLES

We can selectively specify the variable type for any
variable instead of using the mode change statements
to change all the variable types simultanecusly,
This is accomplished by using the SHORT, LONG, and
INTEGER statements, It is preferable to use these
statements over the mode change statements when
teying te control storage, Some examples of their
use are

INTEGER MONTH,DAY,YEAR,ID(5)
SHORT COST,TOTAL({100)
LONG MILEAGE(5,20) ,PIVOT,ANGLE

MONTH, DAY, and YEAR are declared as simple
integer variables. 1ID is a one-dimensional array of
integers, An attempt to store a number in these
variables outside the range =-32768 to 32767 will
cause an overflow error. Integer variables occupy 2
bytes of storage. The array ID will occcupy 12
byvtes,

COST ieg declared as a simple short floating
variable, TOTAL is a ¢ne-dimensional array of short
fleoating numbers. Short floating variables occupy 4
bytes of storage, TOTAL, an arrcay, will occupy 404
bytes,

MILEAGE is a two-dimensional array of long
floating numbers. PIVOT and ANGLE are declared to

190 An Introduction to structured BASIC For the Cromemco C-10

be simple long floating variables. Long floating
variables occupy B bytes of storage, MILEAGE will
occupy 1008 bytes (6*21 elements of B bytes),

It is very important to realize that SHORT,
LONG, and INTEGER are executable statements; they
have no effect until they are executed, If we are
working in long fleoat mode, the default mode, a
declaration of the sort

500 SHORT INCOME

does not cause INCOME to be reserved as 4 bytes of
storage until line 500 is actually executed, If
INCOME is wsed before line 500 is encountered, it
will utilize B bvtes of storage until line 500 is
executed.

Actually, BASIC is somewhat deceptive in the
amount of storage saved by employing SHORT, LONG,
and INTEGER. Simple, non-array variables always
cccupy 8 bytes of storage, which iz the storage
regquired for a long floating variable. When any of
these three statements is used, BASIC simply uses
Z2; 4, or 8 bytes of the 8-byte area for the
wariable., This is not true for array wvariables that
are declared as one of the three types, Array
elements occcupy exactly the specified number of
bytes for the type, This means that we can save
space by declaring an array to a type reguiring less
space, but, for simple variables, no real space is
gained.

To see that simple variables take 8 bytes, try
using SHORT and LONG to declare the same variable
successively and print the contents of the wariable
after each new declaration. For example

100 SHORT A
110 A=25

120 LONG A
130 PRINT A
140 SHORT A
150 PRINT A
160 END

The variable A will not change its value, and is
maintained at a fixed location of 8 consecutive
bvtes in memory. Try some similar experiments with
arrays.

Ch. 15; Writing Large Programs 191

MIXED MODE ARITHMETIC AGAIN

In an earlier chapter, we introduced the topic of
mixed mode arithmetic, Now that SHORT, LONG, and
INTEGER have been introduced, it is appropriate to
discuss this topic further.

Some care should be taken when variables of
different types are placed in the same arithmetic
expression. Consider the program section

190 SHORT A,B
200 LONG RESOLT
210 a=2.0: B=3.,0
220 RESULT=A/B

The wvalue placed in RESULT is 0.66666700000000.
Short arithmetic operations are used to evaluate the
expression, because A and B are short, and this
results in a value of 0.666667, The result is then
placed into the long floating wariable RESULT.

BASIC performs its arithmetic in the form of the
longest variable encountered in an expreseion. If A
er B had been leng variables, the division operation
would have used long arithmetic. The occurrence of
division in an arithmetic expression involving mixed
types of data and variables causes the majority of
such guirks.

USING DELREM TO INCREASE SPACE

Probably the easiest thing we can do to reduce

the size of our programs in the work area is to
remove REM statements. This is simplified by the
DELREM command, which deletes REM statements located
at a epecified line or range of lines. Like many
other BASIC commands that invelve line numbers, it
has four forms, which are illustrated in the
following examples

DELREM
DELREM 2500
DELREM 400,920
DELREM 900,

182 An introduction to Structured BASIC for the Cromemco C-10

The first example deletes all REM statemente: the
second deletes only REM statements found at line
25003 the third deletes REM statements from 400 to
920; and the last deletes all from %00 to the end of
the program, Once a REM statement iz deleted by
this command, it cannot be restored unless you
re—enter it, Space is not actually freed by
performing the command. Hidden debris and phantom
line numbers remain., Space may actually be acquired
by using the LIST-S5CR-ENTER procedure for removing
debris, which was discussed in an earlier chapter,

USING LISTAND ENTER TO COMBINE PROGRAMS

The LIST and ENTER commands can be used t¢ help us
construct larger programs. These commands can be

used to produce programs that are of a reasonable

size, and to eliminate the re-entry of statements

necessary to create these programs,

At we learned in an earlier chapter, LIST may
be used to place program lines in a file and they
may be brought into the work area with ENTER, This
procedure can be more selective than we previously
discussed. 1In addition to the forms of LIST
dizcussed, the following are example forms of LIST

LIST "SECTIONA.LIS",200
LIST "PARTFOUR.LIS" 400,450
LIST SUBPROGS, 2150,

The first example places just line 200 on a file
SECTIONA.LIS. The final example places lines 400 through
450 on PARTFOUR,LIS. The final example places lines
2150 through the end of the program on a file
gpecified by the string variable SUBPROGS.

The ENTER command places only the program lines
it finde on a file into the work area, without
disturbing any other lines in the work area. By
using a combinatien of LIST, ENTER, and other
commands, programs can be manipulated and
constructed. Thus, witheut retyping statements, we
can divide a program into smaller programs, or
combine smaller programs into larger programs with
the aid of ENTER and LIST.

Let's see how we might combine twe programs
into one program with the aid of these commands,
Consider the following program, which is actually a

Ch. 13: Writing Large Programs 183

GOSUB subroutine

9000 *FINDIT

9010 FOR WBPOS=0 TO LEN(TEXTS)-1

$020 IF TEXTS(NBPOS,NBPOES)<>" " THEN GOTO EXIT
9030 NEXT NEPOS

9040 HBPOS=-1

9050 *EXIT: RETURN

This subroutine, FINDIT, scans each character of a
string, TEXT$, and returps the position of the first
non-blank character in TEXTS in the variable NBPOS.
If TEXTS contains all blanks, WBPOS is set to -1,
Suppose these lines are the only lines in the work
area, and that we have saved them with LIST on the
file FINDIT.LIS, (If they were part of some other
statements in the work area,; we could use

LIST "FINDIT.LIS",9000,9050 to place them on a
file,) HNow suppose we want to combine the lines in
FINDIT.LIS with the following program

100 DIM TEXTH{9%)

110 INPUT "ENTER SOME TEXT: ",TEXTS

120 GOSUB FINDIT

130 PRINT "FIRST NON-BLANE IS AT: "“;NBPOS
140 END

This program uses the FINDIT subroutine., Assuming
no other lines are in the work area except 100
through 140, how can we combine these lines with the
lines in FINDIT.LIS? We enter the command

ENTER "FINDIT.LIS"., The result is that we would now
find the following lines in the work area

100 DIM TEXTS(99)
110 INPUT *ENTER SOME TEXT: “,TEXTS
120 GOSUB FINDIT
130 PRINT "FIRST MNON-BLAMEK IS AT: "« NEPOS
140 END
9000 *FINDIT
9010 FOR NBEPOS=0 TO LEN{TEXTS$)-1
9020 IF TEXTS (NBPOS,NBPOS) <" " THEN GOTO EXIT
9030 NEXT NBEOS
9040 NBPOS==1
9050 *EXIT: RETURN

Try your hand at combining FINDIT.LIS with the other
statements using this process. These operatione are
gquite ugeful, and they are well worth the effort
made to understand them.

194 An Introduction to Structured BASIC for the Cromemeco C-10
CHAINING PROGRAMS TOGETHER WITH REUN

RUN can be used as a program statement. It helps us
to construct programs which are too large to fit in
our work area. ©Often it is possible to simply break
a program inte two or more pieces and then execute
one after the other to produce the desired
application results. Rather than entering RUN at
the completion of a program, we can have the program
do this for us. We simply code RUN as the last
executable statement in the program. For example,
consider the following twe programs, PROGA.BAS and
PROGE . BAS

FROGA , BAS

100 PRINT "HELLO"
110 RUN "PROGE,BAS™
120 END

PROGBE.BAS

100 PRINT "I AM FINE"
110 END

Entering RUN "PROGA.BAS" produces

HELLD
I AM FIKE

after printing "HELLO" at line 100, program
PROGA,BAS executes PROGB.BAS at line 110. The work
area is cleared and PROGB.BAS is loaded and
exacuted, If we were to use LIST, we would find
PROGE,BAS in the work area, Any number of programs
may be chained in this manner,

PASSING DATA BETWEEN PROGRAMS—OVERLAYS,
FILES, AND COMMON

If we are faced with the problem of passing data
from one program to ancother, we can do this by
writing the data to a file and then reading in the
next program. Thie is a very popular way of
chaining programs together when a large amount of
data are shared by each program.

Ch. 15: Writing Large Programs 195

Another approach to this problem is to use
ENTER a& a program statement to overlay or replace
part of a previously executed program. Here are two
programs that use this concept: OLAYA.BAS and
OLAYB.LIS

Program OLAYA.BAS

200 LET WEIGHT=100

210 PRINT "BLOCK WEIGHS ";WEIGHT;" POUNDS"
220 ENTER "OLAYB.LIS"

300 END

Program OLAYB.LIS

200 GOTO OTHER
230 *OTHER:FRINT "WEIGHT IN OQUNCES: ";WEIGHT*1E

OLAYR,.BAS is a program file created by SAVE, and
OLAYB,LIS is a file created by LIST. Entering

RUH "OLAYA.BAS" causes OLAYA.BAS to be locaded inte
the work area and executed. When line 220 is
reached, EMTER causes OLAYB.LIS to be inserted inte
the work area, and the resulting work area looks
like

200 GOTQ QTHER

210 PRINT "BLOCK WEIGHS “;WEIGHT;" POUNDS"

220 ENTER "OLAYB.LIS"

%gg ;UTHER:PRIHT "WEIGHT IN OUNCES: ";WEIGHT*1l&
ND

Line 200 has been replaced with a GOTO and line 230
is inserted into the program. After executing the
ENTER as indicated, BASIC begins execution with the
first line in the program area., This is now a GOTO,
which transfers control te the new program code at
line 230. WEIGHT is still set to 100 because the
work area was neither scratched nor relcaded.

Hence, the entire execution seguence beginning with
the RUN produces the output

BLOCK WEIGHS 100 POUNDS
WEIGHT IN OQUNCES: 1600
aw(0 Bnd®®

While overlaying programs is a useful procedure, it
can be troublesome when used excessively or without

196 An Introduction to Structured BASIC for the Cromemco C-10

care. The debris that we referred to earlier can be
collected quickly, and it iz often difficult to
visualige which statements are really in the work
area after each overlay. This technigue is better
suited for small amounts of program overlaying.

Usually, when smaller amounts of data need to
be passed between programs, it is done in a special
program area called the Commmon area, This is a
method that is emploved by many programming
languages and it is very widely used. It 1s
particularly effective when many programs must share
the =same data,

Only array variables and strings may be passed
between programe using thie technique, This does
not prevent us from passing data values of simple
(nen=array) variables between programe. By placing
the value in an appropriate array variable, the
value may be used by all programs using the Common
ared.

A Common area is defined by the use of DIM,
INTEGER, SHORT, and LONG statements and the COMMON
statement. The COMMON statement terminates the
definition of a Common area. ©Only DIM, INTEGER,
SHORT, and LONG statements which precede the COMMON
statement are considered when defining the area,
Among the INTEGER, SHORT, and LONG statements, any
array variables found, plus those in DIM statements,
define the Common area, The area is organized in
the order that array variables eccur in the
statements.

Let's try an example to get a better
understanding of how all of this works. Seratch
vour work area and enter the following program

»»100 DIM TABLE(2) ,MAMES(15)

»»110 SHORT COST(0) ,INCOME(1)

»»120 COMMON

»»130 TABLE(0)=0 : TABLE({l)=10 : TABLE(2)=210
»>140 COST(0)=33

»»150 INCOME (0)=1000,1

»»160 NAMES="DAVID"

»»170 RUN "PROGTWO,BAS"

*»»1B0 END

Now enter
»»8AVE "PROGOWE.BAS"
This saves the preceding program con the file

FROGONE.BAS. Scratch your work area and enter the
next program

€h. 13: Writing Large Programs

>»100
*»110
»»120
»*»130
»»140
»»150
»»160

Now enter

DIM MYTABLE(Z)

DIM MYNAMES(15)

SHORT COST(0) ,INCOME (1}
COMMON

PRINT "HAME IS: ";MYNAMES
PRINT "INCOME IS: ";INCOME(D0)
END

>>SAVE "PROGTWO.BAS™

This saves the preceding program on the file

PROGTWO,.BAS .,
»>>RUN

Enter

"PROGONE .BAS"

and you should see the result

HAKE

I5: DAVID

INCOME IS: 1000.1

1f we study the twe programs, we see that each
defines the Common area with the following
organization and description

Common Area
Program 1 Program 2 Bytes
TABLE(O) MYTABLE (0} g
TABLE(1) MYTABLE (1} &
TABLE(2) MYTARLE{2) 8
HAMES MYMAMES 16
COST(0) COST(0) 4
INCOME {0) INCOME (D) 4
INCOME {1) INCOME (1) 4

197

The declarative statements have defined an area of
exactly 52 bytes in each program that has been set

aside for Common.

The first B bytes are occupied by
the zero-th element of a long floating variable

array. In PROGONE,.BAS, these bytes are referenced

by TABLE(0), and in PROGTWO.BAS, these bytes are
MYTAELE(0) . Continuing down the

referenced by

table, it is easy to see the correspondences.
i no reason why the names in each program must be
different when referencing the same portion of

Commen, This is illustrated by COST and INCOME,

which are used in both programs.
It is easy to see how we got the results shown

by the execution of the two programs,

There

NAMES ie set

to "DAVID" in PROGONE,BAS, but this corresponds to

198 An Introduction to Structured BASIC for the Cromemco €10

MYNAMES in PROGTWO.BAS. INCOME(0) is set te 1000.1
in PROGONE.BAS, but this corresponds to INCOME(Q) in
PROGTWO.BAS. When PROGTWO.BAS is run, the Common
area is preserved. The values of the variables in
it have not been changed.

When defining the Common area within a program,
the area is structured on a variable-by-variable
bagis in whatever order the array variables are
encountered. This is done without any regard for
the structure that was imposed by any preceding
programs. An advantage to this method is that we
can sometimes restructure Common to our advantage,
For example, in one program it may be convenient to
reference a portion of Common containing a
20=character string as FULLNAMES. In another
program, it may be more convenient to reference the
game portion as two l0-character strings,

FIRSTRAMES and LASTHAMES. Here iz a simple
illustration

PROGRAM] .BAS

100 DIM FULLMNAMES(19)

110 COMMON

120 FULLNAMES="WILLIAM JOHNSON®
130 BUN "PROGRAMZ.BAS"

140 ENMD

PROGRAMZ ,BAS

100 DIM FIRSTHAMES(9) ,LASTHMAMES (9)
110 COMMON

120 PRINT LASTHWAMES ,FIRSTNAMES

130 END

If we were to run PROGRAM1,BAS the result produced
would be

JOHNSONR WILLIAM

The two names have been reversed in the output from
PROGRAMZ .

It is important to make sure that integer,
short, long, and character variables sghare locations
with variables of a similar type; otherwise, your
programs may produce strange results. If two
programs reference the same area with a variable of
a different type, with one variable as short and the
other variable as integer, one of the two programs
will eventually run into trouble. The internal

Ch. 13: Writing Large Programs 199

representation of each type is different and the
number of bytes referenced is different.

There are several gqualities of Common that are
important to note. When RUON is used, variables
which are in Common are not initialized. WVariables
outside of Common are initialized as described in an
earlier chapter. Because BASIC does not initialize
variables in Common, you should make it a practice
to do so. Many subtle bugs can be avoided by
carefully managing the initialization of wvariables.
Another important point about Common is that
successive programs which use Common must contain
the COMMON statement; otherwize, the Common area
previously established will be lost.

An Introduction to structured BASIC for the Cromemeo C-10
Review Questions and Exercises

What does FRE(0Q) do?

What does SFMODE do? When a mode change
command is given, what additicnal statement
must be executed before the mode changeg are
effective?

Which of the following two statements actually
saves storage space?

SHORT COST,TOTAL,SALES
SHORT RAINFALL(Z00) ,TEMPERATURE(40)

Why is LET A=331,3/22 an example of mixed mode
arithmetic?

What command is useful for combining or merging
programs?

Can one program run another program? What
statement permits us to chain programs?

Is it possible to use a simple (non-arrcay)
variable in Common?

Why is the length of Common 26 bytes in this
example?

100 SHORT PRESSURE(1)
110 DIM ANGLE(Q) ,WIDTH (0} ,MONTHS (5)
120 COMMON

Suppose vou are using Common to transfer data
between two programs, and an error occurs in
the second program and it stops. You correct
the problem, and want to continue from the
start of the second program. What happens to
the Common area if you use RUN? Why is it
better to uge GOTO to transfer to the first
statement in this case?

summary

FRE

IMODE,

A function which tells us the number of bytes
remaining in our work area and program.
SFMODE, LFMODE

Arithmetic mode commands which change the
storage attributes of numeric wariables.

The actual mode change of variables does not
occur until a RUN is given, following the
entry of a mode change command.

DEG, RAD

SHORT,

DELEEM

COMMON

Commands which change the default mode of
trigonometric functions between radians and
degrees,

LONG, INTEGER

Btatements which declare the storage
attributes of numeric variables.

Variables whose attributes are given with
these statements are not changed by the mode
change commands,

Attributes assigned by these statements are
not effective until the statemente are
executed.

Variables may be dimensioned with these
statements.

A command which deletes REM statements,
Phantom line numbers are created,
Creates program debris.

h statement which defines an area that is
preserved when a new program is brought into
the work area,

Variables declared in COMMOM must be arrays
or string variables.

ENTER-LIST

May be used to manipulate, combine, and merge
programs into deeirable forms.

OVERLAYS

Placement of program lines into the work area
of an executing program with ENTER in such a
way as to modify portions of the work area
while executing the program.

BUM-CHAINING

RUM may be used as a statement to link or
chain programs together.

-

In an earlier chapter we learned about subroutines
in connection with the GOSUB, 1In this chapter we
will learn about Procedures. They are closely
related te the subroutine concept of the GOSUBR and
have a number of important uses.

ADVANTAGES OF PROCEDURES

Procedures provide a number of advantages over
subroutines, First, they may define variables which
are completely local to the Procedures. This means
that the main program and a Procedure may contain
the same variable names, but the names occupy
different storage locations, This permits us to
develop Procedures which may be used by more than
one application, and be free from worrying about
whether variable names conflict in such a way that
we accidentally change a variable in a Procedure or
vice versa,

Procedures may be used with arguments, and data
may be passed back and forth between the program
using the Procedure and the Procedure itself, By
looking at the argument list, we can know exactly
what constitutes input and coutput from the
Procedure. This adds a little discipline to our
programming, which is generally beneficial. Use of
arguments also permits us to write recursive
Procedures., These special Procedures are useful in
only a few applications.

202

Ch. 14: Procedures 03

Perhaps the mest important advantage of
Procedures is that they give us another way of
manipulating storage. Procedures may reside on a
library outside of the program and be brought into
the work area as they are needed, In a similar
manner, they may be removed from & work aresa after
they have been used, thus providing space for
another Procedure or for additional storage. For
example, we may have twe Procedures in our library.
One produces plots of data, and the other prints
tables in some specified format, Our application
may never need to have both of these Procedures in
the work area at the same time. It can call them as
needed and remove them after each use so that the
minimum amount of storage is used, That is, they
are never brought into the work area at the same
time and so storage is not required for both.

FORM OF A PROCEDURE

A Procedure is defined by a PROCEDURE and ENDPROC
statement. An example of a very simple Procedure is

1000 PROCEDURE .SUMHEAD

1010 PRINT

1020 PRINT " SUMMARY REPORT*®
1030 PRINT

1040 ENDPROC

This Procedure simply prints a header for a report.
The Procedure is named ,S5UMHEAD, All Procedure
names begin with a period, and the name following
the period follows the conventions used for maming
numeric variables, When referring to a Procedure by
name in the text, we will just use the name without
the pericd. This Procedure is executed when a CALL
statement referencing the Procedure is used. Por
example

500 CALL .SUMHEAD

The CALL statement is similar to the GOSUB.

Let's work with a slightly more complex
Frocedure. Scratch your work area and enter the
program

»>>100 DIM MYDATA(15)
»>>110 DATA 5

204 An introduction to Structured BASIC for the Cromemco C-10

>>120 DATA 14,19,30,17,22

»*»»130 READ R

*»140 POR J=1 TO N

>3150 READ MYDATA(J)

*»160 MEXT J

»»170 CALL .SUMIT (N, MAT MYDATA; SUM, SUMSQ)

»>»180 PRINT "“SUM: ";SUM;"® AND SUM OF SQUARES: "j;S5UMSQ

5>190 STOP

5>200 PROCEDURE .SUMIT (COUNT, MAT NUMBERS)
*>»210 DIM NUMBERS(15)
>>230 5=0.0

>>230 550=0.0

»>240 FOR K=l TO COUNT
»»250 5=S+NUMBERS(E)
>>260 55Q=550+5%5
»»270 NEXT K

»>280 EXITPROC (5,550)
$>290 ENDPROC

>>300 END

Make sure you put the space after SUMIT in lines 170
and 200, and the space after EXITFROC in line 280;
otherwise, BASIC will generate a syntax error for
those lines.

Enter RUN and you should produce

SUM: 102 SUM OF SQUARES: 22058

The Procedure SUMIT defined opn lines 200
through 290 finds the sum and the sum of squares of
numbers found in an array, The program found on
lines 100 through 190 places five data values in the
array MYDATA. The zero-th element of MYDATA is not
used,

At line 170, SUMIT i=s called to compute the
required sums that are printed in line 180, The
call contains an argument list, A semicolon divides
the list into two lists of variables, The first
list contains the input variables N and the matrix
MYDATA. The output results of SUMIT are placed in
the output variables SUM and SUMSQ in the second
list, As we will discover shortly, these two lists
are not necessarily divided into separate lists for
input and output wariables. However, in many cases,
we can think of the two lists as functioning in such
a manner. An alternate name for argument lists is
parameter lists, and we will use both terms
interchangeably .

The PROCEDURE statement at 200 contains a list
of input wvariable names used in the Procedure,

Ch. 14: Procedures 205

These are artifiecial, or dummy, names. They
represent names that are used in forming the
statements contained in the Procedure, and variables
that are available may be affected through the CALL
statement. For example, when called at line 170,

the data for COUNT are taken from N, and the data for
the arrxay NUMBERS are taken from MYDATR. The names
listed in the CALL and PROCEDURE must be in the same
order as their intended use. CALL .SUMIT (MAT MYDATA,

M; S5UM, SUMSQ) would not be acceptable.

The EXITPROC statement at line 280 is used to
return the cutput variable data to the output
variables in the second list in the CALL. The wvalue
contained in § is placed in SUM, and the wvalue
contained in 880 is placed in SUMSQ. A STOP is
placed at line 190 te prevent the Procedure from
being executed without a CALL.

Brray and string variables may not be included
in the output list of an EXITPROC. If array
elements or strings are to be returned as output to
the calling program through the argument list, they
must be included in the first argument list., In
this case, the array and the string variables must
be explicitly declared with a DIM in the main
program and the Procedure. Dimensions must match.
For example, the program

100 DIM NUMBERS(5), MYSTRINGS(10)

110 CALL .SIMPROC (MAT NUMBERS,MYSTRINGS)
120 PRINT WUMBERS(4) , MYSTRINGS

130 STOP

140 PROCEDURE ,SIMPROC (MAT MATRIX, ASTRINGS)
150 DIM MATRIX(5), RSTRINGS (10)

160 HMATRIX(4)=22

170 ASTRINGS="HELLO"

180 ENDEROC

190 END

produces

22 HELLO

If a single, non—-array variable is to be used as
output, itz value must be output through the second
list included in a CALL.

The STOP at line 130 is used to prevent the
PROCEDURE statement from being executed without the
CALL. A GOTQO to skip around the Procedure would be
another acceptable way to aveid executing the

206 An Intreduction to Structured BASIC for the Cromemco C-10

Procedure without use of & CALL. It is not
advisable to jump into the middle of a Procedure.
BASIC will generate a stack ercrcor.

When using arrays in the argument list of the
CALL and in the PROCEDURE, the prefix MAT must be
used to identify the items as arrays. Character
strings may be used in the argument lists for a
Procedure.

Our SUMIT Procedure introduces all the
procedural statements in BASIC except ERRPROC,
ERREROC iz used ko recover from errocre which occur
in a Procedure, It is discussged in the Structured
BASIC Instruction Manual.

GLOBAL AND LOCAL VARIABLES

The SUMIT Procedure just discussed is fairly typical
of Procedures. Our use of J inside SUMIT creates no
problems because J is not used outside of SUMIT. If
J had been used in the program outside of SUMIT,
which is termed the calling program, a pessible
conflict could develop. The variable J could be
¢hanged in the Procedure. Its new value might cause
& problem when the calling program continued
execution from the point of the CALL. For example,
if in the calling program, J contains a cost but was
used in the Procedure as a loop variable, the cost
might be inadvertently changed.

The wvariables J and E in our example are
referred to as global variables because they refer
to the same storage locations whether they are used
inside or outside the Procedure, It is possible to
make variables local to a Procedure with the LOCAL
statement. That is, we may specify that variables
have names and locations that are only known to the
FProcedure in which they are declared local., If we
insert

205 LOCAL J

inte the Procedure, we declare J as lecal, Now if J
is used outside of SUMIT, it is effectively a
different J than the J inside of SUMIT. This is of
tremendous advantage when we write Procedures. We
need nok worry about choosing variable names in our
Froceduree that might be the same as those used in
the calling program. Use of local variables
prevents variables from getting changed accidentally

ch. 14: Procedures 207

in the calling program, Some care must be exercised
when declaring array variables and string variables
as local wariables; the proper dimensions must be
gpecified with a DIM statement or default wvalues
will be applied. WVariables used in the parameter
list of the PROCEDURE and EXITFROC statement are
taken as local variables and need not be declared as
such,

In order to emphasize the difference between
local and global variables, consider the program

100 SCORE=12

100 POINTS=4

120 CALL .DOIT

130 PRINT "SCORE=";SCORE;" POINTS=";POINTS
140 sSTOP

150 PROCEDURE .DOIT

160 LOCAL SCORE

170 SCORE=200

180 POINTS=20

190 ENDFROC

This program preoduces the output
SCORE=12 POINTS=20

SCORE and POINTS are used inside and outside the
Procedure. SCORE is used as a local wvariable inside
the Procedure, It is a different SCORE inside.
Hence, changing its wvalue does not change the value
of SCORE in the calling program, POINTS, however,
is a global wariable, and when its wvalue is changed
at line 180, it is changed in the calling program.

Figure 14.1 Just a little way to shore, folks,

208 An Iintroduction to Structured BASIC for the Cromemco C-10

As another example, consider the following
program outline (indentations have been used to make
gome procedural relations clearer)

100 A=1.0

110 B=44.0

120 CALL ,FIRST

130 CALL .HOUDSE

170 sTOP

200 PROCEDURE .FIRST

210 LOCAL A

220 A=d4.0 FIRST
230 E=16.0

240 ENDPROC

300 PROCEDURE .HOUSE Ay
310 LOCAL H

3z0 H=45.0

330 CALL .KITCHEM

340 EXITPROC

350 PROCEDURE ,KITCHEN

360 A=15 HOUSE
7o H=200 EITCHEN

380 EXITPROC

390 ENDPROC

400 ENDPROC “

410 END

This program, which we will call MP (Main Progtam),
uses three Procedures: FIRST, HOUSE, and KITCHENW.
EITCHEN is nested within HOUSE. We can make the
following statements about the variables A, B, and H

A in the MP is global to HOUSE and KITCHEN

A in FIRST is local to FIRST

B in the MP is global to FIRST, HOUSE, and
KITCHEN

H in HOUSE is local to HOUSE

H is HOUSE is global to KITCHEN

We see that the terms lecal and glebal are relative,
It is not neceseary to declare every variable

in a Procedure as a local variable, but this is
often & smart way to operate. If you do not, you
run the risk of forgetting which variables are being
used for this purpose when wou use the Procedure in
other programs, and this may lead to the kind of
problems we just discussed. On the other hand,
there is nothing wrong with using a glebal variable

Ch. 14: Procedures 208

in a Procedure. This is a perfectly acceptable way
of passing input or output values between a
Procedure and the calling program.

If you plan to use your Procedures with the
partitioning features of BASIC that are described
later in this chapter, you will not have to worry
quite as much about declaring variables lecal. This
topic will be discussed later in connection with
using Common and partitions.

RECURSION AND STACKING

The BASIC statement LOCAL, which permits us to
define local variables, permits the stacking of
variables, and this capability opens the possibility
of writing recursive Procedures, However, stacking
and recursion are concepks that most applications do
not use, and they will not be discussed in any
detail here. These concepts are discussed in the
Structured BASIC Instruction Manual. We have
included an interesting and fun example program
which uses these concepts extensively in Appendix B.

MATCHING ARGUMENTS

We menticoned earlier that variables and data must be
passed through the argument list to the Procedure in
the correct order, as defined by the PROCEDURE and
any EXITPROC statement, It is not necessary kLo
match the storage attributes of the variables in the
CALL and PROCEDURE statements, BASIC will take care
of any mismatch in attributes. It will pass the
correct values into the Procedure, and return values
properly to output wvariables in the calling program.

When arrays or strings are involved in the
arguments, it is very important to make certain that
the dimensions and string lengths match. This is
especially true when a two-dimensional array is
used., When cone-dimensional arrays or strings are
used, make sure that the dimenasions and lengths of
variables in the Procedure are the same as the
corresponding variables in the calling program.

A5 an aslide for users who are familiar with
languages like FORTRAN or PL/SI, declaring variables
appearing in the list of a PROCEDURE or EXITPROC

10 An Introduction to Structured BASIC for the Cromemco C-10

statement as having particular storage attributes
has neo effect, INTEGER, SHORT, and LONG are
executable statements and have no effect until they
are actually executed.

BUILDING PROCEDURE LIBRARIES

hs stated earlier, one of the advantages of
Procedures is that they can be placed in libraries
which are independent of the program. A program may
bring Procedures into a work area when it needs them
and remove them to conserve space as needed. This
means that we can control the size of our programs
during execution by selecting the minimum program
configuration needed to sclve our application
problem, Using Procedures in this manner may be
thought of as an alternative to the chaining and
overlay methods discussed in a previous chapter.

A library consists of modules, A module is a
single Procedure or a group of Procedures kept on a
program file in SAVE form. A module must be created
from a file consisting of Procedures that have been
saved using the SAVE command.

There are two ways to create library modules,
One method simply uses a file containing a single
Procedure or several Procedures, This file must be
created by using the SAVE command. In this form,
the library consists of a single module. The other
method reguires the use of a BASIC program file
called LIBRUILD,.LIS which is included only with 32K
BASIC software, Structured BASIC does not contain
this program. The advantage of LIBEBUILD is that
several modules may be placed in a single library.
We will discuse LIBBUILD in more detail im a later
section,

Seratch your work area and enter each of the
following two modules

Two Procedures for module 1

»»8CR

»»100 PROCEDURE .FATHER

»»110 PRINT "WE ARE USING FATHER"
»»120 ENDPROC

»»130 PROCEDURE .MOTHER

»»140 PRINT "WE ARE USING MOTHER"

Ch. 14: Procedures M

»»150 CALL .CHILD
»»160 ENDPROC
»»SAVE “PARENTS ,BAS"

A Procedure for module 2

»>8CR

*>100 PROCEDURE .CHILD

*»110 FRINT "CHILD HAS BEEW CALLED"
»»120 EMDPROC

>»S5AVE "CHILDREN.BAS"

The first set of two Procedures, FATHER and MOTHER,
ig saved in a file called PARENTS.BAS, and the third
Procedure, CHILD; is in a file called CHILDREN.BAS.
We will use these two modules as individual
libraries in the examples to follow in the next
section.

PARTITIONS

Before using our libraries, PARENTS.BAS and
CHILDREN.BAS, in a program, let's learn how BASIC
views the work area for the purpose of werking with
Procedure libraries.

BASIC artificially divides the work area into 8
partitions, which are numbered from 0 to 7. When we
normally enter a program, the program statements are
placed in partition 0, When a Procedure is called
from our program and it resides on a library file,
the module containing the Frocedure is placed in
another partition, vnlese it iz already in a
partition. The Procedure is then executed and
control is returned to the partition that made the
call, which is partition 0 in this case. There are
ways of specifying into which partition the next
module brought into the work area should be placed.
However, if we do not specify the partition, BASIC
will place the module into the highest numnbered
partition that i= available, A partition is
available if it is not locked. Partition locking
will be discussed later,

Wow, scratch the work area and enter the
following program, which makes use of the two
libraries we built esarlier,

>»100 LIBRARY “"PARENTS.BAS"
»»110 CALL .FATHER

n2 An introduction to Structured BASIC for the Cromemco C-10

»»120 LIBRARY “"CHILDEEN.BAS"
»»130 CALL .MOTHER
»»140 END

Entering RUN produces

WE ARE USING FATHER
WE ARE USING MOTHER
CRILD HAS BEEN CALLED

The LIBRARY statement at line 100 tells BASIC
that the next CALL which does not find the
referenced Procedure should use the library
PARENTS ,BAS to find the Procedure, BASIC searches
each partition in order from 0 to 7 to find a
Procedure that is referenced in a CALL. When line
110 is executed, BRSIC cannot find the Procedure
FATHER in any partition. It finds it in module 1 of
FARENTS .BAS and places it in partition 7. FATHEE is
executed. Line 120 opens a new library,
CHILDREN.BAS. When a new library is opened, any
previously open library file is closed. Simply
uging LIBRARY without a library reference closes any
open library file. Upon executing line 130, BASIC
finds that MOTHER is in partition 7 with FATHER and
executes MOTHER. There was no need to reload the
twe Procedures of module 1., In the course of
executing MOTHER, MOTHER calls CHILD, which is not
in any partition. Again BASIC goes to the library;
this time it goes to CHILDREN.BAS, and loads module
2 into partition 6, which is the next lowest
available partition, CHILD is executed, producing
the last of the three output lines. Control is
returned te MOTHER, and MOTHER returns contrel to
the program in partition 0, Line 140 terminates the
program,

Use LIST to see what is left in your work area
after executing our example program, Surprisel!l It
iz just what we entered a moment ago: lines 100 to
130. Where are the Procedures that were loaded from
the libraries? These are in partitions 6 and 7. A
USE command allows us to see these partitions.

Enter

»>USE T
»>LIST

This produces

100 Procedure .Father
110 Print"WwE ARE USING FATHER"

ch. 14: Procedures 213

120 Endproc

130 Procedure ,Mother

140 Print"WE ARE USING MOTHER"
150 Call .CHILD

160 Endproc

Try experimenting with USE to loock at partitions 6,
0, and 5. Try USE "CHILD". It f£inds the partition
containing CHILD., What happeng when you add or
modify statements in the partition? BASIC permits
vou to make the changes.

An impertant peint is that all variables in a
partition are local to that partition. Another
partition does not know the wvalues of those
variables, and cannot change them. However, within
the partition, wariables are global to one another
between Procedures. That is, if two Procedures in
the same partition have a similarly named variable,
the variable is global, As a consegquence, either
Procedure can change its value,

The example just considered only illustrates
the partitioning concept., As of yet, it may not be
clear that we can use partitioning to our advantage
in minimizing the storage reguired for a program,
Before seeing how this can be accomplished, let us
look at how partitions are locked.

LOCKING A PARTITION

In our preceding discussion, we mentioned that BASIC
places a module in the next available partition. A
partition is available when it is not locked. A
pactition becomes locked when it is involved in a
nested call. This is exactly what happens when
MOTHER is called in our example., The partition
containing MOTHER is locked because it needs CHILD.
The module containing CHILD is placed in the next
available partition, which is 6, This form of
locking is called an avtomatic lock. When control
iz transferred out of a partition that has been
automatically locked, the partition is auvtomatically
unlocked, We may manually lock a partition and
force BASIC net to use it with the LOCK statement.
Examples of the two forms of the LOCK statement are

LOCK 4
LOCKE "MOTHER"

214 An Introduction to Structured BASIC for the Cromemco C-10

The first form locks partition 4. The other form
locks whatever partition contains the Procedure
MOTHER. An UNLOCKE command iz available in the same
two forms as the LOCK. It has the cpposite effect
of LOCK.

From what we have learned, it should be become
clear that, through the proper use of general
partitioning facilities and the locking mechanism,
Wwe can use parkitions to minimize the storage
occupied by our executing programs. For example,
consider the uwse of a library called ANIMALS.BAS,
which contains a single Procedure, HORSE, that uses
no other Procedures, Suppose HORSE is called after
MOTHER. Our program might look like

100 LIBRARY “PARENTS,.BAS"
110 CALL .FATHER

120 LIBRARY "CHILDREN.BAS"
130 CALL .MOTHER

140 LIBRARY “ANIMALS.BAS"
150 CALL .HORSE

160 END

When line 160 is executed, the module containing
HORSE will be loaded into partition 7 and executed,
Partition 7 is not locked because we have not
manually locked it, and the astomatic locking
mechanism does not apply. When BASIC searches for
an unlocked partition, it begins at partition 7 as
previously menticned. Since partition 7 does not
contain any Procedures HORSE needs or any which use
HORSE, partition 7 is not automatically lecked and
it is used to load the module. We have reused
partition 7 and replaced it with the space occupied
by the former module with a new module., Partition 6
will be unchanged. If we wanted to free more space
in the program we could clear partition & with a
CLEAR statement, which we will learn about next.

SCRATCHING A PARTITION

When a module is loaded into a partition, it takes
up space until it is removed. We may recover the
space used by a partition by using the CLEAR
statement. CLEAR acts like the SCR command on a
partition. Examples of the two forms of the CLEAR
statement are

Ch. 14: Procedures 5

CLEAR 3
CLEAR "TALLY"

The first form clears partition 3, The second form
clears the partition containing the Procedure TALLY.
Try experimenting with CLEAR and LVAE on each
partition. Try printing the available space with
FRE(0) .

CLEAR is generally used to free space taken by
a module residing in a partition., There is no need
to clear a partition simply to have BASIC load a new
module into it, When BASIC reuses an unlocked
partition, it clears the partition first and then
loads the module into it,

CREATING A LIBRARY WITH LIBBUILD

The LIBBUILD program is an interactive program which
allows you to create libraries of Frocedures, (It
is only available in the 32K version of Structured
BASIC, and is not available for the C-10.) It is a
fairly large program which is kept on file in LIST
form., It is so large that you may not be able to
enter it into the delivered configuration of BASIC
that you have been using. There are two ways to
solve this problem. The first way is to reconfigure
your BASIC interpreter by using the BASICGEN program
delivered with your scftware. This is easily done
by following the instructions in the appendix for
configuring BASIC, and by configuring BASIC to a
form which does not use the ESAM features, The
second way is to remove all of the remark statements
in the LIBBUILD program using the Cromemco SCREEN
editor or WRITEMASTER programs, Use the edited
version with BASIC. EKeep & copy of the original.

In order to use LIBEUILD, we enter

»»ENTER "LIBBUILD.LIS™
»>»RUN

and the program will respond with a menu of the form

32K STRUCTURED BASIC Library Utility

216 An introduction to Structured BASIC for the Cromemco C-10

Select a function:

V == View PROCEDURE names within a SAVEd program
I -- display Index of a library file

A -- Add a SAVEd progtam to a library file

D -- Delete a module from a library

€ —— Create a new library file

Q -— Quit

functien 7 -—=3:3

The last line is a prompt to enter one of the
funetion symbols: WV, I, A, D, C, or Q.

LIEBUILD is fairly straightforward to use, and
we will not discuse it in any further detail.
However, if you want to try it out, enter the twe
modules that we created earlier, PARENTS.BAS and
CHILDREN,BAS, as individual libraries into a library
named EXAMLIB with LIBBUILD. When vou are finished,
use the I function of LIBBUILD, and you should
obtain the index

{ 2 k bytes used)

Module number 1
+FATHER
MOTHER

Module number 2
LCHILD

HNote that in vour directory vou have created a file
called EXAMLIE., It contains two modules with the
above Procedures. Use the following program to get
exactly the same results we obtained earlier using
PARENTS .BAS and CHILDREN,.BAS as individual libraries

100 LIERARY "EXAMLIB"
110 CALL .FATHER

120 CALL .MOTHER

130 END

COMMON FOR PROCEDURES

Earlier, in connection with local variables, we
mentioned that all variables in a partition are
local ko it. Since all variables in a Procedure are
local to the partition, how do we pass data back and
forth between partitions? One way was previously

Ch. 14: Procedures 217

mentionad: use the argument list of a CALL
statement. However, when we have a lot of data to
share, it is easier to use a special Common area for
Frocedures. The BEGINCOMMON and ENDCOMMON
statements are used to define such a COMMON, and we
will call it method 2 for defining Common, In an
garlier chapter, we discussed another way of
defining Common with the COMMON statement, and it
will be referred to as method 1., Method 1 does not
give us a way of passing data through a Common area
defined in a partition,

The Common area established by method 2 may be
used by both partitions and programs. That is,
method 2 permits partitions to share data. An
entirely new program brought inte the work area can
also make use of the method 2 Common <defined by any
previous program in the work area. This second
approach is guite similar to metheod 1. Usually, we
think of method 2 as a way of sharing data between
partitions. Method 2 is alec similar to methed 1 in
that only array and string variables may be included
in Common.

The main program, which is found in partition
0, reserves the space for Common method 2, A
BEGINCOMMON is not needed in partition 0, and it
will generate an error message if it is used. BASIC
assumes that one is present before the first line of
partitieon 0, An ENDCOMMON marks the point at which
variables are no longer to be included in Common.
Any array or string variable reference between the
beginning of the main program and the ENDCGMMON
causes these variables to be included in Common.
Recall that in method 1, variables are placed in
Common only if they are explicity defined in DIM,
SHORT, LONG, and INTEGER statements. In method 2,
any reference to array variables or strings places
the variable in Common, The wvariables are placed in
the method 2 Common area inm the order they are
referenced between the beginning of the main program
and the ENDCOMMON. If an ENDCOMMON is not found in
the main program, the first CALL made in the main
program defines the ENDCOMMOM. Once the space is
reserved by BASIC when it encounters the ENDCOMMON,
the size of the area is fixed unless it is extended
by a subsequently executed program that is chained
[by use of EUN) to the previcus program. If an
ENDCOMMOM is placed as the First line of the main
program, no Common area is reserved.

It is usually best to define all the variables
in Common with DIM, SHORT, LONGE, and INTEGER

218 An Introduction to Structured BASIC for the Cromemco C-10

statements at the beginning of the main program, and
they should be immediately followed by an ENDCOMMON.
The placement of the ENDCOMMON in this way prevents
variables from accidentally being included in
Common. For example, 1f a PRINT statement with a
reference to a string variable occurs before the
ENDCOMMON, that string variable would reserve space
in Common. In most instances, this would probably
be undesirable.

In order that a Procedure may share the Common
reserved in the main program, the Procedure must use
the BEGINCOMMON and ENDCOMMON statements. If an
ENDCOMMON is not used, the ENDPROC takes the place
of ENDCOMMONW,., A BEGINCOMMON must be used if the
Procedure needs accesg to the Common area, In a
Procedure, the two statements do not reserve any
space, but they do define how the Procedure views
the Common area, The main program has already
regservad the space, The effect of these two
statemente in the Procedure is simply to lay out ©or
define how the Procedure views the area. In
Frocedures, wvariables are defined and allocated
gpace in Common in the order they are encountered.
If a Procedure attempts to use more space in Common
than was previously established, BASIC will generate
an error message, Restructuring of an area ie
possible in the same way as discussed for method 1.

In Procedures, it is wise to include only
declaration statements such as DIM, INTEGER, SHORT,
and LONG between the two statements. If ancther
statement is included which contains a reference to
a subscripted variable or string, the referenced
variable is put into Common as well.

To illustrate Common method 2 for Procedures
consider the program

Main Program - in Partition O

100 DIM TABLE(4) ,NAMES (15)
110 ENDCOMMON

120 TABLE(l1)=11l.1

130 TABLE(4)=44.,4

140 HNAMES="GRETA"

150 CALL .SHOW

160 CALL .TELL

170 STOP

180 END

Ch. 14: Procedures) 19

SHOW and TELL Procedures - in another partition

100 PROCEDURE .SHOW

120 BEGINCOMMON

130 DIM MATRIX(4) ,MAMES (15)

140 ENDCOMMOMN

150 FOR J=1 TO 4

160 PRINT MATRIX(J),

170 HEXT J

180 PRINT

190 PRINT "USER'S NRME: ";NAMES
200 ENDPROC

300 PROCEDURE .TELL

310 PRINT "NOTICE: ";TRBLE(1l),TARELE(4)
320 ENDPROC

When the main program is executed with RUN, it
produces

11.1] 0 44.4

USER'S MARME: GRETA
HOTICE: 0 0

TABLE and MATRIX match the same data in the Common
area, TABLE is used in the main program, and MATRIX
is used in the Procedure, MHAMES references the same
data in either partition. J is a local variable to
the partition containing the Procedure. A reference
to J in the main program would be to a different J.
Motice in particular in the Procedure TELL that a
BEGINCOMMON and ENDCOMMON have not been used, This
Procedure doeg not use Common. Hence the array

TABLE is not part of Common, and, therefore,
references to TABLE(l) and TAEBLE(4) are to an array

cutgide of Common, The values of this array are all
0.

5'.

An Introduction to Structured BASIC For the Cromemco C-10

Review Questions and Exercises

Which character is used as the first character
in &4 proecedure name?

Why is it a good idea to precede a PROCEDURE
statement with a STOP or GOTO statement?

What statement is used to execute a Procedure?

In the following program, why i1s AREA 15.0 when
line 110 is executed? 1Is AREA a local or
global variable?

106 CALL .RECTANGLE (3.0,5.0)

110 PRINT AREA,SIDELl,SIDEZ

120 sTOP

130 PROCEDURE ,RECTANGLE (SIDEl ,SIDEZ)
140 AREA=SIDEl1*SIDE2

150 ENDEROC

160 END

In guestion 4, why are SIDEl and SIDEZ both 0
at line 1107 What makes SIDEl and SIDE2 local
variables?

Instead of using AREA as a global wvariable in
the program in guestion 4, we return the area
of the rectangle through the argument list.

100 CALL .RECTANGLE {(3.0,5.0;AREA&)}

110 BRINT AREA,ARER . RECT

120 sTOP

130 PROCEDURE ,RECTANGLE (SIDEL,SIDE2)
140 AREA.RECT=SIDE]1*SIDEZ2

150 EXITFROC (AREA.RECT)

160 ENDFROC

170 EWND

Why is the value of AREA.RECT zeroc at line 1107
How many partitions does BASIC allow? What

number corresponds to the first partition?
Which partition contains the main program?

Review Questions and Exercises m

8. When are the Common areas defined by the use of
COMMON and BEGINCOMMON-ENDCOMMOM the =same? Are
they the same in the following main program and
procedure, where the procedure is found in
partition 7, for example?

Main Program (Partition 0)

100 SHORT ABC({19)
110 COMMON

120 ABC(5)=44.22

130 CALL .OUTSIDE
140 END

OUTSIDE Procedure (Partition 7)

100 PROCEDURE .QUTSIDE

110 BEGINCOMMON

120 SHORT ABC({19)

130 ENDCOMMON

140 PRINT "FROM OUTSIDE®";ABC(5}
150 ENDPROC

What happeng if COMMOM iz changed to ENDCOMMONTY

Summary

Frocedure
Gimilar to a GOSUE subroutine except that it
iz more flexible.

BEROCEDURE-ENDPEOC
Btatements which define the beginning and the
end of a Procedure,
When an argument list is ineluded it refers
to the first list in a CALL,

EXITFROC
Use to return output values to simple
(nen—array) variables in a CALL statement,
Values are returned to the second arqument
list in the CALL which executed the
Procedure,

22 An Introduction to Structured BASIC for the Cromemco C-10

CALL
Used to execute a Procedure,
May contain zero-, one-, or twWwo-argument
(parameter) lists,
The first and second lists are separated by a
semicolon,
References to arrays must be preceded by MAT.
The second argument list may not contain
array references,
The second argument list is used to return
data to simple (pnon-array) variables.
The first list may contain only 1. simple
input valuwes and variables; 2. input array
variables; and 3, output array wvariables,
ERRPROC
Used to recover from errors within a
Procedure,
Local Variable
A variable with the same name a8 a previously
uged variable; its name is known only within
the Procedure in which it is used.
WVariables ip a partiticn are local.
Variables mamed in a PROCEDURE or EXITPROC
are local,

Explicitly defines a variable as local.
Stacks values in a way that can be used with
recursive Procedures.

Global varjiable
A variable whose name and value are known
inside and outside a Procedure,

Partitions
A work area may be divided into eight partitiens

of arbitrary size which are numbered from 0
to 7.
Module
A collection of Procedures on a file created
by a SAVE.
Library
Contains one or more modules which may be
avtomatically brought into the work area by a
reference to a Procedure that is contained in
one of the moduoles,
The simplest library is single module.
LIBRARY
Opens a library which is searched when a
Procedure reference cannot find the Procedure
in any partition.

summary 223

USE

Command which allows access to a partition.
LOCK

Permite a partition to be locked so that

BASIC cannot lecad a new module into it,
CLEAR

Scratches a partition.

LIBBUILD Program
A special program that allows you to
construct libraries containing several
modules.

BEGINCOMMON-ENDCOMMON
Define a common area which may be uwsed by
Procedures occupying different partitions.
May be used to establish a common that is
shared by programs that are chained together
with RUN.

APPENDIX A
Genercating BASIC

When BASIC is purchased as a 32K version (occupying
32K of memory), it may be necessary to reduce the
gize of the BASIC interpreter by removing the
capabilities that are not needed in vyour
application, ({(This capability is not available in
the C-10 perscnal computer version of BASIC, which
i a 26K wersion of BASIC,) The extra epace gained
can be used to increase the size of programs,
arravs, and strings. Many applications do not use,
for example, the KSAM facilities of BASIC. By
generating a wversion of BASIC without the KSAM
facilities, we may gain 6500 bytes for program
purposes.

BASIC is generated by a program called BASICGEN
which is supplied with vour BASIC software. In this
appendix, we will give a brief description of how to
generate BASIC with BASICGEN, A fuller treatment is
contained in the 32K Structured BASIC Instruction
Manual Addendum.

Toe generate BASIC, load a disk containing
BASICGEN, and some other BASIC generation programs
which will be mentioned shortly, onto a drive and
enter

BASICGEN filename

where filename is the name of the file onto which
the new version of BASIC is to be placed. Examples
are

BASTICGEN B:BASIC
BASICGEN NEWBASIC
BASICGEN RUNTIMERE

x4q

Appendix A: Generating BASIC 225

You do not need to specify an extension of COM. The
following list of additional BASIC generation
programs must be on the same disk with BASICGEN

Bl .SBE Bl .SBR Bi,.SBER

B4 ,5BR B5.5BR

C1.5BR Cl.5BR C2A.5BR
C3.5BR C3A.5BR C4.5BR
C5.3BR C6.5BR C7.5BER
C8.5BR CO.5BR CY9A.5BR
CYE.SBR

BASLIB.SER SBASIC.SBR SBASICIO.SBR

If these programs are not present along with
BASICGEN.COM, BASIC will issue an error message and
guit, If you are using CDOS, make sure that you are
using the same master drive as the drive containing
these programs.

When you execute BASICGEN, it will prompt you
with a series of 10 guestions to which you should
respond with a ¥ or N for YES and MO, reapectively.
When you have completed all 10 questions, BASICGEN
will then generate the new BASIC file. An
abbreviated summary of the guestions follows,

BASICGEN Question Bytes Saved
Will this be an interactive version...? 5500
Do you wish KSAM file access capability? 6500
Do you wish the full text of error mesB...? 1350
Do you wish editing capability? 170
Do you wish to include the PRINT USING...? 900
Do you wish to allow user defined functions? 150
Do you want to include the LOG and EXP...7 890
Do you wish to include the sgquare root...7 175
Do you wish to include the trigomnmetric...? 510
Do you wish to include the HEX, VALC,...? 400

Questionz 8 and 9, concerning the sguare root and
trigonmetric functions, will not be asked if wyou
respond to guestiom 6 (LOG and EXP) negatively.

APPENDIX B

In the chapter on Procedures, we mentioned that we
would include an example of writing a recursive
procedure in BASIC. The example given here
generates Hilbert curves of various orders. It is
adapted from an algorithm in the book ALGORITHMS +
DATAR STRUCTURES = PROGRAMS by Micklaus Wirth,
Prentice-Hall, 1976. We offer the program with
little comment and suggest that readers interested
in the detaile see the cited book.

Hilbert curves of order 1 and 2 are shown here.

Hilbert Curves

Order 1 Order 2

® ow ow ow @

EEEE DR]

#EEF R WFEE R

Hotice that the order 2 curve consists of four basic
parts: each part looks like an order 1 curve with a
connector, rotated into a different position. A

276

Appendix B: An Example of Recursion 227

Hilbert curve of order 3 vses a Hilbert curve of
order 2 rotated into four similar patterns,

The program shown generates Hilbert curves of
any order, It is set up to draw curves to order 4.
The four procedures A, B, C, and D are used
recursively to generate the four parts of the curve.
The curves are placed in PLOTS and displayed after
each curve is generated. HO governs the width of
the plot and should be some power of 2, as
indicated in the listing. Since PLOTS is dependent
upon HO, HO should be chosen to keep PLOTS from
being too large to fit in the work area, and, at the
same time, it should be a convenient page width., No
attempt to erase the previocus curve is made as each
new curve is generated, so curves are superimposed
over the same area as each new one is generated.
The wvariable I does all the work as a recursive
variable. It is very interesting to write the Plot
procedure so that it places the curves on the screen
as they are being generated. The result is a rather
enake-like drawina,

A Program to Generate Hilbert Curves

100 Integer I,J,K,H,X,¥,X0,Y0,N,H0,Xold,Yold
110 Eem HILBERT CURVES FROM ORDER 1 TO H

120 Set 0,-1 : Rem Set BASIC page width

130 N=4 : Bem N is highest order curve

140 HO=£4

145 Rem HO is page width and HO=2**E for some EK>=N

150 Dim Plot5(HO*HO)
160 I=0 : H=HO : X0=Int(HS/2) : YO0=X0

170 For J=1 To HO*HO Step S

180 Plot$(J,J+7) ="

180 Mext J

200 Repeat

210 Fem PLOT HILEERT CURVE OF ORDER K
220 K=K+l : H=Int{H/2)

230 X0=X0+Int (H/2) : YO=YO+Int{H/2)
240 ¥old=X0d : Yold=¥YD

250 X=K0 : ¥=¥0 : Call .setplot
260 Call .A (X)

270 Call .Pout

280 Until E=H

240 Print

300 Stop

400 Procedure .FPout
410 Print

228 An Introduction to Structured BASIC for the Cromemco C-10

420 Print"SUPERIMPOSED HILBEKRT CURVES TO ORDER ";K
430 Print

440 For J=1 To HO

450 Print

460 Print PlotS((J-1)*HO0+1,J*H0);
470 Hext J

480 Endproc

500 Procedure A (I)

510 Integer I,Newl

520 Newi=Il : Local I : I=Newi
530 If Wewi>0 Then Do

540 Call .D (I-1) : X=E-H : Call .Plot
350 Call .A (I-1} 1 ¥=¥-H : Call .Flot
560 Call .A (I-1) : X=K+4H : Call .Plot
370 Call .B (I-1)

580 Enddo

590 Endproc

600 Procedure B (I)

610 Integer I,Newi

620 Mewi=l : Local I : I=Newi
630 If Wewir0 Then Do

640 Call .C (I-1) : ¥=¥+H : Call .Plot
650 Call .B (I-1) : X=X+H : Call ,Flot
660 Call .B (I-1) : ¥=¥-H : Call ,Plot
670 Call .A (I-1)

680 Enddao

690 Endproc

700 Procedure .C (I}

710 Integer I,Newli

720 Mewi=T : Local I @ I=Newi

730 If Wewi>0 Then Do

740 call B (I-1) : X=X+H r Call .Plot
750 Call .C (I-1} ¢ ¥=¥+H : Call .FPlot
Te0 Call .C (I-1) : X=X-H : Call .Plot
770 Call .D (I-1}

T80 Enddo

780 Endproc

B00 Procedure .D (I)

810 Integer I,Newi

820 Mewi=I ¢ Local I : I=Newi

B30 If Newi>0 Then Do

840 Call .2 (I=1l) : ¥=¥=H : Call .Plot
850 Call .D {(I-1) : X=X-H : Call ,Plot
B&0 Call .D (I-1l) : ¥=¥+H : Call ,FPlot
870 call .C (I-1)

BEO Enddo
B90 Endproc
1000 Procedure .Plot

Appendix B: Ah Example of Recursion 229

1010 Dim Plotchar$(8) : Plotchars=" +.*XEs#s1"
1020 Integer Size

1030 Local J

1040 If Xold<>X Then Do

1050 Size=5gn (X-Xold)

1060 For J=Xold To X Step Eize

1070 Plot$((¥=1)*HO+J, (¥-1)*H0+J)=Plotchars (E,K)
1080 Next J

1090 Else

1100 SizewSgn (¥=Yold)

1110 For J=Yold To ¥ Step Size

1120 PlotS((J=1)*HO+X, (J=-1)*HO+X)=Plotchars (E,E)
1130 Hext J

1140 Enddo

1150 Xold=¥X : YoldsY
1160 Endproc
1170 Procedure ,Setplot
1180 ¥Xold=¥ : Yolds=Y
1190 Endproc

APPENDIX

All the error messages that BAEIC issues are listed
except those for ESAM. When the text of a message
seems incomplete, we have added commentes in
parentheses, When you try to interpret an error
message at the terminal, list the statement and
compare 1t with the message.

Fatal Errors

Mo, Message (Meaning*}

1 Syntax

2 Uging Syntax (PRINT USING format incorrect)

3 Number of Arguments (No. args in fun. call incorrect)
5 Illegal Statement

6 Print Item Size (Exceeded page width - See SET)

7 Too Many Gosubs

B Expression Too Complex ({E.q., too many parentheses)

9 Return, Ho GOSUB Active
1o Next Withouwt For
12 User Function not Defined
13 Invalid Dimensions given
14 Gote er Gosub Non-existent Line
15 Subscript Value (Subscript value out of range)
16 Mumber of Subscripts (Wrong number of subscripts)
17 buplicate definition of label or function
15 Use of undefined line label
20 Bun Time Stack Improperly Hested (E.g., WHILE-ENDO)

* pegcriptions in () are added to clarify the
message, and are not part of the message.

250

Appendix C: BASIC ErTor Messages m:

Fatal Errors (Continued)

Mg, Message (Meaning)

21 Attempt to Go Back to Altered or Deleted Line

2z DIM Would Cverflow Top of ... COMMON (Rlready reserved)

23 Bad Begincommon/Endcommon Segquence

24 String/MNumeric Expression Mismatch (E.q., HUM="HI")

Tl Ko Such Procedure Available

T2 Bad Argquments to a Procedure CALLSENDPROC

T3 Ho Free Partitions to Load Procedure/Module into

T4 Invalid Procedure Library

99 FEATURE NOT IMPLEMERTED
101 End of Statement/End of Line (See Cromemco)
102 Out of Memory

Non-Fatal Errors (Usar Trappable)

Ho. Message (Meaning)
128 Pile Not Found (file not in directory)
129 Filename (Illegal file name)
130 Invalid Command for Device
131 File Already Open
132 File Not Open
133 File Humber (Invalid range for f£ile number)
134 Cannot Open File {(or does not exist)
1315 Ho File Space
136 File Mode Errer (E.g, writing on a read only file)
137 Cannoct Create File (File already exists)
138 File Read: No Data (Past last sector)
139 File Write {Writing to protected disk or file)
140 File Position/Status (Record no. out of range)
141 HWo Channels Available {Toc many files open)
142 Cannot Close File (File missing from disk)
143-190 (ESAM errorg - KSAM not discussed in this book)
200 Invalid Hex HNumber
201 Integer Overflow
202 Punction Argument Value (E,g,, SQR(-2,4))
Z03 Invalid Input (E.g., INPOT string into numeric)
204 Input (Too many items for INPUT)
205 Not Dimensioned
206 No Data Etatement (Mot enough data in DATA stmts)
207 Data Type Mismatch (READ reading wrong data type)
208 Mumber Size (Number too big or emall for BASIC)
z09 Line Length (ENTER file line more than 132 chars)
210 Input Timeout (See SET statement)
250 Overflow/Underflow
251 Errproc Return from a Procedure

APPENDIX D

ASCII Character
Codes

S

Dec Hex Code Dec Hex Code Dec Hex Code Dec Hex Code

o0 00 KUL 032 20 Space 064 40 8 096 60
001 01 S0 033 021 01 065 41 A 087 61 a
o062 02 STX 034 22 0V 066 42 B 098 62 b
003 03 ETX 035 23 & 067 43 C 099 €3 ¢
004 04 EOT 036 24 5 068 44 D 100 64 4
005 05 ENQ 037 25 % 069 45 E 101 65 e
006 06 ACK 038 26 & 070 46 F 102 &6
007 07 BEL 03% 27 ° 071 47 & 103 67 g
008 0B BS 040 28 | 072 48 H 104 &8 h
00% 08 RT 041 29) 073 4% I 105 69 i
010 oA LF 042 2A 074 48 J 106 BA]
011 oB VT 043 2B+ 075 4B K 107 &B k
01z 0C FF 044 2Cc , 076 4C L 108 sC 1
013 0D CR 045 2D - 077 4D M 108 60 m
014 OE 80 046 2B . 076 4E N 11¢ 6E n
0l5 OF SI 047 2F [/ 07% 4F 0 111 6F o
0l6 10 DLE D48 30 0 oo 50 P 112 70 p
017 11 DpCl o048 31 1 08l 51 O 113 71 «a
0lg 12 pc2 o050 32 2 0E2 52 R 114 72
0l% 13 pC3 051 33 3 M83 53 8§ 115 73 =8
020 14 DC4 052 34 4 084 54 T 116 74 t
021 15 NAE 053 35 5 085 53 U 117 75 u
022 16 SYN 054 36 6 086 56 W 118 76 w
623 17 ETB 055 3% % 087 57 W 118 77 w
024 18 CAN 056 38 B 088 58 X 120 78 x
025 19 EM 057 39 9 0B 59 ¥ 121 78 ¥y
0z6 1A SUB 058 3A 0%0 S5A I 122 7A =z
027 1B ESC 05% 3B 081 sB | 123 7B {
028 1C Fs 060 3C < 092 5C & 124 7¢ |
p2% 1D GS 06l 3D = 083 50] 125 70 1}
030 1B RS 062 3E > n%4 5g ° 126 7E =
7 095 &F Under 127 7F DEL

031 1IF Us 063 2F

FF=form feed, ESC=ascaps, LP=line feed, CR=carriage return
DEL=rubout, under=underscore.

2352

Appendix D: ASCII Character Codes 235
Control Codes

Dec Hex Cntrl Dec Hex Cntrl pec Hex Cntrl Dec Hex Cntrl
000 00 =] ona o8 H 016 10 P 024 18 X
o0l 01 B ooe 08 I 017 11 Q 025 19 ¥
on2 02 B olo DA J 018 12 F 026 LA 4
go3 03 C 011 OB E 019 13 8 027 1B [
oo4 04 D 01z ocC L 020 14 T 028 1cC %,
ons 05 E 013 oD M 021 1s 4} 029 1D 1
006 06 F 014 GE N 022 16 v 030 1lE g
ooy o7 G 015 OF 0 023 17 W 031 1F Under

The letter § before a number indicates the entry
corresponds to & summary at the end of a chapter.

A

AND=0R, 98
Arithmetic Operators,
24, 27
Arrays
arithmetic, 115f,
512%
string, 119, 5129
ASCII Codes, 232-233
ATTR, 1B, 522
AUTOL, B3, S85

BEGINCOMMON, 216f,
5223

Binary Functions, 67,
577

HYE, 9, 521

Byte, l44, 159, 197

C

CALL, 203, 5222
Chaining, 194, 5201
CHANGE, 82, 585
CLEAR, 214, 5223
CLOSE, 153, 5176
Colon (=), 94, 1l4s
Commands, 10, 521
Common Area

method 1 (COMMON) ,

194f, 216

method 2 (ENDCOMMON) ,

216=-217

236 An Introduction to Structured BASIC for the Cromemco €-10

COMMON, 194f, 5201
CoM, 107, 5113

Concatenation, 147
Continue - See CON

Correcting Mistakes, 9,

12
CREATE, 152, 517&

DATA, 45, 555
DATES, 65, 66
Debris, 111, 5114
Debugging, 105f
DEF, 62, 577
Deleting Lines, 12, 17
DELETE, 17, 522
DELREM, 191, 5201
DIM, 30; 116, 539,
196, 218
DIR, 14, 522
Direct acceas (See
random access)
Do, 179%-181, 5184
DSE, 14, 522

ECHO, 138, 5149
EDIT, 78; 585
Editing, 7Bf
ELSE, 181
END, 108
End of file, 169f
ENDCOMMON - See
BEGINCOMMON
ENDDO - See DD
ENDFROC - See
PROCEDURE
ENDWHILE - See WHILE
ENTER, 110-112, 5114,
192-193, 195
Entering BASIC, 8
ERASE, 18, 522, 172,
5178
Error Messages,
230-231
Errors
fatal, 135, Sl48,
230
error Numbers, 135,
136, S148,
230-231

execution, 135F
non=-fatal, 135,

s148, 231
syntactic, 24=-26,
540

5¥s5({3), 133
ERRPROC, 206, 5222
ESC, 137, 5149
Escape Key, 90, 5104,

137
Exiting BASIC, 9
EXITPROC, 205, 5221
EXPAND, 66-67, 577

File Function = IOSTAT.
172-174
File number, 152, S177
Pile pointer, 161, 5177
FIND, 81-82, 585
Flow diagrams, 4
Format, &8
Format Specifiers, 70
FOR, BG6-87, 5104
Functions
Advanced, 149f
Aritmetic, S59f
Binary, 67
Free Space (FRE),
1B5=-186, 5201
File (IOSTAT),
172-174, 5178
String, 64f

G

Generating BASIC,
224=-225

GET, 154, 155, 1l&0f,
174, 5176-177

Global WVariables,
206-209, 5222

GOSUB, 125-126, 5130,
126-137

GOTO, 93-94
Multiple - See

O GOTO

H

Hexadecimal MNumbers, 51
HIPO Charts, 5
Histogram Example,

index

120-122
1

I.Ff 95-99.— 5104; 130’

Immediate Mode, 106-107,
8112

Initialization, 32, 539,
107, 5113

INPUT, 41£f, 8555,
162-164, 5177, 196

Input/Output Function,
172-174

INTEGER, 189, 196, 5201,
218

L

Labels, 94, 5104
LET, 2&6f, 539, 56f,
577
Librakies,
5222
LIBRARY, 210-211,

215-216, B222

210-211,

Line Mame, 94, 5104,
112

Literals, 36, 540

Line Humbers, 9%, 520,
83

L1sT, 10, 10-12, 521,
110=-112, 112,

192-193, 8201

Little League Baseball
Record Example,

164-169

LOAD, 13, 821

Loan Re=payment Example,
90-101

LOCAL, 209,
8222

LOCE, 213-214, 5222

Logical Operators
(BMD, OR, etc,), 98

LONG, 185, 186, 5201,
zle

Loops,

LVAE,

206, 209,

g6t
108=-109,

5114

MAT, 119
Merging Programs,
192-193

237

Mixed Mode Arithmetic,
58, 191
Mode Changes
Storage, 186f
Trigonometric, 189
Modules, 210, S222
Hulfigle Statements,

MEXT = See FOR
NOECHD - See ECHO
NOESC - See ESC
WOLIST, 138, 5149
HTRACE - Sege TRACE

Hull Characters, 47-49,
T3

Numbers, 50-51, 51,
52-53, 555

Numeric Variables - See
Variables

4]
ON ERROR, 134-136,
El49
OM ESC, 137, E149
OH nnn GOTO, 94-95;
5104
OPEM, 152, 157-158,
5178
OR——AND, 98
Overlays, 194-196
p
Partitions, 211f, 82322

PEEK and POKE, 145-146,
5149
Phantom Lines, 17, 521
Plot Example, 122-124
PRINT
Field Width, 33f
Files with, 162-164,
5177-178
General, 9, 521, 23f
Spacing and Tabs,
34f; 540
Use of &, 24
FRINT USING, 68f,
876-77
Printer output, 164
PROCEDURE, 203, 204

Procedures, 202f

Frotection, 138

PUT, 154, 155-1586,
156=-157, 160, 5177

Random Access,
160£, 5176
RANDOMIZE, Gl-62, 577
READ, 45-46, 555
Records, 11-Bf,
5176
Recursion, 209, 226-229
Eelational Operators
(>r<, etc.), 97

150-151,

158f,

REM, 49, 555

REMAME, 18, 522, 172,
5178

Renumbering, 15-16, 522,
93-94

RENUMBER, 15-16, 522
REPEAT, 182-183, 5184
Reserved Names, 33, 540
RESTCORE, 45-47, 555
RETRY, 136-137, 35149
RETURM, 125-126, 5130
RUN.- lﬂ-lZJ 321; lﬂ?;
194, 5201

5

13, 8522

&CR, 11, 522, 111

Sector, 158, 172, E177

Sequential Access,
150-151, 153-155,
5176

Semicolon--ending PRINT,
34-35

SET, 131-133, 5148

SHORT, 189-15%0, 191

Sorting, 127=129

§PC Function, 36, 540

Statement, 9, 8521

8tring data with files,
155-157

String Variables - See
Variables

SAVE,

STOP, 107

Subroutines, 125=126,
8130

Substrings, 31; 5S40,

An Introduction to Structured BASIC for the Cromemco C-10

139-142
Subscripts,
141, 5149
5Y5; 133; 5148
System Parameters,
131-134

T

TAB Function, 36, 540
TIMES, 65, G6
TRACE, 8-4, 109%-110,
5114
Trigonometric Functions,
60
TYPE,

116, 140,

146
u

UNLOCK, 214, 539
UNTIL - See REPEAT
USE, 212-213, S223

L

Variables
Humeric, 27, 539
Short, Long, Integer,
144, 514%
S8tring, 28-=30, 30-31,
31-32

WHILE, 182-183, 5184
Work Area, 11, 13, 520
Work Area Space, 185

Figure I-2 At last!

AN INTRODLUCTION TO STRUCTURED
BASIC FOR THE CROMEMCO C-10
by Wayne T. Watson

This book assumes no prior program-
ming experience and slresses interachion
with the microcomputer. it is an introduction
ta the Cromemco™ Structured BASIC, or
Structured BASIC, language, which is avail-
able for use on Cromemoo microcomputers.
All programs and program examples in-
cluded in the book have been fun 10 ensure
that they are accurate. These programs
should be applicable fo the reader’s own
computer needs The firsl 10 chapiers pro-
vide a foundation to the most commonly
used concepts In BASIC, and the last 4
chapters offer more advanced material on
filez and programming struciures,

About the Author

Wayne T Watzon is the owner/president
of The Sobltware Hill, a compuler soltware
comparny speclalizing in statistical and busi-
ness forecasting applications, One of its
first products is IFDAS—Interactive Fore-
casting and Dala Analysis System, a statis-
tical software package. He has been active
in the area of software reliability and has
held positions concerned with software
development for the last ten years, His arti-
cles have appeared In Communications of
the ACM and The American Stalistician,

MACMILLAN PUBLISHING COMPANY
866 Third fvenue, New York, N.Y. 10022

ISBN 0O-02-%24580-1

