DoDD 00 GG FFFFF 1III Gce H H TTTTT
D D 0 a ¢ G F I G G H H T
D D O 0o 6 ¢ F I G G H H T
D D O g & FFF I G H H T
D b O 0 & eeee F I G GGGG HHHHH T
D D O g @ ¢ F I G ¢ H H T
D B o 0o G G F I G G H H T
D D o 0 ¢ @ F I G G H H T
DRDD GO GG& F I11 GGe H H T
3t £
S\ WHEEEE BN
SRR MR
B3 S U A IR
TSR IR S AN
F SRS I I S B
3 SE309E 0 I RN R
A% 363030302 363 363 3 33
SRR A R AR 333
HHAEAA RN H AW HBEH 3
SRS I 3R B 6 23
AGE R WS B
b33 I AU
A

HEH

CREATED FOR YOUR ENJOYMENT BY:
DOUGLAS P. DREES

P, THOMPSON PMcCALMONT

EE 315
Winter:Spring GQuarters 1977
Professor Harry T. Garland




DOGFIGHT Page 2

1.0 INTRODBUCTION

Dogfight is a video game based vpon the aerial combat
of World War II. The program simulates fthe response of a

real plane to %he pilot‘s commands. Unlike ather
implementations of this t&type of simulation, this program
actually vses Newiton’s laws af moftion. Qur goal was to

design & game that was not just fun but also realistic. We
wanted the planes %o teact much the same way a real one

wogld, But we realized that +that would nat be easy
censidering the limited computing power of a microcomputer
like the Z-1i. The program makes some pretty loase

assumptions but they are close senowugh for a reasonable
simulation of %true #light.

The program was writfen in BCBO assembly language with
a good number of ZBO instructions inserfted vsing the define
word pseuda—ap. (note: +fhe program will not operate an an
808C system). The program was designed to be operated on a
system fitted with a Dazzler caelor graphics display module
and a set of J81 )oysticks, both built by Cromemco.

2.0 INPUT ROUTINES
2.1 Data Input

One subroutine, ‘Input’, called once per pass, handles
all the inputting of data #From the Jjoysticks. It first
lcads "Axms" into the B register and "Bxms" inte the C
ragister. The most significant bit of each of these wvalues
is the Crash-flag of 1i%ts respective plane. I the
Crash—flag is set for a planse, then all input data for that
plane is destraoyed. The +first byte inputted 1is the
Action—flag ("Aflag"} which is the push button data. This
data comes in inverted, so the data must be complementead

hafore wuse. The Crash-flags are then ftested and any
appropriagte data is destroyed. Then +the data +Ffrom %he
Joysticks themselves is inputted. It also must be negated

hefore it is useabls.

The second halt of ‘Input’ is conserned with f£he
ability %o roll the plames much like a slow roll. Two
caunters: “Cn&r0"* & "Cntri", are wsed to slow down the
ragspanse 50 that a short ftouch of the roll button will roll
tha plane only once. Using this method, only when £he
counter is +timed ou%t and the rall button is depressed does
the subroutine ‘Roll’ get called. Whan it is called, it
flips fthe orientation bit (bit C of “Angl" or “Bngl"}l,
subtracts 180 degreses from the true angle of orientation,
and sets the proper counfer fo zero., I+ the counter has not
timed owt at the beginning of ‘Input’, then it is
incremented and ‘Roll’ is not called. I+ %the counter has
timed out but the bhubtton is not depressed, the counter is




—— e S P T - — —— i et i T A

DOGFIGHT Page 3
INPUT ROUTIMES

(:3 forced to the timed ouft value of 16,

2.2 Thrust Loading Rautine (’ThId‘}

j

| Since we are using the buttons to also contrel the

’ thrust of the planes, some kind of transiation was needed to
obtain apprapriate values foar the +thrust #from a +ftwo bHit

| binary input from the buttons. The appropriate bits of the
Aflag are totated into the least significant positions of
ragister A. The Ix regisfter is loaded with the pointer fo
the beginning of +the appropriate plane parameter area.
‘Thld’ is +hen called and it loads into the plane‘s thrust
variagle the value of thrust that corresponds to the wvalue
in the A register.

3.0 IMITIALIZATION ROUTINES
3.1 ‘Gamst’ — Game—start Iniftializing Routine

‘Gamst’ is talled once for every game, and it functiens

to ini%tialize all necessary regisfters for the next game. It
! begins by storing the value from the sense—switches asg the
(j) "Maxsc. " This can be any value between ¢ and 7FH; however,

anything greater than &63H (i.e., 99D} auvtomatically defaulfs
to H3H. Likewise, leaving the switches at zero wil force a

default to the wvalue FH (or 15D}. A wvalue of “i" will
always go to "2Z" because of the “win-by-twe® feature
described in the discudsion of "Score " Next in ‘gamst.’

Bits 7 of "Ayms" and "Byms, " the "Initialization Flags." are
sat so that both planes will be initialized when ‘init’ is
called. Affer this the bullet parameter area is
initialized; the bullat timers are set to 48D and one of
the insftructions is initialized +for all 10 (5 for each
Plane) bullets. "Cntra" and "Cnirb" {(Counters-4A and B) are
et €n 10D these time the interval between bullet firings.
Then thes following wvariables are initialized {0 zero:
*CnErO" and YOntri" (Interval Counters — used to determine
the frequency of ‘roll, ’ when the “roll" butten is pushed:
"Temp2" (Used €o slow down £he vo0ll of +he Planes in
‘fthup’). "Becora," "Scorb," “Pscra," and “"Pscrbd" (Scores -~
axplained in “Score® description); and #finally, “Pntra" and
"Pntrb* {(Painters & and B — which indicate the bullst which
was Just created. Befare rveturning ‘gamst’ sets the
Replot-Flags (RPA and RPBE) and thus enables the Ground to be
plotted &he fivrst pass through the program (see description
of ‘Eplot’ and Related Subroutines below}.




DOGFIGHT Page 4
initialization routines
3.2 Plane Initialization Routine (‘Init”’)

This Toutine very simply loads into the parameter area
of a lost or destroyed plane the appropriate values to

create a new plane on the ground in the correct cornaer. It
also wesefts the second crash flag used "in the handling of
explosions. It only initializes planes which have in same

way gone off fthe screen and have had ftheir Init-flags set.
At the beginning of ‘Init’ is an input From the sense
swiftches which restarts the game i# bit 7 is a “1%,

4.0 MOVEMENMT SIMULATION ROUTINES
4.1 Angle Of Orientation Update

The first real calculation +the program deoes is +the

ypdating of "Theta" and “Thetb". The incremental angle is
added to the ftrue angle svery five times through the ftheta
update subroutine, ‘Thup ’. A counter (*Temp2") is

incremented every time through ‘Thup’ and when the count
veaches +Five, +the counter is <cleared and the angles are
updated.

‘Thup * alsa performs the task of converting the true
angle of orientation, which is & seven bit gquantity, te the
displayed angle of orienfation, a four bhit representation of
the sgixteen possible orientations of a plotited plane., {nly
the most significant bits are used in the conversion. The
nawly calculated wvalues of “Theta®, “Thetb", "Angl": and
*Bngl" are fthen stored away.

4,2 Plane Flight Simulation

Flight simulation was performed by a subroutine called
‘Updat”. It was designed to wuwpdate the position of one
plane at a time. The Ix register was used +o pass the
pointer %0 the proper parameter area. This is the only
valua used in ‘Updat’ which was unigue fto a particular
plana. Otherwise the routine treats both planes
identically.

There were certain assumptions made about %he nature of
flight. To simplify +Hthe simulation, the number of forces
acting on the plane were reduced to four: 1ift, drag.
weight, and thrust. Although this is simplified, it is not
an oversimplification because these are the main forces and
control mest of the plane’s responses,




DOGF IGHT Page 5
MOVEMENT SIMULATION ROUTINES

Of these four forces, two are propeartional to the
square of the total wvelocity of the plane: 1ift and drag.
Lift is also a function of the angle of attack of the wing
into &the wind. This angle is the difference between the
angle of the plane itselt relative fto horizontal, theta, and
the angle of the plane‘s wvelocifty relative to horizontal,
phi (refer Lo fig 2.1). It was assumed %hat the lift would
be zero whenever the airflow over the wing was in the
reverse direction. This is not gquite <true but the
assumpition does not greatly affect the Flight of the plane
and it does simplify the the simulation.

e o bt 1 o e ——— —

: E H
H { { H
H i H ;™ ;
H H H P !
H W3 WW i H VA H
H L XS H H / vy H
HIE ] H H ! H H
I L ] H ! / H i
H 3 theta H } /fphi H H
! - i ! [ —————— > §
H ' i VX H
o e -——— + R F
+ig., 2.1
The equations for 1lift and drag are:
DRAG = KD#(WVE#s2)
/
P KL (VEru2d#caos(Theta—-Phi) ; for
LIFT = <« cas(Theta-Phi} 2> C

i 0 for cos{(Theta—-Phi) €< ©
A

Newton’s laws state that the suin of the forces acting
on & body in any direction is equal to the acceleration of
the body in that direction. The plane position wuwpdate
suybroutine, ‘Updat’, +irst calculates the square of the
total velocity. It also takes the arctangent of +the =ratio
af the vertical wvelocifty {VY) fto the horizontal velocity
(VX} which is the angle of the plane’s frue velocity to the
horizontal:, phi. Mext the sine and cosine of thetar: phi and
{theta - phi} are computed. It is then possible to compute
the sum of the forces in the X and Y divection accarding to




O

DOGF IGHT Page &
MOVEMENT SIMULATION ROUTINES

the +following equations:

FaubX = Thrust#cos(theta) - Lift#sin{theta)l
~ Drag#cos{phi}
FgubY = Thrusts#sinl(theta) + Liftitcos(theta)

- Drag#*sin{phi} — Weight

Once fthe forces are summed, i¥ we assume the +time
increment egqual %o one, ¢then the new velecity in either
divraction is just the sum of Ehe o0Id wvelocity and £he
acceleration in that direction.

ViewX VoldX + FsubX

"

VoldY + FsubyY

)

VnawyY

And again since delta t is one, the new paosition of a
plane is merely the sum of the old position and the newly
computed velocity, Buft a word must be said here abouvt the
definition ¢he direction of positive X and positive Y
relative to the definitions of the positive directions of
their respective wvelocities. DBoth ¥ and Y were defined for

easy calculation of the address of the posiftion in the real

memory space. X is therafore defined as increasing to the
right and ¥ as increasing deuwn:




DOGFIGHT Page 7
MOVEMENT SIMULATION ROUTINES

e ot ot o e S e A et S e Pt R B i e S S e o i P P S o 8 e 3 -l S e e o o A S W Bt e o s
H H
i o e e e e et i 2 X |
i i H
{ ! {
i i H
H } !
Pt '
! H !
{ H ) H
! H i
H ! {
H H !
[ 3 [} H
H i VY AY VY. ay ~ ]
{ H H i H
i { { H !
{ { P | H
H { # G *H ¥ {
H LY HFHRI] e—— > VX, AX VR AX e — AW H
H Y * #* i
H H
3 —_ - o ———— +
+ig. 2.2

But ¢o0o make 1t passible +to treat bath planes
identically, it was required +that the ageelerations and
velacities be defined by-. the novmal +$flying orientation of
the plane. For the plane that flies normally from Ieft %o
right, VX and &X are both defined as increasing %o the
right. Far tha plane that normally +flies from vight £g
lett, VX and AX are both defined as increasing to the letft.
VY and AY for both planes are defined as increasing upward
(fig. 2.2F. Therefore, before the velacity can be added %o
the posiftion +to get the next position, the value of VY has
to be negated and the wvalue of WX has to be negated if the
planes normally flies from tvight to left. The latter entails
the checking of & bit in the orienfation angle and negating
VX if the bit is set.

Thig reoutine also tests to see if a plans has flown off
the top of &he screen or crashed into the ground. In both
cases a +*lag must be sst that fells the initialize
subroutine, ‘Init’, %0 ctreate a new plans. For the case of
a crash the apponent’s score must also he incremented. The
program tests Ffirst it the new posiftion is a negative
number. If i% is, then the plane has left +the scresn one
way or Ethe obther. If VY is pesitive, then the plane has
crashed!




DOGF IGHT Page 8
MOVEMENT SIMULATION ROUTINES

4,2.1 Subroutines Called By Update Routine -

There are four routines used by the update routine to
perform its calculations: ‘Casin’y ‘Phi’, ‘Mult’, and
‘Overt’. These routines are required because the
instruction set of the ZBO processor does not include such
commands as multiply, sine, cosine, or arctangent.

4.2, 2 Bine And Cosine Lookup Roufine -

This touktine is a simple tahle lookup with an algorithm
added which figures out the signs of the sine and casine
depending on the value of the angle. The fable is arranged
so +hat +the each entry is propeortional to the sine of an
angle which is proportional %o the displacement of the
glement. It is 180 degrees long and has &4 entries as the
angles we chose %o deal with are only seven bits in
accuracy. First the angle is saved for later reference, and
is then stripped of its most significant bit. The result is
then wsed as a displacement in an indexed load instruction
which has the effect of getting the absolute wvalue of the
sine out of the table. The second most significant bit of
the result is then reversed and it is again used as a
displacemant in the fable lookwp. This has the effect of
getting the absolufe value of the sine of the angle plus <0
degrees which is esqual to the absolute wvalue of the cosine.
The angle is then refrieved and the two most signicant bits
are %tested ¢o determine %the signs of the sine and cosine
according ta the fpllowing diagram:

bit & = @ bit 6 = @
hit 5 = 1 hit 5 = O
cosine - cosine +
sine *# sine <+

180 » angle 2 90 20 > angle > O

it v

279 > angle > 180 360 > angle > 270

SO P I AV T

sine - sine -
cosine - cosine +
hit 5 = O bit 5 = 1
bit & = & bit & =1

fig. 2.3




DOGFIGHT Page 9
MOVEMENT SIMULATION ROUTINMES

4.2.3 Multiply Svbroutine ("Mult’) -

The algorithm used in fthis subroutine is flowcharted in
ref. i. It is a simple add and shift algorithm and any
guestions concerning it would be answered by reading pages
##—%% in that ref. The only difference is an added portion
which allows for ane of the operands to be negative. The
operand in the D register is «checked for sign and the
ahsolute value is fouynd. The multiplication is &then carriad
out and afterward the result is negated if that operand were
origanally negative.

4. 2.4 Arctangent Calculation Subroutine (‘Phi’} -

This voutine fakes fthe signed wvalues of WX and VY,
firgst calculates +their ratioa, and +then looks wp the
arctangent of that ratio.

Tha process begins by saving both wvalues and then
daviving their absolute wvaluas by testing ftheir signg and
negating the values if they were foound to be negative. Then
the absaolufte value of VY is divided by the absolufe value of
VX %o yield an =sight bit result. another subroutine,
(‘Tiu ) 1is then called which actuvally looks up the value of
the arctangent of the calculated ratio. The last step is to
add the necgsgary high order bits which will place the angle
in the correct gquadrant (fig 2.3}, The signg of the
avriginal aperands are required for this last step.

The division of ftwo eight bift integers yields a 1& bit
result, In most applications:, the low order eight bits are
uysvally discarded. But in order to obtain an accurate wvalue
for the arctangent; some of the low order bits were needed.
In fact the portion of the 16 bit result that was actually
vsed was +the middle eight bits. This is due to the shape
that the arctangent of any value over 16 is essentially <0
deg. and %the arctangent of any value less than 1/1é6 is
essentially G. The acftual division algorithm was also taken
from reéf. ir byt i%t was changed so that the pesculiar result
could be gbtained. The basic division consists of a loop
which is exscuted eight *times; once for sach bit of the
dividend. The result of this divisioan 1is the s2ight most
significant bits of the ratio. Then another loop is entered
for which the diwvidend is always taken %o bhe zero, This
loop is executed four times to get the next four bits of the
ratia. The most significant four bits of <the ratie are
thrown away.

The arctangent lookup is performed by another rtoutine
{( Tiu"}, Because it wundesirable to have a ftable with 254
entriesi one for each value of the ratio, this subroutine
was writien to compress the ftable into a much smaller memory

L



DOGF IGHT Page 10
MOVEMENT SIMULATION ROUTINES

space. The nature of the arctangent function is such that
there are ranges of values of the rtatio wherein the
arctangent is approximately constant. The compression is
accomplishad by first testing the ratio against a number of
ranges and if it is not found to be in any of the ranges, it
is then used as a displacement in @ much smaller table. The
testing for the vanges was done by comparing the ratio to a
valua. If the ratico was Iarger than the valuve, then the
routine would rekturn a value of the arctangent which was
constant over %the range above the value compared. I+ the
ratio was smaller,ift would then be compared +to a smaller
numberp. This would continue until the ratio was defermined
to be less than 31H. A% this point it is more efficient +fo
use a %able. The ra%io is used as a displacement in fhe
table o get the proper value of the arctangent.

Once the arctangent of the ratio of the absolute values
af VWY to VX has heen obfained, 31l that remaines is append
the two most significant bits determined by the signs of the
valocities according %o fig. 2.3 (VX has the same sign
convention as the cosine, and VY is same as sinel.

4,.2.5 Overflow Correction Subrovtine (‘Overf’’ -

The common problem of what %o do when an overflow is
detected is solved in this rouftine by first determining the
proper sign the vesult of the operation was to have and then
returning +the largest integey with that sign. This leads
too ervors in the computation but these errors: although
they can be quite large, have little detrimental effect on
the simulation.

4.3 BULLET MOVEMENT ROUTINES

There are three fopics %o discuss concerning the
handling of the bullets, First the bullet positions must be
updated. They must be plotted in the B/W page. And new
bullets must be created when the trigger is depressed.

4.3.1 Bullet Plotting -

The other topics depend upon an wunderstanding of how
the bullets are plotted in memory. Since the IZIBOC has bit
set and reset instructions and since the bullets should be
as small as possible, it was decided that the bullets would
be plo%ted using these bit type instructions. The ¥ and Y
positions are used %o generate an address (see ‘Adgen’} in
the picture area and also a bit address within the addressed




DOGFIGHT Page 11
MOVEMENT SIMULATION ROUTINES

byte. The address is put in the HL vegister pair and the
set and reset instructicns are performed on tThe memory
location addressed by the HL register. There is a problem
though in that there is no gonod way %o changa the bit
address of the instruction during execution. A&lthough it is
poor programming practice +to change instructions in the
instruction stream, it seemed to be the only way to perform
the necessary manipulations. Hence there is a secfion in
the main program devoted fto the generation of one byte of
the required bit instructions. The address of £he bit
within §he byfte is rotated to the left three times and the
number & is added (& 1is the designator of the location
addressed hy the ML reg. ¥ The most significant bit is set
for a reset {or erasel} instruction and both of the highest
order bits are seaf for a set (or plet? instruction. These
high order hits are set Just hefore &he instruction is
stored in the instruction stream and then executed.

To speed up the operation of the program, the address
of €the bullet and the bit instruction are stored in a
parametaer area until the next &time +through the program.
There are +five bullets wmaximuom per plane and hence ten
different paramefer areas allocated for the bullets.

4. 3.2 Bullet Position Update —~

The main program contains a loop which updates all
bullets that are still in existance. Their existance is
datermined by whether their caunters have timed out. The X
and ¥ positions are updated by a2 subroutine (‘Bulup’), and
the new address is also genevated by a subroutine (‘Adgen’}.
The new bit instruction is actually generated in the loop as
wall s the incrementation aof the counter.

The bullet position vypdate subroutine, ‘Bulup ‘.,
calculates +the new bullet position by adding the X and Y
components of the bullet’s wvelocity +to <the respective
componants of its posiftion. The X and Y positions are
stored as 12 bit quantities. The least significant four
hits of both components are stored in one byte. They are
accessed individually by rotat-digit instructions (RRBD &
RLDD Y. The wvelocity companents are eight bift quantities
with only five bits of accuracy. The velocity is added fo
the low order four bits of the position and the low order

four bifs aof the result is stored back. The sum is then
shifted right faur ¢times and the high order eight bits of
the positian is then added. For the Y -components. £&he

result of +this addition is checked for sign. I+ it is
negative, the bhullet either hit the ground or went aff the
top of +the screen and in either case the counfer is set at
maximum so fthat +the bullet ceases existance. The X
components are not checked because the bullets are allowed




DOGFIGHT Page 12
MOVEMENT SIMULATION ROUTINES

to fly off one side of the screzen and reenter the other
sida,

4.3.2.1 Test For Bullets Hitting Planes -

When each bullet is updated, it is also checked #for =&
possihle hit. The algarithm which is used is to ftest
whether the bullet is ploftted in the same byte as *the nose
of the opponent’s plane. If it is then there is a hit! A
subroutine, ‘Hitem’, is used to exsgcute this algorithm and
ta take care af the actions that are caused by a hif., These
include setting the Crash—flag, pointing the hi%t plame nose
down, and to destroy the plane’s X velocity. The Crash-flag
has %the a2ffect of killing all pilot inputs so that the plane
must fall uvnder the influence of gravity.

4.3.3 New Bullet Creation -

Two conditions must be met before a bullet can be
fired; 1} the bullet button on the joystick console must be
depressed, and 2! a counter must have timed out since the
firing of the last bullet, First the counfter is checked and
it fthere is still time Ia2ft: the counter is incremented and
the program skip the saction that creates bullats. I it
has timed ouf:, the "Aflag" is tested to see it the trigger
hutton was depressed. (see ‘Inpuft’ $for more info an
"4flag”). If it was depressed, then a new buvllet is created
by a subroutine called ‘Fira’. ‘Fire’ Pirst sets the timar
ta zaro. I% then %4ransfers the X and Y position of the
fiving plane’s nose to the X and Y posiftion Iocations in the
bullet parameter area. I+ then calculates the bullet‘s
valocity by using ‘Cosin’ to get the sine and cosine of the
plane’s angle to the horizontal. The cosine divided by
eight {is the X welocity and similarly the sine divided by
eight is the Y wvelocity. This ensures +that all builets
travel with +the same speed and that no bullet can hif the
plane that fired i%,

A subroutine:, ‘Shitt’, had te be used +to perform a

vTight arithmetic shift as fthe SRA instructions did not
always pevrform an arithmetic shift.

3.0 PLOTTING ROUTINES




e e e T e T e e T e [ e — S e e - me == - -

DOGFIGHT Page 13
Platting Routines

(i) 5.1 Introduction And Explanatian OFf Dazzler
X

Therzs are a number of gbjects in “"DOGFIGHT!" which must
be plotted on the TV screen. This is done by the Dazzler
civeuit bogard:, which does a DMA of the RAM plugged intae the
systam. {The Dazzler and related calls is explained

f elsewhere. } The Dazzler has sevaral different plotting modes
including +the ability %o plot golor or black and white and

| alse %o vary fthe size of the blocks that are plotted. The
; screen size may be as demnses as 128x128 blocks in black and
| white or as coarse as 3I2x32 hlocks in <ceolor, For our

routines, we have used the 128x128 in B/W mode far the Plane
plots, and the &4x64 in color mode for the Explosion, Score,

and Ground plots. In these modes the face of the television
screen is divided into four quadrants correspanding to four
different areas of memory. If we consider the Dazzlar to be

accessing tha first 2k bytes of memory, then these quadrants
would be numbered as follows:

In decimal: In hexadecimal:
icit 2. . 151512 . . .5271 tOH . . . OFI20C . . .20F!
116 . . . .31iB%28 . . . 95421 vi0 . . . LIFI2106 . . L 21F1
{240 . . .2551752 . . .7&7! {OF0 . . .OFF!2FC . . .2FFI
(f) i2%se . . 2711768 . . 7831 1100 . . LJIQFI30G . . . 30F1
o : P : H P : I : H
I : I : ; N : H : : H
1496 . . 51111008 . . 10231 i11F0 . . iFFI3F0Q . . JFF)
11024 . 103911536 . . 155611 {400 DAOFEEG0 . . L 60F )
HE- : P : ' H : : H : : !
{ : : - : ! H : H : : !
11264 . 127911776 . . 1791} {14F0C . . . 4FFi&FC . . .&FFI
11280 . 129581792 . . 1807 1500 . . .SOFI70C . . .70OF!
] . . [ . . t | - . L - - 1
H ; : - : ; H ; : ; : ; ;
11920 . 153512032 . . 20471 i13FQ . SFFI7FO . . | 7FF1i

S8a long as €the Object 1is plotted entively within oane
quadrant, the plotting process is fairly straight—-forward;
byt when the Dbject averlaps twa or more quadrants, or
overlaps anly part of a gquadrant, €the process beacomes
considerably moare difficult. (Mote: Throughout this
section, Object applies to either a Plane, an Explosion: or
a Score.} In “DOGFIGHT® <the way this is handled for
Explosiens and Planes is quite different. HKnowing what we
d0 now sbout the way the Dazzler does its DMA, we could
probably rewrite {these routines to work in a more efficient
way. Among aother things we could alfter +%he size of the
Explosions and Planes so +that the same plotfing routine
(:) could be wused {far either. Remember that since the
fundamental size of the “page" is different for B/W or color
mode, %the Explosions or Planes would still come out as

Vo



BOGFIGHT Page 14
Plotting Routines

different sizes.

5.2 Plane Plotting
5.2.1 Introduction -

1% was thought that fo save R&M space 4all the planes
weuld be ploftted +From sewveral basic positions stored in
memory. The different orientations would then be derived by
rotating or +flipping the posiftions that were stored. This
plan was implementad and is described in the following.

S5.2.2 Decision OFf Plane Ta Ploft -~

The first thing done in ‘plane’ is to decide which
plane will be plotted and how to erase the previous plot.
This is daone by a series of buffaer registers. Since ‘plans”’
is only called twice in the program: and since each time is
right after an ‘ypdat’ call, then it is possible to move
consecutive plane positions through the same buffer
registers. First the previous X and ¥ positions ("Pex" and
"Pwye"}) of the plane to be pIotted (call it Plane A} are
stared in the ragisters called “Ex“ and "Wye®; then £he
area called "PIn" (to be explained shaortly} is cleared, and
‘plot’ is called. This erases the previous plot of Plane A.
Mext *Exb" and “Wyeb" are moved into "Pex" and "Pwya” to
remain until €he next time ‘plane’ is called, when Plane B
is evrased. Now “Exa® and “Wyea," +the present X and Y
locations of Plane A are moved into “Ex" and “"Wye" so that
the present position of Plane A will be plotted. Finally,
"Exa®™ and "Wyea" are moved into "Exb" and "Wyeb" so that on
the subsequent time that ‘plane’ is called, Plane A will
become Plane B. Note that Plane B is never plotted or

erased; it simply ‘*"bescomes" Plane A upon the subseguent
time that ‘plane’ is called. Also, ‘vpdat’ and ‘trant’
always load the position of the present plane to be plattad
inta "Exa® and "Wyea. " The orvientation of £the plane is

computed in ‘trant, © and the bit sequence explaining this to
‘plane’ is stored in register “Angle. "

5.2.3 Decision Of Drisntation OFf Plane -

The parameter "Angle” consists of four bits describing
the sixteen possible orientations of &the plans on the
screen, NMote that in ‘uvpdat’ an angle is calculated €for Ethe
divrection of motion of the plane, and that fhis can have any
compass direction, net just one of the sixtsen directions
that the plane may be pointing. Were I %o rewrite ‘plane,”’




DOGFIGHT Page 15
Plotting Routines

I would incorporate more than sixteen positions; howaver,
it is important €o see that the plane can take on infinitely
many directions despite the ITimitation on the number of
orisntations actually displayed. The four bits of "Angle"
sach have a legical meaning. Bit O determines whether the
plane will vopll fo the i2Fff or to the right in an inside
upward vell. This is the bift that is “"toggled" to cause the
plane ¢o “flip oaver"™ in ‘roll.’ Bits 3 and 2 together
datermine which of the basiec plane positions will be used,
according to the following:

Is N3M2 = 08, uses "AMDMN® (meaning: angle down?
N3IN2 = @1, uses "ACRE"™ {meaning: across the sereen)
N3N2 = 108, uses "ANUP® {meaning: angles up)
MNan2 = 11, uses “UPH {meaning: point up}

Bits 1 and O will be explained in what follows. First, it

is necessary to describe the ge2neral manner in which planes
are plotted,

5.2.4 Genzral Ploftting 0f Planes -

.Planes are ploatted using six bytes of memory. Each bit
of each of these bytes will causa one square to turn white
an the TV. The basic plane orientatians avre stered in fhe
four memory areas: “ANDN, " YACRS, " “ANUP, " and "UP. " If you
were to write out the six byftes stored in each of these in
consecutive order under each othevr:, and then were {to blacken
in a square for fach hit fthat was a “1," you would have £he
four basic posiftions of %the planes. Howaver: fhese
positions are not in the format which +the PBazzler vuses.
Therafare, they are reformatted by ‘vrefor,’ and plotted in a
pattern by “‘plot’ and “‘row. ’ There 1is alsc a six-byte
parame¥er aresa called *Pin:"* +From which all planes are
plotted or erased. The pattsrn of bytes and bits for this
parameter area, as well ag their relation to the bytes and
bits which the Dazzler sees is ags follows:

HPln®: Dazzlier:
Byte 1 17141514131 211101 Byte 1 101114181 | §{ | | Byte 2
: =2 N N IS T O O R 213617 L 1 U
c I S N N O T O 2 Byte 3 L 1 ¢ + 1 t + 1 t Byte 4
: O LS T O A IR IO ML I A O
: L2 D N O I I A I Byte 5 1 | ¢ { (0111415% Byte &
Byte & 1716514131211 101 P 1 1218161718

Since the memory areas "ANDN" through “UP* are fixed
values, before reformatting them $far other orientations,
they are ftransferred to the paramefer area “Pln. " There are




\

DOGFIGHT Page 1&
Plotting Routines

four subroutines which control how a memory area is passed:
‘UL +for wupper-ledft, ‘UR’ +for wupper-righ¥%, ‘LR’ for
lower-leoft, asnd ‘LR’ +Ffor lower—-right. This means that a
memary area will be passed fta "Pln" starting at one of ifs
four “corners. ¥ This will be explained more fully below.

5.2.5 Further Determination Of Plane Orientatian —

Next, ‘plans’ wvuses N3M2 te determine the starting
address of one af the memory areas: which is saved in the BC
register pair. Then Bit O of "Wye" is ¢ested, and BC is
decramented i+ it is a "1." This is hecause Y values grouw

downward on the screen. The ofther bits of "Wye" come into
play whea ‘adgen’ is ctalled. Dbow MINMO are used to determine
which o the four subroutines: ‘UL’ through “LL‘ is callad.

After this subroutine is called:, Bits 1 and O aof X are used
to determine whether %the plane as it is oriented in “PIn"®
needs %o be rotated to the right (or left). This allows for
four diffarent X positions within the six-byte Dazzler
parameter area described above. ‘Rot* is called for each
time that it is determined that the bits must be rotated
(i.e.. vrotated as many times as X is: 00 - 11}, Finally,
when the plane is located in *Pln" parametsr area as i% will
finally be plotted, ‘plot’ is, called fto actually plot the
plane into &emorq in such a way that the Dazzler will
reproduce it in the desired form. Sep description of
‘adgen’ to se2e how the X and Y of the plane are fransformed
into an address in memoary.

This completes the description of the main part of

‘plane ‘; however, it remains %o explain several of the
subrouvtines described above.

8.2.6 ‘UL, ‘UR, " ‘LL,’ And ‘LR’ -

S.2. 4.1 UL -

This svbrputine takes the six byftes in one of the Ffour
memory areas: “ANDN, ¥ etc. and places them in exactly %he
same grder into the parameter area called “Pln, *



DOGFIGHT Page 17
Plotting Routines

2.2. 6.2 ‘URT -

This subroutine first calls ‘UL’ and %hen it calls
‘invrs. © ‘Invrs’ in turn has the effect of rewriting each
byte of "Pin®" in "inverse " order. That is, Bit 7 becomes
Bit O, Bit & becomes Bit 1, ete. +for all eight bits of each
of the six bytes. This has the effect of reversing the
plane from left to right.

s.2.6 3 ‘LLY -

This subroutine works similarly %o ‘UL’ however, the
six bytes of the memory area are written into the six bytes
of the parameter area {("PIn"} in reverse order (i.e., Byfe 1
becomes Byte &, etc.). This has the effect of "flipping®
the plane over.

5.2 4 ‘LR’ -

This subroutine *first callis ‘LL,’ and £hen calls
‘invrs, ¢ exactly similar fo0o ‘UR. " This has ths effect aof
both writing the bytes infto the parameter area in reverse,
and also writing the bits into “Pln" in "inverse® arder,

5.2.4.5 Comments On ‘UL, ’ Efe. -

As can be seen from the above descriptions, the time it
takes ‘plane’ tp plot planes in different orientations is
not always the same. In fact ‘UL’ takes the shoriesit, and
‘PR’ takes the longest amount of ftime. This I #eel to bhe a
disadvantage. Although something was gained in chossing ¢to
plot planes in $his way (i.e., only Ffour of the plane
grientations had to be stored in ROM as opposed to sixteen),
I +fsel +the amount of ROM used in reformatiting these basic
arientations and alseo the exacution time wasted was probably
not worth +the savings. ¥nowing what I know now about
plotting routines: I +eel that +the best method would
probahly be a compromise: store more than four basic plane
positiaons, and do a more limited amount of reformatting.

5.2.7 ‘Rot’ -

‘Rot’ (i.e., Rotate} is a short loap subgnutine which
has the effect of rotating each byfte of the six-byte "PIn®
ane hit fo the right. This is a right logical raetate (carry
flag not included). The way it is called is sxplained




DOGF IGHT Page 18
Plotting Routines

above,

5.2.8 ‘Refor’ ~

'Refoar’ takes two bytes at a $ime +rom “Pln:" and
Reformats +them into +the t&top +two bytes in +the Dazzler
orientaftion of the bits (see charit abovel. The bift patterns
are as shown in that chars.

5.2.9 ‘Row’ -

‘Row’ works closely with ‘refor’ and sets up the values
which ‘rdfor’ needs to work with., If also calls ‘adgen”
once to gsnerate the address of the byte in the “"gsecond
column, * as shown in the “Dazzler chart” abovse.

5.2.16 ‘Plat”’ -

‘Plot’ calls ‘row’ Lthree times, once for each "rew" of
the six~byte Dazzler +ield; it also calls ‘adgen’ three
times, once befare each calling of ‘row, ’ te determine the
address of <€he PFirst byte of {that row. The address of the
secand byte is calculated in ‘trow’ itseld as explainsd
above, This is also the reason that ‘adgen’ returns with
the I register still intact: this is the "y-offset" wvalue,
which pust be retained i+ ‘row’ is t2 know where Lthat second
byte is to he plotfted.

5.2.11 Final Comments On ‘Plane’ -

It will be seen that the above dascriptions become much
clearer upon comparison with ©LThe assembly lisfting of the
program. Also, it will be apparent that it would not be a
large gJob (at least +from the stand-point of fthe way the
PLANES are plotted} to change ‘plane’ so that the plane size
would be different, simply by changing the way or number of
timas Hhat ‘row, ’ ‘plot, * and ‘adgen’ are called.

.3 Functioan OFf “Offst"™ aAnd “"Oplus"

"Offst™ is a one~byte wvalue which tells both the
program and +the Dazzler whare in RAM the planes and
gxplosiong will be pletted (i.e.. the 4K “page™ which the
Dazzler will access). This is done in several ways:



DOGFIGHT Page 19
Plotting Routines

“Offst® is wused in ‘dazld’ €o calculate £he “turn—on
address which DBRazzler will wuse, it‘s used in ‘adgen’ %o
provide the necessary offset to addresses which are computed
thera, and it is vsed to find “Oplus”. “Oplus” is simply
“Offst "+8H, providing the starting "offset” to the second 2K
af the 4K being wvsed. “Offst"™ is any one—-byte quantity;
however, only the Ffirst five bifts (most significant}? of it
are wused in ‘adgen:; ' hence, if ranges in value from 1B8H fo
FOH. Note that the program resides in the lowest 1i8H bytes
(along with associated variables}):, and the "picture" cannot
be resident any higher than the ¢top 4K bytes in memory.
Thus, if 4K RAM is resident anywhere in the system: Lhe
“sicture" can be rtvelocated <fhere simply hy stopping
sxecution and restoring a new value of "DEfst®; Ehen
execution must be resumed at the start of the program. Note
that the pragram iftself is not relocatable.

5.4 ‘Adgen’

Although the subroutine ‘adgen’ is an integral part of
‘plane, * it 1is wused so often throughout our program to
calculate a 1&~bit address that it becomes necessary ¢to
describe it by itself. It is one of the most important
programs used by DOGFIGHT!. ‘Adgen’ uses “0Offst® and the
bits stored in “Ex" and “Wye" %o create a 1&4-bit address in
the BC register~pair according to the following format:

where the Bits 10 through O have come from the bits of "Ex"
and “Wye" as #ollaws:

Bits 15 through 1l come #vrom the five most significant bits
aof vOffst. " You also have the option of “offsetting” the
address created, by a specified amount without having ¢teo
change the wvalues “Ex" and “Wye"; ¢this feature is used in
plotting Planes, say, %o genervate the addresses of
neighboring bytes fto the "primary" byte. To take advantage
of this option, all that must be done is to sftore <the
X—offset (amount of ¥ offset desired! in the C register, and
store the Y—offset in the D register before calling ‘adgen.”’
These amounks can be plus or minus, The D register is the
only value which ‘adgen’ returns +o you upon complefion
(except for the i1é&6~bit address left in BC). Note: if you
do not want an X— and Y-offset as described abave, yovu still
must "zero"™ the C and P registers.




DOGFIGHT Page 20
Platting Rouftines

5.5 Explosion And Score Plotting

Explogsions and Scores:; unlike the Planes: are hoth
plotted in the  wupper 2K RAM of the Ypicture®” and are both
plotted in the calar format of the Dazzler. They thevefore
both wuse VYOplus" to calculate addresses for plotting. A
large porftion of the Main-Program is involved with detecting
whether an Explosion must be plotted and consegquently
whather a Score must be incremented. However, since i# no
changes were (o0 take place on the color page, it would be
desirous to not have explosions or scores be replotted wupon
consecutive passes throwgh the pregram, there are provisions
for jumps over large parts af this segment of the
Main—-Program. It would therefore be beneficial €o first
axamine the manner in which these jumps are taken: befare
explaining +%he way in which Explosions or Scores are
plotted. There are several %things to be clarified first.

In ‘updat’ Bit 7 of "Axms" is set to a "i" as a <c¢rash
tlag: i.e., when Plane A is hit by a bullet. {(Similar for
Plane B and "“Bxms. "} This bhif is then tested in ‘ecall’ and
is used as an indication of whether or not fo plot an

Explosien for that plane. Second: there is a memory
register known as *Flags:," which contains six additional
“Flags® which are used in plotting Explasions. In order
these are: Bits 7 and & are not used; Bits 5 and 4 are
"Crash—Flag-B" and “Crash-Flag—A" (CFB and CFA},
respectivaly; Bits 3 and 2 are
"Explosion-in~Pragress~Flag-B" and
"Explosion-in-Progress—-Flag—-a" (EPFB and EPFA)},
Tespactively: Bits 1 and O are "Replot-Flag—-B" and

"Replo%t-Flag—A" (RFB and RFaA), respectively., These will be
explained more fully below.

3.6 Explosion Calling

Explosion calling is exactly similar for Planes A and
B in #act the Explosion testing +or the fwo planes follows
each other. Hence, everything I say about Plane A below
applies in follouwing ta Plang B wifh only the subscripts
changed from "A" to “B." First, ‘ecall’ lopads into the BC
register—pair two timer wvalues which “"time" the Explosions.
These valuves vemain in the BC registers throughout ‘ecall’
unless §Ethey are rveinitialized. Ordinarily, they are both
"O:" since neither Explosion is ordinarily plotted. Mext,
EPFA iIs ftested and i+ zero, control advances %o “CO. ™. This
means %that no Explosion is presently in progress. If it is
a "i," %hen Timer B (i.e., the timer in the B rtTegister) is
decramented. If this results in & non—zero valua, then
control passes ta “"Explb" (Explosian—-Check B}, which means
that the 2xplosion has been initially plottad and therefore
there is neothing elge tto be done with Explosion A until




DAGFIGHT Page 21
Plotting Roufines

“Replec" (explained below)., However, if Timer B has reached
"G"  following the decrement, then the present Explo 4 is
erased, EPFA is reset and RFB is gsef. This is because when
Explo A is erased, it erasas the entire color page, and
theratare, if Explo B happensd to exist simultaneously with
Exple & Explo B must be replotfed. This is done in
“"Replc. ™

At “"COY Bit 7 of "Axms™ is tested, i.e., the Crash Flag
for Plans & I it is zerao, then control passes to "Explb";
if it‘s a “1." then CFA is ‘tested. If 1i%t‘s not zero,
control passes to YExpib"; this is because the Explosion
may have "timed out™ before the plane actually has touched
the ground. In this case we would have a second Explaosion
whereever the plane happened o be at the fime (because Bit
7 of "Axms" is not reset until the plane is reinitialized:.
To prevent this ftherefore. %he CF& of "Flags” is not reset
until fhe plane is reinitialized. In athar words there are
two Crash Flags: Bit 7 of "Axms® and CFA, ane neaded ©o
test whether o plot an Explesion, and the other needed €o
tell the program naft %o plat duplicate Explosions elsewhere.
Mow, 1% CFA happens %to be "0, " then fthe program proceeds fo
plot the Explosion. This is done by #first setting +the CFA
just tested, then storing the X and Y positions of the Plane
into "Savxa' and "Savya. " "SBavxa" is stored directly From
the A register: hence, Bif ¥ will still be set as it must
have heen %to geft into this Toutine. This is impoarftant o
‘eplot. © Finally, the Timer is loaded (with 45D}, the EPFA
is set, and “‘aplot’ is called ¢€o plot ¢the Explosion.
Following this, the A& register is cleared to tell ‘sound’ to
output the Explosion Sound from the speaker corresponding to
Plane & and f‘sound’ is called. In fthe case of Plane B a
non—zero value is left in the A register before calling
‘sound’ fo tell it to output the sound to speaker B.

This concludes the description of "Expla“; next I will

undertake £the explanation of ‘eplot,’ and then explain
"Replc. "

5.7 Explanation Of ‘Eplot’ And Related Subroutines
S5 7.1 ‘4plot’ And ‘Bplot’ -

‘4plaot’ and ‘bplot’ are exactly similar subroutines for

plotting Explosieons of Planes A and B, First EPFa& is
tested; control returns if it is zero. Then A register is
saved fthroughout <the Toutine. The rteason for these ftwo
things is sxplained under "Replc". Then "Savya" is stored
in "Wyee® for use by ‘eplof’; "Savxa'" is loaded into the A
register, and ‘eplot’ is called. {The above is alse frue

for ‘bplot’ and subseript “B. "}



DEGFIGHT Page 22
Plotting Routines

2.7.2 ‘Eplot’ -~

5.7.2.1 Ganeral Remarks -

It was chosen to plot Explosions in a slightly
different mannar from the Planes; therefore, it is
beneficial to examine this more specifically. As can he
seen From ‘plane’ above, Planes are plotted from a six-bytfe
field, wherein the address of the byte is calculated by a
call %o ‘adgen. * However, I desired to plof Explaosions with

a slightly larger +Field; therafore, I chose not to
talculate the address of each byte in that field. The field
chosen was a 6x12 byte fisld, ar 72 bytes. Thus, it is

apparent that to call ‘adgen’ 72 times would he rather slow!
It should be vemarked at this point that fhe color ‘“page"
plots only {wo bIocks per byte accessed: using four bits fo
determine one of sixtesn possible colors. Thus:, while the
resolo%ion is reduced fo &4x64 “"blocks™ an fthe screen, it
still regquires 2K bytes of RAM per ‘“page." The sixteen
colers are in order: O through 7H gives black, red, green,
yellow, blue, magenta, cyan. and white, all at low
intenaity; 8H throwvgh FH gives the same colors in the same
order hut aft high intensifty. We hawve wuvsed only high
intensity colors, hence £he wvalwes 8H through FH enly.
Thus, %wo of these values can bes put together in a byte fo
produce +two colored blocks side—~hy—side. Note also that
thase blocks go from tight to left for the byte-values From
left ta right.

Because it was decided to plat Explosions without
calculating the address of each of the 72 bytes. this
graatly increased the difficulty of the plotting as +far as
the different quadrants were concerned.

3.7.2.2 Plotting OF Explosions ~

Plotting is actually dene by a series of block moves.
I# the Explosion lies entirely within one quadrant: the
address of its first byte is calculated by ‘adgen’ and the
bytes stored in “Expleo® ars fransferred to the &xi2 area by
maans af a serisg gf LDIR commands. Howaver, Explosions can
also be platted under & series of other conditions: 25 to
be axact! These +all into six main categories.

One of the very Fortunate side effects of the way
FPlanes are plotted is that +here is "wrap—around® from
side-to-side and +rom top—fto-bottom. (The top—to—bottom
wrap—-around ig limited in ‘updat, * when tests are made to
determine if the plane has gone off the top or crashed into
the "ground. "} Unfortunately, when using block moves to plot




DOGFIGHT Page 23
Plotting Rautines

Explosiong, it removes this benefit; +thus, the program must
check when an Explesion is near a quadrant boundary so that
it does not plot part of it elsswhere in memory, or plot the
other balf of it on the other side of the screen. The six
main categories mentianed above are: an explosion entirely
within one guadranf, an e2xplosion overlapping ftwo quadrants,
an sxplosion overlapping all four quadrants C(hence, in the
“center™), an explosion in one of <+the four corTners. an
explogion along the oufter edge o0of a quadrant but still
within that gquadrant, and an explosion along the outer edge
of a quadrant and overlapping twe gquadrants. The way ¢these
diffarent +forms are handled in ‘eplot’ is by means of a
variety of routines. Aisa:, suppression of part of an
explosion whiech will not be plotted if the Explosion is
along an oguter edge: is Ltaken care of automatically in these
routines, Parhaps %the moast effective way of describing
these routines would be %o list them along with @uch used
variables and give a brief description of each as follows:

Routines, Subroutines, and Variables

Displ = Displacement — used several +times +to deftermine
the Displacement of a portiaoan of the Explo.

Colms = Number of columns which the Expla has in its
“first"® or upper—lefft-most quadrant, Does not
change in ‘eplot. ‘.

Lines = Number of lines which &the Explo has in ifts
“first" quadrant; does not change through-out
‘gplok, ‘.

Tcol = Temporary storags of number of lines to be plotted
in a particular quadrant; w@may change with change of
gquadrant.

Tlin = Temporary storage of number of columns €o be
plotted in a particular quadrant.

Ex = Begin X wvalue -~ this is X value of Plane offset back
to the left edge of the explosion—square; this and
Wye are used to determine upper~leff corner of Explo
gnp that renter of Explo is plotted where the plane
was when hit. Note: Ex and Wye are the same wvalues
used by ‘adgen. '

Wye = Begin Y wvalue - %his is ¥ value of Plane offset
hack to the upper edge of the explosion—-square,

Bex = Same as Ex, but with value shifted right twice, and
taking aonly four least significant bits.

Bugje = Same as Wye, but with value shifted vight ance.
and taking only five least significant bits.

Taddr = Temporary-address -~ Starages of the address of the
upper—left byte in the quadrant.

Texpl = Temporary-explesion—-store - Sftorage of the
address which is the quantity: “Exple” (the start
aof the Explosian sforage in RAM) + “Displ" + &#K,
where K is a wvalue between -1 and 11. (K is

incremented in "Lin. "3}




DOGFIGHT Page 24
Plotting Rouftines

Xecol = { columns — calculates +the initial number of
columns in the beginning gquadrant; defaults to six
it greater than six.

¥iin = ¥ lines —~ calculates the initial number of columns
in the beginning quadrant;: defaults to 12

Cant®, Conti, and Nwye = Thege are “continue control® or
“now—wye, ¥ during which the above parameters or
subroutines are called or initialized; the wvalues
are used throughout the rest of ‘eplot. 7 All control
passes next to “Quads, " described belouw.

Guads = Examines Bit & 0f Wyee (address—-bit 10} and
determines whether Explo begins in Top or Botfttm hal#é
af screen.

Top and Bottm = Examine Bit & of Ex (address—bit 2} and
determine whether Explo begins in Left or Right hal#
af screen, i.e8.: fthey determine the beginning
quadrant.

Gudlb = Quadrant—-i-Begin — This is +the most difticulf
guadrant to begin from, because the Explo may
averlap into any af £fthe other fthree gquadrants.
{Note: gquadrant 1 is fhe  wupper-Ieft quadrant.}
Hence, (1234, Qudl2, QGudi3, Q@12: Case-1, CLase-2,s
Cage-3, and Case-4 all plot different portions af
the Explosion for different conditions of overlap.
Also, each of these rtoutines tests for completion of
the Explo: and exits if it is complete.

@1234 = Quadrants—1-2-3—-4.

Gudli2 = Quadrants—-1-2.

Gudi3 Quadrants—1-3.

B12 = Also Guadrants~1i-2; howsver, it actually plots
guadrants~1-3 at the *far Ieft edge using routines
far gquadrants—1-2. Note: quadrant 2 is the
ypper~right quad. quadrant 3 is the lower—leff quad.
and quadrant 4 is the lower-right guad.

Qud2b = Guadrant—-2-Begin — Explo will begin €to be plotted
in quadrant &, and may be plotted entirely within
that guadrant ovr plotfted in both gquadranis 2 and 4,

Qud3b = Quadrant-3-Begin — Explo will begin to be plotted
in quadrant 3, and may be plotted entirely within
that gquadrant ar plotted in both gquadrants 3 and 4.

Qud4b = Quadrant—4-Begin — Explo will begin in gquadrant
4, and will be entirely plotted there; however,
vrnly part of it may be plotted i+ the Explo is along
one of the edges of the quadrant. Note that this is
the simplest of the plotiting routines because if
need anly plot +Ffor one guadranti ng others are
possible,

Xoffts = X-offset - Used by ‘adgen’ to provide an offset
to the address it calculates. BSee ‘adgen’ for a
wore complete description of this feature.

Yoffs = Y—gffset — Used by ‘adgen’ to provide an offset
to the address it calculates.

Linad = Line adjust - Stores "Lines" in “Yoffs," and
finds “Tiin.



e

DOGFIGHT Page 25
Plotting Routinas

Colad = Column adjust — Stores “"Colms" in "Xoffs," and
$inds ¥Tcel. ™

Qudrl = Quadrant-1 — Used any time that it is desivred to
have the {first portion of an Explo ploftted in a
parficular gquadrant. Since +this often occures in
quadrant 1, it gets that name.

Gudr2 = Guadrant-2 — Used %o plot the part of an Explo
which eccurs in guadrant 2; i+ called affer "@iz, *
it plots this portion in gquadrant 3.

Qudr3 = Quadrant~3 - Used fta plot the part of an Explo
which oecurs in quadrant 3.

Qudr4 = Quadrant-4& —~ Used fo plot the part of an Expla
which ogcurs in gquadrant 4; this is called only by
"@iz2c4,. * This means that it is not for plots which
begin in guadrant 4.

Remvx = Remove—-X-displacement - This Temoves the .
displacement put inte "Displ" to enable plotting of
quadrant 4 prior %o plotting of gquadrant 3. Mote
that in "Q1234" +the quadrants are plotted in the
grdar: i, 2. 4, and 3.

Xdisp = X~displacement ~ Calculates the displacement to
the naxt quadrant +to the right in order to resume
plotting there,

Ydisp = Y-~displacement - Calculates the displacement to
the next lower guadrant in order to resuyme plotiting
there. DBoth this and “Xdisp" are called by the
roufines explained above.

2.7.2.3 ‘Quad’ -~

Thieg is the most important subroutine of ‘eplot’;

therefore, it will be explained separately. ‘Quad’ is
responsible for doing the bBlock moves and calculating the
starting addresses Ffor them, It #first calculates <the

starting address (upper—-left corner of porftion of Explo +to
ba plotted in a particular quadrant} by wsing "Xoffs" and
“Yaffs"; it also uses "Oplus" %o generate the address For
the color page. The values "Ex" and "Wye® it uses have been
shifted hy the rvight amount %o <cause +the addrass %o be
proparly generafted, despite the reduction in resolution ot
the &4xé&4~snuare page. Mext, it calculates "Texpl" and uses
it as a line—address &throughaut “Lin. " ®“Lin" loops once for
sach time fhat a "line" of bytes is to be plotted, and uses
"Tiin" %o compute £he number of remaining "“lines" &o be
plotied. It returns when this value reaches zero.




DOGF IGHT . Page 26
Pletting Routines

5.7.3 "Erase" And YClear" -

Because of the large size of the Explosions (72 bytes},
to erase them in the same way that ‘plane’ does would entail
having 72 byftes of “0" stored somewhere in RAM To avoid
this waste of memory space, it was decided that to erase
explogions, the antire color page would be erased by a block
move of 2K times of moving "0." This is done by “Erase,"
using "Oplus"™ to tell it fo wse +fhe color page. A wvery
fortunate additional bonus is that this same move of zeroes
can be used to erase the “pages" initially in t¢the program
and also after the words "DOGFIGHT!" are plotted. The way
to tell ‘eplot’ to erase is to clear fthe A register; this
resets Bit 7, which is the signal %o ‘eplot’ %o skip te
"Erase.

"Clear" uses this feature fto clear the fwo pages of

memoary. "Oplug®” is first set $to the same value as "Offst,”
and ‘eplot’ is called to erase the B/W page. Then "Oplus"
is increased to its wvalue Ethroughout +%the rest of the
program: and the second 2K of RAM is erased. Alsa, "Clear"

initializes the stack pointer each +fime a new game is
started.

9.8 YReple®

This rautine ("Replot—-Check”} is the closing segment of
"Ecall," and is needed because of the nature of fhe erasing
of the Explosions. If an Explosion is erased. the Ground,
the Scores: and possibly the other Explosion will have to he
replotted again ("Erase" erases the entire color pagel.
Thus, if either RFA or RFB is set, the appropriate
subroutine: ‘aplot’ or ‘bplat’ is called. Now if becomes
clear why the EPFA (or EPFB} is tested in these subroutines.
and also why the & register ig saved: as mentioned above.
In "Gamst" both RFA and RFB are set; this talls "Reple®" fo
plot the Ground {(call ‘gplot’), but not rve-plot or plot
either Explosion. I+ <£he RF‘s are both zero, control
automatically passes over these checks. Finally:, the Timers
which have been preserved in the BC register-pair all this
time are restored.

5.9 Score Calling

"Score" is similar +to *“Ecall® in that identical
routines are uwsed for both Plane A and Plane B; thus, it
will suffice to explain only the checking voutines for Score
-y First:, the I register 1is cleared and this value is
stared in “Displ”; this tells ‘numpl’ to plo%t the Secore for
Plane &A. (“Displ®™ is used as a temporary storage vegister




DOGFIGHT Page 27
Platting Routines

to preserve the value in "D" for use in case of “"Flash"; it
is either a "O" for Plane A or a "1I" for Plane B.) MNext,
"Maxsc” (Maximum Score} is loaded and compared to "Scora';

i# *Scara® is legs than "Maxsc. " then “Pscra®
{(Previous—Score-A) is tompared fo "Scora." I+ “Pscra® is
equal to *Scara, " then control passes +to “Pchek"®

{Previous—Erase—-Check—-A}; i¥ "Pscra®™ is less than “Scora,"®
it is incremented and conirel advances to “"Plota, " which
calls ‘numpI” and plots +he Score. I+ "Pscra" equals
“Scora, " fthen <there ordinarily would not be a need to plot
the Score; however, the nesd {for “Pchek" ({and likewise,
"Pchkb" for Plane B} is to check to se2 if any Explosions
were erased. I+ so, then both the Scores need %0 be
Teplotied.

It was mentioned above what would happen i$f "Scera® is
less *than “"Maxsc™; however: a slight variation ftakes place
for the case where they’re equal. In this case “Scorb" is
loaded and the subroutine ‘maxck’ (Maximum—Score-Check) is
ctalled. This subroutine subtracts the wvalue ("Scorb® for
Plane A} from "Maxsec, ™ and then compares it to "2." Since we

already know that “Scora' squals "Maxsc,“ then if “Scorh®
differs $From it by more than two., this means that Plane A
has won the Game; control passes to P"Endit" (describsad
elsewhere). I¢: however, "Scorb" differs From it by less
than two:. fthen Plane A has not won by two, and +the “MaxscH®
is auvtomatically incremented; conftrol Jumps back to the

place From which ‘maxck’ was called. Note that if control
Jumps out of ‘maxck,’ the top of the stack is popped in lieu
af a "Ret. *

2.9.1 “Reftrn" -~ Return To Main-Program -

As the last step complefed before control passes again
to the beginning of the program: this sequence resets RFA
and RFB so that the Ground and Scores will not be replotted
on subsequent passes unless there is an Explosion. There is
a jump to “Start. ™

5.9.2 Descriptian OFf ‘Numpl® -

This subroufine either plofts or “"blanks" numbers and
digits %o +form the Score. The value passed to it in &he A
register is &the value of Score to be plotted; however, it
is in hexadecimal, and must be converted to two decimal
digits. This is done by successive subfractions af 10D, and
comparisons until the value remaining in A is less than 10D
For each subfraction the E register is incremented by one;
thus, <the "ones" digit is left in the A register, and the
"teng" digit is left in the E register. These are each four




DOGFIGHT Page 28
Plotting Routines

bit quantities given in BCD, and thus they are combined into
the A rvegister. Each BCD is ¢then multiplied by 12 (%he
lower is saved in “LSD" (Least~Significant-Digi&d; the
upper is passed through). This is because 12 hytes are
stored in the memory R&M for each of the numbers: O through
2, and all zeroes For the purposes of "blanking out" the
Score (used in “"Endit. *) Thus, each BCD is used tao calculate
the starting address of that number in permanent storage.
The wvalue in fthe D register is next used to detevrmine an
affset (if necessary) ©o Score B, Finally: ‘digit’ is
ctalled twice: once for each digit, to do a block move
(LDIR)Y, into the color page. Thus:, ‘nuampl’ is hasically a
"sat-up® rtoutine for the block move of ‘digit.

5. 9.3 Description Of 'Digit’ -

&s mantioned ahove, ‘digit’ is a block move which wuses
the address of one Score or the other in the color page, the
address af the number in memory storage, and a i2-byte limit
to plot a number.

9.2. 4 Description Of ‘Blank’ -

This is an inftegral part of ‘numpl’ and i%ts Pfunciion
hag already been explained; however:, the difference befwesn
this and a regular number plot is that ‘blank’ skips £he
calculation of two BCD digits. Instead, when it is called,
it is given the offset #fFrom “Datad" (beginning of the
Bata-Digits}) +to the 12 bytes of zeroes. Thus, i% will plot
blank spaces where fthere would be a digit.

5.10 ‘Gplot’ - Ground Plotting

‘Gplot’ uses a block move of two segments ¢ move a
string of bytes with the value: aaH {(green} to the boitom
af the scresen. It uvses "Oplus™ fo tell it €0 plot on the
color pagse.

3.11 Mame Plotiting

The terms "DOGFIGHT!" and "“GAME-OVER" are plotfed in an
exactly similar manner by a bleck move, Refer %o the
diagram showing the four gquadrants which Dazzler plots: the
two terms are plotted in the very lower portions of each of
the uvpper ftwo quadrants. As can be seen from €the Ffigure,
the bytes in these two portions are numbered consecuvtively,




DOGF IGHT Page 29
Plotting Routines

¢

This makes it very easy to do a block move and wse the LDIR
command. Thae bleock move is talled once far each of the ftwa
gquadrants. The beginning of the memory area in ROM in which
is stored the letters spelling "“DOGFIGHT!® ig labeled
"Mamlt® (me2aning "Mame leftters"}, and the baginning of the
RGM area in which is stored the letters spelling “GAME-OVER"
is lahelad "Camlt" (meaning “Game—over letters™}. The block
move subrautine is called ‘bhlock.

95.11.1 ‘Bleck’ -

This is a block mova of 112 bytes Ffrom a RAM area
previously (i.e., before calling ‘block’} determined:, %tao &he
memory area being examined by Dazzler,

5.12 ‘Delay”

Both fthe terms “DOGFIGHT!Y and "“GAME-DOVER" must be
displayed for a finite time so that we may see them. This -
“"delay" in viewing time is provided by the subroutine called
‘delay. © 'delay’ caunts down from a value of FFFFH (&5, 535D}
to O hefore returning fto the routine which called it. This
provides abaout a l-second delay when using the 2 MHz. clock,
and ahout a 0. 5—-second delay when wsing the 4 MHz. clock.

5.13 Details Following Mame Plotting

Following the plotting of “DOGFIGHT!, " fdelay’ is
called twice; then if Bit 7 of the sense—-switches is a "iv
(i.e., it is vpl, Ehe program loops and waits for it to be a
zero. Upon its becoming a "C," {the program continues with
‘gamst, * which initializes all necessary parameters and
stores the maximum score (which has been input from the
sensa-switches), and then erases the words YDOGFIGHTI. ™ It
then continues with ‘init.’ ‘input,’ and plotting of &he
planaes.

The plotting of "GAME-OVER®™ ocecurs only when one plager
has reachaed the maximum score (which was set when the game
began} and when fhat score has been a win by two. Then the
program goes into the routine called ‘endit. * First, ‘endit’
erases the color page, +then it pleots "GAME-OVERY as
previously described. Next it goes into the loop called
‘#lash. * This loop simply displagys the maximum score of the
winning player, and “flashes" it on and off by & combination
of calling ‘numpl’ (explained slsewhere’ and ‘blank’ with a
suitable delay befween each call by wusing the routine
‘delay. * I% will looping until sense-switch Bit 7 again




DOGFIGHT Page 30
Plotting Routines

becames a “i," whence the pregram proceeds again wifth the
nama—-plot.

4.0 DAZZILER AND ITS RELATED SUBRODUTINES ‘DAZLD’ AND ‘DAZZL.‘

‘Dazld’ (Dazzler-Address—lLoad) sets wup the inifial
addresses, which are output to the Dazzler to tell it which
pages of memory fo access. ‘Dazzl” (or Dazzler-Call} is the
subroutine which alternates between the B/W and color pages.
Both of these subrautines use the “primed" registers: c,
DE’, and HL'. In ‘Dazld’ €’ is loaded with the number of
output port 14D; E’ is loaded with the wvaluve which fells
the Dazzler %o plo%t black and white in 128x128 mode; and L’
is loaded with the value which %$ells it to plot coler in

&4x64 mode, The value of "Of#st" is used to calculate the
“tyrn—aon" addresses for these twa pages: which are autput fo
the Dazzler. The address for the B/W page is just "Dffst"

right-rotated once, and with Bift 7 set (this is important
because it telle the Dazzler to turn onk. Then & (i.e., the
valuve 8H, right-shifted once’ is added to +Hthis wvalue fo
generats the "turn—on" address of the color page. Next,
‘dazzl’ is called, which “exchanges" the primed and unprimed
registers: +then first ouvtputs the H register %o port 14D,
and then ouputs the L register to port 15D, and Ffinally
restores register C and the non—-primed registers. Prior fo
doing %his, however, ift exchanges the DE‘ and HL' Tegisters.
thus causing the wvalues that were stared in DE to be output
to the Dazzler upon the subseguent ¢time ¢that ‘Dazzl”® is
called.

1t will notaed from the assembly listing that ‘Dazld’ is
called oanly at the beginning of a new game, Just prior to
plotting "DOGFIGHT!®. Thus, %the program is running in coler
mode until %fhe next ‘Dazzl’ call. which occurs just after
the #irst ‘updat’ call. NMote that from here o *the next
‘dazzl? call is jus% a very short "time" +from the standpoint
of the listing; however, it is about egqual to the +time of
the entire vrest of fhe program in fterms of actual minufes!




Adgen

aAflag
dngl .
Aplot
Axas .
Ayms .

BCD

Bay .
Blank
Black
Bngl .
Bottm
Bplot
Bulup
Buwye .
Bxms .
Byms .

Cagsa—-1 .
Casa—-2 .
Case~3 .
Case—-4 .
CFhA

CFR

Clear

antrQ

Cntrl

Cntra

Cntrd

Calad

Calms

CantQ

Contl

Cosin . . .
Crash-tlag .

Crash-{flag—a .
Crash—#lag-b .

Cromemco .

Datad
Dazid
Dazzl
Dazzler

Belay
Bigit
Bispl

Page Index-1

INDEX

10 to 11, 14, 18 to 1%
22 to 24
. 2 to 3, 12
. 2 4
21, 26
2. 20 to 21
3

28

23

28 to 29
27

2 4
24

2i: 26
i1

23

2: 20
3

24

24

24

24

2¢ to 21
20

24

2 ta 3
2 to 3
3

3

25

23, 25
24

24

8, 12
2 12
20

20

2

28

19, 30

30

2. 13, 195 to 16, 18 to 20,
28 to 30

27

28

23, 29 to 26




T Sy T - o —_—

DOGFIGHT .
BOGFIGHT!
Drag .

Ecall
Endif
ERPF& .
EPFB .
Eplot
Erase
Ex . .
Expla
Explb
Explo

Page Index-2

13
i3, 19, 24, 28 o0 30
4 £ta0 3

20, 24

27 fto 29

20 ko 21, 26
20, 224

3: 21 o0 26
26

19, 23, 25
21

20 %o 21

22 to 23

Explosion—in—pragress—flag—-a 20
Explosion~in—-progress—flag~b 2C

Fire .
Flags
Flash

GAME-DVER
Gamlt
Gamst
Gplot
Graund .

Hitem

Init . . . .
Init-flags .

Initializatian .

Input
Invrs

Joi

LDIR .
Lifgt .
Lin
Linad
l.ines
L .
LR .
LSh

Main—pragram .
Maxck
Marsc
Mult .

Mamlt
Muaspl
Muwye .

12

20 to 21
27, 29

28 to 29
29

3. 26, 29
26, 28

22

12

3 %0 4, 7. 29
4

3

2, 12, 29
17

2

22, 28 to 29
4 to 5
23, 25
24

23 %o 24
1& to 17
16 to 17
28

26, 27

27

3. 27

g to 9

2%

26 to 29
24




Page Index-3

Offst . . . . . . . . . 1B %o 19, 26, 30

Oplus . . . . . . . . . 18 to 20, 25 to 24&
28

Overd . . . . . . . . . B 10

Pchek . . . . . . . . . 27

Pehkb . . . o . . . . . 27

ehi . . . . . . . . . . 8 ta®

Plane . . . . . . . . . 14, 16 %o 19, 22,
2&

Plet . . . . . . . . . . i4 %0 16, 18

Pleta . . . . . . . . . 27

Prtra . . . . . . . . . 3

Pnterb . . . . . . . . . 2

Pscra . . . . . . . . . 3 27

Pgecrb . . . . . . . . . 3

at2 . . . . . . . . . . 2# te 25
Q1234 . . . . . . . . . 24 o 2%
Guad . . . . . . . . . . 25
Quads . . . . . . . . . 24
Qudi2 . . . . . . . . . 24
Qudil3 . . . . . . . . . 24
Qudib . . . . . . . . . 24
Qud2b . . . . . . . . . 24
Qud3b . . . . . . . . . 24
Gudddb . . . . . . . . . 24
Qudel . . . . . . . . . 28
Gude2 . . . . . . . . . 29
Gude3 . . .. . L L L. 29
Guded . . . . . . . . . 25

Refor . . . . . . . . . 15, 18
Remvx . . . . . . . . . 25
Reple . . . . . . . . . 21, 26
Replot—-check . . . . . . @2é&
Replot—flag—-a . . . . . 20

Replet~flag-b . . . . . 20

Retrm . . . . . . . . . 27

RF& . . . . . . . . . . 20 26 %0 27

RFB . . . . . . . . . . 20 %0 21, 26 to 27
RIdd . . . . . . . . . . i1

Rell . . . . . . . . . . 2 te 3, 15

Ret . . . . . . . . . . 16 0 17

Routinas . . . . . . . . 3

Row . . . . . . . . . . 13, 18

RP& . . . . . . . . . . 3

RPB . . . . . . . . . . 3

Redd . . . . . . . . . . it

Savxa . . . . . . . . . 21
Savga . . . . . . . . . 21
Scora . . . . L. o oL 3: 27
Scorb . . . . . . . . . 3. 27




Page Index-4

Score . . . . . . ... 3r 2&
Shi®ft . . .. . . . . .. iz
Sound . . . . . . . . . 21
Start . . . . . . . .. 27

Taddr . . . . . . . . . 23

Teol . . . . . . O L L. 23, 25
Tesp2 . . . . . . . . . 3 ta 4
Texpl . . . . . . . . . 23, 25
Theta . . . . . . . . . 4

Thetb . . . . . . . . . 4

Thid . . . . . . . . . . 3

Thrust . . . . . . . . . 4

Thep . . . . . . . . . . 3 to 4
Tim . . . . . . . . . . 23 %0 25
Tige . . . . . . . . . . % .
Tap . . . . . . . . . . 24
Trant . . . . . . . . . 14

UL . . . . . . o o o 0 . 18 to 17
Updat . . . . . . . . . & 14, 20, 22, 30
UR . . . . . . . . . . . 1& to 17

Ve . . o . o o v . o L. 81 2 to 10
Wy .. . . . . . . . . . B @ to 10

Weight . . . . . . . . . 4
Wye . . . . . . . . . . 1% 23 25
Wyee . . . . . . . . . . 21

Xeol . . . . . . . . .. 24
Xdisp . . . . . . . . . 28
¥aoffs . . . . . . . . . 24 %o 23

¥disp . . . . . . . . . 28
¥iin . . . . . . . . . . 24
Yotfs . . . . . . . . . 24 to 29




